Sample records for hierarchical regression results

  1. Hierarchical linear regression models for conditional quantiles

    TIAN Maozai; CHEN Gemai


    The quantile regression has several useful features and therefore is gradually developing into a comprehensive approach to the statistical analysis of linear and nonlinear response models,but it cannot deal effectively with the data with a hierarchical structure.In practice,the existence of such data hierarchies is neither accidental nor ignorable,it is a common phenomenon.To ignore this hierarchical data structure risks overlooking the importance of group effects,and may also render many of the traditional statistical analysis techniques used for studying data relationships invalid.On the other hand,the hierarchical models take a hierarchical data structure into account and have also many applications in statistics,ranging from overdispersion to constructing min-max estimators.However,the hierarchical models are virtually the mean regression,therefore,they cannot be used to characterize the entire conditional distribution of a dependent variable given high-dimensional covariates.Furthermore,the estimated coefficient vector (marginal effects)is sensitive to an outlier observation on the dependent variable.In this article,a new approach,which is based on the Gauss-Seidel iteration and taking a full advantage of the quantile regression and hierarchical models,is developed.On the theoretical front,we also consider the asymptotic properties of the new method,obtaining the simple conditions for an n1/2-convergence and an asymptotic normality.We also illustrate the use of the technique with the real educational data which is hierarchical and how the results can be explained.

  2. Entrepreneurial intention modeling using hierarchical multiple regression

    Marina Jeger


    Full Text Available The goal of this study is to identify the contribution of effectuation dimensions to the predictive power of the entrepreneurial intention model over and above that which can be accounted for by other predictors selected and confirmed in previous studies. As is often the case in social and behavioral studies, some variables are likely to be highly correlated with each other. Therefore, the relative amount of variance in the criterion variable explained by each of the predictors depends on several factors such as the order of variable entry and sample specifics. The results show the modest predictive power of two dimensions of effectuation prior to the introduction of the theory of planned behavior elements. The article highlights the main advantages of applying hierarchical regression in social sciences as well as in the specific context of entrepreneurial intention formation, and addresses some of the potential pitfalls that this type of analysis entails.

  3. The Infinite Hierarchical Factor Regression Model

    Rai, Piyush


    We propose a nonparametric Bayesian factor regression model that accounts for uncertainty in the number of factors, and the relationship between factors. To accomplish this, we propose a sparse variant of the Indian Buffet Process and couple this with a hierarchical model over factors, based on Kingman's coalescent. We apply this model to two problems (factor analysis and factor regression) in gene-expression data analysis.

  4. Hierarchical Neural Regression Models for Customer Churn Prediction

    Golshan Mohammadi


    Full Text Available As customers are the main assets of each industry, customer churn prediction is becoming a major task for companies to remain in competition with competitors. In the literature, the better applicability and efficiency of hierarchical data mining techniques has been reported. This paper considers three hierarchical models by combining four different data mining techniques for churn prediction, which are backpropagation artificial neural networks (ANN, self-organizing maps (SOM, alpha-cut fuzzy c-means (α-FCM, and Cox proportional hazards regression model. The hierarchical models are ANN + ANN + Cox, SOM + ANN + Cox, and α-FCM + ANN + Cox. In particular, the first component of the models aims to cluster data in two churner and nonchurner groups and also filter out unrepresentative data or outliers. Then, the clustered data as the outputs are used to assign customers to churner and nonchurner groups by the second technique. Finally, the correctly classified data are used to create Cox proportional hazards model. To evaluate the performance of the hierarchical models, an Iranian mobile dataset is considered. The experimental results show that the hierarchical models outperform the single Cox regression baseline model in terms of prediction accuracy, Types I and II errors, RMSE, and MAD metrics. In addition, the α-FCM + ANN + Cox model significantly performs better than the two other hierarchical models.

  5. Coordinate Descent Based Hierarchical Interactive Lasso Penalized Logistic Regression and Its Application to Classification Problems

    Jin-Jia Wang


    Full Text Available We present the hierarchical interactive lasso penalized logistic regression using the coordinate descent algorithm based on the hierarchy theory and variables interactions. We define the interaction model based on the geometric algebra and hierarchical constraint conditions and then use the coordinate descent algorithm to solve for the coefficients of the hierarchical interactive lasso model. We provide the results of some experiments based on UCI datasets, Madelon datasets from NIPS2003, and daily activities of the elder. The experimental results show that the variable interactions and hierarchy contribute significantly to the classification. The hierarchical interactive lasso has the advantages of the lasso and interactive lasso.

  6. Synthesizing Regression Results: A Factored Likelihood Method

    Wu, Meng-Jia; Becker, Betsy Jane


    Regression methods are widely used by researchers in many fields, yet methods for synthesizing regression results are scarce. This study proposes using a factored likelihood method, originally developed to handle missing data, to appropriately synthesize regression models involving different predictors. This method uses the correlations reported…

  7. Hierarchical Matching and Regression with Application to Photometric Redshift Estimation

    Murtagh, Fionn


    This work emphasizes that heterogeneity, diversity, discontinuity, and discreteness in data is to be exploited in classification and regression problems. A global a priori model may not be desirable. For data analytics in cosmology, this is motivated by the variety of cosmological objects such as elliptical, spiral, active, and merging galaxies at a wide range of redshifts. Our aim is matching and similarity-based analytics that takes account of discrete relationships in the data. The information structure of the data is represented by a hierarchy or tree where the branch structure, rather than just the proximity, is important. The representation is related to p-adic number theory. The clustering or binning of the data values, related to the precision of the measurements, has a central role in this methodology. If used for regression, our approach is a method of cluster-wise regression, generalizing nearest neighbour regression. Both to exemplify this analytics approach, and to demonstrate computational benefits, we address the well-known photometric redshift or `photo-z' problem, seeking to match Sloan Digital Sky Survey (SDSS) spectroscopic and photometric redshifts.

  8. Analyzing Multilevel Data: Comparing Findings from Hierarchical Linear Modeling and Ordinary Least Squares Regression

    Rocconi, Louis M.


    This study examined the differing conclusions one may come to depending upon the type of analysis chosen, hierarchical linear modeling or ordinary least squares (OLS) regression. To illustrate this point, this study examined the influences of seniors' self-reported critical thinking abilities three ways: (1) an OLS regression with the student…

  9. Hierarchical Multiple Regression in Counseling Research: Common Problems and Possible Remedies.

    Petrocelli, John V.


    A brief content analysis was conducted on the use of hierarchical regression in counseling research published in the "Journal of Counseling Psychology" and the "Journal of Counseling & Development" during the years 1997-2001. Common problems are cited and possible remedies are described. (Contains 43 references and 3 tables.) (Author)

  10. Analysis of genomic signatures in prokaryotes using multinomial regression and hierarchical clustering

    Ussery, David; Bohlin, Jon; Skjerve, Eystein


    Recently there has been an explosion in the availability of bacterial genomic sequences, making possible now an analysis of genomic signatures across more than 800 hundred different bacterial chromosomes, from a wide variety of environments. Using genomic signatures, we pair-wise compared 867...... different genomic DNA sequences, taken from chromosomes and plasmids more than 100,000 base-pairs in length. Hierarchical clustering was performed on the outcome of the comparisons before a multinomial regression model was fitted. The regression model included the cluster groups as the response variable...... AT content. Small improvements to the regression model, although significant, were also obtained by factors such as sequence size, habitat, growth temperature, selective pressure measured as oligonucleotide usage variance, and oxygen requirement.The statistics obtained using hierarchical clustering...

  11. Neighborhood social capital and crime victimization: comparison of spatial regression analysis and hierarchical regression analysis.

    Takagi, Daisuke; Ikeda, Ken'ichi; Kawachi, Ichiro


    Crime is an important determinant of public health outcomes, including quality of life, mental well-being, and health behavior. A body of research has documented the association between community social capital and crime victimization. The association between social capital and crime victimization has been examined at multiple levels of spatial aggregation, ranging from entire countries, to states, metropolitan areas, counties, and neighborhoods. In multilevel analysis, the spatial boundaries at level 2 are most often drawn from administrative boundaries (e.g., Census tracts in the U.S.). One problem with adopting administrative definitions of neighborhoods is that it ignores spatial spillover. We conducted a study of social capital and crime victimization in one ward of Tokyo city, using a spatial Durbin model with an inverse-distance weighting matrix that assigned each respondent a unique level of "exposure" to social capital based on all other residents' perceptions. The study is based on a postal questionnaire sent to 20-69 years old residents of Arakawa Ward, Tokyo. The response rate was 43.7%. We examined the contextual influence of generalized trust, perceptions of reciprocity, two types of social network variables, as well as two principal components of social capital (constructed from the above four variables). Our outcome measure was self-reported crime victimization in the last five years. In the spatial Durbin model, we found that neighborhood generalized trust, reciprocity, supportive networks and two principal components of social capital were each inversely associated with crime victimization. By contrast, a multilevel regression performed with the same data (using administrative neighborhood boundaries) found generally null associations between neighborhood social capital and crime. Spatial regression methods may be more appropriate for investigating the contextual influence of social capital in homogeneous cultural settings such as Japan.

  12. Bayesian hierarchical regression analysis of variations in sea surface temperature change over the past million years

    Snyder, Carolyn W.


    Statistical challenges often preclude comparisons among different sea surface temperature (SST) reconstructions over the past million years. Inadequate consideration of uncertainty can result in misinterpretation, overconfidence, and biased conclusions. Here I apply Bayesian hierarchical regressions to analyze local SST responsiveness to climate changes for 54 SST reconstructions from across the globe over the past million years. I develop methods to account for multiple sources of uncertainty, including the quantification of uncertainty introduced from absolute dating into interrecord comparisons. The estimates of local SST responsiveness explain 64% (62% to 77%, 95% interval) of the total variation within each SST reconstruction with a single number. There is remarkable agreement between SST proxy methods, with the exception of Mg/Ca proxy methods estimating muted responses at high latitudes. The Indian Ocean exhibits a muted response in comparison to other oceans. I find a stable estimate of the proposed "universal curve" of change in local SST responsiveness to climate changes as a function of sin2(latitude) over the past 400,000 years: SST change at 45°N/S is larger than the average tropical response by a factor of 1.9 (1.5 to 2.6, 95% interval) and explains 50% (35% to 58%, 95% interval) of the total variation between each SST reconstruction. These uncertainty and statistical methods are well suited for application across paleoclimate and environmental data series intercomparisons.

  13. Evidence for a non-universal Kennicutt-Schmidt relationship using hierarchical Bayesian linear regression

    Shetty, Rahul; Bigiel, Frank


    We develop a Bayesian linear regression method which rigorously treats measurement uncertainties, and accounts for hierarchical data structure for investigating the relationship between the star formation rate and gas surface density. The method simultaneously estimates the intercept, slope, and scatter about the regression line of each individual subject (e.g. a galaxy) and the population (e.g. an ensemble of galaxies). Using synthetic datasets, we demonstrate that the Bayesian method accurately recovers the parameters of both the individuals and the population, especially when compared to commonly employed least squares methods, such as the bisector. We apply the Bayesian method to estimate the Kennicutt-Schmidt (KS) parameters of a sample of spiral galaxies compiled by Bigiel et al. (2008). We find significant variation in the KS parameters, indicating that no single KS relationship holds for all galaxies. This suggests that the relationship between molecular gas and star formation differs between galaxies...


    Mandel, Kaisey S.; Kirshner, Robert P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Foley, Ryan J., E-mail: [Astronomy Department, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States)


    We investigate the statistical dependence of the peak intrinsic colors of Type Ia supernovae (SNe Ia) on their expansion velocities at maximum light, measured from the Si II λ6355 spectral feature. We construct a new hierarchical Bayesian regression model, accounting for the random effects of intrinsic scatter, measurement error, and reddening by host galaxy dust, and implement a Gibbs sampler and deviance information criteria to estimate the correlation. The method is applied to the apparent colors from BVRI light curves and Si II velocity data for 79 nearby SNe Ia. The apparent color distributions of high-velocity (HV) and normal velocity (NV) supernovae exhibit significant discrepancies for B – V and B – R, but not other colors. Hence, they are likely due to intrinsic color differences originating in the B band, rather than dust reddening. The mean intrinsic B – V and B – R color differences between HV and NV groups are 0.06 ± 0.02 and 0.09 ± 0.02 mag, respectively. A linear model finds significant slopes of –0.021 ± 0.006 and –0.030 ± 0.009 mag (10{sup 3} km s{sup –1}){sup –1} for intrinsic B – V and B – R colors versus velocity, respectively. Because the ejecta velocity distribution is skewed toward high velocities, these effects imply non-Gaussian intrinsic color distributions with skewness up to +0.3. Accounting for the intrinsic-color-velocity correlation results in corrections to A{sub V} extinction estimates as large as –0.12 mag for HV SNe Ia and +0.06 mag for NV events. Velocity measurements from SN Ia spectra have the potential to diminish systematic errors from the confounding of intrinsic colors and dust reddening affecting supernova distances.

  15. Principal Covariates Clusterwise Regression (PCCR): Accounting for Multicollinearity and Population Heterogeneity in Hierarchically Organized Data.

    Wilderjans, Tom Frans; Vande Gaer, Eva; Kiers, Henk A L; Van Mechelen, Iven; Ceulemans, Eva


    In the behavioral sciences, many research questions pertain to a regression problem in that one wants to predict a criterion on the basis of a number of predictors. Although in many cases, ordinary least squares regression will suffice, sometimes the prediction problem is more challenging, for three reasons: first, multiple highly collinear predictors can be available, making it difficult to grasp their mutual relations as well as their relations to the criterion. In that case, it may be very useful to reduce the predictors to a few summary variables, on which one regresses the criterion and which at the same time yields insight into the predictor structure. Second, the population under study may consist of a few unknown subgroups that are characterized by different regression models. Third, the obtained data are often hierarchically structured, with for instance, observations being nested into persons or participants within groups or countries. Although some methods have been developed that partially meet these challenges (i.e., principal covariates regression (PCovR), clusterwise regression (CR), and structural equation models), none of these methods adequately deals with all of them simultaneously. To fill this gap, we propose the principal covariates clusterwise regression (PCCR) method, which combines the key idea's behind PCovR (de Jong & Kiers in Chemom Intell Lab Syst 14(1-3):155-164, 1992) and CR (Späth in Computing 22(4):367-373, 1979). The PCCR method is validated by means of a simulation study and by applying it to cross-cultural data regarding satisfaction with life.

  16. Investigating the effects of climate variations on bacillary dysentery incidence in northeast China using ridge regression and hierarchical cluster analysis

    Guo Junqiao


    Full Text Available Abstract Background The effects of climate variations on bacillary dysentery incidence have gained more recent concern. However, the multi-collinearity among meteorological factors affects the accuracy of correlation with bacillary dysentery incidence. Methods As a remedy, a modified method to combine ridge regression and hierarchical cluster analysis was proposed for investigating the effects of climate variations on bacillary dysentery incidence in northeast China. Results All weather indicators, temperatures, precipitation, evaporation and relative humidity have shown positive correlation with the monthly incidence of bacillary dysentery, while air pressure had a negative correlation with the incidence. Ridge regression and hierarchical cluster analysis showed that during 1987–1996, relative humidity, temperatures and air pressure affected the transmission of the bacillary dysentery. During this period, all meteorological factors were divided into three categories. Relative humidity and precipitation belonged to one class, temperature indexes and evaporation belonged to another class, and air pressure was the third class. Conclusion Meteorological factors have affected the transmission of bacillary dysentery in northeast China. Bacillary dysentery prevention and control would benefit from by giving more consideration to local climate variations.

  17. Hierarchical Vector Auto-Regressive Models and Their Applications to Multi-subject Effective Connectivity

    Cristina eGorrostieta


    Full Text Available Vector auto-regressive (VAR models typically form the basis for constructing directed graphical models for investigating connectivity in a brain network with brain regions of interest (ROIs as nodes. There are limitations in the standard VAR models. The number of parameters in the VAR model increases quadratically with the number of ROIs and linearly with the order of the model and thus due to the large number of parameters, the model could pose serious estimation problems. Moreover, when applied to imaging data, the standard VAR model does not account for variability in the connectivity structure across all subjects. In this paper, we develop a novel generalization of the VAR model that overcomes these limitations. To deal with the high dimensionality of the parameter space, we propose a Bayesian hierarchical framework for the VAR model that will account for both temporal correlation within a subject and between subject variation. Our approach uses prior distributions that give rise to estimates that correspond to penalized least squares criterion with the elastic net penalty. We apply the proposed model to investigate differences in effective connectivity during a hand grasp experiment between healthy controls and patients with residual motor deficit following a stroke.

  18. Type Ia Supernova Colors and Ejecta Velocities: Hierarchical Bayesian Regression with Non-Gaussian Distributions

    Mandel, Kaisey S; Kirshner, Robert P


    We investigate the correlations between the peak intrinsic colors of Type Ia supernovae (SN Ia) and their expansion velocities at maximum light, measured from the Si II 6355 A spectral feature. We construct a new hierarchical Bayesian regression model and Gibbs sampler to estimate the dependence of the intrinsic colors of a SN Ia on its ejecta velocity, while accounting for the random effects of intrinsic scatter, measurement error, and reddening by host galaxy dust. The method is applied to the apparent color data from BVRI light curves and Si II velocity data for 79 nearby SN Ia. Comparison of the apparent color distributions of high velocity (HV) and normal velocity (NV) supernovae reveals significant discrepancies in B-V and B-R, but not other colors. Hence, they are likely due to intrinsic color differences originating in the B-band, rather than dust reddening. The mean intrinsic B-V and B-R color differences between HV and NV groups are 0.06 +/- 0.02 and 0.09 +/- 0.02 mag, respectively. Under a linear m...

  19. Hierarchical design of a polymeric nanovehicle for efficient tumor regression and imaging

    An, Jinxia; Guo, Qianqian; Zhang, Peng; Sinclair, Andrew; Zhao, Yu; Zhang, Xinge; Wu, Kan; Sun, Fang; Hung, Hsiang-Chieh; Li, Chaoxing; Jiang, Shaoyi


    Effective delivery of therapeutics to disease sites significantly contributes to drug efficacy, toxicity and clearance. Here we designed a hierarchical polymeric nanoparticle structure for anti-cancer chemotherapy delivery by utilizing state-of-the-art polymer chemistry and co-assembly techniques. This novel structural design combines the most desired merits for drug delivery in a single particle, including a long in vivo circulation time, inhibited non-specific cell uptake, enhanced tumor cell internalization, pH-controlled drug release and simultaneous imaging. This co-assembled nanoparticle showed exceptional stability in complex biological media. Benefiting from the synergistic effects of zwitterionic and multivalent galactose polymers, drug-loaded nanoparticles were selectively internalized by cancer cells rather than normal tissue cells. In addition, the pH-responsive core retained their cargo within their polymeric coating through hydrophobic interaction and released it under slightly acidic conditions. In vivo pharmacokinetic studies in mice showed minimal uptake of nanoparticles by the mononuclear phagocyte system and excellent blood circulation half-lives of 14.4 h. As a result, tumor growth was completely inhibited and no damage was observed for normal organ tissues. This newly developed drug nanovehicle has great potential in cancer therapy, and the hierarchical design principle should provide valuable information for the development of the next generation of drug delivery systems.Effective delivery of therapeutics to disease sites significantly contributes to drug efficacy, toxicity and clearance. Here we designed a hierarchical polymeric nanoparticle structure for anti-cancer chemotherapy delivery by utilizing state-of-the-art polymer chemistry and co-assembly techniques. This novel structural design combines the most desired merits for drug delivery in a single particle, including a long in vivo circulation time, inhibited non-specific cell uptake

  20. Augmenting Data with Published Results in Bayesian Linear Regression

    de Leeuw, Christiaan; Klugkist, Irene


    In most research, linear regression analyses are performed without taking into account published results (i.e., reported summary statistics) of similar previous studies. Although the prior density in Bayesian linear regression could accommodate such prior knowledge, formal models for doing so are absent from the literature. The goal of this…

  1. Augmenting Data with Published Results in Bayesian Linear Regression

    de Leeuw, Christiaan; Klugkist, Irene


    In most research, linear regression analyses are performed without taking into account published results (i.e., reported summary statistics) of similar previous studies. Although the prior density in Bayesian linear regression could accommodate such prior knowledge, formal models for doing so are absent from the literature. The goal of this…

  2. Bayesian hierarchical piecewise regression models: a tool to detect trajectory divergence between groups in long-term observational studies.

    Buscot, Marie-Jeanne; Wotherspoon, Simon S; Magnussen, Costan G; Juonala, Markus; Sabin, Matthew A; Burgner, David P; Lehtimäki, Terho; Viikari, Jorma S A; Hutri-Kähönen, Nina; Raitakari, Olli T; Thomson, Russell J


    Bayesian hierarchical piecewise regression (BHPR) modeling has not been previously formulated to detect and characterise the mechanism of trajectory divergence between groups of participants that have longitudinal responses with distinct developmental phases. These models are useful when participants in a prospective cohort study are grouped according to a distal dichotomous health outcome. Indeed, a refined understanding of how deleterious risk factor profiles develop across the life-course may help inform early-life interventions. Previous techniques to determine between-group differences in risk factors at each age may result in biased estimate of the age at divergence. We demonstrate the use of Bayesian hierarchical piecewise regression (BHPR) to generate a point estimate and credible interval for the age at which trajectories diverge between groups for continuous outcome measures that exhibit non-linear within-person response profiles over time. We illustrate our approach by modeling the divergence in childhood-to-adulthood body mass index (BMI) trajectories between two groups of adults with/without type 2 diabetes mellitus (T2DM) in the Cardiovascular Risk in Young Finns Study (YFS). Using the proposed BHPR approach, we estimated the BMI profiles of participants with T2DM diverged from healthy participants at age 16 years for males (95% credible interval (CI):13.5-18 years) and 21 years for females (95% CI: 19.5-23 years). These data suggest that a critical window for weight management intervention in preventing T2DM might exist before the age when BMI growth rate is naturally expected to decrease. Simulation showed that when using pairwise comparison of least-square means from categorical mixed models, smaller sample sizes tended to conclude a later age of divergence. In contrast, the point estimate of the divergence time is not biased by sample size when using the proposed BHPR method. BHPR is a powerful analytic tool to model long-term non

  3. A Logistic Regression Model with a Hierarchical Random Error Term for Analyzing the Utilization of Public Transport

    Chong Wei


    Full Text Available Logistic regression models have been widely used in previous studies to analyze public transport utilization. These studies have shown travel time to be an indispensable variable for such analysis and usually consider it to be a deterministic variable. This formulation does not allow us to capture travelers’ perception error regarding travel time, and recent studies have indicated that this error can have a significant effect on modal choice behavior. In this study, we propose a logistic regression model with a hierarchical random error term. The proposed model adds a new random error term for the travel time variable. This term structure enables us to investigate travelers’ perception error regarding travel time from a given choice behavior dataset. We also propose an extended model that allows constraining the sign of this error in the model. We develop two Gibbs samplers to estimate the basic hierarchical model and the extended model. The performance of the proposed models is examined using a well-known dataset.

  4. Hierarchical Cluster-based Partial Least Squares Regression (HC-PLSR is an efficient tool for metamodelling of nonlinear dynamic models

    Omholt Stig W


    Full Text Available Abstract Background Deterministic dynamic models of complex biological systems contain a large number of parameters and state variables, related through nonlinear differential equations with various types of feedback. A metamodel of such a dynamic model is a statistical approximation model that maps variation in parameters and initial conditions (inputs to variation in features of the trajectories of the state variables (outputs throughout the entire biologically relevant input space. A sufficiently accurate mapping can be exploited both instrumentally and epistemically. Multivariate regression methodology is a commonly used approach for emulating dynamic models. However, when the input-output relations are highly nonlinear or non-monotone, a standard linear regression approach is prone to give suboptimal results. We therefore hypothesised that a more accurate mapping can be obtained by locally linear or locally polynomial regression. We present here a new method for local regression modelling, Hierarchical Cluster-based PLS regression (HC-PLSR, where fuzzy C-means clustering is used to separate the data set into parts according to the structure of the response surface. We compare the metamodelling performance of HC-PLSR with polynomial partial least squares regression (PLSR and ordinary least squares (OLS regression on various systems: six different gene regulatory network models with various types of feedback, a deterministic mathematical model of the mammalian circadian clock and a model of the mouse ventricular myocyte function. Results Our results indicate that multivariate regression is well suited for emulating dynamic models in systems biology. The hierarchical approach turned out to be superior to both polynomial PLSR and OLS regression in all three test cases. The advantage, in terms of explained variance and prediction accuracy, was largest in systems with highly nonlinear functional relationships and in systems with positive feedback


    Goutam Saha


    Full Text Available The binary logistic regression model is used to analyze the school examination results(scores of 1002 students. The analysis is performed on the basis of the independent variables viz.gender, medium of instruction, type of schools, category of schools, board of examinations andlocation of schools, where scores or marks are assumed to be dependent variables. The odds ratioanalysis compares the scores obtained in two examinations viz. matriculation and highersecondary.

  6. Polygraph Test Results Assessment by Regression Analysis Methods

    K. A. Leontiev


    Full Text Available The paper considers a problem of defining the importance of asked questions for the examinee under judicial and psychophysiological polygraph examination by methods of mathematical statistics. It offers the classification algorithm based on the logistic regression as an optimum Bayesian classifier, considering weight coefficients of information for the polygraph-recorded physiological parameters with no condition for independence of the measured signs.Actually, binary classification is executed by results of polygraph examination with preliminary normalization and standardization of primary results, with check of a hypothesis that distribution of obtained data is normal, as well as with calculation of coefficients of linear regression between input values and responses by method of maximum likelihood. Further, the logistic curve divided signs into two classes of the "significant" and "insignificant" type.Efficiency of model is estimated by means of the ROC analysis (Receiver Operator Characteristics. It is shown that necessary minimum sample has to contain results of 45 measurements at least. This approach ensures a reliable result provided that an expert-polygraphologist possesses sufficient qualification and follows testing techniques.

  7. Recent results on the hierarchical triple system HD 150136

    Gosset, E.; Berger, J. P.; Absil, O.; Le Bouquin, J. B.; Sana, H.; Mahy, L.; De Becker, M.


    HD 150136 is a hierarchical triple system, non-thermal radio emitter, made of three O stars totalling some 130 solar masses. The 2.67-day inner orbit is rather well-known. Recent works derived a good approximation for the outer orbit with a period of 3000 days. We report here on interferometric observations that allow us to angularly resolve the outer orbit. First evidences for an astrometric displacement are given. The determination of the outer system orbit gives access to the inclinations of the systems and to the masses, including the one of the O3-O3.5 primary star.

  8. Predictive Ability of Pender's Health Promotion Model for Physical Activity and Exercise in People with Spinal Cord Injuries: A Hierarchical Regression Analysis

    Keegan, John P.; Chan, Fong; Ditchman, Nicole; Chiu, Chung-Yi


    The main objective of this study was to validate Pender's Health Promotion Model (HPM) as a motivational model for exercise/physical activity self-management for people with spinal cord injuries (SCIs). Quantitative descriptive research design using hierarchical regression analysis (HRA) was used. A total of 126 individuals with SCI were recruited…

  9. Two SPSS programs for interpreting multiple regression results.

    Lorenzo-Seva, Urbano; Ferrando, Pere J; Chico, Eliseo


    When multiple regression is used in explanation-oriented designs, it is very important to determine both the usefulness of the predictor variables and their relative importance. Standardized regression coefficients are routinely provided by commercial programs. However, they generally function rather poorly as indicators of relative importance, especially in the presence of substantially correlated predictors. We provide two user-friendly SPSS programs that implement currently recommended techniques and recent developments for assessing the relevance of the predictors. The programs also allow the user to take into account the effects of measurement error. The first program, MIMR-Corr.sps, uses a correlation matrix as input, whereas the second program, MIMR-Raw.sps, uses the raw data and computes bootstrap confidence intervals of different statistics. The SPSS syntax, a short manual, and data files related to this article are available as supplemental materials from

  10. The importance of trait emotional intelligence and feelings in the prediction of perceived and biological stress in adolescents: hierarchical regressions and fsQCA models.

    Villanueva, Lidón; Montoya-Castilla, Inmaculada; Prado-Gascó, Vicente


    The purpose of this study is to analyze the combined effects of trait emotional intelligence (EI) and feelings on healthy adolescents' stress. Identifying the extent to which adolescent stress varies with trait emotional differences and the feelings of adolescents is of considerable interest in the development of intervention programs for fostering youth well-being. To attain this goal, self-reported questionnaires (perceived stress, trait EI, and positive/negative feelings) and biological measures of stress (hair cortisol concentrations, HCC) were collected from 170 adolescents (12-14 years old). Two different methodologies were conducted, which included hierarchical regression models and a fuzzy-set qualitative comparative analysis (fsQCA). The results support trait EI as a protective factor against stress in healthy adolescents and suggest that feelings reinforce this relation. However, the debate continues regarding the possibility of optimal levels of trait EI for effective and adaptive emotional management, particularly in the emotional attention and clarity dimensions and for female adolescents.

  11. Bayesian hierarchical model used to analyze regression between fish body size and scale size: application to rare fish species Zingel asper

    Fontez B.


    Full Text Available Back-calculation allows to increase available data on fish growth. The accuracy of back-calculation models is of paramount importance for growth analysis. Frequentist and Bayesian hierarchical approaches were used for regression between fish body size and scale size for the rare fish species Zingel asper. The Bayesian approach permits more reliable estimation of back-calculated size, taking into account biological information and cohort variability. This method greatly improves estimation of back-calculated length when sampling is uneven and/or small.

  12. Regressão múltipla stepwise e hierárquica em Psicologia Organizacional: aplicações, problemas e soluções Stepwise and hierarchical multiple regression in organizational psychology: Applications, problemas and solutions

    Gardênia Abbad


    Full Text Available Este artigo discute algumas aplicações das técnicas de análise de regressão múltipla stepwise e hierárquica, as quais são muito utilizadas em pesquisas da área de Psicologia Organizacional. São discutidas algumas estratégias de identificação e de solução de problemas relativos à ocorrência de erros do Tipo I e II e aos fenômenos de supressão, complementaridade e redundância nas equações de regressão múltipla. São apresentados alguns exemplos de pesquisas nas quais esses padrões de associação entre variáveis estiveram presentes e descritas as estratégias utilizadas pelos pesquisadores para interpretá-los. São discutidas as aplicações dessas análises no estudo de interação entre variáveis e na realização de testes para avaliação da linearidade do relacionamento entre variáveis. Finalmente, são apresentadas sugestões para lidar com as limitações das análises de regressão múltipla (stepwise e hierárquica.This article discusses applications of stepwise and hierarchical multiple regression analyses to research in organizational psychology. Strategies for identifying type I and II errors, and solutions to potential problems that may arise from such errors are proposed. In addition, phenomena such as suppression, complementarity, and redundancy are reviewed. The article presents examples of research where these phenomena occurred, and the manner in which they were explained by researchers. Some applications of multiple regression analyses to studies involving between-variable interactions are presented, along with tests used to analyze the presence of linearity among variables. Finally, some suggestions are provided for dealing with limitations implicit in multiple regression analyses (stepwise and hierarchical.

  13. A Comparison between the Use of Beta Weights and Structure Coefficients in Interpreting Regression Results

    Tong, Fuhui


    Background: An extensive body of researches has favored the use of regression over other parametric analyses that are based on OVA. In case of noteworthy regression results, researchers tend to explore magnitude of beta weights for the respective predictors. Purpose: The purpose of this paper is to examine both beta weights and structure…

  14. Modeling type 1 and type 2 diabetes mellitus incidence in youth: an application of Bayesian hierarchical regression for sparse small area data.

    Song, Hae-Ryoung; Lawson, Andrew; D'Agostino, Ralph B; Liese, Angela D


    Sparse count data violate assumptions of traditional Poisson models due to the excessive amount of zeros, and modeling sparse data becomes challenging. However, since aggregation to reduce sparseness may result in biased estimates of risk, solutions need to be found at the level of disaggregated data. We investigated different statistical approaches within a Bayesian hierarchical framework for modeling sparse data without aggregation of data. We compared our proposed models with the traditional Poisson model and the zero-inflated model based on simulated data. We applied statistical models to type 1 and type 2 diabetes in youth 10-19 years known as rare diseases, and compared models using the inference results and various model diagnostic tools. We showed that one of the models we proposed, a sparse Poisson convolution model, performed better than other models in the simulation and application based on the deviance information criterion (DIC) and the mean squared prediction error.

  15. Calibrated Peer Review for Interpreting Linear Regression Parameters: Results from a Graduate Course

    Enders, Felicity B.; Jenkins, Sarah; Hoverman, Verna


    Biostatistics is traditionally a difficult subject for students to learn. While the mathematical aspects are challenging, it can also be demanding for students to learn the exact language to use to correctly interpret statistical results. In particular, correctly interpreting the parameters from linear regression is both a vital tool and a…

  16. Price promotions on healthier compared with less healthy foods: a hierarchical regression analysis of the impact on sales and social patterning of responses to promotions in Great Britain.

    Nakamura, Ryota; Suhrcke, Marc; Jebb, Susan A; Pechey, Rachel; Almiron-Roig, Eva; Marteau, Theresa M


    There is a growing concern, but limited evidence, that price promotions contribute to a poor diet and the social patterning of diet-related disease. We examined the following questions: 1) Are less-healthy foods more likely to be promoted than healthier foods? 2) Are consumers more responsive to promotions on less-healthy products? 3) Are there socioeconomic differences in food purchases in response to price promotions? With the use of hierarchical regression, we analyzed data on purchases of 11,323 products within 135 food and beverage categories from 26,986 households in Great Britain during 2010. Major supermarkets operated the same price promotions in all branches. The number of stores that offered price promotions on each product for each week was used to measure the frequency of price promotions. We assessed the healthiness of each product by using a nutrient profiling (NP) model. A total of 6788 products (60%) were in healthier categories and 4535 products (40%) were in less-healthy categories. There was no significant gap in the frequency of promotion by the healthiness of products neither within nor between categories. However, after we controlled for the reference price, price discount rate, and brand-specific effects, the sales uplift arising from price promotions was larger in less-healthy than in healthier categories; a 1-SD point increase in the category mean NP score, implying the category becomes less healthy, was associated with an additional 7.7-percentage point increase in sales (from 27.3% to 35.0%; P sales uplift from promotions was larger for higher-socioeconomic status (SES) groups than for lower ones (34.6% for the high-SES group, 28.1% for the middle-SES group, and 23.1% for the low-SES group). Finally, there was no significant SES gap in the absolute volume of purchases of less-healthy foods made on promotion. Attempts to limit promotions on less-healthy foods could improve the population diet but would be unlikely to reduce health

  17. Additional results on 'Reducing geometric dilution of precision using ridge regression'

    Kelly, Robert J.


    Kelly (1990) presented preliminary results on the feasibility of using ridge regression (RR) to reduce the effects of geometric dilution of precision (GDOP) error inflation in position-fix navigation systems. Recent results indicate that RR will not reduce GDOP bias inflation when biaslike measurement errors last much longer than the aircraft guidance-loop response time. This conclusion precludes the use of RR on navigation systems whose dominant error sources are biaslike; e.g., the GPS selective-availability error source. The simulation results given by Kelly are, however, valid for the conditions defined. Although RR has not yielded a satisfactory solution to the general GDOP problem, it has illuminated the role that multicollinearity plays in navigation signal processors such as the Kalman filter. Bias inflation, initial position guess errors, ridge-parameter selection methodology, and the recursive ridge filter are discussed.

  18. Modeling Heterogeneity in Relationships between Initial Status and Rates of Change: Treating Latent Variable Regression Coefficients as Random Coefficients in a Three-Level Hierarchical Model

    Choi, Kilchan; Seltzer, Michael


    In studies of change in education and numerous other fields, interest often centers on how differences in the status of individuals at the start of a period of substantive interest relate to differences in subsequent change. In this article, the authors present a fully Bayesian approach to estimating three-level Hierarchical Models in which latent…

  19. Collaborative Hierarchical Sparse Modeling

    Sprechmann, Pablo; Sapiro, Guillermo; Eldar, Yonina C


    Sparse modeling is a powerful framework for data analysis and processing. Traditionally, encoding in this framework is done by solving an l_1-regularized linear regression problem, usually called Lasso. In this work we first combine the sparsity-inducing property of the Lasso model, at the individual feature level, with the block-sparsity property of the group Lasso model, where sparse groups of features are jointly encoded, obtaining a sparsity pattern hierarchically structured. This results in the hierarchical Lasso, which shows important practical modeling advantages. We then extend this approach to the collaborative case, where a set of simultaneously coded signals share the same sparsity pattern at the higher (group) level but not necessarily at the lower one. Signals then share the same active groups, or classes, but not necessarily the same active set. This is very well suited for applications such as source separation. An efficient optimization procedure, which guarantees convergence to the global opt...

  20. Robustness Results for Hierarchical Diff-EDF Scheduling upon Heterogeneous Real-Time Packet Networks

    Moutaz Saleh


    Full Text Available Packet networks are currently enabling the integration of traffic with a wide range of characteristics that extend from video traffic with stringent QoS requirements to the best-effort traffic requiring no guarantees. QoS guarantees can be provided in conventional packet networks by the use of proper packet scheduling algorithms. As a computer revolution, many scheduling algorithms have been proposed to provide different schemes of QoS guarantees with Earliest Deadline First (EDF as the most popular one. With EDF scheduling, all flows receive the same miss rate regardless of their traffic characteristics and deadlines. This makes the standard EDF algorithm unsuitable for situations in which the different flows have different miss rate requirements since in order to meet all miss rate requirements it is necessary to limit admissions so as to satisfy the flow with the most stringent miss rate requirements. In this study, we propose a new priority assignment scheduling algorithm, Hierarchal Diff-EDF (Differentiate Earliest Deadline First, which can meet the real-time needs of these applications while continuing to provide best effort service to non-real time traffic. The Hierarchal Diff-EDF features a feedback control mechanism that detects overload conditions and modifies packet priority assignments accordingly.

  1. Interpreting Regression Results: beta Weights and Structure Coefficients are Both Important.

    Thompson, Bruce

    Various realizations have led to less frequent use of the "OVA" methods (analysis of variance--ANOVA--among others) and to more frequent use of general linear model approaches such as regression. However, too few researchers understand all the various coefficients produced in regression. This paper explains these coefficients and their…

  2. Comparing uncertainty resulting from two-step and global regression procedures applied to microbial growth models.

    Martino, K G; Marks, B P


    Two different microbial modeling procedures were compared and validated against independent data for Listeria monocytogenes growth. The most generally used method is two consecutive regressions: growth parameters are estimated from a primary regression of microbial counts, and a secondary regression relates the growth parameters to experimental conditions. A global regression is an alternative method in which the primary and secondary models are combined, giving a direct relationship between experimental factors and microbial counts. The Gompertz equation was the primary model, and a response surface model was the secondary model. Independent data from meat and poultry products were used to validate the modeling procedures. The global regression yielded the lower standard errors of calibration, 0.95 log CFU/ml for aerobic and 1.21 log CFU/ml for anaerobic conditions. The two-step procedure yielded errors of 1.35 log CFU/ml for aerobic and 1.62 log CFU/ ml for anaerobic conditions. For food products, the global regression was more robust than the two-step procedure for 65% of the cases studied. The robustness index for the global regression ranged from 0.27 (performed better than expected) to 2.60. For the two-step method, the robustness index ranged from 0.42 to 3.88. The predictions were overestimated (fail safe) in more than 50% of the cases using the global regression and in more than 70% of the cases using the two-step regression. Overall, the global regression performed better than the two-step procedure for this specific application.

  3. Advancing the Parameter-elevation Regressions on Independent Slopes Model (PRISM) to Accommodate Atmospheric River Influences Using a Hierarchical Estimation Structure

    Hsu, C.; Cifelli, R.; Zamora, R. J.; Schneider, T.


    The PRISM monthly climatology has been widely used by various agencies for diverse purposes. In the River Forecast Centers (RFCs), the PRISM monthly climatology is used to support tasks such as QPE, or quality control of point precipitation observation, and fine tune QPFs. Validation studies by forecasters and researchers have shown that interpolation involving PRISM climatology can effectually reduce the estimation bias for the locations where moderate or little orographic phenomena occur. However, many studies have pointed out limitations in PRISM monthly climatology. These limitations are especially apparent in storm events with fast-moving wet air masses or with storm tracks that are different from climatology. In order to upgrade PRISM climatology so it possesses the capability to characterize the climatology of storm events, it is critical to integrate large-scale atmospheric conditions with the original PRISM predictor variables and to simulate them at a temporal resolution higher than monthly. To this end, a simple, flexible, and powerful framework for precipitation estimation modeling that can be applied to very large data sets is thus developed. In this project, a decision tree based estimation structure was developed to perform the aforementioned variable integration work. Three Atmospheric River events (ARs) were selected to explore the hierarchical relationships among these variables and how these relationships shape the event-based precipitation distribution pattern across California. Several atmospheric variables, including vertically Integrated Vapor Transport (IVT), temperature, zonal wind (u), meridional wind (v), and omega (ω), were added to enhance the sophistication of the tree-based structure in estimating precipitation. To develop a direction-based climatology, the directions the ARs moving over the Pacific Ocean were also calculated and parameterized within the tree estimation structure. The results show that the involvement of the

  4. Prediction of the result in race walking using regularized regression models

    Krzysztof Przednowek


    Full Text Available The following paper presents the use of regularized linear models as tools to optimize training process. The models were calculated by using data collected from race-walkers' training events. The models used predict the outcomes over a 3 km race and following a prescribed training plan. The material included a total of 122 training patterns made by 21 players. The methods of analysis include: classical model of OLS regression, ridge regression, LASSO regression and elastic net regression. In order to compare and choose the best method a cross-validation of the extit{leave-one-out} was used. All models were calculated using R language with additional packages. The best model was determined by the LASSO method which generates an error of about 26 seconds. The method has simplified the structure of the model by eliminating 5 out of 18 predictors.

  5. The Monitored Atherosclerosis Regression Study (MARS). Design, methods and baseline results.

    Cashin-Hemphill, L; Kramsch, D M; Azen, S P; DeMets, D; DeBoer, L W; Hwang, I; Vailas, L; Hirsch, L J; Mack, W J; DeBoer, L


    The Monitored Atherosclerosis Regression Study (MARS) was designed to evaluate the effect of cholesterol lowering by monotherapy with an HMG-CoA reductase inhibitor on progression/regression of atherosclerosis in subjects with angiographically documented coronary artery disease. The purpose of this paper is to present the design, methods, and baseline results of MARS. MARS is a prospective, randomized, double-blind, placebo-controlled trial with baseline, 2-year, and 4-year coronary angiography as well as carotid, brachial, and popliteal ultrasonography. Outpatient clinics at the University of Southern California School of Medicine and the University of Wisconsin School of Medicine. Two hundred seventy participants of both sexes were recruited directly from the cardiac catheterization laboratory or by chart review of patients having undergone cardiac catheterization in the past. Subjects were considered eligible if they had angiographically demonstrable atherosclerosis in 2 or more coronary artery segments, unaltered by angioplasty, with at least 1 lesion > or = 50% but or = 500 mg/dL; premenopausal females; uncontrolled hypertension; diabetes mellitus; untreated thyroid disease; liver dysfunction; renal insufficiency; congestive heart failure; major arrhythmia; left ventricular conduction defects; or any life-threatening disease. Subjects were placed on a low-fat, low-cholesterol diet and either 40 mg b.i.d. lovastatin (Mevacor) or placebo. Randomization was stratified by sex, smoking status, and TC. Per-subject average change in %S as determined by quantitative coronary angiography (QCA) is the primary angiographic endpoint. Secondary endpoints are: categorical analyses of the proportion of subjects with progression; human panel reading of coronary angiograms; and change in minimum lumen diameter (MLD) in mm by QCA. Carotid, brachial, and popliteal ultrasonography is also being performed. The subjects randomized into MARS are 91.5% male with an age range of 37 to

  6. Regression mixture models : Does modeling the covariance between independent variables and latent classes improve the results?

    Lamont, A.E.; Vermunt, J.K.; Van Horn, M.L.


    Regression mixture models are increasingly used as an exploratory approach to identify heterogeneity in the effects of a predictor on an outcome. In this simulation study, we tested the effects of violating an implicit assumption often made in these models; that is, independent variables in the

  7. Interpreting Reading Comprehension Test Results: Quantile Regression Shows That Explanatory Factors Can Vary with Performance Level

    Hua, Anh N.; Keenan, Janice M.


    One of the most important findings to emerge from recent reading comprehension research is that there are large differences between tests in what they assess--specifically, the extent to which performance depends on word recognition versus listening comprehension skills. Because this research used ordinary least squares regression, it is not clear…

  8. MMR-Vaccine and Regression in Autism Spectrum Disorders: Negative Results Presented from Japan

    Uchiyama, Tokio; Kurosawa, Michiko; Inaba, Yutaka


    It has been suggested that the measles, mumps, and rubella vaccine (MMR) is a cause of regressive autism. As MMR was used in Japan only between 1989 and 1993, this time period affords a natural experiment to examine this hypothesis. Data on 904 patients with autism spectrum disorders (ASD) were analyzed. During the period of MMR usage no…

  9. Variances in the projections, resulting from CLIMEX, Boosted Regression Trees and Random Forests techniques

    Shabani, Farzin; Kumar, Lalit; Solhjouy-fard, Samaneh


    The aim of this study was to have a comparative investigation and evaluation of the capabilities of correlative and mechanistic modeling processes, applied to the projection of future distributions of date palm in novel environments and to establish a method of minimizing uncertainty in the projections of differing techniques. The location of this study on a global scale is in Middle Eastern Countries. We compared the mechanistic model CLIMEX (CL) with the correlative models MaxEnt (MX), Boosted Regression Trees (BRT), and Random Forests (RF) to project current and future distributions of date palm (Phoenix dactylifera L.). The Global Climate Model (GCM), the CSIRO-Mk3.0 (CS) using the A2 emissions scenario, was selected for making projections. Both indigenous and alien distribution data of the species were utilized in the modeling process. The common areas predicted by MX, BRT, RF, and CL from the CS GCM were extracted and compared to ascertain projection uncertainty levels of each individual technique. The common areas identified by all four modeling techniques were used to produce a map indicating suitable and unsuitable areas for date palm cultivation for Middle Eastern countries, for the present and the year 2100. The four different modeling approaches predict fairly different distributions. Projections from CL were more conservative than from MX. The BRT and RF were the most conservative methods in terms of projections for the current time. The combination of the final CL and MX projections for the present and 2100 provide higher certainty concerning those areas that will become highly suitable for future date palm cultivation. According to the four models, cold, hot, and wet stress, with differences on a regional basis, appears to be the major restrictions on future date palm distribution. The results demonstrate variances in the projections, resulting from different techniques. The assessment and interpretation of model projections requires reservations

  10. Variances in the projections, resulting from CLIMEX, Boosted Regression Trees and Random Forests techniques

    Shabani, Farzin; Kumar, Lalit; Solhjouy-fard, Samaneh


    The aim of this study was to have a comparative investigation and evaluation of the capabilities of correlative and mechanistic modeling processes, applied to the projection of future distributions of date palm in novel environments and to establish a method of minimizing uncertainty in the projections of differing techniques. The location of this study on a global scale is in Middle Eastern Countries. We compared the mechanistic model CLIMEX (CL) with the correlative models MaxEnt (MX), Boosted Regression Trees (BRT), and Random Forests (RF) to project current and future distributions of date palm ( Phoenix dactylifera L.). The Global Climate Model (GCM), the CSIRO-Mk3.0 (CS) using the A2 emissions scenario, was selected for making projections. Both indigenous and alien distribution data of the species were utilized in the modeling process. The common areas predicted by MX, BRT, RF, and CL from the CS GCM were extracted and compared to ascertain projection uncertainty levels of each individual technique. The common areas identified by all four modeling techniques were used to produce a map indicating suitable and unsuitable areas for date palm cultivation for Middle Eastern countries, for the present and the year 2100. The four different modeling approaches predict fairly different distributions. Projections from CL were more conservative than from MX. The BRT and RF were the most conservative methods in terms of projections for the current time. The combination of the final CL and MX projections for the present and 2100 provide higher certainty concerning those areas that will become highly suitable for future date palm cultivation. According to the four models, cold, hot, and wet stress, with differences on a regional basis, appears to be the major restrictions on future date palm distribution. The results demonstrate variances in the projections, resulting from different techniques. The assessment and interpretation of model projections requires reservations

  11. Investigation of the degree of organisational influence on patient experience scores in acute medical admission units in all acute hospitals in England using multilevel hierarchical regression modelling

    Sullivan, Paul


    Objectives Previous studies found that hospital and specialty have limited influence on patient experience scores, and patient level factors are more important. This could be due to heterogeneity of experience delivery across subunits within organisations. We aimed to determine whether organisation level factors have greater impact if scores for the same subspecialty microsystem are analysed in each hospital. Setting Acute medical admission units in all NHS Acute Trusts in England. Participants We analysed patient experience data from the English Adult Inpatient Survey which is administered to 850 patients annually in each acute NHS Trusts in England. We selected all 8753 patients who returned the survey and who were emergency medical admissions and stayed in their admission unit for 1–2 nights, so as to isolate the experience delivered during the acute admission process. Primary and secondary outcome measures We used multilevel logistic regression to determine the apportioned influence of host organisation and of organisation level factors (size and teaching status), and patient level factors (demographics, presence of long-term conditions and disabilities). We selected ‘being treated with respect and dignity’ and ‘pain control’ as primary outcome parameters. Other Picker Domain question scores were analysed as secondary parameters. Results The proportion of overall variance attributable at organisational level was small; 0.5% (NS) for respect and dignity, 0.4% (NS) for pain control. Long-standing conditions and consequent disabilities were associated with low scores. Other item scores also showed that most influence was from patient level factors. Conclusions When a single microsystem, the acute medical admission process, is isolated, variance in experience scores is mainly explainable by patient level factors with limited organisational level influence. This has implications for the use of generic patient experience surveys for comparison between

  12. Predicting research use in a public health policy environment: results of a logistic regression analysis.

    Zardo, Pauline; Collie, Alex


    Use of research evidence in public health policy decision-making is affected by a range of contextual factors operating at the individual, organisational and external levels. Context-specific research is needed to target and tailor research translation intervention design and implementation to ensure that factors affecting research in a specific context are addressed. Whilst such research is increasing, there remain relatively few studies that have quantitatively assessed the factors that predict research use in specific public health policy environments. A quantitative survey was designed and implemented within two public health policy agencies in the Australian state of Victoria. Binary logistic regression analyses were conducted on survey data provided by 372 participants. Univariate logistic regression analyses of 49 factors revealed 26 factors that significantly predicted research use independently. The 26 factors were then tested in a single model and five factors emerged as significant predictors of research over and above all other factors. The five key factors that significantly predicted research use were the following: relevance of research to day-to-day decision-making, skills for research use, internal prompts for use of research, intention to use research within the next 12 months and the agency for which the individual worked. These findings suggest that individual- and organisational-level factors are the critical factors to target in the design of interventions aiming to increase research use in this context. In particular, relevance of research and skills for research use would be necessary to target. The likelihood for research use increased 11- and 4-fold for those who rated highly on these factors. This study builds on previous research and contributes to the currently limited number of quantitative studies that examine use of research evidence in a large sample of public health policy and program decision-makers within a specific context. The

  13. Price promotions on healthier compared with less healthy foods: a hierarchical regression analysis of the impact on sales and social patterning of responses to promotions in Great Britain12345

    Nakamura, Ryota; Suhrcke, Marc; Jebb, Susan A; Pechey, Rachel; Almiron-Roig, Eva; Marteau, Theresa M


    Background: There is a growing concern, but limited evidence, that price promotions contribute to a poor diet and the social patterning of diet-related disease. Objective: We examined the following questions: 1) Are less-healthy foods more likely to be promoted than healthier foods? 2) Are consumers more responsive to promotions on less-healthy products? 3) Are there socioeconomic differences in food purchases in response to price promotions? Design: With the use of hierarchical regression, we analyzed data on purchases of 11,323 products within 135 food and beverage categories from 26,986 households in Great Britain during 2010. Major supermarkets operated the same price promotions in all branches. The number of stores that offered price promotions on each product for each week was used to measure the frequency of price promotions. We assessed the healthiness of each product by using a nutrient profiling (NP) model. Results: A total of 6788 products (60%) were in healthier categories and 4535 products (40%) were in less-healthy categories. There was no significant gap in the frequency of promotion by the healthiness of products neither within nor between categories. However, after we controlled for the reference price, price discount rate, and brand-specific effects, the sales uplift arising from price promotions was larger in less-healthy than in healthier categories; a 1-SD point increase in the category mean NP score, implying the category becomes less healthy, was associated with an additional 7.7–percentage point increase in sales (from 27.3% to 35.0%; P sales uplift from promotions was larger for higher–socioeconomic status (SES) groups than for lower ones (34.6% for the high-SES group, 28.1% for the middle-SES group, and 23.1% for the low-SES group). Finally, there was no significant SES gap in the absolute volume of purchases of less-healthy foods made on promotion. Conclusion: Attempts to limit promotions on less-healthy foods could improve the

  14. High Adherence to Iron/Folic Acid Supplementation during Pregnancy Time among Antenatal and Postnatal Care Attendant Mothers in Governmental Health Centers in Akaki Kality Sub City, Addis Ababa, Ethiopia: Hierarchical Negative Binomial Poisson Regression

    Gebreamlak, Bisratemariam; Dadi, Abel Fekadu; Atnafu, Azeb


    Background Iron deficiency during pregnancy is a risk factor for anemia, preterm delivery, and low birth weight. Iron/Folic Acid supplementation with optimal adherence can effectively prevent anemia in pregnancy. However, studies that address this area of adherence are very limited. Therefore, the current study was conducted to assess the adherence and to identify factors associated with a number of Iron/Folic Acid uptake during pregnancy time among mothers attending antenatal and postnatal care follow up in Akaki kality sub city. Methods Institutional based cross-sectional study was conducted on a sample of 557 pregnant women attending antenatal and postnatal care service. Systematic random sampling was used to select study subjects. The mothers were interviewed and the collected data was cleaned and entered into Epi Info 3.5.1 and analyzed by R version 3.2.0. Hierarchical Negative Binomial Poisson Regression Model was fitted to identify the factors associated with a number of Iron/Folic Acid uptake. Adjusted Incidence rate ratio (IRR) with 95% confidence interval (CI) was computed to assess the strength and significance of the association. Result More than 90% of the mothers were supplemented with at least one Iron/Folic Acid supplement from pill per week during their pregnancy time. Sixty percent of the mothers adhered (took four or more tablets per week) (95%CI, 56%—64.1%). Higher IRR of Iron/Folic Acid supplementation was observed among women: who received health education; which were privately employed; who achieved secondary education; and who believed that Iron/Folic Acid supplements increase blood, whereas mothers who reported a side effect, who were from families with relatively better monthly income, and who took the supplement when sick were more likely to adhere. Conclusion Adherence to Iron/Folic Acid supplement during their pregnancy time among mothers attending antenatal and postnatal care was found to be high. Activities that would address the

  15. Laser surface treatment and the resultant hierarchical topography of Ti grade 2 for biomedical application

    Kuczyńska, Donata; Kwaśniak, Piotr; Marczak, Jan; Bonarski, Jan; Smolik, Jerzy; Garbacz, Halina


    Modern prosthesis often have a complex structure, where parts of an implant have different functional properties. This gradient of functional properties means that local surface modifications are required. Method presented in this study was develop to functionalize prefabricated elements with original roughness obtained by conventional treatments used to homogenize and clean surface of titanium implants. Demonstrated methodology results in multimodal, periodic grooved topography with roughness in a range from nano- to micrometers. The modified surfaces were characterized in terms of shape, roughness, wettability, surface energy and chemical composition. For this purpose, the following methods were used: scanning electron microscopy, optical profilometry, atomic force microscopy, contact angle measurements and X-ray photoelectron spectroscopy. Protein adsorption studies were conducted to determine the potential biomedical application of proposed method. In order to estimate the intensity and way of the protein adsorption process on different titanium surfaces, XPS studies and AFM measurements were performed. The systematic comparison of surface states and their osseointegration tendency will be useful to evaluate suitability of presented method as an single step treatment for local surface functionalization of currently produced implantable devices.

  16. An Approximation of a Hierarchical Logistic Regression Model Used To Establish the Predictive Validity of Scores on a Nursing Licensure Exam.

    Schmidt, Amy Elizabeth


    Conducted a validity study to examine the degree to which scores on the newly developed Diagnostic Readiness Test (DRT) and National League for Nursing Pre-Admission Test scores could predict success or failure on the National Council Licensure Examination for Registered Nurses (NCLEX-RN). Results for 5,698 students indicate that the DRT is a…

  17. 基于分层回归的中国互联网保险驱动因素实证研究%Empirical Study on the Driving Factors of China’s Internet Insurance Based on Hierarchical Regression Analysis



    By analyzing the features and status quo of China’s internet insurance development, this paper found that the main reason causing the weak growth in the insurance industry is the conflict between people’s increasing needs for insurance and the relatively backward insurance management approaches. Internet insurance is a supplement to traditional insurance to a certain degree. By using the hierarchical regression method, this paper analyzes the insurance premium and its relative data from 2003 to 2013. The result shows that the driving factors of the internet insurance are: tax, population, internet, etc. The study also indicates that internet insurance is not a replacement or a threat to the traditional insurance business, but a new form of it instead. Internet insurance can satisfy people’s various needs for insurance. Finally, the author proposes that internet insurance, as a new insurance business, its development facilitates changes in the thoughts and ideas of the insurance industry as a whole. Internet technology has pushed it forward, especially, in such areas as insurance channels, product and service innovations. Therefore, internet insurance also injects fresh blood to China’s insurance industry.%通过分析我国互联网保险的特点和发展现状,发现快速变化的市场环境引致的社会日益增长的保险需求同相对落后的保险经营管理方式之间的矛盾日益突出,造成当前保险业增长乏力。互联网保险的出现弥补了传统保险的不足,成为保险业新的增长动力。本文运用分层回归分析方法,对我国2003-2013年网销保费及相关数据进行研究,验证了我国互联网保险驱动因素主要取决于税收、人口、互联网等方面,保险业自身因素对互联网保险影响不显著。研究发现,互联网保险的发展不是对传统保险的替代和竞争,而是保险新需求的发现,互联网保险满足多层次的保险需求。提出互联

  18. Comparison of multianalyte proficiency test results by sum of ranking differences, principal component analysis, and hierarchical cluster analysis.

    Škrbić, Biljana; Héberger, Károly; Durišić-Mladenović, Nataša


    Sum of ranking differences (SRD) was applied for comparing multianalyte results obtained by several analytical methods used in one or in different laboratories, i.e., for ranking the overall performances of the methods (or laboratories) in simultaneous determination of the same set of analytes. The data sets for testing of the SRD applicability contained the results reported during one of the proficiency tests (PTs) organized by EU Reference Laboratory for Polycyclic Aromatic Hydrocarbons (EU-RL-PAH). In this way, the SRD was also tested as a discriminant method alternative to existing average performance scores used to compare mutlianalyte PT results. SRD should be used along with the z scores--the most commonly used PT performance statistics. SRD was further developed to handle the same rankings (ties) among laboratories. Two benchmark concentration series were selected as reference: (a) the assigned PAH concentrations (determined precisely beforehand by the EU-RL-PAH) and (b) the averages of all individual PAH concentrations determined by each laboratory. Ranking relative to the assigned values and also to the average (or median) values pointed to the laboratories with the most extreme results, as well as revealed groups of laboratories with similar overall performances. SRD reveals differences between methods or laboratories even if classical test(s) cannot. The ranking was validated using comparison of ranks by random numbers (a randomization test) and using seven folds cross-validation, which highlighted the similarities among the (methods used in) laboratories. Principal component analysis and hierarchical cluster analysis justified the findings based on SRD ranking/grouping. If the PAH-concentrations are row-scaled, (i.e., z scores are analyzed as input for ranking) SRD can still be used for checking the normality of errors. Moreover, cross-validation of SRD on z scores groups the laboratories similarly. The SRD technique is general in nature, i.e., it can

  19. Validation of SCS CN Method for Runoff Estimation with Field Observed Regression Analysis Results in Venna Basin, Central India.

    Katpatal, Y. B.; Paranjpe, S. V.; Kadu, M.


    Effective Watershed management requires authentic data of surface runoff potential for which several methods and models are in use. Generally, non availability of field data calls for techniques based on remote observations. Soil Conservation Services Curve Number (SCS CN) method is an important method which utilizes information generated from remote sensing for estimation of runoff. Several attempts have been made to validate the runoff values generated from SCS CN method by comparing the results obtained from other methods. In the present study, runoff estimation through SCS CN method has been performed using IRS LISS IV data for the Venna Basin situated in the Central India. The field data was available for Venna Basin. The Land use/land cover and soil layers have been generated for the entire watershed using the satellite data and Geographic Information System (GIS). The Venna basin have been divided into intercepted catchment and free catchment. Run off values have been estimated using field data through regression analysis. The runoff values estimated using SCS CN method have been compared with yield values generated using data collected from the tank gauge stations and data from the discharge stations. The correlation helps in validation of the results obtained from the SCS CN method and its applicability in Indian conditions. Key Words: SCS CN Method, Regression Analysis, Land Use / Land cover, Runoff, Remote Sensing, GIS.

  20. Hyperprolactinaemia as a result of immaturity or regression: the concept of maternal subroutine. A new model of psychoendocrine interactions.

    Sobrinho, L G; Almeida-Costa, J M


    Pathological hyperprolactinaemia (PH) is significantly associated with: (1) paternal deprivation during childhood, (2) depression, (3) non-specific symptoms including obesity and weight gain. The clinical onset of the symptoms often follows pregnancy or a loss. Prolactin is an insulin antagonist which does not promote weight gain. Hyperprolactinaemia and increased metabolic efficiency are parts of a system of interdependent behavioural and metabolic mechanisms necessary for the care of the young. We call this system, which is available as a whole package, maternal subroutine (MS). An important number of cases of PH are due to activation of the MS that is not induced by pregnancy. The same occurs in surrogate maternity and in some animal models. Most women with PH developed a malignant symbiotic relationship with their mothers in the setting of absence, alcoholism or devaluation of the father. These women may regress to early developmental stages to the point that they identify themselves both with their lactating mother and with the nursing infant as has been found in psychoanalysed patients and in the paradigmatic condition of pseudopregnancy. Such regression can be associated with activation of the MS. Prolactinomas represent the extreme of the spectrum of PH and may result from somatic mutations occurring in hyperstimulated lactotrophs.

  1. Fast, Linear Time Hierarchical Clustering using the Baire Metric

    Contreras, Pedro


    The Baire metric induces an ultrametric on a dataset and is of linear computational complexity, contrasted with the standard quadratic time agglomerative hierarchical clustering algorithm. In this work we evaluate empirically this new approach to hierarchical clustering. We compare hierarchical clustering based on the Baire metric with (i) agglomerative hierarchical clustering, in terms of algorithm properties; (ii) generalized ultrametrics, in terms of definition; and (iii) fast clustering through k-means partititioning, in terms of quality of results. For the latter, we carry out an in depth astronomical study. We apply the Baire distance to spectrometric and photometric redshifts from the Sloan Digital Sky Survey using, in this work, about half a million astronomical objects. We want to know how well the (more costly to determine) spectrometric redshifts can predict the (more easily obtained) photometric redshifts, i.e. we seek to regress the spectrometric on the photometric redshifts, and we use clusterwi...

  2. Hierarchical photocatalysts.

    Li, Xin; Yu, Jiaguo; Jaroniec, Mietek


    As a green and sustainable technology, semiconductor-based heterogeneous photocatalysis has received much attention in the last few decades because it has potential to solve both energy and environmental problems. To achieve efficient photocatalysts, various hierarchical semiconductors have been designed and fabricated at the micro/nanometer scale in recent years. This review presents a critical appraisal of fabrication methods, growth mechanisms and applications of advanced hierarchical photocatalysts. Especially, the different synthesis strategies such as two-step templating, in situ template-sacrificial dissolution, self-templating method, in situ template-free assembly, chemically induced self-transformation and post-synthesis treatment are highlighted. Finally, some important applications including photocatalytic degradation of pollutants, photocatalytic H2 production and photocatalytic CO2 reduction are reviewed. A thorough assessment of the progress made in photocatalysis may open new opportunities in designing highly effective hierarchical photocatalysts for advanced applications ranging from thermal catalysis, separation and purification processes to solar cells.

  3. Diet influenced tooth erosion prevalence in children and adolescents: Results of a meta-analysis and meta-regression

    Salas, M.M.; Nascimento, G.G.; Vargas-Ferreira, F.; Tarquinio, S.B.; Huysmans, M.C.D.N.J.M.; Demarco, F.F.


    OBJECTIVE: The aim of the present study was to assess the influence of diet in tooth erosion presence in children and adolescents by meta-analysis and meta-regression. DATA: Two reviewers independently performed the selection process and the quality of studies was assessed. SOURCES: Studies publishe

  4. Diet influenced tooth erosion prevalence in children and adolescents: Results of a meta-analysis and meta-regression

    Salas, M.M.; Nascimento, G.G.; Vargas-Ferreira, F.; Tarquinio, S.B.; Huysmans, M.C.D.N.J.M.; Demarco, F.F.


    OBJECTIVE: The aim of the present study was to assess the influence of diet in tooth erosion presence in children and adolescents by meta-analysis and meta-regression. DATA: Two reviewers independently performed the selection process and the quality of studies was assessed. SOURCES: Studies publishe

  5. Parallel hierarchical radiosity rendering

    Carter, M.


    In this dissertation, the step-by-step development of a scalable parallel hierarchical radiosity renderer is documented. First, a new look is taken at the traditional radiosity equation, and a new form is presented in which the matrix of linear system coefficients is transformed into a symmetric matrix, thereby simplifying the problem and enabling a new solution technique to be applied. Next, the state-of-the-art hierarchical radiosity methods are examined for their suitability to parallel implementation, and scalability. Significant enhancements are also discovered which both improve their theoretical foundations and improve the images they generate. The resultant hierarchical radiosity algorithm is then examined for sources of parallelism, and for an architectural mapping. Several architectural mappings are discussed. A few key algorithmic changes are suggested during the process of making the algorithm parallel. Next, the performance, efficiency, and scalability of the algorithm are analyzed. The dissertation closes with a discussion of several ideas which have the potential to further enhance the hierarchical radiosity method, or provide an entirely new forum for the application of hierarchical methods.

  6. Quantile regression

    Hao, Lingxin


    Quantile Regression, the first book of Hao and Naiman's two-book series, establishes the seldom recognized link between inequality studies and quantile regression models. Though separate methodological literature exists for each subject, the authors seek to explore the natural connections between this increasingly sought-after tool and research topics in the social sciences. Quantile regression as a method does not rely on assumptions as restrictive as those for the classical linear regression; though more traditional models such as least squares linear regression are more widely utilized, Hao

  7. Using hierarchical linear models to test differences in Swedish results from OECD’s PISA 2003: Integrated and subject-specific science education

    Maria Åström


    Full Text Available The possible effects of different organisations of the science curriculum in schools participating in PISA 2003 are tested with a hierarchical linear model (HLM of two levels. The analysis is based on science results. Swedish schools are free to choose how they organise the science curriculum. They may choose to work subject-specifically (with Biology, Chemistry and Physics, integrated (with Science or to mix these two. In this study, all three ways of organising science classes in compulsory school are present to some degree. None of the different ways of organising science education displayed statistically significant better student results in scientific literacy as measured in PISA 2003. The HLM model used variables of gender, country of birth, home language, preschool attendance, an economic, social and cultural index as well as the teaching organisation.

  8. Diet influenced tooth erosion prevalence in children and adolescents: Results of a meta-analysis and meta-regression.

    Salas, M M S; Nascimento, G G; Vargas-Ferreira, F; Tarquinio, S B C; Huysmans, M C D N J M; Demarco, F F


    The aim of the present study was to assess the influence of diet in tooth erosion presence in children and adolescents by meta-analysis and meta-regression. Two reviewers independently performed the selection process and the quality of studies was assessed. Studies published until May 2014 were identified in electronic databases: Pubmed, EBSHost, Scopus, Science direct, Web of Science and Scielo, using keywords. Criteria used included: observational studies, tooth erosion and diet, subject age range 8-19 years old, permanent dentition and index. Meta-analysis was performed and in case of heterogeneity a random-effects model was used. Thirteen studies that fulfilled the inclusion criteria were selected. Higher consumption of carbonated drinks (p=0.001) or acid snacks/sweets (p=0.01 and for acid fruit juices (p=0.03)) increased the odds for tooth erosion, while higher intake of milk (p=0.028) and yogurt (p=0.002) reduced the erosion occurrence. Heterogeneity was observed in soft drinks, confectionary and snacks and acidic fruit juices models. Methodological issues regarding the questionnaires administration and the inclusion of other variables, such as food groups and tooth brushing, explained partially the heterogeneity observed. Some dietary components (carbonated drinks, acid snacks/sweets and natural acidic fruits juice) increased erosion occurrence while milk and yogurt had a protective effect. Methods to assess diet could influence the homogeneity of the studies and should be considered during the study design. The method to assess diet should be carefully considered and well conducted as part of the clinical assessment of tooth erosion, since diet could influence the occurrence of tooth erosion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Logistic regression: a brief primer.

    Stoltzfus, Jill C


    Regression techniques are versatile in their application to medical research because they can measure associations, predict outcomes, and control for confounding variable effects. As one such technique, logistic regression is an efficient and powerful way to analyze the effect of a group of independent variables on a binary outcome by quantifying each independent variable's unique contribution. Using components of linear regression reflected in the logit scale, logistic regression iteratively identifies the strongest linear combination of variables with the greatest probability of detecting the observed outcome. Important considerations when conducting logistic regression include selecting independent variables, ensuring that relevant assumptions are met, and choosing an appropriate model building strategy. For independent variable selection, one should be guided by such factors as accepted theory, previous empirical investigations, clinical considerations, and univariate statistical analyses, with acknowledgement of potential confounding variables that should be accounted for. Basic assumptions that must be met for logistic regression include independence of errors, linearity in the logit for continuous variables, absence of multicollinearity, and lack of strongly influential outliers. Additionally, there should be an adequate number of events per independent variable to avoid an overfit model, with commonly recommended minimum "rules of thumb" ranging from 10 to 20 events per covariate. Regarding model building strategies, the three general types are direct/standard, sequential/hierarchical, and stepwise/statistical, with each having a different emphasis and purpose. Before reaching definitive conclusions from the results of any of these methods, one should formally quantify the model's internal validity (i.e., replicability within the same data set) and external validity (i.e., generalizability beyond the current sample). The resulting logistic regression model

  10. Regression Basics

    Kahane, Leo H


    Using a friendly, nontechnical approach, the Second Edition of Regression Basics introduces readers to the fundamentals of regression. Accessible to anyone with an introductory statistics background, this book builds from a simple two-variable model to a model of greater complexity. Author Leo H. Kahane weaves four engaging examples throughout the text to illustrate not only the techniques of regression but also how this empirical tool can be applied in creative ways to consider a broad array of topics. New to the Second Edition Offers greater coverage of simple panel-data estimation:

  11. Semiparametric regression during 2003–2007

    Ruppert, David


    Semiparametric regression is a fusion between parametric regression and nonparametric regression that integrates low-rank penalized splines, mixed model and hierarchical Bayesian methodology – thus allowing more streamlined handling of longitudinal and spatial correlation. We review progress in the field over the five-year period between 2003 and 2007. We find semiparametric regression to be a vibrant field with substantial involvement and activity, continual enhancement and widespread application.

  12. Regression analysis by example

    Chatterjee, Samprit


    Praise for the Fourth Edition: ""This book is . . . an excellent source of examples for regression analysis. It has been and still is readily readable and understandable."" -Journal of the American Statistical Association Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. Regression Analysis by Example, Fifth Edition has been expanded

  13. "Logits and Tigers and Bears, Oh My! A Brief Look at the Simple Math of Logistic Regression and How It Can Improve Dissemination of Results"

    Jason W. Osborne


    Full Text Available Logistic regression is slowly gaining acceptance in the social sciences, and fills an important niche in the researcher's toolkit: being able to predict important outcomes that are not continuous in nature. While OLS regression is a valuable tool, it cannot routinely be used to predict outcomes that are binary or categorical in nature. These outcomes represent important social science lines of research: retention in, or dropout from school, using illicit drugs, underage alcohol consumption, antisocial behavior, purchasing decisions, voting patterns, risky behavior, and so on. The goal of this paper is to briefly lead the reader through the surprisingly simple mathematics that underpins logistic regression: probabilities, odds, odds ratios, and logits. Anyone with spreadsheet software or a scientific calculator can follow along, and in turn, this knowledge can be used to make much more interesting, clear, and accurate presentations of results (especially to non-technical audiences. In particular, I will share an example of an interaction in logistic regression, how it was originally graphed, and how the graph was made substantially more user-friendly by converting the original metric (logits to a more readily interpretable metric (probability through three simple steps.

  14. Autistic Regression

    Matson, Johnny L.; Kozlowski, Alison M.


    Autistic regression is one of the many mysteries in the developmental course of autism and pervasive developmental disorders not otherwise specified (PDD-NOS). Various definitions of this phenomenon have been used, further clouding the study of the topic. Despite this problem, some efforts at establishing prevalence have been made. The purpose of…

  15. Logistic regression.

    Nick, Todd G; Campbell, Kathleen M


    The Medical Subject Headings (MeSH) thesaurus used by the National Library of Medicine defines logistic regression models as "statistical models which describe the relationship between a qualitative dependent variable (that is, one which can take only certain discrete values, such as the presence or absence of a disease) and an independent variable." Logistic regression models are used to study effects of predictor variables on categorical outcomes and normally the outcome is binary, such as presence or absence of disease (e.g., non-Hodgkin's lymphoma), in which case the model is called a binary logistic model. When there are multiple predictors (e.g., risk factors and treatments) the model is referred to as a multiple or multivariable logistic regression model and is one of the most frequently used statistical model in medical journals. In this chapter, we examine both simple and multiple binary logistic regression models and present related issues, including interaction, categorical predictor variables, continuous predictor variables, and goodness of fit.


    Semra Boran


    Full Text Available Taguchi Method and Regression Analysis have wide spread applications in statistical researches. It can be said that Taguchi Method is one of the most frequently used method especially in optimization problems. But applications of this method are not common in food industry . In this study, optimal operating parameters were determined for industrial size fluidized bed dryer by using Taguchi method. Then the effects of operating parameters on activity value (the quality chracteristic of this problem were calculated by regression analysis. Finally, results of two methods were compared.To summarise, average activity value was found to be 660 for the 400 kg loading and average drying time 26 minutes by using the factors and levels taken from application of Taguchi Method. Whereas, in normal conditions (with 600 kg loading average activity value was found to be 630 and drying time 28 minutes. Taguchi Method application caused 15 % rise in activity value.

  17. Val-boroPro accelerates T cell priming via modulation of dendritic cell trafficking resulting in complete regression of established murine tumors.

    Meghaan P Walsh

    Full Text Available Although tumors naturally prime adaptive immune responses, tolerance may limit the capacity to control progression and can compromise effectiveness of immune-based therapies for cancer. Post-proline cleaving enzymes (PPCE modulate protein function through N-terminal dipeptide cleavage and inhibition of these enzymes has been shown to have anti-tumor activity. We investigated the mechanism by which Val-boroPro, a boronic dipeptide that inhibits post-proline cleaving enzymes, mediates tumor regression and tested whether this agent could serve as a novel immune adjuvant to dendritic cell vaccines in two different murine syngeneic murine tumors. In mice challenged with MB49, which expresses the HY antigen complex, T cell responses primed by the tumor with and without Val-boroPro were measured using interferon gamma ELISPOT. Antibody depletion and gene-deficient mice were used to establish the immune cell subsets required for tumor regression. We demonstrate that Val-boroPro mediates tumor eradication by accelerating the expansion of tumor-specific T cells. Interestingly, T cells primed by tumor during Val-boroPro treatment demonstrate increased capacity to reject tumors following adoptive transfer without further treatment of the recipient. Val-boroPro -mediated tumor regression requires dendritic cells and is associated with enhanced trafficking of dendritic cells to tumor draining lymph nodes. Finally, dendritic cell vaccination combined with Val-boroPro treatment results in complete regression of established tumors. Our findings demonstrate that Val-boroPro has antitumor activity and a novel mechanism of action that involves more robust DC trafficking with earlier priming of T cells. Finally, we show that Val-boroPro has potent adjuvant properties resulting in an effective therapeutic vaccine.

  18. Linear regression

    Olive, David J


    This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response trans...

  19. Regression to Causality

    Bordacconi, Mats Joe; Larsen, Martin Vinæs


    Humans are fundamentally primed for making causal attributions based on correlations. This implies that researchers must be careful to present their results in a manner that inhibits unwarranted causal attribution. In this paper, we present the results of an experiment that suggests regression...... models – one of the primary vehicles for analyzing statistical results in political science – encourage causal interpretation. Specifically, we demonstrate that presenting observational results in a regression model, rather than as a simple comparison of means, makes causal interpretation of the results...... of equivalent results presented as either regression models or as a test of two sample means. Our experiment shows that the subjects who were presented with results as estimates from a regression model were more inclined to interpret these results causally. Our experiment implies that scholars using regression...

  20. Hierarchical architecture of active knits

    Abel, Julianna; Luntz, Jonathan; Brei, Diann


    Nature eloquently utilizes hierarchical structures to form the world around us. Applying the hierarchical architecture paradigm to smart materials can provide a basis for a new genre of actuators which produce complex actuation motions. One promising example of cellular architecture—active knits—provides complex three-dimensional distributed actuation motions with expanded operational performance through a hierarchically organized structure. The hierarchical structure arranges a single fiber of active material, such as shape memory alloys (SMAs), into a cellular network of interlacing adjacent loops according to a knitting grid. This paper defines a four-level hierarchical classification of knit structures: the basic knit loop, knit patterns, grid patterns, and restructured grids. Each level of the hierarchy provides increased architectural complexity, resulting in expanded kinematic actuation motions of active knits. The range of kinematic actuation motions are displayed through experimental examples of different SMA active knits. The results from this paper illustrate and classify the ways in which each level of the hierarchical knit architecture leverages the performance of the base smart material to generate unique actuation motions, providing necessary insight to best exploit this new actuation paradigm.

  1. Functional annotation of hierarchical modularity.

    Kanchana Padmanabhan

    Full Text Available In biological networks of molecular interactions in a cell, network motifs that are biologically relevant are also functionally coherent, or form functional modules. These functionally coherent modules combine in a hierarchical manner into larger, less cohesive subsystems, thus revealing one of the essential design principles of system-level cellular organization and function-hierarchical modularity. Arguably, hierarchical modularity has not been explicitly taken into consideration by most, if not all, functional annotation systems. As a result, the existing methods would often fail to assign a statistically significant functional coherence score to biologically relevant molecular machines. We developed a methodology for hierarchical functional annotation. Given the hierarchical taxonomy of functional concepts (e.g., Gene Ontology and the association of individual genes or proteins with these concepts (e.g., GO terms, our method will assign a Hierarchical Modularity Score (HMS to each node in the hierarchy of functional modules; the HMS score and its p-value measure functional coherence of each module in the hierarchy. While existing methods annotate each module with a set of "enriched" functional terms in a bag of genes, our complementary method provides the hierarchical functional annotation of the modules and their hierarchically organized components. A hierarchical organization of functional modules often comes as a bi-product of cluster analysis of gene expression data or protein interaction data. Otherwise, our method will automatically build such a hierarchy by directly incorporating the functional taxonomy information into the hierarchy search process and by allowing multi-functional genes to be part of more than one component in the hierarchy. In addition, its underlying HMS scoring metric ensures that functional specificity of the terms across different levels of the hierarchical taxonomy is properly treated. We have evaluated our

  2. Hierarchical Network Design

    Thomadsen, Tommy


    of different types of hierarchical networks. This is supplemented by a review of ring network design problems and a presentation of a model allowing for modeling most hierarchical networks. We use methods based on linear programming to design the hierarchical networks. Thus, a brief introduction to the various....... The thesis investigates models for hierarchical network design and methods used to design such networks. In addition, ring network design is considered, since ring networks commonly appear in the design of hierarchical networks. The thesis introduces hierarchical networks, including a classification scheme...... linear programming based methods is included. The thesis is thus suitable as a foundation for study of design of hierarchical networks. The major contribution of the thesis consists of seven papers which are included in the appendix. The papers address hierarchical network design and/or ring network...

  3. Hierarchical Multiagent Reinforcement Learning


    In this paper, we investigate the use of hierarchical reinforcement learning (HRL) to speed up the acquisition of cooperative multiagent tasks. We...introduce a hierarchical multiagent reinforcement learning (RL) framework and propose a hierarchical multiagent RL algorithm called Cooperative HRL. In

  4. Should metacognition be measured by logistic regression?

    Rausch, Manuel; Zehetleitner, Michael


    Are logistic regression slopes suitable to quantify metacognitive sensitivity, i.e. the efficiency with which subjective reports differentiate between correct and incorrect task responses? We analytically show that logistic regression slopes are independent from rating criteria in one specific model of metacognition, which assumes (i) that rating decisions are based on sensory evidence generated independently of the sensory evidence used for primary task responses and (ii) that the distributions of evidence are logistic. Given a hierarchical model of metacognition, logistic regression slopes depend on rating criteria. According to all considered models, regression slopes depend on the primary task criterion. A reanalysis of previous data revealed that massive numbers of trials are required to distinguish between hierarchical and independent models with tolerable accuracy. It is argued that researchers who wish to use logistic regression as measure of metacognitive sensitivity need to control the primary task criterion and rating criteria. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Hierarchical Network Design

    Thomadsen, Tommy


    Communication networks are immensely important today, since both companies and individuals use numerous services that rely on them. This thesis considers the design of hierarchical (communication) networks. Hierarchical networks consist of layers of networks and are well-suited for coping...... the clusters. The design of hierarchical networks involves clustering of nodes, hub selection, and network design, i.e. selection of links and routing of ows. Hierarchical networks have been in use for decades, but integrated design of these networks has only been considered for very special types of networks....... The thesis investigates models for hierarchical network design and methods used to design such networks. In addition, ring network design is considered, since ring networks commonly appear in the design of hierarchical networks. The thesis introduces hierarchical networks, including a classification scheme...

  6. Hierarchical mutual information for the comparison of hierarchical community structures in complex networks

    Perotti, Juan Ignacio; Caldarelli, Guido


    The quest for a quantitative characterization of community and modular structure of complex networks produced a variety of methods and algorithms to classify different networks. However, it is not clear if such methods provide consistent, robust and meaningful results when considering hierarchies as a whole. Part of the problem is the lack of a similarity measure for the comparison of hierarchical community structures. In this work we give a contribution by introducing the {\\it hierarchical mutual information}, which is a generalization of the traditional mutual information, and allows to compare hierarchical partitions and hierarchical community structures. The {\\it normalized} version of the hierarchical mutual information should behave analogously to the traditional normalized mutual information. Here, the correct behavior of the hierarchical mutual information is corroborated on an extensive battery of numerical experiments. The experiments are performed on artificial hierarchies, and on the hierarchical ...

  7. Hierarchical topic modeling with nested hierarchical Dirichlet process

    Yi-qun DING; Shan-ping LI; Zhen ZHANG; Bin SHEN


    This paper deals with the statistical modeling of latent topic hierarchies in text corpora. The height of the topic tree is assumed as fixed, while the number of topics on each level as unknown a priori and to be inferred from data. Taking a nonparametric Bayesian approach to this problem, we propose a new probabilistic generative model based on the nested hierarchical Dirichlet process (nHDP) and present a Markov chain Monte Carlo sampling algorithm for the inference of the topic tree structure as welt as the word distribution of each topic and topic distribution of each document. Our theoretical analysis and experiment results show that this model can produce a more compact hierarchical topic structure and captures more free-grained topic relationships compared to the hierarchical latent Dirichlet allocation model.

  8. Logits and Tigers and Bears, Oh My! A Brief Look at the Simple Math of Logistic Regression and How It Can Improve Dissemination of Results

    Osborne, Jason W.


    Logistic regression is slowly gaining acceptance in the social sciences, and fills an important niche in the researcher's toolkit: being able to predict important outcomes that are not continuous in nature. While OLS regression is a valuable tool, it cannot routinely be used to predict outcomes that are binary or categorical in nature. These…

  9. Combined application of information theory on laboratory results with classification and regression tree analysis: analysis of unnecessary biopsy for prostate cancer.

    Hwang, Sang-Hyun; Pyo, Tina; Oh, Heung-Bum; Park, Hyun Jun; Lee, Kwan-Jeh


    The probability of a prostate cancer-positive biopsy result varies with PSA concentration. Thus, we applied information theory on classification and regression tree (CART) analysis for decision making predicting the probability of a biopsy result at various PSA concentrations. From 2007 to 2009, prostate biopsies were performed in 664 referred patients in a tertiary hospital. We created 2 CART models based on the information theory: one for moderate uncertainty (PSA concentration: 2.5-10 ng/ml) and the other for high uncertainty (PSA concentration: 10-25 ng/ml). The CART model for moderate uncertainty (n=321) had 3 splits based on PSA density (PSAD), hypoechoic nodules, and age and the other CART for high uncertainty (n=160) had 2 splits based on prostate volume and percent-free PSA. In this validation set, the patients (14.3% and 14.0% for moderate and high uncertainty groups, respectively) could avoid unnecessary biopsies without false-negative results. Using these CART models based on uncertainty information of PSA, the overall reduction in unnecessary prostate biopsies was 14.0-14.3% and CART models were simplified. Using uncertainty of laboratory results from information theoretic approach can provide additional information for decision analysis such as CART. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Static Correctness of Hierarchical Procedures

    Schwartzbach, Michael Ignatieff


    A system of hierarchical, fully recursive types in a truly imperative language allows program fragments written for small types to be reused for all larger types. To exploit this property to enable type-safe hierarchical procedures, it is necessary to impose a static requirement on procedure calls....... We introduce an example language and prove the existence of a sound requirement which preserves static correctness while allowing hierarchical procedures. This requirement is further shown to be optimal, in the sense that it imposes as few restrictions as possible. This establishes the theoretical...... basis for a general type hierarchy with static type checking, which enables first-order polymorphism combined with multiple inheritance and specialization in a language with assignments. We extend the results to include opaque types. An opaque version of a type is different from the original but has...

  11. Hierarchical Affinity Propagation

    Givoni, Inmar; Frey, Brendan J


    Affinity propagation is an exemplar-based clustering algorithm that finds a set of data-points that best exemplify the data, and associates each datapoint with one exemplar. We extend affinity propagation in a principled way to solve the hierarchical clustering problem, which arises in a variety of domains including biology, sensor networks and decision making in operational research. We derive an inference algorithm that operates by propagating information up and down the hierarchy, and is efficient despite the high-order potentials required for the graphical model formulation. We demonstrate that our method outperforms greedy techniques that cluster one layer at a time. We show that on an artificial dataset designed to mimic the HIV-strain mutation dynamics, our method outperforms related methods. For real HIV sequences, where the ground truth is not available, we show our method achieves better results, in terms of the underlying objective function, and show the results correspond meaningfully to geographi...

  12. Modified Regression Correlation Coefficient for Poisson Regression Model

    Kaengthong, Nattacha; Domthong, Uthumporn


    This study gives attention to indicators in predictive power of the Generalized Linear Model (GLM) which are widely used; however, often having some restrictions. We are interested in regression correlation coefficient for a Poisson regression model. This is a measure of predictive power, and defined by the relationship between the dependent variable (Y) and the expected value of the dependent variable given the independent variables [E(Y|X)] for the Poisson regression model. The dependent variable is distributed as Poisson. The purpose of this research was modifying regression correlation coefficient for Poisson regression model. We also compare the proposed modified regression correlation coefficient with the traditional regression correlation coefficient in the case of two or more independent variables, and having multicollinearity in independent variables. The result shows that the proposed regression correlation coefficient is better than the traditional regression correlation coefficient based on Bias and the Root Mean Square Error (RMSE).

  13. Relationship of push-ups and sit-ups tests to selected anthropometric variables and performance results: a multiple regression study.

    Esco, Michael R; Olson, Michele S; Williford, Henry


    The purpose of this study was to explore whether selected anthropometric measures such as specific skinfold sites, along with weight, height, body mass index (BMI), waist and hip circumferences, and waist/hip ratio (WHR) were associated with sit-ups (SU) and push-ups (PU) performance, and to build a regression model for SU and PU tests. One hundred apparently healthy adults (40 men and 60 women) served as the subjects for test validation. The subjects performed 60-second SU and PU tests. The variables analyzed via multiple regression included weight, height, BMI, hip and waist circumferences, WHR, skinfolds at the abdomen (SFAB), thigh (SFTH), and subscapularis (SFSS), and sex. An additional cohort of 40 subjects (17 men and 23 women) was used to cross-validate the regression models. Validity was confirmed by correlation and paired t-tests. The regression analysis yielded a four-variable (PU, height, SFAB, and SFTH) multiple regression equation for estimating SU (R2 = 0.64, SEE = 7.5 repetitions). For PU, only SU was loaded into the regression equation (R2 = 0.43, SEE = 9.4 repetitions). Thus, the variables in the regression models accounted for 64% and 43% of the variation in SU and PU, respectively. The cross-validation sample elicited a high correlation for SU (r = 0.87) and PU (r = 0.79) scores. Moreover, paired-samples t-tests revealed that there were no significant differences between actual and predicted SU and PU scores. Therefore, this study shows that there are a number of selected, health-related anthropometric variables that account significantly for, and are predictive of, SU and PU tests.

  14. Targeting of the Plzf Gene in the Rat by Transcription Activator-Like Effector Nuclease Results in Caudal Regression Syndrome in Spontaneously Hypertensive Rats

    Liška, František; Peterková, Renata; Peterka, Miroslav; Landa, Vladimír; Zídek, Václav; Mlejnek, Petr; Šilhavý, Jan; Šimáková, Miroslava; Křen, Vladimír; Starker, Colby G.; Voytas, Daniel F.; Izsvák, Zsuzsanna; Pravenec, Michal


    Recently, it has been found that spontaneous mutation Lx (polydactyly-luxate syndrome) in the rat is determined by deletion of a conserved intronic sequence of the Plzf (Promyelocytic leukemia zinc finger protein) gene. In addition, Plzf is a prominent candidate gene for quantitative trait loci (QTLs) associated with cardiac hypertrophy and fibrosis in the spontaneously hypertensive rat (SHR). In the current study, we tested the effects of Plzf gene targeting in the SHR using TALENs (transcription activator-like effector nucleases). SHR ova were microinjected with constructs pTAL438/439 coding for a sequence-specific endonuclease that binds to target sequence in the first coding exon of the Plzf gene. Out of 43 animals born after microinjection, we detected a single male founder. Sequence analysis revealed a deletion of G that resulted in frame shift mutation starting in codon 31 and causing a premature stop codon at position of amino acid 58. The Plzftm1Ipcv allele is semi-lethal since approximately 95% of newborn homozygous animals died perinatally. All homozygous animals exhibited manifestations of a caudal regression syndrome including tail anomalies and serious size reduction and deformities of long bones, and oligo- or polydactyly on the hindlimbs. The heterozygous animals only exhibited the tail anomalies. Impaired development of the urinary tract was also revealed: one homozygous and one heterozygous rat exhibited a vesico-ureteric reflux with enormous dilatation of ureters and renal pelvis. In the homozygote, this was combined with a hypoplastic kidney. These results provide evidence for the important role of Plzf gene during development of the caudal part of a body—column vertebrae, hindlimbs and urinary system in the rat. PMID:27727328

  15. Targeting of the Plzf Gene in the Rat by Transcription Activator-Like Effector Nuclease Results in Caudal Regression Syndrome in Spontaneously Hypertensive Rats.

    Liška, František; Peterková, Renata; Peterka, Miroslav; Landa, Vladimír; Zídek, Václav; Mlejnek, Petr; Šilhavý, Jan; Šimáková, Miroslava; Křen, Vladimír; Starker, Colby G; Voytas, Daniel F; Izsvák, Zsuzsanna; Pravenec, Michal


    Recently, it has been found that spontaneous mutation Lx (polydactyly-luxate syndrome) in the rat is determined by deletion of a conserved intronic sequence of the Plzf (Promyelocytic leukemia zinc finger protein) gene. In addition, Plzf is a prominent candidate gene for quantitative trait loci (QTLs) associated with cardiac hypertrophy and fibrosis in the spontaneously hypertensive rat (SHR). In the current study, we tested the effects of Plzf gene targeting in the SHR using TALENs (transcription activator-like effector nucleases). SHR ova were microinjected with constructs pTAL438/439 coding for a sequence-specific endonuclease that binds to target sequence in the first coding exon of the Plzf gene. Out of 43 animals born after microinjection, we detected a single male founder. Sequence analysis revealed a deletion of G that resulted in frame shift mutation starting in codon 31 and causing a premature stop codon at position of amino acid 58. The Plzftm1Ipcv allele is semi-lethal since approximately 95% of newborn homozygous animals died perinatally. All homozygous animals exhibited manifestations of a caudal regression syndrome including tail anomalies and serious size reduction and deformities of long bones, and oligo- or polydactyly on the hindlimbs. The heterozygous animals only exhibited the tail anomalies. Impaired development of the urinary tract was also revealed: one homozygous and one heterozygous rat exhibited a vesico-ureteric reflux with enormous dilatation of ureters and renal pelvis. In the homozygote, this was combined with a hypoplastic kidney. These results provide evidence for the important role of Plzf gene during development of the caudal part of a body-column vertebrae, hindlimbs and urinary system in the rat.

  16. A neural signature of hierarchical reinforcement learning.

    Ribas-Fernandes, José J F; Solway, Alec; Diuk, Carlos; McGuire, Joseph T; Barto, Andrew G; Niv, Yael; Botvinick, Matthew M


    Human behavior displays hierarchical structure: simple actions cohere into subtask sequences, which work together to accomplish overall task goals. Although the neural substrates of such hierarchy have been the target of increasing research, they remain poorly understood. We propose that the computations supporting hierarchical behavior may relate to those in hierarchical reinforcement learning (HRL), a machine-learning framework that extends reinforcement-learning mechanisms into hierarchical domains. To test this, we leveraged a distinctive prediction arising from HRL. In ordinary reinforcement learning, reward prediction errors are computed when there is an unanticipated change in the prospects for accomplishing overall task goals. HRL entails that prediction errors should also occur in relation to task subgoals. In three neuroimaging studies we observed neural responses consistent with such subgoal-related reward prediction errors, within structures previously implicated in reinforcement learning. The results reported support the relevance of HRL to the neural processes underlying hierarchical behavior.

  17. Associative Hierarchical Random Fields.

    Ladický, L'ubor; Russell, Chris; Kohli, Pushmeet; Torr, Philip H S


    This paper makes two contributions: the first is the proposal of a new model-The associative hierarchical random field (AHRF), and a novel algorithm for its optimization; the second is the application of this model to the problem of semantic segmentation. Most methods for semantic segmentation are formulated as a labeling problem for variables that might correspond to either pixels or segments such as super-pixels. It is well known that the generation of super pixel segmentations is not unique. This has motivated many researchers to use multiple super pixel segmentations for problems such as semantic segmentation or single view reconstruction. These super-pixels have not yet been combined in a principled manner, this is a difficult problem, as they may overlap, or be nested in such a way that the segmentations form a segmentation tree. Our new hierarchical random field model allows information from all of the multiple segmentations to contribute to a global energy. MAP inference in this model can be performed efficiently using powerful graph cut based move making algorithms. Our framework generalizes much of the previous work based on pixels or segments, and the resulting labelings can be viewed both as a detailed segmentation at the pixel level, or at the other extreme, as a segment selector that pieces together a solution like a jigsaw, selecting the best segments from different segmentations as pieces. We evaluate its performance on some of the most challenging data sets for object class segmentation, and show that this ability to perform inference using multiple overlapping segmentations leads to state-of-the-art results.

  18. T cells bearing a chimeric antigen receptor against prostate-specific membrane antigen mediate vascular disruption and result in tumor regression.

    Santoro, Stephen P; Kim, Soorin; Motz, Gregory T; Alatzoglou, Dimitrios; Li, Chunsheng; Irving, Melita; Powell, Daniel J; Coukos, George


    Aberrant blood vessels enable tumor growth, provide a barrier to immune infiltration, and serve as a source of protumorigenic signals. Targeting tumor blood vessels for destruction, or tumor vascular disruption therapy, can therefore provide significant therapeutic benefit. Here, we describe the ability of chimeric antigen receptor (CAR)-bearing T cells to recognize human prostate-specific membrane antigen (hPSMA) on endothelial targets in vitro as well as in vivo. CAR T cells were generated using the anti-PSMA scFv, J591, and the intracellular signaling domains: CD3ζ, CD28, and/or CD137/4-1BB. We found that all anti-hPSMA CAR T cells recognized and eliminated PSMA(+) endothelial targets in vitro, regardless of the signaling domain. T cells bearing the third-generation anti-hPSMA CAR, P28BBζ, were able to recognize and kill primary human endothelial cells isolated from gynecologic cancers. In addition, the P28BBζ CAR T cells mediated regression of hPSMA-expressing vascular neoplasms in mice. Finally, in murine models of ovarian cancers populated by murine vessels expressing hPSMA, the P28BBζ CAR T cells were able to ablate PSMA(+) vessels, cause secondary depletion of tumor cells, and reduce tumor burden. Taken together, these results provide a strong rationale for the use of CAR T cells as agents of tumor vascular disruption, specifically those targeting PSMA. Cancer Immunol Res; 3(1); 68-84. ©2014 AACR. ©2014 American Association for Cancer Research.

  19. Evaluating HIV prevention efforts using semiparametric regression models: results from a large cohort of women participating in an HIV prevention trial from KwaZulu-Natal, South Africa

    Gita Ramjee


    Full Text Available Objective: To describe and quantify the differences in risk behaviours, HIV prevalence and incidence rates by birth cohorts among a group of women in Durban, South Africa. Methods: Cross-sectional and prospective cohort analyses were conducted for women who consented to be screened and enrolled in an HIV prevention trial. Demographic and sexual behaviours were described by five-year birth cohorts. Semiparametric regression models were used to investigate the bivariate associations between these factors and the birth cohorts. HIV seroconversion rates were also estimated by birth cohorts. Results: The prevalence of HIV-1 infection at the screening visit was lowest (20.0% among the oldest (born before 1960 cohorts, while the highest prevalence was observed among those born between 1975 and 79. Level of education increased across the birth cohorts while the median age at first sexual experience declined among those born after 1975 compared to those born before 1975. Only 33.03% of the oldest group reported ever using a condom while engaging in vaginal sex compared to 73.68% in the youngest group; however, HIV and other sexually transmitted infection (STI incidence rates were significantly higher among younger women compared to older women. Conclusions: These findings clearly suggest that demographic and sexual risk behaviours are differentially related to the birth cohorts. Significantly high HIV and STI incidence rates were observed among the younger group. Although the level of education increased, early age at sexual debut was more common among the younger group. The continuing increase in HIV and STI incidence rates among the later cohorts suggests that the future trajectory of the epidemic will be dependent on the infection patterns in younger birth cohorts.

  20. Memory Stacking in Hierarchical Networks.

    Westö, Johan; May, Patrick J C; Tiitinen, Hannu


    Robust representations of sounds with a complex spectrotemporal structure are thought to emerge in hierarchically organized auditory cortex, but the computational advantage of this hierarchy remains unknown. Here, we used computational models to study how such hierarchical structures affect temporal binding in neural networks. We equipped individual units in different types of feedforward networks with local memory mechanisms storing recent inputs and observed how this affected the ability of the networks to process stimuli context dependently. Our findings illustrate that these local memories stack up in hierarchical structures and hence allow network units to exhibit selectivity to spectral sequences longer than the time spans of the local memories. We also illustrate that short-term synaptic plasticity is a potential local memory mechanism within the auditory cortex, and we show that it can bring robustness to context dependence against variation in the temporal rate of stimuli, while introducing nonlinearities to response profiles that are not well captured by standard linear spectrotemporal receptive field models. The results therefore indicate that short-term synaptic plasticity might provide hierarchically structured auditory cortex with computational capabilities important for robust representations of spectrotemporal patterns.

  1. Quantitative laser-induced breakdown spectroscopy data using peak area step-wise regression analysis: an alternative method for interpretation of Mars science laboratory results

    Clegg, Samuel M [Los Alamos National Laboratory; Barefield, James E [Los Alamos National Laboratory; Wiens, Roger C [Los Alamos National Laboratory; Dyar, Melinda D [MT HOLYOKE COLLEGE; Schafer, Martha W [LSU; Tucker, Jonathan M [MT HOLYOKE COLLEGE


    The ChemCam instrument on the Mars Science Laboratory (MSL) will include a laser-induced breakdown spectrometer (LIBS) to quantify major and minor elemental compositions. The traditional analytical chemistry approach to calibration curves for these data regresses a single diagnostic peak area against concentration for each element. This approach contrasts with a new multivariate method in which elemental concentrations are predicted by step-wise multiple regression analysis based on areas of a specific set of diagnostic peaks for each element. The method is tested on LIBS data from igneous and metamorphosed rocks. Between 4 and 13 partial regression coefficients are needed to describe each elemental abundance accurately (i.e., with a regression line of R{sup 2} > 0.9995 for the relationship between predicted and measured elemental concentration) for all major and minor elements studied. Validation plots suggest that the method is limited at present by the small data set, and will work best for prediction of concentration when a wide variety of compositions and rock types has been analyzed.

  2. Use of hierarchical models to analyze European trends in congenital anomaly prevalence.

    Cavadino, Alana; Prieto-Merino, David; Addor, Marie-Claude; Arriola, Larraitz; Bianchi, Fabrizio; Draper, Elizabeth; Garne, Ester; Greenlees, Ruth; Haeusler, Martin; Khoshnood, Babak; Kurinczuk, Jenny; McDonnell, Bob; Nelen, Vera; O'Mahony, Mary; Randrianaivo, Hanitra; Rankin, Judith; Rissmann, Anke; Tucker, David; Verellen-Dumoulin, Christine; de Walle, Hermien; Wellesley, Diana; Morris, Joan K


    Surveillance of congenital anomalies is important to identify potential teratogens. Despite known associations between different anomalies, current surveillance methods examine trends within each subgroup separately. We aimed to evaluate whether hierarchical statistical methods that combine information from several subgroups simultaneously would enhance current surveillance methods using data collected by EUROCAT, a European network of population-based congenital anomaly registries. Ten-year trends (2003 to 2012) in 18 EUROCAT registries over 11 countries were analyzed for the following groups of anomalies: neural tube defects, congenital heart defects, digestive system, and chromosomal anomalies. Hierarchical Poisson regression models that combined related subgroups together according to EUROCAT's hierarchy of subgroup coding were applied. Results from hierarchical models were compared with those from Poisson models that consider each congenital anomaly separately. Hierarchical models gave similar results as those obtained when considering each anomaly subgroup in a separate analysis. Hierarchical models that included only around three subgroups showed poor convergence and were generally found to be over-parameterized. Larger sets of anomaly subgroups were found to be too heterogeneous to group together in this way. There were no substantial differences between independent analyses of each subgroup and hierarchical models when using the EUROCAT anomaly subgroups. Considering each anomaly separately, therefore, remains an appropriate method for the detection of potential changes in prevalence by surveillance systems. Hierarchical models do, however, remain an interesting alternative method of analysis when considering the risks of specific exposures in relation to the prevalence of congenital anomalies, which could be investigated in other studies. Birth Defects Research (Part A) 106:480-10, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Classifying hospitals as mortality outliers: logistic versus hierarchical logistic models.

    Alexandrescu, Roxana; Bottle, Alex; Jarman, Brian; Aylin, Paul


    The use of hierarchical logistic regression for provider profiling has been recommended due to the clustering of patients within hospitals, but has some associated difficulties. We assess changes in hospital outlier status based on standard logistic versus hierarchical logistic modelling of mortality. The study population consisted of all patients admitted to acute, non-specialist hospitals in England between 2007 and 2011 with a primary diagnosis of acute myocardial infarction, acute cerebrovascular disease or fracture of neck of femur or a primary procedure of coronary artery bypass graft or repair of abdominal aortic aneurysm. We compared standardised mortality ratios (SMRs) from non-hierarchical models with SMRs from hierarchical models, without and with shrinkage estimates of the predicted probabilities (Model 1 and Model 2). The SMRs from standard logistic and hierarchical models were highly statistically significantly correlated (r > 0.91, p = 0.01). More outliers were recorded in the standard logistic regression than hierarchical modelling only when using shrinkage estimates (Model 2): 21 hospitals (out of a cumulative number of 565 pairs of hospitals under study) changed from a low outlier and 8 hospitals changed from a high outlier based on the logistic regression to a not-an-outlier based on shrinkage estimates. Both standard logistic and hierarchical modelling have identified nearly the same hospitals as mortality outliers. The choice of methodological approach should, however, also consider whether the modelling aim is judgment or improvement, as shrinkage may be more appropriate for the former than the latter.

  4. Regression: A Bibliography.

    Pedrini, D. T.; Pedrini, Bonnie C.

    Regression, another mechanism studied by Sigmund Freud, has had much research, e.g., hypnotic regression, frustration regression, schizophrenic regression, and infra-human-animal regression (often directly related to fixation). Many investigators worked with hypnotic age regression, which has a long history, going back to Russian reflexologists.…

  5. Regression: A Bibliography.

    Pedrini, D. T.; Pedrini, Bonnie C.

    Regression, another mechanism studied by Sigmund Freud, has had much research, e.g., hypnotic regression, frustration regression, schizophrenic regression, and infra-human-animal regression (often directly related to fixation). Many investigators worked with hypnotic age regression, which has a long history, going back to Russian reflexologists.…

  6. Micromechanics of hierarchical materials

    Mishnaevsky, Leon, Jr.


    A short overview of micromechanical models of hierarchical materials (hybrid composites, biomaterials, fractal materials, etc.) is given. Several examples of the modeling of strength and damage in hierarchical materials are summarized, among them, 3D FE model of hybrid composites...... with nanoengineered matrix, fiber bundle model of UD composites with hierarchically clustered fibers and 3D multilevel model of wood considered as a gradient, cellular material with layered composite cell walls. The main areas of research in micromechanics of hierarchical materials are identified, among them......, the investigations of the effects of load redistribution between reinforcing elements at different scale levels, of the possibilities to control different material properties and to ensure synergy of strengthening effects at different scale levels and using the nanoreinforcement effects. The main future directions...

  7. Hierarchical auxetic mechanical metamaterials.

    Gatt, Ruben; Mizzi, Luke; Azzopardi, Joseph I; Azzopardi, Keith M; Attard, Daphne; Casha, Aaron; Briffa, Joseph; Grima, Joseph N


    Auxetic mechanical metamaterials are engineered systems that exhibit the unusual macroscopic property of a negative Poisson's ratio due to sub-unit structure rather than chemical composition. Although their unique behaviour makes them superior to conventional materials in many practical applications, they are limited in availability. Here, we propose a new class of hierarchical auxetics based on the rotating rigid units mechanism. These systems retain the enhanced properties from having a negative Poisson's ratio with the added benefits of being a hierarchical system. Using simulations on typical hierarchical multi-level rotating squares, we show that, through design, one can control the extent of auxeticity, degree of aperture and size of the different pores in the system. This makes the system more versatile than similar non-hierarchical ones, making them promising candidates for industrial and biomedical applications, such as stents and skin grafts.

  8. Introduction into Hierarchical Matrices

    Litvinenko, Alexander


    Hierarchical matrices allow us to reduce computational storage and cost from cubic to almost linear. This technique can be applied for solving PDEs, integral equations, matrix equations and approximation of large covariance and precision matrices.

  9. Hierarchical Auxetic Mechanical Metamaterials

    Gatt, Ruben; Mizzi, Luke; Azzopardi, Joseph I.; Azzopardi, Keith M.; Attard, Daphne; Casha, Aaron; Briffa, Joseph; Grima, Joseph N.


    Auxetic mechanical metamaterials are engineered systems that exhibit the unusual macroscopic property of a negative Poisson's ratio due to sub-unit structure rather than chemical composition. Although their unique behaviour makes them superior to conventional materials in many practical applications, they are limited in availability. Here, we propose a new class of hierarchical auxetics based on the rotating rigid units mechanism. These systems retain the enhanced properties from having a negative Poisson's ratio with the added benefits of being a hierarchical system. Using simulations on typical hierarchical multi-level rotating squares, we show that, through design, one can control the extent of auxeticity, degree of aperture and size of the different pores in the system. This makes the system more versatile than similar non-hierarchical ones, making them promising candidates for industrial and biomedical applications, such as stents and skin grafts.

  10. Applied Bayesian Hierarchical Methods

    Congdon, Peter D


    Bayesian methods facilitate the analysis of complex models and data structures. Emphasizing data applications, alternative modeling specifications, and computer implementation, this book provides a practical overview of methods for Bayesian analysis of hierarchical models.

  11. Programming with Hierarchical Maps

    Ørbæk, Peter

    This report desribes the hierarchical maps used as a central data structure in the Corundum framework. We describe its most prominent features, ague for its usefulness and briefly describe some of the software prototypes implemented using the technology....

  12. Catalysis with hierarchical zeolites

    Holm, Martin Spangsberg; Taarning, Esben; Egeblad, Kresten


    Hierarchical (or mesoporous) zeolites have attracted significant attention during the first decade of the 21st century, and so far this interest continues to increase. There have already been several reviews giving detailed accounts of the developments emphasizing different aspects of this research...... topic. Until now, the main reason for developing hierarchical zeolites has been to achieve heterogeneous catalysts with improved performance but this particular facet has not yet been reviewed in detail. Thus, the present paper summaries and categorizes the catalytic studies utilizing hierarchical...... zeolites that have been reported hitherto. Prototypical examples from some of the different categories of catalytic reactions that have been studied using hierarchical zeolite catalysts are highlighted. This clearly illustrates the different ways that improved performance can be achieved with this family...

  13. Semiparametric Quantile Modelling of Hierarchical Data

    Mao Zai TIAN; Man Lai TANG; Ping Shing CHAN


    The classic hierarchical linear model formulation provides a considerable flexibility for modelling the random effects structure and a powerful tool for analyzing nested data that arise in various areas such as biology, economics and education. However, it assumes the within-group errors to be independently and identically distributed (i.i.d.) and models at all levels to be linear. Most importantly, traditional hierarchical models (just like other ordinary mean regression methods) cannot characterize the entire conditional distribution of a dependent variable given a set of covariates and fail to yield robust estimators. In this article, we relax the aforementioned and normality assumptions, and develop a so-called Hierarchical Semiparametric Quantile Regression Models in which the within-group errors could be heteroscedastic and models at some levels are allowed to be nonparametric. We present the ideas with a 2-level model. The level-l model is specified as a nonparametric model whereas level-2 model is set as a parametric model. Under the proposed semiparametric setting the vector of partial derivatives of the nonparametric function in level-1 becomes the response variable vector in level 2. The proposed method allows us to model the fixed effects in the innermost level (i.e., level 2) as a function of the covariates instead of a constant effect. We outline some mild regularity conditions required for convergence and asymptotic normality for our estimators. We illustrate our methodology with a real hierarchical data set from a laboratory study and some simulation studies.

  14. Constrained Sparse Galerkin Regression

    Loiseau, Jean-Christophe


    In this work, we demonstrate the use of sparse regression techniques from machine learning to identify nonlinear low-order models of a fluid system purely from measurement data. In particular, we extend the sparse identification of nonlinear dynamics (SINDy) algorithm to enforce physical constraints in the regression, leading to energy conservation. The resulting models are closely related to Galerkin projection models, but the present method does not require the use of a full-order or high-fidelity Navier-Stokes solver to project onto basis modes. Instead, the most parsimonious nonlinear model is determined that is consistent with observed measurement data and satisfies necessary constraints. The constrained Galerkin regression algorithm is implemented on the fluid flow past a circular cylinder, demonstrating the ability to accurately construct models from data.

  15. What are hierarchical models and how do we analyze them?

    Royle, Andy


    In this chapter we provide a basic definition of hierarchical models and introduce the two canonical hierarchical models in this book: site occupancy and N-mixture models. The former is a hierarchical extension of logistic regression and the latter is a hierarchical extension of Poisson regression. We introduce basic concepts of probability modeling and statistical inference including likelihood and Bayesian perspectives. We go through the mechanics of maximizing the likelihood and characterizing the posterior distribution by Markov chain Monte Carlo (MCMC) methods. We give a general perspective on topics such as model selection and assessment of model fit, although we demonstrate these topics in practice in later chapters (especially Chapters 5, 6, 7, and 10 Chapter 5 Chapter 6 Chapter 7 Chapter 10)

  16. Hierarchical Reverberation Mapping

    Brewer, Brendon J


    Reverberation mapping (RM) is an important technique in studies of active galactic nuclei (AGN). The key idea of RM is to measure the time lag $\\tau$ between variations in the continuum emission from the accretion disc and subsequent response of the broad line region (BLR). The measurement of $\\tau$ is typically used to estimate the physical size of the BLR and is combined with other measurements to estimate the black hole mass $M_{\\rm BH}$. A major difficulty with RM campaigns is the large amount of data needed to measure $\\tau$. Recently, Fine et al (2012) introduced a new approach to RM where the BLR light curve is sparsely sampled, but this is counteracted by observing a large sample of AGN, rather than a single system. The results are combined to infer properties of the sample of AGN. In this letter we implement this method using a hierarchical Bayesian model and contrast this with the results from the previous stacked cross-correlation technique. We find that our inferences are more precise and allow fo...

  17. Multilevel Hierarchical Modeling of Benthic Macroinvertebrate Responses to Urbanization in Nine Metropolitan Regions across the Conterminous United States

    Kashuba, Roxolana; Cha, YoonKyung; Alameddine, Ibrahim; Lee, Boknam; Cuffney, Thomas F.


    -invertebrate response example is used to detail the multilevel hierarchical construction methodology, showing how the result is a set of models that are both statistically more rigorous and ecologically more interpretable than simple linear regression models.

  18. Automatic Hierarchical Color Image Classification

    Jing Huang


    Full Text Available Organizing images into semantic categories can be extremely useful for content-based image retrieval and image annotation. Grouping images into semantic classes is a difficult problem, however. Image classification attempts to solve this hard problem by using low-level image features. In this paper, we propose a method for hierarchical classification of images via supervised learning. This scheme relies on using a good low-level feature and subsequently performing feature-space reconfiguration using singular value decomposition to reduce noise and dimensionality. We use the training data to obtain a hierarchical classification tree that can be used to categorize new images. Our experimental results suggest that this scheme not only performs better than standard nearest-neighbor techniques, but also has both storage and computational advantages.

  19. Hierarchical Cont-Bouchaud model

    Paluch, Robert; Holyst, Janusz A


    We extend the well-known Cont-Bouchaud model to include a hierarchical topology of agent's interactions. The influence of hierarchy on system dynamics is investigated by two models. The first one is based on a multi-level, nested Erdos-Renyi random graph and individual decisions by agents according to Potts dynamics. This approach does not lead to a broad return distribution outside a parameter regime close to the original Cont-Bouchaud model. In the second model we introduce a limited hierarchical Erdos-Renyi graph, where merging of clusters at a level h+1 involves only clusters that have merged at the previous level h and we use the original Cont-Bouchaud agent dynamics on resulting clusters. The second model leads to a heavy-tail distribution of cluster sizes and relative price changes in a wide range of connection densities, not only close to the percolation threshold.

  20. Hierarchical decision making for flood risk reduction

    Custer, Rocco; Nishijima, Kazuyoshi


    . In current practice, structures are often optimized individually without considering benefits of having a hierarchy of protection structures. It is here argued, that the joint consideration of hierarchically integrated protection structures is beneficial. A hierarchical decision model is utilized to analyze...... and compare the benefit of large upstream protection structures and local downstream protection structures in regard to epistemic uncertainty parameters. Results suggest that epistemic uncertainty influences the outcome of the decision model and that, depending on the magnitude of epistemic uncertainty...

  1. Regression analysis by example

    Chatterjee, Samprit; Hadi, Ali S


    .... The emphasis continues to be on exploratory data analysis rather than statistical theory. The coverage offers in-depth treatment of regression diagnostics, transformation, multicollinearity, logistic regression, and robust regression...

  2. An Automatic Hierarchical Delay Analysis Tool

    FaridMheir-El-Saadi; BozenaKaminska


    The performance analysis of VLSI integrated circuits(ICs) with flat tools is slow and even sometimes impossible to complete.Some hierarchical tools have been developed to speed up the analysis of these large ICs.However,these hierarchical tools suffer from a poor interaction with the CAD database and poorly automatized operations.We introduce a general hierarchical framework for performance analysis to solve these problems.The circuit analysis is automatic under the proposed framework.Information that has been automatically abstracted in the hierarchy is kept in database properties along with the topological information.A limited software implementation of the framework,PREDICT,has also been developed to analyze the delay performance.Experimental results show that hierarchical analysis CPU time and memory requirements are low if heuristics are used during the abstraction process.

  3. Hierarchical modularity in human brain functional networks

    Meunier, D; Fornito, A; Ersche, K D; Bullmore, E T; 10.3389/neuro.11.037.2009


    The idea that complex systems have a hierarchical modular organization originates in the early 1960s and has recently attracted fresh support from quantitative studies of large scale, real-life networks. Here we investigate the hierarchical modular (or "modules-within-modules") decomposition of human brain functional networks, measured using functional magnetic resonance imaging (fMRI) in 18 healthy volunteers under no-task or resting conditions. We used a customized template to extract networks with more than 1800 regional nodes, and we applied a fast algorithm to identify nested modular structure at several hierarchical levels. We used mutual information, 0 < I < 1, to estimate the similarity of community structure of networks in different subjects, and to identify the individual network that is most representative of the group. Results show that human brain functional networks have a hierarchical modular organization with a fair degree of similarity between subjects, I=0.63. The largest 5 modules at ...

  4. Neutrosophic Hierarchical Clustering Algoritms

    Rıdvan Şahin


    Full Text Available Interval neutrosophic set (INS is a generalization of interval valued intuitionistic fuzzy set (IVIFS, whose the membership and non-membership values of elements consist of fuzzy range, while single valued neutrosophic set (SVNS is regarded as extension of intuitionistic fuzzy set (IFS. In this paper, we extend the hierarchical clustering techniques proposed for IFSs and IVIFSs to SVNSs and INSs respectively. Based on the traditional hierarchical clustering procedure, the single valued neutrosophic aggregation operator, and the basic distance measures between SVNSs, we define a single valued neutrosophic hierarchical clustering algorithm for clustering SVNSs. Then we extend the algorithm to classify an interval neutrosophic data. Finally, we present some numerical examples in order to show the effectiveness and availability of the developed clustering algorithms.

  5. Low rank Multivariate regression

    Giraud, Christophe


    We consider in this paper the multivariate regression problem, when the target regression matrix $A$ is close to a low rank matrix. Our primary interest in on the practical case where the variance of the noise is unknown. Our main contribution is to propose in this setting a criterion to select among a family of low rank estimators and prove a non-asymptotic oracle inequality for the resulting estimator. We also investigate the easier case where the variance of the noise is known and outline that the penalties appearing in our criterions are minimal (in some sense). These penalties involve the expected value of the Ky-Fan quasi-norm of some random matrices. These quantities can be evaluated easily in practice and upper-bounds can be derived from recent results in random matrix theory.

  6. Polynomial Regression on Riemannian Manifolds

    Hinkle, Jacob; Fletcher, P Thomas; Joshi, Sarang


    In this paper we develop the theory of parametric polynomial regression in Riemannian manifolds and Lie groups. We show application of Riemannian polynomial regression to shape analysis in Kendall shape space. Results are presented, showing the power of polynomial regression on the classic rat skull growth data of Bookstein as well as the analysis of the shape changes associated with aging of the corpus callosum from the OASIS Alzheimer's study.

  7. Evaluating Hierarchical Structure in Music Annotations.

    McFee, Brian; Nieto, Oriol; Farbood, Morwaread M; Bello, Juan Pablo


    Music exhibits structure at multiple scales, ranging from motifs to large-scale functional components. When inferring the structure of a piece, different listeners may attend to different temporal scales, which can result in disagreements when they describe the same piece. In the field of music informatics research (MIR), it is common to use corpora annotated with structural boundaries at different levels. By quantifying disagreements between multiple annotators, previous research has yielded several insights relevant to the study of music cognition. First, annotators tend to agree when structural boundaries are ambiguous. Second, this ambiguity seems to depend on musical features, time scale, and genre. Furthermore, it is possible to tune current annotation evaluation metrics to better align with these perceptual differences. However, previous work has not directly analyzed the effects of hierarchical structure because the existing methods for comparing structural annotations are designed for "flat" descriptions, and do not readily generalize to hierarchical annotations. In this paper, we extend and generalize previous work on the evaluation of hierarchical descriptions of musical structure. We derive an evaluation metric which can compare hierarchical annotations holistically across multiple levels. sing this metric, we investigate inter-annotator agreement on the multilevel annotations of two different music corpora, investigate the influence of acoustic properties on hierarchical annotations, and evaluate existing hierarchical segmentation algorithms against the distribution of inter-annotator agreement.

  8. Evaluating Hierarchical Structure in Music Annotations

    Brian McFee


    Full Text Available Music exhibits structure at multiple scales, ranging from motifs to large-scale functional components. When inferring the structure of a piece, different listeners may attend to different temporal scales, which can result in disagreements when they describe the same piece. In the field of music informatics research (MIR, it is common to use corpora annotated with structural boundaries at different levels. By quantifying disagreements between multiple annotators, previous research has yielded several insights relevant to the study of music cognition. First, annotators tend to agree when structural boundaries are ambiguous. Second, this ambiguity seems to depend on musical features, time scale, and genre. Furthermore, it is possible to tune current annotation evaluation metrics to better align with these perceptual differences. However, previous work has not directly analyzed the effects of hierarchical structure because the existing methods for comparing structural annotations are designed for “flat” descriptions, and do not readily generalize to hierarchical annotations. In this paper, we extend and generalize previous work on the evaluation of hierarchical descriptions of musical structure. We derive an evaluation metric which can compare hierarchical annotations holistically across multiple levels. sing this metric, we investigate inter-annotator agreement on the multilevel annotations of two different music corpora, investigate the influence of acoustic properties on hierarchical annotations, and evaluate existing hierarchical segmentation algorithms against the distribution of inter-annotator agreement.

  9. Reduced Rank Regression

    Johansen, Søren


    The reduced rank regression model is a multivariate regression model with a coefficient matrix with reduced rank. The reduced rank regression algorithm is an estimation procedure, which estimates the reduced rank regression model. It is related to canonical correlations and involves calculating e...

  10. Hierarchical Porous Structures

    Grote, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    Materials Design is often at the forefront of technological innovation. While there has always been a push to generate increasingly low density materials, such as aero or hydrogels, more recently the idea of bicontinuous structures has gone more into play. This review will cover some of the methods and applications for generating both porous, and hierarchically porous structures.

  11. Evaluating Differential Effects Using Regression Interactions and Regression Mixture Models

    Van Horn, M. Lee; Jaki, Thomas; Masyn, Katherine; Howe, George; Feaster, Daniel J.; Lamont, Andrea E.; George, Melissa R. W.; Kim, Minjung


    Research increasingly emphasizes understanding differential effects. This article focuses on understanding regression mixture models, which are relatively new statistical methods for assessing differential effects by comparing results to using an interactive term in linear regression. The research questions which each model answers, their…

  12. 微核试验数据的Poisson和负二项回归模型拟合效果比较%Comparison of Fitting Results of Poisson Regression and Negative Binomial Regression Models for Data of Cytokinesis-block Micronucleus Test

    郑辉烈; 王增珍; 俞慧强


    Objective To compare the fitting results of the Poisson regression model and negative binomial regression model for data of cytokinesis-block micronucleus test, and to provide a basis for statistical analysis of data of cytokinesis-block micronucleus test. Methods By using the log likelihood function,the deviance,Pearson x2 and cluster index, the fitting results of Poisson regression model and the negative binomial regression model for data of cytokinesis-block micronucleus test were evaluated. Result The ratio of log lielihood function to degree of freedom for negative binomial regression was greater than that for Poisson regression. The ratio of deviance to degree of freedom and the ratio of Pearson x2 to degree of freedom for negative binomial regression were less than those for Poisson regression. There was a significant difference in cluster index that was not equal to zero for negative binomial regression model(x2= 1 160.42, P<0.001).Conclusion The negative binomial regression model was superior to Poisson regression model for data of cytokinesis-block micronucleus test.%目的 比较Poisson和负二项回归模型对微核试验数据(每1 000个双核淋巴细胞中具有微核的淋巴细胞数)的拟合效果,为微核试验数据的模型拟合提供依据.方法 运用微核试验数据,拟合Poisson分布和负二项分布回归模型,采用对数似然函数、偏差统计量、Pearson χ2统计量和聚集性指数等指标比较2种回归模型对实例数据的拟合效果.结果 负二项回归模型对数似然函数值与自由度的比值(-2.51)大于Poisson回归模型(-3.52);负二项回归模型拟合优度统计量-偏差统计量和Pearson χ2统计量与对应的自由度比值(1.16和1.07)小于Poisson回归模型;聚集性指数的似然比检验(H0:k=0)显示,聚集性指数不等于0具有统计学意义(χ2=1 160.42,P<0.001).结论对于微核试验数据,拟合负二项回归模型要优于Poisson回归模型.

  13. Geometrical phase transitions on hierarchical lattices and universality

    Hauser, P. R.; Saxena, V. K.


    In order to examine the validity of the principle of universality for phase transitions on hierarchical lattices, we have studied percolation on a variety of hierarchical lattices, within exact position-space renormalization-group schemes. It is observed that the percolation critical exponent νp strongly depends on the topology of the lattices, even for lattices with the same intrinsic dimensions and connectivities. These results support some recent similar results on thermal phase transitions on hierarchical lattices and point out the possible violation of universality in phase transitions on hierarchical lattices.

  14. Hierarchical Classification of Chinese Documents Based on N-grams


    We explore the techniques of utilizing N-gram informatio n tocategorize Chinese text documents hierarchically so that the classifier can shak e off the burden of large dictionaries and complex segmentation processing, and subsequently be domain and time independent. A hierarchical Chinese text classif ier is implemented. Experimental results show that hierarchically classifying Chinese text documents based N-grams can achieve satisfactory performance and outperforms the other traditional Chinese text classifiers.

  15. Advantages and limitations of anticipating laboratory test results from regression- and tree-based rules derived from electronic health-record data.

    Fahim Mohammad

    Full Text Available Laboratory testing is the single highest-volume medical activity, making it useful to ask how well one can anticipate whether a given test result will be high, low, or within the reference interval ("normal". We analyzed 10 years of electronic health records--a total of 69.4 million blood tests--to see how well standard rule-mining techniques can anticipate test results based on patient age and gender, recent diagnoses, and recent laboratory test results. We evaluated rules according to their positive and negative predictive value (PPV and NPV and area under the receiver-operator characteristic curve (ROC AUCs. Using a stringent cutoff of PPV and/or NPV≥0.95, standard techniques yield few rules for sendout tests but several for in-house tests, mostly for repeat laboratory tests that are part of the complete blood count and basic metabolic panel. Most rules were clinically and pathophysiologically plausible, and several seemed clinically useful for informing pre-test probability of a given result. But overall, rules were unlikely to be able to function as a general substitute for actually ordering a test. Improving laboratory utilization will likely require different input data and/or alternative methods.

  16. Hierarchical manifold learning.

    Bhatia, Kanwal K; Rao, Anil; Price, Anthony N; Wolz, Robin; Hajnal, Jo; Rueckert, Daniel


    We present a novel method of hierarchical manifold learning which aims to automatically discover regional variations within images. This involves constructing manifolds in a hierarchy of image patches of increasing granularity, while ensuring consistency between hierarchy levels. We demonstrate its utility in two very different settings: (1) to learn the regional correlations in motion within a sequence of time-resolved images of the thoracic cavity; (2) to find discriminative regions of 3D brain images in the classification of neurodegenerative disease,

  17. Hierarchically Structured Electrospun Fibers

    Nicole E. Zander


    Full Text Available Traditional electrospun nanofibers have a myriad of applications ranging from scaffolds for tissue engineering to components of biosensors and energy harvesting devices. The generally smooth one-dimensional structure of the fibers has stood as a limitation to several interesting novel applications. Control of fiber diameter, porosity and collector geometry will be briefly discussed, as will more traditional methods for controlling fiber morphology and fiber mat architecture. The remainder of the review will focus on new techniques to prepare hierarchically structured fibers. Fibers with hierarchical primary structures—including helical, buckled, and beads-on-a-string fibers, as well as fibers with secondary structures, such as nanopores, nanopillars, nanorods, and internally structured fibers and their applications—will be discussed. These new materials with helical/buckled morphology are expected to possess unique optical and mechanical properties with possible applications for negative refractive index materials, highly stretchable/high-tensile-strength materials, and components in microelectromechanical devices. Core-shell type fibers enable a much wider variety of materials to be electrospun and are expected to be widely applied in the sensing, drug delivery/controlled release fields, and in the encapsulation of live cells for biological applications. Materials with a hierarchical secondary structure are expected to provide new superhydrophobic and self-cleaning materials.

  18. HDS: Hierarchical Data System

    Pearce, Dave; Walter, Anton; Lupton, W. F.; Warren-Smith, Rodney F.; Lawden, Mike; McIlwrath, Brian; Peden, J. C. M.; Jenness, Tim; Draper, Peter W.


    The Hierarchical Data System (HDS) is a file-based hierarchical data system designed for the storage of a wide variety of information. It is particularly suited to the storage of large multi-dimensional arrays (with their ancillary data) where efficient access is needed. It is a key component of the Starlink software collection (ascl:1110.012) and is used by the Starlink N-Dimensional Data Format (NDF) library (ascl:1411.023). HDS organizes data into hierarchies, broadly similar to the directory structure of a hierarchical filing system, but contained within a single HDS container file. The structures stored in these files are self-describing and flexible; HDS supports modification and extension of structures previously created, as well as functions such as deletion, copying, and renaming. All information stored in HDS files is portable between the machines on which HDS is implemented. Thus, there are no format conversion problems when moving between machines. HDS can write files in a private binary format (version 4), or be layered on top of HDF5 (version 5).

  19. Hierarchical video summarization

    Ratakonda, Krishna; Sezan, M. Ibrahim; Crinon, Regis J.


    We address the problem of key-frame summarization of vide in the absence of any a priori information about its content. This is a common problem that is encountered in home videos. We propose a hierarchical key-frame summarization algorithm where a coarse-to-fine key-frame summary is generated. A hierarchical key-frame summary facilitates multi-level browsing where the user can quickly discover the content of the video by accessing its coarsest but most compact summary and then view a desired segment of the video with increasingly more detail. At the finest level, the summary is generated on the basis of color features of video frames, using an extension of a recently proposed key-frame extraction algorithm. The finest level key-frames are recursively clustered using a novel pairwise K-means clustering approach with temporal consecutiveness constraint. We also address summarization of MPEG-2 compressed video without fully decoding the bitstream. We also propose efficient mechanisms that facilitate decoding the video when the hierarchical summary is utilized in browsing and playback of video segments starting at selected key-frames.

  20. Collaborative regression-based anatomical landmark detection

    Gao, Yaozong; Shen, Dinggang


    Anatomical landmark detection plays an important role in medical image analysis, e.g. for registration, segmentation and quantitative analysis. Among the various existing methods for landmark detection, regression-based methods have recently attracted much attention due to their robustness and efficiency. In these methods, landmarks are localised through voting from all image voxels, which is completely different from the classification-based methods that use voxel-wise classification to detect landmarks. Despite their robustness, the accuracy of regression-based landmark detection methods is often limited due to (1) the inclusion of uninformative image voxels in the voting procedure, and (2) the lack of effective ways to incorporate inter-landmark spatial dependency into the detection step. In this paper, we propose a collaborative landmark detection framework to address these limitations. The concept of collaboration is reflected in two aspects. (1) Multi-resolution collaboration. A multi-resolution strategy is proposed to hierarchically localise landmarks by gradually excluding uninformative votes from faraway voxels. Moreover, for informative voxels near the landmark, a spherical sampling strategy is also designed at the training stage to improve their prediction accuracy. (2) Inter-landmark collaboration. A confidence-based landmark detection strategy is proposed to improve the detection accuracy of ‘difficult-to-detect’ landmarks by using spatial guidance from ‘easy-to-detect’ landmarks. To evaluate our method, we conducted experiments extensively on three datasets for detecting prostate landmarks and head & neck landmarks in computed tomography images, and also dental landmarks in cone beam computed tomography images. The results show the effectiveness of our collaborative landmark detection framework in improving landmark detection accuracy, compared to other state-of-the-art methods.

  1. Scale of association: hierarchical linear models and the measurement of ecological systems

    Sean M. McMahon; Jeffrey M. Diez


    A fundamental challenge to understanding patterns in ecological systems lies in employing methods that can analyse, test and draw inference from measured associations between variables across scales. Hierarchical linear models (HLM) use advanced estimation algorithms to measure regression relationships and variance-covariance parameters in hierarchically structured...

  2. Unitary Response Regression Models

    Lipovetsky, S.


    The dependent variable in a regular linear regression is a numerical variable, and in a logistic regression it is a binary or categorical variable. In these models the dependent variable has varying values. However, there are problems yielding an identity output of a constant value which can also be modelled in a linear or logistic regression with…

  3. Flexible survival regression modelling

    Cortese, Giuliana; Scheike, Thomas H; Martinussen, Torben


    Regression analysis of survival data, and more generally event history data, is typically based on Cox's regression model. We here review some recent methodology, focusing on the limitations of Cox's regression model. The key limitation is that the model is not well suited to represent time-varyi...

  4. Quantile Regression Methods

    Fitzenberger, Bernd; Wilke, Ralf Andreas


    Quantile regression is emerging as a popular statistical approach, which complements the estimation of conditional mean models. While the latter only focuses on one aspect of the conditional distribution of the dependent variable, the mean, quantile regression provides more detailed insights by m...... treatment of the topic is based on the perspective of applied researchers using quantile regression in their empirical work....

  5. Quantifying and reducing uncertainties in estimated soil CO2 fluxes with hierarchical data-model integration

    Ogle, Kiona; Ryan, Edmund; Dijkstra, Feike A.; Pendall, Elise


    Nonsteady state chambers are often employed to measure soil CO2 fluxes. CO2 concentrations (C) in the headspace are sampled at different times (t), and fluxes (f) are calculated from regressions of C versus t based on a limited number of observations. Variability in the data can lead to poor fits and unreliable f estimates; groups with too few observations or poor fits are often discarded, resulting in "missing" f values. We solve these problems by fitting linear (steady state) and nonlinear (nonsteady state, diffusion based) models of C versus t, within a hierarchical Bayesian framework. Data are from the Prairie Heating and CO2 Enrichment study that manipulated atmospheric CO2, temperature, soil moisture, and vegetation. CO2 was collected from static chambers biweekly during five growing seasons, resulting in >12,000 samples and >3100 groups and associated fluxes. We compare f estimates based on nonhierarchical and hierarchical Bayesian (B versus HB) versions of the linear and diffusion-based (L versus D) models, resulting in four different models (BL, BD, HBL, and HBD). Three models fit the data exceptionally well (R2 ≥ 0.98), but the BD model was inferior (R2 = 0.87). The nonhierarchical models (BL and BD) produced highly uncertain f estimates (wide 95% credible intervals), whereas the hierarchical models (HBL and HBD) produced very precise estimates. Of the hierarchical versions, the linear model (HBL) underestimated f by 33% relative to the nonsteady state model (HBD). The hierarchical models offer improvements upon traditional nonhierarchical approaches to estimating f, and we provide example code for the models.

  6. Regression for economics

    Naghshpour, Shahdad


    Regression analysis is the most commonly used statistical method in the world. Although few would characterize this technique as simple, regression is in fact both simple and elegant. The complexity that many attribute to regression analysis is often a reflection of their lack of familiarity with the language of mathematics. But regression analysis can be understood even without a mastery of sophisticated mathematical concepts. This book provides the foundation and will help demystify regression analysis using examples from economics and with real data to show the applications of the method. T

  7. C-HiLasso: A Collaborative Hierarchical Sparse Modeling Framework

    Sprechmann, Pablo; Sapiro, Guillermo; Eldar, Yonina


    Sparse modeling is a powerful framework for data analysis and processing. Traditionally, encoding in this framework is performed by solving an L1-regularized linear regression problem, commonly referred to as Lasso or Basis Pursuit. In this work we combine the sparsity-inducing property of the Lasso model at the individual feature level, with the block-sparsity property of the Group Lasso model, where sparse groups of features are jointly encoded, obtaining a sparsity pattern hierarchically structured. This results in the Hierarchical Lasso (HiLasso), which shows important practical modeling advantages. We then extend this approach to the collaborative case, where a set of simultaneously coded signals share the same sparsity pattern at the higher (group) level, but not necessarily at the lower (inside the group) level, obtaining the collaborative HiLasso model (C-HiLasso). Such signals then share the same active groups, or classes, but not necessarily the same active set. This model is very well suited for ap...

  8. A hierarchical linear model for tree height prediction.

    Vicente J. Monleon


    Measuring tree height is a time-consuming process. Often, tree diameter is measured and height is estimated from a published regression model. Trees used to develop these models are clustered into stands, but this structure is ignored and independence is assumed. In this study, hierarchical linear models that account explicitly for the clustered structure of the data...

  9. Self-assembled biomimetic superhydrophobic hierarchical arrays.

    Yang, Hongta; Dou, Xuan; Fang, Yin; Jiang, Peng


    Here, we report a simple and inexpensive bottom-up technology for fabricating superhydrophobic coatings with hierarchical micro-/nano-structures, which are inspired by the binary periodic structure found on the superhydrophobic compound eyes of some insects (e.g., mosquitoes and moths). Binary colloidal arrays consisting of exemplary large (4 and 30 μm) and small (300 nm) silica spheres are first assembled by a scalable Langmuir-Blodgett (LB) technology in a layer-by-layer manner. After surface modification with fluorosilanes, the self-assembled hierarchical particle arrays become superhydrophobic with an apparent water contact angle (CA) larger than 150°. The throughput of the resulting superhydrophobic coatings with hierarchical structures can be significantly improved by templating the binary periodic structures of the LB-assembled colloidal arrays into UV-curable fluoropolymers by a soft lithography approach. Superhydrophobic perfluoroether acrylate hierarchical arrays with large CAs and small CA hysteresis can be faithfully replicated onto various substrates. Both experiments and theoretical calculations based on the Cassie's dewetting model demonstrate the importance of the hierarchical structure in achieving the final superhydrophobic surface states. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Analysis hierarchical model for discrete event systems

    Ciortea, E. M.


    The This paper presents the hierarchical model based on discrete event network for robotic systems. Based on the hierarchical approach, Petri network is analysed as a network of the highest conceptual level and the lowest level of local control. For modelling and control of complex robotic systems using extended Petri nets. Such a system is structured, controlled and analysed in this paper by using Visual Object Net ++ package that is relatively simple and easy to use, and the results are shown as representations easy to interpret. The hierarchical structure of the robotic system is implemented on computers analysed using specialized programs. Implementation of hierarchical model discrete event systems, as a real-time operating system on a computer network connected via a serial bus is possible, where each computer is dedicated to local and Petri model of a subsystem global robotic system. Since Petri models are simplified to apply general computers, analysis, modelling, complex manufacturing systems control can be achieved using Petri nets. Discrete event systems is a pragmatic tool for modelling industrial systems. For system modelling using Petri nets because we have our system where discrete event. To highlight the auxiliary time Petri model using transport stream divided into hierarchical levels and sections are analysed successively. Proposed robotic system simulation using timed Petri, offers the opportunity to view the robotic time. Application of goods or robotic and transmission times obtained by measuring spot is obtained graphics showing the average time for transport activity, using the parameters sets of finished products. individually.

  11. A Hierarchical Framework for Facial Age Estimation

    Yuyu Liang


    Full Text Available Age estimation is a complex issue of multiclassification or regression. To address the problems of uneven distribution of age database and ignorance of ordinal information, this paper shows a hierarchic age estimation system, comprising age group and specific age estimation. In our system, two novel classifiers, sequence k-nearest neighbor (SKNN and ranking-KNN, are introduced to predict age group and value, respectively. Notably, ranking-KNN utilizes the ordinal information between samples in estimation process rather than regards samples as separate individuals. Tested on FG-NET database, our system achieves 4.97 evaluated by MAE (mean absolute error for age estimation.

  12. Regression Testing Cost Reduction Suite

    Mohamed Alaa El-Din


    Full Text Available The estimated cost of software maintenance exceeds 70 percent of total software costs [1], and large portion of this maintenance expenses is devoted to regression testing. Regression testing is an expensive and frequently executed maintenance activity used to revalidate the modified software. Any reduction in the cost of regression testing would help to reduce the software maintenance cost. Test suites once developed are reused and updated frequently as the software evolves. As a result, some test cases in the test suite may become redundant when the software is modified over time since the requirements covered by them are also covered by other test cases. Due to the resource and time constraints for re-executing large test suites, it is important to develop techniques to minimize available test suites by removing redundant test cases. In general, the test suite minimization problem is NP complete. This paper focuses on proposing an effective approach for reducing the cost of regression testing process. The proposed approach is applied on real-time case study. It was found that the reduction in cost of regression testing for each regression testing cycle is ranging highly improved in the case of programs containing high number of selected statements which in turn maximize the benefits of using it in regression testing of complex software systems. The reduction in the regression test suite size will reduce the effort and time required by the testing teams to execute the regression test suite. Since regression testing is done more frequently in software maintenance phase, the overall software maintenance cost can be reduced considerably by applying the proposed approach.

  13. Incentive Mechanisms for Hierarchical Spectrum Markets

    Iosifidis, George; Alpcan, Tansu; Koutsopoulos, Iordanis


    We study spectrum allocation mechanisms in hierarchical multi-layer markets which are expected to proliferate in the near future based on the current spectrum policy reform proposals. We consider a setting where a state agency sells spectrum to Primary Operators (POs) and in turn these resell it to Secondary Operators (SOs) through auctions. We show that these hierarchical markets do not result in a socially efficient spectrum allocation which is aimed by the agency, due to lack of coordination among the entities in different layers and the inherently selfish revenue-maximizing strategy of POs. In order to reconcile these opposing objectives, we propose an incentive mechanism which aligns the strategy and the actions of the POs with the objective of the agency, and thus it leads to system performance improvement in terms of social welfare. This pricing based mechanism constitutes a method for hierarchical market regulation and requires the feedback provision from SOs. A basic component of the proposed incenti...

  14. Static and dynamic friction of hierarchical surfaces

    Costagliola, Gianluca; Bosia, Federico; Pugno, Nicola M.


    Hierarchical structures are very common in nature, but only recently have they been systematically studied in materials science, in order to understand the specific effects they can have on the mechanical properties of various systems. Structural hierarchy provides a way to tune and optimize macroscopic mechanical properties starting from simple base constituents and new materials are nowadays designed exploiting this possibility. This can be true also in the field of tribology. In this paper we study the effect of hierarchical patterned surfaces on the static and dynamic friction coefficients of an elastic material. Our results are obtained by means of numerical simulations using a one-dimensional spring-block model, which has previously been used to investigate various aspects of friction. Despite the simplicity of the model, we highlight some possible mechanisms that explain how hierarchical structures can significantly modify the friction coefficients of a material, providing a means to achieve tunability.

  15. Detecting Hierarchical Structure in Networks

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard;


    a generative Bayesian model that is able to infer whether hierarchies are present or not from a hypothesis space encompassing all types of hierarchical tree structures. For efficient inference we propose a collapsed Gibbs sampling procedure that jointly infers a partition and its hierarchical structure......Many real-world networks exhibit hierarchical organization. Previous models of hierarchies within relational data has focused on binary trees; however, for many networks it is unknown whether there is hierarchical structure, and if there is, a binary tree might not account well for it. We propose....... On synthetic and real data we demonstrate that our model can detect hierarchical structure leading to better link-prediction than competing models. Our model can be used to detect if a network exhibits hierarchical structure, thereby leading to a better comprehension and statistical account the network....

  16. Dynamic Organization of Hierarchical Memories.

    Kurikawa, Tomoki; Kaneko, Kunihiko


    In the brain, external objects are categorized in a hierarchical way. Although it is widely accepted that objects are represented as static attractors in neural state space, this view does not take account interaction between intrinsic neural dynamics and external input, which is essential to understand how neural system responds to inputs. Indeed, structured spontaneous neural activity without external inputs is known to exist, and its relationship with evoked activities is discussed. Then, how categorical representation is embedded into the spontaneous and evoked activities has to be uncovered. To address this question, we studied bifurcation process with increasing input after hierarchically clustered associative memories are learned. We found a "dynamic categorization"; neural activity without input wanders globally over the state space including all memories. Then with the increase of input strength, diffuse representation of higher category exhibits transitions to focused ones specific to each object. The hierarchy of memories is embedded in the transition probability from one memory to another during the spontaneous dynamics. With increased input strength, neural activity wanders over a narrower state space including a smaller set of memories, showing more specific category or memory corresponding to the applied input. Moreover, such coarse-to-fine transitions are also observed temporally during transient process under constant input, which agrees with experimental findings in the temporal cortex. These results suggest the hierarchy emerging through interaction with an external input underlies hierarchy during transient process, as well as in the spontaneous activity.

  17. Context updates are hierarchical

    Anton Karl Ingason


    Full Text Available This squib studies the order in which elements are added to the shared context of interlocutors in a conversation. It focuses on context updates within one hierarchical structure and argues that structurally higher elements are entered into the context before lower elements, even if the structurally higher elements are pronounced after the lower elements. The crucial data are drawn from a comparison of relative clauses in two head-initial languages, English and Icelandic, and two head-final languages, Korean and Japanese. The findings have consequences for any theory of a dynamic semantics.

  18. A general strategy to determine the congruence between a hierarchical and a non-hierarchical classification

    Marín Ignacio


    Full Text Available Abstract Background Classification procedures are widely used in phylogenetic inference, the analysis of expression profiles, the study of biological networks, etc. Many algorithms have been proposed to establish the similarity between two different classifications of the same elements. However, methods to determine significant coincidences between hierarchical and non-hierarchical partitions are still poorly developed, in spite of the fact that the search for such coincidences is implicit in many analyses of massive data. Results We describe a novel strategy to compare a hierarchical and a dichotomic non-hierarchical classification of elements, in order to find clusters in a hierarchical tree in which elements of a given "flat" partition are overrepresented. The key improvement of our strategy respect to previous methods is using permutation analyses of ranked clusters to determine whether regions of the dendrograms present a significant enrichment. We show that this method is more sensitive than previously developed strategies and how it can be applied to several real cases, including microarray and interactome data. Particularly, we use it to compare a hierarchical representation of the yeast mitochondrial interactome and a catalogue of known mitochondrial protein complexes, demonstrating a high level of congruence between those two classifications. We also discuss extensions of this method to other cases which are conceptually related. Conclusion Our method is highly sensitive and outperforms previously described strategies. A PERL script that implements it is available at

  19. Genetic Algorithm for Hierarchical Wireless Sensor Networks

    Sajid Hussain


    Full Text Available Large scale wireless sensor networks (WSNs can be used for various pervasive and ubiquitous applications such as security, health-care, industry automation, agriculture, environment and habitat monitoring. As hierarchical clusters can reduce the energy consumption requirements for WSNs, we investigate intelligent techniques for cluster formation and management. A genetic algorithm (GA is used to create energy efficient clusters for data dissemination in wireless sensor networks. The simulation results show that the proposed intelligent hierarchical clustering technique can extend the network lifetime for different network deployment environments.

  20. Hierarchical social networks and information flow

    López, Luis; F. F. Mendes, Jose; Sanjuán, Miguel A. F.


    Using a simple model for the information flow on social networks, we show that the traditional hierarchical topologies frequently used by companies and organizations, are poorly designed in terms of efficiency. Moreover, we prove that this type of structures are the result of the individual aim of monopolizing as much information as possible within the network. As the information is an appropriate measurement of centrality, we conclude that this kind of topology is so attractive for leaders, because the global influence each actor has within the network is completely determined by the hierarchical level occupied.

  1. Autistic epileptiform regression.

    Canitano, Roberto; Zappella, Michele


    Autistic regression is a well known condition that occurs in one third of children with pervasive developmental disorders, who, after normal development in the first year of life, undergo a global regression during the second year that encompasses language, social skills and play. In a portion of these subjects, epileptiform abnormalities are present with or without seizures, resembling, in some respects, other epileptiform regressions of language and behaviour such as Landau-Kleffner syndrome. In these cases, for a more accurate definition of the clinical entity, the term autistic epileptifom regression has been suggested. As in other epileptic syndromes with regression, the relationships between EEG abnormalities, language and behaviour, in autism, are still unclear. We describe two cases of autistic epileptiform regression selected from a larger group of children with autistic spectrum disorders, with the aim of discussing the clinical features of the condition, the therapeutic approach and the outcome.

  2. Scaled Sparse Linear Regression

    Sun, Tingni


    Scaled sparse linear regression jointly estimates the regression coefficients and noise level in a linear model. It chooses an equilibrium with a sparse regression method by iteratively estimating the noise level via the mean residual squares and scaling the penalty in proportion to the estimated noise level. The iterative algorithm costs nearly nothing beyond the computation of a path of the sparse regression estimator for penalty levels above a threshold. For the scaled Lasso, the algorithm is a gradient descent in a convex minimization of a penalized joint loss function for the regression coefficients and noise level. Under mild regularity conditions, we prove that the method yields simultaneously an estimator for the noise level and an estimated coefficient vector in the Lasso path satisfying certain oracle inequalities for the estimation of the noise level, prediction, and the estimation of regression coefficients. These oracle inequalities provide sufficient conditions for the consistency and asymptotic...

  3. Hierarchical clustering using correlation metric and spatial continuity constraint

    Stork, Christopher L.; Brewer, Luke N.


    Large data sets are analyzed by hierarchical clustering using correlation as a similarity measure. This provides results that are superior to those obtained using a Euclidean distance similarity measure. A spatial continuity constraint may be applied in hierarchical clustering analysis of images.

  4. Rolling Regressions with Stata

    Kit Baum


    This talk will describe some work underway to add a "rolling regression" capability to Stata's suite of time series features. Although commands such as "statsby" permit analysis of non-overlapping subsamples in the time domain, they are not suited to the analysis of overlapping (e.g. "moving window") samples. Both moving-window and widening-window techniques are often used to judge the stability of time series regression relationships. We will present an implementation of a rolling regression...

  5. Unbiased Quasi-regression

    Guijun YANG; Lu LIN; Runchu ZHANG


    Quasi-regression, motivated by the problems arising in the computer experiments, focuses mainly on speeding up evaluation. However, its theoretical properties are unexplored systemically. This paper shows that quasi-regression is unbiased, strong convergent and asymptotic normal for parameter estimations but it is biased for the fitting of curve. Furthermore, a new method called unbiased quasi-regression is proposed. In addition to retaining the above asymptotic behaviors of parameter estimations, unbiased quasi-regression is unbiased for the fitting of curve.

  6. Introduction to regression graphics

    Cook, R Dennis


    Covers the use of dynamic and interactive computer graphics in linear regression analysis, focusing on analytical graphics. Features new techniques like plot rotation. The authors have composed their own regression code, using Xlisp-Stat language called R-code, which is a nearly complete system for linear regression analysis and can be utilized as the main computer program in a linear regression course. The accompanying disks, for both Macintosh and Windows computers, contain the R-code and Xlisp-Stat. An Instructor's Manual presenting detailed solutions to all the problems in the book is ava

  7. Applied linear regression

    Weisberg, Sanford


    Master linear regression techniques with a new edition of a classic text Reviews of the Second Edition: ""I found it enjoyable reading and so full of interesting material that even the well-informed reader will probably find something new . . . a necessity for all of those who do linear regression."" -Technometrics, February 1987 ""Overall, I feel that the book is a valuable addition to the now considerable list of texts on applied linear regression. It should be a strong contender as the leading text for a first serious course in regression analysis."" -American Scientist, May-June 1987

  8. The path to glory is paved with hierarchy: When hierarchical differentiation increases group effectiveness.

    Ronay, R.D.; Greenaway, K; Anicich, E.M; Galinsky, A.D.


    Two experiments examined the psychological and biological antecedents of hierarchical differentiation and the resulting consequences for productivity and conflict within small groups. In Experiment 1, which used a priming manipulation, hierarchically differentiated groups (i.e., groups comprising 1

  9. The path to glory is paved with hierarchy: When hierarchical differentiation increases group effectiveness.

    Ronay, R.D.; Greenaway, K; Anicich, E.M; Galinsky, A.D.


    Two experiments examined the psychological and biological antecedents of hierarchical differentiation and the resulting consequences for productivity and conflict within small groups. In Experiment 1, which used a priming manipulation, hierarchically differentiated groups (i.e., groups comprising 1

  10. Rank regression: an alternative regression approach for data with outliers.

    Chen, Tian; Tang, Wan; Lu, Ying; Tu, Xin


    Linear regression models are widely used in mental health and related health services research. However, the classic linear regression analysis assumes that the data are normally distributed, an assumption that is not met by the data obtained in many studies. One method of dealing with this problem is to use semi-parametric models, which do not require that the data be normally distributed. But semi-parametric models are quite sensitive to outlying observations, so the generated estimates are unreliable when study data includes outliers. In this situation, some researchers trim the extreme values prior to conducting the analysis, but the ad-hoc rules used for data trimming are based on subjective criteria so different methods of adjustment can yield different results. Rank regression provides a more objective approach to dealing with non-normal data that includes outliers. This paper uses simulated and real data to illustrate this useful regression approach for dealing with outliers and compares it to the results generated using classical regression models and semi-parametric regression models.

  11. Hierarchical Optimization of Material and Structure

    Rodrigues, Helder C.; Guedes, Jose M.; Bendsøe, Martin P.


    This paper describes a hierarchical computational procedure for optimizing material distribution as well as the local material properties of mechanical elements. The local properties are designed using a topology design approach, leading to single scale microstructures, which may be restricted...... in various ways, based on design and manufacturing criteria. Implementation issues are also discussed and computational results illustrate the nature of the procedure....

  12. Equivalence Checking of Hierarchical Combinational Circuits

    Williams, Poul Frederick; Hulgaard, Henrik; Andersen, Henrik Reif


    This paper presents a method for verifying that two hierarchical combinational circuits implement the same Boolean functions. The key new feature of the method is its ability to exploit the modularity of circuits to reuse results obtained from one part of the circuits in other parts. We demonstrate...... our method on large adder and multiplier circuits....

  13. Morse–Smale Regression

    Gerber, Samuel [Univ. of Utah, Salt Lake City, UT (United States); Rubel, Oliver [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bremer, Peer -Timo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pascucci, Valerio [Univ. of Utah, Salt Lake City, UT (United States); Whitaker, Ross T. [Univ. of Utah, Salt Lake City, UT (United States)


    This paper introduces a novel partition-based regression approach that incorporates topological information. Partition-based regression typically introduces a quality-of-fit-driven decomposition of the domain. The emphasis in this work is on a topologically meaningful segmentation. Thus, the proposed regression approach is based on a segmentation induced by a discrete approximation of the Morse–Smale complex. This yields a segmentation with partitions corresponding to regions of the function with a single minimum and maximum that are often well approximated by a linear model. This approach yields regression models that are amenable to interpretation and have good predictive capacity. Typically, regression estimates are quantified by their geometrical accuracy. For the proposed regression, an important aspect is the quality of the segmentation itself. Thus, this article introduces a new criterion that measures the topological accuracy of the estimate. The topological accuracy provides a complementary measure to the classical geometrical error measures and is very sensitive to overfitting. The Morse–Smale regression is compared to state-of-the-art approaches in terms of geometry and topology and yields comparable or improved fits in many cases. Finally, a detailed study on climate-simulation data demonstrates the application of the Morse–Smale regression. Supplementary Materials are available online and contain an implementation of the proposed approach in the R package msr, an analysis and simulations on the stability of the Morse–Smale complex approximation, and additional tables for the climate-simulation study.



    This letter presents a new discriminative model for Information Retrieval (IR), referred to as Ordinal Regression Model (ORM). ORM is different from most existing models in that it views IR as ordinal regression problem (i.e. ranking problem) instead of binary classification. It is noted that the task of IR is to rank documents according to the user information needed, so IR can be viewed as ordinal regression problem. Two parameter learning algorithms for ORM are presented. One is a perceptron-based algorithm. The other is the ranking Support Vector Machine (SVM). The effectiveness of the proposed approach has been evaluated on the task of ad hoc retrieval using three English Text REtrieval Conference (TREC) sets and two Chinese TREC sets. Results show that ORM significantly outperforms the state-of-the-art language model approaches and OKAPI system in all test sets; and it is more appropriate to view IR as ordinal regression other than binary classification.

  15. Hierarchical Star Formation Across Galactic Disks

    Gouliermis, Dimitrios


    Most stars form in clusters. This fact has emerged from the finding that "embedded clusters account for the 70 - 90% fraction of all stars formed in Giant Molecular Clouds (GMCs)." While this is the case at scales of few 10 parsecs, typical for GMCs, a look at star-forming galaxies in the Local Group (LG) shows significant populations of enormous loose complexes of early-type stars extending at scales from few 100 to few 1000 parsecs. The fact that these stellar complexes host extremely large numbers of loosely distributed massive blue stars implies either that stars form also in an unbound fashion or they are immediately dislocated from their original compact birthplaces or both. The Legacy Extra-Galactic UV Survey (LEGUS) has produced remarkable collections of resolved early-type stars in 50 star-forming LG galaxies, suited for testing ideas about recent star formation. I will present results from our ongoing project on star formation across LEGUS disk galaxies. We characterize the global clustering behavior of the massive young stars in order to understand the morphology of star formation over galactic scales. This morphology appears to be self-similar with fractal dimensions comparable to those of the molecular interstellar medium, apparently driven by large-scale turbulence. Our clustering analysis reveals compact stellar systems nested in larger looser concentrations, which themselves are the dense parts of unbound complexes and super-structures, giving evidence of hierarchical star formation up to galactic scales. We investigate the structural and star formation parameters demographics of the star-forming complexes revealed at various levels of compactness. I will discuss the outcome of our correlation and regression analyses on these parameters in an attempt to understand the link between galactic disk dynamics and morphological structure in spiral and ring galaxies of the local universe.

  16. Hierarchical partial order ranking.

    Carlsen, Lars


    Assessing the potential impact on environmental and human health from the production and use of chemicals or from polluted sites involves a multi-criteria evaluation scheme. A priori several parameters are to address, e.g., production tonnage, specific release scenarios, geographical and site-specific factors in addition to various substance dependent parameters. Further socio-economic factors may be taken into consideration. The number of parameters to be included may well appear to be prohibitive for developing a sensible model. The study introduces hierarchical partial order ranking (HPOR) that remedies this problem. By HPOR the original parameters are initially grouped based on their mutual connection and a set of meta-descriptors is derived representing the ranking corresponding to the single groups of descriptors, respectively. A second partial order ranking is carried out based on the meta-descriptors, the final ranking being disclosed though average ranks. An illustrative example on the prioritization of polluted sites is given.

  17. Trees and Hierarchical Structures

    Haeseler, Arndt


    The "raison d'etre" of hierarchical dustering theory stems from one basic phe­ nomenon: This is the notorious non-transitivity of similarity relations. In spite of the fact that very often two objects may be quite similar to a third without being that similar to each other, one still wants to dassify objects according to their similarity. This should be achieved by grouping them into a hierarchy of non-overlapping dusters such that any two objects in ~ne duster appear to be more related to each other than they are to objects outside this duster. In everyday life, as well as in essentially every field of scientific investigation, there is an urge to reduce complexity by recognizing and establishing reasonable das­ sification schemes. Unfortunately, this is counterbalanced by the experience of seemingly unavoidable deadlocks caused by the existence of sequences of objects, each comparatively similar to the next, but the last rather different from the first.

  18. Optimisation by hierarchical search

    Zintchenko, Ilia; Hastings, Matthew; Troyer, Matthias


    Finding optimal values for a set of variables relative to a cost function gives rise to some of the hardest problems in physics, computer science and applied mathematics. Although often very simple in their formulation, these problems have a complex cost function landscape which prevents currently known algorithms from efficiently finding the global optimum. Countless techniques have been proposed to partially circumvent this problem, but an efficient method is yet to be found. We present a heuristic, general purpose approach to potentially improve the performance of conventional algorithms or special purpose hardware devices by optimising groups of variables in a hierarchical way. We apply this approach to problems in combinatorial optimisation, machine learning and other fields.

  19. How hierarchical is language use?

    Frank, Stefan L.; Bod, Rens; Christiansen, Morten H.


    It is generally assumed that hierarchical phrase structure plays a central role in human language. However, considerations of simplicity and evolutionary continuity suggest that hierarchical structure should not be invoked too hastily. Indeed, recent neurophysiological, behavioural and computational studies show that sequential sentence structure has considerable explanatory power and that hierarchical processing is often not involved. In this paper, we review evidence from the recent literature supporting the hypothesis that sequential structure may be fundamental to the comprehension, production and acquisition of human language. Moreover, we provide a preliminary sketch outlining a non-hierarchical model of language use and discuss its implications and testable predictions. If linguistic phenomena can be explained by sequential rather than hierarchical structure, this will have considerable impact in a wide range of fields, such as linguistics, ethology, cognitive neuroscience, psychology and computer science. PMID:22977157

  20. How hierarchical is language use?

    Frank, Stefan L; Bod, Rens; Christiansen, Morten H


    It is generally assumed that hierarchical phrase structure plays a central role in human language. However, considerations of simplicity and evolutionary continuity suggest that hierarchical structure should not be invoked too hastily. Indeed, recent neurophysiological, behavioural and computational studies show that sequential sentence structure has considerable explanatory power and that hierarchical processing is often not involved. In this paper, we review evidence from the recent literature supporting the hypothesis that sequential structure may be fundamental to the comprehension, production and acquisition of human language. Moreover, we provide a preliminary sketch outlining a non-hierarchical model of language use and discuss its implications and testable predictions. If linguistic phenomena can be explained by sequential rather than hierarchical structure, this will have considerable impact in a wide range of fields, such as linguistics, ethology, cognitive neuroscience, psychology and computer science.

  1. Boosted beta regression.

    Matthias Schmid

    Full Text Available Regression analysis with a bounded outcome is a common problem in applied statistics. Typical examples include regression models for percentage outcomes and the analysis of ratings that are measured on a bounded scale. In this paper, we consider beta regression, which is a generalization of logit models to situations where the response is continuous on the interval (0,1. Consequently, beta regression is a convenient tool for analyzing percentage responses. The classical approach to fit a beta regression model is to use maximum likelihood estimation with subsequent AIC-based variable selection. As an alternative to this established - yet unstable - approach, we propose a new estimation technique called boosted beta regression. With boosted beta regression estimation and variable selection can be carried out simultaneously in a highly efficient way. Additionally, both the mean and the variance of a percentage response can be modeled using flexible nonlinear covariate effects. As a consequence, the new method accounts for common problems such as overdispersion and non-binomial variance structures.

  2. Galaxy formation through hierarchical clustering

    White, Simon D. M.; Frenk, Carlos S.


    Analytic methods for studying the formation of galaxies by gas condensation within massive dark halos are presented. The present scheme applies to cosmogonies where structure grows through hierarchical clustering of a mixture of gas and dissipationless dark matter. The simplest models consistent with the current understanding of N-body work on dissipationless clustering, and that of numerical and analytic work on gas evolution and cooling are adopted. Standard models for the evolution of the stellar population are also employed, and new models for the way star formation heats and enriches the surrounding gas are constructed. Detailed results are presented for a cold dark matter universe with Omega = 1 and H(0) = 50 km/s/Mpc, but the present methods are applicable to other models. The present luminosity functions contain significantly more faint galaxies than are observed.

  3. Multicollinearity in hierarchical linear models.

    Yu, Han; Jiang, Shanhe; Land, Kenneth C


    This study investigates an ill-posed problem (multicollinearity) in Hierarchical Linear Models from both the data and the model perspectives. We propose an intuitive, effective approach to diagnosing the presence of multicollinearity and its remedies in this class of models. A simulation study demonstrates the impacts of multicollinearity on coefficient estimates, associated standard errors, and variance components at various levels of multicollinearity for finite sample sizes typical in social science studies. We further investigate the role multicollinearity plays at each level for estimation of coefficient parameters in terms of shrinkage. Based on these analyses, we recommend a top-down method for assessing multicollinearity in HLMs that first examines the contextual predictors (Level-2 in a two-level model) and then the individual predictors (Level-1) and uses the results for data collection, research problem redefinition, model re-specification, variable selection and estimation of a final model.

  4. Hierarchical Context Modeling for Video Event Recognition.

    Wang, Xiaoyang; Ji, Qiang


    Current video event recognition research remains largely target-centered. For real-world surveillance videos, targetcentered event recognition faces great challenges due to large intra-class target variation, limited image resolution, and poor detection and tracking results. To mitigate these challenges, we introduced a context-augmented video event recognition approach. Specifically, we explicitly capture different types of contexts from three levels including image level, semantic level, and prior level. At the image level, we introduce two types of contextual features including the appearance context features and interaction context features to capture the appearance of context objects and their interactions with the target objects. At the semantic level, we propose a deep model based on deep Boltzmann machine to learn event object representations and their interactions. At the prior level, we utilize two types of prior-level contexts including scene priming and dynamic cueing. Finally, we introduce a hierarchical context model that systematically integrates the contextual information at different levels. Through the hierarchical context model, contexts at different levels jointly contribute to the event recognition. We evaluate the hierarchical context model for event recognition on benchmark surveillance video datasets. Results show that incorporating contexts in each level can improve event recognition performance, and jointly integrating three levels of contexts through our hierarchical model achieves the best performance.

  5. Applied logistic regression

    Hosmer, David W; Sturdivant, Rodney X


     A new edition of the definitive guide to logistic regression modeling for health science and other applications This thoroughly expanded Third Edition provides an easily accessible introduction to the logistic regression (LR) model and highlights the power of this model by examining the relationship between a dichotomous outcome and a set of covariables. Applied Logistic Regression, Third Edition emphasizes applications in the health sciences and handpicks topics that best suit the use of modern statistical software. The book provides readers with state-of-

  6. Applied linear regression

    Weisberg, Sanford


    Praise for the Third Edition ""...this is an excellent book which could easily be used as a course text...""-International Statistical Institute The Fourth Edition of Applied Linear Regression provides a thorough update of the basic theory and methodology of linear regression modeling. Demonstrating the practical applications of linear regression analysis techniques, the Fourth Edition uses interesting, real-world exercises and examples. Stressing central concepts such as model building, understanding parameters, assessing fit and reliability, and drawing conclusions, the new edition illus

  7. Modeling hierarchical structures - Hierarchical Linear Modeling using MPlus

    Jelonek, M


    The aim of this paper is to present the technique (and its linkage with physics) of overcoming problems connected to modeling social structures, which are typically hierarchical. Hierarchical Linear Models provide a conceptual and statistical mechanism for drawing conclusions regarding the influence of phenomena at different levels of analysis. In the social sciences it is used to analyze many problems such as educational, organizational or market dilemma. This paper introduces the logic of modeling hierarchical linear equations and estimation based on MPlus software. I present my own model to illustrate the impact of different factors on school acceptation level.

  8. Transductive Ordinal Regression

    Seah, Chun-Wei; Ong, Yew-Soon


    Ordinal regression is commonly formulated as a multi-class problem with ordinal constraints. The challenge of designing accurate classifiers for ordinal regression generally increases with the number of classes involved, due to the large number of labeled patterns that are needed. The availability of ordinal class labels, however, are often costly to calibrate or difficult to obtain. Unlabeled patterns, on the other hand, often exist in much greater abundance and are freely available. To take benefits from the abundance of unlabeled patterns, we present a novel transductive learning paradigm for ordinal regression in this paper, namely Transductive Ordinal Regression (TOR). The key challenge of the present study lies in the precise estimation of both the ordinal class label of the unlabeled data and the decision functions of the ordinal classes, simultaneously. The core elements of the proposed TOR include an objective function that caters to several commonly used loss functions casted in transductive setting...

  9. Nonparametric Predictive Regression

    Ioannis Kasparis; Elena Andreou; Phillips, Peter C.B.


    A unifying framework for inference is developed in predictive regressions where the predictor has unknown integration properties and may be stationary or nonstationary. Two easily implemented nonparametric F-tests are proposed. The test statistics are related to those of Kasparis and Phillips (2012) and are obtained by kernel regression. The limit distribution of these predictive tests holds for a wide range of predictors including stationary as well as non-stationary fractional and near unit...

  10. Hierarchical Scaling in Systems of Natural Cities

    Chen, Yanguang


    Hierarchies can be modeled by a set of exponential functions, from which we can derive a set of power laws indicative of scaling. These scaling laws are followed by many natural and social phenomena such as cities, earthquakes, and rivers. This paper is devoted to revealing the scaling patterns in systems of natural cities by reconstructing the hierarchy with cascade structure. The cities of America, Britain, France, and Germany are taken as examples to make empirical analyses. The hierarchical scaling relations can be well fitted to the data points within the scaling ranges of the size and area of the natural cities. The size-number and area-number scaling exponents are close to 1, and the allometric scaling exponent is slightly less than 1. The results suggest that natural cities follow hierarchical scaling laws and hierarchical conservation law. Zipf's law proved to be one of the indications of the hierarchical scaling, and the primate law of city-size distribution represents a local pattern and can be mer...

  11. Assessment of Differential Item Functioning in Health-Related Outcomes: A Simulation and Empirical Analysis with Hierarchical Polytomous Data

    Zahra Sharafi


    Full Text Available Background. The purpose of this study was to evaluate the effectiveness of two methods of detecting differential item functioning (DIF in the presence of multilevel data and polytomously scored items. The assessment of DIF with multilevel data (e.g., patients nested within hospitals, hospitals nested within districts from large-scale assessment programs has received considerable attention but very few studies evaluated the effect of hierarchical structure of data on DIF detection for polytomously scored items. Methods. The ordinal logistic regression (OLR and hierarchical ordinal logistic regression (HOLR were utilized to assess DIF in simulated and real multilevel polytomous data. Six factors (DIF magnitude, grouping variable, intraclass correlation coefficient, number of clusters, number of participants per cluster, and item discrimination parameter with a fully crossed design were considered in the simulation study. Furthermore, data of Pediatric Quality of Life Inventory™ (PedsQL™ 4.0 collected from 576 healthy school children were analyzed. Results. Overall, results indicate that both methods performed equivalently in terms of controlling Type I error and detection power rates. Conclusions. The current study showed negligible difference between OLR and HOLR in detecting DIF with polytomously scored items in a hierarchical structure. Implications and considerations while analyzing real data were also discussed.

  12. Regression Analysis by Example. 5th Edition

    Chatterjee, Samprit; Hadi, Ali S.


    Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. "Regression Analysis by Example, Fifth Edition" has been expanded and thoroughly…

  13. Modeling hierarchical structures - Hierarchical Linear Modeling using MPlus

    Jelonek, Magdalena


    The aim of this paper is to present the technique (and its linkage with physics) of overcoming problems connected to modeling social structures, which are typically hierarchical. Hierarchical Linear Models provide a conceptual and statistical mechanism for drawing conclusions regarding the influence of phenomena at different levels of analysis. In the social sciences it is used to analyze many problems such as educational, organizational or market dilemma. This paper introduces the logic of m...

  14. Hierarchical fringe tracking

    Petrov, Romain G; Boskri, Abdelkarim; Folcher, Jean-Pierre; Lagarde, Stephane; Bresson, Yves; Benkhaldoum, Zouhair; Lazrek, Mohamed; Rakshit, Suvendu


    The limiting magnitude is a key issue for optical interferometry. Pairwise fringe trackers based on the integrated optics concepts used for example in GRAVITY seem limited to about K=10.5 with the 8m Unit Telescopes of the VLTI, and there is a general "common sense" statement that the efficiency of fringe tracking, and hence the sensitivity of optical interferometry, must decrease as the number of apertures increases, at least in the near infrared where we are still limited by detector readout noise. Here we present a Hierarchical Fringe Tracking (HFT) concept with sensitivity at least equal to this of a two apertures fringe trackers. HFT is based of the combination of the apertures in pairs, then in pairs of pairs then in pairs of groups. The key HFT module is a device that behaves like a spatial filter for two telescopes (2TSF) and transmits all or most of the flux of a cophased pair in a single mode beam. We give an example of such an achromatic 2TSF, based on very broadband dispersed fringes analyzed by g...

  15. Onboard hierarchical network

    Tunesi, Luca; Armbruster, Philippe


    The objective of this paper is to demonstrate a suitable hierarchical networking solution to improve capabilities and performances of space systems, with significant recurrent costs saving and more efficient design & manufacturing flows. Classically, a satellite can be split in two functional sub-systems: the platform and the payload complement. The platform is in charge of providing power, attitude & orbit control and up/down-link services, whereas the payload represents the scientific and/or operational instruments/transponders and embodies the objectives of the mission. One major possibility to improve the performance of payloads, by limiting the data return to pertinent information, is to process data on board thanks to a proper implementation of the payload data system. In this way, it is possible to share non-recurring development costs by exploiting a system that can be adopted by the majority of space missions. It is believed that the Modular and Scalable Payload Data System, under development by ESA, provides a suitable solution to fulfil a large range of future mission requirements. The backbone of the system is the standardised high data rate SpaceWire network As complement, a lower speed command and control bus connecting peripherals is required. For instance, at instrument level, there is a need for a "local" low complexity bus, which gives the possibility to command and control sensors and actuators. Moreover, most of the connections at sub-system level are related to discrete signals management or simple telemetry acquisitions, which can easily and efficiently be handled by a local bus. An on-board hierarchical network can therefore be defined by interconnecting high-speed links and local buses. Additionally, it is worth stressing another important aspect of the design process: Agencies and ESA in particular are frequently confronted with a big consortium of geographically spread companies located in different countries, each one

  16. Replication and extension of a hierarchical model of social anxiety and depression: fear of positive evaluation as a key unique factor in social anxiety.

    Weeks, Justin W


    Wang, Hsu, Chiu, and Liang (2012, Journal of Anxiety Disorders, 26, 215-224) recently proposed a hierarchical model of social interaction anxiety and depression to account for both the commonalities and distinctions between these conditions. In the present paper, this model was extended to more broadly encompass the symptoms of social anxiety disorder, and replicated in a large unselected, undergraduate sample (n = 585). Structural equation modeling (SEM) and hierarchical regression analyses were employed. Negative affect and positive affect were conceptualized as general factors shared by social anxiety and depression; fear of negative evaluation (FNE) and disqualification of positive social outcomes were operationalized as specific factors, and fear of positive evaluation (FPE) was operationalized as a factor unique to social anxiety. This extended hierarchical model explicates structural relationships among these factors, in which the higher-level, general factors (i.e., high negative affect and low positive affect) represent vulnerability markers of both social anxiety and depression, and the lower-level factors (i.e., FNE, disqualification of positive social outcomes, and FPE) are the dimensions of specific cognitive features. Results from SEM and hierarchical regression analyses converged in support of the extended model. FPE is further supported as a key symptom that differentiates social anxiety from depression.

  17. XRA image segmentation using regression

    Jin, Jesse S.


    Segmentation is an important step in image analysis. Thresholding is one of the most important approaches. There are several difficulties in segmentation, such as automatic selecting threshold, dealing with intensity distortion and noise removal. We have developed an adaptive segmentation scheme by applying the Central Limit Theorem in regression. A Gaussian regression is used to separate the distribution of background from foreground in a single peak histogram. The separation will help to automatically determine the threshold. A small 3 by 3 widow is applied and the modal of the local histogram is used to overcome noise. Thresholding is based on local weighting, where regression is used again for parameter estimation. A connectivity test is applied to the final results to remove impulse noise. We have applied the algorithm to x-ray angiogram images to extract brain arteries. The algorithm works well for single peak distribution where there is no valley in the histogram. The regression provides a method to apply knowledge in clustering. Extending regression for multiple-level segmentation needs further investigation.

  18. [Understanding logistic regression].

    El Sanharawi, M; Naudet, F


    Logistic regression is one of the most common multivariate analysis models utilized in epidemiology. It allows the measurement of the association between the occurrence of an event (qualitative dependent variable) and factors susceptible to influence it (explicative variables). The choice of explicative variables that should be included in the logistic regression model is based on prior knowledge of the disease physiopathology and the statistical association between the variable and the event, as measured by the odds ratio. The main steps for the procedure, the conditions of application, and the essential tools for its interpretation are discussed concisely. We also discuss the importance of the choice of variables that must be included and retained in the regression model in order to avoid the omission of important confounding factors. Finally, by way of illustration, we provide an example from the literature, which should help the reader test his or her knowledge.

  19. Hierarchical materials: Background and perspectives


    Hierarchical design draws inspiration from analysis of biological materials and has opened new possibilities for enhancing performance and enabling new functionalities and extraordinary properties. With the development of nanotechnology, the necessary technological requirements for the manufactur...

  20. Hierarchical clustering for graph visualization

    Clémençon, Stéphan; Rossi, Fabrice; Tran, Viet Chi


    This paper describes a graph visualization methodology based on hierarchical maximal modularity clustering, with interactive and significant coarsening and refining possibilities. An application of this method to HIV epidemic analysis in Cuba is outlined.

  1. Direct hierarchical assembly of nanoparticles

    Xu, Ting; Zhao, Yue; Thorkelsson, Kari


    The present invention provides hierarchical assemblies of a block copolymer, a bifunctional linking compound and a nanoparticle. The block copolymers form one micro-domain and the nanoparticles another micro-domain.

  2. Practical Session: Logistic Regression

    Clausel, M.; Grégoire, G.


    An exercise is proposed to illustrate the logistic regression. One investigates the different risk factors in the apparition of coronary heart disease. It has been proposed in Chapter 5 of the book of D.G. Kleinbaum and M. Klein, "Logistic Regression", Statistics for Biology and Health, Springer Science Business Media, LLC (2010) and also by D. Chessel and A.B. Dufour in Lyon 1 (see Sect. 6 of This example is based on data given in the file evans.txt coming from

  3. Minimax Regression Quantiles

    Bache, Stefan Holst

    A new and alternative quantile regression estimator is developed and it is shown that the estimator is root n-consistent and asymptotically normal. The estimator is based on a minimax ‘deviance function’ and has asymptotically equivalent properties to the usual quantile regression estimator. It is......, however, a different and therefore new estimator. It allows for both linear- and nonlinear model specifications. A simple algorithm for computing the estimates is proposed. It seems to work quite well in practice but whether it has theoretical justification is still an open question....

  4. Mechanically robust superhydrophobicity on hierarchically structured Si surfaces

    Xiu Yonghao; Hess, Dennis W [School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332-0100 (United States); Liu Yan; Wong, C P, E-mail:, E-mail: [School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA 30332-0245 (United States)


    Improvement of the robustness of superhydrophobic surfaces is critical in order to achieve commercial applications of these surfaces in such diverse areas as self-cleaning, water repellency and corrosion resistance. In this study, the mechanical robustness of superhydrophobic surfaces was evaluated on hierarchically structured silicon surfaces. The effect of two-scale hierarchical structures on robustness was investigated using an abrasion test and the results compared to those of superhydrophobic surfaces fabricated from polymeric materials and from silicon that contains only nanostructures. Unlike the polymeric and nanostructure-only surfaces, the hierarchical structures retained superhydrophobic behavior after mechanical abrasion.

  5. Synthesis and Characterization of ZnTe Hierarchical Nanostructures

    Baohua Zhang


    Full Text Available Single-crystalline ZnTe hierarchical nanostructures have been successfully synthesized by a simple thermal evaporation technology. The as-prepared products were characterized with X-ray diffraction (XRD, scanning electron microcopy (SEM, transmission electron microscope (TEM, and photoluminescence spectrum (PL. These results showed that the ZnTe hierarchical nanostructures consisted of nanowires and nanolumps. The room temperature PL spectrum exhibited a pure green luminescence centered at 545nm. The growth mechanism of hierarchical nanostructure was also discussed.

  6. Is the current pertussis incidence only the results of testing? A spatial and space-time analysis of pertussis surveillance data using cluster detection methods and geographically weighted regression modelling

    Kauhl, Boris; Heil, Jeanne; Hoebe, Christian J. P. A.; Schweikart, Jürgen; Krafft, Thomas; Dukers-Muijrers, Nicole H. T. M.


    Background Despite high vaccination coverage, pertussis incidence in the Netherlands is amongst the highest in Europe with a shifting tendency towards adults and elderly. Early detection of outbreaks and preventive actions are necessary to prevent severe complications in infants. Efficient pertussis control requires additional background knowledge about the determinants of testing and possible determinants of the current pertussis incidence. Therefore, the aim of our study is to examine the possibility of locating possible pertussis outbreaks using space-time cluster detection and to examine the determinants of pertussis testing and incidence using geographically weighted regression models. Methods We analysed laboratory registry data including all geocoded pertussis tests in the southern area of the Netherlands between 2007 and 2013. Socio-demographic and infrastructure-related population data were matched to the geo-coded laboratory data. The spatial scan statistic was applied to detect spatial and space-time clusters of testing, incidence and test-positivity. Geographically weighted Poisson regression (GWPR) models were then constructed to model the associations between the age-specific rates of testing and incidence and possible population-based determinants. Results Space-time clusters for pertussis incidence overlapped with space-time clusters for testing, reflecting a strong relationship between testing and incidence, irrespective of the examined age group. Testing for pertussis itself was overall associated with lower socio-economic status, multi-person-households, proximity to primary school and availability of healthcare. The current incidence in contradiction is mainly determined by testing and is not associated with a lower socioeconomic status. Discussion Testing for pertussis follows to an extent the general healthcare seeking behaviour for common respiratory infections, whereas the current pertussis incidence is largely the result of testing. More

  7. Advanced hierarchical distance sampling

    Royle, Andy


    In this chapter, we cover a number of important extensions of the basic hierarchical distance-sampling (HDS) framework from Chapter 8. First, we discuss the inclusion of “individual covariates,” such as group size, in the HDS model. This is important in many surveys where animals form natural groups that are the primary observation unit, with the size of the group expected to have some influence on detectability. We also discuss HDS integrated with time-removal and double-observer or capture-recapture sampling. These “combined protocols” can be formulated as HDS models with individual covariates, and thus they have a commonality with HDS models involving group structure (group size being just another individual covariate). We cover several varieties of open-population HDS models that accommodate population dynamics. On one end of the spectrum, we cover models that allow replicate distance sampling surveys within a year, which estimate abundance relative to availability and temporary emigration through time. We consider a robust design version of that model. We then consider models with explicit dynamics based on the Dail and Madsen (2011) model and the work of Sollmann et al. (2015). The final major theme of this chapter is relatively newly developed spatial distance sampling models that accommodate explicit models describing the spatial distribution of individuals known as Point Process models. We provide novel formulations of spatial DS and HDS models in this chapter, including implementations of those models in the unmarked package using a hack of the pcount function for N-mixture models.

  8. Nonlinear Regression with R

    Ritz, Christian; Parmigiani, Giovanni


    R is a rapidly evolving lingua franca of graphical display and statistical analysis of experiments from the applied sciences. This book provides a coherent treatment of nonlinear regression with R by means of examples from a diversity of applied sciences such as biology, chemistry, engineering, medicine and toxicology.

  9. Multiple linear regression analysis

    Edwards, T. R.


    Program rapidly selects best-suited set of coefficients. User supplies only vectors of independent and dependent data and specifies confidence level required. Program uses stepwise statistical procedure for relating minimal set of variables to set of observations; final regression contains only most statistically significant coefficients. Program is written in FORTRAN IV for batch execution and has been implemented on NOVA 1200.

  10. Adaptive metric kernel regression

    Goutte, Cyril; Larsen, Jan


    regression by minimising a cross-validation estimate of the generalisation error. This allows to automatically adjust the importance of different dimensions. The improvement in terms of modelling performance is illustrated on a variable selection task where the adaptive metric kernel clearly outperforms...

  11. Software Regression Verification


    of recursive procedures. Acta Informatica , 45(6):403 – 439, 2008. [GS11] Benny Godlin and Ofer Strichman. Regression verifica- tion. Technical Report...functions. Therefore, we need to rede - fine m-term. – Mutual termination. If either function f or function f ′ (or both) is non- deterministic, then their

  12. Linear Regression Analysis

    Seber, George A F


    Concise, mathematically clear, and comprehensive treatment of the subject.* Expanded coverage of diagnostics and methods of model fitting.* Requires no specialized knowledge beyond a good grasp of matrix algebra and some acquaintance with straight-line regression and simple analysis of variance models.* More than 200 problems throughout the book plus outline solutions for the exercises.* This revision has been extensively class-tested.

  13. [Is regression of atherosclerosis possible?].

    Thomas, D; Richard, J L; Emmerich, J; Bruckert, E; Delahaye, F


    Experimental studies have shown the regression of atherosclerosis in animals given a cholesterol-rich diet and then given a normal diet or hypolipidemic therapy. Despite favourable results of clinical trials of primary prevention modifying the lipid profile, the concept of atherosclerosis regression in man remains very controversial. The methodological approach is difficult: this is based on angiographic data and requires strict standardisation of angiographic views and reliable quantitative techniques of analysis which are available with image processing. Several methodologically acceptable clinical coronary studies have shown not only stabilisation but also regression of atherosclerotic lesions with reductions of about 25% in total cholesterol levels and of about 40% in LDL cholesterol levels. These reductions were obtained either by drugs as in CLAS (Cholesterol Lowering Atherosclerosis Study), FATS (Familial Atherosclerosis Treatment Study) and SCOR (Specialized Center of Research Intervention Trial), by profound modifications in dietary habits as in the Lifestyle Heart Trial, or by surgery (ileo-caecal bypass) as in POSCH (Program On the Surgical Control of the Hyperlipidemias). On the other hand, trials with non-lipid lowering drugs such as the calcium antagonists (INTACT, MHIS) have not shown significant regression of existing atherosclerotic lesions but only a decrease on the number of new lesions. The clinical benefits of these regression studies are difficult to demonstrate given the limited period of observation, relatively small population numbers and the fact that in some cases the subjects were asymptomatic. The decrease in the number of cardiovascular events therefore seems relatively modest and concerns essentially subjects who were symptomatic initially. The clinical repercussion of studies of prevention involving a single lipid factor is probably partially due to the reduction in progression and anatomical regression of the atherosclerotic plaque

  14. Application of a Weighted Regression Model for Reporting Nutrient and Sediment Concentrations, Fluxes, and Trends in Concentration and Flux for the Chesapeake Bay Nontidal Water-Quality Monitoring Network, Results Through Water Year 2012

    Chanat, Jeffrey G.; Moyer, Douglas L.; Blomquist, Joel D.; Hyer, Kenneth E.; Langland, Michael J.


    In the Chesapeake Bay watershed, estimated fluxes of nutrients and sediment from the bay’s nontidal tributaries into the estuary are the foundation of decision making to meet reductions prescribed by the Chesapeake Bay Total Maximum Daily Load (TMDL) and are often the basis for refining scientific understanding of the watershed-scale processes that influence the delivery of these constituents to the bay. Two regression-based flux and trend estimation models, ESTIMATOR and Weighted Regressions on Time, Discharge, and Season (WRTDS), were compared using data from 80 watersheds in the Chesapeake Bay Nontidal Water-Quality Monitoring Network (CBNTN). The watersheds range in size from 62 to 70,189 square kilometers and record lengths range from 6 to 28 years. ESTIMATOR is a constant-parameter model that estimates trends only in concentration; WRTDS uses variable parameters estimated with weighted regression, and estimates trends in both concentration and flux. WRTDS had greater explanatory power than ESTIMATOR, with the greatest degree of improvement evident for records longer than 25 years (30 stations; improvement in median model R2= 0.06 for total nitrogen, 0.08 for total phosphorus, and 0.05 for sediment) and the least degree of improvement for records of less than 10 years, for which the two models performed nearly equally. Flux bias statistics were comparable or lower (more favorable) for WRTDS for any record length; for 30 stations with records longer than 25 years, the greatest degree of improvement was evident for sediment (decrease of 0.17 in median statistic) and total phosphorus (decrease of 0.05). The overall between-station pattern in concentration trend direction and magnitude for all constituents was roughly similar for both models. A detailed case study revealed that trends in concentration estimated by WRTDS can operationally be viewed as a less-constrained equivalent to trends in concentration estimated by ESTIMATOR. Estimates of annual mean flow

  15. Hierarchical Boltzmann simulations and model error estimation

    Torrilhon, Manuel; Sarna, Neeraj


    A hierarchical simulation approach for Boltzmann's equation should provide a single numerical framework in which a coarse representation can be used to compute gas flows as accurately and efficiently as in computational fluid dynamics, but a subsequent refinement allows to successively improve the result to the complete Boltzmann result. We use Hermite discretization, or moment equations, for the steady linearized Boltzmann equation for a proof-of-concept of such a framework. All representations of the hierarchy are rotationally invariant and the numerical method is formulated on fully unstructured triangular and quadrilateral meshes using a implicit discontinuous Galerkin formulation. We demonstrate the performance of the numerical method on model problems which in particular highlights the relevance of stability of boundary conditions on curved domains. The hierarchical nature of the method allows also to provide model error estimates by comparing subsequent representations. We present various model errors for a flow through a curved channel with obstacles.

  16. Hierarchical reproductive allocation and allometry within a perennial bunchgrass after 11 years of nutrient addition.

    Tian, Dashuan; Pan, Qingmin; Simmons, Matthew; Chaolu, Hada; Du, Baohong; Bai, Yongfei; Wang, Hong; Han, Xingguo


    Bunchgrasses are one of the most important plant functional groups in grassland ecosystems. Reproductive allocation (RA) for a bunchgrass is a hierarchical process; however, how bunchgrasses adjust their RAs along hierarchical levels in response to nutrient addition has never been addressed. Here, utilizing an 11-year nutrient addition experiment, we examined the patterns and variations in RA of Agropyron cristatum at the individual, tiller and spike levels. We evaluated the reproductive allometric relationship at each level by type II regression analysis to determine size-dependent and size-independent effects on plant RA variations. Our results indicate that the proportion of reproductive individuals in A. cristatum increased significantly after 11 years of nutrient addition. Adjustments in RA in A. cristatum were mainly occurred at the individual and tiller levels but not at the spike level. A size-dependent effect was a dominant mechanism underlying the changes in plant RA at both individual and tiller levels. Likewise, the distribution of plant size was markedly changed with large individuals increasing after nutrient addition. Tiller-level RA may be a limiting factor for the adjustment of RA in A. cristatum. To the best of our knowledge, this study is the first to examine plant responses in terms of reproductive allocation and allometry to nutrient enrichment within a bunchgrass population from a hierarchical view. Our findings have important implications for understanding the mechanisms underlying bunchgrass responses in RA to future eutrophication due to human activities. In addition, we developed a hierarchical analysis method for disentangling the mechanisms that lead to variation in RA for perennial bunchgrasses.

  17. Hierarchical reproductive allocation and allometry within a perennial bunchgrass after 11 years of nutrient addition.

    Dashuan Tian

    Full Text Available Bunchgrasses are one of the most important plant functional groups in grassland ecosystems. Reproductive allocation (RA for a bunchgrass is a hierarchical process; however, how bunchgrasses adjust their RAs along hierarchical levels in response to nutrient addition has never been addressed. Here, utilizing an 11-year nutrient addition experiment, we examined the patterns and variations in RA of Agropyron cristatum at the individual, tiller and spike levels. We evaluated the reproductive allometric relationship at each level by type II regression analysis to determine size-dependent and size-independent effects on plant RA variations. Our results indicate that the proportion of reproductive individuals in A. cristatum increased significantly after 11 years of nutrient addition. Adjustments in RA in A. cristatum were mainly occurred at the individual and tiller levels but not at the spike level. A size-dependent effect was a dominant mechanism underlying the changes in plant RA at both individual and tiller levels. Likewise, the distribution of plant size was markedly changed with large individuals increasing after nutrient addition. Tiller-level RA may be a limiting factor for the adjustment of RA in A. cristatum. To the best of our knowledge, this study is the first to examine plant responses in terms of reproductive allocation and allometry to nutrient enrichment within a bunchgrass population from a hierarchical view. Our findings have important implications for understanding the mechanisms underlying bunchgrass responses in RA to future eutrophication due to human activities. In addition, we developed a hierarchical analysis method for disentangling the mechanisms that lead to variation in RA for perennial bunchgrasses.

  18. When to Use Hierarchical Linear Modeling

    Veronika Huta


    Full Text Available Previous publications on hierarchical linear modeling (HLM have provided guidance on how to perform the analysis, yet there is relatively little information on two questions that arise even before analysis: Does HLM apply to one’s data and research question? And if it does apply, how does one choose between HLM and other methods sometimes used in these circumstances, including multiple regression, repeated-measures or mixed ANOVA, and structural equation modeling or path analysis? The purpose of this tutorial is to briefly introduce HLM and then to review some of the considerations that are helpful in answering these questions, including the nature of the data, the model to be tested, and the information desired on the output. Some examples of how the same analysis could be performed in HLM, repeated-measures or mixed ANOVA, and structural equation modeling or path analysis are also provided. .

  19. Cortical tracking of hierarchical linguistic structures in connected speech.

    Ding, Nai; Melloni, Lucia; Zhang, Hang; Tian, Xing; Poeppel, David


    The most critical attribute of human language is its unbounded combinatorial nature: smaller elements can be combined into larger structures on the basis of a grammatical system, resulting in a hierarchy of linguistic units, such as words, phrases and sentences. Mentally parsing and representing such structures, however, poses challenges for speech comprehension. In speech, hierarchical linguistic structures do not have boundaries that are clearly defined by acoustic cues and must therefore be internally and incrementally constructed during comprehension. We found that, during listening to connected speech, cortical activity of different timescales concurrently tracked the time course of abstract linguistic structures at different hierarchical levels, such as words, phrases and sentences. Notably, the neural tracking of hierarchical linguistic structures was dissociated from the encoding of acoustic cues and from the predictability of incoming words. Our results indicate that a hierarchy of neural processing timescales underlies grammar-based internal construction of hierarchical linguistic structure.

  20. On the geostatistical characterization of hierarchical media

    Neuman, Shlomo P.; Riva, Monica; Guadagnini, Alberto


    The subsurface consists of porous and fractured materials exhibiting a hierarchical geologic structure, which gives rise to systematic and random spatial and directional variations in hydraulic and transport properties on a multiplicity of scales. Traditional geostatistical moment analysis allows one to infer the spatial covariance structure of such hierarchical, multiscale geologic materials on the basis of numerous measurements on a given support scale across a domain or "window" of a given length scale. The resultant sample variogram often appears to fit a stationary variogram model with constant variance (sill) and integral (spatial correlation) scale. In fact, some authors, who recognize that hierarchical sedimentary architecture and associated log hydraulic conductivity fields tend to be nonstationary, nevertheless associate them with stationary "exponential-like" transition probabilities and variograms, respectively, the latter being a consequence of the former. We propose that (1) the apparent ability of stationary spatial statistics to characterize the covariance structure of nonstationary hierarchical media is an artifact stemming from the finite size of the windows within which geologic and hydrologic variables are ubiquitously sampled, and (2) the artifact is eliminated upon characterizing the covariance structure of such media with the aid of truncated power variograms, which represent stationary random fields obtained upon sampling a nonstationary fractal over finite windows. To support our opinion, we note that truncated power variograms arise formally when a hierarchical medium is sampled jointly across all geologic categories and scales within a window; cite direct evidence that geostatistical parameters (variance and integral scale) inferred on the basis of traditional variograms vary systematically with support and window scales; demonstrate the ability of truncated power models to capture these variations in terms of a few scaling parameters

  1. Subset selection in regression

    Miller, Alan


    Originally published in 1990, the first edition of Subset Selection in Regression filled a significant gap in the literature, and its critical and popular success has continued for more than a decade. Thoroughly revised to reflect progress in theory, methods, and computing power, the second edition promises to continue that tradition. The author has thoroughly updated each chapter, incorporated new material on recent developments, and included more examples and references. New in the Second Edition:A separate chapter on Bayesian methodsComplete revision of the chapter on estimationA major example from the field of near infrared spectroscopyMore emphasis on cross-validationGreater focus on bootstrappingStochastic algorithms for finding good subsets from large numbers of predictors when an exhaustive search is not feasible Software available on the Internet for implementing many of the algorithms presentedMore examplesSubset Selection in Regression, Second Edition remains dedicated to the techniques for fitting...

  2. Classification and regression trees

    Breiman, Leo; Olshen, Richard A; Stone, Charles J


    The methodology used to construct tree structured rules is the focus of this monograph. Unlike many other statistical procedures, which moved from pencil and paper to calculators, this text's use of trees was unthinkable before computers. Both the practical and theoretical sides have been developed in the authors' study of tree methods. Classification and Regression Trees reflects these two sides, covering the use of trees as a data analysis method, and in a more mathematical framework, proving some of their fundamental properties.

  3. Aid and growth regressions

    Hansen, Henrik; Tarp, Finn


    . There are, however, decreasing returns to aid, and the estimated effectiveness of aid is highly sensitive to the choice of estimator and the set of control variables. When investment and human capital are controlled for, no positive effect of aid is found. Yet, aid continues to impact on growth via...... investment. We conclude by stressing the need for more theoretical work before this kind of cross-country regressions are used for policy purposes....

  4. Robust Nonstationary Regression


    This paper provides a robust statistical approach to nonstationary time series regression and inference. Fully modified extensions of traditional robust statistical procedures are developed which allow for endogeneities in the nonstationary regressors and serial dependence in the shocks that drive the regressors and the errors that appear in the equation being estimated. The suggested estimators involve semiparametric corrections to accommodate these possibilities and they belong to the same ...


    Constanţa-Nicoleta BODEA


    Full Text Available In this communication we will discuss two regression credibility models from Non – Life Insurance Mathematics that can be solved by means of matrix theory. In the first regression credibility model, starting from a well-known representation formula of the inverse for a special class of matrices a risk premium will be calculated for a contract with risk parameter θ. In the next regression credibility model, we will obtain a credibility solution in the form of a linear combination of the individual estimate (based on the data of a particular state and the collective estimate (based on aggregate USA data. To illustrate the solution with the properties mentioned above, we shall need the well-known representation theorem for a special class of matrices, the properties of the trace for a square matrix, the scalar product of two vectors, the norm with respect to a positive definite matrix given in advance and the complicated mathematical properties of conditional expectations and of conditional covariances.

  6. Application of hierarchical matrices for partial inverse

    Litvinenko, Alexander


    In this work we combine hierarchical matrix techniques (Hackbusch, 1999) and domain decomposition methods to obtain fast and efficient algorithms for the solution of multiscale problems. This combination results in the hierarchical domain decomposition (HDD) method, which can be applied for solution multi-scale problems. Multiscale problems are problems that require the use of different length scales. Using only the finest scale is very expensive, if not impossible, in computational time and memory. Domain decomposition methods decompose the complete problem into smaller systems of equations corresponding to boundary value problems in subdomains. Then fast solvers can be applied to each subdomain. Subproblems in subdomains are independent, much smaller and require less computational resources as the initial problem.

  7. Design of Hierarchical Structures for Synchronized Deformations

    Seifi, Hamed; Javan, Anooshe Rezaee; Ghaedizadeh, Arash; Shen, Jianhu; Xu, Shanqing; Xie, Yi Min


    In this paper we propose a general method for creating a new type of hierarchical structures at any level in both 2D and 3D. A simple rule based on a rotate-and-mirror procedure is introduced to achieve multi-level hierarchies. These new hierarchical structures have remarkably few degrees of freedom compared to existing designs by other methods. More importantly, these structures exhibit synchronized motions during opening or closure, resulting in uniform and easily-controllable deformations. Furthermore, a simple analytical formula is found which can be used to avoid collision of units of the structure during the closing process. The novel design concept is verified by mathematical analyses, computational simulations and physical experiments.

  8. Hierarchical State Machines as Modular Horn Clauses

    Pierre-Loïc Garoche


    Full Text Available In model based development, embedded systems are modeled using a mix of dataflow formalism, that capture the flow of computation, and hierarchical state machines, that capture the modal behavior of the system. For safety analysis, existing approaches rely on a compilation scheme that transform the original model (dataflow and state machines into a pure dataflow formalism. Such compilation often result in loss of important structural information that capture the modal behaviour of the system. In previous work we have developed a compilation technique from a dataflow formalism into modular Horn clauses. In this paper, we present a novel technique that faithfully compile hierarchical state machines into modular Horn clauses. Our compilation technique preserves the structural and modal behavior of the system, making the safety analysis of such models more tractable.

  9. Hierarchical community structure in complex (social) networks

    Massaro, Emanuele


    The investigation of community structure in networks is a task of great importance in many disciplines, namely physics, sociology, biology and computer science where systems are often represented as graphs. One of the challenges is to find local communities from a local viewpoint in a graph without global information in order to reproduce the subjective hierarchical vision for each vertex. In this paper we present the improvement of an information dynamics algorithm in which the label propagation of nodes is based on the Markovian flow of information in the network under cognitive-inspired constraints \\cite{Massaro2012}. In this framework we have introduced two more complex heuristics that allow the algorithm to detect the multi-resolution hierarchical community structure of networks from a source vertex or communities adopting fixed values of model's parameters. Experimental results show that the proposed methods are efficient and well-behaved in both real-world and synthetic networks.

  10. Object tracking with hierarchical multiview learning

    Yang, Jun; Zhang, Shunli; Zhang, Li


    Building a robust appearance model is useful to improve tracking performance. We propose a hierarchical multiview learning framework to construct the appearance model, which has two layers for tracking. On the top layer, two different views of features, grayscale value and histogram of oriented gradients, are adopted for representation under the cotraining framework. On the bottom layer, for each view of each feature, three different random subspaces are generated to represent the appearance from multiple views. For each random view submodel, the least squares support vector machine is employed to improve the discriminability for concrete and efficient realization. These two layers are combined to construct the final appearance model for tracking. The proposed hierarchical model assembles two types of multiview learning strategies, in which the appearance can be described more accurately and robustly. Experimental results in the benchmark dataset demonstrate that the proposed method can achieve better performance than many existing state-of-the-art algorithms.


    Siana Halim


    Full Text Available Production plants of a company are located in several areas that spread across Middle and East Java. As the production process employs mostly manpower, we suspected that each location has different characteristics affecting the productivity. Thus, the production data may have a spatial and hierarchical structure. For fitting a linear regression using the ordinary techniques, we are required to make some assumptions about the nature of the residuals i.e. independent, identically and normally distributed. However, these assumptions were rarely fulfilled especially for data that have a spatial and hierarchical structure. We worked out the problem using mixed effect model. This paper discusses the model construction of productivity and several characteristics in the production line by taking location as a random effect. The simple model with high utility that satisfies the necessary regression assumptions was built using a free statistic software R version 2.6.1.

  12. Zinc oxide's hierarchical nanostructure and its photocatalytic properties

    Kanjwal, Muzafar Ahmed; Sheikh, Faheem A.; Barakat, Nasser A. M.


    In this study, a new hierarchical nanostructure that consists of zinc oxide (ZnO) was produced by the electrospinning process followed by a hydrothermal technique. First, electrospinning of a colloidal solution that consisted of zinc nanoparticles, zinc acetate dihydrate and poly(vinyl alcohol) w...... technique was used. Methylene blue dihydrate was used to check the photocatalytic ability of the produced nanostructures. The results indicated that the hierarchical nanostructure had a better performance than the other form....

  13. Assumptions of Multiple Regression: Correcting Two Misconceptions

    Matt N. Williams


    Full Text Available In 2002, an article entitled - Four assumptions of multiple regression that researchers should always test- by.Osborne and Waters was published in PARE. This article has gone on to be viewed more than 275,000 times.(as of August 2013, and it is one of the first results displayed in a Google search for - regression.assumptions- . While Osborne and Waters' efforts in raising awareness of the need to check assumptions.when using regression are laudable, we note that the original article contained at least two fairly important.misconceptions about the assumptions of multiple regression: Firstly, that multiple regression requires the.assumption of normally distributed variables; and secondly, that measurement errors necessarily cause.underestimation of simple regression coefficients. In this article, we clarify that multiple regression models.estimated using ordinary least squares require the assumption of normally distributed errors in order for.trustworthy inferences, at least in small samples, but not the assumption of normally distributed response or.predictor variables. Secondly, we point out that regression coefficients in simple regression models will be.biased (toward zero estimates of the relationships between variables of interest when measurement error is.uncorrelated across those variables, but that when correlated measurement error is present, regression.coefficients may be either upwardly or downwardly biased. We conclude with a brief corrected summary of.the assumptions of multiple regression when using ordinary least squares.

  14. Image meshing via hierarchical optimization

    Hao XIE; Ruo-feng TONG‡


    Vector graphic, as a kind of geometric representation of raster images, has many advantages, e.g., defi nition independence and editing facility. A popular way to convert raster images into vector graphics is image meshing, the aim of which is to fi nd a mesh to represent an image as faithfully as possible. For traditional meshing algorithms, the crux of the problem resides mainly in the high non-linearity and non-smoothness of the objective, which makes it difficult to fi nd a desirable optimal solution. To ameliorate this situation, we present a hierarchical optimization algorithm solving the problem from coarser levels to fi ner ones, providing initialization for each level with its coarser ascent. To further simplify the problem, the original non-convex problem is converted to a linear least squares one, and thus becomes convex, which makes the problem much easier to solve. A dictionary learning framework is used to combine geometry and topology elegantly. Then an alternating scheme is employed to solve both parts. Experiments show that our algorithm runs fast and achieves better results than existing ones for most images.

  15. Image meshing via hierarchical optimization*

    Hao XIE; Ruo-feng TONGS


    Vector graphic, as a kind of geometric representation of raster images, has many advantages, e.g., definition independence and editing facility. A popular way to convert raster images into vector graphics is image meshing, the aim of which is to find a mesh to represent an image as faithfully as possible. For traditional meshing algorithms, the crux of the problem resides mainly in the high non-linearity and non-smoothness of the objective, which makes it difficult to find a desirable optimal solution. To ameliorate this situation, we present a hierarchical optimization algorithm solving the problem from coarser levels to finer ones, providing initialization for each level with its coarser ascent. To further simplify the problem, the original non-convex problem is converted to a linear least squares one, and thus becomes convex, which makes the problem much easier to solve. A dictionary learning framework is used to combine geometry and topology elegantly. Then an alternating scheme is employed to solve both parts. Experiments show that our algorithm runs fast and achieves better results than existing ones for most images.

  16. Hierarchical Bayes Ensemble Kalman Filtering

    Tsyrulnikov, Michael


    Ensemble Kalman filtering (EnKF), when applied to high-dimensional systems, suffers from an inevitably small affordable ensemble size, which results in poor estimates of the background error covariance matrix ${\\bf B}$. The common remedy is a kind of regularization, usually an ad-hoc spatial covariance localization (tapering) combined with artificial covariance inflation. Instead of using an ad-hoc regularization, we adopt the idea by Myrseth and Omre (2010) and explicitly admit that the ${\\bf B}$ matrix is unknown and random and estimate it along with the state (${\\bf x}$) in an optimal hierarchical Bayes analysis scheme. We separate forecast errors into predictability errors (i.e. forecast errors due to uncertainties in the initial data) and model errors (forecast errors due to imperfections in the forecast model) and include the two respective components ${\\bf P}$ and ${\\bf Q}$ of the ${\\bf B}$ matrix into the extended control vector $({\\bf x},{\\bf P},{\\bf Q})$. Similarly, we break the traditional backgrou...

  17. Fractal Analysis Based on Hierarchical Scaling in Complex Systems

    Chen, Yanguang


    A fractal is in essence a hierarchy with cascade structure, which can be described with a set of exponential functions. From these exponential functions, a set of power laws indicative of scaling can be derived. Hierarchy structure and spatial network proved to be associated with one another. This paper is devoted to exploring the theory of fractal analysis of complex systems by means of hierarchical scaling. Two research methods are utilized to make this study, including logic analysis method and empirical analysis method. The main results are as follows. First, a fractal system such as Cantor set is described from the hierarchical angle of view; based on hierarchical structure, three approaches are proposed to estimate fractal dimension. Second, the hierarchical scaling can be generalized to describe multifractals, fractal complementary sets, and self-similar curve such as logarithmic spiral. Third, complex systems such as urban system are demonstrated to be a self-similar hierarchy. The human settlements i...

  18. Hierarchical Ag mesostructures for single particle SERS substrate

    Xu, Minwei; Zhang, Yin


    Hierarchical Ag mesostructures with highly rough surface morphology have been synthesized at room temperature through a simple seed-mediated approach. Electron microscopy characterizations indicate that the obtained Ag mesostructures exhibit a textured surface morphology with the flower-like architecture. Moreover, the particle size can be tailored easily in the range of 250-500 nm. For the growth process of the hierarchical Ag mesostructures, it is believed that the self-assembly mechanism is more reasonable rather than the epitaxial overgrowth of Ag seed. The oriented attachment of nanoparticles is revealed during the formation of Ag mesostructures. Single particle surface enhanced Raman spectra (sp-SERS) of crystal violet adsorbed on the hierarchical Ag mesostructures were measured. Results reveal that the hierarchical Ag mesostructures can be highly sensitive sp-SERS substrates with good reproducibility. The average enhancement factors for individual Ag mesostructures are estimated to be about 106.

  19. Facile synthesis and photocatalytic activity of zinc oxide hierarchical microcrystals

    Xu, Xinjiang


    ZnO microcrystals with hierarchical structure have been synthesized by a simple solvothermal approach. The microcrystals were studied by means of X-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Research on the formation mechanism of the hierarchical microstructure shows that the coordination solvent and precursor concentration have considerable influence on the size and morphology of the microstructures. A possible formation mechanism of the hierarchical structure was suggested. Furthermore, the catalytic activity of the ZnO microcrystals was studied by treating low concentration Rhodamine B (RhB) solution under UV light, and research results show the hierarchical microstructures of ZnO display high catalytic activity in photocatalysis, the catalysis process follows first-order reaction kinetics, and the apparent rate constant k = 0.03195 min-1.

  20. An Unsupervised Model for Exploring Hierarchical Semantics from Social Annotations

    Zhou, Mianwei; Bao, Shenghua; Wu, Xian; Yu, Yong

    This paper deals with the problem of exploring hierarchical semantics from social annotations. Recently, social annotation services have become more and more popular in Semantic Web. It allows users to arbitrarily annotate web resources, thus, largely lowers the barrier to cooperation. Furthermore, through providing abundant meta-data resources, social annotation might become a key to the development of Semantic Web. However, on the other hand, social annotation has its own apparent limitations, for instance, 1) ambiguity and synonym phenomena and 2) lack of hierarchical information. In this paper, we propose an unsupervised model to automatically derive hierarchical semantics from social annotations. Using a social bookmark service as example, we demonstrate that the derived hierarchical semantics has the ability to compensate those shortcomings. We further apply our model on another data set from Flickr to testify our model's applicability on different environments. The experimental results demonstrate our model's efficiency.

  1. Neural Mechanisms of Hierarchical Planning in a Virtual Subway Network.

    Balaguer, Jan; Spiers, Hugo; Hassabis, Demis; Summerfield, Christopher


    Planning allows actions to be structured in pursuit of a future goal. However, in natural environments, planning over multiple possible future states incurs prohibitive computational costs. To represent plans efficiently, states can be clustered hierarchically into "contexts". For example, representing a journey through a subway network as a succession of individual states (stations) is more costly than encoding a sequence of contexts (lines) and context switches (line changes). Here, using functional brain imaging, we asked humans to perform a planning task in a virtual subway network. Behavioral analyses revealed that humans executed a hierarchically organized plan. Brain activity in the dorsomedial prefrontal cortex and premotor cortex scaled with the cost of hierarchical plan representation and unique neural signals in these regions signaled contexts and context switches. These results suggest that humans represent hierarchical plans using a network of caudal prefrontal structures. VIDEO ABSTRACT.

  2. Polynomial Regressions and Nonsense Inference

    Daniel Ventosa-Santaulària


    Full Text Available Polynomial specifications are widely used, not only in applied economics, but also in epidemiology, physics, political analysis and psychology, just to mention a few examples. In many cases, the data employed to estimate such specifications are time series that may exhibit stochastic nonstationary behavior. We extend Phillips’ results (Phillips, P. Understanding spurious regressions in econometrics. J. Econom. 1986, 33, 311–340. by proving that an inference drawn from polynomial specifications, under stochastic nonstationarity, is misleading unless the variables cointegrate. We use a generalized polynomial specification as a vehicle to study its asymptotic and finite-sample properties. Our results, therefore, lead to a call to be cautious whenever practitioners estimate polynomial regressions.

  3. Deliberate change without hierarchical influence?

    Nørskov, Sladjana; Kesting, Peter; Ulhøi, John Parm


    Purpose This paper aims to present that deliberate change is strongly associated with formal structures and top-down influence. Hierarchical configurations have been used to structure processes, overcome resistance and get things done. But is deliberate change also possible without formal...... reveals that deliberate change is indeed achievable in a non-hierarchical collaborative OSS community context. However, it presupposes the presence and active involvement of informal change agents. The paper identifies and specifies four key drivers for change agents’ influence. Originality....../value The findings contribute to organisational analysis by providing a deeper understanding of the importance of leadership in making deliberate change possible in non-hierarchical settings. It points to the importance of “change-by-conviction”, essentially based on voluntary behaviour. This can open the door...

  4. Robust nonlinear regression in applications

    Lim, Changwon; Sen, Pranab K.; Peddada, Shyamal D.


    Robust statistical methods, such as M-estimators, are needed for nonlinear regression models because of the presence of outliers/influential observations and heteroscedasticity. Outliers and influential observations are commonly observed in many applications, especially in toxicology and agricultural experiments. For example, dose response studies, which are routinely conducted in toxicology and agriculture, sometimes result in potential outliers, especially in the high dose gr...

  5. Hierarchical unilamellar vesicles of controlled compositional heterogeneity.

    Maik Hadorn

    Full Text Available Eukaryotic life contains hierarchical vesicular architectures (i.e. organelles that are crucial for material production and trafficking, information storage and access, as well as energy production. In order to perform specific tasks, these compartments differ among each other in their membrane composition and their internal cargo and also differ from the cell membrane and the cytosol. Man-made structures that reproduce this nested architecture not only offer a deeper understanding of the functionalities and evolution of organelle-bearing eukaryotic life but also allow the engineering of novel biomimetic technologies. Here, we show the newly developed vesicle-in-water-in-oil emulsion transfer preparation technique to result in giant unilamellar vesicles internally compartmentalized by unilamellar vesicles of different membrane composition and internal cargo, i.e. hierarchical unilamellar vesicles of controlled compositional heterogeneity. The compartmentalized giant unilamellar vesicles were subsequently isolated by a separation step exploiting the heterogeneity of the membrane composition and the encapsulated cargo. Due to the controlled, efficient, and technically straightforward character of the new preparation technique, this study allows the hierarchical fabrication of compartmentalized giant unilamellar vesicles of controlled compositional heterogeneity and will ease the development of eukaryotic cell mimics that resemble their natural templates as well as the fabrication of novel multi-agent drug delivery systems for combination therapies and complex artificial microreactors.

  6. SORM applied to hierarchical parallel system

    Ditlevsen, Ove Dalager


    The old hierarchical stochastic load combination model of Ferry Borges and Castanheta and the corresponding problem of determining the distribution of the extreme random load effect is the inspiration to this paper. The evaluation of the distribution function of the extreme value by use of a part......The old hierarchical stochastic load combination model of Ferry Borges and Castanheta and the corresponding problem of determining the distribution of the extreme random load effect is the inspiration to this paper. The evaluation of the distribution function of the extreme value by use...... of a particular first order reliability method (FORM) was first described in a celebrated paper by Rackwitz and Fiessler more than a quarter of a century ago. The method has become known as the Rackwitz-Fiessler algorithm. The original RF-algorithm as applied to a hierarchical random variable model...... is recapitulated so that a simple but quite effective accuracy improving calculation can be explained. A limit state curvature correction factor on the probability approximation is obtained from the final stop results of the RF-algorithm. This correction factor is based on Breitung’s asymptotic formula for second...

  7. Anisotropic and Hierarchical Porosity in Multifunctional Ceramics

    Lichtner, Aaron Zev

    The performance of multifunctional porous ceramics is often hindered by the seemingly contradictory effects of porosity on both mechanical and non-structural properties and yet a sufficient body of knowledge linking microstructure to these properties does not exist. Using a combination of tailored anisotropic and hierarchical materials, these disparate effects may be reconciled. In this project, a systematic investigation of the processing, characterization and properties of anisotropic and isotropic hierarchically porous ceramics was conducted. The system chosen was a composite ceramic intended as the cathode for a solid oxide fuel cell (SOFC). Comprehensive processing investigations led to the development of approaches to make hierarchical, anisotropic porous microstructures using directional freeze-casting of well dispersed slurries. The effect of all the important processing parameters was investigated. This resulted in an ability to tailor and control the important microstructural features including the scale of the microstructure, the macropore size and total porosity. Comparable isotropic porous ceramics were also processed using fugitive pore formers. A suite of characterization techniques including x-ray tomography and 3-D sectional scanning electron micrographs (FIB-SEM) was used to characterize and quantify the green and partially sintered microstructures. The effect of sintering temperature on the microstructure was quantified and discrete element simulations (DEM) were used to explain the experimental observations. Finally, the comprehensive mechanical properties, at room temperature, were investigated, experimentally and using DEM, for the different microstructures.

  8. Semantic Image Segmentation with Contextual Hierarchical Models.

    Seyedhosseini, Mojtaba; Tasdizen, Tolga


    Semantic segmentation is the problem of assigning an object label to each pixel. It unifies the image segmentation and object recognition problems. The importance of using contextual information in semantic segmentation frameworks has been widely realized in the field. We propose a contextual framework, called contextual hierarchical model (CHM), which learns contextual information in a hierarchical framework for semantic segmentation. At each level of the hierarchy, a classifier is trained based on downsampled input images and outputs of previous levels. Our model then incorporates the resulting multi-resolution contextual information into a classifier to segment the input image at original resolution. This training strategy allows for optimization of a joint posterior probability at multiple resolutions through the hierarchy. Contextual hierarchical model is purely based on the input image patches and does not make use of any fragments or shape examples. Hence, it is applicable to a variety of problems such as object segmentation and edge detection. We demonstrate that CHM performs at par with state-of-the-art on Stanford background and Weizmann horse datasets. It also outperforms state-of-the-art edge detection methods on NYU depth dataset and achieves state-of-the-art on Berkeley segmentation dataset (BSDS 500).

  9. Structural integrity of hierarchical composites

    Marco Paggi


    Full Text Available Interface mechanical problems are of paramount importance in engineering and materials science. Traditionally, due to the complexity of modelling their mechanical behaviour, interfaces are often treated as defects and their features are not explored. In this study, a different approach is illustrated, where the interfaces play an active role in the design of innovative hierarchical composites and are fundamental for their structural integrity. Numerical examples regarding cutting tools made of hierarchical cellular polycrystalline materials are proposed, showing that tailoring of interface properties at the different scales is the way to achieve superior mechanical responses that cannot be obtained using standard materials

  10. High-dimensional regression with unknown variance

    Giraud, Christophe; Verzelen, Nicolas


    We review recent results for high-dimensional sparse linear regression in the practical case of unknown variance. Different sparsity settings are covered, including coordinate-sparsity, group-sparsity and variation-sparsity. The emphasize is put on non-asymptotic analyses and feasible procedures. In addition, a small numerical study compares the practical performance of three schemes for tuning the Lasso esti- mator and some references are collected for some more general models, including multivariate regression and nonparametric regression.

  11. Novel algorithm for constructing support vector machine regression ensemble

    Li Bo; Li Xinjun; Zhao Zhiyan


    A novel algorithm for constructing support vector machine regression ensemble is proposed. As to regression prediction, support vector machine regression(SVMR) ensemble is proposed by resampling from given training data sets repeatedly and aggregating several independent SVMRs, each of which is trained to use a replicated training set. After training, several independently trained SVMRs need to be aggregated in an appropriate combination manner. Generally, the linear weighting is usually used like expert weighting score in Boosting Regression and it is without optimization capacity. Three combination techniques are proposed, including simple arithmetic mean,linear least square error weighting and nonlinear hierarchical combining that uses another upper-layer SVMR to combine several lower-layer SVMRs. Finally, simulation experiments demonstrate the accuracy and validity of the presented algorithm.

  12. Regression Verification Using Impact Summaries

    Backes, John; Person, Suzette J.; Rungta, Neha; Thachuk, Oksana


    Regression verification techniques are used to prove equivalence of syntactically similar programs. Checking equivalence of large programs, however, can be computationally expensive. Existing regression verification techniques rely on abstraction and decomposition techniques to reduce the computational effort of checking equivalence of the entire program. These techniques are sound but not complete. In this work, we propose a novel approach to improve scalability of regression verification by classifying the program behaviors generated during symbolic execution as either impacted or unimpacted. Our technique uses a combination of static analysis and symbolic execution to generate summaries of impacted program behaviors. The impact summaries are then checked for equivalence using an o-the-shelf decision procedure. We prove that our approach is both sound and complete for sequential programs, with respect to the depth bound of symbolic execution. Our evaluation on a set of sequential C artifacts shows that reducing the size of the summaries can help reduce the cost of software equivalence checking. Various reduction, abstraction, and compositional techniques have been developed to help scale software verification techniques to industrial-sized systems. Although such techniques have greatly increased the size and complexity of systems that can be checked, analysis of large software systems remains costly. Regression analysis techniques, e.g., regression testing [16], regression model checking [22], and regression verification [19], restrict the scope of the analysis by leveraging the differences between program versions. These techniques are based on the idea that if code is checked early in development, then subsequent versions can be checked against a prior (checked) version, leveraging the results of the previous analysis to reduce analysis cost of the current version. Regression verification addresses the problem of proving equivalence of closely related program

  13. Conceptual hierarchical modeling to describe wetland plant community organization

    Little, A.M.; Guntenspergen, G.R.; Allen, T.F.H.


    Using multivariate analysis, we created a hierarchical modeling process that describes how differently-scaled environmental factors interact to affect wetland-scale plant community organization in a system of small, isolated wetlands on Mount Desert Island, Maine. We followed the procedure: 1) delineate wetland groups using cluster analysis, 2) identify differently scaled environmental gradients using non-metric multidimensional scaling, 3) order gradient hierarchical levels according to spatiotem-poral scale of fluctuation, and 4) assemble hierarchical model using group relationships with ordination axes and post-hoc tests of environmental differences. Using this process, we determined 1) large wetland size and poor surface water chemistry led to the development of shrub fen wetland vegetation, 2) Sphagnum and water chemistry differences affected fen vs. marsh / sedge meadows status within small wetlands, and 3) small-scale hydrologic differences explained transitions between forested vs. non-forested and marsh vs. sedge meadow vegetation. This hierarchical modeling process can help explain how upper level contextual processes constrain biotic community response to lower-level environmental changes. It creates models with more nuanced spatiotemporal complexity than classification and regression tree procedures. Using this process, wetland scientists will be able to generate more generalizable theories of plant community organization, and useful management models. ?? Society of Wetland Scientists 2009.

  14. Road Network Selection Based on Road Hierarchical Structure Control

    HE Haiwei


    Full Text Available A new road network selection method based on hierarchical structure is studied. Firstly, road network is built as strokes which are then classified into hierarchical collections according to the criteria of betweenness centrality value (BC value. Secondly, the hierarchical structure of the strokes is enhanced using structural characteristic identification technique. Thirdly, the importance calculation model was established according to the relationships among the hierarchical structure of the strokes. Finally, the importance values of strokes are got supported with the model's hierarchical calculation, and with which the road network is selected. Tests are done to verify the advantage of this method by comparing it with other common stroke-oriented methods using three kinds of typical road network data. Comparision of the results show that this method had few need to semantic data, and could eliminate the negative influence of edge strokes caused by the criteria of BC value well. So, it is better to maintain the global hierarchical structure of road network, and suitable to meet with the selection of various kinds of road network at the same time.

  15. Sensory Hierarchical Organization and Reading.

    Skapof, Jerome

    The purpose of this study was to judge the viability of an operational approach aimed at assessing response styles in reading using the hypothesis of sensory hierarchical organization. A sample of 103 middle-class children from a New York City public school, between the ages of five and seven, took part in a three phase experiment. Phase one…

  16. Caudal Regression Syndrome

    Karim Hardani*


    Full Text Available A 10-month-old baby presented with developmental delay. He had flaccid paralysis on physical examination.An MRI of the spine revealed malformation of the ninth and tenth thoracic vertebral bodies with complete agenesis of the rest of the spine down that level. The thoracic spinal cord ends at the level of the fifth thoracic vertebra with agenesis of the posterior arches of the eighth, ninth and tenth thoracic vertebral bodies. The roots of the cauda equina appear tightened down and backward and ended into a subdermal fibrous fatty tissue at the level of the ninth and tenth thoracic vertebral bodies (closed meningocele. These findings are consistent with caudal regression syndrome.

  17. Logistic Regression for Evolving Data Streams Classification

    YIN Zhi-wu; HUANG Shang-teng; XUE Gui-rong


    Logistic regression is a fast classifier and can achieve higher accuracy on small training data. Moreover,it can work on both discrete and continuous attributes with nonlinear patterns. Based on these properties of logistic regression, this paper proposed an algorithm, called evolutionary logistical regression classifier (ELRClass), to solve the classification of evolving data streams. This algorithm applies logistic regression repeatedly to a sliding window of samples in order to update the existing classifier, to keep this classifier if its performance is deteriorated by the reason of bursting noise, or to construct a new classifier if a major concept drift is detected. The intensive experimental results demonstrate the effectiveness of this algorithm.


    Z. Zha


    Full Text Available In existing construction experience of Spatial Data Infrastructure (SDI, GeoNetwork, as the geographical information integrated solution, is an effective way of building SDI. During GeoNetwork serving as an internet application, several shortcomings are exposed. The first one is that the time consuming of data loading has been considerately increasing with the growth of metadata count. Consequently, the efficiency of query and search service becomes lower. Another problem is that stability and robustness are both ruined since huge amount of metadata. The final flaw is that the requirements of multi-user concurrent accessing based on massive data are not effectively satisfied on the internet. A novel approach, Hierarchical Optimization Model (HOM, is presented to solve the incapability of GeoNetwork working with massive data in this paper. HOM optimizes the GeoNetwork from these aspects: internal procedure, external deployment strategies, etc. This model builds an efficient index for accessing huge metadata and supporting concurrent processes. In this way, the services based on GeoNetwork can maintain stable while running massive metadata. As an experiment, we deployed more than 30 GeoNetwork nodes, and harvest nearly 1.1 million metadata. From the contrast between the HOM-improved software and the original one, the model makes indexing and retrieval processes more quickly and keeps the speed stable on metadata amount increasing. It also shows stable on multi-user concurrent accessing to system services, the experiment achieved good results and proved that our optimization model is efficient and reliable.

  19. Hierarchical spatial structure of stream fish colonization and extinction

    Hitt, N.P.; Roberts, J.H.


    Spatial variation in extinction and colonization is expected to influence community composition over time. In stream fish communities, local species richness (alpha diversity) and species turnover (beta diversity) are thought to be regulated by high extinction rates in headwater streams and high colonization rates in downstream areas. We evaluated the spatiotemporal structure of fish communities in streams originally surveyed by Burton and Odum 1945 (Ecology 26: 182-194) in Virginia, USA and explored the effects of species traits on extinction and colonization dynamics. We documented dramatic changes in fish community structure at both the site and stream scales. Of the 34 fish species observed, 20 (59%) were present in both time periods, but 11 (32%) colonized the study area and three (9%) were extirpated over time. Within streams, alpha diversity increased in two of three streams but beta diversity decreased dramatically in all streams due to fish community homogenization caused by colonization of common species and extirpation of rare species. Among streams, however, fish communities differentiated over time. Regression trees indicated that reproductive life-history traits such as spawning mound construction, associations with mound-building species, and high fecundity were important predictors of species persistence or colonization. Conversely, native fishes not associated with mound-building exhibited the highest rates of extirpation from streams. Our results demonstrate that stream fish colonization and extinction dynamics exhibit hierarchical spatial structure and suggest that mound-building fishes serve as keystone species for colonization of headwater streams.

  20. A Simulation Investigation of Principal Component Regression.

    Allen, David E.

    Regression analysis is one of the more common analytic tools used by researchers. However, multicollinearity between the predictor variables can cause problems in using the results of regression analyses. Problems associated with multicollinearity include entanglement of relative influences of variables due to reduced precision of estimation,…

  1. Improving satellite-based PM2.5 estimates in China using Gaussian processes modeling in a Bayesian hierarchical setting.

    Yu, Wenxi; Liu, Yang; Ma, Zongwei; Bi, Jun


    Using satellite-based aerosol optical depth (AOD) measurements and statistical models to estimate ground-level PM2.5 is a promising way to fill the areas that are not covered by ground PM2.5 monitors. The statistical models used in previous studies are primarily Linear Mixed Effects (LME) and Geographically Weighted Regression (GWR) models. In this study, we developed a new regression model between PM2.5 and AOD using Gaussian processes in a Bayesian hierarchical setting. Gaussian processes model the stochastic nature of the spatial random effects, where the mean surface and the covariance function is specified. The spatial stochastic process is incorporated under the Bayesian hierarchical framework to explain the variation of PM2.5 concentrations together with other factors, such as AOD, spatial and non-spatial random effects. We evaluate the results of our model and compare them with those of other, conventional statistical models (GWR and LME) by within-sample model fitting and out-of-sample validation (cross validation, CV). The results show that our model possesses a CV result (R(2) = 0.81) that reflects higher accuracy than that of GWR and LME (0.74 and 0.48, respectively). Our results indicate that Gaussian process models have the potential to improve the accuracy of satellite-based PM2.5 estimates.

  2. Numerical analysis on mechanical behaviors of hierarchical cellular structures with negative Poisson’s ratio

    Li, Dong; Yin, Jianhua; Dong, Liang; Lakes, Roderic S.


    Two-dimensional hierarchical re-entrant honeycomb structures were designed and the mechanical behaviors of the structures were studied using a finite element method. Hierarchical re-entrant structure of order n (n ≥ 1) was constructed by replacing each vertex of a lower order (n - 1) hierarchical re-entrant structure with a smaller re-entrant hexagon with identical strut aspect ratio. The Poisson’s ratio and energy absorption capacity of re-entrant structures of different hierarchical orders were studied under different compression velocities. The results showed that the Poisson’s ratio of the first and second order hierarchical structures can reach -1.36 and -1.33 with appropriate aspect ratio, 13.8% and 12.1% lower than that of the zeroth order hierarchical structure. The energy absorption capacity of the three models increased with an increasing compression velocity; the second order hierarchical structure exhibited the highest rate of increase in energy absorption capacity with an increasing compression velocity. The plateau stresses of the first and second order hierarchical structures were slightly lower than that of the zeroth order hierarchical structure; however the second order hierarchical structure exhibited the highest energy absorption capacity at high compression velocity (60 m s-1).

  3. Development of Land Use Regression Models for PM(2.5), PM(2.5) Absorbance, PM(10) and PM(coarse) in 20 European Study Areas; Results of the ESCAPE Project.

    Eeftens, M.R.; Beelen, R.M.J.; de Hoogh, K.; Bellander, T.; Cesaroni, G.; Cirach, M.; Declercq, C.; Dedele, A.; Dons, E.; de Nazelle, A.; Dimakopoulou, K.; Eriksen, K.; Falq, G.; Fischer, P.; Galassi, C.; Grazuleviciene, R.; Heinrich, J.; Hoffmann, B.; Jerrett, M.; Keidel, D.; Korek, M.; Lanki, T.; Lindley, S.; Madsen, C.; Molter, A.; Nador, G.; Nieuwenhuijsen, M.; Nonnemacher, M.; Pedeli, X.; Raaschou-Nielsen, O.; Patelarou, E.; Quass, U.; Ranzi, A.; Schindler, C.; Stempfelet, M.; Stephanou, E.; Sugiri, D.; Tsai, M.Y.; Yli-Tuomi, T.; Varro, M.J.; Vienneau, D.; von Klot, S.; van der Wolf, K.; Brunekreef, B.; Hoek, G.


    Land Use Regression (LUR) models have been used increasingly for modeling small-scale spatial variation in air pollution concentrations and estimating individual exposure for participants of cohort studies. Within the ESCAPE project, concentrations of PM(2.5), PM(2.5) absorbance, PM(10), and PM(coar

  4. Analysis of household data on influenza epidemic with Bayesian hierarchical model.

    Hsu, C Y; Yen, A M F; Chen, L S; Chen, H H


    Data used for modelling the household transmission of infectious diseases, such as influenza, have inherent multilevel structures and correlated property, which make the widely used conventional infectious disease transmission models (including the Greenwood model and the Reed-Frost model) not directly applicable within the context of a household (due to the crowded domestic condition or socioeconomic status of the household). Thus, at the household level, the effects resulting from individual-level factors, such as vaccination, may be confounded or modified in some way. We proposed the Bayesian hierarchical random-effects (random intercepts and random slopes) model under the context of generalised linear model to capture heterogeneity and variation on the individual, generation, and household levels. It was applied to empirical surveillance data on the influenza epidemic in Taiwan. The parameters of interest were estimated by using the Markov chain Monte Carlo method in conjunction with the Bayesian directed acyclic graphical models. Comparisons between models were made using the deviance information criterion. Based on the result of the random-slope Bayesian hierarchical method under the context of the Reed-Frost transmission model, the regression coefficient regarding the protective effect of vaccination varied statistically significantly from household to household. The result of such a heterogeneity was robust to the use of different prior distributions (including non-informative, sceptical, and enthusiastic ones). By integrating out the uncertainty of the parameters of the posterior distribution, the predictive distribution was computed to forecast the number of influenza cases allowing for random-household effect.

  5. Hierarchical Prisoner's Dilemma in Hierarchical Public-Goods Game

    Fujimoto, Yuma; Kaneko, Kunihiko


    The dilemma in cooperation is one of the major concerns in game theory. In a public-goods game, each individual pays a cost for cooperation, or to prevent defection, and receives a reward from the collected cost in a group. Thus, defection is beneficial for each individual, while cooperation is beneficial for the group. Now, groups (say, countries) consisting of individual players also play games. To study such a multi-level game, we introduce a hierarchical public-goods (HPG) game in which two groups compete for finite resources by utilizing costs collected from individuals in each group. Analyzing this HPG game, we found a hierarchical prisoner's dilemma, in which groups choose the defection policy (say, armaments) as a Nash strategy to optimize each group's benefit, while cooperation optimizes the total benefit. On the other hand, for each individual within a group, refusing to pay the cost (say, tax) is a Nash strategy, which turns to be a cooperation policy for the group, thus leading to a hierarchical d...

  6. Quantile regression modeling for Malaysian automobile insurance premium data

    Fuzi, Mohd Fadzli Mohd; Ismail, Noriszura; Jemain, Abd Aziz


    Quantile regression is a robust regression to outliers compared to mean regression models. Traditional mean regression models like Generalized Linear Model (GLM) are not able to capture the entire distribution of premium data. In this paper we demonstrate how a quantile regression approach can be used to model net premium data to study the effects of change in the estimates of regression parameters (rating classes) on the magnitude of response variable (pure premium). We then compare the results of quantile regression model with Gamma regression model. The results from quantile regression show that some rating classes increase as quantile increases and some decrease with decreasing quantile. Further, we found that the confidence interval of median regression (τ = O.5) is always smaller than Gamma regression in all risk factors.

  7. Nanowire-based polypyrrole hierarchical structures synthesized by a two-step electrochemical method.

    Ge, Dongtao; Huang, Sanqing; Qi, Rucai; Mu, Jing; Shen, Yuqing; Shi, Wei


    A simple two-step electrochemical method is proposed for the synthesis of nanowire-based polypyrrole hierarchical structures. In the first step, microstructured polypyrrole films are prepared by electropolymerization. Then, polypyrrole nanowires are electrodeposited on the surface of the as-synthesized microstructured polypyrrole films. As a result, hierarchical structures of polypyrrole nanowires on polypyrrole microstructures are obtained. The surface wettabilities of the resulting nanowire-based polypyrrole hierarchical structures are examined. It is expected that this two-step method can be developed into a versatile route to produce nanowire-based polypyrrole hierarchical structures with different morphologies and surface properties.

  8. Hierarchical Parallelization of Gene Differential Association Analysis

    Dwarkadas Sandhya


    Full Text Available Abstract Background Microarray gene differential expression analysis is a widely used technique that deals with high dimensional data and is computationally intensive for permutation-based procedures. Microarray gene differential association analysis is even more computationally demanding and must take advantage of multicore computing technology, which is the driving force behind increasing compute power in recent years. In this paper, we present a two-layer hierarchical parallel implementation of gene differential association analysis. It takes advantage of both fine- and coarse-grain (with granularity defined by the frequency of communication parallelism in order to effectively leverage the non-uniform nature of parallel processing available in the cutting-edge systems of today. Results Our results show that this hierarchical strategy matches data sharing behavior to the properties of the underlying hardware, thereby reducing the memory and bandwidth needs of the application. The resulting improved efficiency reduces computation time and allows the gene differential association analysis code to scale its execution with the number of processors. The code and biological data used in this study are downloadable from Conclusions The performance sweet spot occurs when using a number of threads per MPI process that allows the working sets of the corresponding MPI processes running on the multicore to fit within the machine cache. Hence, we suggest that practitioners follow this principle in selecting the appropriate number of MPI processes and threads within each MPI process for their cluster configurations. We believe that the principles of this hierarchical approach to parallelization can be utilized in the parallelization of other computationally demanding kernels.

  9. Synthesis strategies in the search for hierarchical zeolites.

    Serrano, D P; Escola, J M; Pizarro, P


    Great interest has arisen in the past years in the development of hierarchical zeolites, having at least two levels of porosities. Hierarchical zeolites show an enhanced accessibility, leading to improved catalytic activity in reactions suffering from steric and/or diffusional limitations. Moreover, the secondary porosity offers an ideal space for the deposition of additional active phases and for functionalization with organic moieties. However, the secondary surface represents a discontinuity of the crystalline framework, with a low connectivity and a high concentration of silanols. Consequently, hierarchical zeolites exhibit a less "zeolitic behaviour" than conventional ones in terms of acidity, hydrophobic/hydrophilic character, confinement effects, shape-selectivity and hydrothermal stability. Nevertheless, this secondary surface is far from being amorphous, which provides hierarchical zeolites with a set of novel features. A wide variety of innovative strategies have been developed for generating a secondary porosity in zeolites. In the present review, the different synthetic routes leading to hierarchical zeolites have been classified into five categories: removal of framework atoms, surfactant-assisted procedures, hard-templating, zeolitization of preformed solids and organosilane-based methods. Significant advances have been achieved recently in several of these alternatives. These include desilication, due to its versatility, dual templating with polyquaternary ammonium surfactants and framework reorganization by treatment with surfactant-containing basic solutions. In the last two cases, the materials so prepared show both mesoscopic ordering and zeolitic lattice planes. Likewise, interesting results have been obtained with the incorporation of different types of organosilanes into the zeolite crystallization gels, taking advantage of their high affinity for silicate and aluminosilicate species. Crystallization of organofunctionalized species favours the

  10. Mechanics of hierarchical 3-D nanofoams

    Chen, Q.; Pugno, N. M.


    In this paper, we study the mechanics of new three-dimensional hierarchical open-cell foams, and, in particular, its Young's modulus and plastic strength. We incorporate the effects of the surface elasticity and surface residual stress in the linear elastic and plastic analyses. The results show that, as the cross-sectional dimension decreases, the influences of the surface effect on Young's modulus and plastic strength increase, and the surface effect makes the solid stiffer and stronger; similarly, as level n increases, these quantities approach to those of the classical theory as lower bounds.

  11. Constructing storyboards based on hierarchical clustering analysis

    Hasebe, Satoshi; Sami, Mustafa M.; Muramatsu, Shogo; Kikuchi, Hisakazu


    There are growing needs for quick preview of video contents for the purpose of improving accessibility of video archives as well as reducing network traffics. In this paper, a storyboard that contains a user-specified number of keyframes is produced from a given video sequence. It is based on hierarchical cluster analysis of feature vectors that are derived from wavelet coefficients of video frames. Consistent use of extracted feature vectors is the key to avoid a repetition of computationally-intensive parsing of the same video sequence. Experimental results suggest that a significant reduction in computational time is gained by this strategy.

  12. Linear regression models of floor surface parameters on friction between Neolite and quarry tiles.

    Chang, Wen-Ruey; Matz, Simon; Grönqvist, Raoul; Hirvonen, Mikko


    For slips and falls, friction is widely used as an indicator of surface slipperiness. Surface parameters, including surface roughness and waviness, were shown to influence friction by correlating individual surface parameters with the measured friction. A collective input from multiple surface parameters as a predictor of friction, however, could provide a broader perspective on the contributions from all the surface parameters evaluated. The objective of this study was to develop regression models between the surface parameters and measured friction. The dynamic friction was measured using three different mixtures of glycerol and water as contaminants. Various surface roughness and waviness parameters were measured using three different cut-off lengths. The regression models indicate that the selected surface parameters can predict the measured friction coefficient reliably in most of the glycerol concentrations and cut-off lengths evaluated. The results of the regression models were, in general, consistent with those obtained from the correlation between individual surface parameters and the measured friction in eight out of nine conditions evaluated in this experiment. A hierarchical regression model was further developed to evaluate the cumulative contributions of the surface parameters in the final iteration by adding these parameters to the regression model one at a time from the easiest to measure to the most difficult to measure and evaluating their impacts on the adjusted R(2) values. For practical purposes, the surface parameter R(a) alone would account for the majority of the measured friction even if it did not reach a statistically significant level in some of the regression models.

  13. Recursive Algorithm For Linear Regression

    Varanasi, S. V.


    Order of model determined easily. Linear-regression algorithhm includes recursive equations for coefficients of model of increased order. Algorithm eliminates duplicative calculations, facilitates search for minimum order of linear-regression model fitting set of data satisfactory.

  14. Hierarchical structure of biological systems

    Alcocer-Cuarón, Carlos; Rivera, Ana L; Castaño, Victor M


    A general theory of biological systems, based on few fundamental propositions, allows a generalization of both Wierner and Berthalanffy approaches to theoretical biology. Here, a biological system is defined as a set of self-organized, differentiated elements that interact pair-wise through various networks and media, isolated from other sets by boundaries. Their relation to other systems can be described as a closed loop in a steady-state, which leads to a hierarchical structure and functioning of the biological system. Our thermodynamical approach of hierarchical character can be applied to biological systems of varying sizes through some general principles, based on the exchange of energy information and/or mass from and within the systems. PMID:24145961

  15. Intuitionistic fuzzy hierarchical clustering algorithms

    Xu Zeshui


    Intuitionistic fuzzy set (IFS) is a set of 2-tuple arguments, each of which is characterized by a mem-bership degree and a nonmembership degree. The generalized form of IFS is interval-valued intuitionistic fuzzy set (IVIFS), whose components are intervals rather than exact numbers. IFSs and IVIFSs have been found to be very useful to describe vagueness and uncertainty. However, it seems that little attention has been focused on the clus-tering analysis of IFSs and IVIFSs. An intuitionistic fuzzy hierarchical algorithm is introduced for clustering IFSs, which is based on the traditional hierarchical clustering procedure, the intuitionistic fuzzy aggregation operator, and the basic distance measures between IFSs: the Hamming distance, normalized Hamming, weighted Hamming, the Euclidean distance, the normalized Euclidean distance, and the weighted Euclidean distance. Subsequently, the algorithm is extended for clustering IVIFSs. Finally the algorithm and its extended form are applied to the classifications of building materials and enterprises respectively.

  16. Hierarchical Formation of Galactic Clusters

    Elmegreen, B G


    Young stellar groupings and clusters have hierarchical patterns ranging from flocculent spiral arms and star complexes on the largest scale to OB associations, OB subgroups, small loose groups, clusters and cluster subclumps on the smallest scales. There is no obvious transition in morphology at the cluster boundary, suggesting that clusters are only the inner parts of the hierarchy where stars have had enough time to mix. The power-law cluster mass function follows from this hierarchical structure: n(M_cl) M_cl^-b for b~2. This value of b is independently required by the observation that the summed IMFs from many clusters in a galaxy equals approximately the IMF of each cluster.

  17. Hierarchical matrices algorithms and analysis

    Hackbusch, Wolfgang


    This self-contained monograph presents matrix algorithms and their analysis. The new technique enables not only the solution of linear systems but also the approximation of matrix functions, e.g., the matrix exponential. Other applications include the solution of matrix equations, e.g., the Lyapunov or Riccati equation. The required mathematical background can be found in the appendix. The numerical treatment of fully populated large-scale matrices is usually rather costly. However, the technique of hierarchical matrices makes it possible to store matrices and to perform matrix operations approximately with almost linear cost and a controllable degree of approximation error. For important classes of matrices, the computational cost increases only logarithmically with the approximation error. The operations provided include the matrix inversion and LU decomposition. Since large-scale linear algebra problems are standard in scientific computing, the subject of hierarchical matrices is of interest to scientists ...

  18. Hierarchical Clustering and Active Galaxies

    Hatziminaoglou, E; Manrique, A


    The growth of Super Massive Black Holes and the parallel development of activity in galactic nuclei are implemented in an analytic code of hierarchical clustering. The evolution of the luminosity function of quasars and AGN will be computed with special attention paid to the connection between quasars and Seyfert galaxies. One of the major interests of the model is the parallel study of quasar formation and evolution and the History of Star Formation.

  19. Hybrid and hierarchical composite materials

    Kim, Chang-Soo; Sano, Tomoko


    This book addresses a broad spectrum of areas in both hybrid materials and hierarchical composites, including recent development of processing technologies, structural designs, modern computer simulation techniques, and the relationships between the processing-structure-property-performance. Each topic is introduced at length with numerous  and detailed examples and over 150 illustrations.   In addition, the authors present a method of categorizing these materials, so that representative examples of all material classes are discussed.

  20. Treatment Protocols as Hierarchical Structures

    Ben-Bassat, Moshe; Carlson, Richard W.; Puri, Vinod K.; Weil, Max Harry


    We view a treatment protocol as a hierarchical structure of therapeutic modules. The lowest level of this structure consists of individual therapeutic actions. Combinations of individual actions define higher level modules, which we call routines. Routines are designed to manage limited clinical problems, such as the routine for fluid loading to correct hypovolemia. Combinations of routines and additional actions, together with comments, questions, or precautions organized in a branching logic, in turn, define the treatment protocol for a given disorder. Adoption of this modular approach may facilitate the formulation of treatment protocols, since the physician is not required to prepare complex flowcharts. This hierarchical approach also allows protocols to be updated and modified in a flexible manner. By use of such a standard format, individual components may be fitted together to create protocols for multiple disorders. The technique is suited for computer implementation. We believe that this hierarchical approach may facilitate standarization of patient care as well as aid in clinical teaching. A protocol for acute pancreatitis is used to illustrate this technique.

  1. Hierarchical honeycomb auxetic metamaterials.

    Mousanezhad, Davood; Babaee, Sahab; Ebrahimi, Hamid; Ghosh, Ranajay; Hamouda, Abdelmagid Salem; Bertoldi, Katia; Vaziri, Ashkan


    Most conventional materials expand in transverse directions when they are compressed uniaxially resulting in the familiar positive Poisson's ratio. Here we develop a new class of two dimensional (2D) metamaterials with negative Poisson's ratio that contract in transverse directions under uniaxial compressive loads leading to auxeticity. This is achieved through mechanical instabilities (i.e., buckling) introduced by structural hierarchy and retained over a wide range of applied compression. This unusual behavior is demonstrated experimentally and analyzed computationally. The work provides new insights into the role of structural organization and hierarchy in designing 2D auxetic metamaterials, and new opportunities for developing energy absorbing materials, tunable membrane filters, and acoustic dampeners.

  2. Hierarchically deflated conjugate residual

    Yamaguchi, Azusa


    We present a progress report on a new class of multigrid solver algorithm suitable for the solution of 5d chiral fermions such as Domain Wall fermions and the Continued Fraction overlap. Unlike HDCG \\cite{Boyle:2014rwa}, the algorithm works directly on a nearest neighbour fine operator. The fine operator used is Hermitian indefinite, for example $\\Gamma_5 D_{dwf}$, and convergence is achieved with an indefinite matrix solver such as outer iteration based on conjugate residual. As a result coarse space representations of the operator remain nearest neighbour, giving an 8 point stencil rather than the 81 point stencil used in HDCG. It is hoped this may make it viable to recalculate the matrix elements of the little Dirac operator in an HMC evolution.

  3. Hierarchical Overlapping Clustering of Network Data Using Cut Metrics

    Gama, Fernando; Ribeiro, Alejandro


    A novel method to obtain hierarchical and overlapping clusters from network data -i.e., a set of nodes endowed with pairwise dissimilarities- is presented. The introduced method is hierarchical in the sense that it outputs a nested collection of groupings of the node set depending on the resolution or degree of similarity desired, and it is overlapping since it allows nodes to belong to more than one group. Our construction is rooted on the facts that a hierarchical (non-overlapping) clustering of a network can be equivalently represented by a finite ultrametric space and that a convex combination of ultrametrics results in a cut metric. By applying a hierarchical (non-overlapping) clustering method to multiple dithered versions of a given network and then convexly combining the resulting ultrametrics, we obtain a cut metric associated to the network of interest. We then show how to extract a hierarchical overlapping clustering structure from the aforementioned cut metric. Furthermore, the so-called overlappi...

  4. Renormalization of Hierarchically Interacting Isotropic Diffusions

    den Hollander, F.; Swart, J. M.


    We study a renormalization transformation arising in an infinite system of interacting diffusions. The components of the system are labeled by the N-dimensional hierarchical lattice ( N≥2) and take values in the closure of a compact convex set bar D subset {R}^d (d ≥slant 1). Each component starts at some θ ∈ D and is subject to two motions: (1) an isotropic diffusion according to a local diffusion rate g: bar D to [0,infty ] chosen from an appropriate class; (2) a linear drift toward an average of the surrounding components weighted according to their hierarchical distance. In the local mean-field limit N→∞, block averages of diffusions within a hierarchical distance k, on an appropriate time scale, are expected to perform a diffusion with local diffusion rate F ( k) g, where F^{(k)} g = (F_{c_k } circ ... circ F_{c_1 } ) g is the kth iterate of renormalization transformations F c ( c>0) applied to g. Here the c k measure the strength of the interaction at hierarchical distance k. We identify F c and study its orbit ( F ( k) g) k≥0. We show that there exists a "fixed shape" g* such that lim k→∞ σk F ( k) g = g* for all g, where the σ k are normalizing constants. In terms of the infinite system, this property means that there is complete universal behavior on large space-time scales. Our results extend earlier work for d = 1 and bar D = [0,1], resp. [0, ∞). The renormalization transformation F c is defined in terms of the ergodic measure of a d-dimensional diffusion. In d = 1 this diffusion allows a Yamada-Watanabe-type coupling, its ergodic measure is reversible, and the renormalization transformation F c is given by an explicit formula. All this breaks down in d≥2, which complicates the analysis considerably and forces us to new methods. Part of our results depend on a certain martingale problem being well-posed.

  5. Influence of Al content on textural properties and catalytic activity of hierarchical porous aluminosilicate materials

    Ling Xu; Limei Duan; Zongrui Liu; Jingqi Guan; Qiubin Kan


    A series of hierarchical porous aluminosilicate materials were prepared using hydrothermal treatment of the composite formed by polystyrene colloidal spheres and aluminosilicate gel. Influence of Al content on the textural properties, acidic properties and catalytic activity of the hierarchical porous aluminosilicate materials was studied. The results showed that textural and acidic properties of the hierarchical porous aluminosilicate materials were strongly related to Al content. As Al content is increased (Si/Al = 25), the hierarchical porous catalysts exhibited higher catalytic activity and major product selectivity for alkylation of phenol with tert-butanol than the catalysts with a lower Al content (Si/Al = 50).

  6. A Bayesian approach to linear regression in astronomy

    Sereno, Mauro


    Linear regression is common in astronomical analyses. I discuss a Bayesian hierarchical modeling of data with heteroscedastic and possibly correlated measurement errors and intrinsic scatter. The method fully accounts for time evolution. The slope, the normalization, and the intrinsic scatter of the relation can evolve with the redshift. The intrinsic distribution of the independent variable is approximated using a mixture of Gaussian distributions whose means and standard deviations depend on time. The method can address scatter in the measured independent variable (a kind of Eddington bias), selection effects in the response variable (Malmquist bias), and departure from linearity in form of a knee. I tested the method with toy models and simulations and quantified the effect of biases and inefficient modeling. The R-package LIRA (LInear Regression in Astronomy) is made available to perform the regression.

  7. Robust Bayesian Regularized Estimation Based on t Regression Model

    Zean Li


    Full Text Available The t distribution is a useful extension of the normal distribution, which can be used for statistical modeling of data sets with heavy tails, and provides robust estimation. In this paper, in view of the advantages of Bayesian analysis, we propose a new robust coefficient estimation and variable selection method based on Bayesian adaptive Lasso t regression. A Gibbs sampler is developed based on the Bayesian hierarchical model framework, where we treat the t distribution as a mixture of normal and gamma distributions and put different penalization parameters for different regression coefficients. We also consider the Bayesian t regression with adaptive group Lasso and obtain the Gibbs sampler from the posterior distributions. Both simulation studies and real data example show that our method performs well compared with other existing methods when the error distribution has heavy tails and/or outliers.

  8. Three Layer Hierarchical Model for Chord

    Waqas A. Imtiaz


    Full Text Available Increasing popularity of decentralized Peer-to-Peer (P2P architecture emphasizes on the need to come across an overlay structure that can provide efficient content discovery mechanism, accommodate high churn rate and adapt to failures in the presence of heterogeneity among the peers. Traditional p2p systems incorporate distributed client-server communication, which finds the peer efficiently that store a desires data item, with minimum delay and reduced overhead. However traditional models are not able to solve the problems relating scalability and high churn rates. Hierarchical model were introduced to provide better fault isolation, effective bandwidth utilization, a superior adaptation to the underlying physical network and a reduction of the lookup path length as additional advantages. It is more efficient and easier to manage than traditional p2p networks. This paper discusses a further step in p2p hierarchy via 3-layers hierarchical model with distributed database architecture in different layer, each of which is connected through its root. The peers are divided into three categories according to their physical stability and strength. They are Ultra Super-peer, Super-peer and Ordinary Peer and we assign these peers to first, second and third level of hierarchy respectively. Peers in a group in lower layer have their own local database which hold as associated super-peer in middle layer and access the database among the peers through user queries. In our 3-layer hierarchical model for DHT algorithms, we used an advanced Chord algorithm with optimized finger table which can remove the redundant entry in the finger table in upper layer that influences the system to reduce the lookup latency. Our research work finally resulted that our model really provides faster search since the network lookup latency is decreased by reducing the number of hops. The peers in such network then can contribute with improve functionality and can perform well in

  9. A hierarchical model of temporal perception.

    Pöppel, E


    Temporal perception comprises subjective phenomena such as simultaneity, successiveness, temporal order, subjective present, temporal continuity and subjective duration. These elementary temporal experiences are hierarchically related to each other. Functional system states with a duration of 30 ms are implemented by neuronal oscillations and they provide a mechanism to define successiveness. These system states are also responsible for the identification of basic events. For a sequential representation of several events time tags are allocated, resulting in an ordinal representation of such events. A mechanism of temporal integration binds successive events into perceptual units of 3 s duration. Such temporal integration, which is automatic and presemantic, is also operative in movement control and other cognitive activities. Because of the omnipresence of this integration mechanism it is used for a pragmatic definition of the subjective present. Temporal continuity is the result of a semantic connection between successive integration intervals. Subjective duration is known to depend on mental load and attentional demand, high load resulting in long time estimates. In the hierarchical model proposed, system states of 30 ms and integration intervals of 3 s, together with a memory store, provide an explanatory neuro-cognitive machinery for differential subjective duration.

  10. Regression in autistic spectrum disorders.

    Stefanatos, Gerry A


    A significant proportion of children diagnosed with Autistic Spectrum Disorder experience a developmental regression characterized by a loss of previously-acquired skills. This may involve a loss of speech or social responsitivity, but often entails both. This paper critically reviews the phenomena of regression in autistic spectrum disorders, highlighting the characteristics of regression, age of onset, temporal course, and long-term outcome. Important considerations for diagnosis are discussed and multiple etiological factors currently hypothesized to underlie the phenomenon are reviewed. It is argued that regressive autistic spectrum disorders can be conceptualized on a spectrum with other regressive disorders that may share common pathophysiological features. The implications of this viewpoint are discussed.

  11. Combining Alphas via Bounded Regression

    Zura Kakushadze


    Full Text Available We give an explicit algorithm and source code for combining alpha streams via bounded regression. In practical applications, typically, there is insufficient history to compute a sample covariance matrix (SCM for a large number of alphas. To compute alpha allocation weights, one then resorts to (weighted regression over SCM principal components. Regression often produces alpha weights with insufficient diversification and/or skewed distribution against, e.g., turnover. This can be rectified by imposing bounds on alpha weights within the regression procedure. Bounded regression can also be applied to stock and other asset portfolio construction. We discuss illustrative examples.

  12. Climate information based streamflow and rainfall forecasts for Huai River Basin using Hierarchical Bayesian Modeling

    X. Chen


    Full Text Available A Hierarchal Bayesian model for forecasting regional summer rainfall and streamflow season-ahead using exogenous climate variables for East Central China is presented. The model provides estimates of the posterior forecasted probability distribution for 12 rainfall and 2 streamflow stations considering parameter uncertainty, and cross-site correlation. The model has a multilevel structure with regression coefficients modeled from a common multivariate normal distribution results in partial-pooling of information across multiple stations and better representation of parameter and posterior distribution uncertainty. Covariance structure of the residuals across stations is explicitly modeled. Model performance is tested under leave-10-out cross-validation. Frequentist and Bayesian performance metrics used include Receiver Operating Characteristic, Reduction of Error, Coefficient of Efficiency, Rank Probability Skill Scores, and coverage by posterior credible intervals. The ability of the model to reliably forecast regional summer rainfall and streamflow season-ahead offers potential for developing adaptive water risk management strategies.

  13. Globally COnstrained Local Function Approximation via Hierarchical Modelling, a Framework for System Modelling under Partial Information

    Øjelund, Henrik; Sadegh, Payman


    , constraints are introduced to ensure the conformity of the estimates to a gien global structure. Hierarchical models are then utilized as a tool to ccomodate global model uncertainties via parametric variabilities within the structure. The global parameters and their associated uncertainties are estimated...... simultaneously with the (local estimates of) function values. The approach is applied to modelling of a linear time variant dynamic system under prior linear time invariant structure where local regression fails as a result of high dimensionality.......Local function approximations concern fitting low order models to weighted data in neighbourhoods of the points where the approximations are desired. Despite their generality and convenience of use, local models typically suffer, among others, from difficulties arising in physical interpretation...

  14. Linear regression in astronomy. I

    Isobe, Takashi; Feigelson, Eric D.; Akritas, Michael G.; Babu, Gutti Jogesh


    Five methods for obtaining linear regression fits to bivariate data with unknown or insignificant measurement errors are discussed: ordinary least-squares (OLS) regression of Y on X, OLS regression of X on Y, the bisector of the two OLS lines, orthogonal regression, and 'reduced major-axis' regression. These methods have been used by various researchers in observational astronomy, most importantly in cosmic distance scale applications. Formulas for calculating the slope and intercept coefficients and their uncertainties are given for all the methods, including a new general form of the OLS variance estimates. The accuracy of the formulas was confirmed using numerical simulations. The applicability of the procedures is discussed with respect to their mathematical properties, the nature of the astronomical data under consideration, and the scientific purpose of the regression. It is found that, for problems needing symmetrical treatment of the variables, the OLS bisector performs significantly better than orthogonal or reduced major-axis regression.

  15. Predicting smear negative pulmonary tuberculosis with classification trees and logistic regression: a cross-sectional study

    Kritski Afrânio


    Full Text Available Abstract Background Smear negative pulmonary tuberculosis (SNPT accounts for 30% of pulmonary tuberculosis cases reported yearly in Brazil. This study aimed to develop a prediction model for SNPT for outpatients in areas with scarce resources. Methods The study enrolled 551 patients with clinical-radiological suspicion of SNPT, in Rio de Janeiro, Brazil. The original data was divided into two equivalent samples for generation and validation of the prediction models. Symptoms, physical signs and chest X-rays were used for constructing logistic regression and classification and regression tree models. From the logistic regression, we generated a clinical and radiological prediction score. The area under the receiver operator characteristic curve, sensitivity, and specificity were used to evaluate the model's performance in both generation and validation samples. Results It was possible to generate predictive models for SNPT with sensitivity ranging from 64% to 71% and specificity ranging from 58% to 76%. Conclusion The results suggest that those models might be useful as screening tools for estimating the risk of SNPT, optimizing the utilization of more expensive tests, and avoiding costs of unnecessary anti-tuberculosis treatment. Those models might be cost-effective tools in a health care network with hierarchical distribution of scarce resources.

  16. Hierarchical robust nonlinear switching control design for propulsion systems

    Leonessa, Alexander


    The desire for developing an integrated control system- design methodology for advanced propulsion systems has led to significant activity in modeling and control of flow compression systems in recent years. In this dissertation we develop a novel hierarchical switching control framework for addressing the compressor aerodynamic instabilities of rotating stall and surge. The proposed control framework accounts for the coupling between higher-order modes while explicitly addressing actuator rate saturation constraints and system modeling uncertainty. To develop a hierarchical nonlinear switching control framework, first we develop generalized Lyapunov and invariant set theorems for nonlinear dynamical systems wherein all regularity assumptions on the Lyapunov function and the system dynamics are removed. In particular, local and global stability theorems are given using lower semicontinuous Lyapunov functions. Furthermore, generalized invariant set theorems are derived wherein system trajectories converge to a union of largest invariant sets contained in intersections over finite intervals of the closure of generalized Lyapunov level surfaces. The proposed results provide transparent generalizations to standard Lyapunov and invariant set theorems. Using the generalized Lyapunov and invariant set theorems, a nonlinear control-system design framework predicated on a hierarchical switching controller architecture parameterized over a set of moving system equilibria is developed. Specifically, using equilibria- dependent Lyapunov functions, a hierarchical nonlinear control strategy is developed that stabilizes a given nonlinear system by stabilizing a collection of nonlinear controlled subsystems. The switching nonlinear controller architecture is designed based on a generalized lower semicontinuous Lyapunov function obtained by minimizing a potential function over a given switching set induced by the parameterized system equilibria. The proposed framework provides a

  17. Analysis of Student and School Level Variables Related to Mathematics Self-Efficacy Level Based on PISA 2012 Results for China-Shanghai, Turkey, and Greece

    Usta, H. Gonca


    This study aims to analyze the student and school level variables that affect students' self-efficacy levels in mathematics in China-Shanghai, Turkey, and Greece based on PISA 2012 results. In line with this purpose, the hierarchical linear regression model (HLM) was employed. The interschool variability is estimated at approximately 17% in…

  18. Efficient Actor-Critic Algorithm with Hierarchical Model Learning and Planning

    Fu, QiMing


    To improve the convergence rate and the sample efficiency, two efficient learning methods AC-HMLP and RAC-HMLP (AC-HMLP with ℓ2-regularization) are proposed by combining actor-critic algorithm with hierarchical model learning and planning. The hierarchical models consisting of the local and the global models, which are learned at the same time during learning of the value function and the policy, are approximated by local linear regression (LLR) and linear function approximation (LFA), respectively. Both the local model and the global model are applied to generate samples for planning; the former is used only if the state-prediction error does not surpass the threshold at each time step, while the latter is utilized at the end of each episode. The purpose of taking both models is to improve the sample efficiency and accelerate the convergence rate of the whole algorithm through fully utilizing the local and global information. Experimentally, AC-HMLP and RAC-HMLP are compared with three representative algorithms on two Reinforcement Learning (RL) benchmark problems. The results demonstrate that they perform best in terms of convergence rate and sample efficiency. PMID:27795704


    Nusa Erman


    Full Text Available A broad variety of different methods of agglomerative hierarchical clustering brings along problems how to choose the most appropriate method for the given data. It is well known that some methods outperform others if the analysed data have a specific structure. In the presented study we have observed the behaviour of the centroid, the median (Gower median method, and the average method (unweighted pair-group method with arithmetic mean – UPGMA; average linkage between groups. We have compared them with mostly used methods of hierarchical clustering: the minimum (single linkage clustering, the maximum (complete linkage clustering, the Ward, and the McQuitty (groups method average, weighted pair-group method using arithmetic averages - WPGMA methods. We have applied the comparison of these methods on spherical, ellipsoid, umbrella-like, “core-and-sphere”, ring-like and intertwined three-dimensional data structures. To generate the data and execute the analysis, we have used R statistical software. Results show that all seven methods are successful in finding compact, ball-shaped or ellipsoid structures when they are enough separated. Conversely, all methods except the minimum perform poor on non-homogenous, irregular and elongated ones. Especially challenging is a circular double helix structure; it is being correctly revealed only by the minimum method. We can also confirm formerly published results of other simulation studies, which usually favour average method (besides Ward method in cases when data is assumed to be fairly compact and well separated.

  20. Road network safety evaluation using Bayesian hierarchical joint model.

    Wang, Jie; Huang, Helai


    Safety and efficiency are commonly regarded as two significant performance indicators of transportation systems. In practice, road network planning has focused on road capacity and transport efficiency whereas the safety level of a road network has received little attention in the planning stage. This study develops a Bayesian hierarchical joint model for road network safety evaluation to help planners take traffic safety into account when planning a road network. The proposed model establishes relationships between road network risk and micro-level variables related to road entities and traffic volume, as well as socioeconomic, trip generation and network density variables at macro level which are generally used for long term transportation plans. In addition, network spatial correlation between intersections and their connected road segments is also considered in the model. A road network is elaborately selected in order to compare the proposed hierarchical joint model with a previous joint model and a negative binomial model. According to the results of the model comparison, the hierarchical joint model outperforms the joint model and negative binomial model in terms of the goodness-of-fit and predictive performance, which indicates the reasonableness of considering the hierarchical data structure in crash prediction and analysis. Moreover, both random effects at the TAZ level and the spatial correlation between intersections and their adjacent segments are found to be significant, supporting the employment of the hierarchical joint model as an alternative in road-network-level safety modeling as well.

  1. Auction-based resource allocation game under a hierarchical structure

    Cui, Yingying; Zou, Suli; Ma, Zhongjing


    This paper studies a class of auction-based resource allocation games under a hierarchical structure, such that each supplier is assigned a certain amount of resource from a single provider and allocates it to its buyers with auction mechanisms. To implement the efficient allocations for the underlying hierarchical system, we first design an auction mechanism, for each local system composed of a supplier and its buyers, which inherits the advantages of the progressive second price mechanism. By employing a dynamic algorithm, each local system converges to its own efficient Nash equilibrium, at which the efficient resource allocation is achieved and the bidding prices of all the buyers in this local system are identical with each other. After the local systems reach their own equilibria respectively, the resources assigned to suppliers are readjusted via a dynamic hierarchical algorithm with respect to the bidding prices associated with the implemented equilibria of local systems. By applying the proposed hierarchical process, the formulated hierarchical system can converge to the efficient allocation under certain mild conditions. The developed results in this work are demonstrated with simulations.

  2. 3D Printing of Hierarchical Silk Fibroin Structures.

    Sommer, Marianne R; Schaffner, Manuel; Carnelli, Davide; Studart, André R


    Like many other natural materials, silk is hierarchically structured from the amino acid level up to the cocoon or spider web macroscopic structures. Despite being used industrially in a number of applications, hierarchically structured silk fibroin objects with a similar degree of architectural control as in natural structures have not been produced yet due to limitations in fabrication processes. In a combined top-down and bottom-up approach, we exploit the freedom in macroscopic design offered by 3D printing and the template-guided assembly of ink building blocks at the meso- and nanolevel to fabricate hierarchical silk porous materials with unprecedented structural control. Pores with tunable sizes in the range 40-350 μm are generated by adding sacrificial organic microparticles as templates to a silk fibroin-based ink. Commercially available wax particles or monodisperse polycaprolactone made by microfluidics can be used as microparticle templates. Since closed pores are generated after template removal, an ultrasonication treatment can optionally be used to achieve open porosity. Such pore templating particles can be further modified with nanoparticles to create a hierarchical template that results in porous structures with a defined nanotopography on the pore walls. The hierarchically porous silk structures obtained with this processing technique can potentially be utilized in various application fields from structural materials to thermal insulation to tissue engineering scaffolds.

  3. YAP-mediated mechanotransduction regulates osteogenic and adipogenic differentiation of BMSCs on hierarchical structure.

    Pan, Houhua; Xie, Youtao; Zhang, Zequan; Li, Kai; Hu, Dandan; Zheng, Xuebin; Fan, Qiming; Tang, Tingting


    Hierarchical structure mimicking the natural bone microenvironment has been considered as a promising platform to regulate cell functions. We have previously fabricated hierarchical macropore/nanowire structure and evidence has shown that it can better manipulate the cytoskeleton status and osteogenic performance of osteoblasts. However, how cues of hierarchical structure are translated and ultimately linked to BMSC lineage commitment have still remained elusive, which hinders the accurate knowledge and further development of the hierarchical structure. In this study, bone marrow-derived mesenchymal stem cells (BMSCs) fate on hierarchical structure was investigated as well as the detailed mechanisms. It was shown that well-developed cytoskeleton and focal adhesion were observed for BMSCs on hierarchical structure, which was accompanied by enhanced osteogenic and depressed adipogenic potential. Evidence of increased YAP activity and nuclear translocation were exhibited on hierarchical structure and YAP knockdown inhibited osteogenic differentiation and promoted adipogenic differentiation induced by hierarchical structure. Further remove of cytoskeleton tension inhibited YAP function, which confirmed the key role of YAP-mediated mechanotransduction in the BMSC differentiation. These results together provide information of the stem cell fate commitment on hierarchical structure and a promising approach to design advanced biomaterials by focusing on specific mechanotransduction process.

  4. A simulation study of sample size for multilevel logistic regression models

    Moineddin Rahim


    Full Text Available Abstract Background Many studies conducted in health and social sciences collect individual level data as outcome measures. Usually, such data have a hierarchical structure, with patients clustered within physicians, and physicians clustered within practices. Large survey data, including national surveys, have a hierarchical or clustered structure; respondents are naturally clustered in geographical units (e.g., health regions and may be grouped into smaller units. Outcomes of interest in many fields not only reflect continuous measures, but also binary outcomes such as depression, presence or absence of a disease, and self-reported general health. In the framework of multilevel studies an important problem is calculating an adequate sample size that generates unbiased and accurate estimates. Methods In this paper simulation studies are used to assess the effect of varying sample size at both the individual and group level on the accuracy of the estimates of the parameters and variance components of multilevel logistic regression models. In addition, the influence of prevalence of the outcome and the intra-class correlation coefficient (ICC is examined. Results The results show that the estimates of the fixed effect parameters are unbiased for 100 groups with group size of 50 or higher. The estimates of the variance covariance components are slightly biased even with 100 groups and group size of 50. The biases for both fixed and random effects are severe for group size of 5. The standard errors for fixed effect parameters are unbiased while for variance covariance components are underestimated. Results suggest that low prevalent events require larger sample sizes with at least a minimum of 100 groups and 50 individuals per group. Conclusion We recommend using a minimum group size of 50 with at least 50 groups to produce valid estimates for multi-level logistic regression models. Group size should be adjusted under conditions where the prevalence

  5. Micro-nanofibers with hierarchical structure by bubbfil-spinning

    Liu Peng


    Full Text Available Bubbfil spinning is used to fabricate micro/nanofibers with hierarchical structure. The wall of a polymer film is attenuated unevenly by a blowing air. The burst of the bubble results in film fragments with different thickness, as a result, different sizes of fibers are obtained.

  6. Variable and subset selection in PLS regression

    Høskuldsson, Agnar


    The purpose of this paper is to present some useful methods for introductory analysis of variables and subsets in relation to PLS regression. We present here methods that are efficient in finding the appropriate variables or subset to use in the PLS regression. The general conclusion...... is that variable selection is important for successful analysis of chemometric data. An important aspect of the results presented is that lack of variable selection can spoil the PLS regression, and that cross-validation measures using a test set can show larger variation, when we use different subsets of X, than...

  7. Aid and growth regressions

    Hansen, Henrik; Tarp, Finn


    This paper examines the relationship between foreign aid and growth in real GDP per capita as it emerges from simple augmentations of popular cross country growth specifications. It is shown that aid in all likelihood increases the growth rate, and this result is not conditional on ‘good’ policy...

  8. Regional Integrated Meteorological Forecasting and Warning Model for Geological Hazards Based on Logistic Regression

    XU Jing; YANG Chi; ZHANG Guoping


    Information model is adopted to integrate factors of various geosciences to estimate the susceptibility of geological hazards. Further combining the dynamic rainfall observations, Logistic regression is used for modeling the probabilities of geological hazard occurrences, upon which hierarchical warnings for rainfall-induced geological hazards are produced. The forecasting and warning model takes numerical precipitation forecasts on grid points as its dynamic input, forecasts the probabilities of geological hazard occurrences on the same grid, and translates the results into likelihoods in the form of a 5-level hierarchy. Validation of the model with observational data for the year 2004 shows that 80% of the geological hazards of the year have been identified as "likely enough to release warning messages". The model can satisfy the requirements of an operational warning system, thus is an effective way to improve the meteorological warnings for geological hazards.

  9. Combining Self-organizing Feature Map with Support Vector Regression Based on Expert System

    WANGLing; MUZhi-Chun; GUOHui


    A new approach is proposed to model nonlinear dynamic systems by combining SOM(self-organizing feature map) with support vector regression (SVR) based on expert system. The whole system has a two-stage neural network architecture. In the first stage SOM is used as a clustering algorithm to partition the whole input space into several disjointed regions. A hierarchical architecture is adopted in the partition to avoid the problem of predetermining the number of partitioned regions. Then, in the second stage, multiple SVR, also called SVR experts, that best fit each partitioned region by the combination of different kernel function of SVR and promote the configuration and tuning of SVR. Finally, to apply this new approach to time-series prediction problems based on the Mackey-Glass differential equation and Santa Fe data, the results show that SVR experts has effective improvement in the generalization performance in comparison with the single SVR model.

  10. Trait anxiety, disgust sensitivity, and the hierarchic structure of fears.

    McDonald, Scott D; Hartman, Nathan S; Vrana, Scott R


    This paper describes an evaluation of Taylor's (1998) hierarchic model of fears and its relationship to trait anxiety and disgust sensitivity (DS). In Study 1 (N=420), a confirmatory factor analysis supported a hierarchic structure of fears. Next, an analysis using structural equation modeling indicated that trait anxiety is associated with claustrophobic and social fears, whereas DS is associated with all four fear subtypes examined (claustrophobic, social, blood-injection-injury and animal). However, trait anxiety and DS did not account for all variance shared by fear subtypes. The addition of a generalized "fear factor" accounted for significant residual shared variance between the four fear subtypes, beyond that accounted for by trait anxiety and DS. Study 2 (N=213) generally replicated these results. Findings suggest that the hierarchic structural model of fears would benefit from inclusion of trait anxiety and DS as higher-order contributors to fearfulness.

  11. A novel load balancing method for hierarchical federation simulation system

    Bin, Xiao; Xiao, Tian-yuan


    In contrast with single HLA federation framework, hierarchical federation framework can improve the performance of large-scale simulation system in a certain degree by distributing load on several RTI. However, in hierarchical federation framework, RTI is still the center of message exchange of federation, and it is still the bottleneck of performance of federation, the data explosion in a large-scale HLA federation may cause overload on RTI, It may suffer HLA federation performance reduction or even fatal error. Towards this problem, this paper proposes a load balancing method for hierarchical federation simulation system based on queuing theory, which is comprised of three main module: queue length predicting, load controlling policy, and controller. The method promotes the usage of resources of federate nodes, and improves the performance of HLA simulation system with balancing load on RTIG and federates. Finally, the experiment results are presented to demonstrate the efficient control of the method.

  12. Hierarchical Star Formation in Nearby LEGUS Galaxies

    Elmegreen, Debra Meloy; Adamo, Angela; Aloisi, Alessandra; Andrews, Jennifer; Annibali, Francesca; Bright, Stacey N; Calzetti, Daniela; Cignoni, Michele; Evans, Aaron S; Gallagher, John S; Gouliermis, Dimitrios A; Grebel, Eva K; Hunter, Deidre A; Johnson, Kelsey; Kim, Hwi; Lee, Janice; Sabbi, Elena; Smith, Linda; Thilker, David; Tosi, Monica; Ubeda, Leonardo


    Hierarchical structure in ultraviolet images of 12 late-type LEGUS galaxies is studied by determining the numbers and fluxes of nested regions as a function of size from ~1 to ~200 pc, and the number as a function of flux. Two starburst dwarfs, NGC 1705 and NGC 5253, have steeper number-size and flux-size distributions than the others, indicating high fractions of the projected areas filled with star formation. Nine subregions in 7 galaxies have similarly steep number-size slopes, even when the whole galaxies have shallower slopes. The results suggest that hierarchically structured star-forming regions several hundred parsecs or larger represent common unit structures. Small galaxies dominated by only a few of these units tend to be starbursts. The self-similarity of young stellar structures down to parsec scales suggests that star clusters form in the densest parts of a turbulent medium that also forms loose stellar groupings on larger scales. The presence of super star clusters in two of our starburst dwarf...

  13. Time-adaptive quantile regression

    Møller, Jan Kloppenborg; Nielsen, Henrik Aalborg; Madsen, Henrik


    An algorithm for time-adaptive quantile regression is presented. The algorithm is based on the simplex algorithm, and the linear optimization formulation of the quantile regression problem is given. The observations have been split to allow a direct use of the simplex algorithm. The simplex method...... and an updating procedure are combined into a new algorithm for time-adaptive quantile regression, which generates new solutions on the basis of the old solution, leading to savings in computation time. The suggested algorithm is tested against a static quantile regression model on a data set with wind power...... production, where the models combine splines and quantile regression. The comparison indicates superior performance for the time-adaptive quantile regression in all the performance parameters considered....

  14. Linear regression in astronomy. II

    Feigelson, Eric D.; Babu, Gutti J.


    A wide variety of least-squares linear regression procedures used in observational astronomy, particularly investigations of the cosmic distance scale, are presented and discussed. The classes of linear models considered are (1) unweighted regression lines, with bootstrap and jackknife resampling; (2) regression solutions when measurement error, in one or both variables, dominates the scatter; (3) methods to apply a calibration line to new data; (4) truncated regression models, which apply to flux-limited data sets; and (5) censored regression models, which apply when nondetections are present. For the calibration problem we develop two new procedures: a formula for the intercept offset between two parallel data sets, which propagates slope errors from one regression to the other; and a generalization of the Working-Hotelling confidence bands to nonstandard least-squares lines. They can provide improved error analysis for Faber-Jackson, Tully-Fisher, and similar cosmic distance scale relations.

  15. Hierarchical Control for Smart Grids

    Trangbæk, K; Bendtsen, Jan Dimon; Stoustrup, Jakob


    This paper deals with hierarchical model predictive control (MPC) of smart grid systems. The design consists of a high level MPC controller, a second level of so-called aggregators, which reduces the computational and communication-related load on the high-level control, and a lower level...... of autonomous consumers. The control system is tasked with balancing electric power production and consumption within the smart grid, and makes active use of the flexibility of a large number of power producing and/or power consuming units. The objective is to accommodate the load variation on the grid, arising...

  16. Robust Regression and Lasso

    Xu, Huan; Mannor, Shie


    Lasso, or $\\ell^1$ regularized least squares, has been explored extensively for its remarkable sparsity properties. It is shown in this paper that the solution to Lasso, in addition to its sparsity, has robustness properties: it is the solution to a robust optimization problem. This has two important consequences. First, robustness provides a connection of the regularizer to a physical property, namely, protection from noise. This allows a principled selection of the regularizer, and in particular, generalizations of Lasso that also yield convex optimization problems are obtained by considering different uncertainty sets. Secondly, robustness can itself be used as an avenue to exploring different properties of the solution. In particular, it is shown that robustness of the solution explains why the solution is sparse. The analysis as well as the specific results obtained differ from standard sparsity results, providing different geometric intuition. Furthermore, it is shown that the robust optimization formul...

  17. Hierarchical structures of ZnO spherical particles synthesized solvothermally

    Saito, Noriko; Haneda, Hajime


    We review the solvothermal synthesis, using a mixture of ethylene glycol (EG) and water as the solvent, of zinc oxide (ZnO) particles having spherical and flower-like shapes and hierarchical nanostructures. The preparation conditions of the ZnO particles and the microscopic characterization of the morphology are summarized. We found the following three effects of the ratio of EG to water on the formation of hierarchical structures: (i) EG restricts the growth of ZnO microcrystals, (ii) EG promotes the self-assembly of small crystallites into spheroidal particles and (iii) the high water content of EG results in hollow spheres.

  18. Study of chaos based on a hierarchical model

    Yagi, Masatoshi; Itoh, Sanae-I. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics


    Study of chaos based on a hierarchical model is briefly reviewed. Here we categorize hierarchical model equations, i.e., (1) a model with a few degrees of freedom, e.g., the Lorenz model, (2) a model with intermediate degrees of freedom like a shell model, and (3) a model with many degrees of freedom such as a Navier-Stokes equation. We discuss the nature of chaos and turbulence described by these models via Lyapunov exponents. The interpretation of results observed in fundamental plasma experiments is also shown based on a shell model. (author)

  19. Detect overlapping and hierarchical community structure in networks

    Shen, Huawei; Cai, Kai; Hu, Mao-Bin


    Clustering and community structure is crucial for many network systems and the related dynamic processes. It has been shown that communities are usually overlapping and hierarchical. However, previous methods investigate these two properties of community structure separately. This paper propose an algorithm (EAGLE) to detect both the overlapping and hierarchical properties of complex community structure together. This algorithm deals with the set of maximal cliques and adopts an agglomerative framework. The quality function of modularity is extended to evaluate the goodness of a cover. The examples of application to real world networks give excellent results.

  20. Hierarchical structures of ZnO spherical particles synthesized solvothermally

    Noriko Saito and Hajime Haneda


    Full Text Available We review the solvothermal synthesis, using a mixture of ethylene glycol (EG and water as the solvent, of zinc oxide (ZnO particles having spherical and flower-like shapes and hierarchical nanostructures. The preparation conditions of the ZnO particles and the microscopic characterization of the morphology are summarized. We found the following three effects of the ratio of EG to water on the formation of hierarchical structures: (i EG restricts the growth of ZnO microcrystals, (ii EG promotes the self-assembly of small crystallites into spheroidal particles and (iii the high water content of EG results in hollow spheres.

  1. Hierarchical and dynamic seascapes: A quantitative framework for scaling pelagic biogeochemistry and ecology

    Kavanaugh, Maria T.; Hales, Burke; Saraceno, Martin; Spitz, Yvette H.; White, Angelicque E.; Letelier, Ricardo M.


    Comparative analyses of oceanic ecosystems require an objective framework to define coherent study regions and scale the patterns and processes observed within them. We applied the hierarchical patch mosaic paradigm of landscape ecology to the study of the seasonal variability of the North Pacific to facilitate comparative analysis between pelagic ecosystems and provide spatiotemporal context for Eulerian time-series studies. Using 13-year climatologies of sea surface temperature (SST), photosynthetically active radiation (PAR), and chlorophyll a (chl-a), we classified seascapes in environmental space that were monthly-resolved, dynamic and nested in space and time. To test the assumption that seascapes represent coherent regions with unique biogeochemical function and to determine the hierarchical scale that best characterized variance in biogeochemical parameters, independent data sets were analyzed across seascapes using analysis of variance (ANOVA), nested-ANOVA and multiple linear regression (MLR) analyses. We also compared the classification efficiency (as defined by the ANOVA F-statistic) of resultant dynamic seascapes to a commonly-used static classification system. Variance of nutrients and net primary productivity (NPP) were well characterized in the first two levels of hierarchy of eight seascapes nested within three superseascapes (R2 = 0.5-0.7). Dynamic boundaries at this level resulted in a nearly 2-fold increase in classification efficiency over static boundaries. MLR analyses revealed differential forcing on pCO2 across seascapes and hierarchical levels and a 33% reduction in mean model error with increased partitioning (from 18.5 μatm to 12.0 μatm pCO2). Importantly, the empirical influence of seasonality was minor across seascapes at all hierarchical levels, suggesting that seascape partitioning minimizes the effect of non-hydrographic variables. As part of the emerging field of pelagic seascape ecology, this effort provides an improved means of

  2. Quantile regression theory and applications

    Davino, Cristina; Vistocco, Domenico


    A guide to the implementation and interpretation of Quantile Regression models This book explores the theory and numerous applications of quantile regression, offering empirical data analysis as well as the software tools to implement the methods. The main focus of this book is to provide the reader with a comprehensivedescription of the main issues concerning quantile regression; these include basic modeling, geometrical interpretation, estimation and inference for quantile regression, as well as issues on validity of the model, diagnostic tools. Each methodological aspect is explored and

  3. Business applications of multiple regression

    Richardson, Ronny


    This second edition of Business Applications of Multiple Regression describes the use of the statistical procedure called multiple regression in business situations, including forecasting and understanding the relationships between variables. The book assumes a basic understanding of statistics but reviews correlation analysis and simple regression to prepare the reader to understand and use multiple regression. The techniques described in the book are illustrated using both Microsoft Excel and a professional statistical program. Along the way, several real-world data sets are analyzed in deta




    The results of a Canadian study have shown that a set of 12 (I)ADL items did not meet the criteria of Guttman's scalogram program, questioning the assumption of hierarchical ordering. In this article, the hierarchical structure of (I)ADL items from the Canadian elderly sample is retested with anothe

  5. The Development of a Hierarchical Polychotomous ADL-IADL Scale for Noninstitutionalized Elders.

    Kempen, G. I. J. M.; Suurmeijer, T. P. B. M.


    Tested hierarchical scale comprising 18 activities of daily living (ADL) and instrumental activities of daily living (IADL) items on 101 noninstitutionalized older adults in Netherlands. Results confirmed possibility of constructing unidimensional, hierarchical. polychotomous scale measuring "functional problems on ADL-IADL." Considered…

  6. Lumbar herniated disc: spontaneous regression

    Yüksel, Kasım Zafer


    Background Low back pain is a frequent condition that results in substantial disability and causes admission of patients to neurosurgery clinics. To evaluate and present the therapeutic outcomes in lumbar disc hernia (LDH) patients treated by means of a conservative approach, consisting of bed rest and medical therapy. Methods This retrospective cohort was carried out in the neurosurgery departments of hospitals in Kahramanmaraş city and 23 patients diagnosed with LDH at the levels of L3−L4, L4−L5 or L5−S1 were enrolled. Results The average age was 38.4 ± 8.0 and the chief complaint was low back pain and sciatica radiating to one or both lower extremities. Conservative treatment was administered. Neurological examination findings, durations of treatment and intervals until symptomatic recovery were recorded. Laségue tests and neurosensory examination revealed that mild neurological deficits existed in 16 of our patients. Previously, 5 patients had received physiotherapy and 7 patients had been on medical treatment. The number of patients with LDH at the level of L3−L4, L4−L5, and L5−S1 were 1, 13, and 9, respectively. All patients reported that they had benefit from medical treatment and bed rest, and radiologic improvement was observed simultaneously on MRI scans. The average duration until symptomatic recovery and/or regression of LDH symptoms was 13.6 ± 5.4 months (range: 5−22). Conclusions It should be kept in mind that lumbar disc hernias could regress with medical treatment and rest without surgery, and there should be an awareness that these patients could recover radiologically. This condition must be taken into account during decision making for surgical intervention in LDH patients devoid of indications for emergent surgery. PMID:28119770

  7. Hierarchical Structures in Hypertext Learning Environments

    Bezdan, Eniko; Kester, Liesbeth; Kirschner, Paul A.


    Bezdan, E., Kester, L., & Kirschner, P. A. (2011, 9 September). Hierarchical Structures in Hypertext Learning Environments. Presentation for the visit of KU Leuven, Open University, Heerlen, The Netherlands.

  8. Prediction of road accidents: A Bayesian hierarchical approach

    Deublein, Markus; Schubert, Matthias; Adey, Bryan T.;


    In this paper a novel methodology for the prediction of the occurrence of road accidents is presented. The methodology utilizes a combination of three statistical methods: (1) gamma-updating of the occurrence rates of injury accidents and injured road users, (2) hierarchical multivariate Poisson......-lognormal regression analysis taking into account correlations amongst multiple dependent model response variables and effects of discrete accident count data e.g. over-dispersion, and (3) Bayesian inference algorithms, which are applied by means of data mining techniques supported by Bayesian Probabilistic Networks...... in order to represent non-linearity between risk indicating and model response variables, as well as different types of uncertainties which might be present in the development of the specific models.Prior Bayesian Probabilistic Networks are first established by means of multivariate regression analysis...

  9. Testing discontinuities in nonparametric regression

    Dai, Wenlin


    In nonparametric regression, it is often needed to detect whether there are jump discontinuities in the mean function. In this paper, we revisit the difference-based method in [13 H.-G. Müller and U. Stadtmüller, Discontinuous versus smooth regression, Ann. Stat. 27 (1999), pp. 299–337. doi: 10.1214/aos/1018031100

  10. Logistic Regression: Concept and Application

    Cokluk, Omay


    The main focus of logistic regression analysis is classification of individuals in different groups. The aim of the present study is to explain basic concepts and processes of binary logistic regression analysis intended to determine the combination of independent variables which best explain the membership in certain groups called dichotomous…

  11. A new bivariate negative binomial regression model

    Faroughi, Pouya; Ismail, Noriszura


    This paper introduces a new form of bivariate negative binomial (BNB-1) regression which can be fitted to bivariate and correlated count data with covariates. The BNB regression discussed in this study can be fitted to bivariate and overdispersed count data with positive, zero or negative correlations. The joint p.m.f. of the BNB1 distribution is derived from the product of two negative binomial marginals with a multiplicative factor parameter. Several testing methods were used to check overdispersion and goodness-of-fit of the model. Application of BNB-1 regression is illustrated on Malaysian motor insurance dataset. The results indicated that BNB-1 regression has better fit than bivariate Poisson and BNB-2 models with regards to Akaike information criterion.

  12. A hierarchical architecture for an energy management system

    Piotrowski, Krzysztof; Casaca, Augusto; Gerards, Marco E.T.; Jongerden, Marijn; Melo, Francisco; Garrido, Daniel; Geers, Marcel; Peralta, Jacoba


    This paper introduces an innovative energy management system architecture for Smart Grids, designed in the European 7th framework program project e-balance. The architecture is hierarchical and fractal-like, which results in better scalability and reuse of algorithms and programming code for energy

  13. Polystyrene/octadecyltrichlorosilane superhydrophobic coatings with hierarchical morphology

    Demirel, A. Levent; Latthe, Sanjay S.


    A simple, one pot dip-coating process for the fabrication of super-hydrophobic coatings using polystyrene (PS) and octadecyltrichlorosilane (OTS) is introduced. The hierarchical coating morphology and the resulting surface wettability were controlled by OTS concentration and by the number of dipping cycles. The coatings showed good durability for applications.

  14. Power Efficient Hierarchical Scheduling for DSP Transformations

    P. K. Merakos


    Full Text Available In this paper, the problem of scheduling the computation of partial products in transformational Digital Signal Processing (DSP algorithms, aiming at the minimization of the switching activity in data and address buses, is addressed. The problem is stated as a hierarchical scheduling problem. Two different optimization algorithms, which are based on the Travelling Salesman Problem (TSP, are defined. The proposed optimization algorithms are independent on the target architecture and can be adapted to take into account it. Experimental results obtained from the application of the proposed algorithms in various widely used DSP transformations, like Discrete Cosine Transform (DCT and Discrete Fourier Transform (DFT, show that significant switching activity savings in data and address buses can be achieved, resulting in corresponding power savings. In addition, the differences between the two proposed methods are underlined, providing envisage for their suitable selection for implementation, in particular transformational algorithms and architectures.

  15. Hierarchical analysis of the quiet Sun magnetism

    Ramos, A Asensio


    Standard statistical analysis of the magnetic properties of the quiet Sun rely on simple histograms of quantities inferred from maximum-likelihood estimations. Because of the inherent degeneracies, either intrinsic or induced by the noise, this approach is not optimal and can lead to highly biased results. We carry out a meta-analysis of the magnetism of the quiet Sun from Hinode observations using a hierarchical probabilistic method. This model allows us to infer the statistical properties of the magnetic field vector over the observed field-of-view consistently taking into account the uncertainties in each pixel due to noise and degeneracies. Our results point out that the magnetic fields are very weak, below 275 G with 95% credibility, with a slight preference for horizontal fields, although the distribution is not far from a quasi-isotropic distribution.

  16. Hierarchical image segmentation for learning object priors

    Prasad, Lakshman [Los Alamos National Laboratory; Yang, Xingwei [TEMPLE UNIV.; Latecki, Longin J [TEMPLE UNIV.; Li, Nan [TEMPLE UNIV.


    The proposed segmentation approach naturally combines experience based and image based information. The experience based information is obtained by training a classifier for each object class. For a given test image, the result of each classifier is represented as a probability map. The final segmentation is obtained with a hierarchial image segmentation algorithm that considers both the probability maps and the image features such as color and edge strength. We also utilize image region hierarchy to obtain not only local but also semi-global features as input to the classifiers. Moreover, to get robust probability maps, we take into account the region context information by averaging the probability maps over different levels of the hierarchical segmentation algorithm. The obtained segmentation results are superior to the state-of-the-art supervised image segmentation algorithms.

  17. Fungible weights in logistic regression.

    Jones, Jeff A; Waller, Niels G


    In this article we develop methods for assessing parameter sensitivity in logistic regression models. To set the stage for this work, we first review Waller's (2008) equations for computing fungible weights in linear regression. Next, we describe 2 methods for computing fungible weights in logistic regression. To demonstrate the utility of these methods, we compute fungible logistic regression weights using data from the Centers for Disease Control and Prevention's (2010) Youth Risk Behavior Surveillance Survey, and we illustrate how these alternate weights can be used to evaluate parameter sensitivity. To make our work accessible to the research community, we provide R code (R Core Team, 2015) that will generate both kinds of fungible logistic regression weights. (PsycINFO Database Record

  18. [Iris movement mediates pupillary membrane regression].

    Morizane, Yuki


    In the course of mammalian lens development, a transient capillary meshwork called as the pupillary membrane (PM) forms. It is located in the pupil area to nourish the anterior surface of the lens, and then regresses to clear the optical path. Although the involvement of the apoptotic process has been reported in PM regression, the initiating factor remains unknown. We initially found that regression of the PM coincided with the development of iris motility, and that iris movement caused cessation and resumption of blood flow within the PM. Therefore, we investigated whether the development of the capacity of the iris to constrict and dilate can function as an essential signal that induces apoptosis in the PM. Continuous inhibition of iris movement with mydriatic agents suppressed apoptosis of the PM and resulted in the persistence of PM in rats. The distribution of apoptotic cells in the regressing PM was diffuse and showed no apparent localization. These results indicated that iris movement induced regression of the PM by changing the blood flow within it. This study suggests the importance of the physiological interactions between tissues-in this case, the iris and the PM-as a signal to advance vascular regression during organ development.


    张裕; 覃红


    In experimental design,the first order regression model has been usually used to screen a few important main effects from a large number of potential factors.The so-called Q and Qb criteria can find optimal designs from many eligible model uncertainty.This paper aims to explore the optimal relationship of Q and Qb criteria between the original design d with two levels and its double design Dd under the first order regression model,where Dd =(dddd) A new analytical relation between Q-values or QB-values of d and Dd is obtained,which shows that under Q criterion or Qb criterion,if d is optimal,then Dd is also optimal.Moreever,some lower bounds on Q-values and QB-values of d and Dd are also derived,respectively.%在试验设计中,一阶回归模型通常被作为合格拟合模型用来从众多因子中筛选出效应显著的特殊因子,而Q和QB准则能够比较简单地从大量的合格拟合模型中找出具有最优性质的设计.主要探讨了当拟合模型为一阶回归模型时,二水平的初始设计d与其Double设计 (ddd-d)在Q和QB准则下的最优关系.给出了初始设计d的Q和QB值与其Double设计的Q和QB值之间的解析关系,从而得到在Q或QB准则下如果初始设计d是最优的,那么其Double设计也是最优的.此外,也分别给出了初始设计d及其Double设计的Q值和QB值的一个下界.

  20. Discovering hierarchical structure in normal relational data

    Schmidt, Mikkel Nørgaard; Herlau, Tue; Mørup, Morten


    Hierarchical clustering is a widely used tool for structuring and visualizing complex data using similarity. Traditionally, hierarchical clustering is based on local heuristics that do not explicitly provide assessment of the statistical saliency of the extracted hierarchy. We propose a non-param...

  1. Discursive Hierarchical Patterning in Economics Cases

    Lung, Jane


    This paper attempts to apply Lung's (2008) model of the discursive hierarchical patterning of cases to a closer and more specific study of Economics cases and proposes a model of the distinct discursive hierarchical patterning of the same. It examines a corpus of 150 Economics cases with a view to uncovering the patterns of discourse construction.…

  2. A Model of Hierarchical Key Assignment Scheme

    ZHANG Zhigang; ZHAO Jing; XU Maozhi


    A model of the hierarchical key assignment scheme is approached in this paper, which can be used with any cryptography algorithm. Besides, the optimal dynamic control property of a hierarchical key assignment scheme will be defined in this paper. Also, our scheme model will meet this property.

  3. Discriminative Elastic-Net Regularized Linear Regression.

    Zhang, Zheng; Lai, Zhihui; Xu, Yong; Shao, Ling; Wu, Jian; Xie, Guo-Sen


    In this paper, we aim at learning compact and discriminative linear regression models. Linear regression has been widely used in different problems. However, most of the existing linear regression methods exploit the conventional zero-one matrix as the regression targets, which greatly narrows the flexibility of the regression model. Another major limitation of these methods is that the learned projection matrix fails to precisely project the image features to the target space due to their weak discriminative capability. To this end, we present an elastic-net regularized linear regression (ENLR) framework, and develop two robust linear regression models which possess the following special characteristics. First, our methods exploit two particular strategies to enlarge the margins of different classes by relaxing the strict binary targets into a more feasible variable matrix. Second, a robust elastic-net regularization of singular values is introduced to enhance the compactness and effectiveness of the learned projection matrix. Third, the resulting optimization problem of ENLR has a closed-form solution in each iteration, which can be solved efficiently. Finally, rather than directly exploiting the projection matrix for recognition, our methods employ the transformed features as the new discriminate representations to make final image classification. Compared with the traditional linear regression model and some of its variants, our method is much more accurate in image classification. Extensive experiments conducted on publicly available data sets well demonstrate that the proposed framework can outperform the state-of-the-art methods. The MATLAB codes of our methods can be available at

  4. Groups possessing extensive hierarchical decompositions

    Januszkiewicz, T; Leary, I J


    Kropholler's class of groups is the smallest class of groups which contains all finite groups and is closed under the following operator: whenever $G$ admits a finite-dimensional contractible $G$-CW-complex in which all stabilizer groups are in the class, then $G$ is itself in the class. Kropholler's class admits a hierarchical structure, i.e., a natural filtration indexed by the ordinals. For example, stage 0 of the hierarchy is the class of all finite groups, and stage 1 contains all groups of finite virtual cohomological dimension. We show that for each countable ordinal $\\alpha$, there is a countable group that is in Kropholler's class which does not appear until the $\\alpha+1$st stage of the hierarchy. Previously this was known only for $\\alpha= 0$, 1 and 2. The groups that we construct contain torsion. We also review the construction of a torsion-free group that lies in the third stage of the hierarchy.

  5. Quantum transport through hierarchical structures.

    Boettcher, S; Varghese, C; Novotny, M A


    The transport of quantum electrons through hierarchical lattices is of interest because such lattices have some properties of both regular lattices and random systems. We calculate the electron transmission as a function of energy in the tight-binding approximation for two related Hanoi networks. HN3 is a Hanoi network with every site having three bonds. HN5 has additional bonds added to HN3 to make the average number of bonds per site equal to five. We present a renormalization group approach to solve the matrix equation involved in this quantum transport calculation. We observe band gaps in HN3, while no such band gaps are observed in linear networks or in HN5. We provide a detailed scaling analysis near the edges of these band gaps.

  6. Hierarchical networks of scientific journals

    Palla, Gergely; Mones, Enys; Pollner, Péter; Vicsek, Tamás


    Scientific journals are the repositories of the gradually accumulating knowledge of mankind about the world surrounding us. Just as our knowledge is organised into classes ranging from major disciplines, subjects and fields to increasingly specific topics, journals can also be categorised into groups using various metrics. In addition to the set of topics characteristic for a journal, they can also be ranked regarding their relevance from the point of overall influence. One widespread measure is impact factor, but in the present paper we intend to reconstruct a much more detailed description by studying the hierarchical relations between the journals based on citation data. We use a measure related to the notion of m-reaching centrality and find a network which shows the level of influence of a journal from the point of the direction and efficiency with which information spreads through the network. We can also obtain an alternative network using a suitably modified nested hierarchy extraction method applied ...

  7. Adaptive Sampling in Hierarchical Simulation

    Knap, J; Barton, N R; Hornung, R D; Arsenlis, A; Becker, R; Jefferson, D R


    We propose an adaptive sampling methodology for hierarchical multi-scale simulation. The method utilizes a moving kriging interpolation to significantly reduce the number of evaluations of finer-scale response functions to provide essential constitutive information to a coarser-scale simulation model. The underlying interpolation scheme is unstructured and adaptive to handle the transient nature of a simulation. To handle the dynamic construction and searching of a potentially large set of finer-scale response data, we employ a dynamic metric tree database. We study the performance of our adaptive sampling methodology for a two-level multi-scale model involving a coarse-scale finite element simulation and a finer-scale crystal plasticity based constitutive law.

  8. Hierarchically Nanostructured Materials for Sustainable Environmental Applications

    Ren, Zheng; Guo, Yanbing; Liu, Cai-Hong; Gao, Pu-Xian


    This article presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions and multiple functionalities towards water remediation, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology.

  9. Hierarchical Identity-Based Lossy Trapdoor Functions

    Escala, Alex; Libert, Benoit; Rafols, Carla


    Lossy trapdoor functions, introduced by Peikert and Waters (STOC'08), have received a lot of attention in the last years, because of their wide range of applications in theoretical cryptography. The notion has been recently extended to the identity-based scenario by Bellare et al. (Eurocrypt'12). We provide one more step in this direction, by considering the notion of hierarchical identity-based lossy trapdoor functions (HIB-LTDFs). Hierarchical identity-based cryptography generalizes identitybased cryptography in the sense that identities are organized in a hierarchical way; a parent identity has more power than its descendants, because it can generate valid secret keys for them. Hierarchical identity-based cryptography has been proved very useful both for practical applications and to establish theoretical relations with other cryptographic primitives. In order to realize HIB-LTDFs, we first build a weakly secure hierarchical predicate encryption scheme. This scheme, which may be of independent interest, is...

  10. Hierarchically nanostructured materials for sustainable environmental applications

    Ren, Zheng; Guo, Yanbing; Liu, Cai-Hong; Gao, Pu-Xian


    This review presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions, and multiple functionalities toward water remediation, biosensing, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing, and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology. PMID:24790946

  11. Hierarchically Nanostructured Materials for Sustainable Environmental Applications

    Zheng eRen


    Full Text Available This article presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions and multiple functionalities towards water remediation, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology.

  12. LiDAR based prediction of forest biomass using hierarchical models with spatially varying coefficients

    Babcock, Chad; Finley, Andrew O.; Bradford, John B.; Kolka, Randall K.; Birdsey, Richard A.; Ryan, Michael G.


    Many studies and production inventory systems have shown the utility of coupling covariates derived from Light Detection and Ranging (LiDAR) data with forest variables measured on georeferenced inventory plots through regression models. The objective of this study was to propose and assess the use of a Bayesian hierarchical modeling framework that accommodates both residual spatial dependence and non-stationarity of model covariates through the introduction of spatial random effects. We explored this objective using four forest inventory datasets that are part of the North American Carbon Program, each comprising point-referenced measures of above-ground forest biomass and discrete LiDAR. For each dataset, we considered at least five regression model specifications of varying complexity. Models were assessed based on goodness of fit criteria and predictive performance using a 10-fold cross-validation procedure. Results showed that the addition of spatial random effects to the regression model intercept improved fit and predictive performance in the presence of substantial residual spatial dependence. Additionally, in some cases, allowing either some or all regression slope parameters to vary spatially, via the addition of spatial random effects, further improved model fit and predictive performance. In other instances, models showed improved fit but decreased predictive performance—indicating over-fitting and underscoring the need for cross-validation to assess predictive ability. The proposed Bayesian modeling framework provided access to pixel-level posterior predictive distributions that were useful for uncertainty mapping, diagnosing spatial extrapolation issues, revealing missing model covariates, and discovering locally significant parameters.

  13. Efficient promotion strategies in hierarchical organizations

    Pluchino, Alessandro; Rapisarda, Andrea; Garofalo, Cesare


    The Peter principle has recently been investigated by means of an agent-based simulation, and its validity has been numerically corroborated. It has been confirmed that, within certain conditions, it can really influence in a negative way the efficiency of a pyramidal organization adopting meritocratic promotions. It was also found that, in order to bypass these effects, alternative promotion strategies should be adopted, as for example a random selection choice. In this paper, within the same line of research, we study promotion strategies in a more realistic hierarchical and modular organization, and we show the robustness of our previous results, extending their validity to a more general context. We also discuss why the adoption of these strategies could be useful for real organizations.

  14. Hesitant fuzzy agglomerative hierarchical clustering algorithms

    Zhang, Xiaolu; Xu, Zeshui


    Recently, hesitant fuzzy sets (HFSs) have been studied by many researchers as a powerful tool to describe and deal with uncertain data, but relatively, very few studies focus on the clustering analysis of HFSs. In this paper, we propose a novel hesitant fuzzy agglomerative hierarchical clustering algorithm for HFSs. The algorithm considers each of the given HFSs as a unique cluster in the first stage, and then compares each pair of the HFSs by utilising the weighted Hamming distance or the weighted Euclidean distance. The two clusters with smaller distance are jointed. The procedure is then repeated time and again until the desirable number of clusters is achieved. Moreover, we extend the algorithm to cluster the interval-valued hesitant fuzzy sets, and finally illustrate the effectiveness of our clustering algorithms by experimental results.

  15. The hierarchical structure of chemical engineering

    Mooson KWAUK


    Around the turn of the present century, scholars began to recognize chemical engineering as a complex system, and have been searching for a convenient point of entry for refreshing its knowledge base. From our study of the dynamic structures of dispersed particles in fluidization and the resulting multi-scale method, we have been attempting to extend our findings to structures prevailing in other multiphase systems as well as in the burgeoning industries producing functional materials. Chemical engineering itself is hierarchically structured. Besides structures based on space and time, such hierarchy could be built from ChE history scaled according to science content, or from ChE operation according to the expenditure of manpower and capital investment.

  16. Antiferromagnetic Ising Model in Hierarchical Networks

    Cheng, Xiang; Boettcher, Stefan


    The Ising antiferromagnet is a convenient model of glassy dynamics. It can introduce geometric frustrations and may give rise to a spin glass phase and glassy relaxation at low temperatures [ 1 ] . We apply the antiferromagnetic Ising model to 3 hierarchical networks which share features of both small world networks and regular lattices. Their recursive and fixed structures make them suitable for exact renormalization group analysis as well as numerical simulations. We first explore the dynamical behaviors using simulated annealing and discover an extremely slow relaxation at low temperatures. Then we employ the Wang-Landau algorithm to investigate the energy landscape and the corresponding equilibrium behaviors for different system sizes. Besides the Monte Carlo methods, renormalization group [ 2 ] is used to study the equilibrium properties in the thermodynamic limit and to compare with the results from simulated annealing and Wang-Landau sampling. Supported through NSF Grant DMR-1207431.

  17. Secular Evolution of Hierarchical Triple Star Systems

    Ford, E B; Kozinsky, B


    We derive octupole-level secular perturbation equations for hierarchical triple systems, using classical Hamiltonian perturbation techniques. Our equations describe the secular evolution of the orbital eccentricities and inclinations over timescales long compared to the orbital periods. By extending previous work done to leading (quadrupole) order to octupole level (i.e., including terms of order $\\alpha^3$, where $\\alpha\\equiv a_1/a_2<1$ is the ratio of semimajor axes) we obtain expressions that are applicable to a much wider range of parameters. For triple systems containing a close inner binary, we also discuss the possible interaction between the classical Newtonian perturbations and the general relativistic precession of the inner orbit. In some cases we show that this interaction can lead to resonances and a significant increase in the maximum amplitude of eccentricity perturbations. We establish the validity of our analytic expressions by providing detailed comparisons with the results of direct num...

  18. Hierarchical Codebook Design for Massive MIMO

    Xin Su


    Full Text Available The Research of Massive MIMO is an emerging area, since the more antennas the transmitters or receivers equipped with, the higher spectral efficiency and link reliability the system can provide. Due to the limited feedback channel, precoding and codebook design are important to exploit the performance of massive MIMO. To improve the precoding performance, we propose a novel hierarchical codebook with the Fourier-based perturbation matrices as the subcodebook and the Kerdock codebook as the main codebook, which could reduce storage and search complexity due to the finite a lphabet. Moreover, t o f urther r educe t he search complexity and feedback overhead without noticeable performance degradation, we use an adaptive selection algorithm to decide whether to use the subcodebook. Simulation results show that the proposed codebook has remarkable performance gain compared to the conventional Kerdock codebook, without significant increase in feedback overhead and search complexity.

  19. Optimization of Hierarchical System for Data Acquisition

    V. Novotny


    Full Text Available Television broadcasting over IP networks (IPTV is one of a number of network applications that are except of media distribution also interested in data acquisition from group of information resources of variable size. IP-TV uses Real-time Transport Protocol (RTP protocol for media streaming and RTP Control Protocol (RTCP protocol for session quality feedback. Other applications, for example sensor networks, have data acquisition as the main task. Current solutions have mostly problem with scalability - how to collect and process information from large amount of end nodes quickly and effectively? The article deals with optimization of hierarchical system of data acquisition. Problem is mathematically described, delay minima are searched and results are proved by simulations.

  20. Image Segmentation Using Hierarchical Merge Tree

    Liu, Ting; Seyedhosseini, Mojtaba; Tasdizen, Tolga


    This paper investigates one of the most fundamental computer vision problems: image segmentation. We propose a supervised hierarchical approach to object-independent image segmentation. Starting with over-segmenting superpixels, we use a tree structure to represent the hierarchy of region merging, by which we reduce the problem of segmenting image regions to finding a set of label assignment to tree nodes. We formulate the tree structure as a constrained conditional model to associate region merging with likelihoods predicted using an ensemble boundary classifier. Final segmentations can then be inferred by finding globally optimal solutions to the model efficiently. We also present an iterative training and testing algorithm that generates various tree structures and combines them to emphasize accurate boundaries by segmentation accumulation. Experiment results and comparisons with other very recent methods on six public data sets demonstrate that our approach achieves the state-of-the-art region accuracy and is very competitive in image segmentation without semantic priors.

  1. Fluorocarbon Adsorption in Hierarchical Porous Frameworks

    Motkuri, Radha K.; Annapureddy, Harsha V.; Vijayakumar, M.; Schaef, Herbert T.; Martin, P F.; McGrail, B. Peter; Dang, Liem X.; Krishna, Rajamani; Thallapally, Praveen K.


    The adsorption behavior of a series of fluorocarbon derivatives was examined on a set of microporous metal organic framework (MOF) sorbents and another set of hierarchical mesoporous MOFs. The microporous M-DOBDC (M = Ni, Co) showed a saturation uptake capacity for R12 of over 4 mmol/g at a very low relative saturation pressure (P/Po) of 0.02. In contrast, the mesoporous MOF MIL-101 showed an exceptionally high uptake capacity reaching over 14 mmol/g at P/Po of 0.4. Adsorption affinity in terms of mass loading and isosteric heats of adsorption were found to generally correlate with the polarizability of the refrigerant with R12 > R22 > R13 > R14 > methane. These results suggest the possibility of exploiting MOFs for separation of azeotropic mixtures of fluorocarbons and use in eco-friendly fluorocarbon-based adsorption cooling and refrigeration applications.

  2. Hierarchical Subtopic Segmentation of Web Document


    The paper proposes a novel method for subtopics segmentation of Web document. An effective retrieval results may be obtained by using subtopics segmentation. The proposed method can segment hierarchically subtopics and identify the boundary of each subtopic. Based on the term frequency matrix, the method measures the similarity between adjacent blocks, such as paragraphs, passages. In the real-world sample experiment, the macro-averaged precision and recall reach 73.4% and 82.5%, and the micro-averaged precision and recall reach 72.9% and 83.1%. Moreover, this method is equally efficient to other Asian languages such as Japanese and Korean, as well as other western languages.

  3. Regularized multivariate regression models with skew-t error distributions

    Chen, Lianfu


    We consider regularization of the parameters in multivariate linear regression models with the errors having a multivariate skew-t distribution. An iterative penalized likelihood procedure is proposed for constructing sparse estimators of both the regression coefficient and inverse scale matrices simultaneously. The sparsity is introduced through penalizing the negative log-likelihood by adding L1-penalties on the entries of the two matrices. Taking advantage of the hierarchical representation of skew-t distributions, and using the expectation conditional maximization (ECM) algorithm, we reduce the problem to penalized normal likelihood and develop a procedure to minimize the ensuing objective function. Using a simulation study the performance of the method is assessed, and the methodology is illustrated using a real data set with a 24-dimensional response vector. © 2014 Elsevier B.V.

  4. Hierarchically Nanoporous Bioactive Glasses for High Efficiency Immobilization of Enzymes

    He, W.; Min, D.D.; Zhang, X.D.


    Bioactive glasses with hierarchical nanoporosity and structures have been heavily involved in immobilization of enzymes. Because of meticulous design and ingenious hierarchical nanostructuration of porosities from yeast cell biotemplates, hierarchically nanostructured porous bioactive glasses can...

  5. Registration Cost Performance Analysis of a Hierarchical Mobile Internet Protocol Network

    XU Kai; JI Hong; YUE Guang-xin


    On the basis of introducing principles for hierarchical mobile Internet protocol networks, the registration cost performance in this network model is analyzed in detail. Furthermore, the functional relationship is also established in the paper among registration cost, hierarchical level number and the maximum handover time for gateway foreign agent regional registration. At last, the registration cost of the hierarchical mobile Internet protocol network is compared with that of the traditional mobile Internet protocol. Theoretic analysis and computer simulation results show that the hierarchical level number and the maximum handover times can both affect the registration cost importantly, when suitable values of which are chosen, the hierarchical network can significantly improve the registration performance compared with the traditional mobile IP.

  6. Predicting allergic contact dermatitis: a hierarchical structure activity relationship (SAR) approach to chemical classification using topological and quantum chemical descriptors

    Basak, Subhash C.; Mills, Denise; Hawkins, Douglas M.


    A hierarchical classification study was carried out based on a set of 70 chemicals—35 which produce allergic contact dermatitis (ACD) and 35 which do not. This approach was implemented using a regular ridge regression computer code, followed by conversion of regression output to binary data values. The hierarchical descriptor classes used in the modeling include topostructural (TS), topochemical (TC), and quantum chemical (QC), all of which are based solely on chemical structure. The concordance, sensitivity, and specificity are reported. The model based on the TC descriptors was found to be the best, while the TS model was extremely poor.

  7. Hierarchical set of models to estimate soil thermal diffusivity

    Arkhangelskaya, Tatiana; Lukyashchenko, Ksenia


    Soil thermal properties significantly affect the land-atmosphere heat exchange rates. Intra-soil heat fluxes depend both on temperature gradients and soil thermal conductivity. Soil temperature changes due to energy fluxes are determined by soil specific heat. Thermal diffusivity is equal to thermal conductivity divided by volumetric specific heat and reflects both the soil ability to transfer heat and its ability to change temperature when heat is supplied or withdrawn. The higher soil thermal diffusivity is, the thicker is the soil/ground layer in which diurnal and seasonal temperature fluctuations are registered and the smaller are the temperature fluctuations at the soil surface. Thermal diffusivity vs. moisture dependencies for loams, sands and clays of the East European Plain were obtained using the unsteady-state method. Thermal diffusivity of different soils differed greatly, and for a given soil it could vary by 2, 3 or even 5 times depending on soil moisture. The shapes of thermal diffusivity vs. moisture dependencies were different: peak curves were typical for sandy soils and sigmoid curves were typical for loamy and especially for compacted soils. The lowest thermal diffusivities and the smallest range of their variability with soil moisture were obtained for clays with high humus content. Hierarchical set of models will be presented, allowing an estimate of soil thermal diffusivity from available data on soil texture, moisture, bulk density and organic carbon. When developing these models the first step was to parameterize the experimental thermal diffusivity vs. moisture dependencies with a 4-parameter function; the next step was to obtain regression formulas to estimate the function parameters from available data on basic soil properties; the last step was to evaluate the accuracy of suggested models using independent data on soil thermal diffusivity. The simplest models were based on soil bulk density and organic carbon data and provided different

  8. Multiple Regression and Its Discontents

    Snell, Joel C.; Marsh, Mitchell


    Multiple regression is part of a larger statistical strategy originated by Gauss. The authors raise questions about the theory and suggest some changes that would make room for Mandelbrot and Serendipity.

  9. Multiple Regression and Its Discontents

    Snell, Joel C.; Marsh, Mitchell


    Multiple regression is part of a larger statistical strategy originated by Gauss. The authors raise questions about the theory and suggest some changes that would make room for Mandelbrot and Serendipity.

  10. Regression methods for medical research

    Tai, Bee Choo


    Regression Methods for Medical Research provides medical researchers with the skills they need to critically read and interpret research using more advanced statistical methods. The statistical requirements of interpreting and publishing in medical journals, together with rapid changes in science and technology, increasingly demands an understanding of more complex and sophisticated analytic procedures.The text explains the application of statistical models to a wide variety of practical medical investigative studies and clinical trials. Regression methods are used to appropriately answer the

  11. Forecasting with Dynamic Regression Models

    Pankratz, Alan


    One of the most widely used tools in statistical forecasting, single equation regression models is examined here. A companion to the author's earlier work, Forecasting with Univariate Box-Jenkins Models: Concepts and Cases, the present text pulls together recent time series ideas and gives special attention to possible intertemporal patterns, distributed lag responses of output to input series and the auto correlation patterns of regression disturbance. It also includes six case studies.

  12. Wrong Signs in Regression Coefficients

    McGee, Holly


    When using parametric cost estimation, it is important to note the possibility of the regression coefficients having the wrong sign. A wrong sign is defined as a sign on the regression coefficient opposite to the researcher's intuition and experience. Some possible causes for the wrong sign discussed in this paper are a small range of x's, leverage points, missing variables, multicollinearity, and computational error. Additionally, techniques for determining the cause of the wrong sign are given.

  13. From Rasch scores to regression

    Christensen, Karl Bang


    Rasch models provide a framework for measurement and modelling latent variables. Having measured a latent variable in a population a comparison of groups will often be of interest. For this purpose the use of observed raw scores will often be inadequate because these lack interval scale propertie....... This paper compares two approaches to group comparison: linear regression models using estimated person locations as outcome variables and latent regression models based on the distribution of the score....

  14. Multi-objective hierarchical genetic algorithms for multilevel redundancy allocation optimization

    Kumar, Ranjan [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail:; Izui, Kazuhiro [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail:; Yoshimura, Masataka [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail:; Nishiwaki, Shinji [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail:


    Multilevel redundancy allocation optimization problems (MRAOPs) occur frequently when attempting to maximize the system reliability of a hierarchical system, and almost all complex engineering systems are hierarchical. Despite their practical significance, limited research has been done concerning the solving of simple MRAOPs. These problems are not only NP hard but also involve hierarchical design variables. Genetic algorithms (GAs) have been applied in solving MRAOPs, since they are computationally efficient in solving such problems, unlike exact methods, but their applications has been confined to single-objective formulation of MRAOPs. This paper proposes a multi-objective formulation of MRAOPs and a methodology for solving such problems. In this methodology, a hierarchical GA framework for multi-objective optimization is proposed by introducing hierarchical genotype encoding for design variables. In addition, we implement the proposed approach by integrating the hierarchical genotype encoding scheme with two popular multi-objective genetic algorithms (MOGAs)-the strength Pareto evolutionary genetic algorithm (SPEA2) and the non-dominated sorting genetic algorithm (NSGA-II). In the provided numerical examples, the proposed multi-objective hierarchical approach is applied to solve two hierarchical MRAOPs, a 4- and a 3-level problems. The proposed method is compared with a single-objective optimization method that uses a hierarchical genetic algorithm (HGA), also applied to solve the 3- and 4-level problems. The results show that a multi-objective hierarchical GA (MOHGA) that includes elitism and mechanism for diversity preserving performed better than a single-objective GA that only uses elitism, when solving large-scale MRAOPs. Additionally, the experimental results show that the proposed method with NSGA-II outperformed the proposed method with SPEA2 in finding useful Pareto optimal solution sets.

  15. Spectral characterization of hierarchical network modularity and limits of modularity detection.

    Somwrita Sarkar

    Full Text Available Many real world networks are reported to have hierarchically modular organization. However, there exists no algorithm-independent metric to characterize hierarchical modularity in a complex system. The main results of the paper are a set of methods to address this problem. First, classical results from random matrix theory are used to derive the spectrum of a typical stochastic block model hierarchical modular network form. Second, it is shown that hierarchical modularity can be fingerprinted using the spectrum of its largest eigenvalues and gaps between clusters of closely spaced eigenvalues that are well separated from the bulk distribution of eigenvalues around the origin. Third, some well-known results on fingerprinting non-hierarchical modularity in networks automatically follow as special cases, threreby unifying these previously fragmented results. Finally, using these spectral results, it is found that the limits of detection of modularity can be empirically established by studying the mean values of the largest eigenvalues and the limits of the bulk distribution of eigenvalues for an ensemble of networks. It is shown that even when modularity and hierarchical modularity are present in a weak form in the network, they are impossible to detect, because some of the leading eigenvalues fall within the bulk distribution. This provides a threshold for the detection of modularity. Eigenvalue distributions of some technological, social, and biological networks are studied, and the implications of detecting hierarchical modularity in real world networks are discussed.

  16. Streamflow forecasting using functional regression

    Masselot, Pierre; Dabo-Niang, Sophie; Chebana, Fateh; Ouarda, Taha B. M. J.


    Streamflow, as a natural phenomenon, is continuous in time and so are the meteorological variables which influence its variability. In practice, it can be of interest to forecast the whole flow curve instead of points (daily or hourly). To this end, this paper introduces the functional linear models and adapts it to hydrological forecasting. More precisely, functional linear models are regression models based on curves instead of single values. They allow to consider the whole process instead of a limited number of time points or features. We apply these models to analyse the flow volume and the whole streamflow curve during a given period by using precipitations curves. The functional model is shown to lead to encouraging results. The potential of functional linear models to detect special features that would have been hard to see otherwise is pointed out. The functional model is also compared to the artificial neural network approach and the advantages and disadvantages of both models are discussed. Finally, future research directions involving the functional model in hydrology are presented.

  17. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; Teng, Zhenke; Liu, Chain T.; Asta, Mark D.; Gao, Yanfei; Dunand, David C.; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E.; Liaw, Peter K.


    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. The present research will broaden the applications of ferritic alloys to higher temperatures. PMID:26548303

  18. Fabrication and analysis of gecko-inspired hierarchical polymer nanosetae.

    Ho, Audrey Yoke Yee; Yeo, Lip Pin; Lam, Yee Cheong; Rodríguez, Isabel


    A gecko's superb ability to adhere to surfaces is widely credited to the large attachment area of the hierarchical and fibrillar structure on its feet. The combination of these two features provides the necessary compliance for the gecko toe-pad to effectively engage a high percentage of the spatulae at each step to any kind of surface topography. With the use of multi-tiered porous anodic alumina template and capillary force assisted nanoimprinting, we have successfully fabricated a gecko-inspired hierarchical topography of branched nanopillars on a stiff polymer. We also demonstrated that the hierarchical topography improved the shear adhesion force over a topography of linear structures by 150%. A systematic analysis to understand the phenomenon was performed. It was determined that the effective stiffness of the hierarchical branched structure was lower than that of the linear structure. The reduction in effective stiffness favored a more efficient bending of the branched topography and a better compliance to a test surface, hence resulting in a higher area of residual deformation. As the area of residual deformation increased, the shear adhesion force emulated. The branched pillar topography also showed a marked increase in hydrophobicity, which is an essential property in the practical applications of these structures for good self-cleaning in dry adhesion conditions.

  19. Cellular interactions on hierarchical poly(ε-caprolactone) nanowire micropatterns.

    Du, Ke; Gan, Zhihua


    A double template method to fabricate poly(ε-caprolactone) (PCL) hierarchical patterned nanowires with highly ordered nano- and microscaled topography was developed in this study. The topography of PCL film with a patterned nanowire surface can be easily and well controlled by changing the template and melting time of PCL film on the templates. The surface morphology, water contact angle, protein adsorption, and cell growth behavior on the PCL films with different surface structures were well studied. The results revealed that the PCL nanowire arrays and the hierarchical patterned nanowires showed higher capability of protein adsorption and better cell growth than the PCL film with smooth surface. Typically, the PCL surface with hierarchical nanowire patterns was most favorable for cell attachment and proliferation. The present study was innovative at fabrication of polymer substrates with hierarchical architecture of nanowires inside microscaled islands to gain insight into the cell response to this unique topography and to develop a new method of constructing the bionic surface for tissue engineering applications.

  20. Synchronization patterns: from network motifs to hierarchical networks

    Krishnagopal, Sanjukta; Lehnert, Judith; Poel, Winnie; Zakharova, Anna; Schöll, Eckehard


    We investigate complex synchronization patterns such as cluster synchronization and partial amplitude death in networks of coupled Stuart-Landau oscillators with fractal connectivities. The study of fractal or self-similar topology is motivated by the network of neurons in the brain. This fractal property is well represented in hierarchical networks, for which we present three different models. In addition, we introduce an analytical eigensolution method and provide a comprehensive picture of the interplay of network topology and the corresponding network dynamics, thus allowing us to predict the dynamics of arbitrarily large hierarchical networks simply by analysing small network motifs. We also show that oscillation death can be induced in these networks, even if the coupling is symmetric, contrary to previous understanding of oscillation death. Our results show that there is a direct correlation between topology and dynamics: hierarchical networks exhibit the corresponding hierarchical dynamics. This helps bridge the gap between mesoscale motifs and macroscopic networks. This article is part of the themed issue 'Horizons of cybernetical physics'.

  1. Hierarchical imaging of the human knee

    Schulz, Georg; Götz, Christian; Deyhle, Hans; Müller-Gerbl, Magdalena; Zanette, Irene; Zdora, Marie-Christine; Khimchenko, Anna; Thalmann, Peter; Rack, Alexander; Müller, Bert


    Among the clinically relevant imaging techniques, computed tomography (CT) reaches the best spatial resolution. Sub-millimeter voxel sizes are regularly obtained. For investigations on true micrometer level lab-based μCT has become gold standard. The aim of the present study is the hierarchical investigation of a human knee post mortem using hard X-ray μCT. After the visualization of the entire knee using a clinical CT with a spatial resolution on the sub-millimeter range, a hierarchical imaging study was performed using a laboratory μCT system nanotom m. Due to the size of the whole knee the pixel length could not be reduced below 65 μm. These first two data sets were directly compared after a rigid registration using a cross-correlation algorithm. The μCT data set allowed an investigation of the trabecular structures of the bones. The further reduction of the pixel length down to 25 μm could be achieved by removing the skin and soft tissues and measuring the tibia and the femur separately. True micrometer resolution could be achieved after extracting cylinders of several millimeters diameters from the two bones. The high resolution scans revealed the mineralized cartilage zone including the tide mark line as well as individual calcified chondrocytes. The visualization of soft tissues including cartilage, was arranged by X-ray grating interferometry (XGI) at ESRF and Diamond Light Source. Whereas the high-energy measurements at ESRF allowed the simultaneous visualization of soft and hard tissues, the low-energy results from Diamond Light Source made individual chondrocytes within the cartilage visual.

  2. Regression Benchmarking: An Approach to Quality Assurance in Performance


    The paper presents a short summary of our work in the area of regression benchmarking and its application to software development. Specially, we explain the concept of regression benchmarking, the requirements for employing regression testing in a software project, and methods used for analyzing the vast amounts of data resulting from repeated benchmarking. We present the application of regression benchmarking on a real software project and conclude with a glimpse at the challenges for the fu...

  3. A Matlab program for stepwise regression

    Yanhong Qi


    Full Text Available The stepwise linear regression is a multi-variable regression for identifying statistically significant variables in the linear regression equation. In present study, we presented the Matlab program of stepwise regression.

  4. The comparison of robust partial least squares regression with robust principal component regression on a real

    Polat, Esra; Gunay, Suleyman


    One of the problems encountered in Multiple Linear Regression (MLR) is multicollinearity, which causes the overestimation of the regression parameters and increase of the variance of these parameters. Hence, in case of multicollinearity presents, biased estimation procedures such as classical Principal Component Regression (CPCR) and Partial Least Squares Regression (PLSR) are then performed. SIMPLS algorithm is the leading PLSR algorithm because of its speed, efficiency and results are easier to interpret. However, both of the CPCR and SIMPLS yield very unreliable results when the data set contains outlying observations. Therefore, Hubert and Vanden Branden (2003) have been presented a robust PCR (RPCR) method and a robust PLSR (RPLSR) method called RSIMPLS. In RPCR, firstly, a robust Principal Component Analysis (PCA) method for high-dimensional data on the independent variables is applied, then, the dependent variables are regressed on the scores using a robust regression method. RSIMPLS has been constructed from a robust covariance matrix for high-dimensional data and robust linear regression. The purpose of this study is to show the usage of RPCR and RSIMPLS methods on an econometric data set, hence, making a comparison of two methods on an inflation model of Turkey. The considered methods have been compared in terms of predictive ability and goodness of fit by using a robust Root Mean Squared Error of Cross-validation (R-RMSECV), a robust R2 value and Robust Component Selection (RCS) statistic.

  5. Hierarchically structured, nitrogen-doped carbon membranes

    Wang, Hong


    The present invention is a structure, method of making and method of use for a novel macroscopic hierarchically structured, nitrogen-doped, nano-porous carbon membrane (HNDCMs) with asymmetric and hierarchical pore architecture that can be produced on a large-scale approach. The unique HNDCM holds great promise as components in separation and advanced carbon devices because they could offer unconventional fluidic transport phenomena on the nanoscale. Overall, the invention set forth herein covers a hierarchically structured, nitrogen-doped carbon membranes and methods of making and using such a membranes.

  6. A Model for Slicing JAVA Programs Hierarchically

    Bi-Xin Li; Xiao-Cong Fan; Jun Pang; Jian-Jun Zhao


    Program slicing can be effectively used to debug, test, analyze, understand and maintain objectoriented software. In this paper, a new slicing model is proposed to slice Java programs based on their inherent hierarchical feature. The main idea of hierarchical slicing is to slice programs in a stepwise way, from package level, to class level, method level, and finally up to statement level. The stepwise slicing algorithm and the related graph reachability algorithms are presented, the architecture of the Java program Analyzing Tool (JATO) based on hierarchical slicing model is provided, the applications and a small case study are also discussed.

  7. Hierarchical analysis of acceptable use policies

    P. A. Laughton


    Full Text Available Acceptable use policies (AUPs are vital tools for organizations to protect themselves and their employees from misuse of computer facilities provided. A well structured, thorough AUP is essential for any organization. It is impossible for an effective AUP to deal with every clause and remain readable. For this reason, some sections of an AUP carry more weight than others, denoting importance. The methodology used to develop the hierarchical analysis is a literature review, where various sources were consulted. This hierarchical approach to AUP analysis attempts to highlight important sections and clauses dealt with in an AUP. The emphasis of the hierarchal analysis is to prioritize the objectives of an AUP.

  8. Hierarchical modeling and analysis for spatial data

    Banerjee, Sudipto; Gelfand, Alan E


    Among the many uses of hierarchical modeling, their application to the statistical analysis of spatial and spatio-temporal data from areas such as epidemiology And environmental science has proven particularly fruitful. Yet to date, the few books that address the subject have been either too narrowly focused on specific aspects of spatial analysis, or written at a level often inaccessible to those lacking a strong background in mathematical statistics.Hierarchical Modeling and Analysis for Spatial Data is the first accessible, self-contained treatment of hierarchical methods, modeling, and dat

  9. Hierarchical Semiconductor Oxide Photo catalyst:A Case of the SnO2 Microflower

    Yang Liu; Yang Jiao; Bosi Yin; Siwen Zhang; Fengyu Qu; Xiang Wu∗


    Hierarchically assembled SnO2 microflowers were synthesized by a facile hydrothermal process. Field emission scanning electron microscope results showed these hierarchical nanostructures were built from two dimensional nanosheets with the thicknesses of about 50 nm. Photoluminescence spectrum of the as-obtained products demonstrated a strong visual emission peak at 564 nm. The photochemical measurement results indicated that the as-prepared sample exhibits excellent photocatalytic performance. These three di-mensional SnO2 hierarchical nanostructures may have potential applications in waste water purification.

  10. Biplots in Reduced-Rank Regression

    Braak, ter C.J.F.; Looman, C.W.N.


    Regression problems with a number of related response variables are typically analyzed by separate multiple regressions. This paper shows how these regressions can be visualized jointly in a biplot based on reduced-rank regression. Reduced-rank regression combines multiple regression and principal c

  11. Regression Test Selection for C# Programs

    Nashat Mansour


    Full Text Available We present a regression test selection technique for C# programs. C# is fairly new and is often used within the Microsoft .Net framework to give programmers a solid base to develop a variety of applications. Regression testing is done after modifying a program. Regression test selection refers to selecting a suitable subset of test cases from the original test suite in order to be rerun. It aims to provide confidence that the modifications are correct and did not affect other unmodified parts of the program. The regression test selection technique presented in this paper accounts for C#.Net specific features. Our technique is based on three phases; the first phase builds an Affected Class Diagram consisting of classes that are affected by the change in the source code. The second phase builds a C# Interclass Graph (CIG from the affected class diagram based on C# specific features. In this phase, we reduce the number of selected test cases. The third phase involves further reduction and a new metric for assigning weights to test cases for prioritizing the selected test cases. We have empirically validated the proposed technique by using case studies. The empirical results show the usefulness of the proposed regression testing technique for C#.Net programs.

  12. Interpretation of Standardized Regression Coefficients in Multiple Regression.

    Thayer, Jerome D.

    The extent to which standardized regression coefficients (beta values) can be used to determine the importance of a variable in an equation was explored. The beta value and the part correlation coefficient--also called the semi-partial correlation coefficient and reported in squared form as the incremental "r squared"--were compared for…


    Andrey V. Masloboev


    Full Text Available Subject of research. The research goal and scope are development of methods and software for mathematical and computer modeling of the regional security information support systems as multilevel hierarchical systems. Such systems are characterized by loosely formalization, multiple-aspect of descendent system processes and their interconnectivity, high level dynamics and uncertainty. The research methodology is based on functional-target approach and principles of multilevel hierarchical system theory. The work considers analysis and structural-algorithmic synthesis problem-solving of the multilevel computer-aided systems intended for management and decision-making information support in the field of regional security. Main results. A hierarchical control multilevel model of regional socio-economic system complex security has been developed. The model is based on functional-target approach and provides both formal statement and solving, and practical implementation of the automated information system structure and control algorithms synthesis problems of regional security management optimal in terms of specified criteria. An approach for intralevel and interlevel coordination problem-solving in the multilevel hierarchical systems has been proposed on the basis of model application. The coordination is provided at the expense of interconnection requirements satisfaction between the functioning quality indexes (objective functions, which are optimized by the different elements of multilevel systems. That gives the possibility for sufficient coherence reaching of the local decisions, being made on the different control levels, under decentralized decision-making and external environment high dynamics. Recurrent model application provides security control mathematical models formation of regional socioeconomic systems, functioning under uncertainty. Practical relevance. The model implementation makes it possible to automate synthesis realization of

  14. Multicollinearity in cross-sectional regressions

    Lauridsen, Jørgen; Mur, Jesùs


    The paper examines robustness of results from cross-sectional regression paying attention to the impact of multicollinearity. It is well known that the reliability of estimators (least-squares or maximum-likelihood) gets worse as the linear relationships between the regressors become more acute. We resolve the discussion in a spatial context, looking closely into the behaviour shown, under several unfavourable conditions, by the most outstanding misspecification tests when collinear variables are added to the regression. A Monte Carlo simulation is performed. The conclusions point to the fact that these statistics react in different ways to the problems posed.

  15. Inferential Models for Linear Regression

    Zuoyi Zhang


    Full Text Available Linear regression is arguably one of the most widely used statistical methods in applications.  However, important problems, especially variable selection, remain a challenge for classical modes of inference.  This paper develops a recently proposed framework of inferential models (IMs in the linear regression context.  In general, an IM is able to produce meaningful probabilistic summaries of the statistical evidence for and against assertions about the unknown parameter of interest and, moreover, these summaries are shown to be properly calibrated in a frequentist sense.  Here we demonstrate, using simple examples, that the IM framework is promising for linear regression analysis --- including model checking, variable selection, and prediction --- and for uncertain inference in general.

  16. Competing Risks Quantile Regression at Work

    Dlugosz, Stephan; Lo, Simon M. S.; Wilke, Ralf


    Despite its emergence as a frequently used method for the empirical analysis of multivariate data, quantile regression is yet to become a mainstream tool for the analysis of duration data. We present a pioneering empirical study on the grounds of a competing risks quantile regression model. We us...... into the distribution of transitions out of maternity leave. It is found that cumulative incidences implied by the quantile regression model differ from those implied by a proportional hazards model. To foster the use of the model, we make an R-package (cmprskQR) available....... large-scale maternity duration data with multiple competing risks derived from German linked social security records to analyse how public policies are related to the length of economic inactivity of young mothers after giving birth. Our results show that the model delivers detailed insights...




    Full Text Available Ordinary least square is a parameter estimations for minimizing residual sum of squares. If the multicollinearity was found in the data, unbias estimator with minimum variance could not be reached. Multicollinearity is a linear correlation between independent variabels in model. Jackknife Ridge Regression(JRR as an extension of Generalized Ridge Regression (GRR for solving multicollinearity.  Generalized Ridge Regression is used to overcome the bias of estimators caused of presents multicollinearity by adding different bias parameter for each independent variabel in least square equation after transforming the data into an orthoghonal form. Beside that, JRR can  reduce the bias of the ridge estimator. The result showed that JRR model out performs GRR model.

  18. Principal component regression for crop yield estimation

    Suryanarayana, T M V


    This book highlights the estimation of crop yield in Central Gujarat, especially with regard to the development of Multiple Regression Models and Principal Component Regression (PCR) models using climatological parameters as independent variables and crop yield as a dependent variable. It subsequently compares the multiple linear regression (MLR) and PCR results, and discusses the significance of PCR for crop yield estimation. In this context, the book also covers Principal Component Analysis (PCA), a statistical procedure used to reduce a number of correlated variables into a smaller number of uncorrelated variables called principal components (PC). This book will be helpful to the students and researchers, starting their works on climate and agriculture, mainly focussing on estimation models. The flow of chapters takes the readers in a smooth path, in understanding climate and weather and impact of climate change, and gradually proceeds towards downscaling techniques and then finally towards development of ...

  19. Panel data specifications in nonparametric kernel regression

    Czekaj, Tomasz Gerard; Henningsen, Arne

    parametric panel data estimators to analyse the production technology of Polish crop farms. The results of our nonparametric kernel regressions generally differ from the estimates of the parametric models but they only slightly depend on the choice of the kernel functions. Based on economic reasoning, we...

  20. Nonparametric regression with filtered data

    Linton, Oliver; Nielsen, Jens Perch; Van Keilegom, Ingrid; 10.3150/10-BEJ260


    We present a general principle for estimating a regression function nonparametrically, allowing for a wide variety of data filtering, for example, repeated left truncation and right censoring. Both the mean and the median regression cases are considered. The method works by first estimating the conditional hazard function or conditional survivor function and then integrating. We also investigate improved methods that take account of model structure such as independent errors and show that such methods can improve performance when the model structure is true. We establish the pointwise asymptotic normality of our estimators.

  1. Logistic regression for circular data

    Al-Daffaie, Kadhem; Khan, Shahjahan


    This paper considers the relationship between a binary response and a circular predictor. It develops the logistic regression model by employing the linear-circular regression approach. The maximum likelihood method is used to estimate the parameters. The Newton-Raphson numerical method is used to find the estimated values of the parameters. A data set from weather records of Toowoomba city is analysed by the proposed methods. Moreover, a simulation study is considered. The R software is used for all computations and simulations.

  2. Quasi-least squares regression

    Shults, Justine


    Drawing on the authors' substantial expertise in modeling longitudinal and clustered data, Quasi-Least Squares Regression provides a thorough treatment of quasi-least squares (QLS) regression-a computational approach for the estimation of correlation parameters within the framework of generalized estimating equations (GEEs). The authors present a detailed evaluation of QLS methodology, demonstrating the advantages of QLS in comparison with alternative methods. They describe how QLS can be used to extend the application of the traditional GEE approach to the analysis of unequally spaced longitu

  3. A tutorial on Bayesian Normal linear regression

    Klauenberg, Katy; Wübbeler, Gerd; Mickan, Bodo; Harris, Peter; Elster, Clemens


    Regression is a common task in metrology and often applied to calibrate instruments, evaluate inter-laboratory comparisons or determine fundamental constants, for example. Yet, a regression model cannot be uniquely formulated as a measurement function, and consequently the Guide to the Expression of Uncertainty in Measurement (GUM) and its supplements are not applicable directly. Bayesian inference, however, is well suited to regression tasks, and has the advantage of accounting for additional a priori information, which typically robustifies analyses. Furthermore, it is anticipated that future revisions of the GUM shall also embrace the Bayesian view. Guidance on Bayesian inference for regression tasks is largely lacking in metrology. For linear regression models with Gaussian measurement errors this tutorial gives explicit guidance. Divided into three steps, the tutorial first illustrates how a priori knowledge, which is available from previous experiments, can be translated into prior distributions from a specific class. These prior distributions have the advantage of yielding analytical, closed form results, thus avoiding the need to apply numerical methods such as Markov Chain Monte Carlo. Secondly, formulas for the posterior results are given, explained and illustrated, and software implementations are provided. In the third step, Bayesian tools are used to assess the assumptions behind the suggested approach. These three steps (prior elicitation, posterior calculation, and robustness to prior uncertainty and model adequacy) are critical to Bayesian inference. The general guidance given here for Normal linear regression tasks is accompanied by a simple, but real-world, metrological example. The calibration of a flow device serves as a running example and illustrates the three steps. It is shown that prior knowledge from previous calibrations of the same sonic nozzle enables robust predictions even for extrapolations.

  4. Packaging glass with hierarchically nanostructured surface

    He, Jr-Hau


    An optical device includes an active region and packaging glass located on top of the active region. A top surface of the packaging glass includes hierarchical nanostructures comprised of honeycombed nanowalls (HNWs) and nanorod (NR) structures extending from the HNWs.

  5. Generation of hierarchically correlated multivariate symbolic sequences

    Tumminello, Mi; Mantegna, R N


    We introduce an algorithm to generate multivariate series of symbols from a finite alphabet with a given hierarchical structure of similarities. The target hierarchical structure of similarities is arbitrary, for instance the one obtained by some hierarchical clustering procedure as applied to an empirical matrix of Hamming distances. The algorithm can be interpreted as the finite alphabet equivalent of the recently introduced hierarchically nested factor model (M. Tumminello et al. EPL 78 (3) 30006 (2007)). The algorithm is based on a generating mechanism that is different from the one used in the mutation rate approach. We apply the proposed methodology for investigating the relationship between the bootstrap value associated with a node of a phylogeny and the probability of finding that node in the true phylogeny.


    Demian Horia


    Full Text Available In this paper I will present different types of representation, of hierarchical information inside a relational database. I also will compare them to find the best organization for specific scenarios.

  7. Hierarchical Network Design Using Simulated Annealing

    Thomadsen, Tommy; Clausen, Jens


    The hierarchical network problem is the problem of finding the least cost network, with nodes divided into groups, edges connecting nodes in each groups and groups ordered in a hierarchy. The idea of hierarchical networks comes from telecommunication networks where hierarchies exist. Hierarchical...... networks are described and a mathematical model is proposed for a two level version of the hierarchical network problem. The problem is to determine which edges should connect nodes, and how demand is routed in the network. The problem is solved heuristically using simulated annealing which as a sub......-algorithm uses a construction algorithm to determine edges and route the demand. Performance for different versions of the algorithm are reported in terms of runtime and quality of the solutions. The algorithm is able to find solutions of reasonable quality in approximately 1 hour for networks with 100 nodes....

  8. When to Use Hierarchical Linear Modeling

    Veronika Huta


    Previous publications on hierarchical linear modeling (HLM) have provided guidance on how to perform the analysis, yet there is relatively little information on two questions that arise even before analysis...

  9. An introduction to hierarchical linear modeling

    Woltman, Heather; Feldstain, Andrea; MacKay, J. Christine; Rocchi, Meredith


    This tutorial aims to introduce Hierarchical Linear Modeling (HLM). A simple explanation of HLM is provided that describes when to use this statistical technique and identifies key factors to consider before conducting this analysis...

  10. Conservation Laws in the Hierarchical Model

    Beijeren, H. van; Gallavotti, G.; Knops, H.


    An exposition of the renormalization-group equations for the hierarchical model is given. Attention is drawn to some properties of the spin distribution functions which are conserved under the action of the renormalization group.

  11. Hierarchical DSE for multi-ASIP platforms

    Micconi, Laura; Corvino, Rosilde; Gangadharan, Deepak;


    This work proposes a hierarchical Design Space Exploration (DSE) for the design of multi-processor platforms targeted to specific applications with strict timing and area constraints. In particular, it considers platforms integrating multiple Application Specific Instruction Set Processors (ASIPs...

  12. Köppen versus the computer: an objective comparison between the Köppen-Geiger climate classification and a multivariate regression tree

    A. J. Cannon


    Full Text Available A global climate classification is defined using a multivariate regression tree (MRT. The MRT algorithm is automated, which removes the need for a practitioner to manually define the classes; it is hierarchical, which allows a series of nested classes to be defined; and it is rule-based, which allows climate classes to be unambiguously defined and easily interpreted. Climate variables used in the MRT are restricted to those from the Köppen-Geiger climate classification. The result is a hierarchical, rule-based climate classification that can be directly compared against the traditional system. An objective comparison between the two climate classifications at their 5, 13, and 30 class hierarchical levels indicates that both perform well in terms of identifying regions of homogeneous temperature variability, although the MRT still generally outperforms the Köppen-Geiger system. In terms of precipitation discrimination, the Köppen-Geiger classification performs poorly relative to the MRT. The data and algorithm implementation used in this study are freely available. Thus, the MRT climate classification offers instructors and students in the geosciences a simple instrument for exploring modern, computer-based climatological methods.

  13. Hierarchical organization versus self-organization

    Busseniers, Evo


    In this paper we try to define the difference between hierarchical organization and self-organization. Organization is defined as a structure with a function. So we can define the difference between hierarchical organization and self-organization both on the structure as on the function. In the next two chapters these two definitions are given. For the structure we will use some existing definitions in graph theory, for the function we will use existing theory on (self-)organization. In the t...

  14. Hierarchical self-organization of tectonic plates


    The Earth's surface is subdivided into eight large tectonic plates and many smaller ones. We reconstruct the plate tessellation history and demonstrate that both large and small plates display two distinct hierarchical patterns, described by different power-law size-relationships. While small plates display little organisational change through time, the structure of the large plates oscillate between minimum and maximum hierarchical tessellations. The organization of large plates rapidly chan...

  15. Angelic Hierarchical Planning: Optimal and Online Algorithms


    restrict our attention to plans in I∗(Act, s0). Definition 2. ( Parr and Russell , 1998) A plan ah∗ is hierarchically optimal iff ah∗ = argmina∈I∗(Act,s0):T...Murdock, Dan Wu, and Fusun Yaman. SHOP2: An HTN planning system. JAIR, 20:379–404, 2003. Ronald Parr and Stuart Russell . Reinforcement Learning with...Angelic Hierarchical Planning: Optimal and Online Algorithms Bhaskara Marthi Stuart J. Russell Jason Wolfe Electrical Engineering and Computer

  16. Hierarchical Needs, Income Comparisons and Happiness Levels

    Drakopoulos, Stavros


    The cornerstone of the hierarchical approach is that there are some basic human needs which must be satisfied before non-basic needs come into the picture. The hierarchical structure of needs implies that the satisfaction of primary needs provides substantial increases to individual happiness compared to the subsequent satisfaction of secondary needs. This idea can be combined with the concept of comparison income which means that individuals compare rewards with individuals with similar char...

  17. Hierarchical group dynamics in pigeon flocks.

    Nagy, Máté; Akos, Zsuzsa; Biro, Dora; Vicsek, Tamás


    Animals that travel together in groups display a variety of fascinating motion patterns thought to be the result of delicate local interactions among group members. Although the most informative way of investigating and interpreting collective movement phenomena would be afforded by the collection of high-resolution spatiotemporal data from moving individuals, such data are scarce and are virtually non-existent for long-distance group motion within a natural setting because of the associated technological difficulties. Here we present results of experiments in which track logs of homing pigeons flying in flocks of up to 10 individuals have been obtained by high-resolution lightweight GPS devices and analysed using a variety of correlation functions inspired by approaches common in statistical physics. We find a well-defined hierarchy among flock members from data concerning leading roles in pairwise interactions, defined on the basis of characteristic delay times between birds' directional choices. The average spatial position of a pigeon within the flock strongly correlates with its place in the hierarchy, and birds respond more quickly to conspecifics perceived primarily through the left eye-both results revealing differential roles for birds that assume different positions with respect to flock-mates. From an evolutionary perspective, our results suggest that hierarchical organization of group flight may be more efficient than an egalitarian one, at least for those flock sizes that permit regular pairwise interactions among group members, during which leader-follower relationships are consistently manifested.

  18. Regression of lumbar disk herniation

    G. Yu Evzikov


    Full Text Available Compression of the spinal nerve root, giving rise to pain and sensory and motor disorders in the area of its innervation is the most vivid manifestation of herniated intervertebral disk. Different treatment modalities, including neurosurgery, for evolving these conditions are discussed. There has been recent evidence that spontaneous regression of disk herniation can regress. The paper describes a female patient with large lateralized disc extrusion that has caused compression of the nerve root S1, leading to obvious myotonic and radicular syndrome. Magnetic resonance imaging has shown that the clinical manifestations of discogenic radiculopathy, as well myotonic syndrome and morphological changes completely regressed 8 months later. The likely mechanism is inflammation-induced resorption of a large herniated disk fragment, which agrees with the data available in the literature. A decision to perform neurosurgery for which the patient had indications was made during her first consultation. After regression of discogenic radiculopathy, there was only moderate pain caused by musculoskeletal diseases (facet syndrome, piriformis syndrome that were successfully eliminated by minimally invasive techniques. 

  19. Heteroscedasticity checks for regression models


    For checking on heteroscedasticity in regression models, a unified approach is proposed to constructing test statistics in parametric and nonparametric regression models. For nonparametric regression, the test is not affected sensitively by the choice of smoothing parameters which are involved in estimation of the nonparametric regression function. The limiting null distribution of the test statistic remains the same in a wide range of the smoothing parameters. When the covariate is one-dimensional, the tests are, under some conditions, asymptotically distribution-free. In the high-dimensional cases, the validity of bootstrap approximations is investigated. It is shown that a variant of the wild bootstrap is consistent while the classical bootstrap is not in the general case, but is applicable if some extra assumption on conditional variance of the squared error is imposed. A simulation study is performed to provide evidence of how the tests work and compare with tests that have appeared in the literature. The approach may readily be extended to handle partial linear, and linear autoregressive models.

  20. Cactus: An Introduction to Regression

    Hyde, Hartley


    When the author first used "VisiCalc," the author thought it a very useful tool when he had the formulas. But how could he design a spreadsheet if there was no known formula for the quantities he was trying to predict? A few months later, the author relates he learned to use multiple linear regression software and suddenly it all clicked into…

  1. Growth Regression and Economic Theory

    Elbers, Chris; Gunning, Jan Willem


    In this note we show that the standard, loglinear growth regression specificationis consistent with one and only one model in the class of stochastic Ramsey models. Thismodel is highly restrictive: it requires a Cobb-Douglas technology and a 100% depreciationrate and it implies that risk does not af

  2. Correlation Weights in Multiple Regression

    Waller, Niels G.; Jones, Jeff A.


    A general theory on the use of correlation weights in linear prediction has yet to be proposed. In this paper we take initial steps in developing such a theory by describing the conditions under which correlation weights perform well in population regression models. Using OLS weights as a comparison, we define cases in which the two weighting…

  3. Ridge Regression for Interactive Models.

    Tate, Richard L.


    An exploratory study of the value of ridge regression for interactive models is reported. Assuming that the linear terms in a simple interactive model are centered to eliminate non-essential multicollinearity, a variety of common models, representing both ordinal and disordinal interactions, are shown to have "orientations" that are favorable to…

  4. Hierarchical Nanoceramics for Industrial Process Sensors

    Ruud, James, A.; Brosnan, Kristen, H.; Striker, Todd; Ramaswamy, Vidya; Aceto, Steven, C.; Gao, Yan; Willson, Patrick, D.; Manoharan, Mohan; Armstrong, Eric, N., Wachsman, Eric, D.; Kao, Chi-Chang


    This project developed a robust, tunable, hierarchical nanoceramics materials platform for industrial process sensors in harsh-environments. Control of material structure at multiple length scales from nano to macro increased the sensing response of the materials to combustion gases. These materials operated at relatively high temperatures, enabling detection close to the source of combustion. It is anticipated that these materials can form the basis for a new class of sensors enabling widespread use of efficient combustion processes with closed loop feedback control in the energy-intensive industries. The first phase of the project focused on materials selection and process development, leading to hierarchical nanoceramics that were evaluated for sensing performance. The second phase focused on optimizing the materials processes and microstructures, followed by validation of performance of a prototype sensor in a laboratory combustion environment. The objectives of this project were achieved by: (1) synthesizing and optimizing hierarchical nanostructures; (2) synthesizing and optimizing sensing nanomaterials; (3) integrating sensing functionality into hierarchical nanostructures; (4) demonstrating material performance in a sensing element; and (5) validating material performance in a simulated service environment. The project developed hierarchical nanoceramic electrodes for mixed potential zirconia gas sensors with increased surface area and demonstrated tailored electrocatalytic activity operable at high temperatures enabling detection of products of combustion such as NOx close to the source of combustion. Methods were developed for synthesis of hierarchical nanostructures with high, stable surface area, integrated catalytic functionality within the structures for gas sensing, and demonstrated materials performance in harsh lab and combustion gas environments.

  5. On the development of hierarchical solution strategies for nonlinear finite element formulations

    Padovan, J.; Lackney, J.


    This paper develops a hierarchical type solution scheme which can handle the field equations associated with nonlinear finite element simulations. The overall procedure possesses various levels of application namely degree of freedom, nodal, elemental, substructural as well as global. In particular iteration, updating, assembly and solution control occurs at the various hierarchical levels. Due to the manner of formulation, the degree of matrix inversion depends on the size of the various hierarchical partitioned groups. In this context, degree of freedom partitioning requires no inversion. To benchmark the overall scheme, the results of several numerical examples are presented.

  6. Bio-inspired hierarchical patterning of silicon by laser interference lithography.

    Hu, Yaowei; Wang, Zuobin; Weng, Zhankun; Yu, Miao; Wang, Dapeng


    This paper presents a facile approach for the rapid and maskless fabrication of hierarchical structures by multibeam laser interference. In the work, three- and four-beam laser interference lithographies were proposed to fabricate ordered multiscale surface structures instead of six or more beam interference with a complicated system setup. The pitch and shape of hierarchical structures can be controlled by adjusting the parameters of incident light. The experiment results have shown that the hierarchical anisotropy and isotropy surface structures can be fabricated by this method with the control of the parameters of each incident beam, which is in accordance with the theoretical analysis and computer simulations.

  7. HIDEN: Hierarchical decomposition of regulatory networks

    Gülsoy Günhan


    Full Text Available Abstract Background Transcription factors regulate numerous cellular processes by controlling the rate of production of each gene. The regulatory relations are modeled using transcriptional regulatory networks. Recent studies have shown that such networks have an underlying hierarchical organization. We consider the problem of discovering the underlying hierarchy in transcriptional regulatory networks. Results We first transform this problem to a mixed integer programming problem. We then use existing tools to solve the resulting problem. For larger networks this strategy does not work due to rapid increase in running time and space usage. We use divide and conquer strategy for such networks. We use our method to analyze the transcriptional regulatory networks of E. coli, H. sapiens and S. cerevisiae. Conclusions Our experiments demonstrate that: (i Our method gives statistically better results than three existing state of the art methods; (ii Our method is robust against errors in the data and (iii Our method’s performance is not affected by the different topologies in the data.

  8. Hierarchical spatial models for predicting pygmy rabbit distribution and relative abundance

    Wilson, T.L.; Odei, J.B.; Hooten, M.B.; Edwards, T.C.


    Conservationists routinely use species distribution models to plan conservation, restoration and development actions, while ecologists use them to infer process from pattern. These models tend to work well for common or easily observable species, but are of limited utility for rare and cryptic species. This may be because honest accounting of known observation bias and spatial autocorrelation are rarely included, thereby limiting statistical inference of resulting distribution maps. We specified and implemented a spatially explicit Bayesian hierarchical model for a cryptic mammal species (pygmy rabbit Brachylagus idahoensis). Our approach used two levels of indirect sign that are naturally hierarchical (burrows and faecal pellets) to build a model that allows for inference on regression coefficients as well as spatially explicit model parameters. We also produced maps of rabbit distribution (occupied burrows) and relative abundance (number of burrows expected to be occupied by pygmy rabbits). The model demonstrated statistically rigorous spatial prediction by including spatial autocorrelation and measurement uncertainty. We demonstrated flexibility of our modelling framework by depicting probabilistic distribution predictions using different assumptions of pygmy rabbit habitat requirements. Spatial representations of the variance of posterior predictive distributions were obtained to evaluate heterogeneity in model fit across the spatial domain. Leave-one-out cross-validation was conducted to evaluate the overall model fit. Synthesis and applications. Our method draws on the strengths of previous work, thereby bridging and extending two active areas of ecological research: species distribution models and multi-state occupancy modelling. Our framework can be extended to encompass both larger extents and other species for which direct estimation of abundance is difficult. ?? 2010 The Authors. Journal compilation ?? 2010 British Ecological Society.

  9. A Bayesian hierarchical modeling approach for analyzing observational data from marine ecological studies.

    Qian, Song S; Craig, J Kevin; Baustian, Melissa M; Rabalais, Nancy N


    We introduce the Bayesian hierarchical modeling approach for analyzing observational data from marine ecological studies using a data set intended for inference on the effects of bottom-water hypoxia on macrobenthic communities in the northern Gulf of Mexico off the coast of Louisiana, USA. We illustrate (1) the process of developing a model, (2) the use of the hierarchical model results for statistical inference through innovative graphical presentation, and (3) a comparison to the conventional linear modeling approach (ANOVA). Our results indicate that the Bayesian hierarchical approach is better able to detect a "treatment" effect than classical ANOVA while avoiding several arbitrary assumptions necessary for linear models, and is also more easily interpreted when presented graphically. These results suggest that the hierarchical modeling approach is a better alternative than conventional linear models and should be considered for the analysis of observational field data from marine systems.

  10. Hierarchical neutrino masses and mixing in flipped-SU(5)

    Rizos, J. [Physics Department, University of Ioannina, 45110 Ioannina (Greece); Tamvakis, K., E-mail: tamvakis@uoi.g [Physics Department, University of Ioannina, 45110 Ioannina (Greece); Physics Department, CERN, CH-1211, Geneva 23 (Switzerland)


    We consider the problem of neutrino masses and mixing in the framework of flipped SU(5). The right-handed neutrino mass, generated through the operation of a seesaw mechanism by a sector of gauge singlets, leads naturally, at a subsequent level, to the standard seesaw mechanism resulting into three light neutrino states with masses of the desired phenomenological order of magnitude. In this framework we study simple Ansaetze for the singlet couplings for which hierarchical neutrino masses emerge naturally as lambda{sup n}:lambda:1 or lambda{sup n}:lambda{sup 2}:1, parametrized in terms of the Cabbibo parameter. The resulting neutrino mixing matrices are characterized by a hierarchical structure, in which theta{sub 13} is always predicted to be the smallest. Finally, we discuss a possible factorized parametrization of the neutrino mass that, in addition to Cabbibo mixing, encodes also mixing due to the singlet sector.

  11. Hybrid Steepest-Descent Methods for Triple Hierarchical Variational Inequalities

    L. C. Ceng


    Full Text Available We introduce and analyze a relaxed iterative algorithm by combining Korpelevich’s extragradient method, hybrid steepest-descent method, and Mann’s iteration method. We prove that, under appropriate assumptions, the proposed algorithm converges strongly to a common element of the fixed point set of infinitely many nonexpansive mappings, the solution set of finitely many generalized mixed equilibrium problems (GMEPs, the solution set of finitely many variational inclusions, and the solution set of general system of variational inequalities (GSVI, which is just a unique solution of a triple hierarchical variational inequality (THVI in a real Hilbert space. In addition, we also consider the application of the proposed algorithm for solving a hierarchical variational inequality problem with constraints of finitely many GMEPs, finitely many variational inclusions, and the GSVI. The results obtained in this paper improve and extend the corresponding results announced by many others.

  12. A Heuristic Hierarchical Scheme for Academic Search and Retrieval

    Amolochitis, Emmanouil; Christou, Ioannis T.; Tan, Zheng-Hua


    We present PubSearch, a hybrid heuristic scheme for re-ranking academic papers retrieved from standard digital libraries such as the ACM Portal. The scheme is based on the hierarchical combination of a custom implementation of the term frequency heuristic, a time-depreciated citation score...... and a graph-theoretic computed score that relates the paper’s index terms with each other. We designed and developed a meta-search engine that submits user queries to standard digital repositories of academic publications and re-ranks the repository results using the hierarchical heuristic scheme. We evaluate...... in Information Retrieval including Normalized Discounted Cumulative Gain (NDCG), Expected Reciprocal Rank (ERR) as well as a newly introduced lexicographic rule (LEX) of ranking search results. In particular, PubSearch outperforms ACM Portal by more than 77% in terms of ERR, by more than 11% in terms of NDCG...

  13. Social Influence on Information Technology Adoption and Sustained Use in Healthcare: A Hierarchical Bayesian Learning Method Analysis

    Hao, Haijing


    Information technology adoption and diffusion is currently a significant challenge in the healthcare delivery setting. This thesis includes three papers that explore social influence on information technology adoption and sustained use in the healthcare delivery environment using conventional regression models and novel hierarchical Bayesian…

  14. Multilevel modeling was a convenient alternative to common regression designs in longitudinal suicide research.

    Antretter, Elfi; Dunkel, Dirk; Osvath, Peter; Voros, Viktor; Fekete, Sandor; Haring, Christian


    The prospective investigation of repetitive nonfatal suicidal behavior is associated with two methodological problems. Due to the commonly used definitions of nonfatal suicidal behavior, clinical samples usually consist of patients with a considerable between-person variability. Second, repeated nonfatal suicidal episodes of the same subjects are likely to be correlated. We examined three regression techniques to comparatively evaluate their efficiency in addressing the given methodological problems. Repeated episodes of nonfatal suicidal behavior were assessed in two independent patient samples during a 2-year follow-up period. The first regression design modeled repetitive nonfatal suicidal behavior as a summary measure. The second regression model treated repeated episodes of the same subject as independent events. The third regression model represented a hierarchical linear model. The estimated mean effects of the first model were likely to be nonrepresentative for a considerable part of the study subjects. The second regression design overemphasized the impact of the predictor variables. The hierarchical linear model most appropriately accounted for the heterogeneity of the samples and the correlated data structure. The nonhierarchical regression designs did not provide appropriate statistical models for the prospective investigation of repetitive nonfatal suicidal behavior. Multilevel modeling provides a convenient alternative.

  15. Determination of a Differential Item Functioning Procedure Using the Hierarchical Generalized Linear Model

    Tülin Acar


    Full Text Available The aim of this research is to compare the result of the differential item functioning (DIF determining with hierarchical generalized linear model (HGLM technique and the results of the DIF determining with logistic regression (LR and item response theory–likelihood ratio (IRT-LR techniques on the test items. For this reason, first in this research, it is determined whether the students encounter DIF with HGLM, LR, and IRT-LR techniques according to socioeconomic status (SES, in the Turkish, Social Sciences, and Science subtest items of the Secondary School Institutions Examination. When inspecting the correlations among the techniques in terms of determining the items having DIF, it was discovered that there was significant correlation between the results of IRT-LR and LR techniques in all subtests; merely in Science subtest, the results of the correlation between HGLM and IRT-LR techniques were found significant. DIF applications can be made on test items with other DIF analysis techniques that were not taken to the scope of this research. The analysis results, which were determined by using the DIF techniques in different sample sizes, can be compared.

  16. Hierarchical Bulk Synchronous Parallel Model and Performance Optimization

    HUANG Linpeng; SUNYongqiang; YUAN Wei


    Based on the framework of BSP, aHierarchical Bulk Synchronous Parallel (HBSP) performance model isintroduced in this paper to capture the performance optimizationproblem for various stages in parallel program development and toaccurately predict the performance of a parallel program byconsidering factors causing variance at local computation and globalcommunication. The related methodology has been applied to several realapplications and the results show that HBSP is a suitable model foroptimizing parallel programs.

  17. Fractal Derivative Model for Air Permeability in Hierarchic Porous Media

    Jie Fan


    Full Text Available Air permeability in hierarchic porous media does not obey Fick's equation or its modification because fractal objects have well-defined geometric properties, which are discrete and discontinuous. We propose a theoretical model dealing with, for the first time, a seemingly complex air permeability process using fractal derivative method. The fractal derivative model has been successfully applied to explain the novel air permeability phenomenon of cocoon. The theoretical analysis was in agreement with experimental results.

  18. Producing The New Regressive Left

    Crone, Christine

    to be a committed artist, and how that translates into supporting al-Assad’s rule in Syria; the Ramadan programme Harrir Aqlak’s attempt to relaunch an intellectual renaissance and to promote religious pluralism; and finally, al-Mayadeen’s cooperation with the pan-Latin American TV station TeleSur and its ambitions...... becomes clear from the analytical chapters is the emergence of the new cross-ideological alliance of The New Regressive Left. This emerging coalition between Shia Muslims, religious minorities, parts of the Arab Left, secular cultural producers, and the remnants of the political,strategic resistance...... coalition (Iran, Hizbollah, Syria), capitalises on a series of factors that bring them together in spite of their otherwise diverse worldviews and agendas. The New Regressive Left is united by resistance against the growing influence of Saudi Arabia in the religious, cultural, political, economic...

  19. Quantile Regression With Measurement Error

    Wei, Ying


    Regression quantiles can be substantially biased when the covariates are measured with error. In this paper we propose a new method that produces consistent linear quantile estimation in the presence of covariate measurement error. The method corrects the measurement error induced bias by constructing joint estimating equations that simultaneously hold for all the quantile levels. An iterative EM-type estimation algorithm to obtain the solutions to such joint estimation equations is provided. The finite sample performance of the proposed method is investigated in a simulation study, and compared to the standard regression calibration approach. Finally, we apply our methodology to part of the National Collaborative Perinatal Project growth data, a longitudinal study with an unusual measurement error structure. © 2009 American Statistical Association.

  20. Heteroscedasticity checks for regression models

    ZHU; Lixing


    [1]Carroll, R. J., Ruppert, D., Transformation and Weighting in Regression, New York: Chapman and Hall, 1988.[2]Cook, R. D., Weisberg, S., Diagnostics for heteroscedasticity in regression, Biometrika, 1988, 70: 1—10.[3]Davidian, M., Carroll, R. J., Variance function estimation, J. Amer. Statist. Assoc., 1987, 82: 1079—1091.[4]Bickel, P., Using residuals robustly I: Tests for heteroscedasticity, Ann. Statist., 1978, 6: 266—291.[5]Carroll, R. J., Ruppert, D., On robust tests for heteroscedasticity, Ann. Statist., 1981, 9: 205—209.[6]Eubank, R. L., Thomas, W., Detecting heteroscedasticity in nonparametric regression, J. Roy. Statist. Soc., Ser. B, 1993, 55: 145—155.[7]Diblasi, A., Bowman, A., Testing for constant variance in a linear model, Statist. and Probab. Letters, 1997, 33: 95—103.[8]Dette, H., Munk, A., Testing heteoscedasticity in nonparametric regression, J. R. Statist. Soc. B, 1998, 60: 693—708.[9]Müller, H. G., Zhao, P. L., On a semi-parametric variance function model and a test for heteroscedasticity, Ann. Statist., 1995, 23: 946—967.[10]Stute, W., Manteiga, G., Quindimil, M. P., Bootstrap approximations in model checks for regression, J. Amer. Statist. Asso., 1998, 93: 141—149.[11]Stute, W., Thies, G., Zhu, L. X., Model checks for regression: An innovation approach, Ann. Statist., 1998, 26: 1916—1939.[12]Shorack, G. R., Wellner, J. A., Empirical Processes with Applications to Statistics, New York: Wiley, 1986.[13]Efron, B., Bootstrap methods: Another look at the jackknife, Ann. Statist., 1979, 7: 1—26.[14]Wu, C. F. J., Jackknife, bootstrap and other re-sampling methods in regression analysis, Ann. Statist., 1986, 14: 1261—1295.[15]H rdle, W., Mammen, E., Comparing non-parametric versus parametric regression fits, Ann. Statist., 1993, 21: 1926—1947.[16]Liu, R. Y., Bootstrap procedures under some non-i.i.d. models, Ann. Statist., 1988, 16: 1696—1708.[17

  1. Clustered regression with unknown clusters

    Barman, Kishor


    We consider a collection of prediction experiments, which are clustered in the sense that groups of experiments ex- hibit similar relationship between the predictor and response variables. The experiment clusters as well as the regres- sion relationships are unknown. The regression relation- ships define the experiment clusters, and in general, the predictor and response variables may not exhibit any clus- tering. We call this prediction problem clustered regres- sion with unknown clusters (CRUC) and in this paper we focus on linear regression. We study and compare several methods for CRUC, demonstrate their applicability to the Yahoo Learning-to-rank Challenge (YLRC) dataset, and in- vestigate an associated mathematical model. CRUC is at the crossroads of many prior works and we study several prediction algorithms with diverse origins: an adaptation of the expectation-maximization algorithm, an approach in- spired by K-means clustering, the singular value threshold- ing approach to matrix rank minimization u...

  2. Characterizing and estimating rice brown spot disease severity using stepwise regression, principal component regression and partial least-square regression


    Detecting plant health conditions plays a key role in farm pest management and crop protection. In this study,measurement of hyperspectral leaf reflectance in rice crop (Oryzasativa L.) was conducted on groups of healthy and infected leaves by the fungus Bipolaris oryzae (Helminthosporium oryzae Breda. de Hann) through the wavelength range from 350 to 2 500 nm. The percentage of leaf surface lesions was estimated and defined as the disease severity. Statistical methods like multiple stepwise regression, principal component analysis and partial least-square regression were utilized to calculate and estimate the disease severity of rice brown spot at the leaf level. Our results revealed that multiple stepwise linear regressions could efficiently estimate disease severity with three wavebands in seven steps. The root mean square errors (RMSEs) for training (n=210) and testing (n=53) dataset were 6.5% and 5.8%, respectively. Principal component analysis showed that the first principal component could explain approximately 80% of the variance of the original hyperspectral reflectance. The regression model with the first two principal components predicted a disease severity with RMSEs of 16.3% and 13.9% for the training and testing dataset, respectively. Partial least-square regression with seven extracted factors could most effectively predict disease severity compared with other statistical methods with RMSEs of 4.1% and 2.0% for the training and testing dataset, respectively. Our research demonstrates that it is feasible to estimate the disease severity office brown spot using hyperspectral reflectance data at the leaf level.

  3. Astronomical Methods for Nonparametric Regression

    Steinhardt, Charles L.; Jermyn, Adam


    I will discuss commonly used techniques for nonparametric regression in astronomy. We find that several of them, particularly running averages and running medians, are generically biased, asymmetric between dependent and independent variables, and perform poorly in recovering the underlying function, even when errors are present only in one variable. We then examine less-commonly used techniques such as Multivariate Adaptive Regressive Splines and Boosted Trees and find them superior in bias, asymmetry, and variance both theoretically and in practice under a wide range of numerical benchmarks. In this context the chief advantage of the common techniques is runtime, which even for large datasets is now measured in microseconds compared with milliseconds for the more statistically robust techniques. This points to a tradeoff between bias, variance, and computational resources which in recent years has shifted heavily in favor of the more advanced methods, primarily driven by Moore's Law. Along these lines, we also propose a new algorithm which has better overall statistical properties than all techniques examined thus far, at the cost of significantly worse runtime, in addition to providing guidance on choosing the nonparametric regression technique most suitable to any specific problem. We then examine the more general problem of errors in both variables and provide a new algorithm which performs well in most cases and lacks the clear asymmetry of existing non-parametric methods, which fail to account for errors in both variables.

  4. Recognizing Chinese characters in digital ink from non-native language writers using hierarchical models

    Bai, Hao; Zhang, Xi-wen


    While Chinese is learned as a second language, its characters are taught step by step from their strokes to components, radicals to components, and their complex relations. Chinese Characters in digital ink from non-native language writers are deformed seriously, thus the global recognition approaches are poorer. So a progressive approach from bottom to top is presented based on hierarchical models. Hierarchical information includes strokes and hierarchical components. Each Chinese character is modeled as a hierarchical tree. Strokes in one Chinese characters in digital ink are classified with Hidden Markov Models and concatenated to the stroke symbol sequence. And then the structure of components in one ink character is extracted. According to the extraction result and the stroke symbol sequence, candidate characters are traversed and scored. Finally, the recognition candidate results are listed by descending. The method of this paper is validated by testing 19815 copies of the handwriting Chinese characters written by foreign students.

  5. Hierarchical flexural strength of enamel: transition from brittle to damage-tolerant behaviour.

    Bechtle, Sabine; Özcoban, Hüseyin; Lilleodden, Erica T; Huber, Norbert; Schreyer, Andreas; Swain, Michael V; Schneider, Gerold A


    Hard, biological materials are generally hierarchically structured from the nano- to the macro-scale in a somewhat self-similar manner consisting of mineral units surrounded by a soft protein shell. Considerable efforts are underway to mimic such materials because of their structurally optimized mechanical functionality of being hard and stiff as well as damage-tolerant. However, it is unclear how different hierarchical levels interact to achieve this performance. In this study, we consider dental enamel as a representative, biological hierarchical structure and determine its flexural strength and elastic modulus at three levels of hierarchy using focused ion beam (FIB) prepared cantilevers of micrometre size. The results are compared and analysed using a theoretical model proposed by Jäger and Fratzl and developed by Gao and co-workers. Both properties decrease with increasing hierarchical dimension along with a switch in mechanical behaviour from linear-elastic to elastic-inelastic. We found Gao's model matched the results very well.

  6. Regression Segmentation for M³ Spinal Images.

    Wang, Zhijie; Zhen, Xiantong; Tay, KengYeow; Osman, Said; Romano, Walter; Li, Shuo


    Clinical routine often requires to analyze spinal images of multiple anatomic structures in multiple anatomic planes from multiple imaging modalities (M(3)). Unfortunately, existing methods for segmenting spinal images are still limited to one specific structure, in one specific plane or from one specific modality (S(3)). In this paper, we propose a novel approach, Regression Segmentation, that is for the first time able to segment M(3) spinal images in one single unified framework. This approach formulates the segmentation task innovatively as a boundary regression problem: modeling a highly nonlinear mapping function from substantially diverse M(3) images directly to desired object boundaries. Leveraging the advancement of sparse kernel machines, regression segmentation is fulfilled by a multi-dimensional support vector regressor (MSVR) which operates in an implicit, high dimensional feature space where M(3) diversity and specificity can be systematically categorized, extracted, and handled. The proposed regression segmentation approach was thoroughly tested on images from 113 clinical subjects including both disc and vertebral structures, in both sagittal and axial planes, and from both MRI and CT modalities. The overall result reaches a high dice similarity index (DSI) 0.912 and a low boundary distance (BD) 0.928 mm. With our unified and expendable framework, an efficient clinical tool for M(3) spinal image segmentation can be easily achieved, and will substantially benefit the diagnosis and treatment of spinal diseases.

  7. Nonparametric regression with martingale increment errors

    Delattre, Sylvain


    We consider the problem of adaptive estimation of the regression function in a framework where we replace ergodicity assumptions (such as independence or mixing) by another structural assumption on the model. Namely, we propose adaptive upper bounds for kernel estimators with data-driven bandwidth (Lepski's selection rule) in a regression model where the noise is an increment of martingale. It includes, as very particular cases, the usual i.i.d. regression and auto-regressive models. The cornerstone tool for this study is a new result for self-normalized martingales, called ``stability'', which is of independent interest. In a first part, we only use the martingale increment structure of the noise. We give an adaptive upper bound using a random rate, that involves the occupation time near the estimation point. Thanks to this approach, the theoretical study of the statistical procedure is disconnected from usual ergodicity properties like mixing. Then, in a second part, we make a link with the usual minimax th...

  8. Hierarchical Approach in Clustering to Euclidean Traveling Salesman Problem

    Fajar, Abdulah; Herman, Nanna Suryana; Abu, Nur Azman; Shahib, Sahrin

    There has been growing interest in studying combinatorial optimization problems by clustering strategy, with a special emphasis on the traveling salesman problem (TSP). TSP naturally arises as a sub problem in much transportation, manufacturing and logistics application, this problem has caught much attention of mathematicians and computer scientists. A clustering approach will decompose TSP into sub graph and form cluster, so it may reduce problem size into smaller problem. Impact of hierarchical approach will be investigated to produce a better clustering strategy that fit into Euclidean TSP. Clustering strategy to Euclidean TSP consist of two main step, there are; clustering and tour construction. The significant of this research is clustering approach solution result has error less than 10% compare to best known solution (TSPLIB) and there is improvement to a hierarchical clustering algorithm in order to fit in such Euclidean TSP solution method.

  9. High fracture toughness in a hierarchical nanostructured zirconium

    Li, Ming [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 066004 Qinhuangdao (China); College of Mechanical Engineering, Yanshan University, 066004 Qinhuangdao (China); Guo, Defeng; Ma, Tengyun; Zhang, Guosheng; Shi, Yindong [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 066004 Qinhuangdao (China); Zhang, Xiangyi, E-mail: [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 066004 Qinhuangdao (China)


    Nanocrystalline metals usually exhibit a high strength but a disappointingly low ductility and toughness, which limit their practical utility. Here, we report a high fracture toughness (K{sub IC}∼117 MPa m{sup 1/2}) in a hierarchical nanostructured Zr that consists of nano-, sub-micrometer- and micrometer-sized grains, which is much larger than that K{sub IC}∼78 MPa m{sup 1/2} in coarse-grained Zr. This hierarchical nanostructured Zr shows a good combination of yield strength (σ{sub s}∼550 MPa) and fracture toughness as compared with its coarse-grained counterpart. We expect that these results will have implications in the enhancement of fracture toughness of nanocrystalline materials and in the design of high-performance structural materials.

  10. Simulating Self-organization and Interference between Certain Hierarchical Structures.

    Raczynski, Stanislaw


    A model of the dynamics and interactions between organizations with self-organizing hierarchical structures is presented for discrete events. The active objects of the model are individuals (people, organization members). The parameters of an individual are ability, corruption level, resources, and lust for power, among others. Three organizations are generated and interact with each other, attempting to gain more members and power. The individuals appear and disappear, due to a simple 'birth-and-death' process. If an individual disappears from the model, a corresponding reconfiguration in the hierarchical structure occurs. The organization's growth and macro-patterns are the result of the activities of the individuals. The aim of the simulation is to visualize the evolution of the organizations and the stability of the whole system. A 'steady state' for the model is rare; instead, in most parameter configurations, the model enters into oscillations.

  11. Hierarchical model-based interferometric synthetic aperture radar image registration

    Wang, Yang; Huang, Haifeng; Dong, Zhen; Wu, Manqing


    With the rapid development of spaceborne interferometric synthetic aperture radar technology, classical image registration methods are incompetent for high-efficiency and high-accuracy masses of real data processing. Based on this fact, we propose a new method. This method consists of two steps: coarse registration that is realized by cross-correlation algorithm and fine registration that is realized by hierarchical model-based algorithm. Hierarchical model-based algorithm is a high-efficiency optimization algorithm. The key features of this algorithm are a global model that constrains the overall structure of the motion estimated, a local model that is used in the estimation process, and a coarse-to-fine refinement strategy. Experimental results from different kinds of simulated and real data have confirmed that the proposed method is very fast and has high accuracy. Comparing with a conventional cross-correlation method, the proposed method provides markedly improved performance.

  12. Concept Association and Hierarchical Hamming Clustering Model in Text Classification

    Su Gui-yang; Li Jian-hua; Ma Ying-hua; Li Sheng-hong; Yin Zhong-hang


    We propose two models in this paper. The concept of association model is put forward to obtain the co-occurrence relationships among keywords in the documents and the hierarchical Hamming clustering model is used to reduce the dimensionality of the category feature vector space which can solve the problem of the extremely high dimensionality of the documents' feature space. The results of experiment indicate that it can obtain the co-occurrence relations among keywords in the documents which promote the recall of classification system effectively. The hierarchical Hamming clustering model can reduce the dimensionality of the category feature vector efficiently, the size of the vector space is only about 10% of the primary dimensionality.

  13. Study on Hierarchical Structure of Detailed Control Planning


    Using case studies,this paper analyzes the characteristics of detailed control planning and its hierarchical controls,the form and composition of plan content,and methodological innovations.It then suggests improvements to the planning structure that are oriented at adaptability,fairness,centrality,and scientific principles with regard to the content,methods,and results of the planning.Regarding the hierarchical control system,the paper suggests that the detailed control plan should be composed of "block planning" and "plot planning".It is believed that through a combination of block and plot planning,the problem of joining long-term and short-term planning will be solved and it will be possible to address the need for adjustment and revision of detailed control plan.

  14. ECoS, a framework for modelling hierarchical spatial systems.

    Harris, John R W; Gorley, Ray N


    A general framework for modelling hierarchical spatial systems has been developed and implemented as the ECoS3 software package. The structure of this framework is described, and illustrated with representative examples. It allows the set-up and integration of sets of advection-diffusion equations representing multiple constituents interacting in a spatial context. Multiple spaces can be defined, with zero, one or two-dimensions and can be nested, and linked through constituent transfers. Model structure is generally object-oriented and hierarchical, reflecting the natural relations within its real-world analogue. Velocities, dispersions and inter-constituent transfers, together with additional functions, are defined as properties of constituents to which they apply. The resulting modular structure of ECoS models facilitates cut and paste model development, and template model components have been developed for the assembly of a range of estuarine water quality models. Published examples of applications to the geochemical dynamics of estuaries are listed.

  15. Hierarchical Multiclass Decompositions with Application to Authorship Determination

    El-Yaniv, Ran


    This paper is mainly concerned with the question of how to decompose multiclass classification problems into binary subproblems. We extend known Jensen-Shannon bounds on the Bayes risk of binary problems to hierarchical multiclass problems and use these bounds to develop a heuristic procedure for constructing hierarchical multiclass decomposition for multinomials. We test our method and compare it to the well known "all-pairs" decomposition. Our tests are performed using a new authorship determination benchmark test of machine learning authors. The new method consistently outperforms the all-pairs decomposition when the number of classes is small and breaks even on larger multiclass problems. Using both methods, the classification accuracy we achieve, using an SVM over a feature set consisting of both high frequency single tokens and high frequency token-pairs, appears to be exceptionally high compared to known results in authorship determination.

  16. Design of Hierarchical Ring Networks Using Branch-and-Price

    Thomadsen, Tommy; Stidsen, Thomas K.


    We consider the problem of designing hierarchical two layer ring networks. The top layer consists of a federal-ring which establishes connection between a number of node disjoint metro-rings in a bottom layer. The objective is to minimize the costs of links in the network, taking both the fixed...... link establishment costs and the link capacity costs into account. The hierarchical two layer ring network design problem is solved in two stages: First the bottom layer, i.e. the metro-rings are designed, implicitly taking into account the capacity cost of the federal-ring. Then the federal......-ring is designed connecting the metro-rings, minimizing fixed link establishment costs of the federal-ring. A branch-and-price algorithm is presented for the design of the bottom layer and it is suggested that existing methods are used for the design of the federal-ring. Computational results are given...

  17. Thin randomly aligned hierarchical carbon nanotube arrays as ultrablack metamaterials

    De Nicola, Francesco; Hines, Peter; De Crescenzi, Maurizio; Motta, Nunzio


    Ultrablack metamaterials are artificial materials able to harvest all the incident light regardless of wavelength, angle, or polarization. Here, we show the ultrablack properties of randomly aligned hierarchical carbon nanotube arrays with thicknesses below 200 nm. The thin coatings are realized by solution processing and dry-transfer deposition on different substrates. The hierarchical surface morphology of the coatings is biomimetic and provides a large effective area that improves the film optical absorption. Also, such a morphology is responsible for the moth-eye effect, which leads to the omnidirectional and polarization-independent suppression of optical reflection. The films exhibit an emissivity up to 99.36% typical of an ideal black body, resulting in the thinnest ultrablack metamaterial ever reported. Such a material may be exploited for thermal, optical, and optoelectronic devices such as heat sinks, optical shields, solar cells, light and thermal sensors, and light-emitting diodes.

  18. An interference cancellation strategy for broadcast in hierarchical cell structure

    Yang, Yuli


    In this paper, a hierarchical cell structure is considered, where public safety broadcasting is fulfilled in a femtocell located within a macrocell. In the femtocell, also known as local cell, an access point broadcasts to each local node (LN) over an orthogonal frequency sub-band independently. Since the local cell shares the spectrum licensed to the macrocell, a given LN is interfered by transmissions of the macrocell user (MU) in the same sub-band. To improve the broadcast performance in the local cell, a novel scheme is proposed to mitigate the interference from the MU to the LN while achieving diversity gain. For the sake of performance evaluation, ergodic capacity of the proposed scheme is quantified and a corresponding closed-form expression is obtained. By comparing with the traditional scheme that suffers from the MU\\'s interference, numerical results substantiate the advantage of the proposed scheme and provide a useful tool for the broadcast design in hierarchical cell systems.

  19. Hierarchical Fuzzy Feature Similarity Combination for Presentation Slide Retrieval

    A. Kushki


    Full Text Available This paper proposes a novel XML-based system for retrieval of presentation slides to address the growing data mining needs in presentation archives for educational and scholarly settings. In particular, contextual information, such as structural and formatting features, is extracted from the open format XML representation of presentation slides. In response to a textual user query, each extracted feature is used to compute a fuzzy relevance score for each slide in the database. The fuzzy scores from the various features are then combined through a hierarchical scheme to generate a single relevance score per slide. Various fusion operators and their properties are examined with respect to their effect on retrieval performance. Experimental results indicate a significant increase in retrieval performance measured in terms of precision-recall. The improvements are attributed to both the incorporation of the contextual features and the hierarchical feature combination scheme.

  20. Hierarchical nanostructure and synergy of multimolecular signalling complexes

    Sherman, Eilon; Barr, Valarie A.; Merrill, Robert K.; Regan, Carole K.; Sommers, Connie L.; Samelson, Lawrence E.


    Signalling complexes are dynamic, multimolecular structures and sites for intracellular signal transduction. Although they play a crucial role in cellular activation, current research techniques fail to resolve their structure in intact cells. Here we present a multicolour, photoactivated localization microscopy approach for imaging multiple types of single molecules in fixed and live cells and statistical tools to determine the nanoscale organization, topology and synergy of molecular interactions in signalling complexes downstream of the T-cell antigen receptor. We observe that signalling complexes nucleated at the key adapter LAT show a hierarchical topology. The critical enzymes PLCγ1 and VAV1 localize to the centre of LAT-based complexes, and the adapter SLP-76 and actin molecules localize to the periphery. Conditional second-order statistics reveal a hierarchical network of synergic interactions between these molecules. Our results extend our understanding of the nanostructure of signalling complexes and are relevant to studying a wide range of multimolecular complexes. PMID:27396911

  1. Hierarchical nanostructure and synergy of multimolecular signalling complexes

    Sherman, Eilon; Barr, Valarie A.; Merrill, Robert K.; Regan, Carole K.; Sommers, Connie L.; Samelson, Lawrence E.


    Signalling complexes are dynamic, multimolecular structures and sites for intracellular signal transduction. Although they play a crucial role in cellular activation, current research techniques fail to resolve their structure in intact cells. Here we present a multicolour, photoactivated localization microscopy approach for imaging multiple types of single molecules in fixed and live cells and statistical tools to determine the nanoscale organization, topology and synergy of molecular interactions in signalling complexes downstream of the T-cell antigen receptor. We observe that signalling complexes nucleated at the key adapter LAT show a hierarchical topology. The critical enzymes PLCγ1 and VAV1 localize to the centre of LAT-based complexes, and the adapter SLP-76 and actin molecules localize to the periphery. Conditional second-order statistics reveal a hierarchical network of synergic interactions between these molecules. Our results extend our understanding of the nanostructure of signalling complexes and are relevant to studying a wide range of multimolecular complexes.

  2. Selection of higher order regression models in the analysis of multi-factorial transcription data.

    Olivia Prazeres da Costa

    Full Text Available INTRODUCTION: Many studies examine gene expression data that has been obtained under the influence of multiple factors, such as genetic background, environmental conditions, or exposure to diseases. The interplay of multiple factors may lead to effect modification and confounding. Higher order linear regression models can account for these effects. We present a new methodology for linear model selection and apply it to microarray data of bone marrow-derived macrophages. This experiment investigates the influence of three variable factors: the genetic background of the mice from which the macrophages were obtained, Yersinia enterocolitica infection (two strains, and a mock control, and treatment/non-treatment with interferon-γ. RESULTS: We set up four different linear regression models in a hierarchical order. We introduce the eruption plot as a new practical tool for model selection complementary to global testing. It visually compares the size and significance of effect estimates between two nested models. Using this methodology we were able to select the most appropriate model by keeping only relevant factors showing additional explanatory power. Application to experimental data allowed us to qualify the interaction of factors as either neutral (no interaction, alleviating (co-occurring effects are weaker than expected from the single effects, or aggravating (stronger than expected. We find a biologically meaningful gene cluster of putative C2TA target genes that appear to be co-regulated with MHC class II genes. CONCLUSIONS: We introduced the eruption plot as a tool for visual model comparison to identify relevant higher order interactions in the analysis of expression data obtained under the influence of multiple factors. We conclude that model selection in higher order linear regression models should generally be performed for the analysis of multi-factorial microarray data.

  3. Genetics Home Reference: caudal regression syndrome

    ... Twitter Home Health Conditions caudal regression syndrome caudal regression syndrome Enable Javascript to view the expand/collapse ... Download PDF Open All Close All Description Caudal regression syndrome is a disorder that impairs the development ...

  4. Hierarchical sliding mode control for under-actuated cranes design, analysis and simulation

    Qian, Dianwei


    This book reports on the latest developments in sliding mode overhead crane control, presenting novel research ideas and findings on sliding mode control (SMC), hierarchical SMC and compensator design-based hierarchical sliding mode. The results, which were previously scattered across various journals and conference proceedings, are now presented in a systematic and unified form. The book will be of interest to researchers, engineers and graduate students in control engineering and mechanical engineering who want to learn the methods and applications of SMC.

  5. Modeling place field activity with hierarchical slow feature analysis

    Fabian eSchoenfeld


    Full Text Available In this paper we present six experimental studies from the literature on hippocampal place cells and replicate their main results in a computational framework based on the principle of slowness. Each of the chosen studies first allows rodents to develop stable place field activity and then examines a distinct property of the established spatial encoding, namely adaptation to cue relocation and removal; directional firing activity in the linear track and open field; and results of morphing and stretching the overall environment. To replicate these studies we employ a hierarchical Slow Feature Analysis (SFA network. SFA is an unsupervised learning algorithm extracting slowly varying information from a given stream of data, and hierarchical application of SFA allows for high dimensional input such as visual images to be processed efficiently and in a biologically plausible fashion. Training data for the network is produced in ratlab, a free basic graphics engine designed to quickly set up a wide range of 3D environments mimicking real life experimental studies, simulate a foraging rodent while recording its visual input, and training & sampling a hierarchical SFA network.

  6. Quasar Evolution Driven by Galaxy Encounters in Hierarchical Structures

    Menci, N; Fontana, A; Giallongo, E; Poli, F; Vittorini, V


    We link the evolution of the galaxies in the hierarchical clustering scenario with the changing accretion rates of cold gas onto the central massive black holes that power the quasars. We base on galaxy interactions as main triggers of accretion; the related scaling laws are taken up from Cavaliere & Vittorini (2000), and grafted to a semi-analytic code for galaxy formation. As a result, at high $z$ the protogalaxies grow rapidly by hierarchical merging; meanwhile, much fresh gas is imported and also destabilized, so the holes are fueled at their full Eddington rates. At lower $z$ the galactic dynamical events are mostly encounters in hierarchically growing groups; now the refueling peters out, as the residual gas is exhausted while the destabilizing encounters dwindle. So, with no parameter tuning other than needed for stellar observables, our model uniquely produces at $z>3$ a rise, and at $z\\lesssim 2.5 $ a decline of the bright quasar population as steep as observed. In addition, our results closely f...

  7. A hierarchical model for spatial capture-recapture data

    Royle, J. Andrew; Young, K.V.


    Estimating density is a fundamental objective of many animal population studies. Application of methods for estimating population size from ostensibly closed populations is widespread, but ineffective for estimating absolute density because most populations are subject to short-term movements or so-called temporary emigration. This phenomenon invalidates the resulting estimates because the effective sample area is unknown. A number of methods involving the adjustment of estimates based on heuristic considerations are in widespread use. In this paper, a hierarchical model of spatially indexed capture recapture data is proposed for sampling based on area searches of spatial sample units subject to uniform sampling intensity. The hierarchical model contains explicit models for the distribution of individuals and their movements, in addition to an observation model that is conditional on the location of individuals during sampling. Bayesian analysis of the hierarchical model is achieved by the use of data augmentation, which allows for a straightforward implementation in the freely available software WinBUGS. We present results of a simulation study that was carried out to evaluate the operating characteristics of the Bayesian estimator under variable densities and movement patterns of individuals. An application of the model is presented for survey data on the flat-tailed horned lizard (Phrynosoma mcallii) in Arizona, USA.

  8. Multisorted Tree-Algebras for Hierarchical Resources Allocation

    Erick Patrick Zobo


    Full Text Available This paper presents a generic abstract model for the study of disparities between goals and results in hierarchical multiresources allocation systems. In an organization, disparities in resource allocation may occur, when, after comparison of a resource allocation decision with an allocation reference goal or property, some agents have surplus resources to accomplish their tasks, while at the same time other agents have deficits of expected resources. In the real world, these situations are frequently encountered in organizations facing scarcity of resources and/or inefficient management. These disparities can be corrected using allocation decisions, by measuring and reducing gradually such disparities and their related costs, without totally canceling the existing resource distribution. While a lot of research has been carried out in the area of resource allocation, this specific class of problems has not yet been formally studied. The paper exposes the results of an exploratory research study of this class of problems. It identifies the commonalities of the family of hierarchical multiresource allocation systems and proposes the concept of multisorted tree-algebra for the modeling of these problems. The research presented here is not yet an in-depth descriptive research study of the mathematical theory of multisorted tree-algebra, but a formal study on modelling hierarchical multiresource allocation problems.

  9. How Hierarchical Topics Evolve in Large Text Corpora.

    Cui, Weiwei; Liu, Shixia; Wu, Zhuofeng; Wei, Hao


    Using a sequence of topic trees to organize documents is a popular way to represent hierarchical and evolving topics in text corpora. However, following evolving topics in the context of topic trees remains difficult for users. To address this issue, we present an interactive visual text analysis approach to allow users to progressively explore and analyze the complex evolutionary patterns of hierarchical topics. The key idea behind our approach is to exploit a tree cut to approximate each tree and allow users to interactively modify the tree cuts based on their interests. In particular, we propose an incremental evolutionary tree cut algorithm with the goal of balancing 1) the fitness of each tree cut and the smoothness between adjacent tree cuts; 2) the historical and new information related to user interests. A time-based visualization is designed to illustrate the evolving topics over time. To preserve the mental map, we develop a stable layout algorithm. As a result, our approach can quickly guide users to progressively gain profound insights into evolving hierarchical topics. We evaluate the effectiveness of the proposed method on Amazon's Mechanical Turk and real-world news data. The results show that users are able to successfully analyze evolving topics in text data.

  10. Hierarchical models and chaotic spin glasses

    Berker, A. Nihat; McKay, Susan R.


    Renormalization-group studies in position space have led to the discovery of hierarchical models which are exactly solvable, exhibiting nonclassical critical behavior at finite temperature. Position-space renormalization-group approximations that had been widely and successfully used are in fact alternatively applicable as exact solutions of hierarchical models, this realizability guaranteeing important physical requirements. For example, a hierarchized version of the Sierpiriski gasket is presented, corresponding to a renormalization-group approximation which has quantitatively yielded the multicritical phase diagrams of submonolayers on graphite. Hierarchical models are now being studied directly as a testing ground for new concepts. For example, with the introduction of frustration, chaotic renormalization-group trajectories were obtained for the first time. Thus, strong and weak correlations are randomly intermingled at successive length scales, and a new microscopic picture and mechanism for a spin glass emerges. An upper critical dimension occurs via a boundary crisis mechanism in cluster-hierarchical variants developed to have well-behaved susceptibilities.

  11. Learning Contextual Dependence With Convolutional Hierarchical Recurrent Neural Networks

    Zuo, Zhen; Shuai, Bing; Wang, Gang; Liu, Xiao; Wang, Xingxing; Wang, Bing; Chen, Yushi


    Existing deep convolutional neural networks (CNNs) have shown their great success on image classification. CNNs mainly consist of convolutional and pooling layers, both of which are performed on local image areas without considering the dependencies among different image regions. However, such dependencies are very important for generating explicit image representation. In contrast, recurrent neural networks (RNNs) are well known for their ability of encoding contextual information among sequential data, and they only require a limited number of network parameters. General RNNs can hardly be directly applied on non-sequential data. Thus, we proposed the hierarchical RNNs (HRNNs). In HRNNs, each RNN layer focuses on modeling spatial dependencies among image regions from the same scale but different locations. While the cross RNN scale connections target on modeling scale dependencies among regions from the same location but different scales. Specifically, we propose two recurrent neural network models: 1) hierarchical simple recurrent network (HSRN), which is fast and has low computational cost; and 2) hierarchical long-short term memory recurrent network (HLSTM), which performs better than HSRN with the price of more computational cost. In this manuscript, we integrate CNNs with HRNNs, and develop end-to-end convolutional hierarchical recurrent neural networks (C-HRNNs). C-HRNNs not only make use of the representation power of CNNs, but also efficiently encodes spatial and scale dependencies among different image regions. On four of the most challenging object/scene image classification benchmarks, our C-HRNNs achieve state-of-the-art results on Places 205, SUN 397, MIT indoor, and competitive results on ILSVRC 2012.

  12. Modeling urban air pollution with optimized hierarchical fuzzy inference system.

    Tashayo, Behnam; Alimohammadi, Abbas


    Environmental exposure assessments (EEA) and epidemiological studies require urban air pollution models with appropriate spatial and temporal resolutions. Uncertain available data and inflexible models can limit air pollution modeling techniques, particularly in under developing countries. This paper develops a hierarchical fuzzy inference system (HFIS) to model air pollution under different land use, transportation, and meteorological conditions. To improve performance, the system treats the issue as a large-scale and high-dimensional problem and develops the proposed model using a three-step approach. In the first step, a geospatial information system (GIS) and probabilistic methods are used to preprocess the data. In the second step, a hierarchical structure is generated based on the problem. In the third step, the accuracy and complexity of the model are simultaneously optimized with a multiple objective particle swarm optimization (MOPSO) algorithm. We examine the capabilities of the proposed model for predicting daily and annual mean PM2.5 and NO2 and compare the accuracy of the results with representative models from existing literature. The benefits provided by the model features, including probabilistic preprocessing, multi-objective optimization, and hierarchical structure, are precisely evaluated by comparing five different consecutive models in terms of accuracy and complexity criteria. Fivefold cross validation is used to assess the performance of the generated models. The respective average RMSEs and coefficients of determination (R (2)) for the test datasets using proposed model are as follows: daily PM2.5 = (8.13, 0.78), annual mean PM2.5 = (4.96, 0.80), daily NO2 = (5.63, 0.79), and annual mean NO2 = (2.89, 0.83). The obtained results demonstrate that the developed hierarchical fuzzy inference system can be utilized for modeling air pollution in EEA and epidemiological studies.

  13. Hierarchical structure and biomineralization in cricket tooth

    Xing, Xueqing; Cai, Quan; Mo, Guang; Du, Rong; Chen, Zhongjun; Wu, Zhonghua


    Cricket is a truculent insect with stiff and sharp teeth as a fighting weapon. The structure and possible biomineralization of the cricket teeth are always interested. Synchrotron radiation X-ray fluorescence, X-ray diffraction and small angle X-ray scattering techniques were used to probe the element distribution, possible crystalline structures and size distribution of scatterers in cricket teeth. Scanning electron microscope was used to observe the nanoscaled structure. The results demonstrate that Zn is the main heavy element in cricket teeth. The surface of the cricket teeth has a crystalline compound like ZnFe2(AsO4)2(OH)2(H2O)4. While, the interior of the teeth has a crystalline compound like ZnCl2, which is from the biomineralization. The ZnCl2-like biomineral forms nanoscaled microfibrils and their axial direction points at the top of tooth cusp. The microfibrils aggregate random into intermediate filaments, forming a hierarchical structure. A sketch map of the cricket tooth cusp was proposed and a d...

  14. Expectation and attention in hierarchical auditory prediction.

    Chennu, Srivas; Noreika, Valdas; Gueorguiev, David; Blenkmann, Alejandro; Kochen, Silvia; Ibáñez, Agustín; Owen, Adrian M; Bekinschtein, Tristan A


    Hierarchical predictive coding suggests that attention in humans emerges from increased precision in probabilistic inference, whereas expectation biases attention in favor of contextually anticipated stimuli. We test these notions within auditory perception by independently manipulating top-down expectation and attentional precision alongside bottom-up stimulus predictability. Our findings support an integrative interpretation of commonly observed electrophysiological signatures of neurodynamics, namely mismatch negativity (MMN), P300, and contingent negative variation (CNV), as manifestations along successive levels of predictive complexity. Early first-level processing indexed by the MMN was sensitive to stimulus predictability: here, attentional precision enhanced early responses, but explicit top-down expectation diminished it. This pattern was in contrast to later, second-level processing indexed by the P300: although sensitive to the degree of predictability, responses at this level were contingent on attentional engagement and in fact sharpened by top-down expectation. At the highest level, the drift of the CNV was a fine-grained marker of top-down expectation itself. Source reconstruction of high-density EEG, supported by intracranial recordings, implicated temporal and frontal regions differentially active at early and late levels. The cortical generators of the CNV suggested that it might be involved in facilitating the consolidation of context-salient stimuli into conscious perception. These results provide convergent empirical support to promising recent accounts of attention and expectation in predictive coding.

  15. Hierarchical Design Method for Micro Device

    Zheng Liu


    Full Text Available Traditional mask-beginning design flow of micro device is unintuitive and fussy for designers. A hierarchical design method and involved key technologies for features mapping procedure are presented. With the feature-based design framework, the model of micro device is organized by various features in different designing stages, which can be converted into each other based on the mapping rules. The feature technology is the foundation of the three-level design flow that provides a more efficient design way. In system level, functional features provide the top level of schematic and functional description. After the functional mapping procedure, on the other hand, parametric design features construct the 3D model of micro device in device level, which is based on Hybird Model representation. By means of constraint features, the corresponding revision rules are applied to the rough model to optimize the original structure. As a result, the model reconstruction algorithm makes benefit for the model revision and constraint features mapping process. Moreover, the formulating description of manufacturing features derivation provides the automatic way for model conversion.

  16. Fluorocarbon adsorption in hierarchical porous frameworks

    Motkuri, Radha Kishan; Annapureddy, Harsha V. R.; Vijaykumar, M.; Schaef, H. Todd; Martin, Paul F.; McGrail, B. Peter; Dang, Liem X.; Krishna, Rajamani; Thallapally, Praveen K.


    Metal-organic frameworks comprise an important class of solid-state materials and have potential for many emerging applications such as energy storage, separation, catalysis and bio-medical. Here we report the adsorption behaviour of a series of fluorocarbon derivatives on a set of microporous and hierarchical mesoporous frameworks. The microporous frameworks show a saturation uptake capacity for dichlorodifluoromethane of >4 mmol g-1 at a very low relative saturation pressure (P/Po) of 0.02. In contrast, the mesoporous framework shows an exceptionally high uptake capacity reaching >14 mmol g-1 at P/Po of 0.4. Adsorption affinity in terms of mass loading and isosteric heats of adsorption is found to generally correlate with the polarizability and boiling point of the refrigerant, with dichlorodifluoromethane >chlorodifluoromethane >chlorotrifluoromethane >tetrafluoromethane >methane. These results suggest the possibility of exploiting these sorbents for separation of azeotropic mixtures of fluorocarbons and use in eco-friendly fluorocarbon-based adsorption cooling.

  17. Automatic Construction of Hierarchical Road Networks

    Yang, Weiping


    This paper describes an automated method of constructing a hierarchical road network given a single dataset, without the presence of thematic attributes. The method is based on a pattern graph which maintains nodes and paths as junctions and through-traffic roads. The hierarchy is formed incrementally in a top-down fashion for highways, ramps, and major roads directly connected to ramps; and bottom-up for the rest of major and minor roads. Through reasoning and analysis, ramps are identified as unique characteristics for recognizing and assembling high speed roads. The method makes distinctions on the types of ramps by articulating their connection patterns with highways. Major and minor roads will be identified by both quantitative and qualitative analysis of spatial properties and by discovering neighbourhood patterns revealed in the data. The result of the method would enrich data description and support comprehensive queries on sorted exit or entry points on highways and their related roads. The enrichment on road network data is important to a high successful rate of feature matching for road networks and to geospatial data integration.

  18. Hierarchical Picture Coding Using Quadtree Decomposition

    Buhler, Yves; Fortier, Michel


    A new hierarchical encoding scheme for grey-level pictures is presented here. The picture field is split by a modified quadtree algorithm into blocks of size 32 x 32, 16 x 16, 8 x 8 and 4 x 4 pels, according to their subjective importance in the picture. The larger cells, of size 32 x 32, 16 x 16 and 8 x 8 pels, corresponding to uniform or low-detailed areas, are coded at a very low rates by block truncation in the Discrete Cosine Transform field. The smallest blocks, representing mainly high-detailed areas of the like edges or textures are coded with a multi-codebook vector quantization scheme. Due to its structure, such an encoding scheme is especially well adapted for coding "head and shoulders" pictures, mostly encountered in videophone or videoconference application, where large areas of background may appear. Concerning the vector quantization, several techniques were investigated in order to improve the subjective quality and to reduce the search time through the codebooks. This permits a faster elaboration of the codebooks. Results are presented with bit-rates ranging from 0.4 to 0.8 bits/pel depending on the picture complexity.

  19. Multiple Kernel Spectral Regression for Dimensionality Reduction

    Bing Liu


    Full Text Available Traditional manifold learning algorithms, such as locally linear embedding, Isomap, and Laplacian eigenmap, only provide the embedding results of the training samples. To solve the out-of-sample extension problem, spectral regression (SR solves the problem of learning an embedding function by establishing a regression framework, which can avoid eigen-decomposition of dense matrices. Motivated by the effectiveness of SR, we incorporate multiple kernel learning (MKL into SR for dimensionality reduction. The proposed approach (termed MKL-SR seeks an embedding function in the Reproducing Kernel Hilbert Space (RKHS induced by the multiple base kernels. An MKL-SR algorithm is proposed to improve the performance of kernel-based SR (KSR further. Furthermore, the proposed MKL-SR algorithm can be performed in the supervised, unsupervised, and semi-supervised situation. Experimental results on supervised classification and semi-supervised classification demonstrate the effectiveness and efficiency of our algorithm.

  20. An Improved Hierarchical Genetic Algorithm for Sheet Cutting Scheduling with Process Constraints

    Yunqing Rao


    Full Text Available For the first time, an improved hierarchical genetic algorithm for sheet cutting problem which involves n cutting patterns for m non-identical parallel machines with process constraints has been proposed in the integrated cutting stock model. The objective of the cutting scheduling problem is minimizing the weighted completed time. A mathematical model for this problem is presented, an improved hierarchical genetic algorithm (ant colony—hierarchical genetic algorithm is developed for better solution, and a hierarchical coding method is used based on the characteristics of the problem. Furthermore, to speed up convergence rates and resolve local convergence issues, a kind of adaptive crossover probability and mutation probability is used in this algorithm. The computational result and comparison prove that the presented approach is quite effective for the considered problem.

  1. Synthesis of New Dynamic Movement Primitives Through Search in a Hierarchical Database of Example Movements

    Miha Deniša


    Full Text Available This paper presents a novel approach to discovering motor primitives in a hierarchical database of example trajectories. An initial set of example trajectories is obtained by human demonstration. The trajectories are clustered and organized in a binary tree-like hierarchical structure, from which transition graphs at different levels of granularity are constructed. A novel procedure for searching in this hierarchical structure is presented. It can exploit the interdependencies between movements and can discover new series of partial paths. From these partial paths, complete new movements are generated by encoding them as dynamic movement primitives. In this way, the number of example trajectories that must be acquired with the assistance of a human teacher can be reduced. By combining the results of the hierarchical search with statistical generalization techniques, a complete representation of new, not directly demonstrated, movement primitives can be generated.

  2. Fabrication of micro/nano hierarchical structures with analysis on the surface mechanics

    Jheng, Yu-Sheng; Lee, Yeeu-Chang


    Biomimicry refers to the imitation of mechanisms and features found in living creatures using artificial methods. This study used optical lithography, colloidal lithography, and dry etching to mimic the micro/nano hierarchical structures covering the soles of gecko feet. We measured the static contact angle and contact angle hysteresis to reveal the behavior of liquid drops on the hierarchical structures. Pulling tests were also performed to measure the resistance of movement between the hierarchical structures and a testing plate. Our results reveal that hierarchical structures at the micro-/nano-scale are considerably hydrophobic, they provide good flow characteristics, and they generate more contact force than do surfaces with micro-scale cylindrical structures.

  3. Polymers on disordered hierarchical lattices: A nonlinear combination of random variables

    Cook, J. (Commissariat a l' Energie Atomique, Gif-sur-Yvette (France) Univ. of Edinburgh (England)); Derrida, B. (Commissariat a l' Energie Atomique, Gif-sur-Yvette (France))


    The problem of directed polymers on disordered hierarchical and hypercubic lattices is considered. For the hierarchical lattices the problem can be reduced to the study of the stable laws for combining random variables in a nonlinear way. The authors present the results of numerical simulations of two hierarchical lattices, finding evidence of a phase transition in one case. For a limiting case they extend the perturbation theory developed by Derrida and Griffiths to nonzero temperature and to higher order and use this approach to calculate thermal and geometrical properties (overlaps) of the model. In this limit they obtain an interpolation formula, allowing one to obtain the noninteger moments of the partition function from the integer moments. They obtain bounds for the transition temperature for hierarchical and hypercubic lattices, and some similarities between the problem on the two different types of lattice are discussed.

  4. Multiple dynamical time-scales in networks with hierarchically nested modular organization

    Sitabhra Sinha; Swarup Poria


    Many natural and engineered complex networks have intricate mesoscopic organization, e.g., the clustering of the constituent nodes into several communities or modules. Often, such modularity is manifested at several different hierarchical levels, where the clusters defined at one level appear as elementary entities at the next higher level. Using a simple model of a hierarchical modular network, we show that such a topological structure gives rise to characteristic time-scale separation between dynamics occurring at different levels of the hierarchy. This generalizes our earlier result for simple modular networks, where fast intramodular and slow intermodular processes were clearly distinguished. Investigating the process of synchronization of oscillators in a hierarchical modular network, we show the existence of as many distinct time-scales as there are hierarchical levels in the system. This suggests a possible functional role of such mesoscopic organization principle in natural systems, viz., in the dynamical separation of events occurring at different spatial scales.

  5. Intelligent multiagent coordination based on reinforcement hierarchical neuro-fuzzy models.

    Mendoza, Leonardo Forero; Vellasco, Marley; Figueiredo, Karla


    This paper presents the research and development of two hybrid neuro-fuzzy models for the hierarchical coordination of multiple intelligent agents. The main objective of the models is to have multiple agents interact intelligently with each other in complex systems. We developed two new models of coordination for intelligent multiagent systems, which integrates the Reinforcement Learning Hierarchical Neuro-Fuzzy model with two proposed coordination mechanisms: the MultiAgent Reinforcement Learning Hierarchical Neuro-Fuzzy with a market-driven coordination mechanism (MA-RL-HNFP-MD) and the MultiAgent Reinforcement Learning Hierarchical Neuro-Fuzzy with graph coordination (MA-RL-HNFP-CG). In order to evaluate the proposed models and verify the contribution of the proposed coordination mechanisms, two multiagent benchmark applications were developed: the pursuit game and the robot soccer simulation. The results obtained demonstrated that the proposed coordination mechanisms greatly improve the performance of the multiagent system when compared with other strategies.

  6. On the Hierarchical Preconditioning of the PMCHWT Integral Equation on Simply and Multiply Connected Geometries

    Guzman, J E Ortiz; Mitharwal, R; Beghein, Y; Eibert, T F; Cools, K; Andriulli, F P


    We present a hierarchical basis preconditioning strategy for the Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) integral equation considering both simply and multiply connected geometries.To this end, we first consider the direct application of hierarchical basis preconditioners, developed for the Electric Field Integral Equation (EFIE), to the PMCHWT. It is notably found that, whereas for the EFIE a diagonal preconditioner can be used for obtaining the hierarchical basis scaling factors, this strategy is catastrophic in the case of the PMCHWT since it leads to a severly ill-conditioned PMCHWT system in the case of multiply connected geometries. We then proceed to a theoretical analysis of the effect of hierarchical bases on the PMCHWT operator for which we obtain the correct scaling factors and a provably effective preconditioner for both low frequencies and mesh refinements. Numerical results will corroborate the theory and show the effectiveness of our approach.

  7. A Distributed and Adaptive Location Management Scheme for Hierarchical Mobility Management


    Hierarchical mobility management is sensitive to the failure of gateway mobility agents and prone to degrade performance on heavy loads. This paper proposes a distributed and adaptive location management scheme based on Hierarchical Mobile IPv6. This scheme can balance the loads of mobility anchor points and increase the robustness of the hierarchical structure to certain extents. In this scheme, the optimized IP paging scheme is adopted to reduce the paging signaling cost and improve the scalability of the hierarchical mobility management. We implement the distributed and adaptive location management scheme in a simulation platform and compare its performance with that of two other location management schemes. Our simulation results show that our scheme is capable of balancing the signaling and traffic loads of mobility ancher points, decreasing the average handover latency, and increasing the throughout of the visited networks.

  8. Self-Sensing of Damage Progression in Unidirectional Multiscale Hierarchical Composites Subjected to Cyclic Tensile Loading

    Ku-Herrera, J. J.; Pacheco-Salazar, O. F.; Ríos-Soberanis, C. R.; Domínguez-Rodríguez, G.; Avilés, F.


    The electrical sensitivity of glass fiber/multiwall carbon nanotube/vinyl ester hierarchical composites containing a tailored electrically-percolated network to self-sense accumulation of structural damage when subjected to cyclic tensile loading-unloading is investigated. The hierarchical composites were designed to contain two architectures differentiated by the location of the multiwall carbon nanotubes (MWCNTs), viz. MWCNTs deposited on the fibers and MWCNTs dispersed within the matrix. The changes in electrical resistance of the hierarchical composites are associated to their structural damage and correlated to acoustic emissions. The results show that such tailored hierarchical composites are able to self-sense damage onset and accumulation upon tensile loading-unloading cycles by means of their electrical response, and that the electrical response depends on the MWCNT location. PMID:26999158

  9. On Weighted Support Vector Regression

    Han, Xixuan; Clemmensen, Line Katrine Harder


    We propose a new type of weighted support vector regression (SVR), motivated by modeling local dependencies in time and space in prediction of house prices. The classic weights of the weighted SVR are added to the slack variables in the objective function (OF‐weights). This procedure directly...... the differences and similarities of the two types of weights by demonstrating the connection between the Least Absolute Shrinkage and Selection Operator (LASSO) and the SVR. We show that an SVR problem can be transformed to a LASSO problem plus a linear constraint and a box constraint. We demonstrate...

  10. Ridge regression estimator: combining unbiased and ordinary ridge regression methods of estimation

    Sharad Damodar Gore


    Full Text Available Statistical literature has several methods for coping with multicollinearity. This paper introduces a new shrinkage estimator, called modified unbiased ridge (MUR. This estimator is obtained from unbiased ridge regression (URR in the same way that ordinary ridge regression (ORR is obtained from ordinary least squares (OLS. Properties of MUR are derived. Results on its matrix mean squared error (MMSE are obtained. MUR is compared with ORR and URR in terms of MMSE. These results are illustrated with an example based on data generated by Hoerl and Kennard (1975.

  11. Biased trapping issue on weighted hierarchical networks

    Meifeng Dai; Jie Liu; Feng Zhu


    In this paper, we present trapping issues of weight-dependent walks on weighted hierarchical networks which are based on the classic scale-free hierarchical networks. Assuming that edge’s weight is used as local information by a random walker, we introduce a biased walk. The biased walk is that a walker, at each step, chooses one of its neighbours with a probability proportional to the weight of the edge. We focus on a particular case with the immobile trap positioned at the hub node which has the largest degree in the weighted hierarchical networks. Using a method based on generating functions, we determine explicitly the mean first-passage time (MFPT) for the trapping issue. Let parameter (0 < < 1) be the weight factor. We show that the efficiency of the trapping process depends on the parameter a; the smaller the value of a, the more efficient is the trapping process.

  12. Improving broadcast channel rate using hierarchical modulation

    Meric, Hugo; Arnal, Fabrice; Lesthievent, Guy; Boucheret, Marie-Laure


    We investigate the design of a broadcast system where the aim is to maximise the throughput. This task is usually challenging due to the channel variability. Forty years ago, Cover introduced and compared two schemes: time sharing and superposition coding. The second scheme was proved to be optimal for some channels. Modern satellite communications systems such as DVB-SH and DVB-S2 mainly rely on time sharing strategy to optimize throughput. They consider hierarchical modulation, a practical implementation of superposition coding, but only for unequal error protection or backward compatibility purposes. We propose in this article to combine time sharing and hierarchical modulation together and show how this scheme can improve the performance in terms of available rate. We present the gain on a simple channel modeling the broadcasting area of a satellite. Our work is applied to the DVB-SH standard, which considers hierarchical modulation as an optional feature.

  13. Hierarchical self-organization of tectonic plates

    Morra, Gabriele; Müller, R Dietmar


    The Earth's surface is subdivided into eight large tectonic plates and many smaller ones. We reconstruct the plate tessellation history and demonstrate that both large and small plates display two distinct hierarchical patterns, described by different power-law size-relationships. While small plates display little organisational change through time, the structure of the large plates oscillate between minimum and maximum hierarchical tessellations. The organization of large plates rapidly changes from a weak hierarchy at 120-100 million years ago (Ma) towards a strong hierarchy, which peaked at 65-50, Ma subsequently relaxing back towards a minimum hierarchical structure. We suggest that this fluctuation reflects an alternation between top and bottom driven plate tectonics, revealing a previously undiscovered tectonic cyclicity at a timescale of 100 million years.

  14. Towards a sustainable manufacture of hierarchical zeolites.

    Verboekend, Danny; Pérez-Ramírez, Javier


    Hierarchical zeolites have been established as a superior type of aluminosilicate catalysts compared to their conventional (purely microporous) counterparts. An impressive array of bottom-up and top-down approaches has been developed during the last decade to design and subsequently exploit these exciting materials catalytically. However, the sustainability of the developed synthetic methods has rarely been addressed. This paper highlights important criteria to ensure the ecological and economic viability of the manufacture of hierarchical zeolites. Moreover, by using base leaching as a promising case study, we verify a variety of approaches to increase reactor productivity, recycle waste streams, prevent the combustion of organic compounds, and minimize separation efforts. By reducing their synthetic footprint, hierarchical zeolites are positioned as an integral part of sustainable chemistry. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Classification using Hierarchical Naive Bayes models

    Langseth, Helge; Dyhre Nielsen, Thomas


    Classification problems have a long history in the machine learning literature. One of the simplest, and yet most consistently well-performing set of classifiers is the Naïve Bayes models. However, an inherent problem with these classifiers is the assumption that all attributes used to describe...... an instance are conditionally independent given the class of that instance. When this assumption is violated (which is often the case in practice) it can reduce classification accuracy due to “information double-counting” and interaction omission. In this paper we focus on a relatively new set of models......, termed Hierarchical Naïve Bayes models. Hierarchical Naïve Bayes models extend the modeling flexibility of Naïve Bayes models by introducing latent variables to relax some of the independence statements in these models. We propose a simple algorithm for learning Hierarchical Naïve Bayes models...

  16. Hierarchical Neural Network Structures for Phoneme Recognition

    Vasquez, Daniel; Minker, Wolfgang


    In this book, hierarchical structures based on neural networks are investigated for automatic speech recognition. These structures are evaluated on the phoneme recognition task where a  Hybrid Hidden Markov Model/Artificial Neural Network paradigm is used. The baseline hierarchical scheme consists of two levels each which is based on a Multilayered Perceptron. Additionally, the output of the first level serves as a second level input. The computational speed of the phoneme recognizer can be substantially increased by removing redundant information still contained at the first level output. Several techniques based on temporal and phonetic criteria have been investigated to remove this redundant information. The computational time could be reduced by 57% whilst keeping the system accuracy comparable to the baseline hierarchical approach.

  17. Universal hierarchical behavior of citation networks

    Mones, Enys; Vicsek, Tamás


    Many of the essential features of the evolution of scientific research are imprinted in the structure of citation networks. Connections in these networks imply information about the transfer of knowledge among papers, or in other words, edges describe the impact of papers on other publications. This inherent meaning of the edges infers that citation networks can exhibit hierarchical features, that is typical of networks based on decision-making. In this paper, we investigate the hierarchical structure of citation networks consisting of papers in the same field. We find that the majority of the networks follow a universal trend towards a highly hierarchical state, and i) the various fields display differences only concerning their phase in life (distance from the "birth" of a field) or ii) the characteristic time according to which they are approaching the stationary state. We also show by a simple argument that the alterations in the behavior are related to and can be understood by the degree of specializatio...

  18. A nontransferring dry adhesive with hierarchical polymer nanohairs

    Jeong, H. E.


    We present a simple yet robust method for fabricating angled, hierarchically patterned high-aspect-ratio polymer nanohairs to generate directionally sensitive dry adhesives. The slanted polymeric nanostructures were molded from an etched polySi substrate containing slanted nanoholes. An angled etching technique was developed to fabricate slanted nanoholes with flat tips by inserting an etch-stop layer of silicon dioxide. This unique etching method was equipped with a Faraday cage system to control the ion-incident angles in the conventional plasma etching system. The polymeric nanohairs were fabricated with tailored leaning angles, sizes, tip shapes, and hierarchical structures. As a result of controlled leaning angle and bulged flat top of the nanohairs, the replicated, slanted nanohairs showed excellent directional adhesion, exhibiting strong shear attachment (approximately 26 N/cm(2) in maximum) in the angled direction and easy detachment (approximately 2.2 N/cm(2)) in the opposite direction, with a hysteresis value of approximately 10. In addition to single scale nanohairs, monolithic, micro-nanoscale combined hierarchical hairs were also fabricated by using a 2-step UV-assisted molding technique. These hierarchical nanoscale patterns maintained their adhesive force even on a rough surface (roughness <20 microm) because of an increase in the contact area by the enhanced height of hierarchy, whereas simple nanohairs lost their adhesion strength. To demonstrate the potential applications of the adhesive patch, the dry adhesive was used to transport a large-area glass (47.5 x 37.5 cm(2), second-generation TFT-LCD glass), which could replace the current electrostatic transport/holding system with further optimization.

  19. Clinical time series prediction: towards a hierarchical dynamical system framework

    Liu, Zitao; Hauskrecht, Milos


    Objective Developing machine learning and data mining algorithms for building temporal models of clinical time series is important for understanding of the patient condition, the dynamics of a disease, effect of various patient management interventions and clinical decision making. In this work, we propose and develop a novel hierarchical framework for modeling clinical time series data of varied length and with irregularly sampled observations. Materials and methods Our hierarchical dynamical system framework for modeling clinical time series combines advantages of the two temporal modeling approaches: the linear dynamical system and the Gaussian process. We model the irregularly sampled clinical time series by using multiple Gaussian process sequences in the lower level of our hierarchical framework and capture the transitions between Gaussian processes by utilizing the linear dynamical system. The experiments are conducted on the complete blood count (CBC) panel data of 1000 post-surgical cardiac patients during their hospitalization. Our framework is evaluated and compared to multiple baseline approaches in terms of the mean absolute prediction error and the absolute percentage error. Results We tested our framework by first learning the time series model from data for the patient in the training set, and then applying the model in order to predict future time series values on the patients in the test set. We show that our model outperforms multiple existing models in terms of its predictive accuracy. Our method achieved a 3.13% average prediction accuracy improvement on ten CBC lab time series when it was compared against the best performing baseline. A 5.25% average accuracy improvement was observed when only short-term predictions were considered. Conclusion A new hierarchical dynamical system framework that lets us model irregularly sampled time series data is a promising new direction for modeling clinical time series and for improving their predictive

  20. Continuum damage modeling and simulation of hierarchical dental enamel

    Ma, Songyun; Scheider, Ingo; Bargmann, Swantje


    Dental enamel exhibits high fracture toughness and stiffness due to a complex hierarchical and graded microstructure, optimally organized from nano- to macro-scale. In this study, a 3D representative volume element (RVE) model is adopted to study the deformation and damage behavior of the fibrous microstructure. A continuum damage mechanics model coupled to hyperelasticity is developed for modeling the initiation and evolution of damage in the mineral fibers as well as protein matrix. Moreover, debonding of the interface between mineral fiber and protein is captured by employing a cohesive zone model. The dependence of the failure mechanism on the aspect ratio of the mineral fibers is investigated. In addition, the effect of the interface strength on the damage behavior is studied with respect to geometric features of enamel. Further, the effect of an initial flaw on the overall mechanical properties is analyzed to understand the superior damage tolerance of dental enamel. The simulation results are validated by comparison to experimental data from micro-cantilever beam testing at two hierarchical levels. The transition of the failure mechanism at different hierarchical levels is also well reproduced in the simulations.