The Revised Hierarchical Model: A critical review and assessment
Kroll, Judith F.; van Hell, Janet G.; Tokowicz, Natasha; Green, David W.
2010-01-01
Brysbaert and Duyck (2009) suggest that it is time to abandon the Revised Hierarchical Model (Kroll and Stewart, 1994) in favor of connectionist models such as BIA+ (Dijkstra and Van Heuven, 2002) that more accurately account for the recent evidence on nonselective access in bilingual word recognition. In this brief response, we first review the history of the Revised Hierarchical Model (RHM), consider the set of issues that it was proposed to address, and then evaluate the evidence that supp...
Hierarchical species distribution models
Hefley, Trevor J.; Hooten, Mevin B.
2016-01-01
Determining the distribution pattern of a species is important to increase scientific knowledge, inform management decisions, and conserve biodiversity. To infer spatial and temporal patterns, species distribution models have been developed for use with many sampling designs and types of data. Recently, it has been shown that count, presence-absence, and presence-only data can be conceptualized as arising from a point process distribution. Therefore, it is important to understand properties of the point process distribution. We examine how the hierarchical species distribution modeling framework has been used to incorporate a wide array of regression and theory-based components while accounting for the data collection process and making use of auxiliary information. The hierarchical modeling framework allows us to demonstrate how several commonly used species distribution models can be derived from the point process distribution, highlight areas of potential overlap between different models, and suggest areas where further research is needed.
Bayesian nonparametric hierarchical modeling.
Dunson, David B
2009-04-01
In biomedical research, hierarchical models are very widely used to accommodate dependence in multivariate and longitudinal data and for borrowing of information across data from different sources. A primary concern in hierarchical modeling is sensitivity to parametric assumptions, such as linearity and normality of the random effects. Parametric assumptions on latent variable distributions can be challenging to check and are typically unwarranted, given available prior knowledge. This article reviews some recent developments in Bayesian nonparametric methods motivated by complex, multivariate and functional data collected in biomedical studies. The author provides a brief review of flexible parametric approaches relying on finite mixtures and latent class modeling. Dirichlet process mixture models are motivated by the need to generalize these approaches to avoid assuming a fixed finite number of classes. Focusing on an epidemiology application, the author illustrates the practical utility and potential of nonparametric Bayes methods.
International Nuclear Information System (INIS)
Tashiro, Tohru
2014-01-01
We propose a new model about diffusion of a product which includes a memory of how many adopters or advertisements a non-adopter met, where (non-)adopters mean people (not) possessing the product. This effect is lacking in the Bass model. As an application, we utilize the model to fit the iPod sales data, and so the better agreement is obtained than the Bass model
Tashiro, Tohru
2014-03-01
We propose a new model about diffusion of a product which includes a memory of how many adopters or advertisements a non-adopter met, where (non-)adopters mean people (not) possessing the product. This effect is lacking in the Bass model. As an application, we utilize the model to fit the iPod sales data, and so the better agreement is obtained than the Bass model.
Hierarchical Semantic Model of Geovideo
Directory of Open Access Journals (Sweden)
XIE Xiao
2015-05-01
Full Text Available The public security incidents were getting increasingly challenging with regard to their new features, including multi-scale mobility, multistage dynamic evolution, as well as spatiotemporal concurrency and uncertainty in the complex urban environment. However, the existing video models, which were used/designed for independent archive or local analysis of surveillance video, have seriously inhibited emergency response to the urgent requirements.Aiming at the explicit representation of change mechanism in video, the paper proposed a novel hierarchical geovideo semantic model using UML. This model was characterized by the hierarchical representation of both data structure and semantics based on the change-oriented three domains (feature domain, process domain and event domain instead of overall semantic description of video streaming; combining both geographical semantics and video content semantics, in support of global semantic association between multiple geovideo data. The public security incidents by video surveillance are inspected as an example to illustrate the validity of this model.
Multicollinearity in hierarchical linear models.
Yu, Han; Jiang, Shanhe; Land, Kenneth C
2015-09-01
This study investigates an ill-posed problem (multicollinearity) in Hierarchical Linear Models from both the data and the model perspectives. We propose an intuitive, effective approach to diagnosing the presence of multicollinearity and its remedies in this class of models. A simulation study demonstrates the impacts of multicollinearity on coefficient estimates, associated standard errors, and variance components at various levels of multicollinearity for finite sample sizes typical in social science studies. We further investigate the role multicollinearity plays at each level for estimation of coefficient parameters in terms of shrinkage. Based on these analyses, we recommend a top-down method for assessing multicollinearity in HLMs that first examines the contextual predictors (Level-2 in a two-level model) and then the individual predictors (Level-1) and uses the results for data collection, research problem redefinition, model re-specification, variable selection and estimation of a final model. Copyright © 2015 Elsevier Inc. All rights reserved.
Hierarchical modeling of active materials
International Nuclear Information System (INIS)
Taya, Minoru
2003-01-01
Intelligent (or smart) materials are increasingly becoming key materials for use in actuators and sensors. If an intelligent material is used as a sensor, it can be embedded in a variety of structure functioning as a health monitoring system to make their life longer with high reliability. If an intelligent material is used as an active material in an actuator, it plays a key role of making dynamic movement of the actuator under a set of stimuli. This talk intends to cover two different active materials in actuators, (1) piezoelectric laminate with FGM microstructure, (2) ferromagnetic shape memory alloy (FSMA). The advantage of using the FGM piezo laminate is to enhance its fatigue life while maintaining large bending displacement, while that of use in FSMA is its fast actuation while providing a large force and stroke capability. Use of hierarchical modeling of the above active materials is a key design step in optimizing its microstructure for enhancement of their performance. I will discuss briefly hierarchical modeling of the above two active materials. For FGM piezo laminate, we will use both micromechanical model and laminate theory, while for FSMA, the modeling interfacing nano-structure, microstructure and macro-behavior is discussed. (author)
Classification using Hierarchical Naive Bayes models
DEFF Research Database (Denmark)
Langseth, Helge; Dyhre Nielsen, Thomas
2006-01-01
Classification problems have a long history in the machine learning literature. One of the simplest, and yet most consistently well-performing set of classifiers is the Naïve Bayes models. However, an inherent problem with these classifiers is the assumption that all attributes used to describe......, termed Hierarchical Naïve Bayes models. Hierarchical Naïve Bayes models extend the modeling flexibility of Naïve Bayes models by introducing latent variables to relax some of the independence statements in these models. We propose a simple algorithm for learning Hierarchical Naïve Bayes models...
African Journals Online (AJOL)
mike
The first thing you will notice if you look for the word 'taste' in the dictionary is that it has ... father's restaurant De Echoput. I'm glad that I listened to the ... The above model provides a usable depiction of the world of flavour which is easy to ...
Hierarchical modeling and analysis for spatial data
Banerjee, Sudipto; Gelfand, Alan E
2003-01-01
Among the many uses of hierarchical modeling, their application to the statistical analysis of spatial and spatio-temporal data from areas such as epidemiology And environmental science has proven particularly fruitful. Yet to date, the few books that address the subject have been either too narrowly focused on specific aspects of spatial analysis, or written at a level often inaccessible to those lacking a strong background in mathematical statistics.Hierarchical Modeling and Analysis for Spatial Data is the first accessible, self-contained treatment of hierarchical methods, modeling, and dat
Analysis hierarchical model for discrete event systems
Ciortea, E. M.
2015-11-01
The This paper presents the hierarchical model based on discrete event network for robotic systems. Based on the hierarchical approach, Petri network is analysed as a network of the highest conceptual level and the lowest level of local control. For modelling and control of complex robotic systems using extended Petri nets. Such a system is structured, controlled and analysed in this paper by using Visual Object Net ++ package that is relatively simple and easy to use, and the results are shown as representations easy to interpret. The hierarchical structure of the robotic system is implemented on computers analysed using specialized programs. Implementation of hierarchical model discrete event systems, as a real-time operating system on a computer network connected via a serial bus is possible, where each computer is dedicated to local and Petri model of a subsystem global robotic system. Since Petri models are simplified to apply general computers, analysis, modelling, complex manufacturing systems control can be achieved using Petri nets. Discrete event systems is a pragmatic tool for modelling industrial systems. For system modelling using Petri nets because we have our system where discrete event. To highlight the auxiliary time Petri model using transport stream divided into hierarchical levels and sections are analysed successively. Proposed robotic system simulation using timed Petri, offers the opportunity to view the robotic time. Application of goods or robotic and transmission times obtained by measuring spot is obtained graphics showing the average time for transport activity, using the parameters sets of finished products. individually.
Learning with hierarchical-deep models.
Salakhutdinov, Ruslan; Tenenbaum, Joshua B; Torralba, Antonio
2013-08-01
We introduce HD (or “Hierarchical-Deep”) models, a new compositional learning architecture that integrates deep learning models with structured hierarchical Bayesian (HB) models. Specifically, we show how we can learn a hierarchical Dirichlet process (HDP) prior over the activities of the top-level features in a deep Boltzmann machine (DBM). This compound HDP-DBM model learns to learn novel concepts from very few training example by learning low-level generic features, high-level features that capture correlations among low-level features, and a category hierarchy for sharing priors over the high-level features that are typical of different kinds of concepts. We present efficient learning and inference algorithms for the HDP-DBM model and show that it is able to learn new concepts from very few examples on CIFAR-100 object recognition, handwritten character recognition, and human motion capture datasets.
A hierarchical model for ordinal matrix factorization
DEFF Research Database (Denmark)
Paquet, Ulrich; Thomson, Blaise; Winther, Ole
2012-01-01
This paper proposes a hierarchical probabilistic model for ordinal matrix factorization. Unlike previous approaches, we model the ordinal nature of the data and take a principled approach to incorporating priors for the hidden variables. Two algorithms are presented for inference, one based...
Hierarchical Context Modeling for Video Event Recognition.
Wang, Xiaoyang; Ji, Qiang
2016-10-11
Current video event recognition research remains largely target-centered. For real-world surveillance videos, targetcentered event recognition faces great challenges due to large intra-class target variation, limited image resolution, and poor detection and tracking results. To mitigate these challenges, we introduced a context-augmented video event recognition approach. Specifically, we explicitly capture different types of contexts from three levels including image level, semantic level, and prior level. At the image level, we introduce two types of contextual features including the appearance context features and interaction context features to capture the appearance of context objects and their interactions with the target objects. At the semantic level, we propose a deep model based on deep Boltzmann machine to learn event object representations and their interactions. At the prior level, we utilize two types of prior-level contexts including scene priming and dynamic cueing. Finally, we introduce a hierarchical context model that systematically integrates the contextual information at different levels. Through the hierarchical context model, contexts at different levels jointly contribute to the event recognition. We evaluate the hierarchical context model for event recognition on benchmark surveillance video datasets. Results show that incorporating contexts in each level can improve event recognition performance, and jointly integrating three levels of contexts through our hierarchical model achieves the best performance.
Hierarchical Bayesian Models of Subtask Learning
Anglim, Jeromy; Wynton, Sarah K. A.
2015-01-01
The current study used Bayesian hierarchical methods to challenge and extend previous work on subtask learning consistency. A general model of individual-level subtask learning was proposed focusing on power and exponential functions with constraints to test for inconsistency. To study subtask learning, we developed a novel computer-based booking…
Hierarchical models in the brain.
Directory of Open Access Journals (Sweden)
Karl Friston
2008-11-01
Full Text Available This paper describes a general model that subsumes many parametric models for continuous data. The model comprises hidden layers of state-space or dynamic causal models, arranged so that the output of one provides input to another. The ensuing hierarchy furnishes a model for many types of data, of arbitrary complexity. Special cases range from the general linear model for static data to generalised convolution models, with system noise, for nonlinear time-series analysis. Crucially, all of these models can be inverted using exactly the same scheme, namely, dynamic expectation maximization. This means that a single model and optimisation scheme can be used to invert a wide range of models. We present the model and a brief review of its inversion to disclose the relationships among, apparently, diverse generative models of empirical data. We then show that this inversion can be formulated as a simple neural network and may provide a useful metaphor for inference and learning in the brain.
Topic Modeling of Hierarchical Corpora /
Kim, Do-kyum
2014-01-01
The sizes of modern digital libraries have grown beyond our capacity to comprehend manually. Thus we need new tools to help us in organizing and browsing large corpora of text that do not require manually examining each document. To this end, machine learning researchers have developed topic models, statistical learning algorithms for automatic comprehension of large collections of text. Topic models provide both global and local views of a corpus; they discover topics that run through the co...
AN INTEGER PROGRAMMING MODEL FOR HIERARCHICAL WORKFORCE
Directory of Open Access Journals (Sweden)
BANU SUNGUR
2013-06-01
Full Text Available The model presented in this paper is based on the model developed by Billionnet for the hierarchical workforce problem. In Billionnet’s Model, while determining the workers’ weekly costs, weekly working hours of workers are not taken into consideration. In our model, the weekly costs per worker are reduced in proportion to the working hours per week. Our model is illustrated on the Billionnet’s Example. The models in question are compared and evaluated on the basis of the results obtained from the example problem. A reduction is achieved in the total cost by the proposed model.
Internet advertising effectiveness by using hierarchical model
RAHMANI, Samaneh
2015-01-01
Abstract. Present paper has been developed with the title of internet advertising effectiveness by using hierarchical model. Presenting the question: Today Internet is an important channel in marketing and advertising. The reason for this could be the ability of the Internet to reduce costs and people’s access to online services[1]. Also advertisers can easily access a multitude of users and communicate with them at low cost [9]. On the other hand, compared to traditional advertising, interne...
A Hierarchical Agency Model of Deposit Insurance
Jonathan Carroll; Shino Takayama
2010-01-01
This paper develops a hierarchical agency model of deposit insurance. The main purpose is to undertake a game theoretic analysis of the consequences of deposit insurance schemes and their effects on monitoring incentives for banks. Using this simple framework, we analyze both risk- independent and risk-dependent premium schemes along with reserve requirement constraints. The results provide policymakers with not only a better understanding of the effects of deposit insurance on welfare and th...
Hierarchic modeling of heat exchanger thermal hydraulics
International Nuclear Information System (INIS)
Horvat, A.; Koncar, B.
2002-01-01
Volume Averaging Technique (VAT) is employed in order to model the heat exchanger cross-flow as a porous media flow. As the averaging of the transport equations lead to a closure problem, separate relations are introduced to model interphase momentum and heat transfer between fluid flow and the solid structure. The hierarchic modeling is used to calculate the local drag coefficient C d as a function of Reynolds number Re h . For that purpose a separate model of REV is built and DNS of flow through REV is performed. The local values of heat transfer coefficient h are obtained from available literature. The geometry of the simulation domain and boundary conditions follow the geometry of the experimental test section used at U.C.L.A. The calculated temperature fields reveal that the geometry with denser pin-fins arrangement (HX1) heats fluid flow faster. The temperature field in the HX2 exhibits the formation of thermal boundary layer between pin-fins, which has a significant role in overall thermal performance of the heat exchanger. Although presented discrepancies of the whole-section drag coefficient C d are large, we believe that hierarchic modeling is an appropriate strategy for calculation of complex transport phenomena in heat exchanger geometries.(author)
Galactic chemical evolution in hierarchical formation models
Arrigoni, Matias
2010-10-01
The chemical properties and abundance ratios of galaxies provide important information about their formation histories. Galactic chemical evolution has been modelled in detail within the monolithic collapse scenario. These models have successfully described the abundance distributions in our Galaxy and other spiral discs, as well as the trends of metallicity and abundance ratios observed in early-type galaxies. In the last three decades, however, the paradigm of hierarchical assembly in a Cold Dark Matter (CDM) cosmology has revised the picture of how structure in the Universe forms and evolves. In this scenario, galaxies form when gas radiatively cools and condenses inside dark matter haloes, which themselves follow dissipationless gravitational collapse. The CDM picture has been successful at predicting many observed properties of galaxies (for example, the luminosity and stellar mass function of galaxies, color-magnitude or star formation rate vs. stellar mass distributions, relative numbers of early and late-type galaxies, gas fractions and size distributions of spiral galaxies, and the global star formation history), though many potential problems and open questions remain. It is therefore interesting to see whether chemical evolution models, when implemented within this modern cosmological context, are able to correctly predict the observed chemical properties of galaxies. With the advent of more powerfull telescopes and detectors, precise observations of chemical abundances and abundance ratios in various phases (stellar, ISM, ICM) offer the opportunity to obtain strong constraints on galaxy formation histories and the physics that shapes them. However, in order to take advantage of these observations, it is necessary to implement detailed modeling of chemical evolution into a modern cosmological model of hierarchical assembly.
Entrepreneurial intention modeling using hierarchical multiple regression
Directory of Open Access Journals (Sweden)
Marina Jeger
2014-12-01
Full Text Available The goal of this study is to identify the contribution of effectuation dimensions to the predictive power of the entrepreneurial intention model over and above that which can be accounted for by other predictors selected and confirmed in previous studies. As is often the case in social and behavioral studies, some variables are likely to be highly correlated with each other. Therefore, the relative amount of variance in the criterion variable explained by each of the predictors depends on several factors such as the order of variable entry and sample specifics. The results show the modest predictive power of two dimensions of effectuation prior to the introduction of the theory of planned behavior elements. The article highlights the main advantages of applying hierarchical regression in social sciences as well as in the specific context of entrepreneurial intention formation, and addresses some of the potential pitfalls that this type of analysis entails.
Hierarchical Multinomial Processing Tree Models: A Latent-Trait Approach
Klauer, Karl Christoph
2010-01-01
Multinomial processing tree models are widely used in many areas of psychology. A hierarchical extension of the model class is proposed, using a multivariate normal distribution of person-level parameters with the mean and covariance matrix to be estimated from the data. The hierarchical model allows one to take variability between persons into…
A hierarchical stochastic model for bistable perception.
Directory of Open Access Journals (Sweden)
Stefan Albert
2017-11-01
Full Text Available Viewing of ambiguous stimuli can lead to bistable perception alternating between the possible percepts. During continuous presentation of ambiguous stimuli, percept changes occur as single events, whereas during intermittent presentation of ambiguous stimuli, percept changes occur at more or less regular intervals either as single events or bursts. Response patterns can be highly variable and have been reported to show systematic differences between patients with schizophrenia and healthy controls. Existing models of bistable perception often use detailed assumptions and large parameter sets which make parameter estimation challenging. Here we propose a parsimonious stochastic model that provides a link between empirical data analysis of the observed response patterns and detailed models of underlying neuronal processes. Firstly, we use a Hidden Markov Model (HMM for the times between percept changes, which assumes one single state in continuous presentation and a stable and an unstable state in intermittent presentation. The HMM captures the observed differences between patients with schizophrenia and healthy controls, but remains descriptive. Therefore, we secondly propose a hierarchical Brownian model (HBM, which produces similar response patterns but also provides a relation to potential underlying mechanisms. The main idea is that neuronal activity is described as an activity difference between two competing neuronal populations reflected in Brownian motions with drift. This differential activity generates switching between the two conflicting percepts and between stable and unstable states with similar mechanisms on different neuronal levels. With only a small number of parameters, the HBM can be fitted closely to a high variety of response patterns and captures group differences between healthy controls and patients with schizophrenia. At the same time, it provides a link to mechanistic models of bistable perception, linking the group
A hierarchical stochastic model for bistable perception.
Albert, Stefan; Schmack, Katharina; Sterzer, Philipp; Schneider, Gaby
2017-11-01
Viewing of ambiguous stimuli can lead to bistable perception alternating between the possible percepts. During continuous presentation of ambiguous stimuli, percept changes occur as single events, whereas during intermittent presentation of ambiguous stimuli, percept changes occur at more or less regular intervals either as single events or bursts. Response patterns can be highly variable and have been reported to show systematic differences between patients with schizophrenia and healthy controls. Existing models of bistable perception often use detailed assumptions and large parameter sets which make parameter estimation challenging. Here we propose a parsimonious stochastic model that provides a link between empirical data analysis of the observed response patterns and detailed models of underlying neuronal processes. Firstly, we use a Hidden Markov Model (HMM) for the times between percept changes, which assumes one single state in continuous presentation and a stable and an unstable state in intermittent presentation. The HMM captures the observed differences between patients with schizophrenia and healthy controls, but remains descriptive. Therefore, we secondly propose a hierarchical Brownian model (HBM), which produces similar response patterns but also provides a relation to potential underlying mechanisms. The main idea is that neuronal activity is described as an activity difference between two competing neuronal populations reflected in Brownian motions with drift. This differential activity generates switching between the two conflicting percepts and between stable and unstable states with similar mechanisms on different neuronal levels. With only a small number of parameters, the HBM can be fitted closely to a high variety of response patterns and captures group differences between healthy controls and patients with schizophrenia. At the same time, it provides a link to mechanistic models of bistable perception, linking the group differences to
Constructive Epistemic Modeling: A Hierarchical Bayesian Model Averaging Method
Tsai, F. T. C.; Elshall, A. S.
2014-12-01
Constructive epistemic modeling is the idea that our understanding of a natural system through a scientific model is a mental construct that continually develops through learning about and from the model. Using the hierarchical Bayesian model averaging (HBMA) method [1], this study shows that segregating different uncertain model components through a BMA tree of posterior model probabilities, model prediction, within-model variance, between-model variance and total model variance serves as a learning tool [2]. First, the BMA tree of posterior model probabilities permits the comparative evaluation of the candidate propositions of each uncertain model component. Second, systemic model dissection is imperative for understanding the individual contribution of each uncertain model component to the model prediction and variance. Third, the hierarchical representation of the between-model variance facilitates the prioritization of the contribution of each uncertain model component to the overall model uncertainty. We illustrate these concepts using the groundwater modeling of a siliciclastic aquifer-fault system. The sources of uncertainty considered are from geological architecture, formation dip, boundary conditions and model parameters. The study shows that the HBMA analysis helps in advancing knowledge about the model rather than forcing the model to fit a particularly understanding or merely averaging several candidate models. [1] Tsai, F. T.-C., and A. S. Elshall (2013), Hierarchical Bayesian model averaging for hydrostratigraphic modeling: Uncertainty segregation and comparative evaluation. Water Resources Research, 49, 5520-5536, doi:10.1002/wrcr.20428. [2] Elshall, A.S., and F. T.-C. Tsai (2014). Constructive epistemic modeling of groundwater flow with geological architecture and boundary condition uncertainty under Bayesian paradigm, Journal of Hydrology, 517, 105-119, doi: 10.1016/j.jhydrol.2014.05.027.
Bayesian hierarchical modelling of North Atlantic windiness
Vanem, E.; Breivik, O. N.
2013-03-01
Extreme weather conditions represent serious natural hazards to ship operations and may be the direct cause or contributing factor to maritime accidents. Such severe environmental conditions can be taken into account in ship design and operational windows can be defined that limits hazardous operations to less extreme conditions. Nevertheless, possible changes in the statistics of extreme weather conditions, possibly due to anthropogenic climate change, represent an additional hazard to ship operations that is less straightforward to account for in a consistent way. Obviously, there are large uncertainties as to how future climate change will affect the extreme weather conditions at sea and there is a need for stochastic models that can describe the variability in both space and time at various scales of the environmental conditions. Previously, Bayesian hierarchical space-time models have been developed to describe the variability and complex dependence structures of significant wave height in space and time. These models were found to perform reasonably well and provided some interesting results, in particular, pertaining to long-term trends in the wave climate. In this paper, a similar framework is applied to oceanic windiness and the spatial and temporal variability of the 10-m wind speed over an area in the North Atlantic ocean is investigated. When the results from the model for North Atlantic windiness is compared to the results for significant wave height over the same area, it is interesting to observe that whereas an increasing trend in significant wave height was identified, no statistically significant long-term trend was estimated in windiness. This may indicate that the increase in significant wave height is not due to an increase in locally generated wind waves, but rather to increased swell. This observation is also consistent with studies that have suggested a poleward shift of the main storm tracks.
Bayesian hierarchical modelling of North Atlantic windiness
Directory of Open Access Journals (Sweden)
E. Vanem
2013-03-01
Full Text Available Extreme weather conditions represent serious natural hazards to ship operations and may be the direct cause or contributing factor to maritime accidents. Such severe environmental conditions can be taken into account in ship design and operational windows can be defined that limits hazardous operations to less extreme conditions. Nevertheless, possible changes in the statistics of extreme weather conditions, possibly due to anthropogenic climate change, represent an additional hazard to ship operations that is less straightforward to account for in a consistent way. Obviously, there are large uncertainties as to how future climate change will affect the extreme weather conditions at sea and there is a need for stochastic models that can describe the variability in both space and time at various scales of the environmental conditions. Previously, Bayesian hierarchical space-time models have been developed to describe the variability and complex dependence structures of significant wave height in space and time. These models were found to perform reasonably well and provided some interesting results, in particular, pertaining to long-term trends in the wave climate. In this paper, a similar framework is applied to oceanic windiness and the spatial and temporal variability of the 10-m wind speed over an area in the North Atlantic ocean is investigated. When the results from the model for North Atlantic windiness is compared to the results for significant wave height over the same area, it is interesting to observe that whereas an increasing trend in significant wave height was identified, no statistically significant long-term trend was estimated in windiness. This may indicate that the increase in significant wave height is not due to an increase in locally generated wind waves, but rather to increased swell. This observation is also consistent with studies that have suggested a poleward shift of the main storm tracks.
What are hierarchical models and how do we analyze them?
Royle, Andy
2016-01-01
In this chapter we provide a basic definition of hierarchical models and introduce the two canonical hierarchical models in this book: site occupancy and N-mixture models. The former is a hierarchical extension of logistic regression and the latter is a hierarchical extension of Poisson regression. We introduce basic concepts of probability modeling and statistical inference including likelihood and Bayesian perspectives. We go through the mechanics of maximizing the likelihood and characterizing the posterior distribution by Markov chain Monte Carlo (MCMC) methods. We give a general perspective on topics such as model selection and assessment of model fit, although we demonstrate these topics in practice in later chapters (especially Chapters 5, 6, 7, and 10 Chapter 5 Chapter 6 Chapter 7 Chapter 10)
Hierarchical Neural Regression Models for Customer Churn Prediction
Directory of Open Access Journals (Sweden)
Golshan Mohammadi
2013-01-01
Full Text Available As customers are the main assets of each industry, customer churn prediction is becoming a major task for companies to remain in competition with competitors. In the literature, the better applicability and efficiency of hierarchical data mining techniques has been reported. This paper considers three hierarchical models by combining four different data mining techniques for churn prediction, which are backpropagation artificial neural networks (ANN, self-organizing maps (SOM, alpha-cut fuzzy c-means (α-FCM, and Cox proportional hazards regression model. The hierarchical models are ANN + ANN + Cox, SOM + ANN + Cox, and α-FCM + ANN + Cox. In particular, the first component of the models aims to cluster data in two churner and nonchurner groups and also filter out unrepresentative data or outliers. Then, the clustered data as the outputs are used to assign customers to churner and nonchurner groups by the second technique. Finally, the correctly classified data are used to create Cox proportional hazards model. To evaluate the performance of the hierarchical models, an Iranian mobile dataset is considered. The experimental results show that the hierarchical models outperform the single Cox regression baseline model in terms of prediction accuracy, Types I and II errors, RMSE, and MAD metrics. In addition, the α-FCM + ANN + Cox model significantly performs better than the two other hierarchical models.
Hierarchical regression analysis in structural Equation Modeling
de Jong, P.F.
1999-01-01
In a hierarchical or fixed-order regression analysis, the independent variables are entered into the regression equation in a prespecified order. Such an analysis is often performed when the extra amount of variance accounted for in a dependent variable by a specific independent variable is the main
Slow logarithmic relaxation in models with hierarchically constrained dynamics
Brey, J. J.; Prados, A.
2000-01-01
A general kind of models with hierarchically constrained dynamics is shown to exhibit logarithmic anomalous relaxation, similarly to a variety of complex strongly interacting materials. The logarithmic behavior describes most of the decay of the response function.
Bayesian disease mapping: hierarchical modeling in spatial epidemiology
National Research Council Canada - National Science Library
Lawson, Andrew
2013-01-01
.... Exploring these new developments, Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology, Second Edition provides an up-to-date, cohesive account of the full range of Bayesian disease mapping methods and applications...
Quantum Ising model on hierarchical structures
International Nuclear Information System (INIS)
Lin Zhifang; Tao Ruibao.
1989-11-01
A quantum Ising chain with both the exchange couplings and the transverse fields arranged in a hierarchical way is considered. Exact analytical results for the critical line and energy gap are obtained. It is shown that when R 1 not= R 2 , where R 1 and R 2 are the hierarchical parameters for the exchange couplings and the transverse fields, respectively, the system undergoes a phase transition in a different universality class from the pure quantum Ising chain with R 1 =R 2 =1. On the other hand, when R 1 =R 2 =R, there exists a critical value R c dependent on the furcating number of the hierarchy. In case of R > R c , the system is shown to exhibit as Ising-like critical point with the critical behaviour the same as in the pure case, while for R c the system belongs to another universality class. (author). 19 refs, 2 figs
Road network safety evaluation using Bayesian hierarchical joint model.
Wang, Jie; Huang, Helai
2016-05-01
Safety and efficiency are commonly regarded as two significant performance indicators of transportation systems. In practice, road network planning has focused on road capacity and transport efficiency whereas the safety level of a road network has received little attention in the planning stage. This study develops a Bayesian hierarchical joint model for road network safety evaluation to help planners take traffic safety into account when planning a road network. The proposed model establishes relationships between road network risk and micro-level variables related to road entities and traffic volume, as well as socioeconomic, trip generation and network density variables at macro level which are generally used for long term transportation plans. In addition, network spatial correlation between intersections and their connected road segments is also considered in the model. A road network is elaborately selected in order to compare the proposed hierarchical joint model with a previous joint model and a negative binomial model. According to the results of the model comparison, the hierarchical joint model outperforms the joint model and negative binomial model in terms of the goodness-of-fit and predictive performance, which indicates the reasonableness of considering the hierarchical data structure in crash prediction and analysis. Moreover, both random effects at the TAZ level and the spatial correlation between intersections and their adjacent segments are found to be significant, supporting the employment of the hierarchical joint model as an alternative in road-network-level safety modeling as well. Copyright © 2016 Elsevier Ltd. All rights reserved.
Advances in Applications of Hierarchical Bayesian Methods with Hydrological Models
Alexander, R. B.; Schwarz, G. E.; Boyer, E. W.
2017-12-01
Mechanistic and empirical watershed models are increasingly used to inform water resource decisions. Growing access to historical stream measurements and data from in-situ sensor technologies has increased the need for improved techniques for coupling models with hydrological measurements. Techniques that account for the intrinsic uncertainties of both models and measurements are especially needed. Hierarchical Bayesian methods provide an efficient modeling tool for quantifying model and prediction uncertainties, including those associated with measurements. Hierarchical methods can also be used to explore spatial and temporal variations in model parameters and uncertainties that are informed by hydrological measurements. We used hierarchical Bayesian methods to develop a hybrid (statistical-mechanistic) SPARROW (SPAtially Referenced Regression On Watershed attributes) model of long-term mean annual streamflow across diverse environmental and climatic drainages in 18 U.S. hydrological regions. Our application illustrates the use of a new generation of Bayesian methods that offer more advanced computational efficiencies than the prior generation. Evaluations of the effects of hierarchical (regional) variations in model coefficients and uncertainties on model accuracy indicates improved prediction accuracies (median of 10-50%) but primarily in humid eastern regions, where model uncertainties are one-third of those in arid western regions. Generally moderate regional variability is observed for most hierarchical coefficients. Accounting for measurement and structural uncertainties, using hierarchical state-space techniques, revealed the effects of spatially-heterogeneous, latent hydrological processes in the "localized" drainages between calibration sites; this improved model precision, with only minor changes in regional coefficients. Our study can inform advances in the use of hierarchical methods with hydrological models to improve their integration with stream
Hierarchical Bayesian Modeling of Fluid-Induced Seismicity
Broccardo, M.; Mignan, A.; Wiemer, S.; Stojadinovic, B.; Giardini, D.
2017-11-01
In this study, we present a Bayesian hierarchical framework to model fluid-induced seismicity. The framework is based on a nonhomogeneous Poisson process with a fluid-induced seismicity rate proportional to the rate of injected fluid. The fluid-induced seismicity rate model depends upon a set of physically meaningful parameters and has been validated for six fluid-induced case studies. In line with the vision of hierarchical Bayesian modeling, the rate parameters are considered as random variables. We develop both the Bayesian inference and updating rules, which are used to develop a probabilistic forecasting model. We tested the Basel 2006 fluid-induced seismic case study to prove that the hierarchical Bayesian model offers a suitable framework to coherently encode both epistemic uncertainty and aleatory variability. Moreover, it provides a robust and consistent short-term seismic forecasting model suitable for online risk quantification and mitigation.
Determining Predictor Importance in Hierarchical Linear Models Using Dominance Analysis
Luo, Wen; Azen, Razia
2013-01-01
Dominance analysis (DA) is a method used to evaluate the relative importance of predictors that was originally proposed for linear regression models. This article proposes an extension of DA that allows researchers to determine the relative importance of predictors in hierarchical linear models (HLM). Commonly used measures of model adequacy in…
Hierarchical modeling of molecular energies using a deep neural network
Lubbers, Nicholas; Smith, Justin S.; Barros, Kipton
2018-06-01
We introduce the Hierarchically Interacting Particle Neural Network (HIP-NN) to model molecular properties from datasets of quantum calculations. Inspired by a many-body expansion, HIP-NN decomposes properties, such as energy, as a sum over hierarchical terms. These terms are generated from a neural network—a composition of many nonlinear transformations—acting on a representation of the molecule. HIP-NN achieves the state-of-the-art performance on a dataset of 131k ground state organic molecules and predicts energies with 0.26 kcal/mol mean absolute error. With minimal tuning, our model is also competitive on a dataset of molecular dynamics trajectories. In addition to enabling accurate energy predictions, the hierarchical structure of HIP-NN helps to identify regions of model uncertainty.
Applying Hierarchical Model Calibration to Automatically Generated Items.
Williamson, David M.; Johnson, Matthew S.; Sinharay, Sandip; Bejar, Isaac I.
This study explored the application of hierarchical model calibration as a means of reducing, if not eliminating, the need for pretesting of automatically generated items from a common item model prior to operational use. Ultimately the successful development of automatic item generation (AIG) systems capable of producing items with highly similar…
A HIERARCHICAL SET OF MODELS FOR SPECIES RESPONSE ANALYSIS
HUISMAN, J; OLFF, H; FRESCO, LFM
Variation in the abundance of species in space and/or time can be caused by a wide range of underlying processes. Before such causes can be analysed we need simple mathematical models which can describe the observed response patterns. For this purpose a hierarchical set of models is presented. These
A hierarchical set of models for species response analysis
Huisman, J.; Olff, H.; Fresco, L.F.M.
1993-01-01
Variation in the abundance of species in space and/or time can be caused by a wide range of underlying processes. Before such causes can be analysed we need simple mathematical models which can describe the observed response patterns. For this purpose a hierarchical set of models is presented. These
The Revised Hierarchical Model: A critical review and assessment
Kroll, J.F.; Hell, J.G. van; Tokowicz, N.; Green, D.W.
2010-01-01
Brysbaert and Duyck (this issue) suggest that it is time to abandon the Revised Hierarchical Model (Kroll and Stewart, 1994) in favor of connectionist models such as BIA+ (Dijkstra and Van Heuven, 2002) that more accurately account for the recent evidence on non-selective access in bilingual word
A hierarchical model exhibiting the Kosterlitz-Thouless fixed point
International Nuclear Information System (INIS)
Marchetti, D.H.U.; Perez, J.F.
1985-01-01
A hierarchical model for 2-d Coulomb gases displaying a line stable of fixed points describing the Kosterlitz-Thouless phase transition is constructed. For Coulomb gases corresponding to Z sub(N)- models these fixed points are stable for an intermediate temperature interval. (Author) [pt
Hierarchical Multiple Markov Chain Model for Unsupervised Texture Segmentation
Czech Academy of Sciences Publication Activity Database
Scarpa, G.; Gaetano, R.; Haindl, Michal; Zerubia, J.
2009-01-01
Roč. 18, č. 8 (2009), s. 1830-1843 ISSN 1057-7149 R&D Projects: GA ČR GA102/08/0593 EU Projects: European Commission(XE) 507752 - MUSCLE Institutional research plan: CEZ:AV0Z10750506 Keywords : Classification * texture analysis * segmentation * hierarchical image models * Markov process Subject RIV: BD - Theory of Information Impact factor: 2.848, year: 2009 http://library.utia.cas.cz/separaty/2009/RO/haindl-hierarchical multiple markov chain model for unsupervised texture segmentation.pdf
Hierarchical graphs for rule-based modeling of biochemical systems
Directory of Open Access Journals (Sweden)
Hu Bin
2011-02-01
Full Text Available Abstract Background In rule-based modeling, graphs are used to represent molecules: a colored vertex represents a component of a molecule, a vertex attribute represents the internal state of a component, and an edge represents a bond between components. Components of a molecule share the same color. Furthermore, graph-rewriting rules are used to represent molecular interactions. A rule that specifies addition (removal of an edge represents a class of association (dissociation reactions, and a rule that specifies a change of a vertex attribute represents a class of reactions that affect the internal state of a molecular component. A set of rules comprises an executable model that can be used to determine, through various means, the system-level dynamics of molecular interactions in a biochemical system. Results For purposes of model annotation, we propose the use of hierarchical graphs to represent structural relationships among components and subcomponents of molecules. We illustrate how hierarchical graphs can be used to naturally document the structural organization of the functional components and subcomponents of two proteins: the protein tyrosine kinase Lck and the T cell receptor (TCR complex. We also show that computational methods developed for regular graphs can be applied to hierarchical graphs. In particular, we describe a generalization of Nauty, a graph isomorphism and canonical labeling algorithm. The generalized version of the Nauty procedure, which we call HNauty, can be used to assign canonical labels to hierarchical graphs or more generally to graphs with multiple edge types. The difference between the Nauty and HNauty procedures is minor, but for completeness, we provide an explanation of the entire HNauty algorithm. Conclusions Hierarchical graphs provide more intuitive formal representations of proteins and other structured molecules with multiple functional components than do the regular graphs of current languages for
A Hierarchal Risk Assessment Model Using the Evidential Reasoning Rule
Directory of Open Access Journals (Sweden)
Xiaoxiao Ji
2017-02-01
Full Text Available This paper aims to develop a hierarchical risk assessment model using the newly-developed evidential reasoning (ER rule, which constitutes a generic conjunctive probabilistic reasoning process. In this paper, we first provide a brief introduction to the basics of the ER rule and emphasize the strengths for representing and aggregating uncertain information from multiple experts and sources. Further, we discuss the key steps of developing the hierarchical risk assessment framework systematically, including (1 formulation of risk assessment hierarchy; (2 representation of both qualitative and quantitative information; (3 elicitation of attribute weights and information reliabilities; (4 aggregation of assessment information using the ER rule and (5 quantification and ranking of risks using utility-based transformation. The proposed hierarchical risk assessment framework can potentially be implemented to various complex and uncertain systems. A case study on the fire/explosion risk assessment of marine vessels demonstrates the applicability of the proposed risk assessment model.
Comparing hierarchical models via the marginalized deviance information criterion.
Quintero, Adrian; Lesaffre, Emmanuel
2018-07-20
Hierarchical models are extensively used in pharmacokinetics and longitudinal studies. When the estimation is performed from a Bayesian approach, model comparison is often based on the deviance information criterion (DIC). In hierarchical models with latent variables, there are several versions of this statistic: the conditional DIC (cDIC) that incorporates the latent variables in the focus of the analysis and the marginalized DIC (mDIC) that integrates them out. Regardless of the asymptotic and coherency difficulties of cDIC, this alternative is usually used in Markov chain Monte Carlo (MCMC) methods for hierarchical models because of practical convenience. The mDIC criterion is more appropriate in most cases but requires integration of the likelihood, which is computationally demanding and not implemented in Bayesian software. Therefore, we consider a method to compute mDIC by generating replicate samples of the latent variables that need to be integrated out. This alternative can be easily conducted from the MCMC output of Bayesian packages and is widely applicable to hierarchical models in general. Additionally, we propose some approximations in order to reduce the computational complexity for large-sample situations. The method is illustrated with simulated data sets and 2 medical studies, evidencing that cDIC may be misleading whilst mDIC appears pertinent. Copyright © 2018 John Wiley & Sons, Ltd.
Conceptual hierarchical modeling to describe wetland plant community organization
Little, A.M.; Guntenspergen, G.R.; Allen, T.F.H.
2010-01-01
Using multivariate analysis, we created a hierarchical modeling process that describes how differently-scaled environmental factors interact to affect wetland-scale plant community organization in a system of small, isolated wetlands on Mount Desert Island, Maine. We followed the procedure: 1) delineate wetland groups using cluster analysis, 2) identify differently scaled environmental gradients using non-metric multidimensional scaling, 3) order gradient hierarchical levels according to spatiotem-poral scale of fluctuation, and 4) assemble hierarchical model using group relationships with ordination axes and post-hoc tests of environmental differences. Using this process, we determined 1) large wetland size and poor surface water chemistry led to the development of shrub fen wetland vegetation, 2) Sphagnum and water chemistry differences affected fen vs. marsh / sedge meadows status within small wetlands, and 3) small-scale hydrologic differences explained transitions between forested vs. non-forested and marsh vs. sedge meadow vegetation. This hierarchical modeling process can help explain how upper level contextual processes constrain biotic community response to lower-level environmental changes. It creates models with more nuanced spatiotemporal complexity than classification and regression tree procedures. Using this process, wetland scientists will be able to generate more generalizable theories of plant community organization, and useful management models. ?? Society of Wetland Scientists 2009.
Control of discrete event systems modeled as hierarchical state machines
Brave, Y.; Heymann, M.
1991-01-01
The authors examine a class of discrete event systems (DESs) modeled as asynchronous hierarchical state machines (AHSMs). For this class of DESs, they provide an efficient method for testing reachability, which is an essential step in many control synthesis procedures. This method utilizes the asynchronous nature and hierarchical structure of AHSMs, thereby illustrating the advantage of the AHSM representation as compared with its equivalent (flat) state machine representation. An application of the method is presented where an online minimally restrictive solution is proposed for the problem of maintaining a controlled AHSM within prescribed legal bounds.
Hierarchical modelling for the environmental sciences statistical methods and applications
Clark, James S
2006-01-01
New statistical tools are changing the way in which scientists analyze and interpret data and models. Hierarchical Bayes and Markov Chain Monte Carlo methods for analysis provide a consistent framework for inference and prediction where information is heterogeneous and uncertain, processes are complicated, and responses depend on scale. Nowhere are these methods more promising than in the environmental sciences.
Analysis of Error Propagation Within Hierarchical Air Combat Models
2016-06-01
values alone are propagated through layers of combat models, the final results will likely be biased, and risk underestimated. An air-to-air...values alone are propagated through layers of combat models, the final results will likely be biased, and risk underestimated. An air-to-air engagement... PROPAGATION WITHIN HIERARCHICAL AIR COMBAT MODELS by Salih Ilaslan June 2016 Thesis Advisor: Thomas W. Lucas Second Reader: Jeffrey
International Nuclear Information System (INIS)
Agliari, Elena; Barra, Adriano; Guerra, Francesco; Galluzzi, Andrea; Tantari, Daniele; Tavani, Flavia
2015-01-01
In this paper, we introduce and investigate the statistical mechanics of hierarchical neural networks. First, we approach these systems à la Mattis, by thinking of the Dyson model as a single-pattern hierarchical neural network. We also discuss the stability of different retrievable states as predicted by the related self-consistencies obtained both from a mean-field bound and from a bound that bypasses the mean-field limitation. The latter is worked out by properly reabsorbing the magnetization fluctuations related to higher levels of the hierarchy into effective fields for the lower levels. Remarkably, mixing Amit's ansatz technique for selecting candidate-retrievable states with the interpolation procedure for solving for the free energy of these states, we prove that, due to gauge symmetry, the Dyson model accomplishes both serial and parallel processing. We extend this scenario to multiple stored patterns by implementing the Hebb prescription for learning within the couplings. This results in Hopfield-like networks constrained on a hierarchical topology, for which, by restricting to the low-storage regime where the number of patterns grows at its most logarithmical with the amount of neurons, we prove the existence of the thermodynamic limit for the free energy, and we give an explicit expression of its mean-field bound and of its related improved bound. We studied the resulting self-consistencies for the Mattis magnetizations, which act as order parameters, are studied and the stability of solutions is analyzed to get a picture of the overall retrieval capabilities of the system according to both mean-field and non-mean-field scenarios. Our main finding is that embedding the Hebbian rule on a hierarchical topology allows the network to accomplish both serial and parallel processing. By tuning the level of fast noise affecting it or triggering the decay of the interactions with the distance among neurons, the system may switch from sequential retrieval to
Hierarchical Models of the Nearshore Complex System
National Research Council Canada - National Science Library
Werner, Brad
2004-01-01
.... This grant was termination funding for the Werner group, specifically aimed at finishing up and publishing research related to synoptic imaging of near shore bathymetry, testing models for beach cusp...
Hierarchical and coupling model of factors influencing vessel traffic flow.
Directory of Open Access Journals (Sweden)
Zhao Liu
Full Text Available Understanding the characteristics of vessel traffic flow is crucial in maintaining navigation safety, efficiency, and overall waterway transportation management. Factors influencing vessel traffic flow possess diverse features such as hierarchy, uncertainty, nonlinearity, complexity, and interdependency. To reveal the impact mechanism of the factors influencing vessel traffic flow, a hierarchical model and a coupling model are proposed in this study based on the interpretative structural modeling method. The hierarchical model explains the hierarchies and relationships of the factors using a graph. The coupling model provides a quantitative method that explores interaction effects of factors using a coupling coefficient. The coupling coefficient is obtained by determining the quantitative indicators of the factors and their weights. Thereafter, the data obtained from Port of Tianjin is used to verify the proposed coupling model. The results show that the hierarchical model of the factors influencing vessel traffic flow can explain the level, structure, and interaction effect of the factors; the coupling model is efficient in analyzing factors influencing traffic volumes. The proposed method can be used for analyzing increases in vessel traffic flow in waterway transportation system.
Hierarchical and coupling model of factors influencing vessel traffic flow.
Liu, Zhao; Liu, Jingxian; Li, Huanhuan; Li, Zongzhi; Tan, Zhirong; Liu, Ryan Wen; Liu, Yi
2017-01-01
Understanding the characteristics of vessel traffic flow is crucial in maintaining navigation safety, efficiency, and overall waterway transportation management. Factors influencing vessel traffic flow possess diverse features such as hierarchy, uncertainty, nonlinearity, complexity, and interdependency. To reveal the impact mechanism of the factors influencing vessel traffic flow, a hierarchical model and a coupling model are proposed in this study based on the interpretative structural modeling method. The hierarchical model explains the hierarchies and relationships of the factors using a graph. The coupling model provides a quantitative method that explores interaction effects of factors using a coupling coefficient. The coupling coefficient is obtained by determining the quantitative indicators of the factors and their weights. Thereafter, the data obtained from Port of Tianjin is used to verify the proposed coupling model. The results show that the hierarchical model of the factors influencing vessel traffic flow can explain the level, structure, and interaction effect of the factors; the coupling model is efficient in analyzing factors influencing traffic volumes. The proposed method can be used for analyzing increases in vessel traffic flow in waterway transportation system.
Petascale Hierarchical Modeling VIA Parallel Execution
Energy Technology Data Exchange (ETDEWEB)
Gelman, Andrew [Principal Investigator
2014-04-14
The research allows more effective model building. By allowing researchers to fit complex models to large datasets in a scalable manner, our algorithms and software enable more effective scientific research. In the new area of “big data,” it is often necessary to fit “big models” to adjust for systematic differences between sample and population. For this task, scalable and efficient model-fitting tools are needed, and these have been achieved with our new Hamiltonian Monte Carlo algorithm, the no-U-turn sampler, and our new C++ program, Stan. In layman’s terms, our research enables researchers to create improved mathematical modes for large and complex systems.
Hierarchical Modelling of Flood Risk for Engineering Decision Analysis
DEFF Research Database (Denmark)
Custer, Rocco
protection structures in the hierarchical flood protection system - is identified. To optimise the design of protection structures, fragility and vulnerability models must allow for consideration of decision alternatives. While such vulnerability models are available for large protection structures (e...... systems, as well as the implementation of the flood risk analysis methodology and the vulnerability modelling approach are illustrated with an example application. In summary, the present thesis provides a characterisation of hierarchical flood protection systems as well as several methodologies to model...... and robust. Traditional risk management solutions, e.g. dike construction, are not particularly flexible, as they are difficult to adapt to changing risk. Conversely, the recent concept of integrated flood risk management, entailing a combination of several structural and non-structural risk management...
A Hierarchical Visualization Analysis Model of Power Big Data
Li, Yongjie; Wang, Zheng; Hao, Yang
2018-01-01
Based on the conception of integrating VR scene and power big data analysis, a hierarchical visualization analysis model of power big data is proposed, in which levels are designed, targeting at different abstract modules like transaction, engine, computation, control and store. The regularly departed modules of power data storing, data mining and analysis, data visualization are integrated into one platform by this model. It provides a visual analysis solution for the power big data.
Directory of Open Access Journals (Sweden)
María Ester Onell
2009-08-01
Full Text Available En este trabajo se estudia el comportamiento convencional o "Right Handed Materials" (RHM y el comportamiento de metamaterial o "Left Handed Materials" (LHM desde el punto de vista clásico, en nanoestructuras cilíndricas (nanotubos construidas imponiendo condiciones de borde a una red bidimensional infinita de circuitos LC acoplados con interacción a primeros vecinos. Tipificaremos los materiales considerando el signo del coseno del ángulo formado por los vectores velocidad de grupo y velocidad de fase, siendo metamaterial o LHM cuando el coseno del ángulo sea negativo y convencional o RHM cuando el valor del coseno sea positivo. El eje de los nanocilindros se hace coincidir, como primer caso, con la línea de transmisión dual, y como segundo caso, con la línea de transmisión directa. Este estudio muestra que ambos nanocilindros tienen un comportamiento de RHM y LHM, y además se comportan como filtros pasa alto y pasa bajo, pero ahora aparece un número discreto de frecuencias de corte en cada caso, a diferencia de lo que ocurre en las líneas de transmisión.This paper studies the behavior of conventional or "Right-Handed Materials" (RHM and "Left Handed Materials" (LHM also named metamaterial, of cylindrical nanostructures (nanotubes from the classical point of view. The nanotubes are building imposing boundary conditions in an infinite two-dimensional network of coupled LC circuits with interaction to nearest-neighbors. In this article, materials are classified considering the sign of the cosine of the angle between the group velocity vector and the phase velocity vector, in such a way that we have LHM behavior for negative cosine and we have RHM when the cosine is positive. The axis of the nanocylinders coincides, as the first case, with the dual transmission line, and as a second case, with the direct or conventional transmission line. This study shows that both nanocyinders have RHM and LHM behavior. In addition, it is found that
Fully probabilistic design of hierarchical Bayesian models
Czech Academy of Sciences Publication Activity Database
Quinn, A.; Kárný, Miroslav; Guy, Tatiana Valentine
2016-01-01
Roč. 369, č. 1 (2016), s. 532-547 ISSN 0020-0255 R&D Projects: GA ČR GA13-13502S Institutional support: RVO:67985556 Keywords : Fully probabilistic design * Ideal distribution * Minimum cross-entropy principle * Bayesian conditioning * Kullback-Leibler divergence * Bayesian nonparametric modelling Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 4.832, year: 2016 http://library.utia.cas.cz/separaty/2016/AS/karny-0463052.pdf
Hierarchical Model Predictive Control for Resource Distribution
DEFF Research Database (Denmark)
Bendtsen, Jan Dimon; Trangbæk, K; Stoustrup, Jakob
2010-01-01
units. The approach is inspired by smart-grid electric power production and consumption systems, where the flexibility of a large number of power producing and/or power consuming units can be exploited in a smart-grid solution. The objective is to accommodate the load variation on the grid, arising......This paper deals with hierarchichal model predictive control (MPC) of distributed systems. A three level hierachical approach is proposed, consisting of a high level MPC controller, a second level of so-called aggregators, controlled by an online MPC-like algorithm, and a lower level of autonomous...... on one hand from varying consumption, on the other hand by natural variations in power production e.g. from wind turbines. The approach presented is based on quadratic optimization and possess the properties of low algorithmic complexity and of scalability. In particular, the proposed design methodology...
Introduction to Hierarchical Bayesian Modeling for Ecological Data
Parent, Eric
2012-01-01
Making statistical modeling and inference more accessible to ecologists and related scientists, Introduction to Hierarchical Bayesian Modeling for Ecological Data gives readers a flexible and effective framework to learn about complex ecological processes from various sources of data. It also helps readers get started on building their own statistical models. The text begins with simple models that progressively become more complex and realistic through explanatory covariates and intermediate hidden states variables. When fitting the models to data, the authors gradually present the concepts a
A hierarchical spatiotemporal analog forecasting model for count data.
McDermott, Patrick L; Wikle, Christopher K; Millspaugh, Joshua
2018-01-01
Analog forecasting is a mechanism-free nonlinear method that forecasts a system forward in time by examining how past states deemed similar to the current state moved forward. Previous applications of analog forecasting has been successful at producing robust forecasts for a variety of ecological and physical processes, but it has typically been presented in an empirical or heuristic procedure, rather than as a formal statistical model. The methodology presented here extends the model-based analog method of McDermott and Wikle (Environmetrics, 27, 2016, 70) by placing analog forecasting within a fully hierarchical statistical framework that can accommodate count observations. Using a Bayesian approach, the hierarchical analog model is able to quantify rigorously the uncertainty associated with forecasts. Forecasting waterfowl settling patterns in the northwestern United States and Canada is conducted by applying the hierarchical analog model to a breeding population survey dataset. Sea surface temperature (SST) in the Pacific Ocean is used to help identify potential analogs for the waterfowl settling patterns.
Bayesian hierarchical model for large-scale covariance matrix estimation.
Zhu, Dongxiao; Hero, Alfred O
2007-12-01
Many bioinformatics problems implicitly depend on estimating large-scale covariance matrix. The traditional approaches tend to give rise to high variance and low accuracy due to "overfitting." We cast the large-scale covariance matrix estimation problem into the Bayesian hierarchical model framework, and introduce dependency between covariance parameters. We demonstrate the advantages of our approaches over the traditional approaches using simulations and OMICS data analysis.
Hierarchical composites: Analysis of damage evolution based on fiber bundle model
DEFF Research Database (Denmark)
Mishnaevsky, Leon
2011-01-01
A computational model of multiscale composites is developed on the basis of the fiber bundle model with the hierarchical load sharing rule, and employed to study the effect of the microstructures of hierarchical composites on their damage resistance. Two types of hierarchical materials were consi...
Hierarchical modeling of cluster size in wildlife surveys
Royle, J. Andrew
2008-01-01
Clusters or groups of individuals are the fundamental unit of observation in many wildlife sampling problems, including aerial surveys of waterfowl, marine mammals, and ungulates. Explicit accounting of cluster size in models for estimating abundance is necessary because detection of individuals within clusters is not independent and detectability of clusters is likely to increase with cluster size. This induces a cluster size bias in which the average cluster size in the sample is larger than in the population at large. Thus, failure to account for the relationship between delectability and cluster size will tend to yield a positive bias in estimates of abundance or density. I describe a hierarchical modeling framework for accounting for cluster-size bias in animal sampling. The hierarchical model consists of models for the observation process conditional on the cluster size distribution and the cluster size distribution conditional on the total number of clusters. Optionally, a spatial model can be specified that describes variation in the total number of clusters per sample unit. Parameter estimation, model selection, and criticism may be carried out using conventional likelihood-based methods. An extension of the model is described for the situation where measurable covariates at the level of the sample unit are available. Several candidate models within the proposed class are evaluated for aerial survey data on mallard ducks (Anas platyrhynchos).
A hierarchical community occurrence model for North Carolina stream fish
Midway, S.R.; Wagner, Tyler; Tracy, B.H.
2016-01-01
The southeastern USA is home to one of the richest—and most imperiled and threatened—freshwater fish assemblages in North America. For many of these rare and threatened species, conservation efforts are often limited by a lack of data. Drawing on a unique and extensive data set spanning over 20 years, we modeled occurrence probabilities of 126 stream fish species sampled throughout North Carolina, many of which occur more broadly in the southeastern USA. Specifically, we developed species-specific occurrence probabilities from hierarchical Bayesian multispecies models that were based on common land use and land cover covariates. We also used index of biotic integrity tolerance classifications as a second level in the model hierarchy; we identify this level as informative for our work, but it is flexible for future model applications. Based on the partial-pooling property of the models, we were able to generate occurrence probabilities for many imperiled and data-poor species in addition to highlighting a considerable amount of occurrence heterogeneity that supports species-specific investigations whenever possible. Our results provide critical species-level information on many threatened and imperiled species as well as information that may assist with re-evaluation of existing management strategies, such as the use of surrogate species. Finally, we highlight the use of a relatively simple hierarchical model that can easily be generalized for similar situations in which conventional models fail to provide reliable estimates for data-poor groups.
Hierarchical Bayesian spatial models for multispecies conservation planning and monitoring.
Carroll, Carlos; Johnson, Devin S; Dunk, Jeffrey R; Zielinski, William J
2010-12-01
Biologists who develop and apply habitat models are often familiar with the statistical challenges posed by their data's spatial structure but are unsure of whether the use of complex spatial models will increase the utility of model results in planning. We compared the relative performance of nonspatial and hierarchical Bayesian spatial models for three vertebrate and invertebrate taxa of conservation concern (Church's sideband snails [Monadenia churchi], red tree voles [Arborimus longicaudus], and Pacific fishers [Martes pennanti pacifica]) that provide examples of a range of distributional extents and dispersal abilities. We used presence-absence data derived from regional monitoring programs to develop models with both landscape and site-level environmental covariates. We used Markov chain Monte Carlo algorithms and a conditional autoregressive or intrinsic conditional autoregressive model framework to fit spatial models. The fit of Bayesian spatial models was between 35 and 55% better than the fit of nonspatial analogue models. Bayesian spatial models outperformed analogous models developed with maximum entropy (Maxent) methods. Although the best spatial and nonspatial models included similar environmental variables, spatial models provided estimates of residual spatial effects that suggested how ecological processes might structure distribution patterns. Spatial models built from presence-absence data improved fit most for localized endemic species with ranges constrained by poorly known biogeographic factors and for widely distributed species suspected to be strongly affected by unmeasured environmental variables or population processes. By treating spatial effects as a variable of interest rather than a nuisance, hierarchical Bayesian spatial models, especially when they are based on a common broad-scale spatial lattice (here the national Forest Inventory and Analysis grid of 24 km(2) hexagons), can increase the relevance of habitat models to multispecies
Linguistic steganography on Twitter: hierarchical language modeling with manual interaction
Wilson, Alex; Blunsom, Phil; Ker, Andrew D.
2014-02-01
This work proposes a natural language stegosystem for Twitter, modifying tweets as they are written to hide 4 bits of payload per tweet, which is a greater payload than previous systems have achieved. The system, CoverTweet, includes novel components, as well as some already developed in the literature. We believe that the task of transforming covers during embedding is equivalent to unilingual machine translation (paraphrasing), and we use this equivalence to de ne a distortion measure based on statistical machine translation methods. The system incorporates this measure of distortion to rank possible tweet paraphrases, using a hierarchical language model; we use human interaction as a second distortion measure to pick the best. The hierarchical language model is designed to model the speci c language of the covers, which in this setting is the language of the Twitter user who is embedding. This is a change from previous work, where general-purpose language models have been used. We evaluate our system by testing the output against human judges, and show that humans are unable to distinguish stego tweets from cover tweets any better than random guessing.
Hierarchical Swarm Model: A New Approach to Optimization
Directory of Open Access Journals (Sweden)
Hanning Chen
2010-01-01
Full Text Available This paper presents a novel optimization model called hierarchical swarm optimization (HSO, which simulates the natural hierarchical complex system from where more complex intelligence can emerge for complex problems solving. This proposed model is intended to suggest ways that the performance of HSO-based algorithms on complex optimization problems can be significantly improved. This performance improvement is obtained by constructing the HSO hierarchies, which means that an agent in a higher level swarm can be composed of swarms of other agents from lower level and different swarms of different levels evolve on different spatiotemporal scale. A novel optimization algorithm (named PS2O, based on the HSO model, is instantiated and tested to illustrate the ideas of HSO model clearly. Experiments were conducted on a set of 17 benchmark optimization problems including both continuous and discrete cases. The results demonstrate remarkable performance of the PS2O algorithm on all chosen benchmark functions when compared to several successful swarm intelligence and evolutionary algorithms.
The Realized Hierarchical Archimedean Copula in Risk Modelling
Directory of Open Access Journals (Sweden)
Ostap Okhrin
2017-06-01
Full Text Available This paper introduces the concept of the realized hierarchical Archimedean copula (rHAC. The proposed approach inherits the ability of the copula to capture the dependencies among financial time series, and combines it with additional information contained in high-frequency data. The considered model does not suffer from the curse of dimensionality, and is able to accurately predict high-dimensional distributions. This flexibility is obtained by using a hierarchical structure in the copula. The time variability of the model is provided by daily forecasts of the realized correlation matrix, which is used to estimate the structure and the parameters of the rHAC. Extensive simulation studies show the validity of the estimator based on this realized correlation matrix, and its performance, in comparison to the benchmark models. The application of the estimator to one-day-ahead Value at Risk (VaR prediction using high-frequency data exhibits good forecasting properties for a multivariate portfolio.
Learning Hierarchical User Interest Models from Web Pages
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
We propose an algorithm for learning hierarchical user interest models according to the Web pages users have browsed. In this algorithm, the interests of a user are represented into a tree which is called a user interest tree, the content and the structure of which can change simultaneously to adapt to the changes in a user's interests. This expression represents a user's specific and general interests as a continuum. In some sense, specific interests correspond to short-term interests, while general interests correspond to long-term interests. So this representation more really reflects the users' interests. The algorithm can automatically model a user's multiple interest domains, dynamically generate the interest models and prune a user interest tree when the number of the nodes in it exceeds given value. Finally, we show the experiment results in a Chinese Web Site.
Modeling evolutionary dynamics of epigenetic mutations in hierarchically organized tumors.
Directory of Open Access Journals (Sweden)
Andrea Sottoriva
2011-05-01
Full Text Available The cancer stem cell (CSC concept is a highly debated topic in cancer research. While experimental evidence in favor of the cancer stem cell theory is apparently abundant, the results are often criticized as being difficult to interpret. An important reason for this is that most experimental data that support this model rely on transplantation studies. In this study we use a novel cellular Potts model to elucidate the dynamics of established malignancies that are driven by a small subset of CSCs. Our results demonstrate that epigenetic mutations that occur during mitosis display highly altered dynamics in CSC-driven malignancies compared to a classical, non-hierarchical model of growth. In particular, the heterogeneity observed in CSC-driven tumors is considerably higher. We speculate that this feature could be used in combination with epigenetic (methylation sequencing studies of human malignancies to prove or refute the CSC hypothesis in established tumors without the need for transplantation. Moreover our tumor growth simulations indicate that CSC-driven tumors display evolutionary features that can be considered beneficial during tumor progression. Besides an increased heterogeneity they also exhibit properties that allow the escape of clones from local fitness peaks. This leads to more aggressive phenotypes in the long run and makes the neoplasm more adaptable to stringent selective forces such as cancer treatment. Indeed when therapy is applied the clone landscape of the regrown tumor is more aggressive with respect to the primary tumor, whereas the classical model demonstrated similar patterns before and after therapy. Understanding these often counter-intuitive fundamental properties of (non-hierarchically organized malignancies is a crucial step in validating the CSC concept as well as providing insight into the therapeutical consequences of this model.
Tractography segmentation using a hierarchical Dirichlet processes mixture model.
Wang, Xiaogang; Grimson, W Eric L; Westin, Carl-Fredrik
2011-01-01
In this paper, we propose a new nonparametric Bayesian framework to cluster white matter fiber tracts into bundles using a hierarchical Dirichlet processes mixture (HDPM) model. The number of clusters is automatically learned driven by data with a Dirichlet process (DP) prior instead of being manually specified. After the models of bundles have been learned from training data without supervision, they can be used as priors to cluster/classify fibers of new subjects for comparison across subjects. When clustering fibers of new subjects, new clusters can be created for structures not observed in the training data. Our approach does not require computing pairwise distances between fibers and can cluster a huge set of fibers across multiple subjects. We present results on several data sets, the largest of which has more than 120,000 fibers. Copyright © 2010 Elsevier Inc. All rights reserved.
Hierarchical decision modeling essays in honor of Dundar F. Kocaoglu
2016-01-01
This volume, developed in honor of Dr. Dundar F. Kocaoglu, aims to demonstrate the applications of the Hierarchical Decision Model (HDM) in different sectors and its capacity in decision analysis. It is comprised of essays from noted scholars, academics and researchers of engineering and technology management around the world. This book is organized into four parts: Technology Assessment, Strategic Planning, National Technology Planning and Decision Making Tools. Dr. Dundar F. Kocaoglu is one of the pioneers of multiple decision models using hierarchies, and creator of the HDM in decision analysis. HDM is a mission-oriented method for evaluation and/or selection among alternatives. A wide range of alternatives can be considered, including but not limited to, different technologies, projects, markets, jobs, products, cities to live in, houses to buy, apartments to rent, and schools to attend. Dr. Kocaoglu’s approach has been adopted for decision problems in many industrial sectors, including electronics rese...
Regulator Loss Functions and Hierarchical Modeling for Safety Decision Making.
Hatfield, Laura A; Baugh, Christine M; Azzone, Vanessa; Normand, Sharon-Lise T
2017-07-01
Regulators must act to protect the public when evidence indicates safety problems with medical devices. This requires complex tradeoffs among risks and benefits, which conventional safety surveillance methods do not incorporate. To combine explicit regulator loss functions with statistical evidence on medical device safety signals to improve decision making. In the Hospital Cost and Utilization Project National Inpatient Sample, we select pediatric inpatient admissions and identify adverse medical device events (AMDEs). We fit hierarchical Bayesian models to the annual hospital-level AMDE rates, accounting for patient and hospital characteristics. These models produce expected AMDE rates (a safety target), against which we compare the observed rates in a test year to compute a safety signal. We specify a set of loss functions that quantify the costs and benefits of each action as a function of the safety signal. We integrate the loss functions over the posterior distribution of the safety signal to obtain the posterior (Bayes) risk; the preferred action has the smallest Bayes risk. Using simulation and an analysis of AMDE data, we compare our minimum-risk decisions to a conventional Z score approach for classifying safety signals. The 2 rules produced different actions for nearly half of hospitals (45%). In the simulation, decisions that minimize Bayes risk outperform Z score-based decisions, even when the loss functions or hierarchical models are misspecified. Our method is sensitive to the choice of loss functions; eliciting quantitative inputs to the loss functions from regulators is challenging. A decision-theoretic approach to acting on safety signals is potentially promising but requires careful specification of loss functions in consultation with subject matter experts.
GSMNet: A Hierarchical Graph Model for Moving Objects in Networks
Directory of Open Access Journals (Sweden)
Hengcai Zhang
2017-03-01
Full Text Available Existing data models for moving objects in networks are often limited by flexibly controlling the granularity of representing networks and the cost of location updates and do not encompass semantic information, such as traffic states, traffic restrictions and social relationships. In this paper, we aim to fill the gap of traditional network-constrained models and propose a hierarchical graph model called the Geo-Social-Moving model for moving objects in Networks (GSMNet that adopts four graph structures, RouteGraph, SegmentGraph, ObjectGraph and MoveGraph, to represent the underlying networks, trajectories and semantic information in an integrated manner. The bulk of user-defined data types and corresponding operators is proposed to handle moving objects and answer a new class of queries supporting three kinds of conditions: spatial, temporal and semantic information. Then, we develop a prototype system with the native graph database system Neo4Jto implement the proposed GSMNet model. In the experiment, we conduct the performance evaluation using simulated trajectories generated from the BerlinMOD (Berlin Moving Objects Database benchmark and compare with the mature MOD system Secondo. The results of 17 benchmark queries demonstrate that our proposed GSMNet model has strong potential to reduce time-consuming table join operations an d shows remarkable advantages with regard to representing semantic information and controlling the cost of location updates.
Application of hierarchical genetic models to Raven and WAIS subtests: a Dutch twin study
Rijsdijk, F.V.; Vernon, P.A.; Boomsma, D.I.
2002-01-01
Hierarchical models of intelligence are highly informative and widely accepted. Application of these models to twin data, however, is sparse. This paper addresses the question of how a genetic hierarchical model fits the Wechsler Adult Intelligence Scale (WAIS) subtests and the Raven Standard
MODELING THE RED SEQUENCE: HIERARCHICAL GROWTH YET SLOW LUMINOSITY EVOLUTION
International Nuclear Information System (INIS)
Skelton, Rosalind E.; Bell, Eric F.; Somerville, Rachel S.
2012-01-01
We explore the effects of mergers on the evolution of massive early-type galaxies by modeling the evolution of their stellar populations in a hierarchical context. We investigate how a realistic red sequence population set up by z ∼ 1 evolves under different assumptions for the merger and star formation histories, comparing changes in color, luminosity, and mass. The purely passive fading of existing red sequence galaxies, with no further mergers or star formation, results in dramatic changes at the bright end of the luminosity function and color-magnitude relation. Without mergers there is too much evolution in luminosity at a fixed space density compared to observations. The change in color and magnitude at a fixed mass resembles that of a passively evolving population that formed relatively recently, at z ∼ 2. Mergers among the red sequence population ('dry mergers') occurring after z = 1 build up mass, counteracting the fading of the existing stellar populations to give smaller changes in both color and luminosity for massive galaxies. By allowing some galaxies to migrate from the blue cloud onto the red sequence after z = 1 through gas-rich mergers, younger stellar populations are added to the red sequence. This manifestation of the progenitor bias increases the scatter in age and results in even smaller changes in color and luminosity between z = 1 and z = 0 at a fixed mass. The resultant evolution appears much slower, resembling the passive evolution of a population that formed at high redshift (z ∼ 3-5), and is in closer agreement with observations. We conclude that measurements of the luminosity and color evolution alone are not sufficient to distinguish between the purely passive evolution of an old population and cosmologically motivated hierarchical growth, although these scenarios have very different implications for the mass growth of early-type galaxies over the last half of cosmic history.
Hierarchical modeling and its numerical implementation for layered thin elastic structures
Energy Technology Data Exchange (ETDEWEB)
Cho, Jin-Rae [Hongik University, Sejong (Korea, Republic of)
2017-05-15
Thin elastic structures such as beam- and plate-like structures and laminates are characterized by the small thickness, which lead to classical plate and laminate theories in which the displacement fields through the thickness are assumed linear or higher-order polynomials. These classical theories are either insufficient to represent the complex stress variation through the thickness or may encounter the accuracy-computational cost dilemma. In order to overcome the inherent problem of classical theories, the concept of hierarchical modeling has been emerged. In the hierarchical modeling, the hierarchical models with different model levels are selected and combined within a structure domain, in order to make the modeling error be distributed as uniformly as possible throughout the problem domain. The purpose of current study is to explore the potential of hierarchical modeling for the effective numerical analysis of layered structures such as laminated composite. For this goal, the hierarchical models are constructed and the hierarchical modeling is implemented by selectively adjusting the level of hierarchical models. As well, the major characteristics of hierarchical models are investigated through the numerical experiments.
Bayesian Hierarchical Random Effects Models in Forensic Science
Directory of Open Access Journals (Sweden)
Colin G. G. Aitken
2018-04-01
Full Text Available Statistical modeling of the evaluation of evidence with the use of the likelihood ratio has a long history. It dates from the Dreyfus case at the end of the nineteenth century through the work at Bletchley Park in the Second World War to the present day. The development received a significant boost in 1977 with a seminal work by Dennis Lindley which introduced a Bayesian hierarchical random effects model for the evaluation of evidence with an example of refractive index measurements on fragments of glass. Many models have been developed since then. The methods have now been sufficiently well-developed and have become so widespread that it is timely to try and provide a software package to assist in their implementation. With that in mind, a project (SAILR: Software for the Analysis and Implementation of Likelihood Ratios was funded by the European Network of Forensic Science Institutes through their Monopoly programme to develop a software package for use by forensic scientists world-wide that would assist in the statistical analysis and implementation of the approach based on likelihood ratios. It is the purpose of this document to provide a short review of a small part of this history. The review also provides a background, or landscape, for the development of some of the models within the SAILR package and references to SAILR as made as appropriate.
Bayesian Hierarchical Random Effects Models in Forensic Science.
Aitken, Colin G G
2018-01-01
Statistical modeling of the evaluation of evidence with the use of the likelihood ratio has a long history. It dates from the Dreyfus case at the end of the nineteenth century through the work at Bletchley Park in the Second World War to the present day. The development received a significant boost in 1977 with a seminal work by Dennis Lindley which introduced a Bayesian hierarchical random effects model for the evaluation of evidence with an example of refractive index measurements on fragments of glass. Many models have been developed since then. The methods have now been sufficiently well-developed and have become so widespread that it is timely to try and provide a software package to assist in their implementation. With that in mind, a project (SAILR: Software for the Analysis and Implementation of Likelihood Ratios) was funded by the European Network of Forensic Science Institutes through their Monopoly programme to develop a software package for use by forensic scientists world-wide that would assist in the statistical analysis and implementation of the approach based on likelihood ratios. It is the purpose of this document to provide a short review of a small part of this history. The review also provides a background, or landscape, for the development of some of the models within the SAILR package and references to SAILR as made as appropriate.
Renormalization group analysis of a simple hierarchical fermion model
International Nuclear Information System (INIS)
Dorlas, T.C.
1991-01-01
A simple hierarchical fermion model is constructed which gives rise to an exact renormalization transformation in a 2-dimensional parameter space. The behaviour of this transformation is studied. It has two hyperbolic fixed points for which the existence of a global critical line is proven. The asymptotic behaviour of the transformation is used to prove the existence of the thermodynamic limit in a certain domain in parameter space. Also the existence of a continuum limit for these theories is investigated using information about the asymptotic renormalization behaviour. It turns out that the 'trivial' fixed point gives rise to a two-parameter family of continuum limits corresponding to that part of parameter space where the renormalization trajectories originate at this fixed point. Although the model is not very realistic it serves as a simple example of the appliclation of the renormalization group to proving the existence of the thermodynamic limit and the continuum limit of lattice models. Moreover, it illustrates possible complications that can arise in global renormalization group behaviour, and that might also be present in other models where no global analysis of the renormalization transformation has yet been achieved. (orig.)
Testing adaptive toolbox models: a Bayesian hierarchical approach.
Scheibehenne, Benjamin; Rieskamp, Jörg; Wagenmakers, Eric-Jan
2013-01-01
Many theories of human cognition postulate that people are equipped with a repertoire of strategies to solve the tasks they face. This theoretical framework of a cognitive toolbox provides a plausible account of intra- and interindividual differences in human behavior. Unfortunately, it is often unclear how to rigorously test the toolbox framework. How can a toolbox model be quantitatively specified? How can the number of toolbox strategies be limited to prevent uncontrolled strategy sprawl? How can a toolbox model be formally tested against alternative theories? The authors show how these challenges can be met by using Bayesian inference techniques. By means of parameter recovery simulations and the analysis of empirical data across a variety of domains (i.e., judgment and decision making, children's cognitive development, function learning, and perceptual categorization), the authors illustrate how Bayesian inference techniques allow toolbox models to be quantitatively specified, strategy sprawl to be contained, and toolbox models to be rigorously tested against competing theories. The authors demonstrate that their approach applies at the individual level but can also be generalized to the group level with hierarchical Bayesian procedures. The suggested Bayesian inference techniques represent a theoretical and methodological advancement for toolbox theories of cognition and behavior.
Ker, H. W.
2014-01-01
Multilevel data are very common in educational research. Hierarchical linear models/linear mixed-effects models (HLMs/LMEs) are often utilized to analyze multilevel data nowadays. This paper discusses the problems of utilizing ordinary regressions for modeling multilevel educational data, compare the data analytic results from three regression…
Hierarchical Bayesian modelling of mobility metrics for hazard model input calibration
Calder, Eliza; Ogburn, Sarah; Spiller, Elaine; Rutarindwa, Regis; Berger, Jim
2015-04-01
In this work we present a method to constrain flow mobility input parameters for pyroclastic flow models using hierarchical Bayes modeling of standard mobility metrics such as H/L and flow volume etc. The advantage of hierarchical modeling is that it can leverage the information in global dataset for a particular mobility metric in order to reduce the uncertainty in modeling of an individual volcano, especially important where individual volcanoes have only sparse datasets. We use compiled pyroclastic flow runout data from Colima, Merapi, Soufriere Hills, Unzen and Semeru volcanoes, presented in an open-source database FlowDat (https://vhub.org/groups/massflowdatabase). While the exact relationship between flow volume and friction varies somewhat between volcanoes, dome collapse flows originating from the same volcano exhibit similar mobility relationships. Instead of fitting separate regression models for each volcano dataset, we use a variation of the hierarchical linear model (Kass and Steffey, 1989). The model presents a hierarchical structure with two levels; all dome collapse flows and dome collapse flows at specific volcanoes. The hierarchical model allows us to assume that the flows at specific volcanoes share a common distribution of regression slopes, then solves for that distribution. We present comparisons of the 95% confidence intervals on the individual regression lines for the data set from each volcano as well as those obtained from the hierarchical model. The results clearly demonstrate the advantage of considering global datasets using this technique. The technique developed is demonstrated here for mobility metrics, but can be applied to many other global datasets of volcanic parameters. In particular, such methods can provide a means to better contain parameters for volcanoes for which we only have sparse data, a ubiquitous problem in volcanology.
A hierarchical network modeling method for railway tunnels safety assessment
Zhou, Jin; Xu, Weixiang; Guo, Xin; Liu, Xumin
2017-02-01
Using network theory to model risk-related knowledge on accidents is regarded as potential very helpful in risk management. A large amount of defects detection data for railway tunnels is collected in autumn every year in China. It is extremely important to discover the regularities knowledge in database. In this paper, based on network theories and by using data mining techniques, a new method is proposed for mining risk-related regularities to support risk management in railway tunnel projects. A hierarchical network (HN) model which takes into account the tunnel structures, tunnel defects, potential failures and accidents is established. An improved Apriori algorithm is designed to rapidly and effectively mine correlations between tunnel structures and tunnel defects. Then an algorithm is presented in order to mine the risk-related regularities table (RRT) from the frequent patterns. At last, a safety assessment method is proposed by consideration of actual defects and possible risks of defects gained from the RRT. This method cannot only generate the quantitative risk results but also reveal the key defects and critical risks of defects. This paper is further development on accident causation network modeling methods which can provide guidance for specific maintenance measure.
Production optimisation in the petrochemical industry by hierarchical multivariate modelling
Energy Technology Data Exchange (ETDEWEB)
Andersson, Magnus; Furusjoe, Erik; Jansson, Aasa
2004-06-01
This project demonstrates the advantages of applying hierarchical multivariate modelling in the petrochemical industry in order to increase knowledge of the total process. The models indicate possible ways to optimise the process regarding the use of energy and raw material, which is directly linked to the environmental impact of the process. The refinery of Nynaes Refining AB (Goeteborg, Sweden) has acted as a demonstration site in this project. The models developed for the demonstration site resulted in: Detection of an unknown process disturbance and suggestions of possible causes; Indications on how to increase the yield in combination with energy savings; The possibility to predict product quality from on-line process measurements, making the results available at a higher frequency than customary laboratory analysis; Quantification of the gradually lowered efficiency of heat transfer in the furnace and increased fuel consumption as an effect of soot build-up on the furnace coils; Increased knowledge of the relation between production rate and the efficiency of the heat exchangers. This report is one of two reports from the project. It contains a technical discussion of the result with some degree of detail. A shorter and more easily accessible report is also available, see IVL report B1586-A.
A joint model for multivariate hierarchical semicontinuous data with replications.
Kassahun-Yimer, Wondwosen; Albert, Paul S; Lipsky, Leah M; Nansel, Tonja R; Liu, Aiyi
2017-01-01
Longitudinal data are often collected in biomedical applications in such a way that measurements on more than one response are taken from a given subject repeatedly overtime. For some problems, these multiple profiles need to be modeled jointly to get insight on the joint evolution and/or association of these responses over time. In practice, such longitudinal outcomes may have many zeros that need to be accounted for in the analysis. For example, in dietary intake studies, as we focus on in this paper, some food components are eaten daily by almost all subjects, while others are consumed episodically, where individuals have time periods where they do not eat these components followed by periods where they do. These episodically consumed foods need to be adequately modeled to account for the many zeros that are encountered. In this paper, we propose a joint model to analyze multivariate hierarchical semicontinuous data characterized by many zeros and more than one replicate observations at each measurement occasion. This approach allows for different probability mechanisms for describing the zero behavior as compared with the mean intake given that the individual consumes the food. To deal with the potentially large number of multivariate profiles, we use a pairwise model fitting approach that was developed in the context of multivariate Gaussian random effects models with large number of multivariate components. The novelty of the proposed approach is that it incorporates: (1) multivariate, possibly correlated, response variables; (2) within subject correlation resulting from repeated measurements taken from each subject; (3) many zero observations; (4) overdispersion; and (5) replicate measurements at each visit time.
Adaptive hierarchical grid model of water-borne pollutant dispersion
Borthwick, A. G. L.; Marchant, R. D.; Copeland, G. J. M.
Water pollution by industrial and agricultural waste is an increasingly major public health issue. It is therefore important for water engineers and managers to be able to predict accurately the local behaviour of water-borne pollutants. This paper describes the novel and efficient coupling of dynamically adaptive hierarchical grids with standard solvers of the advection-diffusion equation. Adaptive quadtree grids are able to focus on regions of interest such as pollutant fronts, while retaining economy in the total number of grid elements through selective grid refinement. Advection is treated using Lagrangian particle tracking. Diffusion is solved separately using two grid-based methods; one is by explicit finite differences, the other a diffusion-velocity approach. Results are given in two dimensions for pure diffusion of an initially Gaussian plume, advection-diffusion of the Gaussian plume in the rotating flow field of a forced vortex, and the transport of species in a rectangular channel with side wall boundary layers. Close agreement is achieved with analytical solutions of the advection-diffusion equation and simulations from a Lagrangian random walk model. An application to Sepetiba Bay, Brazil is included to demonstrate the method with complex flows and topography.
Hierarchical statistical modeling of xylem vulnerability to cavitation.
Ogle, Kiona; Barber, Jarrett J; Willson, Cynthia; Thompson, Brenda
2009-01-01
Cavitation of xylem elements diminishes the water transport capacity of plants, and quantifying xylem vulnerability to cavitation is important to understanding plant function. Current approaches to analyzing hydraulic conductivity (K) data to infer vulnerability to cavitation suffer from problems such as the use of potentially unrealistic vulnerability curves, difficulty interpreting parameters in these curves, a statistical framework that ignores sampling design, and an overly simplistic view of uncertainty. This study illustrates how two common curves (exponential-sigmoid and Weibull) can be reparameterized in terms of meaningful parameters: maximum conductivity (k(sat)), water potential (-P) at which percentage loss of conductivity (PLC) =X% (P(X)), and the slope of the PLC curve at P(X) (S(X)), a 'sensitivity' index. We provide a hierarchical Bayesian method for fitting the reparameterized curves to K(H) data. We illustrate the method using data for roots and stems of two populations of Juniperus scopulorum and test for differences in k(sat), P(X), and S(X) between different groups. Two important results emerge from this study. First, the Weibull model is preferred because it produces biologically realistic estimates of PLC near P = 0 MPa. Second, stochastic embolisms contribute an important source of uncertainty that should be included in such analyses.
Scale of association: hierarchical linear models and the measurement of ecological systems
Sean M. McMahon; Jeffrey M. Diez
2007-01-01
A fundamental challenge to understanding patterns in ecological systems lies in employing methods that can analyse, test and draw inference from measured associations between variables across scales. Hierarchical linear models (HLM) use advanced estimation algorithms to measure regression relationships and variance-covariance parameters in hierarchically structured...
A novel Bayesian hierarchical model for road safety hotspot prediction.
Fawcett, Lee; Thorpe, Neil; Matthews, Joseph; Kremer, Karsten
2017-02-01
In this paper, we propose a Bayesian hierarchical model for predicting accident counts in future years at sites within a pool of potential road safety hotspots. The aim is to inform road safety practitioners of the location of likely future hotspots to enable a proactive, rather than reactive, approach to road safety scheme implementation. A feature of our model is the ability to rank sites according to their potential to exceed, in some future time period, a threshold accident count which may be used as a criterion for scheme implementation. Our model specification enables the classical empirical Bayes formulation - commonly used in before-and-after studies, wherein accident counts from a single before period are used to estimate counterfactual counts in the after period - to be extended to incorporate counts from multiple time periods. This allows site-specific variations in historical accident counts (e.g. locally-observed trends) to offset estimates of safety generated by a global accident prediction model (APM), which itself is used to help account for the effects of global trend and regression-to-mean (RTM). The Bayesian posterior predictive distribution is exploited to formulate predictions and to properly quantify our uncertainty in these predictions. The main contributions of our model include (i) the ability to allow accident counts from multiple time-points to inform predictions, with counts in more recent years lending more weight to predictions than counts from time-points further in the past; (ii) where appropriate, the ability to offset global estimates of trend by variations in accident counts observed locally, at a site-specific level; and (iii) the ability to account for unknown/unobserved site-specific factors which may affect accident counts. We illustrate our model with an application to accident counts at 734 potential hotspots in the German city of Halle; we also propose some simple diagnostics to validate the predictive capability of our
Metamodeling Techniques to Aid in the Aggregation Process of Large Hierarchical Simulation Models
National Research Council Canada - National Science Library
Rodriguez, June F
2008-01-01
.... More specifically, investigating how to accurately aggregate hierarchical lower-level (higher resolution) models into the next higher-level in order to reduce the complexity of the overall simulation model...
DEFF Research Database (Denmark)
Ding, Tao; Li, Cheng; Huang, Can
2018-01-01
–slave structure and improves traditional centralized modeling methods by alleviating the big data problem in a control center. Specifically, the transmission-distribution-network coordination issue of the hierarchical modeling method is investigated. First, a curve-fitting approach is developed to provide a cost......In order to solve the reactive power optimization with joint transmission and distribution networks, a hierarchical modeling method is proposed in this paper. It allows the reactive power optimization of transmission and distribution networks to be performed separately, leading to a master...... optimality. Numerical results on two test systems verify the effectiveness of the proposed hierarchical modeling and curve-fitting methods....
A Bayesian hierarchical model for demand curve analysis.
Ho, Yen-Yi; Nhu Vo, Tien; Chu, Haitao; Luo, Xianghua; Le, Chap T
2018-07-01
Drug self-administration experiments are a frequently used approach to assessing the abuse liability and reinforcing property of a compound. It has been used to assess the abuse liabilities of various substances such as psychomotor stimulants and hallucinogens, food, nicotine, and alcohol. The demand curve generated from a self-administration study describes how demand of a drug or non-drug reinforcer varies as a function of price. With the approval of the 2009 Family Smoking Prevention and Tobacco Control Act, demand curve analysis provides crucial evidence to inform the US Food and Drug Administration's policy on tobacco regulation, because it produces several important quantitative measurements to assess the reinforcing strength of nicotine. The conventional approach popularly used to analyze the demand curve data is individual-specific non-linear least square regression. The non-linear least square approach sets out to minimize the residual sum of squares for each subject in the dataset; however, this one-subject-at-a-time approach does not allow for the estimation of between- and within-subject variability in a unified model framework. In this paper, we review the existing approaches to analyze the demand curve data, non-linear least square regression, and the mixed effects regression and propose a new Bayesian hierarchical model. We conduct simulation analyses to compare the performance of these three approaches and illustrate the proposed approaches in a case study of nicotine self-administration in rats. We present simulation results and discuss the benefits of using the proposed approaches.
Statistical modelling of railway track geometry degradation using Hierarchical Bayesian models
International Nuclear Information System (INIS)
Andrade, A.R.; Teixeira, P.F.
2015-01-01
Railway maintenance planners require a predictive model that can assess the railway track geometry degradation. The present paper uses a Hierarchical Bayesian model as a tool to model the main two quality indicators related to railway track geometry degradation: the standard deviation of longitudinal level defects and the standard deviation of horizontal alignment defects. Hierarchical Bayesian Models (HBM) are flexible statistical models that allow specifying different spatially correlated components between consecutive track sections, namely for the deterioration rates and the initial qualities parameters. HBM are developed for both quality indicators, conducting an extensive comparison between candidate models and a sensitivity analysis on prior distributions. HBM is applied to provide an overall assessment of the degradation of railway track geometry, for the main Portuguese railway line Lisbon–Oporto. - Highlights: • Rail track geometry degradation is analysed using Hierarchical Bayesian models. • A Gibbs sampling strategy is put forward to estimate the HBM. • Model comparison and sensitivity analysis find the most suitable model. • We applied the most suitable model to all the segments of the main Portuguese line. • Tackling spatial correlations using CAR structures lead to a better model fit
Energy Technology Data Exchange (ETDEWEB)
Sumida, S [U-shin Ltd., Tokyo (Japan); Nagamatsu, M; Maruyama, K [Hokkaido Institute of Technology, Sapporo (Japan); Hiramatsu, S [Mazda Motor Corp., Hiroshima (Japan)
1997-10-01
A new approach on modeling is put forward in order to compose the virtual prototype which is indispensable for fully computer integrated concurrent development of automobile product. A basic concept of the hierarchical functional model is proposed as the concrete form of this new modeling technology. This model is used mainly for explaining and simulating functions and efficiencies of both the parts and the total product of automobile. All engineers who engage themselves in design and development of automobile can collaborate with one another using this model. Some application examples are shown, and usefulness of this model is demonstrated. 5 refs., 5 figs.
Bai, Hao; Zhang, Xi-wen
2017-06-01
While Chinese is learned as a second language, its characters are taught step by step from their strokes to components, radicals to components, and their complex relations. Chinese Characters in digital ink from non-native language writers are deformed seriously, thus the global recognition approaches are poorer. So a progressive approach from bottom to top is presented based on hierarchical models. Hierarchical information includes strokes and hierarchical components. Each Chinese character is modeled as a hierarchical tree. Strokes in one Chinese characters in digital ink are classified with Hidden Markov Models and concatenated to the stroke symbol sequence. And then the structure of components in one ink character is extracted. According to the extraction result and the stroke symbol sequence, candidate characters are traversed and scored. Finally, the recognition candidate results are listed by descending. The method of this paper is validated by testing 19815 copies of the handwriting Chinese characters written by foreign students.
New aerial survey and hierarchical model to estimate manatee abundance
Langimm, Cahterine A.; Dorazio, Robert M.; Stith, Bradley M.; Doyle, Terry J.
2011-01-01
Monitoring the response of endangered and protected species to hydrological restoration is a major component of the adaptive management framework of the Comprehensive Everglades Restoration Plan. The endangered Florida manatee (Trichechus manatus latirostris) lives at the marine-freshwater interface in southwest Florida and is likely to be affected by hydrologic restoration. To provide managers with prerestoration information on distribution and abundance for postrestoration comparison, we developed and implemented a new aerial survey design and hierarchical statistical model to estimate and map abundance of manatees as a function of patch-specific habitat characteristics, indicative of manatee requirements for offshore forage (seagrass), inland fresh drinking water, and warm-water winter refuge. We estimated the number of groups of manatees from dual-observer counts and estimated the number of individuals within groups by removal sampling. Our model is unique in that we jointly analyzed group and individual counts using assumptions that allow probabilities of group detection to depend on group size. Ours is the first analysis of manatee aerial surveys to model spatial and temporal abundance of manatees in association with habitat type while accounting for imperfect detection. We conducted the study in the Ten Thousand Islands area of southwestern Florida, USA, which was expected to be affected by the Picayune Strand Restoration Project to restore hydrology altered for a failed real-estate development. We conducted 11 surveys in 2006, spanning the cold, dry season and warm, wet season. To examine short-term and seasonal changes in distribution we flew paired surveys 1–2 days apart within a given month during the year. Manatees were sparsely distributed across the landscape in small groups. Probability of detection of a group increased with group size; the magnitude of the relationship between group size and detection probability varied among surveys. Probability
A mechanical model of biomimetic adhesive pads with tilted and hierarchical structures.
Schargott, M
2009-06-01
A 3D model for hierarchical biomimetic adhesive pads is constructed. It is based on the main principles of the adhesive pads of the Tokay gecko and consists of hierarchical layers of vertical or tilted beams, where each layer is constructed in such a way that no cohesion between adjacent beams can occur. The elastic and adhesive properties are calculated analytically and numerically. For the adhesive contact on stochastically rough surfaces, the maximum adhesion force increases with increasing number of hierarchical layers. Additional calculations show that the adhesion force also depends on the height spectrum of the rough surface.
A mechanical model of biomimetic adhesive pads with tilted and hierarchical structures
Energy Technology Data Exchange (ETDEWEB)
Schargott, M [Institute of Mechanics, Technische Universitaet Berlin, Strd 17 Juni 135, 10623 Berlin (Germany)], E-mail: martin.schargott@tu-berlin.de
2009-06-01
A 3D model for hierarchical biomimetic adhesive pads is constructed. It is based on the main principles of the adhesive pads of the Tokay gecko and consists of hierarchical layers of vertical or tilted beams, where each layer is constructed in such a way that no cohesion between adjacent beams can occur. The elastic and adhesive properties are calculated analytically and numerically. For the adhesive contact on stochastically rough surfaces, the maximum adhesion force increases with increasing number of hierarchical layers. Additional calculations show that the adhesion force also depends on the height spectrum of the rough surface.
A mechanical model of biomimetic adhesive pads with tilted and hierarchical structures
International Nuclear Information System (INIS)
Schargott, M
2009-01-01
A 3D model for hierarchical biomimetic adhesive pads is constructed. It is based on the main principles of the adhesive pads of the Tokay gecko and consists of hierarchical layers of vertical or tilted beams, where each layer is constructed in such a way that no cohesion between adjacent beams can occur. The elastic and adhesive properties are calculated analytically and numerically. For the adhesive contact on stochastically rough surfaces, the maximum adhesion force increases with increasing number of hierarchical layers. Additional calculations show that the adhesion force also depends on the height spectrum of the rough surface
Usability Prediction & Ranking of SDLC Models Using Fuzzy Hierarchical Usability Model
Gupta, Deepak; Ahlawat, Anil K.; Sagar, Kalpna
2017-06-01
Evaluation of software quality is an important aspect for controlling and managing the software. By such evaluation, improvements in software process can be made. The software quality is significantly dependent on software usability. Many researchers have proposed numbers of usability models. Each model considers a set of usability factors but do not cover all the usability aspects. Practical implementation of these models is still missing, as there is a lack of precise definition of usability. Also, it is very difficult to integrate these models into current software engineering practices. In order to overcome these challenges, this paper aims to define the term `usability' using the proposed hierarchical usability model with its detailed taxonomy. The taxonomy considers generic evaluation criteria for identifying the quality components, which brings together factors, attributes and characteristics defined in various HCI and software models. For the first time, the usability model is also implemented to predict more accurate usability values. The proposed system is named as fuzzy hierarchical usability model that can be easily integrated into the current software engineering practices. In order to validate the work, a dataset of six software development life cycle models is created and employed. These models are ranked according to their predicted usability values. This research also focuses on the detailed comparison of proposed model with the existing usability models.
Bottom-up learning of hierarchical models in a class of deterministic POMDP environments
Directory of Open Access Journals (Sweden)
Itoh Hideaki
2015-09-01
Full Text Available The theory of partially observable Markov decision processes (POMDPs is a useful tool for developing various intelligent agents, and learning hierarchical POMDP models is one of the key approaches for building such agents when the environments of the agents are unknown and large. To learn hierarchical models, bottom-up learning methods in which learning takes place in a layer-by-layer manner from the lowest to the highest layer are already extensively used in some research fields such as hidden Markov models and neural networks. However, little attention has been paid to bottom-up approaches for learning POMDP models. In this paper, we present a novel bottom-up learning algorithm for hierarchical POMDP models and prove that, by using this algorithm, a perfect model (i.e., a model that can perfectly predict future observations can be learned at least in a class of deterministic POMDP environments
Sun, Kaioqiong; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Torigian, Drew A.
2014-03-01
This paper proposes a thoracic anatomy segmentation method based on hierarchical recognition and delineation guided by a built fuzzy model. Labeled binary samples for each organ are registered and aligned into a 3D fuzzy set representing the fuzzy shape model for the organ. The gray intensity distributions of the corresponding regions of the organ in the original image are recorded in the model. The hierarchical relation and mean location relation between different organs are also captured in the model. Following the hierarchical structure and location relation, the fuzzy shape model of different organs is registered to the given target image to achieve object recognition. A fuzzy connected delineation method is then used to obtain the final segmentation result of organs with seed points provided by recognition. The hierarchical structure and location relation integrated in the model provide the initial parameters for registration and make the recognition efficient and robust. The 3D fuzzy model combined with hierarchical affine registration ensures that accurate recognition can be obtained for both non-sparse and sparse organs. The results on real images are presented and shown to be better than a recently reported fuzzy model-based anatomy recognition strategy.
Royle, J. Andrew; Dorazio, Robert M.
2008-01-01
A guide to data collection, modeling and inference strategies for biological survey data using Bayesian and classical statistical methods. This book describes a general and flexible framework for modeling and inference in ecological systems based on hierarchical models, with a strict focus on the use of probability models and parametric inference. Hierarchical models represent a paradigm shift in the application of statistics to ecological inference problems because they combine explicit models of ecological system structure or dynamics with models of how ecological systems are observed. The principles of hierarchical modeling are developed and applied to problems in population, metapopulation, community, and metacommunity systems. The book provides the first synthetic treatment of many recent methodological advances in ecological modeling and unifies disparate methods and procedures. The authors apply principles of hierarchical modeling to ecological problems, including * occurrence or occupancy models for estimating species distribution * abundance models based on many sampling protocols, including distance sampling * capture-recapture models with individual effects * spatial capture-recapture models based on camera trapping and related methods * population and metapopulation dynamic models * models of biodiversity, community structure and dynamics.
Ranking of Business Process Simulation Software Tools with DEX/QQ Hierarchical Decision Model.
Damij, Nadja; Boškoski, Pavle; Bohanec, Marko; Mileva Boshkoska, Biljana
2016-01-01
The omnipresent need for optimisation requires constant improvements of companies' business processes (BPs). Minimising the risk of inappropriate BP being implemented is usually performed by simulating the newly developed BP under various initial conditions and "what-if" scenarios. An effectual business process simulations software (BPSS) is a prerequisite for accurate analysis of an BP. Characterisation of an BPSS tool is a challenging task due to the complex selection criteria that includes quality of visual aspects, simulation capabilities, statistical facilities, quality reporting etc. Under such circumstances, making an optimal decision is challenging. Therefore, various decision support models are employed aiding the BPSS tool selection. The currently established decision support models are either proprietary or comprise only a limited subset of criteria, which affects their accuracy. Addressing this issue, this paper proposes a new hierarchical decision support model for ranking of BPSS based on their technical characteristics by employing DEX and qualitative to quantitative (QQ) methodology. Consequently, the decision expert feeds the required information in a systematic and user friendly manner. There are three significant contributions of the proposed approach. Firstly, the proposed hierarchical model is easily extendible for adding new criteria in the hierarchical structure. Secondly, a fully operational decision support system (DSS) tool that implements the proposed hierarchical model is presented. Finally, the effectiveness of the proposed hierarchical model is assessed by comparing the resulting rankings of BPSS with respect to currently available results.
Robust Real-Time Music Transcription with a Compositional Hierarchical Model.
Pesek, Matevž; Leonardis, Aleš; Marolt, Matija
2017-01-01
The paper presents a new compositional hierarchical model for robust music transcription. Its main features are unsupervised learning of a hierarchical representation of input data, transparency, which enables insights into the learned representation, as well as robustness and speed which make it suitable for real-world and real-time use. The model consists of multiple layers, each composed of a number of parts. The hierarchical nature of the model corresponds well to hierarchical structures in music. The parts in lower layers correspond to low-level concepts (e.g. tone partials), while the parts in higher layers combine lower-level representations into more complex concepts (tones, chords). The layers are learned in an unsupervised manner from music signals. Parts in each layer are compositions of parts from previous layers based on statistical co-occurrences as the driving force of the learning process. In the paper, we present the model's structure and compare it to other hierarchical approaches in the field of music information retrieval. We evaluate the model's performance for the multiple fundamental frequency estimation. Finally, we elaborate on extensions of the model towards other music information retrieval tasks.
Molenaar, Dylan; Tuerlinckx, Francis; van der Maas, Han L J
2015-05-01
We show how the hierarchical model for responses and response times as developed by van der Linden (2007), Fox, Klein Entink, and van der Linden (2007), Klein Entink, Fox, and van der Linden (2009), and Glas and van der Linden (2010) can be simplified to a generalized linear factor model with only the mild restriction that there is no hierarchical model at the item side. This result is valuable as it enables all well-developed modelling tools and extensions that come with these methods. We show that the restriction we impose on the hierarchical model does not influence parameter recovery under realistic circumstances. In addition, we present two illustrative real data analyses to demonstrate the practical benefits of our approach. © 2014 The British Psychological Society.
Chapman, Robin S.; Hesketh, Linda J.; Kistler, Doris J.
2002-01-01
Longitudinal change in syntax comprehension and production skill, measured over six years, was modeled in 31 individuals (ages 5-20) with Down syndrome. The best fitting Hierarchical Linear Modeling model of comprehension uses age and visual and auditory short-term memory as predictors of initial status, and age for growth trajectory. (Contains…
Subedi, Bidya Raj; Reese, Nancy; Powell, Randy
2015-01-01
This study explored significant predictors of student's Grade Point Average (GPA) and truancy (days absent), and also determined teacher effectiveness based on proportion of variance explained at teacher level model. We employed a two-level hierarchical linear model (HLM) with student and teacher data at level-1 and level-2 models, respectively.…
Heuristics for Hierarchical Partitioning with Application to Model Checking
DEFF Research Database (Denmark)
Möller, Michael Oliver; Alur, Rajeev
2001-01-01
Given a collection of connected components, it is often desired to cluster together parts of strong correspondence, yielding a hierarchical structure. We address the automation of this process and apply heuristics to battle the combinatorial and computational complexity. We define a cost function...... that captures the quality of a structure relative to the connections and favors shallow structures with a low degree of branching. Finding a structure with minimal cost is NP-complete. We present a greedy polynomial-time algorithm that approximates good solutions incrementally by local evaluation of a heuristic...... function. We argue for a heuristic function based on four criteria: the number of enclosed connections, the number of components, the number of touched connections and the depth of the structure. We report on an application in the context of formal verification, where our algorithm serves as a preprocessor...
The Hierarchical Trend Model for property valuation and local price indices
Francke, M.K.; Vos, G.A.
2002-01-01
This paper presents a hierarchical trend model (HTM) for selling prices of houses, addressing three main problems: the spatial and temporal dependence of selling prices and the dependency of price index changes on housing quality. In this model the general price trend, cluster-level price trends,
Measuring Service Quality in Higher Education: Development of a Hierarchical Model (HESQUAL)
Teeroovengadum, Viraiyan; Kamalanabhan, T. J.; Seebaluck, Ashley Keshwar
2016-01-01
Purpose: This paper aims to develop and empirically test a hierarchical model for measuring service quality in higher education. Design/methodology/approach: The first phase of the study consisted of qualitative research methods and a comprehensive literature review, which allowed the development of a conceptual model comprising 53 service quality…
Avoiding Boundary Estimates in Hierarchical Linear Models through Weakly Informative Priors
Chung, Yeojin; Rabe-Hesketh, Sophia; Gelman, Andrew; Dorie, Vincent; Liu, Jinchen
2012-01-01
Hierarchical or multilevel linear models are widely used for longitudinal or cross-sectional data on students nested in classes and schools, and are particularly important for estimating treatment effects in cluster-randomized trials, multi-site trials, and meta-analyses. The models can allow for variation in treatment effects, as well as…
Chad Babcock; Andrew O. Finley; John B. Bradford; Randy Kolka; Richard Birdsey; Michael G. Ryan
2015-01-01
Many studies and production inventory systems have shown the utility of coupling covariates derived from Light Detection and Ranging (LiDAR) data with forest variables measured on georeferenced inventory plots through regression models. The objective of this study was to propose and assess the use of a Bayesian hierarchical modeling framework that accommodates both...
A Hierarchical Linear Model for Estimating Gender-Based Earnings Differentials.
Haberfield, Yitchak; Semyonov, Moshe; Addi, Audrey
1998-01-01
Estimates of gender earnings inequality in data from 116,431 Jewish workers were compared using a hierarchical linear model (HLM) and ordinary least squares model. The HLM allows estimation of the extent to which earnings inequality depends on occupational characteristics. (SK)
Arrigoni, Matías; Trager, Scott C.; Somerville, Rachel S.; Gibson, Brad K.
We study the metallicities and abundance ratios of early-type galaxies in cosmological semi-analytic models (SAMs) within the hierarchical galaxy formation paradigm. To achieve this we implemented a detailed galactic chemical evolution model and can now predict abundances of individual elements for
Arrigoni, Matias; Trager, Scott C.; Somerville, Rachel S.; Gibson, Brad K.
2010-01-01
We study the metallicities and abundance ratios of early-type galaxies in cosmological semi-analytic models (SAMs) within the hierarchical galaxy formation paradigm. To achieve this we implemented a detailed galactic chemical evolution model and can now predict abundances of individual elements for
Osei, Frank B.; Osei, F.B.; Duker, Alfred A.; Stein, A.
2011-01-01
This study analyses the joint effects of the two transmission routes of cholera on the space-time diffusion dynamics. Statistical models are developed and presented to investigate the transmission network routes of cholera diffusion. A hierarchical Bayesian modelling approach is employed for a joint
A Hybrid PO - Higher-Order Hierarchical MoM Formulation using Curvilinear Geometry Modeling
DEFF Research Database (Denmark)
Jørgensen, E.; Meincke, Peter; Breinbjerg, Olav
2003-01-01
which implies a very modest memory requirement. Nevertheless, the hierarchical feature of the basis functions maintains the ability to treat small geometrical details efficiently. In addition, the scatterer is modelled with higher-order curved patches which allows accurate modelling of curved surfaces...
Soft tissue deformation using a Hierarchical Finite Element Model.
Faraci, Alessandro; Bello, Fernando; Darzi, Ara
2004-01-01
Simulating soft tissue deformation in real-time has become increasingly important in order to provide a realistic virtual environment for training surgical skills. Several methods have been proposed with the aim of rendering in real-time the mechanical and physiological behaviour of human organs, one of the most popular being Finite Element Method (FEM). In this paper we present a new approach to the solution of the FEM problem introducing the concept of parent and child mesh within the development of a hierarchical FEM. The online selection of the child mesh is presented with the purpose to adapt the mesh hierarchy in real-time. This permits further refinement of the child mesh increasing the detail of the deformation without slowing down the simulation and giving the possibility of integrating force feedback. The results presented demonstrate the application of our proposed framework using a desktop virtual reality (VR) system that incorporates stereo vision with integrated haptics co-location via a desktop Phantom force feedback device.
Transformation of renormalization groups in 2N-component fermion hierarchical model
International Nuclear Information System (INIS)
Stepanov, R.G.
2006-01-01
The 2N-component fermion model on the hierarchical lattice is studied. The explicit formulae for renormalization groups transformation in the space of coefficients setting the Grassmannian-significant density of the free measure are presented. The inverse transformation of the renormalization group is calculated. The definition of immovable points of renormalization groups is reduced to solving the set of algebraic equations. The interesting connection between renormalization group transformations in boson and fermion hierarchical models is found out. It is shown that one transformation is obtained from other one by the substitution of N on -N [ru
Fuzzy hierarchical model for risk assessment principles, concepts, and practical applications
Chan, Hing Kai
2013-01-01
Risk management is often complicated by situational uncertainties and the subjective preferences of decision makers. Fuzzy Hierarchical Model for Risk Assessment introduces a fuzzy-based hierarchical approach to solve risk management problems considering both qualitative and quantitative criteria to tackle imprecise information. This approach is illustrated through number of case studies using examples from the food, fashion and electronics sectors to cover a range of applications including supply chain management, green product design and green initiatives. These practical examples explore how this method can be adapted and fine tuned to fit other industries as well. Supported by an extensive literature review, Fuzzy Hierarchical Model for Risk Assessment comprehensively introduces a new method for project managers across all industries as well as researchers in risk management.
Experiments in Error Propagation within Hierarchal Combat Models
2015-09-01
stochastic Lanchester campaign model that contains 18 Blue and 25 Red submarines. The outputs of the campaign models are analyzed statistically. The...sampled in a variety of ways, including just the mean, and used to calculate the attrition coefficients for a stochastic Lanchester campaign model...9 2. Lanchester Models .............................................................................10 III. SCENARIO AND MODEL DEVELOPMENT
Directory of Open Access Journals (Sweden)
Chulkov Vitaliy Olegovich
2012-12-01
Full Text Available This article deals with the infographic modeling of hierarchical management systems exposed to innovative conflicts. The authors analyze the facts that serve as conflict drivers in the construction management environment. The reasons for innovative conflicts include changes in hierarchical structures of management systems, adjustment of workers to new management conditions, changes in the ideology, etc. Conflicts under consideration may involve contradictions between requests placed by customers and the legislation, any risks that may originate from the above contradiction, conflicts arising from any failure to comply with any accepted standards of conduct, etc. One of the main objectives of the theory of hierarchical structures is to develop a model capable of projecting potential innovative conflicts. Models described in the paper reflect dynamic changes in patterns of external impacts within the conflict area. The simplest model element is a monad, or an indivisible set of characteristics of participants at the pre-set level. Interaction between two monads forms a diad. Modeling of situations that involve a different number of monads, diads, resources and impacts can improve methods used to control and manage hierarchical structures in the construction industry. However, in the absence of any mathematical models employed to simulate conflict-related events, processes and situations, any research into, projection and management of interpersonal and group-to-group conflicts are to be performed in the legal environment
Application of hierarchical genetic models to Raven and WAIS subtests: a Dutch twin study.
Rijsdijk, Frühling V; Vernon, P A; Boomsma, Dorret I
2002-05-01
Hierarchical models of intelligence are highly informative and widely accepted. Application of these models to twin data, however, is sparse. This paper addresses the question of how a genetic hierarchical model fits the Wechsler Adult Intelligence Scale (WAIS) subtests and the Raven Standard Progressive test score, collected in 194 18-year-old Dutch twin pairs. We investigated whether first-order group factors possess genetic and environmental variance independent of the higher-order general factor and whether the hierarchical structure is significant for all sources of variance. A hierarchical model with the 3 Cohen group-factors (verbal comprehension, perceptual organisation and freedom-from-distractibility) and a higher-order g factor showed the best fit to the phenotypic data and to additive genetic influences (A), whereas the unique environmental source of variance (E) could be modeled by a single general factor and specifics. There was no evidence for common environmental influences. The covariation among the WAIS group factors and the covariation between the group factors and the Raven is predominantly influenced by a second-order genetic factor and strongly support the notion of a biological basis of g.
A Hierarchical Bayesian Model to Predict Self-Thinning Line for Chinese Fir in Southern China.
Directory of Open Access Journals (Sweden)
Xiongqing Zhang
Full Text Available Self-thinning is a dynamic equilibrium between forest growth and mortality at full site occupancy. Parameters of the self-thinning lines are often confounded by differences across various stand and site conditions. For overcoming the problem of hierarchical and repeated measures, we used hierarchical Bayesian method to estimate the self-thinning line. The results showed that the self-thinning line for Chinese fir (Cunninghamia lanceolata (Lamb.Hook. plantations was not sensitive to the initial planting density. The uncertainty of model predictions was mostly due to within-subject variability. The simulation precision of hierarchical Bayesian method was better than that of stochastic frontier function (SFF. Hierarchical Bayesian method provided a reasonable explanation of the impact of other variables (site quality, soil type, aspect, etc. on self-thinning line, which gave us the posterior distribution of parameters of self-thinning line. The research of self-thinning relationship could be benefit from the use of hierarchical Bayesian method.
Time to failure of hierarchical load-transfer models of fracture
DEFF Research Database (Denmark)
Vázquez-Prada, M; Gómez, J B; Moreno, Y
1999-01-01
The time to failure, T, of dynamical models of fracture for a hierarchical load-transfer geometry is studied. Using a probabilistic strategy and juxtaposing hierarchical structures of height n, we devise an exact method to compute T, for structures of height n+1. Bounding T, for large n, we are a...... are able to deduce that the time to failure tends to a nonzero value when n tends to infinity. This numerical conclusion is deduced for both power law and exponential breakdown rules....
From Playability to a Hierarchical Game Usability Model
Nacke, Lennart E.
2010-01-01
This paper presents a brief review of current game usability models. This leads to the conception of a high-level game development-centered usability model that integrates current usability approaches in game industry and game research.
Evaluation of Validity and Reliability for Hierarchical Scales Using Latent Variable Modeling
Raykov, Tenko; Marcoulides, George A.
2012-01-01
A latent variable modeling method is outlined, which accomplishes estimation of criterion validity and reliability for a multicomponent measuring instrument with hierarchical structure. The approach provides point and interval estimates for the scale criterion validity and reliability coefficients, and can also be used for testing composite or…
Putwain, Dave; Deveney, Carolyn
2009-01-01
The aim of this study was to examine an expanded integrative hierarchical model of test emotions and achievement goal orientations in predicting the examination performance of undergraduate students. Achievement goals were theorised as mediating the relationship between test emotions and performance. 120 undergraduate students completed…
Fung, Karen; ElAtia, Samira
2015-01-01
Using Hierarchical Linear Modelling (HLM), this study aimed to identify factors such as ESL/ELL/EAL status that would predict students' reading performance in an English language arts exam taken across Canada. Using data from the 2007 administration of the Pan-Canadian Assessment Program (PCAP) along with the accompanying surveys for students and…
The Hierarchical Factor Model of ADHD: Invariant across Age and National Groupings?
Toplak, Maggie E.; Sorge, Geoff B.; Flora, David B.; Chen, Wai; Banaschewski, Tobias; Buitelaar, Jan; Ebstein, Richard; Eisenberg, Jacques; Franke, Barbara; Gill, Michael; Miranda, Ana; Oades, Robert D.; Roeyers, Herbert; Rothenberger, Aribert; Sergeant, Joseph; Sonuga-Barke, Edmund; Steinhausen, Hans-Christoph; Thompson, Margaret; Tannock, Rosemary; Asherson, Philip; Faraone, Stephen V.
2012-01-01
Objective: To examine the factor structure of attention-deficit/hyperactivity disorder (ADHD) in a clinical sample of 1,373 children and adolescents with ADHD and their 1,772 unselected siblings recruited from different countries across a large age range. Hierarchical and correlated factor analytic models were compared separately in the ADHD and…
Rademaker, Arthur R.; van Minnen, Agnes; Ebberink, Freek; van Zuiden, Mirjam; Hagenaars, Muriel A.; Geuze, Elbert
2012-01-01
As of yet, no collective agreement has been reached regarding the precise factor structure of posttraumatic stress disorder (PTSD). Several alternative factor-models have been proposed in the last decades. The current study examined the fit of a hierarchical adaptation of the Simms et al. (2002)
Hierarchical models for informing general biomass equations with felled tree data
Brian J. Clough; Matthew B. Russell; Christopher W. Woodall; Grant M. Domke; Philip J. Radtke
2015-01-01
We present a hierarchical framework that uses a large multispecies felled tree database to inform a set of general models for predicting tree foliage biomass, with accompanying uncertainty, within the FIA database. Results suggest significant prediction uncertainty for individual trees and reveal higher errors when predicting foliage biomass for larger trees and for...
Perfect observables for the hierarchical non-linear O(N)-invariant σ-model
International Nuclear Information System (INIS)
Wieczerkowski, C.; Xylander, Y.
1995-05-01
We compute moving eigenvalues and the eigenvectors of the linear renormalization group transformation for observables along the renormalized trajectory of the hierarchical non-linear O(N)-invariant σ-model by means of perturbation theory in the running coupling constant. Moving eigenvectors are defined as solutions to a Callan-Symanzik type equation. (orig.)
Raykov, Tenko
2011-01-01
Interval estimation of intraclass correlation coefficients in hierarchical designs is discussed within a latent variable modeling framework. A method accomplishing this aim is outlined, which is applicable in two-level studies where participants (or generally lower-order units) are clustered within higher-order units. The procedure can also be…
An Analysis of Turkey's PISA 2015 Results Using Two-Level Hierarchical Linear Modelling
Atas, Dogu; Karadag, Özge
2017-01-01
In the field of education, most of the data collected are multi-level structured. Cities, city based schools, school based classes and finally students in the classrooms constitute a hierarchical structure. Hierarchical linear models give more accurate results compared to standard models when the data set has a structure going far as individuals,…
Directory of Open Access Journals (Sweden)
J. P. Werner
2015-03-01
Full Text Available Reconstructions of the late-Holocene climate rely heavily upon proxies that are assumed to be accurately dated by layer counting, such as measurements of tree rings, ice cores, and varved lake sediments. Considerable advances could be achieved if time-uncertain proxies were able to be included within these multiproxy reconstructions, and if time uncertainties were recognized and correctly modeled for proxies commonly treated as free of age model errors. Current approaches for accounting for time uncertainty are generally limited to repeating the reconstruction using each one of an ensemble of age models, thereby inflating the final estimated uncertainty – in effect, each possible age model is given equal weighting. Uncertainties can be reduced by exploiting the inferred space–time covariance structure of the climate to re-weight the possible age models. Here, we demonstrate how Bayesian hierarchical climate reconstruction models can be augmented to account for time-uncertain proxies. Critically, although a priori all age models are given equal probability of being correct, the probabilities associated with the age models are formally updated within the Bayesian framework, thereby reducing uncertainties. Numerical experiments show that updating the age model probabilities decreases uncertainty in the resulting reconstructions, as compared with the current de facto standard of sampling over all age models, provided there is sufficient information from other data sources in the spatial region of the time-uncertain proxy. This approach can readily be generalized to non-layer-counted proxies, such as those derived from marine sediments.
A hierarchical causal modeling for large industrial plants supervision
International Nuclear Information System (INIS)
Dziopa, P.; Leyval, L.
1994-01-01
A supervision system has to analyse the process current state and the way it will evolve after a modification of the inputs or disturbance. It is proposed to base this analysis on a hierarchy of models, witch differ by the number of involved variables and the abstraction level used to describe their temporal evolution. In a first step, special attention is paid to causal models building, from the most abstract one. Once the hierarchy of models has been build, the most detailed model parameters are estimated. Several models of different abstraction levels can be used for on line prediction. These methods have been applied to a nuclear reprocessing plant. The abstraction level could be chosen on line by the operator. Moreover when an abnormal process behaviour is detected a more detailed model is automatically triggered in order to focus the operator attention on the suspected subsystem. (authors). 11 refs., 11 figs
Sparse Event Modeling with Hierarchical Bayesian Kernel Methods
2016-01-05
SECURITY CLASSIFICATION OF: The research objective of this proposal was to develop a predictive Bayesian kernel approach to model count data based on...several predictive variables. Such an approach, which we refer to as the Poisson Bayesian kernel model, is able to model the rate of occurrence of... kernel methods made use of: (i) the Bayesian property of improving predictive accuracy as data are dynamically obtained, and (ii) the kernel function
Hierarchical modelling of line commutated power systems used in particle accelerators using Saber
International Nuclear Information System (INIS)
Reimund, J.A.
1993-01-01
This paper discusses the use of hierarchical simulation models using the program Saber trademark for the prediction of magnet ripple currents generated by the power supply/output filter combination. Modeling of an entire power system connected to output filters and particle accelerator ring magnets will be presented. Special emphasis is made on the modeling of power source imbalances caused by transformer impedance imbalances and utility variances. The affect that these imbalances have on the harmonic content of ripple current is also investigated
A test of the hierarchical model of litter decomposition
DEFF Research Database (Denmark)
Bradford, Mark A.; Veen, G. F.; Bonis, Anne
2017-01-01
Our basic understanding of plant litter decomposition informs the assumptions underlying widely applied soil biogeochemical models, including those embedded in Earth system models. Confidence in projected carbon cycle-climate feedbacks therefore depends on accurate knowledge about the controls...... regulating the rate at which plant biomass is decomposed into products such as CO2. Here we test underlying assumptions of the dominant conceptual model of litter decomposition. The model posits that a primary control on the rate of decomposition at regional to global scales is climate (temperature...
Simulating individual-based models of epidemics in hierarchical networks
Quax, R.; Bader, D.A.; Sloot, P.M.A.
2009-01-01
Current mathematical modeling methods for the spreading of infectious diseases are too simplified and do not scale well. We present the Simulator of Epidemic Evolution in Complex Networks (SEECN), an efficient simulator of detailed individual-based models by parameterizing separate dynamics
A three-component, hierarchical model of executive attention
Whittle, Sarah; Pantelis, Christos; Testa, Renee; Tiego, Jeggan; Bellgrove, Mark
2017-01-01
Executive attention refers to the goal-directed control of attention. Existing models of executive attention distinguish between three correlated, but empirically dissociable, factors related to selectively attending to task-relevant stimuli (Selective Attention), inhibiting task-irrelevant responses (Response Inhibition), and actively maintaining goal-relevant information (Working Memory Capacity). In these models, Selective Attention and Response Inhibition are moderately strongly correlate...
An open-population hierarchical distance sampling model
Sollmann, Rachel; Beth Gardner,; Richard B Chandler,; Royle, J. Andrew; T Scott Sillett,
2015-01-01
Modeling population dynamics while accounting for imperfect detection is essential to monitoring programs. Distance sampling allows estimating population size while accounting for imperfect detection, but existing methods do not allow for direct estimation of demographic parameters. We develop a model that uses temporal correlation in abundance arising from underlying population dynamics to estimate demographic parameters from repeated distance sampling surveys. Using a simulation study motivated by designing a monitoring program for island scrub-jays (Aphelocoma insularis), we investigated the power of this model to detect population trends. We generated temporally autocorrelated abundance and distance sampling data over six surveys, using population rates of change of 0.95 and 0.90. We fit the data generating Markovian model and a mis-specified model with a log-linear time effect on abundance, and derived post hoc trend estimates from a model estimating abundance for each survey separately. We performed these analyses for varying number of survey points. Power to detect population changes was consistently greater under the Markov model than under the alternatives, particularly for reduced numbers of survey points. The model can readily be extended to more complex demographic processes than considered in our simulations. This novel framework can be widely adopted for wildlife population monitoring.
An open-population hierarchical distance sampling model.
Sollmann, Rahel; Gardner, Beth; Chandler, Richard B; Royle, J Andrew; Sillett, T Scott
2015-02-01
Modeling population dynamics while accounting for imperfect detection is essential to monitoring programs. Distance sampling allows estimating population size while accounting for imperfect detection, but existing methods do not allow for estimation of demographic parameters. We develop a model that uses temporal correlation in abundance arising from underlying population dynamics to estimate demographic parameters from repeated distance sampling surveys. Using a simulation study motivated by designing a monitoring program for Island Scrub-Jays (Aphelocoma insularis), we investigated the power of this model to detect population trends. We generated temporally autocorrelated abundance and distance sampling data over six surveys, using population rates of change of 0.95 and 0.90. We fit the data generating Markovian model and a mis-specified model with a log-linear time effect on abundance, and derived post hoc trend estimates from a model estimating abundance for each survey separately. We performed these analyses for varying numbers of survey points. Power to detect population changes was consistently greater under the Markov model than under the alternatives, particularly for reduced numbers of survey points. The model can readily be extended to more complex demographic processes than considered in our simulations. This novel framework can be widely adopted for wildlife population monitoring.
Hierarchical material models for fragmentation modeling in NIF-ALE-AMR
International Nuclear Information System (INIS)
Fisher, A C; Masters, N D; Koniges, A E; Anderson, R W; Gunney, B T N; Wang, P; Becker, R; Dixit, P; Benson, D J
2008-01-01
Fragmentation is a fundamental process that naturally spans micro to macroscopic scales. Recent advances in algorithms, computer simulations, and hardware enable us to connect the continuum to microstructural regimes in a real simulation through a heterogeneous multiscale mathematical model. We apply this model to the problem of predicting how targets in the NIF chamber dismantle, so that optics and diagnostics can be protected from damage. The mechanics of the initial material fracture depend on the microscopic grain structure. In order to effectively simulate the fragmentation, this process must be modeled at the subgrain level with computationally expensive crystal plasticity models. However, there are not enough computational resources to model the entire NIF target at this microscopic scale. In order to accomplish these calculations, a hierarchical material model (HMM) is being developed. The HMM will allow fine-scale modeling of the initial fragmentation using computationally expensive crystal plasticity, while the elements at the mesoscale can use polycrystal models, and the macroscopic elements use analytical flow stress models. The HMM framework is built upon an adaptive mesh refinement (AMR) capability. We present progress in implementing the HMM in the NIF-ALE-AMR code. Additionally, we present test simulations relevant to NIF targets
Hierarchical material models for fragmentation modeling in NIF-ALE-AMR
Energy Technology Data Exchange (ETDEWEB)
Fisher, A C; Masters, N D; Koniges, A E; Anderson, R W; Gunney, B T N; Wang, P; Becker, R [Lawrence Livermore National Laboratory, PO Box 808, Livermore, CA 94551 (United States); Dixit, P; Benson, D J [University of California San Diego, 9500 Gilman Dr., La Jolla. CA 92093 (United States)], E-mail: fisher47@llnl.gov
2008-05-15
Fragmentation is a fundamental process that naturally spans micro to macroscopic scales. Recent advances in algorithms, computer simulations, and hardware enable us to connect the continuum to microstructural regimes in a real simulation through a heterogeneous multiscale mathematical model. We apply this model to the problem of predicting how targets in the NIF chamber dismantle, so that optics and diagnostics can be protected from damage. The mechanics of the initial material fracture depend on the microscopic grain structure. In order to effectively simulate the fragmentation, this process must be modeled at the subgrain level with computationally expensive crystal plasticity models. However, there are not enough computational resources to model the entire NIF target at this microscopic scale. In order to accomplish these calculations, a hierarchical material model (HMM) is being developed. The HMM will allow fine-scale modeling of the initial fragmentation using computationally expensive crystal plasticity, while the elements at the mesoscale can use polycrystal models, and the macroscopic elements use analytical flow stress models. The HMM framework is built upon an adaptive mesh refinement (AMR) capability. We present progress in implementing the HMM in the NIF-ALE-AMR code. Additionally, we present test simulations relevant to NIF targets.
Gavish, Yoni; O'Connell, Jerome; Marsh, Charles J.; Tarantino, Cristina; Blonda, Palma; Tomaselli, Valeria; Kunin, William E.
2018-02-01
The increasing need for high quality Habitat/Land-Cover (H/LC) maps has triggered considerable research into novel machine-learning based classification models. In many cases, H/LC classes follow pre-defined hierarchical classification schemes (e.g., CORINE), in which fine H/LC categories are thematically nested within more general categories. However, none of the existing machine-learning algorithms account for this pre-defined hierarchical structure. Here we introduce a novel Random Forest (RF) based application of hierarchical classification, which fits a separate local classification model in every branching point of the thematic tree, and then integrates all the different local models to a single global prediction. We applied the hierarchal RF approach in a NATURA 2000 site in Italy, using two land-cover (CORINE, FAO-LCCS) and one habitat classification scheme (EUNIS) that differ from one another in the shape of the class hierarchy. For all 3 classification schemes, both the hierarchical model and a flat model alternative provided accurate predictions, with kappa values mostly above 0.9 (despite using only 2.2-3.2% of the study area as training cells). The flat approach slightly outperformed the hierarchical models when the hierarchy was relatively simple, while the hierarchical model worked better under more complex thematic hierarchies. Most misclassifications came from habitat pairs that are thematically distant yet spectrally similar. In 2 out of 3 classification schemes, the additional constraints of the hierarchical model resulted with fewer such serious misclassifications relative to the flat model. The hierarchical model also provided valuable information on variable importance which can shed light into "black-box" based machine learning algorithms like RF. We suggest various ways by which hierarchical classification models can increase the accuracy and interpretability of H/LC classification maps.
The application of a hierarchical Bayesian spatiotemporal model for ...
Indian Academy of Sciences (India)
Process (GP) model by using the Gibbs sampling method. The result for ... good indicator of the HBST method. The statistical ... summary and discussion of future works are given .... spatiotemporal package in R language (R core team. 2013).
Bayesian disease mapping: hierarchical modeling in spatial epidemiology
National Research Council Canada - National Science Library
Lawson, Andrew
2013-01-01
Since the publication of the first edition, many new Bayesian tools and methods have been developed for space-time data analysis, the predictive modeling of health outcomes, and other spatial biostatistical areas...
Hierarchical models and iterative optimization of hybrid systems
Energy Technology Data Exchange (ETDEWEB)
Rasina, Irina V. [Ailamazyan Program Systems Institute, Russian Academy of Sciences, Peter One str. 4a, Pereslavl-Zalessky, 152021 (Russian Federation); Baturina, Olga V. [Trapeznikov Control Sciences Institute, Russian Academy of Sciences, Profsoyuznaya str. 65, 117997, Moscow (Russian Federation); Nasatueva, Soelma N. [Buryat State University, Smolina str.24a, Ulan-Ude, 670000 (Russian Federation)
2016-06-08
A class of hybrid control systems on the base of two-level discrete-continuous model is considered. The concept of this model was proposed and developed in preceding works as a concretization of the general multi-step system with related optimality conditions. A new iterative optimization procedure for such systems is developed on the base of localization of the global optimality conditions via contraction the control set.
Dettmer, Jan; Dosso, Stan E
2012-10-01
This paper develops a trans-dimensional approach to matched-field geoacoustic inversion, including interacting Markov chains to improve efficiency and an autoregressive model to account for correlated errors. The trans-dimensional approach and hierarchical seabed model allows inversion without assuming any particular parametrization by relaxing model specification to a range of plausible seabed models (e.g., in this case, the number of sediment layers is an unknown parameter). Data errors are addressed by sampling statistical error-distribution parameters, including correlated errors (covariance), by applying a hierarchical autoregressive error model. The well-known difficulty of low acceptance rates for trans-dimensional jumps is addressed with interacting Markov chains, resulting in a substantial increase in efficiency. The trans-dimensional seabed model and the hierarchical error model relax the degree of prior assumptions required in the inversion, resulting in substantially improved (more realistic) uncertainty estimates and a more automated algorithm. In particular, the approach gives seabed parameter uncertainty estimates that account for uncertainty due to prior model choice (layering and data error statistics). The approach is applied to data measured on a vertical array in the Mediterranean Sea.
Fraldi, M.; Perrella, G.; Ciervo, M.; Bosia, F.; Pugno, N. M.
2017-09-01
Very recently, a Weibull-based probabilistic strategy has been successfully applied to bundles of wires to determine their overall stress-strain behaviour, also capturing previously unpredicted nonlinear and post-elastic features of hierarchical strands. This approach is based on the so-called "Equal Load Sharing (ELS)" hypothesis by virtue of which, when a wire breaks, the load acting on the strand is homogeneously redistributed among the surviving wires. Despite the overall effectiveness of the method, some discrepancies between theoretical predictions and in silico Finite Element-based simulations or experimental findings might arise when more complex structures are analysed, e.g. helically arranged bundles. To overcome these limitations, an enhanced hybrid approach is proposed in which the probability of rupture is combined with a deterministic mechanical model of a strand constituted by helically-arranged and hierarchically-organized wires. The analytical model is validated comparing its predictions with both Finite Element simulations and experimental tests. The results show that generalized stress-strain responses - incorporating tension/torsion coupling - are naturally found and, once one or more elements break, the competition between geometry and mechanics of the strand microstructure, i.e. the different cross sections and helical angles of the wires in the different hierarchical levels of the strand, determines the no longer homogeneous stress redistribution among the surviving wires whose fate is hence governed by a "Hierarchical Load Sharing" criterion.
A hierarchical stress release model for synthetic seismicity
Bebbington, Mark
1997-06-01
We construct a stochastic dynamic model for synthetic seismicity involving stochastic stress input, release, and transfer in an environment of heterogeneous strength and interacting segments. The model is not fault-specific, having a number of adjustable parameters with physical interpretation, namely, stress relaxation, stress transfer, stress dissipation, segment structure, strength, and strength heterogeneity, which affect the seismicity in various ways. Local parameters are chosen to be consistent with large historical events, other parameters to reproduce bulk seismicity statistics for the fault as a whole. The one-dimensional fault is divided into a number of segments, each comprising a varying number of nodes. Stress input occurs at each node in a simple random process, representing the slow buildup due to tectonic plate movements. Events are initiated, subject to a stochastic hazard function, when the stress on a node exceeds the local strength. An event begins with the transfer of excess stress to neighboring nodes, which may in turn transfer their excess stress to the next neighbor. If the event grows to include the entire segment, then most of the stress on the segment is transferred to neighboring segments (or dissipated) in a characteristic event. These large events may themselves spread to other segments. We use the Middle America Trench to demonstrate that this model, using simple stochastic stress input and triggering mechanisms, can produce behavior consistent with the historical record over five units of magnitude. We also investigate the effects of perturbing various parameters in order to show how the model might be tailored to a specific fault structure. The strength of the model lies in this ability to reproduce the behavior of a general linear fault system through the choice of a relatively small number of parameters. It remains to develop a procedure for estimating the internal state of the model from the historical observations in order to
Calibration of Automatically Generated Items Using Bayesian Hierarchical Modeling.
Johnson, Matthew S.; Sinharay, Sandip
For complex educational assessments, there is an increasing use of "item families," which are groups of related items. However, calibration or scoring for such an assessment requires fitting models that take into account the dependence structure inherent among the items that belong to the same item family. C. Glas and W. van der Linden…
A hierarchical modeling of information seeking behavior of school ...
African Journals Online (AJOL)
The aim of this study was to investigate the information seeking behavior of school teachers in the public primary schools of rural areas of Nigeria and to draw up a model of their information-seeking behavior. A Cross-sectional survey design research was employed to carry out the research. Findings showed that the ...
Generic Database Cost Models for Hierarchical Memory Systems
S. Manegold (Stefan); P.A. Boncz (Peter); M.L. Kersten (Martin)
2002-01-01
textabstractAccurate prediction of operator execution time is a prerequisite for database query optimization. Although extensively studied for conventional disk-based DBMSs, cost modeling in main-memory DBMSs is still an open issue. Recent database research has demonstrated that memory access is
Generic database cost models for hierarchical memory systems
S. Manegold (Stefan); P.A. Boncz (Peter); M.L. Kersten (Martin)
2002-01-01
textabstractAccurate prediction of operator execution time is a prerequisite fordatabase query optimization. Although extensively studied for conventionaldisk-based DBMSs, cost modeling in main-memory DBMSs is still an openissue. Recent database research has demonstrated that memory access ismore
Yi Huang; Francesca Dominici; Michelle Bell
2004-01-01
In this paper, we develop Bayesian hierarchical distributed lag models for estimating associations between daily variations in summer ozone levels and daily variations in cardiovascular and respiratory (CVDRESP) mortality counts for 19 U.S. large cities included in the National Morbidity Mortality Air Pollution Study (NMMAPS) for the period 1987 - 1994. At the first stage, we define a semi-parametric distributed lag Poisson regression model to estimate city-specific relative rates of CVDRESP ...
Energy Technology Data Exchange (ETDEWEB)
Thornton, Peter E [ORNL; Wang, Weile [ORNL; Law, Beverly E. [Oregon State University; Nemani, Ramakrishna R [NASA Ames Research Center
2009-01-01
The increasing complexity of ecosystem models represents a major difficulty in tuning model parameters and analyzing simulated results. To address this problem, this study develops a hierarchical scheme that simplifies the Biome-BGC model into three functionally cascaded tiers and analyzes them sequentially. The first-tier model focuses on leaf-level ecophysiological processes; it simulates evapotranspiration and photosynthesis with prescribed leaf area index (LAI). The restriction on LAI is then lifted in the following two model tiers, which analyze how carbon and nitrogen is cycled at the whole-plant level (the second tier) and in all litter/soil pools (the third tier) to dynamically support the prescribed canopy. In particular, this study analyzes the steady state of these two model tiers by a set of equilibrium equations that are derived from Biome-BGC algorithms and are based on the principle of mass balance. Instead of spinning-up the model for thousands of climate years, these equations are able to estimate carbon/nitrogen stocks and fluxes of the target (steady-state) ecosystem directly from the results obtained by the first-tier model. The model hierarchy is examined with model experiments at four AmeriFlux sites. The results indicate that the proposed scheme can effectively calibrate Biome-BGC to simulate observed fluxes of evapotranspiration and photosynthesis; and the carbon/nitrogen stocks estimated by the equilibrium analysis approach are highly consistent with the results of model simulations. Therefore, the scheme developed in this study may serve as a practical guide to calibrate/analyze Biome-BGC; it also provides an efficient way to solve the problem of model spin-up, especially for applications over large regions. The same methodology may help analyze other similar ecosystem models as well.
Generic Database Cost Models for Hierarchical Memory Systems
Manegold, Stefan; Boncz, Peter; Kersten, Martin
2002-01-01
textabstractAccurate prediction of operator execution time is a prerequisite for database query optimization. Although extensively studied for conventional disk-based DBMSs, cost modeling in main-memory DBMSs is still an open issue. Recent database research has demonstrated that memory access is more and more becoming a significant---if not the major---cost component of database operations. If used properly, fast but small cache memories---usually organized in cascading hierarchy between CPU ...
Boos, Moritz; Seer, Caroline; Lange, Florian; Kopp, Bruno
2016-01-01
Cognitive determinants of probabilistic inference were examined using hierarchical Bayesian modeling techniques. A classic urn-ball paradigm served as experimental strategy, involving a factorial two (prior probabilities) by two (likelihoods) design. Five computational models of cognitive processes were compared with the observed behavior. Parameter-free Bayesian posterior probabilities and parameter-free base rate neglect provided inadequate models of probabilistic inference. The introduction of distorted subjective probabilities yielded more robust and generalizable results. A general class of (inverted) S-shaped probability weighting functions had been proposed; however, the possibility of large differences in probability distortions not only across experimental conditions, but also across individuals, seems critical for the model's success. It also seems advantageous to consider individual differences in parameters of probability weighting as being sampled from weakly informative prior distributions of individual parameter values. Thus, the results from hierarchical Bayesian modeling converge with previous results in revealing that probability weighting parameters show considerable task dependency and individual differences. Methodologically, this work exemplifies the usefulness of hierarchical Bayesian modeling techniques for cognitive psychology. Theoretically, human probabilistic inference might be best described as the application of individualized strategic policies for Bayesian belief revision.
Statistical shear lag model - unraveling the size effect in hierarchical composites.
Wei, Xiaoding; Filleter, Tobin; Espinosa, Horacio D
2015-05-01
Numerous experimental and computational studies have established that the hierarchical structures encountered in natural materials, such as the brick-and-mortar structure observed in sea shells, are essential for achieving defect tolerance. Due to this hierarchy, the mechanical properties of natural materials have a different size dependence compared to that of typical engineered materials. This study aimed to explore size effects on the strength of bio-inspired staggered hierarchical composites and to define the influence of the geometry of constituents in their outstanding defect tolerance capability. A statistical shear lag model is derived by extending the classical shear lag model to account for the statistics of the constituents' strength. A general solution emerges from rigorous mathematical derivations, unifying the various empirical formulations for the fundamental link length used in previous statistical models. The model shows that the staggered arrangement of constituents grants composites a unique size effect on mechanical strength in contrast to homogenous continuous materials. The model is applied to hierarchical yarns consisting of double-walled carbon nanotube bundles to assess its predictive capabilities for novel synthetic materials. Interestingly, the model predicts that yarn gauge length does not significantly influence the yarn strength, in close agreement with experimental observations. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Cressie, Noel; Calder, Catherine A; Clark, James S; Ver Hoef, Jay M; Wikle, Christopher K
2009-04-01
Analyses of ecological data should account for the uncertainty in the process(es) that generated the data. However, accounting for these uncertainties is a difficult task, since ecology is known for its complexity. Measurement and/or process errors are often the only sources of uncertainty modeled when addressing complex ecological problems, yet analyses should also account for uncertainty in sampling design, in model specification, in parameters governing the specified model, and in initial and boundary conditions. Only then can we be confident in the scientific inferences and forecasts made from an analysis. Probability and statistics provide a framework that accounts for multiple sources of uncertainty. Given the complexities of ecological studies, the hierarchical statistical model is an invaluable tool. This approach is not new in ecology, and there are many examples (both Bayesian and non-Bayesian) in the literature illustrating the benefits of this approach. In this article, we provide a baseline for concepts, notation, and methods, from which discussion on hierarchical statistical modeling in ecology can proceed. We have also planted some seeds for discussion and tried to show where the practical difficulties lie. Our thesis is that hierarchical statistical modeling is a powerful way of approaching ecological analysis in the presence of inevitable but quantifiable uncertainties, even if practical issues sometimes require pragmatic compromises.
Colclough, Giles L; Woolrich, Mark W; Harrison, Samuel J; Rojas López, Pedro A; Valdes-Sosa, Pedro A; Smith, Stephen M
2018-05-07
A Bayesian model for sparse, hierarchical inverse covariance estimation is presented, and applied to multi-subject functional connectivity estimation in the human brain. It enables simultaneous inference of the strength of connectivity between brain regions at both subject and population level, and is applicable to fmri, meg and eeg data. Two versions of the model can encourage sparse connectivity, either using continuous priors to suppress irrelevant connections, or using an explicit description of the network structure to estimate the connection probability between each pair of regions. A large evaluation of this model, and thirteen methods that represent the state of the art of inverse covariance modelling, is conducted using both simulated and resting-state functional imaging datasets. Our novel Bayesian approach has similar performance to the best extant alternative, Ng et al.'s Sparse Group Gaussian Graphical Model algorithm, which also is based on a hierarchical structure. Using data from the Human Connectome Project, we show that these hierarchical models are able to reduce the measurement error in meg beta-band functional networks by 10%, producing concomitant increases in estimates of the genetic influence on functional connectivity. Copyright © 2018. Published by Elsevier Inc.
Choi, Kilchan
2011-01-01
This report explores a new latent variable regression 4-level hierarchical model for monitoring school performance over time using multisite multiple-cohorts longitudinal data. This kind of data set has a 4-level hierarchical structure: time-series observation nested within students who are nested within different cohorts of students. These…
Directory of Open Access Journals (Sweden)
Dan Wu
2009-06-01
Full Text Available The principal-subordinate hierarchical multi-objective programming model of initial water rights allocation was developed based on the principle of coordinated and sustainable development of different regions and water sectors within a basin. With the precondition of strictly controlling maximum emissions rights, initial water rights were allocated between the first and the second levels of the hierarchy in order to promote fair and coordinated development across different regions of the basin and coordinated and efficient water use across different water sectors, realize the maximum comprehensive benefits to the basin, promote the unity of quantity and quality of initial water rights allocation, and eliminate water conflict across different regions and water sectors. According to interactive decision-making theory, a principal-subordinate hierarchical interactive iterative algorithm based on the satisfaction degree was developed and used to solve the initial water rights allocation model. A case study verified the validity of the model.
Directory of Open Access Journals (Sweden)
Fidel Ernesto Castro Morales
2016-03-01
Full Text Available Abstract Objectives: to propose the use of a Bayesian hierarchical model to study the allometric scaling of the fetoplacental weight ratio, including possible confounders. Methods: data from 26 singleton pregnancies with gestational age at birth between 37 and 42 weeks were analyzed. The placentas were collected immediately after delivery and stored under refrigeration until the time of analysis, which occurred within up to 12 hours. Maternal data were collected from medical records. A Bayesian hierarchical model was proposed and Markov chain Monte Carlo simulation methods were used to obtain samples from distribution a posteriori. Results: the model developed showed a reasonable fit, even allowing for the incorporation of variables and a priori information on the parameters used. Conclusions: new variables can be added to the modelfrom the available code, allowing many possibilities for data analysis and indicating the potential for use in research on the subject.
Hierarchic stochastic modelling applied to intracellular Ca(2+ signals.
Directory of Open Access Journals (Sweden)
Gregor Moenke
Full Text Available Important biological processes like cell signalling and gene expression have noisy components and are very complex at the same time. Mathematical analysis of such systems has often been limited to the study of isolated subsystems, or approximations are used that are difficult to justify. Here we extend a recently published method (Thurley and Falcke, PNAS 2011 which is formulated in observable system configurations instead of molecular transitions. This reduces the number of system states by several orders of magnitude and avoids fitting of kinetic parameters. The method is applied to Ca(2+ signalling. Ca(2+ is a ubiquitous second messenger transmitting information by stochastic sequences of concentration spikes, which arise by coupling of subcellular Ca(2+ release events (puffs. We derive analytical expressions for a mechanistic Ca(2+ model, based on recent data from live cell imaging, and calculate Ca(2+ spike statistics in dependence on cellular parameters like stimulus strength or number of Ca(2+ channels. The new approach substantiates a generic Ca(2+ model, which is a very convenient way to simulate Ca(2+ spike sequences with correct spiking statistics.
Directory of Open Access Journals (Sweden)
Moritz eBoos
2016-05-01
Full Text Available Cognitive determinants of probabilistic inference were examined using hierarchical Bayesian modelling techniques. A classic urn-ball paradigm served as experimental strategy, involving a factorial two (prior probabilities by two (likelihoods design. Five computational models of cognitive processes were compared with the observed behaviour. Parameter-free Bayesian posterior probabilities and parameter-free base rate neglect provided inadequate models of probabilistic inference. The introduction of distorted subjective probabilities yielded more robust and generalizable results. A general class of (inverted S-shaped probability weighting functions had been proposed; however, the possibility of large differences in probability distortions not only across experimental conditions, but also across individuals, seems critical for the model’s success. It also seems advantageous to consider individual differences in parameters of probability weighting as being sampled from weakly informative prior distributions of individual parameter values. Thus, the results from hierarchical Bayesian modelling converge with previous results in revealing that probability weighting parameters show considerable task dependency and individual differences. Methodologically, this work exemplifies the usefulness of hierarchical Bayesian modelling techniques for cognitive psychology. Theoretically, human probabilistic inference might be best described as the application of individualized strategic policies for Bayesian belief revision.
Okada, Kensuke; Vandekerckhove, Joachim; Lee, Michael D
2018-02-01
People often interact with environments that can provide only a finite number of items as resources. Eventually a book contains no more chapters, there are no more albums available from a band, and every Pokémon has been caught. When interacting with these sorts of environments, people either actively choose to quit collecting new items, or they are forced to quit when the items are exhausted. Modeling the distribution of how many items people collect before they quit involves untangling these two possibilities, We propose that censored geometric models are a useful basic technique for modeling the quitting distribution, and, show how, by implementing these models in a hierarchical and latent-mixture framework through Bayesian methods, they can be extended to capture the additional features of specific situations. We demonstrate this approach by developing and testing a series of models in two case studies involving real-world data. One case study deals with people choosing jokes from a recommender system, and the other deals with people completing items in a personality survey.
The Case for A Hierarchal System Model for Linux Clusters
Energy Technology Data Exchange (ETDEWEB)
Seager, M; Gorda, B
2009-06-05
The computer industry today is no longer driven, as it was in the 40s, 50s and 60s, by High-performance computing requirements. Rather, HPC systems, especially Leadership class systems, sit on top of a pyramid investment mode. Figure 1 shows a representative pyramid investment model for systems hardware. At the base of the pyramid is the huge investment (order 10s of Billions of US Dollars per year) in semiconductor fabrication and process technologies. These costs, which are approximately doubling with every generation, are funded from investments multiple markets: enterprise, desktops, games, embedded and specialized devices. Over and above these base technology investments are investments for critical technology elements such as microprocessor, chipsets and memory ASIC components. Investments for these components are spread across the same markets as the base semiconductor processes investments. These second tier investments are approximately half the size of the lower level of the pyramid. The next technology investment layer up, tier 3, is more focused on scalable computing systems such as those needed for HPC and other markets. These tier 3 technology elements include networking (SAN, WAN and LAN), interconnects and large scalable SMP designs. Above these is tier 4 are relatively small investments necessary to build very large, scalable systems high-end or Leadership class systems. Primary among these are the specialized network designs of vertically integrated systems, etc.
MacCann, Carolyn; Joseph, Dana L; Newman, Daniel A; Roberts, Richard D
2014-04-01
This article examines the status of emotional intelligence (EI) within the structure of human cognitive abilities. To evaluate whether EI is a 2nd-stratum factor of intelligence, data were fit to a series of structural models involving 3 indicators each for fluid intelligence, crystallized intelligence, quantitative reasoning, visual processing, and broad retrieval ability, as well as 2 indicators each for emotion perception, emotion understanding, and emotion management. Unidimensional, multidimensional, hierarchical, and bifactor solutions were estimated in a sample of 688 college and community college students. Results suggest adequate fit for 2 models: (a) an oblique 8-factor model (with 5 traditional cognitive ability factors and 3 EI factors) and (b) a hierarchical solution (with cognitive g at the highest level and EI representing a 2nd-stratum factor that loads onto g at λ = .80). The acceptable relative fit of the hierarchical model confirms the notion that EI is a group factor of cognitive ability, marking the expression of intelligence in the emotion domain. The discussion proposes a possible expansion of Cattell-Horn-Carroll theory to include EI as a 2nd-stratum factor of similar standing to factors such as fluid intelligence and visual processing.
Action detection by double hierarchical multi-structure space-time statistical matching model
Han, Jing; Zhu, Junwei; Cui, Yiyin; Bai, Lianfa; Yue, Jiang
2018-03-01
Aimed at the complex information in videos and low detection efficiency, an actions detection model based on neighboring Gaussian structure and 3D LARK features is put forward. We exploit a double hierarchical multi-structure space-time statistical matching model (DMSM) in temporal action localization. First, a neighboring Gaussian structure is presented to describe the multi-scale structural relationship. Then, a space-time statistical matching method is proposed to achieve two similarity matrices on both large and small scales, which combines double hierarchical structural constraints in model by both the neighboring Gaussian structure and the 3D LARK local structure. Finally, the double hierarchical similarity is fused and analyzed to detect actions. Besides, the multi-scale composite template extends the model application into multi-view. Experimental results of DMSM on the complex visual tracker benchmark data sets and THUMOS 2014 data sets show the promising performance. Compared with other state-of-the-art algorithm, DMSM achieves superior performances.
Costin, Ovidiu; Giacomin, Giambattista
2013-02-01
Oscillatory critical amplitudes have been repeatedly observed in hierarchical models and, in the cases that have been taken into consideration, these oscillations are so small to be hardly detectable. Hierarchical models are tightly related to iteration of maps and, in fact, very similar phenomena have been repeatedly reported in many fields of mathematics, like combinatorial evaluations and discrete branching processes. It is precisely in the context of branching processes with bounded off-spring that T. Harris, in 1948, first set forth the possibility that the logarithm of the moment generating function of the rescaled population size, in the super-critical regime, does not grow near infinity as a power, but it has an oscillatory prefactor (the Harris function). These oscillations have been observed numerically only much later and, while the origin is clearly tied to the discrete character of the iteration, the amplitude size is not so well understood. The purpose of this note is to reconsider the issue for hierarchical models and in what is arguably the most elementary setting—the pinning model—that actually just boils down to iteration of polynomial maps (and, notably, quadratic maps). In this note we show that the oscillatory critical amplitude for pinning models and the Harris function coincide. Moreover we make explicit the link between these oscillatory functions and the geometry of the Julia set of the map, making thus rigorous and quantitative some ideas set forth in Derrida et al. (Commun. Math. Phys. 94:115-132, 1984).
On hierarchical models for visual recognition and learning of objects, scenes, and activities
Spehr, Jens
2015-01-01
In many computer vision applications, objects have to be learned and recognized in images or image sequences. This book presents new probabilistic hierarchical models that allow an efficient representation of multiple objects of different categories, scales, rotations, and views. The idea is to exploit similarities between objects and object parts in order to share calculations and avoid redundant information. Furthermore inference approaches for fast and robust detection are presented. These new approaches combine the idea of compositional and similarity hierarchies and overcome limitations of previous methods. Besides classical object recognition the book shows the use for detection of human poses in a project for gait analysis. The use of activity detection is presented for the design of environments for ageing, to identify activities and behavior patterns in smart homes. In a presented project for parking spot detection using an intelligent vehicle, the proposed approaches are used to hierarchically model...
A hierarchical lattice spring model to simulate the mechanics of 2-D materials-based composites
Directory of Open Access Journals (Sweden)
Lucas eBrely
2015-07-01
Full Text Available In the field of engineering materials, strength and toughness are typically two mutually exclusive properties. Structural biological materials such as bone, tendon or dentin have resolved this conflict and show unprecedented damage tolerance, toughness and strength levels. The common feature of these materials is their hierarchical heterogeneous structure, which contributes to increased energy dissipation before failure occurring at different scale levels. These structural properties are the key to exceptional bioinspired material mechanical properties, in particular for nanocomposites. Here, we develop a numerical model in order to simulate the mechanisms involved in damage progression and energy dissipation at different size scales in nano- and macro-composites, which depend both on the heterogeneity of the material and on the type of hierarchical structure. Both these aspects have been incorporated into a 2-dimensional model based on a Lattice Spring Model, accounting for geometrical nonlinearities and including statistically-based fracture phenomena. The model has been validated by comparing numerical results to continuum and fracture mechanics results as well as finite elements simulations, and then employed to study how structural aspects impact on hierarchical composite material properties. Results obtained with the numerical code highlight the dependence of stress distributions on matrix properties and reinforcement dispersion, geometry and properties, and how failure of sacrificial elements is directly involved in the damage tolerance of the material. Thanks to the rapidly developing field of nanocomposite manufacture, it is already possible to artificially create materials with multi-scale hierarchical reinforcements. The developed code could be a valuable support in the design and optimization of these advanced materials, drawing inspiration and going beyond biological materials with exceptional mechanical properties.
DEFF Research Database (Denmark)
Huang, Qian; Huang, Yue-Cai; Ko, King-Tim
2011-01-01
. This approach avoids unnecessary and frequent handoff between cells and reduces signaling overheads. An approximation model with guaranteed accuracy and low computational complexity is presented for the loss performance of multiservice traffic. The accuracy of numerical results is validated by comparing......A hierarchical overlay structure is an alternative solution that integrates existing and future heterogeneous wireless networks to provide subscribers with better mobile broadband services. Traffic loss performance in such integrated heterogeneous networks is necessary for an operator's network...
Khazraee, S Hadi; Johnson, Valen; Lord, Dominique
2018-08-01
The Poisson-gamma (PG) and Poisson-lognormal (PLN) regression models are among the most popular means for motor vehicle crash data analysis. Both models belong to the Poisson-hierarchical family of models. While numerous studies have compared the overall performance of alternative Bayesian Poisson-hierarchical models, little research has addressed the impact of model choice on the expected crash frequency prediction at individual sites. This paper sought to examine whether there are any trends among candidate models predictions e.g., that an alternative model's prediction for sites with certain conditions tends to be higher (or lower) than that from another model. In addition to the PG and PLN models, this research formulated a new member of the Poisson-hierarchical family of models: the Poisson-inverse gamma (PIGam). Three field datasets (from Texas, Michigan and Indiana) covering a wide range of over-dispersion characteristics were selected for analysis. This study demonstrated that the model choice can be critical when the calibrated models are used for prediction at new sites, especially when the data are highly over-dispersed. For all three datasets, the PIGam model would predict higher expected crash frequencies than would the PLN and PG models, in order, indicating a clear link between the models predictions and the shape of their mixing distributions (i.e., gamma, lognormal, and inverse gamma, respectively). The thicker tail of the PIGam and PLN models (in order) may provide an advantage when the data are highly over-dispersed. The analysis results also illustrated a major deficiency of the Deviance Information Criterion (DIC) in comparing the goodness-of-fit of hierarchical models; models with drastically different set of coefficients (and thus predictions for new sites) may yield similar DIC values, because the DIC only accounts for the parameters in the lowest (observation) level of the hierarchy and ignores the higher levels (regression coefficients
DEFF Research Database (Denmark)
Kristensen, Anders Ringgaard; Søllested, Thomas Algot
2004-01-01
improvements. The biological model of the replacement model is described in a previous paper and in this paper the optimization model is described. The model is developed as a prototype for use under practical conditions. The application of the model is demonstrated using data from two commercial Danish sow......Recent methodological improvements in replacement models comprising multi-level hierarchical Markov processes and Bayesian updating have hardly been implemented in any replacement model and the aim of this study is to present a sow replacement model that really uses these methodological...... herds. It is concluded that the Bayesian updating technique and the hierarchical structure decrease the size of the state space dramatically. Since parameter estimates vary considerably among herds it is concluded that decision support concerning sow replacement only makes sense with parameters...
Sahai, Swupnil
This thesis includes three parts. The overarching theme is how to analyze structured hierarchical data, with applications to astronomy and sociology. The first part discusses how expectation propagation can be used to parallelize the computation when fitting big hierarchical bayesian models. This methodology is then used to fit a novel, nonlinear mixture model to ultraviolet radiation from various regions of the observable universe. The second part discusses how the Stan probabilistic programming language can be used to numerically integrate terms in a hierarchical bayesian model. This technique is demonstrated on supernovae data to significantly speed up convergence to the posterior distribution compared to a previous study that used a Gibbs-type sampler. The third part builds a formal latent kernel representation for aggregate relational data as a way to more robustly estimate the mixing characteristics of agents in a network. In particular, the framework is applied to sociology surveys to estimate, as a function of ego age, the age and sex composition of the personal networks of individuals in the United States.
Pusuluri, Sai Teja
Energy landscapes are often used as metaphors for phenomena in biology, social sciences and finance. Different methods have been implemented in the past for the construction of energy landscapes. Neural network models based on spin glass physics provide an excellent mathematical framework for the construction of energy landscapes. This framework uses a minimal number of parameters and constructs the landscape using data from the actual phenomena. In the past neural network models were used to mimic the storage and retrieval process of memories (patterns) in the brain. With advances in the field now, these models are being used in machine learning, deep learning and modeling of complex phenomena. Most of the past literature focuses on increasing the storage capacity and stability of stored patterns in the network but does not study these models from a modeling perspective or an energy landscape perspective. This dissertation focuses on neural network models both from a modeling perspective and from an energy landscape perspective. I firstly show how the cellular interconversion phenomenon can be modeled as a transition between attractor states on an epigenetic landscape constructed using neural network models. The model allows the identification of a reaction coordinate of cellular interconversion by analyzing experimental and simulation time course data. Monte Carlo simulations of the model show that the initial phase of cellular interconversion is a Poisson process and the later phase of cellular interconversion is a deterministic process. Secondly, I explore the static features of landscapes generated using neural network models, such as sizes of basins of attraction and densities of metastable states. The simulation results show that the static landscape features are strongly dependent on the correlation strength and correlation structure between patterns. Using different hierarchical structures of the correlation between patterns affects the landscape features
Hierarchical Model Predictive Control for Plug-and-Play Resource Distribution
DEFF Research Database (Denmark)
Bendtsen, Jan Dimon; Trangbæk, K; Stoustrup, Jakob
2012-01-01
of autonomous units. The approach is inspired by smart-grid electric power production and consumption systems, where the flexibility of a large number of power producing and/or power consuming units can be exploited in a smart-grid solution. The objective is to accommodate the load variation on the grid......This chapter deals with hierarchical model predictive control (MPC) of distributed systems. A three level hierarchical approach is proposed, consisting of a high level MPC controller, a second level of so-called aggregators, controlled by an online MPC-like algorithm, and a lower level......, arising on one hand from varying consumption, on the other hand by natural variations in power production e.g. from wind turbines. The proposed method can also be applied to supply chain management systems, where the challenge is to balance demand and supply, using a number of storages each with a maximal...
Hou, Fujun
2016-01-01
This paper provides a description of how market competitiveness evaluations concerning mechanical equipment can be made in the context of multi-criteria decision environments. It is assumed that, when we are evaluating the market competitiveness, there are limited number of candidates with some required qualifications, and the alternatives will be pairwise compared on a ratio scale. The qualifications are depicted as criteria in hierarchical structure. A hierarchical decision model called PCbHDM was used in this study based on an analysis of its desirable traits. Illustration and comparison shows that the PCbHDM provides a convenient and effective tool for evaluating the market competitiveness of mechanical equipment. The researchers and practitioners might use findings of this paper in application of PCbHDM.
Hierarchical relaxation dynamics in a tilted two-band Bose-Hubbard model
Cosme, Jayson G.
2018-04-01
We numerically examine slow and hierarchical relaxation dynamics of interacting bosons described by a tilted two-band Bose-Hubbard model. The system is found to exhibit signatures of quantum chaos within the spectrum and the validity of the eigenstate thermalization hypothesis for relevant physical observables is demonstrated for certain parameter regimes. Using the truncated Wigner representation in the semiclassical limit of the system, dynamics of relevant observables reveal hierarchical relaxation and the appearance of prethermalized states is studied from the perspective of statistics of the underlying mean-field trajectories. The observed prethermalization scenario can be attributed to different stages of glassy dynamics in the mode-time configuration space due to dynamical phase transition between ergodic and nonergodic trajectories.
Yau, Christopher; Holmes, Chris
2011-07-01
We propose a hierarchical Bayesian nonparametric mixture model for clustering when some of the covariates are assumed to be of varying relevance to the clustering problem. This can be thought of as an issue in variable selection for unsupervised learning. We demonstrate that by defining a hierarchical population based nonparametric prior on the cluster locations scaled by the inverse covariance matrices of the likelihood we arrive at a 'sparsity prior' representation which admits a conditionally conjugate prior. This allows us to perform full Gibbs sampling to obtain posterior distributions over parameters of interest including an explicit measure of each covariate's relevance and a distribution over the number of potential clusters present in the data. This also allows for individual cluster specific variable selection. We demonstrate improved inference on a number of canonical problems.
Li, Ben; Li, Yunxiao; Qin, Zhaohui S
2017-06-01
Modern high-throughput biotechnologies such as microarray and next generation sequencing produce a massive amount of information for each sample assayed. However, in a typical high-throughput experiment, only limited amount of data are observed for each individual feature, thus the classical 'large p , small n ' problem. Bayesian hierarchical model, capable of borrowing strength across features within the same dataset, has been recognized as an effective tool in analyzing such data. However, the shrinkage effect, the most prominent feature of hierarchical features, can lead to undesirable over-correction for some features. In this work, we discuss possible causes of the over-correction problem and propose several alternative solutions. Our strategy is rooted in the fact that in the Big Data era, large amount of historical data are available which should be taken advantage of. Our strategy presents a new framework to enhance the Bayesian hierarchical model. Through simulation and real data analysis, we demonstrated superior performance of the proposed strategy. Our new strategy also enables borrowing information across different platforms which could be extremely useful with emergence of new technologies and accumulation of data from different platforms in the Big Data era. Our method has been implemented in R package "adaptiveHM", which is freely available from https://github.com/benliemory/adaptiveHM.
DEFF Research Database (Denmark)
Mantzouni, Irene; Sørensen, Helle; O'Hara, Robert B.
2010-01-01
and Beverton and Holt stock–recruitment (SR) models were extended by applying hierarchical methods, mixed-effects models, and Bayesian inference to incorporate the influence of these ecosystem factors on model parameters representing cod maximum reproductive rate and carrying capacity. We identified......Understanding how temperature affects cod (Gadus morhua) ecology is important for forecasting how populations will develop as climate changes in future. The effects of spawning-season temperature and habitat size on cod recruitment dynamics have been investigated across the North Atlantic. Ricker...
Modeling for mechanical response of CICC by hierarchical approach and ABAQUS simulation
Energy Technology Data Exchange (ETDEWEB)
Li, Y.X.; Wang, X.; Gao, Y.W., E-mail: ywgao@lzu.edu.cn; Zhou, Y.H.
2013-11-15
Highlights: • We develop an analytical model based on the hierarchical approach of classical wire rope theory. • The numerical model is set up through ABAQUS to verify and enhance the theoretical model. • We calculate two concerned mechanical response: global displacement–load curve and local axial strain distribution. • Elastic–plasticity is the main character in loading curve, and the friction between adjacent strands plays a significant role in the distribution map. -- Abstract: An unexpected degradation frequently occurs in superconducting cable (CICC) due to the mechanical response (deformation) when suffering from electromagnetic load and thermal load during operation. Because of the cable's hierarchical twisted configuration, it is difficult to quantitatively model the mechanical response. In addition, the local mechanical characteristics such as strain distribution could be hardly monitored via experimental method. To address this issue, we develop an analytical model based on the hierarchical approach of classical wire rope theory. This approach follows the algorithm advancing successively from n + 1 stage (e.g. 3 × 3 × 5 subcable) to n stage (e.g. 3 × 3 subcable). There are no complicated numerical procedures required in this model. Meanwhile, the numerical model is set up through ABAQUS to verify and enhance the theoretical model. Subsequently, we calculate two concerned mechanical responses: global displacement–load curve and local axial strain distribution. We find that in the global displacement–load curve, the elastic–plasticity is the main character, and the higher-level cable shows enhanced nonlinear characteristics. As for the local distribution, the friction among adjacent strands plays a significant role in this map. The magnitude of friction strongly influences the regularity of the distribution at different twisted stages. More detailed results are presented in this paper.
Modeling for mechanical response of CICC by hierarchical approach and ABAQUS simulation
International Nuclear Information System (INIS)
Li, Y.X.; Wang, X.; Gao, Y.W.; Zhou, Y.H.
2013-01-01
Highlights: • We develop an analytical model based on the hierarchical approach of classical wire rope theory. • The numerical model is set up through ABAQUS to verify and enhance the theoretical model. • We calculate two concerned mechanical response: global displacement–load curve and local axial strain distribution. • Elastic–plasticity is the main character in loading curve, and the friction between adjacent strands plays a significant role in the distribution map. -- Abstract: An unexpected degradation frequently occurs in superconducting cable (CICC) due to the mechanical response (deformation) when suffering from electromagnetic load and thermal load during operation. Because of the cable's hierarchical twisted configuration, it is difficult to quantitatively model the mechanical response. In addition, the local mechanical characteristics such as strain distribution could be hardly monitored via experimental method. To address this issue, we develop an analytical model based on the hierarchical approach of classical wire rope theory. This approach follows the algorithm advancing successively from n + 1 stage (e.g. 3 × 3 × 5 subcable) to n stage (e.g. 3 × 3 subcable). There are no complicated numerical procedures required in this model. Meanwhile, the numerical model is set up through ABAQUS to verify and enhance the theoretical model. Subsequently, we calculate two concerned mechanical responses: global displacement–load curve and local axial strain distribution. We find that in the global displacement–load curve, the elastic–plasticity is the main character, and the higher-level cable shows enhanced nonlinear characteristics. As for the local distribution, the friction among adjacent strands plays a significant role in this map. The magnitude of friction strongly influences the regularity of the distribution at different twisted stages. More detailed results are presented in this paper
DEFF Research Database (Denmark)
Kristensen, Anders Ringgaard; Søllested, Thomas Algot
2004-01-01
that really uses all these methodological improvements. In this paper, the biological model describing the performance and feed intake of sows is presented. In particular, estimation of herd specific parameters is emphasized. The optimization model is described in a subsequent paper......Several replacement models have been presented in literature. In other applicational areas like dairy cow replacement, various methodological improvements like hierarchical Markov processes and Bayesian updating have been implemented, but not in sow models. Furthermore, there are methodological...... improvements like multi-level hierarchical Markov processes with decisions on multiple time scales, efficient methods for parameter estimations at herd level and standard software that has been hardly implemented at all in any replacement model. The aim of this study is to present a sow replacement model...
A hierarchical modeling methodology for the definition and selection of requirements
Dufresne, Stephane
This dissertation describes the development of a requirements analysis methodology that takes into account the concept of operations and the hierarchical decomposition of aerospace systems. At the core of the methodology, the Analytic Network Process (ANP) is used to ensure the traceability between the qualitative and quantitative information present in the hierarchical model. The proposed methodology is implemented to the requirements definition of a hurricane tracker Unmanned Aerial Vehicle. Three research objectives are identified in this work; (1) improve the requirements mapping process by matching the stakeholder expectations with the concept of operations, systems and available resources; (2) reduce the epistemic uncertainty surrounding the requirements and requirements mapping; and (3) improve the requirements down-selection process by taking into account the level of importance of the criteria and the available resources. Several challenges are associated with the identification and definition of requirements. The complexity of the system implies that a large number of requirements are needed to define the systems. These requirements are defined early in the conceptual design, where the level of knowledge is relatively low and the level of uncertainty is large. The proposed methodology intends to increase the level of knowledge and reduce the level of uncertainty by guiding the design team through a structured process. To address these challenges, a new methodology is created to flow-down the requirements from the stakeholder expectations to the systems alternatives. A taxonomy of requirements is created to classify the information gathered during the problem definition. Subsequently, the operational and systems functions and measures of effectiveness are integrated to a hierarchical model to allow the traceability of the information. Monte Carlo methods are used to evaluate the variations of the hierarchical model elements and consequently reduce the
Hierarchical model generation for architecture reconstruction using laser-scanned point clouds
Ning, Xiaojuan; Wang, Yinghui; Zhang, Xiaopeng
2014-06-01
Architecture reconstruction using terrestrial laser scanner is a prevalent and challenging research topic. We introduce an automatic, hierarchical architecture generation framework to produce full geometry of architecture based on a novel combination of facade structures detection, detailed windows propagation, and hierarchical model consolidation. Our method highlights the generation of geometric models automatically fitting the design information of the architecture from sparse, incomplete, and noisy point clouds. First, the planar regions detected in raw point clouds are interpreted as three-dimensional clusters. Then, the boundary of each region extracted by projecting the points into its corresponding two-dimensional plane is classified to obtain detailed shape structure elements (e.g., windows and doors). Finally, a polyhedron model is generated by calculating the proposed local structure model, consolidated structure model, and detailed window model. Experiments on modeling the scanned real-life buildings demonstrate the advantages of our method, in which the reconstructed models not only correspond to the information of architectural design accurately, but also satisfy the requirements for visualization and analysis.
Hierarchical Agent-Based Integrated Modelling Approach for Microgrids with Adoption of EVs and HRES
Directory of Open Access Journals (Sweden)
Peng Han
2014-01-01
Full Text Available The large adoption of electric vehicles (EVs, hybrid renewable energy systems (HRESs, and the increasing of the loads shall bring significant challenges to the microgrid. The methodology to model microgrid with high EVs and HRESs penetrations is the key to EVs adoption assessment and optimized HRESs deployment. However, considering the complex interactions of the microgrid containing massive EVs and HRESs, any previous single modelling approaches are insufficient. Therefore in this paper, the methodology named Hierarchical Agent-based Integrated Modelling Approach (HAIMA is proposed. With the effective integration of the agent-based modelling with other advanced modelling approaches, the proposed approach theoretically contributes to a new microgrid model hierarchically constituted by microgrid management layer, component layer, and event layer. Then the HAIMA further links the key parameters and interconnects them to achieve the interactions of the whole model. Furthermore, HAIMA practically contributes to a comprehensive microgrid operation system, through which the assessment of the proposed model and the impact of the EVs adoption are achieved. Simulations show that the proposed HAIMA methodology will be beneficial for the microgrid study and EV’s operation assessment and shall be further utilized for the energy management, electricity consumption prediction, the EV scheduling control, and HRES deployment optimization.
Hu, Jiexiang; Zhou, Qi; Jiang, Ping; Shao, Xinyu; Xie, Tingli
2018-01-01
Variable-fidelity (VF) modelling methods have been widely used in complex engineering system design to mitigate the computational burden. Building a VF model generally includes two parts: design of experiments and metamodel construction. In this article, an adaptive sampling method based on improved hierarchical kriging (ASM-IHK) is proposed to refine the improved VF model. First, an improved hierarchical kriging model is developed as the metamodel, in which the low-fidelity model is varied through a polynomial response surface function to capture the characteristics of a high-fidelity model. Secondly, to reduce local approximation errors, an active learning strategy based on a sequential sampling method is introduced to make full use of the already required information on the current sampling points and to guide the sampling process of the high-fidelity model. Finally, two numerical examples and the modelling of the aerodynamic coefficient for an aircraft are provided to demonstrate the approximation capability of the proposed approach, as well as three other metamodelling methods and two sequential sampling methods. The results show that ASM-IHK provides a more accurate metamodel at the same simulation cost, which is very important in metamodel-based engineering design problems.
Dynamic classification of fetal heart rates by hierarchical Dirichlet process mixture models.
Directory of Open Access Journals (Sweden)
Kezi Yu
Full Text Available In this paper, we propose an application of non-parametric Bayesian (NPB models for classification of fetal heart rate (FHR recordings. More specifically, we propose models that are used to differentiate between FHR recordings that are from fetuses with or without adverse outcomes. In our work, we rely on models based on hierarchical Dirichlet processes (HDP and the Chinese restaurant process with finite capacity (CRFC. Two mixture models were inferred from real recordings, one that represents healthy and another, non-healthy fetuses. The models were then used to classify new recordings and provide the probability of the fetus being healthy. First, we compared the classification performance of the HDP models with that of support vector machines on real data and concluded that the HDP models achieved better performance. Then we demonstrated the use of mixture models based on CRFC for dynamic classification of the performance of (FHR recordings in a real-time setting.
HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python.
Wiecki, Thomas V; Sofer, Imri; Frank, Michael J
2013-01-01
The diffusion model is a commonly used tool to infer latent psychological processes underlying decision-making, and to link them to neural mechanisms based on response times. Although efficient open source software has been made available to quantitatively fit the model to data, current estimation methods require an abundance of response time measurements to recover meaningful parameters, and only provide point estimates of each parameter. In contrast, hierarchical Bayesian parameter estimation methods are useful for enhancing statistical power, allowing for simultaneous estimation of individual subject parameters and the group distribution that they are drawn from, while also providing measures of uncertainty in these parameters in the posterior distribution. Here, we present a novel Python-based toolbox called HDDM (hierarchical drift diffusion model), which allows fast and flexible estimation of the the drift-diffusion model and the related linear ballistic accumulator model. HDDM requires fewer data per subject/condition than non-hierarchical methods, allows for full Bayesian data analysis, and can handle outliers in the data. Finally, HDDM supports the estimation of how trial-by-trial measurements (e.g., fMRI) influence decision-making parameters. This paper will first describe the theoretical background of the drift diffusion model and Bayesian inference. We then illustrate usage of the toolbox on a real-world data set from our lab. Finally, parameter recovery studies show that HDDM beats alternative fitting methods like the χ(2)-quantile method as well as maximum likelihood estimation. The software and documentation can be downloaded at: http://ski.clps.brown.edu/hddm_docs/
HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python
Directory of Open Access Journals (Sweden)
Thomas V Wiecki
2013-08-01
Full Text Available The diffusion model is a commonly used tool to infer latent psychological processes underlying decision making, and to link them to neural mechanisms based on reaction times. Although efficient open source software has been made available to quantitatively fit the model to data, current estimation methods require an abundance of reaction time measurements to recover meaningful parameters, and only provide point estimates of each parameter. In contrast, hierarchical Bayesian parameter estimation methods are useful for enhancing statistical power, allowing for simultaneous estimation of individual subject parameters and the group distribution that they are drawn from, while also providing measures of uncertainty in these parameters in the posterior distribution. Here, we present a novel Python-based toolbox called HDDM (hierarchical drift diffusion model, which allows fast and flexible estimation of the the drift-diffusion model and the related linear ballistic accumulator model. HDDM requires fewer data per subject / condition than non-hierarchical method, allows for full Bayesian data analysis, and can handle outliers in the data. Finally, HDDM supports the estimation of how trial-by-trial measurements (e.g. fMRI influence decision making parameters. This paper will first describe the theoretical background of drift-diffusion model and Bayesian inference. We then illustrate usage of the toolbox on a real-world data set from our lab. Finally, parameter recovery studies show that HDDM beats alternative fitting methods like the chi-quantile method as well as maximum likelihood estimation. The software and documentation can be downloaded at: http://ski.clps.brown.edu/hddm_docs
Directory of Open Access Journals (Sweden)
Andrew Cron
Full Text Available Flow cytometry is the prototypical assay for multi-parameter single cell analysis, and is essential in vaccine and biomarker research for the enumeration of antigen-specific lymphocytes that are often found in extremely low frequencies (0.1% or less. Standard analysis of flow cytometry data relies on visual identification of cell subsets by experts, a process that is subjective and often difficult to reproduce. An alternative and more objective approach is the use of statistical models to identify cell subsets of interest in an automated fashion. Two specific challenges for automated analysis are to detect extremely low frequency event subsets without biasing the estimate by pre-processing enrichment, and the ability to align cell subsets across multiple data samples for comparative analysis. In this manuscript, we develop hierarchical modeling extensions to the Dirichlet Process Gaussian Mixture Model (DPGMM approach we have previously described for cell subset identification, and show that the hierarchical DPGMM (HDPGMM naturally generates an aligned data model that captures both commonalities and variations across multiple samples. HDPGMM also increases the sensitivity to extremely low frequency events by sharing information across multiple samples analyzed simultaneously. We validate the accuracy and reproducibility of HDPGMM estimates of antigen-specific T cells on clinically relevant reference peripheral blood mononuclear cell (PBMC samples with known frequencies of antigen-specific T cells. These cell samples take advantage of retrovirally TCR-transduced T cells spiked into autologous PBMC samples to give a defined number of antigen-specific T cells detectable by HLA-peptide multimer binding. We provide open source software that can take advantage of both multiple processors and GPU-acceleration to perform the numerically-demanding computations. We show that hierarchical modeling is a useful probabilistic approach that can provide a
Hierarchical Models for Type Ia Supernova Light Curves in the Optical and Near Infrared
Mandel, Kaisey; Narayan, G.; Kirshner, R. P.
2011-01-01
I have constructed a comprehensive statistical model for Type Ia supernova optical and near infrared light curves. Since the near infrared light curves are excellent standard candles and are less sensitive to dust extinction and reddening, the combination of near infrared and optical data better constrains the host galaxy extinction and improves the precision of distance predictions to SN Ia. A hierarchical probabilistic model coherently accounts for multiple random and uncertain effects, including photometric error, intrinsic supernova light curve variations and correlations across phase and wavelength, dust extinction and reddening, peculiar velocity dispersion and distances. An improved BayeSN MCMC code is implemented for computing probabilistic inferences for individual supernovae and the SN Ia and host galaxy dust populations. I use this hierarchical model to analyze nearby Type Ia supernovae with optical and near infared data from the PAIRITEL, CfA3, and CSP samples and the literature. Using cross-validation to test the robustness of the model predictions, I find that the rms Hubble diagram scatter of predicted distance moduli is 0.11 mag for SN with optical and near infrared data versus 0.15 mag for SN with only optical data. Accounting for the dispersion expected from random peculiar velocities, the rms intrinsic prediction error is 0.08-0.10 mag for SN with both optical and near infrared light curves. I discuss results for the inferred intrinsic correlation structures of the optical-NIR SN Ia light curves and the host galaxy dust distribution captured by the hierarchical model. The continued observation and analysis of Type Ia SN in the optical and near infrared is important for improving their utility as precise and accurate cosmological distance indicators.
A conceptual modeling framework for discrete event simulation using hierarchical control structures.
Furian, N; O'Sullivan, M; Walker, C; Vössner, S; Neubacher, D
2015-08-01
Conceptual Modeling (CM) is a fundamental step in a simulation project. Nevertheless, it is only recently that structured approaches towards the definition and formulation of conceptual models have gained importance in the Discrete Event Simulation (DES) community. As a consequence, frameworks and guidelines for applying CM to DES have emerged and discussion of CM for DES is increasing. However, both the organization of model-components and the identification of behavior and system control from standard CM approaches have shortcomings that limit CM's applicability to DES. Therefore, we discuss the different aspects of previous CM frameworks and identify their limitations. Further, we present the Hierarchical Control Conceptual Modeling framework that pays more attention to the identification of a models' system behavior, control policies and dispatching routines and their structured representation within a conceptual model. The framework guides the user step-by-step through the modeling process and is illustrated by a worked example.
Efficient Actor-Critic Algorithm with Hierarchical Model Learning and Planning
Fu, QiMing
2016-01-01
To improve the convergence rate and the sample efficiency, two efficient learning methods AC-HMLP and RAC-HMLP (AC-HMLP with ℓ 2-regularization) are proposed by combining actor-critic algorithm with hierarchical model learning and planning. The hierarchical models consisting of the local and the global models, which are learned at the same time during learning of the value function and the policy, are approximated by local linear regression (LLR) and linear function approximation (LFA), respectively. Both the local model and the global model are applied to generate samples for planning; the former is used only if the state-prediction error does not surpass the threshold at each time step, while the latter is utilized at the end of each episode. The purpose of taking both models is to improve the sample efficiency and accelerate the convergence rate of the whole algorithm through fully utilizing the local and global information. Experimentally, AC-HMLP and RAC-HMLP are compared with three representative algorithms on two Reinforcement Learning (RL) benchmark problems. The results demonstrate that they perform best in terms of convergence rate and sample efficiency. PMID:27795704
Padilla, Jennifer E; Liu, Wenyan; Seeman, Nadrian C
2012-06-01
We introduce a hierarchical self assembly algorithm that produces the quasiperiodic patterns found in the Robinson tilings and suggest a practical implementation of this algorithm using DNA origami tiles. We modify the abstract Tile Assembly Model, (aTAM), to include active signaling and glue activation in response to signals to coordinate the hierarchical assembly of Robinson patterns of arbitrary size from a small set of tiles according to the tile substitution algorithm that generates them. Enabling coordinated hierarchical assembly in the aTAM makes possible the efficient encoding of the recursive process of tile substitution.
TYPE Ia SUPERNOVA LIGHT CURVE INFERENCE: HIERARCHICAL MODELS IN THE OPTICAL AND NEAR-INFRARED
International Nuclear Information System (INIS)
Mandel, Kaisey S.; Narayan, Gautham; Kirshner, Robert P.
2011-01-01
We have constructed a comprehensive statistical model for Type Ia supernova (SN Ia) light curves spanning optical through near-infrared (NIR) data. A hierarchical framework coherently models multiple random and uncertain effects, including intrinsic supernova (SN) light curve covariances, dust extinction and reddening, and distances. An improved BAYESN Markov Chain Monte Carlo code computes probabilistic inferences for the hierarchical model by sampling the global probability density of parameters describing individual SNe and the population. We have applied this hierarchical model to optical and NIR data of 127 SNe Ia from PAIRITEL, CfA3, Carnegie Supernova Project, and the literature. We find an apparent population correlation between the host galaxy extinction A V and the ratio of total-to-selective dust absorption R V . For SNe with low dust extinction, A V ∼ V ∼ 2.5-2.9, while at high extinctions, A V ∼> 1, low values of R V < 2 are favored. The NIR luminosities are excellent standard candles and are less sensitive to dust extinction. They exhibit low correlation with optical peak luminosities, and thus provide independent information on distances. The combination of NIR and optical data constrains the dust extinction and improves the predictive precision of individual SN Ia distances by about 60%. Using cross-validation, we estimate an rms distance modulus prediction error of 0.11 mag for SNe with optical and NIR data versus 0.15 mag for SNe with optical data alone. Continued study of SNe Ia in the NIR is important for improving their utility as precise and accurate cosmological distance indicators.
International Nuclear Information System (INIS)
Makela, A.
2003-01-01
A generally accepted method has not emerged for managing the different temporal and spatial scales in a forest ecosystem. This paper reviews a hierarchical-modular modelling tradition, with the main focus on individual tree growth throughout the rotation. At this scale, model performance requires (i) realistic long-term dynamic properties, (ii) realistic responses of growth and mortality of competing individuals, and (iii) realistic responses to ecophysio-logical inputs. Model development and validation are illustrated through allocation patterns, height growth, and size-related feedbacks. Empirical work to test the approach is reviewed. In this approach, finer scale effects are embedded in parameters calculated using more detailed, interacting modules. This is exemplified by (i) the within-year effect of weather on annual photosynthesis, (ii) the effects of fast soil processes on carbon allocation and photosynthesis, and (iii) the utilization of detailed stem structure to predict wood quality. Prevailing management paradigms are reflected in growth modelling. A shift of emphasis has occurred from productivity in homogeneous canopies towards, e.g., wood quality versus total yield, spatially more explicit models, and growth decline in old-growth forests. The new problems emphasize the hierarchy of the system and interscale interactions, suggesting that the hierarchical-modular approach could prove constructive. (author)
Hierarchical modeling and robust synthesis for the preliminary design of large scale complex systems
Koch, Patrick Nathan
Large-scale complex systems are characterized by multiple interacting subsystems and the analysis of multiple disciplines. The design and development of such systems inevitably requires the resolution of multiple conflicting objectives. The size of complex systems, however, prohibits the development of comprehensive system models, and thus these systems must be partitioned into their constituent parts. Because simultaneous solution of individual subsystem models is often not manageable iteration is inevitable and often excessive. In this dissertation these issues are addressed through the development of a method for hierarchical robust preliminary design exploration to facilitate concurrent system and subsystem design exploration, for the concurrent generation of robust system and subsystem specifications for the preliminary design of multi-level, multi-objective, large-scale complex systems. This method is developed through the integration and expansion of current design techniques: (1) Hierarchical partitioning and modeling techniques for partitioning large-scale complex systems into more tractable parts, and allowing integration of subproblems for system synthesis, (2) Statistical experimentation and approximation techniques for increasing both the efficiency and the comprehensiveness of preliminary design exploration, and (3) Noise modeling techniques for implementing robust preliminary design when approximate models are employed. The method developed and associated approaches are illustrated through their application to the preliminary design of a commercial turbofan turbine propulsion system; the turbofan system-level problem is partitioned into engine cycle and configuration design and a compressor module is integrated for more detailed subsystem-level design exploration, improving system evaluation.
A Hierarchical Feature Extraction Model for Multi-Label Mechanical Patent Classification
Directory of Open Access Journals (Sweden)
Jie Hu
2018-01-01
Full Text Available Various studies have focused on feature extraction methods for automatic patent classification in recent years. However, most of these approaches are based on the knowledge from experts in related domains. Here we propose a hierarchical feature extraction model (HFEM for multi-label mechanical patent classification, which is able to capture both local features of phrases as well as global and temporal semantics. First, a n-gram feature extractor based on convolutional neural networks (CNNs is designed to extract salient local lexical-level features. Next, a long dependency feature extraction model based on the bidirectional long–short-term memory (BiLSTM neural network model is proposed to capture sequential correlations from higher-level sequence representations. Then the HFEM algorithm and its hierarchical feature extraction architecture are detailed. We establish the training, validation and test datasets, containing 72,532, 18,133, and 2679 mechanical patent documents, respectively, and then check the performance of HFEMs. Finally, we compared the results of the proposed HFEM and three other single neural network models, namely CNN, long–short-term memory (LSTM, and BiLSTM. The experimental results indicate that our proposed HFEM outperforms the other compared models in both precision and recall.
A hierarchical bayesian model to quantify uncertainty of stream water temperature forecasts.
Directory of Open Access Journals (Sweden)
Guillaume Bal
Full Text Available Providing generic and cost effective modelling approaches to reconstruct and forecast freshwater temperature using predictors as air temperature and water discharge is a prerequisite to understanding ecological processes underlying the impact of water temperature and of global warming on continental aquatic ecosystems. Using air temperature as a simple linear predictor of water temperature can lead to significant bias in forecasts as it does not disentangle seasonality and long term trends in the signal. Here, we develop an alternative approach based on hierarchical Bayesian statistical time series modelling of water temperature, air temperature and water discharge using seasonal sinusoidal periodic signals and time varying means and amplitudes. Fitting and forecasting performances of this approach are compared with that of simple linear regression between water and air temperatures using i an emotive simulated example, ii application to three French coastal streams with contrasting bio-geographical conditions and sizes. The time series modelling approach better fit data and does not exhibit forecasting bias in long term trends contrary to the linear regression. This new model also allows for more accurate forecasts of water temperature than linear regression together with a fair assessment of the uncertainty around forecasting. Warming of water temperature forecast by our hierarchical Bayesian model was slower and more uncertain than that expected with the classical regression approach. These new forecasts are in a form that is readily usable in further ecological analyses and will allow weighting of outcomes from different scenarios to manage climate change impacts on freshwater wildlife.
A conceptual modeling framework for discrete event simulation using hierarchical control structures
Furian, N.; O’Sullivan, M.; Walker, C.; Vössner, S.; Neubacher, D.
2015-01-01
Conceptual Modeling (CM) is a fundamental step in a simulation project. Nevertheless, it is only recently that structured approaches towards the definition and formulation of conceptual models have gained importance in the Discrete Event Simulation (DES) community. As a consequence, frameworks and guidelines for applying CM to DES have emerged and discussion of CM for DES is increasing. However, both the organization of model-components and the identification of behavior and system control from standard CM approaches have shortcomings that limit CM’s applicability to DES. Therefore, we discuss the different aspects of previous CM frameworks and identify their limitations. Further, we present the Hierarchical Control Conceptual Modeling framework that pays more attention to the identification of a models’ system behavior, control policies and dispatching routines and their structured representation within a conceptual model. The framework guides the user step-by-step through the modeling process and is illustrated by a worked example. PMID:26778940
Hierarchical modeling of plasma and transport phenomena in a dielectric barrier discharge reactor
Bali, N.; Aggelopoulos, C. A.; Skouras, E. D.; Tsakiroglou, C. D.; Burganos, V. N.
2017-12-01
A novel dual-time hierarchical approach is developed to link the plasma process to macroscopic transport phenomena in the interior of a dielectric barrier discharge (DBD) reactor that has been used for soil remediation (Aggelopoulos et al 2016 Chem. Eng. J. 301 353-61). The generation of active species by plasma reactions is simulated at the microseconds (µs) timescale, whereas convection and thermal conduction are simulated at the macroscopic (minutes) timescale. This hierarchical model is implemented in order to investigate the influence of the plasma DBD process on the transport and reaction mechanisms during remediation of polluted soil. In the microscopic model, the variables of interest include the plasma-induced reactive concentrations, while in the macroscopic approach, the temperature distribution, and the velocity field both inside the discharge gap and within the polluted soil material as well. For the latter model, the Navier-Stokes and Darcy Brinkman equations for the transport phenomena in the porous domain are solved numerically using a FEM software. The effective medium theory is employed to provide estimates of the effective time-evolving and three-phase transport properties in the soil sample. Model predictions considering the temporal evolution of the plasma remediation process are presented and compared with corresponding experimental data.
A model of shape memory materials with hierarchical twinning: statics and dynamics
International Nuclear Information System (INIS)
Saxena, A.; Bishop, A.R.; Wu, Y.; Lookman, T.
1995-01-01
We consider a model of shape memory materials in which hierarchical twinning near the habit plane (austenite-martensite interface) is a new and crucial ingredient. The model includes (1) a triple-well potential (φ 6 model) in local shear strain, (2) strain gradient terms up to second order in strain and fourth order in gradient, and (3) all symmetry allowed compositional fluctuation-induced strain gradient terms. The last term favors hierarchy which enables communication between macroscopic (cm) and microscopic (A) regions essential for shape memory. Hierarchy also stabilizes tweed formation (criss-cross patterns of twins). External stress or pressure modulates (''patterns'') the spacing of domain walls. Therefore the ''pattern'' is encoded in the modulated hierarchical variation of the depth and width of the twins. This hierarchy of length scales provides a related hierarchy of time scales and thus the possibility of non-exponential decay. The four processes of the complete shape memory cycle-write, record, erase and recall-are explained within this model. Preliminary results based on 2D molecular dynamics are shown for tweed and hierarchy formation. (orig.)
Shankle, William R.; Pooley, James P.; Steyvers, Mark; Hara, Junko; Mangrola, Tushar; Reisberg, Barry; Lee, Michael D.
2012-01-01
Determining how cognition affects functional abilities is important in Alzheimer’s disease and related disorders (ADRD). 280 patients (normal or ADRD) received a total of 1,514 assessments using the Functional Assessment Staging Test (FAST) procedure and the MCI Screen (MCIS). A hierarchical Bayesian cognitive processing (HBCP) model was created by embedding a signal detection theory (SDT) model of the MCIS delayed recognition memory task into a hierarchical Bayesian framework. The SDT model used latent parameters of discriminability (memory process) and response bias (executive function) to predict, simultaneously, recognition memory performance for each patient and each FAST severity group. The observed recognition memory data did not distinguish the six FAST severity stages, but the latent parameters completely separated them. The latent parameters were also used successfully to transform the ordinal FAST measure into a continuous measure reflecting the underlying continuum of functional severity. HBCP models applied to recognition memory data from clinical practice settings accurately translated a latent measure of cognition to a continuous measure of functional severity for both individuals and FAST groups. Such a translation links two levels of brain information processing, and may enable more accurate correlations with other levels, such as those characterized by biomarkers. PMID:22407225
Holan, S.H.; Davis, G.M.; Wildhaber, M.L.; DeLonay, A.J.; Papoulias, D.M.
2009-01-01
The timing of spawning in fish is tightly linked to environmental factors; however, these factors are not very well understood for many species. Specifically, little information is available to guide recruitment efforts for endangered species such as the sturgeon. Therefore, we propose a Bayesian hierarchical model for predicting the success of spawning of the shovelnose sturgeon which uses both biological and behavioural (longitudinal) data. In particular, we use data that were produced from a tracking study that was conducted in the Lower Missouri River. The data that were produced from this study consist of biological variables associated with readiness to spawn along with longitudinal behavioural data collected by using telemetry and archival data storage tags. These high frequency data are complex both biologically and in the underlying behavioural process. To accommodate such complexity we developed a hierarchical linear regression model that uses an eigenvalue predictor, derived from the transition probability matrix of a two-state Markov switching model with generalized auto-regressive conditional heteroscedastic dynamics. Finally, to minimize the computational burden that is associated with estimation of this model, a parallel computing approach is proposed. ?? Journal compilation 2009 Royal Statistical Society.
Hensman, James; Lawrence, Neil D; Rattray, Magnus
2013-08-20
Time course data from microarrays and high-throughput sequencing experiments require simple, computationally efficient and powerful statistical models to extract meaningful biological signal, and for tasks such as data fusion and clustering. Existing methodologies fail to capture either the temporal or replicated nature of the experiments, and often impose constraints on the data collection process, such as regularly spaced samples, or similar sampling schema across replications. We propose hierarchical Gaussian processes as a general model of gene expression time-series, with application to a variety of problems. In particular, we illustrate the method's capacity for missing data imputation, data fusion and clustering.The method can impute data which is missing both systematically and at random: in a hold-out test on real data, performance is significantly better than commonly used imputation methods. The method's ability to model inter- and intra-cluster variance leads to more biologically meaningful clusters. The approach removes the necessity for evenly spaced samples, an advantage illustrated on a developmental Drosophila dataset with irregular replications. The hierarchical Gaussian process model provides an excellent statistical basis for several gene-expression time-series tasks. It has only a few additional parameters over a regular GP, has negligible additional complexity, is easily implemented and can be integrated into several existing algorithms. Our experiments were implemented in python, and are available from the authors' website: http://staffwww.dcs.shef.ac.uk/people/J.Hensman/.
Diagnostics for generalized linear hierarchical models in network meta-analysis.
Zhao, Hong; Hodges, James S; Carlin, Bradley P
2017-09-01
Network meta-analysis (NMA) combines direct and indirect evidence comparing more than 2 treatments. Inconsistency arises when these 2 information sources differ. Previous work focuses on inconsistency detection, but little has been done on how to proceed after identifying inconsistency. The key issue is whether inconsistency changes an NMA's substantive conclusions. In this paper, we examine such discrepancies from a diagnostic point of view. Our methods seek to detect influential and outlying observations in NMA at a trial-by-arm level. These observations may have a large effect on the parameter estimates in NMA, or they may deviate markedly from other observations. We develop formal diagnostics for a Bayesian hierarchical model to check the effect of deleting any observation. Diagnostics are specified for generalized linear hierarchical NMA models and investigated for both published and simulated datasets. Results from our example dataset using either contrast- or arm-based models and from the simulated datasets indicate that the sources of inconsistency in NMA tend not to be influential, though results from the example dataset suggest that they are likely to be outliers. This mimics a familiar result from linear model theory, in which outliers with low leverage are not influential. Future extensions include incorporating baseline covariates and individual-level patient data. Copyright © 2017 John Wiley & Sons, Ltd.
Hierarchical spatial models for predicting pygmy rabbit distribution and relative abundance
Wilson, T.L.; Odei, J.B.; Hooten, M.B.; Edwards, T.C.
2010-01-01
Conservationists routinely use species distribution models to plan conservation, restoration and development actions, while ecologists use them to infer process from pattern. These models tend to work well for common or easily observable species, but are of limited utility for rare and cryptic species. This may be because honest accounting of known observation bias and spatial autocorrelation are rarely included, thereby limiting statistical inference of resulting distribution maps. We specified and implemented a spatially explicit Bayesian hierarchical model for a cryptic mammal species (pygmy rabbit Brachylagus idahoensis). Our approach used two levels of indirect sign that are naturally hierarchical (burrows and faecal pellets) to build a model that allows for inference on regression coefficients as well as spatially explicit model parameters. We also produced maps of rabbit distribution (occupied burrows) and relative abundance (number of burrows expected to be occupied by pygmy rabbits). The model demonstrated statistically rigorous spatial prediction by including spatial autocorrelation and measurement uncertainty. We demonstrated flexibility of our modelling framework by depicting probabilistic distribution predictions using different assumptions of pygmy rabbit habitat requirements. Spatial representations of the variance of posterior predictive distributions were obtained to evaluate heterogeneity in model fit across the spatial domain. Leave-one-out cross-validation was conducted to evaluate the overall model fit. Synthesis and applications. Our method draws on the strengths of previous work, thereby bridging and extending two active areas of ecological research: species distribution models and multi-state occupancy modelling. Our framework can be extended to encompass both larger extents and other species for which direct estimation of abundance is difficult. ?? 2010 The Authors. Journal compilation ?? 2010 British Ecological Society.
Coley, Rebecca Yates; Browna, Elizabeth R.
2016-01-01
Inconsistent results in recent HIV prevention trials of pre-exposure prophylactic interventions may be due to heterogeneity in risk among study participants. Intervention effectiveness is most commonly estimated with the Cox model, which compares event times between populations. When heterogeneity is present, this population-level measure underestimates intervention effectiveness for individuals who are at risk. We propose a likelihood-based Bayesian hierarchical model that estimates the individual-level effectiveness of candidate interventions by accounting for heterogeneity in risk with a compound Poisson-distributed frailty term. This model reflects the mechanisms of HIV risk and allows that some participants are not exposed to HIV and, therefore, have no risk of seroconversion during the study. We assess model performance via simulation and apply the model to data from an HIV prevention trial. PMID:26869051
Hierarchical competition models with the Allee effect II: the case of immigration.
Assas, Laila; Dennis, Brian; Elaydi, Saber; Kwessi, Eddy; Livadiotis, George
2015-01-01
This is part II of an earlier paper that dealt with hierarchical models with the Allee effect but with no immigration. In this paper, we greatly simplify the proofs in part I and provide a proof of the global dynamics of the non-hyperbolic cases that were previously conjectured. Then, we show how immigration to one of the species or to both would, drastically, change the dynamics of the system. It is shown that if the level of immigration to one or to both species is above a specified level, then there will be no extinction region where both species go to extinction.
High-accuracy critical exponents for O(N) hierarchical 3D sigma models
International Nuclear Information System (INIS)
Godina, J. J.; Li, L.; Meurice, Y.; Oktay, M. B.
2006-01-01
The critical exponent γ and its subleading exponent Δ in the 3D O(N) Dyson's hierarchical model for N up to 20 are calculated with high accuracy. We calculate the critical temperatures for the measure δ(φ-vector.φ-vector-1). We extract the first coefficients of the 1/N expansion from our numerical data. We show that the leading and subleading exponents agree with Polchinski equation and the equivalent Litim equation, in the local potential approximation, with at least 4 significant digits
A hierarchical Markov decision process modeling feeding and marketing decisions of growing pigs
DEFF Research Database (Denmark)
Pourmoayed, Reza; Nielsen, Lars Relund; Kristensen, Anders Ringgaard
2016-01-01
Feeding is the most important cost in the production of growing pigs and has a direct impact on the marketing decisions, growth and the final quality of the meat. In this paper, we address the sequential decision problem of when to change the feed-mix within a finisher pig pen and when to pick pigs...... for marketing. We formulate a hierarchical Markov decision process with three levels representing the decision process. The model considers decisions related to feeding and marketing and finds the optimal decision given the current state of the pen. The state of the system is based on information from on...
Large-scale model of flow in heterogeneous and hierarchical porous media
Chabanon, Morgan; Valdés-Parada, Francisco J.; Ochoa-Tapia, J. Alberto; Goyeau, Benoît
2017-11-01
Heterogeneous porous structures are very often encountered in natural environments, bioremediation processes among many others. Reliable models for momentum transport are crucial whenever mass transport or convective heat occurs in these systems. In this work, we derive a large-scale average model for incompressible single-phase flow in heterogeneous and hierarchical soil porous media composed of two distinct porous regions embedding a solid impermeable structure. The model, based on the local mechanical equilibrium assumption between the porous regions, results in a unique momentum transport equation where the global effective permeability naturally depends on the permeabilities at the intermediate mesoscopic scales and therefore includes the complex hierarchical structure of the soil. The associated closure problem is numerically solved for various configurations and properties of the heterogeneous medium. The results clearly show that the effective permeability increases with the volume fraction of the most permeable porous region. It is also shown that the effective permeability is sensitive to the dimensionality spatial arrangement of the porous regions and in particular depends on the contact between the impermeable solid and the two porous regions.
Evolutionary-Hierarchical Bases of the Formation of Cluster Model of Innovation Economic Development
Directory of Open Access Journals (Sweden)
Yuliya Vladimirovna Dubrovskaya
2016-10-01
Full Text Available The functioning of a modern economic system is based on the interaction of objects of different hierarchical levels. Thus, the problem of the study of innovation processes taking into account the mutual influence of the activities of these economic actors becomes important. The paper dwells evolutionary basis for the formation of models of innovation development on the basis of micro and macroeconomic analysis. Most of the concepts recognized that despite a big number of diverse models, the coordination of the relations between economic agents is of crucial importance for the successful innovation development. According to the results of the evolutionary-hierarchical analysis, the authors reveal key phases of the development of forms of business cooperation, science and government in the domestic economy. It has become the starting point of the conception of the characteristics of the interaction in the cluster models of innovation development of the economy. Considerable expectancies on improvement of the national innovative system are connected with the development of cluster and network structures. The main objective of government authorities is the formation of mechanisms and institutions that will foster cooperation between members of the clusters. The article explains that the clusters cannot become the factors in the growth of the national economy, not being an effective tool for interaction between the actors of the regional innovative systems.
Rahpeyma, Sahar; Halldorsson, Benedikt; Hrafnkelsson, Birgir; Jonsson, Sigurjon
2018-01-01
Knowledge of the characteristics of earthquake ground motion is fundamental for earthquake hazard assessments. Over small distances, relative to the source–site distance, where uniform site conditions are expected, the ground motion variability is also expected to be insignificant. However, despite being located on what has been characterized as a uniform lava‐rock site condition, considerable peak ground acceleration (PGA) variations were observed on stations of a small‐aperture array (covering approximately 1 km2) of accelerographs in Southwest Iceland during the Ölfus earthquake of magnitude 6.3 on May 29, 2008 and its sequence of aftershocks. We propose a novel Bayesian hierarchical model for the PGA variations accounting separately for earthquake event effects, station effects, and event‐station effects. An efficient posterior inference scheme based on Markov chain Monte Carlo (MCMC) simulations is proposed for the new model. The variance of the station effect is certainly different from zero according to the posterior density, indicating that individual station effects are different from one another. The Bayesian hierarchical model thus captures the observed PGA variations and quantifies to what extent the source and recording sites contribute to the overall variation in ground motions over relatively small distances on the lava‐rock site condition.
Rahpeyma, Sahar
2018-04-17
Knowledge of the characteristics of earthquake ground motion is fundamental for earthquake hazard assessments. Over small distances, relative to the source–site distance, where uniform site conditions are expected, the ground motion variability is also expected to be insignificant. However, despite being located on what has been characterized as a uniform lava‐rock site condition, considerable peak ground acceleration (PGA) variations were observed on stations of a small‐aperture array (covering approximately 1 km2) of accelerographs in Southwest Iceland during the Ölfus earthquake of magnitude 6.3 on May 29, 2008 and its sequence of aftershocks. We propose a novel Bayesian hierarchical model for the PGA variations accounting separately for earthquake event effects, station effects, and event‐station effects. An efficient posterior inference scheme based on Markov chain Monte Carlo (MCMC) simulations is proposed for the new model. The variance of the station effect is certainly different from zero according to the posterior density, indicating that individual station effects are different from one another. The Bayesian hierarchical model thus captures the observed PGA variations and quantifies to what extent the source and recording sites contribute to the overall variation in ground motions over relatively small distances on the lava‐rock site condition.
A hierarchical probabilistic model for rapid object categorization in natural scenes.
Directory of Open Access Journals (Sweden)
Xiaofu He
Full Text Available Humans can categorize objects in complex natural scenes within 100-150 ms. This amazing ability of rapid categorization has motivated many computational models. Most of these models require extensive training to obtain a decision boundary in a very high dimensional (e.g., ∼6,000 in a leading model feature space and often categorize objects in natural scenes by categorizing the context that co-occurs with objects when objects do not occupy large portions of the scenes. It is thus unclear how humans achieve rapid scene categorization.To address this issue, we developed a hierarchical probabilistic model for rapid object categorization in natural scenes. In this model, a natural object category is represented by a coarse hierarchical probability distribution (PD, which includes PDs of object geometry and spatial configuration of object parts. Object parts are encoded by PDs of a set of natural object structures, each of which is a concatenation of local object features. Rapid categorization is performed as statistical inference. Since the model uses a very small number (∼100 of structures for even complex object categories such as animals and cars, it requires little training and is robust in the presence of large variations within object categories and in their occurrences in natural scenes. Remarkably, we found that the model categorized animals in natural scenes and cars in street scenes with a near human-level performance. We also found that the model located animals and cars in natural scenes, thus overcoming a flaw in many other models which is to categorize objects in natural context by categorizing contextual features. These results suggest that coarse PDs of object categories based on natural object structures and statistical operations on these PDs may underlie the human ability to rapidly categorize scenes.
Galliano, Frédéric
2018-05-01
This article presents a new dust spectral energy distribution (SED) model, named HerBIE, aimed at eliminating the noise-induced correlations and large scatter obtained when performing least-squares fits. The originality of this code is to apply the hierarchical Bayesian approach to full dust models, including realistic optical properties, stochastic heating, and the mixing of physical conditions in the observed regions. We test the performances of our model by applying it to synthetic observations. We explore the impact on the recovered parameters of several effects: signal-to-noise ratio, SED shape, sample size, the presence of intrinsic correlations, the wavelength coverage, and the use of different SED model components. We show that this method is very efficient: the recovered parameters are consistently distributed around their true values. We do not find any clear bias, even for the most degenerate parameters, or with extreme signal-to-noise ratios.
Merging information from multi-model flood projections in a hierarchical Bayesian framework
Le Vine, Nataliya
2016-04-01
Multi-model ensembles are becoming widely accepted for flood frequency change analysis. The use of multiple models results in large uncertainty around estimates of flood magnitudes, due to both uncertainty in model selection and natural variability of river flow. The challenge is therefore to extract the most meaningful signal from the multi-model predictions, accounting for both model quality and uncertainties in individual model estimates. The study demonstrates the potential of a recently proposed hierarchical Bayesian approach to combine information from multiple models. The approach facilitates explicit treatment of shared multi-model discrepancy as well as the probabilistic nature of the flood estimates, by treating the available models as a sample from a hypothetical complete (but unobserved) set of models. The advantages of the approach are: 1) to insure an adequate 'baseline' conditions with which to compare future changes; 2) to reduce flood estimate uncertainty; 3) to maximize use of statistical information in circumstances where multiple weak predictions individually lack power, but collectively provide meaningful information; 4) to adjust multi-model consistency criteria when model biases are large; and 5) to explicitly consider the influence of the (model performance) stationarity assumption. Moreover, the analysis indicates that reducing shared model discrepancy is the key to further reduction of uncertainty in the flood frequency analysis. The findings are of value regarding how conclusions about changing exposure to flooding are drawn, and to flood frequency change attribution studies.
Hierarchical neural network model of the visual system determining figure/ground relation
Kikuchi, Masayuki
2017-07-01
One of the most important functions of the visual perception in the brain is figure/ground interpretation from input images. Figural region in 2D image corresponding to object in 3D space are distinguished from background region extended behind the object. Previously the author proposed a neural network model of figure/ground separation constructed on the standpoint that local geometric features such as curvatures and outer angles at corners are extracted and propagated along input contour in a single layer network (Kikuchi & Akashi, 2001). However, such a processing principle has the defect that signal propagation requires manyiterations despite the fact that actual visual system determines figure/ground relation within the short period (Zhou et al., 2000). In order to attain speed-up for determining figure/ground, this study incorporates hierarchical architecture into the previous model. This study confirmed the effect of the hierarchization as for the computation time by simulation. As the number of layers increased, the required computation time reduced. However, such speed-up effect was saturatedas the layers increased to some extent. This study attempted to explain this saturation effect by the notion of average distance between vertices in the area of complex network, and succeeded to mimic the saturation effect by computer simulation.
Zhang, Xueliang; Xiao, Pengfeng; Feng, Xuezhi
2017-09-01
It has been a common idea to produce multiscale segmentations to represent the various geographic objects in high-spatial resolution remote sensing (HR) images. However, it remains a great challenge to automatically select the proper segmentation scale(s) just according to the image information. In this study, we propose a novel way of information fusion at object level by combining hierarchical multiscale segmentations with existed thematic information produced by classification or recognition. The tree Markov random field (T-MRF) model is designed for the multiscale combination framework, through which the object type is determined as close as the existed thematic information. At the same time, the object boundary is jointly determined by the thematic labels and the multiscale segments through the minimization of the energy function. The benefits of the proposed T-MRF combination model include: (1) reducing the dependence of segmentation scale selection when utilizing multiscale segmentations; (2) exploring the hierarchical context naturally imbedded in the multiscale segmentations. The HR images in both urban and rural areas are used in the experiments to show the effectiveness of the proposed combination framework on these two aspects.
Noma, Hisashi; Matsui, Shigeyuki
2013-05-20
The main purpose of microarray studies is screening of differentially expressed genes as candidates for further investigation. Because of limited resources in this stage, prioritizing genes are relevant statistical tasks in microarray studies. For effective gene selections, parametric empirical Bayes methods for ranking and selection of genes with largest effect sizes have been proposed (Noma et al., 2010; Biostatistics 11: 281-289). The hierarchical mixture model incorporates the differential and non-differential components and allows information borrowing across differential genes with separation from nuisance, non-differential genes. In this article, we develop empirical Bayes ranking methods via a semiparametric hierarchical mixture model. A nonparametric prior distribution, rather than parametric prior distributions, for effect sizes is specified and estimated using the "smoothing by roughening" approach of Laird and Louis (1991; Computational statistics and data analysis 12: 27-37). We present applications to childhood and infant leukemia clinical studies with microarrays for exploring genes related to prognosis or disease progression. Copyright © 2012 John Wiley & Sons, Ltd.
Lewis, Cecil M
2010-02-01
This study examines a genome-wide dataset of 678 Short Tandem Repeat loci characterized in 444 individuals representing 29 Native American populations as well as the Tundra Netsi and Yakut populations from Siberia. Using these data, the study tests four current hypotheses regarding the hierarchical distribution of neutral genetic variation in native South American populations: (1) the western region of South America harbors more variation than the eastern region of South America, (2) Central American and western South American populations cluster exclusively, (3) populations speaking the Chibchan-Paezan and Equatorial-Tucanoan language stock emerge as a group within an otherwise South American clade, (4) Chibchan-Paezan populations in Central America emerge together at the tips of the Chibchan-Paezan cluster. This study finds that hierarchical models with the best fit place Central American populations, and populations speaking the Chibchan-Paezan language stock, at a basal position or separated from the South American group, which is more consistent with a serial founder effect into South America than that previously described. Western (Andean) South America is found to harbor similar levels of variation as eastern (Equatorial-Tucanoan and Ge-Pano-Carib) South America, which is inconsistent with an initial west coast migration into South America. Moreover, in all relevant models, the estimates of genetic diversity within geographic regions suggest a major bottleneck or founder effect occurring within the North American subcontinent, before the peopling of Central and South America. 2009 Wiley-Liss, Inc.
Skataric, Maja; Bose, Sandip; Zeroug, Smaine; Tilke, Peter
2017-02-01
It is not uncommon in the field of non-destructive evaluation that multiple measurements encompassing a variety of modalities are available for analysis and interpretation for determining the underlying states of nature of the materials or parts being tested. Despite and sometimes due to the richness of data, significant challenges arise in the interpretation manifested as ambiguities and inconsistencies due to various uncertain factors in the physical properties (inputs), environment, measurement device properties, human errors, and the measurement data (outputs). Most of these uncertainties cannot be described by any rigorous mathematical means, and modeling of all possibilities is usually infeasible for many real time applications. In this work, we will discuss an approach based on Hierarchical Bayesian Graphical Models (HBGM) for the improved interpretation of complex (multi-dimensional) problems with parametric uncertainties that lack usable physical models. In this setting, the input space of the physical properties is specified through prior distributions based on domain knowledge and expertise, which are represented as Gaussian mixtures to model the various possible scenarios of interest for non-destructive testing applications. Forward models are then used offline to generate the expected distribution of the proposed measurements which are used to train a hierarchical Bayesian network. In Bayesian analysis, all model parameters are treated as random variables, and inference of the parameters is made on the basis of posterior distribution given the observed data. Learned parameters of the posterior distribution obtained after the training can therefore be used to build an efficient classifier for differentiating new observed data in real time on the basis of pre-trained models. We will illustrate the implementation of the HBGM approach to ultrasonic measurements used for cement evaluation of cased wells in the oil industry.
Ross, Michelle; Wakefield, Jon
2015-10-01
Two-phase study designs are appealing since they allow for the oversampling of rare sub-populations which improves efficiency. In this paper we describe a Bayesian hierarchical model for the analysis of two-phase data. Such a model is particularly appealing in a spatial setting in which random effects are introduced to model between-area variability. In such a situation, one may be interested in estimating regression coefficients or, in the context of small area estimation, in reconstructing the population totals by strata. The efficiency gains of the two-phase sampling scheme are compared to standard approaches using 2011 birth data from the research triangle area of North Carolina. We show that the proposed method can overcome small sample difficulties and improve on existing techniques. We conclude that the two-phase design is an attractive approach for small area estimation.
A Bayesian Hierarchical Model for Relating Multiple SNPs within Multiple Genes to Disease Risk
Directory of Open Access Journals (Sweden)
Lewei Duan
2013-01-01
Full Text Available A variety of methods have been proposed for studying the association of multiple genes thought to be involved in a common pathway for a particular disease. Here, we present an extension of a Bayesian hierarchical modeling strategy that allows for multiple SNPs within each gene, with external prior information at either the SNP or gene level. The model involves variable selection at the SNP level through latent indicator variables and Bayesian shrinkage at the gene level towards a prior mean vector and covariance matrix that depend on external information. The entire model is fitted using Markov chain Monte Carlo methods. Simulation studies show that the approach is capable of recovering many of the truly causal SNPs and genes, depending upon their frequency and size of their effects. The method is applied to data on 504 SNPs in 38 candidate genes involved in DNA damage response in the WECARE study of second breast cancers in relation to radiotherapy exposure.
Parallel Motion Simulation of Large-Scale Real-Time Crowd in a Hierarchical Environmental Model
Directory of Open Access Journals (Sweden)
Xin Wang
2012-01-01
Full Text Available This paper presents a parallel real-time crowd simulation method based on a hierarchical environmental model. A dynamical model of the complex environment should be constructed to simulate the state transition and propagation of individual motions. By modeling of a virtual environment where virtual crowds reside, we employ different parallel methods on a topological layer, a path layer and a perceptual layer. We propose a parallel motion path matching method based on the path layer and a parallel crowd simulation method based on the perceptual layer. The large-scale real-time crowd simulation becomes possible with these methods. Numerical experiments are carried out to demonstrate the methods and results.
Graves, T.A.; Kendall, Katherine C.; Royle, J. Andrew; Stetz, J.B.; Macleod, A.C.
2011-01-01
Few studies link habitat to grizzly bear Ursus arctos abundance and these have not accounted for the variation in detection or spatial autocorrelation. We collected and genotyped bear hair in and around Glacier National Park in northwestern Montana during the summer of 2000. We developed a hierarchical Markov chain Monte Carlo model that extends the existing occupancy and count models by accounting for (1) spatially explicit variables that we hypothesized might influence abundance; (2) separate sub-models of detection probability for two distinct sampling methods (hair traps and rub trees) targeting different segments of the population; (3) covariates to explain variation in each sub-model of detection; (4) a conditional autoregressive term to account for spatial autocorrelation; (5) weights to identify most important variables. Road density and per cent mesic habitat best explained variation in female grizzly bear abundance; spatial autocorrelation was not supported. More female bears were predicted in places with lower road density and with more mesic habitat. Detection rates of females increased with rub tree sampling effort. Road density best explained variation in male grizzly bear abundance and spatial autocorrelation was supported. More male bears were predicted in areas of low road density. Detection rates of males increased with rub tree and hair trap sampling effort and decreased over the sampling period. We provide a new method to (1) incorporate multiple detection methods into hierarchical models of abundance; (2) determine whether spatial autocorrelation should be included in final models. Our results suggest that the influence of landscape variables is consistent between habitat selection and abundance in this system.
How does aging affect recognition-based inference? A hierarchical Bayesian modeling approach.
Horn, Sebastian S; Pachur, Thorsten; Mata, Rui
2015-01-01
The recognition heuristic (RH) is a simple strategy for probabilistic inference according to which recognized objects are judged to score higher on a criterion than unrecognized objects. In this article, a hierarchical Bayesian extension of the multinomial r-model is applied to measure use of the RH on the individual participant level and to re-evaluate differences between younger and older adults' strategy reliance across environments. Further, it is explored how individual r-model parameters relate to alternative measures of the use of recognition and other knowledge, such as adherence rates and indices from signal-detection theory (SDT). Both younger and older adults used the RH substantially more often in an environment with high than low recognition validity, reflecting adaptivity in strategy use across environments. In extension of previous analyses (based on adherence rates), hierarchical modeling revealed that in an environment with low recognition validity, (a) older adults had a stronger tendency than younger adults to rely on the RH and (b) variability in RH use between individuals was larger than in an environment with high recognition validity; variability did not differ between age groups. Further, the r-model parameters correlated moderately with an SDT measure expressing how well people can discriminate cases where the RH leads to a correct vs. incorrect inference; this suggests that the r-model and the SDT measures may offer complementary insights into the use of recognition in decision making. In conclusion, younger and older adults are largely adaptive in their application of the RH, but cognitive aging may be associated with an increased tendency to rely on this strategy. Copyright © 2014 Elsevier B.V. All rights reserved.
Hierarchical Colored Petri Nets for Modeling and Analysis of Transit Signal Priority Control Systems
Directory of Open Access Journals (Sweden)
Yisheng An
2018-01-01
Full Text Available In this paper, we consider the problem of developing a model for traffic signal control with transit priority using Hierarchical Colored Petri nets (HCPN. Petri nets (PN are useful for state analysis of discrete event systems due to their powerful modeling capability and mathematical formalism. This paper focuses on their use to formalize the transit signal priority (TSP control model. In a four-phase traffic signal control model, the transit detection and two kinds of transit priority strategies are integrated to obtain the HCPN-based TSP control models. One of the advantages to use these models is the clear presentation of traffic light behaviors in terms of conditions and events that cause the detection of a priority request by a transit vehicle. Another advantage of the resulting models is that the correctness and reliability of the proposed strategies are easily analyzed. After their full reachable states are generated, the boundness, liveness, and fairness of the proposed models are verified. Experimental results show that the proposed control model provides transit vehicles with better effectiveness at intersections. This work helps advance the state of the art in the design of signal control models related to the intersection of roadways.
Prion Amplification and Hierarchical Bayesian Modeling Refine Detection of Prion Infection
Wyckoff, A. Christy; Galloway, Nathan; Meyerett-Reid, Crystal; Powers, Jenny; Spraker, Terry; Monello, Ryan J.; Pulford, Bruce; Wild, Margaret; Antolin, Michael; Vercauteren, Kurt; Zabel, Mark
2015-02-01
Prions are unique infectious agents that replicate without a genome and cause neurodegenerative diseases that include chronic wasting disease (CWD) of cervids. Immunohistochemistry (IHC) is currently considered the gold standard for diagnosis of a prion infection but may be insensitive to early or sub-clinical CWD that are important to understanding CWD transmission and ecology. We assessed the potential of serial protein misfolding cyclic amplification (sPMCA) to improve detection of CWD prior to the onset of clinical signs. We analyzed tissue samples from free-ranging Rocky Mountain elk (Cervus elaphus nelsoni) and used hierarchical Bayesian analysis to estimate the specificity and sensitivity of IHC and sPMCA conditional on simultaneously estimated disease states. Sensitivity estimates were higher for sPMCA (99.51%, credible interval (CI) 97.15-100%) than IHC of obex (brain stem, 76.56%, CI 57.00-91.46%) or retropharyngeal lymph node (90.06%, CI 74.13-98.70%) tissues, or both (98.99%, CI 90.01-100%). Our hierarchical Bayesian model predicts the prevalence of prion infection in this elk population to be 18.90% (CI 15.50-32.72%), compared to previous estimates of 12.90%. Our data reveal a previously unidentified sub-clinical prion-positive portion of the elk population that could represent silent carriers capable of significantly impacting CWD ecology.
Prion amplification and hierarchical Bayesian modeling refine detection of prion infection.
Wyckoff, A Christy; Galloway, Nathan; Meyerett-Reid, Crystal; Powers, Jenny; Spraker, Terry; Monello, Ryan J; Pulford, Bruce; Wild, Margaret; Antolin, Michael; VerCauteren, Kurt; Zabel, Mark
2015-02-10
Prions are unique infectious agents that replicate without a genome and cause neurodegenerative diseases that include chronic wasting disease (CWD) of cervids. Immunohistochemistry (IHC) is currently considered the gold standard for diagnosis of a prion infection but may be insensitive to early or sub-clinical CWD that are important to understanding CWD transmission and ecology. We assessed the potential of serial protein misfolding cyclic amplification (sPMCA) to improve detection of CWD prior to the onset of clinical signs. We analyzed tissue samples from free-ranging Rocky Mountain elk (Cervus elaphus nelsoni) and used hierarchical Bayesian analysis to estimate the specificity and sensitivity of IHC and sPMCA conditional on simultaneously estimated disease states. Sensitivity estimates were higher for sPMCA (99.51%, credible interval (CI) 97.15-100%) than IHC of obex (brain stem, 76.56%, CI 57.00-91.46%) or retropharyngeal lymph node (90.06%, CI 74.13-98.70%) tissues, or both (98.99%, CI 90.01-100%). Our hierarchical Bayesian model predicts the prevalence of prion infection in this elk population to be 18.90% (CI 15.50-32.72%), compared to previous estimates of 12.90%. Our data reveal a previously unidentified sub-clinical prion-positive portion of the elk population that could represent silent carriers capable of significantly impacting CWD ecology.
Kashuba, Roxolana; Cha, YoonKyung; Alameddine, Ibrahim; Lee, Boknam; Cuffney, Thomas F.
2010-01-01
Multilevel hierarchical modeling methodology has been developed for use in ecological data analysis. The effect of urbanization on stream macroinvertebrate communities was measured across a gradient of basins in each of nine metropolitan regions across the conterminous United States. The hierarchical nature of this dataset was harnessed in a multi-tiered model structure, predicting both invertebrate response at the basin scale and differences in invertebrate response at the region scale. Ordination site scores, total taxa richness, Ephemeroptera, Plecoptera, Trichoptera (EPT) taxa richness, and richness-weighted mean tolerance of organisms at a site were used to describe invertebrate responses. Percentage of urban land cover was used as a basin-level predictor variable. Regional mean precipitation, air temperature, and antecedent agriculture were used as region-level predictor variables. Multilevel hierarchical models were fit to both levels of data simultaneously, borrowing statistical strength from the complete dataset to reduce uncertainty in regional coefficient estimates. Additionally, whereas non-hierarchical regressions were only able to show differing relations between invertebrate responses and urban intensity separately for each region, the multilevel hierarchical regressions were able to explain and quantify those differences within a single model. In this way, this modeling approach directly establishes the importance of antecedent agricultural conditions in masking the response of invertebrates to urbanization in metropolitan regions such as Milwaukee-Green Bay, Wisconsin; Denver, Colorado; and Dallas-Fort Worth, Texas. Also, these models show that regions with high precipitation, such as Atlanta, Georgia; Birmingham, Alabama; and Portland, Oregon, start out with better regional background conditions of invertebrates prior to urbanization but experience faster negative rates of change with urbanization. Ultimately, this urbanization
Epigenetic change detection and pattern recognition via Bayesian hierarchical hidden Markov models.
Wang, Xinlei; Zang, Miao; Xiao, Guanghua
2013-06-15
Epigenetics is the study of changes to the genome that can switch genes on or off and determine which proteins are transcribed without altering the DNA sequence. Recently, epigenetic changes have been linked to the development and progression of disease such as psychiatric disorders. High-throughput epigenetic experiments have enabled researchers to measure genome-wide epigenetic profiles and yield data consisting of intensity ratios of immunoprecipitation versus reference samples. The intensity ratios can provide a view of genomic regions where protein binding occur under one experimental condition and further allow us to detect epigenetic alterations through comparison between two different conditions. However, such experiments can be expensive, with only a few replicates available. Moreover, epigenetic data are often spatially correlated with high noise levels. In this paper, we develop a Bayesian hierarchical model, combined with hidden Markov processes with four states for modeling spatial dependence, to detect genomic sites with epigenetic changes from two-sample experiments with paired internal control. One attractive feature of the proposed method is that the four states of the hidden Markov process have well-defined biological meanings and allow us to directly call the change patterns based on the corresponding posterior probabilities. In contrast, none of existing methods can offer this advantage. In addition, the proposed method offers great power in statistical inference by spatial smoothing (via hidden Markov modeling) and information pooling (via hierarchical modeling). Both simulation studies and real data analysis in a cocaine addiction study illustrate the reliability and success of this method. Copyright © 2012 John Wiley & Sons, Ltd.
Hierarchical modeling of bycatch rates of sea turtles in the western North Atlantic
Gardner, B.; Sullivan, P.J.; Epperly, S.; Morreale, S.J.
2008-01-01
Previous studies indicate that the locations of the endangered loggerhead Caretta caretta and critically endangered leatherback Dermochelys coriacea sea turtles are influenced by water temperatures, and that incidental catch rates in the pelagic longline fishery vary by region. We present a Bayesian hierarchical model to examine the effects of environmental variables, including water temperature, on the number of sea turtles captured in the US pelagic longline fishery in the western North Atlantic. The modeling structure is highly flexible, utilizes a Bayesian model selection technique, and is fully implemented in the software program WinBUGS. The number of sea turtles captured is modeled as a zero-inflated Poisson distribution and the model incorporates fixed effects to examine region-specific differences in the parameter estimates. Results indicate that water temperature, region, bottom depth, and target species are all significant predictors of the number of loggerhead sea turtles captured. For leatherback sea turtles, the model with only target species had the most posterior model weight, though a re-parameterization of the model indicates that temperature influences the zero-inflation parameter. The relationship between the number of sea turtles captured and the variables of interest all varied by region. This suggests that management decisions aimed at reducing sea turtle bycatch may be more effective if they are spatially explicit. ?? Inter-Research 2008.
A hierarchical updating method for finite element model of airbag buffer system under landing impact
Directory of Open Access Journals (Sweden)
He Huan
2015-12-01
Full Text Available In this paper, we propose an impact finite element (FE model for an airbag landing buffer system. First, an impact FE model has been formulated for a typical airbag landing buffer system. We use the independence of the structure FE model from the full impact FE model to develop a hierarchical updating scheme for the recovery module FE model and the airbag system FE model. Second, we define impact responses at key points to compare the computational and experimental results to resolve the inconsistency between the experimental data sampling frequency and experimental triggering. To determine the typical characteristics of the impact dynamics response of the airbag landing buffer system, we present the impact response confidence factors (IRCFs to evaluate how consistent the computational and experiment results are. An error function is defined between the experimental and computational results at key points of the impact response (KPIR to serve as a modified objective function. A radial basis function (RBF is introduced to construct updating variables for a surrogate model for updating the objective function, thereby converting the FE model updating problem to a soluble optimization problem. Finally, the developed method has been validated using an experimental and computational study on the impact dynamics of a classic airbag landing buffer system.
Norros, Veera; Laine, Marko; Lignell, Risto; Thingstad, Frede
2017-10-01
Methods for extracting empirically and theoretically sound parameter values are urgently needed in aquatic ecosystem modelling to describe key flows and their variation in the system. Here, we compare three Bayesian formulations for mechanistic model parameterization that differ in their assumptions about the variation in parameter values between various datasets: 1) global analysis - no variation, 2) separate analysis - independent variation and 3) hierarchical analysis - variation arising from a shared distribution defined by hyperparameters. We tested these methods, using computer-generated and empirical data, coupled with simplified and reasonably realistic plankton food web models, respectively. While all methods were adequate, the simulated example demonstrated that a well-designed hierarchical analysis can result in the most accurate and precise parameter estimates and predictions, due to its ability to combine information across datasets. However, our results also highlighted sensitivity to hyperparameter prior distributions as an important caveat of hierarchical analysis. In the more complex empirical example, hierarchical analysis was able to combine precise identification of parameter values with reasonably good predictive performance, although the ranking of the methods was less straightforward. We conclude that hierarchical Bayesian analysis is a promising tool for identifying key ecosystem-functioning parameters and their variation from empirical datasets.
von Secker, Clare Elaine
The study of students at risk is a major topic of science education policy and discussion. Much research has focused on describing conditions and problems associated with the statistical risk of low science achievement among individuals who are members of groups characterized by problems such as poverty and social disadvantage. But outcomes attributed to these factors do not explain the nature and extent of mechanisms that account for differences in performance among individuals at risk. There is ample theoretical and empirical evidence that demographic differences should be conceptualized as social contexts, or collections of variables, that alter the psychological significance and social demands of life events, and affect subsequent relationships between risk and resilience. The hierarchical linear growth models used in this dissertation provide greater specification of the role of social context and the protective effects of attitude, expectations, parenting practices, peer influences, and learning opportunities on science achievement. While the individual influences of these protective factors on science achievement were small, their cumulative effect was substantial. Meta-analysis conducted on the effects associated with psychological and environmental processes that mediate risk mechanisms in sixteen social contexts revealed twenty-two significant differences between groups of students. Positive attitudes, high expectations, and more intense science course-taking had positive effects on achievement of all students, although these factors were not equally protective in all social contexts. In general, effects associated with authoritative parenting and peer influences were negative, regardless of social context. An evaluation comparing the performance and stability of hierarchical linear growth models with traditional repeated measures models is included as well.
An Integrated Risk Index Model Based on Hierarchical Fuzzy Logic for Underground Risk Assessment
Directory of Open Access Journals (Sweden)
Muhammad Fayaz
2017-10-01
Full Text Available Available space in congested cities is getting scarce due to growing urbanization in the recent past. The utilization of underground space is considered as a solution to the limited space in smart cities. The numbers of underground facilities are growing day by day in the developing world. Typical underground facilities include the transit subway, parking lots, electric lines, water supply and sewer lines. The likelihood of the occurrence of accidents due to underground facilities is a random phenomenon. To avoid any accidental loss, a risk assessment method is required to conduct the continuous risk assessment and report any abnormality before it happens. In this paper, we have proposed a hierarchical fuzzy inference based model for under-ground risk assessment. The proposed hierarchical fuzzy inference architecture reduces the total number of rules from the rule base. Rule reduction is important because the curse of dimensionality damages the transparency and interpretation as it is very tough to understand and justify hundreds or thousands of fuzzy rules. The computation time also increases as rules increase. The proposed model takes 175 rules having eight input parameters to compute the risk index, and the conventional fuzzy logic requires 390,625 rules, having the same number of input parameters to compute risk index. Hence, the proposed model significantly reduces the curse of dimensionality. Rule design for fuzzy logic is also a tedious task. In this paper, we have also introduced new rule schemes, namely maximum rule-based and average rule-based; both schemes can be used interchangeably according to the logic needed for rule design. The experimental results show that the proposed method is a virtuous choice for risk index calculation where the numbers of variables are greater.
Spatial patterns of breeding success of grizzly bears derived from hierarchical multistate models.
Fisher, Jason T; Wheatley, Matthew; Mackenzie, Darryl
2014-10-01
Conservation programs often manage populations indirectly through the landscapes in which they live. Empirically, linking reproductive success with landscape structure and anthropogenic change is a first step in understanding and managing the spatial mechanisms that affect reproduction, but this link is not sufficiently informed by data. Hierarchical multistate occupancy models can forge these links by estimating spatial patterns of reproductive success across landscapes. To illustrate, we surveyed the occurrence of grizzly bears (Ursus arctos) in the Canadian Rocky Mountains Alberta, Canada. We deployed camera traps for 6 weeks at 54 surveys sites in different types of land cover. We used hierarchical multistate occupancy models to estimate probability of detection, grizzly bear occupancy, and probability of reproductive success at each site. Grizzly bear occupancy varied among cover types and was greater in herbaceous alpine ecotones than in low-elevation wetlands or mid-elevation conifer forests. The conditional probability of reproductive success given grizzly bear occupancy was 30% (SE = 0.14). Grizzly bears with cubs had a higher probability of detection than grizzly bears without cubs, but sites were correctly classified as being occupied by breeding females 49% of the time based on raw data and thus would have been underestimated by half. Repeated surveys and multistate modeling reduced the probability of misclassifying sites occupied by breeders as unoccupied to <2%. The probability of breeding grizzly bear occupancy varied across the landscape. Those patches with highest probabilities of breeding occupancy-herbaceous alpine ecotones-were small and highly dispersed and are projected to shrink as treelines advance due to climate warming. Understanding spatial correlates in breeding distribution is a key requirement for species conservation in the face of climate change and can help identify priorities for landscape management and protection. © 2014 Society
Reduced Rank Mixed Effects Models for Spatially Correlated Hierarchical Functional Data
Zhou, Lan
2010-03-01
Hierarchical functional data are widely seen in complex studies where sub-units are nested within units, which in turn are nested within treatment groups. We propose a general framework of functional mixed effects model for such data: within unit and within sub-unit variations are modeled through two separate sets of principal components; the sub-unit level functions are allowed to be correlated. Penalized splines are used to model both the mean functions and the principal components functions, where roughness penalties are used to regularize the spline fit. An EM algorithm is developed to fit the model, while the specific covariance structure of the model is utilized for computational efficiency to avoid storage and inversion of large matrices. Our dimension reduction with principal components provides an effective solution to the difficult tasks of modeling the covariance kernel of a random function and modeling the correlation between functions. The proposed methodology is illustrated using simulations and an empirical data set from a colon carcinogenesis study. Supplemental materials are available online.
A Hierarchical Poisson Log-Normal Model for Network Inference from RNA Sequencing Data
Gallopin, Mélina; Rau, Andrea; Jaffrézic, Florence
2013-01-01
Gene network inference from transcriptomic data is an important methodological challenge and a key aspect of systems biology. Although several methods have been proposed to infer networks from microarray data, there is a need for inference methods able to model RNA-seq data, which are count-based and highly variable. In this work we propose a hierarchical Poisson log-normal model with a Lasso penalty to infer gene networks from RNA-seq data; this model has the advantage of directly modelling discrete data and accounting for inter-sample variance larger than the sample mean. Using real microRNA-seq data from breast cancer tumors and simulations, we compare this method to a regularized Gaussian graphical model on log-transformed data, and a Poisson log-linear graphical model with a Lasso penalty on power-transformed data. For data simulated with large inter-sample dispersion, the proposed model performs better than the other methods in terms of sensitivity, specificity and area under the ROC curve. These results show the necessity of methods specifically designed for gene network inference from RNA-seq data. PMID:24147011
A Bayesian Approach to Model Selection in Hierarchical Mixtures-of-Experts Architectures.
Tanner, Martin A.; Peng, Fengchun; Jacobs, Robert A.
1997-03-01
There does not exist a statistical model that shows good performance on all tasks. Consequently, the model selection problem is unavoidable; investigators must decide which model is best at summarizing the data for each task of interest. This article presents an approach to the model selection problem in hierarchical mixtures-of-experts architectures. These architectures combine aspects of generalized linear models with those of finite mixture models in order to perform tasks via a recursive "divide-and-conquer" strategy. Markov chain Monte Carlo methodology is used to estimate the distribution of the architectures' parameters. One part of our approach to model selection attempts to estimate the worth of each component of an architecture so that relatively unused components can be pruned from the architecture's structure. A second part of this approach uses a Bayesian hypothesis testing procedure in order to differentiate inputs that carry useful information from nuisance inputs. Simulation results suggest that the approach presented here adheres to the dictum of Occam's razor; simple architectures that are adequate for summarizing the data are favored over more complex structures. Copyright 1997 Elsevier Science Ltd. All Rights Reserved.
Directory of Open Access Journals (Sweden)
Hea-Jung Kim
2017-06-01
Full Text Available This paper develops Bayesian inference in reliability of a class of scale mixtures of log-normal failure time (SMLNFT models with stochastic (or uncertain constraint in their reliability measures. The class is comprehensive and includes existing failure time (FT models (such as log-normal, log-Cauchy, and log-logistic FT models as well as new models that are robust in terms of heavy-tailed FT observations. Since classical frequency approaches to reliability analysis based on the SMLNFT model with stochastic constraint are intractable, the Bayesian method is pursued utilizing a Markov chain Monte Carlo (MCMC sampling based approach. This paper introduces a two-stage maximum entropy (MaxEnt prior, which elicits a priori uncertain constraint and develops Bayesian hierarchical SMLNFT model by using the prior. The paper also proposes an MCMC method for Bayesian inference in the SMLNFT model reliability and calls attention to properties of the MaxEnt prior that are useful for method development. Finally, two data sets are used to illustrate how the proposed methodology works.
Class hierarchical test case generation algorithm based on expanded EMDPN model
Institute of Scientific and Technical Information of China (English)
LI Jun-yi; GONG Hong-fang; HU Ji-ping; ZOU Bei-ji; SUN Jia-guang
2006-01-01
A new model of event and message driven Petri network(EMDPN) based on the characteristic of class interaction for messages passing between two objects was extended. Using EMDPN interaction graph, a class hierarchical test-case generation algorithm with cooperated paths (copaths) was proposed, which can be used to solve the problems resulting from the class inheritance mechanism encountered in object-oriented software testing such as oracle, message transfer errors, and unreachable statement. Finally, the testing sufficiency was analyzed with the ordered sequence testing criterion(OSC). The results indicate that the test cases stemmed from newly proposed automatic algorithm of copaths generation satisfies synchronization message sequences testing criteria, therefore the proposed new algorithm of copaths generation has a good coverage rate.
LIMO EEG: a toolbox for hierarchical LInear MOdeling of ElectroEncephaloGraphic data.
Pernet, Cyril R; Chauveau, Nicolas; Gaspar, Carl; Rousselet, Guillaume A
2011-01-01
Magnetic- and electric-evoked brain responses have traditionally been analyzed by comparing the peaks or mean amplitudes of signals from selected channels and averaged across trials. More recently, tools have been developed to investigate single trial response variability (e.g., EEGLAB) and to test differences between averaged evoked responses over the entire scalp and time dimensions (e.g., SPM, Fieldtrip). LIMO EEG is a Matlab toolbox (EEGLAB compatible) to analyse evoked responses over all space and time dimensions, while accounting for single trial variability using a simple hierarchical linear modelling of the data. In addition, LIMO EEG provides robust parametric tests, therefore providing a new and complementary tool in the analysis of neural evoked responses.
Probabilistic daily ILI syndromic surveillance with a spatio-temporal Bayesian hierarchical model.
Directory of Open Access Journals (Sweden)
Ta-Chien Chan
Full Text Available BACKGROUND: For daily syndromic surveillance to be effective, an efficient and sensible algorithm would be expected to detect aberrations in influenza illness, and alert public health workers prior to any impending epidemic. This detection or alert surely contains uncertainty, and thus should be evaluated with a proper probabilistic measure. However, traditional monitoring mechanisms simply provide a binary alert, failing to adequately address this uncertainty. METHODS AND FINDINGS: Based on the Bayesian posterior probability of influenza-like illness (ILI visits, the intensity of outbreak can be directly assessed. The numbers of daily emergency room ILI visits at five community hospitals in Taipei City during 2006-2007 were collected and fitted with a Bayesian hierarchical model containing meteorological factors such as temperature and vapor pressure, spatial interaction with conditional autoregressive structure, weekend and holiday effects, seasonality factors, and previous ILI visits. The proposed algorithm recommends an alert for action if the posterior probability is larger than 70%. External data from January to February of 2008 were retained for validation. The decision rule detects successfully the peak in the validation period. When comparing the posterior probability evaluation with the modified Cusum method, results show that the proposed method is able to detect the signals 1-2 days prior to the rise of ILI visits. CONCLUSIONS: This Bayesian hierarchical model not only constitutes a dynamic surveillance system but also constructs a stochastic evaluation of the need to call for alert. The monitoring mechanism provides earlier detection as well as a complementary tool for current surveillance programs.
Interneuronal Mechanism for Tinbergen’s Hierarchical Model of Behavioral Choice
Pirger, Zsolt; Crossley, Michael; László, Zita; Naskar, Souvik; Kemenes, György; O’Shea, Michael; Benjamin, Paul R.; Kemenes, Ildikó
2014-01-01
Summary Recent studies of behavioral choice support the notion that the decision to carry out one behavior rather than another depends on the reconfiguration of shared interneuronal networks [1]. We investigated another decision-making strategy, derived from the classical ethological literature [2, 3], which proposes that behavioral choice depends on competition between autonomous networks. According to this model, behavioral choice depends on inhibitory interactions between incompatible hierarchically organized behaviors. We provide evidence for this by investigating the interneuronal mechanisms mediating behavioral choice between two autonomous circuits that underlie whole-body withdrawal [4, 5] and feeding [6] in the pond snail Lymnaea. Whole-body withdrawal is a defensive reflex that is initiated by tactile contact with predators. As predicted by the hierarchical model, tactile stimuli that evoke whole-body withdrawal responses also inhibit ongoing feeding in the presence of feeding stimuli. By recording neurons from the feeding and withdrawal networks, we found no direct synaptic connections between the interneuronal and motoneuronal elements that generate the two behaviors. Instead, we discovered that behavioral choice depends on the interaction between two unique types of interneurons with asymmetrical synaptic connectivity that allows withdrawal to override feeding. One type of interneuron, the Pleuro-Buccal (PlB), is an extrinsic modulatory neuron of the feeding network that completely inhibits feeding when excited by touch-induced monosynaptic input from the second type of interneuron, Pedal-Dorsal12 (PeD12). PeD12 plays a critical role in behavioral choice by providing a synaptic pathway joining the two behavioral networks that underlies the competitive dominance of whole-body withdrawal over feeding. PMID:25155505
Hierarchical Bayesian Spatio Temporal Model Comparison on the Earth Trapped Particle Forecast
International Nuclear Information System (INIS)
Suparta, Wayan; Gusrizal
2014-01-01
We compared two hierarchical Bayesian spatio temporal (HBST) results, Gaussian process (GP) and autoregressive (AR) models, on the Earth trapped particle forecast. Two models were employed on the South Atlantic Anomaly (SAA) region. Electron of >30 keV (mep0e1) from National Oceanic and Atmospheric Administration (NOAA) 15-18 satellites data was chosen as the particle modeled. We used two weeks data to perform the model fitting on a 5°x5° grid of longitude and latitude, and 31 August 2007 was set as the date of forecast. Three statistical validations were performed on the data, i.e. the root mean square error (RMSE), mean absolute percentage error (MAPE) and bias (BIAS). The statistical analysis showed that GP model performed better than AR with the average of RMSE = 0.38 and 0.63, MAPE = 11.98 and 17.30, and BIAS = 0.32 and 0.24, for GP and AR, respectively. Visual validation on both models with the NOAA map's also confirmed the superior of the GP than the AR. The variance of log flux minimum = 0.09 and 1.09, log flux maximum = 1.15 and 1.35, and in successively represents GP and AR
A hierarchical model for estimating density in camera-trap studies
Royle, J. Andrew; Nichols, James D.; Karanth, K.Ullas; Gopalaswamy, Arjun M.
2009-01-01
Estimating animal density using capture–recapture data from arrays of detection devices such as camera traps has been problematic due to the movement of individuals and heterogeneity in capture probability among them induced by differential exposure to trapping.We develop a spatial capture–recapture model for estimating density from camera-trapping data which contains explicit models for the spatial point process governing the distribution of individuals and their exposure to and detection by traps.We adopt a Bayesian approach to analysis of the hierarchical model using the technique of data augmentation.The model is applied to photographic capture–recapture data on tigers Panthera tigris in Nagarahole reserve, India. Using this model, we estimate the density of tigers to be 14·3 animals per 100 km2 during 2004.Synthesis and applications. Our modelling framework largely overcomes several weaknesses in conventional approaches to the estimation of animal density from trap arrays. It effectively deals with key problems such as individual heterogeneity in capture probabilities, movement of traps, presence of potential ‘holes’ in the array and ad hoc estimation of sample area. The formulation, thus, greatly enhances flexibility in the conduct of field surveys as well as in the analysis of data, from studies that may involve physical, photographic or DNA-based ‘captures’ of individual animals.
Noh, Myoung-Jong; Howat, Ian M.
2018-02-01
The quality and efficiency of automated Digital Elevation Model (DEM) extraction from stereoscopic satellite imagery is critically dependent on the accuracy of the sensor model used for co-locating pixels between stereo-pair images. In the absence of ground control or manual tie point selection, errors in the sensor models must be compensated with increased matching search-spaces, increasing both the computation time and the likelihood of spurious matches. Here we present an algorithm for automatically determining and compensating the relative bias in Rational Polynomial Coefficients (RPCs) between stereo-pairs utilizing hierarchical, sub-pixel image matching in object space. We demonstrate the algorithm using a suite of image stereo-pairs from multiple satellites over a range stereo-photogrammetrically challenging polar terrains. Besides providing a validation of the effectiveness of the algorithm for improving DEM quality, experiments with prescribed sensor model errors yield insight into the dependence of DEM characteristics and quality on relative sensor model bias. This algorithm is included in the Surface Extraction through TIN-based Search-space Minimization (SETSM) DEM extraction software package, which is the primary software used for the U.S. National Science Foundation ArcticDEM and Reference Elevation Model of Antarctica (REMA) products.
Cruz-Marcelo, Alejandro; Ensor, Katherine B.; Rosner, Gary L.
2011-01-01
The term structure of interest rates is used to price defaultable bonds and credit derivatives, as well as to infer the quality of bonds for risk management purposes. We introduce a model that jointly estimates term structures by means of a Bayesian hierarchical model with a prior probability model based on Dirichlet process mixtures. The modeling methodology borrows strength across term structures for purposes of estimation. The main advantage of our framework is its ability to produce reliable estimators at the company level even when there are only a few bonds per company. After describing the proposed model, we discuss an empirical application in which the term structure of 197 individual companies is estimated. The sample of 197 consists of 143 companies with only one or two bonds. In-sample and out-of-sample tests are used to quantify the improvement in accuracy that results from approximating the term structure of corporate bonds with estimators by company rather than by credit rating, the latter being a popular choice in the financial literature. A complete description of a Markov chain Monte Carlo (MCMC) scheme for the proposed model is available as Supplementary Material. PMID:21765566
Thogmartin, W.E.; Knutson, M.G.
2007-01-01
Much of what is known about avian species-habitat relations has been derived from studies of birds at local scales. It is entirely unclear whether the relations observed at these scales translate to the larger landscape in a predictable linear fashion. We derived habitat models and mapped predicted abundances for three forest bird species of eastern North America using bird counts, environmental variables, and hierarchical models applied at three spatial scales. Our purpose was to understand habitat associations at multiple spatial scales and create predictive abundance maps for purposes of conservation planning at a landscape scale given the constraint that the variables used in this exercise were derived from local-level studies. Our models indicated a substantial influence of landscape context for all species, many of which were counter to reported associations at finer spatial extents. We found land cover composition provided the greatest contribution to the relative explained variance in counts for all three species; spatial structure was second in importance. No single spatial scale dominated any model, indicating that these species are responding to factors at multiple spatial scales. For purposes of conservation planning, areas of predicted high abundance should be investigated to evaluate the conservation potential of the landscape in their general vicinity. In addition, the models and spatial patterns of abundance among species suggest locations where conservation actions may benefit more than one species. ?? 2006 Springer Science+Business Media B.V.
Directory of Open Access Journals (Sweden)
Guiyang Xin
2015-09-01
Full Text Available This paper presents a novel hexapod robot, hereafter named PH-Robot, with three degrees of freedom (3-DOF parallel leg mechanisms based on the concept of an integrated limb mechanism (ILM for the integration of legged locomotion and arm manipulation. The kinematic model plays an important role in the parametric optimal design and motion planning of robots. However, models of parallel mechanisms are often difficult to obtain because of the implicit relationship between the motions of actuated joints and the motion of a moving platform. In order to derive the kinematic equations of the proposed hexapod robot, an extended hierarchical kinematic modelling method is proposed. According to the kinematic model, the geometrical parameters of the leg are optimized utilizing a comprehensive objective function that considers both dexterity and payload. PH-Robot has distinct advantages in accuracy and load ability over a robot with serial leg mechanisms through the former's comparison of performance indices. The reachable workspace of the leg verifies its ability to walk and manipulate. The results of the trajectory tracking experiment demonstrate the correctness of the kinematic model of the hexapod robot.
Susiluoto, Jouni; Raivonen, Maarit; Backman, Leif; Laine, Marko; Makela, Jarmo; Peltola, Olli; Vesala, Timo; Aalto, Tuula
2018-03-01
Estimating methane (CH4) emissions from natural wetlands is complex, and the estimates contain large uncertainties. The models used for the task are typically heavily parameterized and the parameter values are not well known. In this study, we perform a Bayesian model calibration for a new wetland CH4 emission model to improve the quality of the predictions and to understand the limitations of such models.The detailed process model that we analyze contains descriptions for CH4 production from anaerobic respiration, CH4 oxidation, and gas transportation by diffusion, ebullition, and the aerenchyma cells of vascular plants. The processes are controlled by several tunable parameters. We use a hierarchical statistical model to describe the parameters and obtain the posterior distributions of the parameters and uncertainties in the processes with adaptive Markov chain Monte Carlo (MCMC), importance resampling, and time series analysis techniques. For the estimation, the analysis utilizes measurement data from the Siikaneva flux measurement site in southern Finland. The uncertainties related to the parameters and the modeled processes are described quantitatively. At the process level, the flux measurement data are able to constrain the CH4 production processes, methane oxidation, and the different gas transport processes. The posterior covariance structures explain how the parameters and the processes are related. Additionally, the flux and flux component uncertainties are analyzed both at the annual and daily levels. The parameter posterior densities obtained provide information regarding importance of the different processes, which is also useful for development of wetland methane emission models other than the square root HelsinkI Model of MEthane buiLd-up and emIssion for peatlands (sqHIMMELI). The hierarchical modeling allows us to assess the effects of some of the parameters on an annual basis. The results of the calibration and the cross validation suggest that
Babcock, Chad; Finley, Andrew O.; Bradford, John B.; Kolka, Randall K.; Birdsey, Richard A.; Ryan, Michael G.
2015-01-01
Many studies and production inventory systems have shown the utility of coupling covariates derived from Light Detection and Ranging (LiDAR) data with forest variables measured on georeferenced inventory plots through regression models. The objective of this study was to propose and assess the use of a Bayesian hierarchical modeling framework that accommodates both residual spatial dependence and non-stationarity of model covariates through the introduction of spatial random effects. We explored this objective using four forest inventory datasets that are part of the North American Carbon Program, each comprising point-referenced measures of above-ground forest biomass and discrete LiDAR. For each dataset, we considered at least five regression model specifications of varying complexity. Models were assessed based on goodness of fit criteria and predictive performance using a 10-fold cross-validation procedure. Results showed that the addition of spatial random effects to the regression model intercept improved fit and predictive performance in the presence of substantial residual spatial dependence. Additionally, in some cases, allowing either some or all regression slope parameters to vary spatially, via the addition of spatial random effects, further improved model fit and predictive performance. In other instances, models showed improved fit but decreased predictive performance—indicating over-fitting and underscoring the need for cross-validation to assess predictive ability. The proposed Bayesian modeling framework provided access to pixel-level posterior predictive distributions that were useful for uncertainty mapping, diagnosing spatial extrapolation issues, revealing missing model covariates, and discovering locally significant parameters.
Commeau, Natalie; Cornu, Marie; Albert, Isabelle; Denis, Jean-Baptiste; Parent, Eric
2012-03-01
Assessing within-batch and between-batch variability is of major interest for risk assessors and risk managers in the context of microbiological contamination of food. For example, the ratio between the within-batch variability and the between-batch variability has a large impact on the results of a sampling plan. Here, we designed hierarchical Bayesian models to represent such variability. Compatible priors were built mathematically to obtain sound model comparisons. A numeric criterion is proposed to assess the contamination structure comparing the ability of the models to replicate grouped data at the batch level using a posterior predictive loss approach. Models were applied to two case studies: contamination by Listeria monocytogenes of pork breast used to produce diced bacon and contamination by the same microorganism on cold smoked salmon at the end of the process. In the first case study, a contamination structure clearly exists and is located at the batch level, that is, between batches variability is relatively strong, whereas in the second a structure also exists but is less marked. © 2012 Society for Risk Analysis.
Bayesian Uncertainty Quantification for Subsurface Inversion Using a Multiscale Hierarchical Model
Mondal, Anirban
2014-07-03
We consider a Bayesian approach to nonlinear inverse problems in which the unknown quantity is a random field (spatial or temporal). The Bayesian approach contains a natural mechanism for regularization in the form of prior information, can incorporate information from heterogeneous sources and provide a quantitative assessment of uncertainty in the inverse solution. The Bayesian setting casts the inverse solution as a posterior probability distribution over the model parameters. The Karhunen-Loeve expansion is used for dimension reduction of the random field. Furthermore, we use a hierarchical Bayes model to inject multiscale data in the modeling framework. In this Bayesian framework, we show that this inverse problem is well-posed by proving that the posterior measure is Lipschitz continuous with respect to the data in total variation norm. Computational challenges in this construction arise from the need for repeated evaluations of the forward model (e.g., in the context of MCMC) and are compounded by high dimensionality of the posterior. We develop two-stage reversible jump MCMC that has the ability to screen the bad proposals in the first inexpensive stage. Numerical results are presented by analyzing simulated as well as real data from hydrocarbon reservoir. This article has supplementary material available online. © 2014 American Statistical Association and the American Society for Quality.
Love, C. A.; Skahill, B. E.; AghaKouchak, A.; Karlovits, G. S.; England, J. F.; Duren, A. M.
2017-12-01
We compare gridded extreme precipitation return levels obtained using spatial Bayesian hierarchical modeling (BHM) with their respective counterparts from a traditional regional frequency analysis (RFA) using the same set of extreme precipitation data. Our study area is the 11,478 square mile Willamette River basin (WRB) located in northwestern Oregon, a major tributary of the Columbia River whose 187 miles long main stem, the Willamette River, flows northward between the Coastal and Cascade Ranges. The WRB contains approximately two thirds of Oregon's population and 20 of the 25 most populous cities in the state. The U.S. Army Corps of Engineers (USACE) Portland District operates thirteen dams and extreme precipitation estimates are required to support risk informed hydrologic analyses as part of the USACE Dam Safety Program. Our intent is to profile for the USACE an alternate methodology to an RFA that was developed in 2008 due to the lack of an official NOAA Atlas 14 update for the state of Oregon. We analyze 24-hour annual precipitation maxima data for the WRB utilizing the spatial BHM R package "spatial.gev.bma", which has been shown to be efficient in developing coherent maps of extreme precipitation by return level. Our BHM modeling analysis involved application of leave-one-out cross validation (LOO-CV), which not only supported model selection but also a comprehensive assessment of location specific model performance. The LOO-CV results will provide a basis for the BHM RFA comparison.
TOPICAL REVIEW: Nonlinear aspects of the renormalization group flows of Dyson's hierarchical model
Meurice, Y.
2007-06-01
We review recent results concerning the renormalization group (RG) transformation of Dyson's hierarchical model (HM). This model can be seen as an approximation of a scalar field theory on a lattice. We introduce the HM and show that its large group of symmetry simplifies drastically the blockspinning procedure. Several equivalent forms of the recursion formula are presented with unified notations. Rigourous and numerical results concerning the recursion formula are summarized. It is pointed out that the recursion formula of the HM is inequivalent to both Wilson's approximate recursion formula and Polchinski's equation in the local potential approximation (despite the very small difference with the exponents of the latter). We draw a comparison between the RG of the HM and functional RG equations in the local potential approximation. The construction of the linear and nonlinear scaling variables is discussed in an operational way. We describe the calculation of non-universal critical amplitudes in terms of the scaling variables of two fixed points. This question appears as a problem of interpolation between these fixed points. Universal amplitude ratios are calculated. We discuss the large-N limit and the complex singularities of the critical potential calculable in this limit. The interpolation between the HM and more conventional lattice models is presented as a symmetry breaking problem. We briefly introduce models with an approximate supersymmetry. One important goal of this review is to present a configuration space counterpart, suitable for lattice formulations, of functional RG equations formulated in momentum space (often called exact RG equations and abbreviated ERGE).
A Hierarchical Building Segmentation in Digital Surface Models for 3D Reconstruction
Directory of Open Access Journals (Sweden)
Yiming Yan
2017-01-01
Full Text Available In this study, a hierarchical method for segmenting buildings in a digital surface model (DSM, which is used in a novel framework for 3D reconstruction, is proposed. Most 3D reconstructions of buildings are model-based. However, the limitations of these methods are overreliance on completeness of the offline-constructed models of buildings, and the completeness is not easily guaranteed since in modern cities buildings can be of a variety of types. Therefore, a model-free framework using high precision DSM and texture-images buildings was introduced. There are two key problems with this framework. The first one is how to accurately extract the buildings from the DSM. Most segmentation methods are limited by either the terrain factors or the difficult choice of parameter-settings. A level-set method are employed to roughly find the building regions in the DSM, and then a recently proposed ‘occlusions of random textures model’ are used to enhance the local segmentation of the buildings. The second problem is how to generate the facades of buildings. Synergizing with the corresponding texture-images, we propose a roof-contour guided interpolation of building facades. The 3D reconstruction results achieved by airborne-like images and satellites are compared. Experiments show that the segmentation method has good performance, and 3D reconstruction is easily performed by our framework, and better visualization results can be obtained by airborne-like images, which can be further replaced by UAV images.
A hierarchical model for structure learning based on the physiological characteristics of neurons
Institute of Scientific and Technical Information of China (English)
WEI Hui
2007-01-01
Almost all applications of Artificial Neural Networks (ANNs) depend mainly on their memory ability.The characteristics of typical ANN models are fixed connections,with evolved weights,globalized representations,and globalized optimizations,all based on a mathematical approach.This makes those models to be deficient in robustness,efficiency of learning,capacity,anti-jamming between training sets,and correlativity of samples,etc.In this paper,we attempt to address these problems by adopting the characteristics of biological neurons in morphology and signal processing.A hierarchical neural network was designed and realized to implement structure learning and representations based on connected structures.The basic characteristics of this model are localized and random connections,field limitations of neuron fan-in and fan-out,dynamic behavior of neurons,and samples represented through different sub-circuits of neurons specialized into different response patterns.At the end of this paper,some important aspects of error correction,capacity,learning efficiency,and soundness of structural representation are analyzed theoretically.This paper has demonstrated the feasibility and advantages of structure learning and representation.This model can serve as a fundamental element of cognitive systems such as perception and associative memory.Key-words structure learning,representation,associative memory,computational neuroscience
Resolving the Antarctic contribution to sea-level rise: a hierarchical modelling framework.
Zammit-Mangion, Andrew; Rougier, Jonathan; Bamber, Jonathan; Schön, Nana
2014-06-01
Determining the Antarctic contribution to sea-level rise from observational data is a complex problem. The number of physical processes involved (such as ice dynamics and surface climate) exceeds the number of observables, some of which have very poor spatial definition. This has led, in general, to solutions that utilise strong prior assumptions or physically based deterministic models to simplify the problem. Here, we present a new approach for estimating the Antarctic contribution, which only incorporates descriptive aspects of the physically based models in the analysis and in a statistical manner. By combining physical insights with modern spatial statistical modelling techniques, we are able to provide probability distributions on all processes deemed to play a role in both the observed data and the contribution to sea-level rise. Specifically, we use stochastic partial differential equations and their relation to geostatistical fields to capture our physical understanding and employ a Gaussian Markov random field approach for efficient computation. The method, an instantiation of Bayesian hierarchical modelling, naturally incorporates uncertainty in order to reveal credible intervals on all estimated quantities. The estimated sea-level rise contribution using this approach corroborates those found using a statistically independent method. © 2013 The Authors. Environmetrics Published by John Wiley & Sons, Ltd.
Resolving the Antarctic contribution to sea-level rise: a hierarchical modelling framework†
Zammit-Mangion, Andrew; Rougier, Jonathan; Bamber, Jonathan; Schön, Nana
2014-01-01
Determining the Antarctic contribution to sea-level rise from observational data is a complex problem. The number of physical processes involved (such as ice dynamics and surface climate) exceeds the number of observables, some of which have very poor spatial definition. This has led, in general, to solutions that utilise strong prior assumptions or physically based deterministic models to simplify the problem. Here, we present a new approach for estimating the Antarctic contribution, which only incorporates descriptive aspects of the physically based models in the analysis and in a statistical manner. By combining physical insights with modern spatial statistical modelling techniques, we are able to provide probability distributions on all processes deemed to play a role in both the observed data and the contribution to sea-level rise. Specifically, we use stochastic partial differential equations and their relation to geostatistical fields to capture our physical understanding and employ a Gaussian Markov random field approach for efficient computation. The method, an instantiation of Bayesian hierarchical modelling, naturally incorporates uncertainty in order to reveal credible intervals on all estimated quantities. The estimated sea-level rise contribution using this approach corroborates those found using a statistically independent method. © 2013 The Authors. Environmetrics Published by John Wiley & Sons, Ltd. PMID:25505370
Benefits of Applying Hierarchical Models to the Empirical Green's Function Approach
Denolle, M.; Van Houtte, C.
2017-12-01
Stress drops calculated from source spectral studies currently show larger variability than what is implied by empirical ground motion models. One of the potential origins of the inflated variability is the simplified model-fitting techniques used in most source spectral studies. This study improves upon these existing methods, and shows that the fitting method may explain some of the discrepancy. In particular, Bayesian hierarchical modelling is shown to be a method that can reduce bias, better quantify uncertainties and allow additional effects to be resolved. The method is applied to the Mw7.1 Kumamoto, Japan earthquake, and other global, moderate-magnitude, strike-slip earthquakes between Mw5 and Mw7.5. It is shown that the variation of the corner frequency, fc, and the falloff rate, n, across the focal sphere can be reliably retrieved without overfitting the data. Additionally, it is shown that methods commonly used to calculate corner frequencies can give substantial biases. In particular, if fc were calculated for the Kumamoto earthquake using a model with a falloff rate fixed at 2 instead of the best fit 1.6, the obtained fc would be as large as twice its realistic value. The reliable retrieval of the falloff rate allows deeper examination of this parameter for a suite of global, strike-slip earthquakes, and its scaling with magnitude. The earthquake sequences considered in this study are from Japan, New Zealand, Haiti and California.
A Bayesian hierarchical model with novel prior specifications for estimating HIV testing rates.
An, Qian; Kang, Jian; Song, Ruiguang; Hall, H Irene
2016-04-30
Human immunodeficiency virus (HIV) infection is a severe infectious disease actively spreading globally, and acquired immunodeficiency syndrome (AIDS) is an advanced stage of HIV infection. The HIV testing rate, that is, the probability that an AIDS-free HIV infected person seeks a test for HIV during a particular time interval, given no previous positive test has been obtained prior to the start of the time, is an important parameter for public health. In this paper, we propose a Bayesian hierarchical model with two levels of hierarchy to estimate the HIV testing rate using annual AIDS and AIDS-free HIV diagnoses data. At level one, we model the latent number of HIV infections for each year using a Poisson distribution with the intensity parameter representing the HIV incidence rate. At level two, the annual numbers of AIDS and AIDS-free HIV diagnosed cases and all undiagnosed cases stratified by the HIV infections at different years are modeled using a multinomial distribution with parameters including the HIV testing rate. We propose a new class of priors for the HIV incidence rate and HIV testing rate taking into account the temporal dependence of these parameters to improve the estimation accuracy. We develop an efficient posterior computation algorithm based on the adaptive rejection metropolis sampling technique. We demonstrate our model using simulation studies and the analysis of the national HIV surveillance data in the USA. Copyright © 2015 John Wiley & Sons, Ltd.
Ishitani, Terry T.
2010-01-01
This study applied hierarchical linear modeling to investigate the effect of congruence on intrinsic and extrinsic aspects of job satisfaction. Particular focus was given to differences in job satisfaction by gender and by Holland's first-letter codes. The study sample included nationally represented 1462 female and 1280 male college graduates who…
Factors associated with leisure time physical inactivity in black individuals: hierarchical model
Directory of Open Access Journals (Sweden)
Francisco José Gondim Pitanga
2014-09-01
Full Text Available Background. A number of studies have shown that the black population exhibits higher levels of leisure-time physical inactivity (LTPI, but few have investigated the factors associated with this behavior.Objective. The aim of this study was to analyze associated factors and the explanatory model proposed for LTPI in black adults.Methods. The design was cross-sectional with a sample of 2,305 adults from 20–96 years of age, 902 (39.1% men, living in the city of Salvador, Brazil. LTPI was analyzed using the International Physical Activity Questionnaire (IPAQ. A hierarchical model was built with the possible factors associated with LTPI, distributed in distal (age and sex, intermediate 1 (socioeconomic status, educational level and marital status, intermediate 2 (perception of safety/violence in the neighborhood, racial discrimination in private settings and physical activity at work and proximal blocks (smoking and participation in Carnival block rehearsals. We estimated crude and adjusted odds ratio (OR using logistic regression.Results. The variables inversely associated with LTPI were male gender, socioeconomic status and secondary/university education, although the proposed model explains only 4.2% of LTPI.Conclusions. We conclude that male gender, higher education and socioeconomic status can reduce LTPI in black adults.
Directory of Open Access Journals (Sweden)
Xulin Guo
2013-02-01
Full Text Available Over 50% of world’s population presently resides in cities, and this number is expected to rise to ~70% by 2050. Increasing urbanization problems including population growth, urban sprawl, land use change, unemployment, and environmental degradation, have markedly impacted urban residents’ Quality of Life (QOL. Therefore, urban sustainability and its measurement have gained increasing attention from administrators, urban planners, and scientific communities throughout the world with respect to improving urban development and human well-being. The widely accepted definition of urban sustainability emphasizes the balancing development of three primary domains (urban economy, society, and environment. This article attempts to improve the aforementioned definition of urban sustainability by incorporating a human well-being dimension. Major problems identified in existing urban sustainability indicator (USI models include a weak integration of potential indicators, poor measurement and quantification, and insufficient spatial-temporal analysis. To tackle these challenges an integrated USI model based on a hierarchical indices system was established for monitoring and evaluating urban sustainability. This model can be performed by quantifying indicators using both traditional statistical approaches and advanced geomatic techniques based on satellite imagery and census data, which aims to provide a theoretical basis for a comprehensive assessment of urban sustainability from a spatial-temporal perspective.
A bayesian hierarchical model for classification with selection of functional predictors.
Zhu, Hongxiao; Vannucci, Marina; Cox, Dennis D
2010-06-01
In functional data classification, functional observations are often contaminated by various systematic effects, such as random batch effects caused by device artifacts, or fixed effects caused by sample-related factors. These effects may lead to classification bias and thus should not be neglected. Another issue of concern is the selection of functions when predictors consist of multiple functions, some of which may be redundant. The above issues arise in a real data application where we use fluorescence spectroscopy to detect cervical precancer. In this article, we propose a Bayesian hierarchical model that takes into account random batch effects and selects effective functions among multiple functional predictors. Fixed effects or predictors in nonfunctional form are also included in the model. The dimension of the functional data is reduced through orthonormal basis expansion or functional principal components. For posterior sampling, we use a hybrid Metropolis-Hastings/Gibbs sampler, which suffers slow mixing. An evolutionary Monte Carlo algorithm is applied to improve the mixing. Simulation and real data application show that the proposed model provides accurate selection of functional predictors as well as good classification.
Teacher characteristics and student performance: An analysis using hierarchical linear modelling
Directory of Open Access Journals (Sweden)
Paula Armstrong
2015-12-01
Full Text Available This research makes use of hierarchical linear modelling to investigate which teacher characteristics are significantly associated with student performance. Using data from the SACMEQ III study of 2007, an interesting and potentially important finding is that younger teachers are better able to improve the mean mathematics performance of their students. Furthermore, younger teachers themselves perform better on subject tests than do their older counterparts. Identical models are run for Sub Saharan countries bordering on South Africa, as well for Kenya and the strong relationship between teacher age and student performance is not observed. Similarly, the model is run for South Africa using data from SACMEQ II (conducted in 2002 and the relationship between teacher age and student performance is also not observed. It must be noted that South African teachers were not tested in SACMEQ II so it was not possible to observe differences in subject knowledge amongst teachers in different cohorts and it was not possible to control for teachers’ level of subject knowledge when observing the relationship between teacher age and student performance. Changes in teacher education in the late 1990s and early 2000s may explain the differences in the performance of younger teachers relative to their older counterparts observed in the later dataset.
A Bayesian Hierarchical Modeling Approach to Predicting Flow in Ungauged Basins
Gronewold, A.; Alameddine, I.; Anderson, R. M.
2009-12-01
Recent innovative approaches to identifying and applying regression-based relationships between land use patterns (such as increasing impervious surface area and decreasing vegetative cover) and rainfall-runoff model parameters represent novel and promising improvements to predicting flow from ungauged basins. In particular, these approaches allow for predicting flows under uncertain and potentially variable future conditions due to rapid land cover changes, variable climate conditions, and other factors. Despite the broad range of literature on estimating rainfall-runoff model parameters, however, the absence of a robust set of modeling tools for identifying and quantifying uncertainties in (and correlation between) rainfall-runoff model parameters represents a significant gap in current hydrological modeling research. Here, we build upon a series of recent publications promoting novel Bayesian and probabilistic modeling strategies for quantifying rainfall-runoff model parameter estimation uncertainty. Our approach applies alternative measures of rainfall-runoff model parameter joint likelihood (including Nash-Sutcliffe efficiency, among others) to simulate samples from the joint parameter posterior probability density function. We then use these correlated samples as response variables in a Bayesian hierarchical model with land use coverage data as predictor variables in order to develop a robust land use-based tool for forecasting flow in ungauged basins while accounting for, and explicitly acknowledging, parameter estimation uncertainty. We apply this modeling strategy to low-relief coastal watersheds of Eastern North Carolina, an area representative of coastal resource waters throughout the world because of its sensitive embayments and because of the abundant (but currently threatened) natural resources it hosts. Consequently, this area is the subject of several ongoing studies and large-scale planning initiatives, including those conducted through the United
Chen, Lung Hung; Wu, Chia-Huei; Kee, Ying Hwa; Lin, Meng-Shyan; Shui, Shang-Hsueh
2009-01-01
In this study, the hierarchical model of achievement motivation [Elliot, A. J. (1997). Integrating the "classic" and "contemporary" approaches to achievement motivation: A hierarchical model of approach and avoidance achievement motivation. In P. Pintrich & M. Maehr (Eds.), "Advances in motivation and achievement"…
Application of hierarchical Bayesian unmixing models in river sediment source apportionment
Blake, Will; Smith, Hugh; Navas, Ana; Bodé, Samuel; Goddard, Rupert; Zou Kuzyk, Zou; Lennard, Amy; Lobb, David; Owens, Phil; Palazon, Leticia; Petticrew, Ellen; Gaspar, Leticia; Stock, Brian; Boeckx, Pacsal; Semmens, Brice
2016-04-01
Fingerprinting and unmixing concepts are used widely across environmental disciplines for forensic evaluation of pollutant sources. In aquatic and marine systems, this includes tracking the source of organic and inorganic pollutants in water and linking problem sediment to soil erosion and land use sources. It is, however, the particular complexity of ecological systems that has driven creation of the most sophisticated mixing models, primarily to (i) evaluate diet composition in complex ecological food webs, (ii) inform population structure and (iii) explore animal movement. In the context of the new hierarchical Bayesian unmixing model, MIXSIAR, developed to characterise intra-population niche variation in ecological systems, we evaluate the linkage between ecological 'prey' and 'consumer' concepts and river basin sediment 'source' and sediment 'mixtures' to exemplify the value of ecological modelling tools to river basin science. Recent studies have outlined advantages presented by Bayesian unmixing approaches in handling complex source and mixture datasets while dealing appropriately with uncertainty in parameter probability distributions. MixSIAR is unique in that it allows individual fixed and random effects associated with mixture hierarchy, i.e. factors that might exert an influence on model outcome for mixture groups, to be explored within the source-receptor framework. This offers new and powerful ways of interpreting river basin apportionment data. In this contribution, key components of the model are evaluated in the context of common experimental designs for sediment fingerprinting studies namely simple, nested and distributed catchment sampling programmes. Illustrative examples using geochemical and compound specific stable isotope datasets are presented and used to discuss best practice with specific attention to (1) the tracer selection process, (2) incorporation of fixed effects relating to sample timeframe and sediment type in the modelling
Hierarchical Model for the Similarity Measurement of a Complex Holed-Region Entity Scene
Directory of Open Access Journals (Sweden)
Zhanlong Chen
2017-11-01
Full Text Available Complex multi-holed-region entity scenes (i.e., sets of random region with holes are common in spatial database systems, spatial query languages, and the Geographic Information System (GIS. A multi-holed-region (region with an arbitrary number of holes is an abstraction of the real world that primarily represents geographic objects that have more than one interior boundary, such as areas that contain several lakes or lakes that contain islands. When the similarity of the two complex holed-region entity scenes is measured, the number of regions in the scenes and the number of holes in the regions are usually different between the two scenes, which complicates the matching relationships of holed-regions and holes. The aim of this research is to develop several holed-region similarity metrics and propose a hierarchical model to measure comprehensively the similarity between two complex holed-region entity scenes. The procedure first divides a complex entity scene into three layers: a complex scene, a micro-spatial-scene, and a simple entity (hole. The relationships between the adjacent layers are considered to be sets of relationships, and each level of similarity measurements is nested with the adjacent one. Next, entity matching is performed from top to bottom, while the similarity results are calculated from local to global. In addition, we utilize position graphs to describe the distribution of the holed-regions and subsequently describe the directions between the holes using a feature matrix. A case study that uses the Great Lakes in North America in 1986 and 2015 as experimental data illustrates the entire similarity measurement process between two complex holed-region entity scenes. The experimental results show that the hierarchical model accounts for the relationships of the different layers in the entire complex holed-region entity scene. The model can effectively calculate the similarity of complex holed-region entity scenes, even if the
Lingga, Marwan Mossa
A strong trend of returning to nuclear power is evident in different places in the world. Forty-five countries are planning to add nuclear power to their grids and more than 66 nuclear power plants are under construction. Nuclear power plants that generate electricity and steam need to improve safety to become more acceptable to governments and the public. One novel practical solution to increase nuclear power plants' safety factor is to build them away from urban areas, such as offshore or underground. To date, Land-Based siting is the dominant option for siting all commercial operational nuclear power plants. However, the literature reveals several options for building nuclear power plants in safer sitings than Land-Based sitings. The alternatives are several and each has advantages and disadvantages, and it is difficult to distinguish among them and choose the best for a specific project. In this research, we recall the old idea of using the alternatives of offshore and underground sitings for new nuclear power plants and propose a tool to help in choosing the best siting technology. This research involved the development of a decision model for evaluating several potential nuclear power plant siting technologies, both those that are currently available and future ones. The decision model was developed based on the Hierarchical Decision Modeling (HDM) methodology. The model considers five major dimensions, social, technical, economic, environmental, and political (STEEP), and their related criteria and sub-criteria. The model was designed and developed by the author, and its elements' validation and evaluation were done by a large number of experts in the field of nuclear energy. The decision model was applied in evaluating five potential siting technologies and ranked the Natural Island as the best in comparison to Land-Based, Floating Plant, Artificial Island, and Semi-Embedded plant.
Micromechanics of hierarchical materials
DEFF Research Database (Denmark)
Mishnaevsky, Leon, Jr.
2012-01-01
A short overview of micromechanical models of hierarchical materials (hybrid composites, biomaterials, fractal materials, etc.) is given. Several examples of the modeling of strength and damage in hierarchical materials are summarized, among them, 3D FE model of hybrid composites...... with nanoengineered matrix, fiber bundle model of UD composites with hierarchically clustered fibers and 3D multilevel model of wood considered as a gradient, cellular material with layered composite cell walls. The main areas of research in micromechanics of hierarchical materials are identified, among them......, the investigations of the effects of load redistribution between reinforcing elements at different scale levels, of the possibilities to control different material properties and to ensure synergy of strengthening effects at different scale levels and using the nanoreinforcement effects. The main future directions...
Michou, Aikaterini; Vansteenkiste, Maarten; Mouratidis, Athanasios; Lens, Willy
2014-12-01
The hierarchical model of achievement motivation presumes that achievement goals channel the achievement motives of need for achievement and fear of failure towards motivational outcomes. Yet, less is known whether autonomous and controlling reasons underlying the pursuit of achievement goals can serve as additional pathways between achievement motives and outcomes. We tested whether mastery approach, performance approach, and performance avoidance goals and their underlying autonomous and controlling reasons would jointly explain the relation between achievement motives (i.e., fear of failure and need for achievement) and learning strategies (Study 1). Additionally, we examined whether the autonomous and controlling reasons underlying learners' dominant achievement goal would account for the link between achievement motives and the educational outcomes of learning strategies and cheating (Study 2). Six hundred and six Greek adolescent students (Mage = 15.05, SD = 1.43) and 435 university students (Mage M = 20.51, SD = 2.80) participated in studies 1 and 2, respectively. In both studies, a correlational design was used and the hypotheses were tested via path modelling. Autonomous and controlling reasons underlying the pursuit of achievement goals mediated, respectively, the relation of need for achievement and fear of failure to aspects of learning outcomes. Autonomous and controlling reasons underlying achievement goals could further explain learners' functioning in achievement settings. © 2014 The British Psychological Society.
The SIS Model of Epidemic Spreading in a Hierarchical Social Network
International Nuclear Information System (INIS)
Grabowski, A.; Kosinski, R.A.
2005-01-01
The phenomenon of epidemic spreading in a population with a hierarchical structure of interpersonal interactions is described and investigated numerically. The SIS model with temporal immunity to a disease and a time of incubation is used. In our model spatial localization of individuals belonging to different social groups, effectiveness of different interpersonal interactions and the mobility of a contemporary community are taken into account. The structure of interpersonal connections is based on a scale-free network. The influence of the structure of the social network on typical relations characterizing the spreading process, like a range of epidemic and epidemic curves, is discussed. The probability that endemic state occurs is also calculated. Surprisingly it occurs, that less contagious diseases has greater chance to survive. The influence of preventive vaccinations on the spreading process is investigated and critical range of vaccinations that is sufficient for the suppression of an epidemic is calculated. Our results of numerical calculations are compared with the solutions of the master equation for the spreading process, and good agreement is found. (author)
Motivation, Classroom Environment, and Learning in Introductory Geology: A Hierarchical Linear Model
Gilbert, L. A.; Hilpert, J. C.; Van Der Hoeven Kraft, K.; Budd, D.; Jones, M. H.; Matheney, R.; Mcconnell, D. A.; Perkins, D.; Stempien, J. A.; Wirth, K. R.
2013-12-01
Prior research has indicated that highly motivated students perform better and that learning increases in innovative, reformed classrooms, but untangling the student effects from the instructor effects is essential to understanding how to best support student learning. Using a hierarchical linear model, we examine these effects separately and jointly. We use data from nearly 2,000 undergraduate students surveyed by the NSF-funded GARNET (Geoscience Affective Research NETwork) project in 65 different introductory geology classes at research universities, public masters-granting universities, liberal arts colleges and community colleges across the US. Student level effects were measured as increases in expectancy and self-regulation using the Motivated Strategies for Learning Questionnaire (MSLQ; Pintrich et al., 1991). Instructor level effects were measured using the Reformed Teaching Observation Protocol, (RTOP; Sawada et al., 2000), with higher RTOP scores indicating a more reformed, student-centered classroom environment. Learning was measured by learning gains on a Geology Concept Inventory (GCI; Libarkin and Anderson, 2005) and normalized final course grade. The hierarchical linear model yielded significant results at several levels. At the student level, increases in expectancy and self-regulation are significantly and positively related to higher grades regardless of instructor; the higher the increase, the higher the grade. At the instructor level, RTOP scores are positively related to normalized average GCI learning gains. The higher the RTOP score, the higher the average class GCI learning gains. Across both levels, average class GCI learning gains are significantly and positively related to student grades; the higher the GCI learning gain, the higher the grade. Further, the RTOP scores are significantly and negatively related to the relationship between expectancy and course grade. The lower the RTOP score, the higher the correlation between change in
International Nuclear Information System (INIS)
Memarzadeh, Milad; Pozzi, Matteo; Kolter, J. Zico
2016-01-01
System management includes the selection of maintenance actions depending on the available observations: when a system is made up by components known to be similar, data collected on one is also relevant for the management of others. This is typically the case of wind farms, which are made up by similar turbines. Optimal management of wind farms is an important task due to high cost of turbines' operation and maintenance: in this context, we recently proposed a method for planning and learning at system-level, called PLUS, built upon the Partially Observable Markov Decision Process (POMDP) framework, which treats transition and emission probabilities as random variables, and is therefore suitable for including model uncertainty. PLUS models the components as independent or identical. In this paper, we extend that formulation, allowing for a weaker similarity among components. The proposed approach, called Multiple Uncertain POMDP (MU-POMDP), models the components as POMDPs, and assumes the corresponding parameters as dependent random variables. Through this framework, we can calibrate specific degradation and emission models for each component while, at the same time, process observations at system-level. We compare the performance of the proposed MU-POMDP with PLUS, and discuss its potential and computational complexity. - Highlights: • A computational framework is proposed for adaptive monitoring and control. • It adopts a scheme based on Markov Chain Monte Carlo for inference and learning. • Hierarchical Bayesian modeling is used to allow a system-level flow of information. • Results show potential of significant savings in management of wind farms.
Use of hierarchical models to analyze European trends in congenital anomaly prevalence
DEFF Research Database (Denmark)
Cavadino, Alana; Prieto-Merino, David; Addor, Marie-Claude
2016-01-01
BACKGROUND: Surveillance of congenital anomalies is important to identify potential teratogens. Despite known associations between different anomalies, current surveillance methods examine trends within each subgroup separately. We aimed to evaluate whether hierarchical statistical methods that c...
A GIS-Enabled, Michigan-Specific, Hierarchical Groundwater Modeling and Visualization System
Liu, Q.; Li, S.; Mandle, R.; Simard, A.; Fisher, B.; Brown, E.; Ross, S.
2005-12-01
Efficient management of groundwater resources relies on a comprehensive database that represents the characteristics of the natural groundwater system as well as analysis and modeling tools to describe the impacts of decision alternatives. Many agencies in Michigan have spent several years compiling expensive and comprehensive surface water and groundwater inventories and other related spatial data that describe their respective areas of responsibility. However, most often this wealth of descriptive data has only been utilized for basic mapping purposes. The benefits from analyzing these data, using GIS analysis functions or externally developed analysis models or programs, has yet to be systematically realized. In this talk, we present a comprehensive software environment that allows Michigan groundwater resources managers and frontline professionals to make more effective use of the available data and improve their ability to manage and protect groundwater resources, address potential conflicts, design cleanup schemes, and prioritize investigation activities. In particular, we take advantage of the Interactive Ground Water (IGW) modeling system and convert it to a customized software environment specifically for analyzing, modeling, and visualizing the Michigan statewide groundwater database. The resulting Michigan IGW modeling system (IGW-M) is completely window-based, fully interactive, and seamlessly integrated with a GIS mapping engine. The system operates in real-time (on the fly) providing dynamic, hierarchical mapping, modeling, spatial analysis, and visualization. Specifically, IGW-M allows water resources and environmental professionals in Michigan to: * Access and utilize the extensive data from the statewide groundwater database, interactively manipulate GIS objects, and display and query the associated data and attributes; * Analyze and model the statewide groundwater database, interactively convert GIS objects into numerical model features
Energy Technology Data Exchange (ETDEWEB)
Moges, Edom [Civil and Environmental Engineering Department, Washington State University, Richland Washington USA; Demissie, Yonas [Civil and Environmental Engineering Department, Washington State University, Richland Washington USA; Li, Hong-Yi [Hydrology Group, Pacific Northwest National Laboratory, Richland Washington USA
2016-04-01
In most water resources applications, a single model structure might be inadequate to capture the dynamic multi-scale interactions among different hydrological processes. Calibrating single models for dynamic catchments, where multiple dominant processes exist, can result in displacement of errors from structure to parameters, which in turn leads to over-correction and biased predictions. An alternative to a single model structure is to develop local expert structures that are effective in representing the dominant components of the hydrologic process and adaptively integrate them based on an indicator variable. In this study, the Hierarchical Mixture of Experts (HME) framework is applied to integrate expert model structures representing the different components of the hydrologic process. Various signature diagnostic analyses are used to assess the presence of multiple dominant processes and the adequacy of a single model, as well as to identify the structures of the expert models. The approaches are applied for two distinct catchments, the Guadalupe River (Texas) and the French Broad River (North Carolina) from the Model Parameter Estimation Experiment (MOPEX), using different structures of the HBV model. The results show that the HME approach has a better performance over the single model for the Guadalupe catchment, where multiple dominant processes are witnessed through diagnostic measures. Whereas, the diagnostics and aggregated performance measures prove that French Broad has a homogeneous catchment response, making the single model adequate to capture the response.
Sepú lveda, Nuno; Campino, Susana G; Assefa, Samuel A; Sutherland, Colin J; Pain, Arnab; Clark, Taane G
2013-01-01
Background: The advent of next generation sequencing technology has accelerated efforts to map and catalogue copy number variation (CNV) in genomes of important micro-organisms for public health. A typical analysis of the sequence data involves mapping reads onto a reference genome, calculating the respective coverage, and detecting regions with too-low or too-high coverage (deletions and amplifications, respectively). Current CNV detection methods rely on statistical assumptions (e.g., a Poisson model) that may not hold in general, or require fine-tuning the underlying algorithms to detect known hits. We propose a new CNV detection methodology based on two Poisson hierarchical models, the Poisson-Gamma and Poisson-Lognormal, with the advantage of being sufficiently flexible to describe different data patterns, whilst robust against deviations from the often assumed Poisson model.Results: Using sequence coverage data of 7 Plasmodium falciparum malaria genomes (3D7 reference strain, HB3, DD2, 7G8, GB4, OX005, and OX006), we showed that empirical coverage distributions are intrinsically asymmetric and overdispersed in relation to the Poisson model. We also demonstrated a low baseline false positive rate for the proposed methodology using 3D7 resequencing data and simulation. When applied to the non-reference isolate data, our approach detected known CNV hits, including an amplification of the PfMDR1 locus in DD2 and a large deletion in the CLAG3.2 gene in GB4, and putative novel CNV regions. When compared to the recently available FREEC and cn.MOPS approaches, our findings were more concordant with putative hits from the highest quality array data for the 7G8 and GB4 isolates.Conclusions: In summary, the proposed methodology brings an increase in flexibility, robustness, accuracy and statistical rigour to CNV detection using sequence coverage data. 2013 Seplveda et al.; licensee BioMed Central Ltd.
Feeney, Stephen M.; Mortlock, Daniel J.; Dalmasso, Niccolò
2018-05-01
Estimates of the Hubble constant, H0, from the local distance ladder and from the cosmic microwave background (CMB) are discrepant at the ˜3σ level, indicating a potential issue with the standard Λ cold dark matter (ΛCDM) cosmology. A probabilistic (i.e. Bayesian) interpretation of this tension requires a model comparison calculation, which in turn depends strongly on the tails of the H0 likelihoods. Evaluating the tails of the local H0 likelihood requires the use of non-Gaussian distributions to faithfully represent anchor likelihoods and outliers, and simultaneous fitting of the complete distance-ladder data set to ensure correct uncertainty propagation. We have hence developed a Bayesian hierarchical model of the full distance ladder that does not rely on Gaussian distributions and allows outliers to be modelled without arbitrary data cuts. Marginalizing over the full ˜3000-parameter joint posterior distribution, we find H0 = (72.72 ± 1.67) km s-1 Mpc-1 when applied to the outlier-cleaned Riess et al. data, and (73.15 ± 1.78) km s-1 Mpc-1 with supernova outliers reintroduced (the pre-cut Cepheid data set is not available). Using our precise evaluation of the tails of the H0 likelihood, we apply Bayesian model comparison to assess the evidence for deviation from ΛCDM given the distance-ladder and CMB data. The odds against ΛCDM are at worst ˜10:1 when considering the Planck 2015 XIII data, regardless of outlier treatment, considerably less dramatic than naïvely implied by the 2.8σ discrepancy. These odds become ˜60:1 when an approximation to the more-discrepant Planck Intermediate XLVI likelihood is included.
Sepúlveda, Nuno; Campino, Susana G; Assefa, Samuel A; Sutherland, Colin J; Pain, Arnab; Clark, Taane G
2013-02-26
The advent of next generation sequencing technology has accelerated efforts to map and catalogue copy number variation (CNV) in genomes of important micro-organisms for public health. A typical analysis of the sequence data involves mapping reads onto a reference genome, calculating the respective coverage, and detecting regions with too-low or too-high coverage (deletions and amplifications, respectively). Current CNV detection methods rely on statistical assumptions (e.g., a Poisson model) that may not hold in general, or require fine-tuning the underlying algorithms to detect known hits. We propose a new CNV detection methodology based on two Poisson hierarchical models, the Poisson-Gamma and Poisson-Lognormal, with the advantage of being sufficiently flexible to describe different data patterns, whilst robust against deviations from the often assumed Poisson model. Using sequence coverage data of 7 Plasmodium falciparum malaria genomes (3D7 reference strain, HB3, DD2, 7G8, GB4, OX005, and OX006), we showed that empirical coverage distributions are intrinsically asymmetric and overdispersed in relation to the Poisson model. We also demonstrated a low baseline false positive rate for the proposed methodology using 3D7 resequencing data and simulation. When applied to the non-reference isolate data, our approach detected known CNV hits, including an amplification of the PfMDR1 locus in DD2 and a large deletion in the CLAG3.2 gene in GB4, and putative novel CNV regions. When compared to the recently available FREEC and cn.MOPS approaches, our findings were more concordant with putative hits from the highest quality array data for the 7G8 and GB4 isolates. In summary, the proposed methodology brings an increase in flexibility, robustness, accuracy and statistical rigour to CNV detection using sequence coverage data.
Sepúlveda, Nuno
2013-02-26
Background: The advent of next generation sequencing technology has accelerated efforts to map and catalogue copy number variation (CNV) in genomes of important micro-organisms for public health. A typical analysis of the sequence data involves mapping reads onto a reference genome, calculating the respective coverage, and detecting regions with too-low or too-high coverage (deletions and amplifications, respectively). Current CNV detection methods rely on statistical assumptions (e.g., a Poisson model) that may not hold in general, or require fine-tuning the underlying algorithms to detect known hits. We propose a new CNV detection methodology based on two Poisson hierarchical models, the Poisson-Gamma and Poisson-Lognormal, with the advantage of being sufficiently flexible to describe different data patterns, whilst robust against deviations from the often assumed Poisson model.Results: Using sequence coverage data of 7 Plasmodium falciparum malaria genomes (3D7 reference strain, HB3, DD2, 7G8, GB4, OX005, and OX006), we showed that empirical coverage distributions are intrinsically asymmetric and overdispersed in relation to the Poisson model. We also demonstrated a low baseline false positive rate for the proposed methodology using 3D7 resequencing data and simulation. When applied to the non-reference isolate data, our approach detected known CNV hits, including an amplification of the PfMDR1 locus in DD2 and a large deletion in the CLAG3.2 gene in GB4, and putative novel CNV regions. When compared to the recently available FREEC and cn.MOPS approaches, our findings were more concordant with putative hits from the highest quality array data for the 7G8 and GB4 isolates.Conclusions: In summary, the proposed methodology brings an increase in flexibility, robustness, accuracy and statistical rigour to CNV detection using sequence coverage data. 2013 Seplveda et al.; licensee BioMed Central Ltd.
Marrella, Alessandra; Aiello, Maurizio; Quarto, Rodolfo; Scaglione, Silvia
2016-10-01
Porous multiphase scaffolds have been proposed in different tissue engineering applications because of their potential to artificially recreate the heterogeneous structure of hierarchically complex tissues. Recently, graded scaffolds have been also realized, offering a continuum at the interface among different phases for an enhanced structural stability of the scaffold. However, their internal architecture is often obtained empirically and the architectural parameters rarely predetermined. The aim of this work is to offer a theoretical model as tool for the design and fabrication of functional and structural complex graded scaffolds with predicted morphological and chemical features, to overcome the time-consuming trial and error experimental method. This developed mathematical model uses laws of motions, Stokes equations, and viscosity laws to describe the dependence between centrifugation speed and fiber/particles sedimentation velocity over time, which finally affects the fiber packing, and thus the total porosity of the 3D scaffolds. The efficacy of the theoretical model was tested by realizing engineered graded grafts for osteochondral tissue engineering applications. The procedure, based on combined centrifugation and freeze-drying technique, was applied on both polycaprolactone (PCL) and collagen-type-I (COL) to test the versatility of the entire process. A functional gradient was combined to the morphological one by adding hydroxyapatite (HA) powders, to mimic the bone mineral phase. Results show that 3D bioactive morphologically and chemically graded grafts can be properly designed and realized in agreement with the theoretical model. Biotechnol. Bioeng. 2016;113: 2286-2297. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Sub-seasonal-to-seasonal Reservoir Inflow Forecast using Bayesian Hierarchical Hidden Markov Model
Mukhopadhyay, S.; Arumugam, S.
2017-12-01
Sub-seasonal-to-seasonal (S2S) (15-90 days) streamflow forecasting is an emerging area of research that provides seamless information for reservoir operation from weather time scales to seasonal time scales. From an operational perspective, sub-seasonal inflow forecasts are highly valuable as these enable water managers to decide short-term releases (15-30 days), while holding water for seasonal needs (e.g., irrigation and municipal supply) and to meet end-of-the-season target storage at a desired level. We propose a Bayesian Hierarchical Hidden Markov Model (BHHMM) to develop S2S inflow forecasts for the Tennessee Valley Area (TVA) reservoir system. Here, the hidden states are predicted by relevant indices that influence the inflows at S2S time scale. The hidden Markov model also captures the both spatial and temporal hierarchy in predictors that operate at S2S time scale with model parameters being estimated as a posterior distribution using a Bayesian framework. We present our work in two steps, namely single site model and multi-site model. For proof of concept, we consider inflows to Douglas Dam, Tennessee, in the single site model. For multisite model we consider reservoirs in the upper Tennessee valley. Streamflow forecasts are issued and updated continuously every day at S2S time scale. We considered precipitation forecasts obtained from NOAA Climate Forecast System (CFSv2) GCM as predictors for developing S2S streamflow forecasts along with relevant indices for predicting hidden states. Spatial dependence of the inflow series of reservoirs are also preserved in the multi-site model. To circumvent the non-normality of the data, we consider the HMM in a Generalized Linear Model setting. Skill of the proposed approach is tested using split sample validation against a traditional multi-site canonical correlation model developed using the same set of predictors. From the posterior distribution of the inflow forecasts, we also highlight different system behavior
Cohen, Alasdair; Zhang, Qi; Luo, Qing; Tao, Yong; Colford, John M; Ray, Isha
2017-06-20
Approximately two billion people drink unsafe water. Boiling is the most commonly used household water treatment (HWT) method globally and in China. HWT can make water safer, but sustained adoption is rare and bottled water consumption is growing. To successfully promote HWT, an understanding of associated socioeconomic factors is critical. We collected survey data and water samples from 450 rural households in Guangxi Province, China. Covariates were grouped into blocks to hierarchically construct modified Poisson models and estimate risk ratios (RR) associated with boiling methods, bottled water, and untreated water. Female-headed households were most likely to boil (RR = 1.36, p water, or use electric kettles if they boiled. Our findings show that boiling is not an undifferentiated practice, but one with different methods of varying effectiveness, environmental impact, and adoption across socioeconomic strata. Our results can inform programs to promote safer and more efficient boiling using electric kettles, and suggest that if rural China's economy continues to grow then bottled water use will increase.
Directory of Open Access Journals (Sweden)
David Lunn
Full Text Available The advantages of Bayesian statistical approaches, such as flexibility and the ability to acknowledge uncertainty in all parameters, have made them the prevailing method for analysing the spread of infectious diseases in human or animal populations. We introduce a Bayesian approach to experimental host-pathogen systems that shares these attractive features. Since uncertainty in all parameters is acknowledged, existing information can be accounted for through prior distributions, rather than through fixing some parameter values. The non-linear dynamics, multi-factorial design, multiple measurements of responses over time and sampling error that are typical features of experimental host-pathogen systems can also be naturally incorporated. We analyse the dynamics of the free-living protozoan Paramecium caudatum and its specialist bacterial parasite Holospora undulata. Our analysis provides strong evidence for a saturable infection function, and we were able to reproduce the two waves of infection apparent in the data by separating the initial inoculum from the parasites released after the first cycle of infection. In addition, the parameter estimates from the hierarchical model can be combined to infer variations in the parasite's basic reproductive ratio across experimental groups, enabling us to make predictions about the effect of resources and host genotype on the ability of the parasite to spread. Even though the high level of variability between replicates limited the resolution of the results, this Bayesian framework has strong potential to be used more widely in experimental ecology.
Directory of Open Access Journals (Sweden)
Tülin Acar
2012-01-01
Full Text Available The aim of this research is to compare the result of the differential item functioning (DIF determining with hierarchical generalized linear model (HGLM technique and the results of the DIF determining with logistic regression (LR and item response theory–likelihood ratio (IRT-LR techniques on the test items. For this reason, first in this research, it is determined whether the students encounter DIF with HGLM, LR, and IRT-LR techniques according to socioeconomic status (SES, in the Turkish, Social Sciences, and Science subtest items of the Secondary School Institutions Examination. When inspecting the correlations among the techniques in terms of determining the items having DIF, it was discovered that there was significant correlation between the results of IRT-LR and LR techniques in all subtests; merely in Science subtest, the results of the correlation between HGLM and IRT-LR techniques were found significant. DIF applications can be made on test items with other DIF analysis techniques that were not taken to the scope of this research. The analysis results, which were determined by using the DIF techniques in different sample sizes, can be compared.
Borgoni, Riccardo; De Francesco, Davide; De Bartolo, Daniela; Tzavidis, Nikos
2014-12-01
Radon is a natural gas known to be the main contributor to natural background radiation exposure and only second to smoking as major leading cause of lung cancer. The main concern is in indoor environments where the gas tends to accumulate and can reach high concentrations. The primary contributor of this gas into the building is from the soil although architectonic characteristics, such as building materials, can largely affect concentration values. Understanding the factors affecting the concentration in dwellings and workplaces is important both in prevention, when the construction of a new building is being planned, and in mitigation when the amount of Radon detected inside a building is too high. In this paper we investigate how several factors, such as geologic typologies of the soil and a range of building characteristics, impact on indoor concentration focusing, in particular, on how concentration changes as a function of the floor level. Adopting a mixed effects model to account for the hierarchical nature of the data, we also quantify the extent to which such measurable factors manage to explain the variability of indoor radon concentration. Copyright © 2014 Elsevier Ltd. All rights reserved.
Subjective value of risky foods for individual domestic chicks: a hierarchical Bayesian model.
Kawamori, Ai; Matsushima, Toshiya
2010-05-01
For animals to decide which prey to attack, the gain and delay of the food item must be integrated in a value function. However, the subjective value is not obtained by expected profitability when it is accompanied by risk. To estimate the subjective value, we examined choices in a cross-shaped maze with two colored feeders in domestic chicks. When tested by a reversal in food amount or delay, chicks changed choices similarly in both conditions (experiment 1). We therefore examined risk sensitivity for amount and delay (experiment 2) by supplying one feeder with food of fixed profitability and the alternative feeder with high- or low-profitability food at equal probability. Profitability varied in amount (groups 1 and 2 at high and low variance) or in delay (group 3). To find the equilibrium, the amount (groups 1 and 2) or delay (group 3) of the food in the fixed feeder was adjusted in a total of 18 blocks. The Markov chain Monte Carlo method was applied to a hierarchical Bayesian model to estimate the subjective value. Chicks undervalued the variable feeder in group 1 and were indifferent in group 2 but overvalued the variable feeder in group 3 at a population level. Re-examination without the titration procedure (experiment 3) suggested that the subjective value was not absolute for each option. When the delay was varied, the variable option was often given a paradoxically high value depending on fixed alternative. Therefore, the basic assumption of the uniquely determined value function might be questioned.
Tao, Yu-Hui; Wu, Yu-Lung; Huang, Wan-Yun
2017-01-01
The evidence literature suggests that physical therapy practitioners are subjected to a high probability of acquiring work-related injuries, but only a few studies have specifically investigated Taiwanese physical therapy practitioners. This study was conducted to determine the relationships among individual and group hospital-level factors that contribute to the medical expenses for the occupational injuries of physical therapy practitioners in Taiwan. Physical therapy practitioners in Taiwan with occupational injuries were selected from the 2013 National Health Insurance Research Databases (NHIRD). The age, gender, job title, hospitals attributes, and outpatient data of physical therapy practitioners who sustained an occupational injury in 2013 were obtained with SAS 9.3. SPSS 20.0 and HLM 7.01 were used to conduct descriptive and hierarchical linear model analyses, respectively. The job title of physical therapy practitioners at the individual level and the hospital type at the group level exert positive effects on per person medical expenses. Hospital hierarchy moderates the individual-level relationships of age and job title with the per person medical expenses. Considering that age, job title, and hospital hierarchy affect medical expenses for the occupational injuries of physical therapy practitioners, we suggest strengthening related safety education and training and elevating the self-awareness of the risk of occupational injuries of physical therapy practitioners to reduce and prevent the occurrence of such injuries.
International Nuclear Information System (INIS)
Borgoni, Riccardo; De Francesco, Davide; De Bartolo, Daniela; Tzavidis, Nikos
2014-01-01
Radon is a natural gas known to be the main contributor to natural background radiation exposure and only second to smoking as major leading cause of lung cancer. The main concern is in indoor environments where the gas tends to accumulate and can reach high concentrations. The primary contributor of this gas into the building is from the soil although architectonic characteristics, such as building materials, can largely affect concentration values. Understanding the factors affecting the concentration in dwellings and workplaces is important both in prevention, when the construction of a new building is being planned, and in mitigation when the amount of Radon detected inside a building is too high. In this paper we investigate how several factors, such as geologic typologies of the soil and a range of building characteristics, impact on indoor concentration focusing, in particular, on how concentration changes as a function of the floor level. Adopting a mixed effects model to account for the hierarchical nature of the data, we also quantify the extent to which such measurable factors manage to explain the variability of indoor radon concentration. - Highlights: • It is assessed how the variability of indoor radon concentration depends on buildings and lithologies. • The lithological component has been found less relevant than the building one. • Radon-prone lithologies have been identified. • The effect of the floor where the room is located has been estimated. • Indoor radon concentration have been predicted for different dwelling typologies
Visualization and Hierarchical Analysis of Flow in Discrete Fracture Network Models
Aldrich, G. A.; Gable, C. W.; Painter, S. L.; Makedonska, N.; Hamann, B.; Woodring, J.
2013-12-01
Flow and transport in low permeability fractured rock is primary in interconnected fracture networks. Prediction and characterization of flow and transport in fractured rock has important implications in underground repositories for hazardous materials (eg. nuclear and chemical waste), contaminant migration and remediation, groundwater resource management, and hydrocarbon extraction. We have developed methods to explicitly model flow in discrete fracture networks and track flow paths using passive particle tracking algorithms. Visualization and analysis of particle trajectory through the fracture network is important to understanding fracture connectivity, flow patterns, potential contaminant pathways and fast paths through the network. However, occlusion due to the large number of highly tessellated and intersecting fracture polygons preclude the effective use of traditional visualization methods. We would also like quantitative analysis methods to characterize the trajectory of a large number of particle paths. We have solved these problems by defining a hierarchal flow network representing the topology of particle flow through the fracture network. This approach allows us to analyses the flow and the dynamics of the system as a whole. We are able to easily query the flow network, and use paint-and-link style framework to filter the fracture geometry and particle traces based on the flow analytics. This allows us to greatly reduce occlusion while emphasizing salient features such as the principal transport pathways. Examples are shown that demonstrate the methodology and highlight how use of this new method allows quantitative analysis and characterization of flow and transport in a number of representative fracture networks.
Assessing exposure to violence using multiple informants: application of hierarchical linear model.
Kuo, M; Mohler, B; Raudenbush, S L; Earls, F J
2000-11-01
The present study assesses the effects of demographic risk factors on children's exposure to violence (ETV) and how these effects vary by informants. Data on exposure to violence of 9-, 12-, and 15-year-olds were collected from both child participants (N = 1880) and parents (N = 1776), as part of the assessment of the Project on Human Development in Chicago Neighborhoods (PHDCN). A two-level hierarchical linear model (HLM) with multivariate outcomes was employed to analyze information obtained from these two different groups of informants. The findings indicate that parents generally report less ETV than do their children and that associations of age, gender, and parent education with ETV are stronger in the self-reports than in the parent reports. The findings support a multivariate approach when information obtained from different sources is being integrated. The application of HLM allows an assessment of interactions between risk factors and informants and uses all available data, including data from one informant when data from the other informant is missing.
Gopalan, Giri; Hrafnkelsson, Birgir; Aðalgeirsdóttir, Guðfinna; Jarosch, Alexander H.; Pálsson, Finnur
2018-03-01
Bayesian hierarchical modeling can assist the study of glacial dynamics and ice flow properties. This approach will allow glaciologists to make fully probabilistic predictions for the thickness of a glacier at unobserved spatio-temporal coordinates, and it will also allow for the derivation of posterior probability distributions for key physical parameters such as ice viscosity and basal sliding. The goal of this paper is to develop a proof of concept for a Bayesian hierarchical model constructed, which uses exact analytical solutions for the shallow ice approximation (SIA) introduced by Bueler et al. (2005). A suite of test simulations utilizing these exact solutions suggests that this approach is able to adequately model numerical errors and produce useful physical parameter posterior distributions and predictions. A byproduct of the development of the Bayesian hierarchical model is the derivation of a novel finite difference method for solving the SIA partial differential equation (PDE). An additional novelty of this work is the correction of numerical errors induced through a numerical solution using a statistical model. This error correcting process models numerical errors that accumulate forward in time and spatial variation of numerical errors between the dome, interior, and margin of a glacier.
Cucchi, K.; Kawa, N.; Hesse, F.; Rubin, Y.
2017-12-01
In order to reduce uncertainty in the prediction of subsurface flow and transport processes, practitioners should use all data available. However, classic inverse modeling frameworks typically only make use of information contained in in-situ field measurements to provide estimates of hydrogeological parameters. Such hydrogeological information about an aquifer is difficult and costly to acquire. In this data-scarce context, the transfer of ex-situ information coming from previously investigated sites can be critical for improving predictions by better constraining the estimation procedure. Bayesian inverse modeling provides a coherent framework to represent such ex-situ information by virtue of the prior distribution and combine them with in-situ information from the target site. In this study, we present an innovative data-driven approach for defining such informative priors for hydrogeological parameters at the target site. Our approach consists in two steps, both relying on statistical and machine learning methods. The first step is data selection; it consists in selecting sites similar to the target site. We use clustering methods for selecting similar sites based on observable hydrogeological features. The second step is data assimilation; it consists in assimilating data from the selected similar sites into the informative prior. We use a Bayesian hierarchical model to account for inter-site variability and to allow for the assimilation of multiple types of site-specific data. We present the application and validation of the presented methods on an established database of hydrogeological parameters. Data and methods are implemented in the form of an open-source R-package and therefore facilitate easy use by other practitioners.
DEFF Research Database (Denmark)
Qing, Hai; Mishnaevsky, Leon
2009-01-01
A 3D hierarchical computational model of deformation and stiffness of wood, which takes into account the structures of wood at several scale levels (cellularity, multilayered nature of cell walls, composite-like structures of the wall layers) is developed. At the mesoscale, the softwood cell...... cellular model. With the use of the developed hierarchical model, the influence of the microstructure, including microfibril angles (MFAs, which characterizes the orientation of the cellulose fibrils with respect to the cell axis), the thickness of the cell wall, the shape of the cell cross...... is presented as a 3D hexagon-shape-tube with multilayered walls. The layers in the softwood cell are considered as considered as composite reinforced by microfibrils (celluloses). The elastic properties of the layers are determined with Halpin–Tsai equations, and introduced into mesoscale finite element...
Approximate Bayesian Computation by Subset Simulation using hierarchical state-space models
Vakilzadeh, Majid K.; Huang, Yong; Beck, James L.; Abrahamsson, Thomas
2017-02-01
A new multi-level Markov Chain Monte Carlo algorithm for Approximate Bayesian Computation, ABC-SubSim, has recently appeared that exploits the Subset Simulation method for efficient rare-event simulation. ABC-SubSim adaptively creates a nested decreasing sequence of data-approximating regions in the output space that correspond to increasingly closer approximations of the observed output vector in this output space. At each level, multiple samples of the model parameter vector are generated by a component-wise Metropolis algorithm so that the predicted output corresponding to each parameter value falls in the current data-approximating region. Theoretically, if continued to the limit, the sequence of data-approximating regions would converge on to the observed output vector and the approximate posterior distributions, which are conditional on the data-approximation region, would become exact, but this is not practically feasible. In this paper we study the performance of the ABC-SubSim algorithm for Bayesian updating of the parameters of dynamical systems using a general hierarchical state-space model. We note that the ABC methodology gives an approximate posterior distribution that actually corresponds to an exact posterior where a uniformly distributed combined measurement and modeling error is added. We also note that ABC algorithms have a problem with learning the uncertain error variances in a stochastic state-space model and so we treat them as nuisance parameters and analytically integrate them out of the posterior distribution. In addition, the statistical efficiency of the original ABC-SubSim algorithm is improved by developing a novel strategy to regulate the proposal variance for the component-wise Metropolis algorithm at each level. We demonstrate that Self-regulated ABC-SubSim is well suited for Bayesian system identification by first applying it successfully to model updating of a two degree-of-freedom linear structure for three cases: globally
A hierarchical spatial model of avian abundance with application to Cerulean Warblers
Thogmartin, Wayne E.; Sauer, John R.; Knutson, Melinda G.
2004-01-01
Surveys collecting count data are the primary means by which abundance is indexed for birds. These counts are confounded, however, by nuisance effects including observer effects and spatial correlation between counts. Current methods poorly accommodate both observer and spatial effects because modeling these spatially autocorrelated counts within a hierarchical framework is not practical using standard statistical approaches. We propose a Bayesian approach to this problem and provide as an example of its implementation a spatial model of predicted abundance for the Cerulean Warbler (Dendroica cerulea) in the Prairie-Hardwood Transition of the upper midwestern United States. We used an overdispersed Poisson regression with fixed and random effects, fitted by Markov chain Monte Carlo methods. We used 21 years of North American Breeding Bird Survey counts as the response in a loglinear function of explanatory variables describing habitat, spatial relatedness, year effects, and observer effects. The model included a conditional autoregressive term representing potential correlation between adjacent route counts. Categories of explanatory habitat variables in the model included land cover composition and configuration, climate, terrain heterogeneity, and human influence. The inherent hierarchy in the model was from counts occurring, in part, as a function of observers within survey routes within years. We found that the percentage of forested wetlands, an index of wetness potential, and an interaction between mean annual precipitation and deciduous forest patch size best described Cerulean Warbler abundance. Based on a map of relative abundance derived from the posterior parameter estimates, we estimated that only 15% of the species' population occurred on federal land, necessitating active engagement of public landowners and state agencies in the conservation of the breeding habitat for this species. Models of this type can be applied to any data in which the response
Bayesian hierarchical models for regional climate reconstructions of the last glacial maximum
Weitzel, Nils; Hense, Andreas; Ohlwein, Christian
2017-04-01
Spatio-temporal reconstructions of past climate are important for the understanding of the long term behavior of the climate system and the sensitivity to forcing changes. Unfortunately, they are subject to large uncertainties, have to deal with a complex proxy-climate structure, and a physically reasonable interpolation between the sparse proxy observations is difficult. Bayesian Hierarchical Models (BHMs) are a class of statistical models that is well suited for spatio-temporal reconstructions of past climate because they permit the inclusion of multiple sources of information (e.g. records from different proxy types, uncertain age information, output from climate simulations) and quantify uncertainties in a statistically rigorous way. BHMs in paleoclimatology typically consist of three stages which are modeled individually and are combined using Bayesian inference techniques. The data stage models the proxy-climate relation (often named transfer function), the process stage models the spatio-temporal distribution of the climate variables of interest, and the prior stage consists of prior distributions of the model parameters. For our BHMs, we translate well-known proxy-climate transfer functions for pollen to a Bayesian framework. In addition, we can include Gaussian distributed local climate information from preprocessed proxy records. The process stage combines physically reasonable spatial structures from prior distributions with proxy records which leads to a multivariate posterior probability distribution for the reconstructed climate variables. The prior distributions that constrain the possible spatial structure of the climate variables are calculated from climate simulation output. We present results from pseudoproxy tests as well as new regional reconstructions of temperatures for the last glacial maximum (LGM, ˜ 21,000 years BP). These reconstructions combine proxy data syntheses with information from climate simulations for the LGM that were
Mandel, Kaisey; Kirshner, R. P.; Narayan, G.; Wood-Vasey, W. M.; Friedman, A. S.; Hicken, M.
2010-01-01
I have constructed a comprehensive statistical model for Type Ia supernova light curves spanning optical through near infrared data simultaneously. The near infrared light curves are found to be excellent standard candles (sigma(MH) = 0.11 +/- 0.03 mag) that are less vulnerable to systematic error from dust extinction, a major confounding factor for cosmological studies. A hierarchical statistical framework incorporates coherently multiple sources of randomness and uncertainty, including photometric error, intrinsic supernova light curve variations and correlations, dust extinction and reddening, peculiar velocity dispersion and distances, for probabilistic inference with Type Ia SN light curves. Inferences are drawn from the full probability density over individual supernovae and the SN Ia and dust populations, conditioned on a dataset of SN Ia light curves and redshifts. To compute probabilistic inferences with hierarchical models, I have developed BayeSN, a Markov Chain Monte Carlo algorithm based on Gibbs sampling. This code explores and samples the global probability density of parameters describing individual supernovae and the population. I have applied this hierarchical model to optical and near infrared data of over 100 nearby Type Ia SN from PAIRITEL, the CfA3 sample, and the literature. Using this statistical model, I find that SN with optical and NIR data have a smaller residual scatter in the Hubble diagram than SN with only optical data. The continued study of Type Ia SN in the near infrared will be important for improving their utility as precise and accurate cosmological distance indicators.
Takahashi, Y. O.; Takehiro, S.; Sugiyama, K.; Odaka, M.; Ishiwatari, M.; Sasaki, Y.; Nishizawa, S.; Ishioka, K.; Nakajima, K.; Hayashi, Y.
2012-12-01
Toward the understanding of fluid motions of planetary atmospheres and planetary interiors by performing multiple numerical experiments with multiple models, we are now proceeding ``dcmodel project'', where a series of hierarchical numerical models with various complexity is developed and maintained. In ``dcmodel project'', a series of the numerical models are developed taking care of the following points: 1) a common ``style'' of program codes assuring readability of the software, 2) open source codes of the models to the public, 3) scalability of the models assuring execution on various scales of computational resources, 4) stressing the importance of documentation and presenting a method for writing reference manuals. The lineup of the models and utility programs of the project is as follows: Gtool5, ISPACK/SPML, SPMODEL, Deepconv, Dcpam, and Rdoc-f95. In the followings, features of each component are briefly described. Gtool5 (Ishiwatari et al., 2012) is a Fortran90 library, which provides data input/output interfaces and various utilities commonly used in the models of dcmodel project. A self-descriptive data format netCDF is adopted as a IO format of Gtool5. The interfaces of gtool5 library can reduce the number of operation steps for the data IO in the program code of the models compared with the interfaces of the raw netCDF library. Further, by use of gtool5 library, procedures for data IO and addition of metadata for post-processing can be easily implemented in the program codes in a consolidated form independent of the size and complexity of the models. ``ISPACK'' is the spectral transformation library and ``SPML (SPMODEL library)'' (Takehiro et al., 2006) is its wrapper library. Most prominent feature of SPML is a series of array-handling functions with systematic function naming rules, and this enables us to write codes with a form which is easily deduced from the mathematical expressions of the governing equations. ``SPMODEL'' (Takehiro et al., 2006
Yuan, Y.; Meng, Y.; Chen, Y. X.; Jiang, C.; Yue, A. Z.
2018-04-01
In this study, we proposed a method to map urban encroachment onto farmland using satellite image time series (SITS) based on the hierarchical hidden Markov model (HHMM). In this method, the farmland change process is decomposed into three hierarchical levels, i.e., the land cover level, the vegetation phenology level, and the SITS level. Then a three-level HHMM is constructed to model the multi-level semantic structure of farmland change process. Once the HHMM is established, a change from farmland to built-up could be detected by inferring the underlying state sequence that is most likely to generate the input time series. The performance of the method is evaluated on MODIS time series in Beijing. Results on both simulated and real datasets demonstrate that our method improves the change detection accuracy compared with the HMM-based method.
Hierarchical Bayesian Model for Simultaneous EEG Source and Forward Model Reconstruction (SOFOMORE)
DEFF Research Database (Denmark)
Stahlhut, Carsten; Mørup, Morten; Winther, Ole
2009-01-01
In this paper we propose an approach to handle forward model uncertainty for EEG source reconstruction. A stochastic forward model is motivated by the many uncertain contributions that form the forward propagation model including the tissue conductivity distribution, the cortical surface, and ele......In this paper we propose an approach to handle forward model uncertainty for EEG source reconstruction. A stochastic forward model is motivated by the many uncertain contributions that form the forward propagation model including the tissue conductivity distribution, the cortical surface...
Wheeler, David C.; Hickson, DeMarc A.; Waller, Lance A.
2010-01-01
Many diagnostic tools and goodness-of-fit measures, such as the Akaike information criterion (AIC) and the Bayesian deviance information criterion (DIC), are available to evaluate the overall adequacy of linear regression models. In addition, visually assessing adequacy in models has become an essential part of any regression analysis. In this paper, we focus on a spatial consideration of the local DIC measure for model selection and goodness-of-fit evaluation. We use a partitioning of the DIC into the local DIC, leverage, and deviance residuals to assess local model fit and influence for both individual observations and groups of observations in a Bayesian framework. We use visualization of the local DIC and differences in local DIC between models to assist in model selection and to visualize the global and local impacts of adding covariates or model parameters. We demonstrate the utility of the local DIC in assessing model adequacy using HIV prevalence data from pregnant women in the Butare province of Rwanda during 1989-1993 using a range of linear model specifications, from global effects only to spatially varying coefficient models, and a set of covariates related to sexual behavior. Results of applying the diagnostic visualization approach include more refined model selection and greater understanding of the models as applied to the data. PMID:21243121
Jeffrey E. Schneiderman; Hong S. He; Frank R. Thompson; William D. Dijak; Jacob S. Fraser
2015-01-01
Tree species distribution and abundance are affected by forces operating across a hierarchy of ecological scales. Process and species distribution models have been developed emphasizing forces at different scales. Understanding model agreement across hierarchical scales provides perspective on prediction uncertainty and ultimately enables policy makers and managers to...
Directory of Open Access Journals (Sweden)
Daniel Ting
2010-04-01
Full Text Available Distributions of the backbone dihedral angles of proteins have been studied for over 40 years. While many statistical analyses have been presented, only a handful of probability densities are publicly available for use in structure validation and structure prediction methods. The available distributions differ in a number of important ways, which determine their usefulness for various purposes. These include: 1 input data size and criteria for structure inclusion (resolution, R-factor, etc.; 2 filtering of suspect conformations and outliers using B-factors or other features; 3 secondary structure of input data (e.g., whether helix and sheet are included; whether beta turns are included; 4 the method used for determining probability densities ranging from simple histograms to modern nonparametric density estimation; and 5 whether they include nearest neighbor effects on the distribution of conformations in different regions of the Ramachandran map. In this work, Ramachandran probability distributions are presented for residues in protein loops from a high-resolution data set with filtering based on calculated electron densities. Distributions for all 20 amino acids (with cis and trans proline treated separately have been determined, as well as 420 left-neighbor and 420 right-neighbor dependent distributions. The neighbor-independent and neighbor-dependent probability densities have been accurately estimated using Bayesian nonparametric statistical analysis based on the Dirichlet process. In particular, we used hierarchical Dirichlet process priors, which allow sharing of information between densities for a particular residue type and different neighbor residue types. The resulting distributions are tested in a loop modeling benchmark with the program Rosetta, and are shown to improve protein loop conformation prediction significantly. The distributions are available at http://dunbrack.fccc.edu/hdp.
Jiménez, José; García, Emilio J; Llaneza, Luis; Palacios, Vicente; González, Luis Mariano; García-Domínguez, Francisco; Múñoz-Igualada, Jaime; López-Bao, José Vicente
2016-08-01
In many cases, the first step in large-carnivore management is to obtain objective, reliable, and cost-effective estimates of population parameters through procedures that are reproducible over time. However, monitoring predators over large areas is difficult, and the data have a high level of uncertainty. We devised a practical multimethod and multistate modeling approach based on Bayesian hierarchical-site-occupancy models that combined multiple survey methods to estimate different population states for use in monitoring large predators at a regional scale. We used wolves (Canis lupus) as our model species and generated reliable estimates of the number of sites with wolf reproduction (presence of pups). We used 2 wolf data sets from Spain (Western Galicia in 2013 and Asturias in 2004) to test the approach. Based on howling surveys, the naïve estimation (i.e., estimate based only on observations) of the number of sites with reproduction was 9 and 25 sites in Western Galicia and Asturias, respectively. Our model showed 33.4 (SD 9.6) and 34.4 (3.9) sites with wolf reproduction, respectively. The number of occupied sites with wolf reproduction was 0.67 (SD 0.19) and 0.76 (0.11), respectively. This approach can be used to design more cost-effective monitoring programs (i.e., to define the sampling effort needed per site). Our approach should inspire well-coordinated surveys across multiple administrative borders and populations and lead to improved decision making for management of large carnivores on a landscape level. The use of this Bayesian framework provides a simple way to visualize the degree of uncertainty around population-parameter estimates and thus provides managers and stakeholders an intuitive approach to interpreting monitoring results. Our approach can be widely applied to large spatial scales in wildlife monitoring where detection probabilities differ between population states and where several methods are being used to estimate different population
Detecting Hierarchical Structure in Networks
DEFF Research Database (Denmark)
Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard
2012-01-01
Many real-world networks exhibit hierarchical organization. Previous models of hierarchies within relational data has focused on binary trees; however, for many networks it is unknown whether there is hierarchical structure, and if there is, a binary tree might not account well for it. We propose...... a generative Bayesian model that is able to infer whether hierarchies are present or not from a hypothesis space encompassing all types of hierarchical tree structures. For efficient inference we propose a collapsed Gibbs sampling procedure that jointly infers a partition and its hierarchical structure....... On synthetic and real data we demonstrate that our model can detect hierarchical structure leading to better link-prediction than competing models. Our model can be used to detect if a network exhibits hierarchical structure, thereby leading to a better comprehension and statistical account the network....
Sparse Estimation Using Bayesian Hierarchical Prior Modeling for Real and Complex Linear Models
DEFF Research Database (Denmark)
Pedersen, Niels Lovmand; Manchón, Carles Navarro; Badiu, Mihai Alin
2015-01-01
In sparse Bayesian learning (SBL), Gaussian scale mixtures (GSMs) have been used to model sparsity-inducing priors that realize a class of concave penalty functions for the regression task in real-valued signal models. Motivated by the relative scarcity of formal tools for SBL in complex-valued m......In sparse Bayesian learning (SBL), Gaussian scale mixtures (GSMs) have been used to model sparsity-inducing priors that realize a class of concave penalty functions for the regression task in real-valued signal models. Motivated by the relative scarcity of formal tools for SBL in complex...... error, and robustness in low and medium signal-to-noise ratio regimes....
Yu, Wenxi; Liu, Yang; Ma, Zongwei; Bi, Jun
2017-08-01
Using satellite-based aerosol optical depth (AOD) measurements and statistical models to estimate ground-level PM 2.5 is a promising way to fill the areas that are not covered by ground PM 2.5 monitors. The statistical models used in previous studies are primarily Linear Mixed Effects (LME) and Geographically Weighted Regression (GWR) models. In this study, we developed a new regression model between PM 2.5 and AOD using Gaussian processes in a Bayesian hierarchical setting. Gaussian processes model the stochastic nature of the spatial random effects, where the mean surface and the covariance function is specified. The spatial stochastic process is incorporated under the Bayesian hierarchical framework to explain the variation of PM 2.5 concentrations together with other factors, such as AOD, spatial and non-spatial random effects. We evaluate the results of our model and compare them with those of other, conventional statistical models (GWR and LME) by within-sample model fitting and out-of-sample validation (cross validation, CV). The results show that our model possesses a CV result (R 2 = 0.81) that reflects higher accuracy than that of GWR and LME (0.74 and 0.48, respectively). Our results indicate that Gaussian process models have the potential to improve the accuracy of satellite-based PM 2.5 estimates.
DEFF Research Database (Denmark)
Øjelund, Henrik; Sadegh, Payman
2000-01-01
be obtained. This paper presents a new approach for system modelling under partial (global) information (or the so called Gray-box modelling) that seeks to perserve the benefits of the global as well as local methodologies sithin a unified framework. While the proposed technique relies on local approximations......Local function approximations concern fitting low order models to weighted data in neighbourhoods of the points where the approximations are desired. Despite their generality and convenience of use, local models typically suffer, among others, from difficulties arising in physical interpretation...... simultaneously with the (local estimates of) function values. The approach is applied to modelling of a linear time variant dynamic system under prior linear time invariant structure where local regression fails as a result of high dimensionality....
Czech Academy of Sciences Publication Activity Database
Suparta, W.; Gusrizal, G.; Kudela, Karel; Isa, Z.
2017-01-01
Roč. 28, č. 3 (2017), s. 357-370 ISSN 1017-0839 R&D Projects: GA MŠk EF15_003/0000481 Institutional support: RVO:61389005 Keywords : trapped particle * spatio-temporal * hierarchical Bayesian * forecasting Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 0.752, year: 2016
Towards directional assembly of hierarchical structures: aniline oligomers as the model precursors
Czech Academy of Sciences Publication Activity Database
Zhao, Y.; Stejskal, Jaroslav; Wang, J.
2013-01-01
Roč. 5, č. 7 (2013), s. 2620-2626 ISSN 2040-3364 R&D Projects: GA ČR GAP205/12/0911 Institutional support: RVO:61389013 Keywords : aniline oligomers * hierarchical nanostructures * microflowers Subject RIV: CD - Macromolecular Chemistry Impact factor: 6.739, year: 2013
Directory of Open Access Journals (Sweden)
Chong Wei
2015-01-01
Full Text Available Logistic regression models have been widely used in previous studies to analyze public transport utilization. These studies have shown travel time to be an indispensable variable for such analysis and usually consider it to be a deterministic variable. This formulation does not allow us to capture travelers’ perception error regarding travel time, and recent studies have indicated that this error can have a significant effect on modal choice behavior. In this study, we propose a logistic regression model with a hierarchical random error term. The proposed model adds a new random error term for the travel time variable. This term structure enables us to investigate travelers’ perception error regarding travel time from a given choice behavior dataset. We also propose an extended model that allows constraining the sign of this error in the model. We develop two Gibbs samplers to estimate the basic hierarchical model and the extended model. The performance of the proposed models is examined using a well-known dataset.
Directory of Open Access Journals (Sweden)
Thomas J Rodhouse
Full Text Available Monitoring programs that evaluate restoration and inform adaptive management are important for addressing environmental degradation. These efforts may be well served by spatially explicit hierarchical approaches to modeling because of unavoidable spatial structure inherited from past land use patterns and other factors. We developed bayesian hierarchical models to estimate trends from annual density counts observed in a spatially structured wetland forb (Camassia quamash [camas] population following the cessation of grazing and mowing on the study area, and in a separate reference population of camas. The restoration site was bisected by roads and drainage ditches, resulting in distinct subpopulations ("zones" with different land use histories. We modeled this spatial structure by fitting zone-specific intercepts and slopes. We allowed spatial covariance parameters in the model to vary by zone, as in stratified kriging, accommodating anisotropy and improving computation and biological interpretation. Trend estimates provided evidence of a positive effect of passive restoration, and the strength of evidence was influenced by the amount of spatial structure in the model. Allowing trends to vary among zones and accounting for topographic heterogeneity increased precision of trend estimates. Accounting for spatial autocorrelation shifted parameter coefficients in ways that varied among zones depending on strength of statistical shrinkage, autocorrelation and topographic heterogeneity--a phenomenon not widely described. Spatially explicit estimates of trend from hierarchical models will generally be more useful to land managers than pooled regional estimates and provide more realistic assessments of uncertainty. The ability to grapple with historical contingency is an appealing benefit of this approach.
Hierarchical model-based predictive control of a power plant portfolio
DEFF Research Database (Denmark)
Edlund, Kristian; Bendtsen, Jan Dimon; Jørgensen, John Bagterp
2011-01-01
One of the main difficulties in large-scale implementation of renewable energy in existing power systems is that the production from renewable sources is difficult to predict and control. For this reason, fast and efficient control of controllable power producing units – so-called “portfolio...... design for power system portfolio control, which aims specifically at meeting these demands.The design involves a two-layer hierarchical structure with clearly defined interfaces that facilitate an object-oriented implementation approach. The same hierarchical structure is reflected in the underlying...... optimisation problem, which is solved using Dantzig–Wolfe decomposition. This decomposition yields improved computational efficiency and better scalability compared to centralised methods.The proposed control scheme is compared to an existing, state-of-the-art portfolio control system (operated by DONG Energy...
Mathieu Goudard; Michel Lubrano
2011-01-01
The theory of human capital is one way to explain individual decisions to produce scientific research. However, this theory, even if it reckons the importance of time in science, is too short for explaining the existing diversity of scientific output. The present paper introduces the social capital of Bourdieu (1980), Coleman (1988) and Putnam (1995) as a necessary complement to explain the creation of scientific human capital. This paper connects these two concepts by means of a hierarchical...
Oohashi, Tsutomu; Ueno, Osamu; Maekawa, Tadao; Kawai, Norie; Nishina, Emi; Honda, Manabu
2009-01-01
Under the AChem paradigm and the programmed self-decomposition (PSD) model, we propose a hierarchical model for the biomolecular covalent bond (HBCB model). This model assumes that terrestrial organisms arrange their biomolecules in a hierarchical structure according to the energy strength of their covalent bonds. It also assumes that they have evolutionarily selected the PSD mechanism of turning biological polymers (BPs) into biological monomers (BMs) as an efficient biomolecular recycling strategy We have examined the validity and effectiveness of the HBCB model by coordinating two complementary approaches: biological experiments using existent terrestrial life, and simulation experiments using an AChem system. Biological experiments have shown that terrestrial life possesses a PSD mechanism as an endergonic, genetically regulated process and that hydrolysis, which decomposes a BP into BMs, is one of the main processes of such a mechanism. In simulation experiments, we compared different virtual self-decomposition processes. The virtual species in which the self-decomposition process mainly involved covalent bond cleavage from a BP to BMs showed evolutionary superiority over other species in which the self-decomposition process involved cleavage from BP to classes lower than BM. These converging findings strongly support the existence of PSD and the validity and effectiveness of the HBCB model.
Hu, Ming-Hsia; Yeh, Chih-Jun; Chen, Tou-Rong; Wang, Ching-Yi
2014-01-01
A valid, time-efficient and easy-to-use instrument is important for busy clinical settings, large scale surveys, or community screening use. The purpose of this study was to validate the mobility hierarchical disability categorization model (an abbreviated model) by investigating its concurrent validity with the multidimensional hierarchical disability categorization model (a comprehensive model) and triangulating both models with physical performance measures in older adults. 604 community-dwelling older adults of at least 60 years in age volunteered to participate. Self-reported function on mobility, instrumental activities of daily living (IADL) and activities of daily living (ADL) domains were recorded and then the disability status determined based on both the multidimensional hierarchical categorization model and the mobility hierarchical categorization model. The physical performance measures, consisting of grip strength and usual and fastest gait speeds (UGS, FGS), were collected on the same day. Both categorization models showed high correlation (γs = 0.92, p categorization models. The results of multiple regression analysis indicated that both models individually explain similar amount of variance on all physical performances, with adjustments for age, sex, and number of comorbidities. Our results found that the mobility hierarchical disability categorization model is a valid and time efficient tool for large survey or screening use.
Liang, Dong; Song, Yimin; Sun, Tao; Jin, Xueying
2018-03-01
This paper addresses the problem of rigid-flexible coupling dynamic modeling and active control of a novel flexible parallel manipulator (PM) with multiple actuation modes. Firstly, based on the flexible multi-body dynamics theory, the rigid-flexible coupling dynamic model (RFDM) of system is developed by virtue of the augmented Lagrangian multipliers approach. For completeness, the mathematical models of permanent magnet synchronous motor (PMSM) and piezoelectric transducer (PZT) are further established and integrated with the RFDM of mechanical system to formulate the electromechanical coupling dynamic model (ECDM). To achieve the trajectory tracking and vibration suppression, a hierarchical compound control strategy is presented. Within this control strategy, the proportional-differential (PD) feedback controller is employed to realize the trajectory tracking of end-effector, while the strain and strain rate feedback (SSRF) controller is developed to restrain the vibration of the flexible links using PZT. Furthermore, the stability of the control algorithm is demonstrated based on the Lyapunov stability theory. Finally, two simulation case studies are performed to illustrate the effectiveness of the proposed approach. The results indicate that, under the redundant actuation mode, the hierarchical compound control strategy can guarantee the flexible PM achieves singularity-free motion and vibration attenuation within task workspace simultaneously. The systematic methodology proposed in this study can be conveniently extended for the dynamic modeling and efficient controller design of other flexible PMs, especially the emerging ones with multiple actuation modes.
Energy Technology Data Exchange (ETDEWEB)
Chang, X; Mazur, T; Yang, D [Washington University in St Louis, St Louis, MO (United States)
2016-06-15
Purpose: To investigate an approach of automatically recognizing anatomical sites and imaging views (the orientation of the image acquisition) in 2D X-ray images. Methods: A hierarchical (binary tree) multiclass recognition model was developed to recognize the treatment sites and views in x-ray images. From top to bottom of the tree, the treatment sites are grouped hierarchically from more general to more specific. Each node in the hierarchical model was designed to assign images to one of two categories of anatomical sites. The binary image classification function of each node in the hierarchical model is implemented by using a PCA transformation and a support vector machine (SVM) model. The optimal PCA transformation matrices and SVM models are obtained by learning from a set of sample images. Alternatives of the hierarchical model were developed to support three scenarios of site recognition that may happen in radiotherapy clinics, including two or one X-ray images with or without view information. The performance of the approach was tested with images of 120 patients from six treatment sites – brain, head-neck, breast, lung, abdomen and pelvis – with 20 patients per site and two views (AP and RT) per patient. Results: Given two images in known orthogonal views (AP and RT), the hierarchical model achieved a 99% average F1 score to recognize the six sites. Site specific view recognition models have 100 percent accuracy. The computation time to process a new patient case (preprocessing, site and view recognition) is 0.02 seconds. Conclusion: The proposed hierarchical model of site and view recognition is effective and computationally efficient. It could be useful to automatically and independently confirm the treatment sites and views in daily setup x-ray 2D images. It could also be applied to guide subsequent image processing tasks, e.g. site and view dependent contrast enhancement and image registration. The senior author received research grants from View
International Nuclear Information System (INIS)
Chang, X; Mazur, T; Yang, D
2016-01-01
Purpose: To investigate an approach of automatically recognizing anatomical sites and imaging views (the orientation of the image acquisition) in 2D X-ray images. Methods: A hierarchical (binary tree) multiclass recognition model was developed to recognize the treatment sites and views in x-ray images. From top to bottom of the tree, the treatment sites are grouped hierarchically from more general to more specific. Each node in the hierarchical model was designed to assign images to one of two categories of anatomical sites. The binary image classification function of each node in the hierarchical model is implemented by using a PCA transformation and a support vector machine (SVM) model. The optimal PCA transformation matrices and SVM models are obtained by learning from a set of sample images. Alternatives of the hierarchical model were developed to support three scenarios of site recognition that may happen in radiotherapy clinics, including two or one X-ray images with or without view information. The performance of the approach was tested with images of 120 patients from six treatment sites – brain, head-neck, breast, lung, abdomen and pelvis – with 20 patients per site and two views (AP and RT) per patient. Results: Given two images in known orthogonal views (AP and RT), the hierarchical model achieved a 99% average F1 score to recognize the six sites. Site specific view recognition models have 100 percent accuracy. The computation time to process a new patient case (preprocessing, site and view recognition) is 0.02 seconds. Conclusion: The proposed hierarchical model of site and view recognition is effective and computationally efficient. It could be useful to automatically and independently confirm the treatment sites and views in daily setup x-ray 2D images. It could also be applied to guide subsequent image processing tasks, e.g. site and view dependent contrast enhancement and image registration. The senior author received research grants from View
Azarnova, T. V.; Titova, I. A.; Barkalov, S. A.
2018-03-01
The article presents an algorithm for obtaining an integral assessment of the quality of an organization from the perspective of customers, based on the method of aggregating linguistic information on a multilevel hierarchical system of quality assessment. The algorithm is of a constructive nature, it provides not only the possibility of obtaining an integral evaluation, but also the development of a quality improvement strategy based on the method of linguistic decomposition, which forms the minimum set of areas of work with clients whose quality change will allow obtaining the required level of integrated quality assessment.
Leach, Colin Wayne; van Zomeren, Martijn; Zebel, Sven; Vliek, Michael L W; Pennekamp, Sjoerd F; Doosje, Bertjan; Ouwerkerk, Jaap W; Spears, Russell
2008-07-01
Recent research shows individuals' identification with in-groups to be psychologically important and socially consequential. However, there is little agreement about how identification should be conceptualized or measured. On the basis of previous work, the authors identified 5 specific components of in-group identification and offered a hierarchical 2-dimensional model within which these components are organized. Studies 1 and 2 used confirmatory factor analysis to validate the proposed model of self-definition (individual self-stereotyping, in-group homogeneity) and self-investment (solidarity, satisfaction, and centrality) dimensions, across 3 different group identities. Studies 3 and 4 demonstrated the construct validity of the 5 components by examining their (concurrent) correlations with established measures of in-group identification. Studies 5-7 demonstrated the predictive and discriminant validity of the 5 components by examining their (prospective) prediction of individuals' orientation to, and emotions about, real intergroup relations. Together, these studies illustrate the conceptual and empirical value of a hierarchical multicomponent model of in-group identification.
da Silva, Natal Santos; Undurraga, Eduardo A; da Silva Ferreira, Elis Regina; Estofolete, Cássia Fernanda; Nogueira, Maurício Lacerda
2018-01-01
In Brazil, the incidence of hospitalization due to dengue, as an indicator of severity, has drastically increased since 1998. The objective of our study was to identify risk factors associated with subsequent hospitalization related to dengue. We analyzed 7613 dengue confirmed via serology (ELISA), non-structural protein 1, or polymerase chain reaction amplification. We used a hierarchical framework to generate a multivariate logistic regression based on a variety of risk variables. This was followed by multiple statistical analyses to assess hierarchical model accuracy, variance, goodness of fit, and whether or not this model reliably represented the population. The final model, which included age, sex, ethnicity, previous dengue infection, hemorrhagic manifestations, plasma leakage, and organ failure, showed that all measured parameters, with the exception of previous dengue, were statistically significant. The presence of organ failure was associated with the highest risk of subsequent dengue hospitalization (OR=5·75; CI=3·53-9·37). Therefore, plasma leakage and organ failure were the main indicators of hospitalization due to dengue, although other variables of minor importance should also be considered to refer dengue patients to hospital treatment, which may lead to a reduction in avoidable deaths as well as costs related to dengue. Copyright © 2017 Elsevier B.V. All rights reserved.
Felleki, M; Lee, D; Lee, Y; Gilmour, A R; Rönnegård, L
2012-12-01
The possibility of breeding for uniform individuals by selecting animals expressing a small response to environment has been studied extensively in animal breeding. Bayesian methods for fitting models with genetic components in the residual variance have been developed for this purpose, but have limitations due to the computational demands. We use the hierarchical (h)-likelihood from the theory of double hierarchical generalized linear models (DHGLM) to derive an estimation algorithm that is computationally feasible for large datasets. Random effects for both the mean and residual variance parts of the model are estimated together with their variance/covariance components. An important feature of the algorithm is that it can fit a correlation between the random effects for mean and variance. An h-likelihood estimator is implemented in the R software and an iterative reweighted least square (IRWLS) approximation of the h-likelihood is implemented using ASReml. The difference in variance component estimates between the two implementations is investigated, as well as the potential bias of the methods, using simulations. IRWLS gives the same results as h-likelihood in simple cases with no severe indication of bias. For more complex cases, only IRWLS could be used, and bias did appear. The IRWLS is applied on the pig litter size data previously analysed by Sorensen & Waagepetersen (2003) using Bayesian methodology. The estimates we obtained by using IRWLS are similar to theirs, with the estimated correlation between the random genetic effects being -0·52 for IRWLS and -0·62 in Sorensen & Waagepetersen (2003).
Kowal, J; Fortier, M S
2000-06-01
The purpose of this study was to test a motivational model based on Vallerand's (1997) Hierarchical Model of Intrinsic and Extrinsic Motivation. This model incorporates situational and contextual motivational variables, and was tested using a time-lagged design. Master's level swimmers (N = 104) completed a questionnaire on two separate occasions. At Time 1, situational social factors (perceptions of success and perceptions of the motivational climate), situational motivational mediators (perceptions of autonomy, competence, and relatedness), situational motivation, and flow were assessed immediately following a swim practice. Contextual measures of these same variables were assessed at Time 2, 1 week later, with the exception of flow. Results of a path analysis supported numerous links in the hypothesized model. Findings are discussed in light of research and theory on motivation and flow.
Directory of Open Access Journals (Sweden)
Lianhui Li
2014-01-01
Full Text Available Aiming at the problem of fusion algorithm performance evaluation in multiradar information fusion system, firstly the hierarchical attribute model of track relevance performance evaluation model is established based on the structural model and functional model and quantization methods of evaluation indicators are given; secondly a combination weighting method is proposed to determine the weights of evaluation indicators, in which the objective and subjective weights are separately determined by criteria importance through intercriteria correlation (CRITIC and trapezoidal fuzzy scale analytic hierarchy process (AHP, and then experience factor is introduced to obtain the combination weight; at last the improved technique for order preference by similarity to ideal solution (TOPSIS replacing Euclidean distance with Kullback-Leibler divergence (KLD is used to sort the weighted indicator value of the evaluation object. An example is given to illustrate the correctness and feasibility of the proposed method.
Hierarchical modeling of heat transfer in silicon-based electronic devices
Goicochea Pineda, Javier V.
In this work a methodology for the hierarchical modeling of heat transfer in silicon-based electronic devices is presented. The methodology includes three steps to integrate the different scales involved in the thermal analysis of these devices. The steps correspond to: (i) the estimation of input parameters and thermal properties required to solve the Boltzmann transport equation (BTE) for phonons by means of molecular dynamics (MD) simulations, (ii) the quantum correction of some of the properties estimated with MD to make them suitable for BTE and (iii) the numerical solution of the BTE using the lattice Boltzmann method (LBM) under the single mode relaxation time approximation subject to different initial and boundary conditions, including non-linear dispersion relations and different polarizations in the [100] direction. Each step of the methodology is validated with numerical, analytical or experimental reported data. In the first step of the methodology, properties such as, phonon relaxation times, dispersion relations, group and phase velocities and specific heat are obtained with MD at of 300 and 1000 K (i.e. molecular temperatures). The estimation of the properties considers the anhamonic nature of the potential energy function, including the thermal expansion of the crystal. Both effects are found to modify the dispersion relations with temperature. The behavior of the phonon relaxation times for each mode (i.e. longitudinal and transverse, acoustic and optical phonons) is identified using power functions. The exponents of the acoustic modes are agree with those predicted theoretically perturbation theory at high temperatures, while those for the optical modes are higher. All properties estimated with MD are validated with values for the thermal conductivity obtained from the Green-Kubo method. It is found that the relative contribution of acoustic modes to the overall thermal conductivity is approximately 90% at both temperatures. In the second step
Price, Matthew; Anderson, Page; Henrich, Christopher C; Rothbaum, Barbara Olasov
2008-12-01
A client's expectation that therapy will be beneficial has long been considered an important factor contributing to therapeutic outcomes, but recent empirical work examining this hypothesis has primarily yielded null findings. The present study examined the contribution of expectancies for treatment outcome to actual treatment outcome from the start of therapy through 12-month follow-up in a clinical sample of individuals (n=72) treated for fear of flying with either in vivo exposure or virtual reality exposure therapy. Using a piecewise hierarchical linear model, outcome expectancy predicted treatment gains made during therapy but not during follow-up. Compared to lower levels, higher expectations for treatment outcome yielded stronger rates of symptom reduction from the beginning to the end of treatment on 2 standardized self-report questionnaires on fear of flying. The analytic approach of the current study is one potential reason that findings contrast with prior literature. The advantages of using hierarchical linear modeling to assess interindividual differences in longitudinal data are discussed.
International Nuclear Information System (INIS)
Byun, Hyunsuk; Lee, Chul-Yong
2017-01-01
Generally, consumers use electricity without considering the source the electricity was generated from. Since different energy sources exert varying effects on society, it is necessary to analyze consumers’ latent preference for electricity generation sources. The present study estimates Korean consumers’ marginal utility and an appropriate generation mix is derived using the hierarchical Bayesian logit model in a discrete choice experiment. The results show that consumers consider the danger posed by the source of electricity as the most important factor among the effects of electricity generation sources. Additionally, Korean consumers wish to reduce the contribution of nuclear power from the existing 32–11%, and increase that of renewable energy from the existing 4–32%. - Highlights: • We derive an electricity mix reflecting Korean consumers’ latent preferences. • We use the discrete choice experiment and hierarchical Bayesian logit model. • The danger posed by the generation source is the most important attribute. • The consumers wish to increase the renewable energy proportion from 4.3% to 32.8%. • Korea's cost-oriented energy supply policy and consumers’ preference differ markedly.
DEFF Research Database (Denmark)
Yeh, P.H.; Gazdzinski, S.; Durazzo, T.C.
2007-01-01
faster brain volume gains, which were also related to greater smoking and drinking severities. Over 7 months of abstinence from alcohol, sALC compared to nsALC showed less improvements in visuospatial learning and memory despite larger brain volume gains and ventricular shrinkage. Conclusions: Different......)-derived brain volume changes and cognitive changes in abstinent alcohol-dependent individuals as a function of smoking status, smoking severity, and drinking quantities. Methods: Twenty non-smoking recovering alcoholics (nsALC) and 30 age-matched smoking recovering alcoholics (sALC) underwent quantitative MRI...... time points. Using HLM, we modeled volumetric and cognitive outcome measures as a function of cigarette and alcohol use variables. Results: Different hierarchical linear models with unique model structures are presented and discussed. The results show that smaller brain volumes at baseline predict...
A Hierarchical multi-input and output Bi-GRU Model for Sentiment Analysis on Customer Reviews
Zhang, Liujie; Zhou, Yanquan; Duan, Xiuyu; Chen, Ruiqi
2018-03-01
Multi-label sentiment classification on customer reviews is a practical challenging task in Natural Language Processing. In this paper, we propose a hierarchical multi-input and output model based bi-directional recurrent neural network, which both considers the semantic and lexical information of emotional expression. Our model applies two independent Bi-GRU layer to generate part of speech and sentence representation. Then the lexical information is considered via attention over output of softmax activation on part of speech representation. In addition, we combine probability of auxiliary labels as feature with hidden layer to capturing crucial correlation between output labels. The experimental result shows that our model is computationally efficient and achieves breakthrough improvements on customer reviews dataset.
Franke, R.
2016-11-01
In many networks discovered in biology, medicine, neuroscience and other disciplines special properties like a certain degree distribution and hierarchical cluster structure (also called communities) can be observed as general organizing principles. Detecting the cluster structure of an unknown network promises to identify functional subdivisions, hierarchy and interactions on a mesoscale. It is not trivial choosing an appropriate detection algorithm because there are multiple network, cluster and algorithmic properties to be considered. Edges can be weighted and/or directed, clusters overlap or build a hierarchy in several ways. Algorithms differ not only in runtime, memory requirements but also in allowed network and cluster properties. They are based on a specific definition of what a cluster is, too. On the one hand, a comprehensive network creation model is needed to build a large variety of benchmark networks with different reasonable structures to compare algorithms. On the other hand, if a cluster structure is already known, it is desirable to separate effects of this structure from other network properties. This can be done with null model networks that mimic an observed cluster structure to improve statistics on other network features. A third important application is the general study of properties in networks with different cluster structures, possibly evolving over time. Currently there are good benchmark and creation models available. But what is left is a precise sandbox model to build hierarchical, overlapping and directed clusters for undirected or directed, binary or weighted complex random networks on basis of a sophisticated blueprint. This gap shall be closed by the model CHIMERA (Cluster Hierarchy Interconnection Model for Evaluation, Research and Analysis) which will be introduced and described here for the first time.
African Journals Online (AJOL)
Jane
within ethics, as ethical behaviours form the building blocks of human ... it can help us understand the concept of business ethics, commonly ... It is important to adopt a holistic and balanced approach to issues concerning business ethics and.
African Journals Online (AJOL)
Jane
known as the Food and Beverage department and the Rooms. Division department .... not act adequately in unsafe situations, the choice was made to use shocking .... often have no knowledge of their motives does not follow that free will is an ...
African Journals Online (AJOL)
Jane
to exploring the views of key stakeholders with respect to addressing the topic of .... businesses' reporting on environmental and related (Corporate. Social Responsibility .... identity and strategy of hospitality businesses as the logical next step.
African Journals Online (AJOL)
Jane
Research in Hospitality Management 2014, 4(1&2): 39–44. Printed in The .... But clearly this is not the case – people of different backgrounds ... The concept is often associated .... particular strategies and methodologies, but rather, that all the.
African Journals Online (AJOL)
Jane
Research in Hospitality Management 2014, 4(1&2): 29–37. Printed in .... contextualise the concept of skills within a broader framework pertaining .... important antecedent to strategic purchasing (Ogden et al. 2007). .... The cases were selected ...
African Journals Online (AJOL)
Jane
Research in Hospitality Management 2014, 4(1&2): 13–19. Printed in ... 2011). One of the key strategies used by marketers to allow ... who have an understanding of a restaurant's concept and branding ..... case of McDonald's and Subway.
African Journals Online (AJOL)
Jane
This double issue of Research in Hospitality Management embraces the full ... plan: an investigation of social sustainability: the case of all-inclusive resorts, ... are forced to re-analyse their operational strategies to maintain competitive advantage. ... programme in the hospitality industry: a review of concepts, research, and.
African Journals Online (AJOL)
Jane
Research in Hospitality Management 2014, 4(1&2): 91–95. Printed in The ... this strategic objective. All the same .... concept explaining human eating habits, especially about ... food in cases where other sources of meat are available. Hunting ...
African Journals Online (AJOL)
Jane
Research in Hospitality Management 2014, 4(1&2): 97–104. Printed in The Netherlands ... today's society, fortunately, is no longer the sole case (McClure. 2009). ..... the concepts and theoretical themes as Gehrels found in his research into .... Small Business Service (2003), A strategic framework for women's enterprise.
African Journals Online (AJOL)
Jane
The significance of the growth in joint degree programmes has been ... programmes as a way to offer students international experi- .... context of Bologna (Sursock and Smidt, Trends 2010) joint ... an overseas partner is an example of how institutions can ..... equivalence of experience in educational terms of each institu-.
African Journals Online (AJOL)
Jane
Research in Hospitality Management 2014, 4(1&2): 45–54. Printed in The .... one organisation can be applied for the benefit of employees in other firms and .... that include various medical, dental, and vision coverage options, as ..... Clinical. Governance: An International Journal 12(3): 178–187. Marriott 2011. Encouraging ...
African Journals Online (AJOL)
Jane
agent to promote the type of social learning that is needed for ... It is part of a wider context, i.e. tourism, in which involved .... to share their views on sustainability, the relevance of sustain- ability for ... network of NHTV's Academy of Hotel Management respec- ... tive or legal pressures than based on an intrinsic motivation to.
African Journals Online (AJOL)
Jane
Academy of Hotel and Facility Management, NHTV Breda University of Applied Sciences, Breda, The Netherlands .... attracting guests, but beyond the bed, many 'budget' hotels ... price charged) but in reality, appealing to more complex.
African Journals Online (AJOL)
Jane
for international students considerations include destina- ... skills such as critical thinking, problem solving and interper- sonal skills, but pay ..... people who a job ready', 'when we take people for placement ... Additionally there was a strong.
African Journals Online (AJOL)
Jane
This very small segment of the Dutch restaurant business (0.2–0.5% of the total ... The transcripts of the recorded interviews were analysed, applying a constructivist grounded theory approach ...... able beforehand about all the contingencies in seeking a ... specific groups of practitioners in the hospitality industry to get more ...
African Journals Online (AJOL)
Jane
This approach is founded upon deep-rooted ... long-term customer loyalty beyond the somewhat simplistic ... of an instrument that aspires to measure individual hospita- ... the word hospitality has emerged from the shadow of being used to describe a cluster of ..... satisfaction arising from the practice of hospitableness.
Directory of Open Access Journals (Sweden)
Jamal Bahiri Saleth
2016-01-01
Full Text Available Capital structure is a controversial issue in the field of corporate finance. There are several studies to find a way to determine the optimal capital structure to minimize the cost of capital and maximize the corporate value. In fact, capital structure is a combination of firms’ liabilities and capital to meet long term assets. This paper investigates the role of the hierarchical theory in explaining the capital structure of the firms based on enterprise life cycle model on selected firms listed on Tehran Stock Exchange (TSE using three methods of net equities, net liabilities and retained earnings. The study uses Park and Chen’s (2006 method [Park, Y., & Chen, K. H. (2006. The effect of accounting conservatism and life-cycle stages on firm valuation. Journal of Applied Business Research (JABR, 22(3, 75-92.] to categorize the life cycle of 81 randomly selected firms from TSE over the period 2007-2012. The results indicate that the hierarchical theory represents the growing firms better than the matured firms do. The results also show that firms were more willing to reduce their dividend per share for financing their projects.
Directory of Open Access Journals (Sweden)
Alejandro Ivan Aguirre-Salado
2017-07-01
Full Text Available We implemented a spatial model for analysing PM 10 maxima across the Mexico City metropolitan area during the period 1995–2016. We assumed that these maxima follow a non-identical generalized extreme value (GEV distribution and modeled the trend by introducing multivariate smoothing spline functions into the probability GEV distribution. A flexible, three-stage hierarchical Bayesian approach was developed to analyse the distribution of the PM 10 maxima in space and time. We evaluated the statistical model’s performance by using a simulation study. The results showed strong evidence of a positive correlation between the PM 10 maxima and the longitude and latitude. The relationship between time and the PM 10 maxima was negative, indicating a decreasing trend over time. Finally, a high risk of PM 10 maxima presenting levels above 1000 μ g/m 3 (return period: 25 yr was observed in the northwestern region of the study area.
Froehlich, Eva; Liebig, Johanna; Ziegler, Johannes C; Braun, Mario; Lindenberger, Ulman; Heekeren, Hauke R; Jacobs, Arthur M
2016-01-01
Reading is one of the most popular leisure activities and it is routinely performed by most individuals even in old age. Successful reading enables older people to master and actively participate in everyday life and maintain functional independence. Yet, reading comprises a multitude of subprocesses and it is undoubtedly one of the most complex accomplishments of the human brain. Not surprisingly, findings of age-related effects on word recognition and reading have been partly contradictory and are often confined to only one of four central reading subprocesses, i.e., sublexical, orthographic, phonological and lexico-semantic processing. The aim of the present study was therefore to systematically investigate the impact of age on each of these subprocesses. A total of 1,807 participants (young, N = 384; old, N = 1,423) performed four decision tasks specifically designed to tap one of the subprocesses. To account for the behavioral heterogeneity in older adults, this subsample was split into high and low performing readers. Data were analyzed using a hierarchical diffusion modeling approach, which provides more information than standard response time/accuracy analyses. Taking into account incorrect and correct response times, their distributions and accuracy data, hierarchical diffusion modeling allowed us to differentiate between age-related changes in decision threshold, non-decision time and the speed of information uptake. We observed longer non-decision times for older adults and a more conservative decision threshold. More importantly, high-performing older readers outperformed younger adults at the speed of information uptake in orthographic and lexico-semantic processing, whereas a general age-disadvantage was observed at the sublexical and phonological levels. Low-performing older readers were slowest in information uptake in all four subprocesses. Discussing these results in terms of computational models of word recognition, we propose age
Directory of Open Access Journals (Sweden)
Eva Froehlich
2016-11-01
Full Text Available Reading is one of the most popular leisure activities and it is routinely performed by most individuals even in old age. Successful reading enables older people to master and actively participate in everyday life and maintain functional independence. Yet, reading comprises a multitude of subprocesses and it is undoubtedly one of the most complex accomplishments of the human brain. Not surprisingly, findings of age-related effects on word recognition and reading have been partly contradictory and are often confined to only one of four central reading subprocesses, i.e., sublexical, orthographic, phonological and lexico-semantic processing. The aim of the present study was therefore to systematically investigate the impact of age on each of these subprocesses. A total of 1,807 participants (young, N = 384; old, N = 1,423 performed four decision tasks specifically designed to tap one of the subprocesses. To account for the behavioral heterogeneity in older adults, this subsample was split into high and low performing readers. Data were analyzed using a hierarchical diffusion modelling approach which provides more information than standard response times/accuracy analyses. Taking into account incorrect and correct response times, their distributions and accuracy data, hierarchical diffusion modelling allowed us to differentiate between age-related changes in decision threshold, non-decision time and the speed of information uptake. We observed longer non-decision times for older adults and a more conservative decision threshold. More importantly, high-performing older readers outperformed younger adults at the speed of information uptake in orthographic and lexico-semantic processing whereas a general age-disadvantage was observed at the sublexical and phonological levels. Low-performing older readers were slowest in information uptake in all four subprocesses. Discussing these results in terms of computational models of word recognition, we propose
Keegan, John P.; Chan, Fong; Ditchman, Nicole; Chiu, Chung-Yi
2012-01-01
The main objective of this study was to validate Pender's Health Promotion Model (HPM) as a motivational model for exercise/physical activity self-management for people with spinal cord injuries (SCIs). Quantitative descriptive research design using hierarchical regression analysis (HRA) was used. A total of 126 individuals with SCI were recruited…
Hierarchical modeling of professional skills in the field of castings manufacture engineering
Samuilă, V.; Soporan, V. F.; Conțiu, G.; Pădurețu, S.; Lehene, T. R.; Vescan, M. M.
2017-06-01
The paper presents a method of hierarchizing professional skills in the manufacturing of molded parts (castings) by using and adapting the FAHP algorithm (Fuzzy Analitical Hierarchy Process). Assessments are made regarding the peculiarities of the professional training process, specifying the activities to be carried out and the competences necessary for their development. The contribution of the design of the method extends to the design of the hierarchy system architecture, the linguistic determination of the importance of each characteristic, the construction of the fuzzy ordering matrices for each stage of the process, the determination of the share of the characteristics for each hierarchy step and establishing the hierarchy of the characteristics taking into account the influences of the others, grouped at the level of the steps and within the global matrix. The research carried out represents the support for generating an instrument of hierarchy of professional competencies that can be used in various professional and institutional contexts. Case study on the hierarchy of professional skills in the manufacturing of molded parts engineering. Keywords: Materials engineering, castings manufacture professional skills, hierarchy, AHP method, standard occupational curriculum.
Mapping brucellosis increases relative to elk density using hierarchical Bayesian models
Cross, Paul C.; Heisey, Dennis M.; Scurlock, Brandon M.; Edwards, William H.; Brennan, Angela; Ebinger, Michael R.
2010-01-01
The relationship between host density and parasite transmission is central to the effectiveness of many disease management strategies. Few studies, however, have empirically estimated this relationship particularly in large mammals. We applied hierarchical Bayesian methods to a 19-year dataset of over 6400 brucellosis tests of adult female elk (Cervus elaphus) in northwestern Wyoming. Management captures that occurred from January to March were over two times more likely to be seropositive than hunted elk that were killed in September to December, while accounting for site and year effects. Areas with supplemental feeding grounds for elk had higher seroprevalence in 1991 than other regions, but by 2009 many areas distant from the feeding grounds were of comparable seroprevalence. The increases in brucellosis seroprevalence were correlated with elk densities at the elk management unit, or hunt area, scale (mean 2070 km2; range = [95–10237]). The data, however, could not differentiate among linear and non-linear effects of host density. Therefore, control efforts that focus on reducing elk densities at a broad spatial scale were only weakly supported. Additional research on how a few, large groups within a region may be driving disease dynamics is needed for more targeted and effective management interventions. Brucellosis appears to be expanding its range into new regions and elk populations, which is likely to further complicate the United States brucellosis eradication program. This study is an example of how the dynamics of host populations can affect their ability to serve as disease reservoirs.
Mapping brucellosis increases relative to elk density using hierarchical Bayesian models.
Directory of Open Access Journals (Sweden)
Paul C Cross
Full Text Available The relationship between host density and parasite transmission is central to the effectiveness of many disease management strategies. Few studies, however, have empirically estimated this relationship particularly in large mammals. We applied hierarchical Bayesian methods to a 19-year dataset of over 6400 brucellosis tests of adult female elk (Cervus elaphus in northwestern Wyoming. Management captures that occurred from January to March were over two times more likely to be seropositive than hunted elk that were killed in September to December, while accounting for site and year effects. Areas with supplemental feeding grounds for elk had higher seroprevalence in 1991 than other regions, but by 2009 many areas distant from the feeding grounds were of comparable seroprevalence. The increases in brucellosis seroprevalence were correlated with elk densities at the elk management unit, or hunt area, scale (mean 2070 km(2; range = [95-10237]. The data, however, could not differentiate among linear and non-linear effects of host density. Therefore, control efforts that focus on reducing elk densities at a broad spatial scale were only weakly supported. Additional research on how a few, large groups within a region may be driving disease dynamics is needed for more targeted and effective management interventions. Brucellosis appears to be expanding its range into new regions and elk populations, which is likely to further complicate the United States brucellosis eradication program. This study is an example of how the dynamics of host populations can affect their ability to serve as disease reservoirs.
Directory of Open Access Journals (Sweden)
Santosh Jatrana
Full Text Available The aim of this paper was to see whether all-cause and cause-specific mortality rates vary between Asian ethnic subgroups, and whether overseas born Asian subgroup mortality rate ratios varied by nativity and duration of residence. We used hierarchical Bayesian methods to allow for sparse data in the analysis of linked census-mortality data for 25-75 year old New Zealanders. We found directly standardised posterior all-cause and cardiovascular mortality rates were highest for the Indian ethnic group, significantly so when compared with those of Chinese ethnicity. In contrast, cancer mortality rates were lowest for ethnic Indians. Asian overseas born subgroups have about 70% of the mortality rate of their New Zealand born Asian counterparts, a result that showed little variation by Asian subgroup or cause of death. Within the overseas born population, all-cause mortality rates for migrants living 0-9 years in New Zealand were about 60% of the mortality rate of those living more than 25 years in New Zealand regardless of ethnicity. The corresponding figure for cardiovascular mortality rates was 50%. However, while Chinese cancer mortality rates increased with duration of residence, Indian and Other Asian cancer mortality rates did not. Future research on the mechanisms of worsening of health with increased time spent in the host country is required to improve the understanding of the process, and would assist the policy-makers and health planners.
Zeng, Hao; Zhang, Jingrui
2018-04-01
The low-thrust version of the fuel-optimal transfers between periodic orbits with different energies in the vicinity of five libration points is exploited deeply in the Circular Restricted Three-Body Problem. Indirect optimization technique incorporated with constraint gradients is employed to further improve the computational efficiency and accuracy of the algorithm. The required optimal thrust magnitude and direction can be determined to create the bridging trajectory that connects the invariant manifolds. A hierarchical design strategy dividing the constraint set is proposed to seek the optimal solution when the problem cannot be solved directly. Meanwhile, the solution procedure and the value ranges of used variables are summarized. To highlight the effectivity of the transfer scheme and aim at different types of libration point orbits, transfer trajectories between some sample orbits, including Lyapunov orbits, planar orbits, halo orbits, axial orbits, vertical orbits and butterfly orbits for collinear and triangular libration points, are investigated with various time of flight. Numerical results show that the fuel consumption varies from a few kilograms to tens of kilograms, related to the locations and the types of mission orbits as well as the corresponding invariant manifold structures, and indicates that the low-thrust transfers may be a beneficial option for the extended science missions around different libration points.
How hierarchical is language use?
Frank, Stefan L.; Bod, Rens; Christiansen, Morten H.
2012-01-01
It is generally assumed that hierarchical phrase structure plays a central role in human language. However, considerations of simplicity and evolutionary continuity suggest that hierarchical structure should not be invoked too hastily. Indeed, recent neurophysiological, behavioural and computational studies show that sequential sentence structure has considerable explanatory power and that hierarchical processing is often not involved. In this paper, we review evidence from the recent literature supporting the hypothesis that sequential structure may be fundamental to the comprehension, production and acquisition of human language. Moreover, we provide a preliminary sketch outlining a non-hierarchical model of language use and discuss its implications and testable predictions. If linguistic phenomena can be explained by sequential rather than hierarchical structure, this will have considerable impact in a wide range of fields, such as linguistics, ethology, cognitive neuroscience, psychology and computer science. PMID:22977157
Wang, Mingyang; Zhang, Feifei; Song, Chao; Shi, Pengfei; Zhu, Jin
2016-07-01
Innovation in hypotheses is a key transformative driver for scientific development. The conventional centralized hypothesis formulation approach, where a dominant hypothesis is typically derived from a primary phenomenon, can, inevitably, impose restriction on the range of conceivable experiments and legitimate hypotheses, and ultimately impede understanding of the system of interest. We report herein the proposal of a decentralized approach for the formulation of hypotheses, through initial preconception-free phenomenon accumulation and subsequent reticular logical reasoning processes. The two-step approach can provide an unbiased, panoramic view of the system and as such should enable the generation of a set of more coherent and therefore plausible hypotheses. As a proof-of-concept demonstration of the utility of this open-ended approach, a hierarchical model has been developed for a prion self-assembled system, allowing insight into hitherto elusive static and dynamic features associated with this intriguing structure.
Directory of Open Access Journals (Sweden)
Marinela eCapanu
2015-05-01
Full Text Available Identifying the small number of rare causal variants contributing to disease has beena major focus of investigation in recent years, but represents a formidable statisticalchallenge due to the rare frequencies with which these variants are observed. In thiscommentary we draw attention to a formal statistical framework, namely hierarchicalmodeling, to combine functional genomic annotations with sequencing data with theobjective of enhancing our ability to identify rare causal variants. Using simulations weshow that in all configurations studied, the hierarchical modeling approach has superiordiscriminatory ability compared to a recently proposed aggregate measure of deleteriousness,the Combined Annotation-Dependent Depletion (CADD score, supportingour premise that aggregate functional genomic measures can more accurately identifycausal variants when used in conjunction with sequencing data through a hierarchicalmodeling approach
Hu, Weiming; Tian, Guodong; Kang, Yongxin; Yuan, Chunfeng; Maybank, Stephen
2017-09-25
In this paper, a new nonparametric Bayesian model called the dual sticky hierarchical Dirichlet process hidden Markov model (HDP-HMM) is proposed for mining activities from a collection of time series data such as trajectories. All the time series data are clustered. Each cluster of time series data, corresponding to a motion pattern, is modeled by an HMM. Our model postulates a set of HMMs that share a common set of states (topics in an analogy with topic models for document processing), but have unique transition distributions. For the application to motion trajectory modeling, topics correspond to motion activities. The learnt topics are clustered into atomic activities which are assigned predicates. We propose a Bayesian inference method to decompose a given trajectory into a sequence of atomic activities. On combining the learnt sources and sinks, semantic motion regions, and the learnt sequence of atomic activities, the action represented by the trajectory can be described in natural language in as automatic a way as possible. The effectiveness of our dual sticky HDP-HMM is validated on several trajectory datasets. The effectiveness of the natural language descriptions for motions is demonstrated on the vehicle trajectories extracted from a traffic scene.
Serial grey-box model of a stratified thermal tank for hierarchical control of a solar plant
Energy Technology Data Exchange (ETDEWEB)
Arahal, Manuel R. [Universidad de Sevilla, Dpto. de Ingenieria de Sistemas y Automatica, Camino de los Descubrimientos s/n, 41092 Sevilla (Spain); Cirre, Cristina M. [Convenio Universidad de Almeria-Plataforma Solar de Almeria, Ctra. Senes s/n, 04200 Tabernas, Almeria (Spain); Berenguel, Manuel [Universidad de Almeria, Dpto. Lenguajes y Computacion, Ctra. Sacramento s/n, 04120, Almeria (Spain)
2008-05-15
The ACUREX collector field together with a thermal storage tank and a power conversion system forms the Small Solar Power Systems plant of the Plataforma Solar de Almeria, a facility that has been used for research for the last 25 years. A simulator of the collector field produced by the last author has been available to and used as a test-bed for control strategies. Up to now, however, there is not a model for the whole plant. Such model is needed for hierarchical control schemes also proposed by the authors. In this paper a model of the thermal storage tank is derived using the Simultaneous Perturbation Stochastic Approximation technique to adjust the parameters of a serial grey-box model structure. The benefits of the proposed approach are discussed in the context of the intended use, requiring a model capable of simulating the behavior of the storage tank with low computational load and low error over medium to large horizons. The model is tested against real data in a variety of situations showing its performance in terms of simulation error in the temperature profile and in the usable energy stored in the tank. The results obtained demonstrate the viability of the proposed approach. (author)
Directory of Open Access Journals (Sweden)
Mehdi Alinaghian
2014-08-01
Full Text Available In the field of health losses resulting from failure to establish the facilities in a suitable location and the required number, beyond the cost and quality of service will result in an increase in mortality and the spread of diseases. So the facility location models have special importance in this area. In this paper, a successively inclusive hierarchical model for location of health centers in term of the transfer of patients from a lower level to a higher level of health centers has been developed. Since determination the exact number of demand for health care in the future is difficult and in order to make the model close to the real conditions of demand uncertainty, a fuzzy programming model based on credibility theory is considered. To evaluate the proposed model, several numerical examples are solved in small size. In order to solve large scale problems, a meta-heuristic algorithm based on harmony search algorithm was developed in conjunction with the GAMS software which indicants the performance of the proposed algorithm.
Yin, Ping; Mu, Lan; Madden, Marguerite; Vena, John E.
2014-10-01
Lung cancer is the second most commonly diagnosed cancer in both men and women in Georgia, USA. However, the spatio-temporal patterns of lung cancer risk in Georgia have not been fully studied. Hierarchical Bayesian models are used here to explore the spatio-temporal patterns of lung cancer incidence risk by race and gender in Georgia for the period of 2000-2007. With the census tract level as the spatial scale and the 2-year period aggregation as the temporal scale, we compare a total of seven Bayesian spatio-temporal models including two under a separate modeling framework and five under a joint modeling framework. One joint model outperforms others based on the deviance information criterion. Results show that the northwest region of Georgia has consistently high lung cancer incidence risk for all population groups during the study period. In addition, there are inverse relationships between the socioeconomic status and the lung cancer incidence risk among all Georgian population groups, and the relationships in males are stronger than those in females. By mapping more reliable variations in lung cancer incidence risk at a relatively fine spatio-temporal scale for different Georgian population groups, our study aims to better support healthcare performance assessment, etiological hypothesis generation, and health policy making.
De los Santos, Saturnino; Norland, Emmalou Van Tilburg
A study evaluated the cacao farmer training program in the Dominican Republic by testing hypothesized relationships among reactions, knowledge and skills, attitudes, aspirations, and some selected demographic characteristics of farmers who attended programs. Bennett's hierarchical model of program evaluation was used as the framework of the study.…
Tendhar, Chosang; Paretti, Marie C.; Jones, Brett D.
2017-01-01
This study had three purposes and four hypotheses were tested. Three purposes: (1) To use hierarchical linear modeling (HLM) to investigate whether students' perceptions of their engineering career intentions changed over time; (2) To use HLM to test the effects of gender, engineering identification (the degree to which an individual values a…
Directory of Open Access Journals (Sweden)
Marc Lochbaum
2017-03-01
Conclusion: Future research is encouraged to grow and enrich the understanding of achievement goals within Elliot's complete Hierarchical Model of Approach and Avoidance Motivation to include both antecedents and outcomes simultaneously to improve upon the understanding of achievement motivation in sport, exercise, and physical activity settings.
Modeling Signal-Noise Processes Supports Student Construction of a Hierarchical Image of Sample
Lehrer, Richard
2017-01-01
Grade 6 (modal age 11) students invented and revised models of the variability generated as each measured the perimeter of a table in their classroom. To construct models, students represented variability as a linear composite of true measure (signal) and multiple sources of random error. Students revised models by developing sampling…
DEFF Research Database (Denmark)
Gong, Zheng; Dai, Peng; Wu, Xiaojie
2017-01-01
In recent years, voltage source multilevel converters are very popular in medium/high-voltage industrial applications, among which the NPC/H-Bridge converter is a popular solution to the medium/high-voltage drive systems. The conventional finite control set model predictive control (FCS-MPC) stra......In recent years, voltage source multilevel converters are very popular in medium/high-voltage industrial applications, among which the NPC/H-Bridge converter is a popular solution to the medium/high-voltage drive systems. The conventional finite control set model predictive control (FCS......-MPC) strategy is not practical for multilevel converters due to their substantial calculation requirements, especially under high number of voltage levels. To solve this problem, a hierarchical model predictive voltage control (HMPVC) strategy with referring to the implementation of g-h coordinate space vector...... and experiments with a down-scaled NPC/H-Bridge converter prototype under various conditions, which validate the proposed HMPVC strategy....
A Hierarchical Bayes Error Correction Model to Explain Dynamic Effects of Price Changes
D. Fok (Dennis); R. Paap (Richard); C. Horváth (Csilla); Ph.H.B.F. Franses (Philip Hans)
2005-01-01
textabstractThe authors put forward a sales response model to explain the differences in immediate and dynamic effects of promotional prices and regular prices on sales. The model consists of a vector autoregression rewritten in error-correction format which allows to disentangle the immediate
DEFF Research Database (Denmark)
Meng, Lexuan; Dragicevic, Tomislav; Vasquez, Juan Carlos
2015-01-01
of dynamic study. The aim of this paper is to model the complete DC microgrid system in z-domain and perform sensitivity analysis for the complete system. A generalized modeling method is proposed and the system dynamics under different control parameters, communication topologies and communication speed...
Zhang, Dezhi; Li, Shuangyan; Qin, Jin
2014-01-01
This paper proposes a new model of simultaneous optimization of three-level logistics decisions, for logistics authorities, logistics operators, and logistics users, for regional logistics network with environmental impact consideration. The proposed model addresses the interaction among the three logistics players in a complete competitive logistics service market with CO2 emission charges. We also explicitly incorporate the impacts of the scale economics of the logistics park and the logistics users' demand elasticity into the model. The logistics authorities aim to maximize the total social welfare of the system, considering the demand of green logistics development by two different methods: optimal location of logistics nodes and charging a CO2 emission tax. Logistics operators are assumed to compete with logistics service fare and frequency, while logistics users minimize their own perceived logistics disutility given logistics operators' service fare and frequency. A heuristic algorithm based on the multinomial logit model is presented for the three-level decision model, and a numerical example is given to illustrate the above optimal model and its algorithm. The proposed model provides a useful tool for modeling competitive logistics services and evaluating logistics policies at the strategic level.
Directory of Open Access Journals (Sweden)
Dezhi Zhang
2014-01-01
Full Text Available This paper proposes a new model of simultaneous optimization of three-level logistics decisions, for logistics authorities, logistics operators, and logistics users, for regional logistics network with environmental impact consideration. The proposed model addresses the interaction among the three logistics players in a complete competitive logistics service market with CO2 emission charges. We also explicitly incorporate the impacts of the scale economics of the logistics park and the logistics users’ demand elasticity into the model. The logistics authorities aim to maximize the total social welfare of the system, considering the demand of green logistics development by two different methods: optimal location of logistics nodes and charging a CO2 emission tax. Logistics operators are assumed to compete with logistics service fare and frequency, while logistics users minimize their own perceived logistics disutility given logistics operators’ service fare and frequency. A heuristic algorithm based on the multinomial logit model is presented for the three-level decision model, and a numerical example is given to illustrate the above optimal model and its algorithm. The proposed model provides a useful tool for modeling competitive logistics services and evaluating logistics policies at the strategic level.
DEFF Research Database (Denmark)
Stahlhut, Carsten; Mørup, Morten; Winther, Ole
2011-01-01
We present an approach to handle forward model uncertainty for EEG source reconstruction. A stochastic forward model representation is motivated by the many random contributions to the path from sources to measurements including the tissue conductivity distribution, the geometry of the cortical s...
Elemental abundances in Milky Way-like galaxies from a hierarchical galaxy formation model
De Lucia, Gabriella; Tornatore, Luca; Frenk, Carlos S.; Helmi, Amina; Navarro, Julio F.; White, Simon D. M.
We develop a new method to account for the finite lifetimes of stars and trace individual abundances within a semi-analytic model of galaxy formation. At variance with previous methods, based on the storage of the (binned) past star formation history of model galaxies, our method projects the
Tang, Min; Zhao, Rui; van de Velde, Helgi; Tross, Jennifer G; Mitsiades, Constantine; Viselli, Suzanne; Neuwirth, Rachel; Esseltine, Dixie-Lee; Anderson, Kenneth; Ghobrial, Irene M; San Miguel, Jesús F; Richardson, Paul G; Tomasson, Michael H; Michor, Franziska
2016-08-15
Since the pioneering work of Salmon and Durie, quantitative measures of tumor burden in multiple myeloma have been used to make clinical predictions and model tumor growth. However, such quantitative analyses have not yet been performed on large datasets from trials using modern chemotherapy regimens. We analyzed a large set of tumor response data from three randomized controlled trials of bortezomib-based chemotherapy regimens (total sample size n = 1,469 patients) to establish and validate a novel mathematical model of multiple myeloma cell dynamics. Treatment dynamics in newly diagnosed patients were most consistent with a model postulating two tumor cell subpopulations, "progenitor cells" and "differentiated cells." Differential treatment responses were observed with significant tumoricidal effects on differentiated cells and less clear effects on progenitor cells. We validated this model using a second trial of newly diagnosed patients and a third trial of refractory patients. When applying our model to data of relapsed patients, we found that a hybrid model incorporating both a differentiation hierarchy and clonal evolution best explains the response patterns. The clinical data, together with mathematical modeling, suggest that bortezomib-based therapy exerts a selection pressure on myeloma cells that can shape the disease phenotype, thereby generating further inter-patient variability. This model may be a useful tool for improving our understanding of disease biology and the response to chemotherapy regimens. Clin Cancer Res; 22(16); 4206-14. ©2016 AACR. ©2016 American Association for Cancer Research.
A non-parametric hierarchical model to discover behavior dynamics from tracks
Kooij, J.F.P.; Englebienne, G.; Gavrila, D.M.
2012-01-01
We present a novel non-parametric Bayesian model to jointly discover the dynamics of low-level actions and high-level behaviors of tracked people in open environments. Our model represents behaviors as Markov chains of actions which capture high-level temporal dynamics. Actions may be shared by
Zhang, Dezhi; Li, Shuangyan
2014-01-01
This paper proposes a new model of simultaneous optimization of three-level logistics decisions, for logistics authorities, logistics operators, and logistics users, for regional logistics network with environmental impact consideration. The proposed model addresses the interaction among the three logistics players in a complete competitive logistics service market with CO2 emission charges. We also explicitly incorporate the impacts of the scale economics of the logistics park and the logistics users' demand elasticity into the model. The logistics authorities aim to maximize the total social welfare of the system, considering the demand of green logistics development by two different methods: optimal location of logistics nodes and charging a CO2 emission tax. Logistics operators are assumed to compete with logistics service fare and frequency, while logistics users minimize their own perceived logistics disutility given logistics operators' service fare and frequency. A heuristic algorithm based on the multinomial logit model is presented for the three-level decision model, and a numerical example is given to illustrate the above optimal model and its algorithm. The proposed model provides a useful tool for modeling competitive logistics services and evaluating logistics policies at the strategic level. PMID:24977209
Duan, Leo L; Wang, Xia; Clancy, John P; Szczesniak, Rhonda D
2018-01-01
A two-level Gaussian process (GP) joint model is proposed to improve personalized prediction of medical monitoring data. The proposed model is applied to jointly analyze multiple longitudinal biomedical outcomes, including continuous measurements and binary outcomes, to achieve better prediction in disease progression. At the population level of the hierarchy, two independent GPs are used to capture the nonlinear trends in both the continuous biomedical marker and the binary outcome, respectively; at the individual level, a third GP, which is shared by the longitudinal measurement model and the longitudinal binary model, induces the correlation between these two model components and strengthens information borrowing across individuals. The proposed model is particularly advantageous in personalized prediction. It is applied to the motivating clinical data on cystic fibrosis disease progression, for which lung function measurements and onset of acute respiratory events are monitored jointly throughout each patient's clinical course. The results from both the simulation studies and the cystic fibrosis data application suggest that the inclusion of the shared individual-level GPs under the joint model framework leads to important improvements in personalized disease progression prediction.
Hierarchical Hidden Markov Models for Multivariate Integer-Valued Time-Series
DEFF Research Database (Denmark)
Catania, Leopoldo; Di Mari, Roberto
2018-01-01
We propose a new flexible dynamic model for multivariate nonnegative integer-valued time-series. Observations are assumed to depend on the realization of two additional unobserved integer-valued stochastic variables which control for the time-and cross-dependence of the data. An Expectation......-Maximization algorithm for maximum likelihood estimation of the model's parameters is derived. We provide conditional and unconditional (cross)-moments implied by the model, as well as the limiting distribution of the series. A Monte Carlo experiment investigates the finite sample properties of our estimation...
Ron, Gil; Globerson, Yuval; Moran, Dror; Kaplan, Tommy
2017-12-21
Proximity-ligation methods such as Hi-C allow us to map physical DNA-DNA interactions along the genome, and reveal its organization into topologically associating domains (TADs). As the Hi-C data accumulate, computational methods were developed for identifying domain borders in multiple cell types and organisms. Here, we present PSYCHIC, a computational approach for analyzing Hi-C data and identifying promoter-enhancer interactions. We use a unified probabilistic model to segment the genome into domains, which we then merge hierarchically and fit using a local background model, allowing us to identify over-represented DNA-DNA interactions across the genome. By analyzing the published Hi-C data sets in human and mouse, we identify hundreds of thousands of putative enhancers and their target genes, and compile an extensive genome-wide catalog of gene regulation in human and mouse. As we show, our predictions are highly enriched for ChIP-seq and DNA accessibility data, evolutionary conservation, eQTLs and other DNA-DNA interaction data.
Hierarchical linear modeling of longitudinal pedigree data for genetic association analysis
DEFF Research Database (Denmark)
Tan, Qihua; B Hjelmborg, Jacob V; Thomassen, Mads
2014-01-01
-effect models to explicitly model the genetic relationship. These have proved to be an efficient way of dealing with sample clustering in pedigree data. Although current algorithms implemented in popular statistical packages are useful for adjusting relatedness in the mixed modeling of genetic effects...... associated with blood pressure with estimated inflation factors of 0.99, suggesting that our modeling of random effects efficiently handles the genetic relatedness in pedigrees. Application to simulated data captures important variants specified in the simulation. Our results show that the method is useful......Genetic association analysis on complex phenotypes under a longitudinal design involving pedigrees encounters the problem of correlation within pedigrees, which could affect statistical assessment of the genetic effects. Approaches have been proposed to integrate kinship correlation into the mixed...
Huizingh, Eelko K.R.E.; Zengerink, Evelien
2001-01-01
Accurate measurement of marketing performance is an important topic for both marketing academics and marketing managers. Many researchers have recognized that marketing performance measurement should go beyond financial measurement. In this paper we propose a conceptual framework that models
A hierarchical Bayesian spatio-temporal model for extreme precipitation events
Ghosh, Souparno; Mallick, Bani K.
2011-01-01
We propose a new approach to model a sequence of spatially distributed time series of extreme values. Unlike common practice, we incorporate spatial dependence directly in the likelihood and allow the temporal component to be captured at the second level of hierarchy. Inferences about the parameters and spatio-temporal predictions are obtained via MCMC technique. The model is fitted to a gridded precipitation data set collected over 99 years across the continental U.S. © 2010 John Wiley & Sons, Ltd..
A Hierarchical and Contextual Model for Learning and Recognizing Highly Variant Visual Categories
2010-01-01
formulation of this model below. 3.1 Stochastic Context Free Grammars Stochastic Context Free Grammars (SCFG) were extensively studied by Chomsky ... Chomsky , 1956) in the 1950’s in his work on modeling the structure of language. A Context Free Grammar (CFG) represents a language of patterns, defining the...16 Chi, Z. and Geman, S. (1998). Estimation of probabilistic context-free grammars. Computational Linguistics, 24(2). 42 Chomsky , N. (1956). Three
A hierarchical Bayesian spatio-temporal model for extreme precipitation events
Ghosh, Souparno
2011-03-01
We propose a new approach to model a sequence of spatially distributed time series of extreme values. Unlike common practice, we incorporate spatial dependence directly in the likelihood and allow the temporal component to be captured at the second level of hierarchy. Inferences about the parameters and spatio-temporal predictions are obtained via MCMC technique. The model is fitted to a gridded precipitation data set collected over 99 years across the continental U.S. © 2010 John Wiley & Sons, Ltd..
Sanchez, P.; Hinojosa, J.; Ruiz, R.
2005-06-01
Recently, neuromodeling methods of microwave devices have been developed. These methods are suitable for the model generation of novel devices. They allow fast and accurate simulations and optimizations. However, the development of libraries makes these methods to be a formidable task, since they require massive input-output data provided by an electromagnetic simulator or measurements and repeated artificial neural network (ANN) training. This paper presents a strategy reducing the cost of library development with the advantages of the neuromodeling methods: high accuracy, large range of geometrical and material parameters and reduced CPU time. The library models are developed from a set of base prior knowledge input (PKI) models, which take into account the characteristics common to all the models in the library, and high-level ANNs which give the library model outputs from base PKI models. This technique is illustrated for a microwave multiconductor tunable phase shifter using anisotropic substrates. Closed-form relationships have been developed and are presented in this paper. The results show good agreement with the expected ones.
Manual hierarchical clustering of regional geochemical data using a Bayesian finite mixture model
International Nuclear Information System (INIS)
Ellefsen, Karl J.; Smith, David B.
2016-01-01
Interpretation of regional scale, multivariate geochemical data is aided by a statistical technique called “clustering.” We investigate a particular clustering procedure by applying it to geochemical data collected in the State of Colorado, United States of America. The clustering procedure partitions the field samples for the entire survey area into two clusters. The field samples in each cluster are partitioned again to create two subclusters, and so on. This manual procedure generates a hierarchy of clusters, and the different levels of the hierarchy show geochemical and geological processes occurring at different spatial scales. Although there are many different clustering methods, we use Bayesian finite mixture modeling with two probability distributions, which yields two clusters. The model parameters are estimated with Hamiltonian Monte Carlo sampling of the posterior probability density function, which usually has multiple modes. Each mode has its own set of model parameters; each set is checked to ensure that it is consistent both with the data and with independent geologic knowledge. The set of model parameters that is most consistent with the independent geologic knowledge is selected for detailed interpretation and partitioning of the field samples. - Highlights: • We evaluate a clustering procedure by applying it to geochemical data. • The procedure generates a hierarchy of clusters. • Different levels of the hierarchy show geochemical processes at different spatial scales. • The clustering method is Bayesian finite mixture modeling. • Model parameters are estimated with Hamiltonian Monte Carlo sampling.
HI-Selected Galaxies in Hierarchical Models of Galaxy Formation and Evolution
Zoldan, Anna
2017-07-01
This poster presents the main results of a statistical study of HI-selected galaxies based on six different semi-analytic models, all run on the same cosmological N-body simulation. One of these models includes an explicit treatment for the partition of cold gas into atomic and molecular hydrogen. All models considered agree nicely with the measured HI mass function in the local Universe and with the measured scaling relations between HI and galaxy stellar mass. Most models also reproduce the observed 2-point correlation function for HI rich galaxies, with the exception of one model that predicts very little HI associated with galaxies in haloes above 10^12 Msun. We investigated the influence of satellite treatment on the final HI content and found that it introduces large uncertainties at low HI masses. We found that the assumption of instantaneous stripping of hot gas in satellites does not translate necessarily in lower HI masses. We demonstrate that the assumed stellar feedback, combined with star formation, also affect significantly the gas content of satellite galaxies. Finally, we also analyse the origin of the correlation between HI content of model galaxies and the spin of the parent haloes. Zoldan et al., 2016, MNRAS, 465, 2236
Energy Technology Data Exchange (ETDEWEB)
Clemens, Noel [Univ. of Texas, Austin, TX (United States)
2015-09-30
This project was a combined computational and experimental effort to improve predictive capability for boundary layer flashback of premixed swirl flames relevant to gas-turbine power plants operating with high-hydrogen-content fuels. During the course of this project, significant progress in modeling was made on four major fronts: 1) use of direct numerical simulation of turbulent flames to understand the coupling between the flame and the turbulent boundary layer; 2) improved modeling capability for flame propagation in stratified pre-mixtures; 3) improved portability of computer codes using the OpenFOAM platform to facilitate transfer to industry and other researchers; and 4) application of LES to flashback in swirl combustors, and a detailed assessment of its capabilities and limitations for predictive purposes. A major component of the project was an experimental program that focused on developing a rich experimental database of boundary layer flashback in swirl flames. Both methane and high-hydrogen fuels, including effects of elevated pressure (1 to 5 atm), were explored. For this project, a new model swirl combustor was developed. Kilohertz-rate stereoscopic PIV and chemiluminescence imaging were used to investigate the flame propagation dynamics. In addition to the planar measurements, a technique capable of detecting the instantaneous, time-resolved 3D flame front topography was developed and applied successfully to investigate the flow-flame interaction. The UT measurements and legacy data were used in a hierarchical validation approach where flows with increasingly complex physics were used for validation. First component models were validated with DNS and literature data in simplified configurations, and this was followed by validation with the UT 1-atm flashback cases, and then the UT high-pressure flashback cases. The new models and portable code represent a major improvement over what was available before this project was initiated.
Hierarchical fermions and detectable Z' from effective two-Higgs-triplet 3-3-1 model
Barreto, E. R.; Dias, A. G.; Leite, J.; Nishi, C. C.; Oliveira, R. L. N.; Vieira, W. C.
2018-03-01
We develop a SU (3 )C⊗SU (3 )L⊗U (1 )X model where the number of fermion generations is fixed by cancellation of gauge anomalies, being a type of 3-3-1 model with new charged leptons. Similarly to the economical 3-3-1 models, symmetry breaking is achieved effectively with two scalar triplets so that the spectrum of scalar particles at the TeV scale contains just two C P even scalars, one of which is the recently discovered Higgs boson, plus a charged scalar. Such a scalar sector is simpler than the one in the Two Higgs Doublet Model, hence more attractive for phenomenological studies, and has no flavor changing neutral currents (FCNC) mediated by scalars except for the ones induced by the mixing of Standard Model (SM) fermions with heavy fermions. We identify a global residual symmetry of the model which guarantees mass degeneracies and some massless fermions whose masses need to be generated by the introduction of effective operators. The fermion masses so generated require less fine-tuning for most of the SM fermions and FCNC are naturally suppressed by the small mixing between the third family of quarks and the rest. The effective setting is justified by an ultraviolet completion of the model from which the effective operators emerge naturally. A detailed particle mass spectrum is presented, and an analysis of the Z' production at the LHC run II is performed to show that it could be easily detected by considering the invariant mass and transverse momentum distributions in the dimuon channel.
Hierarchical Bayes Small Area Estimation under a Unit Level Model with Applications in Agriculture
Directory of Open Access Journals (Sweden)
Nageena Nazir
2016-09-01
Full Text Available To studied Bayesian aspect of small area estimation using Unit level model. In this paper we proposed and evaluated new prior distribution for the ratio of variance components in unit level model rather than uniform prior. To approximate the posterior moments of small area means, Laplace approximation method is applied. This choice of prior avoids the extreme skewness, usually present in the posterior distribution of variance components. This property leads to more accurate Laplace approximation. We apply the proposed model to the analysis of horticultural data and results from the model are compared with frequestist approach and with Bayesian model of uniform prior in terms of average relative bias, average squared relative bias and average absolute bias. The numerical results obtained highlighted the superiority of using the proposed prior over the uniform prior. Thus Bayes estimators (with new prior of small area means have good frequentist properties such as MSE and ARB as compared to other traditional methods viz., Direct, Synthetic and Composite estimators.
A dynamical model of hierarchical selection and coordination in speech planning.
Directory of Open Access Journals (Sweden)
Sam Tilsen
Full Text Available studies of the control of complex sequential movements have dissociated two aspects of movement planning: control over the sequential selection of movement plans, and control over the precise timing of movement execution. This distinction is particularly relevant in the production of speech: utterances contain sequentially ordered words and syllables, but articulatory movements are often executed in a non-sequential, overlapping manner with precisely coordinated relative timing. This study presents a hybrid dynamical model in which competitive activation controls selection of movement plans and coupled oscillatory systems govern coordination. The model departs from previous approaches by ascribing an important role to competitive selection of articulatory plans within a syllable. Numerical simulations show that the model reproduces a variety of speech production phenomena, such as effects of preparation and utterance composition on reaction time, and asymmetries in patterns of articulatory timing associated with onsets and codas. The model furthermore provides a unified understanding of a diverse group of phonetic and phonological phenomena which have not previously been related.
A hierarchical fire frequency model to simulate temporal patterns of fire regimes in LANDIS
Jian Yang; Hong S. He; Eric J. Gustafson
2004-01-01
Fire disturbance has important ecological effects in many forest landscapes. Existing statistically based approaches can be used to examine the effects of a fire regime on forest landscape dynamics. Most examples of statistically based fire models divide a fire occurrence into two stages--fire ignition and fire initiation. However, the exponential and Weibull fire-...
Energy Technology Data Exchange (ETDEWEB)
Bykova, E V
1982-01-01
The author proposes an interactive method employing a semantic network representation of knowledge. Her model operates in 2 stages: intrinsic evaluation of the quality of the system; and analysis of the functioning of the system, which accumulates expert experience in an adaptive dialogue process. 6 references.
Czech Academy of Sciences Publication Activity Database
Tonar, Z.; Kochová, P.; Cimrman, R.; Witter, K.; Janáček, Jiří; Rohan, V.
2011-01-01
Roč. 465, č. 2011 (2011), s. 286-289 ISSN 1013-9826. [International Conference on Materials Structure & Micromechanics of Fracture /6./. Brno, 28.06.2010-30.06.2010] Institutional research plan: CEZ:AV0Z50110509 Keywords : brain * perfusion * morphometry * microvessels * stereology * modelling Subject RIV: EA - Cell Biology
Wu, Zhen; Liu, Yong; Liang, Zhongyao; Wu, Sifeng; Guo, Huaicheng
2017-06-01
Lake eutrophication is associated with excessive anthropogenic nutrients (mainly nitrogen (N) and phosphorus (P)) and unobserved internal nutrient cycling. Despite the advances in understanding the role of external loadings, the contribution of internal nutrient cycling is still an open question. A dynamic mass-balance model was developed to simulate and measure the contributions of internal cycling and external loading. It was based on the temporal Bayesian Hierarchical Framework (BHM), where we explored the seasonal patterns in the dynamics of nutrient cycling processes and the limitation of N and P on phytoplankton growth in hyper-eutrophic Lake Dianchi, China. The dynamic patterns of the five state variables (Chla, TP, ammonia, nitrate and organic N) were simulated based on the model. Five parameters (algae growth rate, sediment exchange rate of N and P, nitrification rate and denitrification rate) were estimated based on BHM. The model provided a good fit to observations. Our model results highlighted the role of internal cycling of N and P in Lake Dianchi. The internal cycling processes contributed more than external loading to the N and P changes in the water column. Further insights into the nutrient limitation analysis indicated that the sediment exchange of P determined the P limitation. Allowing for the contribution of denitrification to N removal, N was the more limiting nutrient in most of the time, however, P was the more important nutrient for eutrophication management. For Lake Dianchi, it would not be possible to recover solely by reducing the external watershed nutrient load; the mechanisms of internal cycling should also be considered as an approach to inhibit the release of sediments and to enhance denitrification. Copyright © 2017 Elsevier Ltd. All rights reserved.
Born, Jannis; Galeazzi, Juan M; Stringer, Simon M
2017-01-01
A subset of neurons in the posterior parietal and premotor areas of the primate brain respond to the locations of visual targets in a hand-centred frame of reference. Such hand-centred visual representations are thought to play an important role in visually-guided reaching to target locations in space. In this paper we show how a biologically plausible, Hebbian learning mechanism may account for the development of localized hand-centred representations in a hierarchical neural network model of the primate visual system, VisNet. The hand-centered neurons developed in the model use an invariance learning mechanism known as continuous transformation (CT) learning. In contrast to previous theoretical proposals for the development of hand-centered visual representations, CT learning does not need a memory trace of recent neuronal activity to be incorporated in the synaptic learning rule. Instead, CT learning relies solely on a Hebbian learning rule, which is able to exploit the spatial overlap that naturally occurs between successive images of a hand-object configuration as it is shifted across different retinal locations due to saccades. Our simulations show how individual neurons in the network model can learn to respond selectively to target objects in particular locations with respect to the hand, irrespective of where the hand-object configuration occurs on the retina. The response properties of these hand-centred neurons further generalise to localised receptive fields in the hand-centred space when tested on novel hand-object configurations that have not been explored during training. Indeed, even when the network is trained with target objects presented across a near continuum of locations around the hand during training, the model continues to develop hand-centred neurons with localised receptive fields in hand-centred space. With the help of principal component analysis, we provide the first theoretical framework that explains the behavior of Hebbian learning
Born, Jannis; Stringer, Simon M.
2017-01-01
A subset of neurons in the posterior parietal and premotor areas of the primate brain respond to the locations of visual targets in a hand-centred frame of reference. Such hand-centred visual representations are thought to play an important role in visually-guided reaching to target locations in space. In this paper we show how a biologically plausible, Hebbian learning mechanism may account for the development of localized hand-centred representations in a hierarchical neural network model of the primate visual system, VisNet. The hand-centered neurons developed in the model use an invariance learning mechanism known as continuous transformation (CT) learning. In contrast to previous theoretical proposals for the development of hand-centered visual representations, CT learning does not need a memory trace of recent neuronal activity to be incorporated in the synaptic learning rule. Instead, CT learning relies solely on a Hebbian learning rule, which is able to exploit the spatial overlap that naturally occurs between successive images of a hand-object configuration as it is shifted across different retinal locations due to saccades. Our simulations show how individual neurons in the network model can learn to respond selectively to target objects in particular locations with respect to the hand, irrespective of where the hand-object configuration occurs on the retina. The response properties of these hand-centred neurons further generalise to localised receptive fields in the hand-centred space when tested on novel hand-object configurations that have not been explored during training. Indeed, even when the network is trained with target objects presented across a near continuum of locations around the hand during training, the model continues to develop hand-centred neurons with localised receptive fields in hand-centred space. With the help of principal component analysis, we provide the first theoretical framework that explains the behavior of Hebbian learning
Directory of Open Access Journals (Sweden)
Jannis Born
Full Text Available A subset of neurons in the posterior parietal and premotor areas of the primate brain respond to the locations of visual targets in a hand-centred frame of reference. Such hand-centred visual representations are thought to play an important role in visually-guided reaching to target locations in space. In this paper we show how a biologically plausible, Hebbian learning mechanism may account for the development of localized hand-centred representations in a hierarchical neural network model of the primate visual system, VisNet. The hand-centered neurons developed in the model use an invariance learning mechanism known as continuous transformation (CT learning. In contrast to previous theoretical proposals for the development of hand-centered visual representations, CT learning does not need a memory trace of recent neuronal activity to be incorporated in the synaptic learning rule. Instead, CT learning relies solely on a Hebbian learning rule, which is able to exploit the spatial overlap that naturally occurs between successive images of a hand-object configuration as it is shifted across different retinal locations due to saccades. Our simulations show how individual neurons in the network model can learn to respond selectively to target objects in particular locations with respect to the hand, irrespective of where the hand-object configuration occurs on the retina. The response properties of these hand-centred neurons further generalise to localised receptive fields in the hand-centred space when tested on novel hand-object configurations that have not been explored during training. Indeed, even when the network is trained with target objects presented across a near continuum of locations around the hand during training, the model continues to develop hand-centred neurons with localised receptive fields in hand-centred space. With the help of principal component analysis, we provide the first theoretical framework that explains the behavior
Directory of Open Access Journals (Sweden)
Robert M Dorazio
Full Text Available Several spatial capture-recapture (SCR models have been developed to estimate animal abundance by analyzing the detections of individuals in a spatial array of traps. Most of these models do not use the actual dates and times of detection, even though this information is readily available when using continuous-time recorders, such as microphones or motion-activated cameras. Instead most SCR models either partition the period of trap operation into a set of subjectively chosen discrete intervals and ignore multiple detections of the same individual within each interval, or they simply use the frequency of detections during the period of trap operation and ignore the observed times of detection. Both practices make inefficient use of potentially important information in the data.We developed a hierarchical SCR model to estimate the spatial distribution and abundance of animals detected with continuous-time recorders. Our model includes two kinds of point processes: a spatial process to specify the distribution of latent activity centers of individuals within the region of sampling and a temporal process to specify temporal patterns in the detections of individuals. We illustrated this SCR model by analyzing spatial and temporal patterns evident in the camera-trap detections of tigers living in and around the Nagarahole Tiger Reserve in India. We also conducted a simulation study to examine the performance of our model when analyzing data sets of greater complexity than the tiger data.Our approach provides three important benefits: First, it exploits all of the information in SCR data obtained using continuous-time recorders. Second, it is sufficiently versatile to allow the effects of both space use and behavior of animals to be specified as functions of covariates that vary over space and time. Third, it allows both the spatial distribution and abundance of individuals to be estimated, effectively providing a species distribution model, even in
Directory of Open Access Journals (Sweden)
Salvador Dura-Bernal
Full Text Available Hierarchical generative models, such as Bayesian networks, and belief propagation have been shown to provide a theoretical framework that can account for perceptual processes, including feedforward recognition and feedback modulation. The framework explains both psychophysical and physiological experimental data and maps well onto the hierarchical distributed cortical anatomy. However, the complexity required to model cortical processes makes inference, even using approximate methods, very computationally expensive. Thus, existing object perception models based on this approach are typically limited to tree-structured networks with no loops, use small toy examples or fail to account for certain perceptual aspects such as invariance to transformations or feedback reconstruction. In this study we develop a Bayesian network with an architecture similar to that of HMAX, a biologically-inspired hierarchical model of object recognition, and use loopy belief propagation to approximate the model operations (selectivity and invariance. Crucially, the resulting Bayesian network extends the functionality of HMAX by including top-down recursive feedback. Thus, the proposed model not only achieves successful feedforward recognition invariant to noise, occlusions, and changes in position and size, but is also able to reproduce modulatory effects such as illusory contour completion and attention. Our novel and rigorous methodology covers key aspects such as learning using a layerwise greedy algorithm, combining feedback information from multiple parents and reducing the number of operations required. Overall, this work extends an established model of object recognition to include high-level feedback modulation, based on state-of-the-art probabilistic approaches. The methodology employed, consistent with evidence from the visual cortex, can be potentially generalized to build models of hierarchical perceptual organization that include top-down and bottom
Energy Technology Data Exchange (ETDEWEB)
Nilsson, Aasa; Persson, Fredrik; Andersson, Magnus
2009-07-15
IVL, together with Emerson Process Management, has developed a decision support system (DSS) based on multivariate statistical process models. The system was implemented at Nynas AB's refinery in order to provide real-time TBP curves and to enable the operator to optimise the process with regards to product quality and energy consumption. The project resulted in the following proven benefits at the industrial reference site, Nynas Refinery in Gothenburg: - Increased yield with up to 14 % (relative terms) for the most valuable product - Decreased energy consumption of 8 %. Validation of model predictions compared to the laboratory analysis showed that the prediction error lay within 1 deg C throughout the whole test period
Gwinn, Daniel C; Middleton, Jen A; Beesley, Leah; Close, Paul; Quinton, Belinda; Storer, Tim; Davies, Peter M
2018-03-01
The degradation of streams caused by urbanization tends to follow predictable patterns; however, there is a growing appreciation for heterogeneity in stream response to urbanization due to the local geoclimatic context. Furthermore, there is building evidence that streams in mildly sloped, permeable landscapes respond uncharacteristically to urban stress calling for a more nuanced approach to restoration. We evaluated the relative influence of local-scale riparian characteristics and catchment-scale imperviousness on the macroinvertebrate assemblages of streams in the flat, permeable urban landscape of Perth, Western Australia. Using a hierarchical multi-taxa model, we predicted the outcomes of stylized stream restoration strategies to increase the riparian integrity at the local scale or decrease the influences of imperviousness at the catchment scale. In the urban streams of Perth, we show that local-scale riparian restoration can influence the structure of macroinvertebrate assemblages to a greater degree than managing the influences of catchment-scale imperviousness. We also observed an interaction between the effect of riparian integrity and imperviousness such that the effect of increased riparian integrity was enhanced at lower levels of catchment imperviousness. This study represents one of few conducted in flat, permeable landscapes and the first aimed at informing urban stream restoration in Perth, adding to the growing appreciation for heterogeneity of the Urban Stream Syndrome and its importance for urban stream restoration. © 2017 by the Ecological Society of America.
Directory of Open Access Journals (Sweden)
Zhensheng Wang
2017-02-01
Full Text Available The spatial variation of geographical phenomena is a classical problem in spatial data analysis and can provide insight into underlying processes. Traditional exploratory methods mostly depend on the planar distance assumption, but many spatial phenomena are constrained to a subset of Euclidean space. In this study, we apply a method based on a hierarchical Bayesian model to analyse the spatial variation of network-constrained phenomena represented by a link attribute in conjunction with two experiments based on a simplified hypothetical network and a complex road network in Shenzhen that includes 4212 urban facility points of interest (POIs for leisure activities. Then, the methods named local indicators of network-constrained clusters (LINCS are applied to explore local spatial patterns in the given network space. The proposed method is designed for phenomena that are represented by attribute values of network links and is capable of removing part of random variability resulting from small-sample estimation. The effects of spatial dependence and the base distribution are also considered in the proposed method, which could be applied in the fields of urban planning and safety research.
Ishigami, Hideaki
2016-01-01
Relative age effect (RAE) in sports has been well documented. Recent studies investigate the effect of birthplace in addition to the RAE. The first objective of this study was to show the magnitude of the RAE in two major professional sports in Japan, baseball and soccer. Second, we examined the birthplace effect and compared its magnitude with that of the RAE. The effect sizes were estimated using a Bayesian hierarchical Poisson model with the number of players as dependent variable. The RAEs were 9.0% and 7.7% per month for soccer and baseball, respectively. These estimates imply that children born in the first month of a school year have about three times greater chance of becoming a professional player than those born in the last month of the year. Over half of the difference in likelihoods of becoming a professional player between birthplaces was accounted for by weather conditions, with the likelihood decreasing by 1% per snow day. An effect of population size was not detected in the data. By investigating different samples, we demonstrated that using quarterly data leads to underestimation and that the age range of sampled athletes should be set carefully.
Yu, Jiyang; Silva, Jose; Califano, Andrea
2016-01-15
Functional genomics (FG) screens, using RNAi or CRISPR technology, have become a standard tool for systematic, genome-wide loss-of-function studies for therapeutic target discovery. As in many large-scale assays, however, off-target effects, variable reagents' potency and experimental noise must be accounted for appropriately control for false positives. Indeed, rigorous statistical analysis of high-throughput FG screening data remains challenging, particularly when integrative analyses are used to combine multiple sh/sgRNAs targeting the same gene in the library. We use large RNAi and CRISPR repositories that are publicly available to evaluate a novel meta-analysis approach for FG screens via Bayesian hierarchical modeling, Screening Bayesian Evaluation and Analysis Method (ScreenBEAM). Results from our analysis show that the proposed strategy, which seamlessly combines all available data, robustly outperforms classical algorithms developed for microarray data sets as well as recent approaches designed for next generation sequencing technologies. Remarkably, the ScreenBEAM algorithm works well even when the quality of FG screens is relatively low, which accounts for about 80-95% of the public datasets. R package and source code are available at: https://github.com/jyyu/ScreenBEAM. ac2248@columbia.edu, jose.silva@mssm.edu, yujiyang@gmail.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Ebrahimi, M.; Yousefzadeh, S.; Samadi, M.; Dong, Chunyang; Zhang, Jinlong; Moshfegh, A. Z.
2018-03-01
Branched hierarchical zinc oxide nanowires (BH-ZnO NWs) were fabricated successfully by a facile and rapid synthesis using two-step growth process. Initially, ZnO NWs have been prepared by anodizing zinc foil at room temperature and followed by annealing treatment. Then, the BH- ZnO NWs were grown on the ZnO NWs by a solution based method at very low temperature (31 oC). The BH- ZnO NWs with different aspect ratio were obtained by varying reaction time (0.5, 2, 5, 10 h). Photocatalytic activity of the samples was studied under both UV and visible light. The results indicated that the optimized BH-ZnO NWs (5 h) as a photocatalyst exhibited the highest photoactivity with about 3 times higher than the ZnO NWs under UV light. In addition, it was also determined that photodegradation rate constant (k) for the BH- ZnO NWs surface obeys a linear function with the branch length (l) and their correlation was described by using a proposed kinetic model.
International Nuclear Information System (INIS)
Suh, Yeong Sung; Kim, Yong Bae
2012-01-01
The strength of particle reinforced metal matrix composites is, in general, known to be increased by the geometrically necessary dislocations punched around a particle that form during cooling after consolidation because of coefficient of thermal expansion (CTE) mismatch between the particle and the matrix. An additional strength increase may also be observed, since another type of geometrically necessary dislocation can be formed during extensive deformation as a result of the strain gradient plasticity due to the elastic plastic mismatch between the particle and the matrix. In this paper, the magnitudes of these two types of dislocations are calculated based on the dislocation plasticity. The dislocations are then converted to the respective strengths and allocated hierarchically to the matrix around the particle in the axisymmetric finite element unit cell model. the proposed method is shown to be very effective by performing finite element strength analysis of SiC p /Al2124 T4 composites that included ductile in the matrix and particle matrix decohesion. The predicted results for different particle sizes and volume fractions show that the length scale effect of the particle size obviously affects the strength and failure behavior of the particle reinforced metal matrix composites
Farquharson, Kelly; Tambyraja, Sherine R; Logan, Jessica; Justice, Laura M; Schmitt, Mary Beth
2015-08-01
The purpose of this study was twofold: (a) to determine the unique contributions in children's language and literacy gains, over 1 academic year, that are attributable to the individual speech-language pathologist (SLP) and (b) to explore possible child- and SLP-level factors that may further explain SLPs' contributions to children's language and literacy gains. Participants were 288 kindergarten and 1st-grade children with language impairment who were currently receiving school-based language intervention from SLPs. Using hierarchical linear modeling, we partitioned the variance in children's gains in language (i.e., grammar, vocabulary) and literacy (i.e., word decoding) that could be attributed to their individual SLP. Results revealed a significant contribution of individual SLPs to children's gains in grammar, vocabulary, and word decoding. Children's fall language scores and grade were significant predictors of SLPs' contributions, although no SLP-level predictors were significant. The present study makes a first step toward incorporating implementation science and suggests that, for children receiving school-based language intervention, variance in child language and literacy gains in an academic year is at least partially attributable to SLPs. Continued work in this area should examine the possible SLP-level characteristics that may further explicate the relative contributions of SLPs.
Directory of Open Access Journals (Sweden)
Jo Nishino
2018-04-01
Full Text Available Genome-wide association studies (GWAS suggest that the genetic architecture of complex diseases consists of unexpectedly numerous variants with small effect sizes. However, the polygenic architectures of many diseases have not been well characterized due to lack of simple and fast methods for unbiased estimation of the underlying proportion of disease-associated variants and their effect-size distribution. Applying empirical Bayes estimation of semi-parametric hierarchical mixture models to GWAS summary statistics, we confirmed that schizophrenia was extremely polygenic [~40% of independent genome-wide SNPs are risk variants, most within odds ratio (OR = 1.03], whereas rheumatoid arthritis was less polygenic (~4 to 8% risk variants, significant portion reaching OR = 1.05 to 1.1. For rheumatoid arthritis, stratified estimations revealed that expression quantitative loci in blood explained large genetic variance, and low- and high-frequency derived alleles were prone to be risk and protective, respectively, suggesting a predominance of deleterious-risk and advantageous-protective mutations. Despite genetic correlation, effect-size distributions for schizophrenia and bipolar disorder differed across allele frequency. These analyses distinguished disease polygenic architectures and provided clues for etiological differences in complex diseases.
Sims, Benjamin H.; Sinitsyn, Nikolai; Eidenbenz, Stephan J.
2014-01-01
This paper presents findings from a study of the email network of a large scientific research organization, focusing on methods for visualizing and modeling organizational hierarchies within large, complex network datasets. In the first part of the paper, we find that visualization and interpretation of complex organizational network data is facilitated by integration of network data with information on formal organizational divisions and levels. By aggregating and visualizing email traffic b...
DEFF Research Database (Denmark)
Mishnaevsky, Leon; Dai, Gaoming
2014-01-01
by using computational micromechanical models. It is shown that while glass/carbon fibers hybrid composites clearly demonstrate higher stiffness and lower weight with increasing the carbon content, they can have lower strength as compared with usual glass fiber polymer composites. Secondary...... nanoreinforcement can drastically increase the fatigue lifetime of composites. Especially, composites with the nanoplatelets localized in the fiber/matrix interface layer (fiber sizing) ensure much higher fatigue lifetime than those with the nanoplatelets in the matrix....
Paz-Linares, Deirel; Vega-Hernández, Mayrim; Rojas-López, Pedro A; Valdés-Hernández, Pedro A; Martínez-Montes, Eduardo; Valdés-Sosa, Pedro A
2017-01-01
The estimation of EEG generating sources constitutes an Inverse Problem (IP) in Neuroscience. This is an ill-posed problem due to the non-uniqueness of the solution and regularization or prior information is needed to undertake Electrophysiology Source Imaging. Structured Sparsity priors can be attained through combinations of (L1 norm-based) and (L2 norm-based) constraints such as the Elastic Net (ENET) and Elitist Lasso (ELASSO) models. The former model is used to find solutions with a small number of smooth nonzero patches, while the latter imposes different degrees of sparsity simultaneously along different dimensions of the spatio-temporal matrix solutions. Both models have been addressed within the penalized regression approach, where the regularization parameters are selected heuristically, leading usually to non-optimal and computationally expensive solutions. The existing Bayesian formulation of ENET allows hyperparameter learning, but using the computationally intensive Monte Carlo/Expectation Maximization methods, which makes impractical its application to the EEG IP. While the ELASSO have not been considered before into the Bayesian context. In this work, we attempt to solve the EEG IP using a Bayesian framework for ENET and ELASSO models. We propose a Structured Sparse Bayesian Learning algorithm based on combining the Empirical Bayes and the iterative coordinate descent procedures to estimate both the parameters and hyperparameters. Using realistic simulations and avoiding the inverse crime we illustrate that our methods are able to recover complicated source setups more accurately and with a more robust estimation of the hyperparameters and behavior under different sparsity scenarios than classical LORETA, ENET and LASSO Fusion solutions. We also solve the EEG IP using data from a visual attention experiment, finding more interpretable neurophysiological patterns with our methods. The Matlab codes used in this work, including Simulations, Methods
Robust MR spine detection using hierarchical learning and local articulated model.
Zhan, Yiqiang; Maneesh, Dewan; Harder, Martin; Zhou, Xiang Sean
2012-01-01
A clinically acceptable auto-spine detection system, i.e., localization and labeling of vertebrae and inter-vertebral discs, is required to have high robustness, in particular to severe diseases (e.g., scoliosis) and imaging artifacts (e.g. metal artifacts in MR). Our method aims to achieve this goal with two novel components. First, instead of treating vertebrae/discs as either repetitive components or completely independent entities, we emulate a radiologist and use a hierarchial strategy to learn detectors dedicated to anchor (distinctive) vertebrae, bundle (non-distinctive) vertebrae and inter-vertebral discs, respectively. At run-time, anchor vertebrae are detected concurrently to provide redundant and distributed appearance cues robust to local imaging artifacts. Bundle vertebrae detectors provide candidates of vertebrae with subtle appearance differences, whose labels are mutually determined by anchor vertebrae to gain additional robustness. Disc locations are derived from a cloud of responses from disc detectors, which is robust to sporadic voxel-level errors. Second, owing to the non-rigidness of spine anatomies, we employ a local articulated model to effectively model the spatial relations across vertebrae and discs. The local articulated model fuses appearance cues from different detectors in a way that is robust to abnormal spine geometry resulting from severe diseases. Our method is validated by 300 MR spine scout scans and exhibits robust performance, especially to cases with severe diseases and imaging artifacts.
DEFF Research Database (Denmark)
Meng, Lexuan; Dragicevic, Tomislav; Roldan Perez, Javier
2016-01-01
Distributed control methods based on consensus algorithms have become popular in recent years for microgrid (MG) systems. These kinds of algorithms can be applied to share information in order to coordinate multiple distributed generators within a MG. However, stability analysis becomes a challen......Distributed control methods based on consensus algorithms have become popular in recent years for microgrid (MG) systems. These kinds of algorithms can be applied to share information in order to coordinate multiple distributed generators within a MG. However, stability analysis becomes...... in the communication network, continuous-time methods can be inaccurate for this kind of dynamic study. Therefore, this paper aims at modeling a complete DC MG using a discrete-time approach in order to perform a sensitivity analysis taking into account the effects of the consensus algorithm. To this end......, a generalized modeling method is proposed and the influence of key control parameters, the communication topology and the communication speed are studied in detail. The theoretical results obtained with the proposed model are verified by comparing them with the results obtained with a detailed switching...
Inclusive integral evaluation for mammograms using the hierarchical fuzzy integral (HFI) model
International Nuclear Information System (INIS)
Amano, Takashi; Yamashita, Kazuya; Arao, Shinichi; Kitayama, Akira; Hayashi, Akiko; Suemori, Shinji; Ohkura, Yasuhiko
2000-01-01
Physical factors (physically evaluated values) and psychological factors (fuzzy measurements) of breast x-ray images were comprehensively evaluated by applying breast x-ray images to an extended stratum-type fuzzy integrating model. In addition, x-ray images were evaluated collectively by integrating the quality (sharpness, graininess, and contrast) of x-ray images and three representative shadows (fibrosis, calcification, tumor) in the breast x-ray images. We selected the most appropriate system for radiography of the breast from three kinds of intensifying screens and film systems for evaluation by this method and investigated the relationship between the breast x-ray images and noise equivalent quantum number, which is called the overall physical evaluation method, and between the breast x-ray images and psychological evaluation by a visual system with a stratum-type fuzzy integrating model. We obtained a linear relationship between the breast x-ray image and noise-equivalent quantum number, and linearity between the breast x-ray image and psychological evaluation by the visual system. Therefore, the determination of fuzzy measurement, which is a scale for fuzzy evaluation of psychological factors of the observer, and physically evaluated values with a stratum-type fuzzy integrating model enabled us to make a comprehensive evaluation of x-ray images that included both psychological and physical aspects. (author)
Native South American genetic structure and prehistory inferred from hierarchical modeling of mtDNA.
Lewis, Cecil M; Long, Jeffrey C
2008-03-01
Genetic diversity in Native South Americans forms a complex pattern at both the continental and local levels. In comparing the West to the East, there is more variation within groups and smaller genetic distances between groups. From this pattern, researchers have proposed that there is more variation in the West and that a larger, more genetically diverse, founding population entered the West than the East. Here, we question this characterization of South American genetic variation and its interpretation. Our concern arises because others have inferred regional variation from the mean variation within local populations without taking into account the variation among local populations within the same region. This failure produces a biased view of the actual variation in the East. In this study, we analyze the mitochondrial DNA sequence between positions 16040 and 16322 of the Cambridge reference sequence. Our sample represents a total of 886 people from 27 indigenous populations from South (22), Central (3), and North America (2). The basic unit of our analyses is nucleotide identity by descent, which is easily modeled and proportional to nucleotide diversity. We use a forward modeling strategy to fit a series of nested models to identity by descent within and between all pairs of local populations. This method provides estimates of identity by descent at different levels of population hierarchy without assuming homogeneity within populations, regions, or continents. Our main discovery is that Eastern South America harbors more genetic variation than has been recognized. We find no evidence that there is increased identity by descent in the East relative to the total for South America. By contrast, we discovered that populations in the Western region, as a group, harbor more identity by descent than has been previously recognized, despite the fact that average identity by descent within groups is lower. In this light, there is no need to postulate separate founding
Directory of Open Access Journals (Sweden)
Hossein Ghayoumi Zadeh
2018-04-01
Conclusion: These days, the cases of diabetes with hypertension are constantly increasing, and one of the main adverse effects of this disease is related to eyes. In this respect, the diagnosis of retinopathy, which is the same as identification of exudates, microanurysm and bleeding, is of particular importance. The results show that the proposed model is able to detect lesions in diabetic retinopathy images and classify them with an acceptable accuracy. In addition, the results suggest that this method has an acceptable performance compared to other methods.
1990-12-01
other useful tasks. Simulation results of a 2 degrees of freedom (DOF) manipulator are given. Rigid Robot Dinamics The Lagrange-Euler formulation of...cells. In distributed models, the strength of patterns of activity over many units determines the degree of participation of these entities in functional
Efendiev, Yalchin R.
2015-06-05
In this paper, we develop a multiscale finite element method for solving flows in fractured media. Our approach is based on generalized multiscale finite element method (GMsFEM), where we represent the fracture effects on a coarse grid via multiscale basis functions. These multiscale basis functions are constructed in the offline stage via local spectral problems following GMsFEM. To represent the fractures on the fine grid, we consider two approaches (1) discrete fracture model (DFM) (2) embedded fracture model (EFM) and their combination. In DFM, the fractures are resolved via the fine grid, while in EFM the fracture and the fine grid block interaction is represented as a source term. In the proposed multiscale method, additional multiscale basis functions are used to represent the long fractures, while short-size fractures are collectively represented by a single basis functions. The procedure is automatically done via local spectral problems. In this regard, our approach shares common concepts with several approaches proposed in the literature as we discuss. We would like to emphasize that our goal is not to compare DFM with EFM, but rather to develop GMsFEM framework which uses these (DFM or EFM) fine-grid discretization techniques. Numerical results are presented, where we demonstrate how one can adaptively add basis functions in the regions of interest based on error indicators. We also discuss the use of randomized snapshots (Calo et al. Randomized oversampling for generalized multiscale finite element methods, 2014), which reduces the offline computational cost.
Hierarchical Winner-Take-All Particle Swarm Optimization Social Network for Neural Model Fitting
Coventry, Brandon S.; Parthasarathy, Aravindakshan; Sommer, Alexandra L.; Bartlett, Edward L.
2016-01-01
Particle swarm optimization (PSO) has gained widespread use as a general mathematical programming paradigm and seen use in a wide variety of optimization and machine learning problems. In this work, we introduce a new variant on the PSO social network and apply this method to the inverse problem of input parameter selection from recorded auditory neuron tuning curves. The topology of a PSO social network is a major contributor to optimization success. Here we propose a new social network which draws influence from winner-take-all coding found in visual cortical neurons. We show that the winner-take-all network performs exceptionally well on optimization problems with greater than 5 dimensions and runs at a lower iteration count as compared to other PSO topologies. Finally we show that this variant of PSO is able to recreate auditory frequency tuning curves and modulation transfer functions, making it a potentially useful tool for computational neuroscience models. PMID:27726048
Hierarchical winner-take-all particle swarm optimization social network for neural model fitting.
Coventry, Brandon S; Parthasarathy, Aravindakshan; Sommer, Alexandra L; Bartlett, Edward L
2017-02-01
Particle swarm optimization (PSO) has gained widespread use as a general mathematical programming paradigm and seen use in a wide variety of optimization and machine learning problems. In this work, we introduce a new variant on the PSO social network and apply this method to the inverse problem of input parameter selection from recorded auditory neuron tuning curves. The topology of a PSO social network is a major contributor to optimization success. Here we propose a new social network which draws influence from winner-take-all coding found in visual cortical neurons. We show that the winner-take-all network performs exceptionally well on optimization problems with greater than 5 dimensions and runs at a lower iteration count as compared to other PSO topologies. Finally we show that this variant of PSO is able to recreate auditory frequency tuning curves and modulation transfer functions, making it a potentially useful tool for computational neuroscience models.
Hierarchical heuristic search using a Gaussian mixture model for UAV coverage planning.
Lin, Lanny; Goodrich, Michael A
2014-12-01
During unmanned aerial vehicle (UAV) search missions, efficient use of UAV flight time requires flight paths that maximize the probability of finding the desired subject. The probability of detecting the desired subject based on UAV sensor information can vary in different search areas due to environment elements like varying vegetation density or lighting conditions, making it likely that the UAV can only partially detect the subject. This adds another dimension of complexity to the already difficult (NP-Hard) problem of finding an optimal search path. We present a new class of algorithms that account for partial detection in the form of a task difficulty map and produce paths that approximate the payoff of optimal solutions. The algorithms use the mode goodness ratio heuristic that uses a Gaussian mixture model to prioritize search subregions. The algorithms search for effective paths through the parameter space at different levels of resolution. We compare the performance of the new algorithms against two published algorithms (Bourgault's algorithm and LHC-GW-CONV algorithm) in simulated searches with three real search and rescue scenarios, and show that the new algorithms outperform existing algorithms significantly and can yield efficient paths that yield payoffs near the optimal.
Lin, Yi-Shin; Heinke, Dietmar; Humphreys, Glyn W
2015-04-01
In this study, we applied Bayesian-based distributional analyses to examine the shapes of response time (RT) distributions in three visual search paradigms, which varied in task difficulty. In further analyses we investigated two common observations in visual search-the effects of display size and of variations in search efficiency across different task conditions-following a design that had been used in previous studies (Palmer, Horowitz, Torralba, & Wolfe, Journal of Experimental Psychology: Human Perception and Performance, 37, 58-71, 2011; Wolfe, Palmer, & Horowitz, Vision Research, 50, 1304-1311, 2010) in which parameters of the response distributions were measured. Our study showed that the distributional parameters in an experimental condition can be reliably estimated by moderate sample sizes when Monte Carlo simulation techniques are applied. More importantly, by analyzing trial RTs, we were able to extract paradigm-dependent shape changes in the RT distributions that could be accounted for by using the EZ2 diffusion model. The study showed that Bayesian-based RT distribution analyses can provide an important means to investigate the underlying cognitive processes in search, including stimulus grouping and the bottom-up guidance of attention.
Sheehan, Rachel B.; Herring, Matthew P.; Campbell, Mark J.
2018-01-01
Motivation has been the subject of much research in the sport psychology literature, whereas athlete mental health has received limited attention. Motivational complexities in elite sport are somewhat reflected in the mental health literature, where there is evidence for both protective and risk factors for athletes. Notably, few studies have linked motivation to mental health. Therefore, the key objective of this study was to test four mental health outcomes in the motivational sequence posited by the Hierarchical Model of Intrinsic and Extrinsic Motivation: motivational climate → basic psychological needs → motivation → mental health outcomes. Elite team-sport athletes (140 females, 75 males) completed seven psychometric inventories of motivation-related and mental health variables. Overall, the athletes reported positive motivational patterns, with autonomous motivation and task climate being more prevalent than their less adaptive counterparts. Elevated depressive symptoms and poor sleep quality affected nearly half of the cohort. Structural equation modeling supported pathways between motivational climate, basic needs, motivation, and mood, depressive symptoms, sleep quality, and trait anxiety. Specifically, a task climate was positively associated with the three basic psychological needs, and an ego climate was positively associated with competence. Autonomy and relatedness had positive and negative associations with autonomous and controlled forms of motivation, respectively. Controlled motivation regulations were positively associated with the four mental health outcomes. Integrated regulation had a negative association with anxiety, and intrinsic regulation had a positive association with depressive symptoms. These findings highlight the complexities of and interrelations between motivation and mental health among athletes, and support the importance of considering mental health as an outcome of motivation. PMID:29867672
Directory of Open Access Journals (Sweden)
Rachel B. Sheehan
2018-05-01
Full Text Available Motivation has been the subject of much research in the sport psychology literature, whereas athlete mental health has received limited attention. Motivational complexities in elite sport are somewhat reflected in the mental health literature, where there is evidence for both protective and risk factors for athletes. Notably, few studies have linked motivation to mental health. Therefore, the key objective of this study was to test four mental health outcomes in the motivational sequence posited by the Hierarchical Model of Intrinsic and Extrinsic Motivation: motivational climate → basic psychological needs → motivation → mental health outcomes. Elite team-sport athletes (140 females, 75 males completed seven psychometric inventories of motivation-related and mental health variables. Overall, the athletes reported positive motivational patterns, with autonomous motivation and task climate being more prevalent than their less adaptive counterparts. Elevated depressive symptoms and poor sleep quality affected nearly half of the cohort. Structural equation modeling supported pathways between motivational climate, basic needs, motivation, and mood, depressive symptoms, sleep quality, and trait anxiety. Specifically, a task climate was positively associated with the three basic psychological needs, and an ego climate was positively associated with competence. Autonomy and relatedness had positive and negative associations with autonomous and controlled forms of motivation, respectively. Controlled motivation regulations were positively associated with the four mental health outcomes. Integrated regulation had a negative association with anxiety, and intrinsic regulation had a positive association with depressive symptoms. These findings highlight the complexities of and interrelations between motivation and mental health among athletes, and support the importance of considering mental health as an outcome of motivation.
Directory of Open Access Journals (Sweden)
Amanda R Bolbecker
2016-01-01
Full Text Available Evidence of cerebellar dysfunction in schizophrenia has mounted over the past several decades, emerging from neuroimaging, neuropathological, and behavioral studies. Consistent with these findings, cerebellar-dependent delay eyeblink conditioning (dEBC deficits have been identified in schizophrenia. While repeated measures analysis of variance (ANOVA is traditionally used to analyze dEBC data, hierarchical linear modeling (HLM more reliably describes change over time by accounting for the dependence in repeated measures data. This analysis approach is well suited to dEBC data analysis because it has less restrictive assumptions and allows unequal variances. The current study examined dEBC measured with electromyography in a single-cue tone paradigm in an age-matched sample of schizophrenia participants and healthy controls (N=56 per group using HLM. Subjects participated in 90 trials (10 blocks of dEBC, during which a 400 ms tone co-terminated with a 50 ms air puff delivered to the left eye. Each block also contained 1 tone-alone trial. The resulting block averages of dEBC data were fitted to a 3-parameter logistic model in HLM, revealing significant differences between schizophrenia and control groups on asymptote and inflection point, but not slope. These findings suggest that while the learning rate is not significantly different compared to controls, associative learning begins to level off later and a lower ultimate level of associative learning is achieved in schizophrenia. Given the large sample size in the present study, HLM may provide a more nuanced and definitive analysis of differences between schizophrenia and controls on dEBC.
Baek, Jonggyu; Sanchez-Vaznaugh, Emma V; Sánchez, Brisa N
2016-03-15
It is well known that associations between features of the built environment and health depend on the geographic scale used to construct environmental attributes. In the built environment literature, it has long been argued that geographic scales may vary across study locations. However, this hypothesized variation has not been systematically examined due to a lack of available statistical methods. We propose a hierarchical distributed-lag model (HDLM) for estimating the underlying overall shape of food environment-health associations as a function of distance from locations of interest. This method enables indirect assessment of relevant geographic scales and captures area-level heterogeneity in the magnitudes of associations, along with relevant distances within areas. The proposed model was used to systematically examine area-level variation in the association between availability of convenience stores around schools and children's weights. For this case study, body mass index (weight kg)/height (m)2) z scores (BMIz) for 7th grade children collected via California's 2001-2009 FitnessGram testing program were linked to a commercial database that contained locations of food outlets statewide. Findings suggested that convenience store availability may influence BMIz only in some places and at varying distances from schools. Future research should examine localized environmental or policy differences that may explain the heterogeneity in convenience store-BMIz associations. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Sheehan, Rachel B; Herring, Matthew P; Campbell, Mark J
2018-01-01
Motivation has been the subject of much research in the sport psychology literature, whereas athlete mental health has received limited attention. Motivational complexities in elite sport are somewhat reflected in the mental health literature, where there is evidence for both protective and risk factors for athletes. Notably, few studies have linked motivation to mental health. Therefore, the key objective of this study was to test four mental health outcomes in the motivational sequence posited by the Hierarchical Model of Intrinsic and Extrinsic Motivation: motivational climate → basic psychological needs → motivation → mental health outcomes. Elite team-sport athletes (140 females, 75 males) completed seven psychometric inventories of motivation-related and mental health variables. Overall, the athletes reported positive motivational patterns, with autonomous motivation and task climate being more prevalent than their less adaptive counterparts. Elevated depressive symptoms and poor sleep quality affected nearly half of the cohort. Structural equation modeling supported pathways between motivational climate, basic needs, motivation, and mood, depressive symptoms, sleep quality, and trait anxiety. Specifically, a task climate was positively associated with the three basic psychological needs, and an ego climate was positively associated with competence. Autonomy and relatedness had positive and negative associations with autonomous and controlled forms of motivation, respectively. Controlled motivation regulations were positively associated with the four mental health outcomes. Integrated regulation had a negative association with anxiety, and intrinsic regulation had a positive association with depressive symptoms. These findings highlight the complexities of and interrelations between motivation and mental health among athletes, and support the importance of considering mental health as an outcome of motivation.
Bled, F.; Royle, J. Andrew; Cam, E.
2011-01-01
Invasive species are regularly claimed as the second threat to biodiversity. To apply a relevant response to the potential consequences associated with invasions (e.g., emphasize management efforts to prevent new colonization or to eradicate the species in places where it has already settled), it is essential to understand invasion mechanisms and dynamics. Quantifying and understanding what influences rates of spatial spread is a key research area for invasion theory. In this paper, we develop a model to account for occupancy dynamics of an invasive species. Our model extends existing models to accommodate several elements of invasive processes; we chose the framework of hierarchical modeling to assess site occupancy status during an invasion. First, we explicitly accounted for spatial structure and how distance among sites and position relative to one another affect the invasion spread. In particular, we accounted for the possibility of directional propagation and provided a way of estimating the direction of this possible spread. Second, we considered the influence of local density on site occupancy. Third, we decided to split the colonization process into two subprocesses, initial colonization and recolonization, which may be ground-breaking because these subprocesses may exhibit different relationships with environmental variations (such as density variation) or colonization history (e.g., initial colonization might facilitate further colonization events). Finally, our model incorporates imperfection in detection, which might be a source of substantial bias in estimating population parameters. We focused on the case of the Eurasian Collared-Dove (Streptopelia decaocto) and its invasion of the United States since its introduction in the early 1980s, using data from the North American BBS (Breeding Bird Survey). The Eurasian Collared-Dove is one of the most successful invasive species, at least among terrestrial vertebrates. Our model provided estimation of the
Shin, Myoungjin; Kwon, Sungho
2015-04-01
The objective of this study was to demonstrate the sequential process (i.e., social factors→mediators→motivation→consequences) underlying the Hierarchical Model of Intrinsic and Extrinsic Motivation at the contextual level in instruction using three teaching tools, modified balls, a high net, and colored balls and cones in a college-level tennis class in South Korea. 126 students enrolled in a 15-week tennis class participated in the study. The results indicate that the three teaching tools positively affected students' perceived competence, with perceived competence's beta on intrinsic motivation equal to 0.45. Intrinsic motivation was found to reduce negative affect further by -0.33, thereby demonstrating the sequential process of the Hierarchical Model of Intrinsic and Extrinsic Motivation.
Directory of Open Access Journals (Sweden)
Sergio Briguglio
2003-01-01
Full Text Available A performance-prediction model is presented, which describes different hierarchical workload decomposition strategies for particle in cell (PIC codes on Clusters of Symmetric MultiProcessors. The devised workload decomposition is hierarchically structured: a higher-level decomposition among the computational nodes, and a lower-level one among the processors of each computational node. Several decomposition strategies are evaluated by means of the prediction model, with respect to the memory occupancy, the parallelization efficiency and the required programming effort. Such strategies have been implemented by integrating the high-level languages High Performance Fortran (at the inter-node stage and OpenMP (at the intra-node one. The details of these implementations are presented, and the experimental values of parallelization efficiency are compared with the predicted results.
Huang, Shengzhou; Li, Mujun; Shen, Lianguan; Qiu, Jinfeng; Zhou, Youquan
2017-06-01
A flexible fabrication method for the biomimetic compound eye (BCE) array is proposed. In this method, a triple-layer sandwich-like coating configuration was introduced, and the required hierarchic microstructures are formed with a simple single-scan exposure in maskless digital lithography. Taking advantage of the difference of glass transition point (Tg) between photoresists of each layer, the pre-formed hierarchic microstructures are in turn reflowed to the curved substrate and the BCE ommatidia in a two-step thermal reflow process. To avoid affecting the spherical substrate formed in the first thermal reflow, a non-contact strategy was proposed in the second reflow process. The measurement results were in good agreement with the designed BCE profiles. Results also showed that the fabricated BCE had good performances in optical test. The presented method is flexible, convenient, low-cost and can easily adapt to the fabrications of other optical elements with hierarchic microstructures.
Pu, Jie; Fang, Di; Wilson, Jeffrey R
2017-02-03
The analysis of correlated binary data is commonly addressed through the use of conditional models with random effects included in the systematic component as opposed to generalized estimating equations (GEE) models that addressed the random component. Since the joint distribution of the observations is usually unknown, the conditional distribution is a natural approach. Our objective was to compare the fit of different binary models for correlated data in Tabaco use. We advocate that the joint modeling of the mean and dispersion may be at times just as adequate. We assessed the ability of these models to account for the intraclass correlation. In so doing, we concentrated on fitting logistic regression models to address smoking behaviors. Frequentist and Bayes' hierarchical models were used to predict conditional probabilities, and the joint modeling (GLM and GAM) models were used to predict marginal probabilities. These models were fitted to National Longitudinal Study of Adolescent to Adult Health (Add Health) data for Tabaco use. We found that people were less likely to smoke if they had higher income, high school or higher education and religious. Individuals were more likely to smoke if they had abused drug or alcohol, spent more time on TV and video games, and been arrested. Moreover, individuals who drank alcohol early in life were more likely to be a regular smoker. Children who experienced mistreatment from their parents were more likely to use Tabaco regularly. The joint modeling of the mean and dispersion models offered a flexible and meaningful method of addressing the intraclass correlation. They do not require one to identify random effects nor distinguish from one level of the hierarchy to the other. Moreover, once one can identify the significant random effects, one can obtain similar results to the random coefficient models. We found that the set of marginal models accounting for extravariation through the additional dispersion submodel produced
Directory of Open Access Journals (Sweden)
Jiaxiang eZhang
2014-04-01
Full Text Available Two phenomena are commonly observed in decision-making. First, there is a speed-accuracy tradeoff such that decisions are slower and more accurate when instructions emphasize accuracy over speed, and vice versa. Second, decision performance improves with practice, as a task is learnt. The speed-accuracy tradeoff and learning effects have been explained under a well-established evidence-accumulation framework for decision-making, which suggests that evidence supporting each choice is accumulated over time, and a decision is committed to when the accumulated evidence reaches a decision boundary. This framework suggests that changing the decision boundary creates the tradeoff between decision speed and accuracy, while increasing the rate of accumulation leads to more accurate and faster decisions after learning. However, recent studies challenged the view that speed-accuracy tradeoff and learning are associated with changes in distinct, single decision parameters. Further, the influence of speed-accuracy instructions over the course of learning remains largely unknown. Here, we used a hierarchical drift-diffusion model to examine the speed-accuracy tradeoff during learning of a coherent motion discrimination task across multiple training sessions, and a transfer test session. The influence of speed-accuracy instructions was robust over training and generalized across untrained stimulus features. Emphasizing decision accuracy rather than speed was associated with increased boundary separation, drift rate and non-decision time at the beginning of training. However, after training, an emphasis on decision accuracy was only associated with increased boundary separation. In addition, faster and more accurate decisions after learning were due to a gradual decrease in boundary separation and an increase in drift rate. The results suggest that speed-accuracy instructions and learning differentially shape decision-making processes at different time scales.
International Nuclear Information System (INIS)
Zangeneh, Ali; Jadid, Shahram; Rahimi-Kian, Ashkan
2009-01-01
The purpose of this paper is to present an assessment and evaluation model for the prioritization of distributed generation (DG) technologies, both conventional and renewable, to meet the increasing load due to the growth rate in Iran, while considering the issue of sustainable development. The proposed hierarchical decision making strategy is presented from the viewpoint of either the distribution company (DisCo) or the independent power producer (IPP) as a private entity. Nowadays, DG is a broadly-used term that covers various technologies; however, it is difficult to find a unique DG technology that takes into account multiple considerations, such as economic, technical, and environmental attributes. For this purpose, a multi-attribute decision making (MADM) approach is used to assess the alternatives for DG technology with respect to their economic, technical and environmental attributes. In addition, a regional primary energy attribute is also included in the hierarchy to express the potential of various kinds of energy resources in the regions under study. The obtained priority of DG technologies help decision maker in each region how allocate their total investment budget to the various technologies. From the performed analysis, it is observed that gas turbines are almost the best technologies for investing in various regions of Iran. At the end of the decision making process, a sensitivity analysis is performed based on the state regulations to indicate how the variations of the attributes' weights influence the DG alternatives' priority. This proposed analytical framework is implemented in seven parts of Iran with different climatic conditions and energy resources.
Directory of Open Access Journals (Sweden)
Jack Giovanini
Full Text Available As human demand for ecosystem products increases, management intervention may become more frequent after environmental disturbances. Evaluations of ecological responses to cumulative effects of management interventions and natural disturbances provide critical decision-support tools for managers who strive to balance environmental conservation and economic development. We conducted an experiment to evaluate the effects of salvage logging on avian community composition in lodgepole pine (Pinus contorta forests affected by beetle outbreaks in Oregon, USA, 1996-1998. Treatments consisted of the removal of lodgepole pine snags only, and live trees were not harvested. We used a bayesian hierarchical model to quantify occupancy dynamics for 27 breeding species, while accounting for variation in the detection process. We examined how magnitude and precision of treatment effects varied when incorporating prior information from a separate intervention study that occurred in a similar ecological system. Regardless of which prior we evaluated, we found no evidence that the harvest treatment had a negative impact on species richness, with an estimated average of 0.2-2.2 more species in harvested stands than unharvested stands. Estimated average similarity between control and treatment stands ranged from 0.82-0.87 (1 indicating complete similarity between a pair of stands and suggested that treatment stands did not contain novel assemblies of species responding to the harvesting prescription. Estimated treatment effects were positive for twenty-four (90% of the species, although the credible intervals contained 0 in all cases. These results suggest that, unlike most post-fire salvage logging prescriptions, selective harvesting after beetle outbreaks may meet multiple management objectives, including the maintenance of avian community richness comparable to what is found in unharvested stands. Our results provide managers with prescription alternatives to
Cai, Li
2015-06-01
Lord and Wingersky's (Appl Psychol Meas 8:453-461, 1984) recursive algorithm for creating summed score based likelihoods and posteriors has a proven track record in unidimensional item response theory (IRT) applications. Extending the recursive algorithm to handle multidimensionality is relatively simple, especially with fixed quadrature because the recursions can be defined on a grid formed by direct products of quadrature points. However, the increase in computational burden remains exponential in the number of dimensions, making the implementation of the recursive algorithm cumbersome for truly high-dimensional models. In this paper, a dimension reduction method that is specific to the Lord-Wingersky recursions is developed. This method can take advantage of the restrictions implied by hierarchical item factor models, e.g., the bifactor model, the testlet model, or the two-tier model, such that a version of the Lord-Wingersky recursive algorithm can operate on a dramatically reduced set of quadrature points. For instance, in a bifactor model, the dimension of integration is always equal to 2, regardless of the number of factors. The new algorithm not only provides an effective mechanism to produce summed score to IRT scaled score translation tables properly adjusted for residual dependence, but leads to new applications in test scoring, linking, and model fit checking as well. Simulated and empirical examples are used to illustrate the new applications.
Modular networks with hierarchical organization
Indian Academy of Sciences (India)
Several networks occurring in real life have modular structures that are arranged in a hierarchical fashion. In this paper, we have proposed a model for such networks, using a stochastic generation method. Using this model we show that, the scaling relation between the clustering and degree of the nodes is not a necessary ...
Cross, Paul C.; Maichak, Eric J.; Rogerson, Jared D.; Irvine, Kathryn M.; Jones, Jennifer D; Heisey, Dennis M.; Edwards, William H.; Scurlock, Brandon M.
2015-01-01
Understanding the seasonal timing of disease transmission can lead to more effective control strategies, but the seasonality of transmission is often unknown for pathogens transmitted directly. We inserted vaginal implant transmitters (VITs) in 575 elk (Cervus elaphus canadensis) from 2006 to 2014 to assess when reproductive failures (i.e., abortions or still births) occur, which is the primary transmission route of Brucella abortus, the causative agent of brucellosis in the Greater Yellowstone Ecosystem. Using a survival analysis framework, we developed a Bayesian hierarchical model that simultaneously estimated the total baseline hazard of a reproductive event as well as its 2 mutually exclusive parts (abortions or live births). Approximately, 16% (95% CI = 0.10, 0.23) of the pregnant seropositive elk had reproductive failures, whereas 2% (95% CI = 0.01, 0.04) of the seronegative elk had probable abortions. Reproductive failures could have occurred as early as 13 February and as late as 10 July, peaking from March through May. Model results suggest that less than 5% of likely abortions occurred after 6 June each year and abortions were approximately 5 times more likely in March, April, or May compared to February or June. In western Wyoming, supplemental feeding of elk begins in December and ends during the peak of elk abortions and brucellosis transmission (i.e., Mar and Apr). Years with more snow may enhance elk-to-elk transmission on supplemental feeding areas because elk are artificially aggregated for the majority of the transmission season. Elk-to-cattle transmission will depend on the transmission period relative to the end of the supplemental feeding season, elk seroprevalence, population size, and the amount of commingling. Our statistical approach allowed us to estimate the probability density function of different event types over time, which may be applicable to other cause-specific survival analyses. It is often challenging to assess the
Transmutations across hierarchical levels
International Nuclear Information System (INIS)
O'Neill, R.V.
1977-01-01
The development of large-scale ecological models depends implicitly on a concept known as hierarchy theory which views biological systems in a series of hierarchical levels (i.e., organism, population, trophic level, ecosystem). The theory states that an explanation of a biological phenomenon is provided when it is shown to be the consequence of the activities of the system's components, which are themselves systems in the next lower level of the hierarchy. Thus, the behavior of a population is explained by the behavior of the organisms in the population. The initial step in any modeling project is, therefore, to identify the system components and the interactions between them. A series of examples of transmutations in aquatic and terrestrial ecosystems are presented to show how and why changes occur. The types of changes are summarized and possible implications of transmutation for hierarchy theory, for the modeler, and for the ecological theoretician are discussed
Yasmirullah, Septia Devi Prihastuti; Iriawan, Nur; Sipayung, Feronika Rosalinda
2017-11-01
The success of regional economic establishment could be measured by economic growth. Since the Act No. 32 of 2004 has been implemented, unbalance economic among the regency in Indonesia is increasing. This condition is contrary different with the government goal to build society welfare through the economic activity development in each region. This research aims to examine economic growth through the distribution of bank credits to each Indonesia's regency. The data analyzed in this research is hierarchically structured data which follow normal distribution in first level. Two modeling approaches are employed in this research, a global-one level Bayesian approach and two-level hierarchical Bayesian approach. The result shows that hierarchical Bayesian has succeeded to demonstrate a better estimation than a global-one level Bayesian. It proves that the different economic growth in each province is significantly influenced by the variations of micro level characteristics in each province. These variations are significantly affected by cities and province characteristics in second level.
The Case for a Hierarchical Cosmology
Vaucouleurs, G. de
1970-01-01
The development of modern theoretical cosmology is presented and some questionable assumptions of orthodox cosmology are pointed out. Suggests that recent observations indicate that hierarchical clustering is a basic factor in cosmology. The implications of hierarchical models of the universe are considered. Bibliography. (LC)
Discovering hierarchical structure in normal relational data
DEFF Research Database (Denmark)
Schmidt, Mikkel Nørgaard; Herlau, Tue; Mørup, Morten
2014-01-01
-parametric generative model for hierarchical clustering of similarity based on multifurcating Gibbs fragmentation trees. This allows us to infer and display the posterior distribution of hierarchical structures that comply with the data. We demonstrate the utility of our method on synthetic data and data of functional...
Hierarchical partial order ranking
International Nuclear Information System (INIS)
Carlsen, Lars
2008-01-01
Assessing the potential impact on environmental and human health from the production and use of chemicals or from polluted sites involves a multi-criteria evaluation scheme. A priori several parameters are to address, e.g., production tonnage, specific release scenarios, geographical and site-specific factors in addition to various substance dependent parameters. Further socio-economic factors may be taken into consideration. The number of parameters to be included may well appear to be prohibitive for developing a sensible model. The study introduces hierarchical partial order ranking (HPOR) that remedies this problem. By HPOR the original parameters are initially grouped based on their mutual connection and a set of meta-descriptors is derived representing the ranking corresponding to the single groups of descriptors, respectively. A second partial order ranking is carried out based on the meta-descriptors, the final ranking being disclosed though average ranks. An illustrative example on the prioritisation of polluted sites is given. - Hierarchical partial order ranking of polluted sites has been developed for prioritization based on a large number of parameters
Directory of Open Access Journals (Sweden)
Jie Pu
2017-02-01
Full Text Available Abstract Background The analysis of correlated binary data is commonly addressed through the use of conditional models with random effects included in the systematic component as opposed to generalized estimating equations (GEE models that addressed the random component. Since the joint distribution of the observations is usually unknown, the conditional distribution is a natural approach. Our objective was to compare the fit of different binary models for correlated data in Tabaco use. We advocate that the joint modeling of the mean and dispersion may be at times just as adequate. We assessed the ability of these models to account for the intraclass correlation. In so doing, we concentrated on fitting logistic regression models to address smoking behaviors. Methods Frequentist and Bayes’ hierarchical models were used to predict conditional probabilities, and the joint modeling (GLM and GAM models were used to predict marginal probabilities. These models were fitted to National Longitudinal Study of Adolescent to Adult Health (Add Health data for Tabaco use. Results We found that people were less likely to smoke if they had higher income, high school or higher education and religious. Individuals were more likely to smoke if they had abused drug or alcohol, spent more time on TV and video games, and been arrested. Moreover, individuals who drank alcohol early in life were more likely to be a regular smoker. Children who experienced mistreatment from their parents were more likely to use Tabaco regularly. Conclusions The joint modeling of the mean and dispersion models offered a flexible and meaningful method of addressing the intraclass correlation. They do not require one to identify random effects nor distinguish from one level of the hierarchy to the other. Moreover, once one can identify the significant random effects, one can obtain similar results to the random coefficient models. We found that the set of marginal models accounting for
Coggins, Lewis G.; Bacheler, Nathan M.; Gwinn, Daniel C.
2014-01-01
Occupancy models using incidence data collected repeatedly at sites across the range of a population are increasingly employed to infer patterns and processes influencing population distribution and dynamics. While such work is common in terrestrial systems, fewer examples exist in marine applications. This disparity likely exists because the replicate samples required by these models to account for imperfect detection are often impractical to obtain when surveying aquatic organisms, particularly fishes. We employ simultaneous sampling using fish traps and novel underwater camera observations to generate the requisite replicate samples for occupancy models of red snapper, a reef fish species. Since the replicate samples are collected simultaneously by multiple sampling devices, many typical problems encountered when obtaining replicate observations are avoided. Our results suggest that augmenting traditional fish trap sampling with camera observations not only doubled the probability of detecting red snapper in reef habitats off the Southeast coast of the United States, but supplied the necessary observations to infer factors influencing population distribution and abundance while accounting for imperfect detection. We found that detection probabilities tended to be higher for camera traps than traditional fish traps. Furthermore, camera trap detections were influenced by the current direction and turbidity of the water, indicating that collecting data on these variables is important for future monitoring. These models indicate that the distribution and abundance of this species is more heavily influenced by latitude and depth than by micro-scale reef characteristics lending credence to previous characterizations of red snapper as a reef habitat generalist. This study demonstrates the utility of simultaneous sampling devices, including camera traps, in aquatic environments to inform occupancy models and account for imperfect detection when describing factors
Directory of Open Access Journals (Sweden)
Lewis G Coggins
Full Text Available Occupancy models using incidence data collected repeatedly at sites across the range of a population are increasingly employed to infer patterns and processes influencing population distribution and dynamics. While such work is common in terrestrial systems, fewer examples exist in marine applications. This disparity likely exists because the replicate samples required by these models to account for imperfect detection are often impractical to obtain when surveying aquatic organisms, particularly fishes. We employ simultaneous sampling using fish traps and novel underwater camera observations to generate the requisite replicate samples for occupancy models of red snapper, a reef fish species. Since the replicate samples are collected simultaneously by multiple sampling devices, many typical problems encountered when obtaining replicate observations are avoided. Our results suggest that augmenting traditional fish trap sampling with camera observations not only doubled the probability of detecting red snapper in reef habitats off the Southeast coast of the United States, but supplied the necessary observations to infer factors influencing population distribution and abundance while accounting for imperfect detection. We found that detection probabilities tended to be higher for camera traps than traditional fish traps. Furthermore, camera trap detections were influenced by the current direction and turbidity of the water, indicating that collecting data on these variables is important for future monitoring. These models indicate that the distribution and abundance of this species is more heavily influenced by latitude and depth than by micro-scale reef characteristics lending credence to previous characterizations of red snapper as a reef habitat generalist. This study demonstrates the utility of simultaneous sampling devices, including camera traps, in aquatic environments to inform occupancy models and account for imperfect detection when
Coggins, Lewis G; Bacheler, Nathan M; Gwinn, Daniel C
2014-01-01
Occupancy models using incidence data collected repeatedly at sites across the range of a population are increasingly employed to infer patterns and processes influencing population distribution and dynamics. While such work is common in terrestrial systems, fewer examples exist in marine applications. This disparity likely exists because the replicate samples required by these models to account for imperfect detection are often impractical to obtain when surveying aquatic organisms, particularly fishes. We employ simultaneous sampling using fish traps and novel underwater camera observations to generate the requisite replicate samples for occupancy models of red snapper, a reef fish species. Since the replicate samples are collected simultaneously by multiple sampling devices, many typical problems encountered when obtaining replicate observations are avoided. Our results suggest that augmenting traditional fish trap sampling with camera observations not only doubled the probability of detecting red snapper in reef habitats off the Southeast coast of the United States, but supplied the necessary observations to infer factors influencing population distribution and abundance while accounting for imperfect detection. We found that detection probabilities tended to be higher for camera traps than traditional fish traps. Furthermore, camera trap detections were influenced by the current direction and turbidity of the water, indicating that collecting data on these variables is important for future monitoring. These models indicate that the distribution and abundance of this species is more heavily influenced by latitude and depth than by micro-scale reef characteristics lending credence to previous characterizations of red snapper as a reef habitat generalist. This study demonstrates the utility of simultaneous sampling devices, including camera traps, in aquatic environments to inform occupancy models and account for imperfect detection when describing factors
Directory of Open Access Journals (Sweden)
Woosang Lim
Full Text Available Hierarchical organizations of information processing in the brain networks have been known to exist and widely studied. To find proper hierarchical structures in the macaque brain, the traditional methods need the entire pairwise hierarchical relationships between cortical areas. In this paper, we present a new method that discovers hierarchical structures of macaque brain networks by using partial information of pairwise hierarchical relationships. Our method uses a graph-based manifold learning to exploit inherent relationship, and computes pseudo distances of hierarchical levels for every pair of cortical areas. Then, we compute hierarchy levels of all cortical areas by minimizing the sum of squared hierarchical distance errors with the hierarchical information of few cortical areas. We evaluate our method on the macaque brain data sets whose true hierarchical levels are known as the FV91 model. The experimental results show that hierarchy levels computed by our method are similar to the FV91 model, and its errors are much smaller than the errors of hierarchical clustering approaches.
Hierarchical Rhetorical Sentence Categorization for Scientific Papers
Rachman, G. H.; Khodra, M. L.; Widyantoro, D. H.
2018-03-01
Important information in scientific papers can be composed of rhetorical sentences that is structured from certain categories. To get this information, text categorization should be conducted. Actually, some works in this task have been completed by employing word frequency, semantic similarity words, hierarchical classification, and the others. Therefore, this paper aims to present the rhetorical sentence categorization from scientific paper by employing TF-IDF and Word2Vec to capture word frequency and semantic similarity words and employing hierarchical classification. Every experiment is tested in two classifiers, namely Naïve Bayes and SVM Linear. This paper shows that hierarchical classifier is better than flat classifier employing either TF-IDF or Word2Vec, although it increases only almost 2% from 27.82% when using flat classifier until 29.61% when using hierarchical classifier. It shows also different learning model for child-category can be built by hierarchical classifier.
Hierarchical decision making for flood risk reduction
DEFF Research Database (Denmark)
Custer, Rocco; Nishijima, Kazuyoshi
2013-01-01
. In current practice, structures are often optimized individually without considering benefits of having a hierarchy of protection structures. It is here argued, that the joint consideration of hierarchically integrated protection structures is beneficial. A hierarchical decision model is utilized to analyze...... and compare the benefit of large upstream protection structures and local downstream protection structures in regard to epistemic uncertainty parameters. Results suggest that epistemic uncertainty influences the outcome of the decision model and that, depending on the magnitude of epistemic uncertainty...
Energy Technology Data Exchange (ETDEWEB)
Erbacher, Robert; Frincke, Deb
2007-07-02
Coordinated views have proven critical to the development of effective visualization environments. This results from the fact that a single view or representation of the data cannot show all of the intricacies of a given data set. Additionally, users will often need to correlate more data parameters than can effectively be integrated into a single visual display. Typically, development of multiple-linked views results in an adhoc configuration of views and associated interactions. The hierarchical model we are proposing is geared towards more effective organization of such environments and the views they encompass. At the same time, this model can effectively integrate much of the prior work on interactive and visual frameworks. Additionally, we expand the concept of views to incorporate perceptual views. This is related to the fact that visual displays can have information encoded at various levels of focus. Thus, a global view of the display provides overall trends of the data while focusing in on individual elements provides detailed specifics. By integrating interaction and perception into a single model, we show how one impacts the other. Typically, interaction and perception are considered separately, however, when interaction is being considered at a fundamental level and allowed to direct/modify the visualization directly we must consider them simultaneously and how they impact one another.
Javad Azarhoosh, Mohammad; Halladj, Rouein; Askari, Sima
2017-10-01
In this study, a new kinetic model for methanol to light olefins (MTO) reactions over a hierarchical SAPO-34 catalyst using the Langmuir-Hinshelwood-Hougen-Watson (LHHW) mechanism was presented and the kinetic parameters was obtained using a genetic algorithm (GA) and genetic programming (GP). Several kinetic models for the MTO reactions have been presented. However, due to the complexity of the reactions, most reactions are considered lumped and elementary, which cannot be deemed a completely accurate kinetic model of the process. Therefore, in this study, the LHHW mechanism is presented as kinetic models of MTO reactions. Because of the non-linearity of the kinetic models and existence of many local optimal points, evolutionary algorithms (GA and GP) are used in this study to estimate the kinetic parameters in the rate equations. Via the simultaneous connection of the code related to modelling the reactor and the GA and GP codes in the MATLAB R2013a software, optimization of the kinetic models parameters was performed such that the least difference between the results from the kinetic models and experiential results was obtained and the best kinetic parameters of MTO process reactions were achieved. A comparison of the results from the model with experiential results showed that the present model possesses good accuracy.
Krappe, Sebastian; Wittenberg, Thomas; Haferlach, Torsten; Münzenmayer, Christian
2016-03-01
The morphological differentiation of bone marrow is fundamental for the diagnosis of leukemia. Currently, the counting and classification of the different types of bone marrow cells is done manually under the use of bright field microscopy. This is a time-consuming, subjective, tedious and error-prone process. Furthermore, repeated examinations of a slide may yield intra- and inter-observer variances. For that reason a computer assisted diagnosis system for bone marrow differentiation is pursued. In this work we focus (a) on a new method for the separation of nucleus and plasma parts and (b) on a knowledge-based hierarchical tree classifier for the differentiation of bone marrow cells in 16 different classes. Classification trees are easily interpretable and understandable and provide a classification together with an explanation. Using classification trees, expert knowledge (i.e. knowledge about similar classes and cell lines in the tree model of hematopoiesis) is integrated in the structure of the tree. The proposed segmentation method is evaluated with more than 10,000 manually segmented cells. For the evaluation of the proposed hierarchical classifier more than 140,000 automatically segmented bone marrow cells are used. Future automated solutions for the morphological analysis of bone marrow smears could potentially apply such an approach for the pre-classification of bone marrow cells and thereby shortening the examination time.
Directory of Open Access Journals (Sweden)
Maria Åström
2012-06-01
Full Text Available The possible effects of different organisations of the science curriculum in schools participating in PISA 2003 are tested with a hierarchical linear model (HLM of two levels. The analysis is based on science results. Swedish schools are free to choose how they organise the science curriculum. They may choose to work subject-specifically (with Biology, Chemistry and Physics, integrated (with Science or to mix these two. In this study, all three ways of organising science classes in compulsory school are present to some degree. None of the different ways of organising science education displayed statistically significant better student results in scientific literacy as measured in PISA 2003. The HLM model used variables of gender, country of birth, home language, preschool attendance, an economic, social and cultural index as well as the teaching organisation.
African Journals Online (AJOL)
mike
the experience of assessing quality in a culinary restaurant setting. .... approaches: 'technical quality/outcome', what the customer ..... of the 'relationship' between price/quality. .... entrepreneurs do not focus enough on the marketing mix and.
African Journals Online (AJOL)
mike
Research in Hospitality Management 2011, 1(1): 43–52 ... Innovating concepts are becoming ever ... hospitality industry the concept of employer branding as ... Keywords: employer branding, hospitality industry, human resources management, strategy ..... is not much evidence on employer branding beyond cases.
African Journals Online (AJOL)
mike
Research in Hospitality Management 2011, 1(1): 31–35. Printed in South ... perspective of tourism, this research examines the branding strategies of Qatar. To the Qatari, the ... and attempt to present the case of this country through broad description ... In this paper, the dreamland concept forms a framework for reflecting on ...
African Journals Online (AJOL)
mike
Research in Hospitality Management 2012, 1(2): 53–63 ... Strategies used to incorporate source materials also remained largely unchanged, with learners ..... score (as is the case in IELTS). ...... Introduction: situating the concept of practice.
African Journals Online (AJOL)
mike
urban land space and decreasing availability of clean water,. Shanghai's urban .... Typically, passive solar building designs incorporate materials with high thermal ..... the cargo hold or shipping container, the hotel maintains the natural beauty.
African Journals Online (AJOL)
mike
(2003) has researched differences in strategic decision making at central ... focused, including a deductive reasoning and an emphasis on the current ... One of the explanations .... based survey (to be found in the appendix), consisting of 20.
African Journals Online (AJOL)
mike
Food. Concern for the planet and intergenerational solidarity was less important for most respondents. ... will be responsive to arguments in favour of the Earth's natural environment. ... Since 2001, China's economy has grown noticeably fast.
African Journals Online (AJOL)
mike
e-mail: radumi1971@yahoo.com. Tourism is ... in this study. A second objective was to identify constraints on the project or market failures which would prevent the implementation .... of their attractiveness to tourists from countries such as.
African Journals Online (AJOL)
mike
For some time, hospitality has been synonymous with the hotel industry and, ... tion and price reduction strategies, where only large players may be able to survive. ... to provide a clean and safe environment for budget-conscious travellers.
African Journals Online (AJOL)
mike
An analysis of the development of home exchange organisations ... Keywords: home exchange kernels, hospitality networks, tourism intermediation ..... For the home exchange market, this is clearly the case since ... France. Candidates in more popular regions (e.g. Florence) receive many requests (sometimes five a day) ...
African Journals Online (AJOL)
mike
influences of acids, salts, minerals, metals, and irritants. Mouthfeel is ... Coating mouthfeel. Creamy, fatty substances and those containing a significant ... A dry slice of toast. (contracting) will neutralise a slice of smoked salmon (coating).
African Journals Online (AJOL)
mike
Do social media display correct conventional hotel ratings? Wouter Hensens*1, Miemie .... tourists are satisfied and delighted to spread positive word of mouth about the destination (World Tourism Organisation,. 2004). Such claims go hand in ...
Catalysis with hierarchical zeolites
DEFF Research Database (Denmark)
Holm, Martin Spangsberg; Taarning, Esben; Egeblad, Kresten
2011-01-01
Hierarchical (or mesoporous) zeolites have attracted significant attention during the first decade of the 21st century, and so far this interest continues to increase. There have already been several reviews giving detailed accounts of the developments emphasizing different aspects of this research...... topic. Until now, the main reason for developing hierarchical zeolites has been to achieve heterogeneous catalysts with improved performance but this particular facet has not yet been reviewed in detail. Thus, the present paper summaries and categorizes the catalytic studies utilizing hierarchical...... zeolites that have been reported hitherto. Prototypical examples from some of the different categories of catalytic reactions that have been studied using hierarchical zeolite catalysts are highlighted. This clearly illustrates the different ways that improved performance can be achieved with this family...
DEFF Research Database (Denmark)
Thomadsen, Tommy
2005-01-01
Communication networks are immensely important today, since both companies and individuals use numerous services that rely on them. This thesis considers the design of hierarchical (communication) networks. Hierarchical networks consist of layers of networks and are well-suited for coping...... with changing and increasing demands. Two-layer networks consist of one backbone network, which interconnects cluster networks. The clusters consist of nodes and links, which connect the nodes. One node in each cluster is a hub node, and the backbone interconnects the hub nodes of each cluster and thus...... the clusters. The design of hierarchical networks involves clustering of nodes, hub selection, and network design, i.e. selection of links and routing of ows. Hierarchical networks have been in use for decades, but integrated design of these networks has only been considered for very special types of networks...
Programming with Hierarchical Maps
DEFF Research Database (Denmark)
Ørbæk, Peter
This report desribes the hierarchical maps used as a central data structure in the Corundum framework. We describe its most prominent features, ague for its usefulness and briefly describe some of the software prototypes implemented using the technology....
Introduction into Hierarchical Matrices
Litvinenko, Alexander
2013-12-05
Hierarchical matrices allow us to reduce computational storage and cost from cubic to almost linear. This technique can be applied for solving PDEs, integral equations, matrix equations and approximation of large covariance and precision matrices.
Introduction into Hierarchical Matrices
Litvinenko, Alexander
2013-01-01
Hierarchical matrices allow us to reduce computational storage and cost from cubic to almost linear. This technique can be applied for solving PDEs, integral equations, matrix equations and approximation of large covariance and precision matrices.
Tøndel, Kristin; Indahl, Ulf G; Gjuvsland, Arne B; Vik, Jon Olav; Hunter, Peter; Omholt, Stig W; Martens, Harald
2011-06-01
Deterministic dynamic models of complex biological systems contain a large number of parameters and state variables, related through nonlinear differential equations with various types of feedback. A metamodel of such a dynamic model is a statistical approximation model that maps variation in parameters and initial conditions (inputs) to variation in features of the trajectories of the state variables (outputs) throughout the entire biologically relevant input space. A sufficiently accurate mapping can be exploited both instrumentally and epistemically. Multivariate regression methodology is a commonly used approach for emulating dynamic models. However, when the input-output relations are highly nonlinear or non-monotone, a standard linear regression approach is prone to give suboptimal results. We therefore hypothesised that a more accurate mapping can be obtained by locally linear or locally polynomial regression. We present here a new method for local regression modelling, Hierarchical Cluster-based PLS regression (HC-PLSR), where fuzzy C-means clustering is used to separate the data set into parts according to the structure of the response surface. We compare the metamodelling performance of HC-PLSR with polynomial partial least squares regression (PLSR) and ordinary least squares (OLS) regression on various systems: six different gene regulatory network models with various types of feedback, a deterministic mathematical model of the mammalian circadian clock and a model of the mouse ventricular myocyte function. Our results indicate that multivariate regression is well suited for emulating dynamic models in systems biology. The hierarchical approach turned out to be superior to both polynomial PLSR and OLS regression in all three test cases. The advantage, in terms of explained variance and prediction accuracy, was largest in systems with highly nonlinear functional relationships and in systems with positive feedback loops. HC-PLSR is a promising approach for
Directory of Open Access Journals (Sweden)
Omholt Stig W
2011-06-01
Full Text Available Abstract Background Deterministic dynamic models of complex biological systems contain a large number of parameters and state variables, related through nonlinear differential equations with various types of feedback. A metamodel of such a dynamic model is a statistical approximation model that maps variation in parameters and initial conditions (inputs to variation in features of the trajectories of the state variables (outputs throughout the entire biologically relevant input space. A sufficiently accurate mapping can be exploited both instrumentally and epistemically. Multivariate regression methodology is a commonly used approach for emulating dynamic models. However, when the input-output relations are highly nonlinear or non-monotone, a standard linear regression approach is prone to give suboptimal results. We therefore hypothesised that a more accurate mapping can be obtained by locally linear or locally polynomial regression. We present here a new method for local regression modelling, Hierarchical Cluster-based PLS regression (HC-PLSR, where fuzzy C-means clustering is used to separate the data set into parts according to the structure of the response surface. We compare the metamodelling performance of HC-PLSR with polynomial partial least squares regression (PLSR and ordinary least squares (OLS regression on various systems: six different gene regulatory network models with various types of feedback, a deterministic mathematical model of the mammalian circadian clock and a model of the mouse ventricular myocyte function. Results Our results indicate that multivariate regression is well suited for emulating dynamic models in systems biology. The hierarchical approach turned out to be superior to both polynomial PLSR and OLS regression in all three test cases. The advantage, in terms of explained variance and prediction accuracy, was largest in systems with highly nonlinear functional relationships and in systems with positive feedback