WorldWideScience

Sample records for hierarchical regression equations

  1. Hierarchical linear regression models for conditional quantiles

    Institute of Scientific and Technical Information of China (English)

    TIAN Maozai; CHEN Gemai

    2006-01-01

    The quantile regression has several useful features and therefore is gradually developing into a comprehensive approach to the statistical analysis of linear and nonlinear response models,but it cannot deal effectively with the data with a hierarchical structure.In practice,the existence of such data hierarchies is neither accidental nor ignorable,it is a common phenomenon.To ignore this hierarchical data structure risks overlooking the importance of group effects,and may also render many of the traditional statistical analysis techniques used for studying data relationships invalid.On the other hand,the hierarchical models take a hierarchical data structure into account and have also many applications in statistics,ranging from overdispersion to constructing min-max estimators.However,the hierarchical models are virtually the mean regression,therefore,they cannot be used to characterize the entire conditional distribution of a dependent variable given high-dimensional covariates.Furthermore,the estimated coefficient vector (marginal effects)is sensitive to an outlier observation on the dependent variable.In this article,a new approach,which is based on the Gauss-Seidel iteration and taking a full advantage of the quantile regression and hierarchical models,is developed.On the theoretical front,we also consider the asymptotic properties of the new method,obtaining the simple conditions for an n1/2-convergence and an asymptotic normality.We also illustrate the use of the technique with the real educational data which is hierarchical and how the results can be explained.

  2. The Infinite Hierarchical Factor Regression Model

    CERN Document Server

    Rai, Piyush

    2009-01-01

    We propose a nonparametric Bayesian factor regression model that accounts for uncertainty in the number of factors, and the relationship between factors. To accomplish this, we propose a sparse variant of the Indian Buffet Process and couple this with a hierarchical model over factors, based on Kingman's coalescent. We apply this model to two problems (factor analysis and factor regression) in gene-expression data analysis.

  3. Entrepreneurial intention modeling using hierarchical multiple regression

    Directory of Open Access Journals (Sweden)

    Marina Jeger

    2014-12-01

    Full Text Available The goal of this study is to identify the contribution of effectuation dimensions to the predictive power of the entrepreneurial intention model over and above that which can be accounted for by other predictors selected and confirmed in previous studies. As is often the case in social and behavioral studies, some variables are likely to be highly correlated with each other. Therefore, the relative amount of variance in the criterion variable explained by each of the predictors depends on several factors such as the order of variable entry and sample specifics. The results show the modest predictive power of two dimensions of effectuation prior to the introduction of the theory of planned behavior elements. The article highlights the main advantages of applying hierarchical regression in social sciences as well as in the specific context of entrepreneurial intention formation, and addresses some of the potential pitfalls that this type of analysis entails.

  4. Hierarchical Neural Regression Models for Customer Churn Prediction

    Directory of Open Access Journals (Sweden)

    Golshan Mohammadi

    2013-01-01

    Full Text Available As customers are the main assets of each industry, customer churn prediction is becoming a major task for companies to remain in competition with competitors. In the literature, the better applicability and efficiency of hierarchical data mining techniques has been reported. This paper considers three hierarchical models by combining four different data mining techniques for churn prediction, which are backpropagation artificial neural networks (ANN, self-organizing maps (SOM, alpha-cut fuzzy c-means (α-FCM, and Cox proportional hazards regression model. The hierarchical models are ANN + ANN + Cox, SOM + ANN + Cox, and α-FCM + ANN + Cox. In particular, the first component of the models aims to cluster data in two churner and nonchurner groups and also filter out unrepresentative data or outliers. Then, the clustered data as the outputs are used to assign customers to churner and nonchurner groups by the second technique. Finally, the correctly classified data are used to create Cox proportional hazards model. To evaluate the performance of the hierarchical models, an Iranian mobile dataset is considered. The experimental results show that the hierarchical models outperform the single Cox regression baseline model in terms of prediction accuracy, Types I and II errors, RMSE, and MAD metrics. In addition, the α-FCM + ANN + Cox model significantly performs better than the two other hierarchical models.

  5. Unbalanced Regressions and the Predictive Equation

    DEFF Research Database (Denmark)

    Osterrieder, Daniela; Ventosa-Santaulària, Daniel; Vera-Valdés, J. Eduardo

    Predictive return regressions with persistent regressors are typically plagued by (asymptotically) biased/inconsistent estimates of the slope, non-standard or potentially even spurious statistical inference, and regression unbalancedness. We alleviate the problem of unbalancedness in the theoreti......Predictive return regressions with persistent regressors are typically plagued by (asymptotically) biased/inconsistent estimates of the slope, non-standard or potentially even spurious statistical inference, and regression unbalancedness. We alleviate the problem of unbalancedness...

  6. Principal Covariates Clusterwise Regression (PCCR): Accounting for Multicollinearity and Population Heterogeneity in Hierarchically Organized Data.

    Science.gov (United States)

    Wilderjans, Tom Frans; Vande Gaer, Eva; Kiers, Henk A L; Van Mechelen, Iven; Ceulemans, Eva

    2017-03-01

    In the behavioral sciences, many research questions pertain to a regression problem in that one wants to predict a criterion on the basis of a number of predictors. Although in many cases, ordinary least squares regression will suffice, sometimes the prediction problem is more challenging, for three reasons: first, multiple highly collinear predictors can be available, making it difficult to grasp their mutual relations as well as their relations to the criterion. In that case, it may be very useful to reduce the predictors to a few summary variables, on which one regresses the criterion and which at the same time yields insight into the predictor structure. Second, the population under study may consist of a few unknown subgroups that are characterized by different regression models. Third, the obtained data are often hierarchically structured, with for instance, observations being nested into persons or participants within groups or countries. Although some methods have been developed that partially meet these challenges (i.e., principal covariates regression (PCovR), clusterwise regression (CR), and structural equation models), none of these methods adequately deals with all of them simultaneously. To fill this gap, we propose the principal covariates clusterwise regression (PCCR) method, which combines the key idea's behind PCovR (de Jong & Kiers in Chemom Intell Lab Syst 14(1-3):155-164, 1992) and CR (Späth in Computing 22(4):367-373, 1979). The PCCR method is validated by means of a simulation study and by applying it to cross-cultural data regarding satisfaction with life.

  7. Coordinate Descent Based Hierarchical Interactive Lasso Penalized Logistic Regression and Its Application to Classification Problems

    Directory of Open Access Journals (Sweden)

    Jin-Jia Wang

    2014-01-01

    Full Text Available We present the hierarchical interactive lasso penalized logistic regression using the coordinate descent algorithm based on the hierarchy theory and variables interactions. We define the interaction model based on the geometric algebra and hierarchical constraint conditions and then use the coordinate descent algorithm to solve for the coefficients of the hierarchical interactive lasso model. We provide the results of some experiments based on UCI datasets, Madelon datasets from NIPS2003, and daily activities of the elder. The experimental results show that the variable interactions and hierarchy contribute significantly to the classification. The hierarchical interactive lasso has the advantages of the lasso and interactive lasso.

  8. Hierarchical Matching and Regression with Application to Photometric Redshift Estimation

    Science.gov (United States)

    Murtagh, Fionn

    2017-06-01

    This work emphasizes that heterogeneity, diversity, discontinuity, and discreteness in data is to be exploited in classification and regression problems. A global a priori model may not be desirable. For data analytics in cosmology, this is motivated by the variety of cosmological objects such as elliptical, spiral, active, and merging galaxies at a wide range of redshifts. Our aim is matching and similarity-based analytics that takes account of discrete relationships in the data. The information structure of the data is represented by a hierarchy or tree where the branch structure, rather than just the proximity, is important. The representation is related to p-adic number theory. The clustering or binning of the data values, related to the precision of the measurements, has a central role in this methodology. If used for regression, our approach is a method of cluster-wise regression, generalizing nearest neighbour regression. Both to exemplify this analytics approach, and to demonstrate computational benefits, we address the well-known photometric redshift or `photo-z' problem, seeking to match Sloan Digital Sky Survey (SDSS) spectroscopic and photometric redshifts.

  9. Analyzing Multilevel Data: Comparing Findings from Hierarchical Linear Modeling and Ordinary Least Squares Regression

    Science.gov (United States)

    Rocconi, Louis M.

    2013-01-01

    This study examined the differing conclusions one may come to depending upon the type of analysis chosen, hierarchical linear modeling or ordinary least squares (OLS) regression. To illustrate this point, this study examined the influences of seniors' self-reported critical thinking abilities three ways: (1) an OLS regression with the student…

  10. Hierarchical Matrices Method and Its Application in Electromagnetic Integral Equations

    Directory of Open Access Journals (Sweden)

    Han Guo

    2012-01-01

    Full Text Available Hierarchical (H- matrices method is a general mathematical framework providing a highly compact representation and efficient numerical arithmetic. When applied in integral-equation- (IE- based computational electromagnetics, H-matrices can be regarded as a fast algorithm; therefore, both the CPU time and memory requirement are reduced significantly. Its kernel independent feature also makes it suitable for any kind of integral equation. To solve H-matrices system, Krylov iteration methods can be employed with appropriate preconditioners, and direct solvers based on the hierarchical structure of H-matrices are also available along with high efficiency and accuracy, which is a unique advantage compared to other fast algorithms. In this paper, a novel sparse approximate inverse (SAI preconditioner in multilevel fashion is proposed to accelerate the convergence rate of Krylov iterations for solving H-matrices system in electromagnetic applications, and a group of parallel fast direct solvers are developed for dealing with multiple right-hand-side cases. Finally, numerical experiments are given to demonstrate the advantages of the proposed multilevel preconditioner compared to conventional “single level” preconditioners and the practicability of the fast direct solvers for arbitrary complex structures.

  11. Hierarchically Organized Iterative Solutions of the Evolution Equations in QCD

    CERN Document Server

    Jadach, S; Was, Z

    2007-01-01

    The task of Monte Carlo simulation of the evolution of the parton distributions in QCD and of constructing new parton shower Monte Carlo algorithms requires new way of organizing solutions of the QCD evolution equations, in which quark-gluon transitions on one hand and quark-quark or gluon-gluon transitions (pure gluonstrahlung) on the other hand, are treated separately and differently. This requires certain reorganization of the iterative solutions of the QCD evolution equations and leads to what we refer to as a hierarchic iterative solutions of the evolution equations. We present three formal derivations of such a solution. Results presented here are already used in the other recent works to formulate new MC algorithms for the parton-shower-like implementations of the QCD evolution equations. They are primarily of the non-Markovian type. However, such a solution can be used for the Markovian-type MCs as well. We also comment briefly on the relation of the presented formalism to similar methods used in othe...

  12. Hierarchical Multiple Regression in Counseling Research: Common Problems and Possible Remedies.

    Science.gov (United States)

    Petrocelli, John V.

    2003-01-01

    A brief content analysis was conducted on the use of hierarchical regression in counseling research published in the "Journal of Counseling Psychology" and the "Journal of Counseling & Development" during the years 1997-2001. Common problems are cited and possible remedies are described. (Contains 43 references and 3 tables.) (Author)

  13. A Comparison of Hierarchical and Non-Hierarchical Bayesian Approaches for Fitting Allometric Larch (Larix.spp. Biomass Equations

    Directory of Open Access Journals (Sweden)

    Dongsheng Chen

    2016-01-01

    Full Text Available Accurate biomass estimations are important for assessing and monitoring forest carbon storage. Bayesian theory has been widely applied to tree biomass models. Recently, a hierarchical Bayesian approach has received increasing attention for improving biomass models. In this study, tree biomass data were obtained by sampling 310 trees from 209 permanent sample plots from larch plantations in six regions across China. Non-hierarchical and hierarchical Bayesian approaches were used to model allometric biomass equations. We found that the total, root, stem wood, stem bark, branch and foliage biomass model relationships were statistically significant (p-values < 0.001 for both the non-hierarchical and hierarchical Bayesian approaches, but the hierarchical Bayesian approach increased the goodness-of-fit statistics over the non-hierarchical Bayesian approach. The R2 values of the hierarchical approach were higher than those of the non-hierarchical approach by 0.008, 0.018, 0.020, 0.003, 0.088 and 0.116 for the total tree, root, stem wood, stem bark, branch and foliage models, respectively. The hierarchical Bayesian approach significantly improved the accuracy of the biomass model (except for the stem bark and can reflect regional differences by using random parameters to improve the regional scale model accuracy.

  14. Analysis of genomic signatures in prokaryotes using multinomial regression and hierarchical clustering

    DEFF Research Database (Denmark)

    Ussery, David; Bohlin, Jon; Skjerve, Eystein

    2009-01-01

    Recently there has been an explosion in the availability of bacterial genomic sequences, making possible now an analysis of genomic signatures across more than 800 hundred different bacterial chromosomes, from a wide variety of environments. Using genomic signatures, we pair-wise compared 867...... different genomic DNA sequences, taken from chromosomes and plasmids more than 100,000 base-pairs in length. Hierarchical clustering was performed on the outcome of the comparisons before a multinomial regression model was fitted. The regression model included the cluster groups as the response variable...... AT content. Small improvements to the regression model, although significant, were also obtained by factors such as sequence size, habitat, growth temperature, selective pressure measured as oligonucleotide usage variance, and oxygen requirement.The statistics obtained using hierarchical clustering...

  15. Neighborhood social capital and crime victimization: comparison of spatial regression analysis and hierarchical regression analysis.

    Science.gov (United States)

    Takagi, Daisuke; Ikeda, Ken'ichi; Kawachi, Ichiro

    2012-11-01

    Crime is an important determinant of public health outcomes, including quality of life, mental well-being, and health behavior. A body of research has documented the association between community social capital and crime victimization. The association between social capital and crime victimization has been examined at multiple levels of spatial aggregation, ranging from entire countries, to states, metropolitan areas, counties, and neighborhoods. In multilevel analysis, the spatial boundaries at level 2 are most often drawn from administrative boundaries (e.g., Census tracts in the U.S.). One problem with adopting administrative definitions of neighborhoods is that it ignores spatial spillover. We conducted a study of social capital and crime victimization in one ward of Tokyo city, using a spatial Durbin model with an inverse-distance weighting matrix that assigned each respondent a unique level of "exposure" to social capital based on all other residents' perceptions. The study is based on a postal questionnaire sent to 20-69 years old residents of Arakawa Ward, Tokyo. The response rate was 43.7%. We examined the contextual influence of generalized trust, perceptions of reciprocity, two types of social network variables, as well as two principal components of social capital (constructed from the above four variables). Our outcome measure was self-reported crime victimization in the last five years. In the spatial Durbin model, we found that neighborhood generalized trust, reciprocity, supportive networks and two principal components of social capital were each inversely associated with crime victimization. By contrast, a multilevel regression performed with the same data (using administrative neighborhood boundaries) found generally null associations between neighborhood social capital and crime. Spatial regression methods may be more appropriate for investigating the contextual influence of social capital in homogeneous cultural settings such as Japan.

  16. Using Regression Equations Built from Summary Data in the Psychological Assessment of the Individual Case: Extension to Multiple Regression

    Science.gov (United States)

    Crawford, John R.; Garthwaite, Paul H.; Denham, Annie K.; Chelune, Gordon J.

    2012-01-01

    Regression equations have many useful roles in psychological assessment. Moreover, there is a large reservoir of published data that could be used to build regression equations; these equations could then be employed to test a wide variety of hypotheses concerning the functioning of individual cases. This resource is currently underused because…

  17. Bayesian structural equation modeling method for hierarchical model validation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Xiaomo [Department of Civil and Environmental Engineering, Vanderbilt University, Box 1831-B, Nashville, TN 37235 (United States)], E-mail: xiaomo.jiang@vanderbilt.edu; Mahadevan, Sankaran [Department of Civil and Environmental Engineering, Vanderbilt University, Box 1831-B, Nashville, TN 37235 (United States)], E-mail: sankaran.mahadevan@vanderbilt.edu

    2009-04-15

    A building block approach to model validation may proceed through various levels, such as material to component to subsystem to system, comparing model predictions with experimental observations at each level. Usually, experimental data becomes scarce as one proceeds from lower to higher levels. This paper presents a structural equation modeling approach to make use of the lower-level data for higher-level model validation under uncertainty, integrating several components: lower-level data, higher-level data, computational model, and latent variables. The method proposed in this paper uses latent variables to model two sets of relationships, namely, the computational model to system-level data, and lower-level data to system-level data. A Bayesian network with Markov chain Monte Carlo simulation is applied to represent the two relationships and to estimate the influencing factors between them. Bayesian hypothesis testing is employed to quantify the confidence in the predictive model at the system level, and the role of lower-level data in the model validation assessment at the system level. The proposed methodology is implemented for hierarchical assessment of three validation problems, using discrete observations and time-series data.

  18. Higher order hierarchical discretization scheme for surface integral equations for layered media

    DEFF Research Database (Denmark)

    Jørgensen, Erik; Kim, Oleksiy S.; Meincke, Peter;

    2004-01-01

    equation. This higher order MoM solution comprises higher order curved patches for the geometry modeling and higher order hierarchical basis functions for expansion of the electric surface current density. Due to the hierarchical property of the basis functions, the order of the expansion can be selected...

  19. Evidence for a non-universal Kennicutt-Schmidt relationship using hierarchical Bayesian linear regression

    CERN Document Server

    Shetty, Rahul; Bigiel, Frank

    2012-01-01

    We develop a Bayesian linear regression method which rigorously treats measurement uncertainties, and accounts for hierarchical data structure for investigating the relationship between the star formation rate and gas surface density. The method simultaneously estimates the intercept, slope, and scatter about the regression line of each individual subject (e.g. a galaxy) and the population (e.g. an ensemble of galaxies). Using synthetic datasets, we demonstrate that the Bayesian method accurately recovers the parameters of both the individuals and the population, especially when compared to commonly employed least squares methods, such as the bisector. We apply the Bayesian method to estimate the Kennicutt-Schmidt (KS) parameters of a sample of spiral galaxies compiled by Bigiel et al. (2008). We find significant variation in the KS parameters, indicating that no single KS relationship holds for all galaxies. This suggests that the relationship between molecular gas and star formation differs between galaxies...

  20. Hierarchical matrix techniques for the solution of elliptic equations

    KAUST Repository

    Chávez, Gustavo

    2014-05-04

    Hierarchical matrix approximations are a promising tool for approximating low-rank matrices given the compactness of their representation and the economy of the operations between them. Integral and differential operators have been the major applications of this technology, but they can be applied into other areas where low-rank properties exist. Such is the case of the Block Cyclic Reduction algorithm, which is used as a direct solver for the constant-coefficient Poisson quation. We explore the variable-coefficient case, also using Block Cyclic reduction, with the addition of Hierarchical Matrices to represent matrix blocks, hence improving the otherwise O(N2) algorithm, into an efficient O(N) algorithm.

  1. On the Hierarchical Preconditioning of the PMCHWT Integral Equation on Simply and Multiply Connected Geometries

    CERN Document Server

    Guzman, J E Ortiz; Mitharwal, R; Beghein, Y; Eibert, T F; Cools, K; Andriulli, F P

    2016-01-01

    We present a hierarchical basis preconditioning strategy for the Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) integral equation considering both simply and multiply connected geometries.To this end, we first consider the direct application of hierarchical basis preconditioners, developed for the Electric Field Integral Equation (EFIE), to the PMCHWT. It is notably found that, whereas for the EFIE a diagonal preconditioner can be used for obtaining the hierarchical basis scaling factors, this strategy is catastrophic in the case of the PMCHWT since it leads to a severly ill-conditioned PMCHWT system in the case of multiply connected geometries. We then proceed to a theoretical analysis of the effect of hierarchical bases on the PMCHWT operator for which we obtain the correct scaling factors and a provably effective preconditioner for both low frequencies and mesh refinements. Numerical results will corroborate the theory and show the effectiveness of our approach.

  2. Constrained hierarchical least square nonlinear equation solvers. [for indefinite stiffness and large structural deformations

    Science.gov (United States)

    Padovan, J.; Lackney, J.

    1986-01-01

    The current paper develops a constrained hierarchical least square nonlinear equation solver. The procedure can handle the response behavior of systems which possess indefinite tangent stiffness characteristics. Due to the generality of the scheme, this can be achieved at various hierarchical application levels. For instance, in the case of finite element simulations, various combinations of either degree of freedom, nodal, elemental, substructural, and global level iterations are possible. Overall, this enables a solution methodology which is highly stable and storage efficient. To demonstrate the capability of the constrained hierarchical least square methodology, benchmarking examples are presented which treat structure exhibiting highly nonlinear pre- and postbuckling behavior wherein several indefinite stiffness transitions occur.

  3. About regression-kriging: from equations to case studies

    NARCIS (Netherlands)

    Hengl, T.; Heuvelink, G.B.M.; Rossiter, D.G.

    2007-01-01

    This paper discusses the characteristics of regression-kriging (RK), its strengths and limitations, and illustrates these with a simple example and three case studies. RK is a spatial interpolation technique that combines a regression of the dependent variable on auxiliary variables (such as land su

  4. Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach.

    Science.gov (United States)

    Jin, Jinshuang; Zheng, Xiao; Yan, YiJing

    2008-06-21

    A generalized quantum master equation theory that governs the exact, nonperturbative quantum dissipation and quantum transport is formulated in terms of hierarchically coupled equations of motion for an arbitrary electronic system in contact with electrodes under either a stationary or a nonstationary electrochemical potential bias. The theoretical construction starts with the influence functional in path integral, in which the electron creation and annihilation operators are Grassmann variables. Time derivatives on the influence functionals are then performed in a hierarchical manner. Both the multiple-frequency dispersion and the non-Markovian reservoir parametrization schemes are considered for the desired hierarchy construction. The resulting hierarchical equations of motion formalism is in principle exact and applicable to arbitrary electronic systems, including Coulomb interactions, under the influence of arbitrary time-dependent applied bias voltage and external fields. Both the conventional quantum master equation and the real-time diagrammatic formalism of Schon and co-workers can be readily obtained at well defined limits of the present theory. We also show that for a noninteracting electron system, the present hierarchical equations of motion formalism terminates at the second tier exactly, and the Landuer-Buttiker transport current expression is recovered. The present theory renders an exact and numerically tractable tool to evaluate various transient and stationary quantum transport properties of many-electron systems, together with the involving nonperturbative dissipative dynamics.

  5. Hierarchical Vector Auto-Regressive Models and Their Applications to Multi-subject Effective Connectivity

    Directory of Open Access Journals (Sweden)

    Cristina eGorrostieta

    2013-11-01

    Full Text Available Vector auto-regressive (VAR models typically form the basis for constructing directed graphical models for investigating connectivity in a brain network with brain regions of interest (ROIs as nodes. There are limitations in the standard VAR models. The number of parameters in the VAR model increases quadratically with the number of ROIs and linearly with the order of the model and thus due to the large number of parameters, the model could pose serious estimation problems. Moreover, when applied to imaging data, the standard VAR model does not account for variability in the connectivity structure across all subjects. In this paper, we develop a novel generalization of the VAR model that overcomes these limitations. To deal with the high dimensionality of the parameter space, we propose a Bayesian hierarchical framework for the VAR model that will account for both temporal correlation within a subject and between subject variation. Our approach uses prior distributions that give rise to estimates that correspond to penalized least squares criterion with the elastic net penalty. We apply the proposed model to investigate differences in effective connectivity during a hand grasp experiment between healthy controls and patients with residual motor deficit following a stroke.

  6. Bayesian hierarchical regression analysis of variations in sea surface temperature change over the past million years

    Science.gov (United States)

    Snyder, Carolyn W.

    2016-09-01

    Statistical challenges often preclude comparisons among different sea surface temperature (SST) reconstructions over the past million years. Inadequate consideration of uncertainty can result in misinterpretation, overconfidence, and biased conclusions. Here I apply Bayesian hierarchical regressions to analyze local SST responsiveness to climate changes for 54 SST reconstructions from across the globe over the past million years. I develop methods to account for multiple sources of uncertainty, including the quantification of uncertainty introduced from absolute dating into interrecord comparisons. The estimates of local SST responsiveness explain 64% (62% to 77%, 95% interval) of the total variation within each SST reconstruction with a single number. There is remarkable agreement between SST proxy methods, with the exception of Mg/Ca proxy methods estimating muted responses at high latitudes. The Indian Ocean exhibits a muted response in comparison to other oceans. I find a stable estimate of the proposed "universal curve" of change in local SST responsiveness to climate changes as a function of sin2(latitude) over the past 400,000 years: SST change at 45°N/S is larger than the average tropical response by a factor of 1.9 (1.5 to 2.6, 95% interval) and explains 50% (35% to 58%, 95% interval) of the total variation between each SST reconstruction. These uncertainty and statistical methods are well suited for application across paleoclimate and environmental data series intercomparisons.

  7. Type Ia Supernova Colors and Ejecta Velocities: Hierarchical Bayesian Regression with Non-Gaussian Distributions

    CERN Document Server

    Mandel, Kaisey S; Kirshner, Robert P

    2014-01-01

    We investigate the correlations between the peak intrinsic colors of Type Ia supernovae (SN Ia) and their expansion velocities at maximum light, measured from the Si II 6355 A spectral feature. We construct a new hierarchical Bayesian regression model and Gibbs sampler to estimate the dependence of the intrinsic colors of a SN Ia on its ejecta velocity, while accounting for the random effects of intrinsic scatter, measurement error, and reddening by host galaxy dust. The method is applied to the apparent color data from BVRI light curves and Si II velocity data for 79 nearby SN Ia. Comparison of the apparent color distributions of high velocity (HV) and normal velocity (NV) supernovae reveals significant discrepancies in B-V and B-R, but not other colors. Hence, they are likely due to intrinsic color differences originating in the B-band, rather than dust reddening. The mean intrinsic B-V and B-R color differences between HV and NV groups are 0.06 +/- 0.02 and 0.09 +/- 0.02 mag, respectively. Under a linear m...

  8. Regression Equations for Stature Estimation among Medical Students of Ghaziabad

    OpenAIRE

    Rakhee Verma, Syed Esam Mahmood

    2015-01-01

    "Introduction: Ossification and maturation in the foot occurs earlier than the long bones and therefore, during adolescence height could be more accurately predicted from foot measurement as compared to that from long bones. This study was undertaken to find out the correlation between foot length and height of an individual and to derive regression formulae to estimate the height from the foot length in the study population. Materials & Method: This cross sectional study was cond...

  9. TYPE Ia SUPERNOVA COLORS AND EJECTA VELOCITIES: HIERARCHICAL BAYESIAN REGRESSION WITH NON-GAUSSIAN DISTRIBUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mandel, Kaisey S.; Kirshner, Robert P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Foley, Ryan J., E-mail: kmandel@cfa.harvard.edu [Astronomy Department, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States)

    2014-12-20

    We investigate the statistical dependence of the peak intrinsic colors of Type Ia supernovae (SNe Ia) on their expansion velocities at maximum light, measured from the Si II λ6355 spectral feature. We construct a new hierarchical Bayesian regression model, accounting for the random effects of intrinsic scatter, measurement error, and reddening by host galaxy dust, and implement a Gibbs sampler and deviance information criteria to estimate the correlation. The method is applied to the apparent colors from BVRI light curves and Si II velocity data for 79 nearby SNe Ia. The apparent color distributions of high-velocity (HV) and normal velocity (NV) supernovae exhibit significant discrepancies for B – V and B – R, but not other colors. Hence, they are likely due to intrinsic color differences originating in the B band, rather than dust reddening. The mean intrinsic B – V and B – R color differences between HV and NV groups are 0.06 ± 0.02 and 0.09 ± 0.02 mag, respectively. A linear model finds significant slopes of –0.021 ± 0.006 and –0.030 ± 0.009 mag (10{sup 3} km s{sup –1}){sup –1} for intrinsic B – V and B – R colors versus velocity, respectively. Because the ejecta velocity distribution is skewed toward high velocities, these effects imply non-Gaussian intrinsic color distributions with skewness up to +0.3. Accounting for the intrinsic-color-velocity correlation results in corrections to A{sub V} extinction estimates as large as –0.12 mag for HV SNe Ia and +0.06 mag for NV events. Velocity measurements from SN Ia spectra have the potential to diminish systematic errors from the confounding of intrinsic colors and dust reddening affecting supernova distances.

  10. Solution of volume-surface integral equations using higher-order hierarchical Legendre basis functions

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Meincke, Peter; Breinbjerg, Olav

    2007-01-01

    is applied to transform the VSIE into a system of linear equations. The higher-order MoM provides significant reduction in the number of unknowns in comparison with standard MoM formulations using low-order basis functions, such as RWG functions. Due to the orthogonal nature of the higher-order Legendre......The problem of electromagnetic scattering by composite metallic and dielectric objects is solved using the coupled volume-surface integral equation (VSIE). The method of moments (MoM) based on higher-order hierarchical Legendre basis functions and higher-order curvilinear geometrical elements...

  11. Regional Regression Equations to Estimate Flow-Duration Statistics at Ungaged Stream Sites in Connecticut

    Science.gov (United States)

    Ahearn, Elizabeth A.

    2010-01-01

    Multiple linear regression equations for determining flow-duration statistics were developed to estimate select flow exceedances ranging from 25- to 99-percent for six 'bioperiods'-Salmonid Spawning (November), Overwinter (December-February), Habitat Forming (March-April), Clupeid Spawning (May), Resident Spawning (June), and Rearing and Growth (July-October)-in Connecticut. Regression equations also were developed to estimate the 25- and 99-percent flow exceedances without reference to a bioperiod. In total, 32 equations were developed. The predictive equations were based on regression analyses relating flow statistics from streamgages to GIS-determined basin and climatic characteristics for the drainage areas of those streamgages. Thirty-nine streamgages (and an additional 6 short-term streamgages and 28 partial-record sites for the non-bioperiod 99-percent exceedance) in Connecticut and adjacent areas of neighboring States were used in the regression analysis. Weighted least squares regression analysis was used to determine the predictive equations; weights were assigned based on record length. The basin characteristics-drainage area, percentage of area with coarse-grained stratified deposits, percentage of area with wetlands, mean monthly precipitation (November), mean seasonal precipitation (December, January, and February), and mean basin elevation-are used as explanatory variables in the equations. Standard errors of estimate of the 32 equations ranged from 10.7 to 156 percent with medians of 19.2 and 55.4 percent to predict the 25- and 99-percent exceedances, respectively. Regression equations to estimate high and median flows (25- to 75-percent exceedances) are better predictors (smaller variability of the residual values around the regression line) than the equations to estimate low flows (less than 75-percent exceedance). The Habitat Forming (March-April) bioperiod had the smallest standard errors of estimate, ranging from 10.7 to 20.9 percent. In

  12. Hierarchical Cluster-based Partial Least Squares Regression (HC-PLSR is an efficient tool for metamodelling of nonlinear dynamic models

    Directory of Open Access Journals (Sweden)

    Omholt Stig W

    2011-06-01

    Full Text Available Abstract Background Deterministic dynamic models of complex biological systems contain a large number of parameters and state variables, related through nonlinear differential equations with various types of feedback. A metamodel of such a dynamic model is a statistical approximation model that maps variation in parameters and initial conditions (inputs to variation in features of the trajectories of the state variables (outputs throughout the entire biologically relevant input space. A sufficiently accurate mapping can be exploited both instrumentally and epistemically. Multivariate regression methodology is a commonly used approach for emulating dynamic models. However, when the input-output relations are highly nonlinear or non-monotone, a standard linear regression approach is prone to give suboptimal results. We therefore hypothesised that a more accurate mapping can be obtained by locally linear or locally polynomial regression. We present here a new method for local regression modelling, Hierarchical Cluster-based PLS regression (HC-PLSR, where fuzzy C-means clustering is used to separate the data set into parts according to the structure of the response surface. We compare the metamodelling performance of HC-PLSR with polynomial partial least squares regression (PLSR and ordinary least squares (OLS regression on various systems: six different gene regulatory network models with various types of feedback, a deterministic mathematical model of the mammalian circadian clock and a model of the mouse ventricular myocyte function. Results Our results indicate that multivariate regression is well suited for emulating dynamic models in systems biology. The hierarchical approach turned out to be superior to both polynomial PLSR and OLS regression in all three test cases. The advantage, in terms of explained variance and prediction accuracy, was largest in systems with highly nonlinear functional relationships and in systems with positive feedback

  13. Equilibrium excited state and emission spectra of molecular aggregates from the hierarchical equations of motion approach.

    Science.gov (United States)

    Jing, Yuanyuan; Chen, Liping; Bai, Shuming; Shi, Qiang

    2013-01-28

    The hierarchical equations of motion (HEOM) method was applied to calculate the emission spectra of molecular aggregates using the Frenkel exciton model. HEOM equations for the one-exciton excited state were first propagated until equilibration. The reduced density operator and auxiliary density operators (ADOs) were used to characterize the coupled system-bath equilibrium. The dipole-dipole correlation functions were then calculated to obtain the emission spectra of model dimers, and the B850 band of light-harvesting complex II (LH2) in purple bacteria. The effect of static disorder on equilibrium excited state and the emission spectra of LH2 was also explicitly considered. Several approximation schemes, including the high temperature approximation (HTA) of the HEOM, a modified version of the HTA, the stochastic Liouville equation approach, the perturbative time-local and time-nonlocal generalized quantum master equations, were assessed in the calculation of the equilibrium excited state and emission spectra.

  14. A Logistic Regression Model with a Hierarchical Random Error Term for Analyzing the Utilization of Public Transport

    Directory of Open Access Journals (Sweden)

    Chong Wei

    2015-01-01

    Full Text Available Logistic regression models have been widely used in previous studies to analyze public transport utilization. These studies have shown travel time to be an indispensable variable for such analysis and usually consider it to be a deterministic variable. This formulation does not allow us to capture travelers’ perception error regarding travel time, and recent studies have indicated that this error can have a significant effect on modal choice behavior. In this study, we propose a logistic regression model with a hierarchical random error term. The proposed model adds a new random error term for the travel time variable. This term structure enables us to investigate travelers’ perception error regarding travel time from a given choice behavior dataset. We also propose an extended model that allows constraining the sign of this error in the model. We develop two Gibbs samplers to estimate the basic hierarchical model and the extended model. The performance of the proposed models is examined using a well-known dataset.

  15. Investigating the effects of climate variations on bacillary dysentery incidence in northeast China using ridge regression and hierarchical cluster analysis

    Directory of Open Access Journals (Sweden)

    Guo Junqiao

    2008-09-01

    Full Text Available Abstract Background The effects of climate variations on bacillary dysentery incidence have gained more recent concern. However, the multi-collinearity among meteorological factors affects the accuracy of correlation with bacillary dysentery incidence. Methods As a remedy, a modified method to combine ridge regression and hierarchical cluster analysis was proposed for investigating the effects of climate variations on bacillary dysentery incidence in northeast China. Results All weather indicators, temperatures, precipitation, evaporation and relative humidity have shown positive correlation with the monthly incidence of bacillary dysentery, while air pressure had a negative correlation with the incidence. Ridge regression and hierarchical cluster analysis showed that during 1987–1996, relative humidity, temperatures and air pressure affected the transmission of the bacillary dysentery. During this period, all meteorological factors were divided into three categories. Relative humidity and precipitation belonged to one class, temperature indexes and evaporation belonged to another class, and air pressure was the third class. Conclusion Meteorological factors have affected the transmission of bacillary dysentery in northeast China. Bacillary dysentery prevention and control would benefit from by giving more consideration to local climate variations.

  16. Predictive equations using regression analysis of pulmonary function for healthy children in Northeast China.

    Directory of Open Access Journals (Sweden)

    Ya-Nan Ma

    Full Text Available BACKGROUND: There have been few published studies on spirometric reference values for healthy children in China. We hypothesize that there would have been changes in lung function that would not have been precisely predicted by the existing spirometric reference equations. The objective of the study was to develop more accurate predictive equations for spirometric reference values for children aged 9 to 15 years in Northeast China. METHODOLOGY/PRINCIPAL FINDINGS: Spirometric measurements were obtained from 3,922 children, including 1,974 boys and 1,948 girls, who were randomly selected from five cities of Liaoning province, Northeast China, using the ATS (American Thoracic Society and ERS (European Respiratory Society standards. The data was then randomly split into a training subset containing 2078 cases and a validation subset containing 1844 cases. Predictive equations used multiple linear regression techniques with three predictor variables: height, age and weight. Model goodness of fit was examined using the coefficient of determination or the R(2 and adjusted R(2. The predicted values were compared with those obtained from the existing spirometric reference equations. The results showed the prediction equations using linear regression analysis performed well for most spirometric parameters. Paired t-tests were used to compare the predicted values obtained from the developed and existing spirometric reference equations based on the validation subset. The t-test for males was not statistically significant (p>0.01. The predictive accuracy of the developed equations was higher than the existing equations and the predictive ability of the model was also validated. CONCLUSION/SIGNIFICANCE: We developed prediction equations using linear regression analysis of spirometric parameters for children aged 9-15 years in Northeast China. These equations represent the first attempt at predicting lung function for Chinese children following the ATS

  17. MIXED DENTITION SPACE ANALYSIS OF A SOUTHERN ITALIAN POPULATION: NEW REGRESSION EQUATIONS FOR UNERUPTED TEETH.

    Science.gov (United States)

    Cirulli, N; Ballini, A; Cantore, S; Farronato, D; Inchingolo, F; Dipalma, G; Gatto, M R; Alessandri Bonetti, G

    2015-01-01

    Mixed dentition analysis forms a critical aspect of early orthodontic treatment. In fact an accurate space analysis is one of the important criteria in determining whether the treatment plan may involve serial extraction, guidance of eruption, space maintenance, space regaining or just periodic observation of the patients. The aim of the present study was to calculate linear regression equations in mixed dentition space analysis, measuring 230 dental casts mesiodistal tooth widths, obtained from southern Italian patients (118 females, 112 males, mean age 15±3 years). Student’s t-test or Wilcoxon test for independent and paired samples were used to determine right/left side and male/female differences. On the basis of the sum of the mesiodistal diameters of the 4 mandibular incisors as predictors for the sum of the widths of the canines and premolars in the mandibular mixed dentition, a new linear regression equation was found: y = 0.613x+7.294 (r= 0.701) for both genders in a southern Italian population. To better estimate the size of leeway space, a new regression equation was found to calculate the mesiodistal size of the second premolar using the sum of the four mandibular incisors, canine and first premolar as a predictor. The equation is y = 0.241x+1.224 (r= 0.732). In conclusion, new regression equations were derived for a southern Italian population.

  18. Hierarchical quantum master equation approach to electronic-vibrational coupling in nonequilibrium transport through nanosystems

    Science.gov (United States)

    Schinabeck, C.; Erpenbeck, A.; Härtle, R.; Thoss, M.

    2016-11-01

    Within the hierarchical quantum master equation (HQME) framework, an approach is presented, which allows a numerically exact description of nonequilibrium charge transport in nanosystems with strong electronic-vibrational coupling. The method is applied to a generic model of vibrationally coupled transport considering a broad spectrum of parameters ranging from the nonadiabatic to the adiabatic regime and including both resonant and off-resonant transport. We show that nonequilibrium effects are important in all these regimes. In particular, in the off-resonant transport regime, the inelastic cotunneling signal is analyzed for a vibrational mode in full nonequilibrium, revealing a complex interplay of different transport processes and deviations from the commonly used G0/2 rule of thumb. In addition, the HQME approach is used to benchmark approximate master equation and nonequilibrium Green's function methods.

  19. Hierarchical design of a polymeric nanovehicle for efficient tumor regression and imaging

    Science.gov (United States)

    An, Jinxia; Guo, Qianqian; Zhang, Peng; Sinclair, Andrew; Zhao, Yu; Zhang, Xinge; Wu, Kan; Sun, Fang; Hung, Hsiang-Chieh; Li, Chaoxing; Jiang, Shaoyi

    2016-04-01

    Effective delivery of therapeutics to disease sites significantly contributes to drug efficacy, toxicity and clearance. Here we designed a hierarchical polymeric nanoparticle structure for anti-cancer chemotherapy delivery by utilizing state-of-the-art polymer chemistry and co-assembly techniques. This novel structural design combines the most desired merits for drug delivery in a single particle, including a long in vivo circulation time, inhibited non-specific cell uptake, enhanced tumor cell internalization, pH-controlled drug release and simultaneous imaging. This co-assembled nanoparticle showed exceptional stability in complex biological media. Benefiting from the synergistic effects of zwitterionic and multivalent galactose polymers, drug-loaded nanoparticles were selectively internalized by cancer cells rather than normal tissue cells. In addition, the pH-responsive core retained their cargo within their polymeric coating through hydrophobic interaction and released it under slightly acidic conditions. In vivo pharmacokinetic studies in mice showed minimal uptake of nanoparticles by the mononuclear phagocyte system and excellent blood circulation half-lives of 14.4 h. As a result, tumor growth was completely inhibited and no damage was observed for normal organ tissues. This newly developed drug nanovehicle has great potential in cancer therapy, and the hierarchical design principle should provide valuable information for the development of the next generation of drug delivery systems.Effective delivery of therapeutics to disease sites significantly contributes to drug efficacy, toxicity and clearance. Here we designed a hierarchical polymeric nanoparticle structure for anti-cancer chemotherapy delivery by utilizing state-of-the-art polymer chemistry and co-assembly techniques. This novel structural design combines the most desired merits for drug delivery in a single particle, including a long in vivo circulation time, inhibited non-specific cell uptake

  20. Regression equations to predict 6-minute walk distance in Chinese adults aged 55–85 years

    Directory of Open Access Journals (Sweden)

    Shirley P.C. Ngai, PhD

    2014-12-01

    Full Text Available The 6-minute walk distance (6MWD is used as a measure of functional exercise capacity in clinical populations and research. Reference equations to predict 6MWD in different populations have been established, however, available equations for Chinese population are scarce. This study aimed to develop regression equations to predict the 6MWD for a Hong Kong Chinese population. Fifty-three healthy individuals (25 men, 28 women; mean age = 69.3 ± 6.5 years participated in this cross-sectional study. Each participant performed two 6-minute walk tests (6MWTs in accordance with a standard protocol. Heart rate (HR was continuously monitored throughout the 6MWTs and the maximum HR was recorded. Measurements from the 6MWT that resulted in the highest 6MWD were used for regression analysis. The mean 6MWD was 563 ± 62 m and was significantly correlated with age (r = −0.62, height (r = 0.39, and percentage of predicted maximal HR (%predHRmax; r = 0.50. A regression equation derived from the data showed that age, sex, and %predHRmax were independent contributors and together explained 65% of the variance in 6MWD. When HR was excluded, the equation explained 52% of the variance. Application of these equations to a Chinese population living in different parts of China warrants further investigation.

  1. Testing Mediation Using Multiple Regression and Structural Equation Modeling Analyses in Secondary Data

    Science.gov (United States)

    Li, Spencer D.

    2011-01-01

    Mediation analysis in child and adolescent development research is possible using large secondary data sets. This article provides an overview of two statistical methods commonly used to test mediated effects in secondary analysis: multiple regression and structural equation modeling (SEM). Two empirical studies are presented to illustrate the…

  2. A hierarchical uniformly high order DG-IMEX scheme for the 1D BGK equation

    Science.gov (United States)

    Xiong, Tao; Qiu, Jing-Mei

    2017-05-01

    A class of high order nodal discontinuous Galerkin implicit-explicit (DG-IMEX) schemes with asymptotic preserving (AP) property has been developed for the one-dimensional (1D) BGK equation in Xiong et al. (2015) [40], based on a micro-macro reformulation. The schemes are globally stiffly accurate and asymptotically consistent, and as the Knudsen number becomes small or goes to zero, they recover first the compressible Navier-Stokes (CNS) and then the Euler limit. Motivated by the recent work of Filbet and Rey (2015) [27] and the references therein, in this paper, we propose a hierarchical high order AP method, namely kinetic, CNS and Euler solvers are automatically applied in regions where their corresponding models are appropriate. The numerical solvers for different regimes are coupled naturally by interface conditions. To the best of our knowledge, the resulting scheme is the very first hierarchical one being proposed in the literature, that enjoys AP property as well as uniform high order accuracy. Numerical experiments demonstrate the efficiency and effectiveness of the proposed approach. As time evolves, three different regimes are dynamically identified and naturally coupled, leading to significant CPU time savings (more than 80% for some of our test problems).

  3. Bayes and empirical Bayes iteration estimators in two seemingly unrelated regression equations

    Institute of Scientific and Technical Information of China (English)

    WANG; Lichun

    2005-01-01

    For a system of two seemingly unrelated regression equations given by {y1=X1β+ε1,y2=X2γ+ε2, (y1 is an m × 1 vector and y2 is an n × 1 vector, m≠ n), employing the covariance adjusted technique, we propose the parametric Bayes and empirical Bayes iteration estimator sequences for regression coefficients. We prove that both the covariance matrices converge monotonically and the Bayes iteration estimator squence is consistent as well. Based on the mean square error (MSE) criterion, we elaborate the superiority of empirical Bayes iteration estimator over the Bayes estimator of single equation when the covariance matrix of errors is unknown. The results obtained in this paper further show the power of the covariance adjusted approach.

  4. Stationary Random Metrics on Hierarchical Graphs Via {(min,+)}-type Recursive Distributional Equations

    Science.gov (United States)

    Khristoforov, Mikhail; Kleptsyn, Victor; Triestino, Michele

    2016-07-01

    This paper is inspired by the problem of understanding in a mathematical sense the Liouville quantum gravity on surfaces. Here we show how to define a stationary random metric on self-similar spaces which are the limit of nice finite graphs: these are the so-called hierarchical graphs. They possess a well-defined level structure and any level is built using a simple recursion. Stopping the construction at any finite level, we have a discrete random metric space when we set the edges to have random length (using a multiplicative cascade with fixed law {m}). We introduce a tool, the cut-off process, by means of which one finds that renormalizing the sequence of metrics by an exponential factor, they converge in law to a non-trivial metric on the limit space. Such limit law is stationary, in the sense that glueing together a certain number of copies of the random limit space, according to the combinatorics of the brick graph, the obtained random metric has the same law when rescaled by a random factor of law {m} . In other words, the stationary random metric is the solution of a distributional equation. When the measure m has continuous positive density on {mathbf{R}+}, the stationary law is unique up to rescaling and any other distribution tends to a rescaled stationary law under the iterations of the hierarchical transformation. We also investigate topological and geometric properties of the random space when m is log-normal, detecting a phase transition influenced by the branching random walk associated to the multiplicative cascade.

  5. Bayesian hierarchical piecewise regression models: a tool to detect trajectory divergence between groups in long-term observational studies.

    Science.gov (United States)

    Buscot, Marie-Jeanne; Wotherspoon, Simon S; Magnussen, Costan G; Juonala, Markus; Sabin, Matthew A; Burgner, David P; Lehtimäki, Terho; Viikari, Jorma S A; Hutri-Kähönen, Nina; Raitakari, Olli T; Thomson, Russell J

    2017-06-06

    Bayesian hierarchical piecewise regression (BHPR) modeling has not been previously formulated to detect and characterise the mechanism of trajectory divergence between groups of participants that have longitudinal responses with distinct developmental phases. These models are useful when participants in a prospective cohort study are grouped according to a distal dichotomous health outcome. Indeed, a refined understanding of how deleterious risk factor profiles develop across the life-course may help inform early-life interventions. Previous techniques to determine between-group differences in risk factors at each age may result in biased estimate of the age at divergence. We demonstrate the use of Bayesian hierarchical piecewise regression (BHPR) to generate a point estimate and credible interval for the age at which trajectories diverge between groups for continuous outcome measures that exhibit non-linear within-person response profiles over time. We illustrate our approach by modeling the divergence in childhood-to-adulthood body mass index (BMI) trajectories between two groups of adults with/without type 2 diabetes mellitus (T2DM) in the Cardiovascular Risk in Young Finns Study (YFS). Using the proposed BHPR approach, we estimated the BMI profiles of participants with T2DM diverged from healthy participants at age 16 years for males (95% credible interval (CI):13.5-18 years) and 21 years for females (95% CI: 19.5-23 years). These data suggest that a critical window for weight management intervention in preventing T2DM might exist before the age when BMI growth rate is naturally expected to decrease. Simulation showed that when using pairwise comparison of least-square means from categorical mixed models, smaller sample sizes tended to conclude a later age of divergence. In contrast, the point estimate of the divergence time is not biased by sample size when using the proposed BHPR method. BHPR is a powerful analytic tool to model long-term non

  6. Predictive Ability of Pender's Health Promotion Model for Physical Activity and Exercise in People with Spinal Cord Injuries: A Hierarchical Regression Analysis

    Science.gov (United States)

    Keegan, John P.; Chan, Fong; Ditchman, Nicole; Chiu, Chung-Yi

    2012-01-01

    The main objective of this study was to validate Pender's Health Promotion Model (HPM) as a motivational model for exercise/physical activity self-management for people with spinal cord injuries (SCIs). Quantitative descriptive research design using hierarchical regression analysis (HRA) was used. A total of 126 individuals with SCI were recruited…

  7. A fully distributed implementation of mean annual streamflow regional regression equations

    Science.gov (United States)

    Verdin, K.L.; Worstell, B.

    2008-01-01

    Estimates of mean annual streamflow are needed for a variety of hydrologic assessments. Away from gage locations, regional regression equations that are a function of upstream area, precipitation, and temperature are commonly used. Geographic information systems technology has facilitated their use for projects, but traditional approaches using the polygon overlay operator have been too inefficient for national scale applications. As an alternative, the Elevation Derivatives for National Applications (EDNA) database was used as a framework for a fully distributed implementation of mean annual streamflow regional regression equations. The raster "flow accumulation" operator was used to efficiently achieve spatially continuous parameterization of the equations for every 30 m grid cell of the conterminous United States (U.S.). Results were confirmed by comparing with measured flows at stations of the Hydro-Climatic Data Network, and their applications value demonstrated in the development of a national geospatial hydropower assessment. Interactive tools at the EDNA website make possible the fast and efficient query of mean annual streamflow for any location in the conterminous U.S., providing a valuable complement to other national initiatives (StreamStats and the National Hydrography Dataset Plus). ?? 2008 American Water Resources Association.

  8. Determination of sex using cephalo-facial dimensions by discriminant function and logistic regression equations

    Directory of Open Access Journals (Sweden)

    Twisha Shah

    2016-06-01

    Full Text Available The aim is to bring together the new anthropological techniques and knowledge about populations that are least known. The present study was performed on 901 healthy Gujarati volunteers (676 males, 225 females within the age group of 21–50 years with the aim to examine whether any correlation exists between cephalofacial measures naming maximum head length, maximum head breadth, bizygomatic breadth, bigonial diameter, morphological facial length, physiognomic facial length, biocular breadth and total cephalofacial height and sex determination. Also, discriminant function and logistic regression methods were verified to check the best accuracy level for sex determination. Mean values of cephalofacial dimensions were higher in males than in females. Best reliable results were obtained by using logistic regression equations in males (92% and discriminant function in females (80.9%. Our study conclusively establishes the existence of a definite statistically significant sexual dimorphism in Gujarati population using cephalo-facial dimensions.

  9. Alternative Regression Equations for Estimation of Annual Peak-Streamflow Frequency for Undeveloped Watersheds in Texas using PRESS Minimization

    Science.gov (United States)

    Asquith, William H.; Thompson, David B.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Texas Department of Transportation and in partnership with Texas Tech University, investigated a refinement of the regional regression method and developed alternative equations for estimation of peak-streamflow frequency for undeveloped watersheds in Texas. A common model for estimation of peak-streamflow frequency is based on the regional regression method. The current (2008) regional regression equations for 11 regions of Texas are based on log10 transformations of all regression variables (drainage area, main-channel slope, and watershed shape). Exclusive use of log10-transformation does not fully linearize the relations between the variables. As a result, some systematic bias remains in the current equations. The bias results in overestimation of peak streamflow for both the smallest and largest watersheds. The bias increases with increasing recurrence interval. The primary source of the bias is the discernible curvilinear relation in log10 space between peak streamflow and drainage area. Bias is demonstrated by selected residual plots with superimposed LOWESS trend lines. To address the bias, a statistical framework based on minimization of the PRESS statistic through power transformation of drainage area is described and implemented, and the resulting regression equations are reported. Compared to log10-exclusive equations, the equations derived from PRESS minimization have PRESS statistics and residual standard errors less than the log10 exclusive equations. Selected residual plots for the PRESS-minimized equations are presented to demonstrate that systematic bias in regional regression equations for peak-streamflow frequency estimation in Texas can be reduced. Because the overall error is similar to the error associated with previous equations and because the bias is reduced, the PRESS-minimized equations reported here provide alternative equations for peak-streamflow frequency estimation.

  10. Peak flow regression equations For small, ungaged streams in Maine: Comparing map-based to field-based variables

    Science.gov (United States)

    Lombard, Pamela J.; Hodgkins, Glenn A.

    2015-01-01

    Regression equations to estimate peak streamflows with 1- to 500-year recurrence intervals (annual exceedance probabilities from 99 to 0.2 percent, respectively) were developed for small, ungaged streams in Maine. Equations presented here are the best available equations for estimating peak flows at ungaged basins in Maine with drainage areas from 0.3 to 12 square miles (mi2). Previously developed equations continue to be the best available equations for estimating peak flows for basin areas greater than 12 mi2. New equations presented here are based on streamflow records at 40 U.S. Geological Survey streamgages with a minimum of 10 years of recorded peak flows between 1963 and 2012. Ordinary least-squares regression techniques were used to determine the best explanatory variables for the regression equations. Traditional map-based explanatory variables were compared to variables requiring field measurements. Two field-based variables—culvert rust lines and bankfull channel widths—either were not commonly found or did not explain enough of the variability in the peak flows to warrant inclusion in the equations. The best explanatory variables were drainage area and percent basin wetlands; values for these variables were determined with a geographic information system. Generalized least-squares regression was used with these two variables to determine the equation coefficients and estimates of accuracy for the final equations.

  11. Modeling the Philippines' real gross domestic product: A normal estimation equation for multiple linear regression

    Science.gov (United States)

    Urrutia, Jackie D.; Tampis, Razzcelle L.; Mercado, Joseph; Baygan, Aaron Vito M.; Baccay, Edcon B.

    2016-02-01

    The objective of this research is to formulate a mathematical model for the Philippines' Real Gross Domestic Product (Real GDP). The following factors are considered: Consumers' Spending (x1), Government's Spending (x2), Capital Formation (x3) and Imports (x4) as the Independent Variables that can actually influence in the Real GDP in the Philippines (y). The researchers used a Normal Estimation Equation using Matrices to create the model for Real GDP and used α = 0.01.The researchers analyzed quarterly data from 1990 to 2013. The data were acquired from the National Statistical Coordination Board (NSCB) resulting to a total of 96 observations for each variable. The data have undergone a logarithmic transformation particularly the Dependent Variable (y) to satisfy all the assumptions of the Multiple Linear Regression Analysis. The mathematical model for Real GDP was formulated using Matrices through MATLAB. Based on the results, only three of the Independent Variables are significant to the Dependent Variable namely: Consumers' Spending (x1), Capital Formation (x3) and Imports (x4), hence, can actually predict Real GDP (y). The regression analysis displays that 98.7% (coefficient of determination) of the Independent Variables can actually predict the Dependent Variable. With 97.6% of the result in Paired T-Test, the Predicted Values obtained from the model showed no significant difference from the Actual Values of Real GDP. This research will be essential in appraising the forthcoming changes to aid the Government in implementing policies for the development of the economy.

  12. Shield Optimization and Formulation of Regression Equations for Split-Ring Resonator

    Directory of Open Access Journals (Sweden)

    Tahir Ejaz

    2016-01-01

    Full Text Available Microwave resonators are widely used for numerous applications including communication, biomedical and chemical applications, material testing, and food grading. Split-ring resonators in both planar and nonplanar forms are a simple structure which has been in use for several decades. This type of resonator is characterized with low cost, ease of fabrication, moderate quality factor, low external noise interference, high stability, and so forth. Due to these attractive features and ease in handling, nonplanar form of structure has been utilized for material characterization in 1–5 GHz range. Resonant frequency and quality factor are two important parameters for determination of material properties utilizing perturbation theory. Shield made of conducting material is utilized to enclose split-ring resonator which enhances quality factor. This work presents a novel technique to develop shield around a predesigned nonplanar split-ring resonator to yield optimized quality factor. Based on this technique and statistical analysis regression equations have also been formulated for resonant frequency and quality factor which is a major outcome of this work. These equations quantify dependence of output parameters on various factors of shield made of different materials. Such analysis is instrumental in development of devices/designs where improved/optimum result is required.

  13. A hierarchical preconditioner for the electric field integral equation on unstructured meshes based on primal and dual Haar bases

    Science.gov (United States)

    Adrian, S. B.; Andriulli, F. P.; Eibert, T. F.

    2017-02-01

    A new hierarchical basis preconditioner for the electric field integral equation (EFIE) operator is introduced. In contrast to existing hierarchical basis preconditioners, it works on arbitrary meshes and preconditions both the vector and the scalar potential within the EFIE operator. This is obtained by taking into account that the vector and the scalar potential discretized with loop-star basis functions are related to the hypersingular and the single layer operator (i.e., the well known integral operators from acoustics). For the single layer operator discretized with piecewise constant functions, a hierarchical preconditioner can easily be constructed. Thus the strategy we propose in this work for preconditioning the EFIE is the transformation of the scalar and the vector potential into operators equivalent to the single layer operator and to its inverse. More specifically, when the scalar potential is discretized with star functions as source and testing functions, the resulting matrix is a single layer operator discretized with piecewise constant functions and multiplied left and right with two additional graph Laplacian matrices. By inverting these graph Laplacian matrices, the discretized single layer operator is obtained, which can be preconditioned with the hierarchical basis. Dually, when the vector potential is discretized with loop functions, the resulting matrix can be interpreted as a hypersingular operator discretized with piecewise linear functions. By leveraging on a scalar Calderón identity, we can interpret this operator as spectrally equivalent to the inverse single layer operator. Then we use a linear-in-complexity, closed-form inverse of the dual hierarchical basis to precondition the hypersingular operator. The numerical results show the effectiveness of the proposed preconditioner and the practical impact of theoretical developments in real case scenarios.

  14. A Study on Influence of Predictor Multicollinearity on Performance of the Stepwise Regression Prediction Equation

    Institute of Scientific and Technical Information of China (English)

    JIN Long; HUANG Xiaoyan; SHI Xuming

    2010-01-01

    The prediction accuracy of the traditional stepwise regression prediction equation(SRPE)is affected by the multicollinearity among its predictors.This paper introduces the condition number analysis into the prediction modeling to minimize the multicollinearity in the SRPE.In the condition number prediction modeling,the condition number is used to select the combination of predictors with the lowest multicollinearity from the possible combinations of a number of candidate predictors(variables),and the selected combination is then used to construct the condition number regression prediction equation(CNRPE).This novel prediction modeling is performed in typhoon track prediction,which is a difficult task among meteorological disaster predictions.Six pairs of typhoon track latitude/longitude SRPEs and CNRPEs for July,August,and September are built by employing the traditional and the novel prediction modeling approaches,respectively,and by using a large number of identical modeling samples.The comparative analysis indicates that under the condition of the same candidate predictors(variables)and predictands(dependent variables),although the fitting accuracy of the novel prediction models used for the historical samples of South China Sea(SCS)typhoon tracks is slightly lower than that of the traditional prediction models,the prediction accuracy for the independent samples is obviously improved,with the averaged prediction error of the novel models for July,August,and September being 153.9 kin,which is 75.3 km smaller than that of the traditional models(a reduction of 33%).This is because the novel prediction modeling effectively minimizes the multicollinearity by computation and analysis of the condition number.It is shown further that when F=1.0,2.0,and 3.0,the average prediction errors of the traditional SRPEs are obviously larger than those of the CNRPEs.Moreover,extremely large and unreasonable prediction errors occur at some individual points of the typhoon track

  15. Hierarchical equations of motion approach to transport through an Anderson impurity coupled to interacting Luttinger liquid leads

    Science.gov (United States)

    Okamoto, Jun-ichi; Mathey, Ludwig; Härtle, Rainer

    2016-12-01

    We generalize the hierarchical equations of motion method to study electron transport through a quantum dot or molecule coupled to one-dimensional interacting leads that can be described as Luttinger liquids. Such leads can be realized, for example, by quantum wires or fractional quantum Hall edge states. In comparison to noninteracting metallic leads, Luttinger liquid leads involve many-body correlations and the single-particle tunneling density of states shows a power-law singularity at the chemical potential. Using the generalized hierarchical equations of motion method, we assess the importance of the singularity and the next-to-leading order many-body correlations. To this end, we compare numerically converged results with second- and first-order results of the hybridization expansion that is inherent to our method. As a test case, we study transport through a single-level quantum dot or molecule that can be described by an Anderson impurity model. Cotunneling effects turn out to be most pronounced for attractive interactions in the leads or repulsive ones if an excitonic coupling between the dot and the leads is realized. We also find that an interaction-induced negative differential conductance near the Coulomb blockade thresholds is slightly suppressed as compared to a first-order and/or rate equation result. Moreover, we find that the two-particle (n -particle) correlations enter as a second-order (n -order) effect and are, thus, not very pronounced at the high temperatures and parameters that we consider.

  16. Electric response of a metal-molecule-metal junction to laser pulse by solving hierarchical equations of motion

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Hui, E-mail: yccaoh@hotmail.com; Zhang, Mingdao; Tao, Tao; Song, Mingxia; Zhang, Chaozhi, E-mail: chzhzhang@sohu.com [Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu (China)

    2015-02-28

    We have combined the quantum dissipative theory and the time dependent density functional theory to perform the first principle calculation of laser induced quantum dynamical electron transport through a molecule weak bridged to two electrodes. The formalism of hierarchical equations of motion based on non-equilibrium Green’s function theory has been taken in this work. Numerical simulations of optical absorption spectra of benzene, laser induced transient current without and with bias, charge pumping effect, as well as the spectrum analysis from the current in Au-benzene-Au molecular junction are presented and discussed.

  17. Calculation of correlated initial state in the hierarchical equations of motion method using an imaginary time path integral approach.

    Science.gov (United States)

    Song, Linze; Shi, Qiang

    2015-11-21

    Based on recent findings in the hierarchical equations of motion (HEOM) for correlated initial state [Y. Tanimura, J. Chem. Phys. 141, 044114 (2014)], we propose a new stochastic method to obtain the initial conditions for the real time HEOM propagation, which can be used further to calculate the equilibrium correlation functions and symmetrized correlation functions. The new method is derived through stochastic unraveling of the imaginary time influence functional, where a set of stochastic imaginary time HEOM are obtained. The validity of the new method is demonstrated using numerical examples including the spin-Boson model, and the Holstein model with undamped harmonic oscillator modes.

  18. Bayesian hierarchical model used to analyze regression between fish body size and scale size: application to rare fish species Zingel asper

    Directory of Open Access Journals (Sweden)

    Fontez B.

    2014-04-01

    Full Text Available Back-calculation allows to increase available data on fish growth. The accuracy of back-calculation models is of paramount importance for growth analysis. Frequentist and Bayesian hierarchical approaches were used for regression between fish body size and scale size for the rare fish species Zingel asper. The Bayesian approach permits more reliable estimation of back-calculated size, taking into account biological information and cohort variability. This method greatly improves estimation of back-calculated length when sampling is uneven and/or small.

  19. Using a Linear Regression Method to Detect Outliers in IRT Common Item Equating

    Science.gov (United States)

    He, Yong; Cui, Zhongmin; Fang, Yu; Chen, Hanwei

    2013-01-01

    Common test items play an important role in equating alternate test forms under the common item nonequivalent groups design. When the item response theory (IRT) method is applied in equating, inconsistent item parameter estimates among common items can lead to large bias in equated scores. It is prudent to evaluate inconsistency in parameter…

  20. Using a Linear Regression Method to Detect Outliers in IRT Common Item Equating

    Science.gov (United States)

    He, Yong; Cui, Zhongmin; Fang, Yu; Chen, Hanwei

    2013-01-01

    Common test items play an important role in equating alternate test forms under the common item nonequivalent groups design. When the item response theory (IRT) method is applied in equating, inconsistent item parameter estimates among common items can lead to large bias in equated scores. It is prudent to evaluate inconsistency in parameter…

  1. Multiple linear regression to develop strength scaled equations for knee and elbow joints based on age, gender and segment mass

    DEFF Research Database (Denmark)

    D'Souza, Sonia; Rasmussen, John; Schwirtz, Ansgar

    2012-01-01

    and valuable ergonomic tool. Objective: To investigate age and gender effects on the torque-producing ability in the knee and elbow in older adults. To create strength scaled equations based on age, gender, upper/lower limb lengths and masses using multiple linear regression. To reduce the number of dependent...

  2. A Bayesian Approach for Analyzing Hierarchical Data with Missing Outcomes through Structural Equation Models

    Science.gov (United States)

    Song, Xin-Yuan; Lee, Sik-Yum

    2008-01-01

    Structural equation models are widely appreciated in behavioral, social, and psychological research to model relations between latent constructs and manifest variables, and to control for measurement errors. Most applications of structural equation models are based on fully observed data that are independently distributed. However, hierarchical…

  3. Regressão múltipla stepwise e hierárquica em Psicologia Organizacional: aplicações, problemas e soluções Stepwise and hierarchical multiple regression in organizational psychology: Applications, problemas and solutions

    Directory of Open Access Journals (Sweden)

    Gardênia Abbad

    2002-01-01

    Full Text Available Este artigo discute algumas aplicações das técnicas de análise de regressão múltipla stepwise e hierárquica, as quais são muito utilizadas em pesquisas da área de Psicologia Organizacional. São discutidas algumas estratégias de identificação e de solução de problemas relativos à ocorrência de erros do Tipo I e II e aos fenômenos de supressão, complementaridade e redundância nas equações de regressão múltipla. São apresentados alguns exemplos de pesquisas nas quais esses padrões de associação entre variáveis estiveram presentes e descritas as estratégias utilizadas pelos pesquisadores para interpretá-los. São discutidas as aplicações dessas análises no estudo de interação entre variáveis e na realização de testes para avaliação da linearidade do relacionamento entre variáveis. Finalmente, são apresentadas sugestões para lidar com as limitações das análises de regressão múltipla (stepwise e hierárquica.This article discusses applications of stepwise and hierarchical multiple regression analyses to research in organizational psychology. Strategies for identifying type I and II errors, and solutions to potential problems that may arise from such errors are proposed. In addition, phenomena such as suppression, complementarity, and redundancy are reviewed. The article presents examples of research where these phenomena occurred, and the manner in which they were explained by researchers. Some applications of multiple regression analyses to studies involving between-variable interactions are presented, along with tests used to analyze the presence of linearity among variables. Finally, some suggestions are provided for dealing with limitations implicit in multiple regression analyses (stepwise and hierarchical.

  4. Development of a Watershed-Scale Long-Term Hydrologic Impact Assessment Model with the Asymptotic Curve Number Regression Equation

    Directory of Open Access Journals (Sweden)

    Jichul Ryu

    2016-04-01

    Full Text Available In this study, 52 asymptotic Curve Number (CN regression equations were developed for combinations of representative land covers and hydrologic soil groups. In addition, to overcome the limitations of the original Long-term Hydrologic Impact Assessment (L-THIA model when it is applied to larger watersheds, a watershed-scale L-THIA Asymptotic CN (ACN regression equation model (watershed-scale L-THIA ACN model was developed by integrating the asymptotic CN regressions and various modules for direct runoff/baseflow/channel routing. The watershed-scale L-THIA ACN model was applied to four watersheds in South Korea to evaluate the accuracy of its streamflow prediction. The coefficient of determination (R2 and Nash–Sutcliffe Efficiency (NSE values for observed versus simulated streamflows over intervals of eight days were greater than 0.6 for all four of the watersheds. The watershed-scale L-THIA ACN model, including the asymptotic CN regression equation method, can simulate long-term streamflow sufficiently well with the ten parameters that have been added for the characterization of streamflow.

  5. The clinical impact of hip joint centre regression equation error on kinematics and kinetics during paediatric gait.

    Science.gov (United States)

    Kiernan, D; Malone, A; O'Brien, T; Simms, C K

    2015-01-01

    Regression equations based on pelvic anatomy are routinely used to estimate the hip joint centre during gait analysis. While the associated errors have been well documented, the clinical significance of these errors has not been reported. This study investigated the clinical agreement of three commonly used regression equation sets (Bell et al., Davis et al. and Orthotrak software) against the equations of Harrington et al. Full 3-dimensional gait analysis was performed on 18 healthy paediatric subjects. Kinematic and kinetic data were calculated using each set of regression equations and compared to Harrington et al. In addition, the Gait Profile Score and GDI-Kinetic were used to assess clinical significance. Bell et al. was the best performing set with differences in Gait Profile Score (0.13°) and GDI-Kinetic (0.84 points) falling below the clinical significance threshold. Small deviations were present for the Orthotrak set for hip abduction moment (0.1 Nm/kg), however differences in Gait Profile Score (0.27°) and GDI-Kinetic (2.26 points) remained below the clinical threshold. Davis et al. showed least agreement with a clinically significant difference in GDI-Kinetic score (4.36 points). It is proposed that Harrington et al. or Bell et al. regression equation sets are used during gait analysis especially where inverse dynamic data are calculated. Orthotrak is a clinically acceptable alternative however clinicians must be aware of the effects of error on hip abduction moment. The Davis et al. set should be used with caution for inverse dynamic analysis as error could be considered clinically meaningful.

  6. Improving the efficiency of hierarchical equations of motion approach and application to coherent dynamics in Aharonov–Bohm interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Dong; Xu, RuiXue; Zheng, Xiao, E-mail: xz58@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wang, Shikuan [Department of Physics, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018 (China); Wang, Rulin [Beijing Computational Science Research Center, Beijing 100084 (China); Ye, LvZhou [Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Yan, YiJing, E-mail: yyan@ust.hk [Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong (China)

    2015-03-14

    Several recent advancements for the hierarchical equations of motion (HEOM) approach are reported. First, we propose an a priori estimate for the optimal number of basis functions for the reservoir memory decomposition. Second, we make use of the sparsity of auxiliary density operators (ADOs) and propose two ansatzs to screen out all the intrinsic zero ADO elements. Third, we propose a new truncation scheme by utilizing the time derivatives of higher-tier ADOs. These novel techniques greatly reduce the memory cost of the HEOM approach, and thus enhance its efficiency and applicability. The improved HEOM approach is applied to simulate the coherent dynamics of Aharonov–Bohm double quantum dot interferometers. Quantitatively accurate dynamics is obtained for both noninteracting and interacting quantum dots. The crucial role of the quantum phase for the magnitude of quantum coherence and quantum entanglement is revealed.

  7. Paleoflood investigations to improve peak-streamflow regional-regression equations for natural streamflow in eastern Colorado, 2015

    Science.gov (United States)

    Kohn, Michael S.; Stevens, Michael R.; Harden, Tessa M.; Godaire, Jeanne E.; Klinger, Ralph E.; Mommandi, Amanullah

    2016-09-09

    The U.S. Geological Survey (USGS), in cooperation with the Colorado Department of Transportation, developed regional-regression equations for estimating the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, 0.2-percent annual exceedance-probability discharge (AEPD) for natural streamflow in eastern Colorado. A total of 188 streamgages, consisting of 6,536 years of record and a mean of approximately 35 years of record per streamgage, were used to develop the peak-streamflow regional-regression equations. The estimated AEPDs for each streamgage were computed using the USGS software program PeakFQ. The AEPDs were determined using systematic data through water year 2013. Based on previous studies conducted in Colorado and neighboring States and on the availability of data, 72 characteristics (57 basin and 15 climatic characteristics) were evaluated as candidate explanatory variables in the regression analysis. Paleoflood and non-exceedance bound ages were established based on reconnaissance-level methods. Multiple lines of evidence were used at each streamgage to arrive at a conclusion (age estimate) to add a higher degree of certainty to reconnaissance-level estimates. Paleoflood or nonexceedance bound evidence was documented at 41 streamgages, and 3 streamgages had previously collected paleoflood data.To determine the peak discharge of a paleoflood or non-exceedanc bound, two different hydraulic models were used.The mean standard error of prediction (SEP) for all 8 AEPDs was reduced approximately 25 percent compared to the previous flood-frequency study. For paleoflood data to be effective in reducing the SEP in eastern Colorado, a larger ratio than 44 of 188 (23 percent) streamgages would need paleoflood data and that paleoflood data would need to increase the record length by more than 25 years for the 1-percent AEPD. The greatest reduction in SEP for the peak-streamflow regional-regression equations was observed when additional new basin characteristics were included in the peak

  8. Identification of constitutive equation in hierarchical multiscale modelling of cup drawing process

    Science.gov (United States)

    Gawad, J.; Van Bael, A.; Eyckens, P.; Samaey, G.; Van Houtte, P.; Roose, D.

    2011-08-01

    In this paper we discuss extensions to a hierarchical multi-scale model (HMS) of cold sheet forming processes. The HMS model is capable of predicting changes in plastic anisotropy due to the evolution of crystallographic textures. The ALAMEL polycrystal plasticity model is employed to predict the texture evolution during the plastic deformation. The same model acts as a multilevel model and provides "virtual experiments" for calibration of an analytical constitutive law. Plastic anisotropy is described by means of the Facet method, which is able to reproduce the plastic potential in the entire strain rate space. The paper presents new strategies for identification of the Facet expression that are focused on improving its accuracy in the parts of the plastic potential surface that are more extensively used by the macroscopic FE model and therefore need to be reproduced more accurately. In this work we also evaluate the applicability of identification methods that (1) rely exclusively on the plastic potential or (2) can take into consideration also the deviatioric stresses derived from the Facet expression. It is shown that both methods provide the Facet expressions that correctly approximate the plastic anisotropy predicted by the multilevel ALAMEL model.

  9. Mastering algebra retrains the visual system to perceive hierarchical structure in equations.

    Science.gov (United States)

    Marghetis, Tyler; Landy, David; Goldstone, Robert L

    2016-01-01

    Formal mathematics is a paragon of abstractness. It thus seems natural to assume that the mathematical expert should rely more on symbolic or conceptual processes, and less on perception and action. We argue instead that mathematical proficiency relies on perceptual systems that have been retrained to implement mathematical skills. Specifically, we investigated whether the visual system-in particular, object-based attention-is retrained so that parsing algebraic expressions and evaluating algebraic validity are accomplished by visual processing. Object-based attention occurs when the visual system organizes the world into discrete objects, which then guide the deployment of attention. One classic signature of object-based attention is better perceptual discrimination within, rather than between, visual objects. The current study reports that object-based attention occurs not only for simple shapes but also for symbolic mathematical elements within algebraic expressions-but only among individuals who have mastered the hierarchical syntax of algebra. Moreover, among these individuals, increased object-based attention within algebraic expressions is associated with a better ability to evaluate algebraic validity. These results suggest that, in mastering the rules of algebra, people retrain their visual system to represent and evaluate abstract mathematical structure. We thus argue that algebraic expertise involves the regimentation and reuse of evolutionarily ancient perceptual processes. Our findings implicate the visual system as central to learning and reasoning in mathematics, leading us to favor educational approaches to mathematics and related STEM fields that encourage students to adapt, not abandon, their use of perception.

  10. An Efficient Hierarchical Multiscale Finite Element Method for Stokes Equations in Slowly Varying Media

    KAUST Repository

    Brown, Donald L.

    2013-01-01

    Direct numerical simulation (DNS) of fluid flow in porous media with many scales is often not feasible, and an effective or homogenized description is more desirable. To construct the homogenized equations, effective properties must be computed. Computation of effective properties for nonperiodic microstructures can be prohibitively expensive, as many local cell problems must be solved for different macroscopic points. In addition, the local problems may also be computationally expensive. When the microstructure varies slowly, we develop an efficient numerical method for two scales that achieves essentially the same accuracy as that for the full resolution solve of every local cell problem. In this method, we build a dense hierarchy of macroscopic grid points and a corresponding nested sequence of approximation spaces. Essentially, solutions computed in high accuracy approximation spaces at select points in the the hierarchy are used as corrections for the error of the lower accuracy approximation spaces at nearby macroscopic points. We give a brief overview of slowly varying media and formal Stokes homogenization in such domains. We present a general outline of the algorithm and list reasonable and easily verifiable assumptions on the PDEs, geometry, and approximation spaces. With these assumptions, we achieve the same accuracy as the full solve. To demonstrate the elements of the proof of the error estimate, we use a hierarchy of macro-grid points in [0, 1]2 and finite element (FE) approximation spaces in [0, 1]2. We apply this algorithm to Stokes equations in a slowly porous medium where the microstructure is obtained from a reference periodic domain by a known smooth map. Using the arbitrary Lagrange-Eulerian (ALE) formulation of the Stokes equations (cf. [G. P. Galdi and R. Rannacher, Fundamental Trends in Fluid-Structure Interaction, Contemporary Challenges in Mathematical Fluid Dynamics and Its Applications 1, World Scientific, Singapore, 2010]), we obtain

  11. A Possible Regression Equation for Predicting Visual Outcomes after Surgical Repair of Open Globe Injuries

    Directory of Open Access Journals (Sweden)

    Huseyin Gursoy

    2017-01-01

    Full Text Available Background. To analyze the effects of factors other than the ocular trauma score parameters on visual outcomes in open globe injuries. Methods. Open globe injuries primarily repaired in our hospital were reviewed. The number of surgeries, performance of pars plana vitrectomy (PPV, lens status, affected tissues (corneal, scleral, or corneoscleral, intravitreal hemorrhage, intraocular foreign body, glaucoma, anterior segment inflammation, loss of iris tissue, cutting of any prolapsed vitreous in the primary surgery, penetrating injury, and the time interval between the trauma and repair were the thirteen variables evaluated using linear regression analysis. Results. In total, 131 eyes with a mean follow-up of 16.1±4.7 (12–36 months and a mean age of 33.8±22.2 (4–88 years were included. The regression coefficients were 0.502, 0.960, 0.831, −0.385, and −0.506 for the performance of PPV, aphakia after the initial trauma, loss of iris tissue, penetrating injury, and cutting of any prolapsed vitreous in the primary surgery, respectively (P<0.05 for these variables. Conclusions. The performance of PPV, aphakia after the initial trauma, and loss of iris tissue were associated with poor visual outcomes, whereas cutting any prolapsed vitreous in the primary repair and penetrating-type injury were associated with better visual outcomes.

  12. Updated logistic regression equations for the calculation of post-fire debris-flow likelihood in the western United States

    Science.gov (United States)

    Staley, Dennis M.; Negri, Jacquelyn A.; Kean, Jason W.; Laber, Jayme L.; Tillery, Anne C.; Youberg, Ann M.

    2016-06-30

    Wildfire can significantly alter the hydrologic response of a watershed to the extent that even modest rainstorms can generate dangerous flash floods and debris flows. To reduce public exposure to hazard, the U.S. Geological Survey produces post-fire debris-flow hazard assessments for select fires in the western United States. We use publicly available geospatial data describing basin morphology, burn severity, soil properties, and rainfall characteristics to estimate the statistical likelihood that debris flows will occur in response to a storm of a given rainfall intensity. Using an empirical database and refined geospatial analysis methods, we defined new equations for the prediction of debris-flow likelihood using logistic regression methods. We showed that the new logistic regression model outperformed previous models used to predict debris-flow likelihood.

  13. Analysis of the Covered Electrode Welding Process Stability on the Basis of Linear Regression Equation

    Directory of Open Access Journals (Sweden)

    Słania J.

    2014-10-01

    Full Text Available The article presents the process of production of coated electrodes and their welding properties. The factors concerning the welding properties and the currently applied method of assessing are given. The methodology of the testing based on the measuring and recording of instantaneous values of welding current and welding arc voltage is discussed. Algorithm for creation of reference data base of the expert system is shown, aiding the assessment of covered electrodes welding properties. The stability of voltage–current characteristics was discussed. Statistical factors of instantaneous values of welding current and welding arc voltage waveforms used for determining of welding process stability are presented. The results of coated electrodes welding properties are compared. The article presents the results of linear regression as well as the impact of the independent variables on the welding process performance. Finally the conclusions drawn from the research are given.

  14. Prediction equations for Warner-Bratzler shear force using principal component regression analysis in Brahman-influenced Venezuelan cattle.

    Science.gov (United States)

    Jerez-Timaure, N; Huerta-Leidenz, N; Ortega, J; Rodas-González, A

    2013-03-01

    A database consisting of 331 beef animals (Brahman-crossbred) was used to determine the multivariate relationships between carcass and beef palatability traits of Venezuelan cattle and to develop prediction equations for Warner-Bratzler shear force (WBSF). The first three principal components (PC) explained 77.53% of the standardized variance. Equations were obtained for each sex class and the total variability observed in WBSF could be explained by its orthogonal regression with carcass weight (CW), fat cover (FC), fat thickness (FT), and skeletal maturity (SM). Prediction equations were: WBSF(steers)=3.566+0.003(CW)-0.033(FC)-0.015(FT)+0.0004(SM); WBSF(heifers)=4.824+0.002(CW)-0.229(FC)+0.096(FT)-0.064(SM); WBSF(bulls)=3.516+0.009(CW)+0.154(FC)-0.129(FT)-0.006(SM). A higher proportion of the variation was explained by the PC when variables of greater weight were selected to define each PC. The equation set presented herein could become an important tool to improve the Venezuelan carcass grading system. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. A Regression Equation for the Estimation of Maximum Oxygen Uptake in Nepalese Adult Females

    Science.gov (United States)

    Chatterjee, Pinaki; Banerjee, Alok K; Das, Paulomi; Debnath, Parimal

    2010-01-01

    Purpose Validity of the 20-meter multi stage shuttle run test (20-m MST) has not been studied in Nepalese population. The purpose of this study was to validate the applicability of the 20-m MST in Nepalese adult females. Methods Forty female college students (age range, 20.42 ~24.75 years) from different colleges of Nepal were recruited for the study. Direct estimation of VO2 max comprised treadmill exercise followed by expired gas analysis by scholander micro-gas analyzer whereas VO2 max was indirectly predicted by the 20-m MST. Results The difference between the mean (±SD) VO2 max values of direct measurement (VO2 max = 32.78 +/-2.88 ml/kg/min) and the 20-m MST (SPVO2 max = 32.53 + /-3.36 ml/kg/min) was statistically insignificant (P>0.1). Highly significant correlation (r=0.94, PVO2 max. Limits of agreement analysis also suggest that the 20-m MST can be applied for the studied population. Conclusion The results of limits of agreement analysis suggest that the application of the present form of the 20-m MST may be justified in the studied population. However, for better prediction of VO2 max, a new equation has been computed based on the present data to be used for female college students of Nepal. PMID:22375191

  16. Regional regression equations to estimate peak-flow frequency at sites in North Dakota using data through 2009

    Science.gov (United States)

    Williams-Sether, Tara

    2015-08-06

    Annual peak-flow frequency data from 231 U.S. Geological Survey streamflow-gaging stations in North Dakota and parts of Montana, South Dakota, and Minnesota, with 10 or more years of unregulated peak-flow record, were used to develop regional regression equations for exceedance probabilities of 0.5, 0.20, 0.10, 0.04, 0.02, 0.01, and 0.002 using generalized least-squares techniques. Updated peak-flow frequency estimates for 262 streamflow-gaging stations were developed using data through 2009 and log-Pearson Type III procedures outlined by the Hydrology Subcommittee of the Interagency Advisory Committee on Water Data. An average generalized skew coefficient was determined for three hydrologic zones in North Dakota. A StreamStats web application was developed to estimate basin characteristics for the regional regression equation analysis. Methods for estimating a weighted peak-flow frequency for gaged sites and ungaged sites are presented.

  17. The importance of trait emotional intelligence and feelings in the prediction of perceived and biological stress in adolescents: hierarchical regressions and fsQCA models.

    Science.gov (United States)

    Villanueva, Lidón; Montoya-Castilla, Inmaculada; Prado-Gascó, Vicente

    2017-07-01

    The purpose of this study is to analyze the combined effects of trait emotional intelligence (EI) and feelings on healthy adolescents' stress. Identifying the extent to which adolescent stress varies with trait emotional differences and the feelings of adolescents is of considerable interest in the development of intervention programs for fostering youth well-being. To attain this goal, self-reported questionnaires (perceived stress, trait EI, and positive/negative feelings) and biological measures of stress (hair cortisol concentrations, HCC) were collected from 170 adolescents (12-14 years old). Two different methodologies were conducted, which included hierarchical regression models and a fuzzy-set qualitative comparative analysis (fsQCA). The results support trait EI as a protective factor against stress in healthy adolescents and suggest that feelings reinforce this relation. However, the debate continues regarding the possibility of optimal levels of trait EI for effective and adaptive emotional management, particularly in the emotional attention and clarity dimensions and for female adolescents.

  18. Determination of Constitutive Equation for Thermo-mechanical Processing of INCONEL 718 Through Double Multivariate Nonlinear Regression Analysis

    Science.gov (United States)

    Hussain, Mirza Zahid; Li, Fuguo; Wang, Jing; Yuan, Zhanwei; Li, Pan; Wu, Tao

    2015-07-01

    The present study comprises the determination of constitutive relationship for thermo-mechanical processing of INCONEL 718 through double multivariate nonlinear regression, a newly developed approach which not only considers the effect of strain, strain rate, and temperature on flow stress but also explains the interaction effect of these thermo-mechanical parameters on flow behavior of the alloy. Hot isothermal compression experiments were performed on Gleeble-3500 thermo-mechanical testing machine in the temperature range of 1153 to 1333 K within the strain rate range of 0.001 to 10 s-1. The deformation behavior of INCONEL 718 is analyzed and summarized by establishing the high temperature deformation constitutive equation. The calculated correlation coefficient ( R) and average absolute relative error ( AARE) underline the precision of proposed constitutive model.

  19. Introduction into Hierarchical Matrices

    KAUST Repository

    Litvinenko, Alexander

    2013-12-05

    Hierarchical matrices allow us to reduce computational storage and cost from cubic to almost linear. This technique can be applied for solving PDEs, integral equations, matrix equations and approximation of large covariance and precision matrices.

  20. Robust and scalable hierarchical matrix-based fast direct solver and preconditioner for the numerical solution of elliptic partial differential equations

    KAUST Repository

    Chavez, Gustavo Ivan

    2017-07-10

    This dissertation introduces a novel fast direct solver and preconditioner for the solution of block tridiagonal linear systems that arise from the discretization of elliptic partial differential equations on a Cartesian product mesh, such as the variable-coefficient Poisson equation, the convection-diffusion equation, and the wave Helmholtz equation in heterogeneous media. The algorithm extends the traditional cyclic reduction method with hierarchical matrix techniques. The resulting method exposes substantial concurrency, and its arithmetic operations and memory consumption grow only log-linearly with problem size, assuming bounded rank of off-diagonal matrix blocks, even for problems with arbitrary coefficient structure. The method can be used as a standalone direct solver with tunable accuracy, or as a black-box preconditioner in conjunction with Krylov methods. The challenges that distinguish this work from other thrusts in this active field are the hybrid distributed-shared parallelism that can demonstrate the algorithm at large-scale, full three-dimensionality, and the three stressors of the current state-of-the-art multigrid technology: high wavenumber Helmholtz (indefiniteness), high Reynolds convection (nonsymmetry), and high contrast diffusion (inhomogeneity). Numerical experiments corroborate the robustness, accuracy, and complexity claims and provide a baseline of the performance and memory footprint by comparisons with competing approaches such as the multigrid solver hypre, and the STRUMPACK implementation of the multifrontal factorization with hierarchically semi-separable matrices. The companion implementation can utilize many thousands of cores of Shaheen, KAUST\\'s Haswell-based Cray XC-40 supercomputer, and compares favorably with other implementations of hierarchical solvers in terms of time-to-solution and memory consumption.

  1. Live above- and belowground biomass of a Mozambican evergreen forest:a comparison of estimates based on regression equations and biomass expansion factors

    Institute of Scientific and Technical Information of China (English)

    Tarquinio; Mateus; Magalhães

    2016-01-01

    Background:Biomass regression equations are claimed to yield the most accurate biomass estimates than biomass expansion factors (BEFs). Yet, national and regional biomass estimates are general y calculated based on BEFs, especial y when using national forest inventory data. Comparison of regression equations based and BEF-based biomass estimates are scarce. Thus, this study was intended to compare these two commonly used methods for estimating tree and forest biomass with regard to errors and biases. Methods:The data were col ected in 2012 and 2014. In 2012, a two-phase sampling design was used to fit tree component biomass regression models and determine tree BEFs. In 2014, additional trees were fel ed outside sampling plots to estimate the biases associated with regression equation based and BEF-based biomass estimates;those estimates were then compared in terms of the fol owing sources of error: plot selection and variability, biomass model, model parameter estimates, and residual variability around model prediction. Results:The regression equation based below-, aboveground and whole tree biomass stocks were, approximately, 7.7, 8.5 and 8.3%larger than the BEF-based ones. For the whole tree biomass stock, the percentage of the total error attributed to first phase (random plot selection and variability) was 90 and 88%for regression-and BEF-based estimates, respectively, being the remaining attributed to biomass models (regression and BEF models, respectively). The percent bias of regression equation based and BEF-based biomass estimates for the whole tree biomass stock were−2.7 and 5.4%, respectively. The errors due to model parameter estimates, those due to residual variability around model prediction, and the percentage of the total error attributed to biomass model were larger for BEF models (than for regression models), except for stem and stem wood components. Conclusions:The regression equation based biomass stocks were found to be slightly larger

  2. Live above- and belowground biomass of a Mozambican evergreen forest: a comparison of estimates based on regression equations and biomass expansion factors

    Directory of Open Access Journals (Sweden)

    Tarquinio Mateus Magalhães

    2015-10-01

    Full Text Available Background Biomass regression equations are claimed to yield the most accurate biomass estimates than biomass expansion factors (BEFs. Yet, national and regional biomass estimates are generally calculated based on BEFs, especially when using national forest inventory data. Comparison of regression equations based and BEF-based biomass estimates are scarce. Thus, this study was intended to compare these two commonly used methods for estimating tree and forest biomass with regard to errors and biases. Methods The data were collected in 2012 and 2014. In 2012, a two-phase sampling design was used to fit tree component biomass regression models and determine tree BEFs. In 2014, additional trees were felled outside sampling plots to estimate the biases associated with regression equation based and BEF-based biomass estimates; those estimates were then compared in terms of the following sources of error: plot selection and variability, biomass model, model parameter estimates, and residual variability around model prediction. Results The regression equation based below-, aboveground and whole tree biomass stocks were, approximately, 7.7, 8.5 and 8.3 % larger than the BEF-based ones. For the whole tree biomass stock, the percentage of the total error attributed to first phase (random plot selection and variability was 90 and 88 % for regression- and BEF-based estimates, respectively, being the remaining attributed to biomass models (regression and BEF models, respectively. The percent bias of regression equation based and BEF-based biomass estimates for the whole tree biomass stock were −2.7 and 5.4 %, respectively. The errors due to model parameter estimates, those due to residual variability around model prediction, and the percentage of the total error attributed to biomass model were larger for BEF models (than for regression models, except for stem and stem wood components. Conclusions The regression equation based biomass stocks were found to

  3. Price promotions on healthier compared with less healthy foods: a hierarchical regression analysis of the impact on sales and social patterning of responses to promotions in Great Britain.

    Science.gov (United States)

    Nakamura, Ryota; Suhrcke, Marc; Jebb, Susan A; Pechey, Rachel; Almiron-Roig, Eva; Marteau, Theresa M

    2015-04-01

    There is a growing concern, but limited evidence, that price promotions contribute to a poor diet and the social patterning of diet-related disease. We examined the following questions: 1) Are less-healthy foods more likely to be promoted than healthier foods? 2) Are consumers more responsive to promotions on less-healthy products? 3) Are there socioeconomic differences in food purchases in response to price promotions? With the use of hierarchical regression, we analyzed data on purchases of 11,323 products within 135 food and beverage categories from 26,986 households in Great Britain during 2010. Major supermarkets operated the same price promotions in all branches. The number of stores that offered price promotions on each product for each week was used to measure the frequency of price promotions. We assessed the healthiness of each product by using a nutrient profiling (NP) model. A total of 6788 products (60%) were in healthier categories and 4535 products (40%) were in less-healthy categories. There was no significant gap in the frequency of promotion by the healthiness of products neither within nor between categories. However, after we controlled for the reference price, price discount rate, and brand-specific effects, the sales uplift arising from price promotions was larger in less-healthy than in healthier categories; a 1-SD point increase in the category mean NP score, implying the category becomes less healthy, was associated with an additional 7.7-percentage point increase in sales (from 27.3% to 35.0%; P sales uplift from promotions was larger for higher-socioeconomic status (SES) groups than for lower ones (34.6% for the high-SES group, 28.1% for the middle-SES group, and 23.1% for the low-SES group). Finally, there was no significant SES gap in the absolute volume of purchases of less-healthy foods made on promotion. Attempts to limit promotions on less-healthy foods could improve the population diet but would be unlikely to reduce health

  4. A method for the selection of a functional form for a thermodynamic equation of state using weighted linear least squares stepwise regression

    Science.gov (United States)

    Jacobsen, R. T.; Stewart, R. B.; Crain, R. W., Jr.; Rose, G. L.; Myers, A. F.

    1976-01-01

    A method was developed for establishing a rational choice of the terms to be included in an equation of state with a large number of adjustable coefficients. The methods presented were developed for use in the determination of an equation of state for oxygen and nitrogen. However, a general application of the methods is possible in studies involving the determination of an optimum polynomial equation for fitting a large number of data points. The data considered in the least squares problem are experimental thermodynamic pressure-density-temperature data. Attention is given to a description of stepwise multiple regression and the use of stepwise regression in the determination of an equation of state for oxygen and nitrogen.

  5. Modeling Heterogeneity in Relationships between Initial Status and Rates of Change: Treating Latent Variable Regression Coefficients as Random Coefficients in a Three-Level Hierarchical Model

    Science.gov (United States)

    Choi, Kilchan; Seltzer, Michael

    2010-01-01

    In studies of change in education and numerous other fields, interest often centers on how differences in the status of individuals at the start of a period of substantive interest relate to differences in subsequent change. In this article, the authors present a fully Bayesian approach to estimating three-level Hierarchical Models in which latent…

  6. Using Regression to Establish Weights for a Set of Composite Equations through a Numerical Analysis Approach: A Case of Admission Criteria to a College

    Directory of Open Access Journals (Sweden)

    Ramzi N. Nasser

    2010-01-01

    Full Text Available Problem statement: Mathematically little is known of college admission criteria as in school grade point average, admission test scores or rank in class and weighting of the criteria into a composite equation. Approach: This study presented a method to obtain weights on “composite admission” equation. The method uses an iterative procedure to build a prediction equation for an optimal weighted admission composite score. The three-predictor variables, high school average, entrance exam scores and rank in class, were regressed on college Grade Point Average (GPA. The weights for the composite equation were determined through regression coefficients and numerical approach that correlate the composite score with college GPA. Results: A set of composite equations were determined with the weights on each criteria in a composite equation. Conclusion: This study detailed a substantiated algorithm and based on an optimal composite score, comes out with an original and unique structured composite score equation for admissions, which can be used by admission officers at colleges and universities.

  7. Hierarchical multi-innovation identification methods for multivariable equation-error-like type systems%类多变量方程误差类系统的递阶多新息辨识方法

    Institute of Scientific and Technical Information of China (English)

    丁锋; 王艳娇

    2014-01-01

    According to the hierarchical identification principle,this paper presents the hierarchical stochastic gra-dient algorithms and the hierarchical gradient based iterative algorithms, the hierarchical least squares algorithms and the hierarchical least squares based iterative algorithms for multivariable equation-error-like systems and multi-variable equation-error ARMA-like systems,and further derives the hierarchical multi-innovation gradient algorithms and the hierarchical multi-innovation least squares algorithms. In order to reduce computational burdens,this paper derives the filtering based hierarchical identification algorithms and the filtering based hierarchical multi-innovation identification algorithms for multivariable equation-error ARMA-like systems using the filtering technique. Finally, the computational efficiency and the computational steps of some typical identification algorithms are discussed.%根据递阶辨识原理,研究了类多变量方程误差系统和类多变量方程误差ARMA系统递阶随机梯度方法和递阶梯度迭代方法、递阶最小二乘方法和递阶最小二乘迭代方法。进一步利用多新息辨识理论,推导了递阶多新息梯度辨识方法和递阶多新息最小二乘辨识方法。为减小计算量,推导了基于滤波的类多变量方程误差ARMA系统递阶辨识方法和递阶多新息辨识方法。讨论了几个典型辨识算法的计算量,并给出了计算参数估计的步骤。

  8. equations

    Directory of Open Access Journals (Sweden)

    Xinzhi Liu

    1998-01-01

    Full Text Available This paper studies a class of high order delay partial differential equations. Employing high order delay differential inequalities, several oscillation criteria are established for such equations subject to two different boundary conditions. Two examples are also given.

  9. A Butterfly-Based Direct Integral-Equation Solver Using Hierarchical LU Factorization for Analyzing Scattering From Electrically Large Conducting Objects

    Science.gov (United States)

    Guo, Han; Liu, Yang; Hu, Jun; Michielssen, Eric

    2017-09-01

    A butterfly-based direct combined-field integral equation (CFIE) solver for analyzing scattering from electrically large, perfect electrically conducting objects is presented. The proposed solver leverages the butterfly scheme to compress blocks of the hierarchical LU-factorized discretized CFIE operator and uses randomized butterfly reconstruction schemes to expedite the factorization. The memory requirements and computational cost of the direct butterfly-CFIE solver scale as $O(N\\mathrm{log}^2N)$ and $O(N^{1.5}\\mathrm{log}N)$, respectively. These scaling estimates permit significant memory and CPU savings when compared to those realized by low-rank (LR) decomposition-based solvers. The efficacy and accuracy of the proposed solver are demonstrated through its application to the analysis of scattering from canonical and realistic objects involving up to 14 million unknowns.

  10. Regression equations for estimation of annual peak-streamflow frequency for undeveloped watersheds in Texas using an L-moment-based, PRESS-minimized, residual-adjusted approach

    Science.gov (United States)

    Asquith, William H.; Roussel, Meghan C.

    2009-01-01

    Annual peak-streamflow frequency estimates are needed for flood-plain management; for objective assessment of flood risk; for cost-effective design of dams, levees, and other flood-control structures; and for design of roads, bridges, and culverts. Annual peak-streamflow frequency represents the peak streamflow for nine recurrence intervals of 2, 5, 10, 25, 50, 100, 200, 250, and 500 years. Common methods for estimation of peak-streamflow frequency for ungaged or unmonitored watersheds are regression equations for each recurrence interval developed for one or more regions; such regional equations are the subject of this report. The method is based on analysis of annual peak-streamflow data from U.S. Geological Survey streamflow-gaging stations (stations). Beginning in 2007, the U.S. Geological Survey, in cooperation with the Texas Department of Transportation and in partnership with Texas Tech University, began a 3-year investigation concerning the development of regional equations to estimate annual peak-streamflow frequency for undeveloped watersheds in Texas. The investigation focuses primarily on 638 stations with 8 or more years of data from undeveloped watersheds and other criteria. The general approach is explicitly limited to the use of L-moment statistics, which are used in conjunction with a technique of multi-linear regression referred to as PRESS minimization. The approach used to develop the regional equations, which was refined during the investigation, is referred to as the 'L-moment-based, PRESS-minimized, residual-adjusted approach'. For the approach, seven unique distributions are fit to the sample L-moments of the data for each of 638 stations and trimmed means of the seven results of the distributions for each recurrence interval are used to define the station specific, peak-streamflow frequency. As a first iteration of regression, nine weighted-least-squares, PRESS-minimized, multi-linear regression equations are computed using the watershed

  11. Modeling type 1 and type 2 diabetes mellitus incidence in youth: an application of Bayesian hierarchical regression for sparse small area data.

    Science.gov (United States)

    Song, Hae-Ryoung; Lawson, Andrew; D'Agostino, Ralph B; Liese, Angela D

    2011-03-01

    Sparse count data violate assumptions of traditional Poisson models due to the excessive amount of zeros, and modeling sparse data becomes challenging. However, since aggregation to reduce sparseness may result in biased estimates of risk, solutions need to be found at the level of disaggregated data. We investigated different statistical approaches within a Bayesian hierarchical framework for modeling sparse data without aggregation of data. We compared our proposed models with the traditional Poisson model and the zero-inflated model based on simulated data. We applied statistical models to type 1 and type 2 diabetes in youth 10-19 years known as rare diseases, and compared models using the inference results and various model diagnostic tools. We showed that one of the models we proposed, a sparse Poisson convolution model, performed better than other models in the simulation and application based on the deviance information criterion (DIC) and the mean squared prediction error.

  12. Regional regression equations for the estimation of selected monthly low-flow duration and frequency statistics at ungaged sites on streams in New Jersey

    Science.gov (United States)

    Watson, Kara M.; McHugh, Amy R.

    2014-01-01

    Regional regression equations were developed for estimating monthly flow-duration and monthly low-flow frequency statistics for ungaged streams in Coastal Plain and non-coastal regions of New Jersey for baseline and current land- and water-use conditions. The equations were developed to estimate 87 different streamflow statistics, which include the monthly 99-, 90-, 85-, 75-, 50-, and 25-percentile flow-durations of the minimum 1-day daily flow; the August–September 99-, 90-, and 75-percentile minimum 1-day daily flow; and the monthly 7-day, 10-year (M7D10Y) low-flow frequency. These 87 streamflow statistics were computed for 41 continuous-record streamflow-gaging stations (streamgages) with 20 or more years of record and 167 low-flow partial-record stations in New Jersey with 10 or more streamflow measurements. The regression analyses used to develop equations to estimate selected streamflow statistics were performed by testing the relation between flow-duration statistics and low-flow frequency statistics for 32 basin characteristics (physical characteristics, land use, surficial geology, and climate) at the 41 streamgages and 167 low-flow partial-record stations. The regression analyses determined drainage area, soil permeability, average April precipitation, average June precipitation, and percent storage (water bodies and wetlands) were the significant explanatory variables for estimating the selected flow-duration and low-flow frequency statistics. Streamflow estimates were computed for two land- and water-use conditions in New Jersey—land- and water-use during the baseline period of record (defined as the years a streamgage had little to no change in development and water use) and current land- and water-use conditions (1989–2008)—for each selected station using data collected through water year 2008. The baseline period of record is representative of a period when the basin was unaffected by change in development. The current period is

  13. Multivariate research in areas of phosphorus cast-iron brake shoes manufacturing using the statistical analysis and the multiple regression equations

    Science.gov (United States)

    Kiss, I.; Cioată, V. G.; Alexa, V.; Raţiu, S. A.

    2017-05-01

    The braking system is one of the most important and complex subsystems of railway vehicles, especially when it comes for safety. Therefore, installing efficient safe brakes on the modern railway vehicles is essential. Nowadays is devoted attention to solving problems connected with using high performance brake materials and its impact on thermal and mechanical loading of railway wheels. The main factor that influences the selection of a friction material for railway applications is the performance criterion, due to the interaction between the brake block and the wheel produce complex thermos-mechanical phenomena. In this work, the investigated subjects are the cast-iron brake shoes, which are still widely used on freight wagons. Therefore, the cast-iron brake shoes - with lamellar graphite and with a high content of phosphorus (0.8-1.1%) - need a special investigation. In order to establish the optimal condition for the cast-iron brake shoes we proposed a mathematical modelling study by using the statistical analysis and multiple regression equations. Multivariate research is important in areas of cast-iron brake shoes manufacturing, because many variables interact with each other simultaneously. Multivariate visualization comes to the fore when researchers have difficulties in comprehending many dimensions at one time. Technological data (hardness and chemical composition) obtained from cast-iron brake shoes were used for this purpose. In order to settle the multiple correlation between the hardness of the cast-iron brake shoes, and the chemical compositions elements several model of regression equation types has been proposed. Because a three-dimensional surface with variables on three axes is a common way to illustrate multivariate data, in which the maximum and minimum values are easily highlighted, we plotted graphical representation of the regression equations in order to explain interaction of the variables and locate the optimal level of each variable for

  14. Analysis and parameter identification for characteristic equations of single- and double-effect absorption chillers by means of multivariable regression

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; López-Villada, Jesús; Bruno, Joan Carles;

    2010-01-01

    Two approaches to the characteristic equation method have been compared in order to find a simple model that best describes the performance of thermal chillers. After comparing the results obtained using experimental data from a single-effect absorption chiller, we concluded that the adaptation...... of the characteristic equation method developed by Kühn and Ziegler (2005) is the simplest and that it provides similar or better accuracy than the other approach. This selected approach has been used to fit catalogue and experimental data of single-effect chillers and has been extended to double-effect commercial...... chillers. The characteristic parameters for these chillers are given and can be incorporated as a chiller module in thermal modelling and simulation packages....

  15. Estimating Intelligence in Spanish: Regression Equations With the Word Accentuation Test and Demographic Variables in Latin America.

    Science.gov (United States)

    Sierra Sanjurjo, Natalia; Montañes, Patricia; Sierra Matamoros, Fabio Alexander; Burin, Debora

    2015-01-01

    Spanish is the fourth most spoken language in the world, and the majority of Spanish speakers have a Latin American origin. Reading aloud infrequently accentuated words has been established as a National Adult Reading Test-like method to assess premorbid intelligence in Spanish. However, several versions have been proposed and validated with small and selected samples, in particular geographical conditions, and they seldom derive a formula for IQ estimation with the Wechsler Adult Intelligence Scale (WAIS) Full-Scale IQ (FSIQ). The objective of this study was to develop equations to estimate WAIS-Third Edition (WAIS-III) FSIQ from the Word Accentuation Test-Revised (WAT-R), demographic variables, and their combination within diverse Latin American samples. Two hundred and forty participants from Argentina and Colombia, selected according to age and years of education strata, were assessed with the WAT-R, the WAIS-III, and a structured questionnaire about demographic and medical information. A combined approach including place of birth, years of education, and WAT-R provided the best equation, explaining 76% of IQ variance. These equations could be useful for estimating premorbid IQ in patients with Latin American Spanish as their birth language.

  16. Spins Dynamics in a Dissipative Environment: Hierarchal Equations of Motion Approach Using a Graphics Processing Unit (GPU).

    Science.gov (United States)

    Tsuchimoto, Masashi; Tanimura, Yoshitaka

    2015-08-11

    A system with many energy states coupled to a harmonic oscillator bath is considered. To study quantum non-Markovian system-bath dynamics numerically rigorously and nonperturbatively, we developed a computer code for the reduced hierarchy equations of motion (HEOM) for a graphics processor unit (GPU) that can treat the system as large as 4096 energy states. The code employs a Padé spectrum decomposition (PSD) for a construction of HEOM and the exponential integrators. Dynamics of a quantum spin glass system are studied by calculating the free induction decay signal for the cases of 3 × 2 to 3 × 4 triangular lattices with antiferromagnetic interactions. We found that spins relax faster at lower temperature due to transitions through a quantum coherent state, as represented by the off-diagonal elements of the reduced density matrix, while it has been known that the spins relax slower due to suppression of thermal activation in a classical case. The decay of the spins are qualitatively similar regardless of the lattice sizes. The pathway of spin relaxation is analyzed under a sudden temperature drop condition. The Compute Unified Device Architecture (CUDA) based source code used in the present calculations is provided as Supporting Information .

  17. Hierarchical multiscale framework for materials modeling: Equation of state implementation and application to a Taylor anvil impact test of RDX

    Science.gov (United States)

    Barnes, Brian C.; Spear, Carrie E.; Leiter, Ken W.; Becker, Richard; Knap, Jaroslaw; Lísal, Martin; Brennan, John K.

    2017-01-01

    In order to progress towards a materials-by-design capability, we present work on a challenge in continuum-scale modeling: the direct incorporation of complex physical processes in the constitutive evaluation. In this work, we use an adaptive scale-bridging computational framework executing in parallel in a heterogeneous computational environment to couple a fine-scale, particle-based model computing the equation of state (EOS) to the constitutive response in a finite-element multi-physics simulation. The EOS is obtained from high fidelity materials simulations performed via dissipative particle dynamics (DPD) methods. This scale-bridging framework is progress towards an innovation infrastructure that will be of great utility for systems in which essential aspects of material response are too complex to capture by closed form material models. The design, implementation, and performance of the scale-bridging framework are discussed. Also presented is a proof-of-concept Taylor anvil impact test of non-reacting 1,3,5-trinitrohexahydro-s-triazine (RDX).

  18. Study on Leaf Area Regression Equation for ‘Dajiubao’ Peach%大久保桃叶面积回归测算方法研究

    Institute of Scientific and Technical Information of China (English)

    张传来; 周瑞金; 宋秀丽

    2012-01-01

    Taking ' Dajiubao' peach leaf as tested materials,the relation of leaf length( x1) , leaf width(x2) and leaf length×leaf width with leaf area (LA, y) was studied. The results showed that there was a significantly positive correlation between leaf area and leaf length, leaf width and leaf length×leaf width, and the correlation coefficient was 0.9203, 0.9297 and 0.9764,respectively; the multiple correlation coefficient of leaf length added leaf width, leaf length added leaf length×leaf width, leaf width added leaf length×leaf width with leaf area was 0.9866, 0.9884 and 0.9884,respectively, and the difference was extremely significant. On the base of these analysis results, the simple linearity regression equation of leaf length, leaf width and leaf length×leaf width with leaf area was established. At the same time, the binary regression equation was established for leaf length added leaf width with leaf area, leaf length added leaf length×leaf width with leaf area, leaf width added leaf length×leaf width with leaf area. The leaf area of ' Dajiubao' peach could be calculated by these six regression equations. Among them, the computing result of binary regression equation (y = 490. 6048 -4. 9315x1 +0. 6816x1x2) and the binary regression equation (y=-213.244 +18. 6115x2 +0. 5527x1x2) were more precise. The regression equation could be chosen according to the requirement of accuracy and the workload of calculation during specific application.%以大久保成熟叶片为试材,研究了叶长(x1)、叶宽(x2)、叶长×叶宽与叶面积(LA,y)的关系.结果表明,叶长、叶宽、叶长×叶宽与LA均呈正相关关系,相关系数分别为0.9203、0.9297、0.9764;叶长和叶宽、叶长和叶长×叶宽、叶宽和叶长×叶宽与LA的复相关系数分别为0.9866、0.9884、0.9884,差异均达到了极显著水平.在此基础上建立了叶长与LA、叶宽与LA、叶长×叶宽与LA3个简单线性回归方程以及叶长和叶宽与LA、

  19. Mean Expected Error in Prediction of Total Body Water: A True Accuracy Comparison between Bioimpedance Spectroscopy and Single Frequency Regression Equations.

    Science.gov (United States)

    Seoane, Fernando; Abtahi, Shirin; Abtahi, Farhad; Ellegård, Lars; Johannsson, Gudmundur; Bosaeus, Ingvar; Ward, Leigh C

    2015-01-01

    For several decades electrical bioimpedance (EBI) has been used to assess body fluid distribution and body composition. Despite the development of several different approaches for assessing total body water (TBW), it remains uncertain whether bioimpedance spectroscopic (BIS) approaches are more accurate than single frequency regression equations. The main objective of this study was to answer this question by calculating the expected accuracy of a single measurement for different EBI methods. The results of this study showed that all methods produced similarly high correlation and concordance coefficients, indicating good accuracy as a method. Even the limits of agreement produced from the Bland-Altman analysis indicated that the performance of single frequency, Sun's prediction equations, at population level was close to the performance of both BIS methods; however, when comparing the Mean Absolute Percentage Error value between the single frequency prediction equations and the BIS methods, a significant difference was obtained, indicating slightly better accuracy for the BIS methods. Despite the higher accuracy of BIS methods over 50 kHz prediction equations at both population and individual level, the magnitude of the improvement was small. Such slight improvement in accuracy of BIS methods is suggested insufficient to warrant their clinical use where the most accurate predictions of TBW are required, for example, when assessing over-fluidic status on dialysis. To reach expected errors below 4-5%, novel and individualized approaches must be developed to improve the accuracy of bioimpedance-based methods for the advent of innovative personalized health monitoring applications.

  20. Advancing the Parameter-elevation Regressions on Independent Slopes Model (PRISM) to Accommodate Atmospheric River Influences Using a Hierarchical Estimation Structure

    Science.gov (United States)

    Hsu, C.; Cifelli, R.; Zamora, R. J.; Schneider, T.

    2014-12-01

    The PRISM monthly climatology has been widely used by various agencies for diverse purposes. In the River Forecast Centers (RFCs), the PRISM monthly climatology is used to support tasks such as QPE, or quality control of point precipitation observation, and fine tune QPFs. Validation studies by forecasters and researchers have shown that interpolation involving PRISM climatology can effectually reduce the estimation bias for the locations where moderate or little orographic phenomena occur. However, many studies have pointed out limitations in PRISM monthly climatology. These limitations are especially apparent in storm events with fast-moving wet air masses or with storm tracks that are different from climatology. In order to upgrade PRISM climatology so it possesses the capability to characterize the climatology of storm events, it is critical to integrate large-scale atmospheric conditions with the original PRISM predictor variables and to simulate them at a temporal resolution higher than monthly. To this end, a simple, flexible, and powerful framework for precipitation estimation modeling that can be applied to very large data sets is thus developed. In this project, a decision tree based estimation structure was developed to perform the aforementioned variable integration work. Three Atmospheric River events (ARs) were selected to explore the hierarchical relationships among these variables and how these relationships shape the event-based precipitation distribution pattern across California. Several atmospheric variables, including vertically Integrated Vapor Transport (IVT), temperature, zonal wind (u), meridional wind (v), and omega (ω), were added to enhance the sophistication of the tree-based structure in estimating precipitation. To develop a direction-based climatology, the directions the ARs moving over the Pacific Ocean were also calculated and parameterized within the tree estimation structure. The results show that the involvement of the

  1. Probing photoisomerization processes by means of multi-dimensional electronic spectroscopy: The multi-state quantum hierarchical Fokker-Planck equation approach

    Science.gov (United States)

    Ikeda, Tatsushi; Tanimura, Yoshitaka

    2017-07-01

    Photoisomerization in a system with multiple electronic states and anharmonic potential surfaces in a dissipative environment is investigated using a rigorous numerical method employing quantum hierarchical Fokker-Planck equations (QHFPEs) for multi-state systems. We have developed a computer code incorporating QHFPE for general-purpose computing on graphics processing units that can treat multi-state systems in phase space with any strength of diabatic coupling of electronic states under non-perturbative and non-Markovian system-bath interactions. This approach facilitates the calculation of both linear and nonlinear spectra. We computed Wigner distributions for excited, ground, and coherent states. We then investigated excited state dynamics involving transitions among these states by analyzing linear absorption and transient absorption processes and multi-dimensional electronic spectra with various values of heat bath parameters. Our results provide predictions for spectroscopic measurements of photoisomerization dynamics. The motion of excitation and ground state wavepackets and their coherence involved in the photoisomerization were observed as the profiles of positive and negative peaks of two-dimensional spectra.

  2. Regarding to the Variance Analysis of Regression Equation of the Surface Roughness obtained by End Milling process of 7136 Aluminium Alloy

    Science.gov (United States)

    POP, A. B.; ȚÎȚU, M. A.

    2016-11-01

    In the metal cutting process, surface quality is intrinsically related to the cutting parameters and to the cutting tool geometry. At the same time, metal cutting processes are closely related to the machining costs. The purpose of this paper is to reduce manufacturing costs and processing time. A study was made, based on the mathematical modelling of the average of the absolute value deviation (Ra) resulting from the end milling process on 7136 aluminium alloy, depending on cutting process parameters. The novel element brought by this paper is the 7136 aluminium alloy type, chosen to conduct the experiments, which is a material developed and patented by Universal Alloy Corporation. This aluminium alloy is used in the aircraft industry to make parts from extruded profiles, and it has not been studied for the proposed research direction. Based on this research, a mathematical model of surface roughness Ra was established according to the cutting parameters studied in a set experimental field. A regression analysis was performed, which identified the quantitative relationships between cutting parameters and the surface roughness. Using the variance analysis ANOVA, the degree of confidence for the achieved results by the regression equation was determined, and the suitability of this equation at every point of the experimental field.

  3. Determinants and Regression Equations for the Calculation of z Scores of Left Ventricular Tissue Doppler Longitudinal Indexes in a Healthy Italian Pediatric Population

    Directory of Open Access Journals (Sweden)

    Veronica Fibbi

    2015-01-01

    Full Text Available Aim. We investigated the predictors of tissue Doppler left ventricular (LV longitudinal indexes in a healthy Italian pediatric population and established normative data and regression equations for the calculation of z scores. Methods and Results. A total of 369 healthy subjects aged 1–17 years (age of 6.4 ± 1.1 years, 49.1% female underwent echocardiography. LV peak longitudinal velocity at systole (s', early diastole (e', and late diastole (a' was determined by tissue Doppler. The ratio of peak early diastolic LV filling velocity to e' was calculated. Age was the only independent determinant of s' (β=0.491, p<0.0001 and the strongest determinant of e' (β=0.334, p<0.0001 and E/e' (β=-0.369, p<0.0001. Heart rate was the main determinant of a' (β=0.265, p<0.0001. Male gender showed no effects except for a weak association with lateral s', suggesting no need of gender-specific reference ranges. Age-specific reference ranges, regression equations, and scatterplots for the calculation of z scores were determined for each index. Conclusion. In a pediatric Italian population, age was the strongest determinant of LV longitudinal dynamics. The availability of age-specific normality data for the calculation of z scores may allow for correctly detecting LV dysfunction in pediatric pathological populations.

  4. Validity of Moyers Mixed Dentition Analysis and a New Proposed Regression Equation as a Predictor of Width of Unerupted Canine and Premolars in Children.

    Science.gov (United States)

    Thimmegowda, Umapathy; Sarvesh, Swetha G; Shashikumar, Hassan Channaveerappa; Kanchiswamy, Lokesh Nagamangala; Shivananda, Dharmesh Hampapura; Prabhakar, Ashwini Chikkanayakanahalli

    2015-08-01

    The Moyer's mixed dentition analysis forms an essential part of diagnostic procedures to determine adequacy of the space available for the erupting permanent teeth. However, its reliability among different racial groups has been questioned. The objectives of this study were to test the reliability of Moyer's method and to produce new regression equation for Bangalore population for predicting the mesiodistal diameters of the unerupted permanent canines and premolars. Data was collected from study models of 400 randomly selected Bangalore subjects aged 13 to 16 years with fully erupted, intact dentitions and no significant malocclusion. The mesiodistal widths of the incisors, canines and premolars of both arches were measured. This data was then utilized to predict the mesiodistal widths of canines and premolars and further compared with Moyer's table. It was found that 50% is more applicable to boys and 75% to girls. The canine premolar segment in both arches is statistically larger in men than in women (p<0.05). New regression equation was formulated, the accuracy of which needs to be evaluated further in a larger sample.

  5. Investigation of the degree of organisational influence on patient experience scores in acute medical admission units in all acute hospitals in England using multilevel hierarchical regression modelling

    Science.gov (United States)

    Sullivan, Paul

    2017-01-01

    Objectives Previous studies found that hospital and specialty have limited influence on patient experience scores, and patient level factors are more important. This could be due to heterogeneity of experience delivery across subunits within organisations. We aimed to determine whether organisation level factors have greater impact if scores for the same subspecialty microsystem are analysed in each hospital. Setting Acute medical admission units in all NHS Acute Trusts in England. Participants We analysed patient experience data from the English Adult Inpatient Survey which is administered to 850 patients annually in each acute NHS Trusts in England. We selected all 8753 patients who returned the survey and who were emergency medical admissions and stayed in their admission unit for 1–2 nights, so as to isolate the experience delivered during the acute admission process. Primary and secondary outcome measures We used multilevel logistic regression to determine the apportioned influence of host organisation and of organisation level factors (size and teaching status), and patient level factors (demographics, presence of long-term conditions and disabilities). We selected ‘being treated with respect and dignity’ and ‘pain control’ as primary outcome parameters. Other Picker Domain question scores were analysed as secondary parameters. Results The proportion of overall variance attributable at organisational level was small; 0.5% (NS) for respect and dignity, 0.4% (NS) for pain control. Long-standing conditions and consequent disabilities were associated with low scores. Other item scores also showed that most influence was from patient level factors. Conclusions When a single microsystem, the acute medical admission process, is isolated, variance in experience scores is mainly explainable by patient level factors with limited organisational level influence. This has implications for the use of generic patient experience surveys for comparison between

  6. Regression equations to estimate seasonal flow duration, n-day high-flow frequency, and n-day low-flow frequency at sites in North Dakota using data through water year 2009

    Science.gov (United States)

    Williams-Sether, Tara; Gross, Tara A.

    2016-02-09

    Seasonal mean daily flow data from 119 U.S. Geological Survey streamflow-gaging stations in North Dakota; the surrounding states of Montana, Minnesota, and South Dakota; and the Canadian provinces of Manitoba and Saskatchewan with 10 or more years of unregulated flow record were used to develop regression equations for flow duration, n-day high flow and n-day low flow using ordinary least-squares and Tobit regression techniques. Regression equations were developed for seasonal flow durations at the 10th, 25th, 50th, 75th, and 90th percent exceedances; the 1-, 7-, and 30-day seasonal mean high flows for the 10-, 25-, and 50-year recurrence intervals; and the 1-, 7-, and 30-day seasonal mean low flows for the 2-, 5-, and 10-year recurrence intervals. Basin and climatic characteristics determined to be significant explanatory variables in one or more regression equations included drainage area, percentage of basin drainage area that drains to isolated lakes and ponds, ruggedness number, stream length, basin compactness ratio, minimum basin elevation, precipitation, slope ratio, stream slope, and soil permeability. The adjusted coefficient of determination for the n-day high-flow regression equations ranged from 55.87 to 94.53 percent. The Chi2 values for the duration regression equations ranged from 13.49 to 117.94, whereas the Chi2 values for the n-day low-flow regression equations ranged from 4.20 to 49.68.

  7. 基于回归方程GPS单频精密单点定位算法%A Single Frequency Precise Point Positioning Algorithm Based on Regression Equation

    Institute of Scientific and Technical Information of China (English)

    华媛媛; 陈蕾

    2012-01-01

    The thesis studied the algorithms of single-frequency GPS precise point positioning, including the regression equation of single-frequency precise point positioning and the Kalman filter for single frequency precise point positioning. The observation equation and the equation of state of the Kalman filter were explored, and the state transition matrix and the system noise matrix were provided. Through the numerical example,the thesis analyzed the system performance characteristics and the positioning accuracy that reached a decimeter-level in 1 second sampling rate.%研究了单频GPS精密单点定位的算法,包括单频精密单点定位的回归方程及卡尔曼滤波用于单频精密单点定位,探讨卡尔曼滤波的观测方程和状态方程,给出了状态转移矩阵及系统噪声矩阵.通过算例验证了在1s采样率的情况下,定位达到了分米级的精度.

  8. Mean Expected Error in Prediction of Total Body Water: A True Accuracy Comparison between Bioimpedance Spectroscopy and Single Frequency Regression Equations

    Directory of Open Access Journals (Sweden)

    Fernando Seoane

    2015-01-01

    Full Text Available For several decades electrical bioimpedance (EBI has been used to assess body fluid distribution and body composition. Despite the development of several different approaches for assessing total body water (TBW, it remains uncertain whether bioimpedance spectroscopic (BIS approaches are more accurate than single frequency regression equations. The main objective of this study was to answer this question by calculating the expected accuracy of a single measurement for different EBI methods. The results of this study showed that all methods produced similarly high correlation and concordance coefficients, indicating good accuracy as a method. Even the limits of agreement produced from the Bland-Altman analysis indicated that the performance of single frequency, Sun’s prediction equations, at population level was close to the performance of both BIS methods; however, when comparing the Mean Absolute Percentage Error value between the single frequency prediction equations and the BIS methods, a significant difference was obtained, indicating slightly better accuracy for the BIS methods. Despite the higher accuracy of BIS methods over 50 kHz prediction equations at both population and individual level, the magnitude of the improvement was small. Such slight improvement in accuracy of BIS methods is suggested insufficient to warrant their clinical use where the most accurate predictions of TBW are required, for example, when assessing over-fluidic status on dialysis. To reach expected errors below 4-5%, novel and individualized approaches must be developed to improve the accuracy of bioimpedance-based methods for the advent of innovative personalized health monitoring applications.

  9. Quasi-Likelihood Techniques in a Logistic Regression Equation for Identifying Simulium damnosum s.l. Larval Habitats Intra-cluster Covariates in Togo.

    Science.gov (United States)

    Jacob, Benjamin G; Novak, Robert J; Toe, Laurent; Sanfo, Moussa S; Afriyie, Abena N; Ibrahim, Mohammed A; Griffith, Daniel A; Unnasch, Thomas R

    2012-01-01

    The standard methods for regression analyses of clustered riverine larval habitat data of Simulium damnosum s.l. a major black-fly vector of Onchoceriasis, postulate models relating observational ecological-sampled parameter estimators to prolific habitats without accounting for residual intra-cluster error correlation effects. Generally, this correlation comes from two sources: (1) the design of the random effects and their assumed covariance from the multiple levels within the regression model; and, (2) the correlation structure of the residuals. Unfortunately, inconspicuous errors in residual intra-cluster correlation estimates can overstate precision in forecasted S.damnosum s.l. riverine larval habitat explanatory attributes regardless how they are treated (e.g., independent, autoregressive, Toeplitz, etc). In this research, the geographical locations for multiple riverine-based S. damnosum s.l. larval ecosystem habitats sampled from 2 pre-established epidemiological sites in Togo were identified and recorded from July 2009 to June 2010. Initially the data was aggregated into proc genmod. An agglomerative hierarchical residual cluster-based analysis was then performed. The sampled clustered study site data was then analyzed for statistical correlations using Monthly Biting Rates (MBR). Euclidean distance measurements and terrain-related geomorphological statistics were then generated in ArcGIS. A digital overlay was then performed also in ArcGIS using the georeferenced ground coordinates of high and low density clusters stratified by Annual Biting Rates (ABR). This data was overlain onto multitemporal sub-meter pixel resolution satellite data (i.e., QuickBird 0.61m wavbands ). Orthogonal spatial filter eigenvectors were then generated in SAS/GIS. Univariate and non-linear regression-based models (i.e., Logistic, Poisson and Negative Binomial) were also employed to determine probability distributions and to identify statistically significant parameter

  10. The importance of statistical modelling in clinical research : Comparing multidimensional Rasch-, structural equation and linear regression models for analyzing the depression of relatives of psychiatric patients.

    Science.gov (United States)

    Alexandrowicz, Rainer W; Jahn, Rebecca; Friedrich, Fabian; Unger, Anne

    2016-06-01

    Various studies have shown that caregiving relatives of schizophrenic patients are at risk of suffering from depression. These studies differ with respect to the applied statistical methods, which could influence the findings. Therefore, the present study analyzes to which extent different methods may cause differing results. The present study contrasts by means of one data set the results of three different modelling approaches, Rasch Modelling (RM), Structural Equation Modelling (SEM), and Linear Regression Modelling (LRM). The results of the three models varied considerably, reflecting the different assumptions of the respective models. Latent trait models (i. e., RM and SEM) generally provide more convincing results by correcting for measurement error and the RM specifically proves superior for it treats ordered categorical data most adequately.

  11. Applying the General Regression Neural Network to Ground Motion Prediction Equations of Induced Events in the Legnica-Głogów Copper District in Poland

    Science.gov (United States)

    Wiszniowski, Jan

    2016-12-01

    This paper presents a study of the nonlinear estimation of the ground motion prediction equation (GMPE) using neural networks. The general regression neural network (GRNN) was chosen for its high learning rate. A separate GRNN was tested as well as a GRNN in cascade connection with linear regression (LR). Measurements of induced seismicity in the Legnica-Głogów Copper District were used in this study. Various sets of input variables were tested. The basic variables used in every case were seismic energy and epicentral distance, while the additional variables were the location of the epicenter, the location of the seismic station, and the direction towards the epicenter. The GRNN improves the GMPE. The best results were obtained when the epicenter location was used as an additional input. The GRNN model was analysed for how it can improve the GMPE with respect to LR. The bootstrap re-sampling method was used for this purpose. It proved the statistical significance of the improvement of the GMPE. Additionally, this method allows the determination of smoothness parameters for the GRNN. Parameters derived through this method have better generalisation capabilities than the smoothness parameters estimated using the holdout method.

  12. Application of expansion of the variables in hierarchical functions for solution of Navier-Stokes equations for incompressible fluids; Aplicacao do metodo da expansao em funcoes hierarquicas na solucao das equacoes de Navier-Stokes para fluidos incompressivels

    Energy Technology Data Exchange (ETDEWEB)

    Sabundjian, Gaiane [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). E-mail: gdjian@net.ipen.br; Cabral, Eduardo Lobo Lustosa [Sao Paulo Univ., SP (Brazil). Escola Politecnica. E-mail: elcabral@usp.br

    2000-07-01

    This work applied of the expansion of the variables in hierarchical functions for the solution of the Navier-Stokes equations for incompressible fluids in two dimensions in laminar flow. This work is based on the finite element method. The used expansion functions are based on Legendre polynomials, adjusted in the rectangular elements in a such a way that corner, side and area functions are defined. The order of the expansion functions associated with the sides and with the area of the elements can be adjusted to the necessary or desire degree. This method is denominated by Hierarchical Expansion Method. In order to validate the proposed numeric method three well-known problems of the literature are analyze. The results show the method capacity in supplying precise results. (author)

  13. Retention payoff-based cost per day open regression equations: Application in a user-friendly decision support tool for investment analysis of automated estrus detection technologies.

    Science.gov (United States)

    Dolecheck, K A; Heersche, G; Bewley, J M

    2016-12-01

    Assessing the economic implications of investing in automated estrus detection (AED) technologies can be overwhelming for dairy producers. The objectives of this study were to develop new regression equations for estimating the cost per day open (DO) and to apply the results to create a user-friendly, partial budget, decision support tool for investment analysis of AED technologies. In the resulting decision support tool, the end user can adjust herd-specific inputs regarding general management, current reproductive management strategies, and the proposed AED system. Outputs include expected DO, reproductive cull rate, net present value, and payback period for the proposed AED system. Utility of the decision support tool was demonstrated with an example dairy herd created using data from DairyMetrics (Dairy Records Management Systems, Raleigh, NC), Food and Agricultural Policy Research Institute (Columbia, MO), and published literature. Resulting herd size, rolling herd average milk production, milk price, and feed cost were 323 cows, 10,758kg, $0.41/kg, and $0.20/kg of dry matter, respectively. Automated estrus detection technologies with 2 levels of initial system cost (low: $5,000 vs. high: $10,000), tag price (low: $50 vs. high: $100), and estrus detection rate (low: 60% vs. high: 80%) were compared over a 7-yr investment period. Four scenarios were considered in a demonstration of the investment analysis tool: (1) a herd using 100% visual observation for estrus detection before adopting 100% AED, (2) a herd using 100% visual observation before adopting 75% AED and 25% visual observation, (3) a herd using 100% timed artificial insemination (TAI) before adopting 100% AED, and (4) a herd using 100% TAI before adopting 75% AED and 25% TAI. Net present value in scenarios 1 and 2 was always positive, indicating a positive investment situation. Net present value in scenarios 3 and 4 was always positive in combinations using a $50 tag price, and in scenario 4, the $5

  14. Applicability of regression equation using widths of mandibular permanent first molars and incisors as a predictor of widths of mandibular canines and premolars in contemporary Indian population

    Directory of Open Access Journals (Sweden)

    Shalin Shah

    2013-01-01

    Full Text Available Background: Predicting the size of unerupted teeth during the mixed dentition period is a critical factor in managing the developing occlusion. Different studies found that the combined width of only the four mandibular permanent incisors is not a good predictor of the sum of unerupted mandibular permanent canines and premolars (SPCP. In 2007, Melgaço et al. developed a new method for SPCP by measuring the sum of the mandibular first permanent molars and four mandibular permanent incisors (SMI. Aim: It was aimed to evaluate the accuracy of this new method in comparison with Moyers′ mixed dentition analysis table in contemporary Indian population. Settings and Design: Sixty boys and 60 girls from Gandhinagar district (age ranged from 12 to 14 years were included. Materials and Methods: The mesiodistal crown widths of all fully erupted teeth were measured with digital vernier callipers and the odontometric values obtained were then subjected to statistical and linear regression analysis. Results: Student′s unpaired t-test gave statistically significant difference between the original values of teeth and the values obtained by Melgaço′s prediction equation as well as Moyers′ mixed dentition analysis table (P < 0.001. High values of correlation (r = 0.77 and determination coefficients (r2 = 0.59 were found while considering Melgaço′s method. Also, no statistically significant difference was found between the tooth sizes of males and females. Conclusion: From this study, it can be evaluated that Melgaço′s method gives better prediction and a simplified equation Y = 0.925X can be suggested for the present population.

  15. When to Use Hierarchical Linear Modeling

    Directory of Open Access Journals (Sweden)

    Veronika Huta

    2014-04-01

    Full Text Available Previous publications on hierarchical linear modeling (HLM have provided guidance on how to perform the analysis, yet there is relatively little information on two questions that arise even before analysis: Does HLM apply to one’s data and research question? And if it does apply, how does one choose between HLM and other methods sometimes used in these circumstances, including multiple regression, repeated-measures or mixed ANOVA, and structural equation modeling or path analysis? The purpose of this tutorial is to briefly introduce HLM and then to review some of the considerations that are helpful in answering these questions, including the nature of the data, the model to be tested, and the information desired on the output. Some examples of how the same analysis could be performed in HLM, repeated-measures or mixed ANOVA, and structural equation modeling or path analysis are also provided. .

  16. Parallel hierarchical radiosity rendering

    Energy Technology Data Exchange (ETDEWEB)

    Carter, M.

    1993-07-01

    In this dissertation, the step-by-step development of a scalable parallel hierarchical radiosity renderer is documented. First, a new look is taken at the traditional radiosity equation, and a new form is presented in which the matrix of linear system coefficients is transformed into a symmetric matrix, thereby simplifying the problem and enabling a new solution technique to be applied. Next, the state-of-the-art hierarchical radiosity methods are examined for their suitability to parallel implementation, and scalability. Significant enhancements are also discovered which both improve their theoretical foundations and improve the images they generate. The resultant hierarchical radiosity algorithm is then examined for sources of parallelism, and for an architectural mapping. Several architectural mappings are discussed. A few key algorithmic changes are suggested during the process of making the algorithm parallel. Next, the performance, efficiency, and scalability of the algorithm are analyzed. The dissertation closes with a discussion of several ideas which have the potential to further enhance the hierarchical radiosity method, or provide an entirely new forum for the application of hierarchical methods.

  17. Modeling hierarchical structures - Hierarchical Linear Modeling using MPlus

    CERN Document Server

    Jelonek, M

    2006-01-01

    The aim of this paper is to present the technique (and its linkage with physics) of overcoming problems connected to modeling social structures, which are typically hierarchical. Hierarchical Linear Models provide a conceptual and statistical mechanism for drawing conclusions regarding the influence of phenomena at different levels of analysis. In the social sciences it is used to analyze many problems such as educational, organizational or market dilemma. This paper introduces the logic of modeling hierarchical linear equations and estimation based on MPlus software. I present my own model to illustrate the impact of different factors on school acceptation level.

  18. P-Adic Analog of Navier–Stokes Equations: Dynamics of Fluid’s Flow in Percolation Networks (from Discrete Dynamics with Hierarchic Interactions to Continuous Universal Scaling Model

    Directory of Open Access Journals (Sweden)

    Klaudia Oleschko

    2017-04-01

    Full Text Available Recently p-adic (and, more generally, ultrametric spaces representing tree-like networks of percolation, and as a special case of capillary patterns in porous media, started to be used to model the propagation of fluids (e.g., oil, water, oil-in-water, and water-in-oil emulsion. The aim of this note is to derive p-adic dynamics described by fractional differential operators (Vladimirov operators starting with discrete dynamics based on hierarchically-structured interactions between the fluids’ volumes concentrated at different levels of the percolation tree and coming to the multiscale universal topology of the percolating nets. Similar systems of discrete hierarchic equations were widely applied to modeling of turbulence. However, in the present work this similarity is only formal since, in our model, the trees are real physical patterns with a tree-like topology of capillaries (or fractures in random porous media (not cascade trees, as in the case of turbulence, which we will be discussed elsewhere for the spinner flowmeter commonly used in the petroleum industry. By going to the “continuous limit” (with respect to the p-adic topology we represent the dynamics on the tree-like configuration space as an evolutionary nonlinear p-adic fractional (pseudo- differential equation, the tree-like analog of the Navier–Stokes equation. We hope that our work helps to come closer to a nonlinear equation solution, taking into account the scaling, hierarchies, and formal derivations, imprinted from the similar properties of the real physical world. Once this coupling is resolved, the more problematic question of information scaling in industrial applications will be achieved.

  19. Price promotions on healthier compared with less healthy foods: a hierarchical regression analysis of the impact on sales and social patterning of responses to promotions in Great Britain12345

    Science.gov (United States)

    Nakamura, Ryota; Suhrcke, Marc; Jebb, Susan A; Pechey, Rachel; Almiron-Roig, Eva; Marteau, Theresa M

    2015-01-01

    Background: There is a growing concern, but limited evidence, that price promotions contribute to a poor diet and the social patterning of diet-related disease. Objective: We examined the following questions: 1) Are less-healthy foods more likely to be promoted than healthier foods? 2) Are consumers more responsive to promotions on less-healthy products? 3) Are there socioeconomic differences in food purchases in response to price promotions? Design: With the use of hierarchical regression, we analyzed data on purchases of 11,323 products within 135 food and beverage categories from 26,986 households in Great Britain during 2010. Major supermarkets operated the same price promotions in all branches. The number of stores that offered price promotions on each product for each week was used to measure the frequency of price promotions. We assessed the healthiness of each product by using a nutrient profiling (NP) model. Results: A total of 6788 products (60%) were in healthier categories and 4535 products (40%) were in less-healthy categories. There was no significant gap in the frequency of promotion by the healthiness of products neither within nor between categories. However, after we controlled for the reference price, price discount rate, and brand-specific effects, the sales uplift arising from price promotions was larger in less-healthy than in healthier categories; a 1-SD point increase in the category mean NP score, implying the category becomes less healthy, was associated with an additional 7.7–percentage point increase in sales (from 27.3% to 35.0%; P sales uplift from promotions was larger for higher–socioeconomic status (SES) groups than for lower ones (34.6% for the high-SES group, 28.1% for the middle-SES group, and 23.1% for the low-SES group). Finally, there was no significant SES gap in the absolute volume of purchases of less-healthy foods made on promotion. Conclusion: Attempts to limit promotions on less-healthy foods could improve the

  20. High Adherence to Iron/Folic Acid Supplementation during Pregnancy Time among Antenatal and Postnatal Care Attendant Mothers in Governmental Health Centers in Akaki Kality Sub City, Addis Ababa, Ethiopia: Hierarchical Negative Binomial Poisson Regression

    Science.gov (United States)

    Gebreamlak, Bisratemariam; Dadi, Abel Fekadu; Atnafu, Azeb

    2017-01-01

    Background Iron deficiency during pregnancy is a risk factor for anemia, preterm delivery, and low birth weight. Iron/Folic Acid supplementation with optimal adherence can effectively prevent anemia in pregnancy. However, studies that address this area of adherence are very limited. Therefore, the current study was conducted to assess the adherence and to identify factors associated with a number of Iron/Folic Acid uptake during pregnancy time among mothers attending antenatal and postnatal care follow up in Akaki kality sub city. Methods Institutional based cross-sectional study was conducted on a sample of 557 pregnant women attending antenatal and postnatal care service. Systematic random sampling was used to select study subjects. The mothers were interviewed and the collected data was cleaned and entered into Epi Info 3.5.1 and analyzed by R version 3.2.0. Hierarchical Negative Binomial Poisson Regression Model was fitted to identify the factors associated with a number of Iron/Folic Acid uptake. Adjusted Incidence rate ratio (IRR) with 95% confidence interval (CI) was computed to assess the strength and significance of the association. Result More than 90% of the mothers were supplemented with at least one Iron/Folic Acid supplement from pill per week during their pregnancy time. Sixty percent of the mothers adhered (took four or more tablets per week) (95%CI, 56%—64.1%). Higher IRR of Iron/Folic Acid supplementation was observed among women: who received health education; which were privately employed; who achieved secondary education; and who believed that Iron/Folic Acid supplements increase blood, whereas mothers who reported a side effect, who were from families with relatively better monthly income, and who took the supplement when sick were more likely to adhere. Conclusion Adherence to Iron/Folic Acid supplement during their pregnancy time among mothers attending antenatal and postnatal care was found to be high. Activities that would address the

  1. Hierarchical photocatalysts.

    Science.gov (United States)

    Li, Xin; Yu, Jiaguo; Jaroniec, Mietek

    2016-05-01

    As a green and sustainable technology, semiconductor-based heterogeneous photocatalysis has received much attention in the last few decades because it has potential to solve both energy and environmental problems. To achieve efficient photocatalysts, various hierarchical semiconductors have been designed and fabricated at the micro/nanometer scale in recent years. This review presents a critical appraisal of fabrication methods, growth mechanisms and applications of advanced hierarchical photocatalysts. Especially, the different synthesis strategies such as two-step templating, in situ template-sacrificial dissolution, self-templating method, in situ template-free assembly, chemically induced self-transformation and post-synthesis treatment are highlighted. Finally, some important applications including photocatalytic degradation of pollutants, photocatalytic H2 production and photocatalytic CO2 reduction are reviewed. A thorough assessment of the progress made in photocatalysis may open new opportunities in designing highly effective hierarchical photocatalysts for advanced applications ranging from thermal catalysis, separation and purification processes to solar cells.

  2. A Matlab program for stepwise regression

    Directory of Open Access Journals (Sweden)

    Yanhong Qi

    2016-03-01

    Full Text Available The stepwise linear regression is a multi-variable regression for identifying statistically significant variables in the linear regression equation. In present study, we presented the Matlab program of stepwise regression.

  3. Recursive Algorithm For Linear Regression

    Science.gov (United States)

    Varanasi, S. V.

    1988-01-01

    Order of model determined easily. Linear-regression algorithhm includes recursive equations for coefficients of model of increased order. Algorithm eliminates duplicative calculations, facilitates search for minimum order of linear-regression model fitting set of data satisfactory.

  4. Collaborative Hierarchical Sparse Modeling

    CERN Document Server

    Sprechmann, Pablo; Sapiro, Guillermo; Eldar, Yonina C

    2010-01-01

    Sparse modeling is a powerful framework for data analysis and processing. Traditionally, encoding in this framework is done by solving an l_1-regularized linear regression problem, usually called Lasso. In this work we first combine the sparsity-inducing property of the Lasso model, at the individual feature level, with the block-sparsity property of the group Lasso model, where sparse groups of features are jointly encoded, obtaining a sparsity pattern hierarchically structured. This results in the hierarchical Lasso, which shows important practical modeling advantages. We then extend this approach to the collaborative case, where a set of simultaneously coded signals share the same sparsity pattern at the higher (group) level but not necessarily at the lower one. Signals then share the same active groups, or classes, but not necessarily the same active set. This is very well suited for applications such as source separation. An efficient optimization procedure, which guarantees convergence to the global opt...

  5. 基于分层回归的中国互联网保险驱动因素实证研究%Empirical Study on the Driving Factors of China’s Internet Insurance Based on Hierarchical Regression Analysis

    Institute of Scientific and Technical Information of China (English)

    汤英汉

    2015-01-01

    By analyzing the features and status quo of China’s internet insurance development, this paper found that the main reason causing the weak growth in the insurance industry is the conflict between people’s increasing needs for insurance and the relatively backward insurance management approaches. Internet insurance is a supplement to traditional insurance to a certain degree. By using the hierarchical regression method, this paper analyzes the insurance premium and its relative data from 2003 to 2013. The result shows that the driving factors of the internet insurance are: tax, population, internet, etc. The study also indicates that internet insurance is not a replacement or a threat to the traditional insurance business, but a new form of it instead. Internet insurance can satisfy people’s various needs for insurance. Finally, the author proposes that internet insurance, as a new insurance business, its development facilitates changes in the thoughts and ideas of the insurance industry as a whole. Internet technology has pushed it forward, especially, in such areas as insurance channels, product and service innovations. Therefore, internet insurance also injects fresh blood to China’s insurance industry.%通过分析我国互联网保险的特点和发展现状,发现快速变化的市场环境引致的社会日益增长的保险需求同相对落后的保险经营管理方式之间的矛盾日益突出,造成当前保险业增长乏力。互联网保险的出现弥补了传统保险的不足,成为保险业新的增长动力。本文运用分层回归分析方法,对我国2003-2013年网销保费及相关数据进行研究,验证了我国互联网保险驱动因素主要取决于税收、人口、互联网等方面,保险业自身因素对互联网保险影响不显著。研究发现,互联网保险的发展不是对传统保险的替代和竞争,而是保险新需求的发现,互联网保险满足多层次的保险需求。提出互联

  6. Regression Equations for Estimating Concentrations of Selected Water-Quality Constituents for Selected Gaging Stations in the Red River of the North Basin, North Dakota, Minnesota, and South Dakota

    Science.gov (United States)

    Williams-Sether, Tara

    2004-01-01

    The Dakota Water Resources Act, passed by the U.S. Congress on December 15, 2000, authorized the Secretary of the Interior to conduct a comprehensive study of future water-quantity and quality needs of the Red River of the North Basin in North Dakota and possible options to meet those water needs. Previous Red River of the North Basin studies conducted by the Bureau of Reclamation used streamflow and water-quality data bases developed by the U.S. Geological Survey that included data for 1931-84. As a result of the recent congressional authorization and results of previous studies by the Bureau of Reclamation, redevelopment of the streamflow and water-quality data bases with current data through 1999 are needed in order to evaluate and predict the water-quantity and quality effects within the Red River of the North Basin. This report provides updated statistical summaries of selected water-quality constituents and streamflow and the regression relations between them. Available data for 1931-99 were used to develop regression equations between 5 selected water-quality constituents and streamflow for 38 gaging stations in the Red River of the North Basin. The water-quality constituents that were regressed against streamflow were hardness (as CaCO3), sodium, chloride, sulfate, and dissolved solids. Statistical summaries of the selected water-quality constituents and streamflow for the gaging stations used in the regression equations development and the applications and limitations of the regression equations are presented in this report.

  7. Quantile regression

    CERN Document Server

    Hao, Lingxin

    2007-01-01

    Quantile Regression, the first book of Hao and Naiman's two-book series, establishes the seldom recognized link between inequality studies and quantile regression models. Though separate methodological literature exists for each subject, the authors seek to explore the natural connections between this increasingly sought-after tool and research topics in the social sciences. Quantile regression as a method does not rely on assumptions as restrictive as those for the classical linear regression; though more traditional models such as least squares linear regression are more widely utilized, Hao

  8. Conservation Laws in the Hierarchical Model

    NARCIS (Netherlands)

    Beijeren, H. van; Gallavotti, G.; Knops, H.

    1974-01-01

    An exposition of the renormalization-group equations for the hierarchical model is given. Attention is drawn to some properties of the spin distribution functions which are conserved under the action of the renormalization group.

  9. Computed statistics at streamgages, and methods for estimating low-flow frequency statistics and development of regional regression equations for estimating low-flow frequency statistics at ungaged locations in Missouri

    Science.gov (United States)

    Southard, Rodney E.

    2013-01-01

    The weather and precipitation patterns in Missouri vary considerably from year to year. In 2008, the statewide average rainfall was 57.34 inches and in 2012, the statewide average rainfall was 30.64 inches. This variability in precipitation and resulting streamflow in Missouri underlies the necessity for water managers and users to have reliable streamflow statistics and a means to compute select statistics at ungaged locations for a better understanding of water availability. Knowledge of surface-water availability is dependent on the streamflow data that have been collected and analyzed by the U.S. Geological Survey for more than 100 years at approximately 350 streamgages throughout Missouri. The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, computed streamflow statistics at streamgages through the 2010 water year, defined periods of drought and defined methods to estimate streamflow statistics at ungaged locations, and developed regional regression equations to compute selected streamflow statistics at ungaged locations. Streamflow statistics and flow durations were computed for 532 streamgages in Missouri and in neighboring States of Missouri. For streamgages with more than 10 years of record, Kendall’s tau was computed to evaluate for trends in streamflow data. If trends were detected, the variable length method was used to define the period of no trend. Water years were removed from the dataset from the beginning of the record for a streamgage until no trend was detected. Low-flow frequency statistics were then computed for the entire period of record and for the period of no trend if 10 or more years of record were available for each analysis. Three methods are presented for computing selected streamflow statistics at ungaged locations. The first method uses power curve equations developed for 28 selected streams in Missouri and neighboring States that have multiple streamgages on the same streams. Statistical

  10. Regression Basics

    CERN Document Server

    Kahane, Leo H

    2007-01-01

    Using a friendly, nontechnical approach, the Second Edition of Regression Basics introduces readers to the fundamentals of regression. Accessible to anyone with an introductory statistics background, this book builds from a simple two-variable model to a model of greater complexity. Author Leo H. Kahane weaves four engaging examples throughout the text to illustrate not only the techniques of regression but also how this empirical tool can be applied in creative ways to consider a broad array of topics. New to the Second Edition Offers greater coverage of simple panel-data estimation:

  11. Semiparametric regression during 2003–2007

    KAUST Repository

    Ruppert, David

    2009-01-01

    Semiparametric regression is a fusion between parametric regression and nonparametric regression that integrates low-rank penalized splines, mixed model and hierarchical Bayesian methodology – thus allowing more streamlined handling of longitudinal and spatial correlation. We review progress in the field over the five-year period between 2003 and 2007. We find semiparametric regression to be a vibrant field with substantial involvement and activity, continual enhancement and widespread application.

  12. Stagewise generalized estimating equations with grouped variables.

    Science.gov (United States)

    Vaughan, Gregory; Aseltine, Robert; Chen, Kun; Yan, Jun

    2017-02-13

    Forward stagewise estimation is a revived slow-brewing approach for model building that is particularly attractive in dealing with complex data structures for both its computational efficiency and its intrinsic connections with penalized estimation. Under the framework of generalized estimating equations, we study general stagewise estimation approaches that can handle clustered data and non-Gaussian/non-linear models in the presence of prior variable grouping structure. As the grouping structure is often not ideal in that even the important groups may contain irrelevant variables, the key is to simultaneously conduct group selection and within-group variable selection, that is, bi-level selection. We propose two approaches to address the challenge. The first is a bi-level stagewise estimating equations (BiSEE) approach, which is shown to correspond to the sparse group lasso penalized regression. The second is a hierarchical stagewise estimating equations (HiSEE) approach to handle more general hierarchical grouping structure, in which each stagewise estimation step itself is executed as a hierarchical selection process based on the grouping structure. Simulation studies show that BiSEE and HiSEE yield competitive model selection and predictive performance compared to existing approaches. We apply the proposed approaches to study the association between the suicide-related hospitalization rates of the 15-19 age group and the characteristics of the school districts in the State of Connecticut.

  13. Extending the simple linear regression model to account for correlated responses: an introduction to generalized estimating equations and multi-level mixed modelling.

    Science.gov (United States)

    Burton, P; Gurrin, L; Sly, P

    1998-06-15

    Much of the research in epidemiology and clinical science is based upon longitudinal designs which involve repeated measurements of a variable of interest in each of a series of individuals. Such designs can be very powerful, both statistically and scientifically, because they enable one to study changes within individual subjects over time or under varied conditions. However, this power arises because the repeated measurements tend to be correlated with one another, and this must be taken into proper account at the time of analysis or misleading conclusions may result. Recent advances in statistical theory and in software development mean that studies based upon such designs can now be analysed more easily, in a valid yet flexible manner, using a variety of approaches which include the use of generalized estimating equations, and mixed models which incorporate random effects. This paper provides a particularly simple illustration of the use of these two approaches, taking as a practical example the analysis of a study which examined the response of portable peak expiratory flow meters to changes in true peak expiratory flow in 12 children with asthma. The paper takes the reader through the relevant practicalities of model fitting, interpretation and criticism and demonstrates that, in a simple case such as this, analyses based upon these model-based approaches produce reassuringly similar inferences to standard analyses based upon more conventional methods.

  14. Hierarchical matrices algorithms and analysis

    CERN Document Server

    Hackbusch, Wolfgang

    2015-01-01

    This self-contained monograph presents matrix algorithms and their analysis. The new technique enables not only the solution of linear systems but also the approximation of matrix functions, e.g., the matrix exponential. Other applications include the solution of matrix equations, e.g., the Lyapunov or Riccati equation. The required mathematical background can be found in the appendix. The numerical treatment of fully populated large-scale matrices is usually rather costly. However, the technique of hierarchical matrices makes it possible to store matrices and to perform matrix operations approximately with almost linear cost and a controllable degree of approximation error. For important classes of matrices, the computational cost increases only logarithmically with the approximation error. The operations provided include the matrix inversion and LU decomposition. Since large-scale linear algebra problems are standard in scientific computing, the subject of hierarchical matrices is of interest to scientists ...

  15. Autistic Regression

    Science.gov (United States)

    Matson, Johnny L.; Kozlowski, Alison M.

    2010-01-01

    Autistic regression is one of the many mysteries in the developmental course of autism and pervasive developmental disorders not otherwise specified (PDD-NOS). Various definitions of this phenomenon have been used, further clouding the study of the topic. Despite this problem, some efforts at establishing prevalence have been made. The purpose of…

  16. Logistic regression.

    Science.gov (United States)

    Nick, Todd G; Campbell, Kathleen M

    2007-01-01

    The Medical Subject Headings (MeSH) thesaurus used by the National Library of Medicine defines logistic regression models as "statistical models which describe the relationship between a qualitative dependent variable (that is, one which can take only certain discrete values, such as the presence or absence of a disease) and an independent variable." Logistic regression models are used to study effects of predictor variables on categorical outcomes and normally the outcome is binary, such as presence or absence of disease (e.g., non-Hodgkin's lymphoma), in which case the model is called a binary logistic model. When there are multiple predictors (e.g., risk factors and treatments) the model is referred to as a multiple or multivariable logistic regression model and is one of the most frequently used statistical model in medical journals. In this chapter, we examine both simple and multiple binary logistic regression models and present related issues, including interaction, categorical predictor variables, continuous predictor variables, and goodness of fit.

  17. Linear regression

    CERN Document Server

    Olive, David J

    2017-01-01

    This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response trans...

  18. Robust Nonstationary Regression

    OpenAIRE

    1993-01-01

    This paper provides a robust statistical approach to nonstationary time series regression and inference. Fully modified extensions of traditional robust statistical procedures are developed which allow for endogeneities in the nonstationary regressors and serial dependence in the shocks that drive the regressors and the errors that appear in the equation being estimated. The suggested estimators involve semiparametric corrections to accommodate these possibilities and they belong to the same ...

  19. Confirmatory study on the regression equation for children dental behavior in Beijing%口腔诊疗中儿童行为表现预测回归方程的验证

    Institute of Scientific and Technical Information of China (English)

    夏斌; 王春丽; 张笋

    2013-01-01

    Objective To test and verify the regression equation got before for children's dental behavior management problems(BMP).Methods The study group included 279 children aged 2-< 8 years who received dental treatment by 16 pediatric dentists in the Department of Pediatric Dentistry,Peking University School of and Hospital of Stomatology.Interviews were conducted with accompanying guardians and children's dental behavior was rated by a modified Venham's clinical anxiety scale and a cooperative behavior rating scale.The variables were put into the regression equation and the results were compared with their dental behavior scale.Results The accuracy rate of regression equation reached 84.2% (235/279),sensitivity was 0.613(95%CI:0.514-0.712) and specificity was 0.957 (95%CI:0.928-0.986).Conclusions The regression equation is characterized by its accuracy rate at a good level.Younger age,negative guardian expectations of the child's behavior during treatment,anxiety or shyness around strangers,and presence of toothache were four risk factors for children's dental BMP.%目的 检验既往研究获得的口腔诊疗中儿童行为表现预测回归方程的准确性,为该方程在临床的应用提供指导.方法 对北京大学口腔医学院·口腔医院儿童口腔科门诊279名2~<8岁首次就诊儿童的家长进行问卷调查,并对儿童就诊时的行为表现进行评价记录,将通过问卷调查获得的影响因素代入以往研究所获得的回归方程[logit(P)=-0.884a+1.212b+ 1.063c+0.918d +0.955,P:概率值;a:年龄;b:监护人预测;c:是否存在行为方面的问题;d:是否有牙痛史]进行验证,对得出的预测值与儿童实际行为表现间的异同进行比较.结果 回归方程预测准确率为84.2%(235/279);回归方程的敏感度为0.613(95% CI:0.514 ~0.712),特异度为0.957(95% CI:0.928 ~0.986),阳性预测值为0.877(95%CI:0.797 ~0.957),阴性预测值为0.832(95% CI:0.782 ~0.882).结论 该回归

  20. Hierarchical Network Design

    DEFF Research Database (Denmark)

    Thomadsen, Tommy

    2005-01-01

    of different types of hierarchical networks. This is supplemented by a review of ring network design problems and a presentation of a model allowing for modeling most hierarchical networks. We use methods based on linear programming to design the hierarchical networks. Thus, a brief introduction to the various....... The thesis investigates models for hierarchical network design and methods used to design such networks. In addition, ring network design is considered, since ring networks commonly appear in the design of hierarchical networks. The thesis introduces hierarchical networks, including a classification scheme...... linear programming based methods is included. The thesis is thus suitable as a foundation for study of design of hierarchical networks. The major contribution of the thesis consists of seven papers which are included in the appendix. The papers address hierarchical network design and/or ring network...

  1. Hierarchical Multiagent Reinforcement Learning

    Science.gov (United States)

    2004-01-25

    In this paper, we investigate the use of hierarchical reinforcement learning (HRL) to speed up the acquisition of cooperative multiagent tasks. We...introduce a hierarchical multiagent reinforcement learning (RL) framework and propose a hierarchical multiagent RL algorithm called Cooperative HRL. In

  2. Should metacognition be measured by logistic regression?

    Science.gov (United States)

    Rausch, Manuel; Zehetleitner, Michael

    2017-03-01

    Are logistic regression slopes suitable to quantify metacognitive sensitivity, i.e. the efficiency with which subjective reports differentiate between correct and incorrect task responses? We analytically show that logistic regression slopes are independent from rating criteria in one specific model of metacognition, which assumes (i) that rating decisions are based on sensory evidence generated independently of the sensory evidence used for primary task responses and (ii) that the distributions of evidence are logistic. Given a hierarchical model of metacognition, logistic regression slopes depend on rating criteria. According to all considered models, regression slopes depend on the primary task criterion. A reanalysis of previous data revealed that massive numbers of trials are required to distinguish between hierarchical and independent models with tolerable accuracy. It is argued that researchers who wish to use logistic regression as measure of metacognitive sensitivity need to control the primary task criterion and rating criteria. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Hierarchical Network Design

    DEFF Research Database (Denmark)

    Thomadsen, Tommy

    2005-01-01

    Communication networks are immensely important today, since both companies and individuals use numerous services that rely on them. This thesis considers the design of hierarchical (communication) networks. Hierarchical networks consist of layers of networks and are well-suited for coping...... the clusters. The design of hierarchical networks involves clustering of nodes, hub selection, and network design, i.e. selection of links and routing of ows. Hierarchical networks have been in use for decades, but integrated design of these networks has only been considered for very special types of networks....... The thesis investigates models for hierarchical network design and methods used to design such networks. In addition, ring network design is considered, since ring networks commonly appear in the design of hierarchical networks. The thesis introduces hierarchical networks, including a classification scheme...

  4. Hierarchical Equations of Motion for Quantum Dissipation and Quantum Transport%量子耗散与量子输运的级联方程组方法(英文)

    Institute of Scientific and Technical Information of China (English)

    郑晓; 徐瑞雪; 许健; 金锦双; 胡洁; 严以京

    2012-01-01

    In this review we give a comprehensive account of a hierarchical equations of motion(HEOM) approach to the characterization of stationary and dynamic properties of open quantum systems.This approach is rooted at the Feynman-Vernon influence functional path integral formalism,but much more implementable numerically and operationally for the study of various complex molecular dynamics and quantum transport in strongly correlated electronic systems.By construction,HEOM resolves nonperturbatively the combined effects of many-particle interaction,system-bath coupling,and non-Markovian memory.Finally the practicality of HEOM to address physical and chemical problems is exemplified with a model simulation of coherent two-dimensional spectroscopy signals of a biological light-harvesting system and a time-dependent quantum transport system involving dynamic Kondo transition.%级联方程已成为研究量子开放系统的稳态性质和动力学过程的重要方法。本文旨在系统综述量子耗散和量子输运的级联方程组方法的建立、发展以及在理论、算法和应用方面的一些最新进展。级联方程形式理论的建立以影响泛函路径积分为基础,并具有数值上的高效性和应用上的灵活性,可用于研究分子体系的复杂动力学过程以及强关联电子体系中的量子输运。其级联耦合结构以非微扰的方式揭示了多体相互作用、体系-环境耦合、非马尔可夫记忆等的综合效应。作为应用示例,我们采用级联方程模拟了生物光富集体系的二维相干动力学光谱以及含时电子输运过程中的动态近藤效应。

  5. Regression Equations for Predicting Lung Function of Healthy Children in Shenyang%沈阳市城区正常儿童肺功能预测方程研究

    Institute of Scientific and Technical Information of China (English)

    马亚楠; 何钦成; 赵洋; 刘玉芹; 黄美梦; 孙晶; 刘洋; 任万辉; 吕雪峰; 董光辉

    2014-01-01

    目的:建立沈阳市健康儿童肺功能预测方程。方法采用整群随机抽样法在沈阳市5个行政区各抽取1所小学和1所初中,将10所学校三年级到九年级所有儿童作为研究对象。身高、体质量和肺功能指标按照标准化程序由经过培训的调查员进行测量。应用线性回归模型建立不同性别的肺功能预测方程。结果在调查的1087例儿童中,除年龄外其他指标[身高、体质量、用力肺活量(FVC)、一秒用力呼气容积(FEV1)、最大呼气中期流量(MMEF)和最大呼气流速峰值(PEF)]在不同性别组间均具有统计学差异(P<0.05)。不同性别的FVC、FEV1、MMEF和PEF(因变量)等肺功能指标与年龄、身高和体质量(自变量)之间的回归预测方程具有较好的拟合优度。结论本研究建立了沈阳市城区9~15岁儿童肺功能预测方程。%Objective To develop accurate predictive equations for spirometric reference values for children aged 9 to 15 years in Shenyang. Meth-ods A cross-sectional study of healthy children was conducted at 10 randomly selected schools in Shenyang city. Weight,height and spirometry measurements of 1 087 school children were measured by trained interviewers. Prediction equations were developed using the multiple linear regres-sion. The independent variables were entered in sequence of height,age and weight. R2 and estimates of regression coefficients were obtained and the goodness of fit was examined. Results There were significant differences on the lung function between different gender,height,and weight groups. The prediction equations showed good performance for most spirometric parameters. Conclusion Prediction equations for spirometric parameters was developed,which is applicable to the chinese children within the age range of 9-15 year-old.

  6. Regression Modeling of Competing Risks Data Based on Pseudovalues of the Cumulative Incidence Function

    DEFF Research Database (Denmark)

    Klein, John P.; Andersen, Per Kragh

    2005-01-01

    Bone marrow transplantation; Generalized estimating equations; Jackknife statistics; Regression models......Bone marrow transplantation; Generalized estimating equations; Jackknife statistics; Regression models...

  7. Measurement of Body Fat Percentage of women and optimized selection of regressive equations%中年女性体脂百分比测量及其回归方程的优选研究

    Institute of Scientific and Technical Information of China (English)

    潘国建; 潘盛洁

    2013-01-01

    根据体脂百分比回归方程,正确了解中年女性的肥胖程度和健康状况.根据健身习惯将64名健康中年女性分为健身组和非健身组,然后分别测定其体脂百分比、身体围度及派生指标BMI和WHR,进行相关性分析、逐步筛选回归分析,最终优选出预测中年女性身体体脂百分比的回归方程.结果表明:健身组中年女性中WHR与体脂率的相关性(r=0.854)最高,BMI与体脂率的相关性(r =0.657)最低;非健身组中年女性中BMI与体脂率的相关性(r=0.877)最高,WHR与体脂率的相关性(r=0.753)最低,说明在用BMI、WC、HC、WHR判断肥胖时,对于健身组和非健身组的人群是有差异性的.研究建立了适合中年女性的全身体脂率的推算公式:健身组女性体脂百分比(Fat%):y=38.514×WHR-1.7043;非健身组女性体脂百分比(Fat%):y=-3.481 +0.112×HC+0.943×BMI.使用单一的评价标准(BMI或WHR)来判断中年女性肥胖时,对于健身组和非健身组是有差异性的.以BMI、WHR及身体围度作为自变量,以中年女性体脂百分比为因变量建立回归方程,中年女性的体脂百分比可以方便有效地根据优选方程进行估算.%To accurately understand the obesity levels and health conditions based on the regressive equation of Body Fat Percentage (BFP).According to different fitness habits,sixty four middle-aged women were divided into two groups:fitness group and non fitness group.After gathering the information of their BFP,body circumference and two derived indices BMI and WHR respectively during the independent measuring,correlation analysis and stepwise sifting regression analysis were made.Finally,the predicted regressive equation of estimating the middle-aged female BFP was worked out.To the women in fitness group,the correlation of WHR and BFP reaches maximum,i.e.r =0.854 ; the correlation of BMI and BFP reaches minimum,i.e.r =0.657.To the women in non fitness group,the correlation of BMI and

  8. Forecasting with Dynamic Regression Models

    CERN Document Server

    Pankratz, Alan

    2012-01-01

    One of the most widely used tools in statistical forecasting, single equation regression models is examined here. A companion to the author's earlier work, Forecasting with Univariate Box-Jenkins Models: Concepts and Cases, the present text pulls together recent time series ideas and gives special attention to possible intertemporal patterns, distributed lag responses of output to input series and the auto correlation patterns of regression disturbance. It also includes six case studies.

  9. Hierarchical Boltzmann simulations and model error estimation

    Science.gov (United States)

    Torrilhon, Manuel; Sarna, Neeraj

    2017-08-01

    A hierarchical simulation approach for Boltzmann's equation should provide a single numerical framework in which a coarse representation can be used to compute gas flows as accurately and efficiently as in computational fluid dynamics, but a subsequent refinement allows to successively improve the result to the complete Boltzmann result. We use Hermite discretization, or moment equations, for the steady linearized Boltzmann equation for a proof-of-concept of such a framework. All representations of the hierarchy are rotationally invariant and the numerical method is formulated on fully unstructured triangular and quadrilateral meshes using a implicit discontinuous Galerkin formulation. We demonstrate the performance of the numerical method on model problems which in particular highlights the relevance of stability of boundary conditions on curved domains. The hierarchical nature of the method allows also to provide model error estimates by comparing subsequent representations. We present various model errors for a flow through a curved channel with obstacles.

  10. Interpretation of Standardized Regression Coefficients in Multiple Regression.

    Science.gov (United States)

    Thayer, Jerome D.

    The extent to which standardized regression coefficients (beta values) can be used to determine the importance of a variable in an equation was explored. The beta value and the part correlation coefficient--also called the semi-partial correlation coefficient and reported in squared form as the incremental "r squared"--were compared for…

  11. Fungible weights in logistic regression.

    Science.gov (United States)

    Jones, Jeff A; Waller, Niels G

    2016-06-01

    In this article we develop methods for assessing parameter sensitivity in logistic regression models. To set the stage for this work, we first review Waller's (2008) equations for computing fungible weights in linear regression. Next, we describe 2 methods for computing fungible weights in logistic regression. To demonstrate the utility of these methods, we compute fungible logistic regression weights using data from the Centers for Disease Control and Prevention's (2010) Youth Risk Behavior Surveillance Survey, and we illustrate how these alternate weights can be used to evaluate parameter sensitivity. To make our work accessible to the research community, we provide R code (R Core Team, 2015) that will generate both kinds of fungible logistic regression weights. (PsycINFO Database Record

  12. Classifying hospitals as mortality outliers: logistic versus hierarchical logistic models.

    Science.gov (United States)

    Alexandrescu, Roxana; Bottle, Alex; Jarman, Brian; Aylin, Paul

    2014-05-01

    The use of hierarchical logistic regression for provider profiling has been recommended due to the clustering of patients within hospitals, but has some associated difficulties. We assess changes in hospital outlier status based on standard logistic versus hierarchical logistic modelling of mortality. The study population consisted of all patients admitted to acute, non-specialist hospitals in England between 2007 and 2011 with a primary diagnosis of acute myocardial infarction, acute cerebrovascular disease or fracture of neck of femur or a primary procedure of coronary artery bypass graft or repair of abdominal aortic aneurysm. We compared standardised mortality ratios (SMRs) from non-hierarchical models with SMRs from hierarchical models, without and with shrinkage estimates of the predicted probabilities (Model 1 and Model 2). The SMRs from standard logistic and hierarchical models were highly statistically significantly correlated (r > 0.91, p = 0.01). More outliers were recorded in the standard logistic regression than hierarchical modelling only when using shrinkage estimates (Model 2): 21 hospitals (out of a cumulative number of 565 pairs of hospitals under study) changed from a low outlier and 8 hospitals changed from a high outlier based on the logistic regression to a not-an-outlier based on shrinkage estimates. Both standard logistic and hierarchical modelling have identified nearly the same hospitals as mortality outliers. The choice of methodological approach should, however, also consider whether the modelling aim is judgment or improvement, as shrinkage may be more appropriate for the former than the latter.

  13. Regression: A Bibliography.

    Science.gov (United States)

    Pedrini, D. T.; Pedrini, Bonnie C.

    Regression, another mechanism studied by Sigmund Freud, has had much research, e.g., hypnotic regression, frustration regression, schizophrenic regression, and infra-human-animal regression (often directly related to fixation). Many investigators worked with hypnotic age regression, which has a long history, going back to Russian reflexologists.…

  14. Regression: A Bibliography.

    Science.gov (United States)

    Pedrini, D. T.; Pedrini, Bonnie C.

    Regression, another mechanism studied by Sigmund Freud, has had much research, e.g., hypnotic regression, frustration regression, schizophrenic regression, and infra-human-animal regression (often directly related to fixation). Many investigators worked with hypnotic age regression, which has a long history, going back to Russian reflexologists.…

  15. Principal component regression analysis with SPSS.

    Science.gov (United States)

    Liu, R X; Kuang, J; Gong, Q; Hou, X L

    2003-06-01

    The paper introduces all indices of multicollinearity diagnoses, the basic principle of principal component regression and determination of 'best' equation method. The paper uses an example to describe how to do principal component regression analysis with SPSS 10.0: including all calculating processes of the principal component regression and all operations of linear regression, factor analysis, descriptives, compute variable and bivariate correlations procedures in SPSS 10.0. The principal component regression analysis can be used to overcome disturbance of the multicollinearity. The simplified, speeded up and accurate statistical effect is reached through the principal component regression analysis with SPSS.

  16. Micromechanics of hierarchical materials

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon, Jr.

    2012-01-01

    A short overview of micromechanical models of hierarchical materials (hybrid composites, biomaterials, fractal materials, etc.) is given. Several examples of the modeling of strength and damage in hierarchical materials are summarized, among them, 3D FE model of hybrid composites...... with nanoengineered matrix, fiber bundle model of UD composites with hierarchically clustered fibers and 3D multilevel model of wood considered as a gradient, cellular material with layered composite cell walls. The main areas of research in micromechanics of hierarchical materials are identified, among them......, the investigations of the effects of load redistribution between reinforcing elements at different scale levels, of the possibilities to control different material properties and to ensure synergy of strengthening effects at different scale levels and using the nanoreinforcement effects. The main future directions...

  17. Hierarchical auxetic mechanical metamaterials.

    Science.gov (United States)

    Gatt, Ruben; Mizzi, Luke; Azzopardi, Joseph I; Azzopardi, Keith M; Attard, Daphne; Casha, Aaron; Briffa, Joseph; Grima, Joseph N

    2015-02-11

    Auxetic mechanical metamaterials are engineered systems that exhibit the unusual macroscopic property of a negative Poisson's ratio due to sub-unit structure rather than chemical composition. Although their unique behaviour makes them superior to conventional materials in many practical applications, they are limited in availability. Here, we propose a new class of hierarchical auxetics based on the rotating rigid units mechanism. These systems retain the enhanced properties from having a negative Poisson's ratio with the added benefits of being a hierarchical system. Using simulations on typical hierarchical multi-level rotating squares, we show that, through design, one can control the extent of auxeticity, degree of aperture and size of the different pores in the system. This makes the system more versatile than similar non-hierarchical ones, making them promising candidates for industrial and biomedical applications, such as stents and skin grafts.

  18. Hierarchical Auxetic Mechanical Metamaterials

    Science.gov (United States)

    Gatt, Ruben; Mizzi, Luke; Azzopardi, Joseph I.; Azzopardi, Keith M.; Attard, Daphne; Casha, Aaron; Briffa, Joseph; Grima, Joseph N.

    2015-02-01

    Auxetic mechanical metamaterials are engineered systems that exhibit the unusual macroscopic property of a negative Poisson's ratio due to sub-unit structure rather than chemical composition. Although their unique behaviour makes them superior to conventional materials in many practical applications, they are limited in availability. Here, we propose a new class of hierarchical auxetics based on the rotating rigid units mechanism. These systems retain the enhanced properties from having a negative Poisson's ratio with the added benefits of being a hierarchical system. Using simulations on typical hierarchical multi-level rotating squares, we show that, through design, one can control the extent of auxeticity, degree of aperture and size of the different pores in the system. This makes the system more versatile than similar non-hierarchical ones, making them promising candidates for industrial and biomedical applications, such as stents and skin grafts.

  19. Applied Bayesian Hierarchical Methods

    CERN Document Server

    Congdon, Peter D

    2010-01-01

    Bayesian methods facilitate the analysis of complex models and data structures. Emphasizing data applications, alternative modeling specifications, and computer implementation, this book provides a practical overview of methods for Bayesian analysis of hierarchical models.

  20. Programming with Hierarchical Maps

    DEFF Research Database (Denmark)

    Ørbæk, Peter

    This report desribes the hierarchical maps used as a central data structure in the Corundum framework. We describe its most prominent features, ague for its usefulness and briefly describe some of the software prototypes implemented using the technology....

  1. Catalysis with hierarchical zeolites

    DEFF Research Database (Denmark)

    Holm, Martin Spangsberg; Taarning, Esben; Egeblad, Kresten

    2011-01-01

    Hierarchical (or mesoporous) zeolites have attracted significant attention during the first decade of the 21st century, and so far this interest continues to increase. There have already been several reviews giving detailed accounts of the developments emphasizing different aspects of this research...... topic. Until now, the main reason for developing hierarchical zeolites has been to achieve heterogeneous catalysts with improved performance but this particular facet has not yet been reviewed in detail. Thus, the present paper summaries and categorizes the catalytic studies utilizing hierarchical...... zeolites that have been reported hitherto. Prototypical examples from some of the different categories of catalytic reactions that have been studied using hierarchical zeolite catalysts are highlighted. This clearly illustrates the different ways that improved performance can be achieved with this family...

  2. Semiparametric Quantile Modelling of Hierarchical Data

    Institute of Scientific and Technical Information of China (English)

    Mao Zai TIAN; Man Lai TANG; Ping Shing CHAN

    2009-01-01

    The classic hierarchical linear model formulation provides a considerable flexibility for modelling the random effects structure and a powerful tool for analyzing nested data that arise in various areas such as biology, economics and education. However, it assumes the within-group errors to be independently and identically distributed (i.i.d.) and models at all levels to be linear. Most importantly, traditional hierarchical models (just like other ordinary mean regression methods) cannot characterize the entire conditional distribution of a dependent variable given a set of covariates and fail to yield robust estimators. In this article, we relax the aforementioned and normality assumptions, and develop a so-called Hierarchical Semiparametric Quantile Regression Models in which the within-group errors could be heteroscedastic and models at some levels are allowed to be nonparametric. We present the ideas with a 2-level model. The level-l model is specified as a nonparametric model whereas level-2 model is set as a parametric model. Under the proposed semiparametric setting the vector of partial derivatives of the nonparametric function in level-1 becomes the response variable vector in level 2. The proposed method allows us to model the fixed effects in the innermost level (i.e., level 2) as a function of the covariates instead of a constant effect. We outline some mild regularity conditions required for convergence and asymptotic normality for our estimators. We illustrate our methodology with a real hierarchical data set from a laboratory study and some simulation studies.

  3. What are hierarchical models and how do we analyze them?

    Science.gov (United States)

    Royle, Andy

    2016-01-01

    In this chapter we provide a basic definition of hierarchical models and introduce the two canonical hierarchical models in this book: site occupancy and N-mixture models. The former is a hierarchical extension of logistic regression and the latter is a hierarchical extension of Poisson regression. We introduce basic concepts of probability modeling and statistical inference including likelihood and Bayesian perspectives. We go through the mechanics of maximizing the likelihood and characterizing the posterior distribution by Markov chain Monte Carlo (MCMC) methods. We give a general perspective on topics such as model selection and assessment of model fit, although we demonstrate these topics in practice in later chapters (especially Chapters 5, 6, 7, and 10 Chapter 5 Chapter 6 Chapter 7 Chapter 10)

  4. Quantum transport through hierarchical structures.

    Science.gov (United States)

    Boettcher, S; Varghese, C; Novotny, M A

    2011-04-01

    The transport of quantum electrons through hierarchical lattices is of interest because such lattices have some properties of both regular lattices and random systems. We calculate the electron transmission as a function of energy in the tight-binding approximation for two related Hanoi networks. HN3 is a Hanoi network with every site having three bonds. HN5 has additional bonds added to HN3 to make the average number of bonds per site equal to five. We present a renormalization group approach to solve the matrix equation involved in this quantum transport calculation. We observe band gaps in HN3, while no such band gaps are observed in linear networks or in HN5. We provide a detailed scaling analysis near the edges of these band gaps.

  5. Replication and extension of a hierarchical model of social anxiety and depression: fear of positive evaluation as a key unique factor in social anxiety.

    Science.gov (United States)

    Weeks, Justin W

    2015-01-01

    Wang, Hsu, Chiu, and Liang (2012, Journal of Anxiety Disorders, 26, 215-224) recently proposed a hierarchical model of social interaction anxiety and depression to account for both the commonalities and distinctions between these conditions. In the present paper, this model was extended to more broadly encompass the symptoms of social anxiety disorder, and replicated in a large unselected, undergraduate sample (n = 585). Structural equation modeling (SEM) and hierarchical regression analyses were employed. Negative affect and positive affect were conceptualized as general factors shared by social anxiety and depression; fear of negative evaluation (FNE) and disqualification of positive social outcomes were operationalized as specific factors, and fear of positive evaluation (FPE) was operationalized as a factor unique to social anxiety. This extended hierarchical model explicates structural relationships among these factors, in which the higher-level, general factors (i.e., high negative affect and low positive affect) represent vulnerability markers of both social anxiety and depression, and the lower-level factors (i.e., FNE, disqualification of positive social outcomes, and FPE) are the dimensions of specific cognitive features. Results from SEM and hierarchical regression analyses converged in support of the extended model. FPE is further supported as a key symptom that differentiates social anxiety from depression.

  6. Quasi-least squares regression

    CERN Document Server

    Shults, Justine

    2014-01-01

    Drawing on the authors' substantial expertise in modeling longitudinal and clustered data, Quasi-Least Squares Regression provides a thorough treatment of quasi-least squares (QLS) regression-a computational approach for the estimation of correlation parameters within the framework of generalized estimating equations (GEEs). The authors present a detailed evaluation of QLS methodology, demonstrating the advantages of QLS in comparison with alternative methods. They describe how QLS can be used to extend the application of the traditional GEE approach to the analysis of unequally spaced longitu

  7. The reference values and Z scores regression equations of normal newborns undergoing echocardiography%新生儿超声心动图正常参考值及Z值回归方程式的研究

    Institute of Scientific and Technical Information of China (English)

    林洲; 谢燕华; 夏焙; 许娜; 李姝娜; 何学智; 王娟; 刘磊; 欧福祥; 陈伟玲

    2014-01-01

    Objective To investigate the reference values and Z scores regression equations of newborn undergoing echocardiography. Methods Two hundred and eighty-eight newborns (aged 0-28 days) of Shenzhen Children′s Hospital underwent echocardiography examination, including M-mode, two-dimensional (2D) and real-time three-dimensional (3D) echocardiography, color Doppler lfow imaging (CDFI) and tissue Doppler imaging. The correlation between echocardiography results and weight were analyzed and Z scores were calculated. Results The normal values of right ventricular diameter (RV) and left ventricular end-diastolic diameter (LVEDD) measured by M-mode, the mitral annulus diameter in four chamber view (MV-D1), mitral annulus diameter in two chamber view (MV-D2), mitral annulus diameter in longitudinal view (MV-D3), aortic ring diameter (ARD), aortic sinus diameter (ASD), ascending aorta diameter (AAO), transverse aorta diameter (TA), aortic isthmus diameter (AI), aorta diaphragm diameter (AO-Dia), tricuspid annulus diameter in four chamber view (TV-D1), tricuspid annulus diameter in right ventricular inlfow tract view (TV-D2), right ventricular outlfow tract diameter (RVOT), pulmonary valve diameter (PVD) and main pulmonary artery diameter (PA) measured by 2D echocardiography and the normal values of mitral valve inflow Doppler component during early diastole (MV-E), mitral valve inlfow Doppler component during atrial contraction (MV-A), tricuspid valve inlfow Doppler component during early diastole (TV-E), tricuspid valve inflow Doppler component during atrial contraction (TV-A), aortic valve peak velocity (AV-max), aortic valve velocity-time integral (AV-VTI), pulmonary valve peak velocity (PV-max), pulmonary valve velocity-time integral (PV-VTI) measured by pulse Doppler, the mitral annular tissue Doppler component during systole (MV-s′), mitral annular tissue Doppler component during early diastole (MV-e′), mitral annular tissue Doppler component during atrial

  8. Regression analysis by example

    National Research Council Canada - National Science Library

    Chatterjee, Samprit; Hadi, Ali S

    2012-01-01

    .... The emphasis continues to be on exploratory data analysis rather than statistical theory. The coverage offers in-depth treatment of regression diagnostics, transformation, multicollinearity, logistic regression, and robust regression...

  9. Neutrosophic Hierarchical Clustering Algoritms

    Directory of Open Access Journals (Sweden)

    Rıdvan Şahin

    2014-03-01

    Full Text Available Interval neutrosophic set (INS is a generalization of interval valued intuitionistic fuzzy set (IVIFS, whose the membership and non-membership values of elements consist of fuzzy range, while single valued neutrosophic set (SVNS is regarded as extension of intuitionistic fuzzy set (IFS. In this paper, we extend the hierarchical clustering techniques proposed for IFSs and IVIFSs to SVNSs and INSs respectively. Based on the traditional hierarchical clustering procedure, the single valued neutrosophic aggregation operator, and the basic distance measures between SVNSs, we define a single valued neutrosophic hierarchical clustering algorithm for clustering SVNSs. Then we extend the algorithm to classify an interval neutrosophic data. Finally, we present some numerical examples in order to show the effectiveness and availability of the developed clustering algorithms.

  10. Quantile Regression With Measurement Error

    KAUST Repository

    Wei, Ying

    2009-08-27

    Regression quantiles can be substantially biased when the covariates are measured with error. In this paper we propose a new method that produces consistent linear quantile estimation in the presence of covariate measurement error. The method corrects the measurement error induced bias by constructing joint estimating equations that simultaneously hold for all the quantile levels. An iterative EM-type estimation algorithm to obtain the solutions to such joint estimation equations is provided. The finite sample performance of the proposed method is investigated in a simulation study, and compared to the standard regression calibration approach. Finally, we apply our methodology to part of the National Collaborative Perinatal Project growth data, a longitudinal study with an unusual measurement error structure. © 2009 American Statistical Association.

  11. Reduced Rank Regression

    DEFF Research Database (Denmark)

    Johansen, Søren

    2008-01-01

    The reduced rank regression model is a multivariate regression model with a coefficient matrix with reduced rank. The reduced rank regression algorithm is an estimation procedure, which estimates the reduced rank regression model. It is related to canonical correlations and involves calculating e...

  12. Hierarchical Porous Structures

    Energy Technology Data Exchange (ETDEWEB)

    Grote, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-07

    Materials Design is often at the forefront of technological innovation. While there has always been a push to generate increasingly low density materials, such as aero or hydrogels, more recently the idea of bicontinuous structures has gone more into play. This review will cover some of the methods and applications for generating both porous, and hierarchically porous structures.

  13. Hierarchical fuzzy identification of MR damper

    Science.gov (United States)

    Wang, Hao; Hu, Haiyan

    2009-07-01

    Magneto-rheological (MR) dampers, recently, have found many successful applications in civil engineering and numerous area of mechanical engineering. When an MR damper is to be used for vibration suppression, an inevitable problem is to determine the input voltage so as to gain the desired restoring force determined from the control law. This is the so-called inverse problem of MR dampers and is always an obstacle in the application of MR dampers to vibration control. It is extremely difficult to get the inverse model of MR damper because MR dampers are highly nonlinear and hysteretic. When identifying the inverse model of MR damper with simple fuzzy system, there maybe exists curse of dimensionality of fuzzy system. Therefore, it will take much more time, and even the inverse model may not be identifiable. The paper presents two-layer hierarchical fuzzy system, that is, two-layer hierarchical ANFIS to deal with the curse of dimensionality of the fuzzy identification of MR damper and to identify the inverse model of MR damper. Data used for training the model are generated from numerical simulation of nonlinear differential equations. The numerical simulation proves that the proposed hierarchical fuzzy system can model the inverse model of MR damper much more quickly than simple fuzzy system without any reduction of identification precision. Such hierarchical ANFIS shows the higher priority for the complicated system, and can also be used in system identification and system control for the complicated system.

  14. Logistic regression: a brief primer.

    Science.gov (United States)

    Stoltzfus, Jill C

    2011-10-01

    Regression techniques are versatile in their application to medical research because they can measure associations, predict outcomes, and control for confounding variable effects. As one such technique, logistic regression is an efficient and powerful way to analyze the effect of a group of independent variables on a binary outcome by quantifying each independent variable's unique contribution. Using components of linear regression reflected in the logit scale, logistic regression iteratively identifies the strongest linear combination of variables with the greatest probability of detecting the observed outcome. Important considerations when conducting logistic regression include selecting independent variables, ensuring that relevant assumptions are met, and choosing an appropriate model building strategy. For independent variable selection, one should be guided by such factors as accepted theory, previous empirical investigations, clinical considerations, and univariate statistical analyses, with acknowledgement of potential confounding variables that should be accounted for. Basic assumptions that must be met for logistic regression include independence of errors, linearity in the logit for continuous variables, absence of multicollinearity, and lack of strongly influential outliers. Additionally, there should be an adequate number of events per independent variable to avoid an overfit model, with commonly recommended minimum "rules of thumb" ranging from 10 to 20 events per covariate. Regarding model building strategies, the three general types are direct/standard, sequential/hierarchical, and stepwise/statistical, with each having a different emphasis and purpose. Before reaching definitive conclusions from the results of any of these methods, one should formally quantify the model's internal validity (i.e., replicability within the same data set) and external validity (i.e., generalizability beyond the current sample). The resulting logistic regression model

  15. Study of chaos based on a hierarchical model

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Masatoshi; Itoh, Sanae-I. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    2001-12-01

    Study of chaos based on a hierarchical model is briefly reviewed. Here we categorize hierarchical model equations, i.e., (1) a model with a few degrees of freedom, e.g., the Lorenz model, (2) a model with intermediate degrees of freedom like a shell model, and (3) a model with many degrees of freedom such as a Navier-Stokes equation. We discuss the nature of chaos and turbulence described by these models via Lyapunov exponents. The interpretation of results observed in fundamental plasma experiments is also shown based on a shell model. (author)

  16. Application of hierarchical matrices for partial inverse

    KAUST Repository

    Litvinenko, Alexander

    2013-11-26

    In this work we combine hierarchical matrix techniques (Hackbusch, 1999) and domain decomposition methods to obtain fast and efficient algorithms for the solution of multiscale problems. This combination results in the hierarchical domain decomposition (HDD) method, which can be applied for solution multi-scale problems. Multiscale problems are problems that require the use of different length scales. Using only the finest scale is very expensive, if not impossible, in computational time and memory. Domain decomposition methods decompose the complete problem into smaller systems of equations corresponding to boundary value problems in subdomains. Then fast solvers can be applied to each subdomain. Subproblems in subdomains are independent, much smaller and require less computational resources as the initial problem.

  17. Türkiye'nin Turizm Gelirini Etkileyen Değişkenler İçin En Uygun Regresyon Denkleminin Belirlenmesi = Obtaining the Optimum Regression Equation for Variables Which Effects Incoming of Tourism in Turkey

    Directory of Open Access Journals (Sweden)

    Cengiz AKTAŞ

    2005-06-01

    Full Text Available In this study, we investigate the importance of tourism for Turkish ecenomy, and define the optimum variables which affect tourism revenues. In this type of econometric study that needs the multiple regression models, one of the problems in estimation of parameters is stationarity in time series. Therefore, usableness of the problem for long run relationship is analyzed. Finally autocorrelation, multicollinearity and heteroscedasticity are investigated.

  18. Fast, Linear Time Hierarchical Clustering using the Baire Metric

    CERN Document Server

    Contreras, Pedro

    2011-01-01

    The Baire metric induces an ultrametric on a dataset and is of linear computational complexity, contrasted with the standard quadratic time agglomerative hierarchical clustering algorithm. In this work we evaluate empirically this new approach to hierarchical clustering. We compare hierarchical clustering based on the Baire metric with (i) agglomerative hierarchical clustering, in terms of algorithm properties; (ii) generalized ultrametrics, in terms of definition; and (iii) fast clustering through k-means partititioning, in terms of quality of results. For the latter, we carry out an in depth astronomical study. We apply the Baire distance to spectrometric and photometric redshifts from the Sloan Digital Sky Survey using, in this work, about half a million astronomical objects. We want to know how well the (more costly to determine) spectrometric redshifts can predict the (more easily obtained) photometric redshifts, i.e. we seek to regress the spectrometric on the photometric redshifts, and we use clusterwi...

  19. Hierarchical manifold learning.

    Science.gov (United States)

    Bhatia, Kanwal K; Rao, Anil; Price, Anthony N; Wolz, Robin; Hajnal, Jo; Rueckert, Daniel

    2012-01-01

    We present a novel method of hierarchical manifold learning which aims to automatically discover regional variations within images. This involves constructing manifolds in a hierarchy of image patches of increasing granularity, while ensuring consistency between hierarchy levels. We demonstrate its utility in two very different settings: (1) to learn the regional correlations in motion within a sequence of time-resolved images of the thoracic cavity; (2) to find discriminative regions of 3D brain images in the classification of neurodegenerative disease,

  20. Hierarchically Structured Electrospun Fibers

    Directory of Open Access Journals (Sweden)

    Nicole E. Zander

    2013-01-01

    Full Text Available Traditional electrospun nanofibers have a myriad of applications ranging from scaffolds for tissue engineering to components of biosensors and energy harvesting devices. The generally smooth one-dimensional structure of the fibers has stood as a limitation to several interesting novel applications. Control of fiber diameter, porosity and collector geometry will be briefly discussed, as will more traditional methods for controlling fiber morphology and fiber mat architecture. The remainder of the review will focus on new techniques to prepare hierarchically structured fibers. Fibers with hierarchical primary structures—including helical, buckled, and beads-on-a-string fibers, as well as fibers with secondary structures, such as nanopores, nanopillars, nanorods, and internally structured fibers and their applications—will be discussed. These new materials with helical/buckled morphology are expected to possess unique optical and mechanical properties with possible applications for negative refractive index materials, highly stretchable/high-tensile-strength materials, and components in microelectromechanical devices. Core-shell type fibers enable a much wider variety of materials to be electrospun and are expected to be widely applied in the sensing, drug delivery/controlled release fields, and in the encapsulation of live cells for biological applications. Materials with a hierarchical secondary structure are expected to provide new superhydrophobic and self-cleaning materials.

  1. HDS: Hierarchical Data System

    Science.gov (United States)

    Pearce, Dave; Walter, Anton; Lupton, W. F.; Warren-Smith, Rodney F.; Lawden, Mike; McIlwrath, Brian; Peden, J. C. M.; Jenness, Tim; Draper, Peter W.

    2015-02-01

    The Hierarchical Data System (HDS) is a file-based hierarchical data system designed for the storage of a wide variety of information. It is particularly suited to the storage of large multi-dimensional arrays (with their ancillary data) where efficient access is needed. It is a key component of the Starlink software collection (ascl:1110.012) and is used by the Starlink N-Dimensional Data Format (NDF) library (ascl:1411.023). HDS organizes data into hierarchies, broadly similar to the directory structure of a hierarchical filing system, but contained within a single HDS container file. The structures stored in these files are self-describing and flexible; HDS supports modification and extension of structures previously created, as well as functions such as deletion, copying, and renaming. All information stored in HDS files is portable between the machines on which HDS is implemented. Thus, there are no format conversion problems when moving between machines. HDS can write files in a private binary format (version 4), or be layered on top of HDF5 (version 5).

  2. Hierarchical video summarization

    Science.gov (United States)

    Ratakonda, Krishna; Sezan, M. Ibrahim; Crinon, Regis J.

    1998-12-01

    We address the problem of key-frame summarization of vide in the absence of any a priori information about its content. This is a common problem that is encountered in home videos. We propose a hierarchical key-frame summarization algorithm where a coarse-to-fine key-frame summary is generated. A hierarchical key-frame summary facilitates multi-level browsing where the user can quickly discover the content of the video by accessing its coarsest but most compact summary and then view a desired segment of the video with increasingly more detail. At the finest level, the summary is generated on the basis of color features of video frames, using an extension of a recently proposed key-frame extraction algorithm. The finest level key-frames are recursively clustered using a novel pairwise K-means clustering approach with temporal consecutiveness constraint. We also address summarization of MPEG-2 compressed video without fully decoding the bitstream. We also propose efficient mechanisms that facilitate decoding the video when the hierarchical summary is utilized in browsing and playback of video segments starting at selected key-frames.

  3. Regression analysis by example

    CERN Document Server

    Chatterjee, Samprit

    2012-01-01

    Praise for the Fourth Edition: ""This book is . . . an excellent source of examples for regression analysis. It has been and still is readily readable and understandable."" -Journal of the American Statistical Association Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. Regression Analysis by Example, Fifth Edition has been expanded

  4. Scale of association: hierarchical linear models and the measurement of ecological systems

    Science.gov (United States)

    Sean M. McMahon; Jeffrey M. Diez

    2007-01-01

    A fundamental challenge to understanding patterns in ecological systems lies in employing methods that can analyse, test and draw inference from measured associations between variables across scales. Hierarchical linear models (HLM) use advanced estimation algorithms to measure regression relationships and variance-covariance parameters in hierarchically structured...

  5. Unitary Response Regression Models

    Science.gov (United States)

    Lipovetsky, S.

    2007-01-01

    The dependent variable in a regular linear regression is a numerical variable, and in a logistic regression it is a binary or categorical variable. In these models the dependent variable has varying values. However, there are problems yielding an identity output of a constant value which can also be modelled in a linear or logistic regression with…

  6. Flexible survival regression modelling

    DEFF Research Database (Denmark)

    Cortese, Giuliana; Scheike, Thomas H; Martinussen, Torben

    2009-01-01

    Regression analysis of survival data, and more generally event history data, is typically based on Cox's regression model. We here review some recent methodology, focusing on the limitations of Cox's regression model. The key limitation is that the model is not well suited to represent time-varyi...

  7. Quantile Regression Methods

    DEFF Research Database (Denmark)

    Fitzenberger, Bernd; Wilke, Ralf Andreas

    2015-01-01

    Quantile regression is emerging as a popular statistical approach, which complements the estimation of conditional mean models. While the latter only focuses on one aspect of the conditional distribution of the dependent variable, the mean, quantile regression provides more detailed insights by m...... treatment of the topic is based on the perspective of applied researchers using quantile regression in their empirical work....

  8. On the unnecessary ubiquity of hierarchical linear modeling.

    Science.gov (United States)

    McNeish, Daniel; Stapleton, Laura M; Silverman, Rebecca D

    2017-03-01

    In psychology and the behavioral sciences generally, the use of the hierarchical linear model (HLM) and its extensions for discrete outcomes are popular methods for modeling clustered data. HLM and its discrete outcome extensions, however, are certainly not the only methods available to model clustered data. Although other methods exist and are widely implemented in other disciplines, it seems that psychologists have yet to consider these methods in substantive studies. This article compares and contrasts HLM with alternative methods including generalized estimating equations and cluster-robust standard errors. These alternative methods do not model random effects and thus make a smaller number of assumptions and are interpreted identically to single-level methods with the benefit that estimates are adjusted to reflect clustering of observations. Situations where these alternative methods may be advantageous are discussed including research questions where random effects are and are not required, when random effects can change the interpretation of regression coefficients, challenges of modeling with random effects with discrete outcomes, and examples of published psychology articles that use HLM that may have benefitted from using alternative methods. Illustrative examples are provided and discussed to demonstrate the advantages of the alternative methods and also when HLM would be the preferred method. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. Regression for economics

    CERN Document Server

    Naghshpour, Shahdad

    2012-01-01

    Regression analysis is the most commonly used statistical method in the world. Although few would characterize this technique as simple, regression is in fact both simple and elegant. The complexity that many attribute to regression analysis is often a reflection of their lack of familiarity with the language of mathematics. But regression analysis can be understood even without a mastery of sophisticated mathematical concepts. This book provides the foundation and will help demystify regression analysis using examples from economics and with real data to show the applications of the method. T

  10. A hierarchical linear model for tree height prediction.

    Science.gov (United States)

    Vicente J. Monleon

    2003-01-01

    Measuring tree height is a time-consuming process. Often, tree diameter is measured and height is estimated from a published regression model. Trees used to develop these models are clustered into stands, but this structure is ignored and independence is assumed. In this study, hierarchical linear models that account explicitly for the clustered structure of the data...

  11. A Hierarchical Framework for Facial Age Estimation

    Directory of Open Access Journals (Sweden)

    Yuyu Liang

    2014-01-01

    Full Text Available Age estimation is a complex issue of multiclassification or regression. To address the problems of uneven distribution of age database and ignorance of ordinal information, this paper shows a hierarchic age estimation system, comprising age group and specific age estimation. In our system, two novel classifiers, sequence k-nearest neighbor (SKNN and ranking-KNN, are introduced to predict age group and value, respectively. Notably, ranking-KNN utilizes the ordinal information between samples in estimation process rather than regards samples as separate individuals. Tested on FG-NET database, our system achieves 4.97 evaluated by MAE (mean absolute error for age estimation.

  12. Combining Self-organizing Feature Map with Support Vector Regression Based on Expert System

    Institute of Scientific and Technical Information of China (English)

    WANGLing; MUZhi-Chun; GUOHui

    2005-01-01

    A new approach is proposed to model nonlinear dynamic systems by combining SOM(self-organizing feature map) with support vector regression (SVR) based on expert system. The whole system has a two-stage neural network architecture. In the first stage SOM is used as a clustering algorithm to partition the whole input space into several disjointed regions. A hierarchical architecture is adopted in the partition to avoid the problem of predetermining the number of partitioned regions. Then, in the second stage, multiple SVR, also called SVR experts, that best fit each partitioned region by the combination of different kernel function of SVR and promote the configuration and tuning of SVR. Finally, to apply this new approach to time-series prediction problems based on the Mackey-Glass differential equation and Santa Fe data, the results show that SVR experts has effective improvement in the generalization performance in comparison with the single SVR model.

  13. An introduction to hierarchical linear modeling

    Directory of Open Access Journals (Sweden)

    Heather Woltman

    2012-02-01

    Full Text Available This tutorial aims to introduce Hierarchical Linear Modeling (HLM. A simple explanation of HLM is provided that describes when to use this statistical technique and identifies key factors to consider before conducting this analysis. The first section of the tutorial defines HLM, clarifies its purpose, and states its advantages. The second section explains the mathematical theory, equations, and conditions underlying HLM. HLM hypothesis testing is performed in the third section. Finally, the fourth section provides a practical example of running HLM, with which readers can follow along. Throughout this tutorial, emphasis is placed on providing a straightforward overview of the basic principles of HLM.

  14. Higher Order Hierarchical Legendre Basis Functions for Electromagnetic Modeling

    DEFF Research Database (Denmark)

    Jørgensen, Erik; Volakis, John L.; Meincke, Peter

    2004-01-01

    This paper presents a new hierarchical basis of arbitrary order for integral equations solved with the Method of Moments (MoM). The basis is derived from orthogonal Legendre polynomials which are modified to impose continuity of vector quantities between neighboring elements while maintaining mos...

  15. Higher Order Hierarchical Legendre Basis Functions for Electromagnetic Modeling

    DEFF Research Database (Denmark)

    Jørgensen, Erik; Volakis, John L.; Meincke, Peter

    2004-01-01

    This paper presents a new hierarchical basis of arbitrary order for integral equations solved with the Method of Moments (MoM). The basis is derived from orthogonal Legendre polynomials which are modified to impose continuity of vector quantities between neighboring elements while maintaining mos...

  16. Detecting Hierarchical Structure in Networks

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard;

    2012-01-01

    a generative Bayesian model that is able to infer whether hierarchies are present or not from a hypothesis space encompassing all types of hierarchical tree structures. For efficient inference we propose a collapsed Gibbs sampling procedure that jointly infers a partition and its hierarchical structure......Many real-world networks exhibit hierarchical organization. Previous models of hierarchies within relational data has focused on binary trees; however, for many networks it is unknown whether there is hierarchical structure, and if there is, a binary tree might not account well for it. We propose....... On synthetic and real data we demonstrate that our model can detect hierarchical structure leading to better link-prediction than competing models. Our model can be used to detect if a network exhibits hierarchical structure, thereby leading to a better comprehension and statistical account the network....

  17. Context updates are hierarchical

    Directory of Open Access Journals (Sweden)

    Anton Karl Ingason

    2016-10-01

    Full Text Available This squib studies the order in which elements are added to the shared context of interlocutors in a conversation. It focuses on context updates within one hierarchical structure and argues that structurally higher elements are entered into the context before lower elements, even if the structurally higher elements are pronounced after the lower elements. The crucial data are drawn from a comparison of relative clauses in two head-initial languages, English and Icelandic, and two head-final languages, Korean and Japanese. The findings have consequences for any theory of a dynamic semantics.

  18. Who Will Win?: Predicting the Presidential Election Using Linear Regression

    Science.gov (United States)

    Lamb, John H.

    2007-01-01

    This article outlines a linear regression activity that engages learners, uses technology, and fosters cooperation. Students generated least-squares linear regression equations using TI-83 Plus[TM] graphing calculators, Microsoft[C] Excel, and paper-and-pencil calculations using derived normal equations to predict the 2004 presidential election.…

  19. Who Will Win?: Predicting the Presidential Election Using Linear Regression

    Science.gov (United States)

    Lamb, John H.

    2007-01-01

    This article outlines a linear regression activity that engages learners, uses technology, and fosters cooperation. Students generated least-squares linear regression equations using TI-83 Plus[TM] graphing calculators, Microsoft[C] Excel, and paper-and-pencil calculations using derived normal equations to predict the 2004 presidential election.…

  20. Clinical symptoms and the odds of human T-cell lymphotropic virus type 1-associated myelopathy/ tropical spastic paraparesis (HAM/TSP) in healthy virus carriers: application of best-fit logistic regression equation based on host genotype, age, and provirus load.

    Science.gov (United States)

    Nose, Hirohisa; Saito, Mineki; Usuku, Koichiro; Sabouri, Amir H; Matsuzaki, Toshio; Kubota, Ryuji; Eiraku, Nobutaka; Furukawa, Yoshitaka; Izumo, Shuji; Arimura, Kimiyoshi; Osame, Mitsuhiro

    2006-06-01

    The authors have previously developed a logistic regression equation to predict the odds that a human T-cell lymphotropic virus type 1 (HTLV-1)-infected individual of specified genotype, age, and provirus load has HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in southern Japan. This study evaluated whether this equation is useful predictor for monitoring asymptomatic HTLV-1-seropositive carriers (HCs) in the same population. The authors genotyped 181 HCs for each HAM/TSP-associated gene (tumor necrosis factor [TNF]-alpha-863A/C, stromal cell-derived factor 1 (SDF-1) +801G/A, human leukocyte antigen [HLA]-A*02, HLA-Cw*08, HTLV-1 tax subgroup) and measured HTLV-1 provirus load in peripheral blood mononuclear cells using real-time polymerase chain reaction (PCR). Finally, the odds of HAM/TSP for each subject were calculated by using the equation and compared the results with clinical symptoms and laboratory findings. Although no clear difference was seen between the odds of HAM/TSP and either sex, family history of HAM/TSP or adult T-cell lenkemia (ATL), history of blood transfusion, it was found that brisk patellar deep tendon reflexes, which suggest latent central nervous system compromise, and flower cell-like abnormal lymphocytes, which is the morphological characteristic of ATL cells, were associated with a higher odds of HAM/TSP. The best-fit logistic regression equation may be useful for detecting subclinical abnormalities in HCs in southern Japan.

  1. Autistic epileptiform regression.

    Science.gov (United States)

    Canitano, Roberto; Zappella, Michele

    2006-01-01

    Autistic regression is a well known condition that occurs in one third of children with pervasive developmental disorders, who, after normal development in the first year of life, undergo a global regression during the second year that encompasses language, social skills and play. In a portion of these subjects, epileptiform abnormalities are present with or without seizures, resembling, in some respects, other epileptiform regressions of language and behaviour such as Landau-Kleffner syndrome. In these cases, for a more accurate definition of the clinical entity, the term autistic epileptifom regression has been suggested. As in other epileptic syndromes with regression, the relationships between EEG abnormalities, language and behaviour, in autism, are still unclear. We describe two cases of autistic epileptiform regression selected from a larger group of children with autistic spectrum disorders, with the aim of discussing the clinical features of the condition, the therapeutic approach and the outcome.

  2. Scaled Sparse Linear Regression

    CERN Document Server

    Sun, Tingni

    2011-01-01

    Scaled sparse linear regression jointly estimates the regression coefficients and noise level in a linear model. It chooses an equilibrium with a sparse regression method by iteratively estimating the noise level via the mean residual squares and scaling the penalty in proportion to the estimated noise level. The iterative algorithm costs nearly nothing beyond the computation of a path of the sparse regression estimator for penalty levels above a threshold. For the scaled Lasso, the algorithm is a gradient descent in a convex minimization of a penalized joint loss function for the regression coefficients and noise level. Under mild regularity conditions, we prove that the method yields simultaneously an estimator for the noise level and an estimated coefficient vector in the Lasso path satisfying certain oracle inequalities for the estimation of the noise level, prediction, and the estimation of regression coefficients. These oracle inequalities provide sufficient conditions for the consistency and asymptotic...

  3. Equações de regressão para estimar valores energéticos do grão de trigo e seus subprodutos para frangos de corte, a partir de análises químicas Regression equations to evaluate the energy values of wheat grain and its by-products for broiler chickens from chemical analyses

    Directory of Open Access Journals (Sweden)

    F.M.O. Borges

    2003-12-01

    que significou pouca influência da metodologia sobre essa medida. A FDN não mostrou ser melhor preditor de EM do que a FB.One experiment was run with broiler chickens, to obtain prediction equations for metabolizable energy (ME based on feedstuffs chemical analyses, and determined ME of wheat grain and its by-products, using four different methodologies. Seven wheat grain by-products were used in five treatments: wheat grain, wheat germ, white wheat flour, dark wheat flour, wheat bran for human use, wheat bran for animal use and rough wheat bran. Based on chemical analyses of crude fiber (CF, ether extract (EE, crude protein (CP, ash (AS and starch (ST of the feeds and the determined values of apparent energy (MEA, true energy (MEV, apparent corrected energy (MEAn and true energy corrected by nitrogen balance (MEVn in five treatments, prediction equations were obtained using the stepwise procedure. CF showed the best relationship with metabolizable energy values, however, this variable alone was not enough for a good estimate of the energy values (R² below 0.80. When EE and CP were included in the equations, R² increased to 0.90 or higher in most estimates. When the equations were calculated with all treatments, the equation for MEA were less precise and R² decreased. When ME data of the traditional or force-feeding methods were used separately, the precision of the equations increases (R² higher than 0.85. For MEV and MEVn values, the best multiple linear equations included CF, EE and CP (R²>0.90, independently of using all experimental data or separating by methodology. The estimates of MEVn values showed high precision and the linear coefficients (a of the equations were similar for all treatments or methodologies. Therefore, it explains the small influence of the different methodologies on this parameter. NDF was not a better predictor of ME than CF.

  4. Rolling Regressions with Stata

    OpenAIRE

    Kit Baum

    2004-01-01

    This talk will describe some work underway to add a "rolling regression" capability to Stata's suite of time series features. Although commands such as "statsby" permit analysis of non-overlapping subsamples in the time domain, they are not suited to the analysis of overlapping (e.g. "moving window") samples. Both moving-window and widening-window techniques are often used to judge the stability of time series regression relationships. We will present an implementation of a rolling regression...

  5. Unbiased Quasi-regression

    Institute of Scientific and Technical Information of China (English)

    Guijun YANG; Lu LIN; Runchu ZHANG

    2007-01-01

    Quasi-regression, motivated by the problems arising in the computer experiments, focuses mainly on speeding up evaluation. However, its theoretical properties are unexplored systemically. This paper shows that quasi-regression is unbiased, strong convergent and asymptotic normal for parameter estimations but it is biased for the fitting of curve. Furthermore, a new method called unbiased quasi-regression is proposed. In addition to retaining the above asymptotic behaviors of parameter estimations, unbiased quasi-regression is unbiased for the fitting of curve.

  6. Introduction to regression graphics

    CERN Document Server

    Cook, R Dennis

    2009-01-01

    Covers the use of dynamic and interactive computer graphics in linear regression analysis, focusing on analytical graphics. Features new techniques like plot rotation. The authors have composed their own regression code, using Xlisp-Stat language called R-code, which is a nearly complete system for linear regression analysis and can be utilized as the main computer program in a linear regression course. The accompanying disks, for both Macintosh and Windows computers, contain the R-code and Xlisp-Stat. An Instructor's Manual presenting detailed solutions to all the problems in the book is ava

  7. Applied linear regression

    CERN Document Server

    Weisberg, Sanford

    2005-01-01

    Master linear regression techniques with a new edition of a classic text Reviews of the Second Edition: ""I found it enjoyable reading and so full of interesting material that even the well-informed reader will probably find something new . . . a necessity for all of those who do linear regression."" -Technometrics, February 1987 ""Overall, I feel that the book is a valuable addition to the now considerable list of texts on applied linear regression. It should be a strong contender as the leading text for a first serious course in regression analysis."" -American Scientist, May-June 1987

  8. Morse–Smale Regression

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Samuel [Univ. of Utah, Salt Lake City, UT (United States); Rubel, Oliver [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bremer, Peer -Timo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pascucci, Valerio [Univ. of Utah, Salt Lake City, UT (United States); Whitaker, Ross T. [Univ. of Utah, Salt Lake City, UT (United States)

    2012-01-19

    This paper introduces a novel partition-based regression approach that incorporates topological information. Partition-based regression typically introduces a quality-of-fit-driven decomposition of the domain. The emphasis in this work is on a topologically meaningful segmentation. Thus, the proposed regression approach is based on a segmentation induced by a discrete approximation of the Morse–Smale complex. This yields a segmentation with partitions corresponding to regions of the function with a single minimum and maximum that are often well approximated by a linear model. This approach yields regression models that are amenable to interpretation and have good predictive capacity. Typically, regression estimates are quantified by their geometrical accuracy. For the proposed regression, an important aspect is the quality of the segmentation itself. Thus, this article introduces a new criterion that measures the topological accuracy of the estimate. The topological accuracy provides a complementary measure to the classical geometrical error measures and is very sensitive to overfitting. The Morse–Smale regression is compared to state-of-the-art approaches in terms of geometry and topology and yields comparable or improved fits in many cases. Finally, a detailed study on climate-simulation data demonstrates the application of the Morse–Smale regression. Supplementary Materials are available online and contain an implementation of the proposed approach in the R package msr, an analysis and simulations on the stability of the Morse–Smale complex approximation, and additional tables for the climate-simulation study.

  9. Secular Evolution of Hierarchical Triple Star Systems

    CERN Document Server

    Ford, E B; Kozinsky, B

    1999-01-01

    We derive octupole-level secular perturbation equations for hierarchical triple systems, using classical Hamiltonian perturbation techniques. Our equations describe the secular evolution of the orbital eccentricities and inclinations over timescales long compared to the orbital periods. By extending previous work done to leading (quadrupole) order to octupole level (i.e., including terms of order $\\alpha^3$, where $\\alpha\\equiv a_1/a_2<1$ is the ratio of semimajor axes) we obtain expressions that are applicable to a much wider range of parameters. For triple systems containing a close inner binary, we also discuss the possible interaction between the classical Newtonian perturbations and the general relativistic precession of the inner orbit. In some cases we show that this interaction can lead to resonances and a significant increase in the maximum amplitude of eccentricity perturbations. We establish the validity of our analytic expressions by providing detailed comparisons with the results of direct num...

  10. Regularized Structural Equation Modeling.

    Science.gov (United States)

    Jacobucci, Ross; Grimm, Kevin J; McArdle, John J

    A new method is proposed that extends the use of regularization in both lasso and ridge regression to structural equation models. The method is termed regularized structural equation modeling (RegSEM). RegSEM penalizes specific parameters in structural equation models, with the goal of creating easier to understand and simpler models. Although regularization has gained wide adoption in regression, very little has transferred to models with latent variables. By adding penalties to specific parameters in a structural equation model, researchers have a high level of flexibility in reducing model complexity, overcoming poor fitting models, and the creation of models that are more likely to generalize to new samples. The proposed method was evaluated through a simulation study, two illustrative examples involving a measurement model, and one empirical example involving the structural part of the model to demonstrate RegSEM's utility.

  11. Regression to Causality

    DEFF Research Database (Denmark)

    Bordacconi, Mats Joe; Larsen, Martin Vinæs

    2014-01-01

    Humans are fundamentally primed for making causal attributions based on correlations. This implies that researchers must be careful to present their results in a manner that inhibits unwarranted causal attribution. In this paper, we present the results of an experiment that suggests regression...... models – one of the primary vehicles for analyzing statistical results in political science – encourage causal interpretation. Specifically, we demonstrate that presenting observational results in a regression model, rather than as a simple comparison of means, makes causal interpretation of the results...... of equivalent results presented as either regression models or as a test of two sample means. Our experiment shows that the subjects who were presented with results as estimates from a regression model were more inclined to interpret these results causally. Our experiment implies that scholars using regression...

  12. Hierarchical partial order ranking.

    Science.gov (United States)

    Carlsen, Lars

    2008-09-01

    Assessing the potential impact on environmental and human health from the production and use of chemicals or from polluted sites involves a multi-criteria evaluation scheme. A priori several parameters are to address, e.g., production tonnage, specific release scenarios, geographical and site-specific factors in addition to various substance dependent parameters. Further socio-economic factors may be taken into consideration. The number of parameters to be included may well appear to be prohibitive for developing a sensible model. The study introduces hierarchical partial order ranking (HPOR) that remedies this problem. By HPOR the original parameters are initially grouped based on their mutual connection and a set of meta-descriptors is derived representing the ranking corresponding to the single groups of descriptors, respectively. A second partial order ranking is carried out based on the meta-descriptors, the final ranking being disclosed though average ranks. An illustrative example on the prioritization of polluted sites is given.

  13. Trees and Hierarchical Structures

    CERN Document Server

    Haeseler, Arndt

    1990-01-01

    The "raison d'etre" of hierarchical dustering theory stems from one basic phe­ nomenon: This is the notorious non-transitivity of similarity relations. In spite of the fact that very often two objects may be quite similar to a third without being that similar to each other, one still wants to dassify objects according to their similarity. This should be achieved by grouping them into a hierarchy of non-overlapping dusters such that any two objects in ~ne duster appear to be more related to each other than they are to objects outside this duster. In everyday life, as well as in essentially every field of scientific investigation, there is an urge to reduce complexity by recognizing and establishing reasonable das­ sification schemes. Unfortunately, this is counterbalanced by the experience of seemingly unavoidable deadlocks caused by the existence of sequences of objects, each comparatively similar to the next, but the last rather different from the first.

  14. Hierarchical Affinity Propagation

    CERN Document Server

    Givoni, Inmar; Frey, Brendan J

    2012-01-01

    Affinity propagation is an exemplar-based clustering algorithm that finds a set of data-points that best exemplify the data, and associates each datapoint with one exemplar. We extend affinity propagation in a principled way to solve the hierarchical clustering problem, which arises in a variety of domains including biology, sensor networks and decision making in operational research. We derive an inference algorithm that operates by propagating information up and down the hierarchy, and is efficient despite the high-order potentials required for the graphical model formulation. We demonstrate that our method outperforms greedy techniques that cluster one layer at a time. We show that on an artificial dataset designed to mimic the HIV-strain mutation dynamics, our method outperforms related methods. For real HIV sequences, where the ground truth is not available, we show our method achieves better results, in terms of the underlying objective function, and show the results correspond meaningfully to geographi...

  15. Optimisation by hierarchical search

    Science.gov (United States)

    Zintchenko, Ilia; Hastings, Matthew; Troyer, Matthias

    2015-03-01

    Finding optimal values for a set of variables relative to a cost function gives rise to some of the hardest problems in physics, computer science and applied mathematics. Although often very simple in their formulation, these problems have a complex cost function landscape which prevents currently known algorithms from efficiently finding the global optimum. Countless techniques have been proposed to partially circumvent this problem, but an efficient method is yet to be found. We present a heuristic, general purpose approach to potentially improve the performance of conventional algorithms or special purpose hardware devices by optimising groups of variables in a hierarchical way. We apply this approach to problems in combinatorial optimisation, machine learning and other fields.

  16. How hierarchical is language use?

    Science.gov (United States)

    Frank, Stefan L.; Bod, Rens; Christiansen, Morten H.

    2012-01-01

    It is generally assumed that hierarchical phrase structure plays a central role in human language. However, considerations of simplicity and evolutionary continuity suggest that hierarchical structure should not be invoked too hastily. Indeed, recent neurophysiological, behavioural and computational studies show that sequential sentence structure has considerable explanatory power and that hierarchical processing is often not involved. In this paper, we review evidence from the recent literature supporting the hypothesis that sequential structure may be fundamental to the comprehension, production and acquisition of human language. Moreover, we provide a preliminary sketch outlining a non-hierarchical model of language use and discuss its implications and testable predictions. If linguistic phenomena can be explained by sequential rather than hierarchical structure, this will have considerable impact in a wide range of fields, such as linguistics, ethology, cognitive neuroscience, psychology and computer science. PMID:22977157

  17. How hierarchical is language use?

    Science.gov (United States)

    Frank, Stefan L; Bod, Rens; Christiansen, Morten H

    2012-11-22

    It is generally assumed that hierarchical phrase structure plays a central role in human language. However, considerations of simplicity and evolutionary continuity suggest that hierarchical structure should not be invoked too hastily. Indeed, recent neurophysiological, behavioural and computational studies show that sequential sentence structure has considerable explanatory power and that hierarchical processing is often not involved. In this paper, we review evidence from the recent literature supporting the hypothesis that sequential structure may be fundamental to the comprehension, production and acquisition of human language. Moreover, we provide a preliminary sketch outlining a non-hierarchical model of language use and discuss its implications and testable predictions. If linguistic phenomena can be explained by sequential rather than hierarchical structure, this will have considerable impact in a wide range of fields, such as linguistics, ethology, cognitive neuroscience, psychology and computer science.

  18. Boosted beta regression.

    Directory of Open Access Journals (Sweden)

    Matthias Schmid

    Full Text Available Regression analysis with a bounded outcome is a common problem in applied statistics. Typical examples include regression models for percentage outcomes and the analysis of ratings that are measured on a bounded scale. In this paper, we consider beta regression, which is a generalization of logit models to situations where the response is continuous on the interval (0,1. Consequently, beta regression is a convenient tool for analyzing percentage responses. The classical approach to fit a beta regression model is to use maximum likelihood estimation with subsequent AIC-based variable selection. As an alternative to this established - yet unstable - approach, we propose a new estimation technique called boosted beta regression. With boosted beta regression estimation and variable selection can be carried out simultaneously in a highly efficient way. Additionally, both the mean and the variance of a percentage response can be modeled using flexible nonlinear covariate effects. As a consequence, the new method accounts for common problems such as overdispersion and non-binomial variance structures.

  19. Associative Hierarchical Random Fields.

    Science.gov (United States)

    Ladický, L'ubor; Russell, Chris; Kohli, Pushmeet; Torr, Philip H S

    2014-06-01

    This paper makes two contributions: the first is the proposal of a new model-The associative hierarchical random field (AHRF), and a novel algorithm for its optimization; the second is the application of this model to the problem of semantic segmentation. Most methods for semantic segmentation are formulated as a labeling problem for variables that might correspond to either pixels or segments such as super-pixels. It is well known that the generation of super pixel segmentations is not unique. This has motivated many researchers to use multiple super pixel segmentations for problems such as semantic segmentation or single view reconstruction. These super-pixels have not yet been combined in a principled manner, this is a difficult problem, as they may overlap, or be nested in such a way that the segmentations form a segmentation tree. Our new hierarchical random field model allows information from all of the multiple segmentations to contribute to a global energy. MAP inference in this model can be performed efficiently using powerful graph cut based move making algorithms. Our framework generalizes much of the previous work based on pixels or segments, and the resulting labelings can be viewed both as a detailed segmentation at the pixel level, or at the other extreme, as a segment selector that pieces together a solution like a jigsaw, selecting the best segments from different segmentations as pieces. We evaluate its performance on some of the most challenging data sets for object class segmentation, and show that this ability to perform inference using multiple overlapping segmentations leads to state-of-the-art results.

  20. Applied logistic regression

    CERN Document Server

    Hosmer, David W; Sturdivant, Rodney X

    2013-01-01

     A new edition of the definitive guide to logistic regression modeling for health science and other applications This thoroughly expanded Third Edition provides an easily accessible introduction to the logistic regression (LR) model and highlights the power of this model by examining the relationship between a dichotomous outcome and a set of covariables. Applied Logistic Regression, Third Edition emphasizes applications in the health sciences and handpicks topics that best suit the use of modern statistical software. The book provides readers with state-of-

  1. Applied linear regression

    CERN Document Server

    Weisberg, Sanford

    2013-01-01

    Praise for the Third Edition ""...this is an excellent book which could easily be used as a course text...""-International Statistical Institute The Fourth Edition of Applied Linear Regression provides a thorough update of the basic theory and methodology of linear regression modeling. Demonstrating the practical applications of linear regression analysis techniques, the Fourth Edition uses interesting, real-world exercises and examples. Stressing central concepts such as model building, understanding parameters, assessing fit and reliability, and drawing conclusions, the new edition illus

  2. Transductive Ordinal Regression

    CERN Document Server

    Seah, Chun-Wei; Ong, Yew-Soon

    2011-01-01

    Ordinal regression is commonly formulated as a multi-class problem with ordinal constraints. The challenge of designing accurate classifiers for ordinal regression generally increases with the number of classes involved, due to the large number of labeled patterns that are needed. The availability of ordinal class labels, however, are often costly to calibrate or difficult to obtain. Unlabeled patterns, on the other hand, often exist in much greater abundance and are freely available. To take benefits from the abundance of unlabeled patterns, we present a novel transductive learning paradigm for ordinal regression in this paper, namely Transductive Ordinal Regression (TOR). The key challenge of the present study lies in the precise estimation of both the ordinal class label of the unlabeled data and the decision functions of the ordinal classes, simultaneously. The core elements of the proposed TOR include an objective function that caters to several commonly used loss functions casted in transductive setting...

  3. Nonparametric Predictive Regression

    OpenAIRE

    Ioannis Kasparis; Elena Andreou; Phillips, Peter C.B.

    2012-01-01

    A unifying framework for inference is developed in predictive regressions where the predictor has unknown integration properties and may be stationary or nonstationary. Two easily implemented nonparametric F-tests are proposed. The test statistics are related to those of Kasparis and Phillips (2012) and are obtained by kernel regression. The limit distribution of these predictive tests holds for a wide range of predictors including stationary as well as non-stationary fractional and near unit...

  4. Logistic回归方程对阿苯达唑两种剂型药物治疗囊性包虫病的临床疗效评价%Clinical Efficacy Evaluation for Two Types of Albendazole in Treating Cystic Echinococcosis by Logistic Regression Equation

    Institute of Scientific and Technical Information of China (English)

    李海涛; 宋涛; 邵英梅; 阿依甫汗·阿汗; 吐尔干·艾力; 温浩

    2015-01-01

    目的:应用Logistic回归的方法评价阿苯达唑两种剂型药物治疗囊性包虫病的临床疗效。方法回顾性分析我院自1998~2008年十年收治的阿苯达唑脂质体和阿苯达唑片治疗的共269例囊性包虫病患者的临床随访资料,通过一定的纳入及排除标准,入组病例218例。依据随访记录的可能对临床疗效产生影响的各项指标,应用SPSS13.0及PEMS3.1医学统计软件包对各项指标进行分析并建立Lo-gistic回归方程深入分析。结果影像学疗效结果评价显示阿苯达唑脂质体组与阿苯达唑片剂组比较,3个月总有效率差异有显著统计学意义(χ2=19.581,P=0.00001),将两个治疗组作为疗效的影响因素引入Logistic回归方程分析结果也显示,两个治疗组比较总有效率差异有统计学意义(χ2=20.806,P<0.001, OR<1,95%CI:0.119~0.428)。结论阿苯达唑脂质体及阿苯达唑片剂均是有效的抗包虫药物,Logistic回归方程的结果结合影像学疗效评价显示阿苯达唑脂质体疗效优于阿苯达唑片剂。%Objective To evaluate the clinical effect of liposomal albendazole and tablet-albendazole in treating cystic echinococcosis (CE) by using logistic regression equation. Methods Reviewing clinical data for 269 cases of cystic echinococcosis treated by liposomal albendazole and tablet-albendazole in our hospital between 1998 and 2008,218 cases were included by into and out of standard. Based on indictors which could influence clinical effect, by using SPSS13.0 and PEMS3.1 statistical package of medicine, logistic regression equation were established to analyze the date. Results In short-term effect of evaluation (3 months), the effect of group liposomal albendazole was better than group tablet-albendazole based on images. Same result, Logistic regression analysis showed remarkable statistical difference in general effective rate between the group liposomal albendazole and

  5. Trait anxiety, disgust sensitivity, and the hierarchic structure of fears.

    Science.gov (United States)

    McDonald, Scott D; Hartman, Nathan S; Vrana, Scott R

    2008-08-01

    This paper describes an evaluation of Taylor's (1998) hierarchic model of fears and its relationship to trait anxiety and disgust sensitivity (DS). In Study 1 (N=420), a confirmatory factor analysis supported a hierarchic structure of fears. Next, an analysis using structural equation modeling indicated that trait anxiety is associated with claustrophobic and social fears, whereas DS is associated with all four fear subtypes examined (claustrophobic, social, blood-injection-injury and animal). However, trait anxiety and DS did not account for all variance shared by fear subtypes. The addition of a generalized "fear factor" accounted for significant residual shared variance between the four fear subtypes, beyond that accounted for by trait anxiety and DS. Study 2 (N=213) generally replicated these results. Findings suggest that the hierarchic structural model of fears would benefit from inclusion of trait anxiety and DS as higher-order contributors to fearfulness.

  6. Modeling hierarchical structures - Hierarchical Linear Modeling using MPlus

    OpenAIRE

    Jelonek, Magdalena

    2006-01-01

    The aim of this paper is to present the technique (and its linkage with physics) of overcoming problems connected to modeling social structures, which are typically hierarchical. Hierarchical Linear Models provide a conceptual and statistical mechanism for drawing conclusions regarding the influence of phenomena at different levels of analysis. In the social sciences it is used to analyze many problems such as educational, organizational or market dilemma. This paper introduces the logic of m...

  7. Hierarchical fringe tracking

    CERN Document Server

    Petrov, Romain G; Boskri, Abdelkarim; Folcher, Jean-Pierre; Lagarde, Stephane; Bresson, Yves; Benkhaldoum, Zouhair; Lazrek, Mohamed; Rakshit, Suvendu

    2014-01-01

    The limiting magnitude is a key issue for optical interferometry. Pairwise fringe trackers based on the integrated optics concepts used for example in GRAVITY seem limited to about K=10.5 with the 8m Unit Telescopes of the VLTI, and there is a general "common sense" statement that the efficiency of fringe tracking, and hence the sensitivity of optical interferometry, must decrease as the number of apertures increases, at least in the near infrared where we are still limited by detector readout noise. Here we present a Hierarchical Fringe Tracking (HFT) concept with sensitivity at least equal to this of a two apertures fringe trackers. HFT is based of the combination of the apertures in pairs, then in pairs of pairs then in pairs of groups. The key HFT module is a device that behaves like a spatial filter for two telescopes (2TSF) and transmits all or most of the flux of a cophased pair in a single mode beam. We give an example of such an achromatic 2TSF, based on very broadband dispersed fringes analyzed by g...

  8. Onboard hierarchical network

    Science.gov (United States)

    Tunesi, Luca; Armbruster, Philippe

    2004-02-01

    The objective of this paper is to demonstrate a suitable hierarchical networking solution to improve capabilities and performances of space systems, with significant recurrent costs saving and more efficient design & manufacturing flows. Classically, a satellite can be split in two functional sub-systems: the platform and the payload complement. The platform is in charge of providing power, attitude & orbit control and up/down-link services, whereas the payload represents the scientific and/or operational instruments/transponders and embodies the objectives of the mission. One major possibility to improve the performance of payloads, by limiting the data return to pertinent information, is to process data on board thanks to a proper implementation of the payload data system. In this way, it is possible to share non-recurring development costs by exploiting a system that can be adopted by the majority of space missions. It is believed that the Modular and Scalable Payload Data System, under development by ESA, provides a suitable solution to fulfil a large range of future mission requirements. The backbone of the system is the standardised high data rate SpaceWire network http://www.ecss.nl/. As complement, a lower speed command and control bus connecting peripherals is required. For instance, at instrument level, there is a need for a "local" low complexity bus, which gives the possibility to command and control sensors and actuators. Moreover, most of the connections at sub-system level are related to discrete signals management or simple telemetry acquisitions, which can easily and efficiently be handled by a local bus. An on-board hierarchical network can therefore be defined by interconnecting high-speed links and local buses. Additionally, it is worth stressing another important aspect of the design process: Agencies and ESA in particular are frequently confronted with a big consortium of geographically spread companies located in different countries, each one

  9. Hierarchical Reverberation Mapping

    CERN Document Server

    Brewer, Brendon J

    2013-01-01

    Reverberation mapping (RM) is an important technique in studies of active galactic nuclei (AGN). The key idea of RM is to measure the time lag $\\tau$ between variations in the continuum emission from the accretion disc and subsequent response of the broad line region (BLR). The measurement of $\\tau$ is typically used to estimate the physical size of the BLR and is combined with other measurements to estimate the black hole mass $M_{\\rm BH}$. A major difficulty with RM campaigns is the large amount of data needed to measure $\\tau$. Recently, Fine et al (2012) introduced a new approach to RM where the BLR light curve is sparsely sampled, but this is counteracted by observing a large sample of AGN, rather than a single system. The results are combined to infer properties of the sample of AGN. In this letter we implement this method using a hierarchical Bayesian model and contrast this with the results from the previous stacked cross-correlation technique. We find that our inferences are more precise and allow fo...

  10. A Hierarchical Latent Stochastic Differential Equation Model for Affective Dynamics

    Science.gov (United States)

    Oravecz, Zita; Tuerlinckx, Francis; Vandekerckhove, Joachim

    2011-01-01

    In this article a continuous-time stochastic model (the Ornstein-Uhlenbeck process) is presented to model the perpetually altering states of the core affect, which is a 2-dimensional concept underlying all our affective experiences. The process model that we propose can account for the temporal changes in core affect on the latent level. The key…

  11. [Understanding logistic regression].

    Science.gov (United States)

    El Sanharawi, M; Naudet, F

    2013-10-01

    Logistic regression is one of the most common multivariate analysis models utilized in epidemiology. It allows the measurement of the association between the occurrence of an event (qualitative dependent variable) and factors susceptible to influence it (explicative variables). The choice of explicative variables that should be included in the logistic regression model is based on prior knowledge of the disease physiopathology and the statistical association between the variable and the event, as measured by the odds ratio. The main steps for the procedure, the conditions of application, and the essential tools for its interpretation are discussed concisely. We also discuss the importance of the choice of variables that must be included and retained in the regression model in order to avoid the omission of important confounding factors. Finally, by way of illustration, we provide an example from the literature, which should help the reader test his or her knowledge.

  12. Constrained Sparse Galerkin Regression

    CERN Document Server

    Loiseau, Jean-Christophe

    2016-01-01

    In this work, we demonstrate the use of sparse regression techniques from machine learning to identify nonlinear low-order models of a fluid system purely from measurement data. In particular, we extend the sparse identification of nonlinear dynamics (SINDy) algorithm to enforce physical constraints in the regression, leading to energy conservation. The resulting models are closely related to Galerkin projection models, but the present method does not require the use of a full-order or high-fidelity Navier-Stokes solver to project onto basis modes. Instead, the most parsimonious nonlinear model is determined that is consistent with observed measurement data and satisfies necessary constraints. The constrained Galerkin regression algorithm is implemented on the fluid flow past a circular cylinder, demonstrating the ability to accurately construct models from data.

  13. Hierarchical materials: Background and perspectives

    DEFF Research Database (Denmark)

    2016-01-01

    Hierarchical design draws inspiration from analysis of biological materials and has opened new possibilities for enhancing performance and enabling new functionalities and extraordinary properties. With the development of nanotechnology, the necessary technological requirements for the manufactur...

  14. Hierarchical clustering for graph visualization

    CERN Document Server

    Clémençon, Stéphan; Rossi, Fabrice; Tran, Viet Chi

    2012-01-01

    This paper describes a graph visualization methodology based on hierarchical maximal modularity clustering, with interactive and significant coarsening and refining possibilities. An application of this method to HIV epidemic analysis in Cuba is outlined.

  15. Direct hierarchical assembly of nanoparticles

    Science.gov (United States)

    Xu, Ting; Zhao, Yue; Thorkelsson, Kari

    2014-07-22

    The present invention provides hierarchical assemblies of a block copolymer, a bifunctional linking compound and a nanoparticle. The block copolymers form one micro-domain and the nanoparticles another micro-domain.

  16. Practical Session: Logistic Regression

    Science.gov (United States)

    Clausel, M.; Grégoire, G.

    2014-12-01

    An exercise is proposed to illustrate the logistic regression. One investigates the different risk factors in the apparition of coronary heart disease. It has been proposed in Chapter 5 of the book of D.G. Kleinbaum and M. Klein, "Logistic Regression", Statistics for Biology and Health, Springer Science Business Media, LLC (2010) and also by D. Chessel and A.B. Dufour in Lyon 1 (see Sect. 6 of http://pbil.univ-lyon1.fr/R/pdf/tdr341.pdf). This example is based on data given in the file evans.txt coming from http://www.sph.emory.edu/dkleinb/logreg3.htm#data.

  17. Minimax Regression Quantiles

    DEFF Research Database (Denmark)

    Bache, Stefan Holst

    A new and alternative quantile regression estimator is developed and it is shown that the estimator is root n-consistent and asymptotically normal. The estimator is based on a minimax ‘deviance function’ and has asymptotically equivalent properties to the usual quantile regression estimator. It is......, however, a different and therefore new estimator. It allows for both linear- and nonlinear model specifications. A simple algorithm for computing the estimates is proposed. It seems to work quite well in practice but whether it has theoretical justification is still an open question....

  18. Functional annotation of hierarchical modularity.

    Directory of Open Access Journals (Sweden)

    Kanchana Padmanabhan

    Full Text Available In biological networks of molecular interactions in a cell, network motifs that are biologically relevant are also functionally coherent, or form functional modules. These functionally coherent modules combine in a hierarchical manner into larger, less cohesive subsystems, thus revealing one of the essential design principles of system-level cellular organization and function-hierarchical modularity. Arguably, hierarchical modularity has not been explicitly taken into consideration by most, if not all, functional annotation systems. As a result, the existing methods would often fail to assign a statistically significant functional coherence score to biologically relevant molecular machines. We developed a methodology for hierarchical functional annotation. Given the hierarchical taxonomy of functional concepts (e.g., Gene Ontology and the association of individual genes or proteins with these concepts (e.g., GO terms, our method will assign a Hierarchical Modularity Score (HMS to each node in the hierarchy of functional modules; the HMS score and its p-value measure functional coherence of each module in the hierarchy. While existing methods annotate each module with a set of "enriched" functional terms in a bag of genes, our complementary method provides the hierarchical functional annotation of the modules and their hierarchically organized components. A hierarchical organization of functional modules often comes as a bi-product of cluster analysis of gene expression data or protein interaction data. Otherwise, our method will automatically build such a hierarchy by directly incorporating the functional taxonomy information into the hierarchy search process and by allowing multi-functional genes to be part of more than one component in the hierarchy. In addition, its underlying HMS scoring metric ensures that functional specificity of the terms across different levels of the hierarchical taxonomy is properly treated. We have evaluated our

  19. Hierarchical architecture of active knits

    Science.gov (United States)

    Abel, Julianna; Luntz, Jonathan; Brei, Diann

    2013-12-01

    Nature eloquently utilizes hierarchical structures to form the world around us. Applying the hierarchical architecture paradigm to smart materials can provide a basis for a new genre of actuators which produce complex actuation motions. One promising example of cellular architecture—active knits—provides complex three-dimensional distributed actuation motions with expanded operational performance through a hierarchically organized structure. The hierarchical structure arranges a single fiber of active material, such as shape memory alloys (SMAs), into a cellular network of interlacing adjacent loops according to a knitting grid. This paper defines a four-level hierarchical classification of knit structures: the basic knit loop, knit patterns, grid patterns, and restructured grids. Each level of the hierarchy provides increased architectural complexity, resulting in expanded kinematic actuation motions of active knits. The range of kinematic actuation motions are displayed through experimental examples of different SMA active knits. The results from this paper illustrate and classify the ways in which each level of the hierarchical knit architecture leverages the performance of the base smart material to generate unique actuation motions, providing necessary insight to best exploit this new actuation paradigm.

  20. Advanced hierarchical distance sampling

    Science.gov (United States)

    Royle, Andy

    2016-01-01

    In this chapter, we cover a number of important extensions of the basic hierarchical distance-sampling (HDS) framework from Chapter 8. First, we discuss the inclusion of “individual covariates,” such as group size, in the HDS model. This is important in many surveys where animals form natural groups that are the primary observation unit, with the size of the group expected to have some influence on detectability. We also discuss HDS integrated with time-removal and double-observer or capture-recapture sampling. These “combined protocols” can be formulated as HDS models with individual covariates, and thus they have a commonality with HDS models involving group structure (group size being just another individual covariate). We cover several varieties of open-population HDS models that accommodate population dynamics. On one end of the spectrum, we cover models that allow replicate distance sampling surveys within a year, which estimate abundance relative to availability and temporary emigration through time. We consider a robust design version of that model. We then consider models with explicit dynamics based on the Dail and Madsen (2011) model and the work of Sollmann et al. (2015). The final major theme of this chapter is relatively newly developed spatial distance sampling models that accommodate explicit models describing the spatial distribution of individuals known as Point Process models. We provide novel formulations of spatial DS and HDS models in this chapter, including implementations of those models in the unmarked package using a hack of the pcount function for N-mixture models.

  1. Nonlinear Regression with R

    CERN Document Server

    Ritz, Christian; Parmigiani, Giovanni

    2009-01-01

    R is a rapidly evolving lingua franca of graphical display and statistical analysis of experiments from the applied sciences. This book provides a coherent treatment of nonlinear regression with R by means of examples from a diversity of applied sciences such as biology, chemistry, engineering, medicine and toxicology.

  2. Multiple linear regression analysis

    Science.gov (United States)

    Edwards, T. R.

    1980-01-01

    Program rapidly selects best-suited set of coefficients. User supplies only vectors of independent and dependent data and specifies confidence level required. Program uses stepwise statistical procedure for relating minimal set of variables to set of observations; final regression contains only most statistically significant coefficients. Program is written in FORTRAN IV for batch execution and has been implemented on NOVA 1200.

  3. Adaptive metric kernel regression

    DEFF Research Database (Denmark)

    Goutte, Cyril; Larsen, Jan

    2000-01-01

    regression by minimising a cross-validation estimate of the generalisation error. This allows to automatically adjust the importance of different dimensions. The improvement in terms of modelling performance is illustrated on a variable selection task where the adaptive metric kernel clearly outperforms...

  4. Software Regression Verification

    Science.gov (United States)

    2013-12-11

    of recursive procedures. Acta Informatica , 45(6):403 – 439, 2008. [GS11] Benny Godlin and Ofer Strichman. Regression verifica- tion. Technical Report...functions. Therefore, we need to rede - fine m-term. – Mutual termination. If either function f or function f ′ (or both) is non- deterministic, then their

  5. Linear Regression Analysis

    CERN Document Server

    Seber, George A F

    2012-01-01

    Concise, mathematically clear, and comprehensive treatment of the subject.* Expanded coverage of diagnostics and methods of model fitting.* Requires no specialized knowledge beyond a good grasp of matrix algebra and some acquaintance with straight-line regression and simple analysis of variance models.* More than 200 problems throughout the book plus outline solutions for the exercises.* This revision has been extensively class-tested.

  6. Efficient scalable algorithms for hierarchically semiseparable matrices

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shen; Xia, Jianlin; Situ, Yingchong; Hoop, Maarten V. de

    2011-09-14

    Hierarchically semiseparable (HSS) matrix algorithms are emerging techniques in constructing the superfast direct solvers for both dense and sparse linear systems. Here, we develope a set of novel parallel algorithms for the key HSS operations that are used for solving large linear systems. These include the parallel rank-revealing QR factorization, the HSS constructions with hierarchical compression, the ULV HSS factorization, and the HSS solutions. The HSS tree based parallelism is fully exploited at the coarse level. The BLACS and ScaLAPACK libraries are used to facilitate the parallel dense kernel operations at the ne-grained level. We have appplied our new parallel HSS-embedded multifrontal solver to the anisotropic Helmholtz equations for seismic imaging, and were able to solve a linear system with 6.4 billion unknowns using 4096 processors, in about 20 minutes. The classical multifrontal solver simply failed due to high demand of memory. To our knowledge, this is the first successful demonstration of employing the HSS algorithms in solving the truly large-scale real-world problems. Our parallel strategies can be easily adapted to the parallelization of the other rank structured methods.

  7. Parallel hierarchical global illumination

    Energy Technology Data Exchange (ETDEWEB)

    Snell, Quinn O. [Iowa State Univ., Ames, IA (United States)

    1997-10-08

    Solving the global illumination problem is equivalent to determining the intensity of every wavelength of light in all directions at every point in a given scene. The complexity of the problem has led researchers to use approximation methods for solving the problem on serial computers. Rather than using an approximation method, such as backward ray tracing or radiosity, the authors have chosen to solve the Rendering Equation by direct simulation of light transport from the light sources. This paper presents an algorithm that solves the Rendering Equation to any desired accuracy, and can be run in parallel on distributed memory or shared memory computer systems with excellent scaling properties. It appears superior in both speed and physical correctness to recent published methods involving bidirectional ray tracing or hybrid treatments of diffuse and specular surfaces. Like progressive radiosity methods, it dynamically refines the geometry decomposition where required, but does so without the excessive storage requirements for ray histories. The algorithm, called Photon, produces a scene which converges to the global illumination solution. This amounts to a huge task for a 1997-vintage serial computer, but using the power of a parallel supercomputer significantly reduces the time required to generate a solution. Currently, Photon can be run on most parallel environments from a shared memory multiprocessor to a parallel supercomputer, as well as on clusters of heterogeneous workstations.

  8. Inference in HIV dynamics models via hierarchical likelihood

    OpenAIRE

    2010-01-01

    HIV dynamical models are often based on non-linear systems of ordinary differential equations (ODE), which do not have analytical solution. Introducing random effects in such models leads to very challenging non-linear mixed-effects models. To avoid the numerical computation of multiple integrals involved in the likelihood, we propose a hierarchical likelihood (h-likelihood) approach, treated in the spirit of a penalized likelihood. We give the asymptotic distribution of the maximum h-likelih...

  9. Fractal Derivative Model for Air Permeability in Hierarchic Porous Media

    Directory of Open Access Journals (Sweden)

    Jie Fan

    2012-01-01

    Full Text Available Air permeability in hierarchic porous media does not obey Fick's equation or its modification because fractal objects have well-defined geometric properties, which are discrete and discontinuous. We propose a theoretical model dealing with, for the first time, a seemingly complex air permeability process using fractal derivative method. The fractal derivative model has been successfully applied to explain the novel air permeability phenomenon of cocoon. The theoretical analysis was in agreement with experimental results.

  10. Hill's equation

    CERN Document Server

    Magnus, Wilhelm

    2004-01-01

    The hundreds of applications of Hill's equation in engineering and physics range from mechanics and astronomy to electric circuits, electric conductivity of metals, and the theory of the cyclotron. New applications are continually being discovered and theoretical advances made since Liapounoff established the equation's fundamental importance for stability problems in 1907. Brief but thorough, this volume offers engineers and mathematicians a complete orientation to the subject.""Hill's equation"" connotes the class of homogeneous, linear, second order differential equations with real, period

  11. Low rank Multivariate regression

    CERN Document Server

    Giraud, Christophe

    2010-01-01

    We consider in this paper the multivariate regression problem, when the target regression matrix $A$ is close to a low rank matrix. Our primary interest in on the practical case where the variance of the noise is unknown. Our main contribution is to propose in this setting a criterion to select among a family of low rank estimators and prove a non-asymptotic oracle inequality for the resulting estimator. We also investigate the easier case where the variance of the noise is known and outline that the penalties appearing in our criterions are minimal (in some sense). These penalties involve the expected value of the Ky-Fan quasi-norm of some random matrices. These quantities can be evaluated easily in practice and upper-bounds can be derived from recent results in random matrix theory.

  12. Subset selection in regression

    CERN Document Server

    Miller, Alan

    2002-01-01

    Originally published in 1990, the first edition of Subset Selection in Regression filled a significant gap in the literature, and its critical and popular success has continued for more than a decade. Thoroughly revised to reflect progress in theory, methods, and computing power, the second edition promises to continue that tradition. The author has thoroughly updated each chapter, incorporated new material on recent developments, and included more examples and references. New in the Second Edition:A separate chapter on Bayesian methodsComplete revision of the chapter on estimationA major example from the field of near infrared spectroscopyMore emphasis on cross-validationGreater focus on bootstrappingStochastic algorithms for finding good subsets from large numbers of predictors when an exhaustive search is not feasible Software available on the Internet for implementing many of the algorithms presentedMore examplesSubset Selection in Regression, Second Edition remains dedicated to the techniques for fitting...

  13. Classification and regression trees

    CERN Document Server

    Breiman, Leo; Olshen, Richard A; Stone, Charles J

    1984-01-01

    The methodology used to construct tree structured rules is the focus of this monograph. Unlike many other statistical procedures, which moved from pencil and paper to calculators, this text's use of trees was unthinkable before computers. Both the practical and theoretical sides have been developed in the authors' study of tree methods. Classification and Regression Trees reflects these two sides, covering the use of trees as a data analysis method, and in a more mathematical framework, proving some of their fundamental properties.

  14. Aid and growth regressions

    DEFF Research Database (Denmark)

    Hansen, Henrik; Tarp, Finn

    2001-01-01

    . There are, however, decreasing returns to aid, and the estimated effectiveness of aid is highly sensitive to the choice of estimator and the set of control variables. When investment and human capital are controlled for, no positive effect of aid is found. Yet, aid continues to impact on growth via...... investment. We conclude by stressing the need for more theoretical work before this kind of cross-country regressions are used for policy purposes....

  15. Hierarchical topic modeling with nested hierarchical Dirichlet process

    Institute of Scientific and Technical Information of China (English)

    Yi-qun DING; Shan-ping LI; Zhen ZHANG; Bin SHEN

    2009-01-01

    This paper deals with the statistical modeling of latent topic hierarchies in text corpora. The height of the topic tree is assumed as fixed, while the number of topics on each level as unknown a priori and to be inferred from data. Taking a nonparametric Bayesian approach to this problem, we propose a new probabilistic generative model based on the nested hierarchical Dirichlet process (nHDP) and present a Markov chain Monte Carlo sampling algorithm for the inference of the topic tree structure as welt as the word distribution of each topic and topic distribution of each document. Our theoretical analysis and experiment results show that this model can produce a more compact hierarchical topic structure and captures more free-grained topic relationships compared to the hierarchical latent Dirichlet allocation model.

  16. TWO REGRESSION CREDIBILITY MODELS

    Directory of Open Access Journals (Sweden)

    Constanţa-Nicoleta BODEA

    2010-03-01

    Full Text Available In this communication we will discuss two regression credibility models from Non – Life Insurance Mathematics that can be solved by means of matrix theory. In the first regression credibility model, starting from a well-known representation formula of the inverse for a special class of matrices a risk premium will be calculated for a contract with risk parameter θ. In the next regression credibility model, we will obtain a credibility solution in the form of a linear combination of the individual estimate (based on the data of a particular state and the collective estimate (based on aggregate USA data. To illustrate the solution with the properties mentioned above, we shall need the well-known representation theorem for a special class of matrices, the properties of the trace for a square matrix, the scalar product of two vectors, the norm with respect to a positive definite matrix given in advance and the complicated mathematical properties of conditional expectations and of conditional covariances.

  17. REGRESSION ANALYSIS OF PRODUCTIVITY USING MIXED EFFECT MODEL

    Directory of Open Access Journals (Sweden)

    Siana Halim

    2007-01-01

    Full Text Available Production plants of a company are located in several areas that spread across Middle and East Java. As the production process employs mostly manpower, we suspected that each location has different characteristics affecting the productivity. Thus, the production data may have a spatial and hierarchical structure. For fitting a linear regression using the ordinary techniques, we are required to make some assumptions about the nature of the residuals i.e. independent, identically and normally distributed. However, these assumptions were rarely fulfilled especially for data that have a spatial and hierarchical structure. We worked out the problem using mixed effect model. This paper discusses the model construction of productivity and several characteristics in the production line by taking location as a random effect. The simple model with high utility that satisfies the necessary regression assumptions was built using a free statistic software R version 2.6.1.

  18. Eccentricity evolution in hierarchical triple systems with eccentric outer binaries

    CERN Document Server

    Georgakarakos, Nikolaos

    2014-01-01

    We develop a technique for estimating the inner eccentricity in hierarchical triple systems, with the inner orbit being initially circular, while the outer one is eccentric. We consider coplanar systems with well separated components and comparable masses. The derivation of short period terms is based on an expansion of the rate of change of the Runge-Lenz vector. Then, the short period terms are combined with secular terms, obtained by means of canonical perturbation theory. The validity of the theoretical equations is tested by numerical integrations of the full equations of motion.

  19. On the development of hierarchical solution strategies for nonlinear finite element formulations

    Science.gov (United States)

    Padovan, J.; Lackney, J.

    1984-01-01

    This paper develops a hierarchical type solution scheme which can handle the field equations associated with nonlinear finite element simulations. The overall procedure possesses various levels of application namely degree of freedom, nodal, elemental, substructural as well as global. In particular iteration, updating, assembly and solution control occurs at the various hierarchical levels. Due to the manner of formulation, the degree of matrix inversion depends on the size of the various hierarchical partitioned groups. In this context, degree of freedom partitioning requires no inversion. To benchmark the overall scheme, the results of several numerical examples are presented.

  20. Deliberate change without hierarchical influence?

    DEFF Research Database (Denmark)

    Nørskov, Sladjana; Kesting, Peter; Ulhøi, John Parm

    2017-01-01

    Purpose This paper aims to present that deliberate change is strongly associated with formal structures and top-down influence. Hierarchical configurations have been used to structure processes, overcome resistance and get things done. But is deliberate change also possible without formal...... reveals that deliberate change is indeed achievable in a non-hierarchical collaborative OSS community context. However, it presupposes the presence and active involvement of informal change agents. The paper identifies and specifies four key drivers for change agents’ influence. Originality....../value The findings contribute to organisational analysis by providing a deeper understanding of the importance of leadership in making deliberate change possible in non-hierarchical settings. It points to the importance of “change-by-conviction”, essentially based on voluntary behaviour. This can open the door...

  1. Static Correctness of Hierarchical Procedures

    DEFF Research Database (Denmark)

    Schwartzbach, Michael Ignatieff

    1990-01-01

    A system of hierarchical, fully recursive types in a truly imperative language allows program fragments written for small types to be reused for all larger types. To exploit this property to enable type-safe hierarchical procedures, it is necessary to impose a static requirement on procedure calls....... We introduce an example language and prove the existence of a sound requirement which preserves static correctness while allowing hierarchical procedures. This requirement is further shown to be optimal, in the sense that it imposes as few restrictions as possible. This establishes the theoretical...... basis for a general type hierarchy with static type checking, which enables first-order polymorphism combined with multiple inheritance and specialization in a language with assignments. We extend the results to include opaque types. An opaque version of a type is different from the original but has...

  2. General Nature of Multicollinearity in Multiple Regression Analysis.

    Science.gov (United States)

    Liu, Richard

    1981-01-01

    Discusses multiple regression, a very popular statistical technique in the field of education. One of the basic assumptions in regression analysis requires that independent variables in the equation should not be highly correlated. The problem of multicollinearity and some of the solutions to it are discussed. (Author)

  3. Structural integrity of hierarchical composites

    Directory of Open Access Journals (Sweden)

    Marco Paggi

    2012-01-01

    Full Text Available Interface mechanical problems are of paramount importance in engineering and materials science. Traditionally, due to the complexity of modelling their mechanical behaviour, interfaces are often treated as defects and their features are not explored. In this study, a different approach is illustrated, where the interfaces play an active role in the design of innovative hierarchical composites and are fundamental for their structural integrity. Numerical examples regarding cutting tools made of hierarchical cellular polycrystalline materials are proposed, showing that tailoring of interface properties at the different scales is the way to achieve superior mechanical responses that cannot be obtained using standard materials

  4. Using regression models to determine the poroelastic properties of cartilage.

    Science.gov (United States)

    Chung, Chen-Yuan; Mansour, Joseph M

    2013-07-26

    The feasibility of determining biphasic material properties using regression models was investigated. A transversely isotropic poroelastic finite element model of stress relaxation was developed and validated against known results. This model was then used to simulate load intensity for a wide range of material properties. Linear regression equations for load intensity as a function of the five independent material properties were then developed for nine time points (131, 205, 304, 390, 500, 619, 700, 800, and 1000s) during relaxation. These equations illustrate the effect of individual material property on the stress in the time history. The equations at the first four time points, as well as one at a later time (five equations) could be solved for the five unknown material properties given computed values of the load intensity. Results showed that four of the five material properties could be estimated from the regression equations to within 9% of the values used in simulation if time points up to 1000s are included in the set of equations. However, reasonable estimates of the out of plane Poisson's ratio could not be found. Although all regression equations depended on permeability, suggesting that true equilibrium was not realized at 1000s of simulation, it was possible to estimate material properties to within 10% of the expected values using equations that included data up to 800s. This suggests that credible estimates of most material properties can be obtained from tests that are not run to equilibrium, which is typically several thousand seconds.

  5. KINERJA JACKKNIFE RIDGE REGRESSION DALAM MENGATASI MULTIKOLINEARITAS

    Directory of Open Access Journals (Sweden)

    HANY DEVITA

    2015-02-01

    Full Text Available Ordinary least square is a parameter estimations for minimizing residual sum of squares. If the multicollinearity was found in the data, unbias estimator with minimum variance could not be reached. Multicollinearity is a linear correlation between independent variabels in model. Jackknife Ridge Regression(JRR as an extension of Generalized Ridge Regression (GRR for solving multicollinearity.  Generalized Ridge Regression is used to overcome the bias of estimators caused of presents multicollinearity by adding different bias parameter for each independent variabel in least square equation after transforming the data into an orthoghonal form. Beside that, JRR can  reduce the bias of the ridge estimator. The result showed that JRR model out performs GRR model.

  6. The Geometry of Enhancement in Multiple Regression.

    Science.gov (United States)

    Waller, Niels G

    2011-10-01

    In linear multiple regression, "enhancement" is said to occur when R (2)=b'r>r'r, where b is a p×1 vector of standardized regression coefficients and r is a p×1 vector of correlations between a criterion y and a set of standardized regressors, x. When p=1 then b≡r and enhancement cannot occur. When p=2, for all full-rank R xx≠I, R xx=E[xx']=V Λ V' (where V Λ V' denotes the eigen decomposition of R xx; λ 1>λ 2), the set [Formula: see text] contains four vectors; the set [Formula: see text]; [Formula: see text] contains an infinite number of vectors. When p≥3 (and λ 1>λ 2>⋯>λ p ), both sets contain an uncountably infinite number of vectors. Geometrical arguments demonstrate that B 1 occurs at the intersection of two hyper-ellipsoids in ℝ (p) . Equations are provided for populating the sets B 1 and B 2 and for demonstrating that maximum enhancement occurs when b is collinear with the eigenvector that is associated with λ p (the smallest eigenvalue of the predictor correlation matrix). These equations are used to illustrate the logic and the underlying geometry of enhancement in population, multiple-regression models. R code for simulating population regression models that exhibit enhancement of any degree and any number of predictors is included in Appendices A and B.

  7. Novel algorithm for constructing support vector machine regression ensemble

    Institute of Scientific and Technical Information of China (English)

    Li Bo; Li Xinjun; Zhao Zhiyan

    2006-01-01

    A novel algorithm for constructing support vector machine regression ensemble is proposed. As to regression prediction, support vector machine regression(SVMR) ensemble is proposed by resampling from given training data sets repeatedly and aggregating several independent SVMRs, each of which is trained to use a replicated training set. After training, several independently trained SVMRs need to be aggregated in an appropriate combination manner. Generally, the linear weighting is usually used like expert weighting score in Boosting Regression and it is without optimization capacity. Three combination techniques are proposed, including simple arithmetic mean,linear least square error weighting and nonlinear hierarchical combining that uses another upper-layer SVMR to combine several lower-layer SVMRs. Finally, simulation experiments demonstrate the accuracy and validity of the presented algorithm.

  8. Integral equations

    CERN Document Server

    Moiseiwitsch, B L

    2005-01-01

    Two distinct but related approaches hold the solutions to many mathematical problems--the forms of expression known as differential and integral equations. The method employed by the integral equation approach specifically includes the boundary conditions, which confers a valuable advantage. In addition, the integral equation approach leads naturally to the solution of the problem--under suitable conditions--in the form of an infinite series.Geared toward upper-level undergraduate students, this text focuses chiefly upon linear integral equations. It begins with a straightforward account, acco

  9. Conceptual hierarchical modeling to describe wetland plant community organization

    Science.gov (United States)

    Little, A.M.; Guntenspergen, G.R.; Allen, T.F.H.

    2010-01-01

    Using multivariate analysis, we created a hierarchical modeling process that describes how differently-scaled environmental factors interact to affect wetland-scale plant community organization in a system of small, isolated wetlands on Mount Desert Island, Maine. We followed the procedure: 1) delineate wetland groups using cluster analysis, 2) identify differently scaled environmental gradients using non-metric multidimensional scaling, 3) order gradient hierarchical levels according to spatiotem-poral scale of fluctuation, and 4) assemble hierarchical model using group relationships with ordination axes and post-hoc tests of environmental differences. Using this process, we determined 1) large wetland size and poor surface water chemistry led to the development of shrub fen wetland vegetation, 2) Sphagnum and water chemistry differences affected fen vs. marsh / sedge meadows status within small wetlands, and 3) small-scale hydrologic differences explained transitions between forested vs. non-forested and marsh vs. sedge meadow vegetation. This hierarchical modeling process can help explain how upper level contextual processes constrain biotic community response to lower-level environmental changes. It creates models with more nuanced spatiotemporal complexity than classification and regression tree procedures. Using this process, wetland scientists will be able to generate more generalizable theories of plant community organization, and useful management models. ?? Society of Wetland Scientists 2009.

  10. Modified Regression Correlation Coefficient for Poisson Regression Model

    Science.gov (United States)

    Kaengthong, Nattacha; Domthong, Uthumporn

    2017-09-01

    This study gives attention to indicators in predictive power of the Generalized Linear Model (GLM) which are widely used; however, often having some restrictions. We are interested in regression correlation coefficient for a Poisson regression model. This is a measure of predictive power, and defined by the relationship between the dependent variable (Y) and the expected value of the dependent variable given the independent variables [E(Y|X)] for the Poisson regression model. The dependent variable is distributed as Poisson. The purpose of this research was modifying regression correlation coefficient for Poisson regression model. We also compare the proposed modified regression correlation coefficient with the traditional regression correlation coefficient in the case of two or more independent variables, and having multicollinearity in independent variables. The result shows that the proposed regression correlation coefficient is better than the traditional regression correlation coefficient based on Bias and the Root Mean Square Error (RMSE).

  11. Sensory Hierarchical Organization and Reading.

    Science.gov (United States)

    Skapof, Jerome

    The purpose of this study was to judge the viability of an operational approach aimed at assessing response styles in reading using the hypothesis of sensory hierarchical organization. A sample of 103 middle-class children from a New York City public school, between the ages of five and seven, took part in a three phase experiment. Phase one…

  12. Memory Stacking in Hierarchical Networks.

    Science.gov (United States)

    Westö, Johan; May, Patrick J C; Tiitinen, Hannu

    2016-02-01

    Robust representations of sounds with a complex spectrotemporal structure are thought to emerge in hierarchically organized auditory cortex, but the computational advantage of this hierarchy remains unknown. Here, we used computational models to study how such hierarchical structures affect temporal binding in neural networks. We equipped individual units in different types of feedforward networks with local memory mechanisms storing recent inputs and observed how this affected the ability of the networks to process stimuli context dependently. Our findings illustrate that these local memories stack up in hierarchical structures and hence allow network units to exhibit selectivity to spectral sequences longer than the time spans of the local memories. We also illustrate that short-term synaptic plasticity is a potential local memory mechanism within the auditory cortex, and we show that it can bring robustness to context dependence against variation in the temporal rate of stimuli, while introducing nonlinearities to response profiles that are not well captured by standard linear spectrotemporal receptive field models. The results therefore indicate that short-term synaptic plasticity might provide hierarchically structured auditory cortex with computational capabilities important for robust representations of spectrotemporal patterns.

  13. Caudal Regression Syndrome

    Directory of Open Access Journals (Sweden)

    Karim Hardani*

    2012-05-01

    Full Text Available A 10-month-old baby presented with developmental delay. He had flaccid paralysis on physical examination.An MRI of the spine revealed malformation of the ninth and tenth thoracic vertebral bodies with complete agenesis of the rest of the spine down that level. The thoracic spinal cord ends at the level of the fifth thoracic vertebra with agenesis of the posterior arches of the eighth, ninth and tenth thoracic vertebral bodies. The roots of the cauda equina appear tightened down and backward and ended into a subdermal fibrous fatty tissue at the level of the ninth and tenth thoracic vertebral bodies (closed meningocele. These findings are consistent with caudal regression syndrome.

  14. Riccati equations

    Directory of Open Access Journals (Sweden)

    Lloyd K. Williams

    1987-01-01

    Full Text Available In this paper we find closed form solutions of some Riccati equations. Attention is restricted to the scalar as opposed to the matrix case. However, the ones considered have important applications to mathematics and the sciences, mostly in the form of the linear second-order ordinary differential equations which are solved herewith.

  15. Equation poems

    Science.gov (United States)

    Prentis, Jeffrey J.

    1996-05-01

    One of the most challenging goals of a physics teacher is to help students see that the equations of physics are connected to each other, and that they logically unfold from a small number of basic ideas. Derivations contain the vital information on this connective structure. In a traditional physics course, there are many problem-solving exercises, but few, if any, derivation exercises. Creating an equation poem is an exercise to help students see the unity of the equations of physics, rather than their diversity. An equation poem is a highly refined and eloquent set of symbolic statements that captures the essence of the derivation of an equation. Such a poetic derivation is uncluttered by the extraneous details that tend to distract a student from understanding the essential physics of the long, formal derivation.

  16. Penetration equations

    Energy Technology Data Exchange (ETDEWEB)

    Young, C.W. [Applied Research Associates, Inc., Albuquerque, NM (United States)

    1997-10-01

    In 1967, Sandia National Laboratories published empirical equations to predict penetration into natural earth materials and concrete. Since that time there have been several small changes to the basic equations, and several more additions to the overall technique for predicting penetration into soil, rock, concrete, ice, and frozen soil. The most recent update to the equations was published in 1988, and since that time there have been changes in the equations to better match the expanding data base, especially in concrete penetration. This is a standalone report documenting the latest version of the Young/Sandia penetration equations and related analytical techniques to predict penetration into natural earth materials and concrete. 11 refs., 6 tabs.

  17. Hierarchical Prisoner's Dilemma in Hierarchical Public-Goods Game

    CERN Document Server

    Fujimoto, Yuma; Kaneko, Kunihiko

    2016-01-01

    The dilemma in cooperation is one of the major concerns in game theory. In a public-goods game, each individual pays a cost for cooperation, or to prevent defection, and receives a reward from the collected cost in a group. Thus, defection is beneficial for each individual, while cooperation is beneficial for the group. Now, groups (say, countries) consisting of individual players also play games. To study such a multi-level game, we introduce a hierarchical public-goods (HPG) game in which two groups compete for finite resources by utilizing costs collected from individuals in each group. Analyzing this HPG game, we found a hierarchical prisoner's dilemma, in which groups choose the defection policy (say, armaments) as a Nash strategy to optimize each group's benefit, while cooperation optimizes the total benefit. On the other hand, for each individual within a group, refusing to pay the cost (say, tax) is a Nash strategy, which turns to be a cooperation policy for the group, thus leading to a hierarchical d...

  18. Differential equations

    CERN Document Server

    Tricomi, FG

    2013-01-01

    Based on his extensive experience as an educator, F. G. Tricomi wrote this practical and concise teaching text to offer a clear idea of the problems and methods of the theory of differential equations. The treatment is geared toward advanced undergraduates and graduate students and addresses only questions that can be resolved with rigor and simplicity.Starting with a consideration of the existence and uniqueness theorem, the text advances to the behavior of the characteristics of a first-order equation, boundary problems for second-order linear equations, asymptotic methods, and diff

  19. ECoS, a framework for modelling hierarchical spatial systems.

    Science.gov (United States)

    Harris, John R W; Gorley, Ray N

    2003-10-01

    A general framework for modelling hierarchical spatial systems has been developed and implemented as the ECoS3 software package. The structure of this framework is described, and illustrated with representative examples. It allows the set-up and integration of sets of advection-diffusion equations representing multiple constituents interacting in a spatial context. Multiple spaces can be defined, with zero, one or two-dimensions and can be nested, and linked through constituent transfers. Model structure is generally object-oriented and hierarchical, reflecting the natural relations within its real-world analogue. Velocities, dispersions and inter-constituent transfers, together with additional functions, are defined as properties of constituents to which they apply. The resulting modular structure of ECoS models facilitates cut and paste model development, and template model components have been developed for the assembly of a range of estuarine water quality models. Published examples of applications to the geochemical dynamics of estuaries are listed.

  20. Cooperative mechanism of self-regulation in hierarchical living systems

    CERN Document Server

    Lubashevsky, I A

    1998-01-01

    We study the problem of how a ``living'' system complex in structure can respond perfectly to local changes in the environment. Such a system is assumed to consist of a distributed ``living'' medium and a hierarchical ``supplying'' network that provides this medium with ``nutritious'' products. Because of the hierarchical organization each element of the supplying network has to behave in a self-consistent way for the system can adapt to changes in the environment. We propose a cooperative mechanism of self-regulation by which the system as a whole can react perfectly. This mechanism is based on an individual response of each element to the corresponding small piece of the information on the state of the ``living'' medium. The conservation of flux through the supplying network gives rise to a certain processing of information and the self-consistent behavior of the elements, leading to the perfect self-regulation. The corresponding equations governing the ``living'' medium state are obtained.

  1. Hierarchical structure of biological systems

    Science.gov (United States)

    Alcocer-Cuarón, Carlos; Rivera, Ana L; Castaño, Victor M

    2014-01-01

    A general theory of biological systems, based on few fundamental propositions, allows a generalization of both Wierner and Berthalanffy approaches to theoretical biology. Here, a biological system is defined as a set of self-organized, differentiated elements that interact pair-wise through various networks and media, isolated from other sets by boundaries. Their relation to other systems can be described as a closed loop in a steady-state, which leads to a hierarchical structure and functioning of the biological system. Our thermodynamical approach of hierarchical character can be applied to biological systems of varying sizes through some general principles, based on the exchange of energy information and/or mass from and within the systems. PMID:24145961

  2. Automatic Hierarchical Color Image Classification

    Directory of Open Access Journals (Sweden)

    Jing Huang

    2003-02-01

    Full Text Available Organizing images into semantic categories can be extremely useful for content-based image retrieval and image annotation. Grouping images into semantic classes is a difficult problem, however. Image classification attempts to solve this hard problem by using low-level image features. In this paper, we propose a method for hierarchical classification of images via supervised learning. This scheme relies on using a good low-level feature and subsequently performing feature-space reconfiguration using singular value decomposition to reduce noise and dimensionality. We use the training data to obtain a hierarchical classification tree that can be used to categorize new images. Our experimental results suggest that this scheme not only performs better than standard nearest-neighbor techniques, but also has both storage and computational advantages.

  3. Intuitionistic fuzzy hierarchical clustering algorithms

    Institute of Scientific and Technical Information of China (English)

    Xu Zeshui

    2009-01-01

    Intuitionistic fuzzy set (IFS) is a set of 2-tuple arguments, each of which is characterized by a mem-bership degree and a nonmembership degree. The generalized form of IFS is interval-valued intuitionistic fuzzy set (IVIFS), whose components are intervals rather than exact numbers. IFSs and IVIFSs have been found to be very useful to describe vagueness and uncertainty. However, it seems that little attention has been focused on the clus-tering analysis of IFSs and IVIFSs. An intuitionistic fuzzy hierarchical algorithm is introduced for clustering IFSs, which is based on the traditional hierarchical clustering procedure, the intuitionistic fuzzy aggregation operator, and the basic distance measures between IFSs: the Hamming distance, normalized Hamming, weighted Hamming, the Euclidean distance, the normalized Euclidean distance, and the weighted Euclidean distance. Subsequently, the algorithm is extended for clustering IVIFSs. Finally the algorithm and its extended form are applied to the classifications of building materials and enterprises respectively.

  4. Hierarchical Formation of Galactic Clusters

    CERN Document Server

    Elmegreen, B G

    2006-01-01

    Young stellar groupings and clusters have hierarchical patterns ranging from flocculent spiral arms and star complexes on the largest scale to OB associations, OB subgroups, small loose groups, clusters and cluster subclumps on the smallest scales. There is no obvious transition in morphology at the cluster boundary, suggesting that clusters are only the inner parts of the hierarchy where stars have had enough time to mix. The power-law cluster mass function follows from this hierarchical structure: n(M_cl) M_cl^-b for b~2. This value of b is independently required by the observation that the summed IMFs from many clusters in a galaxy equals approximately the IMF of each cluster.

  5. Hierarchical Cont-Bouchaud model

    CERN Document Server

    Paluch, Robert; Holyst, Janusz A

    2015-01-01

    We extend the well-known Cont-Bouchaud model to include a hierarchical topology of agent's interactions. The influence of hierarchy on system dynamics is investigated by two models. The first one is based on a multi-level, nested Erdos-Renyi random graph and individual decisions by agents according to Potts dynamics. This approach does not lead to a broad return distribution outside a parameter regime close to the original Cont-Bouchaud model. In the second model we introduce a limited hierarchical Erdos-Renyi graph, where merging of clusters at a level h+1 involves only clusters that have merged at the previous level h and we use the original Cont-Bouchaud agent dynamics on resulting clusters. The second model leads to a heavy-tail distribution of cluster sizes and relative price changes in a wide range of connection densities, not only close to the percolation threshold.

  6. Differential equations

    CERN Document Server

    Barbu, Viorel

    2016-01-01

    This textbook is a comprehensive treatment of ordinary differential equations, concisely presenting basic and essential results in a rigorous manner. Including various examples from physics, mechanics, natural sciences, engineering and automatic theory, Differential Equations is a bridge between the abstract theory of differential equations and applied systems theory. Particular attention is given to the existence and uniqueness of the Cauchy problem, linear differential systems, stability theory and applications to first-order partial differential equations. Upper undergraduate students and researchers in applied mathematics and systems theory with a background in advanced calculus will find this book particularly useful. Supplementary topics are covered in an appendix enabling the book to be completely self-contained.

  7. Hierarchical Clustering and Active Galaxies

    CERN Document Server

    Hatziminaoglou, E; Manrique, A

    2000-01-01

    The growth of Super Massive Black Holes and the parallel development of activity in galactic nuclei are implemented in an analytic code of hierarchical clustering. The evolution of the luminosity function of quasars and AGN will be computed with special attention paid to the connection between quasars and Seyfert galaxies. One of the major interests of the model is the parallel study of quasar formation and evolution and the History of Star Formation.

  8. Hybrid and hierarchical composite materials

    CERN Document Server

    Kim, Chang-Soo; Sano, Tomoko

    2015-01-01

    This book addresses a broad spectrum of areas in both hybrid materials and hierarchical composites, including recent development of processing technologies, structural designs, modern computer simulation techniques, and the relationships between the processing-structure-property-performance. Each topic is introduced at length with numerous  and detailed examples and over 150 illustrations.   In addition, the authors present a method of categorizing these materials, so that representative examples of all material classes are discussed.

  9. Pseudodifferential equations over non-Archimedean spaces

    CERN Document Server

    Zúñiga-Galindo, W A

    2016-01-01

    Focusing on p-adic and adelic analogues of pseudodifferential equations, this monograph presents a very general theory of parabolic-type equations and their Markov processes motivated by their connection with models of complex hierarchic systems. The Gelfand-Shilov method for constructing fundamental solutions using local zeta functions is developed in a p-adic setting and several particular equations are studied, such as the p-adic analogues of the Klein-Gordon equation. Pseudodifferential equations for complex-valued functions on non-Archimedean local fields are central to contemporary harmonic analysis and mathematical physics and their theory reveals a deep connection with probability and number theory. The results of this book extend and complement the material presented by Vladimirov, Volovich and Zelenov (1994) and Kochubei (2001), which emphasize spectral theory and evolution equations in a single variable, and Albeverio, Khrennikov and Shelkovich (2010), which deals mainly with the theory and applica...

  10. Treatment Protocols as Hierarchical Structures

    Science.gov (United States)

    Ben-Bassat, Moshe; Carlson, Richard W.; Puri, Vinod K.; Weil, Max Harry

    1978-01-01

    We view a treatment protocol as a hierarchical structure of therapeutic modules. The lowest level of this structure consists of individual therapeutic actions. Combinations of individual actions define higher level modules, which we call routines. Routines are designed to manage limited clinical problems, such as the routine for fluid loading to correct hypovolemia. Combinations of routines and additional actions, together with comments, questions, or precautions organized in a branching logic, in turn, define the treatment protocol for a given disorder. Adoption of this modular approach may facilitate the formulation of treatment protocols, since the physician is not required to prepare complex flowcharts. This hierarchical approach also allows protocols to be updated and modified in a flexible manner. By use of such a standard format, individual components may be fitted together to create protocols for multiple disorders. The technique is suited for computer implementation. We believe that this hierarchical approach may facilitate standarization of patient care as well as aid in clinical teaching. A protocol for acute pancreatitis is used to illustrate this technique.

  11. A Bayesian approach to linear regression in astronomy

    CERN Document Server

    Sereno, Mauro

    2015-01-01

    Linear regression is common in astronomical analyses. I discuss a Bayesian hierarchical modeling of data with heteroscedastic and possibly correlated measurement errors and intrinsic scatter. The method fully accounts for time evolution. The slope, the normalization, and the intrinsic scatter of the relation can evolve with the redshift. The intrinsic distribution of the independent variable is approximated using a mixture of Gaussian distributions whose means and standard deviations depend on time. The method can address scatter in the measured independent variable (a kind of Eddington bias), selection effects in the response variable (Malmquist bias), and departure from linearity in form of a knee. I tested the method with toy models and simulations and quantified the effect of biases and inefficient modeling. The R-package LIRA (LInear Regression in Astronomy) is made available to perform the regression.

  12. Robust Bayesian Regularized Estimation Based on t Regression Model

    Directory of Open Access Journals (Sweden)

    Zean Li

    2015-01-01

    Full Text Available The t distribution is a useful extension of the normal distribution, which can be used for statistical modeling of data sets with heavy tails, and provides robust estimation. In this paper, in view of the advantages of Bayesian analysis, we propose a new robust coefficient estimation and variable selection method based on Bayesian adaptive Lasso t regression. A Gibbs sampler is developed based on the Bayesian hierarchical model framework, where we treat the t distribution as a mixture of normal and gamma distributions and put different penalization parameters for different regression coefficients. We also consider the Bayesian t regression with adaptive group Lasso and obtain the Gibbs sampler from the posterior distributions. Both simulation studies and real data example show that our method performs well compared with other existing methods when the error distribution has heavy tails and/or outliers.

  13. Rank-preserving regression: a more robust rank regression model against outliers.

    Science.gov (United States)

    Chen, Tian; Kowalski, Jeanne; Chen, Rui; Wu, Pan; Zhang, Hui; Feng, Changyong; Tu, Xin M

    2016-08-30

    Mean-based semi-parametric regression models such as the popular generalized estimating equations are widely used to improve robustness of inference over parametric models. Unfortunately, such models are quite sensitive to outlying observations. The Wilcoxon-score-based rank regression (RR) provides more robust estimates over generalized estimating equations against outliers. However, the RR and its extensions do not sufficiently address missing data arising in longitudinal studies. In this paper, we propose a new approach to address outliers under a different framework based on the functional response models. This functional-response-model-based alternative not only addresses limitations of the RR and its extensions for longitudinal data, but, with its rank-preserving property, even provides more robust estimates than these alternatives. The proposed approach is illustrated with both real and simulated data. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Regression in autistic spectrum disorders.

    Science.gov (United States)

    Stefanatos, Gerry A

    2008-12-01

    A significant proportion of children diagnosed with Autistic Spectrum Disorder experience a developmental regression characterized by a loss of previously-acquired skills. This may involve a loss of speech or social responsitivity, but often entails both. This paper critically reviews the phenomena of regression in autistic spectrum disorders, highlighting the characteristics of regression, age of onset, temporal course, and long-term outcome. Important considerations for diagnosis are discussed and multiple etiological factors currently hypothesized to underlie the phenomenon are reviewed. It is argued that regressive autistic spectrum disorders can be conceptualized on a spectrum with other regressive disorders that may share common pathophysiological features. The implications of this viewpoint are discussed.

  15. Combining Alphas via Bounded Regression

    Directory of Open Access Journals (Sweden)

    Zura Kakushadze

    2015-11-01

    Full Text Available We give an explicit algorithm and source code for combining alpha streams via bounded regression. In practical applications, typically, there is insufficient history to compute a sample covariance matrix (SCM for a large number of alphas. To compute alpha allocation weights, one then resorts to (weighted regression over SCM principal components. Regression often produces alpha weights with insufficient diversification and/or skewed distribution against, e.g., turnover. This can be rectified by imposing bounds on alpha weights within the regression procedure. Bounded regression can also be applied to stock and other asset portfolio construction. We discuss illustrative examples.

  16. 外商直接投资、知识产权保护与出口产业结构调整--基于联立方程和VAR模型实证分析%Foreign Direct Investment,Intellectual Property Protection and Industrial Restructure of Export---The Empirical Research Based on Simultaneous Equations and Vector Auto Regression Models

    Institute of Scientific and Technical Information of China (English)

    周游

    2014-01-01

    By constructing simultaneous equations and taking advantage of vector auto regression models,this paper makes empirical research on the interrelation among Chinese foreign direct investment,intellectual property protection and export industrial structure from 1990 to 2011. The result shows that:structural optimization of export industry is not conducive to at-tract foreign direct investment,but foreign direct investment is conducive to structural optimization of export industry;It is beneficial to the structural optimization of Chinese export industry and inflow of foreign direct investment by strengthening of intellectual property protection,simultaneously,the structural optimization of Chinese export industry and inflow of foreign direct investment promote the improvement of the level of protection of intellectual property rights.%通过构建联立方程,并利用VAR模型,对我国1990~2011年外商直接投资、知识产权保护和出口产业结构之间相互关系进行实证研究,结果表明:出口产业结构优化不利于我国吸引外商直接投资,但外商直接投资有利于我国出口产业结构优化;加强知识产权保护有利于我国出口产业结构优化和外商直接投资流入,同时出口产业结构优化和外商直接投资流入也促进了我国知识产权保护水平的提高。

  17. Linear regression in astronomy. I

    Science.gov (United States)

    Isobe, Takashi; Feigelson, Eric D.; Akritas, Michael G.; Babu, Gutti Jogesh

    1990-01-01

    Five methods for obtaining linear regression fits to bivariate data with unknown or insignificant measurement errors are discussed: ordinary least-squares (OLS) regression of Y on X, OLS regression of X on Y, the bisector of the two OLS lines, orthogonal regression, and 'reduced major-axis' regression. These methods have been used by various researchers in observational astronomy, most importantly in cosmic distance scale applications. Formulas for calculating the slope and intercept coefficients and their uncertainties are given for all the methods, including a new general form of the OLS variance estimates. The accuracy of the formulas was confirmed using numerical simulations. The applicability of the procedures is discussed with respect to their mathematical properties, the nature of the astronomical data under consideration, and the scientific purpose of the regression. It is found that, for problems needing symmetrical treatment of the variables, the OLS bisector performs significantly better than orthogonal or reduced major-axis regression.

  18. SDE based regression for random PDEs

    KAUST Repository

    Bayer, Christian

    2016-01-06

    A simulation based method for the numerical solution of PDE with random coefficients is presented. By the Feynman-Kac formula, the solution can be represented as conditional expectation of a functional of a corresponding stochastic differential equation driven by independent noise. A time discretization of the SDE for a set of points in the domain and a subsequent Monte Carlo regression lead to an approximation of the global solution of the random PDE. We provide an initial error and complexity analysis of the proposed method along with numerical examples illustrating its behaviour.

  19. Secular Evolution of Hierarchical Triple Star Systems

    Science.gov (United States)

    Ford, Eric B.; Kozinsky, Boris; Rasio, Frederic A.

    2000-05-01

    We derive octupole-level secular perturbation equations for hierarchical triple systems, using classical Hamiltonian perturbation techniques. Our equations describe the secular evolution of the orbital eccentricities and inclinations over timescales that are long compared to the orbital periods. By extending previous work done to leading (quadrupole) order to octupole level (i.e., including terms of order α3, where α≡a1/a2quadrupole-level theory of Kozai gives a vanishing result in the limit of zero relative inclination. The classical planetary perturbation theory, while valid to all orders in α, applies only to orbits of low-mass objects orbiting a common central mass, with low eccentricities and low relative inclinations. For triple systems containing a close inner binary, we also discuss the possible interaction between the classical Newtonian perturbations and the general relativistic precession of the inner orbit. In some cases we show that this interaction can lead to resonances and a significant increase in the maximum amplitude of eccentricity perturbations. We establish the validity of our analytic expressions by providing detailed comparisons with the results of direct numerical integrations of the three-body problem obtained for a large number of representative cases. In addition, we show that our expressions reduce correctly to previously published analytic results obtained in various limiting regimes. We also discuss applications of the theory in the context of several observed triple systems of current interest, including the millisecond pulsar PSR B1620-26 in M4, the giant planet in 16 Cygni, and the protostellar binary TMR-1.

  20. Hierarchical Gompertzian growth maps with application in astrophysics

    CERN Document Server

    De Martino, S

    2010-01-01

    The Gompertz model describes the growth in time of the size of significant quantities associated to a large number of systems, taking into account nonlinearity features by a linear equation satisfied by a nonlinear function of the size. Following this scheme, we introduce a class of hierarchical maps which describe discrete sequences of intermediate characteristic scales. We find the general solutions of the maps, which account for a rich set of possible phenomena. Eventually, we provide an important application, by showing that a map belonging to the class so introduced generates all the observed astrophysical length and mass scales.

  1. Examining the Factor Structure and Hierarchical Nature of the Quality of Life Construct

    Science.gov (United States)

    Wang, Mian; Schalock, Robert L.; Verdugo, Miguel A.; Jenaro, Christina

    2010-01-01

    There is considerable debate in the area of individual quality of life research regarding the factor structure and hierarchical nature of the quality of life construct. Our purpose in this study was to test via structural equation modeling an a priori quality of life model consisting of eight first-order factors and one second-order factor. Data…

  2. Time-adaptive quantile regression

    DEFF Research Database (Denmark)

    Møller, Jan Kloppenborg; Nielsen, Henrik Aalborg; Madsen, Henrik

    2008-01-01

    An algorithm for time-adaptive quantile regression is presented. The algorithm is based on the simplex algorithm, and the linear optimization formulation of the quantile regression problem is given. The observations have been split to allow a direct use of the simplex algorithm. The simplex method...... and an updating procedure are combined into a new algorithm for time-adaptive quantile regression, which generates new solutions on the basis of the old solution, leading to savings in computation time. The suggested algorithm is tested against a static quantile regression model on a data set with wind power...... production, where the models combine splines and quantile regression. The comparison indicates superior performance for the time-adaptive quantile regression in all the performance parameters considered....

  3. Linear regression in astronomy. II

    Science.gov (United States)

    Feigelson, Eric D.; Babu, Gutti J.

    1992-01-01

    A wide variety of least-squares linear regression procedures used in observational astronomy, particularly investigations of the cosmic distance scale, are presented and discussed. The classes of linear models considered are (1) unweighted regression lines, with bootstrap and jackknife resampling; (2) regression solutions when measurement error, in one or both variables, dominates the scatter; (3) methods to apply a calibration line to new data; (4) truncated regression models, which apply to flux-limited data sets; and (5) censored regression models, which apply when nondetections are present. For the calibration problem we develop two new procedures: a formula for the intercept offset between two parallel data sets, which propagates slope errors from one regression to the other; and a generalization of the Working-Hotelling confidence bands to nonstandard least-squares lines. They can provide improved error analysis for Faber-Jackson, Tully-Fisher, and similar cosmic distance scale relations.

  4. Hierarchical Control for Smart Grids

    DEFF Research Database (Denmark)

    Trangbæk, K; Bendtsen, Jan Dimon; Stoustrup, Jakob

    2011-01-01

    This paper deals with hierarchical model predictive control (MPC) of smart grid systems. The design consists of a high level MPC controller, a second level of so-called aggregators, which reduces the computational and communication-related load on the high-level control, and a lower level...... of autonomous consumers. The control system is tasked with balancing electric power production and consumption within the smart grid, and makes active use of the flexibility of a large number of power producing and/or power consuming units. The objective is to accommodate the load variation on the grid, arising...

  5. Polynomial Regression on Riemannian Manifolds

    CERN Document Server

    Hinkle, Jacob; Fletcher, P Thomas; Joshi, Sarang

    2012-01-01

    In this paper we develop the theory of parametric polynomial regression in Riemannian manifolds and Lie groups. We show application of Riemannian polynomial regression to shape analysis in Kendall shape space. Results are presented, showing the power of polynomial regression on the classic rat skull growth data of Bookstein as well as the analysis of the shape changes associated with aging of the corpus callosum from the OASIS Alzheimer's study.

  6. Evaluating Differential Effects Using Regression Interactions and Regression Mixture Models

    Science.gov (United States)

    Van Horn, M. Lee; Jaki, Thomas; Masyn, Katherine; Howe, George; Feaster, Daniel J.; Lamont, Andrea E.; George, Melissa R. W.; Kim, Minjung

    2015-01-01

    Research increasingly emphasizes understanding differential effects. This article focuses on understanding regression mixture models, which are relatively new statistical methods for assessing differential effects by comparing results to using an interactive term in linear regression. The research questions which each model answers, their…

  7. Quantile regression theory and applications

    CERN Document Server

    Davino, Cristina; Vistocco, Domenico

    2013-01-01

    A guide to the implementation and interpretation of Quantile Regression models This book explores the theory and numerous applications of quantile regression, offering empirical data analysis as well as the software tools to implement the methods. The main focus of this book is to provide the reader with a comprehensivedescription of the main issues concerning quantile regression; these include basic modeling, geometrical interpretation, estimation and inference for quantile regression, as well as issues on validity of the model, diagnostic tools. Each methodological aspect is explored and

  8. Business applications of multiple regression

    CERN Document Server

    Richardson, Ronny

    2015-01-01

    This second edition of Business Applications of Multiple Regression describes the use of the statistical procedure called multiple regression in business situations, including forecasting and understanding the relationships between variables. The book assumes a basic understanding of statistics but reviews correlation analysis and simple regression to prepare the reader to understand and use multiple regression. The techniques described in the book are illustrated using both Microsoft Excel and a professional statistical program. Along the way, several real-world data sets are analyzed in deta

  9. Hierarchical Structures in Hypertext Learning Environments

    NARCIS (Netherlands)

    Bezdan, Eniko; Kester, Liesbeth; Kirschner, Paul A.

    2011-01-01

    Bezdan, E., Kester, L., & Kirschner, P. A. (2011, 9 September). Hierarchical Structures in Hypertext Learning Environments. Presentation for the visit of KU Leuven, Open University, Heerlen, The Netherlands.

  10. Dynamic Organization of Hierarchical Memories.

    Science.gov (United States)

    Kurikawa, Tomoki; Kaneko, Kunihiko

    2016-01-01

    In the brain, external objects are categorized in a hierarchical way. Although it is widely accepted that objects are represented as static attractors in neural state space, this view does not take account interaction between intrinsic neural dynamics and external input, which is essential to understand how neural system responds to inputs. Indeed, structured spontaneous neural activity without external inputs is known to exist, and its relationship with evoked activities is discussed. Then, how categorical representation is embedded into the spontaneous and evoked activities has to be uncovered. To address this question, we studied bifurcation process with increasing input after hierarchically clustered associative memories are learned. We found a "dynamic categorization"; neural activity without input wanders globally over the state space including all memories. Then with the increase of input strength, diffuse representation of higher category exhibits transitions to focused ones specific to each object. The hierarchy of memories is embedded in the transition probability from one memory to another during the spontaneous dynamics. With increased input strength, neural activity wanders over a narrower state space including a smaller set of memories, showing more specific category or memory corresponding to the applied input. Moreover, such coarse-to-fine transitions are also observed temporally during transient process under constant input, which agrees with experimental findings in the temporal cortex. These results suggest the hierarchy emerging through interaction with an external input underlies hierarchy during transient process, as well as in the spontaneous activity.

  11. Collaborative regression-based anatomical landmark detection

    Science.gov (United States)

    Gao, Yaozong; Shen, Dinggang

    2015-12-01

    Anatomical landmark detection plays an important role in medical image analysis, e.g. for registration, segmentation and quantitative analysis. Among the various existing methods for landmark detection, regression-based methods have recently attracted much attention due to their robustness and efficiency. In these methods, landmarks are localised through voting from all image voxels, which is completely different from the classification-based methods that use voxel-wise classification to detect landmarks. Despite their robustness, the accuracy of regression-based landmark detection methods is often limited due to (1) the inclusion of uninformative image voxels in the voting procedure, and (2) the lack of effective ways to incorporate inter-landmark spatial dependency into the detection step. In this paper, we propose a collaborative landmark detection framework to address these limitations. The concept of collaboration is reflected in two aspects. (1) Multi-resolution collaboration. A multi-resolution strategy is proposed to hierarchically localise landmarks by gradually excluding uninformative votes from faraway voxels. Moreover, for informative voxels near the landmark, a spherical sampling strategy is also designed at the training stage to improve their prediction accuracy. (2) Inter-landmark collaboration. A confidence-based landmark detection strategy is proposed to improve the detection accuracy of ‘difficult-to-detect’ landmarks by using spatial guidance from ‘easy-to-detect’ landmarks. To evaluate our method, we conducted experiments extensively on three datasets for detecting prostate landmarks and head & neck landmarks in computed tomography images, and also dental landmarks in cone beam computed tomography images. The results show the effectiveness of our collaborative landmark detection framework in improving landmark detection accuracy, compared to other state-of-the-art methods.

  12. Prediction of road accidents: A Bayesian hierarchical approach

    DEFF Research Database (Denmark)

    Deublein, Markus; Schubert, Matthias; Adey, Bryan T.;

    2013-01-01

    In this paper a novel methodology for the prediction of the occurrence of road accidents is presented. The methodology utilizes a combination of three statistical methods: (1) gamma-updating of the occurrence rates of injury accidents and injured road users, (2) hierarchical multivariate Poisson......-lognormal regression analysis taking into account correlations amongst multiple dependent model response variables and effects of discrete accident count data e.g. over-dispersion, and (3) Bayesian inference algorithms, which are applied by means of data mining techniques supported by Bayesian Probabilistic Networks...... in order to represent non-linearity between risk indicating and model response variables, as well as different types of uncertainties which might be present in the development of the specific models.Prior Bayesian Probabilistic Networks are first established by means of multivariate regression analysis...

  13. Testing discontinuities in nonparametric regression

    KAUST Repository

    Dai, Wenlin

    2017-01-19

    In nonparametric regression, it is often needed to detect whether there are jump discontinuities in the mean function. In this paper, we revisit the difference-based method in [13 H.-G. Müller and U. Stadtmüller, Discontinuous versus smooth regression, Ann. Stat. 27 (1999), pp. 299–337. doi: 10.1214/aos/1018031100

  14. Logistic Regression: Concept and Application

    Science.gov (United States)

    Cokluk, Omay

    2010-01-01

    The main focus of logistic regression analysis is classification of individuals in different groups. The aim of the present study is to explain basic concepts and processes of binary logistic regression analysis intended to determine the combination of independent variables which best explain the membership in certain groups called dichotomous…

  15. Learning curve estimation in medical devices and procedures: hierarchical modeling.

    Science.gov (United States)

    Govindarajulu, Usha S; Stillo, Marco; Goldfarb, David; Matheny, Michael E; Resnic, Frederic S

    2017-07-30

    In the use of medical device procedures, learning effects have been shown to be a critical component of medical device safety surveillance. To support their estimation of these effects, we evaluated multiple methods for modeling these rates within a complex simulated dataset representing patients treated by physicians clustered within institutions. We employed unique modeling for the learning curves to incorporate the learning hierarchy between institution and physicians and then modeled them within established methods that work with hierarchical data such as generalized estimating equations (GEE) and generalized linear mixed effect models. We found that both methods performed well, but that the GEE may have some advantages over the generalized linear mixed effect models for ease of modeling and a substantially lower rate of model convergence failures. We then focused more on using GEE and performed a separate simulation to vary the shape of the learning curve as well as employed various smoothing methods to the plots. We concluded that while both hierarchical methods can be used with our mathematical modeling of the learning curve, the GEE tended to perform better across multiple simulated scenarios in order to accurately model the learning effect as a function of physician and hospital hierarchical data in the use of a novel medical device. We found that the choice of shape used to produce the 'learning-free' dataset would be dataset specific, while the choice of smoothing method was negligibly different from one another. This was an important application to understand how best to fit this unique learning curve function for hierarchical physician and hospital data. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Regression Testing Cost Reduction Suite

    Directory of Open Access Journals (Sweden)

    Mohamed Alaa El-Din

    2014-08-01

    Full Text Available The estimated cost of software maintenance exceeds 70 percent of total software costs [1], and large portion of this maintenance expenses is devoted to regression testing. Regression testing is an expensive and frequently executed maintenance activity used to revalidate the modified software. Any reduction in the cost of regression testing would help to reduce the software maintenance cost. Test suites once developed are reused and updated frequently as the software evolves. As a result, some test cases in the test suite may become redundant when the software is modified over time since the requirements covered by them are also covered by other test cases. Due to the resource and time constraints for re-executing large test suites, it is important to develop techniques to minimize available test suites by removing redundant test cases. In general, the test suite minimization problem is NP complete. This paper focuses on proposing an effective approach for reducing the cost of regression testing process. The proposed approach is applied on real-time case study. It was found that the reduction in cost of regression testing for each regression testing cycle is ranging highly improved in the case of programs containing high number of selected statements which in turn maximize the benefits of using it in regression testing of complex software systems. The reduction in the regression test suite size will reduce the effort and time required by the testing teams to execute the regression test suite. Since regression testing is done more frequently in software maintenance phase, the overall software maintenance cost can be reduced considerably by applying the proposed approach.

  17. Discovering hierarchical structure in normal relational data

    DEFF Research Database (Denmark)

    Schmidt, Mikkel Nørgaard; Herlau, Tue; Mørup, Morten

    2014-01-01

    Hierarchical clustering is a widely used tool for structuring and visualizing complex data using similarity. Traditionally, hierarchical clustering is based on local heuristics that do not explicitly provide assessment of the statistical saliency of the extracted hierarchy. We propose a non-param...

  18. Discursive Hierarchical Patterning in Economics Cases

    Science.gov (United States)

    Lung, Jane

    2011-01-01

    This paper attempts to apply Lung's (2008) model of the discursive hierarchical patterning of cases to a closer and more specific study of Economics cases and proposes a model of the distinct discursive hierarchical patterning of the same. It examines a corpus of 150 Economics cases with a view to uncovering the patterns of discourse construction.…

  19. A Model of Hierarchical Key Assignment Scheme

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhigang; ZHAO Jing; XU Maozhi

    2006-01-01

    A model of the hierarchical key assignment scheme is approached in this paper, which can be used with any cryptography algorithm. Besides, the optimal dynamic control property of a hierarchical key assignment scheme will be defined in this paper. Also, our scheme model will meet this property.

  20. Rank regression: an alternative regression approach for data with outliers.

    Science.gov (United States)

    Chen, Tian; Tang, Wan; Lu, Ying; Tu, Xin

    2014-10-01

    Linear regression models are widely used in mental health and related health services research. However, the classic linear regression analysis assumes that the data are normally distributed, an assumption that is not met by the data obtained in many studies. One method of dealing with this problem is to use semi-parametric models, which do not require that the data be normally distributed. But semi-parametric models are quite sensitive to outlying observations, so the generated estimates are unreliable when study data includes outliers. In this situation, some researchers trim the extreme values prior to conducting the analysis, but the ad-hoc rules used for data trimming are based on subjective criteria so different methods of adjustment can yield different results. Rank regression provides a more objective approach to dealing with non-normal data that includes outliers. This paper uses simulated and real data to illustrate this useful regression approach for dealing with outliers and compares it to the results generated using classical regression models and semi-parametric regression models.

  1. Galaxy formation through hierarchical clustering

    Science.gov (United States)

    White, Simon D. M.; Frenk, Carlos S.

    1991-01-01

    Analytic methods for studying the formation of galaxies by gas condensation within massive dark halos are presented. The present scheme applies to cosmogonies where structure grows through hierarchical clustering of a mixture of gas and dissipationless dark matter. The simplest models consistent with the current understanding of N-body work on dissipationless clustering, and that of numerical and analytic work on gas evolution and cooling are adopted. Standard models for the evolution of the stellar population are also employed, and new models for the way star formation heats and enriches the surrounding gas are constructed. Detailed results are presented for a cold dark matter universe with Omega = 1 and H(0) = 50 km/s/Mpc, but the present methods are applicable to other models. The present luminosity functions contain significantly more faint galaxies than are observed.

  2. Groups possessing extensive hierarchical decompositions

    CERN Document Server

    Januszkiewicz, T; Leary, I J

    2009-01-01

    Kropholler's class of groups is the smallest class of groups which contains all finite groups and is closed under the following operator: whenever $G$ admits a finite-dimensional contractible $G$-CW-complex in which all stabilizer groups are in the class, then $G$ is itself in the class. Kropholler's class admits a hierarchical structure, i.e., a natural filtration indexed by the ordinals. For example, stage 0 of the hierarchy is the class of all finite groups, and stage 1 contains all groups of finite virtual cohomological dimension. We show that for each countable ordinal $\\alpha$, there is a countable group that is in Kropholler's class which does not appear until the $\\alpha+1$st stage of the hierarchy. Previously this was known only for $\\alpha= 0$, 1 and 2. The groups that we construct contain torsion. We also review the construction of a torsion-free group that lies in the third stage of the hierarchy.

  3. Hierarchical networks of scientific journals

    CERN Document Server

    Palla, Gergely; Mones, Enys; Pollner, Péter; Vicsek, Tamás

    2015-01-01

    Scientific journals are the repositories of the gradually accumulating knowledge of mankind about the world surrounding us. Just as our knowledge is organised into classes ranging from major disciplines, subjects and fields to increasingly specific topics, journals can also be categorised into groups using various metrics. In addition to the set of topics characteristic for a journal, they can also be ranked regarding their relevance from the point of overall influence. One widespread measure is impact factor, but in the present paper we intend to reconstruct a much more detailed description by studying the hierarchical relations between the journals based on citation data. We use a measure related to the notion of m-reaching centrality and find a network which shows the level of influence of a journal from the point of the direction and efficiency with which information spreads through the network. We can also obtain an alternative network using a suitably modified nested hierarchy extraction method applied ...

  4. Adaptive Sampling in Hierarchical Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Knap, J; Barton, N R; Hornung, R D; Arsenlis, A; Becker, R; Jefferson, D R

    2007-07-09

    We propose an adaptive sampling methodology for hierarchical multi-scale simulation. The method utilizes a moving kriging interpolation to significantly reduce the number of evaluations of finer-scale response functions to provide essential constitutive information to a coarser-scale simulation model. The underlying interpolation scheme is unstructured and adaptive to handle the transient nature of a simulation. To handle the dynamic construction and searching of a potentially large set of finer-scale response data, we employ a dynamic metric tree database. We study the performance of our adaptive sampling methodology for a two-level multi-scale model involving a coarse-scale finite element simulation and a finer-scale crystal plasticity based constitutive law.

  5. Multicollinearity in hierarchical linear models.

    Science.gov (United States)

    Yu, Han; Jiang, Shanhe; Land, Kenneth C

    2015-09-01

    This study investigates an ill-posed problem (multicollinearity) in Hierarchical Linear Models from both the data and the model perspectives. We propose an intuitive, effective approach to diagnosing the presence of multicollinearity and its remedies in this class of models. A simulation study demonstrates the impacts of multicollinearity on coefficient estimates, associated standard errors, and variance components at various levels of multicollinearity for finite sample sizes typical in social science studies. We further investigate the role multicollinearity plays at each level for estimation of coefficient parameters in terms of shrinkage. Based on these analyses, we recommend a top-down method for assessing multicollinearity in HLMs that first examines the contextual predictors (Level-2 in a two-level model) and then the individual predictors (Level-1) and uses the results for data collection, research problem redefinition, model re-specification, variable selection and estimation of a final model.

  6. Hierarchically Nanostructured Materials for Sustainable Environmental Applications

    Science.gov (United States)

    Ren, Zheng; Guo, Yanbing; Liu, Cai-Hong; Gao, Pu-Xian

    2013-11-01

    This article presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions and multiple functionalities towards water remediation, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology.

  7. A neural signature of hierarchical reinforcement learning.

    Science.gov (United States)

    Ribas-Fernandes, José J F; Solway, Alec; Diuk, Carlos; McGuire, Joseph T; Barto, Andrew G; Niv, Yael; Botvinick, Matthew M

    2011-07-28

    Human behavior displays hierarchical structure: simple actions cohere into subtask sequences, which work together to accomplish overall task goals. Although the neural substrates of such hierarchy have been the target of increasing research, they remain poorly understood. We propose that the computations supporting hierarchical behavior may relate to those in hierarchical reinforcement learning (HRL), a machine-learning framework that extends reinforcement-learning mechanisms into hierarchical domains. To test this, we leveraged a distinctive prediction arising from HRL. In ordinary reinforcement learning, reward prediction errors are computed when there is an unanticipated change in the prospects for accomplishing overall task goals. HRL entails that prediction errors should also occur in relation to task subgoals. In three neuroimaging studies we observed neural responses consistent with such subgoal-related reward prediction errors, within structures previously implicated in reinforcement learning. The results reported support the relevance of HRL to the neural processes underlying hierarchical behavior.

  8. Hierarchical Identity-Based Lossy Trapdoor Functions

    CERN Document Server

    Escala, Alex; Libert, Benoit; Rafols, Carla

    2012-01-01

    Lossy trapdoor functions, introduced by Peikert and Waters (STOC'08), have received a lot of attention in the last years, because of their wide range of applications in theoretical cryptography. The notion has been recently extended to the identity-based scenario by Bellare et al. (Eurocrypt'12). We provide one more step in this direction, by considering the notion of hierarchical identity-based lossy trapdoor functions (HIB-LTDFs). Hierarchical identity-based cryptography generalizes identitybased cryptography in the sense that identities are organized in a hierarchical way; a parent identity has more power than its descendants, because it can generate valid secret keys for them. Hierarchical identity-based cryptography has been proved very useful both for practical applications and to establish theoretical relations with other cryptographic primitives. In order to realize HIB-LTDFs, we first build a weakly secure hierarchical predicate encryption scheme. This scheme, which may be of independent interest, is...

  9. Hierarchically nanostructured materials for sustainable environmental applications

    Science.gov (United States)

    Ren, Zheng; Guo, Yanbing; Liu, Cai-Hong; Gao, Pu-Xian

    2013-01-01

    This review presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions, and multiple functionalities toward water remediation, biosensing, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing, and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology. PMID:24790946

  10. Hierarchically Nanostructured Materials for Sustainable Environmental Applications

    Directory of Open Access Journals (Sweden)

    Zheng eRen

    2013-11-01

    Full Text Available This article presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions and multiple functionalities towards water remediation, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology.

  11. Regularized multivariate regression models with skew-t error distributions

    KAUST Repository

    Chen, Lianfu

    2014-06-01

    We consider regularization of the parameters in multivariate linear regression models with the errors having a multivariate skew-t distribution. An iterative penalized likelihood procedure is proposed for constructing sparse estimators of both the regression coefficient and inverse scale matrices simultaneously. The sparsity is introduced through penalizing the negative log-likelihood by adding L1-penalties on the entries of the two matrices. Taking advantage of the hierarchical representation of skew-t distributions, and using the expectation conditional maximization (ECM) algorithm, we reduce the problem to penalized normal likelihood and develop a procedure to minimize the ensuing objective function. Using a simulation study the performance of the method is assessed, and the methodology is illustrated using a real data set with a 24-dimensional response vector. © 2014 Elsevier B.V.

  12. Hierarchically Nanoporous Bioactive Glasses for High Efficiency Immobilization of Enzymes

    DEFF Research Database (Denmark)

    He, W.; Min, D.D.; Zhang, X.D.

    2014-01-01

    Bioactive glasses with hierarchical nanoporosity and structures have been heavily involved in immobilization of enzymes. Because of meticulous design and ingenious hierarchical nanostructuration of porosities from yeast cell biotemplates, hierarchically nanostructured porous bioactive glasses can...

  13. Hierarchical mutual information for the comparison of hierarchical community structures in complex networks

    CERN Document Server

    Perotti, Juan Ignacio; Caldarelli, Guido

    2015-01-01

    The quest for a quantitative characterization of community and modular structure of complex networks produced a variety of methods and algorithms to classify different networks. However, it is not clear if such methods provide consistent, robust and meaningful results when considering hierarchies as a whole. Part of the problem is the lack of a similarity measure for the comparison of hierarchical community structures. In this work we give a contribution by introducing the {\\it hierarchical mutual information}, which is a generalization of the traditional mutual information, and allows to compare hierarchical partitions and hierarchical community structures. The {\\it normalized} version of the hierarchical mutual information should behave analogously to the traditional normalized mutual information. Here, the correct behavior of the hierarchical mutual information is corroborated on an extensive battery of numerical experiments. The experiments are performed on artificial hierarchies, and on the hierarchical ...

  14. Integral equations

    CERN Document Server

    Tricomi, Francesco Giacomo

    1957-01-01

    This classic text on integral equations by the late Professor F. G. Tricomi, of the Mathematics Faculty of the University of Turin, Italy, presents an authoritative, well-written treatment of the subject at the graduate or advanced undergraduate level. To render the book accessible to as wide an audience as possible, the author has kept the mathematical knowledge required on the part of the reader to a minimum; a solid foundation in differential and integral calculus, together with some knowledge of the theory of functions is sufficient. The book is divided into four chapters, with two useful

  15. Predicting allergic contact dermatitis: a hierarchical structure activity relationship (SAR) approach to chemical classification using topological and quantum chemical descriptors

    Science.gov (United States)

    Basak, Subhash C.; Mills, Denise; Hawkins, Douglas M.

    2008-06-01

    A hierarchical classification study was carried out based on a set of 70 chemicals—35 which produce allergic contact dermatitis (ACD) and 35 which do not. This approach was implemented using a regular ridge regression computer code, followed by conversion of regression output to binary data values. The hierarchical descriptor classes used in the modeling include topostructural (TS), topochemical (TC), and quantum chemical (QC), all of which are based solely on chemical structure. The concordance, sensitivity, and specificity are reported. The model based on the TC descriptors was found to be the best, while the TS model was extremely poor.

  16. On the Occurrence of Standardized Regression Coefficients Greater than One.

    Science.gov (United States)

    Deegan, John, Jr.

    1978-01-01

    It is demonstrated here that standardized regression coefficients greater than one can legitimately occur. Furthermore, the relationship between the occurrence of such coefficients and the extent of multicollinearity present among the set of predictor variables in an equation is examined. Comments on the interpretation of these coefficients are…

  17. Hierarchical Star Formation Across Galactic Disks

    Science.gov (United States)

    Gouliermis, Dimitrios

    2016-09-01

    Most stars form in clusters. This fact has emerged from the finding that "embedded clusters account for the 70 - 90% fraction of all stars formed in Giant Molecular Clouds (GMCs)." While this is the case at scales of few 10 parsecs, typical for GMCs, a look at star-forming galaxies in the Local Group (LG) shows significant populations of enormous loose complexes of early-type stars extending at scales from few 100 to few 1000 parsecs. The fact that these stellar complexes host extremely large numbers of loosely distributed massive blue stars implies either that stars form also in an unbound fashion or they are immediately dislocated from their original compact birthplaces or both. The Legacy Extra-Galactic UV Survey (LEGUS) has produced remarkable collections of resolved early-type stars in 50 star-forming LG galaxies, suited for testing ideas about recent star formation. I will present results from our ongoing project on star formation across LEGUS disk galaxies. We characterize the global clustering behavior of the massive young stars in order to understand the morphology of star formation over galactic scales. This morphology appears to be self-similar with fractal dimensions comparable to those of the molecular interstellar medium, apparently driven by large-scale turbulence. Our clustering analysis reveals compact stellar systems nested in larger looser concentrations, which themselves are the dense parts of unbound complexes and super-structures, giving evidence of hierarchical star formation up to galactic scales. We investigate the structural and star formation parameters demographics of the star-forming complexes revealed at various levels of compactness. I will discuss the outcome of our correlation and regression analyses on these parameters in an attempt to understand the link between galactic disk dynamics and morphological structure in spiral and ring galaxies of the local universe.

  18. ORDINAL REGRESSION FOR INFORMATION RETRIEVAL

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This letter presents a new discriminative model for Information Retrieval (IR), referred to as Ordinal Regression Model (ORM). ORM is different from most existing models in that it views IR as ordinal regression problem (i.e. ranking problem) instead of binary classification. It is noted that the task of IR is to rank documents according to the user information needed, so IR can be viewed as ordinal regression problem. Two parameter learning algorithms for ORM are presented. One is a perceptron-based algorithm. The other is the ranking Support Vector Machine (SVM). The effectiveness of the proposed approach has been evaluated on the task of ad hoc retrieval using three English Text REtrieval Conference (TREC) sets and two Chinese TREC sets. Results show that ORM significantly outperforms the state-of-the-art language model approaches and OKAPI system in all test sets; and it is more appropriate to view IR as ordinal regression other than binary classification.

  19. Multiple Regression and Its Discontents

    Science.gov (United States)

    Snell, Joel C.; Marsh, Mitchell

    2012-01-01

    Multiple regression is part of a larger statistical strategy originated by Gauss. The authors raise questions about the theory and suggest some changes that would make room for Mandelbrot and Serendipity.

  20. Multiple Regression and Its Discontents

    Science.gov (United States)

    Snell, Joel C.; Marsh, Mitchell

    2012-01-01

    Multiple regression is part of a larger statistical strategy originated by Gauss. The authors raise questions about the theory and suggest some changes that would make room for Mandelbrot and Serendipity.

  1. Stochastic partial differential equations

    CERN Document Server

    Chow, Pao-Liu

    2014-01-01

    Preliminaries Introduction Some Examples Brownian Motions and Martingales Stochastic Integrals Stochastic Differential Equations of Itô Type Lévy Processes and Stochastic IntegralsStochastic Differential Equations of Lévy Type Comments Scalar Equations of First Order Introduction Generalized Itô's Formula Linear Stochastic Equations Quasilinear Equations General Remarks Stochastic Parabolic Equations Introduction Preliminaries Solution of Stochastic Heat EquationLinear Equations with Additive Noise Some Regularity Properties Stochastic Reaction-Diffusion Equations Parabolic Equations with Grad

  2. Regression methods for medical research

    CERN Document Server

    Tai, Bee Choo

    2013-01-01

    Regression Methods for Medical Research provides medical researchers with the skills they need to critically read and interpret research using more advanced statistical methods. The statistical requirements of interpreting and publishing in medical journals, together with rapid changes in science and technology, increasingly demands an understanding of more complex and sophisticated analytic procedures.The text explains the application of statistical models to a wide variety of practical medical investigative studies and clinical trials. Regression methods are used to appropriately answer the

  3. Wrong Signs in Regression Coefficients

    Science.gov (United States)

    McGee, Holly

    1999-01-01

    When using parametric cost estimation, it is important to note the possibility of the regression coefficients having the wrong sign. A wrong sign is defined as a sign on the regression coefficient opposite to the researcher's intuition and experience. Some possible causes for the wrong sign discussed in this paper are a small range of x's, leverage points, missing variables, multicollinearity, and computational error. Additionally, techniques for determining the cause of the wrong sign are given.

  4. From Rasch scores to regression

    DEFF Research Database (Denmark)

    Christensen, Karl Bang

    2006-01-01

    Rasch models provide a framework for measurement and modelling latent variables. Having measured a latent variable in a population a comparison of groups will often be of interest. For this purpose the use of observed raw scores will often be inadequate because these lack interval scale propertie....... This paper compares two approaches to group comparison: linear regression models using estimated person locations as outcome variables and latent regression models based on the distribution of the score....

  5. A Multiple Regression Approach to Normalization of Spatiotemporal Gait Features.

    Science.gov (United States)

    Wahid, Ferdous; Begg, Rezaul; Lythgo, Noel; Hass, Chris J; Halgamuge, Saman; Ackland, David C

    2016-04-01

    Normalization of gait data is performed to reduce the effects of intersubject variations due to physical characteristics. This study reports a multiple regression normalization approach for spatiotemporal gait data that takes into account intersubject variations in self-selected walking speed and physical properties including age, height, body mass, and sex. Spatiotemporal gait data including stride length, cadence, stance time, double support time, and stride time were obtained from healthy subjects including 782 children, 71 adults, 29 elderly subjects, and 28 elderly Parkinson's disease (PD) patients. Data were normalized using standard dimensionless equations, a detrending method, and a multiple regression approach. After normalization using dimensionless equations and the detrending method, weak to moderate correlations between walking speed, physical properties, and spatiotemporal gait features were observed (0.01 normalization using the multiple regression method reduced these correlations to weak values (|r| normalization using dimensionless equations and detrending resulted in significant differences in stride length and double support time of PD patients; however the multiple regression approach revealed significant differences in these features as well as in cadence, stance time, and stride time. The proposed multiple regression normalization may be useful in machine learning, gait classification, and clinical evaluation of pathological gait patterns.

  6. Final Report of Optimization Algorithms for Hierarchical Problems, with Applications to Nanoporous Materials

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Stephen G.

    2013-11-11

    solving discretized optimization models. Our optimization models are multi-level models, however. They are more general, involving different governing equations at each level. A major aspect of this project was the development of flexible software that can be used to solve a variety of hierarchical optimization problems.

  7. Prediction on adsorption ratio of carbon dioxide to methane on coals with multiple linear regression

    Institute of Scientific and Technical Information of China (English)

    YU Hong-guan; MENG Xian-ming; FAN Wei-tang; YE Jian-ping

    2007-01-01

    The multiple linear regression equations for adsorption ratio of CO2/CH4 and its coal quality indexes were built with SPSS software on basis of existing coal quality data and its adsorption amount of CO2 and CH4.The regression equations built were tested with data collected from some S,and the influences of coal quality indexes on adsorption ratio of CO2/CH4 were studied with investigation of regression equations.The study results show that the regression equation for adsorption ratio of CO2/CH4 and volatile matter,ash and moisture in coal can be Obtained with multiple linear regression analysis,that the influence of same coal quality index with the degree of metamorphosis or influence of coal quality indexes for same coal rank on adsorption ratio is not consistent.

  8. The Collinearity Free and Bias Reduced Regression Estimation Project: The Theory of Normalization Ridge Regression. Report No. 2.

    Science.gov (United States)

    Bulcock, J. W.; And Others

    Multicollinearity refers to the presence of highly intercorrelated independent variables in structural equation models, that is, models estimated by using techniques such as least squares regression and maximum likelihood. There is a problem of multicollinearity in both the natural and social sciences where theory formulation and estimation is in…

  9. 利用误差变量联立方程组建立南方杉木一元立木材积模型和胸径地径回归模型%Using Error-in-Variable Simultaneous Equations Approach to Construct One-way Tree Volume Models and Diameter at Breast Height-Diameter on Root Collar Regression Model for Chinese Fir (Cunninghamia lanceolata) in Southern China

    Institute of Scientific and Technical Information of China (English)

    曾伟生

    2012-01-01

    利用我国南方的杉木实测数据,采用误差变量联立方程组方法,同时建立了胸径一元材积模型、地径一元材积模型和胸径一地径回归模型。结果表明:地径与胸径之间相关紧密,其回归模型的确定系数可以达到0.96以上;地径一元材积模型的预估精度要明显低于胸径一元材积模型。%Based on the data of Chinese fir ( Cunninghamia lanceolata) in southern China, three models, DBH (Diameter at Breast Height ) -based volume model, DRC (Diameter on Root Collar)-based volume model, and DBH-DRC regression model, were constructed using the error-in-variabl~ simultaneous equations approach. The results showed that DBH is closely related to DRC, determination coefficient of the regression is more than 0. 96 ; and the prediction precision of DRC-based volume model is clearly lower than that of DBH-based volume model.

  10. About wave field modeling in hierarchic medium with fractal inclusions

    Science.gov (United States)

    Hachay, Olga; Khachay, Andrey

    2014-05-01

    The processes of oil gaseous deposits outworking are linked with moving of polyphase multicomponent media, which are characterized by no equilibrium and nonlinear rheological features. The real behavior of layered systems is defined as complicated rheology moving liquids and structural morphology of porous media. It is eargently needed to account those factors for substantial description of the filtration processes. Additionally we must account also the synergetic effects. That allows suggesting new methods of control and managing of complicated natural systems, which can research these effects. Thus our research is directed to the layered system, from which we have to outwork oil and which is a complicated hierarchic dynamical system with fractal inclusions. In that paper we suggest the algorithm of modeling of 2-d seismic field distribution in the heterogeneous medium with hierarchic inclusions. Also we can compare the integral 2-D for seismic field in a frame of local hierarchic heterogeneity with a porous inclusion and pure elastic inclusion for the case when the parameter Lame is equal to zero for the inclusions and the layered structure. For that case we can regard the problem for the latitude and longitudinal waves independently. Here we shall analyze the first case. The received results can be used for choosing criterions of joined seismic methods for high complicated media research.If the boundaries of the inclusion of the k rank are fractals, the surface and contour integrals in the integral equations must be changed to repeated fractional integrals of Riman-Liuvill type .Using the developed earlier 3-d method of induction electromagnetic frequency geometric monitoring we showed the opportunity of defining of physical and structural features of hierarchic oil layer structure and estimating of water saturating by crack inclusions. For visualization we had elaborated some algorithms and programs for constructing cross sections for two hierarchic structural

  11. On the hierarchy of partially invariant submodels of differential equations

    CERN Document Server

    Golovin, Sergey V

    2007-01-01

    It is noticed, that partially invariant solution (PIS) of differential equations in many cases can be represented as an invariant reduction of some PIS of the higher rank. This introduce a hierarchic structure in the set of all PISs of a given system of differential equations. By using this structure one can significantly decrease an amount of calculations required in enumeration of all PISs for a given system of partially differential equations. An equivalence of the two-step and the direct ways of construction of PISs is proved. In this framework the complete classification of regular partially invariant solutions of ideal MHD equations is given.

  12. On the hierarchy of partially invariant submodels of differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Golovin, Sergey V [Lavrentyev Institute of Hydrodynamics SB RAS, Novosibirsk 630090 (Russian Federation)], E-mail: sergey@hydro.nsc.ru

    2008-07-04

    It is noted that the partially invariant solution (PIS) of differential equations in many cases can be represented as an invariant reduction of some PISs of the higher rank. This introduces a hierarchic structure in the set of all PISs of a given system of differential equations. An equivalence of the two-step and the direct ways of construction of PISs is proved. The hierarchy simplifies the process of enumeration and analysis of partially invariant submodels to the given system of differential equations. In this framework, the complete classification of regular partially invariant solutions of ideal MHD equations is given.

  13. Hierarchically structured, nitrogen-doped carbon membranes

    KAUST Repository

    Wang, Hong

    2017-08-03

    The present invention is a structure, method of making and method of use for a novel macroscopic hierarchically structured, nitrogen-doped, nano-porous carbon membrane (HNDCMs) with asymmetric and hierarchical pore architecture that can be produced on a large-scale approach. The unique HNDCM holds great promise as components in separation and advanced carbon devices because they could offer unconventional fluidic transport phenomena on the nanoscale. Overall, the invention set forth herein covers a hierarchically structured, nitrogen-doped carbon membranes and methods of making and using such a membranes.

  14. A Model for Slicing JAVA Programs Hierarchically

    Institute of Scientific and Technical Information of China (English)

    Bi-Xin Li; Xiao-Cong Fan; Jun Pang; Jian-Jun Zhao

    2004-01-01

    Program slicing can be effectively used to debug, test, analyze, understand and maintain objectoriented software. In this paper, a new slicing model is proposed to slice Java programs based on their inherent hierarchical feature. The main idea of hierarchical slicing is to slice programs in a stepwise way, from package level, to class level, method level, and finally up to statement level. The stepwise slicing algorithm and the related graph reachability algorithms are presented, the architecture of the Java program Analyzing Tool (JATO) based on hierarchical slicing model is provided, the applications and a small case study are also discussed.

  15. Hierarchical analysis of acceptable use policies

    Directory of Open Access Journals (Sweden)

    P. A. Laughton

    2008-01-01

    Full Text Available Acceptable use policies (AUPs are vital tools for organizations to protect themselves and their employees from misuse of computer facilities provided. A well structured, thorough AUP is essential for any organization. It is impossible for an effective AUP to deal with every clause and remain readable. For this reason, some sections of an AUP carry more weight than others, denoting importance. The methodology used to develop the hierarchical analysis is a literature review, where various sources were consulted. This hierarchical approach to AUP analysis attempts to highlight important sections and clauses dealt with in an AUP. The emphasis of the hierarchal analysis is to prioritize the objectives of an AUP.

  16. Hierarchical modeling and analysis for spatial data

    CERN Document Server

    Banerjee, Sudipto; Gelfand, Alan E

    2003-01-01

    Among the many uses of hierarchical modeling, their application to the statistical analysis of spatial and spatio-temporal data from areas such as epidemiology And environmental science has proven particularly fruitful. Yet to date, the few books that address the subject have been either too narrowly focused on specific aspects of spatial analysis, or written at a level often inaccessible to those lacking a strong background in mathematical statistics.Hierarchical Modeling and Analysis for Spatial Data is the first accessible, self-contained treatment of hierarchical methods, modeling, and dat

  17. Hierarchical maximum entropy principle for generalized superstatistical systems and Bose-Einstein condensation of light.

    Science.gov (United States)

    Sob'yanin, Denis Nikolaevich

    2012-06-01

    A principle of hierarchical entropy maximization is proposed for generalized superstatistical systems, which are characterized by the existence of three levels of dynamics. If a generalized superstatistical system comprises a set of superstatistical subsystems, each made up of a set of cells, then the Boltzmann-Gibbs-Shannon entropy should be maximized first for each cell, second for each subsystem, and finally for the whole system. Hierarchical entropy maximization naturally reflects the sufficient time-scale separation between different dynamical levels and allows one to find the distribution of both the intensive parameter and the control parameter for the corresponding superstatistics. The hierarchical maximum entropy principle is applied to fluctuations of the photon Bose-Einstein condensate in a dye microcavity. This principle provides an alternative to the master equation approach recently applied to this problem. The possibility of constructing generalized superstatistics based on a statistics different from the Boltzmann-Gibbs statistics is pointed out.

  18. Multilevel compression of random walks on networks reveals hierarchical organization in large integrated systems

    CERN Document Server

    Rosvall, M

    2010-01-01

    To comprehend the hierarchical organization of large integrated systems, we introduce the hierarchical map equation that reveals multilevel structures in networks. In this information-theoretic approach, we exploit the duality between compression and pattern detection; by compressing a description of a random walker as a proxy for real flow on a network, we find regularities in the network that induce this system-wide flow. Finding the shortest multilevel description of the random walker therefore gives us the best hierarchical clustering of the network, the optimal number of levels and modular partition at each level, with respect to the dynamics on the network. With a novel search algorithm, we extract and illustrate the rich multilevel organization of several large social and biological networks. For example, from the global air traffic network we uncover countries and continents, and from the pattern of scientific communication we reveal more than 100 scientific fields organized in four major disciplines:...

  19. Least square regularized regression in sum space.

    Science.gov (United States)

    Xu, Yong-Li; Chen, Di-Rong; Li, Han-Xiong; Liu, Lu

    2013-04-01

    This paper proposes a least square regularized regression algorithm in sum space of reproducing kernel Hilbert spaces (RKHSs) for nonflat function approximation, and obtains the solution of the algorithm by solving a system of linear equations. This algorithm can approximate the low- and high-frequency component of the target function with large and small scale kernels, respectively. The convergence and learning rate are analyzed. We measure the complexity of the sum space by its covering number and demonstrate that the covering number can be bounded by the product of the covering numbers of basic RKHSs. For sum space of RKHSs with Gaussian kernels, by choosing appropriate parameters, we tradeoff the sample error and regularization error, and obtain a polynomial learning rate, which is better than that in any single RKHS. The utility of this method is illustrated with two simulated data sets and five real-life databases.

  20. XRA image segmentation using regression

    Science.gov (United States)

    Jin, Jesse S.

    1996-04-01

    Segmentation is an important step in image analysis. Thresholding is one of the most important approaches. There are several difficulties in segmentation, such as automatic selecting threshold, dealing with intensity distortion and noise removal. We have developed an adaptive segmentation scheme by applying the Central Limit Theorem in regression. A Gaussian regression is used to separate the distribution of background from foreground in a single peak histogram. The separation will help to automatically determine the threshold. A small 3 by 3 widow is applied and the modal of the local histogram is used to overcome noise. Thresholding is based on local weighting, where regression is used again for parameter estimation. A connectivity test is applied to the final results to remove impulse noise. We have applied the algorithm to x-ray angiogram images to extract brain arteries. The algorithm works well for single peak distribution where there is no valley in the histogram. The regression provides a method to apply knowledge in clustering. Extending regression for multiple-level segmentation needs further investigation.

  1. Biplots in Reduced-Rank Regression

    NARCIS (Netherlands)

    Braak, ter C.J.F.; Looman, C.W.N.

    1994-01-01

    Regression problems with a number of related response variables are typically analyzed by separate multiple regressions. This paper shows how these regressions can be visualized jointly in a biplot based on reduced-rank regression. Reduced-rank regression combines multiple regression and principal c

  2. Image meshing via hierarchical optimization

    Institute of Scientific and Technical Information of China (English)

    Hao XIE; Ruo-feng TONG‡

    2016-01-01

    Vector graphic, as a kind of geometric representation of raster images, has many advantages, e.g., defi nition independence and editing facility. A popular way to convert raster images into vector graphics is image meshing, the aim of which is to fi nd a mesh to represent an image as faithfully as possible. For traditional meshing algorithms, the crux of the problem resides mainly in the high non-linearity and non-smoothness of the objective, which makes it difficult to fi nd a desirable optimal solution. To ameliorate this situation, we present a hierarchical optimization algorithm solving the problem from coarser levels to fi ner ones, providing initialization for each level with its coarser ascent. To further simplify the problem, the original non-convex problem is converted to a linear least squares one, and thus becomes convex, which makes the problem much easier to solve. A dictionary learning framework is used to combine geometry and topology elegantly. Then an alternating scheme is employed to solve both parts. Experiments show that our algorithm runs fast and achieves better results than existing ones for most images.

  3. Image meshing via hierarchical optimization*

    Institute of Scientific and Technical Information of China (English)

    Hao XIE; Ruo-feng TONGS

    2016-01-01

    Vector graphic, as a kind of geometric representation of raster images, has many advantages, e.g., definition independence and editing facility. A popular way to convert raster images into vector graphics is image meshing, the aim of which is to find a mesh to represent an image as faithfully as possible. For traditional meshing algorithms, the crux of the problem resides mainly in the high non-linearity and non-smoothness of the objective, which makes it difficult to find a desirable optimal solution. To ameliorate this situation, we present a hierarchical optimization algorithm solving the problem from coarser levels to finer ones, providing initialization for each level with its coarser ascent. To further simplify the problem, the original non-convex problem is converted to a linear least squares one, and thus becomes convex, which makes the problem much easier to solve. A dictionary learning framework is used to combine geometry and topology elegantly. Then an alternating scheme is employed to solve both parts. Experiments show that our algorithm runs fast and achieves better results than existing ones for most images.

  4. Hierarchical Bayes Ensemble Kalman Filtering

    CERN Document Server

    Tsyrulnikov, Michael

    2015-01-01

    Ensemble Kalman filtering (EnKF), when applied to high-dimensional systems, suffers from an inevitably small affordable ensemble size, which results in poor estimates of the background error covariance matrix ${\\bf B}$. The common remedy is a kind of regularization, usually an ad-hoc spatial covariance localization (tapering) combined with artificial covariance inflation. Instead of using an ad-hoc regularization, we adopt the idea by Myrseth and Omre (2010) and explicitly admit that the ${\\bf B}$ matrix is unknown and random and estimate it along with the state (${\\bf x}$) in an optimal hierarchical Bayes analysis scheme. We separate forecast errors into predictability errors (i.e. forecast errors due to uncertainties in the initial data) and model errors (forecast errors due to imperfections in the forecast model) and include the two respective components ${\\bf P}$ and ${\\bf Q}$ of the ${\\bf B}$ matrix into the extended control vector $({\\bf x},{\\bf P},{\\bf Q})$. Similarly, we break the traditional backgrou...

  5. Inferential Models for Linear Regression

    Directory of Open Access Journals (Sweden)

    Zuoyi Zhang

    2011-09-01

    Full Text Available Linear regression is arguably one of the most widely used statistical methods in applications.  However, important problems, especially variable selection, remain a challenge for classical modes of inference.  This paper develops a recently proposed framework of inferential models (IMs in the linear regression context.  In general, an IM is able to produce meaningful probabilistic summaries of the statistical evidence for and against assertions about the unknown parameter of interest and, moreover, these summaries are shown to be properly calibrated in a frequentist sense.  Here we demonstrate, using simple examples, that the IM framework is promising for linear regression analysis --- including model checking, variable selection, and prediction --- and for uncertain inference in general.

  6. [Is regression of atherosclerosis possible?].

    Science.gov (United States)

    Thomas, D; Richard, J L; Emmerich, J; Bruckert, E; Delahaye, F

    1992-10-01

    Experimental studies have shown the regression of atherosclerosis in animals given a cholesterol-rich diet and then given a normal diet or hypolipidemic therapy. Despite favourable results of clinical trials of primary prevention modifying the lipid profile, the concept of atherosclerosis regression in man remains very controversial. The methodological approach is difficult: this is based on angiographic data and requires strict standardisation of angiographic views and reliable quantitative techniques of analysis which are available with image processing. Several methodologically acceptable clinical coronary studies have shown not only stabilisation but also regression of atherosclerotic lesions with reductions of about 25% in total cholesterol levels and of about 40% in LDL cholesterol levels. These reductions were obtained either by drugs as in CLAS (Cholesterol Lowering Atherosclerosis Study), FATS (Familial Atherosclerosis Treatment Study) and SCOR (Specialized Center of Research Intervention Trial), by profound modifications in dietary habits as in the Lifestyle Heart Trial, or by surgery (ileo-caecal bypass) as in POSCH (Program On the Surgical Control of the Hyperlipidemias). On the other hand, trials with non-lipid lowering drugs such as the calcium antagonists (INTACT, MHIS) have not shown significant regression of existing atherosclerotic lesions but only a decrease on the number of new lesions. The clinical benefits of these regression studies are difficult to demonstrate given the limited period of observation, relatively small population numbers and the fact that in some cases the subjects were asymptomatic. The decrease in the number of cardiovascular events therefore seems relatively modest and concerns essentially subjects who were symptomatic initially. The clinical repercussion of studies of prevention involving a single lipid factor is probably partially due to the reduction in progression and anatomical regression of the atherosclerotic plaque

  7. Nonparametric regression with filtered data

    CERN Document Server

    Linton, Oliver; Nielsen, Jens Perch; Van Keilegom, Ingrid; 10.3150/10-BEJ260

    2011-01-01

    We present a general principle for estimating a regression function nonparametrically, allowing for a wide variety of data filtering, for example, repeated left truncation and right censoring. Both the mean and the median regression cases are considered. The method works by first estimating the conditional hazard function or conditional survivor function and then integrating. We also investigate improved methods that take account of model structure such as independent errors and show that such methods can improve performance when the model structure is true. We establish the pointwise asymptotic normality of our estimators.

  8. Logistic regression for circular data

    Science.gov (United States)

    Al-Daffaie, Kadhem; Khan, Shahjahan

    2017-05-01

    This paper considers the relationship between a binary response and a circular predictor. It develops the logistic regression model by employing the linear-circular regression approach. The maximum likelihood method is used to estimate the parameters. The Newton-Raphson numerical method is used to find the estimated values of the parameters. A data set from weather records of Toowoomba city is analysed by the proposed methods. Moreover, a simulation study is considered. The R software is used for all computations and simulations.

  9. Use of hierarchical models to analyze European trends in congenital anomaly prevalence.

    Science.gov (United States)

    Cavadino, Alana; Prieto-Merino, David; Addor, Marie-Claude; Arriola, Larraitz; Bianchi, Fabrizio; Draper, Elizabeth; Garne, Ester; Greenlees, Ruth; Haeusler, Martin; Khoshnood, Babak; Kurinczuk, Jenny; McDonnell, Bob; Nelen, Vera; O'Mahony, Mary; Randrianaivo, Hanitra; Rankin, Judith; Rissmann, Anke; Tucker, David; Verellen-Dumoulin, Christine; de Walle, Hermien; Wellesley, Diana; Morris, Joan K

    2016-06-01

    Surveillance of congenital anomalies is important to identify potential teratogens. Despite known associations between different anomalies, current surveillance methods examine trends within each subgroup separately. We aimed to evaluate whether hierarchical statistical methods that combine information from several subgroups simultaneously would enhance current surveillance methods using data collected by EUROCAT, a European network of population-based congenital anomaly registries. Ten-year trends (2003 to 2012) in 18 EUROCAT registries over 11 countries were analyzed for the following groups of anomalies: neural tube defects, congenital heart defects, digestive system, and chromosomal anomalies. Hierarchical Poisson regression models that combined related subgroups together according to EUROCAT's hierarchy of subgroup coding were applied. Results from hierarchical models were compared with those from Poisson models that consider each congenital anomaly separately. Hierarchical models gave similar results as those obtained when considering each anomaly subgroup in a separate analysis. Hierarchical models that included only around three subgroups showed poor convergence and were generally found to be over-parameterized. Larger sets of anomaly subgroups were found to be too heterogeneous to group together in this way. There were no substantial differences between independent analyses of each subgroup and hierarchical models when using the EUROCAT anomaly subgroups. Considering each anomaly separately, therefore, remains an appropriate method for the detection of potential changes in prevalence by surveillance systems. Hierarchical models do, however, remain an interesting alternative method of analysis when considering the risks of specific exposures in relation to the prevalence of congenital anomalies, which could be investigated in other studies. Birth Defects Research (Part A) 106:480-10, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Higher-Order Integral Equation Methods in Computational Electromagnetics

    DEFF Research Database (Denmark)

    Jørgensen, Erik; Meincke, Peter

    Higher-order integral equation methods have been investigated. The study has focused on improving the accuracy and efficiency of the Method of Moments (MoM) applied to electromagnetic problems. A new set of hierarchical Legendre basis functions of arbitrary order is developed. The new basis...

  11. An Automatic Hierarchical Delay Analysis Tool

    Institute of Scientific and Technical Information of China (English)

    FaridMheir-El-Saadi; BozenaKaminska

    1994-01-01

    The performance analysis of VLSI integrated circuits(ICs) with flat tools is slow and even sometimes impossible to complete.Some hierarchical tools have been developed to speed up the analysis of these large ICs.However,these hierarchical tools suffer from a poor interaction with the CAD database and poorly automatized operations.We introduce a general hierarchical framework for performance analysis to solve these problems.The circuit analysis is automatic under the proposed framework.Information that has been automatically abstracted in the hierarchy is kept in database properties along with the topological information.A limited software implementation of the framework,PREDICT,has also been developed to analyze the delay performance.Experimental results show that hierarchical analysis CPU time and memory requirements are low if heuristics are used during the abstraction process.

  12. Packaging glass with hierarchically nanostructured surface

    KAUST Repository

    He, Jr-Hau

    2017-08-03

    An optical device includes an active region and packaging glass located on top of the active region. A top surface of the packaging glass includes hierarchical nanostructures comprised of honeycombed nanowalls (HNWs) and nanorod (NR) structures extending from the HNWs.

  13. Generation of hierarchically correlated multivariate symbolic sequences

    CERN Document Server

    Tumminello, Mi; Mantegna, R N

    2008-01-01

    We introduce an algorithm to generate multivariate series of symbols from a finite alphabet with a given hierarchical structure of similarities. The target hierarchical structure of similarities is arbitrary, for instance the one obtained by some hierarchical clustering procedure as applied to an empirical matrix of Hamming distances. The algorithm can be interpreted as the finite alphabet equivalent of the recently introduced hierarchically nested factor model (M. Tumminello et al. EPL 78 (3) 30006 (2007)). The algorithm is based on a generating mechanism that is different from the one used in the mutation rate approach. We apply the proposed methodology for investigating the relationship between the bootstrap value associated with a node of a phylogeny and the probability of finding that node in the true phylogeny.

  14. Hierarchical modularity in human brain functional networks

    CERN Document Server

    Meunier, D; Fornito, A; Ersche, K D; Bullmore, E T; 10.3389/neuro.11.037.2009

    2010-01-01

    The idea that complex systems have a hierarchical modular organization originates in the early 1960s and has recently attracted fresh support from quantitative studies of large scale, real-life networks. Here we investigate the hierarchical modular (or "modules-within-modules") decomposition of human brain functional networks, measured using functional magnetic resonance imaging (fMRI) in 18 healthy volunteers under no-task or resting conditions. We used a customized template to extract networks with more than 1800 regional nodes, and we applied a fast algorithm to identify nested modular structure at several hierarchical levels. We used mutual information, 0 < I < 1, to estimate the similarity of community structure of networks in different subjects, and to identify the individual network that is most representative of the group. Results show that human brain functional networks have a hierarchical modular organization with a fair degree of similarity between subjects, I=0.63. The largest 5 modules at ...

  15. HIERARCHICAL ORGANIZATION OF INFORMATION, IN RELATIONAL DATABASES

    Directory of Open Access Journals (Sweden)

    Demian Horia

    2008-05-01

    Full Text Available In this paper I will present different types of representation, of hierarchical information inside a relational database. I also will compare them to find the best organization for specific scenarios.

  16. Hierarchical Network Design Using Simulated Annealing

    DEFF Research Database (Denmark)

    Thomadsen, Tommy; Clausen, Jens

    2002-01-01

    The hierarchical network problem is the problem of finding the least cost network, with nodes divided into groups, edges connecting nodes in each groups and groups ordered in a hierarchy. The idea of hierarchical networks comes from telecommunication networks where hierarchies exist. Hierarchical...... networks are described and a mathematical model is proposed for a two level version of the hierarchical network problem. The problem is to determine which edges should connect nodes, and how demand is routed in the network. The problem is solved heuristically using simulated annealing which as a sub......-algorithm uses a construction algorithm to determine edges and route the demand. Performance for different versions of the algorithm are reported in terms of runtime and quality of the solutions. The algorithm is able to find solutions of reasonable quality in approximately 1 hour for networks with 100 nodes....

  17. When to Use Hierarchical Linear Modeling

    National Research Council Canada - National Science Library

    Veronika Huta

    2014-01-01

    Previous publications on hierarchical linear modeling (HLM) have provided guidance on how to perform the analysis, yet there is relatively little information on two questions that arise even before analysis...

  18. An introduction to hierarchical linear modeling

    National Research Council Canada - National Science Library

    Woltman, Heather; Feldstain, Andrea; MacKay, J. Christine; Rocchi, Meredith

    2012-01-01

    This tutorial aims to introduce Hierarchical Linear Modeling (HLM). A simple explanation of HLM is provided that describes when to use this statistical technique and identifies key factors to consider before conducting this analysis...

  19. Hierarchical DSE for multi-ASIP platforms

    DEFF Research Database (Denmark)

    Micconi, Laura; Corvino, Rosilde; Gangadharan, Deepak;

    2013-01-01

    This work proposes a hierarchical Design Space Exploration (DSE) for the design of multi-processor platforms targeted to specific applications with strict timing and area constraints. In particular, it considers platforms integrating multiple Application Specific Instruction Set Processors (ASIPs...

  20. Hierarchical organization versus self-organization

    OpenAIRE

    Busseniers, Evo

    2014-01-01

    In this paper we try to define the difference between hierarchical organization and self-organization. Organization is defined as a structure with a function. So we can define the difference between hierarchical organization and self-organization both on the structure as on the function. In the next two chapters these two definitions are given. For the structure we will use some existing definitions in graph theory, for the function we will use existing theory on (self-)organization. In the t...

  1. Hierarchical decision making for flood risk reduction

    DEFF Research Database (Denmark)

    Custer, Rocco; Nishijima, Kazuyoshi

    2013-01-01

    . In current practice, structures are often optimized individually without considering benefits of having a hierarchy of protection structures. It is here argued, that the joint consideration of hierarchically integrated protection structures is beneficial. A hierarchical decision model is utilized to analyze...... and compare the benefit of large upstream protection structures and local downstream protection structures in regard to epistemic uncertainty parameters. Results suggest that epistemic uncertainty influences the outcome of the decision model and that, depending on the magnitude of epistemic uncertainty...

  2. Hierarchical self-organization of tectonic plates

    OpenAIRE

    2010-01-01

    The Earth's surface is subdivided into eight large tectonic plates and many smaller ones. We reconstruct the plate tessellation history and demonstrate that both large and small plates display two distinct hierarchical patterns, described by different power-law size-relationships. While small plates display little organisational change through time, the structure of the large plates oscillate between minimum and maximum hierarchical tessellations. The organization of large plates rapidly chan...

  3. Angelic Hierarchical Planning: Optimal and Online Algorithms

    Science.gov (United States)

    2008-12-06

    restrict our attention to plans in I∗(Act, s0). Definition 2. ( Parr and Russell , 1998) A plan ah∗ is hierarchically optimal iff ah∗ = argmina∈I∗(Act,s0):T...Murdock, Dan Wu, and Fusun Yaman. SHOP2: An HTN planning system. JAIR, 20:379–404, 2003. Ronald Parr and Stuart Russell . Reinforcement Learning with...Angelic Hierarchical Planning: Optimal and Online Algorithms Bhaskara Marthi Stuart J. Russell Jason Wolfe Electrical Engineering and Computer

  4. Hierarchical Needs, Income Comparisons and Happiness Levels

    OpenAIRE

    Drakopoulos, Stavros

    2011-01-01

    The cornerstone of the hierarchical approach is that there are some basic human needs which must be satisfied before non-basic needs come into the picture. The hierarchical structure of needs implies that the satisfaction of primary needs provides substantial increases to individual happiness compared to the subsequent satisfaction of secondary needs. This idea can be combined with the concept of comparison income which means that individuals compare rewards with individuals with similar char...

  5. Universal hierarchical symmetry for turbulence and general multi-scale fluctuation systems

    Institute of Scientific and Technical Information of China (English)

    Zhen-Su She; Zhi-Xiong Zhang

    2009-01-01

    Scaling is an important measure of multi-scale fluctuation systems. Turbulence as the most remarkable multi-scale system possesses scaling over a wide range of scales. She-Leveque (SL) hierarchical symmetry, since its publication in 1994, has received wide attention. A num-ber of experimental, numerical and theoretical work have been devoted to its verification, extension, and modification. Application to the understanding of magnetohydrodynamic turbulence, motions of cosmic baryon fluids, cosmological supersonic turbulence, natural image, spiral turbulent patterns, DNA anomalous composition, human heart vari-ability are just a few among the most successful examples. A number of modified scaling laws have been derived in the framework of the hierarchical symmetry, and the SL model parameters are found to reveal both the organizational order of the whole system and the properties of the most signif-icant fluctuation structures. A partial set of work related to these studies are reviewed. Particular emphasis is placed on the nature of the hierarchical symmetry. It is suggested that the SL hierarchical symmetry is a new form of the self-orga-nization principle for multi-scale fluctuation systems, and can be employed as a standard analysis tool in the general multi-scale methodology. It is further suggested that the SL hierarchical symmetry implies the existence of a turbulence ensemble. It is speculated that the search for defining the turbulence ensemble might open a new way for deriving sta-tistical closure equations for turbulence and other multi-scale fluctuation systems.

  6. Regression of lumbar disk herniation

    Directory of Open Access Journals (Sweden)

    G. Yu Evzikov

    2015-01-01

    Full Text Available Compression of the spinal nerve root, giving rise to pain and sensory and motor disorders in the area of its innervation is the most vivid manifestation of herniated intervertebral disk. Different treatment modalities, including neurosurgery, for evolving these conditions are discussed. There has been recent evidence that spontaneous regression of disk herniation can regress. The paper describes a female patient with large lateralized disc extrusion that has caused compression of the nerve root S1, leading to obvious myotonic and radicular syndrome. Magnetic resonance imaging has shown that the clinical manifestations of discogenic radiculopathy, as well myotonic syndrome and morphological changes completely regressed 8 months later. The likely mechanism is inflammation-induced resorption of a large herniated disk fragment, which agrees with the data available in the literature. A decision to perform neurosurgery for which the patient had indications was made during her first consultation. After regression of discogenic radiculopathy, there was only moderate pain caused by musculoskeletal diseases (facet syndrome, piriformis syndrome that were successfully eliminated by minimally invasive techniques. 

  7. Heteroscedasticity checks for regression models

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    For checking on heteroscedasticity in regression models, a unified approach is proposed to constructing test statistics in parametric and nonparametric regression models. For nonparametric regression, the test is not affected sensitively by the choice of smoothing parameters which are involved in estimation of the nonparametric regression function. The limiting null distribution of the test statistic remains the same in a wide range of the smoothing parameters. When the covariate is one-dimensional, the tests are, under some conditions, asymptotically distribution-free. In the high-dimensional cases, the validity of bootstrap approximations is investigated. It is shown that a variant of the wild bootstrap is consistent while the classical bootstrap is not in the general case, but is applicable if some extra assumption on conditional variance of the squared error is imposed. A simulation study is performed to provide evidence of how the tests work and compare with tests that have appeared in the literature. The approach may readily be extended to handle partial linear, and linear autoregressive models.

  8. Cactus: An Introduction to Regression

    Science.gov (United States)

    Hyde, Hartley

    2008-01-01

    When the author first used "VisiCalc," the author thought it a very useful tool when he had the formulas. But how could he design a spreadsheet if there was no known formula for the quantities he was trying to predict? A few months later, the author relates he learned to use multiple linear regression software and suddenly it all clicked into…

  9. Growth Regression and Economic Theory

    NARCIS (Netherlands)

    Elbers, Chris; Gunning, Jan Willem

    2002-01-01

    In this note we show that the standard, loglinear growth regression specificationis consistent with one and only one model in the class of stochastic Ramsey models. Thismodel is highly restrictive: it requires a Cobb-Douglas technology and a 100% depreciationrate and it implies that risk does not af

  10. Correlation Weights in Multiple Regression

    Science.gov (United States)

    Waller, Niels G.; Jones, Jeff A.

    2010-01-01

    A general theory on the use of correlation weights in linear prediction has yet to be proposed. In this paper we take initial steps in developing such a theory by describing the conditions under which correlation weights perform well in population regression models. Using OLS weights as a comparison, we define cases in which the two weighting…

  11. Ridge Regression for Interactive Models.

    Science.gov (United States)

    Tate, Richard L.

    1988-01-01

    An exploratory study of the value of ridge regression for interactive models is reported. Assuming that the linear terms in a simple interactive model are centered to eliminate non-essential multicollinearity, a variety of common models, representing both ordinal and disordinal interactions, are shown to have "orientations" that are favorable to…

  12. Correction of intraocular pressure measured by Schi(o)tz、 Perkins and Rebound tonometers in rabbits by multiple regression equation%Schi(o)tz、Perkins和Rebound 3种便携式眼压计测量兔眼压值的回归校正

    Institute of Scientific and Technical Information of China (English)

    李俊岭; 吴建国; 李筱荣

    2015-01-01

    .201×CCT+34.554×LT-2.649×CC+0.063×ST(R=0.95,P=0.00).结论 兔眼的生理参数与人眼有诸多差异,临床上常用的3种便携式眼压计测得的兔眼压值与实际眼压差异较大,需要结合兔眼球生理参数进行回归校正,以降低误差.%Background Rabbits are commonly used as animal models for the evaluation of drugs and surgery to lower intraocular pressure (IOP).The accuracy of IOP measurement is therefore critical in the analysis of data and subsequent extrapolation to humans.An accurate method to measure rabbit IOP is intracameral manometry,but it is an invasive way.Schi(o)tz,Perkins and Rebound were often used in clinic.However,their accuracy in measuring rabbit IOP in experimental study is unclear.Objective The purpose of this study was to investigate the accuracy of IOP measured by Schi(o)tz tonometer,Perkins tonometer and Rebound tonometer relative to intracameral manometry in New Zealand white rabbits.Methods The central corneal thickness (CCT),corneal curvature (CC),axial length (AL),anterior chamber depth (ACD),lens thickness (LT) and scleral thickness (ST) were respectively measured in 8 eyes of 8 healthy New Zealand white rabbits with lenstar900 and ultrasound biomicroscopy (UBM).The actual IOP was measured with a 24G needle inserted the anterior chamber and connected to a pressure transducer under the general anesthesia,the IOP gradient was set with a 24G needle inserting the vitreous cavity and connecting to a container with balanced salt solution(BSS).Then,comparative measurements at the same pressures were performed with three types of tonometers.The IOP values from Schi(o)tz tonometer,Perkins tonometer and Rebound tonometer were calibrated based on actual IOP from intracameral manometry and eyeball physiological parameters by multiple regression equation.Results The mean of CCT,CC,AL,ACD,LT and ST was (338.96 ±21.52) μm,(51.68±1.66) D,(14.63±0.19) mm,(2.22±0.04) mm,(6.15±0.10) mm and (339.80±47.41) μm.Compared with

  13. Evaluating Hierarchical Structure in Music Annotations.

    Science.gov (United States)

    McFee, Brian; Nieto, Oriol; Farbood, Morwaread M; Bello, Juan Pablo

    2017-01-01

    Music exhibits structure at multiple scales, ranging from motifs to large-scale functional components. When inferring the structure of a piece, different listeners may attend to different temporal scales, which can result in disagreements when they describe the same piece. In the field of music informatics research (MIR), it is common to use corpora annotated with structural boundaries at different levels. By quantifying disagreements between multiple annotators, previous research has yielded several insights relevant to the study of music cognition. First, annotators tend to agree when structural boundaries are ambiguous. Second, this ambiguity seems to depend on musical features, time scale, and genre. Furthermore, it is possible to tune current annotation evaluation metrics to better align with these perceptual differences. However, previous work has not directly analyzed the effects of hierarchical structure because the existing methods for comparing structural annotations are designed for "flat" descriptions, and do not readily generalize to hierarchical annotations. In this paper, we extend and generalize previous work on the evaluation of hierarchical descriptions of musical structure. We derive an evaluation metric which can compare hierarchical annotations holistically across multiple levels. sing this metric, we investigate inter-annotator agreement on the multilevel annotations of two different music corpora, investigate the influence of acoustic properties on hierarchical annotations, and evaluate existing hierarchical segmentation algorithms against the distribution of inter-annotator agreement.

  14. Evaluating Hierarchical Structure in Music Annotations

    Directory of Open Access Journals (Sweden)

    Brian McFee

    2017-08-01

    Full Text Available Music exhibits structure at multiple scales, ranging from motifs to large-scale functional components. When inferring the structure of a piece, different listeners may attend to different temporal scales, which can result in disagreements when they describe the same piece. In the field of music informatics research (MIR, it is common to use corpora annotated with structural boundaries at different levels. By quantifying disagreements between multiple annotators, previous research has yielded several insights relevant to the study of music cognition. First, annotators tend to agree when structural boundaries are ambiguous. Second, this ambiguity seems to depend on musical features, time scale, and genre. Furthermore, it is possible to tune current annotation evaluation metrics to better align with these perceptual differences. However, previous work has not directly analyzed the effects of hierarchical structure because the existing methods for comparing structural annotations are designed for “flat” descriptions, and do not readily generalize to hierarchical annotations. In this paper, we extend and generalize previous work on the evaluation of hierarchical descriptions of musical structure. We derive an evaluation metric which can compare hierarchical annotations holistically across multiple levels. sing this metric, we investigate inter-annotator agreement on the multilevel annotations of two different music corpora, investigate the influence of acoustic properties on hierarchical annotations, and evaluate existing hierarchical segmentation algorithms against the distribution of inter-annotator agreement.

  15. Hierarchical Nanoceramics for Industrial Process Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ruud, James, A.; Brosnan, Kristen, H.; Striker, Todd; Ramaswamy, Vidya; Aceto, Steven, C.; Gao, Yan; Willson, Patrick, D.; Manoharan, Mohan; Armstrong, Eric, N., Wachsman, Eric, D.; Kao, Chi-Chang

    2011-07-15

    This project developed a robust, tunable, hierarchical nanoceramics materials platform for industrial process sensors in harsh-environments. Control of material structure at multiple length scales from nano to macro increased the sensing response of the materials to combustion gases. These materials operated at relatively high temperatures, enabling detection close to the source of combustion. It is anticipated that these materials can form the basis for a new class of sensors enabling widespread use of efficient combustion processes with closed loop feedback control in the energy-intensive industries. The first phase of the project focused on materials selection and process development, leading to hierarchical nanoceramics that were evaluated for sensing performance. The second phase focused on optimizing the materials processes and microstructures, followed by validation of performance of a prototype sensor in a laboratory combustion environment. The objectives of this project were achieved by: (1) synthesizing and optimizing hierarchical nanostructures; (2) synthesizing and optimizing sensing nanomaterials; (3) integrating sensing functionality into hierarchical nanostructures; (4) demonstrating material performance in a sensing element; and (5) validating material performance in a simulated service environment. The project developed hierarchical nanoceramic electrodes for mixed potential zirconia gas sensors with increased surface area and demonstrated tailored electrocatalytic activity operable at high temperatures enabling detection of products of combustion such as NOx close to the source of combustion. Methods were developed for synthesis of hierarchical nanostructures with high, stable surface area, integrated catalytic functionality within the structures for gas sensing, and demonstrated materials performance in harsh lab and combustion gas environments.

  16. Sparsey™: event recognition via deep hierarchical sparse distributed codes.

    Science.gov (United States)

    Rinkus, Gerard J

    2014-01-01

    The visual cortex's hierarchical, multi-level organization is captured in many biologically inspired computational vision models, the general idea being that progressively larger scale (spatially/temporally) and more complex visual features are represented in progressively higher areas. However, most earlier models use localist representations (codes) in each representational field (which we equate with the cortical macrocolumn, "mac"), at each level. In localism, each represented feature/concept/event (hereinafter "item") is coded by a single unit. The model we describe, Sparsey, is hierarchical as well but crucially, it uses sparse distributed coding (SDC) in every mac in all levels. In SDC, each represented item is coded by a small subset of the mac's units. The SDCs of different items can overlap and the size of overlap between items can be used to represent their similarity. The difference between localism and SDC is crucial because SDC allows the two essential operations of associative memory, storing a new item and retrieving the best-matching stored item, to be done in fixed time for the life of the model. Since the model's core algorithm, which does both storage and retrieval (inference), makes a single pass over all macs on each time step, the overall model's storage/retrieval operation is also fixed-time, a criterion we consider essential for scalability to the huge ("Big Data") problems. A 2010 paper described a nonhierarchical version of this model in the context of purely spatial pattern processing. Here, we elaborate a fully hierarchical model (arbitrary numbers of levels and macs per level), describing novel model principles like progressive critical periods, dynamic modulation of principal cells' activation functions based on a mac-level familiarity measure, representation of multiple simultaneously active hypotheses, a novel method of time warp invariant recognition, and we report results showing learning/recognition of spatiotemporal patterns.

  17. HIERARCHICAL OPTIMIZATION MODEL ON GEONETWORK

    Directory of Open Access Journals (Sweden)

    Z. Zha

    2012-07-01

    Full Text Available In existing construction experience of Spatial Data Infrastructure (SDI, GeoNetwork, as the geographical information integrated solution, is an effective way of building SDI. During GeoNetwork serving as an internet application, several shortcomings are exposed. The first one is that the time consuming of data loading has been considerately increasing with the growth of metadata count. Consequently, the efficiency of query and search service becomes lower. Another problem is that stability and robustness are both ruined since huge amount of metadata. The final flaw is that the requirements of multi-user concurrent accessing based on massive data are not effectively satisfied on the internet. A novel approach, Hierarchical Optimization Model (HOM, is presented to solve the incapability of GeoNetwork working with massive data in this paper. HOM optimizes the GeoNetwork from these aspects: internal procedure, external deployment strategies, etc. This model builds an efficient index for accessing huge metadata and supporting concurrent processes. In this way, the services based on GeoNetwork can maintain stable while running massive metadata. As an experiment, we deployed more than 30 GeoNetwork nodes, and harvest nearly 1.1 million metadata. From the contrast between the HOM-improved software and the original one, the model makes indexing and retrieval processes more quickly and keeps the speed stable on metadata amount increasing. It also shows stable on multi-user concurrent accessing to system services, the experiment achieved good results and proved that our optimization model is efficient and reliable.

  18. Combining Self-organizing Feature Map with Support Vector Regression Based on Expert System%自组织映射算法与基于专家系统的支持向量回归的结合

    Institute of Scientific and Technical Information of China (English)

    王玲; 穆志纯; 郭辉

    2005-01-01

    A new approach is proposed to model nonlinear dynamic systems by combining SOM (self-organizing feature map) with support vector regression (SVR) based on expert system. The whole system has a two-stage neural network architecture. In the first stage SOM is used as a clustering algorithm to partition the whole input space into several disjointed regions. A hierarchical architecture is adopted in the partition to avoid the problem of predetermining the number of partitioned regions. Then, in the second stage, multiple SVR, also called SVR experts, that best fit each partitioned region by the combination of different kernel function of SVR and promote the configuration and tuning of SVR. Finally, to apply this new approach to time-series prediction problems based on the Mackey-Glass differential equation and Santa Fe data, the results show that SVR experts has effective improvement in the generalist performance in comparison with the single SVR model.

  19. C-HiLasso: A Collaborative Hierarchical Sparse Modeling Framework

    CERN Document Server

    Sprechmann, Pablo; Sapiro, Guillermo; Eldar, Yonina

    2010-01-01

    Sparse modeling is a powerful framework for data analysis and processing. Traditionally, encoding in this framework is performed by solving an L1-regularized linear regression problem, commonly referred to as Lasso or Basis Pursuit. In this work we combine the sparsity-inducing property of the Lasso model at the individual feature level, with the block-sparsity property of the Group Lasso model, where sparse groups of features are jointly encoded, obtaining a sparsity pattern hierarchically structured. This results in the Hierarchical Lasso (HiLasso), which shows important practical modeling advantages. We then extend this approach to the collaborative case, where a set of simultaneously coded signals share the same sparsity pattern at the higher (group) level, but not necessarily at the lower (inside the group) level, obtaining the collaborative HiLasso model (C-HiLasso). Such signals then share the same active groups, or classes, but not necessarily the same active set. This model is very well suited for ap...

  20. Regression Verification Using Impact Summaries

    Science.gov (United States)

    Backes, John; Person, Suzette J.; Rungta, Neha; Thachuk, Oksana

    2013-01-01

    Regression verification techniques are used to prove equivalence of syntactically similar programs. Checking equivalence of large programs, however, can be computationally expensive. Existing regression verification techniques rely on abstraction and decomposition techniques to reduce the computational effort of checking equivalence of the entire program. These techniques are sound but not complete. In this work, we propose a novel approach to improve scalability of regression verification by classifying the program behaviors generated during symbolic execution as either impacted or unimpacted. Our technique uses a combination of static analysis and symbolic execution to generate summaries of impacted program behaviors. The impact summaries are then checked for equivalence using an o-the-shelf decision procedure. We prove that our approach is both sound and complete for sequential programs, with respect to the depth bound of symbolic execution. Our evaluation on a set of sequential C artifacts shows that reducing the size of the summaries can help reduce the cost of software equivalence checking. Various reduction, abstraction, and compositional techniques have been developed to help scale software verification techniques to industrial-sized systems. Although such techniques have greatly increased the size and complexity of systems that can be checked, analysis of large software systems remains costly. Regression analysis techniques, e.g., regression testing [16], regression model checking [22], and regression verification [19], restrict the scope of the analysis by leveraging the differences between program versions. These techniques are based on the idea that if code is checked early in development, then subsequent versions can be checked against a prior (checked) version, leveraging the results of the previous analysis to reduce analysis cost of the current version. Regression verification addresses the problem of proving equivalence of closely related program

  1. Social Influence on Information Technology Adoption and Sustained Use in Healthcare: A Hierarchical Bayesian Learning Method Analysis

    Science.gov (United States)

    Hao, Haijing

    2013-01-01

    Information technology adoption and diffusion is currently a significant challenge in the healthcare delivery setting. This thesis includes three papers that explore social influence on information technology adoption and sustained use in the healthcare delivery environment using conventional regression models and novel hierarchical Bayesian…

  2. Facial animation on an anatomy-based hierarchical face model

    Science.gov (United States)

    Zhang, Yu; Prakash, Edmond C.; Sung, Eric

    2003-04-01

    In this paper we propose a new hierarchical 3D facial model based on anatomical knowledge that provides high fidelity for realistic facial expression animation. Like real human face, the facial model has a hierarchical biomechanical structure, incorporating a physically-based approximation to facial skin tissue, a set of anatomically-motivated facial muscle actuators and underlying skull structure. The deformable skin model has multi-layer structure to approximate different types of soft tissue. It takes into account the nonlinear stress-strain relationship of the skin and the fact that soft tissue is almost incompressible. Different types of muscle models have been developed to simulate distribution of the muscle force on the skin due to muscle contraction. By the presence of the skull model, our facial model takes advantage of both more accurate facial deformation and the consideration of facial anatomy during the interactive definition of facial muscles. Under the muscular force, the deformation of the facial skin is evaluated using numerical integration of the governing dynamic equations. The dynamic facial animation algorithm runs at interactive rate with flexible and realistic facial expressions to be generated.

  3. Regression analysis for solving diagnosis problem of children's health

    Science.gov (United States)

    Cherkashina, Yu A.; Gerget, O. M.

    2016-04-01

    The paper includes results of scientific researches. These researches are devoted to the application of statistical techniques, namely, regression analysis, to assess the health status of children in the neonatal period based on medical data (hemostatic parameters, parameters of blood tests, the gestational age, vascular-endothelial growth factor) measured at 3-5 days of children's life. In this paper a detailed description of the studied medical data is given. A binary logistic regression procedure is discussed in the paper. Basic results of the research are presented. A classification table of predicted values and factual observed values is shown, the overall percentage of correct recognition is determined. Regression equation coefficients are calculated, the general regression equation is written based on them. Based on the results of logistic regression, ROC analysis was performed, sensitivity and specificity of the model are calculated and ROC curves are constructed. These mathematical techniques allow carrying out diagnostics of health of children providing a high quality of recognition. The results make a significant contribution to the development of evidence-based medicine and have a high practical importance in the professional activity of the author.

  4. Classification of microarray data with penalized logistic regression

    Science.gov (United States)

    Eilers, Paul H. C.; Boer, Judith M.; van Ommen, Gert-Jan; van Houwelingen, Hans C.

    2001-06-01

    Classification of microarray data needs a firm statistical basis. In principle, logistic regression can provide it, modeling the probability of membership of a class with (transforms of) linear combinations of explanatory variables. However, classical logistic regression does not work for microarrays, because generally there will be far more variables than observations. One problem is multicollinearity: estimating equations become singular and have no unique and stable solution. A second problem is over-fitting: a model may fit well into a data set, but perform badly when used to classify new data. We propose penalized likelihood as a solution to both problems. The values of the regression coefficients are constrained in a similar way as in ridge regression. All variables play an equal role, there is no ad-hoc selection of most relevant or most expressed genes. The dimension of the resulting systems of equations is equal to the number of variables, and generally will be too large for most computers, but it can dramatically be reduced with the singular value decomposition of some matrices. The penalty is optimized with AIC (Akaike's Information Criterion), which essentially is a measure of prediction performance. We find that penalized logistic regression performs well on a public data set (the MIT ALL/AML data).

  5. Multilevel modeling was a convenient alternative to common regression designs in longitudinal suicide research.

    Science.gov (United States)

    Antretter, Elfi; Dunkel, Dirk; Osvath, Peter; Voros, Viktor; Fekete, Sandor; Haring, Christian

    2006-06-01

    The prospective investigation of repetitive nonfatal suicidal behavior is associated with two methodological problems. Due to the commonly used definitions of nonfatal suicidal behavior, clinical samples usually consist of patients with a considerable between-person variability. Second, repeated nonfatal suicidal episodes of the same subjects are likely to be correlated. We examined three regression techniques to comparatively evaluate their efficiency in addressing the given methodological problems. Repeated episodes of nonfatal suicidal behavior were assessed in two independent patient samples during a 2-year follow-up period. The first regression design modeled repetitive nonfatal suicidal behavior as a summary measure. The second regression model treated repeated episodes of the same subject as independent events. The third regression model represented a hierarchical linear model. The estimated mean effects of the first model were likely to be nonrepresentative for a considerable part of the study subjects. The second regression design overemphasized the impact of the predictor variables. The hierarchical linear model most appropriately accounted for the heterogeneity of the samples and the correlated data structure. The nonhierarchical regression designs did not provide appropriate statistical models for the prospective investigation of repetitive nonfatal suicidal behavior. Multilevel modeling provides a convenient alternative.

  6. Regional flood frequency analysis using spatial proximity and basin characteristics: Quantile regression vs. parameter regression technique

    Science.gov (United States)

    Ahn, Kuk-Hyun; Palmer, Richard

    2016-09-01

    Despite wide use of regression-based regional flood frequency analysis (RFFA) methods, the majority are based on either ordinary least squares (OLS) or generalized least squares (GLS). This paper proposes 'spatial proximity' based RFFA methods using the spatial lagged model (SLM) and spatial error model (SEM). The proposed methods are represented by two frameworks: the quantile regression technique (QRT) and parameter regression technique (PRT). The QRT develops prediction equations for flooding quantiles in average recurrence intervals (ARIs) of 2, 5, 10, 20, and 100 years whereas the PRT provides prediction of three parameters for the selected distribution. The proposed methods are tested using data incorporating 30 basin characteristics from 237 basins in Northeastern United States. Results show that generalized extreme value (GEV) distribution properly represents flood frequencies in the study gages. Also, basin area, stream network, and precipitation seasonality are found to be the most effective explanatory variables in prediction modeling by the QRT and PRT. 'Spatial proximity' based RFFA methods provide reliable flood quantile estimates compared to simpler methods. Compared to the QRT, the PRT may be recommended due to its accuracy and computational simplicity. The results presented in this paper may serve as one possible guidepost for hydrologists interested in flood analysis at ungaged sites.

  7. Polynomial Regressions and Nonsense Inference

    Directory of Open Access Journals (Sweden)

    Daniel Ventosa-Santaulària

    2013-11-01

    Full Text Available Polynomial specifications are widely used, not only in applied economics, but also in epidemiology, physics, political analysis and psychology, just to mention a few examples. In many cases, the data employed to estimate such specifications are time series that may exhibit stochastic nonstationary behavior. We extend Phillips’ results (Phillips, P. Understanding spurious regressions in econometrics. J. Econom. 1986, 33, 311–340. by proving that an inference drawn from polynomial specifications, under stochastic nonstationarity, is misleading unless the variables cointegrate. We use a generalized polynomial specification as a vehicle to study its asymptotic and finite-sample properties. Our results, therefore, lead to a call to be cautious whenever practitioners estimate polynomial regressions.

  8. Producing The New Regressive Left

    DEFF Research Database (Denmark)

    Crone, Christine

    to be a committed artist, and how that translates into supporting al-Assad’s rule in Syria; the Ramadan programme Harrir Aqlak’s attempt to relaunch an intellectual renaissance and to promote religious pluralism; and finally, al-Mayadeen’s cooperation with the pan-Latin American TV station TeleSur and its ambitions...... becomes clear from the analytical chapters is the emergence of the new cross-ideological alliance of The New Regressive Left. This emerging coalition between Shia Muslims, religious minorities, parts of the Arab Left, secular cultural producers, and the remnants of the political,strategic resistance...... coalition (Iran, Hizbollah, Syria), capitalises on a series of factors that bring them together in spite of their otherwise diverse worldviews and agendas. The New Regressive Left is united by resistance against the growing influence of Saudi Arabia in the religious, cultural, political, economic...

  9. Heteroscedasticity checks for regression models

    Institute of Scientific and Technical Information of China (English)

    ZHU; Lixing

    2001-01-01

    [1]Carroll, R. J., Ruppert, D., Transformation and Weighting in Regression, New York: Chapman and Hall, 1988.[2]Cook, R. D., Weisberg, S., Diagnostics for heteroscedasticity in regression, Biometrika, 1988, 70: 1—10.[3]Davidian, M., Carroll, R. J., Variance function estimation, J. Amer. Statist. Assoc., 1987, 82: 1079—1091.[4]Bickel, P., Using residuals robustly I: Tests for heteroscedasticity, Ann. Statist., 1978, 6: 266—291.[5]Carroll, R. J., Ruppert, D., On robust tests for heteroscedasticity, Ann. Statist., 1981, 9: 205—209.[6]Eubank, R. L., Thomas, W., Detecting heteroscedasticity in nonparametric regression, J. Roy. Statist. Soc., Ser. B, 1993, 55: 145—155.[7]Diblasi, A., Bowman, A., Testing for constant variance in a linear model, Statist. and Probab. Letters, 1997, 33: 95—103.[8]Dette, H., Munk, A., Testing heteoscedasticity in nonparametric regression, J. R. Statist. Soc. B, 1998, 60: 693—708.[9]Müller, H. G., Zhao, P. L., On a semi-parametric variance function model and a test for heteroscedasticity, Ann. Statist., 1995, 23: 946—967.[10]Stute, W., Manteiga, G., Quindimil, M. P., Bootstrap approximations in model checks for regression, J. Amer. Statist. Asso., 1998, 93: 141—149.[11]Stute, W., Thies, G., Zhu, L. X., Model checks for regression: An innovation approach, Ann. Statist., 1998, 26: 1916—1939.[12]Shorack, G. R., Wellner, J. A., Empirical Processes with Applications to Statistics, New York: Wiley, 1986.[13]Efron, B., Bootstrap methods: Another look at the jackknife, Ann. Statist., 1979, 7: 1—26.[14]Wu, C. F. J., Jackknife, bootstrap and other re-sampling methods in regression analysis, Ann. Statist., 1986, 14: 1261—1295.[15]H rdle, W., Mammen, E., Comparing non-parametric versus parametric regression fits, Ann. Statist., 1993, 21: 1926—1947.[16]Liu, R. Y., Bootstrap procedures under some non-i.i.d. models, Ann. Statist., 1988, 16: 1696—1708.[17

  10. Clustered regression with unknown clusters

    CERN Document Server

    Barman, Kishor

    2011-01-01

    We consider a collection of prediction experiments, which are clustered in the sense that groups of experiments ex- hibit similar relationship between the predictor and response variables. The experiment clusters as well as the regres- sion relationships are unknown. The regression relation- ships define the experiment clusters, and in general, the predictor and response variables may not exhibit any clus- tering. We call this prediction problem clustered regres- sion with unknown clusters (CRUC) and in this paper we focus on linear regression. We study and compare several methods for CRUC, demonstrate their applicability to the Yahoo Learning-to-rank Challenge (YLRC) dataset, and in- vestigate an associated mathematical model. CRUC is at the crossroads of many prior works and we study several prediction algorithms with diverse origins: an adaptation of the expectation-maximization algorithm, an approach in- spired by K-means clustering, the singular value threshold- ing approach to matrix rank minimization u...

  11. Inference in HIV dynamics models via hierarchical likelihood

    CERN Document Server

    Commenges, D; Putter, H; Thiebaut, R

    2010-01-01

    HIV dynamical models are often based on non-linear systems of ordinary differential equations (ODE), which do not have analytical solution. Introducing random effects in such models leads to very challenging non-linear mixed-effects models. To avoid the numerical computation of multiple integrals involved in the likelihood, we propose a hierarchical likelihood (h-likelihood) approach, treated in the spirit of a penalized likelihood. We give the asymptotic distribution of the maximum h-likelihood estimators (MHLE) for fixed effects, a result that may be relevant in a more general setting. The MHLE are slightly biased but the bias can be made negligible by using a parametric bootstrap procedure. We propose an efficient algorithm for maximizing the h-likelihood. A simulation study, based on a classical HIV dynamical model, confirms the good properties of the MHLE. We apply it to the analysis of a clinical trial.

  12. Scalable Hierarchical Algorithms for stochastic PDEs and UQ

    KAUST Repository

    Litvinenko, Alexander

    2015-01-07

    H-matrices and Fast Multipole (FMM) are powerful methods to approximate linear operators coming from partial differential and integral equations as well as speed up computational cost from quadratic or cubic to log-linear (O(n log n)), where n number of degrees of freedom in the discretization. The storage is reduced to the log-linear as well. This hierarchical structure is a good starting point for parallel algorithms. Parallelization on shared and distributed memory systems was pioneered by Kriemann [1,2]. Since 2005, the area of parallel architectures and software is developing very fast. Progress in GPUs and Many-Core Systems (e.g. XeonPhi with 64 cores) motivated us to extend work started in [1,2,7,8].

  13. Scalable Hierarchical Algorithms for stochastic PDEs and Uncertainty Quantification

    KAUST Repository

    Litvinenko, Alexander

    2015-01-05

    H-matrices and Fast Multipole (FMM) are powerful methods to approximate linear operators coming from partial differential and integral equations as well as speed up computational cost from quadratic or cubic to log-linear (O(n log n)), where n number of degrees of freedom in the discretization. The storage is reduced to the log-linear as well. This hierarchical structure is a good starting point for parallel algorithms. Parallelization on shared and distributed memory systems was pioneered by R. Kriemann, 2005. Since 2005, the area of parallel architectures and software is developing very fast. Progress in GPUs and Many-Core Systems (e.g. XeonPhi with 64 cores) motivated us to extend work started in [1,2,7,8].

  14. Robust nonlinear regression in applications

    OpenAIRE

    Lim, Changwon; Sen, Pranab K.; Peddada, Shyamal D.

    2013-01-01

    Robust statistical methods, such as M-estimators, are needed for nonlinear regression models because of the presence of outliers/influential observations and heteroscedasticity. Outliers and influential observations are commonly observed in many applications, especially in toxicology and agricultural experiments. For example, dose response studies, which are routinely conducted in toxicology and agriculture, sometimes result in potential outliers, especially in the high dose gr...

  15. Astronomical Methods for Nonparametric Regression

    Science.gov (United States)

    Steinhardt, Charles L.; Jermyn, Adam

    2017-01-01

    I will discuss commonly used techniques for nonparametric regression in astronomy. We find that several of them, particularly running averages and running medians, are generically biased, asymmetric between dependent and independent variables, and perform poorly in recovering the underlying function, even when errors are present only in one variable. We then examine less-commonly used techniques such as Multivariate Adaptive Regressive Splines and Boosted Trees and find them superior in bias, asymmetry, and variance both theoretically and in practice under a wide range of numerical benchmarks. In this context the chief advantage of the common techniques is runtime, which even for large datasets is now measured in microseconds compared with milliseconds for the more statistically robust techniques. This points to a tradeoff between bias, variance, and computational resources which in recent years has shifted heavily in favor of the more advanced methods, primarily driven by Moore's Law. Along these lines, we also propose a new algorithm which has better overall statistical properties than all techniques examined thus far, at the cost of significantly worse runtime, in addition to providing guidance on choosing the nonparametric regression technique most suitable to any specific problem. We then examine the more general problem of errors in both variables and provide a new algorithm which performs well in most cases and lacks the clear asymmetry of existing non-parametric methods, which fail to account for errors in both variables.

  16. Predictive regressions for macroeconomic data

    OpenAIRE

    Fukang Zhu; Zongwu Cai; Liang Peng

    2014-01-01

    Researchers have constantly asked whether stock returns can be predicted by some macroeconomic data. However, it is known that macroeconomic data may exhibit nonstationarity and/or heavy tails, which complicates existing testing procedures for predictability. In this paper we propose novel empirical likelihood methods based on some weighted score equations to test whether the monthly CRSP value-weighted index can be predicted by the log dividend-price ratio or the log earnings-price ratio. Th...

  17. Uncertainty in perception and the Hierarchical Gaussian Filter

    Directory of Open Access Journals (Sweden)

    Christoph Daniel Mathys

    2014-11-01

    Full Text Available In its full sense, perception rests on an agent’s model of how its sensory input comes about and the inferences it draws based on this model. These inferences are necessarily uncertain. Here, we illustrate how the hierarchical Gaussian filter (HGF offers a principled and generic way to deal with the several forms that uncertainty in perception takes. The HGF is a recent derivation of one-step update equations from Bayesian principles that rests on a hierarchical generative model of the environment and its (instability. It is computationally highly efficient, allows for online estimates of hidden states, and has found numerous applications to experimental data from human subjects. In this paper, we generalize previous descriptions of the HGF and its account of perceptual uncertainty. First, we explicitly formulate the extension of the HGF’s hierarchy to any number of levels; second, we discuss how various forms of uncertainty are accommodated by the minimization of variational free energy as encoded in the update equations; third, we combine the HGF with decision models and demonstrate the inversion of this combination; finally, we report a simulation study that compared four optimization methods for inverting the HGF/decision model combination at different noise levels. These four methods (Nelder-Mead simplex algorithm, Gaussian process-based global optimization, variational Bayes and Markov chain Monte Carlo sampling all performed well even under considerable noise, with variational Bayes offering the best combination of efficiency and informativeness of inference. Our results demonstrate that the HGF provides a principled, flexible, and efficient - but at the same time intuitive - framework for the resolution of perceptual uncertainty in behaving agents.

  18. Hierarchical algorithms of functional modelling for solution of optimal operation problems in electrical power systems

    Energy Technology Data Exchange (ETDEWEB)

    Makeechev, V.A. [Industrial Power Company, Krasnopresnenskaya Naberejnaya 12, 123610 Moscow (Russian Federation); Soukhanov, O.A. [Energy Systems Institute, 1 st Yamskogo Polya Street 15, 125040 Moscow (Russian Federation); Sharov, Y.V. [Moscow Power Engineering Institute, Krasnokazarmennaya Street 14, 111250 Moscow (Russian Federation)

    2008-07-15

    This paper presents foundations of the optimization method intended for solution of power systems operation problems and based on the principles of functional modeling (FM). This paper also presents several types of hierarchical FM algorithms for economic dispatch in these systems derived from this method. According to the FM method a power system is represented by hierarchical model consisting of systems of equations of lower (subsystem) levels and higher level system of connection equations (SCE), in which only boundary variables of subsystems are present. Solution of optimization problem in accordance with the FM method consists of the following operations: (1) solution of optimization problem for each subsystem (values of boundary variables for subsystems should be determined on the higher level of model); (2) calculation of functional characteristic (FC) of each subsystem, pertaining to state of subsystem on current iteration (these two steps are carried out on the lower level of the model); (3) formation and solution of the higher level system of equations (SCE), which gives values of boundary and supplementary boundary variables on current iteration. The key elements in the general structure of the FM method are FCs of subsystems, which represent them on the higher level of the model as ''black boxes''. Important advantage of hierarchical FM algorithms is that results obtained with them on each iteration are identical to those of corresponding basic one level algorithms. (author)

  19. Genetics Home Reference: caudal regression syndrome

    Science.gov (United States)

    ... Twitter Home Health Conditions caudal regression syndrome caudal regression syndrome Enable Javascript to view the expand/collapse ... Download PDF Open All Close All Description Caudal regression syndrome is a disorder that impairs the development ...

  20. Self-assembled biomimetic superhydrophobic hierarchical arrays.

    Science.gov (United States)

    Yang, Hongta; Dou, Xuan; Fang, Yin; Jiang, Peng

    2013-09-01

    Here, we report a simple and inexpensive bottom-up technology for fabricating superhydrophobic coatings with hierarchical micro-/nano-structures, which are inspired by the binary periodic structure found on the superhydrophobic compound eyes of some insects (e.g., mosquitoes and moths). Binary colloidal arrays consisting of exemplary large (4 and 30 μm) and small (300 nm) silica spheres are first assembled by a scalable Langmuir-Blodgett (LB) technology in a layer-by-layer manner. After surface modification with fluorosilanes, the self-assembled hierarchical particle arrays become superhydrophobic with an apparent water contact angle (CA) larger than 150°. The throughput of the resulting superhydrophobic coatings with hierarchical structures can be significantly improved by templating the binary periodic structures of the LB-assembled colloidal arrays into UV-curable fluoropolymers by a soft lithography approach. Superhydrophobic perfluoroether acrylate hierarchical arrays with large CAs and small CA hysteresis can be faithfully replicated onto various substrates. Both experiments and theoretical calculations based on the Cassie's dewetting model demonstrate the importance of the hierarchical structure in achieving the final superhydrophobic surface states. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Analysis hierarchical model for discrete event systems

    Science.gov (United States)

    Ciortea, E. M.

    2015-11-01

    The This paper presents the hierarchical model based on discrete event network for robotic systems. Based on the hierarchical approach, Petri network is analysed as a network of the highest conceptual level and the lowest level of local control. For modelling and control of complex robotic systems using extended Petri nets. Such a system is structured, controlled and analysed in this paper by using Visual Object Net ++ package that is relatively simple and easy to use, and the results are shown as representations easy to interpret. The hierarchical structure of the robotic system is implemented on computers analysed using specialized programs. Implementation of hierarchical model discrete event systems, as a real-time operating system on a computer network connected via a serial bus is possible, where each computer is dedicated to local and Petri model of a subsystem global robotic system. Since Petri models are simplified to apply general computers, analysis, modelling, complex manufacturing systems control can be achieved using Petri nets. Discrete event systems is a pragmatic tool for modelling industrial systems. For system modelling using Petri nets because we have our system where discrete event. To highlight the auxiliary time Petri model using transport stream divided into hierarchical levels and sections are analysed successively. Proposed robotic system simulation using timed Petri, offers the opportunity to view the robotic time. Application of goods or robotic and transmission times obtained by measuring spot is obtained graphics showing the average time for transport activity, using the parameters sets of finished products. individually.

  2. Hierarchical models and chaotic spin glasses

    Science.gov (United States)

    Berker, A. Nihat; McKay, Susan R.

    1984-09-01

    Renormalization-group studies in position space have led to the discovery of hierarchical models which are exactly solvable, exhibiting nonclassical critical behavior at finite temperature. Position-space renormalization-group approximations that had been widely and successfully used are in fact alternatively applicable as exact solutions of hierarchical models, this realizability guaranteeing important physical requirements. For example, a hierarchized version of the Sierpiriski gasket is presented, corresponding to a renormalization-group approximation which has quantitatively yielded the multicritical phase diagrams of submonolayers on graphite. Hierarchical models are now being studied directly as a testing ground for new concepts. For example, with the introduction of frustration, chaotic renormalization-group trajectories were obtained for the first time. Thus, strong and weak correlations are randomly intermingled at successive length scales, and a new microscopic picture and mechanism for a spin glass emerges. An upper critical dimension occurs via a boundary crisis mechanism in cluster-hierarchical variants developed to have well-behaved susceptibilities.

  3. On Weighted Support Vector Regression

    DEFF Research Database (Denmark)

    Han, Xixuan; Clemmensen, Line Katrine Harder

    2014-01-01

    We propose a new type of weighted support vector regression (SVR), motivated by modeling local dependencies in time and space in prediction of house prices. The classic weights of the weighted SVR are added to the slack variables in the objective function (OF‐weights). This procedure directly...... the differences and similarities of the two types of weights by demonstrating the connection between the Least Absolute Shrinkage and Selection Operator (LASSO) and the SVR. We show that an SVR problem can be transformed to a LASSO problem plus a linear constraint and a box constraint. We demonstrate...

  4. Biased trapping issue on weighted hierarchical networks

    Indian Academy of Sciences (India)

    Meifeng Dai; Jie Liu; Feng Zhu

    2014-10-01

    In this paper, we present trapping issues of weight-dependent walks on weighted hierarchical networks which are based on the classic scale-free hierarchical networks. Assuming that edge’s weight is used as local information by a random walker, we introduce a biased walk. The biased walk is that a walker, at each step, chooses one of its neighbours with a probability proportional to the weight of the edge. We focus on a particular case with the immobile trap positioned at the hub node which has the largest degree in the weighted hierarchical networks. Using a method based on generating functions, we determine explicitly the mean first-passage time (MFPT) for the trapping issue. Let parameter (0 < < 1) be the weight factor. We show that the efficiency of the trapping process depends on the parameter a; the smaller the value of a, the more efficient is the trapping process.

  5. Improving broadcast channel rate using hierarchical modulation

    CERN Document Server

    Meric, Hugo; Arnal, Fabrice; Lesthievent, Guy; Boucheret, Marie-Laure

    2011-01-01

    We investigate the design of a broadcast system where the aim is to maximise the throughput. This task is usually challenging due to the channel variability. Forty years ago, Cover introduced and compared two schemes: time sharing and superposition coding. The second scheme was proved to be optimal for some channels. Modern satellite communications systems such as DVB-SH and DVB-S2 mainly rely on time sharing strategy to optimize throughput. They consider hierarchical modulation, a practical implementation of superposition coding, but only for unequal error protection or backward compatibility purposes. We propose in this article to combine time sharing and hierarchical modulation together and show how this scheme can improve the performance in terms of available rate. We present the gain on a simple channel modeling the broadcasting area of a satellite. Our work is applied to the DVB-SH standard, which considers hierarchical modulation as an optional feature.

  6. Incentive Mechanisms for Hierarchical Spectrum Markets

    CERN Document Server

    Iosifidis, George; Alpcan, Tansu; Koutsopoulos, Iordanis

    2011-01-01

    We study spectrum allocation mechanisms in hierarchical multi-layer markets which are expected to proliferate in the near future based on the current spectrum policy reform proposals. We consider a setting where a state agency sells spectrum to Primary Operators (POs) and in turn these resell it to Secondary Operators (SOs) through auctions. We show that these hierarchical markets do not result in a socially efficient spectrum allocation which is aimed by the agency, due to lack of coordination among the entities in different layers and the inherently selfish revenue-maximizing strategy of POs. In order to reconcile these opposing objectives, we propose an incentive mechanism which aligns the strategy and the actions of the POs with the objective of the agency, and thus it leads to system performance improvement in terms of social welfare. This pricing based mechanism constitutes a method for hierarchical market regulation and requires the feedback provision from SOs. A basic component of the proposed incenti...

  7. Hierarchical self-organization of tectonic plates

    CERN Document Server

    Morra, Gabriele; Müller, R Dietmar

    2010-01-01

    The Earth's surface is subdivided into eight large tectonic plates and many smaller ones. We reconstruct the plate tessellation history and demonstrate that both large and small plates display two distinct hierarchical patterns, described by different power-law size-relationships. While small plates display little organisational change through time, the structure of the large plates oscillate between minimum and maximum hierarchical tessellations. The organization of large plates rapidly changes from a weak hierarchy at 120-100 million years ago (Ma) towards a strong hierarchy, which peaked at 65-50, Ma subsequently relaxing back towards a minimum hierarchical structure. We suggest that this fluctuation reflects an alternation between top and bottom driven plate tectonics, revealing a previously undiscovered tectonic cyclicity at a timescale of 100 million years.

  8. Towards a sustainable manufacture of hierarchical zeolites.

    Science.gov (United States)

    Verboekend, Danny; Pérez-Ramírez, Javier

    2014-03-01

    Hierarchical zeolites have been established as a superior type of aluminosilicate catalysts compared to their conventional (purely microporous) counterparts. An impressive array of bottom-up and top-down approaches has been developed during the last decade to design and subsequently exploit these exciting materials catalytically. However, the sustainability of the developed synthetic methods has rarely been addressed. This paper highlights important criteria to ensure the ecological and economic viability of the manufacture of hierarchical zeolites. Moreover, by using base leaching as a promising case study, we verify a variety of approaches to increase reactor productivity, recycle waste streams, prevent the combustion of organic compounds, and minimize separation efforts. By reducing their synthetic footprint, hierarchical zeolites are positioned as an integral part of sustainable chemistry. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Classification using Hierarchical Naive Bayes models

    DEFF Research Database (Denmark)

    Langseth, Helge; Dyhre Nielsen, Thomas

    2006-01-01

    Classification problems have a long history in the machine learning literature. One of the simplest, and yet most consistently well-performing set of classifiers is the Naïve Bayes models. However, an inherent problem with these classifiers is the assumption that all attributes used to describe...... an instance are conditionally independent given the class of that instance. When this assumption is violated (which is often the case in practice) it can reduce classification accuracy due to “information double-counting” and interaction omission. In this paper we focus on a relatively new set of models......, termed Hierarchical Naïve Bayes models. Hierarchical Naïve Bayes models extend the modeling flexibility of Naïve Bayes models by introducing latent variables to relax some of the independence statements in these models. We propose a simple algorithm for learning Hierarchical Naïve Bayes models...

  10. Hierarchical Neural Network Structures for Phoneme Recognition

    CERN Document Server

    Vasquez, Daniel; Minker, Wolfgang

    2013-01-01

    In this book, hierarchical structures based on neural networks are investigated for automatic speech recognition. These structures are evaluated on the phoneme recognition task where a  Hybrid Hidden Markov Model/Artificial Neural Network paradigm is used. The baseline hierarchical scheme consists of two levels each which is based on a Multilayered Perceptron. Additionally, the output of the first level serves as a second level input. The computational speed of the phoneme recognizer can be substantially increased by removing redundant information still contained at the first level output. Several techniques based on temporal and phonetic criteria have been investigated to remove this redundant information. The computational time could be reduced by 57% whilst keeping the system accuracy comparable to the baseline hierarchical approach.

  11. Universal hierarchical behavior of citation networks

    CERN Document Server

    Mones, Enys; Vicsek, Tamás

    2014-01-01

    Many of the essential features of the evolution of scientific research are imprinted in the structure of citation networks. Connections in these networks imply information about the transfer of knowledge among papers, or in other words, edges describe the impact of papers on other publications. This inherent meaning of the edges infers that citation networks can exhibit hierarchical features, that is typical of networks based on decision-making. In this paper, we investigate the hierarchical structure of citation networks consisting of papers in the same field. We find that the majority of the networks follow a universal trend towards a highly hierarchical state, and i) the various fields display differences only concerning their phase in life (distance from the "birth" of a field) or ii) the characteristic time according to which they are approaching the stationary state. We also show by a simple argument that the alterations in the behavior are related to and can be understood by the degree of specializatio...

  12. Static and dynamic friction of hierarchical surfaces

    Science.gov (United States)

    Costagliola, Gianluca; Bosia, Federico; Pugno, Nicola M.

    2016-12-01

    Hierarchical structures are very common in nature, but only recently have they been systematically studied in materials science, in order to understand the specific effects they can have on the mechanical properties of various systems. Structural hierarchy provides a way to tune and optimize macroscopic mechanical properties starting from simple base constituents and new materials are nowadays designed exploiting this possibility. This can be true also in the field of tribology. In this paper we study the effect of hierarchical patterned surfaces on the static and dynamic friction coefficients of an elastic material. Our results are obtained by means of numerical simulations using a one-dimensional spring-block model, which has previously been used to investigate various aspects of friction. Despite the simplicity of the model, we highlight some possible mechanisms that explain how hierarchical structures can significantly modify the friction coefficients of a material, providing a means to achieve tunability.

  13. Using Mixture Regression to Identify Varying Effects: A Demonstration with Paternal Incarceration

    Science.gov (United States)

    Dyer, W. Justin; Pleck, Joseph; McBride, Brent

    2012-01-01

    The most widely used techniques for identifying the varying effects of stressors involve testing moderator effects via interaction terms in regression or multiple-group analysis in structural equation modeling. The authors present mixture regression as an alternative approach. In contrast to more widely used approaches, mixture regression…

  14. Partial Differential Equations

    CERN Document Server

    1988-01-01

    The volume contains a selection of papers presented at the 7th Symposium on differential geometry and differential equations (DD7) held at the Nankai Institute of Mathematics, Tianjin, China, in 1986. Most of the contributions are original research papers on topics including elliptic equations, hyperbolic equations, evolution equations, non-linear equations from differential geometry and mechanics, micro-local analysis.

  15. Multiatlas segmentation as nonparametric regression.

    Science.gov (United States)

    Awate, Suyash P; Whitaker, Ross T

    2014-09-01

    This paper proposes a novel theoretical framework to model and analyze the statistical characteristics of a wide range of segmentation methods that incorporate a database of label maps or atlases; such methods are termed as label fusion or multiatlas segmentation. We model these multiatlas segmentation problems as nonparametric regression problems in the high-dimensional space of image patches. We analyze the nonparametric estimator's convergence behavior that characterizes expected segmentation error as a function of the size of the multiatlas database. We show that this error has an analytic form involving several parameters that are fundamental to the specific segmentation problem (determined by the chosen anatomical structure, imaging modality, registration algorithm, and label-fusion algorithm). We describe how to estimate these parameters and show that several human anatomical structures exhibit the trends modeled analytically. We use these parameter estimates to optimize the regression estimator. We show that the expected error for large database sizes is well predicted by models learned on small databases. Thus, a few expert segmentations can help predict the database sizes required to keep the expected error below a specified tolerance level. Such cost-benefit analysis is crucial for deploying clinical multiatlas segmentation systems.

  16. Hierarchical control of electron-transfer

    DEFF Research Database (Denmark)

    Westerhoff, Hans V.; Jensen, Peter Ruhdal; Egger, Louis;

    1997-01-01

    In this chapter the role of electron transfer in determining the behaviour of the ATP synthesising enzyme in E. coli is analysed. It is concluded that the latter enzyme lacks control because of special properties of the electron transfer components. These properties range from absence of a strong...... back pressure by the protonmotive force on the rate of electron transfer to hierarchical regulation of the expression of the gens that encode the electron transfer proteins as a response to changes in the bioenergetic properties of the cell.The discussion uses Hierarchical Control Analysis...

  17. Genetic Algorithm for Hierarchical Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sajid Hussain

    2007-09-01

    Full Text Available Large scale wireless sensor networks (WSNs can be used for various pervasive and ubiquitous applications such as security, health-care, industry automation, agriculture, environment and habitat monitoring. As hierarchical clusters can reduce the energy consumption requirements for WSNs, we investigate intelligent techniques for cluster formation and management. A genetic algorithm (GA is used to create energy efficient clusters for data dissemination in wireless sensor networks. The simulation results show that the proposed intelligent hierarchical clustering technique can extend the network lifetime for different network deployment environments.

  18. DC Hierarchical Control System for Microgrid Applications

    OpenAIRE

    Lu, Xiaonan; Sun, Kai; Guerrero, Josep M.; Huang, Lipei

    2013-01-01

    In order to enhance the DC side performance of AC-DC hybrid microgrid,a DC hierarchical control system is proposed in this paper.To meet the requirement of DC load sharing between the parallel power interfaces,droop method is adopted.Meanwhile,DC voltage secondary control is employed to restore the deviation in the DC bus voltage.The hierarchical control system is composed of two levels.DC voltage and AC current controllers are achieved in the primary control level.

  19. Hierarchical social networks and information flow

    Science.gov (United States)

    López, Luis; F. F. Mendes, Jose; Sanjuán, Miguel A. F.

    2002-12-01

    Using a simple model for the information flow on social networks, we show that the traditional hierarchical topologies frequently used by companies and organizations, are poorly designed in terms of efficiency. Moreover, we prove that this type of structures are the result of the individual aim of monopolizing as much information as possible within the network. As the information is an appropriate measurement of centrality, we conclude that this kind of topology is so attractive for leaders, because the global influence each actor has within the network is completely determined by the hierarchical level occupied.

  20. Analyzing security protocols in hierarchical networks

    DEFF Research Database (Denmark)

    Zhang, Ye; Nielson, Hanne Riis

    2006-01-01

    Validating security protocols is a well-known hard problem even in a simple setting of a single global network. But a real network often consists of, besides the public-accessed part, several sub-networks and thereby forms a hierarchical structure. In this paper we first present a process calculus...... capturing the characteristics of hierarchical networks and describe the behavior of protocols on such networks. We then develop a static analysis to automate the validation. Finally we demonstrate how the technique can benefit the protocol development and the design of network systems by presenting a series...

  1. Hierarchic Models of Turbulence, Superfluidity and Superconductivity

    CERN Document Server

    Kaivarainen, A

    2000-01-01

    New models of Turbulence, Superfluidity and Superconductivity, based on new Hierarchic theory, general for liquids and solids (physics/0102086), have been proposed. CONTENTS: 1 Turbulence. General description; 2 Mesoscopic mechanism of turbulence; 3 Superfluidity. General description; 4 Mesoscopic scenario of fluidity; 5 Superfluidity as a hierarchic self-organization process; 6 Superfluidity in 3He; 7 Superconductivity: General properties of metals and semiconductors; Plasma oscillations; Cyclotron resonance; Electroconductivity; 8. Microscopic theory of superconductivity (BCS); 9. Mesoscopic scenario of superconductivity: Interpretation of experimental data in the framework of mesoscopic model of superconductivity.

  2. Hierarchical Analysis of the Omega Ontology

    Energy Technology Data Exchange (ETDEWEB)

    Joslyn, Cliff A.; Paulson, Patrick R.

    2009-12-01

    Initial delivery for mathematical analysis of the Omega Ontology. We provide an analysis of the hierarchical structure of a version of the Omega Ontology currently in use within the US Government. After providing an initial statistical analysis of the distribution of all link types in the ontology, we then provide a detailed order theoretical analysis of each of the four main hierarchical links present. This order theoretical analysis includes the distribution of components and their properties, their parent/child and multiple inheritance structure, and the distribution of their vertical ranks.

  3. Multilevel Hierarchical Modeling of Benthic Macroinvertebrate Responses to Urbanization in Nine Metropolitan Regions across the Conterminous United States

    Science.gov (United States)

    Kashuba, Roxolana; Cha, YoonKyung; Alameddine, Ibrahim; Lee, Boknam; Cuffney, Thomas F.

    2010-01-01

    Multilevel hierarchical modeling methodology has been developed for use in ecological data analysis. The effect of urbanization on stream macroinvertebrate communities was measured across a gradient of basins in each of nine metropolitan regions across the conterminous United States. The hierarchical nature of this dataset was harnessed in a multi-tiered model structure, predicting both invertebrate response at the basin scale and differences in invertebrate response at the region scale. Ordination site scores, total taxa richness, Ephemeroptera, Plecoptera, Trichoptera (EPT) taxa richness, and richness-weighted mean tolerance of organisms at a site were used to describe invertebrate responses. Percentage of urban land cover was used as a basin-level predictor variable. Regional mean precipitation, air temperature, and antecedent agriculture were used as region-level predictor variables. Multilevel hierarchical models were fit to both levels of data simultaneously, borrowing statistical strength from the complete dataset to reduce uncertainty in regional coefficient estimates. Additionally, whereas non-hierarchical regressions were only able to show differing relations between invertebrate responses and urban intensity separately for each region, the multilevel hierarchical regressions were able to explain and quantify those differences within a single model. In this way, this modeling approach directly establishes the importance of antecedent agricultural conditions in masking the response of invertebrates to urbanization in metropolitan regions such as Milwaukee-Green Bay, Wisconsin; Denver, Colorado; and Dallas-Fort Worth, Texas. Also, these models show that regions with high precipitation, such as Atlanta, Georgia; Birmingham, Alabama; and Portland, Oregon, start out with better regional background conditions of invertebrates prior to urbanization but experience faster negative rates of change with urbanization. Ultimately, this urbanization

  4. Multiple regression for physiological data analysis: the problem of multicollinearity.

    Science.gov (United States)

    Slinker, B K; Glantz, S A

    1985-07-01

    Multiple linear regression, in which several predictor variables are related to a response variable, is a powerful statistical tool for gaining quantitative insight into complex in vivo physiological systems. For these insights to be correct, all predictor variables must be uncorrelated. However, in many physiological experiments the predictor variables cannot be precisely controlled and thus change in parallel (i.e., they are highly correlated). There is a redundancy of information about the response, a situation called multicollinearity, that leads to numerical problems in estimating the parameters in regression equations; the parameters are often of incorrect magnitude or sign or have large standard errors. Although multicollinearity can be avoided with good experimental design, not all interesting physiological questions can be studied without encountering multicollinearity. In these cases various ad hoc procedures have been proposed to mitigate multicollinearity. Although many of these procedures are controversial, they can be helpful in applying multiple linear regression to some physiological problems.

  5. Mirror Prescription Regression: A Differential Interferometric Technique

    Directory of Open Access Journals (Sweden)

    Brian M. Robinson

    2010-01-01

    Full Text Available We present a remote, differential method for measuring the prescription of aspheric mirrors using null interferometry in the center-of-curvature configuration. The method requires no equipment beyond that used in a basic interferometery setup (i.e., there are no shearing elements or absolute distance meters. We chose this configuration because of its widespread use. However, the method is generalizable to other configurations with an adjustment of the governing equation. The method involves taking a series of interferograms before and after small, known misalignments are applied to the mirror in the interferometry setup and calculating the prescription (e.g., radius of curvature and conic constant of the mirror, based on these differential measurements, using a nonlinear regression. We apply this method successfully to the testing of a Space Optics Research Lab off-axis parabola with a known focal length of 152.4 mm, a diameter of 76.2 mm, and an off-axis angle of 12°.

  6. Prediction, Regression and Critical Realism

    DEFF Research Database (Denmark)

    Næss, Petter

    2004-01-01

    This paper considers the possibility of prediction in land use planning, and the use of statistical research methods in analyses of relationships between urban form and travel behaviour. Influential writers within the tradition of critical realism reject the possibility of predicting social...... of prediction necessary and possible in spatial planning of urban development. Finally, the political implications of positions within theory of science rejecting the possibility of predictions about social phenomena are addressed....... phenomena. This position is fundamentally problematic to public planning. Without at least some ability to predict the likely consequences of different proposals, the justification for public sector intervention into market mechanisms will be frail. Statistical methods like regression analyses are commonly...

  7. Nonparametric Regression with Common Shocks

    Directory of Open Access Journals (Sweden)

    Eduardo A. Souza-Rodrigues

    2016-09-01

    Full Text Available This paper considers a nonparametric regression model for cross-sectional data in the presence of common shocks. Common shocks are allowed to be very general in nature; they do not need to be finite dimensional with a known (small number of factors. I investigate the properties of the Nadaraya-Watson kernel estimator and determine how general the common shocks can be while still obtaining meaningful kernel estimates. Restrictions on the common shocks are necessary because kernel estimators typically manipulate conditional densities, and conditional densities do not necessarily exist in the present case. By appealing to disintegration theory, I provide sufficient conditions for the existence of such conditional densities and show that the estimator converges in probability to the Kolmogorov conditional expectation given the sigma-field generated by the common shocks. I also establish the rate of convergence and the asymptotic distribution of the kernel estimator.

  8. Practical Session: Multiple Linear Regression

    Science.gov (United States)

    Clausel, M.; Grégoire, G.

    2014-12-01

    Three exercises are proposed to illustrate the simple linear regression. In the first one investigates the influence of several factors on atmospheric pollution. It has been proposed by D. Chessel and A.B. Dufour in Lyon 1 (see Sect. 6 of http://pbil.univ-lyon1.fr/R/pdf/tdr33.pdf) and is based on data coming from 20 cities of U.S. Exercise 2 is an introduction to model selection whereas Exercise 3 provides a first example of analysis of variance. Exercises 2 and 3 have been proposed by A. Dalalyan at ENPC (see Exercises 2 and 3 of http://certis.enpc.fr/~dalalyan/Download/TP_ENPC_5.pdf).

  9. A convergence analysis for a sweeping preconditioner for block tridiagonal systems of linear equations

    KAUST Repository

    Bagci, Hakan

    2014-11-11

    We study sweeping preconditioners for symmetric and positive definite block tridiagonal systems of linear equations. The algorithm provides an approximate inverse that can be used directly or in a preconditioned iterative scheme. These algorithms are based on replacing the Schur complements appearing in a block Gaussian elimination direct solve by hierarchical matrix approximations with reduced off-diagonal ranks. This involves developing low rank hierarchical approximations to inverses. We first provide a convergence analysis for the algorithm for reduced rank hierarchical inverse approximation. These results are then used to prove convergence and preconditioning estimates for the resulting sweeping preconditioner.

  10. Hierarchical Linear Models for Energy Prediction using Inertial Sensors: A Comparative Study for Treadmill Walking.

    Science.gov (United States)

    Vathsangam, Harshvardhan; Emken, B Adar; Schroeder, E Todd; Spruijt-Metz, Donna; Sukhatme, Gaurav S

    2013-12-01

    Walking is a commonly available activity to maintain a healthy lifestyle. Accurately tracking and measuring calories expended during walking can improve user feedback and intervention measures. Inertial sensors are a promising measurement tool to achieve this purpose. An important aspect in mapping inertial sensor data to energy expenditure is the question of normalizing across physiological parameters. Common approaches such as weight scaling require validation for each new population. An alternative is to use a hierarchical approach to model subject-specific parameters at one level and cross-subject parameters connected by physiological variables at a higher level. In this paper, we evaluate an inertial sensor-based hierarchical model to measure energy expenditure across a target population. We first determine the optimal movement and physiological features set to represent data. Periodicity based features are more accurate (phierarchical model with a subject-specific regression model and weight exponent scaled models. Subject-specific models perform significantly better (pmodels at all exponent scales whereas the hierarchical model performed worse than both. However, using an informed prior from the hierarchical model produces similar errors to using a subject-specific model with large amounts of training data (phierarchical modeling is a promising technique for generalized prediction energy expenditure prediction across a target population in a clinical setting.

  11. Lumbar herniated disc: spontaneous regression

    Science.gov (United States)

    Yüksel, Kasım Zafer

    2017-01-01

    Background Low back pain is a frequent condition that results in substantial disability and causes admission of patients to neurosurgery clinics. To evaluate and present the therapeutic outcomes in lumbar disc hernia (LDH) patients treated by means of a conservative approach, consisting of bed rest and medical therapy. Methods This retrospective cohort was carried out in the neurosurgery departments of hospitals in Kahramanmaraş city and 23 patients diagnosed with LDH at the levels of L3−L4, L4−L5 or L5−S1 were enrolled. Results The average age was 38.4 ± 8.0 and the chief complaint was low back pain and sciatica radiating to one or both lower extremities. Conservative treatment was administered. Neurological examination findings, durations of treatment and intervals until symptomatic recovery were recorded. Laségue tests and neurosensory examination revealed that mild neurological deficits existed in 16 of our patients. Previously, 5 patients had received physiotherapy and 7 patients had been on medical treatment. The number of patients with LDH at the level of L3−L4, L4−L5, and L5−S1 were 1, 13, and 9, respectively. All patients reported that they had benefit from medical treatment and bed rest, and radiologic improvement was observed simultaneously on MRI scans. The average duration until symptomatic recovery and/or regression of LDH symptoms was 13.6 ± 5.4 months (range: 5−22). Conclusions It should be kept in mind that lumbar disc hernias could regress with medical treatment and rest without surgery, and there should be an awareness that these patients could recover radiologically. This condition must be taken into account during decision making for surgical intervention in LDH patients devoid of indications for emergent surgery. PMID:28119770

  12. Credit Scoring Problem Based on Regression Analysis

    OpenAIRE

    Khassawneh, Bashar Suhil Jad Allah

    2014-01-01

    ABSTRACT: This thesis provides an explanatory introduction to the regression models of data mining and contains basic definitions of key terms in the linear, multiple and logistic regression models. Meanwhile, the aim of this study is to illustrate fitting models for the credit scoring problem using simple linear, multiple linear and logistic regression models and also to analyze the found model functions by statistical tools. Keywords: Data mining, linear regression, logistic regression....

  13. Hierarchical machining materials and their performance

    DEFF Research Database (Denmark)

    Sidorenko, Daria; Loginov, Pavel; Levashov, Evgeny

    2016-01-01

    as nanoparticles in the binder, or polycrystalline, aggregate-like reinforcements, also at several scale levels). Such materials can ensure better productivity, efficiency, and lower costs of drilling, cutting, grinding, and other technological processes. This article reviews the main groups of hierarchical...

  14. Hierarchical Optimization of Material and Structure

    DEFF Research Database (Denmark)

    Rodrigues, Helder C.; Guedes, Jose M.; Bendsøe, Martin P.

    2002-01-01

    This paper describes a hierarchical computational procedure for optimizing material distribution as well as the local material properties of mechanical elements. The local properties are designed using a topology design approach, leading to single scale microstructures, which may be restricted...... in various ways, based on design and manufacturing criteria. Implementation issues are also discussed and computational results illustrate the nature of the procedure....

  15. Hierarchical structure of nanofibers by bubbfil spinning

    Directory of Open Access Journals (Sweden)

    Liu Chang

    2015-01-01

    Full Text Available A polymer bubble is easy to be broken under a small external force, various different fragments are formed, which can be produced to different morphologies of products including nanofibers and plate-like strip. Polyvinyl-alcohol/honey solution is used in the experiment to show hierarchical structure by the bubbfil spinning.

  16. Sharing the proceeds from a hierarchical venture

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Moreno-Ternero, Juan D.; Tvede, Mich;

    2017-01-01

    We consider the problem of distributing the proceeds generated from a joint venture in which the participating agents are hierarchically organized. We introduce and characterize a family of allocation rules where revenue ‘bubbles up’ in the hierarchy. The family is flexible enough to accommodate...

  17. Metal oxide nanostructures with hierarchical morphology

    Science.gov (United States)

    Ren, Zhifeng; Lao, Jing Yu; Banerjee, Debasish

    2007-11-13

    The present invention relates generally to metal oxide materials with varied symmetrical nanostructure morphologies. In particular, the present invention provides metal oxide materials comprising one or more metallic oxides with three-dimensionally ordered nanostructural morphologies, including hierarchical morphologies. The present invention also provides methods for producing such metal oxide materials.

  18. Hierarchical Scaling in Systems of Natural Cities

    CERN Document Server

    Chen, Yanguang

    2016-01-01

    Hierarchies can be modeled by a set of exponential functions, from which we can derive a set of power laws indicative of scaling. These scaling laws are followed by many natural and social phenomena such as cities, earthquakes, and rivers. This paper is devoted to revealing the scaling patterns in systems of natural cities by reconstructing the hierarchy with cascade structure. The cities of America, Britain, France, and Germany are taken as examples to make empirical analyses. The hierarchical scaling relations can be well fitted to the data points within the scaling ranges of the size and area of the natural cities. The size-number and area-number scaling exponents are close to 1, and the allometric scaling exponent is slightly less than 1. The results suggest that natural cities follow hierarchical scaling laws and hierarchical conservation law. Zipf's law proved to be one of the indications of the hierarchical scaling, and the primate law of city-size distribution represents a local pattern and can be mer...

  19. Hierarchical Context Modeling for Video Event Recognition.

    Science.gov (United States)

    Wang, Xiaoyang; Ji, Qiang

    2016-10-11

    Current video event recognition research remains largely target-centered. For real-world surveillance videos, targetcentered event recognition faces great challenges due to large intra-class target variation, limited image resolution, and poor detection and tracking results. To mitigate these challenges, we introduced a context-augmented video event recognition approach. Specifically, we explicitly capture different types of contexts from three levels including image level, semantic level, and prior level. At the image level, we introduce two types of contextual features including the appearance context features and interaction context features to capture the appearance of context objects and their interactions with the target objects. At the semantic level, we propose a deep model based on deep Boltzmann machine to learn event object representations and their interactions. At the prior level, we utilize two types of prior-level contexts including scene priming and dynamic cueing. Finally, we introduce a hierarchical context model that systematically integrates the contextual information at different levels. Through the hierarchical context model, contexts at different levels jointly contribute to the event recognition. We evaluate the hierarchical context model for event recognition on benchmark surveillance video datasets. Results show that incorporating contexts in each level can improve event recognition performance, and jointly integrating three levels of contexts through our hierarchical model achieves the best performance.

  20. Managing Clustered Data Using Hierarchical Linear Modeling

    Science.gov (United States)

    Warne, Russell T.; Li, Yan; McKyer, E. Lisako J.; Condie, Rachel; Diep, Cassandra S.; Murano, Peter S.

    2012-01-01

    Researchers in nutrition research often use cluster or multistage sampling to gather participants for their studies. These sampling methods often produce violations of the assumption of data independence that most traditional statistics share. Hierarchical linear modeling is a statistical method that can overcome violations of the independence…

  1. Strategic games on a hierarchical network model

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Among complex network models, the hierarchical network model is the one most close to such real networks as world trade web, metabolic network, WWW, actor network, and so on. It has not only the property of power-law degree distribution, but growth based on growth and preferential attachment, showing the scale-free degree distribution property. In this paper, we study the evolution of cooperation on a hierarchical network model, adopting the prisoner's dilemma (PD) game and snowdrift game (SG) as metaphors of the interplay between connected nodes. BA model provides a unifying framework for the emergence of cooperation. But interestingly, we found that on hierarchical model, there is no sign of cooperation for PD game, while the frequency of cooperation decreases as the common benefit decreases for SG. By comparing the scaling clustering coefficient properties of the hierarchical network model with that of BA model, we found that the former amplifies the effect of hubs. Considering different performances of PD game and SG on complex network, we also found that common benefit leads to cooperation in the evolution. Thus our study may shed light on the emergence of cooperation in both natural and social environments.

  2. Endogenous Effort Norms in Hierarchical Firms

    NARCIS (Netherlands)

    J. Tichem (Jan)

    2013-01-01

    markdownabstract__Abstract__ This paper studies how a three-layer hierarchical firm (principal-supervisor-agent) optimally creates effort norms for its employees. The key assumption is that effort norms are affected by the example of superiors. In equilibrium, norms are eroded as one moves down

  3. Complex Evaluation of Hierarchically-Network Systems

    CERN Document Server

    Polishchuk, Dmytro; Yadzhak, Mykhailo

    2016-01-01

    Methods of complex evaluation based on local, forecasting, aggregated, and interactive evaluation of the state, function quality, and interaction of complex system's objects on the all hierarchical levels is proposed. Examples of analysis of the structural elements of railway transport system are used for illustration of efficiency of proposed approach.

  4. A Hierarchical Grouping of Great Educators

    Science.gov (United States)

    Barker, Donald G.

    1977-01-01

    Great educators of history were categorized on the basis of their: aims of education, fundamental ideas, and educational theories. They were classed by Ward's method of hierarchical analysis into six groupings: Socrates, Ausonius, Jerome, Abelard; Quintilian, Origen, Melanchthon, Ascham, Loyola; Alciun, Comenius; Vittorino, Basedow, Pestalozzi,…

  5. Ultrafast Hierarchical OTDM/WDM Network

    Directory of Open Access Journals (Sweden)

    Hideyuki Sotobayashi

    2003-12-01

    Full Text Available Ultrafast hierarchical OTDM/WDM network is proposed for the future core-network. We review its enabling technologies: C- and L-wavelength-band generation, OTDM-WDM mutual multiplexing format conversions, and ultrafast OTDM wavelengthband conversions.

  6. Statistical theory of hierarchical avalanche ensemble

    OpenAIRE

    Olemskoi, Alexander I.

    1999-01-01

    The statistical ensemble of avalanche intensities is considered to investigate diffusion in ultrametric space of hierarchically subordinated avalanches. The stationary intensity distribution and the steady-state current are obtained. The critical avalanche intensity needed to initiate the global avalanche formation is calculated depending on noise intensity. The large time asymptotic for the probability of the global avalanche appearance is derived.

  7. Managing Clustered Data Using Hierarchical Linear Modeling

    Science.gov (United States)

    Warne, Russell T.; Li, Yan; McKyer, E. Lisako J.; Condie, Rachel; Diep, Cassandra S.; Murano, Peter S.

    2012-01-01

    Researchers in nutrition research often use cluster or multistage sampling to gather participants for their studies. These sampling methods often produce violations of the assumption of data independence that most traditional statistics share. Hierarchical linear modeling is a statistical method that can overcome violations of the independence…

  8. Equivalence Checking of Hierarchical Combinational Circuits

    DEFF Research Database (Denmark)

    Williams, Poul Frederick; Hulgaard, Henrik; Andersen, Henrik Reif

    1999-01-01

    This paper presents a method for verifying that two hierarchical combinational circuits implement the same Boolean functions. The key new feature of the method is its ability to exploit the modularity of circuits to reuse results obtained from one part of the circuits in other parts. We demonstrate...... our method on large adder and multiplier circuits....

  9. Deep Wavelet Scattering for Quantum Energy Regression

    Science.gov (United States)

    Hirn, Matthew

    Physical functionals are usually computed as solutions of variational problems or from solutions of partial differential equations, which may require huge computations for complex systems. Quantum chemistry calculations of ground state molecular energies is such an example. Indeed, if x is a quantum molecular state, then the ground state energy E0 (x) is the minimum eigenvalue solution of the time independent Schrödinger Equation, which is computationally intensive for large systems. Machine learning algorithms do not simulate the physical system but estimate solutions by interpolating values provided by a training set of known examples {(xi ,E0 (xi) } i physical invariants. Linear regressions of E0 over a dictionary Φ ={ϕk } k compute an approximation E 0 as: E 0 (x) =∑kwkϕk (x) , where the weights {wk } k are selected to minimize the error between E0 and E 0 on the training set. The key to such a regression approach then lies in the design of the dictionary Φ. It must be intricate enough to capture the essential variability of E0 (x) over the molecular states x of interest, while simple enough so that evaluation of Φ (x) is significantly less intensive than a direct quantum mechanical computation (or approximation) of E0 (x) . In this talk we present a novel dictionary Φ for the regression of quantum mechanical energies based on the scattering transform of an intermediate, approximate electron density representation ρx of the state x. The scattering transform has the architecture of a deep convolutional network, composed of an alternating sequence of linear filters and nonlinear maps. Whereas in many deep learning tasks the linear filters are learned from the training data, here the physical properties of E0 (invariance to isometric transformations of the state x, stable to deformations of x) are leveraged to design a collection of linear filters ρx *ψλ for an appropriate wavelet ψ. These linear filters are composed with the nonlinear modulus

  10. Multilevel compression of random walks on networks reveals hierarchical organization in large integrated systems.

    Directory of Open Access Journals (Sweden)

    Martin Rosvall

    Full Text Available To comprehend the hierarchical organization of large integrated systems, we introduce the hierarchical map equation, which reveals multilevel structures in networks. In this information-theoretic approach, we exploit the duality between compression and pattern detection; by compressing a description of a random walker as a proxy for real flow on a network, we find regularities in the network that induce this system-wide flow. Finding the shortest multilevel description of the random walker therefore gives us the best hierarchical clustering of the network--the optimal number of levels and modular partition at each level--with respect to the dynamics on the network. With a novel search algorithm, we extract and illustrate the rich multilevel organization of several large social and biological networks. For example, from the global air traffic network we uncover countries and continents, and from the pattern of scientific communication we reveal more than 100 scientific fields organized in four major disciplines: life sciences, physical sciences, ecology and earth sciences, and social sciences. In general, we find shallow hierarchical structures in globally interconnected systems, such as neural networks, and rich multilevel organizations in systems with highly separated regions, such as road networks.

  11. A hierarchical bayesian model to quantify uncertainty of stream water temperature forecasts.

    Directory of Open Access Journals (Sweden)

    Guillaume Bal

    Full Text Available Providing generic and cost effective modelling approaches to reconstruct and forecast freshwater temperature using predictors as air temperature and water discharge is a prerequisite to understanding ecological processes underlying the impact of water temperature and of global warming on continental aquatic ecosystems. Using air temperature as a simple linear predictor of water temperature can lead to significant bias in forecasts as it does not disentangle seasonality and long term trends in the signal. Here, we develop an alternative approach based on hierarchical Bayesian statistical time series modelling of water temperature, air temperature and water discharge using seasonal sinusoidal periodic signals and time varying means and amplitudes. Fitting and forecasting performances of this approach are compared with that of simple linear regression between water and air temperatures using i an emotive simulated example, ii application to three French coastal streams with contrasting bio-geographical conditions and sizes. The time series modelling approach better fit data and does not exhibit forecasting bias in long term trends contrary to the linear regression. This new model also allows for more accurate forecasts of water temperature than linear regression together with a fair assessment of the uncertainty around forecasting. Warming of water temperature forecast by our hierarchical Bayesian model was slower and more uncertain than that expected with the classical regression approach. These new forecasts are in a form that is readily usable in further ecological analyses and will allow weighting of outcomes from different scenarios to manage climate change impacts on freshwater wildlife.

  12. Generic hierarchical engine for mask data preparation

    Science.gov (United States)

    Kalus, Christian K.; Roessl, Wolfgang; Schnitker, Uwe; Simecek, Michal

    2002-07-01

    Electronic layouts are usually flattened on their path from the hierarchical source downstream to the wafer. Mask data preparation has certainly been identified as a severe bottleneck since long. Data volumes are not only doubling every year along the ITRS roadmap. With the advent of optical proximity correction and phase-shifting masks data volumes are escalating up to non-manageable heights. Hierarchical treatment is one of the most powerful means to keep memory and CPU consumption in reasonable ranges. Only recently, however, has this technique acquired more public attention. Mask data preparation is the most critical area calling for a sound infrastructure to reduce the handling problem. Gaining more and more attention though, are other applications such as large area simulation and manufacturing rule checking (MRC). They all would profit from a generic engine capable to efficiently treat hierarchical data. In this paper we will present a generic engine for hierarchical treatment which solves the major problem, steady transitions along cell borders. Several alternatives exist how to walk through the hierarchy tree. They have, to date, not been thoroughly investigated. One is a bottom-up attempt to treat cells starting with the most elementary cells. The other one is a top-down approach which lends itself to creating a new hierarchy tree. In addition, since the variety, degree of hierarchy and quality of layouts extends over a wide range a generic engine has to take intelligent decisions when exploding the hierarchy tree. Several applications will be shown, in particular how far the limits can be pushed with the current hierarchical engine.

  13. Hierarchical organisation in perception of orientation.

    Science.gov (United States)

    Spinelli, D; Antonucci, G; Daini, R; Martelli, M L; Zoccolotti, P

    1999-01-01

    According to Rock [1990, in The Legacy of Solomon Asch (Hillsdale, NJ: Lawrence Erlbaum Associates)], hierarchical organisation of perception describes cases in which the orientation of an object is affected by the immediately surrounding elements in the visual field. Various experiments were performed to study the hierarchical organisation of orientation perception. In most of them the rod-and-frame-illusion (RFI: change of the apparent vertical measured on a central rod surrounded by a tilted frame) was measured in the presence/absence of a second inner frame. The first three experiments showed that, when the inner frame is vertical, the direction and size of the illusion are consistent with expectancies based on the hierarchical organisation hypothesis. An analysis of published and unpublished data collected on a large number of subjects showed that orientational hierarchical effects are independent from the absolute size of the RFI. In experiments 4 to 7 we examined the perceptual conditions of the inner stimulus (enclosure, orientation, and presence of luminance borders) critical for obtaining a hierarchical organisation effect. Although an inner vertical square was effective in reducing the illusion (experiment 3), an inner circle enclosing the rod was ineffective (experiment 4). This indicates that definite orientation is necessary to modulate the illusion. However, orientational information provided by a vertical or horizontal rectangle presented near the rod, but not enclosing it, did not modulate the RFI (experiment 5). This suggests that the presence of a figure with oriented contours enclosing the rod is critical. In experiments 6 and 7 we studied whether the presence of luminance borders is important or whether the inner upright square might be effective also if made of subjective contours. When the subjective contour figure was salient and the observers perceived it clearly, its effectiveness in modulating the RFI was comparable to that observed with

  14. Varying-coefficient functional linear regression

    CERN Document Server

    Wu, Yichao; Müller, Hans-Georg; 10.3150/09-BEJ231

    2011-01-01

    Functional linear regression analysis aims to model regression relations which include a functional predictor. The analog of the regression parameter vector or matrix in conventional multivariate or multiple-response linear regression models is a regression parameter function in one or two arguments. If, in addition, one has scalar predictors, as is often the case in applications to longitudinal studies, the question arises how to incorporate these into a functional regression model. We study a varying-coefficient approach where the scalar covariates are modeled as additional arguments of the regression parameter function. This extension of the functional linear regression model is analogous to the extension of conventional linear regression models to varying-coefficient models and shares its advantages, such as increased flexibility; however, the details of this extension are more challenging in the functional case. Our methodology combines smoothing methods with regularization by truncation at a finite numb...

  15. A general strategy to determine the congruence between a hierarchical and a non-hierarchical classification

    Directory of Open Access Journals (Sweden)

    Marín Ignacio

    2007-11-01

    Full Text Available Abstract Background Classification procedures are widely used in phylogenetic inference, the analysis of expression profiles, the study of biological networks, etc. Many algorithms have been proposed to establish the similarity between two different classifications of the same elements. However, methods to determine significant coincidences between hierarchical and non-hierarchical partitions are still poorly developed, in spite of the fact that the search for such coincidences is implicit in many analyses of massive data. Results We describe a novel strategy to compare a hierarchical and a dichotomic non-hierarchical classification of elements, in order to find clusters in a hierarchical tree in which elements of a given "flat" partition are overrepresented. The key improvement of our strategy respect to previous methods is using permutation analyses of ranked clusters to determine whether regions of the dendrograms present a significant enrichment. We show that this method is more sensitive than previously developed strategies and how it can be applied to several real cases, including microarray and interactome data. Particularly, we use it to compare a hierarchical representation of the yeast mitochondrial interactome and a catalogue of known mitochondrial protein complexes, demonstrating a high level of congruence between those two classifications. We also discuss extensions of this method to other cases which are conceptually related. Conclusion Our method is highly sensitive and outperforms previously described strategies. A PERL script that implements it is available at http://www.uv.es/~genomica/treetracker.

  16. Analysis of Sting Balance Calibration Data Using Optimized Regression Models

    Science.gov (United States)

    Ulbrich, N.; Bader, Jon B.

    2010-01-01

    Calibration data of a wind tunnel sting balance was processed using a candidate math model search algorithm that recommends an optimized regression model for the data analysis. During the calibration the normal force and the moment at the balance moment center were selected as independent calibration variables. The sting balance itself had two moment gages. Therefore, after analyzing the connection between calibration loads and gage outputs, it was decided to choose the difference and the sum of the gage outputs as the two responses that best describe the behavior of the balance. The math model search algorithm was applied to these two responses. An optimized regression model was obtained for each response. Classical strain gage balance load transformations and the equations of the deflection of a cantilever beam under load are used to show that the search algorithm s two optimized regression models are supported by a theoretical analysis of the relationship between the applied calibration loads and the measured gage outputs. The analysis of the sting balance calibration data set is a rare example of a situation when terms of a regression model of a balance can directly be derived from first principles of physics. In addition, it is interesting to note that the search algorithm recommended the correct regression model term combinations using only a set of statistical quality metrics that were applied to the experimental data during the algorithm s term selection process.

  17. Functional Regression for Quasar Spectra

    CERN Document Server

    Ciollaro, Mattia; Freeman, Peter; Genovese, Christopher; Lei, Jing; O'Connell, Ross; Wasserman, Larry

    2014-01-01

    The Lyman-alpha forest is a portion of the observed light spectrum of distant galactic nuclei which allows us to probe remote regions of the Universe that are otherwise inaccessible. The observed Lyman-alpha forest of a quasar light spectrum can be modeled as a noisy realization of a smooth curve that is affected by a `damping effect' which occurs whenever the light emitted by the quasar travels through regions of the Universe with higher matter concentration. To decode the information conveyed by the Lyman-alpha forest about the matter distribution, we must be able to separate the smooth `continuum' from the noise and the contribution of the damping effect in the quasar light spectra. To predict the continuum in the Lyman-alpha forest, we use a nonparametric functional regression model in which both the response and the predictor variable (the smooth part of the damping-free portion of the spectrum) are function-valued random variables. We demonstrate that the proposed method accurately predicts the unobserv...

  18. Knowledge and Awareness: Linear Regression

    Directory of Open Access Journals (Sweden)

    Monika Raghuvanshi

    2016-12-01

    Full Text Available Knowledge and awareness are factors guiding development of an individual. These may seem simple and practicable, but in reality a proper combination of these is a complex task. Economically driven state of development in younger generations is an impediment to the correct manner of development. As youths are at the learning phase, they can be molded to follow a correct lifestyle. Awareness and knowledge are important components of any formal or informal environmental education. The purpose of this study is to evaluate the relationship of these components among students of secondary/ senior secondary schools who have undergone a formal study of environment in their curricula. A suitable instrument is developed in order to measure the elements of Awareness and Knowledge among the participants of the study. Data was collected from various secondary and senior secondary school students in the age group 14 to 20 years using cluster sampling technique from the city of Bikaner, India. Linear regression analysis was performed using IBM SPSS 23 statistical tool. There exists a weak relation between knowledge and awareness about environmental issues, caused due to routine practices mishandling; hence one component can be complemented by other for improvement in both. Knowledge and awareness are crucial factors and can provide huge opportunities in any field. Resource utilization for economic solutions may pave the way for eco-friendly products and practices. If green practices are inculcated at the learning phase, they may become normal routine. This will also help in repletion of the environment.

  19. Streamflow forecasting using functional regression

    Science.gov (United States)

    Masselot, Pierre; Dabo-Niang, Sophie; Chebana, Fateh; Ouarda, Taha B. M. J.

    2016-07-01

    Streamflow, as a natural phenomenon, is continuous in time and so are the meteorological variables which influence its variability. In practice, it can be of interest to forecast the whole flow curve instead of points (daily or hourly). To this end, this paper introduces the functional linear models and adapts it to hydrological forecasting. More precisely, functional linear models are regression models based on curves instead of single values. They allow to consider the whole process instead of a limited number of time points or features. We apply these models to analyse the flow volume and the whole streamflow curve during a given period by using precipitations curves. The functional model is shown to lead to encouraging results. The potential of functional linear models to detect special features that would have been hard to see otherwise is pointed out. The functional model is also compared to the artificial neural network approach and the advantages and disadvantages of both models are discussed. Finally, future research directions involving the functional model in hydrology are presented.

  20. Biostatistics Series Module 6: Correlation and Linear Regression.

    Science.gov (United States)

    Hazra, Avijit; Gogtay, Nithya

    2016-01-01

    Correlation and linear regression are the most commonly used techniques for quantifying the association between two numeric variables. Correlation quantifies the strength of the linear relationship between paired variables, expressing this as a correlation coefficient. If both variables x and y are normally distributed, we calculate Pearson's correlation coefficient (r). If normality assumption is not met for one or both variables in a correlation analysis, a rank correlation coefficient, such as Spearman's rho (ρ) may be calculated. A hypothesis test of correlation tests whether the linear relationship between the two variables holds in the underlying population, in which case it returns a P linear relation with the independent variable x and is called the coefficient of determination. Linear regression is a technique that attempts to link two correlated variables x and y in the form of a mathematical equation (y = a + bx), such that given the value of one variable the other may be predicted. In general, the method of least squares is applied to obtain the equation of the regression line. Correlation and linear regression analysis are based on certain assumptions pertaining to the data sets. If these assumptions are not met, misleading conclusions may be drawn. The first assumption is that of linear relationship between the two variables. A scatter plot is essential before embarking on any correlation-regression analysis to show that this is indeed the case. Outliers or clustering within data sets can distort the correlation coefficient value. Finally, it is vital to remember that though strong correlation can be a pointer toward causation, the two are not synonymous.

  1. Hospital- and patient-related characteristics determining maternity length of stay: a hierarchical linear model approach.

    Science.gov (United States)

    Leung, K M; Elashoff, R M; Rees, K S; Hasan, M M; Legorreta, A P

    1998-03-01

    The purpose of this study was to identify factors related to pregnancy and childbirth that might be predictive of a patient's length of stay after delivery and to model variations in length of stay. California hospital discharge data on maternity patients (n = 499,912) were analyzed. Hierarchical linear modeling was used to adjust for patient case mix and hospital characteristics and to account for the dependence of outcome variables within hospitals. Substantial variation in length of stay among patients was observed. The variation was mainly attributed to delivery type (vaginal or cesarean section), the patient's clinical risk factors, and severity of complications (if any). Furthermore, hospitals differed significantly in maternity lengths of stay even after adjustment for patient case mix. Developing risk-adjusted models for length of stay is a complex process but is essential for understanding variation. The hierarchical linear model approach described here represents a more efficient and appropriate way of studying interhospital variations than the traditional regression approach.

  2. On the geostatistical characterization of hierarchical media

    Science.gov (United States)

    Neuman, Shlomo P.; Riva, Monica; Guadagnini, Alberto

    2008-02-01

    The subsurface consists of porous and fractured materials exhibiting a hierarchical geologic structure, which gives rise to systematic and random spatial and directional variations in hydraulic and transport properties on a multiplicity of scales. Traditional geostatistical moment analysis allows one to infer the spatial covariance structure of such hierarchical, multiscale geologic materials on the basis of numerous measurements on a given support scale across a domain or "window" of a given length scale. The resultant sample variogram often appears to fit a stationary variogram model with constant variance (sill) and integral (spatial correlation) scale. In fact, some authors, who recognize that hierarchical sedimentary architecture and associated log hydraulic conductivity fields tend to be nonstationary, nevertheless associate them with stationary "exponential-like" transition probabilities and variograms, respectively, the latter being a consequence of the former. We propose that (1) the apparent ability of stationary spatial statistics to characterize the covariance structure of nonstationary hierarchical media is an artifact stemming from the finite size of the windows within which geologic and hydrologic variables are ubiquitously sampled, and (2) the artifact is eliminated upon characterizing the covariance structure of such media with the aid of truncated power variograms, which represent stationary random fields obtained upon sampling a nonstationary fractal over finite windows. To support our opinion, we note that truncated power variograms arise formally when a hierarchical medium is sampled jointly across all geologic categories and scales within a window; cite direct evidence that geostatistical parameters (variance and integral scale) inferred on the basis of traditional variograms vary systematically with support and window scales; demonstrate the ability of truncated power models to capture these variations in terms of a few scaling parameters

  3. Kinetic energy equations for the average-passage equation system

    Science.gov (United States)

    Johnson, Richard W.; Adamczyk, John J.

    1989-01-01

    Important kinetic energy equations derived from the average-passage equation sets are documented, with a view to their interrelationships. These kinetic equations may be used for closing the average-passage equations. The turbulent kinetic energy transport equation used is formed by subtracting the mean kinetic energy equation from the averaged total instantaneous kinetic energy equation. The aperiodic kinetic energy equation, averaged steady kinetic energy equation, averaged unsteady kinetic energy equation, and periodic kinetic energy equation, are also treated.

  4. Kinetic energy equations for the average-passage equation system

    Science.gov (United States)

    Johnson, Richard W.; Adamczyk, John J.

    1989-01-01

    Important kinetic energy equations derived from the average-passage equation sets are documented, with a view to their interrelationships. These kinetic equations may be used for closing the average-passage equations. The turbulent kinetic energy transport equation used is formed by subtracting the mean kinetic energy equation from the averaged total instantaneous kinetic energy equation. The aperiodic kinetic energy equation, averaged steady kinetic energy equation, averaged unsteady kinetic energy equation, and periodic kinetic energy equation, are also treated.

  5. Spontaneous Regression of an Incidental Spinal Meningioma

    National Research Council Canada - National Science Library

    Yilmaz, Ali; Kizilay, Zahir; Sair, Ahmet; Avcil, Mucahit; Ozkul, Ayca

    2015-01-01

    AIM: The regression of meningioma has been reported in literature before. In spite of the fact that the regression may be involved by hemorrhage, calcification or some drugs withdrawal, it is rarely observed spontaneously. CASE REPORT...

  6. Common pitfalls in statistical analysis: Logistic regression.

    Science.gov (United States)

    Ranganathan, Priya; Pramesh, C S; Aggarwal, Rakesh

    2017-01-01

    Logistic regression analysis is a statistical technique to evaluate the relationship between various predictor variables (either categorical or continuous) and an outcome which is binary (dichotomous). In this article, we discuss logistic regression analysis and the limitations of this technique.

  7. A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates

    Science.gov (United States)

    Huang, Weizhang; Kamenski, Lennard; Lang, Jens

    2010-03-01

    A new anisotropic mesh adaptation strategy for finite element solution of elliptic differential equations is presented. It generates anisotropic adaptive meshes as quasi-uniform ones in some metric space, with the metric tensor being computed based on hierarchical a posteriori error estimates. A global hierarchical error estimate is employed in this study to obtain reliable directional information of the solution. Instead of solving the global error problem exactly, which is costly in general, we solve it iteratively using the symmetric Gauß-Seidel method. Numerical results show that a few GS iterations are sufficient for obtaining a reasonably good approximation to the error for use in anisotropic mesh adaptation. The new method is compared with several strategies using local error estimators or recovered Hessians. Numerical results are presented for a selection of test examples and a mathematical model for heat conduction in a thermal battery with large orthotropic jumps in the material coefficients.

  8. Quantifying and reducing uncertainties in estimated soil CO2 fluxes with hierarchical data-model integration

    Science.gov (United States)

    Ogle, Kiona; Ryan, Edmund; Dijkstra, Feike A.; Pendall, Elise

    2016-12-01

    Nonsteady state chambers are often employed to measure soil CO2 fluxes. CO2 concentrations (C) in the headspace are sampled at different times (t), and fluxes (f) are calculated from regressions of C versus t based on a limited number of observations. Variability in the data can lead to poor fits and unreliable f estimates; groups with too few observations or poor fits are often discarded, resulting in "missing" f values. We solve these problems by fitting linear (steady state) and nonlinear (nonsteady state, diffusion based) models of C versus t, within a hierarchical Bayesian framework. Data are from the Prairie Heating and CO2 Enrichment study that manipulated atmospheric CO2, temperature, soil moisture, and vegetation. CO2 was collected from static chambers biweekly during five growing seasons, resulting in >12,000 samples and >3100 groups and associated fluxes. We compare f estimates based on nonhierarchical and hierarchical Bayesian (B versus HB) versions of the linear and diffusion-based (L versus D) models, resulting in four different models (BL, BD, HBL, and HBD). Three models fit the data exceptionally well (R2 ≥ 0.98), but the BD model was inferior (R2 = 0.87). The nonhierarchical models (BL and BD) produced highly uncertain f estimates (wide 95% credible intervals), whereas the hierarchical models (HBL and HBD) produced very precise estimates. Of the hierarchical versions, the linear model (HBL) underestimated f by 33% relative to the nonsteady state model (HBD). The hierarchical models offer improvements upon traditional nonhierarchical approaches to estimating f, and we provide example code for the models.

  9. Solving Nonlinear Wave Equations by Elliptic Equation

    Institute of Scientific and Technical Information of China (English)

    FU Zun-Tao; LIU Shi-Da; LIU Shi-Kuo

    2003-01-01

    The elliptic equation is taken as a transformation and applied to solve nonlinear wave equations. It is shown that this method is more powerful to give more kinds of solutions, such as rational solutions, solitary wave solutions,periodic wave solutions and so on, so it can be taken as a generalized method.

  10. First-passage phenomena in hierarchical networks

    CERN Document Server

    Tavani, Flavia

    2016-01-01

    In this paper we study Markov processes and related first passage problems on a class of weighted, modular graphs which generalize the Dyson hierarchical model. In these networks, the coupling strength between two nodes depends on their distance and is modulated by a parameter $\\sigma$. We find that, in the thermodynamic limit, ergodicity is lost and the "distant" nodes can not be reached. Moreover, for finite-sized systems, there exists a threshold value for $\\sigma$ such that, when $\\sigma$ is relatively large, the inhomogeneity of the coupling pattern prevails and "distant" nodes are hardly reached. The same analysis is carried on also for generic hierarchical graphs, where interactions are meant to involve $p$-plets ($p>2$) of nodes, finding that ergodicity is still broken in the thermodynamic limit, but no threshold value for $\\sigma$ is evidenced, ultimately due to a slow growth of the network diameter with the size.

  11. An Hierarchical Approach to Big Data

    CERN Document Server

    Allen, M G; Boch, T; Durand, D; Oberto, A; Merin, B; Stoehr, F; Genova, F; Pineau, F-X; Salgado, J

    2016-01-01

    The increasing volumes of astronomical data require practical methods for data exploration, access and visualisation. The Hierarchical Progressive Survey (HiPS) is a HEALPix based scheme that enables a multi-resolution approach to astronomy data from the individual pixels up to the whole sky. We highlight the decisions and approaches that have been taken to make this scheme a practical solution for managing large volumes of heterogeneous data. Early implementors of this system have formed a network of HiPS nodes, with some 250 diverse data sets currently available, with multiple mirror implementations for important data sets. This hierarchical approach can be adapted to expose Big Data in different ways. We describe how the ease of implementation, and local customisation of the Aladin Lite embeddable HiPS visualiser have been keys for promoting collaboration on HiPS.

  12. Non-homogeneous fractal hierarchical weighted networks.

    Science.gov (United States)

    Dong, Yujuan; Dai, Meifeng; Ye, Dandan

    2015-01-01

    A model of fractal hierarchical structures that share the property of non-homogeneous weighted networks is introduced. These networks can be completely and analytically characterized in terms of the involved parameters, i.e., the size of the original graph Nk and the non-homogeneous weight scaling factors r1, r2, · · · rM. We also study the average weighted shortest path (AWSP), the average degree and the average node strength, taking place on the non-homogeneous hierarchical weighted networks. Moreover the AWSP is scrupulously calculated. We show that the AWSP depends on the number of copies and the sum of all non-homogeneous weight scaling factors in the infinite network order limit.

  13. Noise enhances information transfer in hierarchical networks.

    Science.gov (United States)

    Czaplicka, Agnieszka; Holyst, Janusz A; Sloot, Peter M A

    2013-01-01

    We study the influence of noise on information transmission in the form of packages shipped between nodes of hierarchical networks. Numerical simulations are performed for artificial tree networks, scale-free Ravasz-Barabási networks as well for a real network formed by email addresses of former Enron employees. Two types of noise are considered. One is related to packet dynamics and is responsible for a random part of packets paths. The second one originates from random changes in initial network topology. We find that the information transfer can be enhanced by the noise. The system possesses optimal performance when both kinds of noise are tuned to specific values, this corresponds to the Stochastic Resonance phenomenon. There is a non-trivial synergy present for both noisy components. We found also that hierarchical networks built of nodes of various degrees are more efficient in information transfer than trees with a fixed branching factor.

  14. Design of Hierarchical Structures for Synchronized Deformations

    Science.gov (United States)

    Seifi, Hamed; Javan, Anooshe Rezaee; Ghaedizadeh, Arash; Shen, Jianhu; Xu, Shanqing; Xie, Yi Min

    2017-01-01

    In this paper we propose a general method for creating a new type of hierarchical structures at any level in both 2D and 3D. A simple rule based on a rotate-and-mirror procedure is introduced to achieve multi-level hierarchies. These new hierarchical structures have remarkably few degrees of freedom compared to existing designs by other methods. More importantly, these structures exhibit synchronized motions during opening or closure, resulting in uniform and easily-controllable deformations. Furthermore, a simple analytical formula is found which can be used to avoid collision of units of the structure during the closing process. The novel design concept is verified by mathematical analyses, computational simulations and physical experiments.

  15. Hierarchical model of vulnerabilities for emotional disorders.

    Science.gov (United States)

    Norton, Peter J; Mehta, Paras D

    2007-01-01

    Clark and Watson's (1991) tripartite model of anxiety and depression has had a dramatic impact on our understanding of the dispositional variables underlying emotional disorders. More recently, calls have been made to examine not simply the influence of negative affectivity (NA) but also mediating factors that might better explain how NA influences anxious and depressive syndromes (e.g. Taylor, 1998; Watson, 2005). Extending preliminary projects, this study evaluated two hierarchical models of NA, mediating factors of anxiety sensitivity and intolerance of uncertainty, and specific emotional manifestations. Data provided a very good fit to a model elaborated from preliminary studies, lending further support to hierarchical models of emotional vulnerabilities. Implications for classification and diagnosis are discussed.

  16. Hierarchical Self-organization of Complex Systems

    Institute of Scientific and Technical Information of China (English)

    CHAI Li-he; WEN Dong-sheng

    2004-01-01

    Researches on organization and structure in complex systems are academic and industrial fronts in modern sciences. Though many theories are tentatively proposed to analyze complex systems, we still lack a rigorous theory on them. Complex systems possess various degrees of freedom, which means that they should exhibit all kinds of structures. However, complex systems often show similar patterns and structures. Then the question arises why such similar structures appear in all kinds of complex systems. The paper outlines a theory on freedom degree compression and the existence of hierarchical self-organization for all complex systems is found. It is freedom degree compression and hierarchical self-organization that are responsible for the existence of these similar patterns or structures observed in the complex systems.

  17. Bayesian hierarchical modeling of drug stability data.

    Science.gov (United States)

    Chen, Jie; Zhong, Jinglin; Nie, Lei

    2008-06-15

    Stability data are commonly analyzed using linear fixed or random effect model. The linear fixed effect model does not take into account the batch-to-batch variation, whereas the random effect model may suffer from the unreliable shelf-life estimates due to small sample size. Moreover, both methods do not utilize any prior information that might have been available. In this article, we propose a Bayesian hierarchical approach to modeling drug stability data. Under this hierarchical structure, we first use Bayes factor to test the poolability of batches. Given the decision on poolability of batches, we then estimate the shelf-life that applies to all batches. The approach is illustrated with two example data sets and its performance is compared in simulation studies with that of the commonly used frequentist methods. (c) 2008 John Wiley & Sons, Ltd.

  18. Hierarchical State Machines as Modular Horn Clauses

    Directory of Open Access Journals (Sweden)

    Pierre-Loïc Garoche

    2016-07-01

    Full Text Available In model based development, embedded systems are modeled using a mix of dataflow formalism, that capture the flow of computation, and hierarchical state machines, that capture the modal behavior of the system. For safety analysis, existing approaches rely on a compilation scheme that transform the original model (dataflow and state machines into a pure dataflow formalism. Such compilation often result in loss of important structural information that capture the modal behaviour of the system. In previous work we have developed a compilation technique from a dataflow formalism into modular Horn clauses. In this paper, we present a novel technique that faithfully compile hierarchical state machines into modular Horn clauses. Our compilation technique preserves the structural and modal behavior of the system, making the safety analysis of such models more tractable.

  19. Hierarchical community structure in complex (social) networks

    CERN Document Server

    Massaro, Emanuele

    2014-01-01

    The investigation of community structure in networks is a task of great importance in many disciplines, namely physics, sociology, biology and computer science where systems are often represented as graphs. One of the challenges is to find local communities from a local viewpoint in a graph without global information in order to reproduce the subjective hierarchical vision for each vertex. In this paper we present the improvement of an information dynamics algorithm in which the label propagation of nodes is based on the Markovian flow of information in the network under cognitive-inspired constraints \\cite{Massaro2012}. In this framework we have introduced two more complex heuristics that allow the algorithm to detect the multi-resolution hierarchical community structure of networks from a source vertex or communities adopting fixed values of model's parameters. Experimental results show that the proposed methods are efficient and well-behaved in both real-world and synthetic networks.

  20. Object tracking with hierarchical multiview learning

    Science.gov (United States)

    Yang, Jun; Zhang, Shunli; Zhang, Li

    2016-09-01

    Building a robust appearance model is useful to improve tracking performance. We propose a hierarchical multiview learning framework to construct the appearance model, which has two layers for tracking. On the top layer, two different views of features, grayscale value and histogram of oriented gradients, are adopted for representation under the cotraining framework. On the bottom layer, for each view of each feature, three different random subspaces are generated to represent the appearance from multiple views. For each random view submodel, the least squares support vector machine is employed to improve the discriminability for concrete and efficient realization. These two layers are combined to construct the final appearance model for tracking. The proposed hierarchical model assembles two types of multiview learning strategies, in which the appearance can be described more accurately and robustly. Experimental results in the benchmark dataset demonstrate that the proposed method can achieve better performance than many existing state-of-the-art algorithms.