WorldWideScience

Sample records for hierarchical regression results

  1. Hierarchical regression analysis in structural Equation Modeling

    NARCIS (Netherlands)

    de Jong, P.F.

    1999-01-01

    In a hierarchical or fixed-order regression analysis, the independent variables are entered into the regression equation in a prespecified order. Such an analysis is often performed when the extra amount of variance accounted for in a dependent variable by a specific independent variable is the main

  2. Entrepreneurial intention modeling using hierarchical multiple regression

    Directory of Open Access Journals (Sweden)

    Marina Jeger

    2014-12-01

    Full Text Available The goal of this study is to identify the contribution of effectuation dimensions to the predictive power of the entrepreneurial intention model over and above that which can be accounted for by other predictors selected and confirmed in previous studies. As is often the case in social and behavioral studies, some variables are likely to be highly correlated with each other. Therefore, the relative amount of variance in the criterion variable explained by each of the predictors depends on several factors such as the order of variable entry and sample specifics. The results show the modest predictive power of two dimensions of effectuation prior to the introduction of the theory of planned behavior elements. The article highlights the main advantages of applying hierarchical regression in social sciences as well as in the specific context of entrepreneurial intention formation, and addresses some of the potential pitfalls that this type of analysis entails.

  3. Hierarchical Neural Regression Models for Customer Churn Prediction

    Directory of Open Access Journals (Sweden)

    Golshan Mohammadi

    2013-01-01

    Full Text Available As customers are the main assets of each industry, customer churn prediction is becoming a major task for companies to remain in competition with competitors. In the literature, the better applicability and efficiency of hierarchical data mining techniques has been reported. This paper considers three hierarchical models by combining four different data mining techniques for churn prediction, which are backpropagation artificial neural networks (ANN, self-organizing maps (SOM, alpha-cut fuzzy c-means (α-FCM, and Cox proportional hazards regression model. The hierarchical models are ANN + ANN + Cox, SOM + ANN + Cox, and α-FCM + ANN + Cox. In particular, the first component of the models aims to cluster data in two churner and nonchurner groups and also filter out unrepresentative data or outliers. Then, the clustered data as the outputs are used to assign customers to churner and nonchurner groups by the second technique. Finally, the correctly classified data are used to create Cox proportional hazards model. To evaluate the performance of the hierarchical models, an Iranian mobile dataset is considered. The experimental results show that the hierarchical models outperform the single Cox regression baseline model in terms of prediction accuracy, Types I and II errors, RMSE, and MAD metrics. In addition, the α-FCM + ANN + Cox model significantly performs better than the two other hierarchical models.

  4. Stepwise versus Hierarchical Regression: Pros and Cons

    Science.gov (United States)

    Lewis, Mitzi

    2007-01-01

    Multiple regression is commonly used in social and behavioral data analysis. In multiple regression contexts, researchers are very often interested in determining the "best" predictors in the analysis. This focus may stem from a need to identify those predictors that are supportive of theory. Alternatively, the researcher may simply be interested…

  5. Analyzing thresholds and efficiency with hierarchical Bayesian logistic regression.

    Science.gov (United States)

    Houpt, Joseph W; Bittner, Jennifer L

    2018-05-10

    Ideal observer analysis is a fundamental tool used widely in vision science for analyzing the efficiency with which a cognitive or perceptual system uses available information. The performance of an ideal observer provides a formal measure of the amount of information in a given experiment. The ratio of human to ideal performance is then used to compute efficiency, a construct that can be directly compared across experimental conditions while controlling for the differences due to the stimuli and/or task specific demands. In previous research using ideal observer analysis, the effects of varying experimental conditions on efficiency have been tested using ANOVAs and pairwise comparisons. In this work, we present a model that combines Bayesian estimates of psychometric functions with hierarchical logistic regression for inference about both unadjusted human performance metrics and efficiencies. Our approach improves upon the existing methods by constraining the statistical analysis using a standard model connecting stimulus intensity to human observer accuracy and by accounting for variability in the estimates of human and ideal observer performance scores. This allows for both individual and group level inferences. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Preliminary results from the hierarchical glitch pipeline

    International Nuclear Information System (INIS)

    Mukherjee, Soma

    2007-01-01

    This paper reports on the preliminary results obtained from the hierarchical glitch classification pipeline on LIGO data. The pipeline that has been under construction for the past year is now complete and end-to-end tested. It is ready to generate analysis results on a daily basis. The details of the pipeline, the classification algorithms employed and the results obtained with one days analysis on the gravitational wave and several auxiliary and environmental channels from all three LIGO detectors are discussed

  7. Hierarchical Matching and Regression with Application to Photometric Redshift Estimation

    Science.gov (United States)

    Murtagh, Fionn

    2017-06-01

    This work emphasizes that heterogeneity, diversity, discontinuity, and discreteness in data is to be exploited in classification and regression problems. A global a priori model may not be desirable. For data analytics in cosmology, this is motivated by the variety of cosmological objects such as elliptical, spiral, active, and merging galaxies at a wide range of redshifts. Our aim is matching and similarity-based analytics that takes account of discrete relationships in the data. The information structure of the data is represented by a hierarchy or tree where the branch structure, rather than just the proximity, is important. The representation is related to p-adic number theory. The clustering or binning of the data values, related to the precision of the measurements, has a central role in this methodology. If used for regression, our approach is a method of cluster-wise regression, generalizing nearest neighbour regression. Both to exemplify this analytics approach, and to demonstrate computational benefits, we address the well-known photometric redshift or `photo-z' problem, seeking to match Sloan Digital Sky Survey (SDSS) spectroscopic and photometric redshifts.

  8. Neighborhood social capital and crime victimization: comparison of spatial regression analysis and hierarchical regression analysis.

    Science.gov (United States)

    Takagi, Daisuke; Ikeda, Ken'ichi; Kawachi, Ichiro

    2012-11-01

    Crime is an important determinant of public health outcomes, including quality of life, mental well-being, and health behavior. A body of research has documented the association between community social capital and crime victimization. The association between social capital and crime victimization has been examined at multiple levels of spatial aggregation, ranging from entire countries, to states, metropolitan areas, counties, and neighborhoods. In multilevel analysis, the spatial boundaries at level 2 are most often drawn from administrative boundaries (e.g., Census tracts in the U.S.). One problem with adopting administrative definitions of neighborhoods is that it ignores spatial spillover. We conducted a study of social capital and crime victimization in one ward of Tokyo city, using a spatial Durbin model with an inverse-distance weighting matrix that assigned each respondent a unique level of "exposure" to social capital based on all other residents' perceptions. The study is based on a postal questionnaire sent to 20-69 years old residents of Arakawa Ward, Tokyo. The response rate was 43.7%. We examined the contextual influence of generalized trust, perceptions of reciprocity, two types of social network variables, as well as two principal components of social capital (constructed from the above four variables). Our outcome measure was self-reported crime victimization in the last five years. In the spatial Durbin model, we found that neighborhood generalized trust, reciprocity, supportive networks and two principal components of social capital were each inversely associated with crime victimization. By contrast, a multilevel regression performed with the same data (using administrative neighborhood boundaries) found generally null associations between neighborhood social capital and crime. Spatial regression methods may be more appropriate for investigating the contextual influence of social capital in homogeneous cultural settings such as Japan. Copyright

  9. Latent Variable Regression 4-Level Hierarchical Model Using Multisite Multiple-Cohorts Longitudinal Data. CRESST Report 801

    Science.gov (United States)

    Choi, Kilchan

    2011-01-01

    This report explores a new latent variable regression 4-level hierarchical model for monitoring school performance over time using multisite multiple-cohorts longitudinal data. This kind of data set has a 4-level hierarchical structure: time-series observation nested within students who are nested within different cohorts of students. These…

  10. TYPE Ia SUPERNOVA COLORS AND EJECTA VELOCITIES: HIERARCHICAL BAYESIAN REGRESSION WITH NON-GAUSSIAN DISTRIBUTIONS

    International Nuclear Information System (INIS)

    Mandel, Kaisey S.; Kirshner, Robert P.; Foley, Ryan J.

    2014-01-01

    We investigate the statistical dependence of the peak intrinsic colors of Type Ia supernovae (SNe Ia) on their expansion velocities at maximum light, measured from the Si II λ6355 spectral feature. We construct a new hierarchical Bayesian regression model, accounting for the random effects of intrinsic scatter, measurement error, and reddening by host galaxy dust, and implement a Gibbs sampler and deviance information criteria to estimate the correlation. The method is applied to the apparent colors from BVRI light curves and Si II velocity data for 79 nearby SNe Ia. The apparent color distributions of high-velocity (HV) and normal velocity (NV) supernovae exhibit significant discrepancies for B – V and B – R, but not other colors. Hence, they are likely due to intrinsic color differences originating in the B band, rather than dust reddening. The mean intrinsic B – V and B – R color differences between HV and NV groups are 0.06 ± 0.02 and 0.09 ± 0.02 mag, respectively. A linear model finds significant slopes of –0.021 ± 0.006 and –0.030 ± 0.009 mag (10 3 km s –1 ) –1 for intrinsic B – V and B – R colors versus velocity, respectively. Because the ejecta velocity distribution is skewed toward high velocities, these effects imply non-Gaussian intrinsic color distributions with skewness up to +0.3. Accounting for the intrinsic-color-velocity correlation results in corrections to A V extinction estimates as large as –0.12 mag for HV SNe Ia and +0.06 mag for NV events. Velocity measurements from SN Ia spectra have the potential to diminish systematic errors from the confounding of intrinsic colors and dust reddening affecting supernova distances

  11. Repeated Results Analysis for Middleware Regression Benchmarking

    Czech Academy of Sciences Publication Activity Database

    Bulej, Lubomír; Kalibera, T.; Tůma, P.

    2005-01-01

    Roč. 60, - (2005), s. 345-358 ISSN 0166-5316 R&D Projects: GA ČR GA102/03/0672 Institutional research plan: CEZ:AV0Z10300504 Keywords : middleware benchmarking * regression benchmarking * regression testing Subject RIV: JD - Computer Applications, Robotics Impact factor: 0.756, year: 2005

  12. Principal Covariates Clusterwise Regression (PCCR): Accounting for Multicollinearity and Population Heterogeneity in Hierarchically Organized Data.

    Science.gov (United States)

    Wilderjans, Tom Frans; Vande Gaer, Eva; Kiers, Henk A L; Van Mechelen, Iven; Ceulemans, Eva

    2017-03-01

    In the behavioral sciences, many research questions pertain to a regression problem in that one wants to predict a criterion on the basis of a number of predictors. Although in many cases, ordinary least squares regression will suffice, sometimes the prediction problem is more challenging, for three reasons: first, multiple highly collinear predictors can be available, making it difficult to grasp their mutual relations as well as their relations to the criterion. In that case, it may be very useful to reduce the predictors to a few summary variables, on which one regresses the criterion and which at the same time yields insight into the predictor structure. Second, the population under study may consist of a few unknown subgroups that are characterized by different regression models. Third, the obtained data are often hierarchically structured, with for instance, observations being nested into persons or participants within groups or countries. Although some methods have been developed that partially meet these challenges (i.e., principal covariates regression (PCovR), clusterwise regression (CR), and structural equation models), none of these methods adequately deals with all of them simultaneously. To fill this gap, we propose the principal covariates clusterwise regression (PCCR) method, which combines the key idea's behind PCovR (de Jong & Kiers in Chemom Intell Lab Syst 14(1-3):155-164, 1992) and CR (Späth in Computing 22(4):367-373, 1979). The PCCR method is validated by means of a simulation study and by applying it to cross-cultural data regarding satisfaction with life.

  13. Investigating the effects of climate variations on bacillary dysentery incidence in northeast China using ridge regression and hierarchical cluster analysis

    Directory of Open Access Journals (Sweden)

    Guo Junqiao

    2008-09-01

    Full Text Available Abstract Background The effects of climate variations on bacillary dysentery incidence have gained more recent concern. However, the multi-collinearity among meteorological factors affects the accuracy of correlation with bacillary dysentery incidence. Methods As a remedy, a modified method to combine ridge regression and hierarchical cluster analysis was proposed for investigating the effects of climate variations on bacillary dysentery incidence in northeast China. Results All weather indicators, temperatures, precipitation, evaporation and relative humidity have shown positive correlation with the monthly incidence of bacillary dysentery, while air pressure had a negative correlation with the incidence. Ridge regression and hierarchical cluster analysis showed that during 1987–1996, relative humidity, temperatures and air pressure affected the transmission of the bacillary dysentery. During this period, all meteorological factors were divided into three categories. Relative humidity and precipitation belonged to one class, temperature indexes and evaporation belonged to another class, and air pressure was the third class. Conclusion Meteorological factors have affected the transmission of bacillary dysentery in northeast China. Bacillary dysentery prevention and control would benefit from by giving more consideration to local climate variations.

  14. Predicting multi-level drug response with gene expression profile in multiple myeloma using hierarchical ordinal regression.

    Science.gov (United States)

    Zhang, Xinyan; Li, Bingzong; Han, Huiying; Song, Sha; Xu, Hongxia; Hong, Yating; Yi, Nengjun; Zhuang, Wenzhuo

    2018-05-10

    Multiple myeloma (MM), like other cancers, is caused by the accumulation of genetic abnormalities. Heterogeneity exists in the patients' response to treatments, for example, bortezomib. This urges efforts to identify biomarkers from numerous molecular features and build predictive models for identifying patients that can benefit from a certain treatment scheme. However, previous studies treated the multi-level ordinal drug response as a binary response where only responsive and non-responsive groups are considered. It is desirable to directly analyze the multi-level drug response, rather than combining the response to two groups. In this study, we present a novel method to identify significantly associated biomarkers and then develop ordinal genomic classifier using the hierarchical ordinal logistic model. The proposed hierarchical ordinal logistic model employs the heavy-tailed Cauchy prior on the coefficients and is fitted by an efficient quasi-Newton algorithm. We apply our hierarchical ordinal regression approach to analyze two publicly available datasets for MM with five-level drug response and numerous gene expression measures. Our results show that our method is able to identify genes associated with the multi-level drug response and to generate powerful predictive models for predicting the multi-level response. The proposed method allows us to jointly fit numerous correlated predictors and thus build efficient models for predicting the multi-level drug response. The predictive model for the multi-level drug response can be more informative than the previous approaches. Thus, the proposed approach provides a powerful tool for predicting multi-level drug response and has important impact on cancer studies.

  15. Augmenting Data with Published Results in Bayesian Linear Regression

    Science.gov (United States)

    de Leeuw, Christiaan; Klugkist, Irene

    2012-01-01

    In most research, linear regression analyses are performed without taking into account published results (i.e., reported summary statistics) of similar previous studies. Although the prior density in Bayesian linear regression could accommodate such prior knowledge, formal models for doing so are absent from the literature. The goal of this…

  16. Principal Covariates Clusterwise Regression (PCCR) : Accounting for multicollinearity and population heterogeneity in hierarchically organized data.

    NARCIS (Netherlands)

    Wilderjans, Tom F.; Van de Gaer, E.; Kiers, H.A.L.; Van Mechelen, Iven; Ceulemans, Eva

    In the behavioral sciences, many research questions pertain to a regression problem in that one wants to predict a criterion on the basis of a number of predictors. Although in many cases, ordinary least squares regression will suffice, sometimes the prediction problem is more challenging, for three

  17. A Logistic Regression Model with a Hierarchical Random Error Term for Analyzing the Utilization of Public Transport

    Directory of Open Access Journals (Sweden)

    Chong Wei

    2015-01-01

    Full Text Available Logistic regression models have been widely used in previous studies to analyze public transport utilization. These studies have shown travel time to be an indispensable variable for such analysis and usually consider it to be a deterministic variable. This formulation does not allow us to capture travelers’ perception error regarding travel time, and recent studies have indicated that this error can have a significant effect on modal choice behavior. In this study, we propose a logistic regression model with a hierarchical random error term. The proposed model adds a new random error term for the travel time variable. This term structure enables us to investigate travelers’ perception error regarding travel time from a given choice behavior dataset. We also propose an extended model that allows constraining the sign of this error in the model. We develop two Gibbs samplers to estimate the basic hierarchical model and the extended model. The performance of the proposed models is examined using a well-known dataset.

  18. Hierarchical Cluster-based Partial Least Squares Regression (HC-PLSR is an efficient tool for metamodelling of nonlinear dynamic models

    Directory of Open Access Journals (Sweden)

    Omholt Stig W

    2011-06-01

    Full Text Available Abstract Background Deterministic dynamic models of complex biological systems contain a large number of parameters and state variables, related through nonlinear differential equations with various types of feedback. A metamodel of such a dynamic model is a statistical approximation model that maps variation in parameters and initial conditions (inputs to variation in features of the trajectories of the state variables (outputs throughout the entire biologically relevant input space. A sufficiently accurate mapping can be exploited both instrumentally and epistemically. Multivariate regression methodology is a commonly used approach for emulating dynamic models. However, when the input-output relations are highly nonlinear or non-monotone, a standard linear regression approach is prone to give suboptimal results. We therefore hypothesised that a more accurate mapping can be obtained by locally linear or locally polynomial regression. We present here a new method for local regression modelling, Hierarchical Cluster-based PLS regression (HC-PLSR, where fuzzy C-means clustering is used to separate the data set into parts according to the structure of the response surface. We compare the metamodelling performance of HC-PLSR with polynomial partial least squares regression (PLSR and ordinary least squares (OLS regression on various systems: six different gene regulatory network models with various types of feedback, a deterministic mathematical model of the mammalian circadian clock and a model of the mouse ventricular myocyte function. Results Our results indicate that multivariate regression is well suited for emulating dynamic models in systems biology. The hierarchical approach turned out to be superior to both polynomial PLSR and OLS regression in all three test cases. The advantage, in terms of explained variance and prediction accuracy, was largest in systems with highly nonlinear functional relationships and in systems with positive feedback

  19. Hierarchical cluster-based partial least squares regression (HC-PLSR) is an efficient tool for metamodelling of nonlinear dynamic models.

    Science.gov (United States)

    Tøndel, Kristin; Indahl, Ulf G; Gjuvsland, Arne B; Vik, Jon Olav; Hunter, Peter; Omholt, Stig W; Martens, Harald

    2011-06-01

    Deterministic dynamic models of complex biological systems contain a large number of parameters and state variables, related through nonlinear differential equations with various types of feedback. A metamodel of such a dynamic model is a statistical approximation model that maps variation in parameters and initial conditions (inputs) to variation in features of the trajectories of the state variables (outputs) throughout the entire biologically relevant input space. A sufficiently accurate mapping can be exploited both instrumentally and epistemically. Multivariate regression methodology is a commonly used approach for emulating dynamic models. However, when the input-output relations are highly nonlinear or non-monotone, a standard linear regression approach is prone to give suboptimal results. We therefore hypothesised that a more accurate mapping can be obtained by locally linear or locally polynomial regression. We present here a new method for local regression modelling, Hierarchical Cluster-based PLS regression (HC-PLSR), where fuzzy C-means clustering is used to separate the data set into parts according to the structure of the response surface. We compare the metamodelling performance of HC-PLSR with polynomial partial least squares regression (PLSR) and ordinary least squares (OLS) regression on various systems: six different gene regulatory network models with various types of feedback, a deterministic mathematical model of the mammalian circadian clock and a model of the mouse ventricular myocyte function. Our results indicate that multivariate regression is well suited for emulating dynamic models in systems biology. The hierarchical approach turned out to be superior to both polynomial PLSR and OLS regression in all three test cases. The advantage, in terms of explained variance and prediction accuracy, was largest in systems with highly nonlinear functional relationships and in systems with positive feedback loops. HC-PLSR is a promising approach for

  20. Predictive Ability of Pender's Health Promotion Model for Physical Activity and Exercise in People with Spinal Cord Injuries: A Hierarchical Regression Analysis

    Science.gov (United States)

    Keegan, John P.; Chan, Fong; Ditchman, Nicole; Chiu, Chung-Yi

    2012-01-01

    The main objective of this study was to validate Pender's Health Promotion Model (HPM) as a motivational model for exercise/physical activity self-management for people with spinal cord injuries (SCIs). Quantitative descriptive research design using hierarchical regression analysis (HRA) was used. A total of 126 individuals with SCI were recruited…

  1. Mapping the results of local statistics: Using geographically weighted regression

    Directory of Open Access Journals (Sweden)

    Stephen A. Matthews

    2012-03-01

    Full Text Available BACKGROUND The application of geographically weighted regression (GWR - a local spatial statistical technique used to test for spatial nonstationarity - has grown rapidly in the social, health, and demographic sciences. GWR is a useful exploratory analytical tool that generates a set of location-specific parameter estimates which can be mapped and analysed to provide information on spatial nonstationarity in the relationships between predictors and the outcome variable. OBJECTIVE A major challenge to users of GWR methods is how best to present and synthesize the large number of mappable results, specifically the local parameter parameter estimates and local t-values, generated from local GWR models. We offer an elegant solution. METHODS This paper introduces a mapping technique to simultaneously display local parameter estimates and local t-values on one map based on the use of data selection and transparency techniques. We integrate GWR software and GIS software package (ArcGIS and adapt earlier work in cartography on bivariate mapping. We compare traditional mapping strategies (i.e., side-by-side comparison and isoline overlay maps with our method using an illustration focusing on US county infant mortality data. CONCLUSIONS The resultant map design is more elegant than methods used to date. This type of map presentation can facilitate the exploration and interpretation of nonstationarity, focusing map reader attention on the areas of primary interest.

  2. Two SPSS programs for interpreting multiple regression results.

    Science.gov (United States)

    Lorenzo-Seva, Urbano; Ferrando, Pere J; Chico, Eliseo

    2010-02-01

    When multiple regression is used in explanation-oriented designs, it is very important to determine both the usefulness of the predictor variables and their relative importance. Standardized regression coefficients are routinely provided by commercial programs. However, they generally function rather poorly as indicators of relative importance, especially in the presence of substantially correlated predictors. We provide two user-friendly SPSS programs that implement currently recommended techniques and recent developments for assessing the relevance of the predictors. The programs also allow the user to take into account the effects of measurement error. The first program, MIMR-Corr.sps, uses a correlation matrix as input, whereas the second program, MIMR-Raw.sps, uses the raw data and computes bootstrap confidence intervals of different statistics. The SPSS syntax, a short manual, and data files related to this article are available as supplemental materials from http://brm.psychonomic-journals.org/content/supplemental.

  3. The importance of trait emotional intelligence and feelings in the prediction of perceived and biological stress in adolescents: hierarchical regressions and fsQCA models.

    Science.gov (United States)

    Villanueva, Lidón; Montoya-Castilla, Inmaculada; Prado-Gascó, Vicente

    2017-07-01

    The purpose of this study is to analyze the combined effects of trait emotional intelligence (EI) and feelings on healthy adolescents' stress. Identifying the extent to which adolescent stress varies with trait emotional differences and the feelings of adolescents is of considerable interest in the development of intervention programs for fostering youth well-being. To attain this goal, self-reported questionnaires (perceived stress, trait EI, and positive/negative feelings) and biological measures of stress (hair cortisol concentrations, HCC) were collected from 170 adolescents (12-14 years old). Two different methodologies were conducted, which included hierarchical regression models and a fuzzy-set qualitative comparative analysis (fsQCA). The results support trait EI as a protective factor against stress in healthy adolescents and suggest that feelings reinforce this relation. However, the debate continues regarding the possibility of optimal levels of trait EI for effective and adaptive emotional management, particularly in the emotional attention and clarity dimensions and for female adolescents.

  4. Regressão múltipla stepwise e hierárquica em Psicologia Organizacional: aplicações, problemas e soluções Stepwise and hierarchical multiple regression in organizational psychology: Applications, problemas and solutions

    Directory of Open Access Journals (Sweden)

    Gardênia Abbad

    2002-01-01

    Full Text Available Este artigo discute algumas aplicações das técnicas de análise de regressão múltipla stepwise e hierárquica, as quais são muito utilizadas em pesquisas da área de Psicologia Organizacional. São discutidas algumas estratégias de identificação e de solução de problemas relativos à ocorrência de erros do Tipo I e II e aos fenômenos de supressão, complementaridade e redundância nas equações de regressão múltipla. São apresentados alguns exemplos de pesquisas nas quais esses padrões de associação entre variáveis estiveram presentes e descritas as estratégias utilizadas pelos pesquisadores para interpretá-los. São discutidas as aplicações dessas análises no estudo de interação entre variáveis e na realização de testes para avaliação da linearidade do relacionamento entre variáveis. Finalmente, são apresentadas sugestões para lidar com as limitações das análises de regressão múltipla (stepwise e hierárquica.This article discusses applications of stepwise and hierarchical multiple regression analyses to research in organizational psychology. Strategies for identifying type I and II errors, and solutions to potential problems that may arise from such errors are proposed. In addition, phenomena such as suppression, complementarity, and redundancy are reviewed. The article presents examples of research where these phenomena occurred, and the manner in which they were explained by researchers. Some applications of multiple regression analyses to studies involving between-variable interactions are presented, along with tests used to analyze the presence of linearity among variables. Finally, some suggestions are provided for dealing with limitations implicit in multiple regression analyses (stepwise and hierarchical.

  5. An Analysis of Turkey's PISA 2015 Results Using Two-Level Hierarchical Linear Modelling

    Science.gov (United States)

    Atas, Dogu; Karadag, Özge

    2017-01-01

    In the field of education, most of the data collected are multi-level structured. Cities, city based schools, school based classes and finally students in the classrooms constitute a hierarchical structure. Hierarchical linear models give more accurate results compared to standard models when the data set has a structure going far as individuals,…

  6. CUSUM-Logistic Regression analysis for the rapid detection of errors in clinical laboratory test results.

    Science.gov (United States)

    Sampson, Maureen L; Gounden, Verena; van Deventer, Hendrik E; Remaley, Alan T

    2016-02-01

    The main drawback of the periodic analysis of quality control (QC) material is that test performance is not monitored in time periods between QC analyses, potentially leading to the reporting of faulty test results. The objective of this study was to develop a patient based QC procedure for the more timely detection of test errors. Results from a Chem-14 panel measured on the Beckman LX20 analyzer were used to develop the model. Each test result was predicted from the other 13 members of the panel by multiple regression, which resulted in correlation coefficients between the predicted and measured result of >0.7 for 8 of the 14 tests. A logistic regression model, which utilized the measured test result, the predicted test result, the day of the week and time of day, was then developed for predicting test errors. The output of the logistic regression was tallied by a daily CUSUM approach and used to predict test errors, with a fixed specificity of 90%. The mean average run length (ARL) before error detection by CUSUM-Logistic Regression (CSLR) was 20 with a mean sensitivity of 97%, which was considerably shorter than the mean ARL of 53 (sensitivity 87.5%) for a simple prediction model that only used the measured result for error detection. A CUSUM-Logistic Regression analysis of patient laboratory data can be an effective approach for the rapid and sensitive detection of clinical laboratory errors. Published by Elsevier Inc.

  7. Linear regression metamodeling as a tool to summarize and present simulation model results.

    Science.gov (United States)

    Jalal, Hawre; Dowd, Bryan; Sainfort, François; Kuntz, Karen M

    2013-10-01

    Modelers lack a tool to systematically and clearly present complex model results, including those from sensitivity analyses. The objective was to propose linear regression metamodeling as a tool to increase transparency of decision analytic models and better communicate their results. We used a simplified cancer cure model to demonstrate our approach. The model computed the lifetime cost and benefit of 3 treatment options for cancer patients. We simulated 10,000 cohorts in a probabilistic sensitivity analysis (PSA) and regressed the model outcomes on the standardized input parameter values in a set of regression analyses. We used the regression coefficients to describe measures of sensitivity analyses, including threshold and parameter sensitivity analyses. We also compared the results of the PSA to deterministic full-factorial and one-factor-at-a-time designs. The regression intercept represented the estimated base-case outcome, and the other coefficients described the relative parameter uncertainty in the model. We defined simple relationships that compute the average and incremental net benefit of each intervention. Metamodeling produced outputs similar to traditional deterministic 1-way or 2-way sensitivity analyses but was more reliable since it used all parameter values. Linear regression metamodeling is a simple, yet powerful, tool that can assist modelers in communicating model characteristics and sensitivity analyses.

  8. Mental and physical health correlates among family caregivers of patients with newly-diagnosed incurable cancer: a hierarchical linear regression analysis.

    Science.gov (United States)

    Shaffer, Kelly M; Jacobs, Jamie M; Nipp, Ryan D; Carr, Alaina; Jackson, Vicki A; Park, Elyse R; Pirl, William F; El-Jawahri, Areej; Gallagher, Emily R; Greer, Joseph A; Temel, Jennifer S

    2017-03-01

    Caregiver, relational, and patient factors have been associated with the health of family members and friends providing care to patients with early-stage cancer. Little research has examined whether findings extend to family caregivers of patients with incurable cancer, who experience unique and substantial caregiving burdens. We examined correlates of mental and physical health among caregivers of patients with newly-diagnosed incurable lung or non-colorectal gastrointestinal cancer. At baseline for a trial of early palliative care, caregivers of participating patients (N = 275) reported their mental and physical health (Medical Outcome Survey-Short Form-36); patients reported their quality of life (Functional Assessment of Cancer Therapy-General). Analyses used hierarchical linear regression with two-tailed significance tests. Caregivers' mental health was worse than the U.S. national population (M = 44.31, p caregiver, relational, and patient factors simultaneously revealed that younger (B = 0.31, p = .001), spousal caregivers (B = -8.70, p = .003), who cared for patients reporting low emotional well-being (B = 0.51, p = .01) reported worse mental health; older (B = -0.17, p = .01) caregivers with low educational attainment (B = 4.36, p family caregivers of patients with incurable cancer, caregiver demographics, relational factors, and patient-specific factors were all related to caregiver mental health, while caregiver demographics were primarily associated with caregiver physical health. These findings help identify characteristics of family caregivers at highest risk of poor mental and physical health who may benefit from greater supportive care.

  9. Bias in logistic regression due to imperfect diagnostic test results and practical correction approaches.

    Science.gov (United States)

    Valle, Denis; Lima, Joanna M Tucker; Millar, Justin; Amratia, Punam; Haque, Ubydul

    2015-11-04

    Logistic regression is a statistical model widely used in cross-sectional and cohort studies to identify and quantify the effects of potential disease risk factors. However, the impact of imperfect tests on adjusted odds ratios (and thus on the identification of risk factors) is under-appreciated. The purpose of this article is to draw attention to the problem associated with modelling imperfect diagnostic tests, and propose simple Bayesian models to adequately address this issue. A systematic literature review was conducted to determine the proportion of malaria studies that appropriately accounted for false-negatives/false-positives in a logistic regression setting. Inference from the standard logistic regression was also compared with that from three proposed Bayesian models using simulations and malaria data from the western Brazilian Amazon. A systematic literature review suggests that malaria epidemiologists are largely unaware of the problem of using logistic regression to model imperfect diagnostic test results. Simulation results reveal that statistical inference can be substantially improved when using the proposed Bayesian models versus the standard logistic regression. Finally, analysis of original malaria data with one of the proposed Bayesian models reveals that microscopy sensitivity is strongly influenced by how long people have lived in the study region, and an important risk factor (i.e., participation in forest extractivism) is identified that would have been missed by standard logistic regression. Given the numerous diagnostic methods employed by malaria researchers and the ubiquitous use of logistic regression to model the results of these diagnostic tests, this paper provides critical guidelines to improve data analysis practice in the presence of misclassification error. Easy-to-use code that can be readily adapted to WinBUGS is provided, enabling straightforward implementation of the proposed Bayesian models.

  10. Price promotions on healthier compared with less healthy foods: a hierarchical regression analysis of the impact on sales and social patterning of responses to promotions in Great Britain.

    Science.gov (United States)

    Nakamura, Ryota; Suhrcke, Marc; Jebb, Susan A; Pechey, Rachel; Almiron-Roig, Eva; Marteau, Theresa M

    2015-04-01

    There is a growing concern, but limited evidence, that price promotions contribute to a poor diet and the social patterning of diet-related disease. We examined the following questions: 1) Are less-healthy foods more likely to be promoted than healthier foods? 2) Are consumers more responsive to promotions on less-healthy products? 3) Are there socioeconomic differences in food purchases in response to price promotions? With the use of hierarchical regression, we analyzed data on purchases of 11,323 products within 135 food and beverage categories from 26,986 households in Great Britain during 2010. Major supermarkets operated the same price promotions in all branches. The number of stores that offered price promotions on each product for each week was used to measure the frequency of price promotions. We assessed the healthiness of each product by using a nutrient profiling (NP) model. A total of 6788 products (60%) were in healthier categories and 4535 products (40%) were in less-healthy categories. There was no significant gap in the frequency of promotion by the healthiness of products neither within nor between categories. However, after we controlled for the reference price, price discount rate, and brand-specific effects, the sales uplift arising from price promotions was larger in less-healthy than in healthier categories; a 1-SD point increase in the category mean NP score, implying the category becomes less healthy, was associated with an additional 7.7-percentage point increase in sales (from 27.3% to 35.0%; P sales uplift from promotions was larger for higher-socioeconomic status (SES) groups than for lower ones (34.6% for the high-SES group, 28.1% for the middle-SES group, and 23.1% for the low-SES group). Finally, there was no significant SES gap in the absolute volume of purchases of less-healthy foods made on promotion. Attempts to limit promotions on less-healthy foods could improve the population diet but would be unlikely to reduce health

  11. Posterior consistency for Bayesian inverse problems through stability and regression results

    International Nuclear Information System (INIS)

    Vollmer, Sebastian J

    2013-01-01

    In the Bayesian approach, the a priori knowledge about the input of a mathematical model is described via a probability measure. The joint distribution of the unknown input and the data is then conditioned, using Bayes’ formula, giving rise to the posterior distribution on the unknown input. In this setting we prove posterior consistency for nonlinear inverse problems: a sequence of data is considered, with diminishing fluctuations around a single truth and it is then of interest to show that the resulting sequence of posterior measures arising from this sequence of data concentrates around the truth used to generate the data. Posterior consistency justifies the use of the Bayesian approach very much in the same way as error bounds and convergence results for regularization techniques do. As a guiding example, we consider the inverse problem of reconstructing the diffusion coefficient from noisy observations of the solution to an elliptic PDE in divergence form. This problem is approached by splitting the forward operator into the underlying continuum model and a simpler observation operator based on the output of the model. In general, these splittings allow us to conclude posterior consistency provided a deterministic stability result for the underlying inverse problem and a posterior consistency result for the Bayesian regression problem with the push-forward prior. Moreover, we prove posterior consistency for the Bayesian regression problem based on the regularity, the tail behaviour and the small ball probabilities of the prior. (paper)

  12. Financial analysis and forecasting of the results of small businesses performance based on regression model

    Directory of Open Access Journals (Sweden)

    Svetlana O. Musienko

    2017-03-01

    Full Text Available Objective to develop the economicmathematical model of the dependence of revenue on other balance sheet items taking into account the sectoral affiliation of the companies. Methods using comparative analysis the article studies the existing approaches to the construction of the company management models. Applying the regression analysis and the least squares method which is widely used for financial management of enterprises in Russia and abroad the author builds a model of the dependence of revenue on other balance sheet items taking into account the sectoral affiliation of the companies which can be used in the financial analysis and prediction of small enterprisesrsquo performance. Results the article states the need to identify factors affecting the financial management efficiency. The author analyzed scientific research and revealed the lack of comprehensive studies on the methodology for assessing the small enterprisesrsquo management while the methods used for large companies are not always suitable for the task. The systematized approaches of various authors to the formation of regression models describe the influence of certain factors on the company activity. It is revealed that the resulting indicators in the studies were revenue profit or the company relative profitability. The main drawback of most models is the mathematical not economic approach to the definition of the dependent and independent variables. Basing on the analysis it was determined that the most correct is the model of dependence between revenues and total assets of the company using the decimal logarithm. The model was built using data on the activities of the 507 small businesses operating in three spheres of economic activity. Using the presented model it was proved that there is direct dependence between the sales proceeds and the main items of the asset balance as well as differences in the degree of this effect depending on the economic activity of small

  13. Variances in the projections, resulting from CLIMEX, Boosted Regression Trees and Random Forests techniques

    Science.gov (United States)

    Shabani, Farzin; Kumar, Lalit; Solhjouy-fard, Samaneh

    2017-08-01

    The aim of this study was to have a comparative investigation and evaluation of the capabilities of correlative and mechanistic modeling processes, applied to the projection of future distributions of date palm in novel environments and to establish a method of minimizing uncertainty in the projections of differing techniques. The location of this study on a global scale is in Middle Eastern Countries. We compared the mechanistic model CLIMEX (CL) with the correlative models MaxEnt (MX), Boosted Regression Trees (BRT), and Random Forests (RF) to project current and future distributions of date palm ( Phoenix dactylifera L.). The Global Climate Model (GCM), the CSIRO-Mk3.0 (CS) using the A2 emissions scenario, was selected for making projections. Both indigenous and alien distribution data of the species were utilized in the modeling process. The common areas predicted by MX, BRT, RF, and CL from the CS GCM were extracted and compared to ascertain projection uncertainty levels of each individual technique. The common areas identified by all four modeling techniques were used to produce a map indicating suitable and unsuitable areas for date palm cultivation for Middle Eastern countries, for the present and the year 2100. The four different modeling approaches predict fairly different distributions. Projections from CL were more conservative than from MX. The BRT and RF were the most conservative methods in terms of projections for the current time. The combination of the final CL and MX projections for the present and 2100 provide higher certainty concerning those areas that will become highly suitable for future date palm cultivation. According to the four models, cold, hot, and wet stress, with differences on a regional basis, appears to be the major restrictions on future date palm distribution. The results demonstrate variances in the projections, resulting from different techniques. The assessment and interpretation of model projections requires reservations

  14. Price promotions on healthier compared with less healthy foods: a hierarchical regression analysis of the impact on sales and social patterning of responses to promotions in Great Britain12345

    Science.gov (United States)

    Nakamura, Ryota; Suhrcke, Marc; Jebb, Susan A; Pechey, Rachel; Almiron-Roig, Eva; Marteau, Theresa M

    2015-01-01

    Background: There is a growing concern, but limited evidence, that price promotions contribute to a poor diet and the social patterning of diet-related disease. Objective: We examined the following questions: 1) Are less-healthy foods more likely to be promoted than healthier foods? 2) Are consumers more responsive to promotions on less-healthy products? 3) Are there socioeconomic differences in food purchases in response to price promotions? Design: With the use of hierarchical regression, we analyzed data on purchases of 11,323 products within 135 food and beverage categories from 26,986 households in Great Britain during 2010. Major supermarkets operated the same price promotions in all branches. The number of stores that offered price promotions on each product for each week was used to measure the frequency of price promotions. We assessed the healthiness of each product by using a nutrient profiling (NP) model. Results: A total of 6788 products (60%) were in healthier categories and 4535 products (40%) were in less-healthy categories. There was no significant gap in the frequency of promotion by the healthiness of products neither within nor between categories. However, after we controlled for the reference price, price discount rate, and brand-specific effects, the sales uplift arising from price promotions was larger in less-healthy than in healthier categories; a 1-SD point increase in the category mean NP score, implying the category becomes less healthy, was associated with an additional 7.7–percentage point increase in sales (from 27.3% to 35.0%; P sales uplift from promotions was larger for higher–socioeconomic status (SES) groups than for lower ones (34.6% for the high-SES group, 28.1% for the middle-SES group, and 23.1% for the low-SES group). Finally, there was no significant SES gap in the absolute volume of purchases of less-healthy foods made on promotion. Conclusion: Attempts to limit promotions on less-healthy foods could improve the

  15. Laser surface treatment and the resultant hierarchical topography of Ti grade 2 for biomedical application

    Energy Technology Data Exchange (ETDEWEB)

    Kuczyńska, Donata, E-mail: donatakuczynska@gmail.com [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Kwaśniak, Piotr [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Marczak, Jan [Military University of Technology, Institute of Optoelectronics, Warsaw (Poland); Bonarski, Jan [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Cracow (Poland); Smolik, Jerzy [Institute for Sustainable Technology–National Research Institute, Radom (Poland); Garbacz, Halina [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland)

    2016-12-30

    Highlights: • Presented surface modification results in multimodal topography. • Laser treatment creates roughness in a range from nano- to micrometers. • Multimodal topography promote protein adsorption. • Hybrid surface treatment results in a texture favorable for osteogenic passes. - Abstract: Modern prosthesis often have a complex structure, where parts of an implant have different functional properties. This gradient of functional properties means that local surface modifications are required. Method presented in this study was develop to functionalize prefabricated elements with original roughness obtained by conventional treatments used to homogenize and clean surface of titanium implants. Demonstrated methodology results in multimodal, periodic grooved topography with roughness in a range from nano- to micrometers. The modified surfaces were characterized in terms of shape, roughness, wettability, surface energy and chemical composition. For this purpose, the following methods were used: scanning electron microscopy, optical profilometry, atomic force microscopy, contact angle measurements and X-ray photoelectron spectroscopy. Protein adsorption studies were conducted to determine the potential biomedical application of proposed method. In order to estimate the intensity and way of the protein adsorption process on different titanium surfaces, XPS studies and AFM measurements were performed. The systematic comparison of surface states and their osseointegration tendency will be useful to evaluate suitability of presented method as an single step treatment for local surface functionalization of currently produced implantable devices.

  16. Explaining DAMPE results by dark matter with hierarchical lepton-specific Yukawa interactions

    Science.gov (United States)

    Liu, Guoli; Wang, Fei; Wang, Wenyu; Yang, Jin-Min

    2018-02-01

    We propose to interpret the DAMPE electron excess at 1.5 TeV through scalar or Dirac fermion dark matter (DM) annihilation with doubly charged scalar mediators that have lepton-specific Yukawa couplings. The hierarchy of such lepton-specific Yukawa couplings is generated through the Froggatt-Nielsen mechanism, so that the dark matter annihilation products can be dominantly electrons. Stringent constraints from LEP2 on intermediate vector boson production can be evaded in our scenarios. In the case of scalar DM, we discuss one scenario with DM annihilating directly to leptons and another scenario with DM annihilating to scalar mediators followed by their decays. We also discuss the Breit-Wigner resonant enhancement and the Sommerfeld enhancement in the case where the s-wave annihilation process is small or helicity-suppressed. With both types of enhancement, constraints on the parameters can be relaxed and new ways for model building can be opened in explaining the DAMPE results. Supported by National Natural Science Foundation of China (11105124, 11105125, 11375001, 11675147, 11675242), the Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences (Y5KF121CJ1), the Innovation Talent project of Henan Province (15HASTIT017), the Young-Talent Foundation of Zhengzhou University, the CAS Center for Excellence in Particle Physics (CCEPP), the CAS Key Research Program of Frontier Sciences and a Key R&D Program of Ministry of Science and Technology of China (2017YFA0402200-04)

  17. An illustration of harmonic regression based on the results of the fast Fourier transformation

    Directory of Open Access Journals (Sweden)

    Bertfai Imre

    2002-01-01

    Full Text Available The well-known methodology of the Fourier analysis is put against the background in the 2nd half of the century parallel to the development of the time-domain approach in the analysis of mainly economical time series. However, from the author's point of view, the former possesses some hidden analytical advantages which deserve to be re-introduced to the toolbox of analysts. This paper, through several case studies, reports research results for computer algorithm providing a harmonic model for time series. The starting point of the particular method is a harmonic analysis (Fourier-analysis or Lomb-periodogram. The results are optimized in a multifold manner resulting in a model which is easy to handle and able to forecast the underlying data. The results provided are particularly free from limitations characteristic for that methods. Furthermore, the calculated results are easy to interpret and use for further decisions. Nevertheless, the author intends to enhance the procedure in several ways. The method shown seems to be very effective and useful in modeling time series consisting of periodic terms. An additional advantage is the easy interpretation of the obtained parameters.

  18. Land surface temperature downscaling using random forest regression: primary result and sensitivity analysis

    Science.gov (United States)

    Pan, Xin; Cao, Chen; Yang, Yingbao; Li, Xiaolong; Shan, Liangliang; Zhu, Xi

    2018-04-01

    The land surface temperature (LST) derived from thermal infrared satellite images is a meaningful variable in many remote sensing applications. However, at present, the spatial resolution of the satellite thermal infrared remote sensing sensor is coarser, which cannot meet the needs. In this study, LST image was downscaled by a random forest model between LST and multiple predictors in an arid region with an oasis-desert ecotone. The proposed downscaling approach was evaluated using LST derived from the MODIS LST product of Zhangye City in Heihe Basin. The primary result of LST downscaling has been shown that the distribution of downscaled LST matched with that of the ecosystem of oasis and desert. By the way of sensitivity analysis, the most sensitive factors to LST downscaling were modified normalized difference water index (MNDWI)/normalized multi-band drought index (NMDI), soil adjusted vegetation index (SAVI)/ shortwave infrared reflectance (SWIR)/normalized difference vegetation index (NDVI), normalized difference building index (NDBI)/SAVI and SWIR/NDBI/MNDWI/NDWI for the region of water, vegetation, building and desert, with LST variation (at most) of 0.20/-0.22 K, 0.92/0.62/0.46 K, 0.28/-0.29 K and 3.87/-1.53/-0.64/-0.25 K in the situation of +/-0.02 predictor perturbances, respectively.

  19. Comparison of multianalyte proficiency test results by sum of ranking differences, principal component analysis, and hierarchical cluster analysis.

    Science.gov (United States)

    Škrbić, Biljana; Héberger, Károly; Durišić-Mladenović, Nataša

    2013-10-01

    Sum of ranking differences (SRD) was applied for comparing multianalyte results obtained by several analytical methods used in one or in different laboratories, i.e., for ranking the overall performances of the methods (or laboratories) in simultaneous determination of the same set of analytes. The data sets for testing of the SRD applicability contained the results reported during one of the proficiency tests (PTs) organized by EU Reference Laboratory for Polycyclic Aromatic Hydrocarbons (EU-RL-PAH). In this way, the SRD was also tested as a discriminant method alternative to existing average performance scores used to compare mutlianalyte PT results. SRD should be used along with the z scores--the most commonly used PT performance statistics. SRD was further developed to handle the same rankings (ties) among laboratories. Two benchmark concentration series were selected as reference: (a) the assigned PAH concentrations (determined precisely beforehand by the EU-RL-PAH) and (b) the averages of all individual PAH concentrations determined by each laboratory. Ranking relative to the assigned values and also to the average (or median) values pointed to the laboratories with the most extreme results, as well as revealed groups of laboratories with similar overall performances. SRD reveals differences between methods or laboratories even if classical test(s) cannot. The ranking was validated using comparison of ranks by random numbers (a randomization test) and using seven folds cross-validation, which highlighted the similarities among the (methods used in) laboratories. Principal component analysis and hierarchical cluster analysis justified the findings based on SRD ranking/grouping. If the PAH-concentrations are row-scaled, (i.e., z scores are analyzed as input for ranking) SRD can still be used for checking the normality of errors. Moreover, cross-validation of SRD on z scores groups the laboratories similarly. The SRD technique is general in nature, i.e., it can

  20. Does the high–tech industry consistently reduce CO{sub 2} emissions? Results from nonparametric additive regression model

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bin [School of Statistics, Jiangxi University of Finance and Economics, Nanchang, Jiangxi 330013 (China); Research Center of Applied Statistics, Jiangxi University of Finance and Economics, Nanchang, Jiangxi 330013 (China); Lin, Boqiang, E-mail: bqlin@xmu.edu.cn [Collaborative Innovation Center for Energy Economics and Energy Policy, China Institute for Studies in Energy Policy, Xiamen University, Xiamen, Fujian 361005 (China)

    2017-03-15

    China is currently the world's largest carbon dioxide (CO{sub 2}) emitter. Moreover, total energy consumption and CO{sub 2} emissions in China will continue to increase due to the rapid growth of industrialization and urbanization. Therefore, vigorously developing the high–tech industry becomes an inevitable choice to reduce CO{sub 2} emissions at the moment or in the future. However, ignoring the existing nonlinear links between economic variables, most scholars use traditional linear models to explore the impact of the high–tech industry on CO{sub 2} emissions from an aggregate perspective. Few studies have focused on nonlinear relationships and regional differences in China. Based on panel data of 1998–2014, this study uses the nonparametric additive regression model to explore the nonlinear effect of the high–tech industry from a regional perspective. The estimated results show that the residual sum of squares (SSR) of the nonparametric additive regression model in the eastern, central and western regions are 0.693, 0.054 and 0.085 respectively, which are much less those that of the traditional linear regression model (3.158, 4.227 and 7.196). This verifies that the nonparametric additive regression model has a better fitting effect. Specifically, the high–tech industry produces an inverted “U–shaped” nonlinear impact on CO{sub 2} emissions in the eastern region, but a positive “U–shaped” nonlinear effect in the central and western regions. Therefore, the nonlinear impact of the high–tech industry on CO{sub 2} emissions in the three regions should be given adequate attention in developing effective abatement policies. - Highlights: • The nonlinear effect of the high–tech industry on CO{sub 2} emissions was investigated. • The high–tech industry yields an inverted “U–shaped” effect in the eastern region. • The high–tech industry has a positive “U–shaped” nonlinear effect in other regions. • The linear impact

  1. Hyperprolactinaemia as a result of immaturity or regression: the concept of maternal subroutine. A new model of psychoendocrine interactions.

    Science.gov (United States)

    Sobrinho, L G; Almeida-Costa, J M

    1992-01-01

    Pathological hyperprolactinaemia (PH) is significantly associated with: (1) paternal deprivation during childhood, (2) depression, (3) non-specific symptoms including obesity and weight gain. The clinical onset of the symptoms often follows pregnancy or a loss. Prolactin is an insulin antagonist which does not promote weight gain. Hyperprolactinaemia and increased metabolic efficiency are parts of a system of interdependent behavioural and metabolic mechanisms necessary for the care of the young. We call this system, which is available as a whole package, maternal subroutine (MS). An important number of cases of PH are due to activation of the MS that is not induced by pregnancy. The same occurs in surrogate maternity and in some animal models. Most women with PH developed a malignant symbiotic relationship with their mothers in the setting of absence, alcoholism or devaluation of the father. These women may regress to early developmental stages to the point that they identify themselves both with their lactating mother and with the nursing infant as has been found in psychoanalysed patients and in the paradigmatic condition of pseudopregnancy. Such regression can be associated with activation of the MS. Prolactinomas represent the extreme of the spectrum of PH and may result from somatic mutations occurring in hyperstimulated lactotrophs.

  2. Dual Regression

    OpenAIRE

    Spady, Richard; Stouli, Sami

    2012-01-01

    We propose dual regression as an alternative to the quantile regression process for the global estimation of conditional distribution functions under minimal assumptions. Dual regression provides all the interpretational power of the quantile regression process while avoiding the need for repairing the intersecting conditional quantile surfaces that quantile regression often produces in practice. Our approach introduces a mathematical programming characterization of conditional distribution f...

  3. Hierarchical species distribution models

    Science.gov (United States)

    Hefley, Trevor J.; Hooten, Mevin B.

    2016-01-01

    Determining the distribution pattern of a species is important to increase scientific knowledge, inform management decisions, and conserve biodiversity. To infer spatial and temporal patterns, species distribution models have been developed for use with many sampling designs and types of data. Recently, it has been shown that count, presence-absence, and presence-only data can be conceptualized as arising from a point process distribution. Therefore, it is important to understand properties of the point process distribution. We examine how the hierarchical species distribution modeling framework has been used to incorporate a wide array of regression and theory-based components while accounting for the data collection process and making use of auxiliary information. The hierarchical modeling framework allows us to demonstrate how several commonly used species distribution models can be derived from the point process distribution, highlight areas of potential overlap between different models, and suggest areas where further research is needed.

  4. Nested and Hierarchical Archimax copulas

    KAUST Repository

    Hofert, Marius; Huser, Raphaë l; Prasad, Avinash

    2017-01-01

    The class of Archimax copulas is generalized to nested and hierarchical Archimax copulas in several ways. First, nested extreme-value copulas or nested stable tail dependence functions are introduced to construct nested Archimax copulas based on a single frailty variable. Second, a hierarchical construction of d-norm generators is presented to construct hierarchical stable tail dependence functions and thus hierarchical extreme-value copulas. Moreover, one can, by itself or additionally, introduce nested frailties to extend Archimax copulas to nested Archimax copulas in a similar way as nested Archimedean copulas extend Archimedean copulas. Further results include a general formula for the density of Archimax copulas.

  5. Nested and Hierarchical Archimax copulas

    KAUST Repository

    Hofert, Marius

    2017-07-03

    The class of Archimax copulas is generalized to nested and hierarchical Archimax copulas in several ways. First, nested extreme-value copulas or nested stable tail dependence functions are introduced to construct nested Archimax copulas based on a single frailty variable. Second, a hierarchical construction of d-norm generators is presented to construct hierarchical stable tail dependence functions and thus hierarchical extreme-value copulas. Moreover, one can, by itself or additionally, introduce nested frailties to extend Archimax copulas to nested Archimax copulas in a similar way as nested Archimedean copulas extend Archimedean copulas. Further results include a general formula for the density of Archimax copulas.

  6. Parallel hierarchical radiosity rendering

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Michael [Iowa State Univ., Ames, IA (United States)

    1993-07-01

    In this dissertation, the step-by-step development of a scalable parallel hierarchical radiosity renderer is documented. First, a new look is taken at the traditional radiosity equation, and a new form is presented in which the matrix of linear system coefficients is transformed into a symmetric matrix, thereby simplifying the problem and enabling a new solution technique to be applied. Next, the state-of-the-art hierarchical radiosity methods are examined for their suitability to parallel implementation, and scalability. Significant enhancements are also discovered which both improve their theoretical foundations and improve the images they generate. The resultant hierarchical radiosity algorithm is then examined for sources of parallelism, and for an architectural mapping. Several architectural mappings are discussed. A few key algorithmic changes are suggested during the process of making the algorithm parallel. Next, the performance, efficiency, and scalability of the algorithm are analyzed. The dissertation closes with a discussion of several ideas which have the potential to further enhance the hierarchical radiosity method, or provide an entirely new forum for the application of hierarchical methods.

  7. Percentile-Based ETCCDI Temperature Extremes Indices for CMIP5 Model Output: New Results through Semiparametric Quantile Regression Approach

    Science.gov (United States)

    Li, L.; Yang, C.

    2017-12-01

    Climate extremes often manifest as rare events in terms of surface air temperature and precipitation with an annual reoccurrence period. In order to represent the manifold characteristics of climate extremes for monitoring and analysis, the Expert Team on Climate Change Detection and Indices (ETCCDI) had worked out a set of 27 core indices based on daily temperature and precipitation data, describing extreme weather and climate events on an annual basis. The CLIMDEX project (http://www.climdex.org) had produced public domain datasets of such indices for data from a variety of sources, including output from global climate models (GCM) participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Among the 27 ETCCDI indices, there are six percentile-based temperature extremes indices that may fall into two groups: exceedance rates (ER) (TN10p, TN90p, TX10p and TX90p) and durations (CSDI and WSDI). Percentiles must be estimated prior to the calculation of the indices, and could more or less be biased by the adopted algorithm. Such biases will in turn be propagated to the final results of indices. The CLIMDEX used an empirical quantile estimator combined with a bootstrap resampling procedure to reduce the inhomogeneity in the annual series of the ER indices. However, there are still some problems remained in the CLIMDEX datasets, namely the overestimated climate variability due to unaccounted autocorrelation in the daily temperature data, seasonally varying biases and inconsistency between algorithms applied to the ER indices and to the duration indices. We now present new results of the six indices through a semiparametric quantile regression approach for the CMIP5 model output. By using the base-period data as a whole and taking seasonality and autocorrelation into account, this approach successfully addressed the aforementioned issues and came out with consistent results. The new datasets cover the historical and three projected (RCP2.6, RCP4.5 and RCP

  8. Diet influenced tooth erosion prevalence in children and adolescents: Results of a meta-analysis and meta-regression

    NARCIS (Netherlands)

    Salas, M.M.; Nascimento, G.G.; Vargas-Ferreira, F.; Tarquinio, S.B.; Huysmans, M.C.D.N.J.M.; Demarco, F.F.

    2015-01-01

    OBJECTIVE: The aim of the present study was to assess the influence of diet in tooth erosion presence in children and adolescents by meta-analysis and meta-regression. DATA: Two reviewers independently performed the selection process and the quality of studies was assessed. SOURCES: Studies

  9. Using hierarchical linear models to test differences in Swedish results from OECD’s PISA 2003: Integrated and subject-specific science education

    Directory of Open Access Journals (Sweden)

    Maria Åström

    2012-06-01

    Full Text Available The possible effects of different organisations of the science curriculum in schools participating in PISA 2003 are tested with a hierarchical linear model (HLM of two levels. The analysis is based on science results. Swedish schools are free to choose how they organise the science curriculum. They may choose to work subject-specifically (with Biology, Chemistry and Physics, integrated (with Science or to mix these two. In this study, all three ways of organising science classes in compulsory school are present to some degree. None of the different ways of organising science education displayed statistically significant better student results in scientific literacy as measured in PISA 2003. The HLM model used variables of gender, country of birth, home language, preschool attendance, an economic, social and cultural index as well as the teaching organisation.

  10. Differentiating regressed melanoma from regressed lichenoid keratosis.

    Science.gov (United States)

    Chan, Aegean H; Shulman, Kenneth J; Lee, Bonnie A

    2017-04-01

    Distinguishing regressed lichen planus-like keratosis (LPLK) from regressed melanoma can be difficult on histopathologic examination, potentially resulting in mismanagement of patients. We aimed to identify histopathologic features by which regressed melanoma can be differentiated from regressed LPLK. Twenty actively inflamed LPLK, 12 LPLK with regression and 15 melanomas with regression were compared and evaluated by hematoxylin and eosin staining as well as Melan-A, microphthalmia transcription factor (MiTF) and cytokeratin (AE1/AE3) immunostaining. (1) A total of 40% of regressed melanomas showed complete or near complete loss of melanocytes within the epidermis with Melan-A and MiTF immunostaining, while 8% of regressed LPLK exhibited this finding. (2) Necrotic keratinocytes were seen in the epidermis in 33% regressed melanomas as opposed to all of the regressed LPLK. (3) A dense infiltrate of melanophages in the papillary dermis was seen in 40% of regressed melanomas, a feature not seen in regressed LPLK. In summary, our findings suggest that a complete or near complete loss of melanocytes within the epidermis strongly favors a regressed melanoma over a regressed LPLK. In addition, necrotic epidermal keratinocytes and the presence of a dense band-like distribution of dermal melanophages can be helpful in differentiating these lesions. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Retinal microaneurysm count predicts progression and regression of diabetic retinopathy. Post-hoc results from the DIRECT Programme.

    Science.gov (United States)

    Sjølie, A K; Klein, R; Porta, M; Orchard, T; Fuller, J; Parving, H H; Bilous, R; Aldington, S; Chaturvedi, N

    2011-03-01

    To study the association between baseline retinal microaneurysm score and progression and regression of diabetic retinopathy, and response to treatment with candesartan in people with diabetes. This was a multicenter randomized clinical trial. The progression analysis included 893 patients with Type 1 diabetes and 526 patients with Type 2 diabetes with retinal microaneurysms only at baseline. For regression, 438 with Type 1 and 216 with Type 2 diabetes qualified. Microaneurysms were scored from yearly retinal photographs according to the Early Treatment Diabetic Retinopathy Study (ETDRS) protocol. Retinopathy progression and regression was defined as two or more step change on the ETDRS scale from baseline. Patients were normoalbuminuric, and normotensive with Type 1 and Type 2 diabetes or treated hypertensive with Type 2 diabetes. They were randomized to treatment with candesartan 32 mg daily or placebo and followed for 4.6 years. A higher microaneurysm score at baseline predicted an increased risk of retinopathy progression (HR per microaneurysm score 1.08, P diabetes; HR 1.07, P = 0.0174 in Type 2 diabetes) and reduced the likelihood of regression (HR 0.79, P diabetes; HR 0.85, P = 0.0009 in Type 2 diabetes), all adjusted for baseline variables and treatment. Candesartan reduced the risk of microaneurysm score progression. Microaneurysm counts are important prognostic indicators for worsening of retinopathy, thus microaneurysms are not benign. Treatment with renin-angiotensin system inhibitors is effective in the early stages and may improve mild diabetic retinopathy. Microaneurysm scores may be useful surrogate endpoints in clinical trials. © 2011 The Authors. Diabetic Medicine © 2011 Diabetes UK.

  12. Regression Phalanxes

    OpenAIRE

    Zhang, Hongyang; Welch, William J.; Zamar, Ruben H.

    2017-01-01

    Tomal et al. (2015) introduced the notion of "phalanxes" in the context of rare-class detection in two-class classification problems. A phalanx is a subset of features that work well for classification tasks. In this paper, we propose a different class of phalanxes for application in regression settings. We define a "Regression Phalanx" - a subset of features that work well together for prediction. We propose a novel algorithm which automatically chooses Regression Phalanxes from high-dimensi...

  13. Measuring the statistical validity of summary meta‐analysis and meta‐regression results for use in clinical practice

    Science.gov (United States)

    Riley, Richard D.

    2017-01-01

    An important question for clinicians appraising a meta‐analysis is: are the findings likely to be valid in their own practice—does the reported effect accurately represent the effect that would occur in their own clinical population? To this end we advance the concept of statistical validity—where the parameter being estimated equals the corresponding parameter for a new independent study. Using a simple (‘leave‐one‐out’) cross‐validation technique, we demonstrate how we may test meta‐analysis estimates for statistical validity using a new validation statistic, Vn, and derive its distribution. We compare this with the usual approach of investigating heterogeneity in meta‐analyses and demonstrate the link between statistical validity and homogeneity. Using a simulation study, the properties of Vn and the Q statistic are compared for univariate random effects meta‐analysis and a tailored meta‐regression model, where information from the setting (included as model covariates) is used to calibrate the summary estimate to the setting of application. Their properties are found to be similar when there are 50 studies or more, but for fewer studies Vn has greater power but a higher type 1 error rate than Q. The power and type 1 error rate of Vn are also shown to depend on the within‐study variance, between‐study variance, study sample size, and the number of studies in the meta‐analysis. Finally, we apply Vn to two published meta‐analyses and conclude that it usefully augments standard methods when deciding upon the likely validity of summary meta‐analysis estimates in clinical practice. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. PMID:28620945

  14. Hierarchical architecture of active knits

    International Nuclear Information System (INIS)

    Abel, Julianna; Luntz, Jonathan; Brei, Diann

    2013-01-01

    Nature eloquently utilizes hierarchical structures to form the world around us. Applying the hierarchical architecture paradigm to smart materials can provide a basis for a new genre of actuators which produce complex actuation motions. One promising example of cellular architecture—active knits—provides complex three-dimensional distributed actuation motions with expanded operational performance through a hierarchically organized structure. The hierarchical structure arranges a single fiber of active material, such as shape memory alloys (SMAs), into a cellular network of interlacing adjacent loops according to a knitting grid. This paper defines a four-level hierarchical classification of knit structures: the basic knit loop, knit patterns, grid patterns, and restructured grids. Each level of the hierarchy provides increased architectural complexity, resulting in expanded kinematic actuation motions of active knits. The range of kinematic actuation motions are displayed through experimental examples of different SMA active knits. The results from this paper illustrate and classify the ways in which each level of the hierarchical knit architecture leverages the performance of the base smart material to generate unique actuation motions, providing necessary insight to best exploit this new actuation paradigm. (paper)

  15. Semiparametric regression during 2003–2007

    KAUST Repository

    Ruppert, David; Wand, M.P.; Carroll, Raymond J.

    2009-01-01

    Semiparametric regression is a fusion between parametric regression and nonparametric regression that integrates low-rank penalized splines, mixed model and hierarchical Bayesian methodology – thus allowing more streamlined handling of longitudinal and spatial correlation. We review progress in the field over the five-year period between 2003 and 2007. We find semiparametric regression to be a vibrant field with substantial involvement and activity, continual enhancement and widespread application.

  16. Regression analysis by example

    CERN Document Server

    Chatterjee, Samprit

    2012-01-01

    Praise for the Fourth Edition: ""This book is . . . an excellent source of examples for regression analysis. It has been and still is readily readable and understandable."" -Journal of the American Statistical Association Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. Regression Analysis by Example, Fifth Edition has been expanded

  17. Autistic Regression

    Science.gov (United States)

    Matson, Johnny L.; Kozlowski, Alison M.

    2010-01-01

    Autistic regression is one of the many mysteries in the developmental course of autism and pervasive developmental disorders not otherwise specified (PDD-NOS). Various definitions of this phenomenon have been used, further clouding the study of the topic. Despite this problem, some efforts at establishing prevalence have been made. The purpose of…

  18. Functional annotation of hierarchical modularity.

    Directory of Open Access Journals (Sweden)

    Kanchana Padmanabhan

    Full Text Available In biological networks of molecular interactions in a cell, network motifs that are biologically relevant are also functionally coherent, or form functional modules. These functionally coherent modules combine in a hierarchical manner into larger, less cohesive subsystems, thus revealing one of the essential design principles of system-level cellular organization and function-hierarchical modularity. Arguably, hierarchical modularity has not been explicitly taken into consideration by most, if not all, functional annotation systems. As a result, the existing methods would often fail to assign a statistically significant functional coherence score to biologically relevant molecular machines. We developed a methodology for hierarchical functional annotation. Given the hierarchical taxonomy of functional concepts (e.g., Gene Ontology and the association of individual genes or proteins with these concepts (e.g., GO terms, our method will assign a Hierarchical Modularity Score (HMS to each node in the hierarchy of functional modules; the HMS score and its p-value measure functional coherence of each module in the hierarchy. While existing methods annotate each module with a set of "enriched" functional terms in a bag of genes, our complementary method provides the hierarchical functional annotation of the modules and their hierarchically organized components. A hierarchical organization of functional modules often comes as a bi-product of cluster analysis of gene expression data or protein interaction data. Otherwise, our method will automatically build such a hierarchy by directly incorporating the functional taxonomy information into the hierarchy search process and by allowing multi-functional genes to be part of more than one component in the hierarchy. In addition, its underlying HMS scoring metric ensures that functional specificity of the terms across different levels of the hierarchical taxonomy is properly treated. We have evaluated our

  19. Application of Hierarchical Linear Models/Linear Mixed-Effects Models in School Effectiveness Research

    Science.gov (United States)

    Ker, H. W.

    2014-01-01

    Multilevel data are very common in educational research. Hierarchical linear models/linear mixed-effects models (HLMs/LMEs) are often utilized to analyze multilevel data nowadays. This paper discusses the problems of utilizing ordinary regressions for modeling multilevel educational data, compare the data analytic results from three regression…

  20. "Logits and Tigers and Bears, Oh My! A Brief Look at the Simple Math of Logistic Regression and How It Can Improve Dissemination of Results"

    Directory of Open Access Journals (Sweden)

    Jason W. Osborne

    2012-06-01

    Full Text Available Logistic regression is slowly gaining acceptance in the social sciences, and fills an important niche in the researcher's toolkit: being able to predict important outcomes that are not continuous in nature. While OLS regression is a valuable tool, it cannot routinely be used to predict outcomes that are binary or categorical in nature. These outcomes represent important social science lines of research: retention in, or dropout from school, using illicit drugs, underage alcohol consumption, antisocial behavior, purchasing decisions, voting patterns, risky behavior, and so on. The goal of this paper is to briefly lead the reader through the surprisingly simple mathematics that underpins logistic regression: probabilities, odds, odds ratios, and logits. Anyone with spreadsheet software or a scientific calculator can follow along, and in turn, this knowledge can be used to make much more interesting, clear, and accurate presentations of results (especially to non-technical audiences. In particular, I will share an example of an interaction in logistic regression, how it was originally graphed, and how the graph was made substantially more user-friendly by converting the original metric (logits to a more readily interpretable metric (probability through three simple steps.

  1. Linear regression

    CERN Document Server

    Olive, David J

    2017-01-01

    This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response trans...

  2. Understanding logistic regression analysis

    OpenAIRE

    Sperandei, Sandro

    2014-01-01

    Logistic regression is used to obtain odds ratio in the presence of more than one explanatory variable. The procedure is quite similar to multiple linear regression, with the exception that the response variable is binomial. The result is the impact of each variable on the odds ratio of the observed event of interest. The main advantage is to avoid confounding effects by analyzing the association of all variables together. In this article, we explain the logistic regression procedure using ex...

  3. Should metacognition be measured by logistic regression?

    Science.gov (United States)

    Rausch, Manuel; Zehetleitner, Michael

    2017-03-01

    Are logistic regression slopes suitable to quantify metacognitive sensitivity, i.e. the efficiency with which subjective reports differentiate between correct and incorrect task responses? We analytically show that logistic regression slopes are independent from rating criteria in one specific model of metacognition, which assumes (i) that rating decisions are based on sensory evidence generated independently of the sensory evidence used for primary task responses and (ii) that the distributions of evidence are logistic. Given a hierarchical model of metacognition, logistic regression slopes depend on rating criteria. According to all considered models, regression slopes depend on the primary task criterion. A reanalysis of previous data revealed that massive numbers of trials are required to distinguish between hierarchical and independent models with tolerable accuracy. It is argued that researchers who wish to use logistic regression as measure of metacognitive sensitivity need to control the primary task criterion and rating criteria. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Processing of hierarchical syntactic structure in music.

    Science.gov (United States)

    Koelsch, Stefan; Rohrmeier, Martin; Torrecuso, Renzo; Jentschke, Sebastian

    2013-09-17

    Hierarchical structure with nested nonlocal dependencies is a key feature of human language and can be identified theoretically in most pieces of tonal music. However, previous studies have argued against the perception of such structures in music. Here, we show processing of nonlocal dependencies in music. We presented chorales by J. S. Bach and modified versions in which the hierarchical structure was rendered irregular whereas the local structure was kept intact. Brain electric responses differed between regular and irregular hierarchical structures, in both musicians and nonmusicians. This finding indicates that, when listening to music, humans apply cognitive processes that are capable of dealing with long-distance dependencies resulting from hierarchically organized syntactic structures. Our results reveal that a brain mechanism fundamental for syntactic processing is engaged during the perception of music, indicating that processing of hierarchical structure with nested nonlocal dependencies is not just a key component of human language, but a multidomain capacity of human cognition.

  5. Hierarchical ordering with partial pairwise hierarchical relationships on the macaque brain data sets.

    Directory of Open Access Journals (Sweden)

    Woosang Lim

    Full Text Available Hierarchical organizations of information processing in the brain networks have been known to exist and widely studied. To find proper hierarchical structures in the macaque brain, the traditional methods need the entire pairwise hierarchical relationships between cortical areas. In this paper, we present a new method that discovers hierarchical structures of macaque brain networks by using partial information of pairwise hierarchical relationships. Our method uses a graph-based manifold learning to exploit inherent relationship, and computes pseudo distances of hierarchical levels for every pair of cortical areas. Then, we compute hierarchy levels of all cortical areas by minimizing the sum of squared hierarchical distance errors with the hierarchical information of few cortical areas. We evaluate our method on the macaque brain data sets whose true hierarchical levels are known as the FV91 model. The experimental results show that hierarchy levels computed by our method are similar to the FV91 model, and its errors are much smaller than the errors of hierarchical clustering approaches.

  6. Correlation of results obtained by in-vivo optical spectroscopy with measured blood oxygen saturation using a positive linear regression fit

    Science.gov (United States)

    McCormick, Patrick W.; Lewis, Gary D.; Dujovny, Manuel; Ausman, James I.; Stewart, Mick; Widman, Ronald A.

    1992-05-01

    Near infrared light generated by specialized instrumentation was passed through artificially oxygenated human blood during simultaneous sampling by a co-oximeter. Characteristic absorption spectra were analyzed to calculate the ratio of oxygenated to reduced hemoglobin. A positive linear regression fit between diffuse transmission oximetry and measured blood oxygenation over the range 23% to 99% (r2 equals .98, p signal was observed in the patient over time. The procedure was able to be performed clinically without difficulty; rSO2 values recorded continuously demonstrate the usefulness of the technique. Using the same instrumentation, arterial input and cerebral response functions, generated by IV tracer bolus, were deconvoluted to measure mean cerebral transit time. Date collected over time provided a sensitive index of changes in cerebral blood flow as a result of therapeutic maneuvers.

  7. Hierarchical Bayesian modelling of mobility metrics for hazard model input calibration

    Science.gov (United States)

    Calder, Eliza; Ogburn, Sarah; Spiller, Elaine; Rutarindwa, Regis; Berger, Jim

    2015-04-01

    In this work we present a method to constrain flow mobility input parameters for pyroclastic flow models using hierarchical Bayes modeling of standard mobility metrics such as H/L and flow volume etc. The advantage of hierarchical modeling is that it can leverage the information in global dataset for a particular mobility metric in order to reduce the uncertainty in modeling of an individual volcano, especially important where individual volcanoes have only sparse datasets. We use compiled pyroclastic flow runout data from Colima, Merapi, Soufriere Hills, Unzen and Semeru volcanoes, presented in an open-source database FlowDat (https://vhub.org/groups/massflowdatabase). While the exact relationship between flow volume and friction varies somewhat between volcanoes, dome collapse flows originating from the same volcano exhibit similar mobility relationships. Instead of fitting separate regression models for each volcano dataset, we use a variation of the hierarchical linear model (Kass and Steffey, 1989). The model presents a hierarchical structure with two levels; all dome collapse flows and dome collapse flows at specific volcanoes. The hierarchical model allows us to assume that the flows at specific volcanoes share a common distribution of regression slopes, then solves for that distribution. We present comparisons of the 95% confidence intervals on the individual regression lines for the data set from each volcano as well as those obtained from the hierarchical model. The results clearly demonstrate the advantage of considering global datasets using this technique. The technique developed is demonstrated here for mobility metrics, but can be applied to many other global datasets of volcanic parameters. In particular, such methods can provide a means to better contain parameters for volcanoes for which we only have sparse data, a ubiquitous problem in volcanology.

  8. Understanding logistic regression analysis.

    Science.gov (United States)

    Sperandei, Sandro

    2014-01-01

    Logistic regression is used to obtain odds ratio in the presence of more than one explanatory variable. The procedure is quite similar to multiple linear regression, with the exception that the response variable is binomial. The result is the impact of each variable on the odds ratio of the observed event of interest. The main advantage is to avoid confounding effects by analyzing the association of all variables together. In this article, we explain the logistic regression procedure using examples to make it as simple as possible. After definition of the technique, the basic interpretation of the results is highlighted and then some special issues are discussed.

  9. Logits and Tigers and Bears, Oh My! A Brief Look at the Simple Math of Logistic Regression and How It Can Improve Dissemination of Results

    Science.gov (United States)

    Osborne, Jason W.

    2012-01-01

    Logistic regression is slowly gaining acceptance in the social sciences, and fills an important niche in the researcher's toolkit: being able to predict important outcomes that are not continuous in nature. While OLS regression is a valuable tool, it cannot routinely be used to predict outcomes that are binary or categorical in nature. These…

  10. Catalysis with hierarchical zeolites

    DEFF Research Database (Denmark)

    Holm, Martin Spangsberg; Taarning, Esben; Egeblad, Kresten

    2011-01-01

    Hierarchical (or mesoporous) zeolites have attracted significant attention during the first decade of the 21st century, and so far this interest continues to increase. There have already been several reviews giving detailed accounts of the developments emphasizing different aspects of this research...... topic. Until now, the main reason for developing hierarchical zeolites has been to achieve heterogeneous catalysts with improved performance but this particular facet has not yet been reviewed in detail. Thus, the present paper summaries and categorizes the catalytic studies utilizing hierarchical...... zeolites that have been reported hitherto. Prototypical examples from some of the different categories of catalytic reactions that have been studied using hierarchical zeolite catalysts are highlighted. This clearly illustrates the different ways that improved performance can be achieved with this family...

  11. Hierarchical Network Design

    DEFF Research Database (Denmark)

    Thomadsen, Tommy

    2005-01-01

    Communication networks are immensely important today, since both companies and individuals use numerous services that rely on them. This thesis considers the design of hierarchical (communication) networks. Hierarchical networks consist of layers of networks and are well-suited for coping...... with changing and increasing demands. Two-layer networks consist of one backbone network, which interconnects cluster networks. The clusters consist of nodes and links, which connect the nodes. One node in each cluster is a hub node, and the backbone interconnects the hub nodes of each cluster and thus...... the clusters. The design of hierarchical networks involves clustering of nodes, hub selection, and network design, i.e. selection of links and routing of ows. Hierarchical networks have been in use for decades, but integrated design of these networks has only been considered for very special types of networks...

  12. Micromechanics of hierarchical materials

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon, Jr.

    2012-01-01

    A short overview of micromechanical models of hierarchical materials (hybrid composites, biomaterials, fractal materials, etc.) is given. Several examples of the modeling of strength and damage in hierarchical materials are summarized, among them, 3D FE model of hybrid composites...... with nanoengineered matrix, fiber bundle model of UD composites with hierarchically clustered fibers and 3D multilevel model of wood considered as a gradient, cellular material with layered composite cell walls. The main areas of research in micromechanics of hierarchical materials are identified, among them......, the investigations of the effects of load redistribution between reinforcing elements at different scale levels, of the possibilities to control different material properties and to ensure synergy of strengthening effects at different scale levels and using the nanoreinforcement effects. The main future directions...

  13. Programming with Hierarchical Maps

    DEFF Research Database (Denmark)

    Ørbæk, Peter

    This report desribes the hierarchical maps used as a central data structure in the Corundum framework. We describe its most prominent features, ague for its usefulness and briefly describe some of the software prototypes implemented using the technology....

  14. Introduction into Hierarchical Matrices

    KAUST Repository

    Litvinenko, Alexander

    2013-12-05

    Hierarchical matrices allow us to reduce computational storage and cost from cubic to almost linear. This technique can be applied for solving PDEs, integral equations, matrix equations and approximation of large covariance and precision matrices.

  15. Introduction into Hierarchical Matrices

    KAUST Repository

    Litvinenko, Alexander

    2013-01-01

    Hierarchical matrices allow us to reduce computational storage and cost from cubic to almost linear. This technique can be applied for solving PDEs, integral equations, matrix equations and approximation of large covariance and precision matrices.

  16. Predictors of adherence with self-care guidelines among persons with type 2 diabetes: results from a logistic regression tree analysis.

    Science.gov (United States)

    Yamashita, Takashi; Kart, Cary S; Noe, Douglas A

    2012-12-01

    Type 2 diabetes is known to contribute to health disparities in the U.S. and failure to adhere to recommended self-care behaviors is a contributing factor. Intervention programs face difficulties as a result of patient diversity and limited resources. With data from the 2005 Behavioral Risk Factor Surveillance System, this study employs a logistic regression tree algorithm to identify characteristics of sub-populations with type 2 diabetes according to their reported frequency of adherence to four recommended diabetes self-care behaviors including blood glucose monitoring, foot examination, eye examination and HbA1c testing. Using Andersen's health behavior model, need factors appear to dominate the definition of which sub-groups were at greatest risk for low as well as high adherence. Findings demonstrate the utility of easily interpreted tree diagrams to design specific culturally appropriate intervention programs targeting sub-populations of diabetes patients who need to improve their self-care behaviors. Limitations and contributions of the study are discussed.

  17. Hierarchical Linked Views

    Energy Technology Data Exchange (ETDEWEB)

    Erbacher, Robert; Frincke, Deb

    2007-07-02

    Coordinated views have proven critical to the development of effective visualization environments. This results from the fact that a single view or representation of the data cannot show all of the intricacies of a given data set. Additionally, users will often need to correlate more data parameters than can effectively be integrated into a single visual display. Typically, development of multiple-linked views results in an adhoc configuration of views and associated interactions. The hierarchical model we are proposing is geared towards more effective organization of such environments and the views they encompass. At the same time, this model can effectively integrate much of the prior work on interactive and visual frameworks. Additionally, we expand the concept of views to incorporate perceptual views. This is related to the fact that visual displays can have information encoded at various levels of focus. Thus, a global view of the display provides overall trends of the data while focusing in on individual elements provides detailed specifics. By integrating interaction and perception into a single model, we show how one impacts the other. Typically, interaction and perception are considered separately, however, when interaction is being considered at a fundamental level and allowed to direct/modify the visualization directly we must consider them simultaneously and how they impact one another.

  18. Modified Regression Correlation Coefficient for Poisson Regression Model

    Science.gov (United States)

    Kaengthong, Nattacha; Domthong, Uthumporn

    2017-09-01

    This study gives attention to indicators in predictive power of the Generalized Linear Model (GLM) which are widely used; however, often having some restrictions. We are interested in regression correlation coefficient for a Poisson regression model. This is a measure of predictive power, and defined by the relationship between the dependent variable (Y) and the expected value of the dependent variable given the independent variables [E(Y|X)] for the Poisson regression model. The dependent variable is distributed as Poisson. The purpose of this research was modifying regression correlation coefficient for Poisson regression model. We also compare the proposed modified regression correlation coefficient with the traditional regression correlation coefficient in the case of two or more independent variables, and having multicollinearity in independent variables. The result shows that the proposed regression correlation coefficient is better than the traditional regression correlation coefficient based on Bias and the Root Mean Square Error (RMSE).

  19. Hierarchical Discriminant Analysis

    Directory of Open Access Journals (Sweden)

    Di Lu

    2018-01-01

    Full Text Available The Internet of Things (IoT generates lots of high-dimensional sensor intelligent data. The processing of high-dimensional data (e.g., data visualization and data classification is very difficult, so it requires excellent subspace learning algorithms to learn a latent subspace to preserve the intrinsic structure of the high-dimensional data, and abandon the least useful information in the subsequent processing. In this context, many subspace learning algorithms have been presented. However, in the process of transforming the high-dimensional data into the low-dimensional space, the huge difference between the sum of inter-class distance and the sum of intra-class distance for distinct data may cause a bias problem. That means that the impact of intra-class distance is overwhelmed. To address this problem, we propose a novel algorithm called Hierarchical Discriminant Analysis (HDA. It minimizes the sum of intra-class distance first, and then maximizes the sum of inter-class distance. This proposed method balances the bias from the inter-class and that from the intra-class to achieve better performance. Extensive experiments are conducted on several benchmark face datasets. The results reveal that HDA obtains better performance than other dimensionality reduction algorithms.

  20. Automatic Hierarchical Color Image Classification

    Directory of Open Access Journals (Sweden)

    Jing Huang

    2003-02-01

    Full Text Available Organizing images into semantic categories can be extremely useful for content-based image retrieval and image annotation. Grouping images into semantic classes is a difficult problem, however. Image classification attempts to solve this hard problem by using low-level image features. In this paper, we propose a method for hierarchical classification of images via supervised learning. This scheme relies on using a good low-level feature and subsequently performing feature-space reconfiguration using singular value decomposition to reduce noise and dimensionality. We use the training data to obtain a hierarchical classification tree that can be used to categorize new images. Our experimental results suggest that this scheme not only performs better than standard nearest-neighbor techniques, but also has both storage and computational advantages.

  1. Neutrosophic Hierarchical Clustering Algoritms

    Directory of Open Access Journals (Sweden)

    Rıdvan Şahin

    2014-03-01

    Full Text Available Interval neutrosophic set (INS is a generalization of interval valued intuitionistic fuzzy set (IVIFS, whose the membership and non-membership values of elements consist of fuzzy range, while single valued neutrosophic set (SVNS is regarded as extension of intuitionistic fuzzy set (IFS. In this paper, we extend the hierarchical clustering techniques proposed for IFSs and IVIFSs to SVNSs and INSs respectively. Based on the traditional hierarchical clustering procedure, the single valued neutrosophic aggregation operator, and the basic distance measures between SVNSs, we define a single valued neutrosophic hierarchical clustering algorithm for clustering SVNSs. Then we extend the algorithm to classify an interval neutrosophic data. Finally, we present some numerical examples in order to show the effectiveness and availability of the developed clustering algorithms.

  2. Hierarchical decision making for flood risk reduction

    DEFF Research Database (Denmark)

    Custer, Rocco; Nishijima, Kazuyoshi

    2013-01-01

    . In current practice, structures are often optimized individually without considering benefits of having a hierarchy of protection structures. It is here argued, that the joint consideration of hierarchically integrated protection structures is beneficial. A hierarchical decision model is utilized to analyze...... and compare the benefit of large upstream protection structures and local downstream protection structures in regard to epistemic uncertainty parameters. Results suggest that epistemic uncertainty influences the outcome of the decision model and that, depending on the magnitude of epistemic uncertainty...

  3. Surgery for the correction of hallux valgus: minimum five-year results with a validated patient-reported outcome tool and regression analysis.

    Science.gov (United States)

    Chong, A; Nazarian, N; Chandrananth, J; Tacey, M; Shepherd, D; Tran, P

    2015-02-01

    This study sought to determine the medium-term patient-reported and radiographic outcomes in patients undergoing surgery for hallux valgus. A total of 118 patients (162 feet) underwent surgery for hallux valgus between January 2008 and June 2009. The Manchester-Oxford Foot Questionnaire (MOXFQ), a validated tool for the assessment of outcome after surgery for hallux valgus, was used and patient satisfaction was sought. The medical records and radiographs were reviewed retrospectively. At a mean of 5.2 years (4.7 to 6.0) post-operatively, the median combined MOXFQ score was 7.8 (IQR:0 to 32.8). The median domain scores for pain, walking/standing, and social interaction were 10 (IQR: 0 to 45), 0 (IQR: 0 to 32.1) and 6.3 (IQR: 0 to 25) respectively. A total of 119 procedures (73.9%, in 90 patients) were reported as satisfactory but only 53 feet (32.7%, in 43 patients) were completely asymptomatic. The mean (SD) correction of hallux valgus, intermetatarsal, and distal metatarsal articular angles was 18.5° (8.8°), 5.7° (3.3°), and 16.6° (8.8°), respectively. Multivariable regression analysis identified that an American Association of Anesthesiologists grade of >1 (Incident Rate Ratio (IRR) = 1.67, p-value = 0.011) and recurrent deformity (IRR = 1.77, p-value = 0.003) were associated with significantly worse MOXFQ scores. No correlation was found between the severity of deformity, the type, or degree of surgical correction and the outcome. When using a validated outcome score for the assessment of outcome after surgery for hallux valgus, the long-term results are worse than expected when compared with the short- and mid-term outcomes, with 25.9% of patients dissatisfied at a mean follow-up of 5.2 years. ©2015 The British Editorial Society of Bone & Joint Surgery.

  4. What are hierarchical models and how do we analyze them?

    Science.gov (United States)

    Royle, Andy

    2016-01-01

    In this chapter we provide a basic definition of hierarchical models and introduce the two canonical hierarchical models in this book: site occupancy and N-mixture models. The former is a hierarchical extension of logistic regression and the latter is a hierarchical extension of Poisson regression. We introduce basic concepts of probability modeling and statistical inference including likelihood and Bayesian perspectives. We go through the mechanics of maximizing the likelihood and characterizing the posterior distribution by Markov chain Monte Carlo (MCMC) methods. We give a general perspective on topics such as model selection and assessment of model fit, although we demonstrate these topics in practice in later chapters (especially Chapters 5, 6, 7, and 10 Chapter 5 Chapter 6 Chapter 7 Chapter 10)

  5. and Multinomial Logistic Regression

    African Journals Online (AJOL)

    This work presented the results of an experimental comparison of two models: Multinomial Logistic Regression (MLR) and Artificial Neural Network (ANN) for classifying students based on their academic performance. The predictive accuracy for each model was measured by their average Classification Correct Rate (CCR).

  6. Regression: A Bibliography.

    Science.gov (United States)

    Pedrini, D. T.; Pedrini, Bonnie C.

    Regression, another mechanism studied by Sigmund Freud, has had much research, e.g., hypnotic regression, frustration regression, schizophrenic regression, and infra-human-animal regression (often directly related to fixation). Many investigators worked with hypnotic age regression, which has a long history, going back to Russian reflexologists.…

  7. Hierarchical wave functions revisited

    International Nuclear Information System (INIS)

    Li Dingping.

    1997-11-01

    We study the hierarchical wave functions on a sphere and on a torus. We simplify some wave functions on a sphere or a torus using the analytic properties of wave functions. The open question, the construction of the wave function for quasi electron excitation on a torus, is also solved in this paper. (author)

  8. Hierarchical Porous Structures

    Energy Technology Data Exchange (ETDEWEB)

    Grote, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-07

    Materials Design is often at the forefront of technological innovation. While there has always been a push to generate increasingly low density materials, such as aero or hydrogels, more recently the idea of bicontinuous structures has gone more into play. This review will cover some of the methods and applications for generating both porous, and hierarchically porous structures.

  9. The Hierarchical Perspective

    Directory of Open Access Journals (Sweden)

    Daniel Sofron

    2015-05-01

    Full Text Available This paper is focused on the hierarchical perspective, one of the methods for representing space that was used before the discovery of the Renaissance linear perspective. The hierarchical perspective has a more or less pronounced scientific character and its study offers us a clear image of the way the representatives of the cultures that developed it used to perceive the sensitive reality. This type of perspective is an original method of representing three-dimensional space on a flat surface, which characterises the art of Ancient Egypt and much of the art of the Middle Ages, being identified in the Eastern European Byzantine art, as well as in the Western European Pre-Romanesque and Romanesque art. At the same time, the hierarchical perspective is also present in naive painting and infantile drawing. Reminiscences of this method can be recognised also in the works of some precursors of the Italian Renaissance. The hierarchical perspective can be viewed as a subjective ranking criterion, according to which the elements are visually represented by taking into account their relevance within the image while perception is ignored. This paper aims to show how the main objective of the artists of those times was not to faithfully represent the objective reality, but rather to emphasize the essence of the world and its perennial aspects. This may represent a possible explanation for the refusal of perspective in the Egyptian, Romanesque and Byzantine painting, characterised by a marked two-dimensionality.

  10. Proposing a Hierarchical Utility Package with Reference to Mobile Advertising

    OpenAIRE

    Shalini N. Tripathi; Masood H. Siddiqui

    2011-01-01

    Mobile advertising is a powerful tool for direct and interactive marketing. However effective marketing requires examining consumers’ psyche. This study proposes a hierarchical utility package (in the consumers’ perception) with reference to mobile advertising, thus enhancing its acceptance. Confirmatory factor analysis revealed four consolidated utility dimensions (with reference to mobile advertising). Binary logistic regression was used to create a hierarchical utility package with res...

  11. Multilevel Hierarchical Modeling of Benthic Macroinvertebrate Responses to Urbanization in Nine Metropolitan Regions across the Conterminous United States

    Science.gov (United States)

    Kashuba, Roxolana; Cha, YoonKyung; Alameddine, Ibrahim; Lee, Boknam; Cuffney, Thomas F.

    2010-01-01

    -invertebrate response example is used to detail the multilevel hierarchical construction methodology, showing how the result is a set of models that are both statistically more rigorous and ecologically more interpretable than simple linear regression models.

  12. Evaluating Hierarchical Structure in Music Annotations.

    Science.gov (United States)

    McFee, Brian; Nieto, Oriol; Farbood, Morwaread M; Bello, Juan Pablo

    2017-01-01

    Music exhibits structure at multiple scales, ranging from motifs to large-scale functional components. When inferring the structure of a piece, different listeners may attend to different temporal scales, which can result in disagreements when they describe the same piece. In the field of music informatics research (MIR), it is common to use corpora annotated with structural boundaries at different levels. By quantifying disagreements between multiple annotators, previous research has yielded several insights relevant to the study of music cognition. First, annotators tend to agree when structural boundaries are ambiguous. Second, this ambiguity seems to depend on musical features, time scale, and genre. Furthermore, it is possible to tune current annotation evaluation metrics to better align with these perceptual differences. However, previous work has not directly analyzed the effects of hierarchical structure because the existing methods for comparing structural annotations are designed for "flat" descriptions, and do not readily generalize to hierarchical annotations. In this paper, we extend and generalize previous work on the evaluation of hierarchical descriptions of musical structure. We derive an evaluation metric which can compare hierarchical annotations holistically across multiple levels. sing this metric, we investigate inter-annotator agreement on the multilevel annotations of two different music corpora, investigate the influence of acoustic properties on hierarchical annotations, and evaluate existing hierarchical segmentation algorithms against the distribution of inter-annotator agreement.

  13. Evaluating Hierarchical Structure in Music Annotations

    Directory of Open Access Journals (Sweden)

    Brian McFee

    2017-08-01

    Full Text Available Music exhibits structure at multiple scales, ranging from motifs to large-scale functional components. When inferring the structure of a piece, different listeners may attend to different temporal scales, which can result in disagreements when they describe the same piece. In the field of music informatics research (MIR, it is common to use corpora annotated with structural boundaries at different levels. By quantifying disagreements between multiple annotators, previous research has yielded several insights relevant to the study of music cognition. First, annotators tend to agree when structural boundaries are ambiguous. Second, this ambiguity seems to depend on musical features, time scale, and genre. Furthermore, it is possible to tune current annotation evaluation metrics to better align with these perceptual differences. However, previous work has not directly analyzed the effects of hierarchical structure because the existing methods for comparing structural annotations are designed for “flat” descriptions, and do not readily generalize to hierarchical annotations. In this paper, we extend and generalize previous work on the evaluation of hierarchical descriptions of musical structure. We derive an evaluation metric which can compare hierarchical annotations holistically across multiple levels. sing this metric, we investigate inter-annotator agreement on the multilevel annotations of two different music corpora, investigate the influence of acoustic properties on hierarchical annotations, and evaluate existing hierarchical segmentation algorithms against the distribution of inter-annotator agreement.

  14. Hierarchical screening for multiple mental disorders.

    Science.gov (United States)

    Batterham, Philip J; Calear, Alison L; Sunderland, Matthew; Carragher, Natacha; Christensen, Helen; Mackinnon, Andrew J

    2013-10-01

    There is a need for brief, accurate screening when assessing multiple mental disorders. Two-stage hierarchical screening, consisting of brief pre-screening followed by a battery of disorder-specific scales for those who meet diagnostic criteria, may increase the efficiency of screening without sacrificing precision. This study tested whether more efficient screening could be gained using two-stage hierarchical screening than by administering multiple separate tests. Two Australian adult samples (N=1990) with high rates of psychopathology were recruited using Facebook advertising to examine four methods of hierarchical screening for four mental disorders: major depressive disorder, generalised anxiety disorder, panic disorder and social phobia. Using K6 scores to determine whether full screening was required did not increase screening efficiency. However, pre-screening based on two decision tree approaches or item gating led to considerable reductions in the mean number of items presented per disorder screened, with estimated item reductions of up to 54%. The sensitivity of these hierarchical methods approached 100% relative to the full screening battery. Further testing of the hierarchical screening approach based on clinical criteria and in other samples is warranted. The results demonstrate that a two-phase hierarchical approach to screening multiple mental disorders leads to considerable increases efficiency gains without reducing accuracy. Screening programs should take advantage of prescreeners based on gating items or decision trees to reduce the burden on respondents. © 2013 Elsevier B.V. All rights reserved.

  15. Impact of performance grading on annual numbers of acute myocardial infarction-associated emergency department visits in Taiwan: Results of segmented regression analysis.

    Science.gov (United States)

    Tzeng, I-Shiang; Liu, Su-Hsun; Chen, Kuan-Fu; Wu, Chin-Chieh; Chen, Jih-Chang

    2016-10-01

    To reduce patient boarding time at the emergency department (ED) and to improve the overall quality of the emergent care system in Taiwan, the Minister of Health and Welfare of Taiwan (MOHW) piloted the Grading Responsible Hospitals for Acute Care (GRHAC) audit program in 2007-2009.The aim of the study was to evaluate the impact of the GRHAC audit program on the identification and management of acute myocardial infarction (AMI)-associated ED visits by describing and comparing the incidence of AMI-associated ED visits before (2003-2007), during (2007-2009), and after (2009-2012) the initial audit program implementation.Using aggregated data from the MOHW of Taiwan, we estimated the annual incidence of AMI-associated ED visits by Poisson regression models. We used segmented regression techniques to evaluate differences in the annual rates and in the year-to-year changes in AMI-associated ED visits between 2003 and 2012. Medical comorbidities such as diabetes mellitus, hyperlipidemia, and hypertensive disease were considered as potential confounders.Overall, the number of AMI-associated patient visits increased from 8130 visits in 2003 to 12,695 visits in 2012 (P-value for trend capacity for timely and correctly diagnosing and managing patients presenting with AMI-associated symptoms or signs at the ED.

  16. Bayesian ARTMAP for regression.

    Science.gov (United States)

    Sasu, L M; Andonie, R

    2013-10-01

    Bayesian ARTMAP (BA) is a recently introduced neural architecture which uses a combination of Fuzzy ARTMAP competitive learning and Bayesian learning. Training is generally performed online, in a single-epoch. During training, BA creates input data clusters as Gaussian categories, and also infers the conditional probabilities between input patterns and categories, and between categories and classes. During prediction, BA uses Bayesian posterior probability estimation. So far, BA was used only for classification. The goal of this paper is to analyze the efficiency of BA for regression problems. Our contributions are: (i) we generalize the BA algorithm using the clustering functionality of both ART modules, and name it BA for Regression (BAR); (ii) we prove that BAR is a universal approximator with the best approximation property. In other words, BAR approximates arbitrarily well any continuous function (universal approximation) and, for every given continuous function, there is one in the set of BAR approximators situated at minimum distance (best approximation); (iii) we experimentally compare the online trained BAR with several neural models, on the following standard regression benchmarks: CPU Computer Hardware, Boston Housing, Wisconsin Breast Cancer, and Communities and Crime. Our results show that BAR is an appropriate tool for regression tasks, both for theoretical and practical reasons. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Bayesian nonparametric hierarchical modeling.

    Science.gov (United States)

    Dunson, David B

    2009-04-01

    In biomedical research, hierarchical models are very widely used to accommodate dependence in multivariate and longitudinal data and for borrowing of information across data from different sources. A primary concern in hierarchical modeling is sensitivity to parametric assumptions, such as linearity and normality of the random effects. Parametric assumptions on latent variable distributions can be challenging to check and are typically unwarranted, given available prior knowledge. This article reviews some recent developments in Bayesian nonparametric methods motivated by complex, multivariate and functional data collected in biomedical studies. The author provides a brief review of flexible parametric approaches relying on finite mixtures and latent class modeling. Dirichlet process mixture models are motivated by the need to generalize these approaches to avoid assuming a fixed finite number of classes. Focusing on an epidemiology application, the author illustrates the practical utility and potential of nonparametric Bayes methods.

  18. Hierarchal scalar and vector tetrahedra

    International Nuclear Information System (INIS)

    Webb, J.P.; Forghani, B.

    1993-01-01

    A new set of scalar and vector tetrahedral finite elements are presented. The elements are hierarchal, allowing mixing of polynomial orders; scalar orders up to 3 and vector orders up to 2 are defined. The vector elements impose tangential continuity on the field but not normal continuity, making them suitable for representing the vector electric or magnetic field. Further, the scalar and vector elements are such that they can easily be used in the same mesh, a requirement of many quasi-static formulations. Results are presented for two 50 Hz problems: the Bath Cube, and TEAM Problem 7

  19. Hierarchically Structured Electrospun Fibers

    Science.gov (United States)

    2013-01-07

    in the natural lotus and silver ragwort leaves. Figure 4. Examples of electrospun bio-mimics of natural hierarchical structures. (A) Lotus leaf...B) pillared poly(methyl methacrylate) (PMMA) electrospun fiber mimic; (C) silver ragwort leaf; (D) electrospun fiber mimic made from nylon 6 and...domains containing the protein in the surrounding EVA fibers [115]. A wide variety of core-shell fibers have been generated, including PCL/ gelatin

  20. Hierarchical video summarization

    Science.gov (United States)

    Ratakonda, Krishna; Sezan, M. Ibrahim; Crinon, Regis J.

    1998-12-01

    We address the problem of key-frame summarization of vide in the absence of any a priori information about its content. This is a common problem that is encountered in home videos. We propose a hierarchical key-frame summarization algorithm where a coarse-to-fine key-frame summary is generated. A hierarchical key-frame summary facilitates multi-level browsing where the user can quickly discover the content of the video by accessing its coarsest but most compact summary and then view a desired segment of the video with increasingly more detail. At the finest level, the summary is generated on the basis of color features of video frames, using an extension of a recently proposed key-frame extraction algorithm. The finest level key-frames are recursively clustered using a novel pairwise K-means clustering approach with temporal consecutiveness constraint. We also address summarization of MPEG-2 compressed video without fully decoding the bitstream. We also propose efficient mechanisms that facilitate decoding the video when the hierarchical summary is utilized in browsing and playback of video segments starting at selected key-frames.

  1. Hierarchically Structured Electrospun Fibers

    Directory of Open Access Journals (Sweden)

    Nicole E. Zander

    2013-01-01

    Full Text Available Traditional electrospun nanofibers have a myriad of applications ranging from scaffolds for tissue engineering to components of biosensors and energy harvesting devices. The generally smooth one-dimensional structure of the fibers has stood as a limitation to several interesting novel applications. Control of fiber diameter, porosity and collector geometry will be briefly discussed, as will more traditional methods for controlling fiber morphology and fiber mat architecture. The remainder of the review will focus on new techniques to prepare hierarchically structured fibers. Fibers with hierarchical primary structures—including helical, buckled, and beads-on-a-string fibers, as well as fibers with secondary structures, such as nanopores, nanopillars, nanorods, and internally structured fibers and their applications—will be discussed. These new materials with helical/buckled morphology are expected to possess unique optical and mechanical properties with possible applications for negative refractive index materials, highly stretchable/high-tensile-strength materials, and components in microelectromechanical devices. Core-shell type fibers enable a much wider variety of materials to be electrospun and are expected to be widely applied in the sensing, drug delivery/controlled release fields, and in the encapsulation of live cells for biological applications. Materials with a hierarchical secondary structure are expected to provide new superhydrophobic and self-cleaning materials.

  2. Stability of glassy hierarchical networks

    Science.gov (United States)

    Zamani, M.; Camargo-Forero, L.; Vicsek, T.

    2018-02-01

    The structure of interactions in most animal and human societies can be best represented by complex hierarchical networks. In order to maintain close-to-optimal function both stability and adaptability are necessary. Here we investigate the stability of hierarchical networks that emerge from the simulations of an organization type with an efficiency function reminiscent of the Hamiltonian of spin glasses. Using this quantitative approach we find a number of expected (from everyday observations) and highly non-trivial results for the obtained locally optimal networks, including, for example: (i) stability increases with growing efficiency and level of hierarchy; (ii) the same perturbation results in a larger change for more efficient states; (iii) networks with a lower level of hierarchy become more efficient after perturbation; (iv) due to the huge number of possible optimal states only a small fraction of them exhibit resilience and, finally, (v) ‘attacks’ targeting the nodes selectively (regarding their position in the hierarchy) can result in paradoxical outcomes.

  3. Better Autologistic Regression

    Directory of Open Access Journals (Sweden)

    Mark A. Wolters

    2017-11-01

    Full Text Available Autologistic regression is an important probability model for dichotomous random variables observed along with covariate information. It has been used in various fields for analyzing binary data possessing spatial or network structure. The model can be viewed as an extension of the autologistic model (also known as the Ising model, quadratic exponential binary distribution, or Boltzmann machine to include covariates. It can also be viewed as an extension of logistic regression to handle responses that are not independent. Not all authors use exactly the same form of the autologistic regression model. Variations of the model differ in two respects. First, the variable coding—the two numbers used to represent the two possible states of the variables—might differ. Common coding choices are (zero, one and (minus one, plus one. Second, the model might appear in either of two algebraic forms: a standard form, or a recently proposed centered form. Little attention has been paid to the effect of these differences, and the literature shows ambiguity about their importance. It is shown here that changes to either coding or centering in fact produce distinct, non-nested probability models. Theoretical results, numerical studies, and analysis of an ecological data set all show that the differences among the models can be large and practically significant. Understanding the nature of the differences and making appropriate modeling choices can lead to significantly improved autologistic regression analyses. The results strongly suggest that the standard model with plus/minus coding, which we call the symmetric autologistic model, is the most natural choice among the autologistic variants.

  4. Reduced Rank Regression

    DEFF Research Database (Denmark)

    Johansen, Søren

    2008-01-01

    The reduced rank regression model is a multivariate regression model with a coefficient matrix with reduced rank. The reduced rank regression algorithm is an estimation procedure, which estimates the reduced rank regression model. It is related to canonical correlations and involves calculating...

  5. Hierarchical silica particles by dynamic multicomponent assembly

    DEFF Research Database (Denmark)

    Wu, Z. W.; Hu, Q. Y.; Pang, J. B.

    2005-01-01

    Abstract: Aerosol-assisted assembly of mesoporous silica particles with hierarchically controllable pore structure has been prepared using cetyltrimethylammonium bromide (CTAB) and poly(propylene oxide) (PPO, H[OCH(CH3)CH2],OH) as co-templates. Addition of the hydrophobic PPO significantly...... influences the delicate hydrophilic-hydrophobic balance in the well-studied CTAB-silicate co-assembling system, resulting in various mesostructures (such as hexagonal, lamellar, and hierarchical structure). The co-assembly of CTAB, silicate clusters, and a low-molecular-weight PPO (average M-n 425) results...... in a uniform lamellar structure, while the use of a high-molecular-weight PPO (average M-n 2000), which is more hydrophobic, leads to the formation of hierarchical pore structure that contains meso-meso or meso-macro pore structure. The role of PPO additives on the mesostructure evolution in the CTAB...

  6. Hierarchical capillary adhesion of microcantilevers or hairs

    International Nuclear Information System (INIS)

    Liu Jianlin; Feng Xiqiao; Xia Re; Zhao Hongping

    2007-01-01

    As a result of capillary forces, animal hairs, carbon nanotubes or nanowires of a periodically or randomly distributed array often assemble into hierarchical structures. In this paper, the energy method is adopted to analyse the capillary adhesion of microsized hairs, which are modelled as clamped microcantilevers wetted by liquids. The critical conditions for capillary adhesion of two hairs, three hairs or two bundles of hairs are derived in terms of Young's contact angle, elastic modulus and geometric sizes of the beams. Then, the hierarchical capillary adhesion of hairs is addressed. It is found that for multiple hairs or microcantilevers, the system tends to take a hierarchical structure as a result of the minimization of the total potential energy of the system. The level number of structural hierarchy increases with the increase in the number of hairs if they are sufficiently long. Additionally, we performed experiments to verify our theoretical solutions for the adhesion of microbeams

  7. Analysis hierarchical model for discrete event systems

    Science.gov (United States)

    Ciortea, E. M.

    2015-11-01

    The This paper presents the hierarchical model based on discrete event network for robotic systems. Based on the hierarchical approach, Petri network is analysed as a network of the highest conceptual level and the lowest level of local control. For modelling and control of complex robotic systems using extended Petri nets. Such a system is structured, controlled and analysed in this paper by using Visual Object Net ++ package that is relatively simple and easy to use, and the results are shown as representations easy to interpret. The hierarchical structure of the robotic system is implemented on computers analysed using specialized programs. Implementation of hierarchical model discrete event systems, as a real-time operating system on a computer network connected via a serial bus is possible, where each computer is dedicated to local and Petri model of a subsystem global robotic system. Since Petri models are simplified to apply general computers, analysis, modelling, complex manufacturing systems control can be achieved using Petri nets. Discrete event systems is a pragmatic tool for modelling industrial systems. For system modelling using Petri nets because we have our system where discrete event. To highlight the auxiliary time Petri model using transport stream divided into hierarchical levels and sections are analysed successively. Proposed robotic system simulation using timed Petri, offers the opportunity to view the robotic time. Application of goods or robotic and transmission times obtained by measuring spot is obtained graphics showing the average time for transport activity, using the parameters sets of finished products. individually.

  8. Self-assembled biomimetic superhydrophobic hierarchical arrays.

    Science.gov (United States)

    Yang, Hongta; Dou, Xuan; Fang, Yin; Jiang, Peng

    2013-09-01

    Here, we report a simple and inexpensive bottom-up technology for fabricating superhydrophobic coatings with hierarchical micro-/nano-structures, which are inspired by the binary periodic structure found on the superhydrophobic compound eyes of some insects (e.g., mosquitoes and moths). Binary colloidal arrays consisting of exemplary large (4 and 30 μm) and small (300 nm) silica spheres are first assembled by a scalable Langmuir-Blodgett (LB) technology in a layer-by-layer manner. After surface modification with fluorosilanes, the self-assembled hierarchical particle arrays become superhydrophobic with an apparent water contact angle (CA) larger than 150°. The throughput of the resulting superhydrophobic coatings with hierarchical structures can be significantly improved by templating the binary periodic structures of the LB-assembled colloidal arrays into UV-curable fluoropolymers by a soft lithography approach. Superhydrophobic perfluoroether acrylate hierarchical arrays with large CAs and small CA hysteresis can be faithfully replicated onto various substrates. Both experiments and theoretical calculations based on the Cassie's dewetting model demonstrate the importance of the hierarchical structure in achieving the final superhydrophobic surface states. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Context updates are hierarchical

    Directory of Open Access Journals (Sweden)

    Anton Karl Ingason

    2016-10-01

    Full Text Available This squib studies the order in which elements are added to the shared context of interlocutors in a conversation. It focuses on context updates within one hierarchical structure and argues that structurally higher elements are entered into the context before lower elements, even if the structurally higher elements are pronounced after the lower elements. The crucial data are drawn from a comparison of relative clauses in two head-initial languages, English and Icelandic, and two head-final languages, Korean and Japanese. The findings have consequences for any theory of a dynamic semantics.

  10. Hierarchically nested river landform sequences

    Science.gov (United States)

    Pasternack, G. B.; Weber, M. D.; Brown, R. A.; Baig, D.

    2017-12-01

    River corridors exhibit landforms nested within landforms repeatedly down spatial scales. In this study we developed, tested, and implemented a new way to create river classifications by mapping domains of fluvial processes with respect to the hierarchical organization of topographic complexity that drives fluvial dynamism. We tested this approach on flow convergence routing, a morphodynamic mechanism with different states depending on the structure of nondimensional topographic variability. Five nondimensional landform types with unique functionality (nozzle, wide bar, normal channel, constricted pool, and oversized) represent this process at any flow. When this typology is nested at base flow, bankfull, and floodprone scales it creates a system with up to 125 functional types. This shows how a single mechanism produces complex dynamism via nesting. Given the classification, we answered nine specific scientific questions to investigate the abundance, sequencing, and hierarchical nesting of these new landform types using a 35-km gravel/cobble river segment of the Yuba River in California. The nested structure of flow convergence routing landforms found in this study revealed that bankfull landforms are nested within specific floodprone valley landform types, and these types control bankfull morphodynamics during moderate to large floods. As a result, this study calls into question the prevailing theory that the bankfull channel of a gravel/cobble river is controlled by in-channel, bankfull, and/or small flood flows. Such flows are too small to initiate widespread sediment transport in a gravel/cobble river with topographic complexity.

  11. Detecting Hierarchical Structure in Networks

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard

    2012-01-01

    Many real-world networks exhibit hierarchical organization. Previous models of hierarchies within relational data has focused on binary trees; however, for many networks it is unknown whether there is hierarchical structure, and if there is, a binary tree might not account well for it. We propose...... a generative Bayesian model that is able to infer whether hierarchies are present or not from a hypothesis space encompassing all types of hierarchical tree structures. For efficient inference we propose a collapsed Gibbs sampling procedure that jointly infers a partition and its hierarchical structure....... On synthetic and real data we demonstrate that our model can detect hierarchical structure leading to better link-prediction than competing models. Our model can be used to detect if a network exhibits hierarchical structure, thereby leading to a better comprehension and statistical account the network....

  12. Advantages and Limitations of Anticipating Laboratory Test Results from Regression- and Tree-Based Rules Derived from Electronic Health-Record Data

    OpenAIRE

    Mohammad, Fahim; Theisen-Toupal, Jesse C.; Arnaout, Ramy

    2014-01-01

    Laboratory testing is the single highest-volume medical activity, making it useful to ask how well one can anticipate whether a given test result will be high, low, or within the reference interval ("normal"). We analyzed 10 years of electronic health records--a total of 69.4 million blood tests--to see how well standard rule-mining techniques can anticipate test results based on patient age and gender, recent diagnoses, and recent laboratory test results. We evaluated rules according to thei...

  13. Static and dynamic friction of hierarchical surfaces.

    Science.gov (United States)

    Costagliola, Gianluca; Bosia, Federico; Pugno, Nicola M

    2016-12-01

    Hierarchical structures are very common in nature, but only recently have they been systematically studied in materials science, in order to understand the specific effects they can have on the mechanical properties of various systems. Structural hierarchy provides a way to tune and optimize macroscopic mechanical properties starting from simple base constituents and new materials are nowadays designed exploiting this possibility. This can be true also in the field of tribology. In this paper we study the effect of hierarchical patterned surfaces on the static and dynamic friction coefficients of an elastic material. Our results are obtained by means of numerical simulations using a one-dimensional spring-block model, which has previously been used to investigate various aspects of friction. Despite the simplicity of the model, we highlight some possible mechanisms that explain how hierarchical structures can significantly modify the friction coefficients of a material, providing a means to achieve tunability.

  14. Deep hierarchical attention network for video description

    Science.gov (United States)

    Li, Shuohao; Tang, Min; Zhang, Jun

    2018-03-01

    Pairing video to natural language description remains a challenge in computer vision and machine translation. Inspired by image description, which uses an encoder-decoder model for reducing visual scene into a single sentence, we propose a deep hierarchical attention network for video description. The proposed model uses convolutional neural network (CNN) and bidirectional LSTM network as encoders while a hierarchical attention network is used as the decoder. Compared to encoder-decoder models used in video description, the bidirectional LSTM network can capture the temporal structure among video frames. Moreover, the hierarchical attention network has an advantage over single-layer attention network on global context modeling. To make a fair comparison with other methods, we evaluate the proposed architecture with different types of CNN structures and decoders. Experimental results on the standard datasets show that our model has a more superior performance than the state-of-the-art techniques.

  15. Hierarchical quark mass matrices

    International Nuclear Information System (INIS)

    Rasin, A.

    1998-02-01

    I define a set of conditions that the most general hierarchical Yukawa mass matrices have to satisfy so that the leading rotations in the diagonalization matrix are a pair of (2,3) and (1,2) rotations. In addition to Fritzsch structures, examples of such hierarchical structures include also matrices with (1,3) elements of the same order or even much larger than the (1,2) elements. Such matrices can be obtained in the framework of a flavor theory. To leading order, the values of the angle in the (2,3) plane (s 23 ) and the angle in the (1,2) plane (s 12 ) do not depend on the order in which they are taken when diagonalizing. We find that any of the Cabbibo-Kobayashi-Maskawa matrix parametrizations that consist of at least one (1,2) and one (2,3) rotation may be suitable. In the particular case when the s 13 diagonalization angles are sufficiently small compared to the product s 12 s 23 , two special CKM parametrizations emerge: the R 12 R 23 R 12 parametrization follows with s 23 taken before the s 12 rotation, and vice versa for the R 23 R 12 R 23 parametrization. (author)

  16. Hierarchical partial order ranking

    International Nuclear Information System (INIS)

    Carlsen, Lars

    2008-01-01

    Assessing the potential impact on environmental and human health from the production and use of chemicals or from polluted sites involves a multi-criteria evaluation scheme. A priori several parameters are to address, e.g., production tonnage, specific release scenarios, geographical and site-specific factors in addition to various substance dependent parameters. Further socio-economic factors may be taken into consideration. The number of parameters to be included may well appear to be prohibitive for developing a sensible model. The study introduces hierarchical partial order ranking (HPOR) that remedies this problem. By HPOR the original parameters are initially grouped based on their mutual connection and a set of meta-descriptors is derived representing the ranking corresponding to the single groups of descriptors, respectively. A second partial order ranking is carried out based on the meta-descriptors, the final ranking being disclosed though average ranks. An illustrative example on the prioritisation of polluted sites is given. - Hierarchical partial order ranking of polluted sites has been developed for prioritization based on a large number of parameters

  17. Regression to Causality : Regression-style presentation influences causal attribution

    DEFF Research Database (Denmark)

    Bordacconi, Mats Joe; Larsen, Martin Vinæs

    2014-01-01

    of equivalent results presented as either regression models or as a test of two sample means. Our experiment shows that the subjects who were presented with results as estimates from a regression model were more inclined to interpret these results causally. Our experiment implies that scholars using regression...... models – one of the primary vehicles for analyzing statistical results in political science – encourage causal interpretation. Specifically, we demonstrate that presenting observational results in a regression model, rather than as a simple comparison of means, makes causal interpretation of the results...... more likely. Our experiment drew on a sample of 235 university students from three different social science degree programs (political science, sociology and economics), all of whom had received substantial training in statistics. The subjects were asked to compare and evaluate the validity...

  18. Scale of association: hierarchical linear models and the measurement of ecological systems

    Science.gov (United States)

    Sean M. McMahon; Jeffrey M. Diez

    2007-01-01

    A fundamental challenge to understanding patterns in ecological systems lies in employing methods that can analyse, test and draw inference from measured associations between variables across scales. Hierarchical linear models (HLM) use advanced estimation algorithms to measure regression relationships and variance-covariance parameters in hierarchically structured...

  19. Advantages and limitations of anticipating laboratory test results from regression- and tree-based rules derived from electronic health-record data.

    Directory of Open Access Journals (Sweden)

    Fahim Mohammad

    Full Text Available Laboratory testing is the single highest-volume medical activity, making it useful to ask how well one can anticipate whether a given test result will be high, low, or within the reference interval ("normal". We analyzed 10 years of electronic health records--a total of 69.4 million blood tests--to see how well standard rule-mining techniques can anticipate test results based on patient age and gender, recent diagnoses, and recent laboratory test results. We evaluated rules according to their positive and negative predictive value (PPV and NPV and area under the receiver-operator characteristic curve (ROC AUCs. Using a stringent cutoff of PPV and/or NPV≥0.95, standard techniques yield few rules for sendout tests but several for in-house tests, mostly for repeat laboratory tests that are part of the complete blood count and basic metabolic panel. Most rules were clinically and pathophysiologically plausible, and several seemed clinically useful for informing pre-test probability of a given result. But overall, rules were unlikely to be able to function as a general substitute for actually ordering a test. Improving laboratory utilization will likely require different input data and/or alternative methods.

  20. Advantages and limitations of anticipating laboratory test results from regression- and tree-based rules derived from electronic health-record data.

    Science.gov (United States)

    Mohammad, Fahim; Theisen-Toupal, Jesse C; Arnaout, Ramy

    2014-01-01

    Laboratory testing is the single highest-volume medical activity, making it useful to ask how well one can anticipate whether a given test result will be high, low, or within the reference interval ("normal"). We analyzed 10 years of electronic health records--a total of 69.4 million blood tests--to see how well standard rule-mining techniques can anticipate test results based on patient age and gender, recent diagnoses, and recent laboratory test results. We evaluated rules according to their positive and negative predictive value (PPV and NPV) and area under the receiver-operator characteristic curve (ROC AUCs). Using a stringent cutoff of PPV and/or NPV≥0.95, standard techniques yield few rules for sendout tests but several for in-house tests, mostly for repeat laboratory tests that are part of the complete blood count and basic metabolic panel. Most rules were clinically and pathophysiologically plausible, and several seemed clinically useful for informing pre-test probability of a given result. But overall, rules were unlikely to be able to function as a general substitute for actually ordering a test. Improving laboratory utilization will likely require different input data and/or alternative methods.

  1. Predicting Engineering Student Attrition Risk Using a Probabilistic Neural Network and Comparing Results with a Backpropagation Neural Network and Logistic Regression

    Science.gov (United States)

    Mason, Cindi; Twomey, Janet; Wright, David; Whitman, Lawrence

    2018-01-01

    As the need for engineers continues to increase, a growing focus has been placed on recruiting students into the field of engineering and retaining the students who select engineering as their field of study. As a result of this concentration on student retention, numerous studies have been conducted to identify, understand, and confirm…

  2. Applied Bayesian hierarchical methods

    National Research Council Canada - National Science Library

    Congdon, P

    2010-01-01

    .... It also incorporates BayesX code, which is particularly useful in nonlinear regression. To demonstrate MCMC sampling from first principles, the author includes worked examples using the R package...

  3. Hierarchical clustering using correlation metric and spatial continuity constraint

    Science.gov (United States)

    Stork, Christopher L.; Brewer, Luke N.

    2012-10-02

    Large data sets are analyzed by hierarchical clustering using correlation as a similarity measure. This provides results that are superior to those obtained using a Euclidean distance similarity measure. A spatial continuity constraint may be applied in hierarchical clustering analysis of images.

  4. Determining Predictor Importance in Hierarchical Linear Models Using Dominance Analysis

    Science.gov (United States)

    Luo, Wen; Azen, Razia

    2013-01-01

    Dominance analysis (DA) is a method used to evaluate the relative importance of predictors that was originally proposed for linear regression models. This article proposes an extension of DA that allows researchers to determine the relative importance of predictors in hierarchical linear models (HLM). Commonly used measures of model adequacy in…

  5. Collaborative regression-based anatomical landmark detection

    International Nuclear Information System (INIS)

    Gao, Yaozong; Shen, Dinggang

    2015-01-01

    Anatomical landmark detection plays an important role in medical image analysis, e.g. for registration, segmentation and quantitative analysis. Among the various existing methods for landmark detection, regression-based methods have recently attracted much attention due to their robustness and efficiency. In these methods, landmarks are localised through voting from all image voxels, which is completely different from the classification-based methods that use voxel-wise classification to detect landmarks. Despite their robustness, the accuracy of regression-based landmark detection methods is often limited due to (1) the inclusion of uninformative image voxels in the voting procedure, and (2) the lack of effective ways to incorporate inter-landmark spatial dependency into the detection step. In this paper, we propose a collaborative landmark detection framework to address these limitations. The concept of collaboration is reflected in two aspects. (1) Multi-resolution collaboration. A multi-resolution strategy is proposed to hierarchically localise landmarks by gradually excluding uninformative votes from faraway voxels. Moreover, for informative voxels near the landmark, a spherical sampling strategy is also designed at the training stage to improve their prediction accuracy. (2) Inter-landmark collaboration. A confidence-based landmark detection strategy is proposed to improve the detection accuracy of ‘difficult-to-detect’ landmarks by using spatial guidance from ‘easy-to-detect’ landmarks. To evaluate our method, we conducted experiments extensively on three datasets for detecting prostate landmarks and head and neck landmarks in computed tomography images, and also dental landmarks in cone beam computed tomography images. The results show the effectiveness of our collaborative landmark detection framework in improving landmark detection accuracy, compared to other state-of-the-art methods. (paper)

  6. Retro-regression--another important multivariate regression improvement.

    Science.gov (United States)

    Randić, M

    2001-01-01

    We review the serious problem associated with instabilities of the coefficients of regression equations, referred to as the MRA (multivariate regression analysis) "nightmare of the first kind". This is manifested when in a stepwise regression a descriptor is included or excluded from a regression. The consequence is an unpredictable change of the coefficients of the descriptors that remain in the regression equation. We follow with consideration of an even more serious problem, referred to as the MRA "nightmare of the second kind", arising when optimal descriptors are selected from a large pool of descriptors. This process typically causes at different steps of the stepwise regression a replacement of several previously used descriptors by new ones. We describe a procedure that resolves these difficulties. The approach is illustrated on boiling points of nonanes which are considered (1) by using an ordered connectivity basis; (2) by using an ordering resulting from application of greedy algorithm; and (3) by using an ordering derived from an exhaustive search for optimal descriptors. A novel variant of multiple regression analysis, called retro-regression (RR), is outlined showing how it resolves the ambiguities associated with both "nightmares" of the first and the second kind of MRA.

  7. The path to glory is paved with hierarchy: When hierarchical differentiation increases group effectiveness.

    NARCIS (Netherlands)

    Ronay, R.D.; Greenaway, K; Anicich, E.M; Galinsky, A.D.

    2012-01-01

    Two experiments examined the psychological and biological antecedents of hierarchical differentiation and the resulting consequences for productivity and conflict within small groups. In Experiment 1, which used a priming manipulation, hierarchically differentiated groups (i.e., groups comprising 1

  8. Transmutations across hierarchical levels

    International Nuclear Information System (INIS)

    O'Neill, R.V.

    1977-01-01

    The development of large-scale ecological models depends implicitly on a concept known as hierarchy theory which views biological systems in a series of hierarchical levels (i.e., organism, population, trophic level, ecosystem). The theory states that an explanation of a biological phenomenon is provided when it is shown to be the consequence of the activities of the system's components, which are themselves systems in the next lower level of the hierarchy. Thus, the behavior of a population is explained by the behavior of the organisms in the population. The initial step in any modeling project is, therefore, to identify the system components and the interactions between them. A series of examples of transmutations in aquatic and terrestrial ecosystems are presented to show how and why changes occur. The types of changes are summarized and possible implications of transmutation for hierarchy theory, for the modeler, and for the ecological theoretician are discussed

  9. Trees and Hierarchical Structures

    CERN Document Server

    Haeseler, Arndt

    1990-01-01

    The "raison d'etre" of hierarchical dustering theory stems from one basic phe­ nomenon: This is the notorious non-transitivity of similarity relations. In spite of the fact that very often two objects may be quite similar to a third without being that similar to each other, one still wants to dassify objects according to their similarity. This should be achieved by grouping them into a hierarchy of non-overlapping dusters such that any two objects in ~ne duster appear to be more related to each other than they are to objects outside this duster. In everyday life, as well as in essentially every field of scientific investigation, there is an urge to reduce complexity by recognizing and establishing reasonable das­ sification schemes. Unfortunately, this is counterbalanced by the experience of seemingly unavoidable deadlocks caused by the existence of sequences of objects, each comparatively similar to the next, but the last rather different from the first.

  10. Optimisation by hierarchical search

    Science.gov (United States)

    Zintchenko, Ilia; Hastings, Matthew; Troyer, Matthias

    2015-03-01

    Finding optimal values for a set of variables relative to a cost function gives rise to some of the hardest problems in physics, computer science and applied mathematics. Although often very simple in their formulation, these problems have a complex cost function landscape which prevents currently known algorithms from efficiently finding the global optimum. Countless techniques have been proposed to partially circumvent this problem, but an efficient method is yet to be found. We present a heuristic, general purpose approach to potentially improve the performance of conventional algorithms or special purpose hardware devices by optimising groups of variables in a hierarchical way. We apply this approach to problems in combinatorial optimisation, machine learning and other fields.

  11. Multicollinearity in hierarchical linear models.

    Science.gov (United States)

    Yu, Han; Jiang, Shanhe; Land, Kenneth C

    2015-09-01

    This study investigates an ill-posed problem (multicollinearity) in Hierarchical Linear Models from both the data and the model perspectives. We propose an intuitive, effective approach to diagnosing the presence of multicollinearity and its remedies in this class of models. A simulation study demonstrates the impacts of multicollinearity on coefficient estimates, associated standard errors, and variance components at various levels of multicollinearity for finite sample sizes typical in social science studies. We further investigate the role multicollinearity plays at each level for estimation of coefficient parameters in terms of shrinkage. Based on these analyses, we recommend a top-down method for assessing multicollinearity in HLMs that first examines the contextual predictors (Level-2 in a two-level model) and then the individual predictors (Level-1) and uses the results for data collection, research problem redefinition, model re-specification, variable selection and estimation of a final model. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Silver Films with Hierarchical Chirality.

    Science.gov (United States)

    Ma, Liguo; Cao, Yuanyuan; Duan, Yingying; Han, Lu; Che, Shunai

    2017-07-17

    Physical fabrication of chiral metallic films usually results in singular or large-sized chirality, restricting the optical asymmetric responses to long electromagnetic wavelengths. The chiral molecule-induced formation of silver films prepared chemically on a copper substrate through a redox reaction is presented. Three levels of chirality were identified: primary twisted nanoflakes with atomic crystal lattices, secondary helical stacking of these nanoflakes to form nanoplates, and tertiary micrometer-sized circinates consisting of chiral arranged nanoplates. The chiral Ag films exhibited multiple plasmonic absorption- and scattering-based optical activities at UV/Vis wavelengths based on their hierarchical chirality. The Ag films showed chiral selectivity for amino acids in catalytic electrochemical reactions, which originated from their primary atomic crystal lattices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. How hierarchical is language use?

    Science.gov (United States)

    Frank, Stefan L.; Bod, Rens; Christiansen, Morten H.

    2012-01-01

    It is generally assumed that hierarchical phrase structure plays a central role in human language. However, considerations of simplicity and evolutionary continuity suggest that hierarchical structure should not be invoked too hastily. Indeed, recent neurophysiological, behavioural and computational studies show that sequential sentence structure has considerable explanatory power and that hierarchical processing is often not involved. In this paper, we review evidence from the recent literature supporting the hypothesis that sequential structure may be fundamental to the comprehension, production and acquisition of human language. Moreover, we provide a preliminary sketch outlining a non-hierarchical model of language use and discuss its implications and testable predictions. If linguistic phenomena can be explained by sequential rather than hierarchical structure, this will have considerable impact in a wide range of fields, such as linguistics, ethology, cognitive neuroscience, psychology and computer science. PMID:22977157

  14. Quantile Regression Methods

    DEFF Research Database (Denmark)

    Fitzenberger, Bernd; Wilke, Ralf Andreas

    2015-01-01

    if the mean regression model does not. We provide a short informal introduction into the principle of quantile regression which includes an illustrative application from empirical labor market research. This is followed by briefly sketching the underlying statistical model for linear quantile regression based......Quantile regression is emerging as a popular statistical approach, which complements the estimation of conditional mean models. While the latter only focuses on one aspect of the conditional distribution of the dependent variable, the mean, quantile regression provides more detailed insights...... by modeling conditional quantiles. Quantile regression can therefore detect whether the partial effect of a regressor on the conditional quantiles is the same for all quantiles or differs across quantiles. Quantile regression can provide evidence for a statistical relationship between two variables even...

  15. Aid and growth regressions

    DEFF Research Database (Denmark)

    Hansen, Henrik; Tarp, Finn

    2001-01-01

    This paper examines the relationship between foreign aid and growth in real GDP per capita as it emerges from simple augmentations of popular cross country growth specifications. It is shown that aid in all likelihood increases the growth rate, and this result is not conditional on ‘good’ policy....... investment. We conclude by stressing the need for more theoretical work before this kind of cross-country regressions are used for policy purposes.......This paper examines the relationship between foreign aid and growth in real GDP per capita as it emerges from simple augmentations of popular cross country growth specifications. It is shown that aid in all likelihood increases the growth rate, and this result is not conditional on ‘good’ policy...

  16. Leadership styles across hierarchical levels in nursing departments.

    Science.gov (United States)

    Stordeur, S; Vandenberghe, C; D'hoore, W

    2000-01-01

    Some researchers have reported on the cascading effect of transformational leadership across hierarchical levels. One study examined this effect in nursing, but it was limited to a single hospital. To examine the cascading effect of leadership styles across hierarchical levels in a sample of nursing departments and to investigate the effect of hierarchical level on the relationships between leadership styles and various work outcomes. Based on a sample of eight hospitals, the cascading effect was tested using correlation analysis. The main sources of variation among leadership scores were determined with analyses of variance (ANOVA), and the interaction effect of hierarchical level and leadership styles on criterion variables was tested with moderated regression analysis. No support was found for a cascading effect of leadership across hierarchical levels. Rather, the variation of leadership scores was explained primarily by the organizational context. Transformational leadership had a stronger impact on criterion variables than transactional leadership. Interaction effects between leadership styles and hierarchical level were observed only for perceived unit effectiveness. The hospital's structure and culture are major determinants of leadership styles.

  17. Hierarchical Context Modeling for Video Event Recognition.

    Science.gov (United States)

    Wang, Xiaoyang; Ji, Qiang

    2016-10-11

    Current video event recognition research remains largely target-centered. For real-world surveillance videos, targetcentered event recognition faces great challenges due to large intra-class target variation, limited image resolution, and poor detection and tracking results. To mitigate these challenges, we introduced a context-augmented video event recognition approach. Specifically, we explicitly capture different types of contexts from three levels including image level, semantic level, and prior level. At the image level, we introduce two types of contextual features including the appearance context features and interaction context features to capture the appearance of context objects and their interactions with the target objects. At the semantic level, we propose a deep model based on deep Boltzmann machine to learn event object representations and their interactions. At the prior level, we utilize two types of prior-level contexts including scene priming and dynamic cueing. Finally, we introduce a hierarchical context model that systematically integrates the contextual information at different levels. Through the hierarchical context model, contexts at different levels jointly contribute to the event recognition. We evaluate the hierarchical context model for event recognition on benchmark surveillance video datasets. Results show that incorporating contexts in each level can improve event recognition performance, and jointly integrating three levels of contexts through our hierarchical model achieves the best performance.

  18. Tumor regression patterns in retinoblastoma

    International Nuclear Information System (INIS)

    Zafar, S.N.; Siddique, S.N.; Zaheer, N.

    2016-01-01

    To observe the types of tumor regression after treatment, and identify the common pattern of regression in our patients. Study Design: Descriptive study. Place and Duration of Study: Department of Pediatric Ophthalmology and Strabismus, Al-Shifa Trust Eye Hospital, Rawalpindi, Pakistan, from October 2011 to October 2014. Methodology: Children with unilateral and bilateral retinoblastoma were included in the study. Patients were referred to Pakistan Institute of Medical Sciences, Islamabad, for chemotherapy. After every cycle of chemotherapy, dilated funds examination under anesthesia was performed to record response of the treatment. Regression patterns were recorded on RetCam II. Results: Seventy-four tumors were included in the study. Out of 74 tumors, 3 were ICRB group A tumors, 43 were ICRB group B tumors, 14 tumors belonged to ICRB group C, and remaining 14 were ICRB group D tumors. Type IV regression was seen in 39.1% (n=29) tumors, type II in 29.7% (n=22), type III in 25.6% (n=19), and type I in 5.4% (n=4). All group A tumors (100%) showed type IV regression. Seventeen (39.5%) group B tumors showed type IV regression. In group C, 5 tumors (35.7%) showed type II regression and 5 tumors (35.7%) showed type IV regression. In group D, 6 tumors (42.9%) regressed to type II non-calcified remnants. Conclusion: The response and success of the focal and systemic treatment, as judged by the appearance of different patterns of tumor regression, varies with the ICRB grouping of the tumor. (author)

  19. On a Robust MaxEnt Process Regression Model with Sample-Selection

    Directory of Open Access Journals (Sweden)

    Hea-Jung Kim

    2018-04-01

    Full Text Available In a regression analysis, a sample-selection bias arises when a dependent variable is partially observed as a result of the sample selection. This study introduces a Maximum Entropy (MaxEnt process regression model that assumes a MaxEnt prior distribution for its nonparametric regression function and finds that the MaxEnt process regression model includes the well-known Gaussian process regression (GPR model as a special case. Then, this special MaxEnt process regression model, i.e., the GPR model, is generalized to obtain a robust sample-selection Gaussian process regression (RSGPR model that deals with non-normal data in the sample selection. Various properties of the RSGPR model are established, including the stochastic representation, distributional hierarchy, and magnitude of the sample-selection bias. These properties are used in the paper to develop a hierarchical Bayesian methodology to estimate the model. This involves a simple and computationally feasible Markov chain Monte Carlo algorithm that avoids analytical or numerical derivatives of the log-likelihood function of the model. The performance of the RSGPR model in terms of the sample-selection bias correction, robustness to non-normality, and prediction, is demonstrated through results in simulations that attest to its good finite-sample performance.

  20. Introduction to regression graphics

    CERN Document Server

    Cook, R Dennis

    2009-01-01

    Covers the use of dynamic and interactive computer graphics in linear regression analysis, focusing on analytical graphics. Features new techniques like plot rotation. The authors have composed their own regression code, using Xlisp-Stat language called R-code, which is a nearly complete system for linear regression analysis and can be utilized as the main computer program in a linear regression course. The accompanying disks, for both Macintosh and Windows computers, contain the R-code and Xlisp-Stat. An Instructor's Manual presenting detailed solutions to all the problems in the book is ava

  1. Alternative Methods of Regression

    CERN Document Server

    Birkes, David

    2011-01-01

    Of related interest. Nonlinear Regression Analysis and its Applications Douglas M. Bates and Donald G. Watts ".an extraordinary presentation of concepts and methods concerning the use and analysis of nonlinear regression models.highly recommend[ed].for anyone needing to use and/or understand issues concerning the analysis of nonlinear regression models." --Technometrics This book provides a balance between theory and practice supported by extensive displays of instructive geometrical constructs. Numerous in-depth case studies illustrate the use of nonlinear regression analysis--with all data s

  2. Hierarchical modularity in human brain functional networks

    Directory of Open Access Journals (Sweden)

    David Meunier

    2009-10-01

    Full Text Available The idea that complex systems have a hierarchical modular organization originates in the early 1960s and has recently attracted fresh support from quantitative studies of large scale, real-life networks. Here we investigate the hierarchical modular (or “modules-within-modules” decomposition of human brain functional networks, measured using functional magnetic resonance imaging (fMRI in 18 healthy volunteers under no-task or resting conditions. We used a customized template to extract networks with more than 1800 regional nodes, and we applied a fast algorithm to identify nested modular structure at several hierarchical levels. We used mutual information, 0 < I < 1, to estimate the similarity of community structure of networks in different subjects, and to identify the individual network that is most representative of the group. Results show that human brain functional networks have a hierarchical modular organization with a fair degree of similarity between subjects, I=0.63. The largest 5 modules at the highest level of the hierarchy were medial occipital, lateral occipital, central, parieto-frontal and fronto-temporal systems; occipital modules demonstrated less sub-modular organization than modules comprising regions of multimodal association cortex. Connector nodes and hubs, with a key role in inter-modular connectivity, were also concentrated in association cortical areas. We conclude that methods are available for hierarchical modular decomposition of large numbers of high resolution brain functional networks using computationally expedient algorithms. This could enable future investigations of Simon's original hypothesis that hierarchy or near-decomposability of physical symbol systems is a critical design feature for their fast adaptivity to changing environmental conditions.

  3. Direct hierarchical assembly of nanoparticles

    Science.gov (United States)

    Xu, Ting; Zhao, Yue; Thorkelsson, Kari

    2014-07-22

    The present invention provides hierarchical assemblies of a block copolymer, a bifunctional linking compound and a nanoparticle. The block copolymers form one micro-domain and the nanoparticles another micro-domain.

  4. Hierarchical materials: Background and perspectives

    DEFF Research Database (Denmark)

    2016-01-01

    Hierarchical design draws inspiration from analysis of biological materials and has opened new possibilities for enhancing performance and enabling new functionalities and extraordinary properties. With the development of nanotechnology, the necessary technological requirements for the manufactur...

  5. Abstract Expression Grammar Symbolic Regression

    Science.gov (United States)

    Korns, Michael F.

    This chapter examines the use of Abstract Expression Grammars to perform the entire Symbolic Regression process without the use of Genetic Programming per se. The techniques explored produce a symbolic regression engine which has absolutely no bloat, which allows total user control of the search space and output formulas, which is faster, and more accurate than the engines produced in our previous papers using Genetic Programming. The genome is an all vector structure with four chromosomes plus additional epigenetic and constraint vectors, allowing total user control of the search space and the final output formulas. A combination of specialized compiler techniques, genetic algorithms, particle swarm, aged layered populations, plus discrete and continuous differential evolution are used to produce an improved symbolic regression sytem. Nine base test cases, from the literature, are used to test the improvement in speed and accuracy. The improved results indicate that these techniques move us a big step closer toward future industrial strength symbolic regression systems.

  6. Regression analysis with categorized regression calibrated exposure: some interesting findings

    Directory of Open Access Journals (Sweden)

    Hjartåker Anette

    2006-07-01

    Full Text Available Abstract Background Regression calibration as a method for handling measurement error is becoming increasingly well-known and used in epidemiologic research. However, the standard version of the method is not appropriate for exposure analyzed on a categorical (e.g. quintile scale, an approach commonly used in epidemiologic studies. A tempting solution could then be to use the predicted continuous exposure obtained through the regression calibration method and treat it as an approximation to the true exposure, that is, include the categorized calibrated exposure in the main regression analysis. Methods We use semi-analytical calculations and simulations to evaluate the performance of the proposed approach compared to the naive approach of not correcting for measurement error, in situations where analyses are performed on quintile scale and when incorporating the original scale into the categorical variables, respectively. We also present analyses of real data, containing measures of folate intake and depression, from the Norwegian Women and Cancer study (NOWAC. Results In cases where extra information is available through replicated measurements and not validation data, regression calibration does not maintain important qualities of the true exposure distribution, thus estimates of variance and percentiles can be severely biased. We show that the outlined approach maintains much, in some cases all, of the misclassification found in the observed exposure. For that reason, regression analysis with the corrected variable included on a categorical scale is still biased. In some cases the corrected estimates are analytically equal to those obtained by the naive approach. Regression calibration is however vastly superior to the naive method when applying the medians of each category in the analysis. Conclusion Regression calibration in its most well-known form is not appropriate for measurement error correction when the exposure is analyzed on a

  7. Boosted beta regression.

    Directory of Open Access Journals (Sweden)

    Matthias Schmid

    Full Text Available Regression analysis with a bounded outcome is a common problem in applied statistics. Typical examples include regression models for percentage outcomes and the analysis of ratings that are measured on a bounded scale. In this paper, we consider beta regression, which is a generalization of logit models to situations where the response is continuous on the interval (0,1. Consequently, beta regression is a convenient tool for analyzing percentage responses. The classical approach to fit a beta regression model is to use maximum likelihood estimation with subsequent AIC-based variable selection. As an alternative to this established - yet unstable - approach, we propose a new estimation technique called boosted beta regression. With boosted beta regression estimation and variable selection can be carried out simultaneously in a highly efficient way. Additionally, both the mean and the variance of a percentage response can be modeled using flexible nonlinear covariate effects. As a consequence, the new method accounts for common problems such as overdispersion and non-binomial variance structures.

  8. Applied linear regression

    CERN Document Server

    Weisberg, Sanford

    2013-01-01

    Praise for the Third Edition ""...this is an excellent book which could easily be used as a course text...""-International Statistical Institute The Fourth Edition of Applied Linear Regression provides a thorough update of the basic theory and methodology of linear regression modeling. Demonstrating the practical applications of linear regression analysis techniques, the Fourth Edition uses interesting, real-world exercises and examples. Stressing central concepts such as model building, understanding parameters, assessing fit and reliability, and drawing conclusions, the new edition illus

  9. Applied logistic regression

    CERN Document Server

    Hosmer, David W; Sturdivant, Rodney X

    2013-01-01

     A new edition of the definitive guide to logistic regression modeling for health science and other applications This thoroughly expanded Third Edition provides an easily accessible introduction to the logistic regression (LR) model and highlights the power of this model by examining the relationship between a dichotomous outcome and a set of covariables. Applied Logistic Regression, Third Edition emphasizes applications in the health sciences and handpicks topics that best suit the use of modern statistical software. The book provides readers with state-of-

  10. Concurrent and convergent validity of the mobility- and multidimensional-hierarchical disability categorization models with physical performance in community older adults.

    Science.gov (United States)

    Hu, Ming-Hsia; Yeh, Chih-Jun; Chen, Tou-Rong; Wang, Ching-Yi

    2014-01-01

    A valid, time-efficient and easy-to-use instrument is important for busy clinical settings, large scale surveys, or community screening use. The purpose of this study was to validate the mobility hierarchical disability categorization model (an abbreviated model) by investigating its concurrent validity with the multidimensional hierarchical disability categorization model (a comprehensive model) and triangulating both models with physical performance measures in older adults. 604 community-dwelling older adults of at least 60 years in age volunteered to participate. Self-reported function on mobility, instrumental activities of daily living (IADL) and activities of daily living (ADL) domains were recorded and then the disability status determined based on both the multidimensional hierarchical categorization model and the mobility hierarchical categorization model. The physical performance measures, consisting of grip strength and usual and fastest gait speeds (UGS, FGS), were collected on the same day. Both categorization models showed high correlation (γs = 0.92, p categorization models. The results of multiple regression analysis indicated that both models individually explain similar amount of variance on all physical performances, with adjustments for age, sex, and number of comorbidities. Our results found that the mobility hierarchical disability categorization model is a valid and time efficient tool for large survey or screening use.

  11. Understanding poisson regression.

    Science.gov (United States)

    Hayat, Matthew J; Higgins, Melinda

    2014-04-01

    Nurse investigators often collect study data in the form of counts. Traditional methods of data analysis have historically approached analysis of count data either as if the count data were continuous and normally distributed or with dichotomization of the counts into the categories of occurred or did not occur. These outdated methods for analyzing count data have been replaced with more appropriate statistical methods that make use of the Poisson probability distribution, which is useful for analyzing count data. The purpose of this article is to provide an overview of the Poisson distribution and its use in Poisson regression. Assumption violations for the standard Poisson regression model are addressed with alternative approaches, including addition of an overdispersion parameter or negative binomial regression. An illustrative example is presented with an application from the ENSPIRE study, and regression modeling of comorbidity data is included for illustrative purposes. Copyright 2014, SLACK Incorporated.

  12. Advances in Applications of Hierarchical Bayesian Methods with Hydrological Models

    Science.gov (United States)

    Alexander, R. B.; Schwarz, G. E.; Boyer, E. W.

    2017-12-01

    Mechanistic and empirical watershed models are increasingly used to inform water resource decisions. Growing access to historical stream measurements and data from in-situ sensor technologies has increased the need for improved techniques for coupling models with hydrological measurements. Techniques that account for the intrinsic uncertainties of both models and measurements are especially needed. Hierarchical Bayesian methods provide an efficient modeling tool for quantifying model and prediction uncertainties, including those associated with measurements. Hierarchical methods can also be used to explore spatial and temporal variations in model parameters and uncertainties that are informed by hydrological measurements. We used hierarchical Bayesian methods to develop a hybrid (statistical-mechanistic) SPARROW (SPAtially Referenced Regression On Watershed attributes) model of long-term mean annual streamflow across diverse environmental and climatic drainages in 18 U.S. hydrological regions. Our application illustrates the use of a new generation of Bayesian methods that offer more advanced computational efficiencies than the prior generation. Evaluations of the effects of hierarchical (regional) variations in model coefficients and uncertainties on model accuracy indicates improved prediction accuracies (median of 10-50%) but primarily in humid eastern regions, where model uncertainties are one-third of those in arid western regions. Generally moderate regional variability is observed for most hierarchical coefficients. Accounting for measurement and structural uncertainties, using hierarchical state-space techniques, revealed the effects of spatially-heterogeneous, latent hydrological processes in the "localized" drainages between calibration sites; this improved model precision, with only minor changes in regional coefficients. Our study can inform advances in the use of hierarchical methods with hydrological models to improve their integration with stream

  13. Assessment of Differential Item Functioning in Health-Related Outcomes: A Simulation and Empirical Analysis with Hierarchical Polytomous Data

    Directory of Open Access Journals (Sweden)

    Zahra Sharafi

    2017-01-01

    Full Text Available Background. The purpose of this study was to evaluate the effectiveness of two methods of detecting differential item functioning (DIF in the presence of multilevel data and polytomously scored items. The assessment of DIF with multilevel data (e.g., patients nested within hospitals, hospitals nested within districts from large-scale assessment programs has received considerable attention but very few studies evaluated the effect of hierarchical structure of data on DIF detection for polytomously scored items. Methods. The ordinal logistic regression (OLR and hierarchical ordinal logistic regression (HOLR were utilized to assess DIF in simulated and real multilevel polytomous data. Six factors (DIF magnitude, grouping variable, intraclass correlation coefficient, number of clusters, number of participants per cluster, and item discrimination parameter with a fully crossed design were considered in the simulation study. Furthermore, data of Pediatric Quality of Life Inventory™ (PedsQL™ 4.0 collected from 576 healthy school children were analyzed. Results. Overall, results indicate that both methods performed equivalently in terms of controlling Type I error and detection power rates. Conclusions. The current study showed negligible difference between OLR and HOLR in detecting DIF with polytomously scored items in a hierarchical structure. Implications and considerations while analyzing real data were also discussed.

  14. A Hierarchical Agency Model of Deposit Insurance

    OpenAIRE

    Jonathan Carroll; Shino Takayama

    2010-01-01

    This paper develops a hierarchical agency model of deposit insurance. The main purpose is to undertake a game theoretic analysis of the consequences of deposit insurance schemes and their effects on monitoring incentives for banks. Using this simple framework, we analyze both risk- independent and risk-dependent premium schemes along with reserve requirement constraints. The results provide policymakers with not only a better understanding of the effects of deposit insurance on welfare and th...

  15. Comparisons of Flow Patterns over a Hierarchical and a Non-hierarchical Surface in Relation to Biofouling Control

    Directory of Open Access Journals (Sweden)

    Bin Ahmad Fawzan Mohammed Ridha

    2018-01-01

    Full Text Available Biofouling can be defined as unwanted deposition and development of organisms on submerged surfaces. It is a major problem as it causes water contamination, infrastructures damage and increase in maintenance and operational cost especially in the shipping industry. There are a few methods that can prevent this problem. One of the most effective methods which is using chemicals particularly Tributyltin has been banned due to adverse effects on the environment. One of the non-toxic methods found to be effective is surface modification which involves altering the surface topography so that it becomes a low-fouling or a non-stick surface to biofouling organisms. Current literature suggested that non-hierarchical topographies has lower antifouling performance compared to hierarchical topographies. It is still unclear if the effects of the flow on these topographies could have aided in their antifouling properties. This research will use Computational Fluid Dynamics (CFD simulations to study the flow on these two topographies which also involves comparison study of the topographies used. According to the results obtained, it is shown that hierarchical topography has higher antifouling performance compared to non-hierarchical topography. This is because the fluid characteristics at the hierarchical topography is more favorable in controlling biofouling. In addition, hierarchical topography has higher wall shear stress distribution compared to non-hierarchical topography

  16. Application of hierarchical matrices for partial inverse

    KAUST Repository

    Litvinenko, Alexander

    2013-11-26

    In this work we combine hierarchical matrix techniques (Hackbusch, 1999) and domain decomposition methods to obtain fast and efficient algorithms for the solution of multiscale problems. This combination results in the hierarchical domain decomposition (HDD) method, which can be applied for solution multi-scale problems. Multiscale problems are problems that require the use of different length scales. Using only the finest scale is very expensive, if not impossible, in computational time and memory. Domain decomposition methods decompose the complete problem into smaller systems of equations corresponding to boundary value problems in subdomains. Then fast solvers can be applied to each subdomain. Subproblems in subdomains are independent, much smaller and require less computational resources as the initial problem.

  17. Quantum Ising model on hierarchical structures

    International Nuclear Information System (INIS)

    Lin Zhifang; Tao Ruibao.

    1989-11-01

    A quantum Ising chain with both the exchange couplings and the transverse fields arranged in a hierarchical way is considered. Exact analytical results for the critical line and energy gap are obtained. It is shown that when R 1 not= R 2 , where R 1 and R 2 are the hierarchical parameters for the exchange couplings and the transverse fields, respectively, the system undergoes a phase transition in a different universality class from the pure quantum Ising chain with R 1 =R 2 =1. On the other hand, when R 1 =R 2 =R, there exists a critical value R c dependent on the furcating number of the hierarchy. In case of R > R c , the system is shown to exhibit as Ising-like critical point with the critical behaviour the same as in the pure case, while for R c the system belongs to another universality class. (author). 19 refs, 2 figs

  18. Hierarchical State Machines as Modular Horn Clauses

    Directory of Open Access Journals (Sweden)

    Pierre-Loïc Garoche

    2016-07-01

    Full Text Available In model based development, embedded systems are modeled using a mix of dataflow formalism, that capture the flow of computation, and hierarchical state machines, that capture the modal behavior of the system. For safety analysis, existing approaches rely on a compilation scheme that transform the original model (dataflow and state machines into a pure dataflow formalism. Such compilation often result in loss of important structural information that capture the modal behaviour of the system. In previous work we have developed a compilation technique from a dataflow formalism into modular Horn clauses. In this paper, we present a novel technique that faithfully compile hierarchical state machines into modular Horn clauses. Our compilation technique preserves the structural and modal behavior of the system, making the safety analysis of such models more tractable.

  19. Vector regression introduced

    Directory of Open Access Journals (Sweden)

    Mok Tik

    2014-06-01

    Full Text Available This study formulates regression of vector data that will enable statistical analysis of various geodetic phenomena such as, polar motion, ocean currents, typhoon/hurricane tracking, crustal deformations, and precursory earthquake signals. The observed vector variable of an event (dependent vector variable is expressed as a function of a number of hypothesized phenomena realized also as vector variables (independent vector variables and/or scalar variables that are likely to impact the dependent vector variable. The proposed representation has the unique property of solving the coefficients of independent vector variables (explanatory variables also as vectors, hence it supersedes multivariate multiple regression models, in which the unknown coefficients are scalar quantities. For the solution, complex numbers are used to rep- resent vector information, and the method of least squares is deployed to estimate the vector model parameters after transforming the complex vector regression model into a real vector regression model through isomorphism. Various operational statistics for testing the predictive significance of the estimated vector parameter coefficients are also derived. A simple numerical example demonstrates the use of the proposed vector regression analysis in modeling typhoon paths.

  20. Bayesian semiparametric regression models to characterize molecular evolution

    Directory of Open Access Journals (Sweden)

    Datta Saheli

    2012-10-01

    Full Text Available Abstract Background Statistical models and methods that associate changes in the physicochemical properties of amino acids with natural selection at the molecular level typically do not take into account the correlations between such properties. We propose a Bayesian hierarchical regression model with a generalization of the Dirichlet process prior on the distribution of the regression coefficients that describes the relationship between the changes in amino acid distances and natural selection in protein-coding DNA sequence alignments. Results The Bayesian semiparametric approach is illustrated with simulated data and the abalone lysin sperm data. Our method identifies groups of properties which, for this particular dataset, have a similar effect on evolution. The model also provides nonparametric site-specific estimates for the strength of conservation of these properties. Conclusions The model described here is distinguished by its ability to handle a large number of amino acid properties simultaneously, while taking into account that such data can be correlated. The multi-level clustering ability of the model allows for appealing interpretations of the results in terms of properties that are roughly equivalent from the standpoint of molecular evolution.

  1. Multicollinearity and Regression Analysis

    Science.gov (United States)

    Daoud, Jamal I.

    2017-12-01

    In regression analysis it is obvious to have a correlation between the response and predictor(s), but having correlation among predictors is something undesired. The number of predictors included in the regression model depends on many factors among which, historical data, experience, etc. At the end selection of most important predictors is something objective due to the researcher. Multicollinearity is a phenomena when two or more predictors are correlated, if this happens, the standard error of the coefficients will increase [8]. Increased standard errors means that the coefficients for some or all independent variables may be found to be significantly different from In other words, by overinflating the standard errors, multicollinearity makes some variables statistically insignificant when they should be significant. In this paper we focus on the multicollinearity, reasons and consequences on the reliability of the regression model.

  2. Minimax Regression Quantiles

    DEFF Research Database (Denmark)

    Bache, Stefan Holst

    A new and alternative quantile regression estimator is developed and it is shown that the estimator is root n-consistent and asymptotically normal. The estimator is based on a minimax ‘deviance function’ and has asymptotically equivalent properties to the usual quantile regression estimator. It is......, however, a different and therefore new estimator. It allows for both linear- and nonlinear model specifications. A simple algorithm for computing the estimates is proposed. It seems to work quite well in practice but whether it has theoretical justification is still an open question....

  3. riskRegression

    DEFF Research Database (Denmark)

    Ozenne, Brice; Sørensen, Anne Lyngholm; Scheike, Thomas

    2017-01-01

    In the presence of competing risks a prediction of the time-dynamic absolute risk of an event can be based on cause-specific Cox regression models for the event and the competing risks (Benichou and Gail, 1990). We present computationally fast and memory optimized C++ functions with an R interface...... for predicting the covariate specific absolute risks, their confidence intervals, and their confidence bands based on right censored time to event data. We provide explicit formulas for our implementation of the estimator of the (stratified) baseline hazard function in the presence of tied event times. As a by...... functionals. The software presented here is implemented in the riskRegression package....

  4. Cluster Based Hierarchical Routing Protocol for Wireless Sensor Network

    OpenAIRE

    Rashed, Md. Golam; Kabir, M. Hasnat; Rahim, Muhammad Sajjadur; Ullah, Shaikh Enayet

    2012-01-01

    The efficient use of energy source in a sensor node is most desirable criteria for prolong the life time of wireless sensor network. In this paper, we propose a two layer hierarchical routing protocol called Cluster Based Hierarchical Routing Protocol (CBHRP). We introduce a new concept called head-set, consists of one active cluster head and some other associate cluster heads within a cluster. The head-set members are responsible for control and management of the network. Results show that t...

  5. A Bayesian hierarchical model for demand curve analysis.

    Science.gov (United States)

    Ho, Yen-Yi; Nhu Vo, Tien; Chu, Haitao; Luo, Xianghua; Le, Chap T

    2018-07-01

    Drug self-administration experiments are a frequently used approach to assessing the abuse liability and reinforcing property of a compound. It has been used to assess the abuse liabilities of various substances such as psychomotor stimulants and hallucinogens, food, nicotine, and alcohol. The demand curve generated from a self-administration study describes how demand of a drug or non-drug reinforcer varies as a function of price. With the approval of the 2009 Family Smoking Prevention and Tobacco Control Act, demand curve analysis provides crucial evidence to inform the US Food and Drug Administration's policy on tobacco regulation, because it produces several important quantitative measurements to assess the reinforcing strength of nicotine. The conventional approach popularly used to analyze the demand curve data is individual-specific non-linear least square regression. The non-linear least square approach sets out to minimize the residual sum of squares for each subject in the dataset; however, this one-subject-at-a-time approach does not allow for the estimation of between- and within-subject variability in a unified model framework. In this paper, we review the existing approaches to analyze the demand curve data, non-linear least square regression, and the mixed effects regression and propose a new Bayesian hierarchical model. We conduct simulation analyses to compare the performance of these three approaches and illustrate the proposed approaches in a case study of nicotine self-administration in rats. We present simulation results and discuss the benefits of using the proposed approaches.

  6. Regression Analysis by Example. 5th Edition

    Science.gov (United States)

    Chatterjee, Samprit; Hadi, Ali S.

    2012-01-01

    Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. "Regression Analysis by Example, Fifth Edition" has been expanded and thoroughly…

  7. Forecasting building energy consumption with hybrid genetic algorithm-hierarchical adaptive network-based fuzzy inference system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kangji [Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027 (China); School of Electricity Information Engineering, Jiangsu University, Zhenjiang 212013 (China); Su, Hongye [Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027 (China)

    2010-11-15

    There are several ways to forecast building energy consumption, varying from simple regression to models based on physical principles. In this paper, a new method, namely, the hybrid genetic algorithm-hierarchical adaptive network-based fuzzy inference system (GA-HANFIS) model is developed. In this model, hierarchical structure decreases the rule base dimension. Both clustering and rule base parameters are optimized by GAs and neural networks (NNs). The model is applied to predict a hotel's daily air conditioning consumption for a period over 3 months. The results obtained by the proposed model are presented and compared with regular method of NNs, which indicates that GA-HANFIS model possesses better performance than NNs in terms of their forecasting accuracy. (author)

  8. Deliberate change without hierarchical influence?

    DEFF Research Database (Denmark)

    Nørskov, Sladjana; Kesting, Peter; Ulhøi, John Parm

    2017-01-01

    reveals that deliberate change is indeed achievable in a non-hierarchical collaborative OSS community context. However, it presupposes the presence and active involvement of informal change agents. The paper identifies and specifies four key drivers for change agents’ influence. Originality....../value The findings contribute to organisational analysis by providing a deeper understanding of the importance of leadership in making deliberate change possible in non-hierarchical settings. It points to the importance of “change-by-conviction”, essentially based on voluntary behaviour. This can open the door...

  9. Logistic regression for dichotomized counts.

    Science.gov (United States)

    Preisser, John S; Das, Kalyan; Benecha, Habtamu; Stamm, John W

    2016-12-01

    Sometimes there is interest in a dichotomized outcome indicating whether a count variable is positive or zero. Under this scenario, the application of ordinary logistic regression may result in efficiency loss, which is quantifiable under an assumed model for the counts. In such situations, a shared-parameter hurdle model is investigated for more efficient estimation of regression parameters relating to overall effects of covariates on the dichotomous outcome, while handling count data with many zeroes. One model part provides a logistic regression containing marginal log odds ratio effects of primary interest, while an ancillary model part describes the mean count of a Poisson or negative binomial process in terms of nuisance regression parameters. Asymptotic efficiency of the logistic model parameter estimators of the two-part models is evaluated with respect to ordinary logistic regression. Simulations are used to assess the properties of the models with respect to power and Type I error, the latter investigated under both misspecified and correctly specified models. The methods are applied to data from a randomized clinical trial of three toothpaste formulations to prevent incident dental caries in a large population of Scottish schoolchildren. © The Author(s) 2014.

  10. On hierarchical solutions to the BBGKY hierarchy

    Science.gov (United States)

    Hamilton, A. J. S.

    1988-01-01

    It is thought that the gravitational clustering of galaxies in the universe may approach a scale-invariant, hierarchical form in the small separation, large-clustering regime. Past attempts to solve the Born-Bogoliubov-Green-Kirkwood-Yvon (BBGKY) hierarchy in this regime have assumed a certain separable hierarchical form for the higher order correlation functions of galaxies in phase space. It is shown here that such separable solutions to the BBGKY equations must satisfy the condition that the clustered component of the solution has cluster-cluster correlations equal to galaxy-galaxy correlations to all orders. The solutions also admit the presence of an arbitrary unclustered component, which plays no dyamical role in the large-clustering regime. These results are a particular property of the specific separable model assumed for the correlation functions in phase space, not an intrinsic property of spatially hierarchical solutions to the BBGKY hierarchy. The observed distribution of galaxies does not satisfy the required conditions. The disagreement between theory and observation may be traced, at least in part, to initial conditions which, if Gaussian, already have cluster correlations greater than galaxy correlations.

  11. Hierarchical unilamellar vesicles of controlled compositional heterogeneity.

    Directory of Open Access Journals (Sweden)

    Maik Hadorn

    Full Text Available Eukaryotic life contains hierarchical vesicular architectures (i.e. organelles that are crucial for material production and trafficking, information storage and access, as well as energy production. In order to perform specific tasks, these compartments differ among each other in their membrane composition and their internal cargo and also differ from the cell membrane and the cytosol. Man-made structures that reproduce this nested architecture not only offer a deeper understanding of the functionalities and evolution of organelle-bearing eukaryotic life but also allow the engineering of novel biomimetic technologies. Here, we show the newly developed vesicle-in-water-in-oil emulsion transfer preparation technique to result in giant unilamellar vesicles internally compartmentalized by unilamellar vesicles of different membrane composition and internal cargo, i.e. hierarchical unilamellar vesicles of controlled compositional heterogeneity. The compartmentalized giant unilamellar vesicles were subsequently isolated by a separation step exploiting the heterogeneity of the membrane composition and the encapsulated cargo. Due to the controlled, efficient, and technically straightforward character of the new preparation technique, this study allows the hierarchical fabrication of compartmentalized giant unilamellar vesicles of controlled compositional heterogeneity and will ease the development of eukaryotic cell mimics that resemble their natural templates as well as the fabrication of novel multi-agent drug delivery systems for combination therapies and complex artificial microreactors.

  12. Anisotropic and Hierarchical Porosity in Multifunctional Ceramics

    Science.gov (United States)

    Lichtner, Aaron Zev

    The performance of multifunctional porous ceramics is often hindered by the seemingly contradictory effects of porosity on both mechanical and non-structural properties and yet a sufficient body of knowledge linking microstructure to these properties does not exist. Using a combination of tailored anisotropic and hierarchical materials, these disparate effects may be reconciled. In this project, a systematic investigation of the processing, characterization and properties of anisotropic and isotropic hierarchically porous ceramics was conducted. The system chosen was a composite ceramic intended as the cathode for a solid oxide fuel cell (SOFC). Comprehensive processing investigations led to the development of approaches to make hierarchical, anisotropic porous microstructures using directional freeze-casting of well dispersed slurries. The effect of all the important processing parameters was investigated. This resulted in an ability to tailor and control the important microstructural features including the scale of the microstructure, the macropore size and total porosity. Comparable isotropic porous ceramics were also processed using fugitive pore formers. A suite of characterization techniques including x-ray tomography and 3-D sectional scanning electron micrographs (FIB-SEM) was used to characterize and quantify the green and partially sintered microstructures. The effect of sintering temperature on the microstructure was quantified and discrete element simulations (DEM) were used to explain the experimental observations. Finally, the comprehensive mechanical properties, at room temperature, were investigated, experimentally and using DEM, for the different microstructures.

  13. Multiple linear regression analysis

    Science.gov (United States)

    Edwards, T. R.

    1980-01-01

    Program rapidly selects best-suited set of coefficients. User supplies only vectors of independent and dependent data and specifies confidence level required. Program uses stepwise statistical procedure for relating minimal set of variables to set of observations; final regression contains only most statistically significant coefficients. Program is written in FORTRAN IV for batch execution and has been implemented on NOVA 1200.

  14. Bayesian logistic regression analysis

    NARCIS (Netherlands)

    Van Erp, H.R.N.; Van Gelder, P.H.A.J.M.

    2012-01-01

    In this paper we present a Bayesian logistic regression analysis. It is found that if one wishes to derive the posterior distribution of the probability of some event, then, together with the traditional Bayes Theorem and the integrating out of nuissance parameters, the Jacobian transformation is an

  15. Linear Regression Analysis

    CERN Document Server

    Seber, George A F

    2012-01-01

    Concise, mathematically clear, and comprehensive treatment of the subject.* Expanded coverage of diagnostics and methods of model fitting.* Requires no specialized knowledge beyond a good grasp of matrix algebra and some acquaintance with straight-line regression and simple analysis of variance models.* More than 200 problems throughout the book plus outline solutions for the exercises.* This revision has been extensively class-tested.

  16. Nonlinear Regression with R

    CERN Document Server

    Ritz, Christian; Parmigiani, Giovanni

    2009-01-01

    R is a rapidly evolving lingua franca of graphical display and statistical analysis of experiments from the applied sciences. This book provides a coherent treatment of nonlinear regression with R by means of examples from a diversity of applied sciences such as biology, chemistry, engineering, medicine and toxicology.

  17. Bounded Gaussian process regression

    DEFF Research Database (Denmark)

    Jensen, Bjørn Sand; Nielsen, Jens Brehm; Larsen, Jan

    2013-01-01

    We extend the Gaussian process (GP) framework for bounded regression by introducing two bounded likelihood functions that model the noise on the dependent variable explicitly. This is fundamentally different from the implicit noise assumption in the previously suggested warped GP framework. We...... with the proposed explicit noise-model extension....

  18. Mechanisms of neuroblastoma regression

    Science.gov (United States)

    Brodeur, Garrett M.; Bagatell, Rochelle

    2014-01-01

    Recent genomic and biological studies of neuroblastoma have shed light on the dramatic heterogeneity in the clinical behaviour of this disease, which spans from spontaneous regression or differentiation in some patients, to relentless disease progression in others, despite intensive multimodality therapy. This evidence also suggests several possible mechanisms to explain the phenomena of spontaneous regression in neuroblastomas, including neurotrophin deprivation, humoral or cellular immunity, loss of telomerase activity and alterations in epigenetic regulation. A better understanding of the mechanisms of spontaneous regression might help to identify optimal therapeutic approaches for patients with these tumours. Currently, the most druggable mechanism is the delayed activation of developmentally programmed cell death regulated by the tropomyosin receptor kinase A pathway. Indeed, targeted therapy aimed at inhibiting neurotrophin receptors might be used in lieu of conventional chemotherapy or radiation in infants with biologically favourable tumours that require treatment. Alternative approaches consist of breaking immune tolerance to tumour antigens or activating neurotrophin receptor pathways to induce neuronal differentiation. These approaches are likely to be most effective against biologically favourable tumours, but they might also provide insights into treatment of biologically unfavourable tumours. We describe the different mechanisms of spontaneous neuroblastoma regression and the consequent therapeutic approaches. PMID:25331179

  19. Facile synthesis and photocatalytic activity of zinc oxide hierarchical microcrystals

    KAUST Repository

    Xu, Xinjiang

    2013-04-04

    ZnO microcrystals with hierarchical structure have been synthesized by a simple solvothermal approach. The microcrystals were studied by means of X-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Research on the formation mechanism of the hierarchical microstructure shows that the coordination solvent and precursor concentration have considerable influence on the size and morphology of the microstructures. A possible formation mechanism of the hierarchical structure was suggested. Furthermore, the catalytic activity of the ZnO microcrystals was studied by treating low concentration Rhodamine B (RhB) solution under UV light, and research results show the hierarchical microstructures of ZnO display high catalytic activity in photocatalysis, the catalysis process follows first-order reaction kinetics, and the apparent rate constant k = 0.03195 min-1.

  20. Modular networks with hierarchical organization

    Indian Academy of Sciences (India)

    Several networks occurring in real life have modular structures that are arranged in a hierarchical fashion. In this paper, we have proposed a model for such networks, using a stochastic generation method. Using this model we show that, the scaling relation between the clustering and degree of the nodes is not a necessary ...

  1. Hierarchical Microaggressions in Higher Education

    Science.gov (United States)

    Young, Kathryn; Anderson, Myron; Stewart, Saran

    2015-01-01

    Although there has been substantial research examining the effects of microaggressions in the public sphere, there has been little research that examines microaggressions in the workplace. This study explores the types of microaggressions that affect employees at universities. We coin the term "hierarchical microaggression" to represent…

  2. Ridge Regression Signal Processing

    Science.gov (United States)

    Kuhl, Mark R.

    1990-01-01

    The introduction of the Global Positioning System (GPS) into the National Airspace System (NAS) necessitates the development of Receiver Autonomous Integrity Monitoring (RAIM) techniques. In order to guarantee a certain level of integrity, a thorough understanding of modern estimation techniques applied to navigational problems is required. The extended Kalman filter (EKF) is derived and analyzed under poor geometry conditions. It was found that the performance of the EKF is difficult to predict, since the EKF is designed for a Gaussian environment. A novel approach is implemented which incorporates ridge regression to explain the behavior of an EKF in the presence of dynamics under poor geometry conditions. The basic principles of ridge regression theory are presented, followed by the derivation of a linearized recursive ridge estimator. Computer simulations are performed to confirm the underlying theory and to provide a comparative analysis of the EKF and the recursive ridge estimator.

  3. Subset selection in regression

    CERN Document Server

    Miller, Alan

    2002-01-01

    Originally published in 1990, the first edition of Subset Selection in Regression filled a significant gap in the literature, and its critical and popular success has continued for more than a decade. Thoroughly revised to reflect progress in theory, methods, and computing power, the second edition promises to continue that tradition. The author has thoroughly updated each chapter, incorporated new material on recent developments, and included more examples and references. New in the Second Edition:A separate chapter on Bayesian methodsComplete revision of the chapter on estimationA major example from the field of near infrared spectroscopyMore emphasis on cross-validationGreater focus on bootstrappingStochastic algorithms for finding good subsets from large numbers of predictors when an exhaustive search is not feasible Software available on the Internet for implementing many of the algorithms presentedMore examplesSubset Selection in Regression, Second Edition remains dedicated to the techniques for fitting...

  4. Regression in organizational leadership.

    Science.gov (United States)

    Kernberg, O F

    1979-02-01

    The choice of good leaders is a major task for all organizations. Inforamtion regarding the prospective administrator's personality should complement questions regarding his previous experience, his general conceptual skills, his technical knowledge, and the specific skills in the area for which he is being selected. The growing psychoanalytic knowledge about the crucial importance of internal, in contrast to external, object relations, and about the mutual relationships of regression in individuals and in groups, constitutes an important practical tool for the selection of leaders.

  5. Classification and regression trees

    CERN Document Server

    Breiman, Leo; Olshen, Richard A; Stone, Charles J

    1984-01-01

    The methodology used to construct tree structured rules is the focus of this monograph. Unlike many other statistical procedures, which moved from pencil and paper to calculators, this text's use of trees was unthinkable before computers. Both the practical and theoretical sides have been developed in the authors' study of tree methods. Classification and Regression Trees reflects these two sides, covering the use of trees as a data analysis method, and in a more mathematical framework, proving some of their fundamental properties.

  6. Application of a Weighted Regression Model for Reporting Nutrient and Sediment Concentrations, Fluxes, and Trends in Concentration and Flux for the Chesapeake Bay Nontidal Water-Quality Monitoring Network, Results Through Water Year 2012

    Science.gov (United States)

    Chanat, Jeffrey G.; Moyer, Douglas L.; Blomquist, Joel D.; Hyer, Kenneth E.; Langland, Michael J.

    2016-01-13

    In the Chesapeake Bay watershed, estimated fluxes of nutrients and sediment from the bay’s nontidal tributaries into the estuary are the foundation of decision making to meet reductions prescribed by the Chesapeake Bay Total Maximum Daily Load (TMDL) and are often the basis for refining scientific understanding of the watershed-scale processes that influence the delivery of these constituents to the bay. Two regression-based flux and trend estimation models, ESTIMATOR and Weighted Regressions on Time, Discharge, and Season (WRTDS), were compared using data from 80 watersheds in the Chesapeake Bay Nontidal Water-Quality Monitoring Network (CBNTN). The watersheds range in size from 62 to 70,189 square kilometers and record lengths range from 6 to 28 years. ESTIMATOR is a constant-parameter model that estimates trends only in concentration; WRTDS uses variable parameters estimated with weighted regression, and estimates trends in both concentration and flux. WRTDS had greater explanatory power than ESTIMATOR, with the greatest degree of improvement evident for records longer than 25 years (30 stations; improvement in median model R2= 0.06 for total nitrogen, 0.08 for total phosphorus, and 0.05 for sediment) and the least degree of improvement for records of less than 10 years, for which the two models performed nearly equally. Flux bias statistics were comparable or lower (more favorable) for WRTDS for any record length; for 30 stations with records longer than 25 years, the greatest degree of improvement was evident for sediment (decrease of 0.17 in median statistic) and total phosphorus (decrease of 0.05). The overall between-station pattern in concentration trend direction and magnitude for all constituents was roughly similar for both models. A detailed case study revealed that trends in concentration estimated by WRTDS can operationally be viewed as a less-constrained equivalent to trends in concentration estimated by ESTIMATOR. Estimates of annual mean flow

  7. Logistic regression models

    CERN Document Server

    Hilbe, Joseph M

    2009-01-01

    This book really does cover everything you ever wanted to know about logistic regression … with updates available on the author's website. Hilbe, a former national athletics champion, philosopher, and expert in astronomy, is a master at explaining statistical concepts and methods. Readers familiar with his other expository work will know what to expect-great clarity.The book provides considerable detail about all facets of logistic regression. No step of an argument is omitted so that the book will meet the needs of the reader who likes to see everything spelt out, while a person familiar with some of the topics has the option to skip "obvious" sections. The material has been thoroughly road-tested through classroom and web-based teaching. … The focus is on helping the reader to learn and understand logistic regression. The audience is not just students meeting the topic for the first time, but also experienced users. I believe the book really does meet the author's goal … .-Annette J. Dobson, Biometric...

  8. Hierarchically structured, nitrogen-doped carbon membranes

    KAUST Repository

    Wang, Hong; Wu, Tao

    2017-01-01

    The present invention is a structure, method of making and method of use for a novel macroscopic hierarchically structured, nitrogen-doped, nano-porous carbon membrane (HNDCMs) with asymmetric and hierarchical pore architecture that can be produced

  9. Road Network Selection Based on Road Hierarchical Structure Control

    Directory of Open Access Journals (Sweden)

    HE Haiwei

    2015-04-01

    Full Text Available A new road network selection method based on hierarchical structure is studied. Firstly, road network is built as strokes which are then classified into hierarchical collections according to the criteria of betweenness centrality value (BC value. Secondly, the hierarchical structure of the strokes is enhanced using structural characteristic identification technique. Thirdly, the importance calculation model was established according to the relationships among the hierarchical structure of the strokes. Finally, the importance values of strokes are got supported with the model's hierarchical calculation, and with which the road network is selected. Tests are done to verify the advantage of this method by comparing it with other common stroke-oriented methods using three kinds of typical road network data. Comparision of the results show that this method had few need to semantic data, and could eliminate the negative influence of edge strokes caused by the criteria of BC value well. So, it is better to maintain the global hierarchical structure of road network, and suitable to meet with the selection of various kinds of road network at the same time.

  10. Bayesian Poisson hierarchical models for crash data analysis: Investigating the impact of model choice on site-specific predictions.

    Science.gov (United States)

    Khazraee, S Hadi; Johnson, Valen; Lord, Dominique

    2018-08-01

    The Poisson-gamma (PG) and Poisson-lognormal (PLN) regression models are among the most popular means for motor vehicle crash data analysis. Both models belong to the Poisson-hierarchical family of models. While numerous studies have compared the overall performance of alternative Bayesian Poisson-hierarchical models, little research has addressed the impact of model choice on the expected crash frequency prediction at individual sites. This paper sought to examine whether there are any trends among candidate models predictions e.g., that an alternative model's prediction for sites with certain conditions tends to be higher (or lower) than that from another model. In addition to the PG and PLN models, this research formulated a new member of the Poisson-hierarchical family of models: the Poisson-inverse gamma (PIGam). Three field datasets (from Texas, Michigan and Indiana) covering a wide range of over-dispersion characteristics were selected for analysis. This study demonstrated that the model choice can be critical when the calibrated models are used for prediction at new sites, especially when the data are highly over-dispersed. For all three datasets, the PIGam model would predict higher expected crash frequencies than would the PLN and PG models, in order, indicating a clear link between the models predictions and the shape of their mixing distributions (i.e., gamma, lognormal, and inverse gamma, respectively). The thicker tail of the PIGam and PLN models (in order) may provide an advantage when the data are highly over-dispersed. The analysis results also illustrated a major deficiency of the Deviance Information Criterion (DIC) in comparing the goodness-of-fit of hierarchical models; models with drastically different set of coefficients (and thus predictions for new sites) may yield similar DIC values, because the DIC only accounts for the parameters in the lowest (observation) level of the hierarchy and ignores the higher levels (regression coefficients

  11. Long-term response of total ozone content at different latitudes of the Northern and Southern Hemispheres caused by solar activity during 1958-2006 (results of regression analysis)

    Science.gov (United States)

    Krivolutsky, Alexei A.; Nazarova, Margarita; Knyazeva, Galina

    Solar activity influences on atmospheric photochemical system via its changebale electromag-netic flux with eleven-year period and also by energetic particles during solar proton event (SPE). Energetic particles penetrate mostly into polar regions and induce additional produc-tion of NOx and HOx chemical compounds, which can destroy ozone in photochemical catalytic cycles. Solar irradiance variations cause in-phase variability of ozone in accordance with photo-chemical theory. However, real ozone response caused by these two factors, which has different physical nature, is not so clear on long-term time scale. In order to understand the situation multiply linear regression statistical method was used. Three data series, which covered the period 1958-2006, have been used to realize such analysis: yearly averaged total ozone at dif-ferent latitudes (World Ozone Data Centre, Canada, WMO); yearly averaged proton fluxes with E¿ 10 MeV ( IMP, GOES, METEOR satellites); yearly averaged numbers of solar spots (Solar Data). Then, before the analysis, the data sets of ozone deviations from the mean values for whole period (1958-2006) at each latitudinal belt were prepared. The results of multiply regression analysis (two factors) revealed rather complicated time-dependent behavior of ozone response with clear negative peaks for the years of strong SPEs. The magnitudes of such peaks on annual mean basis are not greater than 10 DU. The unusual effect -positive response of ozone to solar proton activity near both poles-was discovered by statistical analysis. The pos-sible photochemical nature of found effect is discussed. This work was supported by Russian Science Foundation for Basic Research (grant 09-05-009949) and by the contract 1-6-08 under Russian Sub-Program "Research and Investigation of Antarctica".

  12. Conceptual hierarchical modeling to describe wetland plant community organization

    Science.gov (United States)

    Little, A.M.; Guntenspergen, G.R.; Allen, T.F.H.

    2010-01-01

    Using multivariate analysis, we created a hierarchical modeling process that describes how differently-scaled environmental factors interact to affect wetland-scale plant community organization in a system of small, isolated wetlands on Mount Desert Island, Maine. We followed the procedure: 1) delineate wetland groups using cluster analysis, 2) identify differently scaled environmental gradients using non-metric multidimensional scaling, 3) order gradient hierarchical levels according to spatiotem-poral scale of fluctuation, and 4) assemble hierarchical model using group relationships with ordination axes and post-hoc tests of environmental differences. Using this process, we determined 1) large wetland size and poor surface water chemistry led to the development of shrub fen wetland vegetation, 2) Sphagnum and water chemistry differences affected fen vs. marsh / sedge meadows status within small wetlands, and 3) small-scale hydrologic differences explained transitions between forested vs. non-forested and marsh vs. sedge meadow vegetation. This hierarchical modeling process can help explain how upper level contextual processes constrain biotic community response to lower-level environmental changes. It creates models with more nuanced spatiotemporal complexity than classification and regression tree procedures. Using this process, wetland scientists will be able to generate more generalizable theories of plant community organization, and useful management models. ?? Society of Wetland Scientists 2009.

  13. Steganalysis using logistic regression

    Science.gov (United States)

    Lubenko, Ivans; Ker, Andrew D.

    2011-02-01

    We advocate Logistic Regression (LR) as an alternative to the Support Vector Machine (SVM) classifiers commonly used in steganalysis. LR offers more information than traditional SVM methods - it estimates class probabilities as well as providing a simple classification - and can be adapted more easily and efficiently for multiclass problems. Like SVM, LR can be kernelised for nonlinear classification, and it shows comparable classification accuracy to SVM methods. This work is a case study, comparing accuracy and speed of SVM and LR classifiers in detection of LSB Matching and other related spatial-domain image steganography, through the state-of-art 686-dimensional SPAM feature set, in three image sets.

  14. SEPARATION PHENOMENA LOGISTIC REGRESSION

    Directory of Open Access Journals (Sweden)

    Ikaro Daniel de Carvalho Barreto

    2014-03-01

    Full Text Available This paper proposes an application of concepts about the maximum likelihood estimation of the binomial logistic regression model to the separation phenomena. It generates bias in the estimation and provides different interpretations of the estimates on the different statistical tests (Wald, Likelihood Ratio and Score and provides different estimates on the different iterative methods (Newton-Raphson and Fisher Score. It also presents an example that demonstrates the direct implications for the validation of the model and validation of variables, the implications for estimates of odds ratios and confidence intervals, generated from the Wald statistics. Furthermore, we present, briefly, the Firth correction to circumvent the phenomena of separation.

  15. riskRegression

    DEFF Research Database (Denmark)

    Ozenne, Brice; Sørensen, Anne Lyngholm; Scheike, Thomas

    2017-01-01

    In the presence of competing risks a prediction of the time-dynamic absolute risk of an event can be based on cause-specific Cox regression models for the event and the competing risks (Benichou and Gail, 1990). We present computationally fast and memory optimized C++ functions with an R interface......-product we obtain fast access to the baseline hazards (compared to survival::basehaz()) and predictions of survival probabilities, their confidence intervals and confidence bands. Confidence intervals and confidence bands are based on point-wise asymptotic expansions of the corresponding statistical...

  16. Adaptive metric kernel regression

    DEFF Research Database (Denmark)

    Goutte, Cyril; Larsen, Jan

    2000-01-01

    Kernel smoothing is a widely used non-parametric pattern recognition technique. By nature, it suffers from the curse of dimensionality and is usually difficult to apply to high input dimensions. In this contribution, we propose an algorithm that adapts the input metric used in multivariate...... regression by minimising a cross-validation estimate of the generalisation error. This allows to automatically adjust the importance of different dimensions. The improvement in terms of modelling performance is illustrated on a variable selection task where the adaptive metric kernel clearly outperforms...

  17. Adaptive Metric Kernel Regression

    DEFF Research Database (Denmark)

    Goutte, Cyril; Larsen, Jan

    1998-01-01

    Kernel smoothing is a widely used nonparametric pattern recognition technique. By nature, it suffers from the curse of dimensionality and is usually difficult to apply to high input dimensions. In this paper, we propose an algorithm that adapts the input metric used in multivariate regression...... by minimising a cross-validation estimate of the generalisation error. This allows one to automatically adjust the importance of different dimensions. The improvement in terms of modelling performance is illustrated on a variable selection task where the adaptive metric kernel clearly outperforms the standard...

  18. Hierarchical Recurrent Neural Hashing for Image Retrieval With Hierarchical Convolutional Features.

    Science.gov (United States)

    Lu, Xiaoqiang; Chen, Yaxiong; Li, Xuelong

    Hashing has been an important and effective technology in image retrieval due to its computational efficiency and fast search speed. The traditional hashing methods usually learn hash functions to obtain binary codes by exploiting hand-crafted features, which cannot optimally represent the information of the sample. Recently, deep learning methods can achieve better performance, since deep learning architectures can learn more effective image representation features. However, these methods only use semantic features to generate hash codes by shallow projection but ignore texture details. In this paper, we proposed a novel hashing method, namely hierarchical recurrent neural hashing (HRNH), to exploit hierarchical recurrent neural network to generate effective hash codes. There are three contributions of this paper. First, a deep hashing method is proposed to extensively exploit both spatial details and semantic information, in which, we leverage hierarchical convolutional features to construct image pyramid representation. Second, our proposed deep network can exploit directly convolutional feature maps as input to preserve the spatial structure of convolutional feature maps. Finally, we propose a new loss function that considers the quantization error of binarizing the continuous embeddings into the discrete binary codes, and simultaneously maintains the semantic similarity and balanceable property of hash codes. Experimental results on four widely used data sets demonstrate that the proposed HRNH can achieve superior performance over other state-of-the-art hashing methods.Hashing has been an important and effective technology in image retrieval due to its computational efficiency and fast search speed. The traditional hashing methods usually learn hash functions to obtain binary codes by exploiting hand-crafted features, which cannot optimally represent the information of the sample. Recently, deep learning methods can achieve better performance, since deep

  19. Hierarchical matrices algorithms and analysis

    CERN Document Server

    Hackbusch, Wolfgang

    2015-01-01

    This self-contained monograph presents matrix algorithms and their analysis. The new technique enables not only the solution of linear systems but also the approximation of matrix functions, e.g., the matrix exponential. Other applications include the solution of matrix equations, e.g., the Lyapunov or Riccati equation. The required mathematical background can be found in the appendix. The numerical treatment of fully populated large-scale matrices is usually rather costly. However, the technique of hierarchical matrices makes it possible to store matrices and to perform matrix operations approximately with almost linear cost and a controllable degree of approximation error. For important classes of matrices, the computational cost increases only logarithmically with the approximation error. The operations provided include the matrix inversion and LU decomposition. Since large-scale linear algebra problems are standard in scientific computing, the subject of hierarchical matrices is of interest to scientists ...

  20. Hierarchical Semantic Model of Geovideo

    Directory of Open Access Journals (Sweden)

    XIE Xiao

    2015-05-01

    Full Text Available The public security incidents were getting increasingly challenging with regard to their new features, including multi-scale mobility, multistage dynamic evolution, as well as spatiotemporal concurrency and uncertainty in the complex urban environment. However, the existing video models, which were used/designed for independent archive or local analysis of surveillance video, have seriously inhibited emergency response to the urgent requirements.Aiming at the explicit representation of change mechanism in video, the paper proposed a novel hierarchical geovideo semantic model using UML. This model was characterized by the hierarchical representation of both data structure and semantics based on the change-oriented three domains (feature domain, process domain and event domain instead of overall semantic description of video streaming; combining both geographical semantics and video content semantics, in support of global semantic association between multiple geovideo data. The public security incidents by video surveillance are inspected as an example to illustrate the validity of this model.

  1. Constructing storyboards based on hierarchical clustering analysis

    Science.gov (United States)

    Hasebe, Satoshi; Sami, Mustafa M.; Muramatsu, Shogo; Kikuchi, Hisakazu

    2005-07-01

    There are growing needs for quick preview of video contents for the purpose of improving accessibility of video archives as well as reducing network traffics. In this paper, a storyboard that contains a user-specified number of keyframes is produced from a given video sequence. It is based on hierarchical cluster analysis of feature vectors that are derived from wavelet coefficients of video frames. Consistent use of extracted feature vectors is the key to avoid a repetition of computationally-intensive parsing of the same video sequence. Experimental results suggest that a significant reduction in computational time is gained by this strategy.

  2. SORM applied to hierarchical parallel system

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    2006-01-01

    of a particular first order reliability method (FORM) was first described in a celebrated paper by Rackwitz and Fiessler more than a quarter of a century ago. The method has become known as the Rackwitz-Fiessler algorithm. The original RF-algorithm as applied to a hierarchical random variable model...... is recapitulated so that a simple but quite effective accuracy improving calculation can be explained. A limit state curvature correction factor on the probability approximation is obtained from the final stop results of the RF-algorithm. This correction factor is based on Breitung’s asymptotic formula for second...

  3. Flow and transport in hierarchically fractured systems

    International Nuclear Information System (INIS)

    Karasaki, K.

    1993-01-01

    Preliminary results indicate that flow in the saturated zone at Yucca Mountain is controlled by fractures. A current conceptual model assumes that the flow in the fracture system can be approximately by a three-dimensionally interconnected network of linear conduits. The overall flow system of rocks at Yucca Mountain is considered to consist of hierarchically structured heterogeneous fracture systems of multiple scales. A case study suggests that it is more appropriate to use the flow parameters of the large fracture system for predicting the first arrival time, rather than using the bulk average parameters of the total system

  4. AN INTEGER PROGRAMMING MODEL FOR HIERARCHICAL WORKFORCE

    Directory of Open Access Journals (Sweden)

    BANU SUNGUR

    2013-06-01

    Full Text Available The model presented in this paper is based on the model developed by Billionnet for the hierarchical workforce problem. In Billionnet’s Model, while determining the workers’ weekly costs, weekly working hours of workers are not taken into consideration. In our model, the weekly costs per worker are reduced in proportion to the working hours per week. Our model is illustrated on the Billionnet’s Example. The models in question are compared and evaluated on the basis of the results obtained from the example problem. A reduction is achieved in the total cost by the proposed model.

  5. Hierarchical honeycomb auxetic metamaterials

    Science.gov (United States)

    Mousanezhad, Davood; Babaee, Sahab; Ebrahimi, Hamid; Ghosh, Ranajay; Hamouda, Abdelmagid Salem; Bertoldi, Katia; Vaziri, Ashkan

    2015-12-01

    Most conventional materials expand in transverse directions when they are compressed uniaxially resulting in the familiar positive Poisson’s ratio. Here we develop a new class of two dimensional (2D) metamaterials with negative Poisson’s ratio that contract in transverse directions under uniaxial compressive loads leading to auxeticity. This is achieved through mechanical instabilities (i.e., buckling) introduced by structural hierarchy and retained over a wide range of applied compression. This unusual behavior is demonstrated experimentally and analyzed computationally. The work provides new insights into the role of structural organization and hierarchy in designing 2D auxetic metamaterials, and new opportunities for developing energy absorbing materials, tunable membrane filters, and acoustic dampeners.

  6. Hybrid and hierarchical composite materials

    CERN Document Server

    Kim, Chang-Soo; Sano, Tomoko

    2015-01-01

    This book addresses a broad spectrum of areas in both hybrid materials and hierarchical composites, including recent development of processing technologies, structural designs, modern computer simulation techniques, and the relationships between the processing-structure-property-performance. Each topic is introduced at length with numerous  and detailed examples and over 150 illustrations.   In addition, the authors present a method of categorizing these materials, so that representative examples of all material classes are discussed.

  7. Hierarchical analysis of urban space

    OpenAIRE

    Kataeva, Y.

    2014-01-01

    Multi-level structure of urban space, multitude of subjects of its transformation, which follow asymmetric interests, multilevel system of institutions which regulate interaction in the "population business government -public organizations" system, determine the use of hierarchic approach to the analysis of urban space. The article observes theoretical justification of using this approach to study correlations and peculiarities of interaction in urban space as in an intricately organized syst...

  8. Hierarchical spatial structure of stream fish colonization and extinction

    Science.gov (United States)

    Hitt, N.P.; Roberts, J.H.

    2012-01-01

    Spatial variation in extinction and colonization is expected to influence community composition over time. In stream fish communities, local species richness (alpha diversity) and species turnover (beta diversity) are thought to be regulated by high extinction rates in headwater streams and high colonization rates in downstream areas. We evaluated the spatiotemporal structure of fish communities in streams originally surveyed by Burton and Odum 1945 (Ecology 26: 182-194) in Virginia, USA and explored the effects of species traits on extinction and colonization dynamics. We documented dramatic changes in fish community structure at both the site and stream scales. Of the 34 fish species observed, 20 (59%) were present in both time periods, but 11 (32%) colonized the study area and three (9%) were extirpated over time. Within streams, alpha diversity increased in two of three streams but beta diversity decreased dramatically in all streams due to fish community homogenization caused by colonization of common species and extirpation of rare species. Among streams, however, fish communities differentiated over time. Regression trees indicated that reproductive life-history traits such as spawning mound construction, associations with mound-building species, and high fecundity were important predictors of species persistence or colonization. Conversely, native fishes not associated with mound-building exhibited the highest rates of extirpation from streams. Our results demonstrate that stream fish colonization and extinction dynamics exhibit hierarchical spatial structure and suggest that mound-building fishes serve as keystone species for colonization of headwater streams.

  9. Statistical Significance for Hierarchical Clustering

    Science.gov (United States)

    Kimes, Patrick K.; Liu, Yufeng; Hayes, D. Neil; Marron, J. S.

    2017-01-01

    Summary Cluster analysis has proved to be an invaluable tool for the exploratory and unsupervised analysis of high dimensional datasets. Among methods for clustering, hierarchical approaches have enjoyed substantial popularity in genomics and other fields for their ability to simultaneously uncover multiple layers of clustering structure. A critical and challenging question in cluster analysis is whether the identified clusters represent important underlying structure or are artifacts of natural sampling variation. Few approaches have been proposed for addressing this problem in the context of hierarchical clustering, for which the problem is further complicated by the natural tree structure of the partition, and the multiplicity of tests required to parse the layers of nested clusters. In this paper, we propose a Monte Carlo based approach for testing statistical significance in hierarchical clustering which addresses these issues. The approach is implemented as a sequential testing procedure guaranteeing control of the family-wise error rate. Theoretical justification is provided for our approach, and its power to detect true clustering structure is illustrated through several simulation studies and applications to two cancer gene expression datasets. PMID:28099990

  10. results

    Directory of Open Access Journals (Sweden)

    Salabura Piotr

    2017-01-01

    Full Text Available HADES experiment at GSI is the only high precision experiment probing nuclear matter in the beam energy range of a few AGeV. Pion, proton and ion beams are used to study rare dielectron and strangeness probes to diagnose properties of strongly interacting matter in this energy regime. Selected results from p + A and A + A collisions are presented and discussed.

  11. Improving satellite-based PM2.5 estimates in China using Gaussian processes modeling in a Bayesian hierarchical setting.

    Science.gov (United States)

    Yu, Wenxi; Liu, Yang; Ma, Zongwei; Bi, Jun

    2017-08-01

    Using satellite-based aerosol optical depth (AOD) measurements and statistical models to estimate ground-level PM 2.5 is a promising way to fill the areas that are not covered by ground PM 2.5 monitors. The statistical models used in previous studies are primarily Linear Mixed Effects (LME) and Geographically Weighted Regression (GWR) models. In this study, we developed a new regression model between PM 2.5 and AOD using Gaussian processes in a Bayesian hierarchical setting. Gaussian processes model the stochastic nature of the spatial random effects, where the mean surface and the covariance function is specified. The spatial stochastic process is incorporated under the Bayesian hierarchical framework to explain the variation of PM 2.5 concentrations together with other factors, such as AOD, spatial and non-spatial random effects. We evaluate the results of our model and compare them with those of other, conventional statistical models (GWR and LME) by within-sample model fitting and out-of-sample validation (cross validation, CV). The results show that our model possesses a CV result (R 2  = 0.81) that reflects higher accuracy than that of GWR and LME (0.74 and 0.48, respectively). Our results indicate that Gaussian process models have the potential to improve the accuracy of satellite-based PM 2.5 estimates.

  12. Polylinear regression analysis in radiochemistry

    International Nuclear Information System (INIS)

    Kopyrin, A.A.; Terent'eva, T.N.; Khramov, N.N.

    1995-01-01

    A number of radiochemical problems have been formulated in the framework of polylinear regression analysis, which permits the use of conventional mathematical methods for their solution. The authors have considered features of the use of polylinear regression analysis for estimating the contributions of various sources to the atmospheric pollution, for studying irradiated nuclear fuel, for estimating concentrations from spectral data, for measuring neutron fields of a nuclear reactor, for estimating crystal lattice parameters from X-ray diffraction patterns, for interpreting data of X-ray fluorescence analysis, for estimating complex formation constants, and for analyzing results of radiometric measurements. The problem of estimating the target parameters can be incorrect at certain properties of the system under study. The authors showed the possibility of regularization by adding a fictitious set of data open-quotes obtainedclose quotes from the orthogonal design. To estimate only a part of the parameters under consideration, the authors used incomplete rank models. In this case, it is necessary to take into account the possibility of confounding estimates. An algorithm for evaluating the degree of confounding is presented which is realized using standard software or regression analysis

  13. Canonical variate regression.

    Science.gov (United States)

    Luo, Chongliang; Liu, Jin; Dey, Dipak K; Chen, Kun

    2016-07-01

    In many fields, multi-view datasets, measuring multiple distinct but interrelated sets of characteristics on the same set of subjects, together with data on certain outcomes or phenotypes, are routinely collected. The objective in such a problem is often two-fold: both to explore the association structures of multiple sets of measurements and to develop a parsimonious model for predicting the future outcomes. We study a unified canonical variate regression framework to tackle the two problems simultaneously. The proposed criterion integrates multiple canonical correlation analysis with predictive modeling, balancing between the association strength of the canonical variates and their joint predictive power on the outcomes. Moreover, the proposed criterion seeks multiple sets of canonical variates simultaneously to enable the examination of their joint effects on the outcomes, and is able to handle multivariate and non-Gaussian outcomes. An efficient algorithm based on variable splitting and Lagrangian multipliers is proposed. Simulation studies show the superior performance of the proposed approach. We demonstrate the effectiveness of the proposed approach in an [Formula: see text] intercross mice study and an alcohol dependence study. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Hierarchical structure of stock price fluctuations in financial markets

    International Nuclear Information System (INIS)

    Gao, Ya-Chun; Cai, Shi-Min; Wang, Bing-Hong

    2012-01-01

    The financial market and turbulence have been broadly compared on account of the same quantitative methods and several common stylized facts they share. In this paper, the She–Leveque (SL) hierarchy, proposed to explain the anomalous scaling exponents deviating from Kolmogorov monofractal scaling of the velocity fluctuation in fluid turbulence, is applied to study and quantify the hierarchical structure of stock price fluctuations in financial markets. We therefore observed certain interesting results: (i) the hierarchical structure related to multifractal scaling generally presents in all the stock price fluctuations we investigated. (ii) The quantitatively statistical parameters that describe SL hierarchy are different between developed financial markets and emerging ones, distinctively. (iii) For the high-frequency stock price fluctuation, the hierarchical structure varies with different time periods. All these results provide a novel analogy in turbulence and financial market dynamics and an insight to deeply understand multifractality in financial markets. (paper)

  15. Chimera states in networks of logistic maps with hierarchical connectivities

    Science.gov (United States)

    zur Bonsen, Alexander; Omelchenko, Iryna; Zakharova, Anna; Schöll, Eckehard

    2018-04-01

    Chimera states are complex spatiotemporal patterns consisting of coexisting domains of coherence and incoherence. We study networks of nonlocally coupled logistic maps and analyze systematically how the dilution of the network links influences the appearance of chimera patterns. The network connectivities are constructed using an iterative Cantor algorithm to generate fractal (hierarchical) connectivities. Increasing the hierarchical level of iteration, we compare the resulting spatiotemporal patterns. We demonstrate that a high clustering coefficient and symmetry of the base pattern promotes chimera states, and asymmetric connectivities result in complex nested chimera patterns.

  16. Hierarchical Ag mesostructures for single particle SERS substrate

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Minwei, E-mail: xuminwei@xjtu.edu.cn; Zhang, Yin

    2017-01-30

    Highlights: • Hierarchical Ag mesostructures with the size of 250, 360 and 500 nm are synthesized via a seed-mediated approach. • The Ag mesostructures present the tailorable size and highly roughened surfaces. • The average enhancement factors for individual Ag mesostructures were estimated to be as high as 10{sup 6}. - Abstract: Hierarchical Ag mesostructures with highly rough surface morphology have been synthesized at room temperature through a simple seed-mediated approach. Electron microscopy characterizations indicate that the obtained Ag mesostructures exhibit a textured surface morphology with the flower-like architecture. Moreover, the particle size can be tailored easily in the range of 250–500 nm. For the growth process of the hierarchical Ag mesostructures, it is believed that the self-assembly mechanism is more reasonable rather than the epitaxial overgrowth of Ag seed. The oriented attachment of nanoparticles is revealed during the formation of Ag mesostructures. Single particle surface enhanced Raman spectra (sp-SERS) of crystal violet adsorbed on the hierarchical Ag mesostructures were measured. Results reveal that the hierarchical Ag mesostructures can be highly sensitive sp-SERS substrates with good reproducibility. The average enhancement factors for individual Ag mesostructures are estimated to be about 10{sup 6}.

  17. Road network safety evaluation using Bayesian hierarchical joint model.

    Science.gov (United States)

    Wang, Jie; Huang, Helai

    2016-05-01

    Safety and efficiency are commonly regarded as two significant performance indicators of transportation systems. In practice, road network planning has focused on road capacity and transport efficiency whereas the safety level of a road network has received little attention in the planning stage. This study develops a Bayesian hierarchical joint model for road network safety evaluation to help planners take traffic safety into account when planning a road network. The proposed model establishes relationships between road network risk and micro-level variables related to road entities and traffic volume, as well as socioeconomic, trip generation and network density variables at macro level which are generally used for long term transportation plans. In addition, network spatial correlation between intersections and their connected road segments is also considered in the model. A road network is elaborately selected in order to compare the proposed hierarchical joint model with a previous joint model and a negative binomial model. According to the results of the model comparison, the hierarchical joint model outperforms the joint model and negative binomial model in terms of the goodness-of-fit and predictive performance, which indicates the reasonableness of considering the hierarchical data structure in crash prediction and analysis. Moreover, both random effects at the TAZ level and the spatial correlation between intersections and their adjacent segments are found to be significant, supporting the employment of the hierarchical joint model as an alternative in road-network-level safety modeling as well. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Micro-nanofibers with hierarchical structure by bubbfil-spinning

    Directory of Open Access Journals (Sweden)

    Liu Peng

    2015-01-01

    Full Text Available Bubbfil spinning is used to fabricate micro/nanofibers with hierarchical structure. The wall of a polymer film is attenuated unevenly by a blowing air. The burst of the bubble results in film fragments with different thickness, as a result, different sizes of fibers are obtained.

  19. Hierarchical feature selection for erythema severity estimation

    Science.gov (United States)

    Wang, Li; Shi, Chenbo; Shu, Chang

    2014-10-01

    At present PASI system of scoring is used for evaluating erythema severity, which can help doctors to diagnose psoriasis [1-3]. The system relies on the subjective judge of doctors, where the accuracy and stability cannot be guaranteed [4]. This paper proposes a stable and precise algorithm for erythema severity estimation. Our contributions are twofold. On one hand, in order to extract the multi-scale redness of erythema, we design the hierarchical feature. Different from traditional methods, we not only utilize the color statistical features, but also divide the detect window into small window and extract hierarchical features. Further, a feature re-ranking step is introduced, which can guarantee that extracted features are irrelevant to each other. On the other hand, an adaptive boosting classifier is applied for further feature selection. During the step of training, the classifier will seek out the most valuable feature for evaluating erythema severity, due to its strong learning ability. Experimental results demonstrate the high precision and robustness of our algorithm. The accuracy is 80.1% on the dataset which comprise 116 patients' images with various kinds of erythema. Now our system has been applied for erythema medical efficacy evaluation in Union Hosp, China.

  20. Hierarchical Diagnosis of Vocal Fold Disorders

    Science.gov (United States)

    Nikkhah-Bahrami, Mansour; Ahmadi-Noubari, Hossein; Seyed Aghazadeh, Babak; Khadivi Heris, Hossein

    This paper explores the use of hierarchical structure for diagnosis of vocal fold disorders. The hierarchical structure is initially used to train different second-level classifiers. At the first level normal and pathological signals have been distinguished. Next, pathological signals have been classified into neurogenic and organic vocal fold disorders. At the final level, vocal fold nodules have been distinguished from polyps in organic disorders category. For feature selection at each level of hierarchy, the reconstructed signal at each wavelet packet decomposition sub-band in 5 levels of decomposition with mother wavelet of (db10) is used to extract the nonlinear features of self-similarity and approximate entropy. Also, wavelet packet coefficients are used to measure energy and Shannon entropy features at different spectral sub-bands. Davies-Bouldin criterion has been employed to find the most discriminant features. Finally, support vector machines have been adopted as classifiers at each level of hierarchy resulting in the diagnosis accuracy of 92%.

  1. A Simulation Investigation of Principal Component Regression.

    Science.gov (United States)

    Allen, David E.

    Regression analysis is one of the more common analytic tools used by researchers. However, multicollinearity between the predictor variables can cause problems in using the results of regression analyses. Problems associated with multicollinearity include entanglement of relative influences of variables due to reduced precision of estimation,…

  2. Suppression Situations in Multiple Linear Regression

    Science.gov (United States)

    Shieh, Gwowen

    2006-01-01

    This article proposes alternative expressions for the two most prevailing definitions of suppression without resorting to the standardized regression modeling. The formulation provides a simple basis for the examination of their relationship. For the two-predictor regression, the author demonstrates that the previous results in the literature are…

  3. Hierarchical classification with a competitive evolutionary neural tree.

    Science.gov (United States)

    Adams, R G.; Butchart, K; Davey, N

    1999-04-01

    A new, dynamic, tree structured network, the Competitive Evolutionary Neural Tree (CENT) is introduced. The network is able to provide a hierarchical classification of unlabelled data sets. The main advantage that the CENT offers over other hierarchical competitive networks is its ability to self determine the number, and structure, of the competitive nodes in the network, without the need for externally set parameters. The network produces stable classificatory structures by halting its growth using locally calculated heuristics. The results of network simulations are presented over a range of data sets, including Anderson's IRIS data set. The CENT network demonstrates its ability to produce a representative hierarchical structure to classify a broad range of data sets.

  4. Detecting the overlapping and hierarchical community structure in complex networks

    International Nuclear Information System (INIS)

    Lancichinetti, Andrea; Fortunato, Santo; Kertesz, Janos

    2009-01-01

    Many networks in nature, society and technology are characterized by a mesoscopic level of organization, with groups of nodes forming tightly connected units, called communities or modules, that are only weakly linked to each other. Uncovering this community structure is one of the most important problems in the field of complex networks. Networks often show a hierarchical organization, with communities embedded within other communities; moreover, nodes can be shared between different communities. Here, we present the first algorithm that finds both overlapping communities and the hierarchical structure. The method is based on the local optimization of a fitness function. Community structure is revealed by peaks in the fitness histogram. The resolution can be tuned by a parameter enabling different hierarchical levels of organization to be investigated. Tests on real and artificial networks give excellent results.

  5. Organization of excitable dynamics in hierarchical biological networks.

    Directory of Open Access Journals (Sweden)

    Mark Müller-Linow

    Full Text Available This study investigates the contributions of network topology features to the dynamic behavior of hierarchically organized excitable networks. Representatives of different types of hierarchical networks as well as two biological neural networks are explored with a three-state model of node activation for systematically varying levels of random background network stimulation. The results demonstrate that two principal topological aspects of hierarchical networks, node centrality and network modularity, correlate with the network activity patterns at different levels of spontaneous network activation. The approach also shows that the dynamic behavior of the cerebral cortical systems network in the cat is dominated by the network's modular organization, while the activation behavior of the cellular neuronal network of Caenorhabditis elegans is strongly influenced by hub nodes. These findings indicate the interaction of multiple topological features and dynamic states in the function of complex biological networks.

  6. Loops in hierarchical channel networks

    Science.gov (United States)

    Katifori, Eleni; Magnasco, Marcelo

    2012-02-01

    Nature provides us with many examples of planar distribution and structural networks having dense sets of closed loops. An archetype of this form of network organization is the vasculature of dicotyledonous leaves, which showcases a hierarchically-nested architecture. Although a number of methods have been proposed to measure aspects of the structure of such networks, a robust metric to quantify their hierarchical organization is still lacking. We present an algorithmic framework that allows mapping loopy networks to binary trees, preserving in the connectivity of the trees the architecture of the original graph. We apply this framework to investigate computer generated and natural graphs extracted from digitized images of dicotyledonous leaves and animal vasculature. We calculate various metrics on the corresponding trees and discuss the relationship of these quantities to the architectural organization of the original graphs. This algorithmic framework decouples the geometric information from the metric topology (connectivity and edge weight) and it ultimately allows us to perform a quantitative statistical comparison between predictions of theoretical models and naturally occurring loopy graphs.

  7. Hierarchical modeling of active materials

    International Nuclear Information System (INIS)

    Taya, Minoru

    2003-01-01

    Intelligent (or smart) materials are increasingly becoming key materials for use in actuators and sensors. If an intelligent material is used as a sensor, it can be embedded in a variety of structure functioning as a health monitoring system to make their life longer with high reliability. If an intelligent material is used as an active material in an actuator, it plays a key role of making dynamic movement of the actuator under a set of stimuli. This talk intends to cover two different active materials in actuators, (1) piezoelectric laminate with FGM microstructure, (2) ferromagnetic shape memory alloy (FSMA). The advantage of using the FGM piezo laminate is to enhance its fatigue life while maintaining large bending displacement, while that of use in FSMA is its fast actuation while providing a large force and stroke capability. Use of hierarchical modeling of the above active materials is a key design step in optimizing its microstructure for enhancement of their performance. I will discuss briefly hierarchical modeling of the above two active materials. For FGM piezo laminate, we will use both micromechanical model and laminate theory, while for FSMA, the modeling interfacing nano-structure, microstructure and macro-behavior is discussed. (author)

  8. Hierarchical organisation of causal graphs

    International Nuclear Information System (INIS)

    Dziopa, P.

    1993-01-01

    This paper deals with the design of a supervision system using a hierarchy of models formed by graphs, in which the variables are the nodes and the causal relations between the variables of the arcs. To obtain a representation of the variables evolutions which contains only the relevant features of their real evolutions, the causal relations are completed with qualitative transfer functions (QTFs) which produce roughly the behaviour of the classical transfer functions. Major improvements have been made in the building of the hierarchical organization. First, the basic variables of the uppermost level and the causal relations between them are chosen. The next graph is built by adding intermediary variables to the upper graph. When the undermost graph has been built, the transfer functions parameters corresponding to its causal relations are identified. The second task consists in the upwelling of the information from the undermost graph to the uppermost one. A fusion procedure of the causal relations has been designed to compute the QFTs relevant for each level. This procedure aims to reduce the number of parameters needed to represent an evolution at a high level of abstraction. These techniques have been applied to the hierarchical modelling of nuclear process. (authors). 8 refs., 12 figs

  9. Polynomial regression analysis and significance test of the regression function

    International Nuclear Information System (INIS)

    Gao Zhengming; Zhao Juan; He Shengping

    2012-01-01

    In order to analyze the decay heating power of a certain radioactive isotope per kilogram with polynomial regression method, the paper firstly demonstrated the broad usage of polynomial function and deduced its parameters with ordinary least squares estimate. Then significance test method of polynomial regression function is derived considering the similarity between the polynomial regression model and the multivariable linear regression model. Finally, polynomial regression analysis and significance test of the polynomial function are done to the decay heating power of the iso tope per kilogram in accord with the authors' real work. (authors)

  10. Hierarchical structures of ZnO spherical particles synthesized solvothermally

    Science.gov (United States)

    Saito, Noriko; Haneda, Hajime

    2011-12-01

    We review the solvothermal synthesis, using a mixture of ethylene glycol (EG) and water as the solvent, of zinc oxide (ZnO) particles having spherical and flower-like shapes and hierarchical nanostructures. The preparation conditions of the ZnO particles and the microscopic characterization of the morphology are summarized. We found the following three effects of the ratio of EG to water on the formation of hierarchical structures: (i) EG restricts the growth of ZnO microcrystals, (ii) EG promotes the self-assembly of small crystallites into spheroidal particles and (iii) the high water content of EG results in hollow spheres.

  11. Topology-based hierarchical scheduling using deficit round robin

    DEFF Research Database (Denmark)

    Yu, Hao; Yan, Ying; Berger, Michael Stubert

    2009-01-01

    according to the topology. The mapping process could be completed through the network management plane or by manual configuration. Based on the knowledge of the network, the scheduler can manage the traffic on behalf of other less advanced nodes, avoid potential traffic congestion, and provide flow...... protection and isolation. Comparisons between hierarchical scheduling, flow-based scheduling, and class-based scheduling schemes have been carried out under a symmetric tree topology. Results have shown that the hierarchical scheduling scheme provides better flow protection and isolation from attack...

  12. Efficient Actor-Critic Algorithm with Hierarchical Model Learning and Planning

    Science.gov (United States)

    Fu, QiMing

    2016-01-01

    To improve the convergence rate and the sample efficiency, two efficient learning methods AC-HMLP and RAC-HMLP (AC-HMLP with ℓ 2-regularization) are proposed by combining actor-critic algorithm with hierarchical model learning and planning. The hierarchical models consisting of the local and the global models, which are learned at the same time during learning of the value function and the policy, are approximated by local linear regression (LLR) and linear function approximation (LFA), respectively. Both the local model and the global model are applied to generate samples for planning; the former is used only if the state-prediction error does not surpass the threshold at each time step, while the latter is utilized at the end of each episode. The purpose of taking both models is to improve the sample efficiency and accelerate the convergence rate of the whole algorithm through fully utilizing the local and global information. Experimentally, AC-HMLP and RAC-HMLP are compared with three representative algorithms on two Reinforcement Learning (RL) benchmark problems. The results demonstrate that they perform best in terms of convergence rate and sample efficiency. PMID:27795704

  13. Recursive Algorithm For Linear Regression

    Science.gov (United States)

    Varanasi, S. V.

    1988-01-01

    Order of model determined easily. Linear-regression algorithhm includes recursive equations for coefficients of model of increased order. Algorithm eliminates duplicative calculations, facilitates search for minimum order of linear-regression model fitting set of data satisfactory.

  14. Hierarchical image segmentation for learning object priors

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Lakshman [Los Alamos National Laboratory; Yang, Xingwei [TEMPLE UNIV.; Latecki, Longin J [TEMPLE UNIV.; Li, Nan [TEMPLE UNIV.

    2010-11-10

    The proposed segmentation approach naturally combines experience based and image based information. The experience based information is obtained by training a classifier for each object class. For a given test image, the result of each classifier is represented as a probability map. The final segmentation is obtained with a hierarchial image segmentation algorithm that considers both the probability maps and the image features such as color and edge strength. We also utilize image region hierarchy to obtain not only local but also semi-global features as input to the classifiers. Moreover, to get robust probability maps, we take into account the region context information by averaging the probability maps over different levels of the hierarchical segmentation algorithm. The obtained segmentation results are superior to the state-of-the-art supervised image segmentation algorithms.

  15. Hierarchical reorganization of dimensions in OLAP visualizations.

    Science.gov (United States)

    Lafon, Sébastien; Bouali, Fatma; Guinot, Christiane; Venturini, Gilles

    2013-11-01

    In this paper, we propose a new method for the visual reorganization of online analytical processing (OLAP) cubes that aims at improving their visualization. Our method addresses dimensions with hierarchically organized members. It uses a genetic algorithm that reorganizes k-ary trees. Genetic operators perform permutations of subtrees to optimize a visual homogeneity function. We propose several ways to reorganize an OLAP cube depending on which set of members is selected for the reorganization: all of the members, only the displayed members, or the members at a given level (level by level approach). The results that are evaluated by using optimization criteria show that our algorithm has a reliable performance even when it is limited to 1 minute runs. Our algorithm was integrated in an interactive 3D interface for OLAP. A user study was conducted to evaluate our approach with users. The results highlight the usefulness of reorganization in two OLAP tasks.

  16. Students' Outcome Expectation on Spiritual and Religious Competency: A Hierarchical Regression Analysis

    Science.gov (United States)

    Lu, Junfei; Woo, Hongryun

    2017-01-01

    In this study, 74 master's-level counseling students from various programs completed a questionnaire inquiring about their perceived program environment in relation to the topics of spirituality and religion (S/R), program emphasis on nine specific S/R competencies, as well as their outcome expectations toward being S/R competent through training.…

  17. LiDAR based prediction of forest biomass using hierarchical models with spatially varying coefficients

    Science.gov (United States)

    Chad Babcock; Andrew O. Finley; John B. Bradford; Randy Kolka; Richard Birdsey; Michael G. Ryan

    2015-01-01

    Many studies and production inventory systems have shown the utility of coupling covariates derived from Light Detection and Ranging (LiDAR) data with forest variables measured on georeferenced inventory plots through regression models. The objective of this study was to propose and assess the use of a Bayesian hierarchical modeling framework that accommodates both...

  18. Molecular simulation of adsorption and transport in hierarchical porous materials.

    Science.gov (United States)

    Coasne, Benoit; Galarneau, Anne; Gerardin, Corine; Fajula, François; Villemot, François

    2013-06-25

    Adsorption and transport in hierarchical porous solids with micro- (~1 nm) and mesoporosities (>2 nm) are investigated by molecular simulation. Two models of hierarchical solids are considered: microporous materials in which mesopores are carved out (model A) and mesoporous materials in which microporous nanoparticles are inserted (model B). Adsorption isotherms for model A can be described as a linear combination of the adsorption isotherms for pure mesoporous and microporous solids. In contrast, adsorption in model B departs from adsorption in pure microporous and mesoporous solids; the inserted microporous particles act as defects, which help nucleate the liquid phase within the mesopore and shift capillary condensation toward lower pressures. As far as transport under a pressure gradient is concerned, the flux in hierarchical materials consisting of microporous solids in which mesopores are carved out obeys the Navier-Stokes equation so that Darcy's law is verified within the mesopore. Moreover, the flow in such materials is larger than in a single mesopore, due to the transfer between micropores and mesopores. This nonzero velocity at the mesopore surface implies that transport in such hierarchical materials involves slippage at the mesopore surface, although the adsorbate has a strong affinity for the surface. In contrast to model A, flux in model B is smaller than in a single mesopore, as the nanoparticles act as constrictions that hinder transport. By a subtle effect arising from fast transport in the mesopores, the presence of mesopores increases the number of molecules in the microporosity in hierarchical materials and, hence, decreases the flow in the micropores (due to mass conservation). As a result, we do not observe faster diffusion in the micropores of hierarchical materials upon flow but slower diffusion, which increases the contact time between the adsorbate and the surface of the microporosity.

  19. Hierarchical graphs for rule-based modeling of biochemical systems

    Directory of Open Access Journals (Sweden)

    Hu Bin

    2011-02-01

    Full Text Available Abstract Background In rule-based modeling, graphs are used to represent molecules: a colored vertex represents a component of a molecule, a vertex attribute represents the internal state of a component, and an edge represents a bond between components. Components of a molecule share the same color. Furthermore, graph-rewriting rules are used to represent molecular interactions. A rule that specifies addition (removal of an edge represents a class of association (dissociation reactions, and a rule that specifies a change of a vertex attribute represents a class of reactions that affect the internal state of a molecular component. A set of rules comprises an executable model that can be used to determine, through various means, the system-level dynamics of molecular interactions in a biochemical system. Results For purposes of model annotation, we propose the use of hierarchical graphs to represent structural relationships among components and subcomponents of molecules. We illustrate how hierarchical graphs can be used to naturally document the structural organization of the functional components and subcomponents of two proteins: the protein tyrosine kinase Lck and the T cell receptor (TCR complex. We also show that computational methods developed for regular graphs can be applied to hierarchical graphs. In particular, we describe a generalization of Nauty, a graph isomorphism and canonical labeling algorithm. The generalized version of the Nauty procedure, which we call HNauty, can be used to assign canonical labels to hierarchical graphs or more generally to graphs with multiple edge types. The difference between the Nauty and HNauty procedures is minor, but for completeness, we provide an explanation of the entire HNauty algorithm. Conclusions Hierarchical graphs provide more intuitive formal representations of proteins and other structured molecules with multiple functional components than do the regular graphs of current languages for

  20. Combining Alphas via Bounded Regression

    Directory of Open Access Journals (Sweden)

    Zura Kakushadze

    2015-11-01

    Full Text Available We give an explicit algorithm and source code for combining alpha streams via bounded regression. In practical applications, typically, there is insufficient history to compute a sample covariance matrix (SCM for a large number of alphas. To compute alpha allocation weights, one then resorts to (weighted regression over SCM principal components. Regression often produces alpha weights with insufficient diversification and/or skewed distribution against, e.g., turnover. This can be rectified by imposing bounds on alpha weights within the regression procedure. Bounded regression can also be applied to stock and other asset portfolio construction. We discuss illustrative examples.

  1. Regression in autistic spectrum disorders.

    Science.gov (United States)

    Stefanatos, Gerry A

    2008-12-01

    A significant proportion of children diagnosed with Autistic Spectrum Disorder experience a developmental regression characterized by a loss of previously-acquired skills. This may involve a loss of speech or social responsitivity, but often entails both. This paper critically reviews the phenomena of regression in autistic spectrum disorders, highlighting the characteristics of regression, age of onset, temporal course, and long-term outcome. Important considerations for diagnosis are discussed and multiple etiological factors currently hypothesized to underlie the phenomenon are reviewed. It is argued that regressive autistic spectrum disorders can be conceptualized on a spectrum with other regressive disorders that may share common pathophysiological features. The implications of this viewpoint are discussed.

  2. A hierarchical approach for simulating northern forest dynamics

    Science.gov (United States)

    Don C. Bragg; David W. Roberts; Thomas R. Crow

    2004-01-01

    Complexity in ecological systems has challenged forest simulation modelers for years, resulting in a number of approaches with varying degrees of success. Arguments in favor of hierarchical modeling are made, especially for considering a complex environmental issue like widespread eastern hemlock regeneration failure. We present the philosophy and basic framework for...

  3. The evolutionary strata of DARPP-32 tail implicates hierarchical ...

    Indian Academy of Sciences (India)

    The evolutionary strata of DARPP-32 tail implicates hierarchical functional expansion in higher vertebrates. CHOONG YONG UNG and TEOW CHONG TEOH. Supplementary data 1. Protein sequences of PPP1R1 family from 39 vertebrate species in FASTA format. Supplementary data 2. Multiple sequence alignment results ...

  4. Facile synthesis and photocatalytic activity of zinc oxide hierarchical microcrystals

    KAUST Repository

    Xu, Xinjiang; Kuang, Fangcheng; Xu, Jiangping

    2013-01-01

    was suggested. Furthermore, the catalytic activity of the ZnO microcrystals was studied by treating low concentration Rhodamine B (RhB) solution under UV light, and research results show the hierarchical microstructures of ZnO display high catalytic activity

  5. Linear regression in astronomy. I

    Science.gov (United States)

    Isobe, Takashi; Feigelson, Eric D.; Akritas, Michael G.; Babu, Gutti Jogesh

    1990-01-01

    Five methods for obtaining linear regression fits to bivariate data with unknown or insignificant measurement errors are discussed: ordinary least-squares (OLS) regression of Y on X, OLS regression of X on Y, the bisector of the two OLS lines, orthogonal regression, and 'reduced major-axis' regression. These methods have been used by various researchers in observational astronomy, most importantly in cosmic distance scale applications. Formulas for calculating the slope and intercept coefficients and their uncertainties are given for all the methods, including a new general form of the OLS variance estimates. The accuracy of the formulas was confirmed using numerical simulations. The applicability of the procedures is discussed with respect to their mathematical properties, the nature of the astronomical data under consideration, and the scientific purpose of the regression. It is found that, for problems needing symmetrical treatment of the variables, the OLS bisector performs significantly better than orthogonal or reduced major-axis regression.

  6. Distributed hierarchical radiation monitoring system

    International Nuclear Information System (INIS)

    Barak, D.

    1985-01-01

    A solution to the problem of monitoring the radiation levels in and around a nuclear facility is presented in this paper. This is a private case of a large scale general purpose data acqisition system with high reliability, availability and short maintenance time. The physical layout of the detectors in the plant, and the strict control demands dictated a distributed and hierarchical system. The system is comprised of three levels, each level contains modules. Level one contains the Control modules which collects data from groups of detectors and executes emergency local control tasks. In level two are the Group controllers which concentrate data from the Control modules, and enable local display and communication. The system computer is in level three, enabling the plant operator to receive information from the detectors and execute control tasks. The described system was built and is operating successfully for about two years. (author)

  7. Hierarchical Control for Smart Grids

    DEFF Research Database (Denmark)

    Trangbæk, K; Bendtsen, Jan Dimon; Stoustrup, Jakob

    2011-01-01

    of autonomous consumers. The control system is tasked with balancing electric power production and consumption within the smart grid, and makes active use of the flexibility of a large number of power producing and/or power consuming units. The objective is to accommodate the load variation on the grid, arising......This paper deals with hierarchical model predictive control (MPC) of smart grid systems. The design consists of a high level MPC controller, a second level of so-called aggregators, which reduces the computational and communication-related load on the high-level control, and a lower level...... on one hand from varying consumption, and on the other hand by natural variations in power production e.g. from wind turbines. The high-level MPC problem is solved using quadratic optimisation, while the aggregator level can either involve quadratic optimisation or simple sorting-based min-max solutions...

  8. Hierarchical coarse-graining transform.

    Science.gov (United States)

    Pancaldi, Vera; King, Peter R; Christensen, Kim

    2009-03-01

    We present a hierarchical transform that can be applied to Laplace-like differential equations such as Darcy's equation for single-phase flow in a porous medium. A finite-difference discretization scheme is used to set the equation in the form of an eigenvalue problem. Within the formalism suggested, the pressure field is decomposed into an average value and fluctuations of different kinds and at different scales. The application of the transform to the equation allows us to calculate the unknown pressure with a varying level of detail. A procedure is suggested to localize important features in the pressure field based only on the fine-scale permeability, and hence we develop a form of adaptive coarse graining. The formalism and method are described and demonstrated using two synthetic toy problems.

  9. Regression of environmental noise in LIGO data

    International Nuclear Information System (INIS)

    Tiwari, V; Klimenko, S; Mitselmakher, G; Necula, V; Drago, M; Prodi, G; Frolov, V; Yakushin, I; Re, V; Salemi, F; Vedovato, G

    2015-01-01

    We address the problem of noise regression in the output of gravitational-wave (GW) interferometers, using data from the physical environmental monitors (PEM). The objective of the regression analysis is to predict environmental noise in the GW channel from the PEM measurements. One of the most promising regression methods is based on the construction of Wiener–Kolmogorov (WK) filters. Using this method, the seismic noise cancellation from the LIGO GW channel has already been performed. In the presented approach the WK method has been extended, incorporating banks of Wiener filters in the time–frequency domain, multi-channel analysis and regulation schemes, which greatly enhance the versatility of the regression analysis. Also we present the first results on regression of the bi-coherent noise in the LIGO data. (paper)

  10. Advanced statistics: linear regression, part I: simple linear regression.

    Science.gov (United States)

    Marill, Keith A

    2004-01-01

    Simple linear regression is a mathematical technique used to model the relationship between a single independent predictor variable and a single dependent outcome variable. In this, the first of a two-part series exploring concepts in linear regression analysis, the four fundamental assumptions and the mechanics of simple linear regression are reviewed. The most common technique used to derive the regression line, the method of least squares, is described. The reader will be acquainted with other important concepts in simple linear regression, including: variable transformations, dummy variables, relationship to inference testing, and leverage. Simplified clinical examples with small datasets and graphic models are used to illustrate the points. This will provide a foundation for the second article in this series: a discussion of multiple linear regression, in which there are multiple predictor variables.

  11. Adaptive hierarchical multi-agent organizations

    NARCIS (Netherlands)

    Ghijsen, M.; Jansweijer, W.N.H.; Wielinga, B.J.; Babuška, R.; Groen, F.C.A.

    2010-01-01

    In this chapter, we discuss the design of adaptive hierarchical organizations for multi-agent systems (MAS). Hierarchical organizations have a number of advantages such as their ability to handle complex problems and their scalability to large organizations. By introducing adaptivity in the

  12. The Case for a Hierarchical Cosmology

    Science.gov (United States)

    Vaucouleurs, G. de

    1970-01-01

    The development of modern theoretical cosmology is presented and some questionable assumptions of orthodox cosmology are pointed out. Suggests that recent observations indicate that hierarchical clustering is a basic factor in cosmology. The implications of hierarchical models of the universe are considered. Bibliography. (LC)

  13. Discovering hierarchical structure in normal relational data

    DEFF Research Database (Denmark)

    Schmidt, Mikkel Nørgaard; Herlau, Tue; Mørup, Morten

    2014-01-01

    -parametric generative model for hierarchical clustering of similarity based on multifurcating Gibbs fragmentation trees. This allows us to infer and display the posterior distribution of hierarchical structures that comply with the data. We demonstrate the utility of our method on synthetic data and data of functional...

  14. Biased trapping issue on weighted hierarchical networks

    Indian Academy of Sciences (India)

    archical networks which are based on the classic scale-free hierarchical networks. ... Weighted hierarchical networks; weight-dependent walks; mean first passage ..... The weighted networks can mimic some real-world natural and social systems to ... the Priority Academic Program Development of Jiangsu Higher Education ...

  15. Epidemic spreading in a hierarchical social network.

    Science.gov (United States)

    Grabowski, A; Kosiński, R A

    2004-09-01

    A model of epidemic spreading in a population with a hierarchical structure of interpersonal interactions is described and investigated numerically. The structure of interpersonal connections is based on a scale-free network. Spatial localization of individuals belonging to different social groups, and the mobility of a contemporary community, as well as the effectiveness of different interpersonal interactions, are taken into account. Typical relations characterizing the spreading process, like a range of epidemic and epidemic curves, are discussed. The influence of preventive vaccinations on the spreading process is investigated. The critical value of preventively vaccinated individuals that is sufficient for the suppression of an epidemic is calculated. Our results are compared with solutions of the master equation for the spreading process and good agreement of the character of this process is found.

  16. Epidemics and dimensionality in hierarchical networks

    Science.gov (United States)

    Zheng, Da-Fang; Hui, P. M.; Trimper, Steffen; Zheng, Bo

    2005-07-01

    Epidemiological processes are studied within a recently proposed hierarchical network model using the susceptible-infected-refractory dynamics of an epidemic. Within the network model, a population may be characterized by H independent hierarchies or dimensions, each of which consists of groupings of individuals into layers of subgroups. Detailed numerical simulations reveal that for H>1, global spreading results regardless of the degree of homophily of the individuals forming a social circle. For H=1, a transition from global to local spread occurs as the population becomes decomposed into increasingly homophilous groups. Multiple dimensions in classifying individuals (nodes) thus make a society (computer network) highly susceptible to large-scale outbreaks of infectious diseases (viruses).

  17. Optimization of Hierarchical System for Data Acquisition

    Directory of Open Access Journals (Sweden)

    V. Novotny

    2011-04-01

    Full Text Available Television broadcasting over IP networks (IPTV is one of a number of network applications that are except of media distribution also interested in data acquisition from group of information resources of variable size. IP-TV uses Real-time Transport Protocol (RTP protocol for media streaming and RTP Control Protocol (RTCP protocol for session quality feedback. Other applications, for example sensor networks, have data acquisition as the main task. Current solutions have mostly problem with scalability - how to collect and process information from large amount of end nodes quickly and effectively? The article deals with optimization of hierarchical system of data acquisition. Problem is mathematically described, delay minima are searched and results are proved by simulations.

  18. Fluorocarbon Adsorption in Hierarchical Porous Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Motkuri, Radha K.; Annapureddy, Harsha V.; Vijayakumar, M.; Schaef, Herbert T.; Martin, P F.; McGrail, B. Peter; Dang, Liem X.; Krishna, Rajamani; Thallapally, Praveen K.

    2014-07-09

    The adsorption behavior of a series of fluorocarbon derivatives was examined on a set of microporous metal organic framework (MOF) sorbents and another set of hierarchical mesoporous MOFs. The microporous M-DOBDC (M = Ni, Co) showed a saturation uptake capacity for R12 of over 4 mmol/g at a very low relative saturation pressure (P/Po) of 0.02. In contrast, the mesoporous MOF MIL-101 showed an exceptionally high uptake capacity reaching over 14 mmol/g at P/Po of 0.4. Adsorption affinity in terms of mass loading and isosteric heats of adsorption were found to generally correlate with the polarizability of the refrigerant with R12 > R22 > R13 > R14 > methane. These results suggest the possibility of exploiting MOFs for separation of azeotropic mixtures of fluorocarbons and use in eco-friendly fluorocarbon-based adsorption cooling and refrigeration applications.

  19. Coulomb blockade in hierarchical quantum Hall droplets

    International Nuclear Information System (INIS)

    Cappelli, Andrea; Georgiev, Lachezar S; Zemba, Guillermo R

    2009-01-01

    The degeneracy of energy levels in a quantum dot of Hall fluid, leading to conductance peaks, can be readily derived from the partition functions of conformal field theory. Their complete expressions can be found for Hall states with both Abelian and non-Abelian statistics, upon adapting known results for the annulus geometry. We analyze the Abelian states with hierarchical filling fractions, ν = m/(mp ± 1), and find a non-trivial pattern of conductance peaks. In particular, each one of them occurs with a characteristic multiplicity, which is due to the extended symmetry of the m-folded edge. Experimental tests of the multiplicity can shed more light on the dynamics of this composite edge. (fast track communication)

  20. Hierarchically Nanostructured Materials for Sustainable Environmental Applications

    Directory of Open Access Journals (Sweden)

    Zheng eRen

    2013-11-01

    Full Text Available This article presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions and multiple functionalities towards water remediation, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology.

  1. Hierarchical Rhetorical Sentence Categorization for Scientific Papers

    Science.gov (United States)

    Rachman, G. H.; Khodra, M. L.; Widyantoro, D. H.

    2018-03-01

    Important information in scientific papers can be composed of rhetorical sentences that is structured from certain categories. To get this information, text categorization should be conducted. Actually, some works in this task have been completed by employing word frequency, semantic similarity words, hierarchical classification, and the others. Therefore, this paper aims to present the rhetorical sentence categorization from scientific paper by employing TF-IDF and Word2Vec to capture word frequency and semantic similarity words and employing hierarchical classification. Every experiment is tested in two classifiers, namely Naïve Bayes and SVM Linear. This paper shows that hierarchical classifier is better than flat classifier employing either TF-IDF or Word2Vec, although it increases only almost 2% from 27.82% when using flat classifier until 29.61% when using hierarchical classifier. It shows also different learning model for child-category can be built by hierarchical classifier.

  2. Predicting smear negative pulmonary tuberculosis with classification trees and logistic regression: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Kritski Afrânio

    2006-02-01

    Full Text Available Abstract Background Smear negative pulmonary tuberculosis (SNPT accounts for 30% of pulmonary tuberculosis cases reported yearly in Brazil. This study aimed to develop a prediction model for SNPT for outpatients in areas with scarce resources. Methods The study enrolled 551 patients with clinical-radiological suspicion of SNPT, in Rio de Janeiro, Brazil. The original data was divided into two equivalent samples for generation and validation of the prediction models. Symptoms, physical signs and chest X-rays were used for constructing logistic regression and classification and regression tree models. From the logistic regression, we generated a clinical and radiological prediction score. The area under the receiver operator characteristic curve, sensitivity, and specificity were used to evaluate the model's performance in both generation and validation samples. Results It was possible to generate predictive models for SNPT with sensitivity ranging from 64% to 71% and specificity ranging from 58% to 76%. Conclusion The results suggest that those models might be useful as screening tools for estimating the risk of SNPT, optimizing the utilization of more expensive tests, and avoiding costs of unnecessary anti-tuberculosis treatment. Those models might be cost-effective tools in a health care network with hierarchical distribution of scarce resources.

  3. Metastable states in the hierarchical Dyson model drive parallel processing in the hierarchical Hopfield network

    International Nuclear Information System (INIS)

    Agliari, Elena; Barra, Adriano; Guerra, Francesco; Galluzzi, Andrea; Tantari, Daniele; Tavani, Flavia

    2015-01-01

    In this paper, we introduce and investigate the statistical mechanics of hierarchical neural networks. First, we approach these systems à la Mattis, by thinking of the Dyson model as a single-pattern hierarchical neural network. We also discuss the stability of different retrievable states as predicted by the related self-consistencies obtained both from a mean-field bound and from a bound that bypasses the mean-field limitation. The latter is worked out by properly reabsorbing the magnetization fluctuations related to higher levels of the hierarchy into effective fields for the lower levels. Remarkably, mixing Amit's ansatz technique for selecting candidate-retrievable states with the interpolation procedure for solving for the free energy of these states, we prove that, due to gauge symmetry, the Dyson model accomplishes both serial and parallel processing. We extend this scenario to multiple stored patterns by implementing the Hebb prescription for learning within the couplings. This results in Hopfield-like networks constrained on a hierarchical topology, for which, by restricting to the low-storage regime where the number of patterns grows at its most logarithmical with the amount of neurons, we prove the existence of the thermodynamic limit for the free energy, and we give an explicit expression of its mean-field bound and of its related improved bound. We studied the resulting self-consistencies for the Mattis magnetizations, which act as order parameters, are studied and the stability of solutions is analyzed to get a picture of the overall retrieval capabilities of the system according to both mean-field and non-mean-field scenarios. Our main finding is that embedding the Hebbian rule on a hierarchical topology allows the network to accomplish both serial and parallel processing. By tuning the level of fast noise affecting it or triggering the decay of the interactions with the distance among neurons, the system may switch from sequential retrieval to

  4. Hierarchical effects on target detection and conflict monitoring

    Science.gov (United States)

    Cao, Bihua; Gao, Feng; Ren, Maofang; Li, Fuhong

    2016-01-01

    Previous neuroimaging studies have demonstrated a hierarchical functional structure of the frontal cortices of the human brain, but the temporal course and the electrophysiological signature of the hierarchical representation remains unaddressed. In the present study, twenty-one volunteers were asked to perform a nested cue-target task, while their scalp potentials were recorded. The results showed that: (1) in comparison with the lower-level hierarchical targets, the higher-level targets elicited a larger N2 component (220–350 ms) at the frontal sites, and a smaller P3 component (350–500 ms) across the frontal and parietal sites; (2) conflict-related negativity (non-target minus target) was greater for the lower-level hierarchy than the higher-level, reflecting a more intensive process of conflict monitoring at the final step of target detection. These results imply that decision making, context updating, and conflict monitoring differ among different hierarchical levels of abstraction. PMID:27561989

  5. Linear regression in astronomy. II

    Science.gov (United States)

    Feigelson, Eric D.; Babu, Gutti J.

    1992-01-01

    A wide variety of least-squares linear regression procedures used in observational astronomy, particularly investigations of the cosmic distance scale, are presented and discussed. The classes of linear models considered are (1) unweighted regression lines, with bootstrap and jackknife resampling; (2) regression solutions when measurement error, in one or both variables, dominates the scatter; (3) methods to apply a calibration line to new data; (4) truncated regression models, which apply to flux-limited data sets; and (5) censored regression models, which apply when nondetections are present. For the calibration problem we develop two new procedures: a formula for the intercept offset between two parallel data sets, which propagates slope errors from one regression to the other; and a generalization of the Working-Hotelling confidence bands to nonstandard least-squares lines. They can provide improved error analysis for Faber-Jackson, Tully-Fisher, and similar cosmic distance scale relations.

  6. Time-adaptive quantile regression

    DEFF Research Database (Denmark)

    Møller, Jan Kloppenborg; Nielsen, Henrik Aalborg; Madsen, Henrik

    2008-01-01

    and an updating procedure are combined into a new algorithm for time-adaptive quantile regression, which generates new solutions on the basis of the old solution, leading to savings in computation time. The suggested algorithm is tested against a static quantile regression model on a data set with wind power......An algorithm for time-adaptive quantile regression is presented. The algorithm is based on the simplex algorithm, and the linear optimization formulation of the quantile regression problem is given. The observations have been split to allow a direct use of the simplex algorithm. The simplex method...... production, where the models combine splines and quantile regression. The comparison indicates superior performance for the time-adaptive quantile regression in all the performance parameters considered....

  7. Quantile regression theory and applications

    CERN Document Server

    Davino, Cristina; Vistocco, Domenico

    2013-01-01

    A guide to the implementation and interpretation of Quantile Regression models This book explores the theory and numerous applications of quantile regression, offering empirical data analysis as well as the software tools to implement the methods. The main focus of this book is to provide the reader with a comprehensivedescription of the main issues concerning quantile regression; these include basic modeling, geometrical interpretation, estimation and inference for quantile regression, as well as issues on validity of the model, diagnostic tools. Each methodological aspect is explored and

  8. Variable and subset selection in PLS regression

    DEFF Research Database (Denmark)

    Høskuldsson, Agnar

    2001-01-01

    The purpose of this paper is to present some useful methods for introductory analysis of variables and subsets in relation to PLS regression. We present here methods that are efficient in finding the appropriate variables or subset to use in the PLS regression. The general conclusion...... is that variable selection is important for successful analysis of chemometric data. An important aspect of the results presented is that lack of variable selection can spoil the PLS regression, and that cross-validation measures using a test set can show larger variation, when we use different subsets of X, than...

  9. The MIL-88A-Derived Fe3O4-Carbon Hierarchical Nanocomposites for Electrochemical Sensing

    Science.gov (United States)

    Wang, Li; Zhang, Yayun; Li, Xia; Xie, Yingzhen; He, Juan; Yu, Jie; Song, Yonghai

    2015-01-01

    Metal or metal oxides/carbon nanocomposites with hierarchical superstructures have become one of the most promising functional materials in sensor, catalysis, energy conversion, etc. In this work, novel hierarchical Fe3O4/carbon superstructures have been fabricated based on metal-organic frameworks (MOFs)-derived method. Three kinds of Fe-MOFs (MIL-88A) with different morphologies were prepared beforehand as templates, and then pyrolyzed to fabricate the corresponding novel hierarchical Fe3O4/carbon superstructures. The systematic studies on the thermal decomposition process of the three kinds of MIL-88A and the effect of template morphology on the products were carried out in detail. Scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy and thermal analysis were employed to investigate the hierarchical Fe3O4/carbon superstructures. Based on these resulted hierarchical Fe3O4/carbon superstructures, a novel and sensitive nonenzymatic N-acetyl cysteine sensor was developed. The porous and hierarchical superstructures and large surface area of the as-formed Fe3O4/carbon superstructures eventually contributed to the good electrocatalytic activity of the prepared sensor towards the oxidation of N-acetyl cysteine. The proposed preparation method of the hierarchical Fe3O4/carbon superstructures is simple, efficient, cheap and easy to mass production. It might open up a new way for hierarchical superstructures preparation. PMID:26387535

  10. Hierarchical imaging of the human knee

    Science.gov (United States)

    Schulz, Georg; Götz, Christian; Deyhle, Hans; Müller-Gerbl, Magdalena; Zanette, Irene; Zdora, Marie-Christine; Khimchenko, Anna; Thalmann, Peter; Rack, Alexander; Müller, Bert

    2016-10-01

    Among the clinically relevant imaging techniques, computed tomography (CT) reaches the best spatial resolution. Sub-millimeter voxel sizes are regularly obtained. For investigations on true micrometer level lab-based μCT has become gold standard. The aim of the present study is the hierarchical investigation of a human knee post mortem using hard X-ray μCT. After the visualization of the entire knee using a clinical CT with a spatial resolution on the sub-millimeter range, a hierarchical imaging study was performed using a laboratory μCT system nanotom m. Due to the size of the whole knee the pixel length could not be reduced below 65 μm. These first two data sets were directly compared after a rigid registration using a cross-correlation algorithm. The μCT data set allowed an investigation of the trabecular structures of the bones. The further reduction of the pixel length down to 25 μm could be achieved by removing the skin and soft tissues and measuring the tibia and the femur separately. True micrometer resolution could be achieved after extracting cylinders of several millimeters diameters from the two bones. The high resolution scans revealed the mineralized cartilage zone including the tide mark line as well as individual calcified chondrocytes. The visualization of soft tissues including cartilage, was arranged by X-ray grating interferometry (XGI) at ESRF and Diamond Light Source. Whereas the high-energy measurements at ESRF allowed the simultaneous visualization of soft and hard tissues, the low-energy results from Diamond Light Source made individual chondrocytes within the cartilage visual.

  11. Hierarchical cellular designs for load-bearing biocomposite beams and plates

    International Nuclear Information System (INIS)

    Burgueno, Rigoberto; Quagliata, Mario J.; Mohanty, Amar K.; Mehta, Geeta; Drzal, Lawrence T.; Misra, Manjusri

    2005-01-01

    Scrutiny into the composition of natural, or biological materials convincingly reveals that high material and structural efficiency can be attained, even with moderate-quality constituents, by hierarchical topologies, i.e., successively organized material levels or layers. The present study demonstrates that biologically inspired hierarchical designs can help improve the moderate properties of natural fiber polymer composites or biocomposites and allow them to compete with conventional materials for load-bearing applications. An overview of the mechanics concepts that allow hierarchical designs to achieve higher performance is presented, followed by observation and results from flexural tests on periodic and hierarchical cellular beams and plates made from industrial hemp fibers and unsaturated polyester resin biocomposites. The experimental data is shown to agree well with performance indices predicted by mechanics models. A procedure for the multi-scale integrated material/structural analysis of hierarchical cellular biocomposite components is presented and its advantages and limitations are discussed

  12. Intensity-based hierarchical elastic registration using approximating splines.

    Science.gov (United States)

    Serifovic-Trbalic, Amira; Demirovic, Damir; Cattin, Philippe C

    2014-01-01

    We introduce a new hierarchical approach for elastic medical image registration using approximating splines. In order to obtain the dense deformation field, we employ Gaussian elastic body splines (GEBS) that incorporate anisotropic landmark errors and rotation information. Since the GEBS approach is based on a physical model in form of analytical solutions of the Navier equation, it can very well cope with the local as well as global deformations present in the images by varying the standard deviation of the Gaussian forces. The proposed GEBS approximating model is integrated into the elastic hierarchical image registration framework, which decomposes a nonrigid registration problem into numerous local rigid transformations. The approximating GEBS registration scheme incorporates anisotropic landmark errors as well as rotation information. The anisotropic landmark localization uncertainties can be estimated directly from the image data, and in this case, they represent the minimal stochastic localization error, i.e., the Cramér-Rao bound. The rotation information of each landmark obtained from the hierarchical procedure is transposed in an additional angular landmark, doubling the number of landmarks in the GEBS model. The modified hierarchical registration using the approximating GEBS model is applied to register 161 image pairs from a digital mammogram database. The obtained results are very encouraging, and the proposed approach significantly improved all registrations comparing the mean-square error in relation to approximating TPS with the rotation information. On artificially deformed breast images, the newly proposed method performed better than the state-of-the-art registration algorithm introduced by Rueckert et al. (IEEE Trans Med Imaging 18:712-721, 1999). The average error per breast tissue pixel was less than 2.23 pixels compared to 2.46 pixels for Rueckert's method. The proposed hierarchical elastic image registration approach incorporates the GEBS

  13. Analysis of Student and School Level Variables Related to Mathematics Self-Efficacy Level Based on PISA 2012 Results for China-Shanghai, Turkey, and Greece

    Science.gov (United States)

    Usta, H. Gonca

    2016-01-01

    This study aims to analyze the student and school level variables that affect students' self-efficacy levels in mathematics in China-Shanghai, Turkey, and Greece based on PISA 2012 results. In line with this purpose, the hierarchical linear regression model (HLM) was employed. The interschool variability is estimated at approximately 17% in…

  14. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates.

    Science.gov (United States)

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N; Huang, Shenyan; Teng, Zhenke; Liu, Chain T; Asta, Mark D; Gao, Yanfei; Dunand, David C; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E; Liaw, Peter K

    2015-11-09

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. The present research will broaden the applications of ferritic alloys to higher temperatures.

  15. Computational Tools for Probing Interactions in Multiple Linear Regression, Multilevel Modeling, and Latent Curve Analysis

    Science.gov (United States)

    Preacher, Kristopher J.; Curran, Patrick J.; Bauer, Daniel J.

    2006-01-01

    Simple slopes, regions of significance, and confidence bands are commonly used to evaluate interactions in multiple linear regression (MLR) models, and the use of these techniques has recently been extended to multilevel or hierarchical linear modeling (HLM) and latent curve analysis (LCA). However, conducting these tests and plotting the…

  16. Two Paradoxes in Linear Regression Analysis

    Science.gov (United States)

    FENG, Ge; PENG, Jing; TU, Dongke; ZHENG, Julia Z.; FENG, Changyong

    2016-01-01

    Summary Regression is one of the favorite tools in applied statistics. However, misuse and misinterpretation of results from regression analysis are common in biomedical research. In this paper we use statistical theory and simulation studies to clarify some paradoxes around this popular statistical method. In particular, we show that a widely used model selection procedure employed in many publications in top medical journals is wrong. Formal procedures based on solid statistical theory should be used in model selection. PMID:28638214

  17. Caudal regression syndrome : a case report

    International Nuclear Information System (INIS)

    Lee, Eun Joo; Kim, Hi Hye; Kim, Hyung Sik; Park, So Young; Han, Hye Young; Lee, Kwang Hun

    1998-01-01

    Caudal regression syndrome is a rare congenital anomaly, which results from a developmental failure of the caudal mesoderm during the fetal period. We present a case of caudal regression syndrome composed of a spectrum of anomalies including sirenomelia, dysplasia of the lower lumbar vertebrae, sacrum, coccyx and pelvic bones,genitourinary and anorectal anomalies, and dysplasia of the lung, as seen during infantography and MR imaging

  18. Caudal regression syndrome : a case report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Joo; Kim, Hi Hye; Kim, Hyung Sik; Park, So Young; Han, Hye Young; Lee, Kwang Hun [Chungang Gil Hospital, Incheon (Korea, Republic of)

    1998-07-01

    Caudal regression syndrome is a rare congenital anomaly, which results from a developmental failure of the caudal mesoderm during the fetal period. We present a case of caudal regression syndrome composed of a spectrum of anomalies including sirenomelia, dysplasia of the lower lumbar vertebrae, sacrum, coccyx and pelvic bones,genitourinary and anorectal anomalies, and dysplasia of the lung, as seen during infantography and MR imaging.

  19. Multi-objective hierarchical genetic algorithms for multilevel redundancy allocation optimization

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ranjan [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: ranjan.k@ks3.ecs.kyoto-u.ac.jp; Izui, Kazuhiro [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: izui@prec.kyoto-u.ac.jp; Yoshimura, Masataka [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: yoshimura@prec.kyoto-u.ac.jp; Nishiwaki, Shinji [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: shinji@prec.kyoto-u.ac.jp

    2009-04-15

    Multilevel redundancy allocation optimization problems (MRAOPs) occur frequently when attempting to maximize the system reliability of a hierarchical system, and almost all complex engineering systems are hierarchical. Despite their practical significance, limited research has been done concerning the solving of simple MRAOPs. These problems are not only NP hard but also involve hierarchical design variables. Genetic algorithms (GAs) have been applied in solving MRAOPs, since they are computationally efficient in solving such problems, unlike exact methods, but their applications has been confined to single-objective formulation of MRAOPs. This paper proposes a multi-objective formulation of MRAOPs and a methodology for solving such problems. In this methodology, a hierarchical GA framework for multi-objective optimization is proposed by introducing hierarchical genotype encoding for design variables. In addition, we implement the proposed approach by integrating the hierarchical genotype encoding scheme with two popular multi-objective genetic algorithms (MOGAs)-the strength Pareto evolutionary genetic algorithm (SPEA2) and the non-dominated sorting genetic algorithm (NSGA-II). In the provided numerical examples, the proposed multi-objective hierarchical approach is applied to solve two hierarchical MRAOPs, a 4- and a 3-level problems. The proposed method is compared with a single-objective optimization method that uses a hierarchical genetic algorithm (HGA), also applied to solve the 3- and 4-level problems. The results show that a multi-objective hierarchical GA (MOHGA) that includes elitism and mechanism for diversity preserving performed better than a single-objective GA that only uses elitism, when solving large-scale MRAOPs. Additionally, the experimental results show that the proposed method with NSGA-II outperformed the proposed method with SPEA2 in finding useful Pareto optimal solution sets.

  20. Multi-objective hierarchical genetic algorithms for multilevel redundancy allocation optimization

    International Nuclear Information System (INIS)

    Kumar, Ranjan; Izui, Kazuhiro; Yoshimura, Masataka; Nishiwaki, Shinji

    2009-01-01

    Multilevel redundancy allocation optimization problems (MRAOPs) occur frequently when attempting to maximize the system reliability of a hierarchical system, and almost all complex engineering systems are hierarchical. Despite their practical significance, limited research has been done concerning the solving of simple MRAOPs. These problems are not only NP hard but also involve hierarchical design variables. Genetic algorithms (GAs) have been applied in solving MRAOPs, since they are computationally efficient in solving such problems, unlike exact methods, but their applications has been confined to single-objective formulation of MRAOPs. This paper proposes a multi-objective formulation of MRAOPs and a methodology for solving such problems. In this methodology, a hierarchical GA framework for multi-objective optimization is proposed by introducing hierarchical genotype encoding for design variables. In addition, we implement the proposed approach by integrating the hierarchical genotype encoding scheme with two popular multi-objective genetic algorithms (MOGAs)-the strength Pareto evolutionary genetic algorithm (SPEA2) and the non-dominated sorting genetic algorithm (NSGA-II). In the provided numerical examples, the proposed multi-objective hierarchical approach is applied to solve two hierarchical MRAOPs, a 4- and a 3-level problems. The proposed method is compared with a single-objective optimization method that uses a hierarchical genetic algorithm (HGA), also applied to solve the 3- and 4-level problems. The results show that a multi-objective hierarchical GA (MOHGA) that includes elitism and mechanism for diversity preserving performed better than a single-objective GA that only uses elitism, when solving large-scale MRAOPs. Additionally, the experimental results show that the proposed method with NSGA-II outperformed the proposed method with SPEA2 in finding useful Pareto optimal solution sets

  1. On Hierarchical Extensions of Large-Scale 4-regular Grid Network Structures

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup; Patel, A.; Knudsen, Thomas Phillip

    2004-01-01

    dependencies between the number of nodes and the distances in the structures. The perfect square mesh is introduced for hierarchies, and it is shown that applying ordered hierarchies in this way results in logarithmic dependencies between the number of nodes and the distances, resulting in better scaling...... structures. For example, in a mesh of 391876 nodes the average distance is reduced from 417.33 to 17.32 by adding hierarchical lines. This is gained by increasing the number of lines by 4.20% compared to the non-hierarchical structure. A similar hierarchical extension of the torus structure also results...

  2. Panel Smooth Transition Regression Models

    DEFF Research Database (Denmark)

    González, Andrés; Terasvirta, Timo; Dijk, Dick van

    We introduce the panel smooth transition regression model. This new model is intended for characterizing heterogeneous panels, allowing the regression coefficients to vary both across individuals and over time. Specifically, heterogeneity is allowed for by assuming that these coefficients are bou...

  3. Testing discontinuities in nonparametric regression

    KAUST Repository

    Dai, Wenlin

    2017-01-19

    In nonparametric regression, it is often needed to detect whether there are jump discontinuities in the mean function. In this paper, we revisit the difference-based method in [13 H.-G. Müller and U. Stadtmüller, Discontinuous versus smooth regression, Ann. Stat. 27 (1999), pp. 299–337. doi: 10.1214/aos/1018031100

  4. Testing discontinuities in nonparametric regression

    KAUST Repository

    Dai, Wenlin; Zhou, Yuejin; Tong, Tiejun

    2017-01-01

    In nonparametric regression, it is often needed to detect whether there are jump discontinuities in the mean function. In this paper, we revisit the difference-based method in [13 H.-G. Müller and U. Stadtmüller, Discontinuous versus smooth regression, Ann. Stat. 27 (1999), pp. 299–337. doi: 10.1214/aos/1018031100

  5. Logistic Regression: Concept and Application

    Science.gov (United States)

    Cokluk, Omay

    2010-01-01

    The main focus of logistic regression analysis is classification of individuals in different groups. The aim of the present study is to explain basic concepts and processes of binary logistic regression analysis intended to determine the combination of independent variables which best explain the membership in certain groups called dichotomous…

  6. Hierarchical sets: analyzing pangenome structure through scalable set visualizations

    Science.gov (United States)

    2017-01-01

    Abstract Motivation: The increase in available microbial genome sequences has resulted in an increase in the size of the pangenomes being analyzed. Current pangenome visualizations are not intended for the pangenome sizes possible today and new approaches are necessary in order to convert the increase in available information to increase in knowledge. As the pangenome data structure is essentially a collection of sets we explore the potential for scalable set visualization as a tool for pangenome analysis. Results: We present a new hierarchical clustering algorithm based on set arithmetics that optimizes the intersection sizes along the branches. The intersection and union sizes along the hierarchy are visualized using a composite dendrogram and icicle plot, which, in pangenome context, shows the evolution of pangenome and core size along the evolutionary hierarchy. Outlying elements, i.e. elements whose presence pattern do not correspond with the hierarchy, can be visualized using hierarchical edge bundles. When applied to pangenome data this plot shows putative horizontal gene transfers between the genomes and can highlight relationships between genomes that is not represented by the hierarchy. We illustrate the utility of hierarchical sets by applying it to a pangenome based on 113 Escherichia and Shigella genomes and find it provides a powerful addition to pangenome analysis. Availability and Implementation: The described clustering algorithm and visualizations are implemented in the hierarchicalSets R package available from CRAN (https://cran.r-project.org/web/packages/hierarchicalSets) Contact: thomasp85@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28130242

  7. Classification using Hierarchical Naive Bayes models

    DEFF Research Database (Denmark)

    Langseth, Helge; Dyhre Nielsen, Thomas

    2006-01-01

    Classification problems have a long history in the machine learning literature. One of the simplest, and yet most consistently well-performing set of classifiers is the Naïve Bayes models. However, an inherent problem with these classifiers is the assumption that all attributes used to describe......, termed Hierarchical Naïve Bayes models. Hierarchical Naïve Bayes models extend the modeling flexibility of Naïve Bayes models by introducing latent variables to relax some of the independence statements in these models. We propose a simple algorithm for learning Hierarchical Naïve Bayes models...

  8. Hierarchical analysis of acceptable use policies

    Directory of Open Access Journals (Sweden)

    P. A. Laughton

    2008-01-01

    Full Text Available Acceptable use policies (AUPs are vital tools for organizations to protect themselves and their employees from misuse of computer facilities provided. A well structured, thorough AUP is essential for any organization. It is impossible for an effective AUP to deal with every clause and remain readable. For this reason, some sections of an AUP carry more weight than others, denoting importance. The methodology used to develop the hierarchical analysis is a literature review, where various sources were consulted. This hierarchical approach to AUP analysis attempts to highlight important sections and clauses dealt with in an AUP. The emphasis of the hierarchal analysis is to prioritize the objectives of an AUP.

  9. Hierarchical modeling and analysis for spatial data

    CERN Document Server

    Banerjee, Sudipto; Gelfand, Alan E

    2003-01-01

    Among the many uses of hierarchical modeling, their application to the statistical analysis of spatial and spatio-temporal data from areas such as epidemiology And environmental science has proven particularly fruitful. Yet to date, the few books that address the subject have been either too narrowly focused on specific aspects of spatial analysis, or written at a level often inaccessible to those lacking a strong background in mathematical statistics.Hierarchical Modeling and Analysis for Spatial Data is the first accessible, self-contained treatment of hierarchical methods, modeling, and dat

  10. Hierarchically structured, nitrogen-doped carbon membranes

    KAUST Repository

    Wang, Hong

    2017-08-03

    The present invention is a structure, method of making and method of use for a novel macroscopic hierarchically structured, nitrogen-doped, nano-porous carbon membrane (HNDCMs) with asymmetric and hierarchical pore architecture that can be produced on a large-scale approach. The unique HNDCM holds great promise as components in separation and advanced carbon devices because they could offer unconventional fluidic transport phenomena on the nanoscale. Overall, the invention set forth herein covers a hierarchically structured, nitrogen-doped carbon membranes and methods of making and using such a membranes.

  11. Fungible weights in logistic regression.

    Science.gov (United States)

    Jones, Jeff A; Waller, Niels G

    2016-06-01

    In this article we develop methods for assessing parameter sensitivity in logistic regression models. To set the stage for this work, we first review Waller's (2008) equations for computing fungible weights in linear regression. Next, we describe 2 methods for computing fungible weights in logistic regression. To demonstrate the utility of these methods, we compute fungible logistic regression weights using data from the Centers for Disease Control and Prevention's (2010) Youth Risk Behavior Surveillance Survey, and we illustrate how these alternate weights can be used to evaluate parameter sensitivity. To make our work accessible to the research community, we provide R code (R Core Team, 2015) that will generate both kinds of fungible logistic regression weights. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  12. Ordinary least square regression, orthogonal regression, geometric mean regression and their applications in aerosol science

    International Nuclear Information System (INIS)

    Leng Ling; Zhang Tianyi; Kleinman, Lawrence; Zhu Wei

    2007-01-01

    Regression analysis, especially the ordinary least squares method which assumes that errors are confined to the dependent variable, has seen a fair share of its applications in aerosol science. The ordinary least squares approach, however, could be problematic due to the fact that atmospheric data often does not lend itself to calling one variable independent and the other dependent. Errors often exist for both measurements. In this work, we examine two regression approaches available to accommodate this situation. They are orthogonal regression and geometric mean regression. Comparisons are made theoretically as well as numerically through an aerosol study examining whether the ratio of organic aerosol to CO would change with age

  13. LiDAR based prediction of forest biomass using hierarchical models with spatially varying coefficients

    Science.gov (United States)

    Babcock, Chad; Finley, Andrew O.; Bradford, John B.; Kolka, Randall K.; Birdsey, Richard A.; Ryan, Michael G.

    2015-01-01

    Many studies and production inventory systems have shown the utility of coupling covariates derived from Light Detection and Ranging (LiDAR) data with forest variables measured on georeferenced inventory plots through regression models. The objective of this study was to propose and assess the use of a Bayesian hierarchical modeling framework that accommodates both residual spatial dependence and non-stationarity of model covariates through the introduction of spatial random effects. We explored this objective using four forest inventory datasets that are part of the North American Carbon Program, each comprising point-referenced measures of above-ground forest biomass and discrete LiDAR. For each dataset, we considered at least five regression model specifications of varying complexity. Models were assessed based on goodness of fit criteria and predictive performance using a 10-fold cross-validation procedure. Results showed that the addition of spatial random effects to the regression model intercept improved fit and predictive performance in the presence of substantial residual spatial dependence. Additionally, in some cases, allowing either some or all regression slope parameters to vary spatially, via the addition of spatial random effects, further improved model fit and predictive performance. In other instances, models showed improved fit but decreased predictive performance—indicating over-fitting and underscoring the need for cross-validation to assess predictive ability. The proposed Bayesian modeling framework provided access to pixel-level posterior predictive distributions that were useful for uncertainty mapping, diagnosing spatial extrapolation issues, revealing missing model covariates, and discovering locally significant parameters.

  14. Advanced statistics: linear regression, part II: multiple linear regression.

    Science.gov (United States)

    Marill, Keith A

    2004-01-01

    The applications of simple linear regression in medical research are limited, because in most situations, there are multiple relevant predictor variables. Univariate statistical techniques such as simple linear regression use a single predictor variable, and they often may be mathematically correct but clinically misleading. Multiple linear regression is a mathematical technique used to model the relationship between multiple independent predictor variables and a single dependent outcome variable. It is used in medical research to model observational data, as well as in diagnostic and therapeutic studies in which the outcome is dependent on more than one factor. Although the technique generally is limited to data that can be expressed with a linear function, it benefits from a well-developed mathematical framework that yields unique solutions and exact confidence intervals for regression coefficients. Building on Part I of this series, this article acquaints the reader with some of the important concepts in multiple regression analysis. These include multicollinearity, interaction effects, and an expansion of the discussion of inference testing, leverage, and variable transformations to multivariate models. Examples from the first article in this series are expanded on using a primarily graphic, rather than mathematical, approach. The importance of the relationships among the predictor variables and the dependence of the multivariate model coefficients on the choice of these variables are stressed. Finally, concepts in regression model building are discussed.

  15. Logic regression and its extensions.

    Science.gov (United States)

    Schwender, Holger; Ruczinski, Ingo

    2010-01-01

    Logic regression is an adaptive classification and regression procedure, initially developed to reveal interacting single nucleotide polymorphisms (SNPs) in genetic association studies. In general, this approach can be used in any setting with binary predictors, when the interaction of these covariates is of primary interest. Logic regression searches for Boolean (logic) combinations of binary variables that best explain the variability in the outcome variable, and thus, reveals variables and interactions that are associated with the response and/or have predictive capabilities. The logic expressions are embedded in a generalized linear regression framework, and thus, logic regression can handle a variety of outcome types, such as binary responses in case-control studies, numeric responses, and time-to-event data. In this chapter, we provide an introduction to the logic regression methodology, list some applications in public health and medicine, and summarize some of the direct extensions and modifications of logic regression that have been proposed in the literature. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Zeolitic materials with hierarchical porous structures.

    Science.gov (United States)

    Lopez-Orozco, Sofia; Inayat, Amer; Schwab, Andreas; Selvam, Thangaraj; Schwieger, Wilhelm

    2011-06-17

    During the past several years, different kinds of hierarchical structured zeolitic materials have been synthesized due to their highly attractive properties, such as superior mass/heat transfer characteristics, lower restriction of the diffusion of reactants in the mesopores, and low pressure drop. Our contribution provides general information regarding types and preparation methods of hierarchical zeolitic materials and their relative advantages and disadvantages. Thereafter, recent advances in the preparation and characterization of hierarchical zeolitic structures within the crystallites by post-synthetic treatment methods, such as dealumination or desilication; and structured devices by in situ and ex situ zeolite coatings on open-cellular ceramic foams as (non-reactive as well as reactive) supports are highlighted. Specific advantages of using hierarchical zeolitic catalysts/structures in selected catalytic reactions, such as benzene to phenol (BTOP) and methanol to olefins (MTO) are presented. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. HIERARCHICAL ORGANIZATION OF INFORMATION, IN RELATIONAL DATABASES

    Directory of Open Access Journals (Sweden)

    Demian Horia

    2008-05-01

    Full Text Available In this paper I will present different types of representation, of hierarchical information inside a relational database. I also will compare them to find the best organization for specific scenarios.

  18. Hierarchical DSE for multi-ASIP platforms

    DEFF Research Database (Denmark)

    Micconi, Laura; Corvino, Rosilde; Gangadharan, Deepak

    2013-01-01

    This work proposes a hierarchical Design Space Exploration (DSE) for the design of multi-processor platforms targeted to specific applications with strict timing and area constraints. In particular, it considers platforms integrating multiple Application Specific Instruction Set Processors (ASIPs...

  19. Packaging glass with hierarchically nanostructured surface

    KAUST Repository

    He, Jr-Hau

    2017-08-03

    An optical device includes an active region and packaging glass located on top of the active region. A top surface of the packaging glass includes hierarchical nanostructures comprised of honeycombed nanowalls (HNWs) and nanorod (NR) structures extending from the HNWs.

  20. Packaging glass with hierarchically nanostructured surface

    KAUST Repository

    He, Jr-Hau; Fu, Hui-Chun

    2017-01-01

    An optical device includes an active region and packaging glass located on top of the active region. A top surface of the packaging glass includes hierarchical nanostructures comprised of honeycombed nanowalls (HNWs) and nanorod (NR) structures

  1. Hierarchical Spatial Concept Formation Based on Multimodal Information for Human Support Robots.

    Science.gov (United States)

    Hagiwara, Yoshinobu; Inoue, Masakazu; Kobayashi, Hiroyoshi; Taniguchi, Tadahiro

    2018-01-01

    In this paper, we propose a hierarchical spatial concept formation method based on the Bayesian generative model with multimodal information e.g., vision, position and word information. Since humans have the ability to select an appropriate level of abstraction according to the situation and describe their position linguistically, e.g., "I am in my home" and "I am in front of the table," a hierarchical structure of spatial concepts is necessary in order for human support robots to communicate smoothly with users. The proposed method enables a robot to form hierarchical spatial concepts by categorizing multimodal information using hierarchical multimodal latent Dirichlet allocation (hMLDA). Object recognition results using convolutional neural network (CNN), hierarchical k-means clustering result of self-position estimated by Monte Carlo localization (MCL), and a set of location names are used, respectively, as features in vision, position, and word information. Experiments in forming hierarchical spatial concepts and evaluating how the proposed method can predict unobserved location names and position categories are performed using a robot in the real world. Results verify that, relative to comparable baseline methods, the proposed method enables a robot to predict location names and position categories closer to predictions made by humans. As an application example of the proposed method in a home environment, a demonstration in which a human support robot moves to an instructed place based on human speech instructions is achieved based on the formed hierarchical spatial concept.

  2. Hierarchical Spatial Concept Formation Based on Multimodal Information for Human Support Robots

    Directory of Open Access Journals (Sweden)

    Yoshinobu Hagiwara

    2018-03-01

    Full Text Available In this paper, we propose a hierarchical spatial concept formation method based on the Bayesian generative model with multimodal information e.g., vision, position and word information. Since humans have the ability to select an appropriate level of abstraction according to the situation and describe their position linguistically, e.g., “I am in my home” and “I am in front of the table,” a hierarchical structure of spatial concepts is necessary in order for human support robots to communicate smoothly with users. The proposed method enables a robot to form hierarchical spatial concepts by categorizing multimodal information using hierarchical multimodal latent Dirichlet allocation (hMLDA. Object recognition results using convolutional neural network (CNN, hierarchical k-means clustering result of self-position estimated by Monte Carlo localization (MCL, and a set of location names are used, respectively, as features in vision, position, and word information. Experiments in forming hierarchical spatial concepts and evaluating how the proposed method can predict unobserved location names and position categories are performed using a robot in the real world. Results verify that, relative to comparable baseline methods, the proposed method enables a robot to predict location names and position categories closer to predictions made by humans. As an application example of the proposed method in a home environment, a demonstration in which a human support robot moves to an instructed place based on human speech instructions is achieved based on the formed hierarchical spatial concept.

  3. Predicting allergic contact dermatitis: a hierarchical structure activity relationship (SAR) approach to chemical classification using topological and quantum chemical descriptors

    Science.gov (United States)

    Basak, Subhash C.; Mills, Denise; Hawkins, Douglas M.

    2008-06-01

    A hierarchical classification study was carried out based on a set of 70 chemicals—35 which produce allergic contact dermatitis (ACD) and 35 which do not. This approach was implemented using a regular ridge regression computer code, followed by conversion of regression output to binary data values. The hierarchical descriptor classes used in the modeling include topostructural (TS), topochemical (TC), and quantum chemical (QC), all of which are based solely on chemical structure. The concordance, sensitivity, and specificity are reported. The model based on the TC descriptors was found to be the best, while the TS model was extremely poor.

  4. Algorithm of parallel: hierarchical transformation and its implementation on FPGA

    Science.gov (United States)

    Timchenko, Leonid I.; Petrovskiy, Mykola S.; Kokryatskay, Natalia I.; Barylo, Alexander S.; Dembitska, Sofia V.; Stepanikuk, Dmytro S.; Suleimenov, Batyrbek; Zyska, Tomasz; Uvaysova, Svetlana; Shedreyeva, Indira

    2017-08-01

    In this paper considers the algorithm of laser beam spots image classification in atmospheric-optical transmission systems. It discusses the need for images filtering using adaptive methods, using, for example, parallel-hierarchical networks. The article also highlights the need to create high-speed memory devices for such networks. Implementation and simulation results of the developed method based on the PLD are demonstrated, which shows that the presented method gives 15-20% better prediction results than similar methods.

  5. Analysis of Error Propagation Within Hierarchical Air Combat Models

    Science.gov (United States)

    2016-06-01

    values alone are propagated through layers of combat models, the final results will likely be biased, and risk underestimated. An air-to-air...values alone are propagated through layers of combat models, the final results will likely be biased, and risk underestimated. An air-to-air engagement... PROPAGATION WITHIN HIERARCHICAL AIR COMBAT MODELS by Salih Ilaslan June 2016 Thesis Advisor: Thomas W. Lucas Second Reader: Jeffrey

  6. Hierarchical organization versus self-organization

    OpenAIRE

    Busseniers, Evo

    2014-01-01

    In this paper we try to define the difference between hierarchical organization and self-organization. Organization is defined as a structure with a function. So we can define the difference between hierarchical organization and self-organization both on the structure as on the function. In the next two chapters these two definitions are given. For the structure we will use some existing definitions in graph theory, for the function we will use existing theory on (self-)organization. In the t...

  7. Hierarchical Nanoceramics for Industrial Process Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ruud, James, A.; Brosnan, Kristen, H.; Striker, Todd; Ramaswamy, Vidya; Aceto, Steven, C.; Gao, Yan; Willson, Patrick, D.; Manoharan, Mohan; Armstrong, Eric, N., Wachsman, Eric, D.; Kao, Chi-Chang

    2011-07-15

    This project developed a robust, tunable, hierarchical nanoceramics materials platform for industrial process sensors in harsh-environments. Control of material structure at multiple length scales from nano to macro increased the sensing response of the materials to combustion gases. These materials operated at relatively high temperatures, enabling detection close to the source of combustion. It is anticipated that these materials can form the basis for a new class of sensors enabling widespread use of efficient combustion processes with closed loop feedback control in the energy-intensive industries. The first phase of the project focused on materials selection and process development, leading to hierarchical nanoceramics that were evaluated for sensing performance. The second phase focused on optimizing the materials processes and microstructures, followed by validation of performance of a prototype sensor in a laboratory combustion environment. The objectives of this project were achieved by: (1) synthesizing and optimizing hierarchical nanostructures; (2) synthesizing and optimizing sensing nanomaterials; (3) integrating sensing functionality into hierarchical nanostructures; (4) demonstrating material performance in a sensing element; and (5) validating material performance in a simulated service environment. The project developed hierarchical nanoceramic electrodes for mixed potential zirconia gas sensors with increased surface area and demonstrated tailored electrocatalytic activity operable at high temperatures enabling detection of products of combustion such as NOx close to the source of combustion. Methods were developed for synthesis of hierarchical nanostructures with high, stable surface area, integrated catalytic functionality within the structures for gas sensing, and demonstrated materials performance in harsh lab and combustion gas environments.

  8. Quantile Regression With Measurement Error

    KAUST Repository

    Wei, Ying; Carroll, Raymond J.

    2009-01-01

    . The finite sample performance of the proposed method is investigated in a simulation study, and compared to the standard regression calibration approach. Finally, we apply our methodology to part of the National Collaborative Perinatal Project growth data, a

  9. TiO2 nanowire-templated hierarchical nanowire network as water-repelling coating

    Science.gov (United States)

    Hang, Tian; Chen, Hui-Jiuan; Xiao, Shuai; Yang, Chengduan; Chen, Meiwan; Tao, Jun; Shieh, Han-ping; Yang, Bo-ru; Liu, Chuan; Xie, Xi

    2017-12-01

    Extraordinary water-repelling properties of superhydrophobic surfaces make them novel candidates for a great variety of potential applications. A general approach to achieve superhydrophobicity requires low-energy coating on the surface and roughness on nano- and micrometre scale. However, typical construction of superhydrophobic surfaces with micro-nano structure through top-down fabrication is restricted by sophisticated fabrication techniques and limited choices of substrate materials. Micro-nanoscale topographies templated by conventional microparticles through surface coating may produce large variations in roughness and uncontrollable defects, resulting in poorly controlled surface morphology and wettability. In this work, micro-nanoscale hierarchical nanowire network was fabricated to construct self-cleaning coating using one-dimensional TiO2 nanowires as microscale templates. Hierarchical structure with homogeneous morphology was achieved by branching ZnO nanowires on the TiO2 nanowire backbones through hydrothermal reaction. The hierarchical nanowire network displayed homogeneous micro/nano-topography, in contrast to hierarchical structure templated by traditional microparticles. This hierarchical nanowire network film exhibited high repellency to both water and cell culture medium after functionalization with fluorinated organic molecules. The hierarchical structure templated by TiO2 nanowire coating significantly increased the surface superhydrophobicity compared to vertical ZnO nanowires with nanotopography alone. Our results demonstrated a promising strategy of using nanowires as microscale templates for the rational design of hierarchical coatings with desired superhydrophobicity that can also be applied to various substrate materials.

  10. From Rasch scores to regression

    DEFF Research Database (Denmark)

    Christensen, Karl Bang

    2006-01-01

    Rasch models provide a framework for measurement and modelling latent variables. Having measured a latent variable in a population a comparison of groups will often be of interest. For this purpose the use of observed raw scores will often be inadequate because these lack interval scale propertie....... This paper compares two approaches to group comparison: linear regression models using estimated person locations as outcome variables and latent regression models based on the distribution of the score....

  11. Testing Heteroscedasticity in Robust Regression

    Czech Academy of Sciences Publication Activity Database

    Kalina, Jan

    2011-01-01

    Roč. 1, č. 4 (2011), s. 25-28 ISSN 2045-3345 Grant - others:GA ČR(CZ) GA402/09/0557 Institutional research plan: CEZ:AV0Z10300504 Keywords : robust regression * heteroscedasticity * regression quantiles * diagnostics Subject RIV: BB - Applied Statistics , Operational Research http://www.researchjournals.co.uk/documents/Vol4/06%20Kalina.pdf

  12. Regression methods for medical research

    CERN Document Server

    Tai, Bee Choo

    2013-01-01

    Regression Methods for Medical Research provides medical researchers with the skills they need to critically read and interpret research using more advanced statistical methods. The statistical requirements of interpreting and publishing in medical journals, together with rapid changes in science and technology, increasingly demands an understanding of more complex and sophisticated analytic procedures.The text explains the application of statistical models to a wide variety of practical medical investigative studies and clinical trials. Regression methods are used to appropriately answer the

  13. Forecasting with Dynamic Regression Models

    CERN Document Server

    Pankratz, Alan

    2012-01-01

    One of the most widely used tools in statistical forecasting, single equation regression models is examined here. A companion to the author's earlier work, Forecasting with Univariate Box-Jenkins Models: Concepts and Cases, the present text pulls together recent time series ideas and gives special attention to possible intertemporal patterns, distributed lag responses of output to input series and the auto correlation patterns of regression disturbance. It also includes six case studies.

  14. Regularized multivariate regression models with skew-t error distributions

    KAUST Repository

    Chen, Lianfu

    2014-06-01

    We consider regularization of the parameters in multivariate linear regression models with the errors having a multivariate skew-t distribution. An iterative penalized likelihood procedure is proposed for constructing sparse estimators of both the regression coefficient and inverse scale matrices simultaneously. The sparsity is introduced through penalizing the negative log-likelihood by adding L1-penalties on the entries of the two matrices. Taking advantage of the hierarchical representation of skew-t distributions, and using the expectation conditional maximization (ECM) algorithm, we reduce the problem to penalized normal likelihood and develop a procedure to minimize the ensuing objective function. Using a simulation study the performance of the method is assessed, and the methodology is illustrated using a real data set with a 24-dimensional response vector. © 2014 Elsevier B.V.

  15. Discriminative Elastic-Net Regularized Linear Regression.

    Science.gov (United States)

    Zhang, Zheng; Lai, Zhihui; Xu, Yong; Shao, Ling; Wu, Jian; Xie, Guo-Sen

    2017-03-01

    In this paper, we aim at learning compact and discriminative linear regression models. Linear regression has been widely used in different problems. However, most of the existing linear regression methods exploit the conventional zero-one matrix as the regression targets, which greatly narrows the flexibility of the regression model. Another major limitation of these methods is that the learned projection matrix fails to precisely project the image features to the target space due to their weak discriminative capability. To this end, we present an elastic-net regularized linear regression (ENLR) framework, and develop two robust linear regression models which possess the following special characteristics. First, our methods exploit two particular strategies to enlarge the margins of different classes by relaxing the strict binary targets into a more feasible variable matrix. Second, a robust elastic-net regularization of singular values is introduced to enhance the compactness and effectiveness of the learned projection matrix. Third, the resulting optimization problem of ENLR has a closed-form solution in each iteration, which can be solved efficiently. Finally, rather than directly exploiting the projection matrix for recognition, our methods employ the transformed features as the new discriminate representations to make final image classification. Compared with the traditional linear regression model and some of its variants, our method is much more accurate in image classification. Extensive experiments conducted on publicly available data sets well demonstrate that the proposed framework can outperform the state-of-the-art methods. The MATLAB codes of our methods can be available at http://www.yongxu.org/lunwen.html.

  16. Hierarchical Neutrino Masses and Mixing in Flipped-SU(5)

    CERN Document Server

    Rizos, J

    2010-01-01

    We consider the problem of neutrino masses and mixing in the framework of flipped SU(5). The right-handed neutrino mass, generated through the operation of a seesaw mechanism by a sector of gauge singlets, leads naturally, at a subsequent level, to the standard seesaw mechanism resulting into three light neutrino states with masses of the desired phenomenological order of magnitude. In this framework we study simple Ansatze for the singlet couplings for which hierarchical neutrino masses emerge naturally, parametrized in terms of the Cabbibo parameter. The resulting neutrino mixing matrices are characterized by a hierarchical structure, in which theta-(13) is always predicted to be the smallest. Finally, we discuss a possible factorized parametrization of the neutrino mass that, in addition to Cabbibo mixing, encodes also mixing due to the singlet sector.

  17. Hierarchical neutrino masses and mixing in flipped-SU(5)

    Energy Technology Data Exchange (ETDEWEB)

    Rizos, J. [Physics Department, University of Ioannina, 45110 Ioannina (Greece); Tamvakis, K., E-mail: tamvakis@uoi.g [Physics Department, University of Ioannina, 45110 Ioannina (Greece); Physics Department, CERN, CH-1211, Geneva 23 (Switzerland)

    2010-02-22

    We consider the problem of neutrino masses and mixing in the framework of flipped SU(5). The right-handed neutrino mass, generated through the operation of a seesaw mechanism by a sector of gauge singlets, leads naturally, at a subsequent level, to the standard seesaw mechanism resulting into three light neutrino states with masses of the desired phenomenological order of magnitude. In this framework we study simple Ansaetze for the singlet couplings for which hierarchical neutrino masses emerge naturally as lambda{sup n}:lambda:1 or lambda{sup n}:lambda{sup 2}:1, parametrized in terms of the Cabbibo parameter. The resulting neutrino mixing matrices are characterized by a hierarchical structure, in which theta{sub 13} is always predicted to be the smallest. Finally, we discuss a possible factorized parametrization of the neutrino mass that, in addition to Cabbibo mixing, encodes also mixing due to the singlet sector.

  18. Hybrid Steepest-Descent Methods for Triple Hierarchical Variational Inequalities

    Directory of Open Access Journals (Sweden)

    L. C. Ceng

    2015-01-01

    Full Text Available We introduce and analyze a relaxed iterative algorithm by combining Korpelevich’s extragradient method, hybrid steepest-descent method, and Mann’s iteration method. We prove that, under appropriate assumptions, the proposed algorithm converges strongly to a common element of the fixed point set of infinitely many nonexpansive mappings, the solution set of finitely many generalized mixed equilibrium problems (GMEPs, the solution set of finitely many variational inclusions, and the solution set of general system of variational inequalities (GSVI, which is just a unique solution of a triple hierarchical variational inequality (THVI in a real Hilbert space. In addition, we also consider the application of the proposed algorithm for solving a hierarchical variational inequality problem with constraints of finitely many GMEPs, finitely many variational inclusions, and the GSVI. The results obtained in this paper improve and extend the corresponding results announced by many others.

  19. Wetting and Dewetting Transitions on Submerged Superhydrophobic Surfaces with Hierarchical Structures.

    Science.gov (United States)

    Wu, Huaping; Yang, Zhe; Cao, Binbin; Zhang, Zheng; Zhu, Kai; Wu, Bingbing; Jiang, Shaofei; Chai, Guozhong

    2017-01-10

    The wetting transition on submersed superhydrophobic surfaces with hierarchical structures and the influence of trapped air on superhydrophobic stability are predicted based on the thermodynamics and mechanical analyses. The dewetting transition on the hierarchically structured surfaces is investigated, and two necessary thermodynamic conditions and a mechanical balance condition for dewetting transition are proposed. The corresponding thermodynamic phase diagram of reversible transition and the critical reversed pressure well explain the experimental results reported previously. Our theory provides a useful guideline for precise controlling of breaking down and recovering of superhydrophobicity by designing superhydrophobic surfaces with hierarchical structures under water.

  20. A Hierarchical Modeling for Reactive Power Optimization With Joint Transmission and Distribution Networks by Curve Fitting

    DEFF Research Database (Denmark)

    Ding, Tao; Li, Cheng; Huang, Can

    2018-01-01

    –slave structure and improves traditional centralized modeling methods by alleviating the big data problem in a control center. Specifically, the transmission-distribution-network coordination issue of the hierarchical modeling method is investigated. First, a curve-fitting approach is developed to provide a cost......In order to solve the reactive power optimization with joint transmission and distribution networks, a hierarchical modeling method is proposed in this paper. It allows the reactive power optimization of transmission and distribution networks to be performed separately, leading to a master...... optimality. Numerical results on two test systems verify the effectiveness of the proposed hierarchical modeling and curve-fitting methods....

  1. A hierarchical procedure for calculation of risk importance measures

    International Nuclear Information System (INIS)

    Poern, K.; Dinsmore, S.C.

    1987-01-01

    Starting with a general importance definition based on conditional probabilities, a hierarchical process for calculating risk importance measures from a PSA's numerical results is developed. By the appropriate choice of events in the general definition, measures such as the risk achievement worth and the risk reduction worth can be calculated without requantifying the PSA's models. Required approximations are clearly defined and the subsequent constraints on the applicability of the process discussed. (orig.)

  2. Localizing age-related individual differences in a hierarchical structure

    OpenAIRE

    Salthouse, Timothy A.

    2004-01-01

    Data from 33 separate studies were combined to create an aggregate data set consisting of 16 cognitive variables and 6832 different individuals who ranged between 18 and 95 years of age. Analyses were conducted to determine where in a hierarchical structure of cognitive abilities individual differences associated with age, gender, education, and self-reported health could be localized. The results indicated that each type of individual difference characteristic exhibited a d...

  3. Action recognition using mined hierarchical compound features.

    Science.gov (United States)

    Gilbert, Andrew; Illingworth, John; Bowden, Richard

    2011-05-01

    The field of Action Recognition has seen a large increase in activity in recent years. Much of the progress has been through incorporating ideas from single-frame object recognition and adapting them for temporal-based action recognition. Inspired by the success of interest points in the 2D spatial domain, their 3D (space-time) counterparts typically form the basic components used to describe actions, and in action recognition the features used are often engineered to fire sparsely. This is to ensure that the problem is tractable; however, this can sacrifice recognition accuracy as it cannot be assumed that the optimum features in terms of class discrimination are obtained from this approach. In contrast, we propose to initially use an overcomplete set of simple 2D corners in both space and time. These are grouped spatially and temporally using a hierarchical process, with an increasing search area. At each stage of the hierarchy, the most distinctive and descriptive features are learned efficiently through data mining. This allows large amounts of data to be searched for frequently reoccurring patterns of features. At each level of the hierarchy, the mined compound features become more complex, discriminative, and sparse. This results in fast, accurate recognition with real-time performance on high-resolution video. As the compound features are constructed and selected based upon their ability to discriminate, their speed and accuracy increase at each level of the hierarchy. The approach is tested on four state-of-the-art data sets, the popular KTH data set to provide a comparison with other state-of-the-art approaches, the Multi-KTH data set to illustrate performance at simultaneous multiaction classification, despite no explicit localization information provided during training. Finally, the recent Hollywood and Hollywood2 data sets provide challenging complex actions taken from commercial movie sequences. For all four data sets, the proposed hierarchical

  4. Comparison of multinomial logistic regression and logistic regression: which is more efficient in allocating land use?

    Science.gov (United States)

    Lin, Yingzhi; Deng, Xiangzheng; Li, Xing; Ma, Enjun

    2014-12-01

    Spatially explicit simulation of land use change is the basis for estimating the effects of land use and cover change on energy fluxes, ecology and the environment. At the pixel level, logistic regression is one of the most common approaches used in spatially explicit land use allocation models to determine the relationship between land use and its causal factors in driving land use change, and thereby to evaluate land use suitability. However, these models have a drawback in that they do not determine/allocate land use based on the direct relationship between land use change and its driving factors. Consequently, a multinomial logistic regression method was introduced to address this flaw, and thereby, judge the suitability of a type of land use in any given pixel in a case study area of the Jiangxi Province, China. A comparison of the two regression methods indicated that the proportion of correctly allocated pixels using multinomial logistic regression was 92.98%, which was 8.47% higher than that obtained using logistic regression. Paired t-test results also showed that pixels were more clearly distinguished by multinomial logistic regression than by logistic regression. In conclusion, multinomial logistic regression is a more efficient and accurate method for the spatial allocation of land use changes. The application of this method in future land use change studies may improve the accuracy of predicting the effects of land use and cover change on energy fluxes, ecology, and environment.

  5. A simple approach to power and sample size calculations in logistic regression and Cox regression models.

    Science.gov (United States)

    Vaeth, Michael; Skovlund, Eva

    2004-06-15

    For a given regression problem it is possible to identify a suitably defined equivalent two-sample problem such that the power or sample size obtained for the two-sample problem also applies to the regression problem. For a standard linear regression model the equivalent two-sample problem is easily identified, but for generalized linear models and for Cox regression models the situation is more complicated. An approximately equivalent two-sample problem may, however, also be identified here. In particular, we show that for logistic regression and Cox regression models the equivalent two-sample problem is obtained by selecting two equally sized samples for which the parameters differ by a value equal to the slope times twice the standard deviation of the independent variable and further requiring that the overall expected number of events is unchanged. In a simulation study we examine the validity of this approach to power calculations in logistic regression and Cox regression models. Several different covariate distributions are considered for selected values of the overall response probability and a range of alternatives. For the Cox regression model we consider both constant and non-constant hazard rates. The results show that in general the approach is remarkably accurate even in relatively small samples. Some discrepancies are, however, found in small samples with few events and a highly skewed covariate distribution. Comparison with results based on alternative methods for logistic regression models with a single continuous covariate indicates that the proposed method is at least as good as its competitors. The method is easy to implement and therefore provides a simple way to extend the range of problems that can be covered by the usual formulas for power and sample size determination. Copyright 2004 John Wiley & Sons, Ltd.

  6. Determinants of falls in community-dwelling elderly: hierarchical analysis.

    Science.gov (United States)

    Brito, Thais Alves; Coqueiro, Raildo da Silva; Fernandes, Marcos Henrique; de Jesus, Cleber Souza

    2014-01-01

    To analyze the fall-related factors in community-dwelling elderly. Epidemiologic cross-sectional population-based household study with hierarchical interrelationships among the potential risk factors. The sample was made up of noninstitutionalized individuals over age 60, who were resident of a city in Brazil's Northeast Region. The dependent variable was fall occurrence in the last 12 months; independent variables were sociodemographic, behavioral, health, and functional status factors. Multivariate hierarchical Poisson regression analysis was used based on a proposed theoretic model. Three hundred and sixteen (89.0%) elderly participated of the survey, average age 74.2 years; the majority was female, with limited literacy and had low-medium family income. The fall prevalence was of 25.8%; occurrence was related to depression symptoms (PR = 1.55) and balance limitation (PR = 1.56). The high fall prevalence among elderly necessitates the identification of fall-related factors for action planning prevention programs with this group. © 2014 Wiley Periodicals, Inc.

  7. Hierarchical capitalism in Latin America: Comparative analysis with other economies

    Directory of Open Access Journals (Sweden)

    Edgar J. Saucedo A.

    2015-12-01

    Full Text Available Purpose – The purpose of this paper is to compare the three largest economies in Latin America (Brazil, Mexico and Argentina with other economies that have another type of capitalism, in that way we can extract some effects of the hierarchical capitalism in Latin America Design/methodology/approach – The data were taken from World Economic Outlook (IMF, The Global Innovation Index (INSEADand the Democracy Index (The Economist. The selected countries are: Argentina, Brazil, Mexico, South Korea, Spain and Croatia. We establish a comparison among countries in the following dimensions: economic growth, innovation and democracy. Findings – The comparison shows that Argentina, Brazil and Mexico have lower level of economic growth, innovation performance and democracy level than South Korea, Spain and Croatia. The variety of capitalism in Latin America (hierarchical has lower performance than others kinds of capitalism in other regions of the world. Research limitations/implications – We have compared Latin American countries with countries from other regions of the world. However, a comparison may include more countries and results could vary. Originality/value – The results tend to support the idea that hierarchical capitalism has poor results in comparison with other varieties of capitalism.

  8. Improved Gravitation Field Algorithm and Its Application in Hierarchical Clustering

    Science.gov (United States)

    Zheng, Ming; Sun, Ying; Liu, Gui-xia; Zhou, You; Zhou, Chun-guang

    2012-01-01

    Background Gravitation field algorithm (GFA) is a new optimization algorithm which is based on an imitation of natural phenomena. GFA can do well both for searching global minimum and multi-minima in computational biology. But GFA needs to be improved for increasing efficiency, and modified for applying to some discrete data problems in system biology. Method An improved GFA called IGFA was proposed in this paper. Two parts were improved in IGFA. The first one is the rule of random division, which is a reasonable strategy and makes running time shorter. The other one is rotation factor, which can improve the accuracy of IGFA. And to apply IGFA to the hierarchical clustering, the initial part and the movement operator were modified. Results Two kinds of experiments were used to test IGFA. And IGFA was applied to hierarchical clustering. The global minimum experiment was used with IGFA, GFA, GA (genetic algorithm) and SA (simulated annealing). Multi-minima experiment was used with IGFA and GFA. The two experiments results were compared with each other and proved the efficiency of IGFA. IGFA is better than GFA both in accuracy and running time. For the hierarchical clustering, IGFA is used to optimize the smallest distance of genes pairs, and the results were compared with GA and SA, singular-linkage clustering, UPGMA. The efficiency of IGFA is proved. PMID:23173043

  9. Producing The New Regressive Left

    DEFF Research Database (Denmark)

    Crone, Christine

    members, this thesis investigates a growing political trend and ideological discourse in the Arab world that I have called The New Regressive Left. On the premise that a media outlet can function as a forum for ideology production, the thesis argues that an analysis of this material can help to trace...... the contexture of The New Regressive Left. If the first part of the thesis lays out the theoretical approach and draws the contextual framework, through an exploration of the surrounding Arab media-and ideoscapes, the second part is an analytical investigation of the discourse that permeates the programmes aired...... becomes clear from the analytical chapters is the emergence of the new cross-ideological alliance of The New Regressive Left. This emerging coalition between Shia Muslims, religious minorities, parts of the Arab Left, secular cultural producers, and the remnants of the political,strategic resistance...

  10. Hierarchically nanostructured hydroxyapatite: hydrothermal synthesis, morphology control, growth mechanism, and biological activity

    Directory of Open Access Journals (Sweden)

    Ma MG

    2012-04-01

    Full Text Available Ming-Guo MaInstitute of Biomass Chemistry and Technology, College of Materials Science and Technology, Beijing Forestry University, Beijing, People's Republic of ChinaAbstract: Hierarchically nanosized hydroxyapatite (HA with flower-like structure assembled from nanosheets consisting of nanorod building blocks was successfully synthesized by using CaCl2, NaH2PO4, and potassium sodium tartrate via a hydrothermal method at 200°C for 24 hours. The effects of heating time and heating temperature on the products were investigated. As a chelating ligand and template molecule, the potassium sodium tartrate plays a key role in the formation of hierarchically nanostructured HA. On the basis of experimental results, a possible mechanism based on soft-template and self-assembly was proposed for the formation and growth of the hierarchically nanostructured HA. Cytotoxicity experiments indicated that the hierarchically nanostructured HA had good biocompatibility. It was shown by in-vitro experiments that mesenchymal stem cells could attach to the hierarchically nanostructured HA after being cultured for 48 hours.Objective: The purpose of this study was to develop facile and effective methods for the synthesis of novel hydroxyapatite (HA with hierarchical nanostructures assembled from independent and discrete nanobuilding blocks.Methods: A simple hydrothermal approach was applied to synthesize HA by using CaCl2, NaH2PO4, and potassium sodium tartrate at 200°C for 24 hours. The cell cytotoxicity of the hierarchically nanostructured HA was tested by MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay.Results: HA displayed the flower-like structure assembled from nanosheets consisting of nanorod building blocks. The potassium sodium tartrate was used as a chelating ligand, inducing the formation and self-assembly of HA nanorods. The heating time and heating temperature influenced the aggregation and morphology of HA. The cell viability did

  11. Star Cluster Structure from Hierarchical Star Formation

    Science.gov (United States)

    Grudic, Michael; Hopkins, Philip; Murray, Norman; Lamberts, Astrid; Guszejnov, David; Schmitz, Denise; Boylan-Kolchin, Michael

    2018-01-01

    Young massive star clusters (YMCs) spanning 104-108 M⊙ in mass generally have similar radial surface density profiles, with an outer power-law index typically between -2 and -3. This similarity suggests that they are shaped by scale-free physics at formation. Recent multi-physics MHD simulations of YMC formation have also produced populations of YMCs with this type of surface density profile, allowing us to narrow down the physics necessary to form a YMC with properties as observed. We show that the shallow density profiles of YMCs are a natural result of phase-space mixing that occurs as they assemble from the clumpy, hierarchically-clustered configuration imprinted by the star formation process. We develop physical intuition for this process via analytic arguments and collisionless N-body experiments, elucidating the connection between star formation physics and star cluster structure. This has implications for the early-time structure and evolution of proto-globular clusters, and prospects for simulating their formation in the FIRE cosmological zoom-in simulations.

  12. Mitigating Herding in Hierarchical Crowdsourcing Networks.

    Science.gov (United States)

    Yu, Han; Miao, Chunyan; Leung, Cyril; Chen, Yiqiang; Fauvel, Simon; Lesser, Victor R; Yang, Qiang

    2016-12-05

    Hierarchical crowdsourcing networks (HCNs) provide a useful mechanism for social mobilization. However, spontaneous evolution of the complex resource allocation dynamics can lead to undesirable herding behaviours in which a small group of reputable workers are overloaded while leaving other workers idle. Existing herding control mechanisms designed for typical crowdsourcing systems are not effective in HCNs. In order to bridge this gap, we investigate the herding dynamics in HCNs and propose a Lyapunov optimization based decision support approach - the Reputation-aware Task Sub-delegation approach with dynamic worker effort Pricing (RTS-P) - with objective functions aiming to achieve superlinear time-averaged collective productivity in an HCN. By considering the workers' current reputation, workload, eagerness to work, and trust relationships, RTS-P provides a systematic approach to mitigate herding by helping workers make joint decisions on task sub-delegation, task acceptance, and effort pricing in a distributed manner. It is an individual-level decision support approach which results in the emergence of productive and robust collective patterns in HCNs. High resolution simulations demonstrate that RTS-P mitigates herding more effectively than state-of-the-art approaches.

  13. Hierarchical nonlinear dynamics of human attention.

    Science.gov (United States)

    Rabinovich, Mikhail I; Tristan, Irma; Varona, Pablo

    2015-08-01

    Attention is the process of focusing mental resources on a specific cognitive/behavioral task. Such brain dynamics involves different partially overlapping brain functional networks whose interconnections change in time according to the performance stage, and can be stimulus-driven or induced by an intrinsically generated goal. The corresponding activity can be described by different families of spatiotemporal discrete patterns or sequential dynamic modes. Since mental resources are finite, attention modalities compete with each other at all levels of the hierarchy, from perception to decision making and behavior. Cognitive activity is a dynamical process and attention possesses some universal dynamical characteristics. Thus, it is time to apply nonlinear dynamical theory for the description and prediction of hierarchical attentional tasks. Such theory has to include the analyses of attentional control stability, the time cost of attention switching, the finite capacity of informational resources in the brain, and the normal and pathological bifurcations of attention sequential dynamics. In this paper we have integrated today's knowledge, models and results in these directions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Fluorocarbon adsorption in hierarchical porous frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Motkuri, RK; Annapureddy, HVR; Vijaykumar, M; Schaef, HT; Martin, PF; McGrail, BP; Dang, LX; Krishna, R; Thallapally, PK

    2014-07-09

    Metal-organic frameworks comprise an important class of solid-state materials and have potential for many emerging applications such as energy storage, separation, catalysis and bio-medical. Here we report the adsorption behaviour of a series of fluorocarbon derivatives on a set of microporous and hierarchical mesoporous frameworks. The microporous frameworks show a saturation uptake capacity for dichlorodifluoromethane of >4 mmol g(-1) at a very low relative saturation pressure (P/P-o) of 0.02. In contrast, the mesoporous framework shows an exceptionally high uptake capacity reaching >14 mmol g(-1) at P/P-o of 0.4. Adsorption affinity in terms of mass loading and isosteric heats of adsorption is found to generally correlate with the polarizability and boiling point of the refrigerant, with dichlorodifluoromethane >chlorodifluoromethane >chlorotrifluoromethane >tetrafluoromethane >methane. These results suggest the possibility of exploiting these sorbents for separation of azeotropic mixtures of fluorocarbons and use in eco-friendly fluorocarbon-based adsorption cooling.

  15. Hierarchical analysis of dependency in metabolic networks.

    Science.gov (United States)

    Gagneur, Julien; Jackson, David B; Casari, Georg

    2003-05-22

    Elucidation of metabolic networks for an increasing number of organisms reveals that even small networks can contain thousands of reactions and chemical species. The intimate connectivity between components complicates their decomposition into biologically meaningful sub-networks. Moreover, traditional higher-order representations of metabolic networks as metabolic pathways, suffers from the lack of rigorous definition, yielding pathways of disparate content and size. We introduce a hierarchical representation that emphasizes the gross organization of metabolic networks in largely independent pathways and sub-systems at several levels of independence. The approach highlights the coupling of different pathways and the shared compounds responsible for those couplings. By assessing our results on Escherichia coli (E.coli metabolic reactions, Genetic Circuits Research Group, University of California, San Diego, http://gcrg.ucsd.edu/organisms/ecoli.html, 'model v 1.01. reactions') against accepted biochemical annotations, we provide the first systematic synopsis of an organism's metabolism. Comparison with operons of E.coli shows that low-level clusters are reflected in genome organization and gene regulation. Source code, data sets and supplementary information are available at http://www.mas.ecp.fr/labo/equipe/gagneur/hierarchy/hierarchy.html

  16. A Matlab program for stepwise regression

    Directory of Open Access Journals (Sweden)

    Yanhong Qi

    2016-03-01

    Full Text Available The stepwise linear regression is a multi-variable regression for identifying statistically significant variables in the linear regression equation. In present study, we presented the Matlab program of stepwise regression.

  17. Correlation and simple linear regression.

    Science.gov (United States)

    Zou, Kelly H; Tuncali, Kemal; Silverman, Stuart G

    2003-06-01

    In this tutorial article, the concepts of correlation and regression are reviewed and demonstrated. The authors review and compare two correlation coefficients, the Pearson correlation coefficient and the Spearman rho, for measuring linear and nonlinear relationships between two continuous variables. In the case of measuring the linear relationship between a predictor and an outcome variable, simple linear regression analysis is conducted. These statistical concepts are illustrated by using a data set from published literature to assess a computed tomography-guided interventional technique. These statistical methods are important for exploring the relationships between variables and can be applied to many radiologic studies.

  18. Regression filter for signal resolution

    International Nuclear Information System (INIS)

    Matthes, W.

    1975-01-01

    The problem considered is that of resolving a measured pulse height spectrum of a material mixture, e.g. gamma ray spectrum, Raman spectrum, into a weighed sum of the spectra of the individual constituents. The model on which the analytical formulation is based is described. The problem reduces to that of a multiple linear regression. A stepwise linear regression procedure was constructed. The efficiency of this method was then tested by transforming the procedure in a computer programme which was used to unfold test spectra obtained by mixing some spectra, from a library of arbitrary chosen spectra, and adding a noise component. (U.K.)

  19. Nonparametric Mixture of Regression Models.

    Science.gov (United States)

    Huang, Mian; Li, Runze; Wang, Shaoli

    2013-07-01

    Motivated by an analysis of US house price index data, we propose nonparametric finite mixture of regression models. We study the identifiability issue of the proposed models, and develop an estimation procedure by employing kernel regression. We further systematically study the sampling properties of the proposed estimators, and establish their asymptotic normality. A modified EM algorithm is proposed to carry out the estimation procedure. We show that our algorithm preserves the ascent property of the EM algorithm in an asymptotic sense. Monte Carlo simulations are conducted to examine the finite sample performance of the proposed estimation procedure. An empirical analysis of the US house price index data is illustrated for the proposed methodology.

  20. Hierarchical Fuzzy Feature Similarity Combination for Presentation Slide Retrieval

    Directory of Open Access Journals (Sweden)

    A. Kushki

    2009-02-01

    Full Text Available This paper proposes a novel XML-based system for retrieval of presentation slides to address the growing data mining needs in presentation archives for educational and scholarly settings. In particular, contextual information, such as structural and formatting features, is extracted from the open format XML representation of presentation slides. In response to a textual user query, each extracted feature is used to compute a fuzzy relevance score for each slide in the database. The fuzzy scores from the various features are then combined through a hierarchical scheme to generate a single relevance score per slide. Various fusion operators and their properties are examined with respect to their effect on retrieval performance. Experimental results indicate a significant increase in retrieval performance measured in terms of precision-recall. The improvements are attributed to both the incorporation of the contextual features and the hierarchical feature combination scheme.

  1. An interference cancellation strategy for broadcast in hierarchical cell structure

    KAUST Repository

    Yang, Yuli

    2014-12-01

    In this paper, a hierarchical cell structure is considered, where public safety broadcasting is fulfilled in a femtocell located within a macrocell. In the femtocell, also known as local cell, an access point broadcasts to each local node (LN) over an orthogonal frequency sub-band independently. Since the local cell shares the spectrum licensed to the macrocell, a given LN is interfered by transmissions of the macrocell user (MU) in the same sub-band. To improve the broadcast performance in the local cell, a novel scheme is proposed to mitigate the interference from the MU to the LN while achieving diversity gain. For the sake of performance evaluation, ergodic capacity of the proposed scheme is quantified and a corresponding closed-form expression is obtained. By comparing with the traditional scheme that suffers from the MU\\'s interference, numerical results substantiate the advantage of the proposed scheme and provide a useful tool for the broadcast design in hierarchical cell systems.

  2. Hierarchical optimal control of large-scale nonlinear chemical processes.

    Science.gov (United States)

    Ramezani, Mohammad Hossein; Sadati, Nasser

    2009-01-01

    In this paper, a new approach is presented for optimal control of large-scale chemical processes. In this approach, the chemical process is decomposed into smaller sub-systems at the first level, and a coordinator at the second level, for which a two-level hierarchical control strategy is designed. For this purpose, each sub-system in the first level can be solved separately, by using any conventional optimization algorithm. In the second level, the solutions obtained from the first level are coordinated using a new gradient-type strategy, which is updated by the error of the coordination vector. The proposed algorithm is used to solve the optimal control problem of a complex nonlinear chemical stirred tank reactor (CSTR), where its solution is also compared with the ones obtained using the centralized approach. The simulation results show the efficiency and the capability of the proposed hierarchical approach, in finding the optimal solution, over the centralized method.

  3. An interference cancellation strategy for broadcast in hierarchical cell structure

    KAUST Repository

    Yang, Yuli; Aï ssa, Sonia; Eltawil, Ahmed M.; Salama, Khaled N.

    2014-01-01

    In this paper, a hierarchical cell structure is considered, where public safety broadcasting is fulfilled in a femtocell located within a macrocell. In the femtocell, also known as local cell, an access point broadcasts to each local node (LN) over an orthogonal frequency sub-band independently. Since the local cell shares the spectrum licensed to the macrocell, a given LN is interfered by transmissions of the macrocell user (MU) in the same sub-band. To improve the broadcast performance in the local cell, a novel scheme is proposed to mitigate the interference from the MU to the LN while achieving diversity gain. For the sake of performance evaluation, ergodic capacity of the proposed scheme is quantified and a corresponding closed-form expression is obtained. By comparing with the traditional scheme that suffers from the MU's interference, numerical results substantiate the advantage of the proposed scheme and provide a useful tool for the broadcast design in hierarchical cell systems.

  4. Agent-based distributed hierarchical control of dc microgrid systems

    DEFF Research Database (Denmark)

    Meng, Lexuan; Vasquez, Juan Carlos; Guerrero, Josep M.

    2014-01-01

    In order to enable distributed control and management for microgrids, this paper explores the application of information consensus and local decisionmaking methods formulating an agent based distributed hierarchical control system. A droop controlled paralleled DC/DC converter system is taken as ....... Standard genetic algorithm is applied in each local control system in order to search for a global optimum. Hardware-in-Loop simulation results are shown to demonstrate the effectiveness of the method.......In order to enable distributed control and management for microgrids, this paper explores the application of information consensus and local decisionmaking methods formulating an agent based distributed hierarchical control system. A droop controlled paralleled DC/DC converter system is taken...... as a case study. The objective is to enhance the system efficiency by finding the optimal sharing ratio of load current. Virtual resistances in local control systems are taken as decision variables. Consensus algorithms are applied for global information discovery and local control systems coordination...

  5. Thin randomly aligned hierarchical carbon nanotube arrays as ultrablack metamaterials

    Science.gov (United States)

    De Nicola, Francesco; Hines, Peter; De Crescenzi, Maurizio; Motta, Nunzio

    2017-07-01

    Ultrablack metamaterials are artificial materials able to harvest all the incident light regardless of wavelength, angle, or polarization. Here, we show the ultrablack properties of randomly aligned hierarchical carbon nanotube arrays with thicknesses below 200 nm. The thin coatings are realized by solution processing and dry-transfer deposition on different substrates. The hierarchical surface morphology of the coatings is biomimetic and provides a large effective area that improves the film optical absorption. Also, such a morphology is responsible for the moth-eye effect, which leads to the omnidirectional and polarization-independent suppression of optical reflection. The films exhibit an emissivity up to 99.36% typical of an ideal black body, resulting in the thinnest ultrablack metamaterial ever reported. Such a material may be exploited for thermal, optical, and optoelectronic devices such as heat sinks, optical shields, solar cells, light and thermal sensors, and light-emitting diodes.

  6. Nanomechanical strength mechanisms of hierarchical biological materials and tissues.

    Science.gov (United States)

    Buehler, Markus J; Ackbarow, Theodor

    2008-12-01

    Biological protein materials (BPMs), intriguing hierarchical structures formed by assembly of chemical building blocks, are crucial for critical functions of life. The structural details of BPMs are fascinating: They represent a combination of universally found motifs such as alpha-helices or beta-sheets with highly adapted protein structures such as cytoskeletal networks or spider silk nanocomposites. BPMs combine properties like strength and robustness, self-healing ability, adaptability, changeability, evolvability and others into multi-functional materials at a level unmatched in synthetic materials. The ability to achieve these properties depends critically on the particular traits of these materials, first and foremost their hierarchical architecture and seamless integration of material and structure, from nano to macro. Here, we provide a brief review of this field and outline new research directions, along with a review of recent research results in the development of structure-property relationships of biological protein materials exemplified in a study of vimentin intermediate filaments.

  7. Prediction of road accidents: A Bayesian hierarchical approach

    DEFF Research Database (Denmark)

    Deublein, Markus; Schubert, Matthias; Adey, Bryan T.

    2013-01-01

    the expected number of accidents in which an injury has occurred and the expected number of light, severe and fatally injured road users. Additionally, the methodology is used for geo-referenced identification of road sections with increased occurrence probabilities of injury accident events on a road link......In this paper a novel methodology for the prediction of the occurrence of road accidents is presented. The methodology utilizes a combination of three statistical methods: (1) gamma-updating of the occurrence rates of injury accidents and injured road users, (2) hierarchical multivariate Poisson......-lognormal regression analysis taking into account correlations amongst multiple dependent model response variables and effects of discrete accident count data e.g. over-dispersion, and (3) Bayesian inference algorithms, which are applied by means of data mining techniques supported by Bayesian Probabilistic Networks...

  8. Hierarchical spatial models for predicting pygmy rabbit distribution and relative abundance

    Science.gov (United States)

    Wilson, T.L.; Odei, J.B.; Hooten, M.B.; Edwards, T.C.

    2010-01-01

    Conservationists routinely use species distribution models to plan conservation, restoration and development actions, while ecologists use them to infer process from pattern. These models tend to work well for common or easily observable species, but are of limited utility for rare and cryptic species. This may be because honest accounting of known observation bias and spatial autocorrelation are rarely included, thereby limiting statistical inference of resulting distribution maps. We specified and implemented a spatially explicit Bayesian hierarchical model for a cryptic mammal species (pygmy rabbit Brachylagus idahoensis). Our approach used two levels of indirect sign that are naturally hierarchical (burrows and faecal pellets) to build a model that allows for inference on regression coefficients as well as spatially explicit model parameters. We also produced maps of rabbit distribution (occupied burrows) and relative abundance (number of burrows expected to be occupied by pygmy rabbits). The model demonstrated statistically rigorous spatial prediction by including spatial autocorrelation and measurement uncertainty. We demonstrated flexibility of our modelling framework by depicting probabilistic distribution predictions using different assumptions of pygmy rabbit habitat requirements. Spatial representations of the variance of posterior predictive distributions were obtained to evaluate heterogeneity in model fit across the spatial domain. Leave-one-out cross-validation was conducted to evaluate the overall model fit. Synthesis and applications. Our method draws on the strengths of previous work, thereby bridging and extending two active areas of ecological research: species distribution models and multi-state occupancy modelling. Our framework can be extended to encompass both larger extents and other species for which direct estimation of abundance is difficult. ?? 2010 The Authors. Journal compilation ?? 2010 British Ecological Society.

  9. Recognizing Chinese characters in digital ink from non-native language writers using hierarchical models

    Science.gov (United States)

    Bai, Hao; Zhang, Xi-wen

    2017-06-01

    While Chinese is learned as a second language, its characters are taught step by step from their strokes to components, radicals to components, and their complex relations. Chinese Characters in digital ink from non-native language writers are deformed seriously, thus the global recognition approaches are poorer. So a progressive approach from bottom to top is presented based on hierarchical models. Hierarchical information includes strokes and hierarchical components. Each Chinese character is modeled as a hierarchical tree. Strokes in one Chinese characters in digital ink are classified with Hidden Markov Models and concatenated to the stroke symbol sequence. And then the structure of components in one ink character is extracted. According to the extraction result and the stroke symbol sequence, candidate characters are traversed and scored. Finally, the recognition candidate results are listed by descending. The method of this paper is validated by testing 19815 copies of the handwriting Chinese characters written by foreign students.

  10. Determination of a Differential Item Functioning Procedure Using the Hierarchical Generalized Linear Model

    Directory of Open Access Journals (Sweden)

    Tülin Acar

    2012-01-01

    Full Text Available The aim of this research is to compare the result of the differential item functioning (DIF determining with hierarchical generalized linear model (HGLM technique and the results of the DIF determining with logistic regression (LR and item response theory–likelihood ratio (IRT-LR techniques on the test items. For this reason, first in this research, it is determined whether the students encounter DIF with HGLM, LR, and IRT-LR techniques according to socioeconomic status (SES, in the Turkish, Social Sciences, and Science subtest items of the Secondary School Institutions Examination. When inspecting the correlations among the techniques in terms of determining the items having DIF, it was discovered that there was significant correlation between the results of IRT-LR and LR techniques in all subtests; merely in Science subtest, the results of the correlation between HGLM and IRT-LR techniques were found significant. DIF applications can be made on test items with other DIF analysis techniques that were not taken to the scope of this research. The analysis results, which were determined by using the DIF techniques in different sample sizes, can be compared.

  11. Regression Benchmarking: An Approach to Quality Assurance in Performance

    OpenAIRE

    Bulej, Lubomír

    2005-01-01

    The paper presents a short summary of our work in the area of regression benchmarking and its application to software development. Specially, we explain the concept of regression benchmarking, the requirements for employing regression testing in a software project, and methods used for analyzing the vast amounts of data resulting from repeated benchmarking. We present the application of regression benchmarking on a real software project and conclude with a glimpse at the challenges for the fu...

  12. Panel data specifications in nonparametric kernel regression

    DEFF Research Database (Denmark)

    Czekaj, Tomasz Gerard; Henningsen, Arne

    parametric panel data estimators to analyse the production technology of Polish crop farms. The results of our nonparametric kernel regressions generally differ from the estimates of the parametric models but they only slightly depend on the choice of the kernel functions. Based on economic reasoning, we...

  13. Influence diagnostics in meta-regression model.

    Science.gov (United States)

    Shi, Lei; Zuo, ShanShan; Yu, Dalei; Zhou, Xiaohua

    2017-09-01

    This paper studies the influence diagnostics in meta-regression model including case deletion diagnostic and local influence analysis. We derive the subset deletion formulae for the estimation of regression coefficient and heterogeneity variance and obtain the corresponding influence measures. The DerSimonian and Laird estimation and maximum likelihood estimation methods in meta-regression are considered, respectively, to derive the results. Internal and external residual and leverage measure are defined. The local influence analysis based on case-weights perturbation scheme, responses perturbation scheme, covariate perturbation scheme, and within-variance perturbation scheme are explored. We introduce a method by simultaneous perturbing responses, covariate, and within-variance to obtain the local influence measure, which has an advantage of capable to compare the influence magnitude of influential studies from different perturbations. An example is used to illustrate the proposed methodology. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Principal component regression for crop yield estimation

    CERN Document Server

    Suryanarayana, T M V

    2016-01-01

    This book highlights the estimation of crop yield in Central Gujarat, especially with regard to the development of Multiple Regression Models and Principal Component Regression (PCR) models using climatological parameters as independent variables and crop yield as a dependent variable. It subsequently compares the multiple linear regression (MLR) and PCR results, and discusses the significance of PCR for crop yield estimation. In this context, the book also covers Principal Component Analysis (PCA), a statistical procedure used to reduce a number of correlated variables into a smaller number of uncorrelated variables called principal components (PC). This book will be helpful to the students and researchers, starting their works on climate and agriculture, mainly focussing on estimation models. The flow of chapters takes the readers in a smooth path, in understanding climate and weather and impact of climate change, and gradually proceeds towards downscaling techniques and then finally towards development of ...

  15. Cactus: An Introduction to Regression

    Science.gov (United States)

    Hyde, Hartley

    2008-01-01

    When the author first used "VisiCalc," the author thought it a very useful tool when he had the formulas. But how could he design a spreadsheet if there was no known formula for the quantities he was trying to predict? A few months later, the author relates he learned to use multiple linear regression software and suddenly it all clicked into…

  16. Regression Models for Repairable Systems

    Czech Academy of Sciences Publication Activity Database

    Novák, Petr

    2015-01-01

    Roč. 17, č. 4 (2015), s. 963-972 ISSN 1387-5841 Institutional support: RVO:67985556 Keywords : Reliability analysis * Repair models * Regression Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.782, year: 2015 http://library.utia.cas.cz/separaty/2015/SI/novak-0450902.pdf

  17. Survival analysis II: Cox regression

    NARCIS (Netherlands)

    Stel, Vianda S.; Dekker, Friedo W.; Tripepi, Giovanni; Zoccali, Carmine; Jager, Kitty J.

    2011-01-01

    In contrast to the Kaplan-Meier method, Cox proportional hazards regression can provide an effect estimate by quantifying the difference in survival between patient groups and can adjust for confounding effects of other variables. The purpose of this article is to explain the basic concepts of the

  18. Kernel regression with functional response

    OpenAIRE

    Ferraty, Frédéric; Laksaci, Ali; Tadj, Amel; Vieu, Philippe

    2011-01-01

    We consider kernel regression estimate when both the response variable and the explanatory one are functional. The rates of uniform almost complete convergence are stated as function of the small ball probability of the predictor and as function of the entropy of the set on which uniformity is obtained.

  19. Learning with hierarchical-deep models.

    Science.gov (United States)

    Salakhutdinov, Ruslan; Tenenbaum, Joshua B; Torralba, Antonio

    2013-08-01

    We introduce HD (or “Hierarchical-Deep”) models, a new compositional learning architecture that integrates deep learning models with structured hierarchical Bayesian (HB) models. Specifically, we show how we can learn a hierarchical Dirichlet process (HDP) prior over the activities of the top-level features in a deep Boltzmann machine (DBM). This compound HDP-DBM model learns to learn novel concepts from very few training example by learning low-level generic features, high-level features that capture correlations among low-level features, and a category hierarchy for sharing priors over the high-level features that are typical of different kinds of concepts. We present efficient learning and inference algorithms for the HDP-DBM model and show that it is able to learn new concepts from very few examples on CIFAR-100 object recognition, handwritten character recognition, and human motion capture datasets.

  20. On Utmost Multiplicity of Hierarchical Stellar Systems

    Directory of Open Access Journals (Sweden)

    Gebrehiwot Y. M.

    2016-12-01

    Full Text Available According to theoretical considerations, multiplicity of hierarchical stellar systems can reach, depending on masses and orbital parameters, several hundred, while observational data confirm the existence of at most septuple (seven-component systems. In this study, we cross-match the stellar systems of very high multiplicity (six and more components in modern catalogues of visual double and multiple stars to find among them the candidates to hierarchical systems. After cross-matching the catalogues of closer binaries (eclipsing, spectroscopic, etc., some of their components were found to be binary/multiple themselves, what increases the system's degree of multiplicity. Optical pairs, known from literature or filtered by the authors, were flagged and excluded from the statistics. We compiled a list of hierarchical systems with potentially very high multiplicity that contains ten objects. Their multiplicity does not exceed 12, and we discuss a number of ways to explain the lack of extremely high multiplicity systems.

  1. Hierarchical Micro-Nano Coatings by Painting

    Science.gov (United States)

    Kirveslahti, Anna; Korhonen, Tuulia; Suvanto, Mika; Pakkanen, Tapani A.

    2016-03-01

    In this paper, the wettability properties of coatings with hierarchical surface structures and low surface energy were studied. Hierarchically structured coatings were produced by using hydrophobic fumed silica nanoparticles and polytetrafluoroethylene (PTFE) microparticles as additives in polyester (PES) and polyvinyldifluoride (PVDF). These particles created hierarchical micro-nano structures on the paint surfaces and lowered or supported the already low surface energy of the paint. Two standard application techniques for paint application were employed and the presented coatings are suitable for mass production and use in large surface areas. By regulating the particle concentrations, it was possible to modify wettability properties gradually. Highly hydrophobic surfaces were achieved with the highest contact angle of 165∘. Dynamic contact angle measurements were carried out for a set of selected samples and low hysteresis was obtained. Produced coatings possessed long lasting durability in the air and in underwater conditions.

  2. Hierarchical Traces for Reduced NSM Memory Requirements

    Science.gov (United States)

    Dahl, Torbjørn S.

    This paper presents work on using hierarchical long term memory to reduce the memory requirements of nearest sequence memory (NSM) learning, a previously published, instance-based reinforcement learning algorithm. A hierarchical memory representation reduces the memory requirements by allowing traces to share common sub-sequences. We present moderated mechanisms for estimating discounted future rewards and for dealing with hidden state using hierarchical memory. We also present an experimental analysis of how the sub-sequence length affects the memory compression achieved and show that the reduced memory requirements do not effect the speed of learning. Finally, we analyse and discuss the persistence of the sub-sequences independent of specific trace instances.

  3. Criticality of the Potts ferromagnet in Midgal-Kadanoff - like hierarchical lattices

    International Nuclear Information System (INIS)

    Silva, L.R. da; Tsallis, C.

    1987-01-01

    Within the real space renormalisation group framework, we discuss the critical point and exponent υ of the Potts ferromagnet in b-sized Migdal-Kadanoff-like hierarchical lattices. Both b → ∞ and b → 1 limits are exhibited. The important discrepancies that might exist between the exact results for d-dimensional hierarchical lattices and d-dimensional Bravais lattices are illustrated. (Author) [pt

  4. Hierarchical sliding mode control for under-actuated cranes design, analysis and simulation

    CERN Document Server

    Qian, Dianwei

    2015-01-01

    This book reports on the latest developments in sliding mode overhead crane control, presenting novel research ideas and findings on sliding mode control (SMC), hierarchical SMC and compensator design-based hierarchical sliding mode. The results, which were previously scattered across various journals and conference proceedings, are now presented in a systematic and unified form. The book will be of interest to researchers, engineers and graduate students in control engineering and mechanical engineering who want to learn the methods and applications of SMC.

  5. Bayesian Hierarchical Distributed Lag Models for Summer Ozone Exposure and Cardio-Respiratory Mortality

    OpenAIRE

    Yi Huang; Francesca Dominici; Michelle Bell

    2004-01-01

    In this paper, we develop Bayesian hierarchical distributed lag models for estimating associations between daily variations in summer ozone levels and daily variations in cardiovascular and respiratory (CVDRESP) mortality counts for 19 U.S. large cities included in the National Morbidity Mortality Air Pollution Study (NMMAPS) for the period 1987 - 1994. At the first stage, we define a semi-parametric distributed lag Poisson regression model to estimate city-specific relative rates of CVDRESP ...

  6. A Hierarchical Approach Using Machine Learning Methods in Solar Photovoltaic Energy Production Forecasting

    OpenAIRE

    Zhaoxuan Li; SM Mahbobur Rahman; Rolando Vega; Bing Dong

    2016-01-01

    We evaluate and compare two common methods, artificial neural networks (ANN) and support vector regression (SVR), for predicting energy productions from a solar photovoltaic (PV) system in Florida 15 min, 1 h and 24 h ahead of time. A hierarchical approach is proposed based on the machine learning algorithms tested. The production data used in this work corresponds to 15 min averaged power measurements collected from 2014. The accuracy of the model is determined using computing error statisti...

  7. T-Cell Therapy Using Interleukin-21-Primed Cytotoxic T-Cell Lymphocytes Combined With Cytotoxic T-Cell Lymphocyte Antigen-4 Blockade Results in Long-Term Cell Persistence and Durable Tumor Regression.

    Science.gov (United States)

    Chapuis, Aude G; Roberts, Ilana M; Thompson, John A; Margolin, Kim A; Bhatia, Shailender; Lee, Sylvia M; Sloan, Heather L; Lai, Ivy P; Farrar, Erik A; Wagener, Felecia; Shibuya, Kendall C; Cao, Jianhong; Wolchok, Jedd D; Greenberg, Philip D; Yee, Cassian

    2016-11-01

    Purpose Peripheral blood-derived antigen-specific cytotoxic T cells (CTLs) provide a readily available source of effector cells that can be administered with minimal toxicity in an outpatient setting. In metastatic melanoma, this approach results in measurable albeit modest clinical responses in patients resistant to conventional therapy. We reasoned that concurrent cytotoxic T-cell lymphocyte antigen-4 (CTLA-4) checkpoint blockade might enhance the antitumor activity of adoptively transferred CTLs. Patients and Methods Autologous MART1-specific CTLs were generated by priming with peptide-pulsed dendritic cells in the presence of interleukin-21 and enriched by peptide-major histocompatibility complex multimer-guided cell sorting. This expeditiously yielded polyclonal CTL lines uniformly expressing markers associated with an enhanced survival potential. In this first-in-human strategy, 10 patients with stage IV melanoma received the MART1-specific CTLs followed by a standard course of anti-CTLA-4 (ipilimumab). Results The toxicity profile of the combined treatment was comparable to that of ipilimumab monotherapy. Evaluation of best responses at 12 weeks yielded two continuous complete remissions, one partial response (PR) using RECIST criteria (two PRs using immune-related response criteria), and three instances of stable disease. Infused CTLs persisted with frequencies up to 2.9% of CD8 + T cells for as long as the patients were monitored (up to 40 weeks). In patients who experienced complete remissions, PRs, or stable disease, the persisting CTLs acquired phenotypic and functional characteristics of long-lived memory cells. Moreover, these patients also developed responses to nontargeted tumor antigens (epitope spreading). Conclusion We demonstrate that combining antigen-specific CTLs with CTLA-4 blockade is safe and produces durable clinical responses, likely reflecting both enhanced activity of transferred cells and improved recruitment of new responses

  8. T-Cell Therapy Using Interleukin-21–Primed Cytotoxic T-Cell Lymphocytes Combined With Cytotoxic T-Cell Lymphocyte Antigen-4 Blockade Results in Long-Term Cell Persistence and Durable Tumor Regression

    Science.gov (United States)

    Chapuis, Aude G.; Roberts, Ilana M.; Thompson, John A.; Margolin, Kim A.; Bhatia, Shailender; Lee, Sylvia M.; Sloan, Heather L.; Lai, Ivy P.; Farrar, Erik A.; Wagener, Felecia; Shibuya, Kendall C.; Cao, Jianhong; Wolchok, Jedd D.; Greenberg, Philip D.

    2016-01-01

    Purpose Peripheral blood–derived antigen-specific cytotoxic T cells (CTLs) provide a readily available source of effector cells that can be administered with minimal toxicity in an outpatient setting. In metastatic melanoma, this approach results in measurable albeit modest clinical responses in patients resistant to conventional therapy. We reasoned that concurrent cytotoxic T-cell lymphocyte antigen-4 (CTLA-4) checkpoint blockade might enhance the antitumor activity of adoptively transferred CTLs. Patients and Methods Autologous MART1-specific CTLs were generated by priming with peptide-pulsed dendritic cells in the presence of interleukin-21 and enriched by peptide-major histocompatibility complex multimer-guided cell sorting. This expeditiously yielded polyclonal CTL lines uniformly expressing markers associated with an enhanced survival potential. In this first-in-human strategy, 10 patients with stage IV melanoma received the MART1-specific CTLs followed by a standard course of anti–CTLA-4 (ipilimumab). Results The toxicity profile of the combined treatment was comparable to that of ipilimumab monotherapy. Evaluation of best responses at 12 weeks yielded two continuous complete remissions, one partial response (PR) using RECIST criteria (two PRs using immune-related response criteria), and three instances of stable disease. Infused CTLs persisted with frequencies up to 2.9% of CD8+ T cells for as long as the patients were monitored (up to 40 weeks). In patients who experienced complete remissions, PRs, or stable disease, the persisting CTLs acquired phenotypic and functional characteristics of long-lived memory cells. Moreover, these patients also developed responses to nontargeted tumor antigens (epitope spreading). Conclusion We demonstrate that combining antigen-specific CTLs with CTLA-4 blockade is safe and produces durable clinical responses, likely reflecting both enhanced activity of transferred cells and improved recruitment of new responses

  9. Hierarchical control of electron-transfer

    DEFF Research Database (Denmark)

    Westerhoff, Hans V.; Jensen, Peter Ruhdal; Egger, Louis

    1997-01-01

    In this chapter the role of electron transfer in determining the behaviour of the ATP synthesising enzyme in E. coli is analysed. It is concluded that the latter enzyme lacks control because of special properties of the electron transfer components. These properties range from absence of a strong...... back pressure by the protonmotive force on the rate of electron transfer to hierarchical regulation of the expression of the gens that encode the electron transfer proteins as a response to changes in the bioenergetic properties of the cell.The discussion uses Hierarchical Control Analysis...

  10. Analyzing security protocols in hierarchical networks

    DEFF Research Database (Denmark)

    Zhang, Ye; Nielson, Hanne Riis

    2006-01-01

    Validating security protocols is a well-known hard problem even in a simple setting of a single global network. But a real network often consists of, besides the public-accessed part, several sub-networks and thereby forms a hierarchical structure. In this paper we first present a process calculus...... capturing the characteristics of hierarchical networks and describe the behavior of protocols on such networks. We then develop a static analysis to automate the validation. Finally we demonstrate how the technique can benefit the protocol development and the design of network systems by presenting a series...

  11. Hierarchical MAS based control strategy for microgrid

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Z.; Li, T.; Huang, M.; Shi, J.; Yang, J.; Yu, J. [School of Information Science and Engineering, Yunnan University, Kunming 650091 (China); Xiao, Z. [School of Electrical and Electronic Engineering, Nanyang Technological University, Western Catchment Area, 639798 (Singapore); Wu, W. [Communication Branch of Yunnan Power Grid Corporation, Kunming, Yunnan 650217 (China)

    2010-09-15

    Microgrids have become a hot topic driven by the dual pressures of environmental protection concerns and the energy crisis. In this paper, a challenge for the distributed control of a modern electric grid incorporating clusters of residential microgrids is elaborated and a hierarchical multi-agent system (MAS) is proposed as a solution. The issues of how to realize the hierarchical MAS and how to improve coordination and control strategies are discussed. Based on MATLAB and ZEUS platforms, bilateral switching between grid-connected mode and island mode is performed under control of the proposed MAS to enhance and support its effectiveness. (authors)

  12. Multiparty hierarchical quantum-information splitting

    International Nuclear Information System (INIS)

    Wang Xinwen; Zhang Dengyu; Tang Shiqing; Xie Lijun

    2011-01-01

    We propose a scheme for multiparty hierarchical quantum-information splitting (QIS) with a multipartite entangled state, where a boss distributes a secret quantum state to two grades of agents asymmetrically. The agents who belong to different grades have different authorities for recovering the boss's secret. Except for the boss's Bell-state measurement, no nonlocal operation is involved. The presented scheme is also shown to be secure against eavesdropping. Such a hierarchical QIS is expected to find useful applications in the field of modern multipartite quantum cryptography.

  13. Hierarchical Analysis of the Omega Ontology

    Energy Technology Data Exchange (ETDEWEB)

    Joslyn, Cliff A.; Paulson, Patrick R.

    2009-12-01

    Initial delivery for mathematical analysis of the Omega Ontology. We provide an analysis of the hierarchical structure of a version of the Omega Ontology currently in use within the US Government. After providing an initial statistical analysis of the distribution of all link types in the ontology, we then provide a detailed order theoretical analysis of each of the four main hierarchical links present. This order theoretical analysis includes the distribution of components and their properties, their parent/child and multiple inheritance structure, and the distribution of their vertical ranks.

  14. Social Influence on Information Technology Adoption and Sustained Use in Healthcare: A Hierarchical Bayesian Learning Method Analysis

    Science.gov (United States)

    Hao, Haijing

    2013-01-01

    Information technology adoption and diffusion is currently a significant challenge in the healthcare delivery setting. This thesis includes three papers that explore social influence on information technology adoption and sustained use in the healthcare delivery environment using conventional regression models and novel hierarchical Bayesian…

  15. Bayesian hierarchical modelling of North Atlantic windiness

    Science.gov (United States)

    Vanem, E.; Breivik, O. N.

    2013-03-01

    Extreme weather conditions represent serious natural hazards to ship operations and may be the direct cause or contributing factor to maritime accidents. Such severe environmental conditions can be taken into account in ship design and operational windows can be defined that limits hazardous operations to less extreme conditions. Nevertheless, possible changes in the statistics of extreme weather conditions, possibly due to anthropogenic climate change, represent an additional hazard to ship operations that is less straightforward to account for in a consistent way. Obviously, there are large uncertainties as to how future climate change will affect the extreme weather conditions at sea and there is a need for stochastic models that can describe the variability in both space and time at various scales of the environmental conditions. Previously, Bayesian hierarchical space-time models have been developed to describe the variability and complex dependence structures of significant wave height in space and time. These models were found to perform reasonably well and provided some interesting results, in particular, pertaining to long-term trends in the wave climate. In this paper, a similar framework is applied to oceanic windiness and the spatial and temporal variability of the 10-m wind speed over an area in the North Atlantic ocean is investigated. When the results from the model for North Atlantic windiness is compared to the results for significant wave height over the same area, it is interesting to observe that whereas an increasing trend in significant wave height was identified, no statistically significant long-term trend was estimated in windiness. This may indicate that the increase in significant wave height is not due to an increase in locally generated wind waves, but rather to increased swell. This observation is also consistent with studies that have suggested a poleward shift of the main storm tracks.

  16. Bayesian hierarchical modelling of North Atlantic windiness

    Directory of Open Access Journals (Sweden)

    E. Vanem

    2013-03-01

    Full Text Available Extreme weather conditions represent serious natural hazards to ship operations and may be the direct cause or contributing factor to maritime accidents. Such severe environmental conditions can be taken into account in ship design and operational windows can be defined that limits hazardous operations to less extreme conditions. Nevertheless, possible changes in the statistics of extreme weather conditions, possibly due to anthropogenic climate change, represent an additional hazard to ship operations that is less straightforward to account for in a consistent way. Obviously, there are large uncertainties as to how future climate change will affect the extreme weather conditions at sea and there is a need for stochastic models that can describe the variability in both space and time at various scales of the environmental conditions. Previously, Bayesian hierarchical space-time models have been developed to describe the variability and complex dependence structures of significant wave height in space and time. These models were found to perform reasonably well and provided some interesting results, in particular, pertaining to long-term trends in the wave climate. In this paper, a similar framework is applied to oceanic windiness and the spatial and temporal variability of the 10-m wind speed over an area in the North Atlantic ocean is investigated. When the results from the model for North Atlantic windiness is compared to the results for significant wave height over the same area, it is interesting to observe that whereas an increasing trend in significant wave height was identified, no statistically significant long-term trend was estimated in windiness. This may indicate that the increase in significant wave height is not due to an increase in locally generated wind waves, but rather to increased swell. This observation is also consistent with studies that have suggested a poleward shift of the main storm tracks.

  17. Clinical time series prediction: towards a hierarchical dynamical system framework

    Science.gov (United States)

    Liu, Zitao; Hauskrecht, Milos

    2014-01-01

    Objective Developing machine learning and data mining algorithms for building temporal models of clinical time series is important for understanding of the patient condition, the dynamics of a disease, effect of various patient management interventions and clinical decision making. In this work, we propose and develop a novel hierarchical framework for modeling clinical time series data of varied length and with irregularly sampled observations. Materials and methods Our hierarchical dynamical system framework for modeling clinical time series combines advantages of the two temporal modeling approaches: the linear dynamical system and the Gaussian process. We model the irregularly sampled clinical time series by using multiple Gaussian process sequences in the lower level of our hierarchical framework and capture the transitions between Gaussian processes by utilizing the linear dynamical system. The experiments are conducted on the complete blood count (CBC) panel data of 1000 post-surgical cardiac patients during their hospitalization. Our framework is evaluated and compared to multiple baseline approaches in terms of the mean absolute prediction error and the absolute percentage error. Results We tested our framework by first learning the time series model from data for the patient in the training set, and then applying the model in order to predict future time series values on the patients in the test set. We show that our model outperforms multiple existing models in terms of its predictive accuracy. Our method achieved a 3.13% average prediction accuracy improvement on ten CBC lab time series when it was compared against the best performing baseline. A 5.25% average accuracy improvement was observed when only short-term predictions were considered. Conclusion A new hierarchical dynamical system framework that lets us model irregularly sampled time series data is a promising new direction for modeling clinical time series and for improving their predictive

  18. A nontransferring dry adhesive with hierarchical polymer nanohairs

    KAUST Repository

    Jeong, H. E.

    2009-03-20

    We present a simple yet robust method for fabricating angled, hierarchically patterned high-aspect-ratio polymer nanohairs to generate directionally sensitive dry adhesives. The slanted polymeric nanostructures were molded from an etched polySi substrate containing slanted nanoholes. An angled etching technique was developed to fabricate slanted nanoholes with flat tips by inserting an etch-stop layer of silicon dioxide. This unique etching method was equipped with a Faraday cage system to control the ion-incident angles in the conventional plasma etching system. The polymeric nanohairs were fabricated with tailored leaning angles, sizes, tip shapes, and hierarchical structures. As a result of controlled leaning angle and bulged flat top of the nanohairs, the replicated, slanted nanohairs showed excellent directional adhesion, exhibiting strong shear attachment (approximately 26 N/cm(2) in maximum) in the angled direction and easy detachment (approximately 2.2 N/cm(2)) in the opposite direction, with a hysteresis value of approximately 10. In addition to single scale nanohairs, monolithic, micro-nanoscale combined hierarchical hairs were also fabricated by using a 2-step UV-assisted molding technique. These hierarchical nanoscale patterns maintained their adhesive force even on a rough surface (roughness <20 microm) because of an increase in the contact area by the enhanced height of hierarchy, whereas simple nanohairs lost their adhesion strength. To demonstrate the potential applications of the adhesive patch, the dry adhesive was used to transport a large-area glass (47.5 x 37.5 cm(2), second-generation TFT-LCD glass), which could replace the current electrostatic transport/holding system with further optimization.

  19. A nontransferring dry adhesive with hierarchical polymer nanohairs.

    Science.gov (United States)

    Jeong, Hoon Eui; Lee, Jin-Kwan; Kim, Hong Nam; Moon, Sang Heup; Suh, Kahp Y

    2009-04-07

    We present a simple yet robust method for fabricating angled, hierarchically patterned high-aspect-ratio polymer nanohairs to generate directionally sensitive dry adhesives. The slanted polymeric nanostructures were molded from an etched polySi substrate containing slanted nanoholes. An angled etching technique was developed to fabricate slanted nanoholes with flat tips by inserting an etch-stop layer of silicon dioxide. This unique etching method was equipped with a Faraday cage system to control the ion-incident angles in the conventional plasma etching system. The polymeric nanohairs were fabricated with tailored leaning angles, sizes, tip shapes, and hierarchical structures. As a result of controlled leaning angle and bulged flat top of the nanohairs, the replicated, slanted nanohairs showed excellent directional adhesion, exhibiting strong shear attachment (approximately 26 N/cm(2) in maximum) in the angled direction and easy detachment (approximately 2.2 N/cm(2)) in the opposite direction, with a hysteresis value of approximately 10. In addition to single scale nanohairs, monolithic, micro-nanoscale combined hierarchical hairs were also fabricated by using a 2-step UV-assisted molding technique. These hierarchical nanoscale patterns maintained their adhesive force even on a rough surface (roughness <20 microm) because of an increase in the contact area by the enhanced height of hierarchy, whereas simple nanohairs lost their adhesion strength. To demonstrate the potential applications of the adhesive patch, the dry adhesive was used to transport a large-area glass (47.5 x 37.5 cm(2), second-generation TFT-LCD glass), which could replace the current electrostatic transport/holding system with further optimization.

  20. Poisson Mixture Regression Models for Heart Disease Prediction.

    Science.gov (United States)

    Mufudza, Chipo; Erol, Hamza

    2016-01-01

    Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model.

  1. Regression and regression analysis time series prediction modeling on climate data of quetta, pakistan

    International Nuclear Information System (INIS)

    Jafri, Y.Z.; Kamal, L.

    2007-01-01

    Various statistical techniques was used on five-year data from 1998-2002 of average humidity, rainfall, maximum and minimum temperatures, respectively. The relationships to regression analysis time series (RATS) were developed for determining the overall trend of these climate parameters on the basis of which forecast models can be corrected and modified. We computed the coefficient of determination as a measure of goodness of fit, to our polynomial regression analysis time series (PRATS). The correlation to multiple linear regression (MLR) and multiple linear regression analysis time series (MLRATS) were also developed for deciphering the interdependence of weather parameters. Spearman's rand correlation and Goldfeld-Quandt test were used to check the uniformity or non-uniformity of variances in our fit to polynomial regression (PR). The Breusch-Pagan test was applied to MLR and MLRATS, respectively which yielded homoscedasticity. We also employed Bartlett's test for homogeneity of variances on a five-year data of rainfall and humidity, respectively which showed that the variances in rainfall data were not homogenous while in case of humidity, were homogenous. Our results on regression and regression analysis time series show the best fit to prediction modeling on climatic data of Quetta, Pakistan. (author)

  2. Logistic regression applied to natural hazards: rare event logistic regression with replications

    OpenAIRE

    Guns, M.; Vanacker, Veerle

    2012-01-01

    Statistical analysis of natural hazards needs particular attention, as most of these phenomena are rare events. This study shows that the ordinary rare event logistic regression, as it is now commonly used in geomorphologic studies, does not always lead to a robust detection of controlling factors, as the results can be strongly sample-dependent. In this paper, we introduce some concepts of Monte Carlo simulations in rare event logistic regression. This technique, so-called rare event logisti...

  3. Hierarchical VOOH hollow spheres for symmetrical and asymmetrical supercapacitor devices

    Science.gov (United States)

    Jing, Xuyang; Wang, Cong; Feng, Wenjing; Xing, Na; Jiang, Hanmei; Lu, Xiangyu; Zhang, Yifu; Meng, Changgong

    2018-01-01

    Hierarchical VOOH hollow spheres with low crystallinity composed of nanoparticles were prepared by a facile and template-free method, which involved a precipitation of precursor microspheres in aqueous solution at room temperature and subsequent hydrothermal reaction. Quasi-solid-state symmetric and asymmetric supercapacitor (SSC and ASC) devices were fabricated using hierarchical VOOH hollow spheres as the electrodes, and the electrochemical properties of the VOOH//VOOH SSC device and the VOOH//AC ASC device were studied by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS). Results demonstrated that the electrochemical performance of the VOOH//AC ASC device was better than that of the VOOH//VOOH SSC device. After 3000 cycles, the specific capacitance of the VOOH//AC ASC device retains 83% of the initial capacitance, while the VOOH//VOOH SSC device retains only 7.7%. Findings in this work proved that hierarchical VOOH hollow spheres could be a promising candidate as an ideal electrode material for supercapacitor devices.

  4. Growth Mechanism of Pumpkin-Shaped Vaterite Hierarchical Structures

    Science.gov (United States)

    Ma, Guobin; Xu, Yifei; Wang, Mu

    2015-03-01

    CaCO3-based biominerals possess sophisticated hierarchical structures and promising mechanical properties. Recent researches imply that vaterite may play an important role in formation of CaCO3-based biominerals. However, as a less common polymorph of CaCO3, the growth mechanism of vaterite remains not very clear. Here we report the growth of a pumpkin-shaped vaterite hierarchical structure with a six-fold symmetrical axis and lamellar microstructure. We demonstrate that the growth is controlled by supersaturation and the intrinsic crystallographic anisotropy of vaterite. For the scenario of high supersaturation, the nucleation rate is higher than the lateral extension rate, favoring the ``double-leaf'' spherulitic growth. Meanwhile, nucleation occurs preferentially in as determined by the crystalline structure of vaterite, modulating the grown products with a hexagonal symmetry. The results are beneficial for an in-depth understanding of the biomineralization of CaCO3. The growth mechanism may also be applicable to interpret the formation of similar hierarchical structures of other materials. The authors gratefully acknowledge the financial support from National Science Foundation of China (Grant Nos. 51172104 and 50972057) and National Key Basic Research Program of China (Grant No. 2010CB630705).

  5. Hierarchical organization of brain functional networks during visual tasks.

    Science.gov (United States)

    Zhuo, Zhao; Cai, Shi-Min; Fu, Zhong-Qian; Zhang, Jie

    2011-09-01

    The functional network of the brain is known to demonstrate modular structure over different hierarchical scales. In this paper, we systematically investigated the hierarchical modular organizations of the brain functional networks that are derived from the extent of phase synchronization among high-resolution EEG time series during a visual task. In particular, we compare the modular structure of the functional network from EEG channels with that of the anatomical parcellation of the brain cortex. Our results show that the modular architectures of brain functional networks correspond well to those from the anatomical structures over different levels of hierarchy. Most importantly, we find that the consistency between the modular structures of the functional network and the anatomical network becomes more pronounced in terms of vision, sensory, vision-temporal, motor cortices during the visual task, which implies that the strong modularity in these areas forms the functional basis for the visual task. The structure-function relationship further reveals that the phase synchronization of EEG time series in the same anatomical group is much stronger than that of EEG time series from different anatomical groups during the task and that the hierarchical organization of functional brain network may be a consequence of functional segmentation of the brain cortex.

  6. Hierarchical and coupling model of factors influencing vessel traffic flow.

    Directory of Open Access Journals (Sweden)

    Zhao Liu

    Full Text Available Understanding the characteristics of vessel traffic flow is crucial in maintaining navigation safety, efficiency, and overall waterway transportation management. Factors influencing vessel traffic flow possess diverse features such as hierarchy, uncertainty, nonlinearity, complexity, and interdependency. To reveal the impact mechanism of the factors influencing vessel traffic flow, a hierarchical model and a coupling model are proposed in this study based on the interpretative structural modeling method. The hierarchical model explains the hierarchies and relationships of the factors using a graph. The coupling model provides a quantitative method that explores interaction effects of factors using a coupling coefficient. The coupling coefficient is obtained by determining the quantitative indicators of the factors and their weights. Thereafter, the data obtained from Port of Tianjin is used to verify the proposed coupling model. The results show that the hierarchical model of the factors influencing vessel traffic flow can explain the level, structure, and interaction effect of the factors; the coupling model is efficient in analyzing factors influencing traffic volumes. The proposed method can be used for analyzing increases in vessel traffic flow in waterway transportation system.

  7. Superhydrophobic hierarchical arrays fabricated by a scalable colloidal lithography approach.

    Science.gov (United States)

    Kothary, Pratik; Dou, Xuan; Fang, Yin; Gu, Zhuxiao; Leo, Sin-Yen; Jiang, Peng

    2017-02-01

    Here we report an unconventional colloidal lithography approach for fabricating a variety of periodic polymer nanostructures with tunable geometries and hydrophobic properties. Wafer-sized, double-layer, non-close-packed silica colloidal crystal embedded in a polymer matrix is first assembled by a scalable spin-coating technology. The unusual non-close-packed crystal structure combined with a thin polymer film separating the top and the bottom colloidal layers render great versatility in templating periodic nanostructures, including arrays of nanovoids, nanorings, and hierarchical nanovoids. These different geometries result in varied fractions of entrapped air in between the templated nanostructures, which in turn lead to different apparent water contact angles. Superhydrophobic surfaces with >150° water contact angles and <5° contact angle hysteresis are achieved on fluorosilane-modified polymer hierarchical nanovoid arrays with large fractions of entrapped air. The experimental contact angle measurements are complemented with theoretical predictions using the Cassie's model to gain insights into the fundamental microstructure-dewetting property relationships. The experimental and theoretical contact angles follow the same trends as determined by the unique hierarchical structures of the templated periodic arrays. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Hierarchical and coupling model of factors influencing vessel traffic flow.

    Science.gov (United States)

    Liu, Zhao; Liu, Jingxian; Li, Huanhuan; Li, Zongzhi; Tan, Zhirong; Liu, Ryan Wen; Liu, Yi

    2017-01-01

    Understanding the characteristics of vessel traffic flow is crucial in maintaining navigation safety, efficiency, and overall waterway transportation management. Factors influencing vessel traffic flow possess diverse features such as hierarchy, uncertainty, nonlinearity, complexity, and interdependency. To reveal the impact mechanism of the factors influencing vessel traffic flow, a hierarchical model and a coupling model are proposed in this study based on the interpretative structural modeling method. The hierarchical model explains the hierarchies and relationships of the factors using a graph. The coupling model provides a quantitative method that explores interaction effects of factors using a coupling coefficient. The coupling coefficient is obtained by determining the quantitative indicators of the factors and their weights. Thereafter, the data obtained from Port of Tianjin is used to verify the proposed coupling model. The results show that the hierarchical model of the factors influencing vessel traffic flow can explain the level, structure, and interaction effect of the factors; the coupling model is efficient in analyzing factors influencing traffic volumes. The proposed method can be used for analyzing increases in vessel traffic flow in waterway transportation system.

  9. Multiple simultaneous fault diagnosis via hierarchical and single artificial neural networks

    International Nuclear Information System (INIS)

    Eslamloueyan, R.; Shahrokhi, M.; Bozorgmehri, R.

    2003-01-01

    Process fault diagnosis involves interpreting the current status of the plant given sensor reading and process knowledge. There has been considerable work done in this area with a variety of approaches being proposed for process fault diagnosis. Neural networks have been used to solve process fault diagnosis problems in chemical process, as they are well suited for recognizing multi-dimensional nonlinear patterns. In this work, the use of Hierarchical Artificial Neural Networks in diagnosing the multi-faults of a chemical process are discussed and compared with that of Single Artificial Neural Networks. The lower efficiency of Hierarchical Artificial Neural Networks , in comparison to Single Artificial Neural Networks, in process fault diagnosis is elaborated and analyzed. Also, the concept of a multi-level selection switch is presented and developed to improve the performance of hierarchical artificial neural networks. Simulation results indicate that application of multi-level selection switch increase the performance of the hierarchical artificial neural networks considerably

  10. Band structures of two dimensional solid/air hierarchical phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y.L.; Tian, X.G. [State Key Laboratory for Mechanical Structure Strength and Vibration, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, C.Q., E-mail: chencq@tsinghua.edu.cn [Department of Engineering Mechanics, AML and CNMM, Tsinghua University, Beijing 100084 (China)

    2012-06-15

    The hierarchical phononic crystals to be considered show a two-order 'hierarchical' feature, which consists of square array arranged macroscopic periodic unit cells with each unit cell itself including four sub-units. Propagation of acoustic wave in such two dimensional solid/air phononic crystals is investigated by the finite element method (FEM) with the Bloch theory. Their band structure, wave filtering property, and the physical mechanism responsible for the broadened band gap are explored. The corresponding ordinary phononic crystal without hierarchical feature is used for comparison. Obtained results show that the solid/air hierarchical phononic crystals possess tunable outstanding band gap features, which are favorable for applications such as sound insulation and vibration attenuation.

  11. An Improved Hierarchical Genetic Algorithm for Sheet Cutting Scheduling with Process Constraints

    Directory of Open Access Journals (Sweden)

    Yunqing Rao

    2013-01-01

    Full Text Available For the first time, an improved hierarchical genetic algorithm for sheet cutting problem which involves n cutting patterns for m non-identical parallel machines with process constraints has been proposed in the integrated cutting stock model. The objective of the cutting scheduling problem is minimizing the weighted completed time. A mathematical model for this problem is presented, an improved hierarchical genetic algorithm (ant colony—hierarchical genetic algorithm is developed for better solution, and a hierarchical coding method is used based on the characteristics of the problem. Furthermore, to speed up convergence rates and resolve local convergence issues, a kind of adaptive crossover probability and mutation probability is used in this algorithm. The computational result and comparison prove that the presented approach is quite effective for the considered problem.

  12. An improved hierarchical genetic algorithm for sheet cutting scheduling with process constraints.

    Science.gov (United States)

    Rao, Yunqing; Qi, Dezhong; Li, Jinling

    2013-01-01

    For the first time, an improved hierarchical genetic algorithm for sheet cutting problem which involves n cutting patterns for m non-identical parallel machines with process constraints has been proposed in the integrated cutting stock model. The objective of the cutting scheduling problem is minimizing the weighted completed time. A mathematical model for this problem is presented, an improved hierarchical genetic algorithm (ant colony--hierarchical genetic algorithm) is developed for better solution, and a hierarchical coding method is used based on the characteristics of the problem. Furthermore, to speed up convergence rates and resolve local convergence issues, a kind of adaptive crossover probability and mutation probability is used in this algorithm. The computational result and comparison prove that the presented approach is quite effective for the considered problem.

  13. Intermediate and advanced topics in multilevel logistic regression analysis.

    Science.gov (United States)

    Austin, Peter C; Merlo, Juan

    2017-09-10

    Multilevel data occur frequently in health services, population and public health, and epidemiologic research. In such research, binary outcomes are common. Multilevel logistic regression models allow one to account for the clustering of subjects within clusters of higher-level units when estimating the effect of subject and cluster characteristics on subject outcomes. A search of the PubMed database demonstrated that the use of multilevel or hierarchical regression models is increasing rapidly. However, our impression is that many analysts simply use multilevel regression models to account for the nuisance of within-cluster homogeneity that is induced by clustering. In this article, we describe a suite of analyses that can complement the fitting of multilevel logistic regression models. These ancillary analyses permit analysts to estimate the marginal or population-average effect of covariates measured at the subject and cluster level, in contrast to the within-cluster or cluster-specific effects arising from the original multilevel logistic regression model. We describe the interval odds ratio and the proportion of opposed odds ratios, which are summary measures of effect for cluster-level covariates. We describe the variance partition coefficient and the median odds ratio which are measures of components of variance and heterogeneity in outcomes. These measures allow one to quantify the magnitude of the general contextual effect. We describe an R 2 measure that allows analysts to quantify the proportion of variation explained by different multilevel logistic regression models. We illustrate the application and interpretation of these measures by analyzing mortality in patients hospitalized with a diagnosis of acute myocardial infarction. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

  14. Quantile Regression With Measurement Error

    KAUST Repository

    Wei, Ying

    2009-08-27

    Regression quantiles can be substantially biased when the covariates are measured with error. In this paper we propose a new method that produces consistent linear quantile estimation in the presence of covariate measurement error. The method corrects the measurement error induced bias by constructing joint estimating equations that simultaneously hold for all the quantile levels. An iterative EM-type estimation algorithm to obtain the solutions to such joint estimation equations is provided. The finite sample performance of the proposed method is investigated in a simulation study, and compared to the standard regression calibration approach. Finally, we apply our methodology to part of the National Collaborative Perinatal Project growth data, a longitudinal study with an unusual measurement error structure. © 2009 American Statistical Association.

  15. Multivariate and semiparametric kernel regression

    OpenAIRE

    Härdle, Wolfgang; Müller, Marlene

    1997-01-01

    The paper gives an introduction to theory and application of multivariate and semiparametric kernel smoothing. Multivariate nonparametric density estimation is an often used pilot tool for examining the structure of data. Regression smoothing helps in investigating the association between covariates and responses. We concentrate on kernel smoothing using local polynomial fitting which includes the Nadaraya-Watson estimator. Some theory on the asymptotic behavior and bandwidth selection is pro...

  16. Regression algorithm for emotion detection

    OpenAIRE

    Berthelon , Franck; Sander , Peter

    2013-01-01

    International audience; We present here two components of a computational system for emotion detection. PEMs (Personalized Emotion Maps) store links between bodily expressions and emotion values, and are individually calibrated to capture each person's emotion profile. They are an implementation based on aspects of Scherer's theoretical complex system model of emotion~\\cite{scherer00, scherer09}. We also present a regression algorithm that determines a person's emotional feeling from sensor m...

  17. Directional quantile regression in R

    Czech Academy of Sciences Publication Activity Database

    Boček, Pavel; Šiman, Miroslav

    2017-01-01

    Roč. 53, č. 3 (2017), s. 480-492 ISSN 0023-5954 R&D Projects: GA ČR GA14-07234S Institutional support: RVO:67985556 Keywords : multivariate quantile * regression quantile * halfspace depth * depth contour Subject RIV: BD - Theory of Information OBOR OECD: Applied mathematics Impact factor: 0.379, year: 2016 http://library.utia.cas.cz/separaty/2017/SI/bocek-0476587.pdf

  18. Hierarchically nanostructured hydroxyapatite: hydrothermal synthesis, morphology control, growth mechanism, and biological activity

    Science.gov (United States)

    Ma, Ming-Guo

    2012-01-01

    Hierarchically nanosized hydroxyapatite (HA) with flower-like structure assembled from nanosheets consisting of nanorod building blocks was successfully synthesized by using CaCl2, NaH2PO4, and potassium sodium tartrate via a hydrothermal method at 200°C for 24 hours. The effects of heating time and heating temperature on the products were investigated. As a chelating ligand and template molecule, the potassium sodium tartrate plays a key role in the formation of hierarchically nanostructured HA. On the basis of experimental results, a possible mechanism based on soft-template and self-assembly was proposed for the formation and growth of the hierarchically nanostructured HA. Cytotoxicity experiments indicated that the hierarchically nanostructured HA had good biocompatibility. It was shown by in-vitro experiments that mesenchymal stem cells could attach to the hierarchically nanostructured HA after being cultured for 48 hours. Objective The purpose of this study was to develop facile and effective methods for the synthesis of novel hydroxyapatite (HA) with hierarchical nanostructures assembled from independent and discrete nanobuilding blocks. Methods A simple hydrothermal approach was applied to synthesize HA by using CaCl2, NaH2PO4, and potassium sodium tartrate at 200°C for 24 hours. The cell cytotoxicity of the hierarchically nanostructured HA was tested by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Results HA displayed the flower-like structure assembled from nanosheets consisting of nanorod building blocks. The potassium sodium tartrate was used as a chelating ligand, inducing the formation and self-assembly of HA nanorods. The heating time and heating temperature influenced the aggregation and morphology of HA. The cell viability did not decrease with the increasing concentration of hierarchically nanostructured HA added. Conclusion A novel, simple and reliable hydrothermal route had been developed for the synthesis of

  19. Gaussian Process Regression Model in Spatial Logistic Regression

    Science.gov (United States)

    Sofro, A.; Oktaviarina, A.

    2018-01-01

    Spatial analysis has developed very quickly in the last decade. One of the favorite approaches is based on the neighbourhood of the region. Unfortunately, there are some limitations such as difficulty in prediction. Therefore, we offer Gaussian process regression (GPR) to accommodate the issue. In this paper, we will focus on spatial modeling with GPR for binomial data with logit link function. The performance of the model will be investigated. We will discuss the inference of how to estimate the parameters and hyper-parameters and to predict as well. Furthermore, simulation studies will be explained in the last section.

  20. Runtime Concepts of Hierarchical Software Components

    Czech Academy of Sciences Publication Activity Database

    Bureš, Tomáš; Hnětynka, P.; Plášil, František

    2007-01-01

    Roč. 8, special (2007), s. 454-463 ISSN 1525-9293 R&D Projects: GA AV ČR 1ET400300504 Institutional research plan: CEZ:AV0Z10300504 Keywords : component-based development * hierarchical components * connectors * controlers * runtime environment Subject RIV: JC - Computer Hardware ; Software

  1. Hierarchical Broadcasting in the Future Mobile Internet

    NARCIS (Netherlands)

    Hesselman, C.E.W.; Eertink, E.H.; Fernandez, Milagros; Crnkovic, Ivica; Fohler, Gerhard; Griwodz, Carsten; Plagemann, Thomas; Gruenbacher, Paul

    2002-01-01

    We describe an architecture for the hierarchical distribution of multimedia broadcasts in the future mobile Internet. The architecture supports network as well as application-layer mobility solutions, and uses stream control functions that are influenced by available network resources, user-defined

  2. Modular networks with hierarchical organization: The dynamical ...

    Indian Academy of Sciences (India)

    Most of the complex systems seen in real life also have associated dynamics [10], and the ... another example, this time a hierarchical structure, viz., the Cayley tree with b ..... natural constraints operating on networks in real life, such as the ...

  3. A hierarchical model for ordinal matrix factorization

    DEFF Research Database (Denmark)

    Paquet, Ulrich; Thomson, Blaise; Winther, Ole

    2012-01-01

    This paper proposes a hierarchical probabilistic model for ordinal matrix factorization. Unlike previous approaches, we model the ordinal nature of the data and take a principled approach to incorporating priors for the hidden variables. Two algorithms are presented for inference, one based...

  4. Hierarchical Control for Multiple DC Microgrids Clusters

    DEFF Research Database (Denmark)

    Shafiee, Qobad; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2014-01-01

    This paper presents a distributed hierarchical control framework to ensure reliable operation of dc Microgrid (MG) clusters. In this hierarchy, primary control is used to regulate the common bus voltage inside each MG locally. An adaptive droop method is proposed for this level which determines...

  5. Ultrafast Hierarchical OTDM/WDM Network

    Directory of Open Access Journals (Sweden)

    Hideyuki Sotobayashi

    2003-12-01

    Full Text Available Ultrafast hierarchical OTDM/WDM network is proposed for the future core-network. We review its enabling technologies: C- and L-wavelength-band generation, OTDM-WDM mutual multiplexing format conversions, and ultrafast OTDM wavelengthband conversions.

  6. Hierarchical machining materials and their performance

    DEFF Research Database (Denmark)

    Sidorenko, Daria; Loginov, Pavel; Levashov, Evgeny

    2016-01-01

    as nanoparticles in the binder, or polycrystalline, aggregate-like reinforcements, also at several scale levels). Such materials can ensure better productivity, efficiency, and lower costs of drilling, cutting, grinding, and other technological processes. This article reviews the main groups of hierarchical...

  7. A hierarchical classification scheme of psoriasis images

    DEFF Research Database (Denmark)

    Maletti, Gabriela Mariel; Ersbøll, Bjarne Kjær

    2003-01-01

    A two-stage hierarchical classification scheme of psoriasis lesion images is proposed. These images are basically composed of three classes: normal skin, lesion and background. The scheme combines conventional tools to separate the skin from the background in the first stage, and the lesion from...

  8. Hierarchical pre-segmentation without prior knowledge

    NARCIS (Netherlands)

    Kuijper, A.; Florack, L.M.J.

    2001-01-01

    A new method to pre-segment images by means of a hierarchical description is proposed. This description is obtained from an investigation of the deep structure of a scale space image – the input image and the Gaussian filtered ones simultaneously. We concentrate on scale space critical points –

  9. Hierarchical spatial organization of geographical networks

    International Nuclear Information System (INIS)

    Travencolo, Bruno A N; Costa, Luciano da F

    2008-01-01

    In this work, we propose a hierarchical extension of the polygonality index as the means to characterize geographical planar networks. By considering successive neighborhoods around each node, it is possible to obtain more complete information about the spatial order of the network at progressive spatial scales. The potential of the methodology is illustrated with respect to synthetic and real geographical networks

  10. Hierarchical production planning for consumer goods

    NARCIS (Netherlands)

    Kok, de A.G.

    1990-01-01

    Abstract In this paper the mathematical logic behind a hierarchical planning procedure is discussed. The planning procedure is used to derive production volumes of consumer products. The essence of the planning procedure is that first a commitment is made concerning the production volume for a

  11. Hierarchical Bayesian Models of Subtask Learning

    Science.gov (United States)

    Anglim, Jeromy; Wynton, Sarah K. A.

    2015-01-01

    The current study used Bayesian hierarchical methods to challenge and extend previous work on subtask learning consistency. A general model of individual-level subtask learning was proposed focusing on power and exponential functions with constraints to test for inconsistency. To study subtask learning, we developed a novel computer-based booking…

  12. Few crystal balls are crystal clear : eyeballing regression

    International Nuclear Information System (INIS)

    Wittebrood, R.T.

    1998-01-01

    The theory of regression and statistical analysis as it applies to reservoir analysis was discussed. It was argued that regression lines are not always the final truth. It was suggested that regression lines and eyeballed lines are often equally accurate. The many conditions that must be fulfilled to calculate a proper regression were discussed. Mentioned among these conditions were the distribution of the data, hidden variables, knowledge of how the data was obtained, the need for causal correlation of the variables, and knowledge of the manner in which the regression results are going to be used. 1 tab., 13 figs

  13. Hierarchical Representation Learning for Kinship Verification.

    Science.gov (United States)

    Kohli, Naman; Vatsa, Mayank; Singh, Richa; Noore, Afzel; Majumdar, Angshul

    2017-01-01

    Kinship verification has a number of applications such as organizing large collections of images and recognizing resemblances among humans. In this paper, first, a human study is conducted to understand the capabilities of human mind and to identify the discriminatory areas of a face that facilitate kinship-cues. The visual stimuli presented to the participants determine their ability to recognize kin relationship using the whole face as well as specific facial regions. The effect of participant gender and age and kin-relation pair of the stimulus is analyzed using quantitative measures such as accuracy, discriminability index d' , and perceptual information entropy. Utilizing the information obtained from the human study, a hierarchical kinship verification via representation learning (KVRL) framework is utilized to learn the representation of different face regions in an unsupervised manner. We propose a novel approach for feature representation termed as filtered contractive deep belief networks (fcDBN). The proposed feature representation encodes relational information present in images using filters and contractive regularization penalty. A compact representation of facial images of kin is extracted as an output from the learned model and a multi-layer neural network is utilized to verify the kin accurately. A new WVU kinship database is created, which consists of multiple images per subject to facilitate kinship verification. The results show that the proposed deep learning framework (KVRL-fcDBN) yields the state-of-the-art kinship verification accuracy on the WVU kinship database and on four existing benchmark data sets. Furthermore, kinship information is used as a soft biometric modality to boost the performance of face verification via product of likelihood ratio and support vector machine based approaches. Using the proposed KVRL-fcDBN framework, an improvement of over 20% is observed in the performance of face verification.

  14. Object recognition with hierarchical discriminant saliency networks

    Directory of Open Access Journals (Sweden)

    Sunhyoung eHan

    2014-09-01

    Full Text Available The benefits of integrating attention and object recognition are investigated. While attention is frequently modeled as pre-processor for recognition, we investigate the hypothesis that attention is an intrinsic component of recognition and vice-versa. This hypothesis is tested with a recognitionmodel, the hierarchical discriminant saliency network (HDSN, whose layers are top-down saliency detectors, tuned for a visual class according to the principles of discriminant saliency. The HDSN has two possible implementations. In a biologically plausible implementation, all layers comply with the standard neurophysiological model of visual cortex, with sub-layers of simple and complex units that implement a combination of filtering, divisive normalization, pooling, and non-linearities. In a neuralnetwork implementation, all layers are convolutional and implement acombination of filtering, rectification, and pooling. The rectificationis performed with a parametric extension of the now popular rectified linearunits (ReLUs, whose parameters can be tuned for the detection of targetobject classes. This enables a number of functional enhancementsover neural network models that lack a connection to saliency, including optimal feature denoising mechanisms for recognition, modulation ofsaliency responses by the discriminant power of the underlying features,and the ability to detect both feature presence and absence.In either implementation, each layer has a precise statistical interpretation, and all parameters are tuned by statistical learning. Each saliency detection layer learns more discriminant saliency templates than its predecessors and higher layers have larger pooling fields. This enables the HDSN to simultaneously achieve high selectivity totarget object classes and invariance. The resulting performance demonstrates benefits for all the functional enhancements of the HDSN.

  15. Piecewise linear regression splines with hyperbolic covariates

    International Nuclear Information System (INIS)

    Cologne, John B.; Sposto, Richard

    1992-09-01

    Consider the problem of fitting a curve to data that exhibit a multiphase linear response with smooth transitions between phases. We propose substituting hyperbolas as covariates in piecewise linear regression splines to obtain curves that are smoothly joined. The method provides an intuitive and easy way to extend the two-phase linear hyperbolic response model of Griffiths and Miller and Watts and Bacon to accommodate more than two linear segments. The resulting regression spline with hyperbolic covariates may be fit by nonlinear regression methods to estimate the degree of curvature between adjoining linear segments. The added complexity of fitting nonlinear, as opposed to linear, regression models is not great. The extra effort is particularly worthwhile when investigators are unwilling to assume that the slope of the response changes abruptly at the join points. We can also estimate the join points (the values of the abscissas where the linear segments would intersect if extrapolated) if their number and approximate locations may be presumed known. An example using data on changing age at menarche in a cohort of Japanese women illustrates the use of the method for exploratory data analysis. (author)

  16. Targeting: Logistic Regression, Special Cases and Extensions

    Directory of Open Access Journals (Sweden)

    Helmut Schaeben

    2014-12-01

    Full Text Available Logistic regression is a classical linear model for logit-transformed conditional probabilities of a binary target variable. It recovers the true conditional probabilities if the joint distribution of predictors and the target is of log-linear form. Weights-of-evidence is an ordinary logistic regression with parameters equal to the differences of the weights of evidence if all predictor variables are discrete and conditionally independent given the target variable. The hypothesis of conditional independence can be tested in terms of log-linear models. If the assumption of conditional independence is violated, the application of weights-of-evidence does not only corrupt the predicted conditional probabilities, but also their rank transform. Logistic regression models, including the interaction terms, can account for the lack of conditional independence, appropriate interaction terms compensate exactly for violations of conditional independence. Multilayer artificial neural nets may be seen as nested regression-like models, with some sigmoidal activation function. Most often, the logistic function is used as the activation function. If the net topology, i.e., its control, is sufficiently versatile to mimic interaction terms, artificial neural nets are able to account for violations of conditional independence and yield very similar results. Weights-of-evidence cannot reasonably include interaction terms; subsequent modifications of the weights, as often suggested, cannot emulate the effect of interaction terms.

  17. Hierarchical subtask discovery with non-negative matrix factorization

    CSIR Research Space (South Africa)

    Earle, AC

    2018-04-01

    Full Text Available Hierarchical reinforcement learning methods offer a powerful means of planning flexible behavior in complicated domains. However, learning an appropriate hierarchical decomposition of a domain into subtasks remains a substantial challenge. We...

  18. Hierarchical subtask discovery with non-negative matrix factorization

    CSIR Research Space (South Africa)

    Earle, AC

    2017-08-01

    Full Text Available Hierarchical reinforcement learning methods offer a powerful means of planning flexible behavior in complicated domains. However, learning an appropriate hierarchical decomposition of a domain into subtasks remains a substantial challenge. We...

  19. Virtual timers in hierarchical real-time systems

    NARCIS (Netherlands)

    Heuvel, van den M.M.H.P.; Holenderski, M.J.; Cools, W.A.; Bril, R.J.; Lukkien, J.J.; Zhu, D.

    2009-01-01

    Hierarchical scheduling frameworks (HSFs) provide means for composing complex real-time systems from welldefined subsystems. This paper describes an approach to provide hierarchically scheduled real-time applications with virtual event timers, motivated by the need for integrating priority

  20. Parameter-Invariant Hierarchical Exclusive Alphabet Design for 2-WRC with HDF Strategy

    Directory of Open Access Journals (Sweden)

    T. Uřičář

    2010-01-01

    Full Text Available Hierarchical eXclusive Code (HXC for the Hierarchical Decode and Forward (HDF strategy in the Wireless 2-Way Relay Channel (2-WRC has the achievable rate region extended beyond the classical MAC region. Although direct HXC design is in general highly complex, a layered approach to HXC design is a feasible solution. While the outer layer code of the layered HXC can be any state-of-the-art capacity approaching code, the inner layer must be designed in such a way that the exclusive property of hierarchical symbols (received at the relay will be provided. The simplest case of the inner HXC layer is a simple signal space channel symbol memoryless mapper called Hierarchical eXclusive Alphabet (HXA. The proper design of HXA is important, especially in the case of parametric channels, where channel parametrization (e.g. phase rotation can violate the exclusive property of hierarchical symbols (as seen by the relay, resulting in significant capacity degradation. In this paper we introduce an example of a geometrical approach to Parameter-Invariant HXA design, and we show that the corresponding hierarchical MAC capacity region extends beyond the classical MAC region, irrespective of the channel pametrization.

  1. Resolution of Singularities Introduced by Hierarchical Structure in Deep Neural Networks.

    Science.gov (United States)

    Nitta, Tohru

    2017-10-01

    We present a theoretical analysis of singular points of artificial deep neural networks, resulting in providing deep neural network models having no critical points introduced by a hierarchical structure. It is considered that such deep neural network models have good nature for gradient-based optimization. First, we show that there exist a large number of critical points introduced by a hierarchical structure in deep neural networks as straight lines, depending on the number of hidden layers and the number of hidden neurons. Second, we derive a sufficient condition for deep neural networks having no critical points introduced by a hierarchical structure, which can be applied to general deep neural networks. It is also shown that the existence of critical points introduced by a hierarchical structure is determined by the rank and the regularity of weight matrices for a specific class of deep neural networks. Finally, two kinds of implementation methods of the sufficient conditions to have no critical points are provided. One is a learning algorithm that can avoid critical points introduced by the hierarchical structure during learning (called avoidant learning algorithm). The other is a neural network that does not have some critical points introduced by the hierarchical structure as an inherent property (called avoidant neural network).

  2. Stress generation and hierarchical fracturing in reactive systems

    Science.gov (United States)

    Jamtveit, B.; Iyer, K.; Royne, A.; Malthe-Sorenssen, A.; Mathiesen, J.; Feder, J.

    2007-12-01

    Hierarchical fracture patterns are the result of a slowly driven fracturing process that successively divides the rocks into smaller domains. In quasi-2D systems, such fracture patterns are characterized by four sided domains, and T-junctions where new fractures stop at right angles to pre-existing fractures. We describe fracturing of mm to dm thick enstatite layers in a dunite matrix from the Leka ophiolite complex in Norway. The fracturing process is driven by expansion of the dunite matrix during serpentinization. The cumulative distributions of fracture lengths show a scaling behavior that lies between a log - normal and power law (fractal) distribution. This is consistent with a simple fragmentation model in which domains are divided according to a 'top hat' distribution of new fracture positions within unfractured domains. Reaction-assisted hierarchical fracturing is also likely to be responsible for other (3-D) structures commonly observed in serpentinized ultramafic rocks, including the mesh-textures observed in individual olivine grains, and the high abundance of rectangular domains at a wide range of scales. Spectacular examples of 3-D hierarchical fracture patterns also form during the weathering of basaltic intrusions (dolerites). Incipient chemical weathering of dolerites in the Karoo Basin in South Africa occurs around water- filled fractures, originally produced by thermal contraction or by externally imposed stresses. This chemical weathering causes local expansion of the rock matrix and generates elastic stresses. On a mm to cm scale, these stresses lead to mechanical layer-by-layer spalling, producing the characteristic spheroidal weathering patterns. However, our field observations and computer simulations demonstrate that in confined environments, the spalling process alone is unable to relieve the elastic stresses. In such cases, chemical weathering drives a much larger scale hierarchical fracturing process in which fresh dolerite undergoes a

  3. Hierarchical drivers of reef-fish metacommunity structure.

    Science.gov (United States)

    MacNeil, M Aaron; Graham, Nicholas A J; Polunin, Nicholas V C; Kulbicki, Michel; Galzin, René; Harmelin-Vivien, Mireille; Rushton, Steven P

    2009-01-01

    multiple spatial scales; and (3) inter-atoll connectedness was poorly correlated with the nonrandom clustering of reef-fish species. These results demonstrate the importance of modeling hierarchical data and processes in understanding reef-fish metacommunity structure.

  4. Hierarchically Nanoporous Bioactive Glasses for High Efficiency Immobilization of Enzymes

    DEFF Research Database (Denmark)

    He, W.; Min, D.D.; Zhang, X.D.

    2014-01-01

    Bioactive glasses with hierarchical nanoporosity and structures have been heavily involved in immobilization of enzymes. Because of meticulous design and ingenious hierarchical nanostructuration of porosities from yeast cell biotemplates, hierarchically nanostructured porous bioactive glasses can...... and products of catalytic reactions can freely diffuse through open mesopores (2–40 nm). The formation mechanism of hierarchically structured porous bioactive glasses, the immobilization mechanism of enzyme and the catalysis mechanism of immobilized enzyme are then discussed. The novel nanostructure...

  5. Prediction of unwanted pregnancies using logistic regression, probit regression and discriminant analysis.

    Science.gov (United States)

    Ebrahimzadeh, Farzad; Hajizadeh, Ebrahim; Vahabi, Nasim; Almasian, Mohammad; Bakhteyar, Katayoon

    2015-01-01

    Unwanted pregnancy not intended by at least one of the parents has undesirable consequences for the family and the society. In the present study, three classification models were used and compared to predict unwanted pregnancies in an urban population. In this cross-sectional study, 887 pregnant mothers referring to health centers in Khorramabad, Iran, in 2012 were selected by the stratified and cluster sampling; relevant variables were measured and for prediction of unwanted pregnancy, logistic regression, discriminant analysis, and probit regression models and SPSS software version 21 were used. To compare these models, indicators such as sensitivity, specificity, the area under the ROC curve, and the percentage of correct predictions were used. The prevalence of unwanted pregnancies was 25.3%. The logistic and probit regression models indicated that parity and pregnancy spacing, contraceptive methods, household income and number of living male children were related to unwanted pregnancy. The performance of the models based on the area under the ROC curve was 0.735, 0.733, and 0.680 for logistic regression, probit regression, and linear discriminant analysis, respectively. Given the relatively high prevalence of unwanted pregnancies in Khorramabad, it seems necessary to revise family planning programs. Despite the similar accuracy of the models, if the researcher is interested in the interpretability of the results, the use of the logistic regression model is recommended.

  6. Hierarchical LiFePO4 with a controllable growth of the (010) facet for lithium-ion batteries.

    Science.gov (United States)

    Guo, Binbin; Ruan, Hongcheng; Zheng, Cheng; Fei, Hailong; Wei, Mingdeng

    2013-09-27

    Hierarchically structured LiFePO4 was successfully synthesized by ionic liquid solvothermal method. These hierarchically structured LiFePO4 samples were constructed from nanostructured platelets with their (010) facets mainly exposed. To the best of our knowledge, facet control of a hierarchical LiFePO4 crystal has not been reported yet. Based on a series of experimental results, a tentative mechanism for the formation of these hierarchical structures was proposed. After these hierarchically structured LiFePO4 samples were coated with a thin carbon layer and used as cathode materials for lithium-ion batteries, they exhibited excellent high-rate discharge capability and cycling stability. For instance, a capacity of 95% can be maintained for the LiFePO4 sample at a rate as high as 20 C, even after 1000 cycles.

  7. Parental Vaccine Acceptance: A Logistic Regression Model Using Previsit Decisions.

    Science.gov (United States)

    Lee, Sara; Riley-Behringer, Maureen; Rose, Jeanmarie C; Meropol, Sharon B; Lazebnik, Rina

    2017-07-01

    This study explores how parents' intentions regarding vaccination prior to their children's visit were associated with actual vaccine acceptance. A convenience sample of parents accompanying 6-week-old to 17-year-old children completed a written survey at 2 pediatric practices. Using hierarchical logistic regression, for hospital-based participants (n = 216), vaccine refusal history ( P < .01) and vaccine decision made before the visit ( P < .05) explained 87% of vaccine refusals. In community-based participants (n = 100), vaccine refusal history ( P < .01) explained 81% of refusals. Over 1 in 5 parents changed their minds about vaccination during the visit. Thirty parents who were previous vaccine refusers accepted current vaccines, and 37 who had intended not to vaccinate choose vaccination. Twenty-nine parents without a refusal history declined vaccines, and 32 who did not intend to refuse before the visit declined vaccination. Future research should identify key factors to nudge parent decision making in favor of vaccination.

  8. Regression: The Apple Does Not Fall Far From the Tree.

    Science.gov (United States)

    Vetter, Thomas R; Schober, Patrick

    2018-05-15

    Researchers and clinicians are frequently interested in either: (1) assessing whether there is a relationship or association between 2 or more variables and quantifying this association; or (2) determining whether 1 or more variables can predict another variable. The strength of such an association is mainly described by the correlation. However, regression analysis and regression models can be used not only to identify whether there is a significant relationship or association between variables but also to generate estimations of such a predictive relationship between variables. This basic statistical tutorial discusses the fundamental concepts and techniques related to the most common types of regression analysis and modeling, including simple linear regression, multiple regression, logistic regression, ordinal regression, and Poisson regression, as well as the common yet often underrecognized phenomenon of regression toward the mean. The various types of regression analysis are powerful statistical techniques, which when appropriately applied, can allow for the valid interpretation of complex, multifactorial data. Regression analysis and models can assess whether there is a relationship or association between 2 or more observed variables and estimate the strength of this association, as well as determine whether 1 or more variables can predict another variable. Regression is thus being applied more commonly in anesthesia, perioperative, critical care, and pain research. However, it is crucial to note that regression can identify plausible risk factors; it does not prove causation (a definitive cause and effect relationship). The results of a regression analysis instead identify independent (predictor) variable(s) associated with the dependent (outcome) variable. As with other statistical methods, applying regression requires that certain assumptions be met, which can be tested with specific diagnostics.

  9. Spontaneous regression of pulmonary bullae

    International Nuclear Information System (INIS)

    Satoh, H.; Ishikawa, H.; Ohtsuka, M.; Sekizawa, K.

    2002-01-01

    The natural history of pulmonary bullae is often characterized by gradual, progressive enlargement. Spontaneous regression of bullae is, however, very rare. We report a case in which complete resolution of pulmonary bullae in the left upper lung occurred spontaneously. The management of pulmonary bullae is occasionally made difficult because of gradual progressive enlargement associated with abnormal pulmonary function. Some patients have multiple bulla in both lungs and/or have a history of pulmonary emphysema. Others have a giant bulla without emphysematous change in the lungs. Our present case had treated lung cancer with no evidence of local recurrence. He had no emphysematous change in lung function test and had no complaints, although the high resolution CT scan shows evidence of underlying minimal changes of emphysema. Ortin and Gurney presented three cases of spontaneous reduction in size of bulla. Interestingly, one of them had a marked decrease in the size of a bulla in association with thickening of the wall of the bulla, which was observed in our patient. This case we describe is of interest, not only because of the rarity with which regression of pulmonary bulla has been reported in the literature, but also because of the spontaneous improvements in the radiological picture in the absence of overt infection or tumor. Copyright (2002) Blackwell Science Pty Ltd

  10. Quantum algorithm for linear regression

    Science.gov (United States)

    Wang, Guoming

    2017-07-01

    We present a quantum algorithm for fitting a linear regression model to a given data set using the least-squares approach. Differently from previous algorithms which yield a quantum state encoding the optimal parameters, our algorithm outputs these numbers in the classical form. So by running it once, one completely determines the fitted model and then can use it to make predictions on new data at little cost. Moreover, our algorithm works in the standard oracle model, and can handle data sets with nonsparse design matrices. It runs in time poly( log2(N ) ,d ,κ ,1 /ɛ ) , where N is the size of the data set, d is the number of adjustable parameters, κ is the condition number of the design matrix, and ɛ is the desired precision in the output. We also show that the polynomial dependence on d and κ is necessary. Thus, our algorithm cannot be significantly improved. Furthermore, we also give a quantum algorithm that estimates the quality of the least-squares fit (without computing its parameters explicitly). This algorithm runs faster than the one for finding this fit, and can be used to check whether the given data set qualifies for linear regression in the first place.

  11. Interpretation of commonly used statistical regression models.

    Science.gov (United States)

    Kasza, Jessica; Wolfe, Rory

    2014-01-01

    A review of some regression models commonly used in respiratory health applications is provided in this article. Simple linear regression, multiple linear regression, logistic regression and ordinal logistic regression are considered. The focus of this article is on the interpretation of the regression coefficients of each model, which are illustrated through the application of these models to a respiratory health research study. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.

  12. Linear regression and the normality assumption.

    Science.gov (United States)

    Schmidt, Amand F; Finan, Chris

    2017-12-16

    Researchers often perform arbitrary outcome transformations to fulfill the normality assumption of a linear regression model. This commentary explains and illustrates that in large data settings, such transformations are often unnecessary, and worse may bias model estimates. Linear regression assumptions are illustrated using simulated data and an empirical example on the relation between time since type 2 diabetes diagnosis and glycated hemoglobin levels. Simulation results were evaluated on coverage; i.e., the number of times the 95% confidence interval included the true slope coefficient. Although outcome transformations bias point estimates, violations of the normality assumption in linear regression analyses do not. The normality assumption is necessary to unbiasedly estimate standard errors, and hence confidence intervals and P-values. However, in large sample sizes (e.g., where the number of observations per variable is >10) violations of this normality assumption often do not noticeably impact results. Contrary to this, assumptions on, the parametric model, absence of extreme observations, homoscedasticity, and independency of the errors, remain influential even in large sample size settings. Given that modern healthcare research typically includes thousands of subjects focusing on the normality assumption is often unnecessary, does not guarantee valid results, and worse may bias estimates due to the practice of outcome transformations. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Ridge regression estimator: combining unbiased and ordinary ridge regression methods of estimation

    Directory of Open Access Journals (Sweden)

    Sharad Damodar Gore

    2009-10-01

    Full Text Available Statistical literature has several methods for coping with multicollinearity. This paper introduces a new shrinkage estimator, called modified unbiased ridge (MUR. This estimator is obtained from unbiased ridge regression (URR in the same way that ordinary ridge regression (ORR is obtained from ordinary least squares (OLS. Properties of MUR are derived. Results on its matrix mean squared error (MMSE are obtained. MUR is compared with ORR and URR in terms of MMSE. These results are illustrated with an example based on data generated by Hoerl and Kennard (1975.

  14. Category theoretic analysis of hierarchical protein materials and social networks.

    Directory of Open Access Journals (Sweden)

    David I Spivak

    Full Text Available Materials in biology span all the scales from Angstroms to meters and typically consist of complex hierarchical assemblies of simple building blocks. Here we describe an application of category theory to describe structural and resulting functional properties of biological protein materials by developing so-called ologs. An olog is like a "concept web" or "semantic network" except that it follows a rigorous mathematical formulation based on category theory. This key difference ensures that an olog is unambiguous, highly adaptable to evolution and change, and suitable for sharing concepts with other olog. We consider simple cases of beta-helical and amyloid-like protein filaments subjected to axial extension and develop an olog representation of their structural and resulting mechanical properties. We also construct a representation of a social network in which people send text-messages to their nearest neighbors and act as a team to perform a task. We show that the olog for the protein and the olog for the social network feature identical category-theoretic representations, and we proceed to precisely explicate the analogy or isomorphism between them. The examples presented here demonstrate that the intrinsic nature of a complex system, which in particular includes a precise relationship between structure and function at different hierarchical levels, can be effectively represented by an olog. This, in turn, allows for comparative studies between disparate materials or fields of application, and results in novel approaches to derive functionality in the design of de novo hierarchical systems. We discuss opportunities and challenges associated with the description of complex biological materials by using ologs as a powerful tool for analysis and design in the context of materiomics, and we present the potential impact of this approach for engineering, life sciences, and medicine.

  15. Prediction, Regression and Critical Realism

    DEFF Research Database (Denmark)

    Næss, Petter

    2004-01-01

    This paper considers the possibility of prediction in land use planning, and the use of statistical research methods in analyses of relationships between urban form and travel behaviour. Influential writers within the tradition of critical realism reject the possibility of predicting social...... phenomena. This position is fundamentally problematic to public planning. Without at least some ability to predict the likely consequences of different proposals, the justification for public sector intervention into market mechanisms will be frail. Statistical methods like regression analyses are commonly...... seen as necessary in order to identify aggregate level effects of policy measures, but are questioned by many advocates of critical realist ontology. Using research into the relationship between urban structure and travel as an example, the paper discusses relevant research methods and the kinds...

  16. On Weighted Support Vector Regression

    DEFF Research Database (Denmark)

    Han, Xixuan; Clemmensen, Line Katrine Harder

    2014-01-01

    We propose a new type of weighted support vector regression (SVR), motivated by modeling local dependencies in time and space in prediction of house prices. The classic weights of the weighted SVR are added to the slack variables in the objective function (OF‐weights). This procedure directly...... shrinks the coefficient of each observation in the estimated functions; thus, it is widely used for minimizing influence of outliers. We propose to additionally add weights to the slack variables in the constraints (CF‐weights) and call the combination of weights the doubly weighted SVR. We illustrate...... the differences and similarities of the two types of weights by demonstrating the connection between the Least Absolute Shrinkage and Selection Operator (LASSO) and the SVR. We show that an SVR problem can be transformed to a LASSO problem plus a linear constraint and a box constraint. We demonstrate...

  17. Translating Management Practices in Hierarchical Organizations

    DEFF Research Database (Denmark)

    Wæraas, Arild; Nielsen, Jeppe Agger

    structures affect translators’ approaches taken towards management ideas. This paper reports the findings from a longitudinal case study of the translation of Leadership Pipeline in a Danish fire department and how the translators’ approach changed over time from a modifying to a reproducing mode. The study......This study examines how translators in a hierarchical context approach the translation of management practices. Although current translation theory and research emphasize the importance of contextual factors in translation processes, little research has investigated how strongly hierarchical...... finds that translation does not necessarily imply transformation of the management idea, pointing instead to aspects of exact imitation and copying of an ”original” idea. It also highlights how translation is likely to involve multiple and successive translation modes and, furthermore, that strongly...

  18. Hierarchical structure in the distribution of galaxies

    International Nuclear Information System (INIS)

    Schulman, L.S.; Seiden, P.E.; Technion - Israel Institute of Technology, Haifa; IBM Thomas J. Watson Research Center, Yorktown Heights, NY)

    1986-01-01

    The distribution of galaxies has a hierarchical structure with power-law correlations. This is usually thought to arise from gravity alone acting on an originally uniform distributioon. If, however, the original process of galaxy formation occurs through the stimulated birth of one galaxy due to a nearby recently formed galaxy, and if this process occurs near its percolation threshold, then a hierarchical structure with power-law correlations arises at the time of galaxy formation. If subsequent gravitational evolution within an expanding cosmology is such as to retain power-law correlations, the initial r exp -1 dropoff can steepen to the observed r exp -1.8. The distribution of galaxies obtained by this process produces clustering and voids, as observed. 23 references

  19. Biominerals- hierarchical nanocomposites: the example of bone

    Science.gov (United States)

    Beniash, Elia

    2010-01-01

    Many organisms incorporate inorganic solids in their tissues to enhance their functional, primarily mechanical, properties. These mineralized tissues, also called biominerals, are unique organo-mineral nanocomposites, organized at several hierarchical levels, from nano- to macroscale. Unlike man made composite materials, which often are simple physical blends of their components, the organic and inorganic phases in biominerals interface at the molecular level. Although these tissues are made of relatively weak components at ambient conditions, their hierarchical structural organization and intimate interactions between different elements lead to superior mechanical properties. Understanding basic principles of formation, structure and functional properties of these tissues might lead to novel bioinspired strategies for material design and better treatments for diseases of the mineralized tissues. This review focuses on general principles of structural organization, formation and functional properties of biominerals on the example the bone tissues. PMID:20827739

  20. Noise enhances information transfer in hierarchical networks.

    Science.gov (United States)

    Czaplicka, Agnieszka; Holyst, Janusz A; Sloot, Peter M A

    2013-01-01

    We study the influence of noise on information transmission in the form of packages shipped between nodes of hierarchical networks. Numerical simulations are performed for artificial tree networks, scale-free Ravasz-Barabási networks as well for a real network formed by email addresses of former Enron employees. Two types of noise are considered. One is related to packet dynamics and is responsible for a random part of packets paths. The second one originates from random changes in initial network topology. We find that the information transfer can be enhanced by the noise. The system possesses optimal performance when both kinds of noise are tuned to specific values, this corresponds to the Stochastic Resonance phenomenon. There is a non-trivial synergy present for both noisy components. We found also that hierarchical networks built of nodes of various degrees are more efficient in information transfer than trees with a fixed branching factor.

  1. Hierarchical control system of advanced robot manipulator

    International Nuclear Information System (INIS)

    Oomichi, Takeo; Okino, Akihisa; Nishihara, Masatoshi; Sakamoto, Taizou; Matsuda, Koichi; Ohnishi, Ken

    1990-01-01

    We introduce a double arm with 4-finger's manipulator system which process the large volume of information at high speed. This is under research/development many type of works in the harsh condition. Namely, hierarchization of instruction unit in which motion control system as real time processing unit, and task planning unit as non-real time processing unit, interface with operation through the task planning unit has been made. Also, high speed processing of large volume information has been realized by decentralizing the motion control unit by function, hierarchizing the high speed processing unit, and developing high speed transmission, IC which does not depend on computer OS to avoid the delay in transmission. (author)

  2. High-performance supercapacitors based on hierarchically porous graphite particles

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zheng; Wen, Jing; Yan, Chunzhu; Rice, Lynn; Sohn, Hiesang; Lu, Yunfeng [Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095 (United States); Shen, Meiqing [School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 (China); Cai, Mei [General Motor R and D Center, Warren, MI 48090 (United States); Dunn, Bruce [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States)

    2011-07-15

    Hierarchically porous graphite particles are synthesized using a continuous, scalable aerosol approach. The unique porous graphite architecture provides the particles with high surface area, fast ion transportation, and good electronic conductivity, which endows the resulting supercapacitors with high energy and power densities. This work provides a new material platform for high-performance supercapacitors with high packing density, and is adaptable to battery electrodes, fuel-cell catalyst supports, and other applications. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. A hierarchical classification method for finger knuckle print recognition

    Science.gov (United States)

    Kong, Tao; Yang, Gongping; Yang, Lu

    2014-12-01

    Finger knuckle print has recently been seen as an effective biometric technique. In this paper, we propose a hierarchical classification method for finger knuckle print recognition, which is rooted in traditional score-level fusion methods. In the proposed method, we firstly take Gabor feature as the basic feature for finger knuckle print recognition and then a new decision rule is defined based on the predefined threshold. Finally, the minor feature speeded-up robust feature is conducted for these users, who cannot be recognized by the basic feature. Extensive experiments are performed to evaluate the proposed method, and experimental results show that it can achieve a promising performance.

  4. Obstacle Avoidance of a Mobile Robot with Hierarchical Structure

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Gyu [Yeungnam College of Science and Technolgy, Taegu (Korea)

    2001-06-01

    This paper proposed a new hierarchical fuzzy-neural network algorithm for navigation of a mobile robot within unknown dynamic environment. Proposed navigation algorithm used the learning ability of the neural network and the feasibility of control highly nonlinear system of fuzzy theory. The proposed navigation algorithm used fuzzy algorithm for goal approach and fuzzy-network for effective collision avoidance. Some computer simulation results for a mobile robot equipped with ultrasonic range sensors show that the suggested navigation algorithm is very effective to escape in stationary and moving obstacles environment. (author). 11 refs., 14 figs., 2 tabs.

  5. Hierarchization and segmentation of informal care markets in Slovenia.

    Science.gov (United States)

    Hrženjak, Majda

    2012-01-01

    The article is the result of qualitative research of informal care markets in Slovenia in the field of childcare, elder care, and cleaning. The author assesses Slovenia's position in the “global care chain” and finds that “local care chains” prevail in the field of childcare and elder care, while a co-occurrence of female gender, “other” ethnicity, and poverty is typical in the field of household cleaning. The main emphasis of the article is on the analysis of hierarchization of the informal market of care work according to following two criteria: social reputation of individual type of care work and citizenship status of care workers.

  6. Fuzzy compromise: An effective way to solve hierarchical design problems

    Science.gov (United States)

    Allen, J. K.; Krishnamachari, R. S.; Masetta, J.; Pearce, D.; Rigby, D.; Mistree, F.

    1990-01-01

    In this paper, we present a method for modeling design problems using a compromise decision support problem (DSP) incorporating the principles embodied in fuzzy set theory. Specifically, the fuzzy compromise decision support problem is used to study hierarchical design problems. This approach has the advantage that although the system modeled has an element of uncertainty associated with it, the solution obtained is crisp and precise. The efficacy of incorporating fuzzy sets into the solution process is discussed in the context of results obtained for a portal frame.

  7. Modeling oil production based on symbolic regression

    International Nuclear Information System (INIS)

    Yang, Guangfei; Li, Xianneng; Wang, Jianliang; Lian, Lian; Ma, Tieju

    2015-01-01

    Numerous models have been proposed to forecast the future trends of oil production and almost all of them are based on some predefined assumptions with various uncertainties. In this study, we propose a novel data-driven approach that uses symbolic regression to model oil production. We validate our approach on both synthetic and real data, and the results prove that symbolic regression could effectively identify the true models beneath the oil production data and also make reliable predictions. Symbolic regression indicates that world oil production will peak in 2021, which broadly agrees with other techniques used by researchers. Our results also show that the rate of decline after the peak is almost half the rate of increase before the peak, and it takes nearly 12 years to drop 4% from the peak. These predictions are more optimistic than those in several other reports, and the smoother decline will provide the world, especially the developing countries, with more time to orchestrate mitigation plans. -- Highlights: •A data-driven approach has been shown to be effective at modeling the oil production. •The Hubbert model could be discovered automatically from data. •The peak of world oil production is predicted to appear in 2021. •The decline rate after peak is half of the increase rate before peak. •Oil production projected to decline 4% post-peak

  8. Image superresolution using support vector regression.

    Science.gov (United States)

    Ni, Karl S; Nguyen, Truong Q

    2007-06-01

    A thorough investigation of the application of support vector regression (SVR) to the superresolution problem is conducted through various frameworks. Prior to the study, the SVR problem is enhanced by finding the optimal kernel. This is done by formulating the kernel learning problem in SVR form as a convex optimization problem, specifically a semi-definite programming (SDP) problem. An additional constraint is added to reduce the SDP to a quadratically constrained quadratic programming (QCQP) problem. After this optimization, investigation of the relevancy of SVR to superresolution proceeds with the possibility of using a single and general support vector regression for all image content, and the results are impressive for small training sets. This idea is improved upon by observing structural properties in the discrete cosine transform (DCT) domain to aid in learning the regression. Further improvement involves a combination of classification and SVR-based techniques, extending works in resolution synthesis. This method, termed kernel resolution synthesis, uses specific regressors for isolated image content to describe the domain through a partitioned look of the vector space, thereby yielding good results.

  9. Hierarchically structured distributed microprocessor network for control

    International Nuclear Information System (INIS)

    Greenwood, J.R.; Holloway, F.W.; Rupert, P.R.; Ozarski, R.G.; Suski, G.J.

    1979-01-01

    To satisfy a broad range of control-analysis and data-acquisition requirements for Shiva, a hierarchical, computer-based, modular-distributed control system was designed. This system handles the more than 3000 control elements and 1000 data acquisition units in a severe high-voltage, high-current environment. The control system design gives one a flexible and reliable configuration to meet the development milestones for Shiva within critical time limits

  10. Hierarchical Fiber Structures Made by Electrospinning Polymers

    Science.gov (United States)

    Reneker, Darrell H.

    2009-03-01

    A filter for water purification that is very thin, with small interstices and high surface area per unit mass, can be made with nanofibers. The mechanical strength of a very thin sheet of nanofibers is not great enough to withstand the pressure drop of the fluid flowing through. If the sheet of nanofibers is made thicker, the strength will increase, but the flow will be reduced to an impractical level. An optimized filter can be made with nanometer scale structures supported on micron scale structures, which are in turn supported on millimeter scale structures. This leads to a durable hierarchical structure to optimize the filtration efficiency with a minimum amount of material. Buckling coils,ootnotetextTao Han, Darrell H Reneker, Alexander L. Yarin, Polymer, Volume 48, issue 20 (September 21, 2007), p. 6064-6076. electrical bending coilsootnotetextDarrell H. Reneker and Alexander L. Yarin, Polymer, Volume 49, Issue 10 (2008) Pages 2387-2425, DOI:10.1016/j.polymer.2008.02.002. Feature Article. and pendulum coilsootnotetextT. Han, D.H. Reneker, A.L. Yarin, Polymer, Volume 49, (2008) Pages 2160-2169, doi:10.1016/jpolymer.2008.01.0487878. spanning dimensions from a few microns to a few centimeters can be collected from a single jet by controlling the position and motion of a collector. Attractive routes to the design and construction of hierarchical structures for filtration are based on nanofibers supported on small coils that are in turn supported on larger coils, which are supported on even larger overlapping coils. ``Such top-down'' hierarchical structures are easy to make by electrospinning. In one example, a thin hierarchical structure was made, with a high surface area and small interstices, having an open area of over 50%, with the thinnest fibers supported at least every 15 microns.

  11. Hierarchical video summarization based on context clustering

    Science.gov (United States)

    Tseng, Belle L.; Smith, John R.

    2003-11-01

    A personalized video summary is dynamically generated in our video personalization and summarization system based on user preference and usage environment. The three-tier personalization system adopts the server-middleware-client architecture in order to maintain, select, adapt, and deliver rich media content to the user. The server stores the content sources along with their corresponding MPEG-7 metadata descriptions. In this paper, the metadata includes visual semantic annotations and automatic speech transcriptions. Our personalization and summarization engine in the middleware selects the optimal set of desired video segments by matching shot annotations and sentence transcripts with user preferences. Besides finding the desired contents, the objective is to present a coherent summary. There are diverse methods for creating summaries, and we focus on the challenges of generating a hierarchical video summary based on context information. In our summarization algorithm, three inputs are used to generate the hierarchical video summary output. These inputs are (1) MPEG-7 metadata descriptions of the contents in the server, (2) user preference and usage environment declarations from the user client, and (3) context information including MPEG-7 controlled term list and classification scheme. In a video sequence, descriptions and relevance scores are assigned to each shot. Based on these shot descriptions, context clustering is performed to collect consecutively similar shots to correspond to hierarchical scene representations. The context clustering is based on the available context information, and may be derived from domain knowledge or rules engines. Finally, the selection of structured video segments to generate the hierarchical summary efficiently balances between scene representation and shot selection.

  12. Internet advertising effectiveness by using hierarchical model

    OpenAIRE

    RAHMANI, Samaneh

    2015-01-01

    Abstract. Present paper has been developed with the title of internet advertising effectiveness by using hierarchical model. Presenting the question: Today Internet is an important channel in marketing and advertising. The reason for this could be the ability of the Internet to reduce costs and people’s access to online services[1]. Also advertisers can easily access a multitude of users and communicate with them at low cost [9]. On the other hand, compared to traditional advertising, interne...

  13. Hierarchical antifouling brushes for biosensing applications

    Czech Academy of Sciences Publication Activity Database

    de los Santos Pereira, Andres; Riedel, Tomáš; Brynda, Eduard; Rodriguez-Emmenegger, Cesar

    2014-01-01

    Roč. 202, 31 October (2014), s. 1313-1321 ISSN 0925-4005 R&D Projects: GA ČR GAP205/12/1702; GA MŠk(CZ) EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : hierarchically structured brushes * affinity biosensors * fouling Subject RIV: CE - Biochemistry Impact factor: 4.097, year: 2014

  14. A hierarchical bayesian model to quantify uncertainty of stream water temperature forecasts.

    Directory of Open Access Journals (Sweden)

    Guillaume Bal

    Full Text Available Providing generic and cost effective modelling approaches to reconstruct and forecast freshwater temperature using predictors as air temperature and water discharge is a prerequisite to understanding ecological processes underlying the impact of water temperature and of global warming on continental aquatic ecosystems. Using air temperature as a simple linear predictor of water temperature can lead to significant bias in forecasts as it does not disentangle seasonality and long term trends in the signal. Here, we develop an alternative approach based on hierarchical Bayesian statistical time series modelling of water temperature, air temperature and water discharge using seasonal sinusoidal periodic signals and time varying means and amplitudes. Fitting and forecasting performances of this approach are compared with that of simple linear regression between water and air temperatures using i an emotive simulated example, ii application to three French coastal streams with contrasting bio-geographical conditions and sizes. The time series modelling approach better fit data and does not exhibit forecasting bias in long term trends contrary to the linear regression. This new model also allows for more accurate forecasts of water temperature than linear regression together with a fair assessment of the uncertainty around forecasting. Warming of water temperature forecast by our hierarchical Bayesian model was slower and more uncertain than that expected with the classical regression approach. These new forecasts are in a form that is readily usable in further ecological analyses and will allow weighting of outcomes from different scenarios to manage climate change impacts on freshwater wildlife.

  15. Factors associated with leisure time physical inactivity in black individuals: hierarchical model

    Directory of Open Access Journals (Sweden)

    Francisco José Gondim Pitanga

    2014-09-01

    Full Text Available Background. A number of studies have shown that the black population exhibits higher levels of leisure-time physical inactivity (LTPI, but few have investigated the factors associated with this behavior.Objective. The aim of this study was to analyze associated factors and the explanatory model proposed for LTPI in black adults.Methods. The design was cross-sectional with a sample of 2,305 adults from 20–96 years of age, 902 (39.1% men, living in the city of Salvador, Brazil. LTPI was analyzed using the International Physical Activity Questionnaire (IPAQ. A hierarchical model was built with the possible factors associated with LTPI, distributed in distal (age and sex, intermediate 1 (socioeconomic status, educational level and marital status, intermediate 2 (perception of safety/violence in the neighborhood, racial discrimination in private settings and physical activity at work and proximal blocks (smoking and participation in Carnival block rehearsals. We estimated crude and adjusted odds ratio (OR using logistic regression.Results. The variables inversely associated with LTPI were male gender, socioeconomic status and secondary/university education, although the proposed model explains only 4.2% of LTPI.Conclusions. We conclude that male gender, higher education and socioeconomic status can reduce LTPI in black adults.

  16. Pore size dependent molecular adsorption of cationic dye in biomass derived hierarchically porous carbon.

    Science.gov (United States)

    Chen, Long; Ji, Tuo; Mu, Liwen; Shi, Yijun; Wang, Huaiyuan; Zhu, Jiahua

    2017-07-01

    Hierarchically porous carbon adsorbents were successfully fabricated from different biomass resources (softwood, hardwood, bamboo and cotton) by a facile two-step process, i.e. carbonization in nitrogen and thermal oxidation in air. Without involving any toxic/corrosive chemicals, large surface area of up to 890 m 2 /g was achieved, which is comparable to commercial activated carbon. The porous carbons with various surface area and pore size were used as adsorbents to investigate the pore size dependent adsorption phenomenon. Based on the density functional theory, effective (E-SSA) and ineffective surface area (InE-SSA) was calculated considering the geometry of used probing adsorbate. It was demonstrated that the adsorption capacity strongly depends on E-SSA instead of total surface area. Moreover, a regression model was developed to quantify the adsorption capacities contributed from E-SSA and InE-SSA, respectively. The applicability of this model has been verified by satisfactory prediction results on porous carbons prepared in this work as well as commercial activated carbon. Revealing the pore size dependent adsorption behavior in these biomass derived porous carbon adsorbents will help to design more effective materials (either from biomass or other carbon resources) targeting to specific adsorption applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Comparing the performance of flat and hierarchical Habitat/Land-Cover classification models in a NATURA 2000 site

    Science.gov (United States)

    Gavish, Yoni; O'Connell, Jerome; Marsh, Charles J.; Tarantino, Cristina; Blonda, Palma; Tomaselli, Valeria; Kunin, William E.

    2018-02-01

    The increasing need for high quality Habitat/Land-Cover (H/LC) maps has triggered considerable research into novel machine-learning based classification models. In many cases, H/LC classes follow pre-defined hierarchical classification schemes (e.g., CORINE), in which fine H/LC categories are thematically nested within more general categories. However, none of the existing machine-learning algorithms account for this pre-defined hierarchical structure. Here we introduce a novel Random Forest (RF) based application of hierarchical classification, which fits a separate local classification model in every branching point of the thematic tree, and then integrates all the different local models to a single global prediction. We applied the hierarchal RF approach in a NATURA 2000 site in Italy, using two land-cover (CORINE, FAO-LCCS) and one habitat classification scheme (EUNIS) that differ from one another in the shape of the class hierarchy. For all 3 classification schemes, both the hierarchical model and a flat model alternative provided accurate predictions, with kappa values mostly above 0.9 (despite using only 2.2-3.2% of the study area as training cells). The flat approach slightly outperformed the hierarchical models when the hierarchy was relatively simple, while the hierarchical model worked better under more complex thematic hierarchies. Most misclassifications came from habitat pairs that are thematically distant yet spectrally similar. In 2 out of 3 classification schemes, the additional constraints of the hierarchical model resulted with fewer such serious misclassifications relative to the flat model. The hierarchical model also provided valuable information on variable importance which can shed light into "black-box" based machine learning algorithms like RF. We suggest various ways by which hierarchical classification models can increase the accuracy and interpretability of H/LC classification maps.

  18. Hierarchically structured materials for lithium batteries

    International Nuclear Information System (INIS)

    Xiao, Jie; Zheng, Jianming; Li, Xiaolin; Shao, Yuyan; Zhang, Ji-Guang

    2013-01-01

    The lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles, including solely battery powered vehicles, plug-in hybrid electric vehicles, and hybrid electric vehicles. With the increasing demand for devices of high-energy densities (>500 Wh kg −1 ), new energy storage systems, such as lithium–oxygen (Li–O 2 ) batteries and other emerging systems beyond the conventional LIB, have attracted worldwide interest for both transportation and grid energy storage applications in recent years. It is well known that the electrochemical performance of these energy storage systems depends not only on the composition of the materials, but also on the structure of the electrode materials used in the batteries. Although the desired performance characteristics of batteries often have conflicting requirements with the micro/nano-structure of electrodes, hierarchically designed electrodes can be tailored to satisfy these conflicting requirements. This work will review hierarchically structured materials that have been successfully used in LIB and Li–O 2 batteries. Our goal is to elucidate (1) how to realize the full potential of energy materials through the manipulation of morphologies, and (2) how the hierarchical structure benefits the charge transport, promotes the interfacial properties and prolongs the electrode stability and battery lifetime. (paper)

  19. Statistical dynamics of ultradiffusion in hierarchical systems

    International Nuclear Information System (INIS)

    Gardner, S.

    1987-01-01

    In many types of disordered systems which exhibit frustration and competition, an ultrametric topology is found to exist in the space of allowable states. This ultrametric topology of states is associated with a hierarchical relaxation process called ultradiffusion. Ultradiffusion occurs in hierarchical non-linear (HNL) dynamical systems when constraints cause large scale, slow modes of motion to be subordinated to small scale, fast modes. Examples of ultradiffusion are found throughout condensed matter physics and critical phenomena (e.g. the states of spin glasses), in biophysics (e.g. the states of Hopfield networks) and in many other fields including layered computing based upon nonlinear dynamics. The statistical dynamics of ultradiffusion can be treated as a random walk on an ultrametric space. For reversible bifurcating ultrametric spaces the evolution equation governing the probability of a particle being found at site i at time t has a highly degenerate transition matrix. This transition matrix has a fractal geometry similar to the replica form proposed for spin glasses. The authors invert this fractal matrix using a recursive quad-tree (QT) method. Possible applications of hierarchical systems to communications and symbolic computing are discussed briefly

  20. Robust Regression and its Application in Financial Data Analysis

    OpenAIRE

    Mansoor Momeni; Mahmoud Dehghan Nayeri; Ali Faal Ghayoumi; Hoda Ghorbani

    2010-01-01

    This research is aimed to describe the application of robust regression and its advantages over the least square regression method in analyzing financial data. To do this, relationship between earning per share, book value of equity per share and share price as price model and earning per share, annual change of earning per share and return of stock as return model is discussed using both robust and least square regressions, and finally the outcomes are compared. Comparing the results from th...

  1. Support Vector Regression Model Based on Empirical Mode Decomposition and Auto Regression for Electric Load Forecasting

    Directory of Open Access Journals (Sweden)

    Hong-Juan Li

    2013-04-01

    Full Text Available Electric load forecasting is an important issue for a power utility, associated with the management of daily operations such as energy transfer scheduling, unit commitment, and load dispatch. Inspired by strong non-linear learning capability of support vector regression (SVR, this paper presents a SVR model hybridized with the empirical mode decomposition (EMD method and auto regression (AR for electric load forecasting. The electric load data of the New South Wales (Australia market are employed for comparing the forecasting performances of different forecasting models. The results confirm the validity of the idea that the proposed model can simultaneously provide forecasting with good accuracy and interpretability.

  2. Using the Ridge Regression Procedures to Estimate the Multiple Linear Regression Coefficients

    Science.gov (United States)

    Gorgees, HazimMansoor; Mahdi, FatimahAssim

    2018-05-01

    This article concerns with comparing the performance of different types of ordinary ridge regression estimators that have been already proposed to estimate the regression parameters when the near exact linear relationships among the explanatory variables is presented. For this situations we employ the data obtained from tagi gas filling company during the period (2008-2010). The main result we reached is that the method based on the condition number performs better than other methods since it has smaller mean square error (MSE) than the other stated methods.

  3. Bayesian Inference of a Multivariate Regression Model

    Directory of Open Access Journals (Sweden)

    Marick S. Sinay

    2014-01-01

    Full Text Available We explore Bayesian inference of a multivariate linear regression model with use of a flexible prior for the covariance structure. The commonly adopted Bayesian setup involves the conjugate prior, multivariate normal distribution for the regression coefficients and inverse Wishart specification for the covariance matrix. Here we depart from this approach and propose a novel Bayesian estimator for the covariance. A multivariate normal prior for the unique elements of the matrix logarithm of the covariance matrix is considered. Such structure allows for a richer class of prior distributions for the covariance, with respect to strength of beliefs in prior location hyperparameters, as well as the added ability, to model potential correlation amongst the covariance structure. The posterior moments of all relevant parameters of interest are calculated based upon numerical results via a Markov chain Monte Carlo procedure. The Metropolis-Hastings-within-Gibbs algorithm is invoked to account for the construction of a proposal density that closely matches the shape of the target posterior distribution. As an application of the proposed technique, we investigate a multiple regression based upon the 1980 High School and Beyond Survey.

  4. Face Alignment via Regressing Local Binary Features.

    Science.gov (United States)

    Ren, Shaoqing; Cao, Xudong; Wei, Yichen; Sun, Jian

    2016-03-01

    This paper presents a highly efficient and accurate regression approach for face alignment. Our approach has two novel components: 1) a set of local binary features and 2) a locality principle for learning those features. The locality principle guides us to learn a set of highly discriminative local binary features for each facial landmark independently. The obtained local binary features are used to jointly learn a linear regression for the final output. This approach achieves the state-of-the-art results when tested on the most challenging benchmarks to date. Furthermore, because extracting and regressing local binary features are computationally very cheap, our system is much faster than previous methods. It achieves over 3000 frames per second (FPS) on a desktop or 300 FPS on a mobile phone for locating a few dozens of landmarks. We also study a key issue that is important but has received little attention in the previous research, which is the face detector used to initialize alignment. We investigate several face detectors and perform quantitative evaluation on how they affect alignment accuracy. We find that an alignment friendly detector can further greatly boost the accuracy of our alignment method, reducing the error up to 16% relatively. To facilitate practical usage of face detection/alignment methods, we also propose a convenient metric to measure how good a detector is for alignment initialization.

  5. Geographically weighted regression model on poverty indicator

    Science.gov (United States)

    Slamet, I.; Nugroho, N. F. T. A.; Muslich

    2017-12-01

    In this research, we applied geographically weighted regression (GWR) for analyzing the poverty in Central Java. We consider Gaussian Kernel as weighted function. The GWR uses the diagonal matrix resulted from calculating kernel Gaussian function as a weighted function in the regression model. The kernel weights is used to handle spatial effects on the data so that a model can be obtained for each location. The purpose of this paper is to model of poverty percentage data in Central Java province using GWR with Gaussian kernel weighted function and to determine the influencing factors in each regency/city in Central Java province. Based on the research, we obtained geographically weighted regression model with Gaussian kernel weighted function on poverty percentage data in Central Java province. We found that percentage of population working as farmers, population growth rate, percentage of households with regular sanitation, and BPJS beneficiaries are the variables that affect the percentage of poverty in Central Java province. In this research, we found the determination coefficient R2 are 68.64%. There are two categories of district which are influenced by different of significance factors.

  6. General regression and representation model for classification.

    Directory of Open Access Journals (Sweden)

    Jianjun Qian

    Full Text Available Recently, the regularized coding-based classification methods (e.g. SRC and CRC show a great potential for pattern classification. However, most existing coding methods assume that the representation residuals are uncorrelated. In real-world applications, this assumption does not hold. In this paper, we take account of the correlations of the representation residuals and develop a general regression and representation model (GRR for classification. GRR not only has advantages of CRC, but also takes full use of the prior information (e.g. the correlations between representation residuals and representation coefficients and the specific information (weight matrix of image pixels to enhance the classification performance. GRR uses the generalized Tikhonov regularization and K Nearest Neighbors to learn the prior information from the training data. Meanwhile, the specific information is obtained by using an iterative algorithm to update the feature (or image pixel weights of the test sample. With the proposed model as a platform, we design two classifiers: basic general regression and representation classifier (B-GRR and robust general regression and representation classifier (R-GRR. The experimental results demonstrate the performance advantages of proposed methods over state-of-the-art algorithms.

  7. Credit Scoring Problem Based on Regression Analysis

    OpenAIRE

    Khassawneh, Bashar Suhil Jad Allah

    2014-01-01

    ABSTRACT: This thesis provides an explanatory introduction to the regression models of data mining and contains basic definitions of key terms in the linear, multiple and logistic regression models. Meanwhile, the aim of this study is to illustrate fitting models for the credit scoring problem using simple linear, multiple linear and logistic regression models and also to analyze the found model functions by statistical tools. Keywords: Data mining, linear regression, logistic regression....

  8. Logistic regression applied to natural hazards: rare event logistic regression with replications

    Directory of Open Access Journals (Sweden)

    M. Guns

    2012-06-01

    Full Text Available Statistical analysis of natural hazards needs particular attention, as most of these phenomena are rare events. This study shows that the ordinary rare event logistic regression, as it is now commonly used in geomorphologic studies, does not always lead to a robust detection of controlling factors, as the results can be strongly sample-dependent. In this paper, we introduce some concepts of Monte Carlo simulations in rare event logistic regression. This technique, so-called rare event logistic regression with replications, combines the strength of probabilistic and statistical methods, and allows overcoming some of the limitations of previous developments through robust variable selection. This technique was here developed for the analyses of landslide controlling factors, but the concept is widely applicable for statistical analyses of natural hazards.

  9. Logistic regression applied to natural hazards: rare event logistic regression with replications

    Science.gov (United States)

    Guns, M.; Vanacker, V.

    2012-06-01

    Statistical analysis of natural hazards needs particular attention, as most of these phenomena are rare events. This study shows that the ordinary rare event logistic regression, as it is now commonly used in geomorphologic studies, does not always lead to a robust detection of controlling factors, as the results can be strongly sample-dependent. In this paper, we introduce some concepts of Monte Carlo simulations in rare event logistic regression. This technique, so-called rare event logistic regression with replications, combines the strength of probabilistic and statistical methods, and allows overcoming some of the limitations of previous developments through robust variable selection. This technique was here developed for the analyses of landslide controlling factors, but the concept is widely applicable for statistical analyses of natural hazards.

  10. Hierarchical self-organization of non-cooperating individuals.

    Directory of Open Access Journals (Sweden)

    Tamás Nepusz

    Full Text Available Hierarchy is one of the most conspicuous features of numerous natural, technological and social systems. The underlying structures are typically complex and their most relevant organizational principle is the ordering of the ties among the units they are made of according to a network displaying hierarchical features. In spite of the abundant presence of hierarchy no quantitative theoretical interpretation of the origins of a multi-level, knowledge-based social network exists. Here we introduce an approach which is capable of reproducing the emergence of a multi-levelled network structure based on the plausible assumption that the individuals (representing the nodes of the network can make the right estimate about the state of their changing environment to a varying degree. Our model accounts for a fundamental feature of knowledge-based organizations: the less capable individuals tend to follow those who are better at solving the problems they all face. We find that relatively simple rules lead to hierarchical self-organization and the specific structures we obtain possess the two, perhaps most important features of complex systems: a simultaneous presence of adaptability and stability. In addition, the performance (success score of the emerging networks is significantly higher than the average expected score of the individuals without letting them copy the decisions of the others. The results of our calculations are in agreement with a related experiment and can be useful from the point of designing the optimal conditions for constructing a given complex social structure as well as understanding the hierarchical organization of such biological structures of major importance as the regulatory pathways or the dynamics of neural networks.

  11. Multiscale Inorganic Hierarchically Materials: Towards an Improved Orthopaedic Regenerative Medicine.

    Science.gov (United States)

    Ruso, Juan M; Sartuqui, Javier; Messina, Paula V

    2015-01-01

    Bone is a biologically and structurally sophisticated multifunctional tissue. It dynamically responds to biochemical, mechanical and electrical clues by remodelling itself and accordingly the maximum strength and toughness are along the lines of the greatest applied stress. The challenge is to develop an orthopaedic biomaterial that imitates the micro- and nano-structural elements and compositions of bone to locally match the properties of the host tissue resulting in a biologically fixed implant. Looking for the ideal implant, the convergence of life and materials sciences occurs. Researchers in many different fields apply their expertise to improve implantable devices and regenerative medicine. Materials of all kinds, but especially hierarchical nano-materials, are being exploited. The application of nano-materials with hierarchical design to calcified tissue reconstructive medicine involve intricate systems including scaffolds with multifaceted shapes that provides temporary mechanical function; materials with nano-topography modifications that guarantee their integration to tissues and that possesses functionalized surfaces to transport biologic factors to stimulate tissue growth in a controlled, safe, and rapid manner. Furthermore materials that should degrade on a timeline coordinated to the time that takes the tissues regrow, are prepared. These implantable devices are multifunctional and for its construction they involve the use of precise strategically techniques together with specific material manufacturing processes that can be integrated to achieve in the design, the required multifunctionality. For such reasons, even though the idea of displacement from synthetic implants and tissue grafts to regenerative-medicine-based tissue reconstruction has been guaranteed for well over a decade, the reality has yet to emerge. In this paper, we examine the recent approaches to create enhanced bioactive materials. Their design and manufacturing procedures as well

  12. Superhydrophobic SERS substrates based on silicon hierarchical nanostructures

    Science.gov (United States)

    Chen, Xuexian; Wen, Jinxiu; Zhou, Jianhua; Zheng, Zebo; An, Di; Wang, Hao; Xie, Weiguang; Zhan, Runze; Xu, Ningsheng; Chen, Jun; She, Juncong; Chen, Huanjun; Deng, Shaozhi

    2018-02-01

    Silicon nanostructures have been cultivated as promising surface enhanced Raman scattering (SERS) substrates in terms of their low-loss optical resonance modes, facile functionalization, and compatibility with today’s state-of-the-art CMOS techniques. However, unlike their plasmonic counterparts, the electromagnetic field enhancements induced by silicon nanostructures are relatively small, which restrict their SERS sensing limit to around 10-7 M. To tackle this problem, we propose here a strategy for improving the SERS performance of silicon nanostructures by constructing silicon hierarchical nanostructures with a superhydrophobic surface. The hierarchical nanostructures are binary structures consisted of silicon nanowires (NWs) grown on micropyramids (MPs). After being modified with perfluorooctyltriethoxysilane (PFOT), the nanostructure surface shows a stable superhydrophobicity with a high contact angle of ˜160°. The substrate can allow for concentrating diluted analyte solutions into a specific area during the evaporation of the liquid droplet, whereby the analytes are aggregated into a small volume and can be easily detected by the silicon nanostructure SERS substrate. The analyte molecules (methylene blue: MB) enriched from an aqueous solution lower than 10-8 M can be readily detected. Such a detection limit is ˜100-fold lower than the conventional SERS substrates made of silicon nanostructures. Additionally, the detection limit can be further improved by functionalizing gold nanoparticles onto silicon hierarchical nanostructures, whereby the superhydrophobic characteristics and plasmonic field enhancements can be combined synergistically to give a detection limit down to ˜10-11 M. A gold nanoparticle-functionalized superhydrophobic substrate was employed to detect the spiked melamine in liquid milk. The results showed that the detection limit can be as low as 10-5 M, highlighting the potential of the proposed superhydrophobic SERS substrate in

  13. Regularized Label Relaxation Linear Regression.

    Science.gov (United States)

    Fang, Xiaozhao; Xu, Yong; Li, Xuelong; Lai, Zhihui; Wong, Wai Keung; Fang, Bingwu

    2018-04-01

    Linear regression (LR) and some of its variants have been widely used for classification problems. Most of these methods assume that during the learning phase, the training samples can be exactly transformed into a strict binary label matrix, which has too little freedom to fit the labels adequately. To address this problem, in this paper, we propose a novel regularized label relaxation LR method, which has the following notable characteristics. First, the proposed method relaxes the strict binary label matrix into a slack variable matrix by introducing a nonnegative label relaxation matrix into LR, which provides more freedom to fit the labels and simultaneously enlarges the margins between different classes as much as possible. Second, the proposed method constructs the class compactness graph based on manifold learning and uses it as the regularization item to avoid the problem of overfitting. The class compactness graph is used to ensure that the samples sharing the same labels can be kept close after they are transformed. Two different algorithms, which are, respectively, based on -norm and -norm loss functions are devised. These two algorithms have compact closed-form solutions in each iteration so that they are easily implemented. Extensive experiments show that these two algorithms outperform the state-of-the-art algorithms in terms of the classification accuracy and running time.

  14. A comparison of random forest regression and multiple linear regression for prediction in neuroscience.

    Science.gov (United States)

    Smith, Paul F; Ganesh, Siva; Liu, Ping

    2013-10-30

    Regression is a common statistical tool for prediction in neuroscience. However, linear regression is by far the most common form of regression used, with regression trees receiving comparatively little attention. In this study, the results of conventional multiple linear regression (MLR) were compared with those of random forest regression (RFR), in the prediction of the concentrations of 9 neurochemicals in the vestibular nucleus complex and cerebellum that are part of the l-arginine biochemical pathway (agmatine, putrescine, spermidine, spermine, l-arginine, l-ornithine, l-citrulline, glutamate and γ-aminobutyric acid (GABA)). The R(2) values for the MLRs were higher than the proportion of variance explained values for the RFRs: 6/9 of them were ≥ 0.70 compared to 4/9 for RFRs. Even the variables that had the lowest R(2) values for the MLRs, e.g. ornithine (0.50) and glutamate (0.61), had much lower proportion of variance explained values for the RFRs (0.27 and 0.49, respectively). The RSE values for the MLRs were lower than those for the RFRs in all but two cases. In general, MLRs seemed to be superior to the RFRs in terms of predictive value and error. In the case of this data set, MLR appeared to be superior to RFR in terms of its explanatory value and error. This result suggests that MLR may have advantages over RFR for prediction in neuroscience with this kind of data set, but that RFR can still have good predictive value in some cases. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. A Monte Carlo simulation study comparing linear regression, beta regression, variable-dispersion beta regression and fractional logit regression at recovering average difference measures in a two sample design.

    Science.gov (United States)

    Meaney, Christopher; Moineddin, Rahim

    2014-01-24

    In biomedical research, response variables are often encountered which have bounded support on the open unit interval--(0,1). Traditionally, researchers have attempted to estimate covariate effects on these types of response data using linear regression. Alternative modelling strategies may include: beta regression, variable-dispersion beta regression, and fractional logit regression models. This study employs a Monte Carlo simulation design to compare the statistical properties of the linear regression model to that of the more novel beta regression, variable-dispersion beta regression, and fractional logit regression models. In the Monte Carlo experiment we assume a simple two sample design. We assume observations are realizations of independent draws from their respective probability models. The randomly simulated draws from the various probability models are chosen to emulate average proportion/percentage/rate differences of pre-specified magnitudes. Following simulation of the experimental data we estimate average proportion/percentage/rate differences. We compare the estimators in terms of bias, variance, type-1 error and power. Estimates of Monte Carlo error associated with these quantities are provided. If response data are beta distributed with constant dispersion parameters across the two samples, then all models are unbiased and have reasonable type-1 error rates and power profiles. If the response data in the two samples have different dispersion parameters, then the simple beta regression model is biased. When the sample size is small (N0 = N1 = 25) linear regression has superior type-1 error rates compared to the other models. Small sample type-1 error rates can be improved in beta regression models using bias correction/reduction methods. In the power experiments, variable-dispersion beta regression and fractional logit regression models have slightly elevated power compared to linear regression models. Similar results were observed if the

  16. An approach to separating the levels of hierarchical structure building in language and mathematics.

    Science.gov (United States)

    Makuuchi, Michiru; Bahlmann, Jörg; Friederici, Angela D

    2012-07-19

    We aimed to dissociate two levels of hierarchical structure building in language and mathematics, namely 'first-level' (the build-up of hierarchical structure with externally given elements) and 'second-level' (the build-up of hierarchical structure with internally represented elements produced by first-level processes). Using functional magnetic resonance imaging, we investigated these processes in three domains: sentence comprehension, arithmetic calculation (using Reverse Polish notation, which gives two operands followed by an operator) and a working memory control task. All tasks required the build-up of hierarchical structures at the first- and second-level, resulting in a similar computational hierarchy across language and mathematics, as well as in a working memory control task. Using a novel method that estimates the difference in the integration cost for conditions of different trial durations, we found an anterior-to-posterior functional organization in the prefrontal cortex, according to the level of hierarchy. Common to all domains, the ventral premotor cortex (PMv) supports first-level hierarchy building, while the dorsal pars opercularis (POd) subserves second-level hierarchy building, with lower activation for language compared with the other two tasks. These results suggest that the POd and the PMv support domain-general mechanisms for hierarchical structure building, with the POd being uniquely efficient for language.

  17. Ranking of Business Process Simulation Software Tools with DEX/QQ Hierarchical Decision Model.

    Science.gov (United States)

    Damij, Nadja; Boškoski, Pavle; Bohanec, Marko; Mileva Boshkoska, Biljana

    2016-01-01

    The omnipresent need for optimisation requires constant improvements of companies' business processes (BPs). Minimising the risk of inappropriate BP being implemented is usually performed by simulating the newly developed BP under various initial conditions and "what-if" scenarios. An effectual business process simulations software (BPSS) is a prerequisite for accurate analysis of an BP. Characterisation of an BPSS tool is a challenging task due to the complex selection criteria that includes quality of visual aspects, simulation capabilities, statistical facilities, quality reporting etc. Under such circumstances, making an optimal decision is challenging. Therefore, various decision support models are employed aiding the BPSS tool selection. The currently established decision support models are either proprietary or comprise only a limited subset of criteria, which affects their accuracy. Addressing this issue, this paper proposes a new hierarchical decision support model for ranking of BPSS based on their technical characteristics by employing DEX and qualitative to quantitative (QQ) methodology. Consequently, the decision expert feeds the required information in a systematic and user friendly manner. There are three significant contributions of the proposed approach. Firstly, the proposed hierarchical model is easily extendible for adding new criteria in the hierarchical structure. Secondly, a fully operational decision support system (DSS) tool that implements the proposed hierarchical model is presented. Finally, the effectiveness of the proposed hierarchical model is assessed by comparing the resulting rankings of BPSS with respect to currently available results.

  18. Automatic thoracic anatomy segmentation on CT images using hierarchical fuzzy models and registration

    Science.gov (United States)

    Sun, Kaioqiong; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Torigian, Drew A.

    2014-03-01

    This paper proposes a thoracic anatomy segmentation method based on hierarchical recognition and delineation guided by a built fuzzy model. Labeled binary samples for each organ are registered and aligned into a 3D fuzzy set representing the fuzzy shape model for the organ. The gray intensity distributions of the corresponding regions of the organ in the original image are recorded in the model. The hierarchical relation and mean location relation between different organs are also captured in the model. Following the hierarchical structure and location relation, the fuzzy shape model of different organs is registered to the given target image to achieve object recognition. A fuzzy connected delineation method is then used to obtain the final segmentation result of organs with seed points provided by recognition. The hierarchical structure and location relation integrated in the model provide the initial parameters for registration and make the recognition efficient and robust. The 3D fuzzy model combined with hierarchical affine registration ensures that accurate recognition can be obtained for both non-sparse and sparse organs. The results on real images are presented and shown to be better than a recently reported fuzzy model-based anatomy recognition strategy.

  19. UNCERTAINTY HANDLING IN DISASTER MANAGEMENT USING HIERARCHICAL ROUGH SET GRANULATION

    Directory of Open Access Journals (Sweden)

    H. Sheikhian

    2015-08-01

    Full Text Available Uncertainty is one of the main concerns in geospatial data analysis. It affects different parts of decision making based on such data. In this paper, a new methodology to handle uncertainty for multi-criteria decision making problems is proposed. It integrates hierarchical rough granulation and rule extraction to build an accurate classifier. Rough granulation provides information granules with a detailed quality assessment. The granules are the basis for the rule extraction in granular computing, which applies quality measures on the rules to obtain the best set of classification rules. The proposed methodology is applied to assess seismic physical vulnerability in Tehran. Six effective criteria reflecting building age, height and material, topographic slope and earthquake intensity of the North Tehran fault have been tested. The criteria were discretized and the data set was granulated using a hierarchical rough method, where the best describing granules are determined according to the quality measures. The granules are fed into the granular computing algorithm resulting in classification rules that provide the highest prediction quality. This detailed uncertainty management resulted in 84% accuracy in prediction in a training data set. It was applied next to the whole study area to obtain the seismic vulnerability map of Tehran. A sensitivity analysis proved that earthquake intensity is the most effective criterion in the seismic vulnerability assessment of Tehran.

  20. Method of moments solution of volume integral equations using higher-order hierarchical Legendre basis functions

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Jørgensen, Erik; Meincke, Peter

    2004-01-01

    An efficient higher-order method of moments (MoM) solution of volume integral equations is presented. The higher-order MoM solution is based on higher-order hierarchical Legendre basis functions and higher-order geometry modeling. An unstructured mesh composed of 8-node trilinear and/or curved 27...... of magnitude in comparison to existing higher-order hierarchical basis functions. Consequently, an iterative solver can be applied even for high expansion orders. Numerical results demonstrate excellent agreement with the analytical Mie series solution for a dielectric sphere as well as with results obtained...

  1. Testing the equality of nonparametric regression curves based on ...

    African Journals Online (AJOL)

    Abstract. In this work we propose a new methodology for the comparison of two regression functions f1 and f2 in the case of homoscedastic error structure and a fixed design. Our approach is based on the empirical Fourier coefficients of the regression functions f1 and f2 respectively. As our main results we obtain the ...

  2. A Methodology for Generating Placement Rules that Utilizes Logistic Regression

    Science.gov (United States)

    Wurtz, Keith

    2008-01-01

    The purpose of this article is to provide the necessary tools for institutional researchers to conduct a logistic regression analysis and interpret the results. Aspects of the logistic regression procedure that are necessary to evaluate models are presented and discussed with an emphasis on cutoff values and choosing the appropriate number of…

  3. Bayesian regression of piecewise homogeneous Poisson processes

    Directory of Open Access Journals (Sweden)

    Diego Sevilla

    2015-12-01

    Full Text Available In this paper, a Bayesian method for piecewise regression is adapted to handle counting processes data distributed as Poisson. A numerical code in Mathematica is developed and tested analyzing simulated data. The resulting method is valuable for detecting breaking points in the count rate of time series for Poisson processes. Received: 2 November 2015, Accepted: 27 November 2015; Edited by: R. Dickman; Reviewed by: M. Hutter, Australian National University, Canberra, Australia.; DOI: http://dx.doi.org/10.4279/PIP.070018 Cite as: D J R Sevilla, Papers in Physics 7, 070018 (2015

  4. SPE dose prediction using locally weighted regression

    International Nuclear Information System (INIS)

    Hines, J. W.; Townsend, L. W.; Nichols, T. F.

    2005-01-01

    When astronauts are outside earth's protective magnetosphere, they are subject to large radiation doses resulting from solar particle events (SPEs). The total dose received from a major SPE in deep space could cause severe radiation poisoning. The dose is usually received over a 20-40 h time interval but the event's effects may be mitigated with an early warning system. This paper presents a method to predict the total dose early in the event. It uses a locally weighted regression model, which is easier to train and provides predictions as accurate as neural network models previously used. (authors)

  5. SPE dose prediction using locally weighted regression

    International Nuclear Information System (INIS)

    Hines, J. W.; Townsend, L. W.; Nichols, T. F.

    2005-01-01

    When astronauts are outside Earth's protective magnetosphere, they are subject to large radiation doses resulting from solar particle events. The total dose received from a major solar particle event in deep space could cause severe radiation poisoning. The dose is usually received over a 20-40 h time interval but the event's effects may be reduced with an early warning system. This paper presents a method to predict the total dose early in the event. It uses a locally weighted regression model, which is easier to train, and provides predictions as accurate as the neural network models that were used previously. (authors)

  6. Principal component regression analysis with SPSS.

    Science.gov (United States)

    Liu, R X; Kuang, J; Gong, Q; Hou, X L

    2003-06-01

    The paper introduces all indices of multicollinearity diagnoses, the basic principle of principal component regression and determination of 'best' equation method. The paper uses an example to describe how to do principal component regression analysis with SPSS 10.0: including all calculating processes of the principal component regression and all operations of linear regression, factor analysis, descriptives, compute variable and bivariate correlations procedures in SPSS 10.0. The principal component regression analysis can be used to overcome disturbance of the multicollinearity. The simplified, speeded up and accurate statistical effect is reached through the principal component regression analysis with SPSS.

  7. Hierarchical scaffolds enhance osteogenic differentiation of human Wharton’s jelly derived stem cells

    International Nuclear Information System (INIS)

    Canha-Gouveia, Analuce; Rita Costa-Pinto, Ana; Martins, Albino M; Sousa, Rui A; Reis, Rui L; Neves, Nuno M; Silva, Nuno A; Salgado, António J; Sousa, Nuno; Faria, Susana

    2015-01-01

    Hierarchical structures, constituted by polymeric nano and microfibers, have been considered promising scaffolds for tissue engineering strategies, mainly because they mimic, in some way, the complexity and nanoscale detail observed in real organs. The chondrogenic potential of these scaffolds has been previously demonstrated, but their osteogenic potential is not yet corroborated. In order to assess if a hierarchical structure, with nanoscale details incorporated, is an improved scaffold for bone tissue regeneration, we evaluate cell adhesion, proliferation, and osteogenic differentiation of human Wharton’s jelly derived stem cells (hWJSCs), seeded into hierarchical fibrous scaffolds. Biological data corroborates that hierarchical fibrous scaffolds show an enhanced cell entrapment when compared to rapid prototyped scaffolds without nanofibers. Furthermore, upregulation of bone specific genes and calcium phosphate deposition confirms the successful osteogenic differentiation of hWJSCs on these scaffolds. These results support our hypothesis that a scaffold with hierarchical structure, in conjugation with hWJSCs, represents a possible feasible strategy for bone tissue engineering applications. (paper)

  8. Effect of the sheet thickness of hierarchical SnO_2 on the gas sensing performance

    International Nuclear Information System (INIS)

    Zhang, Wenlong; Zeng, Wen; BinMiao; Wang, Zhongchang

    2015-01-01

    Graphical abstract: - Highlights: • A unique flower-like SnO_2 hierarchical architecture assembled with nanosheets were successfully synthesized. • The thickness of the unique hierarchical nanoflowers was precisely controlled. • The nanoflowers composed of thinner nanosheets show a significantly enhanced gas sensing properties. • A possible growth mechanism for the unique hierarchical SnO_2 nanoflower assembled with nanosheets of different thickness is proposed. - Abstract: A unique hierarchical SnO_2 nanoflower was successfully synthesized via a facile one-step hydrothermal method. The nanoflower was analyzed in detail using X ray diffraction, field-emission electron microscope and transmission electron microscope. It was found that the nanoflowers are all assembled from nanosheets. The nanosheet thickness could be precisely controlled by tuning the dosage of NaOH. Gas sensing tests demonstrated that the thickness of the sheet significantly affects the gas sensing performance. The improved gas sensing properties are attributed to the thinned petals as well as their pores and defects. These results show that the thickness and morphology of hierarchical nanostructures affect the functionality of gas sensors.

  9. A Hierarchical Bayesian Model to Predict Self-Thinning Line for Chinese Fir in Southern China.

    Directory of Open Access Journals (Sweden)

    Xiongqing Zhang

    Full Text Available Self-thinning is a dynamic equilibrium between forest growth and mortality at full site occupancy. Parameters of the self-thinning lines are often confounded by differences across various stand and site conditions. For overcoming the problem of hierarchical and repeated measures, we used hierarchical Bayesian method to estimate the self-thinning line. The results showed that the self-thinning line for Chinese fir (Cunninghamia lanceolata (Lamb.Hook. plantations was not sensitive to the initial planting density. The uncertainty of model predictions was mostly due to within-subject variability. The simulation precision of hierarchical Bayesian method was better than that of stochastic frontier function (SFF. Hierarchical Bayesian method provided a reasonable explanation of the impact of other variables (site quality, soil type, aspect, etc. on self-thinning line, which gave us the posterior distribution of parameters of self-thinning line. The research of self-thinning relationship could be benefit from the use of hierarchical Bayesian method.

  10. A Hierarchically Micro-Meso-Macroporous Zeolite CaA for Methanol Conversion to Dimethyl Ether

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2016-11-01

    Full Text Available A hierarchical zeolite CaA with microporous, mesoporous and macroporous structure was hydrothermally synthesized by a ”Bond-Blocking” method using organo-functionalized mesoporous silica (MS as a silica source. The characterization by XRD, SEM/TEM and N2 adsorption/desorption techniques showed that the prepared material had well-crystalline zeolite Linde Type A (LTA topological structure, microspherical particle morphologies, and hierarchically intracrystalline micro-meso-macropores structure. With the Bond-Blocking principle, the external surface area and macro-mesoporosity of the hierarchical zeolite CaA can be adjusted by varying the organo-functionalized degree of the mesoporous silica surface. Similarly, the distribution of the micro-meso-macroporous structure in the zeolite CaA can be controlled purposely. Compared with the conventional microporous zeolite CaA, the hierarchical zeolite CaA as a catalyst in the conversion of methanol to dimethyl ether (DME, exhibited complete DME selectivity and stable catalytic activity with high methanol conversion. The catalytic performances of the hierarchical zeolite CaA results clearly from the micro-meso-macroporous structure, improving diffusion properties, favoring the access to the active surface and avoiding secondary reactions (no hydrocarbon products were detected after 3 h of reaction.

  11. Similarity maps and hierarchical clustering for annotating FT-IR spectral images.

    Science.gov (United States)

    Zhong, Qiaoyong; Yang, Chen; Großerüschkamp, Frederik; Kallenbach-Thieltges, Angela; Serocka, Peter; Gerwert, Klaus; Mosig, Axel

    2013-11-20

    Unsupervised segmentation of multi-spectral images plays an important role in annotating infrared microscopic images and is an essential step in label-free spectral histopathology. In this context, diverse clustering approaches have been utilized and evaluated in order to achieve segmentations of Fourier Transform Infrared (FT-IR) microscopic images that agree with histopathological characterization. We introduce so-called interactive similarity maps as an alternative annotation strategy for annotating infrared microscopic images. We demonstrate that segmentations obtained from interactive similarity maps lead to similarly accurate segmentations as segmentations obtained from conventionally used hierarchical clustering approaches. In order to perform this comparison on quantitative grounds, we provide a scheme that allows to identify non-horizontal cuts in dendrograms. This yields a validation scheme for hierarchical clustering approaches commonly used in infrared microscopy. We demonstrate that interactive similarity maps may identify more accurate segmentations than hierarchical clustering based approaches, and thus are a viable and due to their interactive nature attractive alternative to hierarchical clustering. Our validation scheme furthermore shows that performance of hierarchical two-means is comparable to the traditionally used Ward's clustering. As the former is much more efficient in time and memory, our results suggest another less resource demanding alternative for annotating large spectral images.

  12. Multiperiod Hierarchical Location Problem of Transit Hub in Urban Agglomeration Area

    Directory of Open Access Journals (Sweden)

    Ting-ting Li

    2017-01-01

    Full Text Available With the rapid urbanization in developing countries, urban agglomeration area (UAA forms. Also, transportation demand in UAA grows rapidly and presents hierarchical feature. Therefore, it is imperative to develop models for transit hubs to guide the development of UAA and better meet the time-varying and hierarchical transportation demand. In this paper, the multiperiod hierarchical location problem of transit hub in urban agglomeration area (THUAA is studied. A hierarchical service network of THUAA with a multiflow, nested, and noncoherent structure is described. Then a multiperiod hierarchical mathematical programming model is proposed, aiming at minimizing the total demand weighted travel time. Moreover, an improved adaptive clonal selection algorithm is presented to solve the model. Both the model and algorithm are verified by the application to a real-life problem of Beijing-Tianjin-Hebei Region in China. The results of different scenarios in the case show that urban population migration has a great impact on the THUAA location scheme. Sustained and appropriate urban population migration helps to reduce travel time for urban residents.

  13. Sharing the Proceeds from a Hierarchical Venture

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Moreno-Ternero, Juan D.; Tvede, Mich

    2017-01-01

    We consider the problem of distributing the proceeds generated from a joint venture in which the participating agents are hierarchically organized. We introduce and characterize a family of allocation rules where revenue ‘bubbles up’ in the hierarchy. The family is flexible enough to accommodate...... the no-transfer rule (where no revenue bubbles up) and the full-transfer rule (where all the revenues bubble up to the top of the hierarchy). Intermediate rules within the family are reminiscent of popular incentive mechanisms for social mobilization or multi-level marketing....

  14. Hierarchical Network Design Using Simulated Annealing

    DEFF Research Database (Denmark)

    Thomadsen, Tommy; Clausen, Jens

    2002-01-01

    networks are described and a mathematical model is proposed for a two level version of the hierarchical network problem. The problem is to determine which edges should connect nodes, and how demand is routed in the network. The problem is solved heuristically using simulated annealing which as a sub......-algorithm uses a construction algorithm to determine edges and route the demand. Performance for different versions of the algorithm are reported in terms of runtime and quality of the solutions. The algorithm is able to find solutions of reasonable quality in approximately 1 hour for networks with 100 nodes....

  15. Robust Pseudo-Hierarchical Support Vector Clustering

    DEFF Research Database (Denmark)

    Hansen, Michael Sass; Sjöstrand, Karl; Olafsdóttir, Hildur

    2007-01-01

    Support vector clustering (SVC) has proven an efficient algorithm for clustering of noisy and high-dimensional data sets, with applications within many fields of research. An inherent problem, however, has been setting the parameters of the SVC algorithm. Using the recent emergence of a method...... for calculating the entire regularization path of the support vector domain description, we propose a fast method for robust pseudo-hierarchical support vector clustering (HSVC). The method is demonstrated to work well on generated data, as well as for detecting ischemic segments from multidimensional myocardial...

  16. Implementation of hierarchical control in DC microgrids

    DEFF Research Database (Denmark)

    Jin, Chi; Wang, Peng; Xiao, Jianfang

    2014-01-01

    of Technology, Singapore. The coordination control among multiple dc sources and energy storages is implemented using a novel hierarchical control technique. The bus voltage essentially acts as an indicator of supply-demand balance. A wireless control is implemented for the reliable operation of the grid....... A reasonable compromise between the maximum power harvest and effective battery management is further enhanced using the coordination control based on a central energy management system. The feasibility and effectiveness of the proposed control strategies have been tested by a dc microgrid in WERL....

  17. Broca's area: a supramodal hierarchical processor?

    Science.gov (United States)

    Tettamanti, Marco; Weniger, Dorothea

    2006-05-01

    Despite the presence of shared characteristics across the different domains modulating Broca's area activity (e.g., structural analogies, as between language and music, or representational homologies, as between action execution and action observation), the question of what exactly the common denominator of such diverse brain functions is, with respect to the function of Broca's area, remains largely a debated issue. Here, we suggest that an important computational role of Broca's area may be to process hierarchical structures in a wide range of functional domains.

  18. Additive Manufacturing of Hierarchical Porous Structures

    Energy Technology Data Exchange (ETDEWEB)

    Grote, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division. Polymers and Coatings

    2016-08-30

    Additive manufacturing has become a tool of choice for the development of customizable components. Developments in this technology have led to a powerful array of printers that t serve a variety of needs. However, resin development plays a crucial role in leading the technology forward. This paper addresses the development and application of printing hierarchical porous structures. Beginning with the development of a porous scaffold, which can be functionalized with a variety of materials, and concluding with customized resins for metal, ceramic, and carbon structures.

  19. Technique for fast and efficient hierarchical clustering

    Science.gov (United States)

    Stork, Christopher

    2013-10-08

    A fast and efficient technique for hierarchical clustering of samples in a dataset includes compressing the dataset to reduce a number of variables within each of the samples of the dataset. A nearest neighbor matrix is generated to identify nearest neighbor pairs between the samples based on differences between the variables of the samples. The samples are arranged into a hierarchy that groups the samples based on the nearest neighbor matrix. The hierarchy is rendered to a display to graphically illustrate similarities or differences between the samples.

  20. Triple Hierarchical Variational Inequalities with Constraints of Mixed Equilibria, Variational Inequalities, Convex Minimization, and Hierarchical Fixed Point Problems

    Directory of Open Access Journals (Sweden)

    Lu-Chuan Ceng

    2014-01-01

    Full Text Available We introduce and analyze a hybrid iterative algorithm by virtue of Korpelevich's extragradient method, viscosity approximation method, hybrid steepest-descent method, and averaged mapping approach to the gradient-projection algorithm. It is proven that under appropriate assumptions, the proposed algorithm converges strongly to a common element of the fixed point set of infinitely many nonexpansive mappings, the solution set of finitely many generalized mixed equilibrium problems (GMEPs, the solution set of finitely many variational inequality problems (VIPs, the solution set of general system of variational inequalities (GSVI, and the set of minimizers of convex minimization problem (CMP, which is just a unique solution of a triple hierarchical variational inequality (THVI in a real Hilbert space. In addition, we also consider the application of the proposed algorithm to solve a hierarchical fixed point problem with constraints of finitely many GMEPs, finitely many VIPs, GSVI, and CMP. The results obtained in this paper improve and extend the corresponding results announced by many others.