WorldWideScience

Sample records for hierarchical logistic modeling

  1. An optimal hierarchical decision model for a regional logistics network with environmental impact consideration.

    Science.gov (United States)

    Zhang, Dezhi; Li, Shuangyan; Qin, Jin

    2014-01-01

    This paper proposes a new model of simultaneous optimization of three-level logistics decisions, for logistics authorities, logistics operators, and logistics users, for regional logistics network with environmental impact consideration. The proposed model addresses the interaction among the three logistics players in a complete competitive logistics service market with CO2 emission charges. We also explicitly incorporate the impacts of the scale economics of the logistics park and the logistics users' demand elasticity into the model. The logistics authorities aim to maximize the total social welfare of the system, considering the demand of green logistics development by two different methods: optimal location of logistics nodes and charging a CO2 emission tax. Logistics operators are assumed to compete with logistics service fare and frequency, while logistics users minimize their own perceived logistics disutility given logistics operators' service fare and frequency. A heuristic algorithm based on the multinomial logit model is presented for the three-level decision model, and a numerical example is given to illustrate the above optimal model and its algorithm. The proposed model provides a useful tool for modeling competitive logistics services and evaluating logistics policies at the strategic level.

  2. An Optimal Hierarchical Decision Model for a Regional Logistics Network with Environmental Impact Consideration

    Directory of Open Access Journals (Sweden)

    Dezhi Zhang

    2014-01-01

    Full Text Available This paper proposes a new model of simultaneous optimization of three-level logistics decisions, for logistics authorities, logistics operators, and logistics users, for regional logistics network with environmental impact consideration. The proposed model addresses the interaction among the three logistics players in a complete competitive logistics service market with CO2 emission charges. We also explicitly incorporate the impacts of the scale economics of the logistics park and the logistics users’ demand elasticity into the model. The logistics authorities aim to maximize the total social welfare of the system, considering the demand of green logistics development by two different methods: optimal location of logistics nodes and charging a CO2 emission tax. Logistics operators are assumed to compete with logistics service fare and frequency, while logistics users minimize their own perceived logistics disutility given logistics operators’ service fare and frequency. A heuristic algorithm based on the multinomial logit model is presented for the three-level decision model, and a numerical example is given to illustrate the above optimal model and its algorithm. The proposed model provides a useful tool for modeling competitive logistics services and evaluating logistics policies at the strategic level.

  3. An Optimal Hierarchical Decision Model for a Regional Logistics Network with Environmental Impact Consideration

    Science.gov (United States)

    Zhang, Dezhi; Li, Shuangyan

    2014-01-01

    This paper proposes a new model of simultaneous optimization of three-level logistics decisions, for logistics authorities, logistics operators, and logistics users, for regional logistics network with environmental impact consideration. The proposed model addresses the interaction among the three logistics players in a complete competitive logistics service market with CO2 emission charges. We also explicitly incorporate the impacts of the scale economics of the logistics park and the logistics users' demand elasticity into the model. The logistics authorities aim to maximize the total social welfare of the system, considering the demand of green logistics development by two different methods: optimal location of logistics nodes and charging a CO2 emission tax. Logistics operators are assumed to compete with logistics service fare and frequency, while logistics users minimize their own perceived logistics disutility given logistics operators' service fare and frequency. A heuristic algorithm based on the multinomial logit model is presented for the three-level decision model, and a numerical example is given to illustrate the above optimal model and its algorithm. The proposed model provides a useful tool for modeling competitive logistics services and evaluating logistics policies at the strategic level. PMID:24977209

  4. A Logistic Regression Model with a Hierarchical Random Error Term for Analyzing the Utilization of Public Transport

    Directory of Open Access Journals (Sweden)

    Chong Wei

    2015-01-01

    Full Text Available Logistic regression models have been widely used in previous studies to analyze public transport utilization. These studies have shown travel time to be an indispensable variable for such analysis and usually consider it to be a deterministic variable. This formulation does not allow us to capture travelers’ perception error regarding travel time, and recent studies have indicated that this error can have a significant effect on modal choice behavior. In this study, we propose a logistic regression model with a hierarchical random error term. The proposed model adds a new random error term for the travel time variable. This term structure enables us to investigate travelers’ perception error regarding travel time from a given choice behavior dataset. We also propose an extended model that allows constraining the sign of this error in the model. We develop two Gibbs samplers to estimate the basic hierarchical model and the extended model. The performance of the proposed models is examined using a well-known dataset.

  5. Logistic chain modelling

    NARCIS (Netherlands)

    Slats, P.A.; Bhola, B.; Evers, J.J.M.; Dijkhuizen, G.

    1995-01-01

    Logistic chain modelling is very important in improving the overall performance of the total logistic chain. Logistic models provide support for a large range of applications, such as analysing bottlenecks, improving customer service, configuring new logistic chains and adapting existing chains to

  6. Chimera states in networks of logistic maps with hierarchical connectivities

    Science.gov (United States)

    zur Bonsen, Alexander; Omelchenko, Iryna; Zakharova, Anna; Schöll, Eckehard

    2018-04-01

    Chimera states are complex spatiotemporal patterns consisting of coexisting domains of coherence and incoherence. We study networks of nonlocally coupled logistic maps and analyze systematically how the dilution of the network links influences the appearance of chimera patterns. The network connectivities are constructed using an iterative Cantor algorithm to generate fractal (hierarchical) connectivities. Increasing the hierarchical level of iteration, we compare the resulting spatiotemporal patterns. We demonstrate that a high clustering coefficient and symmetry of the base pattern promotes chimera states, and asymmetric connectivities result in complex nested chimera patterns.

  7. Analyzing thresholds and efficiency with hierarchical Bayesian logistic regression.

    Science.gov (United States)

    Houpt, Joseph W; Bittner, Jennifer L

    2018-05-10

    Ideal observer analysis is a fundamental tool used widely in vision science for analyzing the efficiency with which a cognitive or perceptual system uses available information. The performance of an ideal observer provides a formal measure of the amount of information in a given experiment. The ratio of human to ideal performance is then used to compute efficiency, a construct that can be directly compared across experimental conditions while controlling for the differences due to the stimuli and/or task specific demands. In previous research using ideal observer analysis, the effects of varying experimental conditions on efficiency have been tested using ANOVAs and pairwise comparisons. In this work, we present a model that combines Bayesian estimates of psychometric functions with hierarchical logistic regression for inference about both unadjusted human performance metrics and efficiencies. Our approach improves upon the existing methods by constraining the statistical analysis using a standard model connecting stimulus intensity to human observer accuracy and by accounting for variability in the estimates of human and ideal observer performance scores. This allows for both individual and group level inferences. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Hierarchical species distribution models

    Science.gov (United States)

    Hefley, Trevor J.; Hooten, Mevin B.

    2016-01-01

    Determining the distribution pattern of a species is important to increase scientific knowledge, inform management decisions, and conserve biodiversity. To infer spatial and temporal patterns, species distribution models have been developed for use with many sampling designs and types of data. Recently, it has been shown that count, presence-absence, and presence-only data can be conceptualized as arising from a point process distribution. Therefore, it is important to understand properties of the point process distribution. We examine how the hierarchical species distribution modeling framework has been used to incorporate a wide array of regression and theory-based components while accounting for the data collection process and making use of auxiliary information. The hierarchical modeling framework allows us to demonstrate how several commonly used species distribution models can be derived from the point process distribution, highlight areas of potential overlap between different models, and suggest areas where further research is needed.

  9. Bayesian nonparametric hierarchical modeling.

    Science.gov (United States)

    Dunson, David B

    2009-04-01

    In biomedical research, hierarchical models are very widely used to accommodate dependence in multivariate and longitudinal data and for borrowing of information across data from different sources. A primary concern in hierarchical modeling is sensitivity to parametric assumptions, such as linearity and normality of the random effects. Parametric assumptions on latent variable distributions can be challenging to check and are typically unwarranted, given available prior knowledge. This article reviews some recent developments in Bayesian nonparametric methods motivated by complex, multivariate and functional data collected in biomedical studies. The author provides a brief review of flexible parametric approaches relying on finite mixtures and latent class modeling. Dirichlet process mixture models are motivated by the need to generalize these approaches to avoid assuming a fixed finite number of classes. Focusing on an epidemiology application, the author illustrates the practical utility and potential of nonparametric Bayes methods.

  10. Logistic regression models

    CERN Document Server

    Hilbe, Joseph M

    2009-01-01

    This book really does cover everything you ever wanted to know about logistic regression … with updates available on the author's website. Hilbe, a former national athletics champion, philosopher, and expert in astronomy, is a master at explaining statistical concepts and methods. Readers familiar with his other expository work will know what to expect-great clarity.The book provides considerable detail about all facets of logistic regression. No step of an argument is omitted so that the book will meet the needs of the reader who likes to see everything spelt out, while a person familiar with some of the topics has the option to skip "obvious" sections. The material has been thoroughly road-tested through classroom and web-based teaching. … The focus is on helping the reader to learn and understand logistic regression. The audience is not just students meeting the topic for the first time, but also experienced users. I believe the book really does meet the author's goal … .-Annette J. Dobson, Biometric...

  11. A hierarchic sustainability dashboard to evaluate logistics pooling

    OpenAIRE

    Morana, Joëlle; Gonzalez-Feliu, Jesus

    2014-01-01

    Logistics pooling is now a major challenge in supply chain management, though it remains a little known activity in which the different actors involved use different approaches whose objectives are not always the same and with sometimes conflicting standpoints. This purpose of this article is to define, on the basis of a detailed analysis of the literature, a grid for interpreting and a dashboard for evaluating the sustainable performance of pooled delivery systems. Firstly, an analysis of th...

  12. Hierarchical Bass model

    International Nuclear Information System (INIS)

    Tashiro, Tohru

    2014-01-01

    We propose a new model about diffusion of a product which includes a memory of how many adopters or advertisements a non-adopter met, where (non-)adopters mean people (not) possessing the product. This effect is lacking in the Bass model. As an application, we utilize the model to fit the iPod sales data, and so the better agreement is obtained than the Bass model

  13. Hierarchical Bass model

    Science.gov (United States)

    Tashiro, Tohru

    2014-03-01

    We propose a new model about diffusion of a product which includes a memory of how many adopters or advertisements a non-adopter met, where (non-)adopters mean people (not) possessing the product. This effect is lacking in the Bass model. As an application, we utilize the model to fit the iPod sales data, and so the better agreement is obtained than the Bass model.

  14. Hierarchical Semantic Model of Geovideo

    Directory of Open Access Journals (Sweden)

    XIE Xiao

    2015-05-01

    Full Text Available The public security incidents were getting increasingly challenging with regard to their new features, including multi-scale mobility, multistage dynamic evolution, as well as spatiotemporal concurrency and uncertainty in the complex urban environment. However, the existing video models, which were used/designed for independent archive or local analysis of surveillance video, have seriously inhibited emergency response to the urgent requirements.Aiming at the explicit representation of change mechanism in video, the paper proposed a novel hierarchical geovideo semantic model using UML. This model was characterized by the hierarchical representation of both data structure and semantics based on the change-oriented three domains (feature domain, process domain and event domain instead of overall semantic description of video streaming; combining both geographical semantics and video content semantics, in support of global semantic association between multiple geovideo data. The public security incidents by video surveillance are inspected as an example to illustrate the validity of this model.

  15. What are hierarchical models and how do we analyze them?

    Science.gov (United States)

    Royle, Andy

    2016-01-01

    In this chapter we provide a basic definition of hierarchical models and introduce the two canonical hierarchical models in this book: site occupancy and N-mixture models. The former is a hierarchical extension of logistic regression and the latter is a hierarchical extension of Poisson regression. We introduce basic concepts of probability modeling and statistical inference including likelihood and Bayesian perspectives. We go through the mechanics of maximizing the likelihood and characterizing the posterior distribution by Markov chain Monte Carlo (MCMC) methods. We give a general perspective on topics such as model selection and assessment of model fit, although we demonstrate these topics in practice in later chapters (especially Chapters 5, 6, 7, and 10 Chapter 5 Chapter 6 Chapter 7 Chapter 10)

  16. Multicollinearity in hierarchical linear models.

    Science.gov (United States)

    Yu, Han; Jiang, Shanhe; Land, Kenneth C

    2015-09-01

    This study investigates an ill-posed problem (multicollinearity) in Hierarchical Linear Models from both the data and the model perspectives. We propose an intuitive, effective approach to diagnosing the presence of multicollinearity and its remedies in this class of models. A simulation study demonstrates the impacts of multicollinearity on coefficient estimates, associated standard errors, and variance components at various levels of multicollinearity for finite sample sizes typical in social science studies. We further investigate the role multicollinearity plays at each level for estimation of coefficient parameters in terms of shrinkage. Based on these analyses, we recommend a top-down method for assessing multicollinearity in HLMs that first examines the contextual predictors (Level-2 in a two-level model) and then the individual predictors (Level-1) and uses the results for data collection, research problem redefinition, model re-specification, variable selection and estimation of a final model. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Comparing the Discrete and Continuous Logistic Models

    Science.gov (United States)

    Gordon, Sheldon P.

    2008-01-01

    The solutions of the discrete logistic growth model based on a difference equation and the continuous logistic growth model based on a differential equation are compared and contrasted. The investigation is conducted using a dynamic interactive spreadsheet. (Contains 5 figures.)

  18. Hierarchical modeling of active materials

    International Nuclear Information System (INIS)

    Taya, Minoru

    2003-01-01

    Intelligent (or smart) materials are increasingly becoming key materials for use in actuators and sensors. If an intelligent material is used as a sensor, it can be embedded in a variety of structure functioning as a health monitoring system to make their life longer with high reliability. If an intelligent material is used as an active material in an actuator, it plays a key role of making dynamic movement of the actuator under a set of stimuli. This talk intends to cover two different active materials in actuators, (1) piezoelectric laminate with FGM microstructure, (2) ferromagnetic shape memory alloy (FSMA). The advantage of using the FGM piezo laminate is to enhance its fatigue life while maintaining large bending displacement, while that of use in FSMA is its fast actuation while providing a large force and stroke capability. Use of hierarchical modeling of the above active materials is a key design step in optimizing its microstructure for enhancement of their performance. I will discuss briefly hierarchical modeling of the above two active materials. For FGM piezo laminate, we will use both micromechanical model and laminate theory, while for FSMA, the modeling interfacing nano-structure, microstructure and macro-behavior is discussed. (author)

  19. Quantitative Models for Reverse Logistics

    NARCIS (Netherlands)

    M. Fleischmann (Moritz)

    2000-01-01

    markdownabstractEconomic, marketing, and legislative considerations are increasingly leading companies to take back and recover their products after use. From a logistics perspective, these initiatives give rise to new goods flows from the user back to the producer. The management of these goods

  20. Classification using Hierarchical Naive Bayes models

    DEFF Research Database (Denmark)

    Langseth, Helge; Dyhre Nielsen, Thomas

    2006-01-01

    Classification problems have a long history in the machine learning literature. One of the simplest, and yet most consistently well-performing set of classifiers is the Naïve Bayes models. However, an inherent problem with these classifiers is the assumption that all attributes used to describe......, termed Hierarchical Naïve Bayes models. Hierarchical Naïve Bayes models extend the modeling flexibility of Naïve Bayes models by introducing latent variables to relax some of the independence statements in these models. We propose a simple algorithm for learning Hierarchical Naïve Bayes models...

  1. Hierarchical modeling and analysis for spatial data

    CERN Document Server

    Banerjee, Sudipto; Gelfand, Alan E

    2003-01-01

    Among the many uses of hierarchical modeling, their application to the statistical analysis of spatial and spatio-temporal data from areas such as epidemiology And environmental science has proven particularly fruitful. Yet to date, the few books that address the subject have been either too narrowly focused on specific aspects of spatial analysis, or written at a level often inaccessible to those lacking a strong background in mathematical statistics.Hierarchical Modeling and Analysis for Spatial Data is the first accessible, self-contained treatment of hierarchical methods, modeling, and dat

  2. Logistics and Transport - a conceptual model

    DEFF Research Database (Denmark)

    Jespersen, Per Homann; Drewes, Lise

    2004-01-01

    This paper describes how the freight transport sector is influenced by logistical principles of production and distribution. It introduces new ways of understanding freight transport as an integrated part of the changing trends of mobility. By introducing a conceptual model for understanding...... the interaction between logistics and transport, it points at ways to over-come inherent methodological difficulties when studying this relation...

  3. Moment Closure for the Stochastic Logistic Model

    National Research Council Canada - National Science Library

    Singh, Abhyudai; Hespanha, Joao P

    2006-01-01

    ..., which we refer to as the moment closure function. In this paper, a systematic procedure for constructing moment closure functions of arbitrary order is presented for the stochastic logistic model...

  4. Cost Calculation Model for Logistics Service Providers

    Directory of Open Access Journals (Sweden)

    Zoltán Bokor

    2012-11-01

    Full Text Available The exact calculation of logistics costs has become a real challenge in logistics and supply chain management. It is essential to gain reliable and accurate costing information to attain efficient resource allocation within the logistics service provider companies. Traditional costing approaches, however, may not be sufficient to reach this aim in case of complex and heterogeneous logistics service structures. So this paper intends to explore the ways of improving the cost calculation regimes of logistics service providers and show how to adopt the multi-level full cost allocation technique in logistics practice. After determining the methodological framework, a sample cost calculation scheme is developed and tested by using estimated input data. Based on the theoretical findings and the experiences of the pilot project it can be concluded that the improved costing model contributes to making logistics costing more accurate and transparent. Moreover, the relations between costs and performances also become more visible, which enhances the effectiveness of logistics planning and controlling significantly

  5. Linear Logistic Test Modeling with R

    Science.gov (United States)

    Baghaei, Purya; Kubinger, Klaus D.

    2015-01-01

    The present paper gives a general introduction to the linear logistic test model (Fischer, 1973), an extension of the Rasch model with linear constraints on item parameters, along with eRm (an R package to estimate different types of Rasch models; Mair, Hatzinger, & Mair, 2014) functions to estimate the model and interpret its parameters. The…

  6. Analysis hierarchical model for discrete event systems

    Science.gov (United States)

    Ciortea, E. M.

    2015-11-01

    The This paper presents the hierarchical model based on discrete event network for robotic systems. Based on the hierarchical approach, Petri network is analysed as a network of the highest conceptual level and the lowest level of local control. For modelling and control of complex robotic systems using extended Petri nets. Such a system is structured, controlled and analysed in this paper by using Visual Object Net ++ package that is relatively simple and easy to use, and the results are shown as representations easy to interpret. The hierarchical structure of the robotic system is implemented on computers analysed using specialized programs. Implementation of hierarchical model discrete event systems, as a real-time operating system on a computer network connected via a serial bus is possible, where each computer is dedicated to local and Petri model of a subsystem global robotic system. Since Petri models are simplified to apply general computers, analysis, modelling, complex manufacturing systems control can be achieved using Petri nets. Discrete event systems is a pragmatic tool for modelling industrial systems. For system modelling using Petri nets because we have our system where discrete event. To highlight the auxiliary time Petri model using transport stream divided into hierarchical levels and sections are analysed successively. Proposed robotic system simulation using timed Petri, offers the opportunity to view the robotic time. Application of goods or robotic and transmission times obtained by measuring spot is obtained graphics showing the average time for transport activity, using the parameters sets of finished products. individually.

  7. Learning with hierarchical-deep models.

    Science.gov (United States)

    Salakhutdinov, Ruslan; Tenenbaum, Joshua B; Torralba, Antonio

    2013-08-01

    We introduce HD (or “Hierarchical-Deep”) models, a new compositional learning architecture that integrates deep learning models with structured hierarchical Bayesian (HB) models. Specifically, we show how we can learn a hierarchical Dirichlet process (HDP) prior over the activities of the top-level features in a deep Boltzmann machine (DBM). This compound HDP-DBM model learns to learn novel concepts from very few training example by learning low-level generic features, high-level features that capture correlations among low-level features, and a category hierarchy for sharing priors over the high-level features that are typical of different kinds of concepts. We present efficient learning and inference algorithms for the HDP-DBM model and show that it is able to learn new concepts from very few examples on CIFAR-100 object recognition, handwritten character recognition, and human motion capture datasets.

  8. A hierarchical model for ordinal matrix factorization

    DEFF Research Database (Denmark)

    Paquet, Ulrich; Thomson, Blaise; Winther, Ole

    2012-01-01

    This paper proposes a hierarchical probabilistic model for ordinal matrix factorization. Unlike previous approaches, we model the ordinal nature of the data and take a principled approach to incorporating priors for the hidden variables. Two algorithms are presented for inference, one based...

  9. Logistics Chains in Freight Transport Modelling

    NARCIS (Netherlands)

    Davydenko, I.Y.

    2015-01-01

    The flow of trade is not equal to transport flows, mainly due to the fact that warehouses and distribution facilities are used as intermediary stops on the way from production locations to the points of consumption or further rework of goods. This thesis proposes a logistics chain model, which

  10. Parameter identification in the logistic STAR model

    DEFF Research Database (Denmark)

    Ekner, Line Elvstrøm; Nejstgaard, Emil

    We propose a new and simple parametrization of the so-called speed of transition parameter of the logistic smooth transition autoregressive (LSTAR) model. The new parametrization highlights that a consequence of the well-known identification problem of the speed of transition parameter is that th...

  11. Hierarchical Context Modeling for Video Event Recognition.

    Science.gov (United States)

    Wang, Xiaoyang; Ji, Qiang

    2016-10-11

    Current video event recognition research remains largely target-centered. For real-world surveillance videos, targetcentered event recognition faces great challenges due to large intra-class target variation, limited image resolution, and poor detection and tracking results. To mitigate these challenges, we introduced a context-augmented video event recognition approach. Specifically, we explicitly capture different types of contexts from three levels including image level, semantic level, and prior level. At the image level, we introduce two types of contextual features including the appearance context features and interaction context features to capture the appearance of context objects and their interactions with the target objects. At the semantic level, we propose a deep model based on deep Boltzmann machine to learn event object representations and their interactions. At the prior level, we utilize two types of prior-level contexts including scene priming and dynamic cueing. Finally, we introduce a hierarchical context model that systematically integrates the contextual information at different levels. Through the hierarchical context model, contexts at different levels jointly contribute to the event recognition. We evaluate the hierarchical context model for event recognition on benchmark surveillance video datasets. Results show that incorporating contexts in each level can improve event recognition performance, and jointly integrating three levels of contexts through our hierarchical model achieves the best performance.

  12. Planning model of purchasing logistics in outsourcing

    Directory of Open Access Journals (Sweden)

    Igor JAKOMIN

    2014-03-01

    Full Text Available It is often the case that when preparing their offers, potential outsourcers of logistic activities do not thoroughly research all the activities that have an influence on the process of logistics. Consequently, they prepare relatively expensive offers (that can later lead to greater unexpected costs which, in many cases, business partners decide against and persist with their own existing methods of doing business. The original contribution to science in this article is a model that will aid better understanding of dealing with problems and will, in practice, serve as a tool for the successful execution of business offers by outsourcers. Following research we have discovered, and are able to confirm, that despite the high start-up costs of the outsourcing, in the long term the company can reduce logistic costs. The model presented serves as an in-depth analysis of the company which enables the definition of favourable and optimal offers for outsourcing. The model shown helps to minimise the influence of mistrust and emphasises the importance of reducing the logistic costs with outsourcing.

  13. Hierarchical Bayesian Models of Subtask Learning

    Science.gov (United States)

    Anglim, Jeromy; Wynton, Sarah K. A.

    2015-01-01

    The current study used Bayesian hierarchical methods to challenge and extend previous work on subtask learning consistency. A general model of individual-level subtask learning was proposed focusing on power and exponential functions with constraints to test for inconsistency. To study subtask learning, we developed a novel computer-based booking…

  14. Hierarchical models in the brain.

    Directory of Open Access Journals (Sweden)

    Karl Friston

    2008-11-01

    Full Text Available This paper describes a general model that subsumes many parametric models for continuous data. The model comprises hidden layers of state-space or dynamic causal models, arranged so that the output of one provides input to another. The ensuing hierarchy furnishes a model for many types of data, of arbitrary complexity. Special cases range from the general linear model for static data to generalised convolution models, with system noise, for nonlinear time-series analysis. Crucially, all of these models can be inverted using exactly the same scheme, namely, dynamic expectation maximization. This means that a single model and optimisation scheme can be used to invert a wide range of models. We present the model and a brief review of its inversion to disclose the relationships among, apparently, diverse generative models of empirical data. We then show that this inversion can be formulated as a simple neural network and may provide a useful metaphor for inference and learning in the brain.

  15. Topic Modeling of Hierarchical Corpora /

    OpenAIRE

    Kim, Do-kyum

    2014-01-01

    The sizes of modern digital libraries have grown beyond our capacity to comprehend manually. Thus we need new tools to help us in organizing and browsing large corpora of text that do not require manually examining each document. To this end, machine learning researchers have developed topic models, statistical learning algorithms for automatic comprehension of large collections of text. Topic models provide both global and local views of a corpus; they discover topics that run through the co...

  16. AN INTEGER PROGRAMMING MODEL FOR HIERARCHICAL WORKFORCE

    Directory of Open Access Journals (Sweden)

    BANU SUNGUR

    2013-06-01

    Full Text Available The model presented in this paper is based on the model developed by Billionnet for the hierarchical workforce problem. In Billionnet’s Model, while determining the workers’ weekly costs, weekly working hours of workers are not taken into consideration. In our model, the weekly costs per worker are reduced in proportion to the working hours per week. Our model is illustrated on the Billionnet’s Example. The models in question are compared and evaluated on the basis of the results obtained from the example problem. A reduction is achieved in the total cost by the proposed model.

  17. Cloud Shade by Dynamic Logistic Modeling

    Czech Academy of Sciences Publication Activity Database

    Brabec, Marek; Badescu, V.; Paulescu, M.

    2014-01-01

    Roč. 41, č. 6 (2014), s. 1174-1188 ISSN 0266-4763 R&D Projects: GA MŠk LD12009 Grant - others:European Cooperation in Science and Technology(XE) COST ES1002 Institutional support: RVO:67985807 Keywords : clouds * random process * sunshine number * Markovian logistic regression model Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.417, year: 2014

  18. Nowcasting sunshine number using logistic modeling

    Czech Academy of Sciences Publication Activity Database

    Brabec, Marek; Badescu, V.; Paulescu, M.

    2013-01-01

    Roč. 120, č. 1-2 (2013), s. 61-71 ISSN 0177-7971 R&D Projects: GA MŠk LD12009 Grant - others:European Cooperation in Science and Technology(XE) COST ES1002 Institutional research plan: CEZ:AV0Z1030915 Keywords : logistic regression * Markov model * sunshine number Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.245, year: 2013

  19. Neo-logistic model for the growth of bacteria

    OpenAIRE

    Tashiro, Tohru; Yoshimura, Fujiko

    2017-01-01

    We propose a neo-logistic model that can describe bacterial growth data precisely. This model is not derived by modifying the logistic model formally, but by incorporating the synthesis of inducible enzymes into the logistic model indirectly. Therefore, the meaning of the parameters of the neo-logistic model becomes physically clear. The neo-logistic model can approximate bacterial growth better than models previously presented, and predict the order of the saturated number of bacteria in the...

  20. Logistic map with memory from economic model

    International Nuclear Information System (INIS)

    Tarasova, Valentina V.; Tarasov, Vasily E.

    2017-01-01

    A generalization of the economic model of logistic growth, which takes into account the effects of memory and crises, is suggested. Memory effect means that the economic factors and parameters at any given time depend not only on their values at that time, but also on their values at previous times. For the mathematical description of the memory effects, we use the theory of derivatives of non-integer order. Crises are considered as sharp splashes (bursts) of the price, which are mathematically described by the delta-functions. Using the equivalence of fractional differential equations and the Volterra integral equations, we obtain discrete maps with memory that are exact discrete analogs of fractional differential equations of economic processes. We derive logistic map with memory, its generalizations, and “economic” discrete maps with memory from the fractional differential equations, which describe the economic natural growth with competition, power-law memory and crises.

  1. A robust optimization model for green regional logistics network design with uncertainty in future logistics demand

    Directory of Open Access Journals (Sweden)

    Dezhi Zhang

    2015-12-01

    Full Text Available This article proposes a new model to address the design problem of a sustainable regional logistics network with uncertainty in future logistics demand. In the proposed model, the future logistics demand is assumed to be a random variable with a given probability distribution. A set of chance constraints with regard to logistics service capacity and environmental impacts is incorporated to consider the sustainability of logistics network design. The proposed model is formulated as a two-stage robust optimization problem. The first-stage problem before the realization of future logistics demand aims to minimize a risk-averse objective by determining the optimal location and size of logistics parks with CO2 emission taxes consideration. The second stage after the uncertain logistics demand has been determined is a scenario-based stochastic logistics service route choices equilibrium problem. A heuristic solution algorithm, which is a combination of penalty function method, genetic algorithm, and Gauss–Seidel decomposition approach, is developed to solve the proposed model. An illustrative example is given to show the application of the proposed model and solution algorithm. The findings show that total social welfare of the logistics system depends very much on the level of uncertainty in future logistics demand, capital budget for logistics parks, and confidence levels of the chance constraints.

  2. Internet advertising effectiveness by using hierarchical model

    OpenAIRE

    RAHMANI, Samaneh

    2015-01-01

    Abstract. Present paper has been developed with the title of internet advertising effectiveness by using hierarchical model. Presenting the question: Today Internet is an important channel in marketing and advertising. The reason for this could be the ability of the Internet to reduce costs and people’s access to online services[1]. Also advertisers can easily access a multitude of users and communicate with them at low cost [9]. On the other hand, compared to traditional advertising, interne...

  3. A Hierarchical Agency Model of Deposit Insurance

    OpenAIRE

    Jonathan Carroll; Shino Takayama

    2010-01-01

    This paper develops a hierarchical agency model of deposit insurance. The main purpose is to undertake a game theoretic analysis of the consequences of deposit insurance schemes and their effects on monitoring incentives for banks. Using this simple framework, we analyze both risk- independent and risk-dependent premium schemes along with reserve requirement constraints. The results provide policymakers with not only a better understanding of the effects of deposit insurance on welfare and th...

  4. A Theoretic Model of Transport Logistics Demand

    OpenAIRE

    Natalija Jolić; Nikolina Brnjac; Ivica Oreb

    2006-01-01

    Concerning transport logistics as relation between transportand integrated approaches to logistics, some transport and logisticsspecialists consider the tenn tautological. However,transport is one of the components of logistics, along with inventories,resources, warehousing, infonnation and goods handling.Transport logistics considers wider commercial and operationalframeworks within which the flow of goods is plannedand managed. The demand for transport logistics services canbe valorised as ...

  5. Visualization of logistic algorithm in Wilson model

    Science.gov (United States)

    Glushchenko, A. S.; Rodin, V. A.; Sinegubov, S. V.

    2018-05-01

    Economic order quantity (EOQ), defined by the Wilson's model, is widely used at different stages of production and distribution of different products. It is useful for making decisions in the management of inventories, providing a more efficient business operation and thus bringing more economic benefits. There is a large amount of reference material and extensive computer shells that help solving various logistics problems. However, the use of large computer environments is not always justified and requires special user training. A tense supply schedule in a logistics model is optimal, if, and only if, the planning horizon coincides with the beginning of the next possible delivery. For all other possible planning horizons, this plan is not optimal. It is significant that when the planning horizon changes, the plan changes immediately throughout the entire supply chain. In this paper, an algorithm and a program for visualizing models of the optimal value of supplies and their number, depending on the magnitude of the planned horizon, have been obtained. The program allows one to trace (visually and quickly) all main parameters of the optimal plan on the charts. The results of the paper represent a part of the authors’ research work in the field of optimization of protection and support services of ports in the Russian North.

  6. Hierarchic modeling of heat exchanger thermal hydraulics

    International Nuclear Information System (INIS)

    Horvat, A.; Koncar, B.

    2002-01-01

    Volume Averaging Technique (VAT) is employed in order to model the heat exchanger cross-flow as a porous media flow. As the averaging of the transport equations lead to a closure problem, separate relations are introduced to model interphase momentum and heat transfer between fluid flow and the solid structure. The hierarchic modeling is used to calculate the local drag coefficient C d as a function of Reynolds number Re h . For that purpose a separate model of REV is built and DNS of flow through REV is performed. The local values of heat transfer coefficient h are obtained from available literature. The geometry of the simulation domain and boundary conditions follow the geometry of the experimental test section used at U.C.L.A. The calculated temperature fields reveal that the geometry with denser pin-fins arrangement (HX1) heats fluid flow faster. The temperature field in the HX2 exhibits the formation of thermal boundary layer between pin-fins, which has a significant role in overall thermal performance of the heat exchanger. Although presented discrepancies of the whole-section drag coefficient C d are large, we believe that hierarchic modeling is an appropriate strategy for calculation of complex transport phenomena in heat exchanger geometries.(author)

  7. Logistic Regression Modeling of Diminishing Manufacturing Sources for Integrated Circuits

    National Research Council Canada - National Science Library

    Gravier, Michael

    1999-01-01

    .... The research identified logistic regression as a powerful tool for analysis of DMSMS and further developed twenty models attempting to identify the "best" way to model and predict DMSMS using logistic regression...

  8. Analysis of Jingdong Mall Logistics Distribution Model

    Science.gov (United States)

    Shao, Kang; Cheng, Feng

    In recent years, the development of electronic commerce in our country to speed up the pace. The role of logistics has been highlighted, more and more electronic commerce enterprise are beginning to realize the importance of logistics in the success or failure of the enterprise. In this paper, the author take Jingdong Mall for example, performing a SWOT analysis of their current situation of self-built logistics system, find out the problems existing in the current Jingdong Mall logistics distribution and give appropriate recommendations.

  9. Galactic chemical evolution in hierarchical formation models

    Science.gov (United States)

    Arrigoni, Matias

    2010-10-01

    The chemical properties and abundance ratios of galaxies provide important information about their formation histories. Galactic chemical evolution has been modelled in detail within the monolithic collapse scenario. These models have successfully described the abundance distributions in our Galaxy and other spiral discs, as well as the trends of metallicity and abundance ratios observed in early-type galaxies. In the last three decades, however, the paradigm of hierarchical assembly in a Cold Dark Matter (CDM) cosmology has revised the picture of how structure in the Universe forms and evolves. In this scenario, galaxies form when gas radiatively cools and condenses inside dark matter haloes, which themselves follow dissipationless gravitational collapse. The CDM picture has been successful at predicting many observed properties of galaxies (for example, the luminosity and stellar mass function of galaxies, color-magnitude or star formation rate vs. stellar mass distributions, relative numbers of early and late-type galaxies, gas fractions and size distributions of spiral galaxies, and the global star formation history), though many potential problems and open questions remain. It is therefore interesting to see whether chemical evolution models, when implemented within this modern cosmological context, are able to correctly predict the observed chemical properties of galaxies. With the advent of more powerfull telescopes and detectors, precise observations of chemical abundances and abundance ratios in various phases (stellar, ISM, ICM) offer the opportunity to obtain strong constraints on galaxy formation histories and the physics that shapes them. However, in order to take advantage of these observations, it is necessary to implement detailed modeling of chemical evolution into a modern cosmological model of hierarchical assembly.

  10. Assessing urban logistics pooling sustainability via a hierarchic dashboard from a group decision perspective

    OpenAIRE

    Gonzalez-Feliu, Jesus; Morana, Joëlle

    2014-01-01

    This paper aims to propose, via an experimental collaborative decision support method, to define a grid of indicators and a reference situation database to measure the sustainable performance of urban logistics pooling systems. To do this, we start by defining the notion of sustainability in the 4As approach, after what we identify the main sustainability indicators from an overview of the literature, and class them into four categories (one for each A of the approach). Then, a group of 20 ex...

  11. Entrepreneurial intention modeling using hierarchical multiple regression

    Directory of Open Access Journals (Sweden)

    Marina Jeger

    2014-12-01

    Full Text Available The goal of this study is to identify the contribution of effectuation dimensions to the predictive power of the entrepreneurial intention model over and above that which can be accounted for by other predictors selected and confirmed in previous studies. As is often the case in social and behavioral studies, some variables are likely to be highly correlated with each other. Therefore, the relative amount of variance in the criterion variable explained by each of the predictors depends on several factors such as the order of variable entry and sample specifics. The results show the modest predictive power of two dimensions of effectuation prior to the introduction of the theory of planned behavior elements. The article highlights the main advantages of applying hierarchical regression in social sciences as well as in the specific context of entrepreneurial intention formation, and addresses some of the potential pitfalls that this type of analysis entails.

  12. Reference model analysis of suitability for logistics management

    Directory of Open Access Journals (Sweden)

    Cezary Mańkowski

    2011-12-01

    Full Text Available Reference models are one of the many instruments aspiring to find into a set of different concepts, methods and techniques used in managing the logistics. Therefore, the aim of this paper is to present the results of assessing the suitability of reference models for solving logistical problems. This evaluation indicates that they are universal, support the realization of all the logistics management function in various areas, such as logistics of manufacturing glass products.

  13. Hierarchical Multinomial Processing Tree Models: A Latent-Trait Approach

    Science.gov (United States)

    Klauer, Karl Christoph

    2010-01-01

    Multinomial processing tree models are widely used in many areas of psychology. A hierarchical extension of the model class is proposed, using a multivariate normal distribution of person-level parameters with the mean and covariance matrix to be estimated from the data. The hierarchical model allows one to take variability between persons into…

  14. Model performance analysis and model validation in logistic regression

    Directory of Open Access Journals (Sweden)

    Rosa Arboretti Giancristofaro

    2007-10-01

    Full Text Available In this paper a new model validation procedure for a logistic regression model is presented. At first, we illustrate a brief review of different techniques of model validation. Next, we define a number of properties required for a model to be considered "good", and a number of quantitative performance measures. Lastly, we describe a methodology for the assessment of the performance of a given model by using an example taken from a management study.

  15. Logistics of Mathematical Modeling-Focused Projects

    Science.gov (United States)

    Harwood, R. Corban

    2018-01-01

    This article addresses the logistics of implementing projects in an undergraduate mathematics class and is intended both for new instructors and for instructors who have had negative experiences implementing projects in the past. Project implementation is given for both lower- and upper-division mathematics courses with an emphasis on mathematical…

  16. Bayesian Estimation of the Logistic Positive Exponent IRT Model

    Science.gov (United States)

    Bolfarine, Heleno; Bazan, Jorge Luis

    2010-01-01

    A Bayesian inference approach using Markov Chain Monte Carlo (MCMC) is developed for the logistic positive exponent (LPE) model proposed by Samejima and for a new skewed Logistic Item Response Theory (IRT) model, named Reflection LPE model. Both models lead to asymmetric item characteristic curves (ICC) and can be appropriate because a symmetric…

  17. A hierarchical stochastic model for bistable perception.

    Directory of Open Access Journals (Sweden)

    Stefan Albert

    2017-11-01

    Full Text Available Viewing of ambiguous stimuli can lead to bistable perception alternating between the possible percepts. During continuous presentation of ambiguous stimuli, percept changes occur as single events, whereas during intermittent presentation of ambiguous stimuli, percept changes occur at more or less regular intervals either as single events or bursts. Response patterns can be highly variable and have been reported to show systematic differences between patients with schizophrenia and healthy controls. Existing models of bistable perception often use detailed assumptions and large parameter sets which make parameter estimation challenging. Here we propose a parsimonious stochastic model that provides a link between empirical data analysis of the observed response patterns and detailed models of underlying neuronal processes. Firstly, we use a Hidden Markov Model (HMM for the times between percept changes, which assumes one single state in continuous presentation and a stable and an unstable state in intermittent presentation. The HMM captures the observed differences between patients with schizophrenia and healthy controls, but remains descriptive. Therefore, we secondly propose a hierarchical Brownian model (HBM, which produces similar response patterns but also provides a relation to potential underlying mechanisms. The main idea is that neuronal activity is described as an activity difference between two competing neuronal populations reflected in Brownian motions with drift. This differential activity generates switching between the two conflicting percepts and between stable and unstable states with similar mechanisms on different neuronal levels. With only a small number of parameters, the HBM can be fitted closely to a high variety of response patterns and captures group differences between healthy controls and patients with schizophrenia. At the same time, it provides a link to mechanistic models of bistable perception, linking the group

  18. A hierarchical stochastic model for bistable perception.

    Science.gov (United States)

    Albert, Stefan; Schmack, Katharina; Sterzer, Philipp; Schneider, Gaby

    2017-11-01

    Viewing of ambiguous stimuli can lead to bistable perception alternating between the possible percepts. During continuous presentation of ambiguous stimuli, percept changes occur as single events, whereas during intermittent presentation of ambiguous stimuli, percept changes occur at more or less regular intervals either as single events or bursts. Response patterns can be highly variable and have been reported to show systematic differences between patients with schizophrenia and healthy controls. Existing models of bistable perception often use detailed assumptions and large parameter sets which make parameter estimation challenging. Here we propose a parsimonious stochastic model that provides a link between empirical data analysis of the observed response patterns and detailed models of underlying neuronal processes. Firstly, we use a Hidden Markov Model (HMM) for the times between percept changes, which assumes one single state in continuous presentation and a stable and an unstable state in intermittent presentation. The HMM captures the observed differences between patients with schizophrenia and healthy controls, but remains descriptive. Therefore, we secondly propose a hierarchical Brownian model (HBM), which produces similar response patterns but also provides a relation to potential underlying mechanisms. The main idea is that neuronal activity is described as an activity difference between two competing neuronal populations reflected in Brownian motions with drift. This differential activity generates switching between the two conflicting percepts and between stable and unstable states with similar mechanisms on different neuronal levels. With only a small number of parameters, the HBM can be fitted closely to a high variety of response patterns and captures group differences between healthy controls and patients with schizophrenia. At the same time, it provides a link to mechanistic models of bistable perception, linking the group differences to

  19. Constructive Epistemic Modeling: A Hierarchical Bayesian Model Averaging Method

    Science.gov (United States)

    Tsai, F. T. C.; Elshall, A. S.

    2014-12-01

    Constructive epistemic modeling is the idea that our understanding of a natural system through a scientific model is a mental construct that continually develops through learning about and from the model. Using the hierarchical Bayesian model averaging (HBMA) method [1], this study shows that segregating different uncertain model components through a BMA tree of posterior model probabilities, model prediction, within-model variance, between-model variance and total model variance serves as a learning tool [2]. First, the BMA tree of posterior model probabilities permits the comparative evaluation of the candidate propositions of each uncertain model component. Second, systemic model dissection is imperative for understanding the individual contribution of each uncertain model component to the model prediction and variance. Third, the hierarchical representation of the between-model variance facilitates the prioritization of the contribution of each uncertain model component to the overall model uncertainty. We illustrate these concepts using the groundwater modeling of a siliciclastic aquifer-fault system. The sources of uncertainty considered are from geological architecture, formation dip, boundary conditions and model parameters. The study shows that the HBMA analysis helps in advancing knowledge about the model rather than forcing the model to fit a particularly understanding or merely averaging several candidate models. [1] Tsai, F. T.-C., and A. S. Elshall (2013), Hierarchical Bayesian model averaging for hydrostratigraphic modeling: Uncertainty segregation and comparative evaluation. Water Resources Research, 49, 5520-5536, doi:10.1002/wrcr.20428. [2] Elshall, A.S., and F. T.-C. Tsai (2014). Constructive epistemic modeling of groundwater flow with geological architecture and boundary condition uncertainty under Bayesian paradigm, Journal of Hydrology, 517, 105-119, doi: 10.1016/j.jhydrol.2014.05.027.

  20. A Mathematical Model to Improve the Performance of Logistics Network

    Directory of Open Access Journals (Sweden)

    Muhammad Izman Herdiansyah

    2012-01-01

    Full Text Available The role of logistics nowadays is expanding from just providing transportation and warehousing to offering total integrated logistics. To remain competitive in the global market environment, business enterprises need to improve their logistics operations performance. The improvement will be achieved when we can provide a comprehensive analysis and optimize its network performances. In this paper, a mixed integer linier model for optimizing logistics network performance is developed. It provides a single-product multi-period multi-facilities model, as well as the multi-product concept. The problem is modeled in form of a network flow problem with the main objective to minimize total logistics cost. The problem can be solved using commercial linear programming package like CPLEX or LINDO. Even in small case, the solver in Excel may also be used to solve such model.Keywords: logistics network, integrated model, mathematical programming, network optimization

  1. Bayesian hierarchical modelling of North Atlantic windiness

    Science.gov (United States)

    Vanem, E.; Breivik, O. N.

    2013-03-01

    Extreme weather conditions represent serious natural hazards to ship operations and may be the direct cause or contributing factor to maritime accidents. Such severe environmental conditions can be taken into account in ship design and operational windows can be defined that limits hazardous operations to less extreme conditions. Nevertheless, possible changes in the statistics of extreme weather conditions, possibly due to anthropogenic climate change, represent an additional hazard to ship operations that is less straightforward to account for in a consistent way. Obviously, there are large uncertainties as to how future climate change will affect the extreme weather conditions at sea and there is a need for stochastic models that can describe the variability in both space and time at various scales of the environmental conditions. Previously, Bayesian hierarchical space-time models have been developed to describe the variability and complex dependence structures of significant wave height in space and time. These models were found to perform reasonably well and provided some interesting results, in particular, pertaining to long-term trends in the wave climate. In this paper, a similar framework is applied to oceanic windiness and the spatial and temporal variability of the 10-m wind speed over an area in the North Atlantic ocean is investigated. When the results from the model for North Atlantic windiness is compared to the results for significant wave height over the same area, it is interesting to observe that whereas an increasing trend in significant wave height was identified, no statistically significant long-term trend was estimated in windiness. This may indicate that the increase in significant wave height is not due to an increase in locally generated wind waves, but rather to increased swell. This observation is also consistent with studies that have suggested a poleward shift of the main storm tracks.

  2. Bayesian hierarchical modelling of North Atlantic windiness

    Directory of Open Access Journals (Sweden)

    E. Vanem

    2013-03-01

    Full Text Available Extreme weather conditions represent serious natural hazards to ship operations and may be the direct cause or contributing factor to maritime accidents. Such severe environmental conditions can be taken into account in ship design and operational windows can be defined that limits hazardous operations to less extreme conditions. Nevertheless, possible changes in the statistics of extreme weather conditions, possibly due to anthropogenic climate change, represent an additional hazard to ship operations that is less straightforward to account for in a consistent way. Obviously, there are large uncertainties as to how future climate change will affect the extreme weather conditions at sea and there is a need for stochastic models that can describe the variability in both space and time at various scales of the environmental conditions. Previously, Bayesian hierarchical space-time models have been developed to describe the variability and complex dependence structures of significant wave height in space and time. These models were found to perform reasonably well and provided some interesting results, in particular, pertaining to long-term trends in the wave climate. In this paper, a similar framework is applied to oceanic windiness and the spatial and temporal variability of the 10-m wind speed over an area in the North Atlantic ocean is investigated. When the results from the model for North Atlantic windiness is compared to the results for significant wave height over the same area, it is interesting to observe that whereas an increasing trend in significant wave height was identified, no statistically significant long-term trend was estimated in windiness. This may indicate that the increase in significant wave height is not due to an increase in locally generated wind waves, but rather to increased swell. This observation is also consistent with studies that have suggested a poleward shift of the main storm tracks.

  3. UML Modeling for Dynamic Logistics System Based on DEVS

    OpenAIRE

    Zhang Zhiyong; Liu Jie; Zhang Xinhui

    2013-01-01

    DEVS is a hierarchical and modular system descriptive method. However, it cannot describe dynamic process and relationship of system members. This article has proposed a way to extend UML using stereotype, making it suitable for simulation modeling. To build a modeling tool, we defined atomic model class and coupled model class, both of which are in line with not only DEVS’s hierarchical and modular requirements but also UML’s object-oriented characteristics. At last, we use the tool to analy...

  4. City Logistics Modeling Efforts : Trends and Gaps - A Review

    NARCIS (Netherlands)

    Anand, N.R.; Quak, H.J.; Van Duin, J.H.R.; Tavasszy, L.A.

    2012-01-01

    In this paper, we present a review of city logistics modeling efforts reported in the literature for urban freight analysis. The review framework takes into account the diversity and complexity found in the present-day city logistics practice. Next, it covers the different aspects in the modeling

  5. The logistic model-generated carrying capacities, maximum ...

    African Journals Online (AJOL)

    This paper deals with the derivation of logistic models for cattle, sheep and goats in a commercial ranching system in Machakos District, Kenya, a savannah ecosystem with average annual rainfall of 589.3 ± 159.3mm and an area of 10 117ha. It involves modelling livestock population dynamics as discrete-time logistic ...

  6. Hierarchical Neural Regression Models for Customer Churn Prediction

    Directory of Open Access Journals (Sweden)

    Golshan Mohammadi

    2013-01-01

    Full Text Available As customers are the main assets of each industry, customer churn prediction is becoming a major task for companies to remain in competition with competitors. In the literature, the better applicability and efficiency of hierarchical data mining techniques has been reported. This paper considers three hierarchical models by combining four different data mining techniques for churn prediction, which are backpropagation artificial neural networks (ANN, self-organizing maps (SOM, alpha-cut fuzzy c-means (α-FCM, and Cox proportional hazards regression model. The hierarchical models are ANN + ANN + Cox, SOM + ANN + Cox, and α-FCM + ANN + Cox. In particular, the first component of the models aims to cluster data in two churner and nonchurner groups and also filter out unrepresentative data or outliers. Then, the clustered data as the outputs are used to assign customers to churner and nonchurner groups by the second technique. Finally, the correctly classified data are used to create Cox proportional hazards model. To evaluate the performance of the hierarchical models, an Iranian mobile dataset is considered. The experimental results show that the hierarchical models outperform the single Cox regression baseline model in terms of prediction accuracy, Types I and II errors, RMSE, and MAD metrics. In addition, the α-FCM + ANN + Cox model significantly performs better than the two other hierarchical models.

  7. The Revised Hierarchical Model: A critical review and assessment

    OpenAIRE

    Kroll, Judith F.; van Hell, Janet G.; Tokowicz, Natasha; Green, David W.

    2010-01-01

    Brysbaert and Duyck (2009) suggest that it is time to abandon the Revised Hierarchical Model (Kroll and Stewart, 1994) in favor of connectionist models such as BIA+ (Dijkstra and Van Heuven, 2002) that more accurately account for the recent evidence on nonselective access in bilingual word recognition. In this brief response, we first review the history of the Revised Hierarchical Model (RHM), consider the set of issues that it was proposed to address, and then evaluate the evidence that supp...

  8. Parameters Estimation of Geographically Weighted Ordinal Logistic Regression (GWOLR) Model

    Science.gov (United States)

    Zuhdi, Shaifudin; Retno Sari Saputro, Dewi; Widyaningsih, Purnami

    2017-06-01

    A regression model is the representation of relationship between independent variable and dependent variable. The dependent variable has categories used in the logistic regression model to calculate odds on. The logistic regression model for dependent variable has levels in the logistics regression model is ordinal. GWOLR model is an ordinal logistic regression model influenced the geographical location of the observation site. Parameters estimation in the model needed to determine the value of a population based on sample. The purpose of this research is to parameters estimation of GWOLR model using R software. Parameter estimation uses the data amount of dengue fever patients in Semarang City. Observation units used are 144 villages in Semarang City. The results of research get GWOLR model locally for each village and to know probability of number dengue fever patient categories.

  9. Hierarchical regression analysis in structural Equation Modeling

    NARCIS (Netherlands)

    de Jong, P.F.

    1999-01-01

    In a hierarchical or fixed-order regression analysis, the independent variables are entered into the regression equation in a prespecified order. Such an analysis is often performed when the extra amount of variance accounted for in a dependent variable by a specific independent variable is the main

  10. Slow logarithmic relaxation in models with hierarchically constrained dynamics

    OpenAIRE

    Brey, J. J.; Prados, A.

    2000-01-01

    A general kind of models with hierarchically constrained dynamics is shown to exhibit logarithmic anomalous relaxation, similarly to a variety of complex strongly interacting materials. The logarithmic behavior describes most of the decay of the response function.

  11. Bayesian disease mapping: hierarchical modeling in spatial epidemiology

    National Research Council Canada - National Science Library

    Lawson, Andrew

    2013-01-01

    .... Exploring these new developments, Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology, Second Edition provides an up-to-date, cohesive account of the full range of Bayesian disease mapping methods and applications...

  12. Quantum Ising model on hierarchical structures

    International Nuclear Information System (INIS)

    Lin Zhifang; Tao Ruibao.

    1989-11-01

    A quantum Ising chain with both the exchange couplings and the transverse fields arranged in a hierarchical way is considered. Exact analytical results for the critical line and energy gap are obtained. It is shown that when R 1 not= R 2 , where R 1 and R 2 are the hierarchical parameters for the exchange couplings and the transverse fields, respectively, the system undergoes a phase transition in a different universality class from the pure quantum Ising chain with R 1 =R 2 =1. On the other hand, when R 1 =R 2 =R, there exists a critical value R c dependent on the furcating number of the hierarchy. In case of R > R c , the system is shown to exhibit as Ising-like critical point with the critical behaviour the same as in the pure case, while for R c the system belongs to another universality class. (author). 19 refs, 2 figs

  13. Systems Integration Operations/Logistics Model (SOLMOD)

    International Nuclear Information System (INIS)

    Vogel, L.W.; Joy, D.S.

    1990-01-01

    SOLMOD is a discrete event simulation model written in FORTRAN 77 and operates in a VAX or PC environment. The model emulates the movement and interaction of equipment and radioactive waste as it is processed through the FWMS. SOLMOD can be used to measure the impacts of different operating schedules and rules, system configurations, reliability, availability, maintainability (RAM) considerations, and equipment and other resource availabilities on the performance of processes comprising the FWMS and how these factors combine to determine overall system performance. Model outputs are a series of measurements of the amount and characteristics of waste at selected points in the FWMS and the utilization of resources needed to transport and process the waste. The model results may be reported on a yearly, monthly, weekly, or daily basis to facilitate analysis. 3 refs., 3 figs., 2 tabs

  14. Road network safety evaluation using Bayesian hierarchical joint model.

    Science.gov (United States)

    Wang, Jie; Huang, Helai

    2016-05-01

    Safety and efficiency are commonly regarded as two significant performance indicators of transportation systems. In practice, road network planning has focused on road capacity and transport efficiency whereas the safety level of a road network has received little attention in the planning stage. This study develops a Bayesian hierarchical joint model for road network safety evaluation to help planners take traffic safety into account when planning a road network. The proposed model establishes relationships between road network risk and micro-level variables related to road entities and traffic volume, as well as socioeconomic, trip generation and network density variables at macro level which are generally used for long term transportation plans. In addition, network spatial correlation between intersections and their connected road segments is also considered in the model. A road network is elaborately selected in order to compare the proposed hierarchical joint model with a previous joint model and a negative binomial model. According to the results of the model comparison, the hierarchical joint model outperforms the joint model and negative binomial model in terms of the goodness-of-fit and predictive performance, which indicates the reasonableness of considering the hierarchical data structure in crash prediction and analysis. Moreover, both random effects at the TAZ level and the spatial correlation between intersections and their adjacent segments are found to be significant, supporting the employment of the hierarchical joint model as an alternative in road-network-level safety modeling as well. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Advances in Applications of Hierarchical Bayesian Methods with Hydrological Models

    Science.gov (United States)

    Alexander, R. B.; Schwarz, G. E.; Boyer, E. W.

    2017-12-01

    Mechanistic and empirical watershed models are increasingly used to inform water resource decisions. Growing access to historical stream measurements and data from in-situ sensor technologies has increased the need for improved techniques for coupling models with hydrological measurements. Techniques that account for the intrinsic uncertainties of both models and measurements are especially needed. Hierarchical Bayesian methods provide an efficient modeling tool for quantifying model and prediction uncertainties, including those associated with measurements. Hierarchical methods can also be used to explore spatial and temporal variations in model parameters and uncertainties that are informed by hydrological measurements. We used hierarchical Bayesian methods to develop a hybrid (statistical-mechanistic) SPARROW (SPAtially Referenced Regression On Watershed attributes) model of long-term mean annual streamflow across diverse environmental and climatic drainages in 18 U.S. hydrological regions. Our application illustrates the use of a new generation of Bayesian methods that offer more advanced computational efficiencies than the prior generation. Evaluations of the effects of hierarchical (regional) variations in model coefficients and uncertainties on model accuracy indicates improved prediction accuracies (median of 10-50%) but primarily in humid eastern regions, where model uncertainties are one-third of those in arid western regions. Generally moderate regional variability is observed for most hierarchical coefficients. Accounting for measurement and structural uncertainties, using hierarchical state-space techniques, revealed the effects of spatially-heterogeneous, latent hydrological processes in the "localized" drainages between calibration sites; this improved model precision, with only minor changes in regional coefficients. Our study can inform advances in the use of hierarchical methods with hydrological models to improve their integration with stream

  16. Hierarchical Bayesian Modeling of Fluid-Induced Seismicity

    Science.gov (United States)

    Broccardo, M.; Mignan, A.; Wiemer, S.; Stojadinovic, B.; Giardini, D.

    2017-11-01

    In this study, we present a Bayesian hierarchical framework to model fluid-induced seismicity. The framework is based on a nonhomogeneous Poisson process with a fluid-induced seismicity rate proportional to the rate of injected fluid. The fluid-induced seismicity rate model depends upon a set of physically meaningful parameters and has been validated for six fluid-induced case studies. In line with the vision of hierarchical Bayesian modeling, the rate parameters are considered as random variables. We develop both the Bayesian inference and updating rules, which are used to develop a probabilistic forecasting model. We tested the Basel 2006 fluid-induced seismic case study to prove that the hierarchical Bayesian model offers a suitable framework to coherently encode both epistemic uncertainty and aleatory variability. Moreover, it provides a robust and consistent short-term seismic forecasting model suitable for online risk quantification and mitigation.

  17. The Logistic Maturity Model: Application to a Fashion Company

    Directory of Open Access Journals (Sweden)

    Claudia Battista

    2013-08-01

    Full Text Available This paper describes the structure of the logistic maturity model (LMM in detail and shows the possible improvements that can be achieved by using this model in terms of the identification of the most appropriate actions to be taken in order to increase the performance of the logistics processes in industrial companies. The paper also gives an example of the LMM’s application to a famous Italian female fashion firm, which decided to use the model as a guideline for the optimization of its supply chain. Relying on a 5-level maturity staircase, specific achievement indicators as well as key performance indicators and best practices are defined and related to each logistics area/process/sub-process, allowing any user to easily and rapidly understand the more critical logistical issues in terms of process immaturity.

  18. Robust mislabel logistic regression without modeling mislabel probabilities.

    Science.gov (United States)

    Hung, Hung; Jou, Zhi-Yu; Huang, Su-Yun

    2018-03-01

    Logistic regression is among the most widely used statistical methods for linear discriminant analysis. In many applications, we only observe possibly mislabeled responses. Fitting a conventional logistic regression can then lead to biased estimation. One common resolution is to fit a mislabel logistic regression model, which takes into consideration of mislabeled responses. Another common method is to adopt a robust M-estimation by down-weighting suspected instances. In this work, we propose a new robust mislabel logistic regression based on γ-divergence. Our proposal possesses two advantageous features: (1) It does not need to model the mislabel probabilities. (2) The minimum γ-divergence estimation leads to a weighted estimating equation without the need to include any bias correction term, that is, it is automatically bias-corrected. These features make the proposed γ-logistic regression more robust in model fitting and more intuitive for model interpretation through a simple weighting scheme. Our method is also easy to implement, and two types of algorithms are included. Simulation studies and the Pima data application are presented to demonstrate the performance of γ-logistic regression. © 2017, The International Biometric Society.

  19. Parental Vaccine Acceptance: A Logistic Regression Model Using Previsit Decisions.

    Science.gov (United States)

    Lee, Sara; Riley-Behringer, Maureen; Rose, Jeanmarie C; Meropol, Sharon B; Lazebnik, Rina

    2017-07-01

    This study explores how parents' intentions regarding vaccination prior to their children's visit were associated with actual vaccine acceptance. A convenience sample of parents accompanying 6-week-old to 17-year-old children completed a written survey at 2 pediatric practices. Using hierarchical logistic regression, for hospital-based participants (n = 216), vaccine refusal history ( P < .01) and vaccine decision made before the visit ( P < .05) explained 87% of vaccine refusals. In community-based participants (n = 100), vaccine refusal history ( P < .01) explained 81% of refusals. Over 1 in 5 parents changed their minds about vaccination during the visit. Thirty parents who were previous vaccine refusers accepted current vaccines, and 37 who had intended not to vaccinate choose vaccination. Twenty-nine parents without a refusal history declined vaccines, and 32 who did not intend to refuse before the visit declined vaccination. Future research should identify key factors to nudge parent decision making in favor of vaccination.

  20. Sustainable logistics and transportation optimization models and algorithms

    CERN Document Server

    Gakis, Konstantinos; Pardalos, Panos

    2017-01-01

    Focused on the logistics and transportation operations within a supply chain, this book brings together the latest models, algorithms, and optimization possibilities. Logistics and transportation problems are examined within a sustainability perspective to offer a comprehensive assessment of environmental, social, ethical, and economic performance measures. Featured models, techniques, and algorithms may be used to construct policies on alternative transportation modes and technologies, green logistics, and incentives by the incorporation of environmental, economic, and social measures. Researchers, professionals, and graduate students in urban regional planning, logistics, transport systems, optimization, supply chain management, business administration, information science, mathematics, and industrial and systems engineering will find the real life and interdisciplinary issues presented in this book informative and useful.

  1. Determining Predictor Importance in Hierarchical Linear Models Using Dominance Analysis

    Science.gov (United States)

    Luo, Wen; Azen, Razia

    2013-01-01

    Dominance analysis (DA) is a method used to evaluate the relative importance of predictors that was originally proposed for linear regression models. This article proposes an extension of DA that allows researchers to determine the relative importance of predictors in hierarchical linear models (HLM). Commonly used measures of model adequacy in…

  2. Hierarchical modeling of molecular energies using a deep neural network

    Science.gov (United States)

    Lubbers, Nicholas; Smith, Justin S.; Barros, Kipton

    2018-06-01

    We introduce the Hierarchically Interacting Particle Neural Network (HIP-NN) to model molecular properties from datasets of quantum calculations. Inspired by a many-body expansion, HIP-NN decomposes properties, such as energy, as a sum over hierarchical terms. These terms are generated from a neural network—a composition of many nonlinear transformations—acting on a representation of the molecule. HIP-NN achieves the state-of-the-art performance on a dataset of 131k ground state organic molecules and predicts energies with 0.26 kcal/mol mean absolute error. With minimal tuning, our model is also competitive on a dataset of molecular dynamics trajectories. In addition to enabling accurate energy predictions, the hierarchical structure of HIP-NN helps to identify regions of model uncertainty.

  3. Applying Hierarchical Model Calibration to Automatically Generated Items.

    Science.gov (United States)

    Williamson, David M.; Johnson, Matthew S.; Sinharay, Sandip; Bejar, Isaac I.

    This study explored the application of hierarchical model calibration as a means of reducing, if not eliminating, the need for pretesting of automatically generated items from a common item model prior to operational use. Ultimately the successful development of automatic item generation (AIG) systems capable of producing items with highly similar…

  4. A HIERARCHICAL SET OF MODELS FOR SPECIES RESPONSE ANALYSIS

    NARCIS (Netherlands)

    HUISMAN, J; OLFF, H; FRESCO, LFM

    Variation in the abundance of species in space and/or time can be caused by a wide range of underlying processes. Before such causes can be analysed we need simple mathematical models which can describe the observed response patterns. For this purpose a hierarchical set of models is presented. These

  5. A hierarchical set of models for species response analysis

    NARCIS (Netherlands)

    Huisman, J.; Olff, H.; Fresco, L.F.M.

    1993-01-01

    Variation in the abundance of species in space and/or time can be caused by a wide range of underlying processes. Before such causes can be analysed we need simple mathematical models which can describe the observed response patterns. For this purpose a hierarchical set of models is presented. These

  6. The Revised Hierarchical Model: A critical review and assessment

    NARCIS (Netherlands)

    Kroll, J.F.; Hell, J.G. van; Tokowicz, N.; Green, D.W.

    2010-01-01

    Brysbaert and Duyck (this issue) suggest that it is time to abandon the Revised Hierarchical Model (Kroll and Stewart, 1994) in favor of connectionist models such as BIA+ (Dijkstra and Van Heuven, 2002) that more accurately account for the recent evidence on non-selective access in bilingual word

  7. A hierarchical model exhibiting the Kosterlitz-Thouless fixed point

    International Nuclear Information System (INIS)

    Marchetti, D.H.U.; Perez, J.F.

    1985-01-01

    A hierarchical model for 2-d Coulomb gases displaying a line stable of fixed points describing the Kosterlitz-Thouless phase transition is constructed. For Coulomb gases corresponding to Z sub(N)- models these fixed points are stable for an intermediate temperature interval. (Author) [pt

  8. Hierarchical Multiple Markov Chain Model for Unsupervised Texture Segmentation

    Czech Academy of Sciences Publication Activity Database

    Scarpa, G.; Gaetano, R.; Haindl, Michal; Zerubia, J.

    2009-01-01

    Roč. 18, č. 8 (2009), s. 1830-1843 ISSN 1057-7149 R&D Projects: GA ČR GA102/08/0593 EU Projects: European Commission(XE) 507752 - MUSCLE Institutional research plan: CEZ:AV0Z10750506 Keywords : Classification * texture analysis * segmentation * hierarchical image models * Markov process Subject RIV: BD - Theory of Information Impact factor: 2.848, year: 2009 http://library.utia.cas.cz/separaty/2009/RO/haindl-hierarchical multiple markov chain model for unsupervised texture segmentation.pdf

  9. Hierarchical graphs for rule-based modeling of biochemical systems

    Directory of Open Access Journals (Sweden)

    Hu Bin

    2011-02-01

    Full Text Available Abstract Background In rule-based modeling, graphs are used to represent molecules: a colored vertex represents a component of a molecule, a vertex attribute represents the internal state of a component, and an edge represents a bond between components. Components of a molecule share the same color. Furthermore, graph-rewriting rules are used to represent molecular interactions. A rule that specifies addition (removal of an edge represents a class of association (dissociation reactions, and a rule that specifies a change of a vertex attribute represents a class of reactions that affect the internal state of a molecular component. A set of rules comprises an executable model that can be used to determine, through various means, the system-level dynamics of molecular interactions in a biochemical system. Results For purposes of model annotation, we propose the use of hierarchical graphs to represent structural relationships among components and subcomponents of molecules. We illustrate how hierarchical graphs can be used to naturally document the structural organization of the functional components and subcomponents of two proteins: the protein tyrosine kinase Lck and the T cell receptor (TCR complex. We also show that computational methods developed for regular graphs can be applied to hierarchical graphs. In particular, we describe a generalization of Nauty, a graph isomorphism and canonical labeling algorithm. The generalized version of the Nauty procedure, which we call HNauty, can be used to assign canonical labels to hierarchical graphs or more generally to graphs with multiple edge types. The difference between the Nauty and HNauty procedures is minor, but for completeness, we provide an explanation of the entire HNauty algorithm. Conclusions Hierarchical graphs provide more intuitive formal representations of proteins and other structured molecules with multiple functional components than do the regular graphs of current languages for

  10. Geographically Weighted Logistic Regression Applied to Credit Scoring Models

    Directory of Open Access Journals (Sweden)

    Pedro Henrique Melo Albuquerque

    Full Text Available Abstract This study used real data from a Brazilian financial institution on transactions involving Consumer Direct Credit (CDC, granted to clients residing in the Distrito Federal (DF, to construct credit scoring models via Logistic Regression and Geographically Weighted Logistic Regression (GWLR techniques. The aims were: to verify whether the factors that influence credit risk differ according to the borrower’s geographic location; to compare the set of models estimated via GWLR with the global model estimated via Logistic Regression, in terms of predictive power and financial losses for the institution; and to verify the viability of using the GWLR technique to develop credit scoring models. The metrics used to compare the models developed via the two techniques were the AICc informational criterion, the accuracy of the models, the percentage of false positives, the sum of the value of false positive debt, and the expected monetary value of portfolio default compared with the monetary value of defaults observed. The models estimated for each region in the DF were distinct in their variables and coefficients (parameters, with it being concluded that credit risk was influenced differently in each region in the study. The Logistic Regression and GWLR methodologies presented very close results, in terms of predictive power and financial losses for the institution, and the study demonstrated viability in using the GWLR technique to develop credit scoring models for the target population in the study.

  11. A Hierarchal Risk Assessment Model Using the Evidential Reasoning Rule

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Ji

    2017-02-01

    Full Text Available This paper aims to develop a hierarchical risk assessment model using the newly-developed evidential reasoning (ER rule, which constitutes a generic conjunctive probabilistic reasoning process. In this paper, we first provide a brief introduction to the basics of the ER rule and emphasize the strengths for representing and aggregating uncertain information from multiple experts and sources. Further, we discuss the key steps of developing the hierarchical risk assessment framework systematically, including (1 formulation of risk assessment hierarchy; (2 representation of both qualitative and quantitative information; (3 elicitation of attribute weights and information reliabilities; (4 aggregation of assessment information using the ER rule and (5 quantification and ranking of risks using utility-based transformation. The proposed hierarchical risk assessment framework can potentially be implemented to various complex and uncertain systems. A case study on the fire/explosion risk assessment of marine vessels demonstrates the applicability of the proposed risk assessment model.

  12. Modeling logistic performance in quantitative microbial risk assessment.

    Science.gov (United States)

    Rijgersberg, Hajo; Tromp, Seth; Jacxsens, Liesbeth; Uyttendaele, Mieke

    2010-01-01

    In quantitative microbial risk assessment (QMRA), food safety in the food chain is modeled and simulated. In general, prevalences, concentrations, and numbers of microorganisms in media are investigated in the different steps from farm to fork. The underlying rates and conditions (such as storage times, temperatures, gas conditions, and their distributions) are determined. However, the logistic chain with its queues (storages, shelves) and mechanisms for ordering products is usually not taken into account. As a consequence, storage times-mutually dependent in successive steps in the chain-cannot be described adequately. This may have a great impact on the tails of risk distributions. Because food safety risks are generally very small, it is crucial to model the tails of (underlying) distributions as accurately as possible. Logistic performance can be modeled by describing the underlying planning and scheduling mechanisms in discrete-event modeling. This is common practice in operations research, specifically in supply chain management. In this article, we present the application of discrete-event modeling in the context of a QMRA for Listeria monocytogenes in fresh-cut iceberg lettuce. We show the potential value of discrete-event modeling in QMRA by calculating logistic interventions (modifications in the logistic chain) and determining their significance with respect to food safety.

  13. Comparing hierarchical models via the marginalized deviance information criterion.

    Science.gov (United States)

    Quintero, Adrian; Lesaffre, Emmanuel

    2018-07-20

    Hierarchical models are extensively used in pharmacokinetics and longitudinal studies. When the estimation is performed from a Bayesian approach, model comparison is often based on the deviance information criterion (DIC). In hierarchical models with latent variables, there are several versions of this statistic: the conditional DIC (cDIC) that incorporates the latent variables in the focus of the analysis and the marginalized DIC (mDIC) that integrates them out. Regardless of the asymptotic and coherency difficulties of cDIC, this alternative is usually used in Markov chain Monte Carlo (MCMC) methods for hierarchical models because of practical convenience. The mDIC criterion is more appropriate in most cases but requires integration of the likelihood, which is computationally demanding and not implemented in Bayesian software. Therefore, we consider a method to compute mDIC by generating replicate samples of the latent variables that need to be integrated out. This alternative can be easily conducted from the MCMC output of Bayesian packages and is widely applicable to hierarchical models in general. Additionally, we propose some approximations in order to reduce the computational complexity for large-sample situations. The method is illustrated with simulated data sets and 2 medical studies, evidencing that cDIC may be misleading whilst mDIC appears pertinent. Copyright © 2018 John Wiley & Sons, Ltd.

  14. Conceptual hierarchical modeling to describe wetland plant community organization

    Science.gov (United States)

    Little, A.M.; Guntenspergen, G.R.; Allen, T.F.H.

    2010-01-01

    Using multivariate analysis, we created a hierarchical modeling process that describes how differently-scaled environmental factors interact to affect wetland-scale plant community organization in a system of small, isolated wetlands on Mount Desert Island, Maine. We followed the procedure: 1) delineate wetland groups using cluster analysis, 2) identify differently scaled environmental gradients using non-metric multidimensional scaling, 3) order gradient hierarchical levels according to spatiotem-poral scale of fluctuation, and 4) assemble hierarchical model using group relationships with ordination axes and post-hoc tests of environmental differences. Using this process, we determined 1) large wetland size and poor surface water chemistry led to the development of shrub fen wetland vegetation, 2) Sphagnum and water chemistry differences affected fen vs. marsh / sedge meadows status within small wetlands, and 3) small-scale hydrologic differences explained transitions between forested vs. non-forested and marsh vs. sedge meadow vegetation. This hierarchical modeling process can help explain how upper level contextual processes constrain biotic community response to lower-level environmental changes. It creates models with more nuanced spatiotemporal complexity than classification and regression tree procedures. Using this process, wetland scientists will be able to generate more generalizable theories of plant community organization, and useful management models. ?? Society of Wetland Scientists 2009.

  15. Control of discrete event systems modeled as hierarchical state machines

    Science.gov (United States)

    Brave, Y.; Heymann, M.

    1991-01-01

    The authors examine a class of discrete event systems (DESs) modeled as asynchronous hierarchical state machines (AHSMs). For this class of DESs, they provide an efficient method for testing reachability, which is an essential step in many control synthesis procedures. This method utilizes the asynchronous nature and hierarchical structure of AHSMs, thereby illustrating the advantage of the AHSM representation as compared with its equivalent (flat) state machine representation. An application of the method is presented where an online minimally restrictive solution is proposed for the problem of maintaining a controlled AHSM within prescribed legal bounds.

  16. Model building strategy for logistic regression: purposeful selection.

    Science.gov (United States)

    Zhang, Zhongheng

    2016-03-01

    Logistic regression is one of the most commonly used models to account for confounders in medical literature. The article introduces how to perform purposeful selection model building strategy with R. I stress on the use of likelihood ratio test to see whether deleting a variable will have significant impact on model fit. A deleted variable should also be checked for whether it is an important adjustment of remaining covariates. Interaction should be checked to disentangle complex relationship between covariates and their synergistic effect on response variable. Model should be checked for the goodness-of-fit (GOF). In other words, how the fitted model reflects the real data. Hosmer-Lemeshow GOF test is the most widely used for logistic regression model.

  17. Hierarchical modelling for the environmental sciences statistical methods and applications

    CERN Document Server

    Clark, James S

    2006-01-01

    New statistical tools are changing the way in which scientists analyze and interpret data and models. Hierarchical Bayes and Markov Chain Monte Carlo methods for analysis provide a consistent framework for inference and prediction where information is heterogeneous and uncertain, processes are complicated, and responses depend on scale. Nowhere are these methods more promising than in the environmental sciences.

  18. Survival Analysis of a Nonautonomous Logistic Model with Stochastic Perturbation

    Directory of Open Access Journals (Sweden)

    Chun Lu

    2012-01-01

    Full Text Available Taking white noise into account, a stochastic nonautonomous logistic model is proposed and investigated. Sufficient conditions for extinction, nonpersistence in the mean, weak persistence, stochastic permanence, and global asymptotic stability are established. Moreover, the threshold between weak persistence and extinction is obtained. Finally, we introduce some numerical simulink graphics to illustrate our main results.

  19. Risk matrix model applied to the outsourcing of logistics' activities

    Directory of Open Access Journals (Sweden)

    Fouad Jawab

    2015-09-01

    Full Text Available Purpose: This paper proposes the application of the risk matrix model in the field of logistics outsourcing. Such an application can serve as the basis for decision making regarding the conduct of a risk management in the logistics outsourcing process and allow its prevention. Design/methodology/approach: This study is based on the risk management of logistics outsourcing in the field of the retail sector in Morocco. The authors identify all possible risks and then classify and prioritize them using the Risk Matrix Model. Finally, we have come to four possible decisions for the identified risks. The analysis was made possible through interviews and discussions with the heads of departments and agents who are directly involved in each outsourced activity. Findings and Originality/value: It is possible to improve the risk matrix model by proposing more personalized prevention measures according to each company that operates in the mass-market retailing. Originality/value: This study is the only one made in the process of logistics outsourcing in the retail sector in Morocco through Label’vie as a case study. First, we had identified as thorough as we could all possible risks, then we applied the Risk Matrix Model to sort them out in an ascending order of importance and criticality. As a result, we could hand out to the decision-makers the mapping for an effective control of risks and a better guiding of the process of risk management.

  20. On the small-time behavior of stochastic logistic models

    Directory of Open Access Journals (Sweden)

    Dung Tien Nguyen

    2017-09-01

    Full Text Available In this paper we investigate the small-time behaviors of the solution to  a stochastic logistic model. The obtained results allow us to estimate the number of individuals in the population and can be used to study stochastic prey-predator systems.

  1. Flower Power: Sunflowers as a Model for Logistic Growth

    Science.gov (United States)

    Fernandez, Eileen; Geist, Kristi A.

    2011-01-01

    Logistic growth displays an interesting pattern: It starts fast, exhibiting the rapid growth characteristic of exponential models. As time passes, it slows in response to constraints such as limited resources or reallocation of energy. The growth continues to slow until it reaches a limit, called capacity. When the growth describes a population,…

  2. A binary logistic regression model with complex sampling design of ...

    African Journals Online (AJOL)

    2017-09-03

    Sep 3, 2017 ... Bi-variable and multi-variable binary logistic regression model with complex sampling design was fitted. .... Data was entered into STATA-12 and analyzed using. SPSS-21. .... lack of access/too far or costs too much. 35. 1.2.

  3. Optimal item discrimination and maximum information for logistic IRT models

    NARCIS (Netherlands)

    Veerkamp, W.J.J.; Veerkamp, Wim J.J.; Berger, Martijn P.F.; Berger, Martijn

    1999-01-01

    Items with the highest discrimination parameter values in a logistic item response theory model do not necessarily give maximum information. This paper derives discrimination parameter values, as functions of the guessing parameter and distances between person parameters and item difficulty, that

  4. Analysis of Error Propagation Within Hierarchical Air Combat Models

    Science.gov (United States)

    2016-06-01

    values alone are propagated through layers of combat models, the final results will likely be biased, and risk underestimated. An air-to-air...values alone are propagated through layers of combat models, the final results will likely be biased, and risk underestimated. An air-to-air engagement... PROPAGATION WITHIN HIERARCHICAL AIR COMBAT MODELS by Salih Ilaslan June 2016 Thesis Advisor: Thomas W. Lucas Second Reader: Jeffrey

  5. Logistic regression for risk factor modelling in stuttering research.

    Science.gov (United States)

    Reed, Phil; Wu, Yaqionq

    2013-06-01

    To outline the uses of logistic regression and other statistical methods for risk factor analysis in the context of research on stuttering. The principles underlying the application of a logistic regression are illustrated, and the types of questions to which such a technique has been applied in the stuttering field are outlined. The assumptions and limitations of the technique are discussed with respect to existing stuttering research, and with respect to formulating appropriate research strategies to accommodate these considerations. Finally, some alternatives to the approach are briefly discussed. The way the statistical procedures are employed are demonstrated with some hypothetical data. Research into several practical issues concerning stuttering could benefit if risk factor modelling were used. Important examples are early diagnosis, prognosis (whether a child will recover or persist) and assessment of treatment outcome. After reading this article you will: (a) Summarize the situations in which logistic regression can be applied to a range of issues about stuttering; (b) Follow the steps in performing a logistic regression analysis; (c) Describe the assumptions of the logistic regression technique and the precautions that need to be checked when it is employed; (d) Be able to summarize its advantages over other techniques like estimation of group differences and simple regression. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Metastable states in the hierarchical Dyson model drive parallel processing in the hierarchical Hopfield network

    International Nuclear Information System (INIS)

    Agliari, Elena; Barra, Adriano; Guerra, Francesco; Galluzzi, Andrea; Tantari, Daniele; Tavani, Flavia

    2015-01-01

    In this paper, we introduce and investigate the statistical mechanics of hierarchical neural networks. First, we approach these systems à la Mattis, by thinking of the Dyson model as a single-pattern hierarchical neural network. We also discuss the stability of different retrievable states as predicted by the related self-consistencies obtained both from a mean-field bound and from a bound that bypasses the mean-field limitation. The latter is worked out by properly reabsorbing the magnetization fluctuations related to higher levels of the hierarchy into effective fields for the lower levels. Remarkably, mixing Amit's ansatz technique for selecting candidate-retrievable states with the interpolation procedure for solving for the free energy of these states, we prove that, due to gauge symmetry, the Dyson model accomplishes both serial and parallel processing. We extend this scenario to multiple stored patterns by implementing the Hebb prescription for learning within the couplings. This results in Hopfield-like networks constrained on a hierarchical topology, for which, by restricting to the low-storage regime where the number of patterns grows at its most logarithmical with the amount of neurons, we prove the existence of the thermodynamic limit for the free energy, and we give an explicit expression of its mean-field bound and of its related improved bound. We studied the resulting self-consistencies for the Mattis magnetizations, which act as order parameters, are studied and the stability of solutions is analyzed to get a picture of the overall retrieval capabilities of the system according to both mean-field and non-mean-field scenarios. Our main finding is that embedding the Hebbian rule on a hierarchical topology allows the network to accomplish both serial and parallel processing. By tuning the level of fast noise affecting it or triggering the decay of the interactions with the distance among neurons, the system may switch from sequential retrieval to

  7. A Review on Quantitative Models for Sustainable Food Logistics Management

    Directory of Open Access Journals (Sweden)

    M. Soysal

    2012-12-01

    Full Text Available The last two decades food logistics systems have seen the transition from a focus on traditional supply chain management to food supply chain management, and successively, to sustainable food supply chain management. The main aim of this study is to identify key logistical aims in these three phases and analyse currently available quantitative models to point out modelling challenges in sustainable food logistics management (SFLM. A literature review on quantitative studies is conducted and also qualitative studies are consulted to understand the key logistical aims more clearly and to identify relevant system scope issues. Results show that research on SFLM has been progressively developing according to the needs of the food industry. However, the intrinsic characteristics of food products and processes have not yet been handled properly in the identified studies. The majority of the works reviewed have not contemplated on sustainability problems, apart from a few recent studies. Therefore, the study concludes that new and advanced quantitative models are needed that take specific SFLM requirements from practice into consideration to support business decisions and capture food supply chain dynamics.

  8. Hierarchical Models of the Nearshore Complex System

    National Research Council Canada - National Science Library

    Werner, Brad

    2004-01-01

    .... This grant was termination funding for the Werner group, specifically aimed at finishing up and publishing research related to synoptic imaging of near shore bathymetry, testing models for beach cusp...

  9. Hierarchical and coupling model of factors influencing vessel traffic flow.

    Directory of Open Access Journals (Sweden)

    Zhao Liu

    Full Text Available Understanding the characteristics of vessel traffic flow is crucial in maintaining navigation safety, efficiency, and overall waterway transportation management. Factors influencing vessel traffic flow possess diverse features such as hierarchy, uncertainty, nonlinearity, complexity, and interdependency. To reveal the impact mechanism of the factors influencing vessel traffic flow, a hierarchical model and a coupling model are proposed in this study based on the interpretative structural modeling method. The hierarchical model explains the hierarchies and relationships of the factors using a graph. The coupling model provides a quantitative method that explores interaction effects of factors using a coupling coefficient. The coupling coefficient is obtained by determining the quantitative indicators of the factors and their weights. Thereafter, the data obtained from Port of Tianjin is used to verify the proposed coupling model. The results show that the hierarchical model of the factors influencing vessel traffic flow can explain the level, structure, and interaction effect of the factors; the coupling model is efficient in analyzing factors influencing traffic volumes. The proposed method can be used for analyzing increases in vessel traffic flow in waterway transportation system.

  10. Hierarchical and coupling model of factors influencing vessel traffic flow.

    Science.gov (United States)

    Liu, Zhao; Liu, Jingxian; Li, Huanhuan; Li, Zongzhi; Tan, Zhirong; Liu, Ryan Wen; Liu, Yi

    2017-01-01

    Understanding the characteristics of vessel traffic flow is crucial in maintaining navigation safety, efficiency, and overall waterway transportation management. Factors influencing vessel traffic flow possess diverse features such as hierarchy, uncertainty, nonlinearity, complexity, and interdependency. To reveal the impact mechanism of the factors influencing vessel traffic flow, a hierarchical model and a coupling model are proposed in this study based on the interpretative structural modeling method. The hierarchical model explains the hierarchies and relationships of the factors using a graph. The coupling model provides a quantitative method that explores interaction effects of factors using a coupling coefficient. The coupling coefficient is obtained by determining the quantitative indicators of the factors and their weights. Thereafter, the data obtained from Port of Tianjin is used to verify the proposed coupling model. The results show that the hierarchical model of the factors influencing vessel traffic flow can explain the level, structure, and interaction effect of the factors; the coupling model is efficient in analyzing factors influencing traffic volumes. The proposed method can be used for analyzing increases in vessel traffic flow in waterway transportation system.

  11. Stochastic growth logistic model with aftereffect for batch fermentation process

    Science.gov (United States)

    Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah; Rahman, Haliza Abdul; Salleh, Madihah Md

    2014-06-01

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.

  12. Stochastic growth logistic model with aftereffect for batch fermentation process

    International Nuclear Information System (INIS)

    Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah; Rahman, Haliza Abdul; Salleh, Madihah Md

    2014-01-01

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits

  13. Stochastic growth logistic model with aftereffect for batch fermentation process

    Energy Technology Data Exchange (ETDEWEB)

    Rosli, Norhayati; Ayoubi, Tawfiqullah [Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang (Malaysia); Bahar, Arifah; Rahman, Haliza Abdul [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Salleh, Madihah Md [Department of Biotechnology Industry, Faculty of Biosciences and Bioengineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)

    2014-06-19

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.

  14. Petascale Hierarchical Modeling VIA Parallel Execution

    Energy Technology Data Exchange (ETDEWEB)

    Gelman, Andrew [Principal Investigator

    2014-04-14

    The research allows more effective model building. By allowing researchers to fit complex models to large datasets in a scalable manner, our algorithms and software enable more effective scientific research. In the new area of “big data,” it is often necessary to fit “big models” to adjust for systematic differences between sample and population. For this task, scalable and efficient model-fitting tools are needed, and these have been achieved with our new Hamiltonian Monte Carlo algorithm, the no-U-turn sampler, and our new C++ program, Stan. In layman’s terms, our research enables researchers to create improved mathematical modes for large and complex systems.

  15. Hierarchical Modelling of Flood Risk for Engineering Decision Analysis

    DEFF Research Database (Denmark)

    Custer, Rocco

    protection structures in the hierarchical flood protection system - is identified. To optimise the design of protection structures, fragility and vulnerability models must allow for consideration of decision alternatives. While such vulnerability models are available for large protection structures (e...... systems, as well as the implementation of the flood risk analysis methodology and the vulnerability modelling approach are illustrated with an example application. In summary, the present thesis provides a characterisation of hierarchical flood protection systems as well as several methodologies to model...... and robust. Traditional risk management solutions, e.g. dike construction, are not particularly flexible, as they are difficult to adapt to changing risk. Conversely, the recent concept of integrated flood risk management, entailing a combination of several structural and non-structural risk management...

  16. A Hierarchical Visualization Analysis Model of Power Big Data

    Science.gov (United States)

    Li, Yongjie; Wang, Zheng; Hao, Yang

    2018-01-01

    Based on the conception of integrating VR scene and power big data analysis, a hierarchical visualization analysis model of power big data is proposed, in which levels are designed, targeting at different abstract modules like transaction, engine, computation, control and store. The regularly departed modules of power data storing, data mining and analysis, data visualization are integrated into one platform by this model. It provides a visual analysis solution for the power big data.

  17. Short-Run Asset Selection using a Logistic Model

    Directory of Open Access Journals (Sweden)

    Walter Gonçalves Junior

    2011-06-01

    Full Text Available Investors constantly look for significant predictors and accurate models to forecast future results, whose occasional efficacy end up being neutralized by market efficiency. Regardless, such predictors are widely used for seeking better (and more unique perceptions. This paper aims to investigate to what extent some of the most notorious indicators have discriminatory power to select stocks, and if it is feasible with such variables to build models that could anticipate those with good performance. In order to do that, logistical regressions were conducted with stocks traded at Bovespa using the selected indicators as explanatory variables. Investigated in this study were the outputs of Bovespa Index, liquidity, the Sharpe Ratio, ROE, MB, size and age evidenced to be significant predictors. Also examined were half-year, logistical models, which were adjusted in order to check the potential acceptable discriminatory power for the asset selection.

  18. Fully probabilistic design of hierarchical Bayesian models

    Czech Academy of Sciences Publication Activity Database

    Quinn, A.; Kárný, Miroslav; Guy, Tatiana Valentine

    2016-01-01

    Roč. 369, č. 1 (2016), s. 532-547 ISSN 0020-0255 R&D Projects: GA ČR GA13-13502S Institutional support: RVO:67985556 Keywords : Fully probabilistic design * Ideal distribution * Minimum cross-entropy principle * Bayesian conditioning * Kullback-Leibler divergence * Bayesian nonparametric modelling Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 4.832, year: 2016 http://library.utia.cas.cz/separaty/2016/AS/karny-0463052.pdf

  19. Modelling of Processes of Logistics in Cyberspace Security

    Directory of Open Access Journals (Sweden)

    Konečný Jiří

    2017-01-01

    Full Text Available The goal of this contribution is especially to familiarize experts in various fields with the need for a new approach to the system-defined model and modelling of processes in the engineering practice and the expression of some state variables' possibilities for the modelling of real-world systems with regard to the highly dynamic development of structures and to the behaviour of systems of logistics. Thus, in this contribution, the necessity of making full use of cybernetics as a field for the management and communication of information is expressed, and also the environment of cybernetics as a much needed cybernetic realm (cyberspace, determining the steady state between cyber-attacks and cyber-defence as a modern knowledge-based potential in general and specifically of logistics in cyber security. Connected with this process is the very important area of lifelong training of experts in the dynamic world of science and technology (that is, also in a social system which is also expressed here briefly, and also the cyber and information security, all of which falls under the cyberspace of new perspective electronic learning (e-learning with the use of modern laboratories with new effects also for future possibilities of process modelling of artificial intelligence (AI with a perspective of mass use of UAVs in logistics.

  20. Hierarchical Model Predictive Control for Resource Distribution

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, K; Stoustrup, Jakob

    2010-01-01

    units. The approach is inspired by smart-grid electric power production and consumption systems, where the flexibility of a large number of power producing and/or power consuming units can be exploited in a smart-grid solution. The objective is to accommodate the load variation on the grid, arising......This paper deals with hierarchichal model predictive control (MPC) of distributed systems. A three level hierachical approach is proposed, consisting of a high level MPC controller, a second level of so-called aggregators, controlled by an online MPC-like algorithm, and a lower level of autonomous...... on one hand from varying consumption, on the other hand by natural variations in power production e.g. from wind turbines. The approach presented is based on quadratic optimization and possess the properties of low algorithmic complexity and of scalability. In particular, the proposed design methodology...

  1. Comparison of the binary logistic and skewed logistic (Scobit) models of injury severity in motor vehicle collisions.

    Science.gov (United States)

    Tay, Richard

    2016-03-01

    The binary logistic model has been extensively used to analyze traffic collision and injury data where the outcome of interest has two categories. However, the assumption of a symmetric distribution may not be a desirable property in some cases, especially when there is a significant imbalance in the two categories of outcome. This study compares the standard binary logistic model with the skewed logistic model in two cases in which the symmetry assumption is violated in one but not the other case. The differences in the estimates, and thus the marginal effects obtained, are significant when the assumption of symmetry is violated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Introduction to Hierarchical Bayesian Modeling for Ecological Data

    CERN Document Server

    Parent, Eric

    2012-01-01

    Making statistical modeling and inference more accessible to ecologists and related scientists, Introduction to Hierarchical Bayesian Modeling for Ecological Data gives readers a flexible and effective framework to learn about complex ecological processes from various sources of data. It also helps readers get started on building their own statistical models. The text begins with simple models that progressively become more complex and realistic through explanatory covariates and intermediate hidden states variables. When fitting the models to data, the authors gradually present the concepts a

  3. New robust statistical procedures for the polytomous logistic regression models.

    Science.gov (United States)

    Castilla, Elena; Ghosh, Abhik; Martin, Nirian; Pardo, Leandro

    2018-05-17

    This article derives a new family of estimators, namely the minimum density power divergence estimators, as a robust generalization of the maximum likelihood estimator for the polytomous logistic regression model. Based on these estimators, a family of Wald-type test statistics for linear hypotheses is introduced. Robustness properties of both the proposed estimators and the test statistics are theoretically studied through the classical influence function analysis. Appropriate real life examples are presented to justify the requirement of suitable robust statistical procedures in place of the likelihood based inference for the polytomous logistic regression model. The validity of the theoretical results established in the article are further confirmed empirically through suitable simulation studies. Finally, an approach for the data-driven selection of the robustness tuning parameter is proposed with empirical justifications. © 2018, The International Biometric Society.

  4. Comparison of particular logistic models' adoption in the Czech Republic

    Science.gov (United States)

    Vrbová, Petra; Cempírek, Václav

    2016-12-01

    Managing inventory is considered as one of the most challenging tasks facing supply chain managers and specialists. Decisions related to inventory locations along with level of inventory kept throughout the supply chain have a fundamental impact on the response time, service level, delivery lead-time and the total cost of the supply chain. The main objective of this paper is to identify and analyse the share of a particular logistic model adopted in the Czech Republic (Consignment stock, Buffer stock, Safety stock) and also compare their usage and adoption according to different industries. This paper also aims to specify possible reasons of particular logistic model preferences in comparison to the others. The analysis is based on quantitative survey held in the Czech Republic.

  5. A hierarchical spatiotemporal analog forecasting model for count data.

    Science.gov (United States)

    McDermott, Patrick L; Wikle, Christopher K; Millspaugh, Joshua

    2018-01-01

    Analog forecasting is a mechanism-free nonlinear method that forecasts a system forward in time by examining how past states deemed similar to the current state moved forward. Previous applications of analog forecasting has been successful at producing robust forecasts for a variety of ecological and physical processes, but it has typically been presented in an empirical or heuristic procedure, rather than as a formal statistical model. The methodology presented here extends the model-based analog method of McDermott and Wikle (Environmetrics, 27, 2016, 70) by placing analog forecasting within a fully hierarchical statistical framework that can accommodate count observations. Using a Bayesian approach, the hierarchical analog model is able to quantify rigorously the uncertainty associated with forecasts. Forecasting waterfowl settling patterns in the northwestern United States and Canada is conducted by applying the hierarchical analog model to a breeding population survey dataset. Sea surface temperature (SST) in the Pacific Ocean is used to help identify potential analogs for the waterfowl settling patterns.

  6. Accessibility to Nodes of Interest: Demographic Weighting the Logistic Model

    Directory of Open Access Journals (Sweden)

    Gioacchino DE CANDIA

    2015-11-01

    Full Text Available This research fits into the genre of spatial analysis, aimed at better understanding of population dynamics in relation to the presence and distribution of infrastructure and related services. Specifically, the analysis uses a model of the gravitational type, based on the assumption of the impedance (attractiveness territorial, based on a curve of type logistics to determine the accessibility of the same, to which to add a system of weights. In this sense, the model was weighted according to the population, to determine the level of “population served” in terms of infrastructure and related services included in the model.

  7. Bayesian hierarchical model for large-scale covariance matrix estimation.

    Science.gov (United States)

    Zhu, Dongxiao; Hero, Alfred O

    2007-12-01

    Many bioinformatics problems implicitly depend on estimating large-scale covariance matrix. The traditional approaches tend to give rise to high variance and low accuracy due to "overfitting." We cast the large-scale covariance matrix estimation problem into the Bayesian hierarchical model framework, and introduce dependency between covariance parameters. We demonstrate the advantages of our approaches over the traditional approaches using simulations and OMICS data analysis.

  8. Interpreting parameters in the logistic regression model with random effects

    DEFF Research Database (Denmark)

    Larsen, Klaus; Petersen, Jørgen Holm; Budtz-Jørgensen, Esben

    2000-01-01

    interpretation, interval odds ratio, logistic regression, median odds ratio, normally distributed random effects......interpretation, interval odds ratio, logistic regression, median odds ratio, normally distributed random effects...

  9. Single-tier city logistics model for single product

    Science.gov (United States)

    Saragih, N. I.; Nur Bahagia, S.; Suprayogi; Syabri, I.

    2017-11-01

    This research develops single-tier city logistics model which consists of suppliers, UCCs, and retailers. The problem that will be answered in this research is how to determine the location of UCCs, to allocate retailers to opened UCCs, to assign suppliers to opened UCCs, to control inventory in the three entities involved, and to determine the route of the vehicles from opened UCCs to retailers. This model has never been developed before. All the decisions will be simultaneously optimized. Characteristic of the demand is probabilistic following a normal distribution, and the number of product is single.

  10. Models of Inter-Organizational Logistics Management in Slovenia

    Directory of Open Access Journals (Sweden)

    Sašo Murtič

    2015-03-01

    Full Text Available Throughout the history, the transportation of goods and related logistics have played an important role in human development and existence. This pertains to numerous interlinked processes, whose management is often linked to social system, international linkages, development of industry, market and market specifics. In modern times, the management of these processes is increasingly bound to globalization of production and market, moving of production to countries with cheaper labour force, environmental protection. The present Slovenian economy depends to a large extent on economies and corporate relations of the European Union and the world. Such inter-connectedness demands frequent transportation of semi-finished and finished goods. By providing timely delivery of goods, transportation consequently enables inter-organizational linkages and individual production, economic, market and other processes. Organizational and inter-organizational management of transport logistics demands profound understanding of transport flows, freight forwarding expertise and knowledge of transport, tax, environmental and other related regulations. Adequate knowledge and mastering of cultural, linguistic, national and other differences is important as well. The presented analysis and evaluation form the basis of the construction of inter-organizational model of logistics management in Slovenia.

  11. Decision support modeling for sustainable food logistics management

    NARCIS (Netherlands)

    Soysal, M.

    2015-01-01

    Summary

    For the last two decades, food logistics systems have seen the transition from traditional Logistics Management (LM) to Food Logistics Management (FLM), and successively, to Sustainable Food Logistics Management (SFLM). Accordingly, food industry has been subject to the recent

  12. Hierarchical composites: Analysis of damage evolution based on fiber bundle model

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon

    2011-01-01

    A computational model of multiscale composites is developed on the basis of the fiber bundle model with the hierarchical load sharing rule, and employed to study the effect of the microstructures of hierarchical composites on their damage resistance. Two types of hierarchical materials were consi...

  13. Hierarchical modeling of cluster size in wildlife surveys

    Science.gov (United States)

    Royle, J. Andrew

    2008-01-01

    Clusters or groups of individuals are the fundamental unit of observation in many wildlife sampling problems, including aerial surveys of waterfowl, marine mammals, and ungulates. Explicit accounting of cluster size in models for estimating abundance is necessary because detection of individuals within clusters is not independent and detectability of clusters is likely to increase with cluster size. This induces a cluster size bias in which the average cluster size in the sample is larger than in the population at large. Thus, failure to account for the relationship between delectability and cluster size will tend to yield a positive bias in estimates of abundance or density. I describe a hierarchical modeling framework for accounting for cluster-size bias in animal sampling. The hierarchical model consists of models for the observation process conditional on the cluster size distribution and the cluster size distribution conditional on the total number of clusters. Optionally, a spatial model can be specified that describes variation in the total number of clusters per sample unit. Parameter estimation, model selection, and criticism may be carried out using conventional likelihood-based methods. An extension of the model is described for the situation where measurable covariates at the level of the sample unit are available. Several candidate models within the proposed class are evaluated for aerial survey data on mallard ducks (Anas platyrhynchos).

  14. A hierarchical community occurrence model for North Carolina stream fish

    Science.gov (United States)

    Midway, S.R.; Wagner, Tyler; Tracy, B.H.

    2016-01-01

    The southeastern USA is home to one of the richest—and most imperiled and threatened—freshwater fish assemblages in North America. For many of these rare and threatened species, conservation efforts are often limited by a lack of data. Drawing on a unique and extensive data set spanning over 20 years, we modeled occurrence probabilities of 126 stream fish species sampled throughout North Carolina, many of which occur more broadly in the southeastern USA. Specifically, we developed species-specific occurrence probabilities from hierarchical Bayesian multispecies models that were based on common land use and land cover covariates. We also used index of biotic integrity tolerance classifications as a second level in the model hierarchy; we identify this level as informative for our work, but it is flexible for future model applications. Based on the partial-pooling property of the models, we were able to generate occurrence probabilities for many imperiled and data-poor species in addition to highlighting a considerable amount of occurrence heterogeneity that supports species-specific investigations whenever possible. Our results provide critical species-level information on many threatened and imperiled species as well as information that may assist with re-evaluation of existing management strategies, such as the use of surrogate species. Finally, we highlight the use of a relatively simple hierarchical model that can easily be generalized for similar situations in which conventional models fail to provide reliable estimates for data-poor groups.

  15. Hierarchical Bayesian spatial models for multispecies conservation planning and monitoring.

    Science.gov (United States)

    Carroll, Carlos; Johnson, Devin S; Dunk, Jeffrey R; Zielinski, William J

    2010-12-01

    Biologists who develop and apply habitat models are often familiar with the statistical challenges posed by their data's spatial structure but are unsure of whether the use of complex spatial models will increase the utility of model results in planning. We compared the relative performance of nonspatial and hierarchical Bayesian spatial models for three vertebrate and invertebrate taxa of conservation concern (Church's sideband snails [Monadenia churchi], red tree voles [Arborimus longicaudus], and Pacific fishers [Martes pennanti pacifica]) that provide examples of a range of distributional extents and dispersal abilities. We used presence-absence data derived from regional monitoring programs to develop models with both landscape and site-level environmental covariates. We used Markov chain Monte Carlo algorithms and a conditional autoregressive or intrinsic conditional autoregressive model framework to fit spatial models. The fit of Bayesian spatial models was between 35 and 55% better than the fit of nonspatial analogue models. Bayesian spatial models outperformed analogous models developed with maximum entropy (Maxent) methods. Although the best spatial and nonspatial models included similar environmental variables, spatial models provided estimates of residual spatial effects that suggested how ecological processes might structure distribution patterns. Spatial models built from presence-absence data improved fit most for localized endemic species with ranges constrained by poorly known biogeographic factors and for widely distributed species suspected to be strongly affected by unmeasured environmental variables or population processes. By treating spatial effects as a variable of interest rather than a nuisance, hierarchical Bayesian spatial models, especially when they are based on a common broad-scale spatial lattice (here the national Forest Inventory and Analysis grid of 24 km(2) hexagons), can increase the relevance of habitat models to multispecies

  16. Modeling risk and uncertainty in designing reverse logistics problem

    Directory of Open Access Journals (Sweden)

    Aida Nazari Gooran

    2018-01-01

    Full Text Available Increasing attention to environmental problems and social responsibility lead to appear reverse logistic (RL issues in designing supply chain which, in most recently, has received considerable attention from both academicians and practitioners. In this paper, a multi-product reverse logistic network design model is developed; then a hybrid method including Chance-constrained programming, Genetic algorithm and Monte Carlo simulation, are proposed to solve the developed model. The proposed model is solved for risk-averse and risk-seeking decision makers by conditional value at risk, sum of the excepted value and standard deviation, respectively. Comparisons of the results show that minimizing the costs had no direct relation with the kind of decision makers; however, in the most cases, risk-seeking decision maker gained more return products than risk-averse ones. It is clear that by increasing returned products to the chain, production costs of new products and material will be reduced and also by this act, environmental benefits will be created.

  17. A Cost Model for Integrated Logistic Support Activities

    Directory of Open Access Journals (Sweden)

    M. Elena Nenni

    2013-01-01

    Full Text Available An Integrated Logistic Support (ILS service has the objective of improving a system’s efficiency and availability for the life cycle. The system constructor offers the service to the customer, and she becomes the Contractor Logistic Support (CLS. The aim of this paper is to propose an approach to support the CLS in the budget formulation. Specific goals of the model are the provision of the annual cost of ILS activities through a specific cost model and a comprehensive examination of expected benefits, costs and savings under alternative ILS strategies. A simple example derived from an industrial application is also provided to illustrate the idea. Scientific literature is lacking in the topic and documents from the military are just dealing with the issue of performance measurement. Moreover, they are obviously focused on the customer’s perspective. Other scientific papers are general and focused only on maintenance or life cycle management. The model developed in this paper approaches the problem from the perspective of the CLS, and it is specifically tailored on the main issues of an ILS service.

  18. A logistics model for large space power systems

    Science.gov (United States)

    Koelle, H. H.

    Space Power Systems (SPS) have to overcome two hurdles: (1) to find an attractive design, manufacturing and assembly concept and (2) to have available a space transportation system that can provide economical logistic support during the construction and operational phases. An initial system feasibility study, some five years ago, was based on a reference system that used terrestrial resources only and was based partially on electric propulsion systems. The conclusion was: it is feasible but not yet economically competitive with other options. This study is based on terrestrial and extraterrestrial resources and on chemical (LH 2/LOX) propulsion systems. These engines are available from the Space Shuttle production line and require small changes only. Other so-called advanced propulsion systems investigated did not prove economically superior if lunar LOX is available! We assume that a Shuttle derived Heavy Lift Launch Vehicle (HLLV) will become available around the turn of the century and that this will be used to establish a research base on the lunar surface. This lunar base has the potential to grow into a lunar factory producing LOX and construction materials for supporting among other projects also the construction of space power systems in geostationary orbit. A model was developed to simulate the logistics support of such an operation for a 50-year life cycle. After 50 years 111 SPS units with 5 GW each and an availability of 90% will produce 100 × 5 = 500 GW. The model comprises 60 equations and requires 29 assumptions of the parameter involved. 60-state variables calculated with the 60 equations mentioned above are given on an annual basis and as averages for the 50-year life cycle. Recycling of defective parts in geostationary orbit is one of the features of the model. The state-of-the-art with respect to SPS technology is introduced as a variable Mg mass/MW electric power delivered. If the space manufacturing facility, a maintenance and repair facility

  19. Linguistic steganography on Twitter: hierarchical language modeling with manual interaction

    Science.gov (United States)

    Wilson, Alex; Blunsom, Phil; Ker, Andrew D.

    2014-02-01

    This work proposes a natural language stegosystem for Twitter, modifying tweets as they are written to hide 4 bits of payload per tweet, which is a greater payload than previous systems have achieved. The system, CoverTweet, includes novel components, as well as some already developed in the literature. We believe that the task of transforming covers during embedding is equivalent to unilingual machine translation (paraphrasing), and we use this equivalence to de ne a distortion measure based on statistical machine translation methods. The system incorporates this measure of distortion to rank possible tweet paraphrases, using a hierarchical language model; we use human interaction as a second distortion measure to pick the best. The hierarchical language model is designed to model the speci c language of the covers, which in this setting is the language of the Twitter user who is embedding. This is a change from previous work, where general-purpose language models have been used. We evaluate our system by testing the output against human judges, and show that humans are unable to distinguish stego tweets from cover tweets any better than random guessing.

  20. Hierarchical Swarm Model: A New Approach to Optimization

    Directory of Open Access Journals (Sweden)

    Hanning Chen

    2010-01-01

    Full Text Available This paper presents a novel optimization model called hierarchical swarm optimization (HSO, which simulates the natural hierarchical complex system from where more complex intelligence can emerge for complex problems solving. This proposed model is intended to suggest ways that the performance of HSO-based algorithms on complex optimization problems can be significantly improved. This performance improvement is obtained by constructing the HSO hierarchies, which means that an agent in a higher level swarm can be composed of swarms of other agents from lower level and different swarms of different levels evolve on different spatiotemporal scale. A novel optimization algorithm (named PS2O, based on the HSO model, is instantiated and tested to illustrate the ideas of HSO model clearly. Experiments were conducted on a set of 17 benchmark optimization problems including both continuous and discrete cases. The results demonstrate remarkable performance of the PS2O algorithm on all chosen benchmark functions when compared to several successful swarm intelligence and evolutionary algorithms.

  1. WASTES: a waste management logistics/economics model

    International Nuclear Information System (INIS)

    McNair, G.W.; Shay, M.R.; Fletcher, J.F.; Cashwell, J.W.

    1985-01-01

    The WASTES logistics model is a simulation language based model for analyzing the logistic flow of spent fuel/nuclear waste throughout the waste management system. The model tracks the movement of spent fuel/nuclear waste from point of generation to final destination. The model maintains inventories of spent fuel/nuclear waste at individual reactor sites as well as at various facilities within the waste management system. A maximum of 14 facilities may be utilized within a single run. These 14 facilities may include any combination of the following facilities: (1) federal interim storage (FIS), (2) reprocessing (REP), (3) monitored retrievable storage (MRS), (4) geological disposal facilities (GDF). The movement of spent fuel/nuclear waste between these facilities is controlled by the user specification of loading and unloading rates, annual and maximum capacities and commodity characteristics (minimum age or heat constraints) for each individual facility. In addition, the user may specify varying levels of priority on the spent fuel/nuclear waste that will be eligible for movement within a given year. These levels of priority allow the user to preferentially move spent fuel from reactor sites that are experiencing a loss of full-core-reserve (FCR) margin in a given year or from reactors that may be in the final stages of decommissioning. The WASTES model utilizes the reactor specific data available from the PNL spent fuel database. This database provides reactor specific information on items such as spent fuel basin size, reactor location, and transportation cask preference (i.e., rail or truck cask). In addition, detailed discharge data is maintained that provides the number of assemblies, metric tons, and exposure for both historic and projected discharges at each reactor site

  2. A model for logistics systems engineering management education in Europe

    NARCIS (Netherlands)

    Naim, M.; Lalwani, C.; Fortuin, L.; Schmidt, T.; Taylor, J.; Aronsson, H.

    2000-01-01

    This paper presents the need for a systems and process perspective of logistics. By defining logistics in this way a template for a logistics education course is developed. The template addresses functional, process and supply chain needs and has been developed by a number of university partners

  3. The Realized Hierarchical Archimedean Copula in Risk Modelling

    Directory of Open Access Journals (Sweden)

    Ostap Okhrin

    2017-06-01

    Full Text Available This paper introduces the concept of the realized hierarchical Archimedean copula (rHAC. The proposed approach inherits the ability of the copula to capture the dependencies among financial time series, and combines it with additional information contained in high-frequency data. The considered model does not suffer from the curse of dimensionality, and is able to accurately predict high-dimensional distributions. This flexibility is obtained by using a hierarchical structure in the copula. The time variability of the model is provided by daily forecasts of the realized correlation matrix, which is used to estimate the structure and the parameters of the rHAC. Extensive simulation studies show the validity of the estimator based on this realized correlation matrix, and its performance, in comparison to the benchmark models. The application of the estimator to one-day-ahead Value at Risk (VaR prediction using high-frequency data exhibits good forecasting properties for a multivariate portfolio.

  4. Identification of reverse logistics decision types from mathematical models

    Directory of Open Access Journals (Sweden)

    Pascual Cortés Pellicer

    2018-04-01

    Full Text Available Purpose: The increase in social awareness, politics and environmental regulation, the scarcity of raw materials and the desired “green” image, are some of the reasons that lead companies to decide for implement processes of Reverse Logistics (RL. At the time when incorporate new RL processes as key business processes, new and important decisions need to be made. Identification and knowledge of these decisions, including the information available and the implications for the company or supply chain, will be fundamental for decision-makers to achieve the best results. In the present work, the main types of RL decisions are identified. Design/methodology/approach: This paper is based on the analysis of mathematical models designed as tools to aid decision making in the field of RL. Once the types of interest work to be analyzed are defined, those studies that really deal about the object of study are searched and analyzed. The decision variables that are taken at work are identified and grouped according to the type of decision and, finally, are showed the main types of decisions used in mathematical models developed in the field of RL.     Findings: The principal conclusion of the research is that the most commonly addressed decisions with mathematical models in the field of RL are those related to the network’s configuration, followed by tactical/operative decisions such as the selections of product’s treatments to realize and the policy of returns or prices, among other decisions. Originality/value: The identification of the main decisions types of the reverse logistics will allow the managers of these processes to know and understand them better, while offer an integrated vision of them, favoring the achievement of better results.

  5. Learning Hierarchical User Interest Models from Web Pages

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    We propose an algorithm for learning hierarchical user interest models according to the Web pages users have browsed. In this algorithm, the interests of a user are represented into a tree which is called a user interest tree, the content and the structure of which can change simultaneously to adapt to the changes in a user's interests. This expression represents a user's specific and general interests as a continuum. In some sense, specific interests correspond to short-term interests, while general interests correspond to long-term interests. So this representation more really reflects the users' interests. The algorithm can automatically model a user's multiple interest domains, dynamically generate the interest models and prune a user interest tree when the number of the nodes in it exceeds given value. Finally, we show the experiment results in a Chinese Web Site.

  6. The Use of Logistic Model in RUL Assessment

    Science.gov (United States)

    Gumiński, R.; Radkowski, S.

    2017-12-01

    The paper takes on the issue of assessment of remaining useful life (RUL). The goal of the paper was to develop a method, which would enable use of diagnostic information in the task of reducing the uncertainty related to technical risk. Prediction of the remaining useful life (RUL) of the system is a very important task for maintenance strategy. In the literature RUL of an engineering system is defined as the first future time instant in which thresholds of conditions (safety, operational quality, maintenance cost, etc) are violated. Knowledge of RUL offers the possibility of planning the testing and repair activities. Building models of damage development is important in this task. In the presented work, logistic function will be used to model fatigue crack development. It should be remembered that modeling of every phase of damage development is very difficult, yet modeling of every phase of damage separately, especially including on-line diagnostic information is more effective. Particular attention was paid to the possibility of forecasting the occurrence of damage due to fatigue while relying on the analysis of the structure of a vibroacoustic signal.

  7. Modeling evolutionary dynamics of epigenetic mutations in hierarchically organized tumors.

    Directory of Open Access Journals (Sweden)

    Andrea Sottoriva

    2011-05-01

    Full Text Available The cancer stem cell (CSC concept is a highly debated topic in cancer research. While experimental evidence in favor of the cancer stem cell theory is apparently abundant, the results are often criticized as being difficult to interpret. An important reason for this is that most experimental data that support this model rely on transplantation studies. In this study we use a novel cellular Potts model to elucidate the dynamics of established malignancies that are driven by a small subset of CSCs. Our results demonstrate that epigenetic mutations that occur during mitosis display highly altered dynamics in CSC-driven malignancies compared to a classical, non-hierarchical model of growth. In particular, the heterogeneity observed in CSC-driven tumors is considerably higher. We speculate that this feature could be used in combination with epigenetic (methylation sequencing studies of human malignancies to prove or refute the CSC hypothesis in established tumors without the need for transplantation. Moreover our tumor growth simulations indicate that CSC-driven tumors display evolutionary features that can be considered beneficial during tumor progression. Besides an increased heterogeneity they also exhibit properties that allow the escape of clones from local fitness peaks. This leads to more aggressive phenotypes in the long run and makes the neoplasm more adaptable to stringent selective forces such as cancer treatment. Indeed when therapy is applied the clone landscape of the regrown tumor is more aggressive with respect to the primary tumor, whereas the classical model demonstrated similar patterns before and after therapy. Understanding these often counter-intuitive fundamental properties of (non-hierarchically organized malignancies is a crucial step in validating the CSC concept as well as providing insight into the therapeutical consequences of this model.

  8. Optimizing Warehouse Logistics Operations Through Site Selection Models: Istanbul, Turkey

    National Research Council Canada - National Science Library

    Erdemir, Ugur

    2003-01-01

    .... Given the dynamic environment surrounding the military operations, logistic sustainability requirements, rapid information technology developments, and budget-constrained Turkish DoD acquisition...

  9. Tractography segmentation using a hierarchical Dirichlet processes mixture model.

    Science.gov (United States)

    Wang, Xiaogang; Grimson, W Eric L; Westin, Carl-Fredrik

    2011-01-01

    In this paper, we propose a new nonparametric Bayesian framework to cluster white matter fiber tracts into bundles using a hierarchical Dirichlet processes mixture (HDPM) model. The number of clusters is automatically learned driven by data with a Dirichlet process (DP) prior instead of being manually specified. After the models of bundles have been learned from training data without supervision, they can be used as priors to cluster/classify fibers of new subjects for comparison across subjects. When clustering fibers of new subjects, new clusters can be created for structures not observed in the training data. Our approach does not require computing pairwise distances between fibers and can cluster a huge set of fibers across multiple subjects. We present results on several data sets, the largest of which has more than 120,000 fibers. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Hierarchical decision modeling essays in honor of Dundar F. Kocaoglu

    CERN Document Server

    2016-01-01

    This volume, developed in honor of Dr. Dundar F. Kocaoglu, aims to demonstrate the applications of the Hierarchical Decision Model (HDM) in different sectors and its capacity in decision analysis. It is comprised of essays from noted scholars, academics and researchers of engineering and technology management around the world. This book is organized into four parts: Technology Assessment, Strategic Planning, National Technology Planning and Decision Making Tools. Dr. Dundar F. Kocaoglu is one of the pioneers of multiple decision models using hierarchies, and creator of the HDM in decision analysis. HDM is a mission-oriented method for evaluation and/or selection among alternatives. A wide range of alternatives can be considered, including but not limited to, different technologies, projects, markets, jobs, products, cities to live in, houses to buy, apartments to rent, and schools to attend. Dr. Kocaoglu’s approach has been adopted for decision problems in many industrial sectors, including electronics rese...

  11. A Review on Quantitative Models for Sustainable Food Logistics Management

    NARCIS (Netherlands)

    Soysal, M.; Bloemhof, J.M.; Meuwissen, M.P.M.; Vorst, van der J.G.A.J.

    2012-01-01

    The last two decades food logistics systems have seen the transition from a focus on traditional supply chain management to food supply chain management, and successively, to sustainable food supply chain management. The main aim of this study is to identify key logistical aims in these three phases

  12. A Model for Logistics Systems Engineering Management Education in Europe.

    Science.gov (United States)

    Naim, M.; Lalwani, C.; Fortuin, L.; Schmidt, T.; Taylor, J.; Aronsson, H.

    2000-01-01

    Presents the need for a systems and process perspective of logistics, and develops a template for a logistics education course. The template addresses functional, process, and supply chain needs and was developed by a number of university partners with core skills in different traditional disciplines. (Contains 31 references.) (Author/WRM)

  13. Design logistics performance measurement model of automotive component industry for srengthening competitiveness of dealing AEC 2015

    Science.gov (United States)

    Amran, T. G.; Janitra Yose, Mindy

    2018-03-01

    As the free trade Asean Economic Community (AEC) causes the tougher competition, it is important that Indonesia’s automotive industry have high competitiveness as well. A model of logistics performance measurement was designed as an evaluation tool for automotive component companies to improve their logistics performance in order to compete in AEC. The design of logistics performance measurement model was based on the Logistics Scorecard perspectives, divided into two stages: identifying the logistics business strategy to get the KPI and arranging the model. 23 KPI was obtained. The measurement result can be taken into consideration of determining policies to improve the performance logistics competitiveness.

  14. Regulator Loss Functions and Hierarchical Modeling for Safety Decision Making.

    Science.gov (United States)

    Hatfield, Laura A; Baugh, Christine M; Azzone, Vanessa; Normand, Sharon-Lise T

    2017-07-01

    Regulators must act to protect the public when evidence indicates safety problems with medical devices. This requires complex tradeoffs among risks and benefits, which conventional safety surveillance methods do not incorporate. To combine explicit regulator loss functions with statistical evidence on medical device safety signals to improve decision making. In the Hospital Cost and Utilization Project National Inpatient Sample, we select pediatric inpatient admissions and identify adverse medical device events (AMDEs). We fit hierarchical Bayesian models to the annual hospital-level AMDE rates, accounting for patient and hospital characteristics. These models produce expected AMDE rates (a safety target), against which we compare the observed rates in a test year to compute a safety signal. We specify a set of loss functions that quantify the costs and benefits of each action as a function of the safety signal. We integrate the loss functions over the posterior distribution of the safety signal to obtain the posterior (Bayes) risk; the preferred action has the smallest Bayes risk. Using simulation and an analysis of AMDE data, we compare our minimum-risk decisions to a conventional Z score approach for classifying safety signals. The 2 rules produced different actions for nearly half of hospitals (45%). In the simulation, decisions that minimize Bayes risk outperform Z score-based decisions, even when the loss functions or hierarchical models are misspecified. Our method is sensitive to the choice of loss functions; eliciting quantitative inputs to the loss functions from regulators is challenging. A decision-theoretic approach to acting on safety signals is potentially promising but requires careful specification of loss functions in consultation with subject matter experts.

  15. GSMNet: A Hierarchical Graph Model for Moving Objects in Networks

    Directory of Open Access Journals (Sweden)

    Hengcai Zhang

    2017-03-01

    Full Text Available Existing data models for moving objects in networks are often limited by flexibly controlling the granularity of representing networks and the cost of location updates and do not encompass semantic information, such as traffic states, traffic restrictions and social relationships. In this paper, we aim to fill the gap of traditional network-constrained models and propose a hierarchical graph model called the Geo-Social-Moving model for moving objects in Networks (GSMNet that adopts four graph structures, RouteGraph, SegmentGraph, ObjectGraph and MoveGraph, to represent the underlying networks, trajectories and semantic information in an integrated manner. The bulk of user-defined data types and corresponding operators is proposed to handle moving objects and answer a new class of queries supporting three kinds of conditions: spatial, temporal and semantic information. Then, we develop a prototype system with the native graph database system Neo4Jto implement the proposed GSMNet model. In the experiment, we conduct the performance evaluation using simulated trajectories generated from the BerlinMOD (Berlin Moving Objects Database benchmark and compare with the mature MOD system Secondo. The results of 17 benchmark queries demonstrate that our proposed GSMNet model has strong potential to reduce time-consuming table join operations an d shows remarkable advantages with regard to representing semantic information and controlling the cost of location updates.

  16. Application of hierarchical genetic models to Raven and WAIS subtests: a Dutch twin study

    NARCIS (Netherlands)

    Rijsdijk, F.V.; Vernon, P.A.; Boomsma, D.I.

    2002-01-01

    Hierarchical models of intelligence are highly informative and widely accepted. Application of these models to twin data, however, is sparse. This paper addresses the question of how a genetic hierarchical model fits the Wechsler Adult Intelligence Scale (WAIS) subtests and the Raven Standard

  17. Drought Patterns Forecasting using an Auto-Regressive Logistic Model

    Science.gov (United States)

    del Jesus, M.; Sheffield, J.; Méndez Incera, F. J.; Losada, I. J.; Espejo, A.

    2014-12-01

    Drought is characterized by a water deficit that may manifest across a large range of spatial and temporal scales. Drought may create important socio-economic consequences, many times of catastrophic dimensions. A quantifiable definition of drought is elusive because depending on its impacts, consequences and generation mechanism, different water deficit periods may be identified as a drought by virtue of some definitions but not by others. Droughts are linked to the water cycle and, although a climate change signal may not have emerged yet, they are also intimately linked to climate.In this work we develop an auto-regressive logistic model for drought prediction at different temporal scales that makes use of a spatially explicit framework. Our model allows to include covariates, continuous or categorical, to improve the performance of the auto-regressive component.Our approach makes use of dimensionality reduction (principal component analysis) and classification techniques (K-Means and maximum dissimilarity) to simplify the representation of complex climatic patterns, such as sea surface temperature (SST) and sea level pressure (SLP), while including information on their spatial structure, i.e. considering their spatial patterns. This procedure allows us to include in the analysis multivariate representation of complex climatic phenomena, as the El Niño-Southern Oscillation. We also explore the impact of other climate-related variables such as sun spots. The model allows to quantify the uncertainty of the forecasts and can be easily adapted to make predictions under future climatic scenarios. The framework herein presented may be extended to other applications such as flash flood analysis, or risk assessment of natural hazards.

  18. A Study on Logistics Cluster Competitiveness among Asia Main Countries using the Porter's Diamond Model

    Directory of Open Access Journals (Sweden)

    Tae Won Chung

    2016-12-01

    Full Text Available Measurement and discussions of logistics cluster competitiveness with a national approach are required to boost agglomeration effects and potentially create logistics efficiency and productivity. This study developed assessment criteria of logistics cluster competitiveness based on Porter's diamond model, calculated the weight of each criterion by the AHP method, and finally evaluated and discussed logistics cluster competitiveness among Asia main countries. The results indicate that there was a large difference in logistics cluster competitiveness among six countries. The logistics cluster competitiveness scores of Singapore (7.93, Japan (7.38, and Hong Kong (7.04 are observably different from those of China (5.40, Korea (5.08, and Malaysia (3.46. Singapore, with the highest competitiveness score, revealed its absolute advantage in logistics cluster indices. These research results intend to provide logistics policy makers with some strategic recommendations, and may serve as a baseline for further logistics cluster studies using Porter's diamond model.

  19. Outsourcing Wholesale Logistics, A Model for Future Systems

    National Research Council Canada - National Science Library

    McDaniels, Lloyd

    2002-01-01

    .... This paper outlines the method to reduce those costs by providing incentives to simultaneously increase operational readiness and reduce logistics requirements of the system at both the wholesale and retail levels...

  20. MODELING SNAKE MICROHABITAT FROM RADIOTELEMETRY STUDIES USING POLYTOMOUS LOGISTIC REGRESSION

    Science.gov (United States)

    Multivariate analysis of snake microhabitat has historically used techniques that were derived under assumptions of normality and common covariance structure (e.g., discriminant function analysis, MANOVA). In this study, polytomous logistic regression (PLR which does not require ...

  1. Collaborative autonomous systems in models of urban logistics

    OpenAIRE

    Arango Serna, Martín Darío; Serna Uran, Conrado Augusto; Alvarez Uribe, Karla Cristina; Arango Serna, Martín Darío

    2012-01-01

    Cities growth and along with them the exchange and distribution of goods and services has led in recent years to a greater increasing interest for the optimization of logistic processes carried out in urban areas. In this article, the main approaches and solutions which have been proposed from academic research will be described, focusing mainly on collaborative autonomic logistics, which is offered as an attractive solution to the urban goods distribution problems in complex cities.

  2. GREEN LOGISTICS – A DIFFERENT AND SUSTAINABLE BUSINESS GROWTH MODEL

    OpenAIRE

    BRĂDESCU Georgiana

    2014-01-01

    Built on the concepts of green logistics and green supply chain management (GrSCM), this paper presents the relationship between logistical activities and its related environmental effects and costs. By greening their supply chain, companies can better use their assets, optimize resources- do more with less, improve and create sustainable technology, ensure continuity and strategic, long-term alliances. Business ethics and social responsibility are important components of organisational effec...

  3. Logistics Systems Engineer – Interdisciplinary Competence Model for Modern Education

    OpenAIRE

    Tarvo Niine; Ott Koppel

    2015-01-01

    Logistics is an interdisciplinary field of study. Modern logisticians need to integrate business management and administration skills with technology design, IT systems and other engineering fields. However, based on research of university curricula and competence standards in logistics, the engineering aspect is not represented to full potential. There are some treatments of logistician competences which relate to engineering, but not a modernized one with wide-spread recognition. This paper...

  4. MODELING THE RED SEQUENCE: HIERARCHICAL GROWTH YET SLOW LUMINOSITY EVOLUTION

    International Nuclear Information System (INIS)

    Skelton, Rosalind E.; Bell, Eric F.; Somerville, Rachel S.

    2012-01-01

    We explore the effects of mergers on the evolution of massive early-type galaxies by modeling the evolution of their stellar populations in a hierarchical context. We investigate how a realistic red sequence population set up by z ∼ 1 evolves under different assumptions for the merger and star formation histories, comparing changes in color, luminosity, and mass. The purely passive fading of existing red sequence galaxies, with no further mergers or star formation, results in dramatic changes at the bright end of the luminosity function and color-magnitude relation. Without mergers there is too much evolution in luminosity at a fixed space density compared to observations. The change in color and magnitude at a fixed mass resembles that of a passively evolving population that formed relatively recently, at z ∼ 2. Mergers among the red sequence population ('dry mergers') occurring after z = 1 build up mass, counteracting the fading of the existing stellar populations to give smaller changes in both color and luminosity for massive galaxies. By allowing some galaxies to migrate from the blue cloud onto the red sequence after z = 1 through gas-rich mergers, younger stellar populations are added to the red sequence. This manifestation of the progenitor bias increases the scatter in age and results in even smaller changes in color and luminosity between z = 1 and z = 0 at a fixed mass. The resultant evolution appears much slower, resembling the passive evolution of a population that formed at high redshift (z ∼ 3-5), and is in closer agreement with observations. We conclude that measurements of the luminosity and color evolution alone are not sufficient to distinguish between the purely passive evolution of an old population and cosmologically motivated hierarchical growth, although these scenarios have very different implications for the mass growth of early-type galaxies over the last half of cosmic history.

  5. Hierarchical modeling and its numerical implementation for layered thin elastic structures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jin-Rae [Hongik University, Sejong (Korea, Republic of)

    2017-05-15

    Thin elastic structures such as beam- and plate-like structures and laminates are characterized by the small thickness, which lead to classical plate and laminate theories in which the displacement fields through the thickness are assumed linear or higher-order polynomials. These classical theories are either insufficient to represent the complex stress variation through the thickness or may encounter the accuracy-computational cost dilemma. In order to overcome the inherent problem of classical theories, the concept of hierarchical modeling has been emerged. In the hierarchical modeling, the hierarchical models with different model levels are selected and combined within a structure domain, in order to make the modeling error be distributed as uniformly as possible throughout the problem domain. The purpose of current study is to explore the potential of hierarchical modeling for the effective numerical analysis of layered structures such as laminated composite. For this goal, the hierarchical models are constructed and the hierarchical modeling is implemented by selectively adjusting the level of hierarchical models. As well, the major characteristics of hierarchical models are investigated through the numerical experiments.

  6. Bayesian Hierarchical Random Effects Models in Forensic Science

    Directory of Open Access Journals (Sweden)

    Colin G. G. Aitken

    2018-04-01

    Full Text Available Statistical modeling of the evaluation of evidence with the use of the likelihood ratio has a long history. It dates from the Dreyfus case at the end of the nineteenth century through the work at Bletchley Park in the Second World War to the present day. The development received a significant boost in 1977 with a seminal work by Dennis Lindley which introduced a Bayesian hierarchical random effects model for the evaluation of evidence with an example of refractive index measurements on fragments of glass. Many models have been developed since then. The methods have now been sufficiently well-developed and have become so widespread that it is timely to try and provide a software package to assist in their implementation. With that in mind, a project (SAILR: Software for the Analysis and Implementation of Likelihood Ratios was funded by the European Network of Forensic Science Institutes through their Monopoly programme to develop a software package for use by forensic scientists world-wide that would assist in the statistical analysis and implementation of the approach based on likelihood ratios. It is the purpose of this document to provide a short review of a small part of this history. The review also provides a background, or landscape, for the development of some of the models within the SAILR package and references to SAILR as made as appropriate.

  7. Bayesian Hierarchical Random Effects Models in Forensic Science.

    Science.gov (United States)

    Aitken, Colin G G

    2018-01-01

    Statistical modeling of the evaluation of evidence with the use of the likelihood ratio has a long history. It dates from the Dreyfus case at the end of the nineteenth century through the work at Bletchley Park in the Second World War to the present day. The development received a significant boost in 1977 with a seminal work by Dennis Lindley which introduced a Bayesian hierarchical random effects model for the evaluation of evidence with an example of refractive index measurements on fragments of glass. Many models have been developed since then. The methods have now been sufficiently well-developed and have become so widespread that it is timely to try and provide a software package to assist in their implementation. With that in mind, a project (SAILR: Software for the Analysis and Implementation of Likelihood Ratios) was funded by the European Network of Forensic Science Institutes through their Monopoly programme to develop a software package for use by forensic scientists world-wide that would assist in the statistical analysis and implementation of the approach based on likelihood ratios. It is the purpose of this document to provide a short review of a small part of this history. The review also provides a background, or landscape, for the development of some of the models within the SAILR package and references to SAILR as made as appropriate.

  8. Renormalization group analysis of a simple hierarchical fermion model

    International Nuclear Information System (INIS)

    Dorlas, T.C.

    1991-01-01

    A simple hierarchical fermion model is constructed which gives rise to an exact renormalization transformation in a 2-dimensional parameter space. The behaviour of this transformation is studied. It has two hyperbolic fixed points for which the existence of a global critical line is proven. The asymptotic behaviour of the transformation is used to prove the existence of the thermodynamic limit in a certain domain in parameter space. Also the existence of a continuum limit for these theories is investigated using information about the asymptotic renormalization behaviour. It turns out that the 'trivial' fixed point gives rise to a two-parameter family of continuum limits corresponding to that part of parameter space where the renormalization trajectories originate at this fixed point. Although the model is not very realistic it serves as a simple example of the appliclation of the renormalization group to proving the existence of the thermodynamic limit and the continuum limit of lattice models. Moreover, it illustrates possible complications that can arise in global renormalization group behaviour, and that might also be present in other models where no global analysis of the renormalization transformation has yet been achieved. (orig.)

  9. Testing adaptive toolbox models: a Bayesian hierarchical approach.

    Science.gov (United States)

    Scheibehenne, Benjamin; Rieskamp, Jörg; Wagenmakers, Eric-Jan

    2013-01-01

    Many theories of human cognition postulate that people are equipped with a repertoire of strategies to solve the tasks they face. This theoretical framework of a cognitive toolbox provides a plausible account of intra- and interindividual differences in human behavior. Unfortunately, it is often unclear how to rigorously test the toolbox framework. How can a toolbox model be quantitatively specified? How can the number of toolbox strategies be limited to prevent uncontrolled strategy sprawl? How can a toolbox model be formally tested against alternative theories? The authors show how these challenges can be met by using Bayesian inference techniques. By means of parameter recovery simulations and the analysis of empirical data across a variety of domains (i.e., judgment and decision making, children's cognitive development, function learning, and perceptual categorization), the authors illustrate how Bayesian inference techniques allow toolbox models to be quantitatively specified, strategy sprawl to be contained, and toolbox models to be rigorously tested against competing theories. The authors demonstrate that their approach applies at the individual level but can also be generalized to the group level with hierarchical Bayesian procedures. The suggested Bayesian inference techniques represent a theoretical and methodological advancement for toolbox theories of cognition and behavior.

  10. Business Process Modeling for Domain Outbound Logistics System: Analytic Perspective with BPMN 2.0

    OpenAIRE

    Khabbazi, Mahmood Reza; Hasan, M.K; Sulaiman, R; Shapi’i, A

    2013-01-01

    This paper proposes a generic"to-be" business processes model for domain highest-level outbound logistics system representing the possible alternative structure and behaviour of the system in respect to x-party logistics services applicable in Small-to-medium sized enterprises. The generic framework of outbound logistics model consists of one main modular system named as the Shipping System including five internal sub-systems of the shipping core, shipping requirement, First Party Logistics (...

  11. Application of Hierarchical Linear Models/Linear Mixed-Effects Models in School Effectiveness Research

    Science.gov (United States)

    Ker, H. W.

    2014-01-01

    Multilevel data are very common in educational research. Hierarchical linear models/linear mixed-effects models (HLMs/LMEs) are often utilized to analyze multilevel data nowadays. This paper discusses the problems of utilizing ordinary regressions for modeling multilevel educational data, compare the data analytic results from three regression…

  12. Hierarchical Bayesian modelling of mobility metrics for hazard model input calibration

    Science.gov (United States)

    Calder, Eliza; Ogburn, Sarah; Spiller, Elaine; Rutarindwa, Regis; Berger, Jim

    2015-04-01

    In this work we present a method to constrain flow mobility input parameters for pyroclastic flow models using hierarchical Bayes modeling of standard mobility metrics such as H/L and flow volume etc. The advantage of hierarchical modeling is that it can leverage the information in global dataset for a particular mobility metric in order to reduce the uncertainty in modeling of an individual volcano, especially important where individual volcanoes have only sparse datasets. We use compiled pyroclastic flow runout data from Colima, Merapi, Soufriere Hills, Unzen and Semeru volcanoes, presented in an open-source database FlowDat (https://vhub.org/groups/massflowdatabase). While the exact relationship between flow volume and friction varies somewhat between volcanoes, dome collapse flows originating from the same volcano exhibit similar mobility relationships. Instead of fitting separate regression models for each volcano dataset, we use a variation of the hierarchical linear model (Kass and Steffey, 1989). The model presents a hierarchical structure with two levels; all dome collapse flows and dome collapse flows at specific volcanoes. The hierarchical model allows us to assume that the flows at specific volcanoes share a common distribution of regression slopes, then solves for that distribution. We present comparisons of the 95% confidence intervals on the individual regression lines for the data set from each volcano as well as those obtained from the hierarchical model. The results clearly demonstrate the advantage of considering global datasets using this technique. The technique developed is demonstrated here for mobility metrics, but can be applied to many other global datasets of volcanic parameters. In particular, such methods can provide a means to better contain parameters for volcanoes for which we only have sparse data, a ubiquitous problem in volcanology.

  13. A hierarchical network modeling method for railway tunnels safety assessment

    Science.gov (United States)

    Zhou, Jin; Xu, Weixiang; Guo, Xin; Liu, Xumin

    2017-02-01

    Using network theory to model risk-related knowledge on accidents is regarded as potential very helpful in risk management. A large amount of defects detection data for railway tunnels is collected in autumn every year in China. It is extremely important to discover the regularities knowledge in database. In this paper, based on network theories and by using data mining techniques, a new method is proposed for mining risk-related regularities to support risk management in railway tunnel projects. A hierarchical network (HN) model which takes into account the tunnel structures, tunnel defects, potential failures and accidents is established. An improved Apriori algorithm is designed to rapidly and effectively mine correlations between tunnel structures and tunnel defects. Then an algorithm is presented in order to mine the risk-related regularities table (RRT) from the frequent patterns. At last, a safety assessment method is proposed by consideration of actual defects and possible risks of defects gained from the RRT. This method cannot only generate the quantitative risk results but also reveal the key defects and critical risks of defects. This paper is further development on accident causation network modeling methods which can provide guidance for specific maintenance measure.

  14. Production optimisation in the petrochemical industry by hierarchical multivariate modelling

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Magnus; Furusjoe, Erik; Jansson, Aasa

    2004-06-01

    This project demonstrates the advantages of applying hierarchical multivariate modelling in the petrochemical industry in order to increase knowledge of the total process. The models indicate possible ways to optimise the process regarding the use of energy and raw material, which is directly linked to the environmental impact of the process. The refinery of Nynaes Refining AB (Goeteborg, Sweden) has acted as a demonstration site in this project. The models developed for the demonstration site resulted in: Detection of an unknown process disturbance and suggestions of possible causes; Indications on how to increase the yield in combination with energy savings; The possibility to predict product quality from on-line process measurements, making the results available at a higher frequency than customary laboratory analysis; Quantification of the gradually lowered efficiency of heat transfer in the furnace and increased fuel consumption as an effect of soot build-up on the furnace coils; Increased knowledge of the relation between production rate and the efficiency of the heat exchangers. This report is one of two reports from the project. It contains a technical discussion of the result with some degree of detail. A shorter and more easily accessible report is also available, see IVL report B1586-A.

  15. Evolution Model and Simulation of Profit Model of Agricultural Products Logistics Financing

    Science.gov (United States)

    Yang, Bo; Wu, Yan

    2018-03-01

    Agricultural products logistics financial warehousing business mainly involves agricultural production and processing enterprises, third-party logistics enterprises and financial institutions tripartite, to enable the three parties to achieve win-win situation, the article first gives the replication dynamics and evolutionary stability strategy between the three parties in business participation, and then use NetLogo simulation platform, using the overall modeling and simulation method of Multi-Agent, established the evolutionary game simulation model, and run the model under different revenue parameters, finally, analyzed the simulation results. To achieve the agricultural products logistics financial financing warehouse business to participate in tripartite mutually beneficial win-win situation, thus promoting the smooth flow of agricultural products logistics business.

  16. Predictive ability of logistic regression, auto-logistic regression and neural network models in empirical land-use change modeling: a case study

    NARCIS (Netherlands)

    Lin, Y.P.; Chu, H.J.; Wu, C.F.; Verburg, P.H.

    2011-01-01

    The objective of this study is to compare the abilities of logistic, auto-logistic and artificial neural network (ANN) models for quantifying the relationships between land uses and their drivers. In addition, the application of the results obtained by the three techniques is tested in a dynamic

  17. Should metacognition be measured by logistic regression?

    Science.gov (United States)

    Rausch, Manuel; Zehetleitner, Michael

    2017-03-01

    Are logistic regression slopes suitable to quantify metacognitive sensitivity, i.e. the efficiency with which subjective reports differentiate between correct and incorrect task responses? We analytically show that logistic regression slopes are independent from rating criteria in one specific model of metacognition, which assumes (i) that rating decisions are based on sensory evidence generated independently of the sensory evidence used for primary task responses and (ii) that the distributions of evidence are logistic. Given a hierarchical model of metacognition, logistic regression slopes depend on rating criteria. According to all considered models, regression slopes depend on the primary task criterion. A reanalysis of previous data revealed that massive numbers of trials are required to distinguish between hierarchical and independent models with tolerable accuracy. It is argued that researchers who wish to use logistic regression as measure of metacognitive sensitivity need to control the primary task criterion and rating criteria. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Bayesian Hierarchical Scale Mixtures of Log-Normal Models for Inference in Reliability with Stochastic Constraint

    Directory of Open Access Journals (Sweden)

    Hea-Jung Kim

    2017-06-01

    Full Text Available This paper develops Bayesian inference in reliability of a class of scale mixtures of log-normal failure time (SMLNFT models with stochastic (or uncertain constraint in their reliability measures. The class is comprehensive and includes existing failure time (FT models (such as log-normal, log-Cauchy, and log-logistic FT models as well as new models that are robust in terms of heavy-tailed FT observations. Since classical frequency approaches to reliability analysis based on the SMLNFT model with stochastic constraint are intractable, the Bayesian method is pursued utilizing a Markov chain Monte Carlo (MCMC sampling based approach. This paper introduces a two-stage maximum entropy (MaxEnt prior, which elicits a priori uncertain constraint and develops Bayesian hierarchical SMLNFT model by using the prior. The paper also proposes an MCMC method for Bayesian inference in the SMLNFT model reliability and calls attention to properties of the MaxEnt prior that are useful for method development. Finally, two data sets are used to illustrate how the proposed methodology works.

  19. Logistic regression modelling: procedures and pitfalls in developing and interpreting prediction models

    Directory of Open Access Journals (Sweden)

    Nataša Šarlija

    2017-01-01

    Full Text Available This study sheds light on the most common issues related to applying logistic regression in prediction models for company growth. The purpose of the paper is 1 to provide a detailed demonstration of the steps in developing a growth prediction model based on logistic regression analysis, 2 to discuss common pitfalls and methodological errors in developing a model, and 3 to provide solutions and possible ways of overcoming these issues. Special attention is devoted to the question of satisfying logistic regression assumptions, selecting and defining dependent and independent variables, using classification tables and ROC curves, for reporting model strength, interpreting odds ratios as effect measures and evaluating performance of the prediction model. Development of a logistic regression model in this paper focuses on a prediction model of company growth. The analysis is based on predominantly financial data from a sample of 1471 small and medium-sized Croatian companies active between 2009 and 2014. The financial data is presented in the form of financial ratios divided into nine main groups depicting following areas of business: liquidity, leverage, activity, profitability, research and development, investing and export. The growth prediction model indicates aspects of a business critical for achieving high growth. In that respect, the contribution of this paper is twofold. First, methodological, in terms of pointing out pitfalls and potential solutions in logistic regression modelling, and secondly, theoretical, in terms of identifying factors responsible for high growth of small and medium-sized companies.

  20. A joint model for multivariate hierarchical semicontinuous data with replications.

    Science.gov (United States)

    Kassahun-Yimer, Wondwosen; Albert, Paul S; Lipsky, Leah M; Nansel, Tonja R; Liu, Aiyi

    2017-01-01

    Longitudinal data are often collected in biomedical applications in such a way that measurements on more than one response are taken from a given subject repeatedly overtime. For some problems, these multiple profiles need to be modeled jointly to get insight on the joint evolution and/or association of these responses over time. In practice, such longitudinal outcomes may have many zeros that need to be accounted for in the analysis. For example, in dietary intake studies, as we focus on in this paper, some food components are eaten daily by almost all subjects, while others are consumed episodically, where individuals have time periods where they do not eat these components followed by periods where they do. These episodically consumed foods need to be adequately modeled to account for the many zeros that are encountered. In this paper, we propose a joint model to analyze multivariate hierarchical semicontinuous data characterized by many zeros and more than one replicate observations at each measurement occasion. This approach allows for different probability mechanisms for describing the zero behavior as compared with the mean intake given that the individual consumes the food. To deal with the potentially large number of multivariate profiles, we use a pairwise model fitting approach that was developed in the context of multivariate Gaussian random effects models with large number of multivariate components. The novelty of the proposed approach is that it incorporates: (1) multivariate, possibly correlated, response variables; (2) within subject correlation resulting from repeated measurements taken from each subject; (3) many zero observations; (4) overdispersion; and (5) replicate measurements at each visit time.

  1. A Cloud Computing Model for Optimization of Transport Logistics Process

    Directory of Open Access Journals (Sweden)

    Benotmane Zineb

    2017-09-01

    Full Text Available In any increasing competitive environment and even in companies; we must adopt a good logistic chain management policy which is the main objective to increase the overall gain by maximizing profits and minimizing costs, including manufacturing costs such as: transaction, transport, storage, etc. In this paper, we propose a cloud platform of this chain logistic for decision support; in fact, this decision must be made to adopt new strategy for cost optimization, besides, the decision-maker must have knowledge on the consequences of this new strategy. Our proposed cloud computing platform has a multilayer structure; this later is contained from a set of web services to provide a link between applications using different technologies; to enable sending; and receiving data through protocols, which should be understandable by everyone. The chain logistic is a process-oriented business; it’s used to evaluate logistics process costs, to propose optimal solutions and to evaluate these solutions before their application. As a scenario, we have formulated the problem for the delivery process, and we have proposed a modified Bin-packing algorithm to improve vehicles loading.

  2. Network Design in Reverse Logistics: A Quantitative Model

    NARCIS (Netherlands)

    Krikke, H.R.; Kooij, E.J.; Schuur, Peter; Speranza, M. Grazia; Stähly, Paul

    1999-01-01

    The introduction of (extended) producer responsibility forces Original Equipment Manufacturers to solve entirely new managerial problems. One of the issues concerns the physical design of the reverse logistic network, which is a problem that fits into the class of facility-location problems. Since

  3. Evaluation of city logistics solutions with business model analysis

    NARCIS (Netherlands)

    Quak, H.J.; Balm, S.H.; Posthumus, B.

    2014-01-01

    Small scale, local demonstrations of which the outcomes are considered to be only appropriate within a specific context occur quite often in the field of city logistics. Various local demonstrations usually show a solution’s technical and operational feasibility. These often subsidized

  4. A Study on Logistics Cluster Competitiveness among Asia Main Countries using the Porter's Diamond Model

    OpenAIRE

    Tae Won Chung

    2016-01-01

    Measurement and discussions of logistics cluster competitiveness with a national approach are required to boost agglomeration effects and potentially create logistics efficiency and productivity. This study developed assessment criteria of logistics cluster competitiveness based on Porter's diamond model, calculated the weight of each criterion by the AHP method, and finally evaluated and discussed logistics cluster competitiveness among Asia main countries. The results indicate that there wa...

  5. Adaptive hierarchical grid model of water-borne pollutant dispersion

    Science.gov (United States)

    Borthwick, A. G. L.; Marchant, R. D.; Copeland, G. J. M.

    Water pollution by industrial and agricultural waste is an increasingly major public health issue. It is therefore important for water engineers and managers to be able to predict accurately the local behaviour of water-borne pollutants. This paper describes the novel and efficient coupling of dynamically adaptive hierarchical grids with standard solvers of the advection-diffusion equation. Adaptive quadtree grids are able to focus on regions of interest such as pollutant fronts, while retaining economy in the total number of grid elements through selective grid refinement. Advection is treated using Lagrangian particle tracking. Diffusion is solved separately using two grid-based methods; one is by explicit finite differences, the other a diffusion-velocity approach. Results are given in two dimensions for pure diffusion of an initially Gaussian plume, advection-diffusion of the Gaussian plume in the rotating flow field of a forced vortex, and the transport of species in a rectangular channel with side wall boundary layers. Close agreement is achieved with analytical solutions of the advection-diffusion equation and simulations from a Lagrangian random walk model. An application to Sepetiba Bay, Brazil is included to demonstrate the method with complex flows and topography.

  6. Hierarchical statistical modeling of xylem vulnerability to cavitation.

    Science.gov (United States)

    Ogle, Kiona; Barber, Jarrett J; Willson, Cynthia; Thompson, Brenda

    2009-01-01

    Cavitation of xylem elements diminishes the water transport capacity of plants, and quantifying xylem vulnerability to cavitation is important to understanding plant function. Current approaches to analyzing hydraulic conductivity (K) data to infer vulnerability to cavitation suffer from problems such as the use of potentially unrealistic vulnerability curves, difficulty interpreting parameters in these curves, a statistical framework that ignores sampling design, and an overly simplistic view of uncertainty. This study illustrates how two common curves (exponential-sigmoid and Weibull) can be reparameterized in terms of meaningful parameters: maximum conductivity (k(sat)), water potential (-P) at which percentage loss of conductivity (PLC) =X% (P(X)), and the slope of the PLC curve at P(X) (S(X)), a 'sensitivity' index. We provide a hierarchical Bayesian method for fitting the reparameterized curves to K(H) data. We illustrate the method using data for roots and stems of two populations of Juniperus scopulorum and test for differences in k(sat), P(X), and S(X) between different groups. Two important results emerge from this study. First, the Weibull model is preferred because it produces biologically realistic estimates of PLC near P = 0 MPa. Second, stochastic embolisms contribute an important source of uncertainty that should be included in such analyses.

  7. Research on support effectiveness modeling and simulating of aviation materiel autonomic logistics system

    Science.gov (United States)

    Zhou, Yan; Zhou, Yang; Yuan, Kai; Jia, Zhiyu; Li, Shuo

    2018-05-01

    Aiming at the demonstration of autonomic logistics system to be used at the new generation of aviation materiel in our country, the modeling and simulating method of aviation materiel support effectiveness considering autonomic logistics are studied. Firstly, this paper introduced the idea of JSF autonomic logistics and analyzed the influence of autonomic logistics on support effectiveness from aspects of reliability, false alarm rate, troubleshooting time, and support delay time and maintenance level. On this basis, the paper studies the modeling and simulating methods of support effectiveness considering autonomic logistics, and puts forward the maintenance support simulation process considering autonomic logistics. Finally, taking the typical aviation materiel as an example, this paper analyzes and verifies the above-mentioned support effectiveness modeling and simulating method of aviation materiel considering autonomic logistics.

  8. Scale of association: hierarchical linear models and the measurement of ecological systems

    Science.gov (United States)

    Sean M. McMahon; Jeffrey M. Diez

    2007-01-01

    A fundamental challenge to understanding patterns in ecological systems lies in employing methods that can analyse, test and draw inference from measured associations between variables across scales. Hierarchical linear models (HLM) use advanced estimation algorithms to measure regression relationships and variance-covariance parameters in hierarchically structured...

  9. A novel Bayesian hierarchical model for road safety hotspot prediction.

    Science.gov (United States)

    Fawcett, Lee; Thorpe, Neil; Matthews, Joseph; Kremer, Karsten

    2017-02-01

    In this paper, we propose a Bayesian hierarchical model for predicting accident counts in future years at sites within a pool of potential road safety hotspots. The aim is to inform road safety practitioners of the location of likely future hotspots to enable a proactive, rather than reactive, approach to road safety scheme implementation. A feature of our model is the ability to rank sites according to their potential to exceed, in some future time period, a threshold accident count which may be used as a criterion for scheme implementation. Our model specification enables the classical empirical Bayes formulation - commonly used in before-and-after studies, wherein accident counts from a single before period are used to estimate counterfactual counts in the after period - to be extended to incorporate counts from multiple time periods. This allows site-specific variations in historical accident counts (e.g. locally-observed trends) to offset estimates of safety generated by a global accident prediction model (APM), which itself is used to help account for the effects of global trend and regression-to-mean (RTM). The Bayesian posterior predictive distribution is exploited to formulate predictions and to properly quantify our uncertainty in these predictions. The main contributions of our model include (i) the ability to allow accident counts from multiple time-points to inform predictions, with counts in more recent years lending more weight to predictions than counts from time-points further in the past; (ii) where appropriate, the ability to offset global estimates of trend by variations in accident counts observed locally, at a site-specific level; and (iii) the ability to account for unknown/unobserved site-specific factors which may affect accident counts. We illustrate our model with an application to accident counts at 734 potential hotspots in the German city of Halle; we also propose some simple diagnostics to validate the predictive capability of our

  10. Metamodeling Techniques to Aid in the Aggregation Process of Large Hierarchical Simulation Models

    National Research Council Canada - National Science Library

    Rodriguez, June F

    2008-01-01

    .... More specifically, investigating how to accurately aggregate hierarchical lower-level (higher resolution) models into the next higher-level in order to reduce the complexity of the overall simulation model...

  11. A Hierarchical Modeling for Reactive Power Optimization With Joint Transmission and Distribution Networks by Curve Fitting

    DEFF Research Database (Denmark)

    Ding, Tao; Li, Cheng; Huang, Can

    2018-01-01

    –slave structure and improves traditional centralized modeling methods by alleviating the big data problem in a control center. Specifically, the transmission-distribution-network coordination issue of the hierarchical modeling method is investigated. First, a curve-fitting approach is developed to provide a cost......In order to solve the reactive power optimization with joint transmission and distribution networks, a hierarchical modeling method is proposed in this paper. It allows the reactive power optimization of transmission and distribution networks to be performed separately, leading to a master...... optimality. Numerical results on two test systems verify the effectiveness of the proposed hierarchical modeling and curve-fitting methods....

  12. A Bayesian hierarchical model for demand curve analysis.

    Science.gov (United States)

    Ho, Yen-Yi; Nhu Vo, Tien; Chu, Haitao; Luo, Xianghua; Le, Chap T

    2018-07-01

    Drug self-administration experiments are a frequently used approach to assessing the abuse liability and reinforcing property of a compound. It has been used to assess the abuse liabilities of various substances such as psychomotor stimulants and hallucinogens, food, nicotine, and alcohol. The demand curve generated from a self-administration study describes how demand of a drug or non-drug reinforcer varies as a function of price. With the approval of the 2009 Family Smoking Prevention and Tobacco Control Act, demand curve analysis provides crucial evidence to inform the US Food and Drug Administration's policy on tobacco regulation, because it produces several important quantitative measurements to assess the reinforcing strength of nicotine. The conventional approach popularly used to analyze the demand curve data is individual-specific non-linear least square regression. The non-linear least square approach sets out to minimize the residual sum of squares for each subject in the dataset; however, this one-subject-at-a-time approach does not allow for the estimation of between- and within-subject variability in a unified model framework. In this paper, we review the existing approaches to analyze the demand curve data, non-linear least square regression, and the mixed effects regression and propose a new Bayesian hierarchical model. We conduct simulation analyses to compare the performance of these three approaches and illustrate the proposed approaches in a case study of nicotine self-administration in rats. We present simulation results and discuss the benefits of using the proposed approaches.

  13. A Note on the Item Information Function of the Four-Parameter Logistic Model

    Science.gov (United States)

    Magis, David

    2013-01-01

    This article focuses on four-parameter logistic (4PL) model as an extension of the usual three-parameter logistic (3PL) model with an upper asymptote possibly different from 1. For a given item with fixed item parameters, Lord derived the value of the latent ability level that maximizes the item information function under the 3PL model. The…

  14. Resource Allocation Optimization Model of Collaborative Logistics Network Based on Bilevel Programming

    Directory of Open Access Journals (Sweden)

    Xiao-feng Xu

    2017-01-01

    Full Text Available Collaborative logistics network resource allocation can effectively meet the needs of customers. It can realize the overall benefit maximization of the logistics network and ensure that collaborative logistics network runs orderly at the time of creating value. Therefore, this article is based on the relationship of collaborative logistics network supplier, the transit warehouse, and sellers, and we consider the uncertainty of time to establish a bilevel programming model with random constraints and propose a genetic simulated annealing hybrid intelligent algorithm to solve it. Numerical example shows that the method has stronger robustness and convergence; it can achieve collaborative logistics network resource allocation rationalization and optimization.

  15. Statistical modelling of railway track geometry degradation using Hierarchical Bayesian models

    International Nuclear Information System (INIS)

    Andrade, A.R.; Teixeira, P.F.

    2015-01-01

    Railway maintenance planners require a predictive model that can assess the railway track geometry degradation. The present paper uses a Hierarchical Bayesian model as a tool to model the main two quality indicators related to railway track geometry degradation: the standard deviation of longitudinal level defects and the standard deviation of horizontal alignment defects. Hierarchical Bayesian Models (HBM) are flexible statistical models that allow specifying different spatially correlated components between consecutive track sections, namely for the deterioration rates and the initial qualities parameters. HBM are developed for both quality indicators, conducting an extensive comparison between candidate models and a sensitivity analysis on prior distributions. HBM is applied to provide an overall assessment of the degradation of railway track geometry, for the main Portuguese railway line Lisbon–Oporto. - Highlights: • Rail track geometry degradation is analysed using Hierarchical Bayesian models. • A Gibbs sampling strategy is put forward to estimate the HBM. • Model comparison and sensitivity analysis find the most suitable model. • We applied the most suitable model to all the segments of the main Portuguese line. • Tackling spatial correlations using CAR structures lead to a better model fit

  16. Evolution dynamics modeling and simulation of logistics enterprise's core competence based on service innovation

    Science.gov (United States)

    Yang, Bo; Tong, Yuting

    2017-04-01

    With the rapid development of economy, the development of logistics enterprises in China is also facing a huge challenge, especially the logistics enterprises generally lack of core competitiveness, and service innovation awareness is not strong. Scholars in the process of studying the core competitiveness of logistics enterprises are mainly from the perspective of static stability, not from the perspective of dynamic evolution to explore. So the author analyzes the influencing factors and the evolution process of the core competence of logistics enterprises, using the method of system dynamics to study the cause and effect of the evolution of the core competence of logistics enterprises, construct a system dynamics model of evolution of core competence logistics enterprises, which can be simulated by vensim PLE. The analysis for the effectiveness and sensitivity of simulation model indicates the model can be used as the fitting of the evolution process of the core competence of logistics enterprises and reveal the process and mechanism of the evolution of the core competence of logistics enterprises, and provide management strategies for improving the core competence of logistics enterprises. The construction and operation of computer simulation model offers a kind of effective method for studying the evolution of logistics enterprise core competence.

  17. Factors associated with leisure time physical inactivity in black individuals: hierarchical model

    Directory of Open Access Journals (Sweden)

    Francisco José Gondim Pitanga

    2014-09-01

    Full Text Available Background. A number of studies have shown that the black population exhibits higher levels of leisure-time physical inactivity (LTPI, but few have investigated the factors associated with this behavior.Objective. The aim of this study was to analyze associated factors and the explanatory model proposed for LTPI in black adults.Methods. The design was cross-sectional with a sample of 2,305 adults from 20–96 years of age, 902 (39.1% men, living in the city of Salvador, Brazil. LTPI was analyzed using the International Physical Activity Questionnaire (IPAQ. A hierarchical model was built with the possible factors associated with LTPI, distributed in distal (age and sex, intermediate 1 (socioeconomic status, educational level and marital status, intermediate 2 (perception of safety/violence in the neighborhood, racial discrimination in private settings and physical activity at work and proximal blocks (smoking and participation in Carnival block rehearsals. We estimated crude and adjusted odds ratio (OR using logistic regression.Results. The variables inversely associated with LTPI were male gender, socioeconomic status and secondary/university education, although the proposed model explains only 4.2% of LTPI.Conclusions. We conclude that male gender, higher education and socioeconomic status can reduce LTPI in black adults.

  18. Logistical modelling of managerial decisions in social and marketing business systems

    Directory of Open Access Journals (Sweden)

    Oleksandr Velychko

    2017-10-01

    Full Text Available Logistical modelling of business systems within the context of mathematical logistics, logistical management, operational research as well as rationalistic provision of logistics at an enterprise have been considered in the article. The research was carried out on the methodological basis which included the authors’ developments and implied conveying familiar knowledge on new objects within the field of linear programming. Scientific novelty concerns the development of categorical toolkit as well as the existing methodical approaches of rationalistic logistics to managerial decisions. Rational areas of using terms “logistical model” and “model of logistics” in business environment have been determined. The authors’ methodology of constructing logistical models in management of separate social and marketing systems of enterprises according to minimization and maximization criteria is presented. Ways of using modelling at not conventional objects of logistical support for managerial decisions have been suggested in the context of studying the moral psychological climate of staff and complex estimation of socioeconomic measures of staff management improvement. The procedure of logistical optimization in the system of distributing and advertising activity of the enterprise has been developed. Approbation of the developed models has been carried out and possibilities for further model’s complication by output data, variables, and limitations under specific practical conditions have been grounded.

  19. SPD-based Logistics Management Model of Medical Consumables in Hospitals

    Science.gov (United States)

    LIU, Tongzhu; SHEN, Aizong; HU, Xiaojian; TONG, Guixian; GU, Wei; YANG, Shanlin

    2016-01-01

    Background: With the rapid development of health services, the progress of medical science and technology, and the improvement of materials research, the consumption of medical consumables (MCs) in medical activities has increased in recent years. However, owing to the lack of effective management methods and the complexity of MCs, there are several management problems including MC waste, low management efficiency, high management difficulty, and frequent medical accidents. Therefore, there is urgent need for an effective logistics management model to handle these problems and challenges in hospitals. Methods: We reviewed books and scientific literature (by searching the articles published from 2010 to 2015 in Engineering Village database) to understand supply chain related theories and methods and performed field investigations in hospitals across many cities to determine the actual state of MC logistics management of hospitals in China. Results: We describe the definition, physical model, construction, and logistics operation processes of the supply, processing, and distribution (SPD) of MC logistics because of the traditional SPD model. With the establishment of a supply-procurement platform and a logistics lean management system, we applied the model to the MC logistics management of Anhui Provincial Hospital with good effects. Conclusion: The SPD model plays a critical role in optimizing the logistics procedures of MCs, improving the management efficiency of logistics, and reducing the costs of logistics of hospitals in China. PMID:27957435

  20. SPD-based Logistics Management Model of Medical Consumables in Hospitals.

    Science.gov (United States)

    Liu, Tongzhu; Shen, Aizong; Hu, Xiaojian; Tong, Guixian; Gu, Wei; Yang, Shanlin

    2016-10-01

    With the rapid development of health services, the progress of medical science and technology, and the improvement of materials research, the consumption of medical consumables (MCs) in medical activities has increased in recent years. However, owing to the lack of effective management methods and the complexity of MCs, there are several management problems including MC waste, low management efficiency, high management difficulty, and frequent medical accidents. Therefore, there is urgent need for an effective logistics management model to handle these problems and challenges in hospitals. We reviewed books and scientific literature (by searching the articles published from 2010 to 2015 in Engineering Village database) to understand supply chain related theories and methods and performed field investigations in hospitals across many cities to determine the actual state of MC logistics management of hospitals in China. We describe the definition, physical model, construction, and logistics operation processes of the supply, processing, and distribution (SPD) of MC logistics because of the traditional SPD model. With the establishment of a supply-procurement platform and a logistics lean management system, we applied the model to the MC logistics management of Anhui Provincial Hospital with good effects. The SPD model plays a critical role in optimizing the logistics procedures of MCs, improving the management efficiency of logistics, and reducing the costs of logistics of hospitals in China.

  1. Forecast Model of Urban Stagnant Water Based on Logistic Regression

    Directory of Open Access Journals (Sweden)

    Liu Pan

    2017-01-01

    Full Text Available With the development of information technology, the construction of water resource system has been gradually carried out. In the background of big data, the work of water information needs to carry out the process of quantitative to qualitative change. Analyzing the correlation of data and exploring the deep value of data which are the key of water information’s research. On the basis of the research on the water big data and the traditional data warehouse architecture, we try to find out the connection of different data source. According to the temporal and spatial correlation of stagnant water and rainfall, we use spatial interpolation to integrate data of stagnant water and rainfall which are from different data source and different sensors, then use logistic regression to find out the relationship between them.

  2. An Agent Based Modelling Approach for Multi-Stakeholder Analysis of City Logistics Solutions

    NARCIS (Netherlands)

    Anand, N.

    2015-01-01

    This thesis presents a comprehensive framework for multi-stakeholder analysis of city logistics solutions using agent based modeling. The framework describes different stages for the systematic development of an agent based model for the city logistics domain. The framework includes a

  3. Logistic regression models of factors influencing the location of bioenergy and biofuels plants

    Science.gov (United States)

    T.M. Young; R.L. Zaretzki; J.H. Perdue; F.M. Guess; X. Liu

    2011-01-01

    Logistic regression models were developed to identify significant factors that influence the location of existing wood-using bioenergy/biofuels plants and traditional wood-using facilities. Logistic models provided quantitative insight for variables influencing the location of woody biomass-using facilities. Availability of "thinnings to a basal area of 31.7m2/ha...

  4. Integrating the augmented SCOR model and the ISO 15288 life cycle model into a single logistic model

    CSIR Research Space (South Africa)

    Schmitz, Peter MU

    2010-07-01

    Full Text Available using the Supply Chain Operations Reference (SCOR) model. The SANDF indicated that the augmented SCOR model (Bean, Schmitz and Engelbrecht, 2009) should be extended into a single logistics process which should include a life-cycle perspective...

  5. A Reverse Logistics Network Model for Handling Returned Products

    Directory of Open Access Journals (Sweden)

    Nizar Zaarour

    2014-07-01

    obtained the optimal solution at a fraction of the time used by the traditional nonlinear model and solution procedure, as well as the ability to handle up to 150 customers as compared to 30 in the conventional nonlinear model. As such, the proposed linear model is more suitable for actual industry applications than the existing models.

  6. Hierarchical functional model for automobile development; Jidosha kaihatsu no tame no kaisogata kino model

    Energy Technology Data Exchange (ETDEWEB)

    Sumida, S [U-shin Ltd., Tokyo (Japan); Nagamatsu, M; Maruyama, K [Hokkaido Institute of Technology, Sapporo (Japan); Hiramatsu, S [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    A new approach on modeling is put forward in order to compose the virtual prototype which is indispensable for fully computer integrated concurrent development of automobile product. A basic concept of the hierarchical functional model is proposed as the concrete form of this new modeling technology. This model is used mainly for explaining and simulating functions and efficiencies of both the parts and the total product of automobile. All engineers who engage themselves in design and development of automobile can collaborate with one another using this model. Some application examples are shown, and usefulness of this model is demonstrated. 5 refs., 5 figs.

  7. Design, modeling, and analysis of a feedstock logistics system.

    Science.gov (United States)

    Judd, Jason D; Sarin, Subhash C; Cundiff, John S

    2012-01-01

    Given the location of a bio-energy plant for the conversion of biomass to bio-energy, a feedstock logistics system that relies on the use of satellite storage locations (SSLs) for temporary storage and loading of round bales is proposed. Three equipment systems are considered for handling biomass at the SSLs, and they are either placed permanently or are mobile and thereby travel from one SSL to another. A mathematical programming-based approach is utilized to determine SSLs and equipment routes in order to minimize the total cost. The use of a Side-loading Rack System results in average savings of 21.3% over a Densification System while a Rear-loading Rack System is more expensive to operate than either of the other equipment systems. The utilization of mobile equipment results in average savings of 14.8% over the equipment placed permanently. Furthermore, the Densification System is not justifiable for transportation distances less than 81 km. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Comment on ``Correlated noise in a logistic growth model''

    Science.gov (United States)

    Behera, Anita; O'Rourke, S. Francesca C.

    2008-01-01

    We argue that the results published by Ai [Phys. Rev. E 67, 022903 (2003)] on “correlated noise in logistic growth” are not correct. Their conclusion that, for larger values of the correlation parameter λ , the cell population is peaked at x=0 , which denotes a high extinction rate, is also incorrect. We find the reverse behavior to their results, that increasing λ promotes the stable growth of tumor cells. In particular, their results for the steady-state probability, as a function of cell number, at different correlation strengths, presented in Figs. 1 and 2 of their paper show different behavior than one would expect from the simple mathematical expression for the steady-state probability. Additionally, their interpretation that at small values of cell number the steady-state probability increases as the correlation parameter is increased is also questionable. Another striking feature in their Figs. 1 and 3 is that, for the same values of the parameters λ and α , their simulation produces two different curves, both qualitatively and quantitatively.

  9. Logistic regression model for detecting radon prone areas in Ireland.

    Science.gov (United States)

    Elío, J; Crowley, Q; Scanlon, R; Hodgson, J; Long, S

    2017-12-01

    A new high spatial resolution radon risk map of Ireland has been developed, based on a combination of indoor radon measurements (n=31,910) and relevant geological information (i.e. Bedrock Geology, Quaternary Geology, soil permeability and aquifer type). Logistic regression was used to predict the probability of having an indoor radon concentration above the national reference level of 200Bqm -3 in Ireland. The four geological datasets evaluated were found to be statistically significant, and, based on combinations of these four variables, the predicted probabilities ranged from 0.57% to 75.5%. Results show that the Republic of Ireland may be divided in three main radon risk categories: High (HR), Medium (MR) and Low (LR). The probability of having an indoor radon concentration above 200Bqm -3 in each area was found to be 19%, 8% and 3%; respectively. In the Republic of Ireland, the population affected by radon concentrations above 200Bqm -3 is estimated at ca. 460k (about 10% of the total population). Of these, 57% (265k), 35% (160k) and 8% (35k) are in High, Medium and Low Risk Areas, respectively. Our results provide a high spatial resolution utility which permit customised radon-awareness information to be targeted at specific geographic areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Impact of Disturbing Factors on Cooperation in Logistics Outsourcing Performance: The Empirical Model

    Directory of Open Access Journals (Sweden)

    Andreja Križman

    2010-05-01

    Full Text Available The purpose of this paper is to present the research results of a study conducted in the Slovene logistics market of conflicts and opportunism as disturbing factors while examining their impact on cooperation in logistics outsourcing performance. Relationship variables are proposed that directly or indirectly affect logistics performance and conceptualize the hypotheses based on causal linkages for the constructs. On the basis of extant literature and new argumentations that are derived from in-depth interviews of logistics experts, including providers and customers, the measurement and structural models are empirically analyzed. Existing measurement scales for the constructs are slightly modified for this analysis. Purification testing and measurement for validity and reliability are performed. Multivariate statistical methods are utilized and hypotheses are tested. The results show that conflicts have a significantly negative impact on cooperation between customers and logistics service providers (LSPs, while opportunism does not play an important role in these relationships. The observed antecedents of logistics outsourcing performance in the model account for 58.4% of the variance of the goal achievement and 36.5% of the variance of the exceeded goal. KEYWORDS: logistics outsourcing performance; logistics customer–provider relationships; conflicts and cooperation in logistics outsourcing; PLS path modelling

  11. Recognizing Chinese characters in digital ink from non-native language writers using hierarchical models

    Science.gov (United States)

    Bai, Hao; Zhang, Xi-wen

    2017-06-01

    While Chinese is learned as a second language, its characters are taught step by step from their strokes to components, radicals to components, and their complex relations. Chinese Characters in digital ink from non-native language writers are deformed seriously, thus the global recognition approaches are poorer. So a progressive approach from bottom to top is presented based on hierarchical models. Hierarchical information includes strokes and hierarchical components. Each Chinese character is modeled as a hierarchical tree. Strokes in one Chinese characters in digital ink are classified with Hidden Markov Models and concatenated to the stroke symbol sequence. And then the structure of components in one ink character is extracted. According to the extraction result and the stroke symbol sequence, candidate characters are traversed and scored. Finally, the recognition candidate results are listed by descending. The method of this paper is validated by testing 19815 copies of the handwriting Chinese characters written by foreign students.

  12. New aerial survey and hierarchical model to estimate manatee abundance

    Science.gov (United States)

    Langimm, Cahterine A.; Dorazio, Robert M.; Stith, Bradley M.; Doyle, Terry J.

    2011-01-01

    Monitoring the response of endangered and protected species to hydrological restoration is a major component of the adaptive management framework of the Comprehensive Everglades Restoration Plan. The endangered Florida manatee (Trichechus manatus latirostris) lives at the marine-freshwater interface in southwest Florida and is likely to be affected by hydrologic restoration. To provide managers with prerestoration information on distribution and abundance for postrestoration comparison, we developed and implemented a new aerial survey design and hierarchical statistical model to estimate and map abundance of manatees as a function of patch-specific habitat characteristics, indicative of manatee requirements for offshore forage (seagrass), inland fresh drinking water, and warm-water winter refuge. We estimated the number of groups of manatees from dual-observer counts and estimated the number of individuals within groups by removal sampling. Our model is unique in that we jointly analyzed group and individual counts using assumptions that allow probabilities of group detection to depend on group size. Ours is the first analysis of manatee aerial surveys to model spatial and temporal abundance of manatees in association with habitat type while accounting for imperfect detection. We conducted the study in the Ten Thousand Islands area of southwestern Florida, USA, which was expected to be affected by the Picayune Strand Restoration Project to restore hydrology altered for a failed real-estate development. We conducted 11 surveys in 2006, spanning the cold, dry season and warm, wet season. To examine short-term and seasonal changes in distribution we flew paired surveys 1–2 days apart within a given month during the year. Manatees were sparsely distributed across the landscape in small groups. Probability of detection of a group increased with group size; the magnitude of the relationship between group size and detection probability varied among surveys. Probability

  13. A mechanical model of biomimetic adhesive pads with tilted and hierarchical structures.

    Science.gov (United States)

    Schargott, M

    2009-06-01

    A 3D model for hierarchical biomimetic adhesive pads is constructed. It is based on the main principles of the adhesive pads of the Tokay gecko and consists of hierarchical layers of vertical or tilted beams, where each layer is constructed in such a way that no cohesion between adjacent beams can occur. The elastic and adhesive properties are calculated analytically and numerically. For the adhesive contact on stochastically rough surfaces, the maximum adhesion force increases with increasing number of hierarchical layers. Additional calculations show that the adhesion force also depends on the height spectrum of the rough surface.

  14. A mechanical model of biomimetic adhesive pads with tilted and hierarchical structures

    Energy Technology Data Exchange (ETDEWEB)

    Schargott, M [Institute of Mechanics, Technische Universitaet Berlin, Strd 17 Juni 135, 10623 Berlin (Germany)], E-mail: martin.schargott@tu-berlin.de

    2009-06-01

    A 3D model for hierarchical biomimetic adhesive pads is constructed. It is based on the main principles of the adhesive pads of the Tokay gecko and consists of hierarchical layers of vertical or tilted beams, where each layer is constructed in such a way that no cohesion between adjacent beams can occur. The elastic and adhesive properties are calculated analytically and numerically. For the adhesive contact on stochastically rough surfaces, the maximum adhesion force increases with increasing number of hierarchical layers. Additional calculations show that the adhesion force also depends on the height spectrum of the rough surface.

  15. A mechanical model of biomimetic adhesive pads with tilted and hierarchical structures

    International Nuclear Information System (INIS)

    Schargott, M

    2009-01-01

    A 3D model for hierarchical biomimetic adhesive pads is constructed. It is based on the main principles of the adhesive pads of the Tokay gecko and consists of hierarchical layers of vertical or tilted beams, where each layer is constructed in such a way that no cohesion between adjacent beams can occur. The elastic and adhesive properties are calculated analytically and numerically. For the adhesive contact on stochastically rough surfaces, the maximum adhesion force increases with increasing number of hierarchical layers. Additional calculations show that the adhesion force also depends on the height spectrum of the rough surface

  16. A development of logistics management models for the Space Transportation System

    Science.gov (United States)

    Carrillo, M. J.; Jacobsen, S. E.; Abell, J. B.; Lippiatt, T. F.

    1983-01-01

    A new analytic queueing approach was described which relates stockage levels, repair level decisions, and the project network schedule of prelaunch operations directly to the probability distribution of the space transportation system launch delay. Finite source population and limited repair capability were additional factors included in this logistics management model developed specifically for STS maintenance requirements. Data presently available to support logistics decisions were based on a comparability study of heavy aircraft components. A two-phase program is recommended by which NASA would implement an integrated data collection system, assemble logistics data from previous STS flights, revise extant logistics planning and resource requirement parameters using Bayes-Lin techniques, and adjust for uncertainty surrounding logistics systems performance parameters. The implementation of these recommendations can be expected to deliver more cost-effective logistics support.

  17. Determination of a Differential Item Functioning Procedure Using the Hierarchical Generalized Linear Model

    Directory of Open Access Journals (Sweden)

    Tülin Acar

    2012-01-01

    Full Text Available The aim of this research is to compare the result of the differential item functioning (DIF determining with hierarchical generalized linear model (HGLM technique and the results of the DIF determining with logistic regression (LR and item response theory–likelihood ratio (IRT-LR techniques on the test items. For this reason, first in this research, it is determined whether the students encounter DIF with HGLM, LR, and IRT-LR techniques according to socioeconomic status (SES, in the Turkish, Social Sciences, and Science subtest items of the Secondary School Institutions Examination. When inspecting the correlations among the techniques in terms of determining the items having DIF, it was discovered that there was significant correlation between the results of IRT-LR and LR techniques in all subtests; merely in Science subtest, the results of the correlation between HGLM and IRT-LR techniques were found significant. DIF applications can be made on test items with other DIF analysis techniques that were not taken to the scope of this research. The analysis results, which were determined by using the DIF techniques in different sample sizes, can be compared.

  18. Incorporating Logistics in Freight Transport Demand Models: State-of-the-Art and Research Opportunities

    NARCIS (Netherlands)

    Tavasszy, L.A.; Ruijgrok, K.; Davydenko, I.

    2012-01-01

    Freight transport demand is a demand derived from all the activities needed to move goods between locations of production to locations of consumption, including trade, logistics and transportation. A good representation of logistics in freight transport demand models allows us to predict the effects

  19. Usability Prediction & Ranking of SDLC Models Using Fuzzy Hierarchical Usability Model

    Science.gov (United States)

    Gupta, Deepak; Ahlawat, Anil K.; Sagar, Kalpna

    2017-06-01

    Evaluation of software quality is an important aspect for controlling and managing the software. By such evaluation, improvements in software process can be made. The software quality is significantly dependent on software usability. Many researchers have proposed numbers of usability models. Each model considers a set of usability factors but do not cover all the usability aspects. Practical implementation of these models is still missing, as there is a lack of precise definition of usability. Also, it is very difficult to integrate these models into current software engineering practices. In order to overcome these challenges, this paper aims to define the term `usability' using the proposed hierarchical usability model with its detailed taxonomy. The taxonomy considers generic evaluation criteria for identifying the quality components, which brings together factors, attributes and characteristics defined in various HCI and software models. For the first time, the usability model is also implemented to predict more accurate usability values. The proposed system is named as fuzzy hierarchical usability model that can be easily integrated into the current software engineering practices. In order to validate the work, a dataset of six software development life cycle models is created and employed. These models are ranked according to their predicted usability values. This research also focuses on the detailed comparison of proposed model with the existing usability models.

  20. Logistic Regression Modeling of Diminishing Manufacturing Sources for Integrated Circuits

    National Research Council Canada - National Science Library

    Gravier, Michael

    1999-01-01

    .... This thesis draws on available data from the electronics integrated circuit industry to attempt to assess whether statistical modeling offers a viable method for predicting the presence of DMSMS...

  1. WASTES: a waste management logistics/economics model

    International Nuclear Information System (INIS)

    McNair, G.W.; Shay, M.R.; Fletcher, J.F.; Cashwell, J.W.

    1985-02-01

    The WASTES model simulates a user defined system for nuclear waste transportation and storage at both temporary and long-term storage facilities. The model is written in FORTRAN 77 as an extension to the SLAM commercial simulation package (Pritsker and Pegden 1979). SLAM (Simulation Language for Alternative Modeling) is utilized in a discrete event mode to model the passage of spent fuel through the system. The system is initiated with individual reactor discharges of spent fuel as described in the reactor discharge data file or as supplied by the user. The reactor discharge file contains deterministic information on the date (year/month) and quantity of spent fuel discharges. From this point, the model is controlled by a combination of source originated and destination originated transfers. Source driven transfers occur when a reactor pool violates the full core reserve (FCR) storage margin or when the reactor is decommissioned. At these times, the source reactor checks destination facilities to see if they can accept material. A dry storage facility is assumed to exist for each reactor and is allowed to grow as necessary to contain spent fuel which cannot be shipped to any other facility. In this way the FCR margin is always maintained. Destination driven transfers occur when the annual capacity of a facility will not be met by full core reserve or decommissioning shipments. An attempt is made at the end of each calendar year to schedule enough shipments of spent fuel from facilities with non-critical storage capacity to fill the annual capacity of each destination facility. Allowable facility types are reprocessing plants, federal interim storage (FIS), monitored retrievable storage (MRS), and repositories. The number, capacities, location and priority for receipt of spent fuel is user specified. This report describes in detail the waste generating model, the waste facilities model, the transportation model and the basic transportation scheme

  2. LOGAM (Logistic Analysis Model). Volume 2. Users Manual.

    Science.gov (United States)

    1982-08-01

    as opposed to simulation models which represent a system’s behavior as a function of time. These latter classes of models are often complex. They...includes the cost of ammunition and missiles comsumed by the system being costed during unit training. Excluded is the cost of ammunition consumed during...data. The results obtained from sensitivity testing may be used to construct graphs which display the behavior of the maintenance concept over the range

  3. Bottom-up learning of hierarchical models in a class of deterministic POMDP environments

    Directory of Open Access Journals (Sweden)

    Itoh Hideaki

    2015-09-01

    Full Text Available The theory of partially observable Markov decision processes (POMDPs is a useful tool for developing various intelligent agents, and learning hierarchical POMDP models is one of the key approaches for building such agents when the environments of the agents are unknown and large. To learn hierarchical models, bottom-up learning methods in which learning takes place in a layer-by-layer manner from the lowest to the highest layer are already extensively used in some research fields such as hidden Markov models and neural networks. However, little attention has been paid to bottom-up approaches for learning POMDP models. In this paper, we present a novel bottom-up learning algorithm for hierarchical POMDP models and prove that, by using this algorithm, a perfect model (i.e., a model that can perfectly predict future observations can be learned at least in a class of deterministic POMDP environments

  4. Model of the naval base logistic interoperability within the multinational operations

    Directory of Open Access Journals (Sweden)

    Bohdan Pac

    2011-12-01

    Full Text Available The paper concerns the model of the naval base logistics interoperability within the multinational operations conducted at sea by NATO or EU nations. The model includes the set of logistic requirements that NATO and EU expect from the contributing nations within the area of the logistic support provided to the forces operating out of the home bases. Model may reflect the scheme configuration, the set of requirements and its mathematical description for the naval base supporting multinational forces within maritime operations.

  5. Business Process Modeling for Domain Inbound Logistics System : Analytical Perspective with BPMN 2.0

    OpenAIRE

    Khabbazi, Mahmood Reza; Hasan, M. K; Sulaiman, R; Shapi’i, A

    2013-01-01

    Among different Business Process Management strategies and methodologies, one common feature is to captureexisting processes and representing the new processes adequately. Business Process Modelling (BPM) plays acrucial role on such an effort. This paper proposes a “to-be” inbound logistics business processes model usingBPMN 2.0 standard specifying the structure and behaviour of the system within the SME environment. Thegeneric framework of inbound logistics model consists of one main high-le...

  6. Automatic thoracic anatomy segmentation on CT images using hierarchical fuzzy models and registration

    Science.gov (United States)

    Sun, Kaioqiong; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Torigian, Drew A.

    2014-03-01

    This paper proposes a thoracic anatomy segmentation method based on hierarchical recognition and delineation guided by a built fuzzy model. Labeled binary samples for each organ are registered and aligned into a 3D fuzzy set representing the fuzzy shape model for the organ. The gray intensity distributions of the corresponding regions of the organ in the original image are recorded in the model. The hierarchical relation and mean location relation between different organs are also captured in the model. Following the hierarchical structure and location relation, the fuzzy shape model of different organs is registered to the given target image to achieve object recognition. A fuzzy connected delineation method is then used to obtain the final segmentation result of organs with seed points provided by recognition. The hierarchical structure and location relation integrated in the model provide the initial parameters for registration and make the recognition efficient and robust. The 3D fuzzy model combined with hierarchical affine registration ensures that accurate recognition can be obtained for both non-sparse and sparse organs. The results on real images are presented and shown to be better than a recently reported fuzzy model-based anatomy recognition strategy.

  7. Application of Tecnomatix Plant Simulation for Modeling Production and Logistics Processes

    Directory of Open Access Journals (Sweden)

    Julia Siderska

    2016-06-01

    Full Text Available The main objective of the article was to present the possibilities and examples of using Tecnomatix Plant Simulation (by Siemens to simulate the production and logistics processes. This tool allows to simulate discrete events and create digital models of logistic systems (e.g. production, optimize the operation of production plants, production lines, as well as individual logistics processes. The review of implementations of Tecnomatix Plant Simulation for modeling processes in production engineering and logistics was conducted and a few selected examples of simulations were presented. The author’s future studies are going to focus on simulation of production and logistic processes and their optimization with the use of genetic algorithms and artificial neural networks.

  8. Hierarchical modeling and inference in ecology: The analysis of data from populations, metapopulations and communities

    Science.gov (United States)

    Royle, J. Andrew; Dorazio, Robert M.

    2008-01-01

    A guide to data collection, modeling and inference strategies for biological survey data using Bayesian and classical statistical methods. This book describes a general and flexible framework for modeling and inference in ecological systems based on hierarchical models, with a strict focus on the use of probability models and parametric inference. Hierarchical models represent a paradigm shift in the application of statistics to ecological inference problems because they combine explicit models of ecological system structure or dynamics with models of how ecological systems are observed. The principles of hierarchical modeling are developed and applied to problems in population, metapopulation, community, and metacommunity systems. The book provides the first synthetic treatment of many recent methodological advances in ecological modeling and unifies disparate methods and procedures. The authors apply principles of hierarchical modeling to ecological problems, including * occurrence or occupancy models for estimating species distribution * abundance models based on many sampling protocols, including distance sampling * capture-recapture models with individual effects * spatial capture-recapture models based on camera trapping and related methods * population and metapopulation dynamic models * models of biodiversity, community structure and dynamics.

  9. Gaussian Process Regression Model in Spatial Logistic Regression

    Science.gov (United States)

    Sofro, A.; Oktaviarina, A.

    2018-01-01

    Spatial analysis has developed very quickly in the last decade. One of the favorite approaches is based on the neighbourhood of the region. Unfortunately, there are some limitations such as difficulty in prediction. Therefore, we offer Gaussian process regression (GPR) to accommodate the issue. In this paper, we will focus on spatial modeling with GPR for binomial data with logit link function. The performance of the model will be investigated. We will discuss the inference of how to estimate the parameters and hyper-parameters and to predict as well. Furthermore, simulation studies will be explained in the last section.

  10. Variable selection in Logistic regression model with genetic algorithm.

    Science.gov (United States)

    Zhang, Zhongheng; Trevino, Victor; Hoseini, Sayed Shahabuddin; Belciug, Smaranda; Boopathi, Arumugam Manivanna; Zhang, Ping; Gorunescu, Florin; Subha, Velappan; Dai, Songshi

    2018-02-01

    Variable or feature selection is one of the most important steps in model specification. Especially in the case of medical-decision making, the direct use of a medical database, without a previous analysis and preprocessing step, is often counterproductive. In this way, the variable selection represents the method of choosing the most relevant attributes from the database in order to build a robust learning models and, thus, to improve the performance of the models used in the decision process. In biomedical research, the purpose of variable selection is to select clinically important and statistically significant variables, while excluding unrelated or noise variables. A variety of methods exist for variable selection, but none of them is without limitations. For example, the stepwise approach, which is highly used, adds the best variable in each cycle generally producing an acceptable set of variables. Nevertheless, it is limited by the fact that it commonly trapped in local optima. The best subset approach can systematically search the entire covariate pattern space, but the solution pool can be extremely large with tens to hundreds of variables, which is the case in nowadays clinical data. Genetic algorithms (GA) are heuristic optimization approaches and can be used for variable selection in multivariable regression models. This tutorial paper aims to provide a step-by-step approach to the use of GA in variable selection. The R code provided in the text can be extended and adapted to other data analysis needs.

  11. Modeling Logistic Performance in Quantitative Microbial Risk Assessment

    NARCIS (Netherlands)

    Rijgersberg, H.; Tromp, S.O.; Jacxsens, L.; Uyttendaele, M.

    2010-01-01

    In quantitative microbial risk assessment (QMRA), food safety in the food chain is modeled and simulated. In general, prevalences, concentrations, and numbers of microorganisms in media are investigated in the different steps from farm to fork. The underlying rates and conditions (such as storage

  12. The logistic model-generated carrying capacities for wild herbivores ...

    African Journals Online (AJOL)

    Jesse

    Under this formulation, both carrying capacity and exchange ratios are endogenously determined (Kinyua and Njoka, 2001), making it possible to empirically estimate the population growth models for Grant's gazelle, Thompson's gazelle and Zebra. (1) for i = 1,…,n-1 j = 1,…,2 and i ≠ j. Here Hit+1, measured in animal units, ...

  13. Determining factors influencing survival of breast cancer by fuzzy logistic regression model.

    Science.gov (United States)

    Nikbakht, Roya; Bahrampour, Abbas

    2017-01-01

    Fuzzy logistic regression model can be used for determining influential factors of disease. This study explores the important factors of actual predictive survival factors of breast cancer's patients. We used breast cancer data which collected by cancer registry of Kerman University of Medical Sciences during the period of 2000-2007. The variables such as morphology, grade, age, and treatments (surgery, radiotherapy, and chemotherapy) were applied in the fuzzy logistic regression model. Performance of model was determined in terms of mean degree of membership (MDM). The study results showed that almost 41% of patients were in neoplasm and malignant group and more than two-third of them were still alive after 5-year follow-up. Based on the fuzzy logistic model, the most important factors influencing survival were chemotherapy, morphology, and radiotherapy, respectively. Furthermore, the MDM criteria show that the fuzzy logistic regression have a good fit on the data (MDM = 0.86). Fuzzy logistic regression model showed that chemotherapy is more important than radiotherapy in survival of patients with breast cancer. In addition, another ability of this model is calculating possibilistic odds of survival in cancer patients. The results of this study can be applied in clinical research. Furthermore, there are few studies which applied the fuzzy logistic models. Furthermore, we recommend using this model in various research areas.

  14. A Log Logistic Survival Model Applied to Hypobaric Decompression Sickness

    Science.gov (United States)

    Conkin, Johnny

    2001-01-01

    Decompression sickness (DCS) is a complex, multivariable problem. A mathematical description or model of the likelihood of DCS requires a large amount of quality research data, ideas on how to define a decompression dose using physical and physiological variables, and an appropriate analytical approach. It also requires a high-performance computer with specialized software. I have used published DCS data to develop my decompression doses, which are variants of equilibrium expressions for evolved gas plus other explanatory variables. My analytical approach is survival analysis, where the time of DCS occurrence is modeled. My conclusions can be applied to simple hypobaric decompressions - ascents lasting from 5 to 30 minutes - and, after minutes to hours, to denitrogenation (prebreathing). They are also applicable to long or short exposures, and can be used whether the sufferer of DCS is at rest or exercising at altitude. Ultimately I would like my models to be applied to astronauts to reduce the risk of DCS during spacewalks, as well as to future spaceflight crews on the Moon and Mars.

  15. An appraisal of convergence failures in the application of logistic regression model in published manuscripts.

    Science.gov (United States)

    Yusuf, O B; Bamgboye, E A; Afolabi, R F; Shodimu, M A

    2014-09-01

    Logistic regression model is widely used in health research for description and predictive purposes. Unfortunately, most researchers are sometimes not aware that the underlying principles of the techniques have failed when the algorithm for maximum likelihood does not converge. Young researchers particularly postgraduate students may not know why separation problem whether quasi or complete occurs, how to identify it and how to fix it. This study was designed to critically evaluate convergence issues in articles that employed logistic regression analysis published in an African Journal of Medicine and medical sciences between 2004 and 2013. Problems of quasi or complete separation were described and were illustrated with the National Demographic and Health Survey dataset. A critical evaluation of articles that employed logistic regression was conducted. A total of 581 articles was reviewed, of which 40 (6.9%) used binary logistic regression. Twenty-four (60.0%) stated the use of logistic regression model in the methodology while none of the articles assessed model fit. Only 3 (12.5%) properly described the procedures. Of the 40 that used the logistic regression model, the problem of convergence occurred in 6 (15.0%) of the articles. Logistic regression tends to be poorly reported in studies published between 2004 and 2013. Our findings showed that the procedure may not be well understood by researchers since very few described the process in their reports and may be totally unaware of the problem of convergence or how to deal with it.

  16. The Application of Collaborative Business Intelligence Technology in the Hospital SPD Logistics Management Model

    Science.gov (United States)

    LIU, Tongzhu; SHEN, Aizong; HU, Xiaojian; TONG, Guixian; GU, Wei

    2017-01-01

    Background: We aimed to apply collaborative business intelligence (BI) system to hospital supply, processing and distribution (SPD) logistics management model. Methods: We searched Engineering Village database, China National Knowledge Infrastructure (CNKI) and Google for articles (Published from 2011 to 2016), books, Web pages, etc., to understand SPD and BI related theories and recent research status. For the application of collaborative BI technology in the hospital SPD logistics management model, we realized this by leveraging data mining techniques to discover knowledge from complex data and collaborative techniques to improve the theories of business process. Results: For the application of BI system, we: (i) proposed a layered structure of collaborative BI system for intelligent management in hospital logistics; (ii) built data warehouse for the collaborative BI system; (iii) improved data mining techniques such as supporting vector machines (SVM) and swarm intelligence firefly algorithm to solve key problems in hospital logistics collaborative BI system; (iv) researched the collaborative techniques oriented to data and business process optimization to improve the business processes of hospital logistics management. Conclusion: Proper combination of SPD model and BI system will improve the management of logistics in the hospitals. The successful implementation of the study requires: (i) to innovate and improve the traditional SPD model and make appropriate implement plans and schedules for the application of BI system according to the actual situations of hospitals; (ii) the collaborative participation of internal departments in hospital including the department of information, logistics, nursing, medical and financial; (iii) timely response of external suppliers. PMID:28828316

  17. The Application of Collaborative Business Intelligence Technology in the Hospital SPD Logistics Management Model.

    Science.gov (United States)

    Liu, Tongzhu; Shen, Aizong; Hu, Xiaojian; Tong, Guixian; Gu, Wei

    2017-06-01

    We aimed to apply collaborative business intelligence (BI) system to hospital supply, processing and distribution (SPD) logistics management model. We searched Engineering Village database, China National Knowledge Infrastructure (CNKI) and Google for articles (Published from 2011 to 2016), books, Web pages, etc., to understand SPD and BI related theories and recent research status. For the application of collaborative BI technology in the hospital SPD logistics management model, we realized this by leveraging data mining techniques to discover knowledge from complex data and collaborative techniques to improve the theories of business process. For the application of BI system, we: (i) proposed a layered structure of collaborative BI system for intelligent management in hospital logistics; (ii) built data warehouse for the collaborative BI system; (iii) improved data mining techniques such as supporting vector machines (SVM) and swarm intelligence firefly algorithm to solve key problems in hospital logistics collaborative BI system; (iv) researched the collaborative techniques oriented to data and business process optimization to improve the business processes of hospital logistics management. Proper combination of SPD model and BI system will improve the management of logistics in the hospitals. The successful implementation of the study requires: (i) to innovate and improve the traditional SPD model and make appropriate implement plans and schedules for the application of BI system according to the actual situations of hospitals; (ii) the collaborative participation of internal departments in hospital including the department of information, logistics, nursing, medical and financial; (iii) timely response of external suppliers.

  18. A Study on Intelligent User-Centric Logistics Service Model Using Ontology

    Directory of Open Access Journals (Sweden)

    Saraswathi Sivamani

    2014-01-01

    Full Text Available Much research has been undergone in the smart logistics environment for the prompt delivery of the product in the right place at the right time. Most of the services were based on time management, routing technique, and location based services. The services in the recent logistics environment aim for situation based logistics service centered around the user by utilizing various information technologies such as mobile devices, computer systems, and GPS. This paper proposes a smart logistics service model for providing user-centric intelligent logistics service by utilizing smartphones in a smart environment. We also develop an OWL based ontology model for the smart logistics for the better understanding among the context information. In addition to basic delivery information, the proposed service model makes use of the location and situation information of the delivery vehicle and user, to draw the route information according to the user’s requirement. With the increase of internet usage, the real-time situations are received which helps to create a more reliable relationship, owing to the Internet of Things. Through this service model, it is possible to engage in the development of various IT and logistics convergence services based on situation information between the deliverer and user which occurs in real time.

  19. Framework for Modelling Multi-stakeholder City Logistics Domain Using the Agent based Modelling Approach

    NARCIS (Netherlands)

    Anand, Nilesh; van Duin, Ron; Tavasszy, L.A.

    2016-01-01

    Efficiency of city logistics activities suffers due to conflicting personal preferences and distributed decision making by multiple city logistics stakeholders. This is exacerbated by interdependency of city logistics activities, decision making with limited information and stakeholders’ preference

  20. Enterprise games: creating and implementing a model to simulate logistics operations

    Directory of Open Access Journals (Sweden)

    Alander Ornellas Ornellas

    2008-07-01

    Full Text Available This work proposes an enterprise game model to simulate the main logistics operations in a supply chain. The need of a simple tool, but well structured and able to create a dynamic learning environment without making it too complex motivated this study and development. The work begins with a comparative analysis between the main reference models about enterprise logistics, included in the bibliography related to best practices in logistics decision-making. Then, concepts of simulation and games are described, its interrelations, characteristics and importance as learning method. The definition of the best practices is, then, used to guide the construction of the main characteristics for the proposed model. The results obtained show the efficacy of the model as a tool capable of creating a dynamic environment for learning purposes to complement traditional teaching techniques. Key-words: Enterprise Games, Supply Chain, Logistics, Simulation, Learning.

  1. Ranking of Business Process Simulation Software Tools with DEX/QQ Hierarchical Decision Model.

    Science.gov (United States)

    Damij, Nadja; Boškoski, Pavle; Bohanec, Marko; Mileva Boshkoska, Biljana

    2016-01-01

    The omnipresent need for optimisation requires constant improvements of companies' business processes (BPs). Minimising the risk of inappropriate BP being implemented is usually performed by simulating the newly developed BP under various initial conditions and "what-if" scenarios. An effectual business process simulations software (BPSS) is a prerequisite for accurate analysis of an BP. Characterisation of an BPSS tool is a challenging task due to the complex selection criteria that includes quality of visual aspects, simulation capabilities, statistical facilities, quality reporting etc. Under such circumstances, making an optimal decision is challenging. Therefore, various decision support models are employed aiding the BPSS tool selection. The currently established decision support models are either proprietary or comprise only a limited subset of criteria, which affects their accuracy. Addressing this issue, this paper proposes a new hierarchical decision support model for ranking of BPSS based on their technical characteristics by employing DEX and qualitative to quantitative (QQ) methodology. Consequently, the decision expert feeds the required information in a systematic and user friendly manner. There are three significant contributions of the proposed approach. Firstly, the proposed hierarchical model is easily extendible for adding new criteria in the hierarchical structure. Secondly, a fully operational decision support system (DSS) tool that implements the proposed hierarchical model is presented. Finally, the effectiveness of the proposed hierarchical model is assessed by comparing the resulting rankings of BPSS with respect to currently available results.

  2. Robust Real-Time Music Transcription with a Compositional Hierarchical Model.

    Science.gov (United States)

    Pesek, Matevž; Leonardis, Aleš; Marolt, Matija

    2017-01-01

    The paper presents a new compositional hierarchical model for robust music transcription. Its main features are unsupervised learning of a hierarchical representation of input data, transparency, which enables insights into the learned representation, as well as robustness and speed which make it suitable for real-world and real-time use. The model consists of multiple layers, each composed of a number of parts. The hierarchical nature of the model corresponds well to hierarchical structures in music. The parts in lower layers correspond to low-level concepts (e.g. tone partials), while the parts in higher layers combine lower-level representations into more complex concepts (tones, chords). The layers are learned in an unsupervised manner from music signals. Parts in each layer are compositions of parts from previous layers based on statistical co-occurrences as the driving force of the learning process. In the paper, we present the model's structure and compare it to other hierarchical approaches in the field of music information retrieval. We evaluate the model's performance for the multiple fundamental frequency estimation. Finally, we elaborate on extensions of the model towards other music information retrieval tasks.

  3. Application of the TDABC model in the logistics process using different capacity cost rates

    Directory of Open Access Journals (Sweden)

    Paulo Afonso

    2016-12-01

    Full Text Available Purpose: The understanding of logistics process in terms of costs and profitability is a complex task and there is a need of more research and applied work on these issues. In this research project, the concepts underlying Time-Driven Activity Based Costing (TDABC have been used in the context of logistics costs. Design/methodology/approach: A Distribution Centre of wood and carpentry related materials has been studied. A multidisciplinary team has been composed to support the project including the researchers and three employees of the company responsible for accounting, logistics and warehousing. The design and implementation of the costing model asked for a deep understanding of the different tasks and processes that should be considered. Accordingly, a TDABC model for the logistics function was developed. Findings: The cost model presented here is supported on a series of time equations designed for the logistics function which allow the analysis and discussion of costs and profitability of different cost objects namely, products, clients, distribution channels, processes and activities. The cost of unused capacity and the effectiveness of logistics processes are also highlighted in this model. Research limitations/implications: In a case study, results and implications cannot be directly or immediately generalized. Nevertheless, the proposed time equations and cost model can be easily adapted to explain other types of logistics functions and it gives the foundations or other TDABC models with more than one capacity cost rate. Practical implications: The TDABC model developed in this case study can be used in similar cases and as a basis for the analysis of logistics costs in other logistics processes. Furthermore, managers can rely on the proposed approach to analyze products’ profitability and logistics cost structure.  Originality/value: In this case, different capacity cost rates were computed in order to reflect appropriately the

  4. Application of the TDABC model in the logistics process using different capacity cost rates

    International Nuclear Information System (INIS)

    Afonso, Paulo; Santana, Alex

    2016-01-01

    Purpose: The understanding of logistics process in terms of costs and profitability is a complex task and there is a need of more research and applied work on these issues. In this research project, the concepts underlying Time-Driven Activity Based Costing (TDABC) have been used in the context of logistics costs. Design/methodology/approach: A Distribution Centre of wood and carpentry related materials has been studied. A multidisciplinary team has been composed to support the project including the researchers and three employees of the company responsible for accounting, logistics and warehousing. The design and implementation of the costing model asked for a deep understanding of the different tasks and processes that should be considered. Accordingly, a TDABC model for the logistics function was developed. Findings: The cost model presented here is supported on a series of time equations designed for the logistics function which allow the analysis and discussion of costs and profitability of different cost objects namely, products, clients, distribution channels, processes and activities. The cost of unused capacity and the effectiveness of logistics processes are also highlighted in this model. Research limitations/implications: In a case study, results and implications cannot be directly or immediately generalized. Nevertheless, the proposed time equations and cost model can be easily adapted to explain other types of logistics functions and it gives the foundations or other TDABC models with more than one capacity cost rate. Practical implications: The TDABC model developed in this case study can be used in similar cases and as a basis for the analysis of logistics costs in other logistics processes. Furthermore, managers can rely on the proposed approach to analyze products’ profitability and logistics cost structure. Originality/value: In this case, different capacity cost rates were computed in order to reflect appropriately the logistics function which

  5. Application of the TDABC model in the logistics process using different capacity cost rates

    Energy Technology Data Exchange (ETDEWEB)

    Afonso, Paulo; Santana, Alex

    2016-07-01

    Purpose: The understanding of logistics process in terms of costs and profitability is a complex task and there is a need of more research and applied work on these issues. In this research project, the concepts underlying Time-Driven Activity Based Costing (TDABC) have been used in the context of logistics costs. Design/methodology/approach: A Distribution Centre of wood and carpentry related materials has been studied. A multidisciplinary team has been composed to support the project including the researchers and three employees of the company responsible for accounting, logistics and warehousing. The design and implementation of the costing model asked for a deep understanding of the different tasks and processes that should be considered. Accordingly, a TDABC model for the logistics function was developed. Findings: The cost model presented here is supported on a series of time equations designed for the logistics function which allow the analysis and discussion of costs and profitability of different cost objects namely, products, clients, distribution channels, processes and activities. The cost of unused capacity and the effectiveness of logistics processes are also highlighted in this model. Research limitations/implications: In a case study, results and implications cannot be directly or immediately generalized. Nevertheless, the proposed time equations and cost model can be easily adapted to explain other types of logistics functions and it gives the foundations or other TDABC models with more than one capacity cost rate. Practical implications: The TDABC model developed in this case study can be used in similar cases and as a basis for the analysis of logistics costs in other logistics processes. Furthermore, managers can rely on the proposed approach to analyze products’ profitability and logistics cost structure. Originality/value: In this case, different capacity cost rates were computed in order to reflect appropriately the logistics function which

  6. A generalized linear factor model approach to the hierarchical framework for responses and response times.

    Science.gov (United States)

    Molenaar, Dylan; Tuerlinckx, Francis; van der Maas, Han L J

    2015-05-01

    We show how the hierarchical model for responses and response times as developed by van der Linden (2007), Fox, Klein Entink, and van der Linden (2007), Klein Entink, Fox, and van der Linden (2009), and Glas and van der Linden (2010) can be simplified to a generalized linear factor model with only the mild restriction that there is no hierarchical model at the item side. This result is valuable as it enables all well-developed modelling tools and extensions that come with these methods. We show that the restriction we impose on the hierarchical model does not influence parameter recovery under realistic circumstances. In addition, we present two illustrative real data analyses to demonstrate the practical benefits of our approach. © 2014 The British Psychological Society.

  7. Assessment of RFID Investment in the Military Logistics Systems Through The Life Cycle Cost (LCC) Model

    OpenAIRE

    Ozdemir, Ahmet; Bayrak, Mustafa

    2015-01-01

    Radio Frequency Identification (RFID) is an emerging technology that has been recently used in numerous business and public fields. Most military applications of RFID have focused on logistics systems. Since RFID investment requires high initial cost and its benefits are hard to see in the short term, it needs an appropriate investment decision model. The purpose of this research is to propose a Life Cycle Cost (LCC) model for RFID integration into the Military Logistics System (MLS). The stu...

  8. Clinical, laboratory, and demographic determinants of hospitalization due to dengue in 7613 patients: A retrospective study based on hierarchical models.

    Science.gov (United States)

    da Silva, Natal Santos; Undurraga, Eduardo A; da Silva Ferreira, Elis Regina; Estofolete, Cássia Fernanda; Nogueira, Maurício Lacerda

    2018-01-01

    In Brazil, the incidence of hospitalization due to dengue, as an indicator of severity, has drastically increased since 1998. The objective of our study was to identify risk factors associated with subsequent hospitalization related to dengue. We analyzed 7613 dengue confirmed via serology (ELISA), non-structural protein 1, or polymerase chain reaction amplification. We used a hierarchical framework to generate a multivariate logistic regression based on a variety of risk variables. This was followed by multiple statistical analyses to assess hierarchical model accuracy, variance, goodness of fit, and whether or not this model reliably represented the population. The final model, which included age, sex, ethnicity, previous dengue infection, hemorrhagic manifestations, plasma leakage, and organ failure, showed that all measured parameters, with the exception of previous dengue, were statistically significant. The presence of organ failure was associated with the highest risk of subsequent dengue hospitalization (OR=5·75; CI=3·53-9·37). Therefore, plasma leakage and organ failure were the main indicators of hospitalization due to dengue, although other variables of minor importance should also be considered to refer dengue patients to hospital treatment, which may lead to a reduction in avoidable deaths as well as costs related to dengue. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Predicting Longitudinal Change in Language Production and Comprehension in Individuals with Down Syndrome: Hierarchical Linear Modeling.

    Science.gov (United States)

    Chapman, Robin S.; Hesketh, Linda J.; Kistler, Doris J.

    2002-01-01

    Longitudinal change in syntax comprehension and production skill, measured over six years, was modeled in 31 individuals (ages 5-20) with Down syndrome. The best fitting Hierarchical Linear Modeling model of comprehension uses age and visual and auditory short-term memory as predictors of initial status, and age for growth trajectory. (Contains…

  10. Measuring Teacher Effectiveness through Hierarchical Linear Models: Exploring Predictors of Student Achievement and Truancy

    Science.gov (United States)

    Subedi, Bidya Raj; Reese, Nancy; Powell, Randy

    2015-01-01

    This study explored significant predictors of student's Grade Point Average (GPA) and truancy (days absent), and also determined teacher effectiveness based on proportion of variance explained at teacher level model. We employed a two-level hierarchical linear model (HLM) with student and teacher data at level-1 and level-2 models, respectively.…

  11. Heuristics for Hierarchical Partitioning with Application to Model Checking

    DEFF Research Database (Denmark)

    Möller, Michael Oliver; Alur, Rajeev

    2001-01-01

    Given a collection of connected components, it is often desired to cluster together parts of strong correspondence, yielding a hierarchical structure. We address the automation of this process and apply heuristics to battle the combinatorial and computational complexity. We define a cost function...... that captures the quality of a structure relative to the connections and favors shallow structures with a low degree of branching. Finding a structure with minimal cost is NP-complete. We present a greedy polynomial-time algorithm that approximates good solutions incrementally by local evaluation of a heuristic...... function. We argue for a heuristic function based on four criteria: the number of enclosed connections, the number of components, the number of touched connections and the depth of the structure. We report on an application in the context of formal verification, where our algorithm serves as a preprocessor...

  12. A logistic regression model for Ghana National Health Insurance claims

    Directory of Open Access Journals (Sweden)

    Samuel Antwi

    2013-07-01

    Full Text Available In August 2003, the Ghanaian Government made history by implementing the first National Health Insurance System (NHIS in Sub-Saharan Africa. Within three years, over half of the country’s population had voluntarily enrolled into the National Health Insurance Scheme. This study had three objectives: 1 To estimate the risk factors that influences the Ghana national health insurance claims. 2 To estimate the magnitude of each of the risk factors in relation to the Ghana national health insurance claims. In this work, data was collected from the policyholders of the Ghana National Health Insurance Scheme with the help of the National Health Insurance database and the patients’ attendance register of the Koforidua Regional Hospital, from 1st January to 31st December 2011. Quantitative analysis was done using the generalized linear regression (GLR models. The results indicate that risk factors such as sex, age, marital status, distance and length of stay at the hospital were important predictors of health insurance claims. However, it was found that the risk factors; health status, billed charges and income level are not good predictors of national health insurance claim. The outcome of the study shows that sex, age, marital status, distance and length of stay at the hospital are statistically significant in the determination of the Ghana National health insurance premiums since they considerably influence claims. We recommended, among other things that, the National Health Insurance Authority should facilitate the institutionalization of the collection of appropriate data on a continuous basis to help in the determination of future premiums.

  13. Predictive market segmentation model: An application of logistic regression model and CHAID procedure

    Directory of Open Access Journals (Sweden)

    Soldić-Aleksić Jasna

    2009-01-01

    Full Text Available Market segmentation presents one of the key concepts of the modern marketing. The main goal of market segmentation is focused on creating groups (segments of customers that have similar characteristics, needs, wishes and/or similar behavior regarding the purchase of concrete product/service. Companies can create specific marketing plan for each of these segments and therefore gain short or long term competitive advantage on the market. Depending on the concrete marketing goal, different segmentation schemes and techniques may be applied. This paper presents a predictive market segmentation model based on the application of logistic regression model and CHAID analysis. The logistic regression model was used for the purpose of variables selection (from the initial pool of eleven variables which are statistically significant for explaining the dependent variable. Selected variables were afterwards included in the CHAID procedure that generated the predictive market segmentation model. The model results are presented on the concrete empirical example in the following form: summary model results, CHAID tree, Gain chart, Index chart, risk and classification tables.

  14. A mathematical model for optimization of an integrated network logistic design

    Directory of Open Access Journals (Sweden)

    Lida Tafaghodi

    2011-10-01

    Full Text Available In this study, the integrated forward/reverse logistics network is investigated, and a capacitated multi-stage, multi-product logistics network design is proposed by formulating a generalized logistics network problem into a mixed-integer nonlinear programming model (MINLP for minimizing the total cost of the closed-loop supply chain network. Moreover, the proposed model is solved by using optimization solver, which provides the decisions related to the facility location problem, optimum quantity of shipped product, and facility capacity. Numerical results show the power of the proposed MINLP model to avoid th sub-optimality caused by separate design of forward and reverse logistics networks and to handle various transportation modes and periodic demand.

  15. Accounting for Slipping and Other False Negatives in Logistic Models of Student Learning

    Science.gov (United States)

    MacLellan, Christopher J.; Liu, Ran; Koedinger, Kenneth R.

    2015-01-01

    Additive Factors Model (AFM) and Performance Factors Analysis (PFA) are two popular models of student learning that employ logistic regression to estimate parameters and predict performance. This is in contrast to Bayesian Knowledge Tracing (BKT) which uses a Hidden Markov Model formalism. While all three models tend to make similar predictions,…

  16. Using the Logistic Regression model in supporting decisions of establishing marketing strategies

    Directory of Open Access Journals (Sweden)

    Cristinel CONSTANTIN

    2015-12-01

    Full Text Available This paper is about an instrumental research regarding the using of Logistic Regression model for data analysis in marketing research. The decision makers inside different organisation need relevant information to support their decisions regarding the marketing strategies. The data provided by marketing research could be computed in various ways but the multivariate data analysis models can enhance the utility of the information. Among these models we can find the Logistic Regression model, which is used for dichotomous variables. Our research is based on explanation the utility of this model and interpretation of the resulted information in order to help practitioners and researchers to use it in their future investigations

  17. Analysis of RIA standard curve by log-logistic and cubic log-logit models

    International Nuclear Information System (INIS)

    Yamada, Hideo; Kuroda, Akira; Yatabe, Tami; Inaba, Taeko; Chiba, Kazuo

    1981-01-01

    In order to improve goodness-of-fit in RIA standard analysis, programs for computing log-logistic and cubic log-logit were written in BASIC using personal computer P-6060 (Olivetti). Iterative least square method of Taylor series was applied for non-linear estimation of logistic and log-logistic. Hear ''log-logistic'' represents Y = (a - d)/(1 + (log(X)/c)sup(b)) + d As weights either 1, 1/var(Y) or 1/σ 2 were used in logistic or log-logistic and either Y 2 (1 - Y) 2 , Y 2 (1 - Y) 2 /var(Y), or Y 2 (1 - Y) 2 /σ 2 were used in quadratic or cubic log-logit. The term var(Y) represents squares of pure error and σ 2 represents estimated variance calculated using a following equation log(σ 2 + 1) = log(A) + J log(y). As indicators for goodness-of-fit, MSL/S sub(e)sup(2), CMD% and WRV (see text) were used. Better regression was obtained in case of alpha-fetoprotein by log-logistic than by logistic. Cortisol standard curve was much better fitted with cubic log-logit than quadratic log-logit. Predicted precision of AFP standard curve was below 5% in log-logistic in stead of 8% in logistic analysis. Predicted precision obtained using cubic log-logit was about five times lower than that with quadratic log-logit. Importance of selecting good models in RIA data processing was stressed in conjunction with intrinsic precision of radioimmunoassay system indicated by predicted precision. (author)

  18. The Research on Influencing Factors of Medical Logistics Cost Based on ISM Model

    Directory of Open Access Journals (Sweden)

    Zhai Yunkai

    2017-01-01

    Full Text Available The reason why medical logistics cost remains high is a system problem, this paper analyzes the system through the ISM model. The result presents that medical logistics cost factors have four levels of relationship, primary factor is the national policies, secondary factors are the talent construction and pharmaceutical enterprise scale, Intermediate factors are medical information management system and inventory cost, the key factors are transportation cost and distribution center location. Finally, according to the four levels of relationship, this paper put forward specific suggestions to reduce logistics cost.

  19. An integrative fuzzy Kansei engineering and Kano model for logistics services

    Science.gov (United States)

    Hartono, M.; Chuan, T. K.; Prayogo, D. N.; Santoso, A.

    2017-11-01

    Nowadays, customer emotional needs (known as Kansei) in product and especially in services become a major concern. One of the emerging services is the logistics services. In obtaining a global competitive advantage, logistics services should understand and satisfy their customer affective impressions (Kansei). How to capture, model and analyze the customer emotions has been well structured by Kansei Engineering, equipped with Kano model to strengthen its methodology. However, its methodology lacks of the dynamics of customer perception. More specifically, there is a criticism of perceived scores on user preferences, in both perceived service quality and Kansei response, whether they represent an exact numerical value. Thus, this paper is proposed to discuss an approach of fuzzy Kansei in logistics service experiences. A case study in IT-based logistics services involving 100 subjects has been conducted. Its findings including the service gaps accompanied with prioritized improvement initiatives are discussed.

  20. The Hierarchical Trend Model for property valuation and local price indices

    NARCIS (Netherlands)

    Francke, M.K.; Vos, G.A.

    2002-01-01

    This paper presents a hierarchical trend model (HTM) for selling prices of houses, addressing three main problems: the spatial and temporal dependence of selling prices and the dependency of price index changes on housing quality. In this model the general price trend, cluster-level price trends,

  1. Measuring Service Quality in Higher Education: Development of a Hierarchical Model (HESQUAL)

    Science.gov (United States)

    Teeroovengadum, Viraiyan; Kamalanabhan, T. J.; Seebaluck, Ashley Keshwar

    2016-01-01

    Purpose: This paper aims to develop and empirically test a hierarchical model for measuring service quality in higher education. Design/methodology/approach: The first phase of the study consisted of qualitative research methods and a comprehensive literature review, which allowed the development of a conceptual model comprising 53 service quality…

  2. Avoiding Boundary Estimates in Hierarchical Linear Models through Weakly Informative Priors

    Science.gov (United States)

    Chung, Yeojin; Rabe-Hesketh, Sophia; Gelman, Andrew; Dorie, Vincent; Liu, Jinchen

    2012-01-01

    Hierarchical or multilevel linear models are widely used for longitudinal or cross-sectional data on students nested in classes and schools, and are particularly important for estimating treatment effects in cluster-randomized trials, multi-site trials, and meta-analyses. The models can allow for variation in treatment effects, as well as…

  3. LiDAR based prediction of forest biomass using hierarchical models with spatially varying coefficients

    Science.gov (United States)

    Chad Babcock; Andrew O. Finley; John B. Bradford; Randy Kolka; Richard Birdsey; Michael G. Ryan

    2015-01-01

    Many studies and production inventory systems have shown the utility of coupling covariates derived from Light Detection and Ranging (LiDAR) data with forest variables measured on georeferenced inventory plots through regression models. The objective of this study was to propose and assess the use of a Bayesian hierarchical modeling framework that accommodates both...

  4. A Hierarchical Linear Model for Estimating Gender-Based Earnings Differentials.

    Science.gov (United States)

    Haberfield, Yitchak; Semyonov, Moshe; Addi, Audrey

    1998-01-01

    Estimates of gender earnings inequality in data from 116,431 Jewish workers were compared using a hierarchical linear model (HLM) and ordinary least squares model. The HLM allows estimation of the extent to which earnings inequality depends on occupational characteristics. (SK)

  5. Galactic chemical evolution in hierarchical formation models - I. Early-type galaxies in the local Universe

    NARCIS (Netherlands)

    Arrigoni, Matías; Trager, Scott C.; Somerville, Rachel S.; Gibson, Brad K.

    We study the metallicities and abundance ratios of early-type galaxies in cosmological semi-analytic models (SAMs) within the hierarchical galaxy formation paradigm. To achieve this we implemented a detailed galactic chemical evolution model and can now predict abundances of individual elements for

  6. Galactic chemical evolution in hierarchical formation models : I. Early-type galaxies in the local Universe

    NARCIS (Netherlands)

    Arrigoni, Matias; Trager, Scott C.; Somerville, Rachel S.; Gibson, Brad K.

    2010-01-01

    We study the metallicities and abundance ratios of early-type galaxies in cosmological semi-analytic models (SAMs) within the hierarchical galaxy formation paradigm. To achieve this we implemented a detailed galactic chemical evolution model and can now predict abundances of individual elements for

  7. Hierarchical Bayesian modeling of the space - time diffusion patterns of cholera epidemic in Kumasi, Ghana

    NARCIS (Netherlands)

    Osei, Frank B.; Osei, F.B.; Duker, Alfred A.; Stein, A.

    2011-01-01

    This study analyses the joint effects of the two transmission routes of cholera on the space-time diffusion dynamics. Statistical models are developed and presented to investigate the transmission network routes of cholera diffusion. A hierarchical Bayesian modelling approach is employed for a joint

  8. A Hybrid PO - Higher-Order Hierarchical MoM Formulation using Curvilinear Geometry Modeling

    DEFF Research Database (Denmark)

    Jørgensen, E.; Meincke, Peter; Breinbjerg, Olav

    2003-01-01

    which implies a very modest memory requirement. Nevertheless, the hierarchical feature of the basis functions maintains the ability to treat small geometrical details efficiently. In addition, the scatterer is modelled with higher-order curved patches which allows accurate modelling of curved surfaces...

  9. A decision support model for identification and prioritization of key performance indicators in the logistics industry

    OpenAIRE

    Kucukaltan, Berk; Irani, Zahir; Aktas, Emel

    2016-01-01

    Performance measurement of logistics companies is based upon various performance indicators. Yet, in the logistics industry, there are several vaguenesses, such as deciding on key indicators and determining interrelationships between performance indicators. In order to resolve these vaguenesses, this paper first presents the stakeholder-informed Balanced Scorecard (BSC) model, by incorporating financial (e.g. cost) and non-financial (e.g. social media) performance indicators, with a comprehen...

  10. Modeling e-logistics for urban B2C in Europe

    OpenAIRE

    Galván, Dante; Robusté Antón, Francesc; Estrada Romeu, Miguel Ángel; Campos Cacheda, Jose Magin

    2005-01-01

    Major cities need to carry out good delivery operations that coexist with the rest of urban functions. The efficiency in city organisation depends directly on the proper management of logistic networks. In this context, Urban Logistics is born to improve the efficiency in public facilities dealing with the organisation of supply networks, especially in urban freight transport networks. This paper quantitatively models supply chains in the vehicle routing problem with time windows, especially ...

  11. SUPPLIES COSTS: AN EXPLORATORY STUDY WITH APPLICATION OF MEASUREMENT MODEL OF LOGISTICS COSTS

    OpenAIRE

    Ana Paula Ferreira Alves; José Vanderlei Silva Borba; Gilberto Tavares dos Santos; Artur Roberto Gibbon

    2013-01-01

    One of the main reasons for the difficulty in adopting an integrated method of calculation of logistics costs is still a lack of adequate information about costs. The management of the supply chain and identify its costs can provide information for their managers, with regard to decision making, generating competitive advantage. Some models of calculating logistics costs are proposed by Uelze (1974), Dias (1996), Goldratt (2002), Christopher (2007), Castiglioni (2009) and Borba & Gibbon (2009...

  12. Soft tissue deformation using a Hierarchical Finite Element Model.

    Science.gov (United States)

    Faraci, Alessandro; Bello, Fernando; Darzi, Ara

    2004-01-01

    Simulating soft tissue deformation in real-time has become increasingly important in order to provide a realistic virtual environment for training surgical skills. Several methods have been proposed with the aim of rendering in real-time the mechanical and physiological behaviour of human organs, one of the most popular being Finite Element Method (FEM). In this paper we present a new approach to the solution of the FEM problem introducing the concept of parent and child mesh within the development of a hierarchical FEM. The online selection of the child mesh is presented with the purpose to adapt the mesh hierarchy in real-time. This permits further refinement of the child mesh increasing the detail of the deformation without slowing down the simulation and giving the possibility of integrating force feedback. The results presented demonstrate the application of our proposed framework using a desktop virtual reality (VR) system that incorporates stereo vision with integrated haptics co-location via a desktop Phantom force feedback device.

  13. An Application of a Multidimensional Extension of the Two-Parameter Logistic Latent Trait Model.

    Science.gov (United States)

    McKinley, Robert L.; Reckase, Mark D.

    A latent trait model is described that is appropriate for use with tests that measure more than one dimension, and its application to both real and simulated test data is demonstrated. Procedures for estimating the parameters of the model are presented. The research objectives are to determine whether the two-parameter logistic model more…

  14. Transformation of renormalization groups in 2N-component fermion hierarchical model

    International Nuclear Information System (INIS)

    Stepanov, R.G.

    2006-01-01

    The 2N-component fermion model on the hierarchical lattice is studied. The explicit formulae for renormalization groups transformation in the space of coefficients setting the Grassmannian-significant density of the free measure are presented. The inverse transformation of the renormalization group is calculated. The definition of immovable points of renormalization groups is reduced to solving the set of algebraic equations. The interesting connection between renormalization group transformations in boson and fermion hierarchical models is found out. It is shown that one transformation is obtained from other one by the substitution of N on -N [ru

  15. Logistic regression models for polymorphic and antagonistic pleiotropic gene action on human aging and longevity

    DEFF Research Database (Denmark)

    Tan, Qihua; Bathum, L; Christiansen, L

    2003-01-01

    In this paper, we apply logistic regression models to measure genetic association with human survival for highly polymorphic and pleiotropic genes. By modelling genotype frequency as a function of age, we introduce a logistic regression model with polytomous responses to handle the polymorphic...... situation. Genotype and allele-based parameterization can be used to investigate the modes of gene action and to reduce the number of parameters, so that the power is increased while the amount of multiple testing minimized. A binomial logistic regression model with fractional polynomials is used to capture...... the age-dependent or antagonistic pleiotropic effects. The models are applied to HFE genotype data to assess the effects on human longevity by different alleles and to detect if an age-dependent effect exists. Application has shown that these methods can serve as useful tools in searching for important...

  16. Modelling of binary logistic regression for obesity among secondary students in a rural area of Kedah

    Science.gov (United States)

    Kamaruddin, Ainur Amira; Ali, Zalila; Noor, Norlida Mohd.; Baharum, Adam; Ahmad, Wan Muhamad Amir W.

    2014-07-01

    Logistic regression analysis examines the influence of various factors on a dichotomous outcome by estimating the probability of the event's occurrence. Logistic regression, also called a logit model, is a statistical procedure used to model dichotomous outcomes. In the logit model the log odds of the dichotomous outcome is modeled as a linear combination of the predictor variables. The log odds ratio in logistic regression provides a description of the probabilistic relationship of the variables and the outcome. In conducting logistic regression, selection procedures are used in selecting important predictor variables, diagnostics are used to check that assumptions are valid which include independence of errors, linearity in the logit for continuous variables, absence of multicollinearity, and lack of strongly influential outliers and a test statistic is calculated to determine the aptness of the model. This study used the binary logistic regression model to investigate overweight and obesity among rural secondary school students on the basis of their demographics profile, medical history, diet and lifestyle. The results indicate that overweight and obesity of students are influenced by obesity in family and the interaction between a student's ethnicity and routine meals intake. The odds of a student being overweight and obese are higher for a student having a family history of obesity and for a non-Malay student who frequently takes routine meals as compared to a Malay student.

  17. Fuzzy hierarchical model for risk assessment principles, concepts, and practical applications

    CERN Document Server

    Chan, Hing Kai

    2013-01-01

    Risk management is often complicated by situational uncertainties and the subjective preferences of decision makers. Fuzzy Hierarchical Model for Risk Assessment introduces a fuzzy-based hierarchical approach to solve risk management problems considering both qualitative and quantitative criteria to tackle imprecise information.   This approach is illustrated through number of case studies using examples from the food, fashion and electronics sectors to cover a range of applications including supply chain management, green product design and green initiatives. These practical examples explore how this method can be adapted and fine tuned to fit other industries as well.   Supported by an extensive literature review, Fuzzy Hierarchical Model for Risk Assessment  comprehensively introduces a new method for project managers across all industries as well as researchers in risk management.

  18. Experiments in Error Propagation within Hierarchal Combat Models

    Science.gov (United States)

    2015-09-01

    stochastic Lanchester campaign model that contains 18 Blue and 25 Red submarines. The outputs of the campaign models are analyzed statistically. The...sampled in a variety of ways, including just the mean, and used to calculate the attrition coefficients for a stochastic Lanchester campaign model...9 2. Lanchester Models .............................................................................10 III. SCENARIO AND MODEL DEVELOPMENT

  19. INFOGRAPHIC MODELING OF THE HIERARCHICAL STRUCTURE OF THE MANAGEMENT SYSTEM EXPOSED TO AN INNOVATIVE CONFLICT

    Directory of Open Access Journals (Sweden)

    Chulkov Vitaliy Olegovich

    2012-12-01

    Full Text Available This article deals with the infographic modeling of hierarchical management systems exposed to innovative conflicts. The authors analyze the facts that serve as conflict drivers in the construction management environment. The reasons for innovative conflicts include changes in hierarchical structures of management systems, adjustment of workers to new management conditions, changes in the ideology, etc. Conflicts under consideration may involve contradictions between requests placed by customers and the legislation, any risks that may originate from the above contradiction, conflicts arising from any failure to comply with any accepted standards of conduct, etc. One of the main objectives of the theory of hierarchical structures is to develop a model capable of projecting potential innovative conflicts. Models described in the paper reflect dynamic changes in patterns of external impacts within the conflict area. The simplest model element is a monad, or an indivisible set of characteristics of participants at the pre-set level. Interaction between two monads forms a diad. Modeling of situations that involve a different number of monads, diads, resources and impacts can improve methods used to control and manage hierarchical structures in the construction industry. However, in the absence of any mathematical models employed to simulate conflict-related events, processes and situations, any research into, projection and management of interpersonal and group-to-group conflicts are to be performed in the legal environment

  20. MODELS AND METHODS FOR LOGISTICS HUB LOCATION: A REVIEW TOWARDS TRANSPORTATION NETWORKS DESIGN

    Directory of Open Access Journals (Sweden)

    Carolina Luisa dos Santos Vieira

    Full Text Available ABSTRACT Logistics hubs affect the distribution patterns in transportation networks since they are flow-concentrating structures. Indeed, the efficient moving of goods throughout supply chains depends on the design of such networks. This paper presents a literature review on the logistics hub location problem, providing an outline of modeling approaches, solving techniques, and their applicability to such context. Two categories of models were identified. While multi-criteria models may seem best suited to find optimal locations, they do not allow an assessment of the impact of new hubs on goods flow and on the transportation network. On the other hand, single-criterion models, which provide location and flow allocation information, adopt network simplifications that hinder an accurate representation of the relationshipbetween origins, destinations, and hubs. In view of these limitations we propose future research directions for addressing real challenges of logistics hubs location regarding transportation networks design.

  1. Carbon emissions, logistics volume and GDP in China: empirical analysis based on panel data model.

    Science.gov (United States)

    Guo, Xiaopeng; Ren, Dongfang; Shi, Jiaxing

    2016-12-01

    This paper studies the relationship among carbon emissions, GDP, and logistics by using a panel data model and a combination of statistics and econometrics theory. The model is based on the historical data of 10 typical provinces and cities in China during 2005-2014. The model in this paper adds the variability of logistics on the basis of previous studies, and this variable is replaced by the freight turnover of the provinces. Carbon emissions are calculated by using the annual consumption of coal, oil, and natural gas. GDP is the gross domestic product. The results showed that the amount of logistics and GDP have a contribution to carbon emissions and the long-term relationships are different between different cities in China, mainly influenced by the difference among development mode, economic structure, and level of logistic development. After the testing of panel model setting, this paper established a variable coefficient model of the panel. The influence of GDP and logistics on carbon emissions is obtained according to the influence factors among the variables. The paper concludes with main findings and provides recommendations toward rational planning of urban sustainable development and environmental protection for China.

  2. Organizational Learning, Strategic Flexibility and Business Model Innovation: An Empirical Research Based on Logistics Enterprises

    Science.gov (United States)

    Bao, Yaodong; Cheng, Lin; Zhang, Jian

    Using the data of 237 Jiangsu logistics firms, this paper empirically studies the relationship among organizational learning capability, business model innovation, strategic flexibility. The results show as follows; organizational learning capability has positive impacts on business model innovation performance; strategic flexibility plays mediating roles on the relationship between organizational learning capability and business model innovation; interaction among strategic flexibility, explorative learning and exploitative learning play significant roles in radical business model innovation and incremental business model innovation.

  3. Application of hierarchical genetic models to Raven and WAIS subtests: a Dutch twin study.

    Science.gov (United States)

    Rijsdijk, Frühling V; Vernon, P A; Boomsma, Dorret I

    2002-05-01

    Hierarchical models of intelligence are highly informative and widely accepted. Application of these models to twin data, however, is sparse. This paper addresses the question of how a genetic hierarchical model fits the Wechsler Adult Intelligence Scale (WAIS) subtests and the Raven Standard Progressive test score, collected in 194 18-year-old Dutch twin pairs. We investigated whether first-order group factors possess genetic and environmental variance independent of the higher-order general factor and whether the hierarchical structure is significant for all sources of variance. A hierarchical model with the 3 Cohen group-factors (verbal comprehension, perceptual organisation and freedom-from-distractibility) and a higher-order g factor showed the best fit to the phenotypic data and to additive genetic influences (A), whereas the unique environmental source of variance (E) could be modeled by a single general factor and specifics. There was no evidence for common environmental influences. The covariation among the WAIS group factors and the covariation between the group factors and the Raven is predominantly influenced by a second-order genetic factor and strongly support the notion of a biological basis of g.

  4. A Hierarchical Bayesian Model to Predict Self-Thinning Line for Chinese Fir in Southern China.

    Directory of Open Access Journals (Sweden)

    Xiongqing Zhang

    Full Text Available Self-thinning is a dynamic equilibrium between forest growth and mortality at full site occupancy. Parameters of the self-thinning lines are often confounded by differences across various stand and site conditions. For overcoming the problem of hierarchical and repeated measures, we used hierarchical Bayesian method to estimate the self-thinning line. The results showed that the self-thinning line for Chinese fir (Cunninghamia lanceolata (Lamb.Hook. plantations was not sensitive to the initial planting density. The uncertainty of model predictions was mostly due to within-subject variability. The simulation precision of hierarchical Bayesian method was better than that of stochastic frontier function (SFF. Hierarchical Bayesian method provided a reasonable explanation of the impact of other variables (site quality, soil type, aspect, etc. on self-thinning line, which gave us the posterior distribution of parameters of self-thinning line. The research of self-thinning relationship could be benefit from the use of hierarchical Bayesian method.

  5. New methods to measure and model logistics and goods effects by the use of the CLG-DSS Model

    DEFF Research Database (Denmark)

    Salling, Kim Bang; Jensen, Anders Vestergaard

    2004-01-01

    This paper concerns the assessment and modelling of so-called logistics and goods effects (LG-effects) as part of a wider economic analysis by use of the developed CLG-DSS model. The results presented are based an on-going study, Task 9 about evaluation modelling and decision support systems (DSS......) in the Centre for Logistics and Goods Transport (CLG) 2001-2005 funded by the Danish Council for Technical-Scientific Research (STVF). Within the area of research on logistics the interaction between logistics and transportation is of great relevance. Task 9 and other recent studies have found that several...... companies are taking account of logistics and transport by setting up, among other things, specific departments to improve their handling. Some aspects in the transport sector concerning goods movement and consequences have not so far got the attention they deserve. In CLG Task 9 four LG-effects have been...

  6. SUPPLIES COSTS: AN EXPLORATORY STUDY WITH APPLICATION OF MEASUREMENT MODEL OF LOGISTICS COSTS

    Directory of Open Access Journals (Sweden)

    Ana Paula Ferreira Alves

    2013-12-01

    Full Text Available One of the main reasons for the difficulty in adopting an integrated method of calculation of logistics costs is still a lack of adequate information about costs. The management of the supply chain and identify its costs can provide information for their managers, with regard to decision making, generating competitive advantage. Some models of calculating logistics costs are proposed by Uelze (1974, Dias (1996, Goldratt (2002, Christopher (2007, Castiglioni (2009 and Borba & Gibbon (2009, with little disclosure of the results. In this context, this study aims to evaluate the costs of supplies, applying a measurement model of logistics costs. Methodologically, the study characterized as exploratory. The model applied pointed, in original condition, that about R$ 2.5 million were being applied in the process of management of supplies, with replacement costs and storage imbalance. Upgrading the company's data, it is possible obtain a 52% reduction in costs to replace and store supplies. Thus, the cost model applied to logistical supplies showed feasibility of implementation, as well as providing information to assist in management and decision-making in logistics supply.

  7. A Predictive Logistic Regression Model of World Conflict Using Open Source Data

    Science.gov (United States)

    2015-03-26

    No correlation between the error terms and the independent variables 9. Absence of perfect multicollinearity (Menard, 2001) When assumptions are...some of the variables before initial model building. Multicollinearity , or near-linear dependence among the variables will cause problems in the...model. High multicollinearity tends to produce unreasonably high logistic regression coefficients and can result in coefficients that are not

  8. Sample size calculation to externally validate scoring systems based on logistic regression models.

    Directory of Open Access Journals (Sweden)

    Antonio Palazón-Bru

    Full Text Available A sample size containing at least 100 events and 100 non-events has been suggested to validate a predictive model, regardless of the model being validated and that certain factors can influence calibration of the predictive model (discrimination, parameterization and incidence. Scoring systems based on binary logistic regression models are a specific type of predictive model.The aim of this study was to develop an algorithm to determine the sample size for validating a scoring system based on a binary logistic regression model and to apply it to a case study.The algorithm was based on bootstrap samples in which the area under the ROC curve, the observed event probabilities through smooth curves, and a measure to determine the lack of calibration (estimated calibration index were calculated. To illustrate its use for interested researchers, the algorithm was applied to a scoring system, based on a binary logistic regression model, to determine mortality in intensive care units.In the case study provided, the algorithm obtained a sample size with 69 events, which is lower than the value suggested in the literature.An algorithm is provided for finding the appropriate sample size to validate scoring systems based on binary logistic regression models. This could be applied to determine the sample size in other similar cases.

  9. Fitting multistate transition models with autoregressive logistic regression : Supervised exercise in intermittent claudication

    NARCIS (Netherlands)

    de Vries, S O; Fidler, Vaclav; Kuipers, Wietze D; Hunink, Maria G M

    1998-01-01

    The purpose of this study was to develop a model that predicts the outcome of supervised exercise for intermittent claudication. The authors present an example of the use of autoregressive logistic regression for modeling observed longitudinal data. Data were collected from 329 participants in a

  10. The use of logistic regression in modelling the distributions of bird ...

    African Journals Online (AJOL)

    The method of logistic regression was used to model the observed geographical distribution patterns of bird species in Swaziland in relation to a set of environmental variables. Reporting rates derived from bird atlas data are used as an index of population densities. This is justified in part by the success of the modelling ...

  11. An Investigation of Invariance Properties of One, Two and Three Parameter Logistic Item Response Theory Models

    Directory of Open Access Journals (Sweden)

    O.A. Awopeju

    2017-12-01

    Full Text Available The study investigated the invariance properties of one, two and three parame-ter logistic item response theory models. It examined the best fit among one parameter logistic (1PL, two-parameter logistic (2PL and three-parameter logistic (3PL IRT models for SSCE, 2008 in Mathematics. It also investigated the degree of invariance of the IRT models based item difficulty parameter estimates in SSCE in Mathematics across different samples of examinees and examined the degree of invariance of the IRT models based item discrimination estimates in SSCE in Mathematics across different samples of examinees. In order to achieve the set objectives, 6000 students (3000 males and 3000 females were drawn from the population of 35262 who wrote the 2008 paper 1 Senior Secondary Certificate Examination (SSCE in Mathematics organized by National Examination Council (NECO. The item difficulty and item discrimination parameter estimates from CTT and IRT were tested for invariance using BLOG MG 3 and correlation analysis was achieved using SPSS version 20. The research findings were that two parameter model IRT item difficulty and discrimination parameter estimates exhibited invariance property consistently across different samples and that 2-parameter model was suitable for all samples of examinees unlike one-parameter model and 3-parameter model.

  12. The Limit Behavior of a Stochastic Logistic Model with Individual Time-Dependent Rates

    Directory of Open Access Journals (Sweden)

    Yilun Shang

    2013-01-01

    Full Text Available We investigate a variant of the stochastic logistic model that allows individual variation and time-dependent infection and recovery rates. The model is described as a heterogeneous density dependent Markov chain. We show that the process can be approximated by a deterministic process defined by an integral equation as the population size grows.

  13. Logistics flows and enterprise input-output models: aggregate and disaggregate analysis

    NARCIS (Netherlands)

    Albino, V.; Yazan, Devrim; Messeni Petruzzelli, A.; Okogbaa, O.G.

    2011-01-01

    In the present paper, we propose the use of enterprise input-output (EIO) models to describe and analyse the logistics flows considering spatial issues and related environmental effects associated with production and transportation processes. In particular, transportation is modelled as a specific

  14. Time to failure of hierarchical load-transfer models of fracture

    DEFF Research Database (Denmark)

    Vázquez-Prada, M; Gómez, J B; Moreno, Y

    1999-01-01

    The time to failure, T, of dynamical models of fracture for a hierarchical load-transfer geometry is studied. Using a probabilistic strategy and juxtaposing hierarchical structures of height n, we devise an exact method to compute T, for structures of height n+1. Bounding T, for large n, we are a...... are able to deduce that the time to failure tends to a nonzero value when n tends to infinity. This numerical conclusion is deduced for both power law and exponential breakdown rules....

  15. Conditional Poisson models: a flexible alternative to conditional logistic case cross-over analysis.

    Science.gov (United States)

    Armstrong, Ben G; Gasparrini, Antonio; Tobias, Aurelio

    2014-11-24

    The time stratified case cross-over approach is a popular alternative to conventional time series regression for analysing associations between time series of environmental exposures (air pollution, weather) and counts of health outcomes. These are almost always analyzed using conditional logistic regression on data expanded to case-control (case crossover) format, but this has some limitations. In particular adjusting for overdispersion and auto-correlation in the counts is not possible. It has been established that a Poisson model for counts with stratum indicators gives identical estimates to those from conditional logistic regression and does not have these limitations, but it is little used, probably because of the overheads in estimating many stratum parameters. The conditional Poisson model avoids estimating stratum parameters by conditioning on the total event count in each stratum, thus simplifying the computing and increasing the number of strata for which fitting is feasible compared with the standard unconditional Poisson model. Unlike the conditional logistic model, the conditional Poisson model does not require expanding the data, and can adjust for overdispersion and auto-correlation. It is available in Stata, R, and other packages. By applying to some real data and using simulations, we demonstrate that conditional Poisson models were simpler to code and shorter to run than are conditional logistic analyses and can be fitted to larger data sets than possible with standard Poisson models. Allowing for overdispersion or autocorrelation was possible with the conditional Poisson model but when not required this model gave identical estimates to those from conditional logistic regression. Conditional Poisson regression models provide an alternative to case crossover analysis of stratified time series data with some advantages. The conditional Poisson model can also be used in other contexts in which primary control for confounding is by fine

  16. From Playability to a Hierarchical Game Usability Model

    OpenAIRE

    Nacke, Lennart E.

    2010-01-01

    This paper presents a brief review of current game usability models. This leads to the conception of a high-level game development-centered usability model that integrates current usability approaches in game industry and game research.

  17. Evaluation of Validity and Reliability for Hierarchical Scales Using Latent Variable Modeling

    Science.gov (United States)

    Raykov, Tenko; Marcoulides, George A.

    2012-01-01

    A latent variable modeling method is outlined, which accomplishes estimation of criterion validity and reliability for a multicomponent measuring instrument with hierarchical structure. The approach provides point and interval estimates for the scale criterion validity and reliability coefficients, and can also be used for testing composite or…

  18. Predicting Examination Performance Using an Expanded Integrated Hierarchical Model of Test Emotions and Achievement Goals

    Science.gov (United States)

    Putwain, Dave; Deveney, Carolyn

    2009-01-01

    The aim of this study was to examine an expanded integrative hierarchical model of test emotions and achievement goal orientations in predicting the examination performance of undergraduate students. Achievement goals were theorised as mediating the relationship between test emotions and performance. 120 undergraduate students completed…

  19. Using Hierarchical Linear Modelling to Examine Factors Predicting English Language Students' Reading Achievement

    Science.gov (United States)

    Fung, Karen; ElAtia, Samira

    2015-01-01

    Using Hierarchical Linear Modelling (HLM), this study aimed to identify factors such as ESL/ELL/EAL status that would predict students' reading performance in an English language arts exam taken across Canada. Using data from the 2007 administration of the Pan-Canadian Assessment Program (PCAP) along with the accompanying surveys for students and…

  20. The Hierarchical Factor Model of ADHD: Invariant across Age and National Groupings?

    Science.gov (United States)

    Toplak, Maggie E.; Sorge, Geoff B.; Flora, David B.; Chen, Wai; Banaschewski, Tobias; Buitelaar, Jan; Ebstein, Richard; Eisenberg, Jacques; Franke, Barbara; Gill, Michael; Miranda, Ana; Oades, Robert D.; Roeyers, Herbert; Rothenberger, Aribert; Sergeant, Joseph; Sonuga-Barke, Edmund; Steinhausen, Hans-Christoph; Thompson, Margaret; Tannock, Rosemary; Asherson, Philip; Faraone, Stephen V.

    2012-01-01

    Objective: To examine the factor structure of attention-deficit/hyperactivity disorder (ADHD) in a clinical sample of 1,373 children and adolescents with ADHD and their 1,772 unselected siblings recruited from different countries across a large age range. Hierarchical and correlated factor analytic models were compared separately in the ADHD and…

  1. Symptom structure of PTSD: support for a hierarchical model separating core PTSD symptoms from dysphoria

    NARCIS (Netherlands)

    Rademaker, Arthur R.; van Minnen, Agnes; Ebberink, Freek; van Zuiden, Mirjam; Hagenaars, Muriel A.; Geuze, Elbert

    2012-01-01

    As of yet, no collective agreement has been reached regarding the precise factor structure of posttraumatic stress disorder (PTSD). Several alternative factor-models have been proposed in the last decades. The current study examined the fit of a hierarchical adaptation of the Simms et al. (2002)

  2. Hierarchical models for informing general biomass equations with felled tree data

    Science.gov (United States)

    Brian J. Clough; Matthew B. Russell; Christopher W. Woodall; Grant M. Domke; Philip J. Radtke

    2015-01-01

    We present a hierarchical framework that uses a large multispecies felled tree database to inform a set of general models for predicting tree foliage biomass, with accompanying uncertainty, within the FIA database. Results suggest significant prediction uncertainty for individual trees and reveal higher errors when predicting foliage biomass for larger trees and for...

  3. Perfect observables for the hierarchical non-linear O(N)-invariant σ-model

    International Nuclear Information System (INIS)

    Wieczerkowski, C.; Xylander, Y.

    1995-05-01

    We compute moving eigenvalues and the eigenvectors of the linear renormalization group transformation for observables along the renormalized trajectory of the hierarchical non-linear O(N)-invariant σ-model by means of perturbation theory in the running coupling constant. Moving eigenvectors are defined as solutions to a Callan-Symanzik type equation. (orig.)

  4. Intraclass Correlation Coefficients in Hierarchical Designs: Evaluation Using Latent Variable Modeling

    Science.gov (United States)

    Raykov, Tenko

    2011-01-01

    Interval estimation of intraclass correlation coefficients in hierarchical designs is discussed within a latent variable modeling framework. A method accomplishing this aim is outlined, which is applicable in two-level studies where participants (or generally lower-order units) are clustered within higher-order units. The procedure can also be…

  5. A fuzzy mathematical model of West Java population with logistic growth model

    Science.gov (United States)

    Nurkholipah, N. S.; Amarti, Z.; Anggriani, N.; Supriatna, A. K.

    2018-03-01

    In this paper we develop a mathematics model of population growth in the West Java Province Indonesia. The model takes the form as a logistic differential equation. We parameterize the model using several triples of data, and choose the best triple which has the smallest Mean Absolute Percentage Error (MAPE). The resulting model is able to predict the historical data with a high accuracy and it also able to predict the future of population number. Predicting the future population is among the important factors that affect the consideration is preparing a good management for the population. Several experiment are done to look at the effect of impreciseness in the data. This is done by considering a fuzzy initial value to the crisp model assuming that the model propagates the fuzziness of the independent variable to the dependent variable. We assume here a triangle fuzzy number representing the impreciseness in the data. We found that the fuzziness may disappear in the long-term. Other scenarios also investigated, such as the effect of fuzzy parameters to the crisp initial value of the population. The solution of the model is obtained numerically using the fourth-order Runge-Kutta scheme.

  6. Analysis of Interactions of Logistics Elements of K-1 Tracked Vehicles in Republic Of Korea Army by Using Simulation Model

    National Research Council Canada - National Science Library

    Park, Si-Won

    2007-01-01

    ...: component failure rate, repair rate, inventory service level, and logistics delays. The model with these logistics elements is simulated for the acquirement of data and the results provide guidance...

  7. Construction of risk prediction model of type 2 diabetes mellitus based on logistic regression

    Directory of Open Access Journals (Sweden)

    Li Jian

    2017-01-01

    Full Text Available Objective: to construct multi factor prediction model for the individual risk of T2DM, and to explore new ideas for early warning, prevention and personalized health services for T2DM. Methods: using logistic regression techniques to screen the risk factors for T2DM and construct the risk prediction model of T2DM. Results: Male’s risk prediction model logistic regression equation: logit(P=BMI × 0.735+ vegetables × (−0.671 + age × 0.838+ diastolic pressure × 0.296+ physical activity× (−2.287 + sleep ×(−0.009 +smoking ×0.214; Female’s risk prediction model logistic regression equation: logit(P=BMI ×1.979+ vegetables× (−0.292 + age × 1.355+ diastolic pressure× 0.522+ physical activity × (−2.287 + sleep × (−0.010.The area under the ROC curve of male was 0.83, the sensitivity was 0.72, the specificity was 0.86, the area under the ROC curve of female was 0.84, the sensitivity was 0.75, the specificity was 0.90. Conclusion: This study model data is from a compared study of nested case, the risk prediction model has been established by using the more mature logistic regression techniques, and the model is higher predictive sensitivity, specificity and stability.

  8. Persistence and extinction for stochastic logistic model with Levy noise and impulsive perturbation

    OpenAIRE

    Chun Lu; Qiang Ma; Xiaohua Ding

    2015-01-01

    This article investigates a stochastic logistic model with Levy noise and impulsive perturbation. In the model, the impulsive perturbation and Levy noise are taken into account simultaneously. This model is new and more feasible and more accordance with the actual. The definition of solution to a stochastic differential equation with Levy noise and impulsive perturbation is established. Based on this definition, we show that our model has a unique global positive solut...

  9. An Analysis of Turkey's PISA 2015 Results Using Two-Level Hierarchical Linear Modelling

    Science.gov (United States)

    Atas, Dogu; Karadag, Özge

    2017-01-01

    In the field of education, most of the data collected are multi-level structured. Cities, city based schools, school based classes and finally students in the classrooms constitute a hierarchical structure. Hierarchical linear models give more accurate results compared to standard models when the data set has a structure going far as individuals,…

  10. Technical Note: Probabilistically constraining proxy age–depth models within a Bayesian hierarchical reconstruction model

    Directory of Open Access Journals (Sweden)

    J. P. Werner

    2015-03-01

    Full Text Available Reconstructions of the late-Holocene climate rely heavily upon proxies that are assumed to be accurately dated by layer counting, such as measurements of tree rings, ice cores, and varved lake sediments. Considerable advances could be achieved if time-uncertain proxies were able to be included within these multiproxy reconstructions, and if time uncertainties were recognized and correctly modeled for proxies commonly treated as free of age model errors. Current approaches for accounting for time uncertainty are generally limited to repeating the reconstruction using each one of an ensemble of age models, thereby inflating the final estimated uncertainty – in effect, each possible age model is given equal weighting. Uncertainties can be reduced by exploiting the inferred space–time covariance structure of the climate to re-weight the possible age models. Here, we demonstrate how Bayesian hierarchical climate reconstruction models can be augmented to account for time-uncertain proxies. Critically, although a priori all age models are given equal probability of being correct, the probabilities associated with the age models are formally updated within the Bayesian framework, thereby reducing uncertainties. Numerical experiments show that updating the age model probabilities decreases uncertainty in the resulting reconstructions, as compared with the current de facto standard of sampling over all age models, provided there is sufficient information from other data sources in the spatial region of the time-uncertain proxy. This approach can readily be generalized to non-layer-counted proxies, such as those derived from marine sediments.

  11. A hierarchical causal modeling for large industrial plants supervision

    International Nuclear Information System (INIS)

    Dziopa, P.; Leyval, L.

    1994-01-01

    A supervision system has to analyse the process current state and the way it will evolve after a modification of the inputs or disturbance. It is proposed to base this analysis on a hierarchy of models, witch differ by the number of involved variables and the abstraction level used to describe their temporal evolution. In a first step, special attention is paid to causal models building, from the most abstract one. Once the hierarchy of models has been build, the most detailed model parameters are estimated. Several models of different abstraction levels can be used for on line prediction. These methods have been applied to a nuclear reprocessing plant. The abstraction level could be chosen on line by the operator. Moreover when an abnormal process behaviour is detected a more detailed model is automatically triggered in order to focus the operator attention on the suspected subsystem. (authors). 11 refs., 11 figs

  12. Sparse Event Modeling with Hierarchical Bayesian Kernel Methods

    Science.gov (United States)

    2016-01-05

    SECURITY CLASSIFICATION OF: The research objective of this proposal was to develop a predictive Bayesian kernel approach to model count data based on...several predictive variables. Such an approach, which we refer to as the Poisson Bayesian kernel model, is able to model the rate of occurrence of... kernel methods made use of: (i) the Bayesian property of improving predictive accuracy as data are dynamically obtained, and (ii) the kernel function

  13. Hierarchical modelling of line commutated power systems used in particle accelerators using Saber

    International Nuclear Information System (INIS)

    Reimund, J.A.

    1993-01-01

    This paper discusses the use of hierarchical simulation models using the program Saber trademark for the prediction of magnet ripple currents generated by the power supply/output filter combination. Modeling of an entire power system connected to output filters and particle accelerator ring magnets will be presented. Special emphasis is made on the modeling of power source imbalances caused by transformer impedance imbalances and utility variances. The affect that these imbalances have on the harmonic content of ripple current is also investigated

  14. A test of the hierarchical model of litter decomposition

    DEFF Research Database (Denmark)

    Bradford, Mark A.; Veen, G. F.; Bonis, Anne

    2017-01-01

    Our basic understanding of plant litter decomposition informs the assumptions underlying widely applied soil biogeochemical models, including those embedded in Earth system models. Confidence in projected carbon cycle-climate feedbacks therefore depends on accurate knowledge about the controls...... regulating the rate at which plant biomass is decomposed into products such as CO2. Here we test underlying assumptions of the dominant conceptual model of litter decomposition. The model posits that a primary control on the rate of decomposition at regional to global scales is climate (temperature...

  15. Applying Fuzzy Multiobjective Integrated Logistics Model to Green Supply Chain Problems

    Directory of Open Access Journals (Sweden)

    Chui-Yu Chiu

    2014-01-01

    Full Text Available The aim of this paper is attempting to explore the optimal way of supply chain management within the domain of environmental responsibility and concerns. The background of this research involves the issue of green supply chain management (GSCM and the concept of the multiobjective integrated logistics model. More specifically, in this paper, we suggest the fuzzy multiobjective integrated logistics model with the transportation cost and demand fuzziness to solve green supply chain problems in the uncertain environment which is illustrated via the detailed numerical example. Results and the sensitivity analysis of the numerical example indicate that when the governmental subsidy value increased the profits of the reverse chain also increased. The finding shows that the governmental subsidy policy could remain of significant influence for used-product reverse logistics chain.

  16. Logistics modelling: improving resource management and public information strategies in Florida.

    Science.gov (United States)

    Walsh, Daniel M; Van Groningen, Chuck; Craig, Brian

    2011-10-01

    One of the most time-sensitive and logistically-challenging emergency response operations today is to provide mass prophylaxis to every man, woman and child in a community within 48 hours of a bioterrorism attack. To meet this challenge, federal, state and local public health departments in the USA have joined forces to develop, test and execute large-scale bioterrorism response plans. This preparedness and response effort is funded through the US Centers for Disease Control and Prevention's Cities Readiness Initiative, a programme dedicated to providing oral antibiotics to an entire population within 48 hours of a weaponised inhalation anthrax attack. This paper will demonstrate how the State of Florida used a logistics modelling tool to improve its CRI mass prophylaxis plans. Special focus will be on how logistics modelling strengthened Florida's resource management policies and validated its public information strategies.

  17. Simulating individual-based models of epidemics in hierarchical networks

    NARCIS (Netherlands)

    Quax, R.; Bader, D.A.; Sloot, P.M.A.

    2009-01-01

    Current mathematical modeling methods for the spreading of infectious diseases are too simplified and do not scale well. We present the Simulator of Epidemic Evolution in Complex Networks (SEECN), an efficient simulator of detailed individual-based models by parameterizing separate dynamics

  18. A three-component, hierarchical model of executive attention

    OpenAIRE

    Whittle, Sarah; Pantelis, Christos; Testa, Renee; Tiego, Jeggan; Bellgrove, Mark

    2017-01-01

    Executive attention refers to the goal-directed control of attention. Existing models of executive attention distinguish between three correlated, but empirically dissociable, factors related to selectively attending to task-relevant stimuli (Selective Attention), inhibiting task-irrelevant responses (Response Inhibition), and actively maintaining goal-relevant information (Working Memory Capacity). In these models, Selective Attention and Response Inhibition are moderately strongly correlate...

  19. An open-population hierarchical distance sampling model

    Science.gov (United States)

    Sollmann, Rachel; Beth Gardner,; Richard B Chandler,; Royle, J. Andrew; T Scott Sillett,

    2015-01-01

    Modeling population dynamics while accounting for imperfect detection is essential to monitoring programs. Distance sampling allows estimating population size while accounting for imperfect detection, but existing methods do not allow for direct estimation of demographic parameters. We develop a model that uses temporal correlation in abundance arising from underlying population dynamics to estimate demographic parameters from repeated distance sampling surveys. Using a simulation study motivated by designing a monitoring program for island scrub-jays (Aphelocoma insularis), we investigated the power of this model to detect population trends. We generated temporally autocorrelated abundance and distance sampling data over six surveys, using population rates of change of 0.95 and 0.90. We fit the data generating Markovian model and a mis-specified model with a log-linear time effect on abundance, and derived post hoc trend estimates from a model estimating abundance for each survey separately. We performed these analyses for varying number of survey points. Power to detect population changes was consistently greater under the Markov model than under the alternatives, particularly for reduced numbers of survey points. The model can readily be extended to more complex demographic processes than considered in our simulations. This novel framework can be widely adopted for wildlife population monitoring.

  20. An open-population hierarchical distance sampling model.

    Science.gov (United States)

    Sollmann, Rahel; Gardner, Beth; Chandler, Richard B; Royle, J Andrew; Sillett, T Scott

    2015-02-01

    Modeling population dynamics while accounting for imperfect detection is essential to monitoring programs. Distance sampling allows estimating population size while accounting for imperfect detection, but existing methods do not allow for estimation of demographic parameters. We develop a model that uses temporal correlation in abundance arising from underlying population dynamics to estimate demographic parameters from repeated distance sampling surveys. Using a simulation study motivated by designing a monitoring program for Island Scrub-Jays (Aphelocoma insularis), we investigated the power of this model to detect population trends. We generated temporally autocorrelated abundance and distance sampling data over six surveys, using population rates of change of 0.95 and 0.90. We fit the data generating Markovian model and a mis-specified model with a log-linear time effect on abundance, and derived post hoc trend estimates from a model estimating abundance for each survey separately. We performed these analyses for varying numbers of survey points. Power to detect population changes was consistently greater under the Markov model than under the alternatives, particularly for reduced numbers of survey points. The model can readily be extended to more complex demographic processes than considered in our simulations. This novel framework can be widely adopted for wildlife population monitoring.

  1. Transport spatial model for the definition of green routes for city logistics centers

    International Nuclear Information System (INIS)

    Pamučar, Dragan; Gigović, Ljubomir; Ćirović, Goran; Regodić, Miodrag

    2016-01-01

    This paper presents a transport spatial decision support model (TSDSM) for carrying out the optimization of green routes for city logistics centers. The TSDSM model is based on the integration of the multi-criteria method of Weighted Linear Combination (WLC) and the modified Dijkstra algorithm within a geographic information system (GIS). The GIS is used for processing spatial data. The proposed model makes it possible to plan routes for green vehicles and maximize the positive effects on the environment, which can be seen in the reduction of harmful gas emissions and an increase in the air quality in highly populated areas. The scheduling of delivery vehicles is given as a problem of optimization in terms of the parameters of: the environment, health, use of space and logistics operating costs. Each of these input parameters was thoroughly examined and broken down in the GIS into criteria which further describe them. The model presented here takes into account the fact that logistics operators have a limited number of environmentally friendly (green) vehicles available. The TSDSM was tested on a network of roads with 127 links for the delivery of goods from the city logistics center to the user. The model supports any number of available environmentally friendly or environmentally unfriendly vehicles consistent with the size of the network and the transportation requirements. - Highlights: • Model for routing light delivery vehicles in urban areas. • Optimization of green routes for city logistics centers. • The proposed model maximizes the positive effects on the environment. • The model was tested on a real network.

  2. Transport spatial model for the definition of green routes for city logistics centers

    Energy Technology Data Exchange (ETDEWEB)

    Pamučar, Dragan, E-mail: dpamucar@gmail.com [University of Defence in Belgrade, Department of Logistics, Pavla Jurisica Sturma 33, 11000 Belgrade (Serbia); Gigović, Ljubomir, E-mail: gigoviclj@gmail.com [University of Defence in Belgrade, Department of Mathematics, Pavla Jurisica Sturma 33, 11000 Belgrade (Serbia); Ćirović, Goran, E-mail: cirovic@sezampro.rs [College of Civil Engineering and Geodesy, The Belgrade University, Hajduk Stankova 2, 11000 Belgrade (Serbia); Regodić, Miodrag, E-mail: mregodic62@gmail.com [University of Defence in Belgrade, Department of Mathematics, Pavla Jurisica Sturma 33, 11000 Belgrade (Serbia)

    2016-01-15

    This paper presents a transport spatial decision support model (TSDSM) for carrying out the optimization of green routes for city logistics centers. The TSDSM model is based on the integration of the multi-criteria method of Weighted Linear Combination (WLC) and the modified Dijkstra algorithm within a geographic information system (GIS). The GIS is used for processing spatial data. The proposed model makes it possible to plan routes for green vehicles and maximize the positive effects on the environment, which can be seen in the reduction of harmful gas emissions and an increase in the air quality in highly populated areas. The scheduling of delivery vehicles is given as a problem of optimization in terms of the parameters of: the environment, health, use of space and logistics operating costs. Each of these input parameters was thoroughly examined and broken down in the GIS into criteria which further describe them. The model presented here takes into account the fact that logistics operators have a limited number of environmentally friendly (green) vehicles available. The TSDSM was tested on a network of roads with 127 links for the delivery of goods from the city logistics center to the user. The model supports any number of available environmentally friendly or environmentally unfriendly vehicles consistent with the size of the network and the transportation requirements. - Highlights: • Model for routing light delivery vehicles in urban areas. • Optimization of green routes for city logistics centers. • The proposed model maximizes the positive effects on the environment. • The model was tested on a real network.

  3. Hierarchical material models for fragmentation modeling in NIF-ALE-AMR

    International Nuclear Information System (INIS)

    Fisher, A C; Masters, N D; Koniges, A E; Anderson, R W; Gunney, B T N; Wang, P; Becker, R; Dixit, P; Benson, D J

    2008-01-01

    Fragmentation is a fundamental process that naturally spans micro to macroscopic scales. Recent advances in algorithms, computer simulations, and hardware enable us to connect the continuum to microstructural regimes in a real simulation through a heterogeneous multiscale mathematical model. We apply this model to the problem of predicting how targets in the NIF chamber dismantle, so that optics and diagnostics can be protected from damage. The mechanics of the initial material fracture depend on the microscopic grain structure. In order to effectively simulate the fragmentation, this process must be modeled at the subgrain level with computationally expensive crystal plasticity models. However, there are not enough computational resources to model the entire NIF target at this microscopic scale. In order to accomplish these calculations, a hierarchical material model (HMM) is being developed. The HMM will allow fine-scale modeling of the initial fragmentation using computationally expensive crystal plasticity, while the elements at the mesoscale can use polycrystal models, and the macroscopic elements use analytical flow stress models. The HMM framework is built upon an adaptive mesh refinement (AMR) capability. We present progress in implementing the HMM in the NIF-ALE-AMR code. Additionally, we present test simulations relevant to NIF targets

  4. Hierarchical material models for fragmentation modeling in NIF-ALE-AMR

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, A C; Masters, N D; Koniges, A E; Anderson, R W; Gunney, B T N; Wang, P; Becker, R [Lawrence Livermore National Laboratory, PO Box 808, Livermore, CA 94551 (United States); Dixit, P; Benson, D J [University of California San Diego, 9500 Gilman Dr., La Jolla. CA 92093 (United States)], E-mail: fisher47@llnl.gov

    2008-05-15

    Fragmentation is a fundamental process that naturally spans micro to macroscopic scales. Recent advances in algorithms, computer simulations, and hardware enable us to connect the continuum to microstructural regimes in a real simulation through a heterogeneous multiscale mathematical model. We apply this model to the problem of predicting how targets in the NIF chamber dismantle, so that optics and diagnostics can be protected from damage. The mechanics of the initial material fracture depend on the microscopic grain structure. In order to effectively simulate the fragmentation, this process must be modeled at the subgrain level with computationally expensive crystal plasticity models. However, there are not enough computational resources to model the entire NIF target at this microscopic scale. In order to accomplish these calculations, a hierarchical material model (HMM) is being developed. The HMM will allow fine-scale modeling of the initial fragmentation using computationally expensive crystal plasticity, while the elements at the mesoscale can use polycrystal models, and the macroscopic elements use analytical flow stress models. The HMM framework is built upon an adaptive mesh refinement (AMR) capability. We present progress in implementing the HMM in the NIF-ALE-AMR code. Additionally, we present test simulations relevant to NIF targets.

  5. Innovative Business Model for Realization of Sustainable Supply Chain at the Outsourcing Examination of Logistics Services

    Directory of Open Access Journals (Sweden)

    Péter Tamás

    2018-01-01

    Full Text Available The issue of sustainability is becoming more and more important because of the increase in the human population and the extraction of non-renewable natural resources. We can make decisive steps towards sustainability in the fields of logistics services by improvement of logistics processes and/or application of new environment-friendly technologies. These steps are very important for companies because they have a significant effect on competitiveness. Nowadays significant changes are taking place in applied methods and technologies in the fields of logistics services as part of the 4th Industrial Revolution. Most companies are not able to keep pace with these changes in addition to carrying out their main activities by using own resources; consequently, in many cases logistics services are outsourced in the interest of maintaining or increasing competitiveness. The currently applied outsourcing examination process contains numerous shortcomings. We have elaborated a new business model to eliminate these shortcomings, namely the basic concept for an outsourcing investigation system integrated in the electronic marketplace. The paper introduces the current process of logistics service outsourcing examination and the elaborated business model concept.

  6. Comparing the performance of flat and hierarchical Habitat/Land-Cover classification models in a NATURA 2000 site

    Science.gov (United States)

    Gavish, Yoni; O'Connell, Jerome; Marsh, Charles J.; Tarantino, Cristina; Blonda, Palma; Tomaselli, Valeria; Kunin, William E.

    2018-02-01

    The increasing need for high quality Habitat/Land-Cover (H/LC) maps has triggered considerable research into novel machine-learning based classification models. In many cases, H/LC classes follow pre-defined hierarchical classification schemes (e.g., CORINE), in which fine H/LC categories are thematically nested within more general categories. However, none of the existing machine-learning algorithms account for this pre-defined hierarchical structure. Here we introduce a novel Random Forest (RF) based application of hierarchical classification, which fits a separate local classification model in every branching point of the thematic tree, and then integrates all the different local models to a single global prediction. We applied the hierarchal RF approach in a NATURA 2000 site in Italy, using two land-cover (CORINE, FAO-LCCS) and one habitat classification scheme (EUNIS) that differ from one another in the shape of the class hierarchy. For all 3 classification schemes, both the hierarchical model and a flat model alternative provided accurate predictions, with kappa values mostly above 0.9 (despite using only 2.2-3.2% of the study area as training cells). The flat approach slightly outperformed the hierarchical models when the hierarchy was relatively simple, while the hierarchical model worked better under more complex thematic hierarchies. Most misclassifications came from habitat pairs that are thematically distant yet spectrally similar. In 2 out of 3 classification schemes, the additional constraints of the hierarchical model resulted with fewer such serious misclassifications relative to the flat model. The hierarchical model also provided valuable information on variable importance which can shed light into "black-box" based machine learning algorithms like RF. We suggest various ways by which hierarchical classification models can increase the accuracy and interpretability of H/LC classification maps.

  7. The application of a hierarchical Bayesian spatiotemporal model for ...

    Indian Academy of Sciences (India)

    Process (GP) model by using the Gibbs sampling method. The result for ... good indicator of the HBST method. The statistical ... summary and discussion of future works are given .... spatiotemporal package in R language (R core team. 2013).

  8. Bayesian disease mapping: hierarchical modeling in spatial epidemiology

    National Research Council Canada - National Science Library

    Lawson, Andrew

    2013-01-01

    Since the publication of the first edition, many new Bayesian tools and methods have been developed for space-time data analysis, the predictive modeling of health outcomes, and other spatial biostatistical areas...

  9. Hierarchical models and iterative optimization of hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Rasina, Irina V. [Ailamazyan Program Systems Institute, Russian Academy of Sciences, Peter One str. 4a, Pereslavl-Zalessky, 152021 (Russian Federation); Baturina, Olga V. [Trapeznikov Control Sciences Institute, Russian Academy of Sciences, Profsoyuznaya str. 65, 117997, Moscow (Russian Federation); Nasatueva, Soelma N. [Buryat State University, Smolina str.24a, Ulan-Ude, 670000 (Russian Federation)

    2016-06-08

    A class of hybrid control systems on the base of two-level discrete-continuous model is considered. The concept of this model was proposed and developed in preceding works as a concretization of the general multi-step system with related optimality conditions. A new iterative optimization procedure for such systems is developed on the base of localization of the global optimality conditions via contraction the control set.

  10. Adjusting for Confounding in Early Postlaunch Settings: Going Beyond Logistic Regression Models.

    Science.gov (United States)

    Schmidt, Amand F; Klungel, Olaf H; Groenwold, Rolf H H

    2016-01-01

    Postlaunch data on medical treatments can be analyzed to explore adverse events or relative effectiveness in real-life settings. These analyses are often complicated by the number of potential confounders and the possibility of model misspecification. We conducted a simulation study to compare the performance of logistic regression, propensity score, disease risk score, and stabilized inverse probability weighting methods to adjust for confounding. Model misspecification was induced in the independent derivation dataset. We evaluated performance using relative bias confidence interval coverage of the true effect, among other metrics. At low events per coefficient (1.0 and 0.5), the logistic regression estimates had a large relative bias (greater than -100%). Bias of the disease risk score estimates was at most 13.48% and 18.83%. For the propensity score model, this was 8.74% and >100%, respectively. At events per coefficient of 1.0 and 0.5, inverse probability weighting frequently failed or reduced to a crude regression, resulting in biases of -8.49% and 24.55%. Coverage of logistic regression estimates became less than the nominal level at events per coefficient ≤5. For the disease risk score, inverse probability weighting, and propensity score, coverage became less than nominal at events per coefficient ≤2.5, ≤1.0, and ≤1.0, respectively. Bias of misspecified disease risk score models was 16.55%. In settings with low events/exposed subjects per coefficient, disease risk score methods can be useful alternatives to logistic regression models, especially when propensity score models cannot be used. Despite better performance of disease risk score methods than logistic regression and propensity score models in small events per coefficient settings, bias, and coverage still deviated from nominal.

  11. Trans-dimensional matched-field geoacoustic inversion with hierarchical error models and interacting Markov chains.

    Science.gov (United States)

    Dettmer, Jan; Dosso, Stan E

    2012-10-01

    This paper develops a trans-dimensional approach to matched-field geoacoustic inversion, including interacting Markov chains to improve efficiency and an autoregressive model to account for correlated errors. The trans-dimensional approach and hierarchical seabed model allows inversion without assuming any particular parametrization by relaxing model specification to a range of plausible seabed models (e.g., in this case, the number of sediment layers is an unknown parameter). Data errors are addressed by sampling statistical error-distribution parameters, including correlated errors (covariance), by applying a hierarchical autoregressive error model. The well-known difficulty of low acceptance rates for trans-dimensional jumps is addressed with interacting Markov chains, resulting in a substantial increase in efficiency. The trans-dimensional seabed model and the hierarchical error model relax the degree of prior assumptions required in the inversion, resulting in substantially improved (more realistic) uncertainty estimates and a more automated algorithm. In particular, the approach gives seabed parameter uncertainty estimates that account for uncertainty due to prior model choice (layering and data error statistics). The approach is applied to data measured on a vertical array in the Mediterranean Sea.

  12. A hybrid deterministic-probabilistic approach to model the mechanical response of helically arranged hierarchical strands

    Science.gov (United States)

    Fraldi, M.; Perrella, G.; Ciervo, M.; Bosia, F.; Pugno, N. M.

    2017-09-01

    Very recently, a Weibull-based probabilistic strategy has been successfully applied to bundles of wires to determine their overall stress-strain behaviour, also capturing previously unpredicted nonlinear and post-elastic features of hierarchical strands. This approach is based on the so-called "Equal Load Sharing (ELS)" hypothesis by virtue of which, when a wire breaks, the load acting on the strand is homogeneously redistributed among the surviving wires. Despite the overall effectiveness of the method, some discrepancies between theoretical predictions and in silico Finite Element-based simulations or experimental findings might arise when more complex structures are analysed, e.g. helically arranged bundles. To overcome these limitations, an enhanced hybrid approach is proposed in which the probability of rupture is combined with a deterministic mechanical model of a strand constituted by helically-arranged and hierarchically-organized wires. The analytical model is validated comparing its predictions with both Finite Element simulations and experimental tests. The results show that generalized stress-strain responses - incorporating tension/torsion coupling - are naturally found and, once one or more elements break, the competition between geometry and mechanics of the strand microstructure, i.e. the different cross sections and helical angles of the wires in the different hierarchical levels of the strand, determines the no longer homogeneous stress redistribution among the surviving wires whose fate is hence governed by a "Hierarchical Load Sharing" criterion.

  13. Predicting 30-day Hospital Readmission with Publicly Available Administrative Database. A Conditional Logistic Regression Modeling Approach.

    Science.gov (United States)

    Zhu, K; Lou, Z; Zhou, J; Ballester, N; Kong, N; Parikh, P

    2015-01-01

    This article is part of the Focus Theme of Methods of Information in Medicine on "Big Data and Analytics in Healthcare". Hospital readmissions raise healthcare costs and cause significant distress to providers and patients. It is, therefore, of great interest to healthcare organizations to predict what patients are at risk to be readmitted to their hospitals. However, current logistic regression based risk prediction models have limited prediction power when applied to hospital administrative data. Meanwhile, although decision trees and random forests have been applied, they tend to be too complex to understand among the hospital practitioners. Explore the use of conditional logistic regression to increase the prediction accuracy. We analyzed an HCUP statewide inpatient discharge record dataset, which includes patient demographics, clinical and care utilization data from California. We extracted records of heart failure Medicare beneficiaries who had inpatient experience during an 11-month period. We corrected the data imbalance issue with under-sampling. In our study, we first applied standard logistic regression and decision tree to obtain influential variables and derive practically meaning decision rules. We then stratified the original data set accordingly and applied logistic regression on each data stratum. We further explored the effect of interacting variables in the logistic regression modeling. We conducted cross validation to assess the overall prediction performance of conditional logistic regression (CLR) and compared it with standard classification models. The developed CLR models outperformed several standard classification models (e.g., straightforward logistic regression, stepwise logistic regression, random forest, support vector machine). For example, the best CLR model improved the classification accuracy by nearly 20% over the straightforward logistic regression model. Furthermore, the developed CLR models tend to achieve better sensitivity of

  14. A hierarchical stress release model for synthetic seismicity

    Science.gov (United States)

    Bebbington, Mark

    1997-06-01

    We construct a stochastic dynamic model for synthetic seismicity involving stochastic stress input, release, and transfer in an environment of heterogeneous strength and interacting segments. The model is not fault-specific, having a number of adjustable parameters with physical interpretation, namely, stress relaxation, stress transfer, stress dissipation, segment structure, strength, and strength heterogeneity, which affect the seismicity in various ways. Local parameters are chosen to be consistent with large historical events, other parameters to reproduce bulk seismicity statistics for the fault as a whole. The one-dimensional fault is divided into a number of segments, each comprising a varying number of nodes. Stress input occurs at each node in a simple random process, representing the slow buildup due to tectonic plate movements. Events are initiated, subject to a stochastic hazard function, when the stress on a node exceeds the local strength. An event begins with the transfer of excess stress to neighboring nodes, which may in turn transfer their excess stress to the next neighbor. If the event grows to include the entire segment, then most of the stress on the segment is transferred to neighboring segments (or dissipated) in a characteristic event. These large events may themselves spread to other segments. We use the Middle America Trench to demonstrate that this model, using simple stochastic stress input and triggering mechanisms, can produce behavior consistent with the historical record over five units of magnitude. We also investigate the effects of perturbing various parameters in order to show how the model might be tailored to a specific fault structure. The strength of the model lies in this ability to reproduce the behavior of a general linear fault system through the choice of a relatively small number of parameters. It remains to develop a procedure for estimating the internal state of the model from the historical observations in order to

  15. Building interpretable predictive models for pediatric hospital readmission using Tree-Lasso logistic regression.

    Science.gov (United States)

    Jovanovic, Milos; Radovanovic, Sandro; Vukicevic, Milan; Van Poucke, Sven; Delibasic, Boris

    2016-09-01

    Quantification and early identification of unplanned readmission risk have the potential to improve the quality of care during hospitalization and after discharge. However, high dimensionality, sparsity, and class imbalance of electronic health data and the complexity of risk quantification, challenge the development of accurate predictive models. Predictive models require a certain level of interpretability in order to be applicable in real settings and create actionable insights. This paper aims to develop accurate and interpretable predictive models for readmission in a general pediatric patient population, by integrating a data-driven model (sparse logistic regression) and domain knowledge based on the international classification of diseases 9th-revision clinical modification (ICD-9-CM) hierarchy of diseases. Additionally, we propose a way to quantify the interpretability of a model and inspect the stability of alternative solutions. The analysis was conducted on >66,000 pediatric hospital discharge records from California, State Inpatient Databases, Healthcare Cost and Utilization Project between 2009 and 2011. We incorporated domain knowledge based on the ICD-9-CM hierarchy in a data driven, Tree-Lasso regularized logistic regression model, providing the framework for model interpretation. This approach was compared with traditional Lasso logistic regression resulting in models that are easier to interpret by fewer high-level diagnoses, with comparable prediction accuracy. The results revealed that the use of a Tree-Lasso model was as competitive in terms of accuracy (measured by area under the receiver operating characteristic curve-AUC) as the traditional Lasso logistic regression, but integration with the ICD-9-CM hierarchy of diseases provided more interpretable models in terms of high-level diagnoses. Additionally, interpretations of models are in accordance with existing medical understanding of pediatric readmission. Best performing models have

  16. Modeling Governance KB with CATPCA to Overcome Multicollinearity in the Logistic Regression

    Science.gov (United States)

    Khikmah, L.; Wijayanto, H.; Syafitri, U. D.

    2017-04-01

    The problem often encounters in logistic regression modeling are multicollinearity problems. Data that have multicollinearity between explanatory variables with the result in the estimation of parameters to be bias. Besides, the multicollinearity will result in error in the classification. In general, to overcome multicollinearity in regression used stepwise regression. They are also another method to overcome multicollinearity which involves all variable for prediction. That is Principal Component Analysis (PCA). However, classical PCA in only for numeric data. Its data are categorical, one method to solve the problems is Categorical Principal Component Analysis (CATPCA). Data were used in this research were a part of data Demographic and Population Survey Indonesia (IDHS) 2012. This research focuses on the characteristic of women of using the contraceptive methods. Classification results evaluated using Area Under Curve (AUC) values. The higher the AUC value, the better. Based on AUC values, the classification of the contraceptive method using stepwise method (58.66%) is better than the logistic regression model (57.39%) and CATPCA (57.39%). Evaluation of the results of logistic regression using sensitivity, shows the opposite where CATPCA method (99.79%) is better than logistic regression method (92.43%) and stepwise (92.05%). Therefore in this study focuses on major class classification (using a contraceptive method), then the selected model is CATPCA because it can raise the level of the major class model accuracy.

  17. Using ROC curves to compare neural networks and logistic regression for modeling individual noncatastrophic tree mortality

    Science.gov (United States)

    Susan L. King

    2003-01-01

    The performance of two classifiers, logistic regression and neural networks, are compared for modeling noncatastrophic individual tree mortality for 21 species of trees in West Virginia. The output of the classifier is usually a continuous number between 0 and 1. A threshold is selected between 0 and 1 and all of the trees below the threshold are classified as...

  18. Strategies for Testing Statistical and Practical Significance in Detecting DIF with Logistic Regression Models

    Science.gov (United States)

    Fidalgo, Angel M.; Alavi, Seyed Mohammad; Amirian, Seyed Mohammad Reza

    2014-01-01

    This study examines three controversial aspects in differential item functioning (DIF) detection by logistic regression (LR) models: first, the relative effectiveness of different analytical strategies for detecting DIF; second, the suitability of the Wald statistic for determining the statistical significance of the parameters of interest; and…

  19. Modelling the Cost Performance of a Given Logistics Network Operating Under Regular and Irregular Conditions

    NARCIS (Netherlands)

    Janic, M.

    2009-01-01

    This paper develops an analytical model for the assessment of the cost performance of a given logistics network operating under regular and irregular (disruptive) conditions. In addition, the paper aims to carry out a sensitivity analysis of this cost with respect to changes of the most influencing

  20. Semi-parametric estimation of random effects in a logistic regression model using conditional inference

    DEFF Research Database (Denmark)

    Petersen, Jørgen Holm

    2016-01-01

    This paper describes a new approach to the estimation in a logistic regression model with two crossed random effects where special interest is in estimating the variance of one of the effects while not making distributional assumptions about the other effect. A composite likelihood is studied...

  1. On the Relationships between Jeffreys Modal and Weighted Likelihood Estimation of Ability under Logistic IRT Models

    Science.gov (United States)

    Magis, David; Raiche, Gilles

    2012-01-01

    This paper focuses on two estimators of ability with logistic item response theory models: the Bayesian modal (BM) estimator and the weighted likelihood (WL) estimator. For the BM estimator, Jeffreys' prior distribution is considered, and the corresponding estimator is referred to as the Jeffreys modal (JM) estimator. It is established that under…

  2. Calibration of Automatically Generated Items Using Bayesian Hierarchical Modeling.

    Science.gov (United States)

    Johnson, Matthew S.; Sinharay, Sandip

    For complex educational assessments, there is an increasing use of "item families," which are groups of related items. However, calibration or scoring for such an assessment requires fitting models that take into account the dependence structure inherent among the items that belong to the same item family. C. Glas and W. van der Linden…

  3. A hierarchical modeling of information seeking behavior of school ...

    African Journals Online (AJOL)

    The aim of this study was to investigate the information seeking behavior of school teachers in the public primary schools of rural areas of Nigeria and to draw up a model of their information-seeking behavior. A Cross-sectional survey design research was employed to carry out the research. Findings showed that the ...

  4. Generic Database Cost Models for Hierarchical Memory Systems

    NARCIS (Netherlands)

    S. Manegold (Stefan); P.A. Boncz (Peter); M.L. Kersten (Martin)

    2002-01-01

    textabstractAccurate prediction of operator execution time is a prerequisite for database query optimization. Although extensively studied for conventional disk-based DBMSs, cost modeling in main-memory DBMSs is still an open issue. Recent database research has demonstrated that memory access is

  5. Generic database cost models for hierarchical memory systems

    NARCIS (Netherlands)

    S. Manegold (Stefan); P.A. Boncz (Peter); M.L. Kersten (Martin)

    2002-01-01

    textabstractAccurate prediction of operator execution time is a prerequisite fordatabase query optimization. Although extensively studied for conventionaldisk-based DBMSs, cost modeling in main-memory DBMSs is still an openissue. Recent database research has demonstrated that memory access ismore

  6. Bayesian Hierarchical Distributed Lag Models for Summer Ozone Exposure and Cardio-Respiratory Mortality

    OpenAIRE

    Yi Huang; Francesca Dominici; Michelle Bell

    2004-01-01

    In this paper, we develop Bayesian hierarchical distributed lag models for estimating associations between daily variations in summer ozone levels and daily variations in cardiovascular and respiratory (CVDRESP) mortality counts for 19 U.S. large cities included in the National Morbidity Mortality Air Pollution Study (NMMAPS) for the period 1987 - 1994. At the first stage, we define a semi-parametric distributed lag Poisson regression model to estimate city-specific relative rates of CVDRESP ...

  7. A hierarchical analysis of terrestrial ecosystem model Biome-BGC: Equilibrium analysis and model calibration

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Peter E [ORNL; Wang, Weile [ORNL; Law, Beverly E. [Oregon State University; Nemani, Ramakrishna R [NASA Ames Research Center

    2009-01-01

    The increasing complexity of ecosystem models represents a major difficulty in tuning model parameters and analyzing simulated results. To address this problem, this study develops a hierarchical scheme that simplifies the Biome-BGC model into three functionally cascaded tiers and analyzes them sequentially. The first-tier model focuses on leaf-level ecophysiological processes; it simulates evapotranspiration and photosynthesis with prescribed leaf area index (LAI). The restriction on LAI is then lifted in the following two model tiers, which analyze how carbon and nitrogen is cycled at the whole-plant level (the second tier) and in all litter/soil pools (the third tier) to dynamically support the prescribed canopy. In particular, this study analyzes the steady state of these two model tiers by a set of equilibrium equations that are derived from Biome-BGC algorithms and are based on the principle of mass balance. Instead of spinning-up the model for thousands of climate years, these equations are able to estimate carbon/nitrogen stocks and fluxes of the target (steady-state) ecosystem directly from the results obtained by the first-tier model. The model hierarchy is examined with model experiments at four AmeriFlux sites. The results indicate that the proposed scheme can effectively calibrate Biome-BGC to simulate observed fluxes of evapotranspiration and photosynthesis; and the carbon/nitrogen stocks estimated by the equilibrium analysis approach are highly consistent with the results of model simulations. Therefore, the scheme developed in this study may serve as a practical guide to calibrate/analyze Biome-BGC; it also provides an efficient way to solve the problem of model spin-up, especially for applications over large regions. The same methodology may help analyze other similar ecosystem models as well.

  8. Generic Database Cost Models for Hierarchical Memory Systems

    OpenAIRE

    Manegold, Stefan; Boncz, Peter; Kersten, Martin

    2002-01-01

    textabstractAccurate prediction of operator execution time is a prerequisite for database query optimization. Although extensively studied for conventional disk-based DBMSs, cost modeling in main-memory DBMSs is still an open issue. Recent database research has demonstrated that memory access is more and more becoming a significant---if not the major---cost component of database operations. If used properly, fast but small cache memories---usually organized in cascading hierarchy between CPU ...

  9. Probabilistic Inference: Task Dependency and Individual Differences of Probability Weighting Revealed by Hierarchical Bayesian Modeling.

    Science.gov (United States)

    Boos, Moritz; Seer, Caroline; Lange, Florian; Kopp, Bruno

    2016-01-01

    Cognitive determinants of probabilistic inference were examined using hierarchical Bayesian modeling techniques. A classic urn-ball paradigm served as experimental strategy, involving a factorial two (prior probabilities) by two (likelihoods) design. Five computational models of cognitive processes were compared with the observed behavior. Parameter-free Bayesian posterior probabilities and parameter-free base rate neglect provided inadequate models of probabilistic inference. The introduction of distorted subjective probabilities yielded more robust and generalizable results. A general class of (inverted) S-shaped probability weighting functions had been proposed; however, the possibility of large differences in probability distortions not only across experimental conditions, but also across individuals, seems critical for the model's success. It also seems advantageous to consider individual differences in parameters of probability weighting as being sampled from weakly informative prior distributions of individual parameter values. Thus, the results from hierarchical Bayesian modeling converge with previous results in revealing that probability weighting parameters show considerable task dependency and individual differences. Methodologically, this work exemplifies the usefulness of hierarchical Bayesian modeling techniques for cognitive psychology. Theoretically, human probabilistic inference might be best described as the application of individualized strategic policies for Bayesian belief revision.

  10. Statistical shear lag model - unraveling the size effect in hierarchical composites.

    Science.gov (United States)

    Wei, Xiaoding; Filleter, Tobin; Espinosa, Horacio D

    2015-05-01

    Numerous experimental and computational studies have established that the hierarchical structures encountered in natural materials, such as the brick-and-mortar structure observed in sea shells, are essential for achieving defect tolerance. Due to this hierarchy, the mechanical properties of natural materials have a different size dependence compared to that of typical engineered materials. This study aimed to explore size effects on the strength of bio-inspired staggered hierarchical composites and to define the influence of the geometry of constituents in their outstanding defect tolerance capability. A statistical shear lag model is derived by extending the classical shear lag model to account for the statistics of the constituents' strength. A general solution emerges from rigorous mathematical derivations, unifying the various empirical formulations for the fundamental link length used in previous statistical models. The model shows that the staggered arrangement of constituents grants composites a unique size effect on mechanical strength in contrast to homogenous continuous materials. The model is applied to hierarchical yarns consisting of double-walled carbon nanotube bundles to assess its predictive capabilities for novel synthetic materials. Interestingly, the model predicts that yarn gauge length does not significantly influence the yarn strength, in close agreement with experimental observations. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Accounting for uncertainty in ecological analysis: the strengths and limitations of hierarchical statistical modeling.

    Science.gov (United States)

    Cressie, Noel; Calder, Catherine A; Clark, James S; Ver Hoef, Jay M; Wikle, Christopher K

    2009-04-01

    Analyses of ecological data should account for the uncertainty in the process(es) that generated the data. However, accounting for these uncertainties is a difficult task, since ecology is known for its complexity. Measurement and/or process errors are often the only sources of uncertainty modeled when addressing complex ecological problems, yet analyses should also account for uncertainty in sampling design, in model specification, in parameters governing the specified model, and in initial and boundary conditions. Only then can we be confident in the scientific inferences and forecasts made from an analysis. Probability and statistics provide a framework that accounts for multiple sources of uncertainty. Given the complexities of ecological studies, the hierarchical statistical model is an invaluable tool. This approach is not new in ecology, and there are many examples (both Bayesian and non-Bayesian) in the literature illustrating the benefits of this approach. In this article, we provide a baseline for concepts, notation, and methods, from which discussion on hierarchical statistical modeling in ecology can proceed. We have also planted some seeds for discussion and tried to show where the practical difficulties lie. Our thesis is that hierarchical statistical modeling is a powerful way of approaching ecological analysis in the presence of inevitable but quantifiable uncertainties, even if practical issues sometimes require pragmatic compromises.

  12. Multi-subject hierarchical inverse covariance modelling improves estimation of functional brain networks.

    Science.gov (United States)

    Colclough, Giles L; Woolrich, Mark W; Harrison, Samuel J; Rojas López, Pedro A; Valdes-Sosa, Pedro A; Smith, Stephen M

    2018-05-07

    A Bayesian model for sparse, hierarchical inverse covariance estimation is presented, and applied to multi-subject functional connectivity estimation in the human brain. It enables simultaneous inference of the strength of connectivity between brain regions at both subject and population level, and is applicable to fmri, meg and eeg data. Two versions of the model can encourage sparse connectivity, either using continuous priors to suppress irrelevant connections, or using an explicit description of the network structure to estimate the connection probability between each pair of regions. A large evaluation of this model, and thirteen methods that represent the state of the art of inverse covariance modelling, is conducted using both simulated and resting-state functional imaging datasets. Our novel Bayesian approach has similar performance to the best extant alternative, Ng et al.'s Sparse Group Gaussian Graphical Model algorithm, which also is based on a hierarchical structure. Using data from the Human Connectome Project, we show that these hierarchical models are able to reduce the measurement error in meg beta-band functional networks by 10%, producing concomitant increases in estimates of the genetic influence on functional connectivity. Copyright © 2018. Published by Elsevier Inc.

  13. Modeling CO2 emissions from fossil fuel combustion using the logistic equation

    International Nuclear Information System (INIS)

    Meng, Ming; Niu, Dongxiao

    2011-01-01

    CO 2 emissions from fossil fuel combustion have been known to contribute to the greenhouse effect. Research on emission trends and further forecasting their further values is important for adjusting energy policies, particularly those relative to low carbon. Except for a few countries, the main figures of CO 2 emission from fossil fuel combustion in other countries are S-shaped curves. The logistic function is selected to simulate the S-shaped curve, and to improve the goodness of fit, three algorithms were provided to estimate its parameters. Considering the different emission characteristics of different industries, the three algorithms estimated the parameters of CO 2 emission in each industry separately. The most suitable parameters for each industry are selected based on the criterion of Mean Absolute Percentage Error (MAPE). With the combined simulation values of the selected models, the estimate of total CO 2 emission from fossil fuel combustion is obtained. The empirical analysis of China shows that our method is better than the linear model in terms of goodness of fit and simulation risk. -- Highlights: → Figures of CO 2 emissions from fossil fuel combustion in most countries are S-shape curves. → Using the logistic function to model the S-shape curve. → Three algorithms are offered to estimate the parameters of the logistic function. → The empirical analysis from China shows that the logistic equation has satisfactory simulation results.

  14. An order insertion scheduling model of logistics service supply chain considering capacity and time factors.

    Science.gov (United States)

    Liu, Weihua; Yang, Yi; Wang, Shuqing; Liu, Yang

    2014-01-01

    Order insertion often occurs in the scheduling process of logistics service supply chain (LSSC), which disturbs normal time scheduling especially in the environment of mass customization logistics service. This study analyses order similarity coefficient and order insertion operation process and then establishes an order insertion scheduling model of LSSC with service capacity and time factors considered. This model aims to minimize the average unit volume operation cost of logistics service integrator and maximize the average satisfaction degree of functional logistics service providers. In order to verify the viability and effectiveness of our model, a specific example is numerically analyzed. Some interesting conclusions are obtained. First, along with the increase of completion time delay coefficient permitted by customers, the possible inserting order volume first increases and then trends to be stable. Second, supply chain performance reaches the best when the volume of inserting order is equal to the surplus volume of the normal operation capacity in mass service process. Third, the larger the normal operation capacity in mass service process is, the bigger the possible inserting order's volume will be. Moreover, compared to increasing the completion time delay coefficient, improving the normal operation capacity of mass service process is more useful.

  15. Integrated Modeling of Solutions in the System of Distributing Logistics of a Fruit and Vegetable Cooperative

    Directory of Open Access Journals (Sweden)

    Oleksandr Velychko

    2014-12-01

    Full Text Available A mechanism of preparing rationalistic solutions in the system of distributing logistics of a fruit and vegetable cooperative has been studied considering possible alternatives and existing limitations. Belonging of separate operations of the fruit and vegetable cooperative to technological, logistical or marketing business processes has been identified. Expediency of the integrated use of logistical concept DRP, decision tree method and linear programming in management of the cooperative has been grounded. The model for preparing decisions on organizing sales of vegetables and fruit which is focused on minimization of costs of cooperative services and maximization of profits for members of the cooperation has been developed. The necessity to consider integrated model of differentiation on levels of post gathering processing and logistical service has been revealed. Methodology of representation in the economical-mathematical model of probabilities in the tree of decisions concerning the expected amount of sales and margin for members of the cooperative using different channels has been processed. A formula which enables scientists to describe limitations in linear programming concerning critical duration of providing harvest of vegetables and fruit after gathering towards a customer has been suggested.

  16. Latent Variable Regression 4-Level Hierarchical Model Using Multisite Multiple-Cohorts Longitudinal Data. CRESST Report 801

    Science.gov (United States)

    Choi, Kilchan

    2011-01-01

    This report explores a new latent variable regression 4-level hierarchical model for monitoring school performance over time using multisite multiple-cohorts longitudinal data. This kind of data set has a 4-level hierarchical structure: time-series observation nested within students who are nested within different cohorts of students. These…

  17. Principal-subordinate hierarchical multi-objective programming model of initial water rights allocation

    Directory of Open Access Journals (Sweden)

    Dan Wu

    2009-06-01

    Full Text Available The principal-subordinate hierarchical multi-objective programming model of initial water rights allocation was developed based on the principle of coordinated and sustainable development of different regions and water sectors within a basin. With the precondition of strictly controlling maximum emissions rights, initial water rights were allocated between the first and the second levels of the hierarchy in order to promote fair and coordinated development across different regions of the basin and coordinated and efficient water use across different water sectors, realize the maximum comprehensive benefits to the basin, promote the unity of quantity and quality of initial water rights allocation, and eliminate water conflict across different regions and water sectors. According to interactive decision-making theory, a principal-subordinate hierarchical interactive iterative algorithm based on the satisfaction degree was developed and used to solve the initial water rights allocation model. A case study verified the validity of the model.

  18. Use of a Bayesian hierarchical model to study the allometric scaling of the fetoplacental weight ratio

    Directory of Open Access Journals (Sweden)

    Fidel Ernesto Castro Morales

    2016-03-01

    Full Text Available Abstract Objectives: to propose the use of a Bayesian hierarchical model to study the allometric scaling of the fetoplacental weight ratio, including possible confounders. Methods: data from 26 singleton pregnancies with gestational age at birth between 37 and 42 weeks were analyzed. The placentas were collected immediately after delivery and stored under refrigeration until the time of analysis, which occurred within up to 12 hours. Maternal data were collected from medical records. A Bayesian hierarchical model was proposed and Markov chain Monte Carlo simulation methods were used to obtain samples from distribution a posteriori. Results: the model developed showed a reasonable fit, even allowing for the incorporation of variables and a priori information on the parameters used. Conclusions: new variables can be added to the modelfrom the available code, allowing many possibilities for data analysis and indicating the potential for use in research on the subject.

  19. Hierarchic stochastic modelling applied to intracellular Ca(2+ signals.

    Directory of Open Access Journals (Sweden)

    Gregor Moenke

    Full Text Available Important biological processes like cell signalling and gene expression have noisy components and are very complex at the same time. Mathematical analysis of such systems has often been limited to the study of isolated subsystems, or approximations are used that are difficult to justify. Here we extend a recently published method (Thurley and Falcke, PNAS 2011 which is formulated in observable system configurations instead of molecular transitions. This reduces the number of system states by several orders of magnitude and avoids fitting of kinetic parameters. The method is applied to Ca(2+ signalling. Ca(2+ is a ubiquitous second messenger transmitting information by stochastic sequences of concentration spikes, which arise by coupling of subcellular Ca(2+ release events (puffs. We derive analytical expressions for a mechanistic Ca(2+ model, based on recent data from live cell imaging, and calculate Ca(2+ spike statistics in dependence on cellular parameters like stimulus strength or number of Ca(2+ channels. The new approach substantiates a generic Ca(2+ model, which is a very convenient way to simulate Ca(2+ spike sequences with correct spiking statistics.

  20. The alarming problems of confounding equivalence using logistic regression models in the perspective of causal diagrams

    Directory of Open Access Journals (Sweden)

    Yuanyuan Yu

    2017-12-01

    Full Text Available Abstract Background Confounders can produce spurious associations between exposure and outcome in observational studies. For majority of epidemiologists, adjusting for confounders using logistic regression model is their habitual method, though it has some problems in accuracy and precision. It is, therefore, important to highlight the problems of logistic regression and search the alternative method. Methods Four causal diagram models were defined to summarize confounding equivalence. Both theoretical proofs and simulation studies were performed to verify whether conditioning on different confounding equivalence sets had the same bias-reducing potential and then to select the optimum adjusting strategy, in which logistic regression model and inverse probability weighting based marginal structural model (IPW-based-MSM were compared. The “do-calculus” was used to calculate the true causal effect of exposure on outcome, then the bias and standard error were used to evaluate the performances of different strategies. Results Adjusting for different sets of confounding equivalence, as judged by identical Markov boundaries, produced different bias-reducing potential in the logistic regression model. For the sets satisfied G-admissibility, adjusting for the set including all the confounders reduced the equivalent bias to the one containing the parent nodes of the outcome, while the bias after adjusting for the parent nodes of exposure was not equivalent to them. In addition, all causal effect estimations through logistic regression were biased, although the estimation after adjusting for the parent nodes of exposure was nearest to the true causal effect. However, conditioning on different confounding equivalence sets had the same bias-reducing potential under IPW-based-MSM. Compared with logistic regression, the IPW-based-MSM could obtain unbiased causal effect estimation when the adjusted confounders satisfied G-admissibility and the optimal

  1. The alarming problems of confounding equivalence using logistic regression models in the perspective of causal diagrams.

    Science.gov (United States)

    Yu, Yuanyuan; Li, Hongkai; Sun, Xiaoru; Su, Ping; Wang, Tingting; Liu, Yi; Yuan, Zhongshang; Liu, Yanxun; Xue, Fuzhong

    2017-12-28

    Confounders can produce spurious associations between exposure and outcome in observational studies. For majority of epidemiologists, adjusting for confounders using logistic regression model is their habitual method, though it has some problems in accuracy and precision. It is, therefore, important to highlight the problems of logistic regression and search the alternative method. Four causal diagram models were defined to summarize confounding equivalence. Both theoretical proofs and simulation studies were performed to verify whether conditioning on different confounding equivalence sets had the same bias-reducing potential and then to select the optimum adjusting strategy, in which logistic regression model and inverse probability weighting based marginal structural model (IPW-based-MSM) were compared. The "do-calculus" was used to calculate the true causal effect of exposure on outcome, then the bias and standard error were used to evaluate the performances of different strategies. Adjusting for different sets of confounding equivalence, as judged by identical Markov boundaries, produced different bias-reducing potential in the logistic regression model. For the sets satisfied G-admissibility, adjusting for the set including all the confounders reduced the equivalent bias to the one containing the parent nodes of the outcome, while the bias after adjusting for the parent nodes of exposure was not equivalent to them. In addition, all causal effect estimations through logistic regression were biased, although the estimation after adjusting for the parent nodes of exposure was nearest to the true causal effect. However, conditioning on different confounding equivalence sets had the same bias-reducing potential under IPW-based-MSM. Compared with logistic regression, the IPW-based-MSM could obtain unbiased causal effect estimation when the adjusted confounders satisfied G-admissibility and the optimal strategy was to adjust for the parent nodes of outcome, which

  2. Resource Symmetric Dispatch Model for Internet of Things on Advanced Logistics

    OpenAIRE

    Guofeng Qin; Lisheng Wang; Qiyan Li

    2016-01-01

    Business applications in advanced logistics service are highly concurrent. In this paper, we propose a resource symmetric dispatch model for the concurrent and cooperative tasks of the Internet of Things. In the model, the terminals receive and deliver commands, data, and information with mobile networks, wireless networks, and sensor networks. The data and information are classified and processed by the clustering servers in the cloud service platform. The cluster service, resource dispatch,...

  3. The Long Time Behavior of a Stochastic Logistic Model with Infinite Delay and Impulsive Perturbation

    OpenAIRE

    Lu, Chun; Wu, Kaining

    2016-01-01

    This paper considers a stochastic logistic model with infinite delay and impulsive perturbation. Firstly, with the space $C_{g}$ as phase space, the definition of solution to a stochastic functional differential equation with infinite delay and impulsive perturbation is established. According to this definition, we show that our model has an unique global positive solution. Then we establish the sufficient and necessary conditions for extinction and stochastic permanence of the...

  4. PATH ANALYSIS WITH LOGISTIC REGRESSION MODELS : EFFECT ANALYSIS OF FULLY RECURSIVE CAUSAL SYSTEMS OF CATEGORICAL VARIABLES

    OpenAIRE

    Nobuoki, Eshima; Minoru, Tabata; Geng, Zhi; Department of Medical Information Analysis, Faculty of Medicine, Oita Medical University; Department of Applied Mathematics, Faculty of Engineering, Kobe University; Department of Probability and Statistics, Peking University

    2001-01-01

    This paper discusses path analysis of categorical variables with logistic regression models. The total, direct and indirect effects in fully recursive causal systems are considered by using model parameters. These effects can be explained in terms of log odds ratios, uncertainty differences, and an inner product of explanatory variables and a response variable. A study on food choice of alligators as a numerical exampleis reanalysed to illustrate the present approach.

  5. Assessment of RFID investment in the military logistics systems through the Cost of Ownership Model (COO)

    OpenAIRE

    Ozdemir, Ahmet; Bayrak, Mustafa Ali

    2010-01-01

    MBA Professional Report Radio Frequency Identification (RFID) is an emerging technology that has been recently used in numerous business and public fields. Most military applications of RFID have focused on logistics systems. Since RFID investment requires high initial cost and its benefits are hard to see in the short term, it needs an appropriate investment decision model. The purpose of this research is to propose a Cost of Ownership (COO) model for RFID integration into the Military ...

  6. Probabilistic inference: Task dependency and individual differences of probability weighting revealed by hierarchical Bayesian modelling

    Directory of Open Access Journals (Sweden)

    Moritz eBoos

    2016-05-01

    Full Text Available Cognitive determinants of probabilistic inference were examined using hierarchical Bayesian modelling techniques. A classic urn-ball paradigm served as experimental strategy, involving a factorial two (prior probabilities by two (likelihoods design. Five computational models of cognitive processes were compared with the observed behaviour. Parameter-free Bayesian posterior probabilities and parameter-free base rate neglect provided inadequate models of probabilistic inference. The introduction of distorted subjective probabilities yielded more robust and generalizable results. A general class of (inverted S-shaped probability weighting functions had been proposed; however, the possibility of large differences in probability distortions not only across experimental conditions, but also across individuals, seems critical for the model’s success. It also seems advantageous to consider individual differences in parameters of probability weighting as being sampled from weakly informative prior distributions of individual parameter values. Thus, the results from hierarchical Bayesian modelling converge with previous results in revealing that probability weighting parameters show considerable task dependency and individual differences. Methodologically, this work exemplifies the usefulness of hierarchical Bayesian modelling techniques for cognitive psychology. Theoretically, human probabilistic inference might be best described as the application of individualized strategic policies for Bayesian belief revision.

  7. Modeling when people quit: Bayesian censored geometric models with hierarchical and latent-mixture extensions.

    Science.gov (United States)

    Okada, Kensuke; Vandekerckhove, Joachim; Lee, Michael D

    2018-02-01

    People often interact with environments that can provide only a finite number of items as resources. Eventually a book contains no more chapters, there are no more albums available from a band, and every Pokémon has been caught. When interacting with these sorts of environments, people either actively choose to quit collecting new items, or they are forced to quit when the items are exhausted. Modeling the distribution of how many items people collect before they quit involves untangling these two possibilities, We propose that censored geometric models are a useful basic technique for modeling the quitting distribution, and, show how, by implementing these models in a hierarchical and latent-mixture framework through Bayesian methods, they can be extended to capture the additional features of specific situations. We demonstrate this approach by developing and testing a series of models in two case studies involving real-world data. One case study deals with people choosing jokes from a recommender system, and the other deals with people completing items in a personality survey.

  8. Spatial Model for Determining the Optimum Placement of Logistics Centers in a Predefined Economic Area

    Directory of Open Access Journals (Sweden)

    Ramona Iulia Țarțavulea (Dieaconescu

    2016-08-01

    Full Text Available The process of globalization has stimulated the demand for logistics services at a level of speed and increased efficiency, which involves using of techniques, tools, technologies and modern models in supply chain management. The aim of this research paper is to present a model that can be used in order to achieve an optimized supply chain, associated with minimum transportation costs. The utilization of spatial modeling for determining the optimal locations for logistics centers in a predefined economic area is proposd in this paper. The principal methods used to design the model are mathematic optimization and linear programming. The output data of the model are the precise placement of one up to ten logistics centers, in terms of minimum operational costs for delivery from the optimum locations to consumer points. The results of the research indicate that by using the proposed model, an efficient supply chain that is consistent with optimization of transport can be designed, in order to streamline the delivery process and thus reduce operational costs

  9. Logistics models for the transportation of radioactive waste and spent fuel

    International Nuclear Information System (INIS)

    Joy, D.S.; Holcomb, B.D.

    1978-03-01

    Mathematical modeling of the logistics of waste shipment is an effective way to provide input to program planning and long-range waste management. Several logistics models have been developed for use in parametric studies, contingency planning, and management of transportation networks. These models allow the determination of shipping schedules, optimal routes, probable transportation modes, minimal costs, minimal personnel exposure, minimal transportation equipment, etc. Such information will permit OWI to specify waste-receiving rates at various repositories in order to balance work loads, evaluate surge capacity requirements, and estimate projected shipping cask fleets. The programs are tailored to utilize information on the types of wastes being received, location of repositories and waste-generating facilities, shipping distances, time required for a given shipment, availability of equipment, above-ground storage capabilities and locations, projected waste throughput rates, etc. Two basic models have been developed. The Low-Level Waste Model evaluates the optimal transportation policy for shipping waste directly from the source to a final destination without any intermediate stops. The Spent Fuel Logistics Model evaluates the optimal transportation policy for shipping unreprocessed spent fuel from nuclear power plants (1) indirectly, that is, to an Away-From-Reactor (AFR) storage facility, with subsequent transhipment to a repository, or (2) directly to a repository

  10. The Case for A Hierarchal System Model for Linux Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Seager, M; Gorda, B

    2009-06-05

    The computer industry today is no longer driven, as it was in the 40s, 50s and 60s, by High-performance computing requirements. Rather, HPC systems, especially Leadership class systems, sit on top of a pyramid investment mode. Figure 1 shows a representative pyramid investment model for systems hardware. At the base of the pyramid is the huge investment (order 10s of Billions of US Dollars per year) in semiconductor fabrication and process technologies. These costs, which are approximately doubling with every generation, are funded from investments multiple markets: enterprise, desktops, games, embedded and specialized devices. Over and above these base technology investments are investments for critical technology elements such as microprocessor, chipsets and memory ASIC components. Investments for these components are spread across the same markets as the base semiconductor processes investments. These second tier investments are approximately half the size of the lower level of the pyramid. The next technology investment layer up, tier 3, is more focused on scalable computing systems such as those needed for HPC and other markets. These tier 3 technology elements include networking (SAN, WAN and LAN), interconnects and large scalable SMP designs. Above these is tier 4 are relatively small investments necessary to build very large, scalable systems high-end or Leadership class systems. Primary among these are the specialized network designs of vertically integrated systems, etc.

  11. Emotional intelligence is a second-stratum factor of intelligence: evidence from hierarchical and bifactor models.

    Science.gov (United States)

    MacCann, Carolyn; Joseph, Dana L; Newman, Daniel A; Roberts, Richard D

    2014-04-01

    This article examines the status of emotional intelligence (EI) within the structure of human cognitive abilities. To evaluate whether EI is a 2nd-stratum factor of intelligence, data were fit to a series of structural models involving 3 indicators each for fluid intelligence, crystallized intelligence, quantitative reasoning, visual processing, and broad retrieval ability, as well as 2 indicators each for emotion perception, emotion understanding, and emotion management. Unidimensional, multidimensional, hierarchical, and bifactor solutions were estimated in a sample of 688 college and community college students. Results suggest adequate fit for 2 models: (a) an oblique 8-factor model (with 5 traditional cognitive ability factors and 3 EI factors) and (b) a hierarchical solution (with cognitive g at the highest level and EI representing a 2nd-stratum factor that loads onto g at λ = .80). The acceptable relative fit of the hierarchical model confirms the notion that EI is a group factor of cognitive ability, marking the expression of intelligence in the emotion domain. The discussion proposes a possible expansion of Cattell-Horn-Carroll theory to include EI as a 2nd-stratum factor of similar standing to factors such as fluid intelligence and visual processing.

  12. Action detection by double hierarchical multi-structure space-time statistical matching model

    Science.gov (United States)

    Han, Jing; Zhu, Junwei; Cui, Yiyin; Bai, Lianfa; Yue, Jiang

    2018-03-01

    Aimed at the complex information in videos and low detection efficiency, an actions detection model based on neighboring Gaussian structure and 3D LARK features is put forward. We exploit a double hierarchical multi-structure space-time statistical matching model (DMSM) in temporal action localization. First, a neighboring Gaussian structure is presented to describe the multi-scale structural relationship. Then, a space-time statistical matching method is proposed to achieve two similarity matrices on both large and small scales, which combines double hierarchical structural constraints in model by both the neighboring Gaussian structure and the 3D LARK local structure. Finally, the double hierarchical similarity is fused and analyzed to detect actions. Besides, the multi-scale composite template extends the model application into multi-view. Experimental results of DMSM on the complex visual tracker benchmark data sets and THUMOS 2014 data sets show the promising performance. Compared with other state-of-the-art algorithm, DMSM achieves superior performances.

  13. Oscillatory Critical Amplitudes in Hierarchical Models and the Harris Function of Branching Processes

    Science.gov (United States)

    Costin, Ovidiu; Giacomin, Giambattista

    2013-02-01

    Oscillatory critical amplitudes have been repeatedly observed in hierarchical models and, in the cases that have been taken into consideration, these oscillations are so small to be hardly detectable. Hierarchical models are tightly related to iteration of maps and, in fact, very similar phenomena have been repeatedly reported in many fields of mathematics, like combinatorial evaluations and discrete branching processes. It is precisely in the context of branching processes with bounded off-spring that T. Harris, in 1948, first set forth the possibility that the logarithm of the moment generating function of the rescaled population size, in the super-critical regime, does not grow near infinity as a power, but it has an oscillatory prefactor (the Harris function). These oscillations have been observed numerically only much later and, while the origin is clearly tied to the discrete character of the iteration, the amplitude size is not so well understood. The purpose of this note is to reconsider the issue for hierarchical models and in what is arguably the most elementary setting—the pinning model—that actually just boils down to iteration of polynomial maps (and, notably, quadratic maps). In this note we show that the oscillatory critical amplitude for pinning models and the Harris function coincide. Moreover we make explicit the link between these oscillatory functions and the geometry of the Julia set of the map, making thus rigorous and quantitative some ideas set forth in Derrida et al. (Commun. Math. Phys. 94:115-132, 1984).

  14. A fuzzy multi-objective optimization model for sustainable reverse logistics network design

    DEFF Research Database (Denmark)

    Govindan, Kannan; Paam, Parichehr; Abtahi, Amir Reza

    2016-01-01

    Decreasing the environmental impact, increasing the degree of social responsibility, and considering the economic motivations of organizations are three significant features in designing a reverse logistics network under sustainability respects. Developing a model, which can simultaneously consider...... a multi-echelon multi-period multi-objective model for a sustainable reverse logistics network. To reflect all aspects of sustainability, we try to minimize the present value of costs, as well as environmental impacts, and optimize the social responsibility as objective functions of the model. In order...... these environmental, social, and economic aspects and their indicators, is an important problem for both researchers and practitioners. In this paper, we try to address this comprehensive approach by using indicators for measurement of aforementioned aspects and by applying fuzzy mathematical programming to design...

  15. On hierarchical models for visual recognition and learning of objects, scenes, and activities

    CERN Document Server

    Spehr, Jens

    2015-01-01

    In many computer vision applications, objects have to be learned and recognized in images or image sequences. This book presents new probabilistic hierarchical models that allow an efficient representation of multiple objects of different categories, scales, rotations, and views. The idea is to exploit similarities between objects and object parts in order to share calculations and avoid redundant information. Furthermore inference approaches for fast and robust detection are presented. These new approaches combine the idea of compositional and similarity hierarchies and overcome limitations of previous methods. Besides classical object recognition the book shows the use for detection of human poses in a project for gait analysis. The use of activity detection is presented for the design of environments for ageing, to identify activities and behavior patterns in smart homes. In a presented project for parking spot detection using an intelligent vehicle, the proposed approaches are used to hierarchically model...

  16. An inexact reverse logistics model for municipal solid waste management systems.

    Science.gov (United States)

    Zhang, Yi Mei; Huang, Guo He; He, Li

    2011-03-01

    This paper proposed an inexact reverse logistics model for municipal solid waste management systems (IRWM). Waste managers, suppliers, industries and distributors were involved in strategic planning and operational execution through reverse logistics management. All the parameters were assumed to be intervals to quantify the uncertainties in the optimization process and solutions in IRWM. To solve this model, a piecewise interval programming was developed to deal with Min-Min functions in both objectives and constraints. The application of the model was illustrated through a classical municipal solid waste management case. With different cost parameters for landfill and the WTE, two scenarios were analyzed. The IRWM could reflect the dynamic and uncertain characteristics of MSW management systems, and could facilitate the generation of desired management plans. The model could be further advanced through incorporating methods of stochastic or fuzzy parameters into its framework. Design of multi-waste, multi-echelon, multi-uncertainty reverse logistics model for waste management network would also be preferred. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Revenue-Sharing Contract Models for Logistics Service Supply Chains with Mass Customization Service

    Directory of Open Access Journals (Sweden)

    Weihua Liu

    2015-01-01

    Full Text Available The revenue-sharing contract is one of the most important supply chain coordination contracts; it has been applied in various supply chains. However, studies related to service supply chains with mass customization (MC are lacking. Considering the equity of benefit distribution between the members of service supply chains, in this paper, we designed two revenue-sharing contracts. The first contract for the maximum equity of a single logistics service integrator (LSI and single functional logistics service provider (FLSP in a two-echelon logistics service supply chain was designed by introducing the fair entropy function (“one to one” model. Furthermore, the method is extended to a more complex supply chain, which consists of a single LSI and multiple FLSPs. A new contract was designed not only for considering the equity of an LSI and each FLSP but also for the equity between each FLSP (“one to N” model. The “one to one” model in three-echelon LSSC is also provided. The result exemplifies that, whether in the “one to one” model or “one to N” model, there exists a best interval of customized level when the revenue-sharing coefficient reaches its maximum.

  18. A hierarchical lattice spring model to simulate the mechanics of 2-D materials-based composites

    Directory of Open Access Journals (Sweden)

    Lucas eBrely

    2015-07-01

    Full Text Available In the field of engineering materials, strength and toughness are typically two mutually exclusive properties. Structural biological materials such as bone, tendon or dentin have resolved this conflict and show unprecedented damage tolerance, toughness and strength levels. The common feature of these materials is their hierarchical heterogeneous structure, which contributes to increased energy dissipation before failure occurring at different scale levels. These structural properties are the key to exceptional bioinspired material mechanical properties, in particular for nanocomposites. Here, we develop a numerical model in order to simulate the mechanisms involved in damage progression and energy dissipation at different size scales in nano- and macro-composites, which depend both on the heterogeneity of the material and on the type of hierarchical structure. Both these aspects have been incorporated into a 2-dimensional model based on a Lattice Spring Model, accounting for geometrical nonlinearities and including statistically-based fracture phenomena. The model has been validated by comparing numerical results to continuum and fracture mechanics results as well as finite elements simulations, and then employed to study how structural aspects impact on hierarchical composite material properties. Results obtained with the numerical code highlight the dependence of stress distributions on matrix properties and reinforcement dispersion, geometry and properties, and how failure of sacrificial elements is directly involved in the damage tolerance of the material. Thanks to the rapidly developing field of nanocomposite manufacture, it is already possible to artificially create materials with multi-scale hierarchical reinforcements. The developed code could be a valuable support in the design and optimization of these advanced materials, drawing inspiration and going beyond biological materials with exceptional mechanical properties.

  19. Loss Performance Modeling for Hierarchical Heterogeneous Wireless Networks With Speed-Sensitive Call Admission Control

    DEFF Research Database (Denmark)

    Huang, Qian; Huang, Yue-Cai; Ko, King-Tim

    2011-01-01

    . This approach avoids unnecessary and frequent handoff between cells and reduces signaling overheads. An approximation model with guaranteed accuracy and low computational complexity is presented for the loss performance of multiservice traffic. The accuracy of numerical results is validated by comparing......A hierarchical overlay structure is an alternative solution that integrates existing and future heterogeneous wireless networks to provide subscribers with better mobile broadband services. Traffic loss performance in such integrated heterogeneous networks is necessary for an operator's network...

  20. Bayesian Poisson hierarchical models for crash data analysis: Investigating the impact of model choice on site-specific predictions.

    Science.gov (United States)

    Khazraee, S Hadi; Johnson, Valen; Lord, Dominique

    2018-08-01

    The Poisson-gamma (PG) and Poisson-lognormal (PLN) regression models are among the most popular means for motor vehicle crash data analysis. Both models belong to the Poisson-hierarchical family of models. While numerous studies have compared the overall performance of alternative Bayesian Poisson-hierarchical models, little research has addressed the impact of model choice on the expected crash frequency prediction at individual sites. This paper sought to examine whether there are any trends among candidate models predictions e.g., that an alternative model's prediction for sites with certain conditions tends to be higher (or lower) than that from another model. In addition to the PG and PLN models, this research formulated a new member of the Poisson-hierarchical family of models: the Poisson-inverse gamma (PIGam). Three field datasets (from Texas, Michigan and Indiana) covering a wide range of over-dispersion characteristics were selected for analysis. This study demonstrated that the model choice can be critical when the calibrated models are used for prediction at new sites, especially when the data are highly over-dispersed. For all three datasets, the PIGam model would predict higher expected crash frequencies than would the PLN and PG models, in order, indicating a clear link between the models predictions and the shape of their mixing distributions (i.e., gamma, lognormal, and inverse gamma, respectively). The thicker tail of the PIGam and PLN models (in order) may provide an advantage when the data are highly over-dispersed. The analysis results also illustrated a major deficiency of the Deviance Information Criterion (DIC) in comparing the goodness-of-fit of hierarchical models; models with drastically different set of coefficients (and thus predictions for new sites) may yield similar DIC values, because the DIC only accounts for the parameters in the lowest (observation) level of the hierarchy and ignores the higher levels (regression coefficients

  1. Persistence and extinction for stochastic logistic model with Levy noise and impulsive perturbation

    Directory of Open Access Journals (Sweden)

    Chun Lu

    2015-09-01

    Full Text Available This article investigates a stochastic logistic model with Levy noise and impulsive perturbation. In the model, the impulsive perturbation and Levy noise are taken into account simultaneously. This model is new and more feasible and more accordance with the actual. The definition of solution to a stochastic differential equation with Levy noise and impulsive perturbation is established. Based on this definition, we show that our model has a unique global positive solution and obtains its explicit expression. Sufficient conditions for extinction are established as well as nonpersistence in the mean, weak persistence and stochastic permanence. The threshold between weak persistence and extinction is obtained.

  2. One-dimensional map-based neuron model: A logistic modification

    International Nuclear Information System (INIS)

    Mesbah, Samineh; Moghtadaei, Motahareh; Hashemi Golpayegani, Mohammad Reza; Towhidkhah, Farzad

    2014-01-01

    A one-dimensional map is proposed for modeling some of the neuronal activities, including different spiking and bursting behaviors. The model is obtained by applying some modifications on the well-known Logistic map and is named the Modified and Confined Logistic (MCL) model. Map-based neuron models are known as phenomenological models and recently, they are widely applied in modeling tasks due to their computational efficacy. Most of discrete map-based models involve two variables representing the slow-fast prototype. There are also some one-dimensional maps, which can replicate some of the neuronal activities. However, the existence of four bifurcation parameters in the MCL model gives rise to reproduction of spiking behavior with control over the frequency of the spikes, and imitation of chaotic and regular bursting responses concurrently. It is also shown that the proposed model has the potential to reproduce more realistic bursting activity by adding a second variable. Moreover the MCL model is able to replicate considerable number of experimentally observed neuronal responses introduced in Izhikevich (2004) [23]. Some analytical and numerical analyses of the MCL model dynamics are presented to explain the emersion of complex dynamics from this one-dimensional map

  3. Enterprise architecture, a blueprint for enterprise logistics rollout

    CSIR Research Space (South Africa)

    Coetzee, J

    2013-08-01

    Full Text Available In this paper it is proposed that Enterprise architecture in principle develops the Logistic Support model for systems on System Hierarchical Level 6 and higher. The Enterprise architectural model is a blue print, like the DNA for biological systems...

  4. A sow replacement model using Bayesian updating in a three-level hierarchic Markov process. II. Optimization model

    DEFF Research Database (Denmark)

    Kristensen, Anders Ringgaard; Søllested, Thomas Algot

    2004-01-01

    improvements. The biological model of the replacement model is described in a previous paper and in this paper the optimization model is described. The model is developed as a prototype for use under practical conditions. The application of the model is demonstrated using data from two commercial Danish sow......Recent methodological improvements in replacement models comprising multi-level hierarchical Markov processes and Bayesian updating have hardly been implemented in any replacement model and the aim of this study is to present a sow replacement model that really uses these methodological...... herds. It is concluded that the Bayesian updating technique and the hierarchical structure decrease the size of the state space dramatically. Since parameter estimates vary considerably among herds it is concluded that decision support concerning sow replacement only makes sense with parameters...

  5. Topics in Computational Bayesian Statistics With Applications to Hierarchical Models in Astronomy and Sociology

    Science.gov (United States)

    Sahai, Swupnil

    This thesis includes three parts. The overarching theme is how to analyze structured hierarchical data, with applications to astronomy and sociology. The first part discusses how expectation propagation can be used to parallelize the computation when fitting big hierarchical bayesian models. This methodology is then used to fit a novel, nonlinear mixture model to ultraviolet radiation from various regions of the observable universe. The second part discusses how the Stan probabilistic programming language can be used to numerically integrate terms in a hierarchical bayesian model. This technique is demonstrated on supernovae data to significantly speed up convergence to the posterior distribution compared to a previous study that used a Gibbs-type sampler. The third part builds a formal latent kernel representation for aggregate relational data as a way to more robustly estimate the mixing characteristics of agents in a network. In particular, the framework is applied to sociology surveys to estimate, as a function of ego age, the age and sex composition of the personal networks of individuals in the United States.

  6. Logistic growth models of China pinks, cultivated on seven substrates, as a function of degree days

    Directory of Open Access Journals (Sweden)

    Marília Milani

    Full Text Available ABSTRACT: The objective of this study was to characterize the height (H and leaf number (LN of China pinks, grown in seven substrates, as a function of degree days, using the logistic growth model. H and LN were measured from 56 plants per substrate, for 392 plants in total. Plants that were grown on substrates formed of 50% soil with 50% rice husk ash (50% S + 50% RH and 80% rice husk ash with 20% worm castings (80% RH + 20% W had the longest vegetative growth period (74d, corresponding to 1317.9ºCd. The logistic growth model, adjusted for H, showed differences in the estimation of maximum expected height (α between the substrates, with values between 10.47cm for 50% S + 50% RH and 35.75cm for Mecplant(r. When α was estimated as LN, variation was also observed between the different substrates, from approximately 30 leaves on plants growing on 50% S + 50% RH to 34 leaves on the plants growing on the substrate formed of 80% RH + 20% W. Growth of China pinks can be characterized using H or LN in the logistic growth model as a function of degree days, being the provided plants adequately fertilized. The best substrates in terms of maximum height and leaf number were 80% soil + 20% worm castings and Mecplant(r. However, users must recalibrate the model with the estimated parameters before applying it to different growing conditions.

  7. Optimal Control of Production and Remanufacturing in a Reverse Logistics Model with Backlogging

    Directory of Open Access Journals (Sweden)

    I. Konstantaras

    2010-01-01

    Full Text Available Reverse logistics activities have received increasing attention within logistics and operations management during the last years, both from a theoretical and a practical point of view. The field of reverse logistics includes all logistics processes starting with the take-back of used products from customers up to the stage of making them reusable products or disposing them. In this paper, a single-product recovery system is studied. In such system, used products are collected from customers and are kept at the recoverable inventory warehouse in view to be recovered. The constant demand rate can be satisfied either by newly produced products or by recovered ones (serviceable inventory, which are regarded as perfectly as the new ones. Excess demand is completely backlogged. Following an exact analytical approach, the optimal set-up numbers and the optimal lot sizes for the production of new products and for the recovery of returned products are obtained. A numerical cost comparison of this model with the corresponding one without backordering is also performed.

  8. Resource Symmetric Dispatch Model for Internet of Things on Advanced Logistics

    Directory of Open Access Journals (Sweden)

    Guofeng Qin

    2016-04-01

    Full Text Available Business applications in advanced logistics service are highly concurrent. In this paper, we propose a resource symmetric dispatch model for the concurrent and cooperative tasks of the Internet of Things. In the model, the terminals receive and deliver commands, data, and information with mobile networks, wireless networks, and sensor networks. The data and information are classified and processed by the clustering servers in the cloud service platform. The cluster service, resource dispatch, and load balance are cooperative for management and monitoring of every application case during the logistics service lifecycle. In order to support the high performance of cloud service, resource symmetric dispatch algorithm among clustering servers and load balancing method among multi-cores in one server, including NIO (Non-blocking Input/Output and RMI (Remote Method Invocation are utilized to dispatch the cooperation of computation and service resources.

  9. Transportation system modeling and simulation in support of logistics and operations

    International Nuclear Information System (INIS)

    Yoshimura, R.H.; Kjeldgaard, E.A.; Turnquist, M.A.; List, G.F.

    1997-12-01

    Effective management of DOE's transportation operations requires better data than are currently available, a more integrated management structure for making transportation decisions, and decision support tools to provide needed analysis capabilities. This paper describes a vision of an advanced logistics management system for DOE, and the rationale for developing improved modeling and simulation capability as an integral part of that system. The authors illustrate useful types of models through four examples, addressing issues of transportation package allocation, fleet sizing, routing/scheduling, and emergency responder location. The overall vision for the advanced logistics management system, and the specific examples of potential capabilities, provide the basis for a conclusion that such a system would meet a critical DOE need in the area of radioactive material and waste transportation

  10. Transportation system modeling and simulation in support of logistics and operations

    International Nuclear Information System (INIS)

    Yoshimura, R.H.; Kjeldgaard, E.A.; Turnquist, M.A.; List, G.F.

    1998-01-01

    Effective management of DOE's transportation operations requires better data than are currently available, a more integrated management structure for making transportation decisions, and decision support tools to provide needed analysis capabilities. This paper describes a vision of an advanced logistics management system for DOE, and the rationale for developing improved modeling and simulation capability as an integral part of that system. We illustrate useful types of models through four examples, addressing issues of transportation package allocation, fleet sizing, routing/Scheduling, and emergency responder location. The overall vision for the advanced logistics management system, and the specific examples of potential capabilities, provide the basis for a conclusion that such a system would meet a critical DOE need in the area of radioactive material and waste transportation. (authors)

  11. Multilevel binomial logistic prediction model for malignant pulmonary nodules based on texture features of CT image

    International Nuclear Information System (INIS)

    Wang Huan; Guo Xiuhua; Jia Zhongwei; Li Hongkai; Liang Zhigang; Li Kuncheng; He Qian

    2010-01-01

    Purpose: To introduce multilevel binomial logistic prediction model-based computer-aided diagnostic (CAD) method of small solitary pulmonary nodules (SPNs) diagnosis by combining patient and image characteristics by textural features of CT image. Materials and methods: Describe fourteen gray level co-occurrence matrix textural features obtained from 2171 benign and malignant small solitary pulmonary nodules, which belongs to 185 patients. Multilevel binomial logistic model is applied to gain these initial insights. Results: Five texture features, including Inertia, Entropy, Correlation, Difference-mean, Sum-Entropy, and age of patients own aggregating character on patient-level, which are statistically different (P < 0.05) between benign and malignant small solitary pulmonary nodules. Conclusion: Some gray level co-occurrence matrix textural features are efficiently descriptive features of CT image of small solitary pulmonary nodules, which can profit diagnosis of earlier period lung cancer if combined patient-level characteristics to some extent.

  12. A novel robust chance constrained possibilistic programming model for disaster relief logistics under uncertainty

    Directory of Open Access Journals (Sweden)

    Maryam Rahafrooz

    2016-09-01

    Full Text Available In this paper, a novel multi-objective robust possibilistic programming model is proposed, which simultaneously considers maximizing the distributive justice in relief distribution, minimizing the risk of relief distribution, and minimizing the total logistics costs. To effectively cope with the uncertainties of the after-disaster environment, the uncertain parameters of the proposed model are considered in the form of fuzzy trapezoidal numbers. The proposed model not only considers relief commodities priority and demand points priority in relief distribution, but also considers the difference between the pre-disaster and post-disaster supply abilities of the suppliers. In order to solve the proposed model, the LP-metric and the improved augmented ε-constraint methods are used. Second, a set of test problems are designed to evaluate the effectiveness of the proposed robust model against its equivalent deterministic form, which reveales the capabilities of the robust model. Finally, to illustrate the performance of the proposed robust model, a seismic region of northwestern Iran (East Azerbaijan is selected as a case study to model its relief logistics in the face of future earthquakes. This investigation indicates the usefulness of the proposed model in the field of crisis.

  13. Exploring Neural Network Models with Hierarchical Memories and Their Use in Modeling Biological Systems

    Science.gov (United States)

    Pusuluri, Sai Teja

    Energy landscapes are often used as metaphors for phenomena in biology, social sciences and finance. Different methods have been implemented in the past for the construction of energy landscapes. Neural network models based on spin glass physics provide an excellent mathematical framework for the construction of energy landscapes. This framework uses a minimal number of parameters and constructs the landscape using data from the actual phenomena. In the past neural network models were used to mimic the storage and retrieval process of memories (patterns) in the brain. With advances in the field now, these models are being used in machine learning, deep learning and modeling of complex phenomena. Most of the past literature focuses on increasing the storage capacity and stability of stored patterns in the network but does not study these models from a modeling perspective or an energy landscape perspective. This dissertation focuses on neural network models both from a modeling perspective and from an energy landscape perspective. I firstly show how the cellular interconversion phenomenon can be modeled as a transition between attractor states on an epigenetic landscape constructed using neural network models. The model allows the identification of a reaction coordinate of cellular interconversion by analyzing experimental and simulation time course data. Monte Carlo simulations of the model show that the initial phase of cellular interconversion is a Poisson process and the later phase of cellular interconversion is a deterministic process. Secondly, I explore the static features of landscapes generated using neural network models, such as sizes of basins of attraction and densities of metastable states. The simulation results show that the static landscape features are strongly dependent on the correlation strength and correlation structure between patterns. Using different hierarchical structures of the correlation between patterns affects the landscape features

  14. Persistence and extinction for a stochastic logistic model with infinite delay

    OpenAIRE

    Chun Lu; Xiaohua Ding

    2013-01-01

    This article, studies a stochastic logistic model with infinite delay. Using a phase space, we establish sufficient conditions for the extinction, nonpersistence in the mean, weak persistence, and stochastic permanence. A threshold between weak persistence and extinction is obtained. Our results state that different types of environmental noises have different effects on the persistence and extinction, and that the delay has no impact on the persistence and ext...

  15. Extinction and quasi-stationarity in the stochastic logistic SIS model

    CERN Document Server

    Nåsell, Ingemar

    2011-01-01

    This volume presents explicit approximations of the quasi-stationary distribution and of the expected time to extinction from the state one and from quasi-stationarity for the stochastic logistic SIS model. The approximations are derived separately in three different parameter regions, and then combined into a uniform approximation across all three regions. Subsequently, the results are used to derive thresholds as functions of the population size N.

  16. Assessing the performance of variational methods for mixed logistic regression models

    Czech Academy of Sciences Publication Activity Database

    Rijmen, F.; Vomlel, Jiří

    2008-01-01

    Roč. 78, č. 8 (2008), s. 765-779 ISSN 0094-9655 R&D Projects: GA MŠk 1M0572 Grant - others:GA MŠk(CZ) 2C06019 Institutional research plan: CEZ:AV0Z10750506 Keywords : Mixed models * Logistic regression * Variational methods * Lower bound approximation Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.353, year: 2008

  17. Hierarchical Model Predictive Control for Plug-and-Play Resource Distribution

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, K; Stoustrup, Jakob

    2012-01-01

    of autonomous units. The approach is inspired by smart-grid electric power production and consumption systems, where the flexibility of a large number of power producing and/or power consuming units can be exploited in a smart-grid solution. The objective is to accommodate the load variation on the grid......This chapter deals with hierarchical model predictive control (MPC) of distributed systems. A three level hierarchical approach is proposed, consisting of a high level MPC controller, a second level of so-called aggregators, controlled by an online MPC-like algorithm, and a lower level......, arising on one hand from varying consumption, on the other hand by natural variations in power production e.g. from wind turbines. The proposed method can also be applied to supply chain management systems, where the challenge is to balance demand and supply, using a number of storages each with a maximal...

  18. Market Competitiveness Evaluation of Mechanical Equipment with a Pairwise Comparisons Hierarchical Model.

    Science.gov (United States)

    Hou, Fujun

    2016-01-01

    This paper provides a description of how market competitiveness evaluations concerning mechanical equipment can be made in the context of multi-criteria decision environments. It is assumed that, when we are evaluating the market competitiveness, there are limited number of candidates with some required qualifications, and the alternatives will be pairwise compared on a ratio scale. The qualifications are depicted as criteria in hierarchical structure. A hierarchical decision model called PCbHDM was used in this study based on an analysis of its desirable traits. Illustration and comparison shows that the PCbHDM provides a convenient and effective tool for evaluating the market competitiveness of mechanical equipment. The researchers and practitioners might use findings of this paper in application of PCbHDM.

  19. Hierarchical relaxation dynamics in a tilted two-band Bose-Hubbard model

    Science.gov (United States)

    Cosme, Jayson G.

    2018-04-01

    We numerically examine slow and hierarchical relaxation dynamics of interacting bosons described by a tilted two-band Bose-Hubbard model. The system is found to exhibit signatures of quantum chaos within the spectrum and the validity of the eigenstate thermalization hypothesis for relevant physical observables is demonstrated for certain parameter regimes. Using the truncated Wigner representation in the semiclassical limit of the system, dynamics of relevant observables reveal hierarchical relaxation and the appearance of prethermalized states is studied from the perspective of statistics of the underlying mean-field trajectories. The observed prethermalization scenario can be attributed to different stages of glassy dynamics in the mode-time configuration space due to dynamical phase transition between ergodic and nonergodic trajectories.

  20. Hierarchical Bayesian nonparametric mixture models for clustering with variable relevance determination.

    Science.gov (United States)

    Yau, Christopher; Holmes, Chris

    2011-07-01

    We propose a hierarchical Bayesian nonparametric mixture model for clustering when some of the covariates are assumed to be of varying relevance to the clustering problem. This can be thought of as an issue in variable selection for unsupervised learning. We demonstrate that by defining a hierarchical population based nonparametric prior on the cluster locations scaled by the inverse covariance matrices of the likelihood we arrive at a 'sparsity prior' representation which admits a conditionally conjugate prior. This allows us to perform full Gibbs sampling to obtain posterior distributions over parameters of interest including an explicit measure of each covariate's relevance and a distribution over the number of potential clusters present in the data. This also allows for individual cluster specific variable selection. We demonstrate improved inference on a number of canonical problems.

  1. Detection of high GS risk group prostate tumors by diffusion tensor imaging and logistic regression modelling.

    Science.gov (United States)

    Ertas, Gokhan

    2018-07-01

    To assess the value of joint evaluation of diffusion tensor imaging (DTI) measures by using logistic regression modelling to detect high GS risk group prostate tumors. Fifty tumors imaged using DTI on a 3 T MRI device were analyzed. Regions of interests focusing on the center of tumor foci and noncancerous tissue on the maps of mean diffusivity (MD) and fractional anisotropy (FA) were used to extract the minimum, the maximum and the mean measures. Measure ratio was computed by dividing tumor measure by noncancerous tissue measure. Logistic regression models were fitted for all possible pair combinations of the measures using 5-fold cross validation. Systematic differences are present for all MD measures and also for all FA measures in distinguishing the high risk tumors [GS ≥ 7(4 + 3)] from the low risk tumors [GS ≤ 7(3 + 4)] (P Logistic regression modelling provides a favorable solution for the joint evaluations easily adoptable in clinical practice. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Challenges and models in supporting logistics system design for dedicated-biomass-based bioenergy industry.

    Science.gov (United States)

    Zhu, Xiaoyan; Li, Xueping; Yao, Qingzhu; Chen, Yuerong

    2011-01-01

    This paper analyzed the uniqueness and challenges in designing the logistics system for dedicated biomass-to-bioenergy industry, which differs from the other industries, due to the unique features of dedicated biomass (e.g., switchgrass) including its low bulk density, restrictions on harvesting season and frequency, content variation with time and circumambient conditions, weather effects, scattered distribution over a wide geographical area, and so on. To design it, this paper proposed a mixed integer linear programming model. It covered from planting and harvesting switchgrass to delivering to a biorefinery and included the residue handling, concentrating on integrating strategic decisions on the supply chain design and tactical decisions on the annual operation schedules. The present numerical examples verified the model and demonstrated its use in practice. This paper showed that the operations of the logistics system were significantly different for harvesting and non-harvesting seasons, and that under the well-designed biomass logistics system, the mass production with a steady and sufficient supply of biomass can increase the unit profit of bioenergy. The analytical model and practical methodology proposed in this paper will help realize the commercial production in biomass-to-bioenergy industry. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Competition with Online and Offline Demands considering Logistics Costs Based on the Hotelling Model

    Directory of Open Access Journals (Sweden)

    Zhi-Hua Hu

    2014-01-01

    Full Text Available Through popular information technologies (e.g., call centers, web portal, ecommerce and social media, etc., traditional shops change their functions for servicing online demands while still providing offline sales and services, which expand the market and the service capacity. In the Hotelling model that formulates the demand effect by considering just offline demand, the shops in a line city will locate at the center as a the result of competition by games. The online demands are met by the delivery logistics services provided by the shops with additional cost; the consumers’ waiting time after their orders also affects their choices for shops. The main purpose is to study the effects of the following aspects on the shops’ location competition: two logistics costs (consumers’ travelling cost for offline demands and the shops’ delivery logistics cost for online demands, the consumers’ waiting cost for online orders, and the ratios of online demands to the whole demands. Therefore, this study primarily contributes to the literature on the formulation of these aspects by extending the Hotelling model. These features and effects are demonstrated by experiments using the extended Hotelling models.

  4. Improving Hierarchical Models Using Historical Data with Applications in High-Throughput Genomics Data Analysis.

    Science.gov (United States)

    Li, Ben; Li, Yunxiao; Qin, Zhaohui S

    2017-06-01

    Modern high-throughput biotechnologies such as microarray and next generation sequencing produce a massive amount of information for each sample assayed. However, in a typical high-throughput experiment, only limited amount of data are observed for each individual feature, thus the classical 'large p , small n ' problem. Bayesian hierarchical model, capable of borrowing strength across features within the same dataset, has been recognized as an effective tool in analyzing such data. However, the shrinkage effect, the most prominent feature of hierarchical features, can lead to undesirable over-correction for some features. In this work, we discuss possible causes of the over-correction problem and propose several alternative solutions. Our strategy is rooted in the fact that in the Big Data era, large amount of historical data are available which should be taken advantage of. Our strategy presents a new framework to enhance the Bayesian hierarchical model. Through simulation and real data analysis, we demonstrated superior performance of the proposed strategy. Our new strategy also enables borrowing information across different platforms which could be extremely useful with emergence of new technologies and accumulation of data from different platforms in the Big Data era. Our method has been implemented in R package "adaptiveHM", which is freely available from https://github.com/benliemory/adaptiveHM.

  5. Hierarchical modelling of temperature and habitat size effects on population dynamics of North Atlantic cod

    DEFF Research Database (Denmark)

    Mantzouni, Irene; Sørensen, Helle; O'Hara, Robert B.

    2010-01-01

    and Beverton and Holt stock–recruitment (SR) models were extended by applying hierarchical methods, mixed-effects models, and Bayesian inference to incorporate the influence of these ecosystem factors on model parameters representing cod maximum reproductive rate and carrying capacity. We identified......Understanding how temperature affects cod (Gadus morhua) ecology is important for forecasting how populations will develop as climate changes in future. The effects of spawning-season temperature and habitat size on cod recruitment dynamics have been investigated across the North Atlantic. Ricker...

  6. Modeling for mechanical response of CICC by hierarchical approach and ABAQUS simulation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.X.; Wang, X.; Gao, Y.W., E-mail: ywgao@lzu.edu.cn; Zhou, Y.H.

    2013-11-15

    Highlights: • We develop an analytical model based on the hierarchical approach of classical wire rope theory. • The numerical model is set up through ABAQUS to verify and enhance the theoretical model. • We calculate two concerned mechanical response: global displacement–load curve and local axial strain distribution. • Elastic–plasticity is the main character in loading curve, and the friction between adjacent strands plays a significant role in the distribution map. -- Abstract: An unexpected degradation frequently occurs in superconducting cable (CICC) due to the mechanical response (deformation) when suffering from electromagnetic load and thermal load during operation. Because of the cable's hierarchical twisted configuration, it is difficult to quantitatively model the mechanical response. In addition, the local mechanical characteristics such as strain distribution could be hardly monitored via experimental method. To address this issue, we develop an analytical model based on the hierarchical approach of classical wire rope theory. This approach follows the algorithm advancing successively from n + 1 stage (e.g. 3 × 3 × 5 subcable) to n stage (e.g. 3 × 3 subcable). There are no complicated numerical procedures required in this model. Meanwhile, the numerical model is set up through ABAQUS to verify and enhance the theoretical model. Subsequently, we calculate two concerned mechanical responses: global displacement–load curve and local axial strain distribution. We find that in the global displacement–load curve, the elastic–plasticity is the main character, and the higher-level cable shows enhanced nonlinear characteristics. As for the local distribution, the friction among adjacent strands plays a significant role in this map. The magnitude of friction strongly influences the regularity of the distribution at different twisted stages. More detailed results are presented in this paper.

  7. Modeling for mechanical response of CICC by hierarchical approach and ABAQUS simulation

    International Nuclear Information System (INIS)

    Li, Y.X.; Wang, X.; Gao, Y.W.; Zhou, Y.H.

    2013-01-01

    Highlights: • We develop an analytical model based on the hierarchical approach of classical wire rope theory. • The numerical model is set up through ABAQUS to verify and enhance the theoretical model. • We calculate two concerned mechanical response: global displacement–load curve and local axial strain distribution. • Elastic–plasticity is the main character in loading curve, and the friction between adjacent strands plays a significant role in the distribution map. -- Abstract: An unexpected degradation frequently occurs in superconducting cable (CICC) due to the mechanical response (deformation) when suffering from electromagnetic load and thermal load during operation. Because of the cable's hierarchical twisted configuration, it is difficult to quantitatively model the mechanical response. In addition, the local mechanical characteristics such as strain distribution could be hardly monitored via experimental method. To address this issue, we develop an analytical model based on the hierarchical approach of classical wire rope theory. This approach follows the algorithm advancing successively from n + 1 stage (e.g. 3 × 3 × 5 subcable) to n stage (e.g. 3 × 3 subcable). There are no complicated numerical procedures required in this model. Meanwhile, the numerical model is set up through ABAQUS to verify and enhance the theoretical model. Subsequently, we calculate two concerned mechanical responses: global displacement–load curve and local axial strain distribution. We find that in the global displacement–load curve, the elastic–plasticity is the main character, and the higher-level cable shows enhanced nonlinear characteristics. As for the local distribution, the friction among adjacent strands plays a significant role in this map. The magnitude of friction strongly influences the regularity of the distribution at different twisted stages. More detailed results are presented in this paper

  8. Urban Growth Modelling with Artificial Neural Network and Logistic Regression. Case Study: Sanandaj City, Iran

    Directory of Open Access Journals (Sweden)

    SASSAN MOHAMMADY

    2013-01-01

    Full Text Available Cities have shown remarkable growth due to attraction, economic, social and facilities centralization in the past few decades. Population and urban expansion especially in developing countries, led to lack of resources, land use change from appropriate agricultural land to urban land use and marginalization. Under these circumstances, land use activity is a major issue and challenge for town and country planners. Different approaches have been attempted in urban expansion modelling. Artificial Neural network (ANN models are among knowledge-based models which have been used for urban growth modelling. ANNs are powerful tools that use a machine learning approach to quantify and model complex behaviour and patterns. In this research, ANN and logistic regression have been employed for interpreting urban growth modelling. Our case study is Sanandaj city and we used Landsat TM and ETM+ imageries acquired at 2000 and 2006. The dataset used includes distance to main roads, distance to the residence region, elevation, slope, and distance to green space. Percent Area Match (PAM obtained from modelling of these changes with ANN is equal to 90.47% and the accuracy achieved for urban growth modelling with Logistic Regression (LR is equal to 88.91%. Percent Correct Match (PCM and Figure of Merit for ANN method were 91.33% and 59.07% and then for LR were 90.84% and 57.07%, respectively.

  9. A sow replacement model using Bayesian updating in a three-level hierarchic Markov process. I. Biological model

    DEFF Research Database (Denmark)

    Kristensen, Anders Ringgaard; Søllested, Thomas Algot

    2004-01-01

    that really uses all these methodological improvements. In this paper, the biological model describing the performance and feed intake of sows is presented. In particular, estimation of herd specific parameters is emphasized. The optimization model is described in a subsequent paper......Several replacement models have been presented in literature. In other applicational areas like dairy cow replacement, various methodological improvements like hierarchical Markov processes and Bayesian updating have been implemented, but not in sow models. Furthermore, there are methodological...... improvements like multi-level hierarchical Markov processes with decisions on multiple time scales, efficient methods for parameter estimations at herd level and standard software that has been hardly implemented at all in any replacement model. The aim of this study is to present a sow replacement model...

  10. A hierarchical modeling methodology for the definition and selection of requirements

    Science.gov (United States)

    Dufresne, Stephane

    This dissertation describes the development of a requirements analysis methodology that takes into account the concept of operations and the hierarchical decomposition of aerospace systems. At the core of the methodology, the Analytic Network Process (ANP) is used to ensure the traceability between the qualitative and quantitative information present in the hierarchical model. The proposed methodology is implemented to the requirements definition of a hurricane tracker Unmanned Aerial Vehicle. Three research objectives are identified in this work; (1) improve the requirements mapping process by matching the stakeholder expectations with the concept of operations, systems and available resources; (2) reduce the epistemic uncertainty surrounding the requirements and requirements mapping; and (3) improve the requirements down-selection process by taking into account the level of importance of the criteria and the available resources. Several challenges are associated with the identification and definition of requirements. The complexity of the system implies that a large number of requirements are needed to define the systems. These requirements are defined early in the conceptual design, where the level of knowledge is relatively low and the level of uncertainty is large. The proposed methodology intends to increase the level of knowledge and reduce the level of uncertainty by guiding the design team through a structured process. To address these challenges, a new methodology is created to flow-down the requirements from the stakeholder expectations to the systems alternatives. A taxonomy of requirements is created to classify the information gathered during the problem definition. Subsequently, the operational and systems functions and measures of effectiveness are integrated to a hierarchical model to allow the traceability of the information. Monte Carlo methods are used to evaluate the variations of the hierarchical model elements and consequently reduce the

  11. A simple approach to power and sample size calculations in logistic regression and Cox regression models.

    Science.gov (United States)

    Vaeth, Michael; Skovlund, Eva

    2004-06-15

    For a given regression problem it is possible to identify a suitably defined equivalent two-sample problem such that the power or sample size obtained for the two-sample problem also applies to the regression problem. For a standard linear regression model the equivalent two-sample problem is easily identified, but for generalized linear models and for Cox regression models the situation is more complicated. An approximately equivalent two-sample problem may, however, also be identified here. In particular, we show that for logistic regression and Cox regression models the equivalent two-sample problem is obtained by selecting two equally sized samples for which the parameters differ by a value equal to the slope times twice the standard deviation of the independent variable and further requiring that the overall expected number of events is unchanged. In a simulation study we examine the validity of this approach to power calculations in logistic regression and Cox regression models. Several different covariate distributions are considered for selected values of the overall response probability and a range of alternatives. For the Cox regression model we consider both constant and non-constant hazard rates. The results show that in general the approach is remarkably accurate even in relatively small samples. Some discrepancies are, however, found in small samples with few events and a highly skewed covariate distribution. Comparison with results based on alternative methods for logistic regression models with a single continuous covariate indicates that the proposed method is at least as good as its competitors. The method is easy to implement and therefore provides a simple way to extend the range of problems that can be covered by the usual formulas for power and sample size determination. Copyright 2004 John Wiley & Sons, Ltd.

  12. Hierarchical model generation for architecture reconstruction using laser-scanned point clouds

    Science.gov (United States)

    Ning, Xiaojuan; Wang, Yinghui; Zhang, Xiaopeng

    2014-06-01

    Architecture reconstruction using terrestrial laser scanner is a prevalent and challenging research topic. We introduce an automatic, hierarchical architecture generation framework to produce full geometry of architecture based on a novel combination of facade structures detection, detailed windows propagation, and hierarchical model consolidation. Our method highlights the generation of geometric models automatically fitting the design information of the architecture from sparse, incomplete, and noisy point clouds. First, the planar regions detected in raw point clouds are interpreted as three-dimensional clusters. Then, the boundary of each region extracted by projecting the points into its corresponding two-dimensional plane is classified to obtain detailed shape structure elements (e.g., windows and doors). Finally, a polyhedron model is generated by calculating the proposed local structure model, consolidated structure model, and detailed window model. Experiments on modeling the scanned real-life buildings demonstrate the advantages of our method, in which the reconstructed models not only correspond to the information of architectural design accurately, but also satisfy the requirements for visualization and analysis.

  13. Hierarchical Agent-Based Integrated Modelling Approach for Microgrids with Adoption of EVs and HRES

    Directory of Open Access Journals (Sweden)

    Peng Han

    2014-01-01

    Full Text Available The large adoption of electric vehicles (EVs, hybrid renewable energy systems (HRESs, and the increasing of the loads shall bring significant challenges to the microgrid. The methodology to model microgrid with high EVs and HRESs penetrations is the key to EVs adoption assessment and optimized HRESs deployment. However, considering the complex interactions of the microgrid containing massive EVs and HRESs, any previous single modelling approaches are insufficient. Therefore in this paper, the methodology named Hierarchical Agent-based Integrated Modelling Approach (HAIMA is proposed. With the effective integration of the agent-based modelling with other advanced modelling approaches, the proposed approach theoretically contributes to a new microgrid model hierarchically constituted by microgrid management layer, component layer, and event layer. Then the HAIMA further links the key parameters and interconnects them to achieve the interactions of the whole model. Furthermore, HAIMA practically contributes to a comprehensive microgrid operation system, through which the assessment of the proposed model and the impact of the EVs adoption are achieved. Simulations show that the proposed HAIMA methodology will be beneficial for the microgrid study and EV’s operation assessment and shall be further utilized for the energy management, electricity consumption prediction, the EV scheduling control, and HRES deployment optimization.

  14. An adaptive sampling method for variable-fidelity surrogate models using improved hierarchical kriging

    Science.gov (United States)

    Hu, Jiexiang; Zhou, Qi; Jiang, Ping; Shao, Xinyu; Xie, Tingli

    2018-01-01

    Variable-fidelity (VF) modelling methods have been widely used in complex engineering system design to mitigate the computational burden. Building a VF model generally includes two parts: design of experiments and metamodel construction. In this article, an adaptive sampling method based on improved hierarchical kriging (ASM-IHK) is proposed to refine the improved VF model. First, an improved hierarchical kriging model is developed as the metamodel, in which the low-fidelity model is varied through a polynomial response surface function to capture the characteristics of a high-fidelity model. Secondly, to reduce local approximation errors, an active learning strategy based on a sequential sampling method is introduced to make full use of the already required information on the current sampling points and to guide the sampling process of the high-fidelity model. Finally, two numerical examples and the modelling of the aerodynamic coefficient for an aircraft are provided to demonstrate the approximation capability of the proposed approach, as well as three other metamodelling methods and two sequential sampling methods. The results show that ASM-IHK provides a more accurate metamodel at the same simulation cost, which is very important in metamodel-based engineering design problems.

  15. Model-based bootstrapping when correcting for measurement error with application to logistic regression.

    Science.gov (United States)

    Buonaccorsi, John P; Romeo, Giovanni; Thoresen, Magne

    2018-03-01

    When fitting regression models, measurement error in any of the predictors typically leads to biased coefficients and incorrect inferences. A plethora of methods have been proposed to correct for this. Obtaining standard errors and confidence intervals using the corrected estimators can be challenging and, in addition, there is concern about remaining bias in the corrected estimators. The bootstrap, which is one option to address these problems, has received limited attention in this context. It has usually been employed by simply resampling observations, which, while suitable in some situations, is not always formally justified. In addition, the simple bootstrap does not allow for estimating bias in non-linear models, including logistic regression. Model-based bootstrapping, which can potentially estimate bias in addition to being robust to the original sampling or whether the measurement error variance is constant or not, has received limited attention. However, it faces challenges that are not present in handling regression models with no measurement error. This article develops new methods for model-based bootstrapping when correcting for measurement error in logistic regression with replicate measures. The methodology is illustrated using two examples, and a series of simulations are carried out to assess and compare the simple and model-based bootstrap methods, as well as other standard methods. While not always perfect, the model-based approaches offer some distinct improvements over the other methods. © 2017, The International Biometric Society.

  16. Stakeholder engagement in quattro helix model for mobile phone reverse logistics in Indonesia: a conceptual framework

    Science.gov (United States)

    Maheswari, H.; Yudoko, G.; Adhiutama, A.

    2017-12-01

    The number of e-waste from mobile phone industry is still dominating until now. This is happened because there is no mutual commitment from all of parties i.e. businesses, government, and societies to reduce the use of mobile phone that has the shortest product life cycle. There are many researches study about firms’ motivation and government’s role, other discuss about actions of communities in supporting reverse logistics implementation. Unfortunately, research about engagement mechanism that involving all parties is still rare. Therefore, it is important to find the engagement model through this conceptual paper and it is expected useful to build the novel model. Through literature review, the results of this research are establishing the Quattro helix model as the appropriate structure to build the robust team by exploring stakeholder theories; mapping the engagement model either in form of collaboration or participation that consider stakeholders’ role and motivation and finding six types of engagement that consider their interest; and determining the novel model of engagement through Quattro helix model for implementing reverse logistics in handling e-waste by describing the linkage and the gaps among existing model.

  17. On the Inclusion of Short-distance Bystander Effects into a Logistic Tumor Control Probability Model.

    Science.gov (United States)

    Tempel, David G; Brodin, N Patrik; Tomé, Wolfgang A

    2018-01-01

    Currently, interactions between voxels are neglected in the tumor control probability (TCP) models used in biologically-driven intensity-modulated radiotherapy treatment planning. However, experimental data suggests that this may not always be justified when bystander effects are important. We propose a model inspired by the Ising model, a short-range interaction model, to investigate if and when it is important to include voxel to voxel interactions in biologically-driven treatment planning. This Ising-like model for TCP is derived by first showing that the logistic model of tumor control is mathematically equivalent to a non-interacting Ising model. Using this correspondence, the parameters of the logistic model are mapped to the parameters of an Ising-like model and bystander interactions are introduced as a short-range interaction as is the case for the Ising model. As an example, we apply the model to study the effect of bystander interactions in the case of radiation therapy for prostate cancer. The model shows that it is adequate to neglect bystander interactions for dose distributions that completely cover the treatment target and yield TCP estimates that lie in the shoulder of the dose response curve. However, for dose distributions that yield TCP estimates that lie on the steep part of the dose response curve or for inhomogeneous dose distributions having significant hot and/or cold regions, bystander effects may be important. Furthermore, the proposed model highlights a previously unexplored and potentially fruitful connection between the fields of statistical mechanics and tumor control probability/normal tissue complication probability modeling.

  18. Grey-Theory-Based Optimization Model of Emergency Logistics Considering Time Uncertainty.

    Science.gov (United States)

    Qiu, Bao-Jian; Zhang, Jiang-Hua; Qi, Yuan-Tao; Liu, Yang

    2015-01-01

    Natural disasters occur frequently in recent years, causing huge casualties and property losses. Nowadays, people pay more and more attention to the emergency logistics problems. This paper studies the emergency logistics problem with multi-center, multi-commodity, and single-affected-point. Considering that the path near the disaster point may be damaged, the information of the state of the paths is not complete, and the travel time is uncertainty, we establish the nonlinear programming model that objective function is the maximization of time-satisfaction degree. To overcome these drawbacks: the incomplete information and uncertain time, this paper firstly evaluates the multiple roads of transportation network based on grey theory and selects the reliable and optimal path. Then simplify the original model under the scenario that the vehicle only follows the optimal path from the emergency logistics center to the affected point, and use Lingo software to solve it. The numerical experiments are presented to show the feasibility and effectiveness of the proposed method.

  19. Innovative and logistics development business model elaboration of the economy of Ukraine

    Directory of Open Access Journals (Sweden)

    Любов Олександрівна Кравченко

    2016-11-01

    Full Text Available The problematic position of export operations of the enterprises on foreign trade format are analyzed in the article. The variant of implementation of innovative and logistics elements in the enterprise management system is considered in order to increase the export potential of the enterprise. It is shown that combination of the innovative direction with the logistics is possible using enterprise management paradigm. Such approach would increase the competitiveness of the offered products on the international market. The conceptual model of innovative and investment development of the export potential of enterprises is proposed to determine the potential of the company to produce and promote competitive products on the external market and provide competitive services in the required quantity, the right quality in a timely manner with minimal costs.

  20. A review of logistic regression models used to predict post-fire tree mortality of western North American conifers

    Science.gov (United States)

    Travis Woolley; David C. Shaw; Lisa M. Ganio; Stephen. Fitzgerald

    2012-01-01

    Logistic regression models used to predict tree mortality are critical to post-fire management, planning prescribed bums and understanding disturbance ecology. We review literature concerning post-fire mortality prediction using logistic regression models for coniferous tree species in the western USA. We include synthesis and review of: methods to develop, evaluate...

  1. Dynamic classification of fetal heart rates by hierarchical Dirichlet process mixture models.

    Directory of Open Access Journals (Sweden)

    Kezi Yu

    Full Text Available In this paper, we propose an application of non-parametric Bayesian (NPB models for classification of fetal heart rate (FHR recordings. More specifically, we propose models that are used to differentiate between FHR recordings that are from fetuses with or without adverse outcomes. In our work, we rely on models based on hierarchical Dirichlet processes (HDP and the Chinese restaurant process with finite capacity (CRFC. Two mixture models were inferred from real recordings, one that represents healthy and another, non-healthy fetuses. The models were then used to classify new recordings and provide the probability of the fetus being healthy. First, we compared the classification performance of the HDP models with that of support vector machines on real data and concluded that the HDP models achieved better performance. Then we demonstrated the use of mixture models based on CRFC for dynamic classification of the performance of (FHR recordings in a real-time setting.

  2. HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python.

    Science.gov (United States)

    Wiecki, Thomas V; Sofer, Imri; Frank, Michael J

    2013-01-01

    The diffusion model is a commonly used tool to infer latent psychological processes underlying decision-making, and to link them to neural mechanisms based on response times. Although efficient open source software has been made available to quantitatively fit the model to data, current estimation methods require an abundance of response time measurements to recover meaningful parameters, and only provide point estimates of each parameter. In contrast, hierarchical Bayesian parameter estimation methods are useful for enhancing statistical power, allowing for simultaneous estimation of individual subject parameters and the group distribution that they are drawn from, while also providing measures of uncertainty in these parameters in the posterior distribution. Here, we present a novel Python-based toolbox called HDDM (hierarchical drift diffusion model), which allows fast and flexible estimation of the the drift-diffusion model and the related linear ballistic accumulator model. HDDM requires fewer data per subject/condition than non-hierarchical methods, allows for full Bayesian data analysis, and can handle outliers in the data. Finally, HDDM supports the estimation of how trial-by-trial measurements (e.g., fMRI) influence decision-making parameters. This paper will first describe the theoretical background of the drift diffusion model and Bayesian inference. We then illustrate usage of the toolbox on a real-world data set from our lab. Finally, parameter recovery studies show that HDDM beats alternative fitting methods like the χ(2)-quantile method as well as maximum likelihood estimation. The software and documentation can be downloaded at: http://ski.clps.brown.edu/hddm_docs/

  3. HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python

    Directory of Open Access Journals (Sweden)

    Thomas V Wiecki

    2013-08-01

    Full Text Available The diffusion model is a commonly used tool to infer latent psychological processes underlying decision making, and to link them to neural mechanisms based on reaction times. Although efficient open source software has been made available to quantitatively fit the model to data, current estimation methods require an abundance of reaction time measurements to recover meaningful parameters, and only provide point estimates of each parameter. In contrast, hierarchical Bayesian parameter estimation methods are useful for enhancing statistical power, allowing for simultaneous estimation of individual subject parameters and the group distribution that they are drawn from, while also providing measures of uncertainty in these parameters in the posterior distribution. Here, we present a novel Python-based toolbox called HDDM (hierarchical drift diffusion model, which allows fast and flexible estimation of the the drift-diffusion model and the related linear ballistic accumulator model. HDDM requires fewer data per subject / condition than non-hierarchical method, allows for full Bayesian data analysis, and can handle outliers in the data. Finally, HDDM supports the estimation of how trial-by-trial measurements (e.g. fMRI influence decision making parameters. This paper will first describe the theoretical background of drift-diffusion model and Bayesian inference. We then illustrate usage of the toolbox on a real-world data set from our lab. Finally, parameter recovery studies show that HDDM beats alternative fitting methods like the chi-quantile method as well as maximum likelihood estimation. The software and documentation can be downloaded at: http://ski.clps.brown.edu/hddm_docs

  4. Comparison of nonstationary generalized logistic models based on Monte Carlo simulation

    Directory of Open Access Journals (Sweden)

    S. Kim

    2015-06-01

    Full Text Available Recently, the evidences of climate change have been observed in hydrologic data such as rainfall and flow data. The time-dependent characteristics of statistics in hydrologic data are widely defined as nonstationarity. Therefore, various nonstationary GEV and generalized Pareto models have been suggested for frequency analysis of nonstationary annual maximum and POT (peak-over-threshold data, respectively. However, the alternative models are required for nonstatinoary frequency analysis because of analyzing the complex characteristics of nonstationary data based on climate change. This study proposed the nonstationary generalized logistic model including time-dependent parameters. The parameters of proposed model are estimated using the method of maximum likelihood based on the Newton-Raphson method. In addition, the proposed model is compared by Monte Carlo simulation to investigate the characteristics of models and applicability.

  5. Redesigning fruit and vegetable distribution network in Tehran using a city logistics model

    Directory of Open Access Journals (Sweden)

    Farshad Saeedi

    2019-01-01

    Full Text Available Tehran, as one of the most populated capital cities worldwide, is categorized in the group of highly polluted cities in terms of the geographical location as well as increased number of industries, vehicles, domestic fuel consumption, intra-city trips, increased manufacturing units, and in general excessive increase in the consumption of fossil energies. City logistics models can be effectively helpful for solving the complicated problems of this city. In the present study, a queuing theory-based bi-objective mathematical model is presented, which aims to optimize the environmental and economic costs in city logistics operations. It also tries to reduce the response time in the network. The first objective is associated with all beneficiaries and the second one is applicable for perishable and necessary goods. The proposed model makes decisions on urban distribution centers location problem. Subsequently, as a case study, the fruit and vegetable distribution network of Tehran city is investigated and redesigned via the proposed modelling. The results of the implementation of the model through traditional and augmented ε-constraint methods indicate the efficiency of the proposed model in redesigning the given network.

  6. Persistence and extinction for a stochastic logistic model with infinite delay

    Directory of Open Access Journals (Sweden)

    Chun Lu

    2013-11-01

    Full Text Available This article, studies a stochastic logistic model with infinite delay. Using a phase space, we establish sufficient conditions for the extinction, nonpersistence in the mean, weak persistence, and stochastic permanence. A threshold between weak persistence and extinction is obtained. Our results state that different types of environmental noises have different effects on the persistence and extinction, and that the delay has no impact on the persistence and extinction for the stochastic model in the autonomous case. Numerical simulations illustrate the theoretical results.

  7. A logistic and cost model for the transport of radioactive waste to a repository

    International Nuclear Information System (INIS)

    Hutchinson, D.L.; Gray, I.L.S.; Manville, W.D.

    1997-01-01

    UK Nirex Ltd is planning a deep repository for intermediate level radioactive waste, and also some low level waste. Part of this work is to develop a transport system to bring the packaged waste to the repository from nuclear industry sites across the United Kingdom. To assess the logistics and costs of this transport system and to provide inputs to the repository specification and design, Nirex has commissioned the development of a flexible computer model which can be used on a desktop PC. The requirements for the LOGCOST model are explained, and the solutions adopted, and then examples shown of the graphical and tabular outputs that LOGCOST can provide. (Author)

  8. A multicriteria decision making model for assessment and selection of an ERP in a logistics context

    Science.gov (United States)

    Pereira, Teresa; Ferreira, Fernanda A.

    2017-07-01

    The aim of this work is to apply a methodology of decision support based on a multicriteria decision analyses (MCDA) model that allows the assessment and selection of an Enterprise Resource Planning (ERP) in a Portuguese logistics company by Group Decision Maker (GDM). A Decision Support system (DSS) that implements a MCDA - Multicriteria Methodology for the Assessment and Selection of Information Systems / Information Technologies (MMASSI / IT) is used based on its features and facility to change and adapt the model to a given scope. Using this DSS it was obtained the information system that best suited to the decisional context, being this result evaluated through a sensitivity and robustness analysis.

  9. Underwater Cylindrical Object Detection Using the Spectral Features of Active Sonar Signals with Logistic Regression Models

    Directory of Open Access Journals (Sweden)

    Yoojeong Seo

    2018-01-01

    Full Text Available The issue of detecting objects bottoming on the sea floor is significant in various fields including civilian and military areas. The objective of this study is to investigate the logistic regression model to discriminate the target from the clutter and to verify the possibility of applying the model trained by the simulated data generated by the mathematical model to the real experimental data because it is not easy to obtain sufficient data in the underwater field. In the first stage of this study, when the clutter signal energy is so strong that the detection of a target is difficult, the logistic regression model is employed to distinguish the strong clutter signal and the target signal. Previous studies have found that if the clutter energy is larger, false detection occurs even for the various existing detection schemes. For this reason, the discrete Fourier transform (DFT magnitude spectrum of acoustic signals received by active sonar is applied to train the model to distinguish whether the received signal contains a target signal or not. The goodness of fit of the model is verified in terms of receiver operation characteristic (ROC, area under ROC curve (AUC, and classification table. The detection performance of the proposed model is evaluated in terms of detection rate according to target to clutter ratio (TCR. Furthermore, the real experimental data are employed to test the proposed approach. When using the experimental data to test the model, the logistic regression model is trained by the simulated data that are generated based on the mathematical model for the backscattering of the cylindrical object. The mathematical model is developed according to the size of the cylinder used in the experiment. Since the information on the experimental environment including the sound speed, the sediment type and such is not available, once simulated data are generated under various conditions, valid simulated data are selected using 70% of the

  10. Determination of osteoporosis risk factors using a multiple logistic regression model in postmenopausal Turkish women.

    Science.gov (United States)

    Akkus, Zeki; Camdeviren, Handan; Celik, Fatma; Gur, Ali; Nas, Kemal

    2005-09-01

    To determine the risk factors of osteoporosis using a multiple binary logistic regression method and to assess the risk variables for osteoporosis, which is a major and growing health problem in many countries. We presented a case-control study, consisting of 126 postmenopausal healthy women as control group and 225 postmenopausal osteoporotic women as the case group. The study was carried out in the Department of Physical Medicine and Rehabilitation, Dicle University, Diyarbakir, Turkey between 1999-2002. The data from the 351 participants were collected using a standard questionnaire that contains 43 variables. A multiple logistic regression model was then used to evaluate the data and to find the best regression model. We classified 80.1% (281/351) of the participants using the regression model. Furthermore, the specificity value of the model was 67% (84/126) of the control group while the sensitivity value was 88% (197/225) of the case group. We found the distribution of residual values standardized for final model to be exponential using the Kolmogorow-Smirnow test (p=0.193). The receiver operating characteristic curve was found successful to predict patients with risk for osteoporosis. This study suggests that low levels of dietary calcium intake, physical activity, education, and longer duration of menopause are independent predictors of the risk of low bone density in our population. Adequate dietary calcium intake in combination with maintaining a daily physical activity, increasing educational level, decreasing birth rate, and duration of breast-feeding may contribute to healthy bones and play a role in practical prevention of osteoporosis in Southeast Anatolia. In addition, the findings of the present study indicate that the use of multivariate statistical method as a multiple logistic regression in osteoporosis, which maybe influenced by many variables, is better than univariate statistical evaluation.

  11. Hierarchical modeling for rare event detection and cell subset alignment across flow cytometry samples.

    Directory of Open Access Journals (Sweden)

    Andrew Cron

    Full Text Available Flow cytometry is the prototypical assay for multi-parameter single cell analysis, and is essential in vaccine and biomarker research for the enumeration of antigen-specific lymphocytes that are often found in extremely low frequencies (0.1% or less. Standard analysis of flow cytometry data relies on visual identification of cell subsets by experts, a process that is subjective and often difficult to reproduce. An alternative and more objective approach is the use of statistical models to identify cell subsets of interest in an automated fashion. Two specific challenges for automated analysis are to detect extremely low frequency event subsets without biasing the estimate by pre-processing enrichment, and the ability to align cell subsets across multiple data samples for comparative analysis. In this manuscript, we develop hierarchical modeling extensions to the Dirichlet Process Gaussian Mixture Model (DPGMM approach we have previously described for cell subset identification, and show that the hierarchical DPGMM (HDPGMM naturally generates an aligned data model that captures both commonalities and variations across multiple samples. HDPGMM also increases the sensitivity to extremely low frequency events by sharing information across multiple samples analyzed simultaneously. We validate the accuracy and reproducibility of HDPGMM estimates of antigen-specific T cells on clinically relevant reference peripheral blood mononuclear cell (PBMC samples with known frequencies of antigen-specific T cells. These cell samples take advantage of retrovirally TCR-transduced T cells spiked into autologous PBMC samples to give a defined number of antigen-specific T cells detectable by HLA-peptide multimer binding. We provide open source software that can take advantage of both multiple processors and GPU-acceleration to perform the numerically-demanding computations. We show that hierarchical modeling is a useful probabilistic approach that can provide a

  12. Hierarchical Models for Type Ia Supernova Light Curves in the Optical and Near Infrared

    Science.gov (United States)

    Mandel, Kaisey; Narayan, G.; Kirshner, R. P.

    2011-01-01

    I have constructed a comprehensive statistical model for Type Ia supernova optical and near infrared light curves. Since the near infrared light curves are excellent standard candles and are less sensitive to dust extinction and reddening, the combination of near infrared and optical data better constrains the host galaxy extinction and improves the precision of distance predictions to SN Ia. A hierarchical probabilistic model coherently accounts for multiple random and uncertain effects, including photometric error, intrinsic supernova light curve variations and correlations across phase and wavelength, dust extinction and reddening, peculiar velocity dispersion and distances. An improved BayeSN MCMC code is implemented for computing probabilistic inferences for individual supernovae and the SN Ia and host galaxy dust populations. I use this hierarchical model to analyze nearby Type Ia supernovae with optical and near infared data from the PAIRITEL, CfA3, and CSP samples and the literature. Using cross-validation to test the robustness of the model predictions, I find that the rms Hubble diagram scatter of predicted distance moduli is 0.11 mag for SN with optical and near infrared data versus 0.15 mag for SN with only optical data. Accounting for the dispersion expected from random peculiar velocities, the rms intrinsic prediction error is 0.08-0.10 mag for SN with both optical and near infrared light curves. I discuss results for the inferred intrinsic correlation structures of the optical-NIR SN Ia light curves and the host galaxy dust distribution captured by the hierarchical model. The continued observation and analysis of Type Ia SN in the optical and near infrared is important for improving their utility as precise and accurate cosmological distance indicators.

  13. A conceptual modeling framework for discrete event simulation using hierarchical control structures.

    Science.gov (United States)

    Furian, N; O'Sullivan, M; Walker, C; Vössner, S; Neubacher, D

    2015-08-01

    Conceptual Modeling (CM) is a fundamental step in a simulation project. Nevertheless, it is only recently that structured approaches towards the definition and formulation of conceptual models have gained importance in the Discrete Event Simulation (DES) community. As a consequence, frameworks and guidelines for applying CM to DES have emerged and discussion of CM for DES is increasing. However, both the organization of model-components and the identification of behavior and system control from standard CM approaches have shortcomings that limit CM's applicability to DES. Therefore, we discuss the different aspects of previous CM frameworks and identify their limitations. Further, we present the Hierarchical Control Conceptual Modeling framework that pays more attention to the identification of a models' system behavior, control policies and dispatching routines and their structured representation within a conceptual model. The framework guides the user step-by-step through the modeling process and is illustrated by a worked example.

  14. Efficient Actor-Critic Algorithm with Hierarchical Model Learning and Planning

    Science.gov (United States)

    Fu, QiMing

    2016-01-01

    To improve the convergence rate and the sample efficiency, two efficient learning methods AC-HMLP and RAC-HMLP (AC-HMLP with ℓ 2-regularization) are proposed by combining actor-critic algorithm with hierarchical model learning and planning. The hierarchical models consisting of the local and the global models, which are learned at the same time during learning of the value function and the policy, are approximated by local linear regression (LLR) and linear function approximation (LFA), respectively. Both the local model and the global model are applied to generate samples for planning; the former is used only if the state-prediction error does not surpass the threshold at each time step, while the latter is utilized at the end of each episode. The purpose of taking both models is to improve the sample efficiency and accelerate the convergence rate of the whole algorithm through fully utilizing the local and global information. Experimentally, AC-HMLP and RAC-HMLP are compared with three representative algorithms on two Reinforcement Learning (RL) benchmark problems. The results demonstrate that they perform best in terms of convergence rate and sample efficiency. PMID:27795704

  15. Application of Logistic Regression Tree Model in Determining Habitat Distribution of Astragalus verus

    Directory of Open Access Journals (Sweden)

    M. Saki

    2013-03-01

    Full Text Available The relationship between plant species and environmental factors has always been a central issue in plant ecology. With rising power of statistical techniques, geo-statistics and geographic information systems (GIS, the development of predictive habitat distribution models of organisms has rapidly increased in ecology. This study aimed to evaluate the ability of Logistic Regression Tree model to create potential habitat map of Astragalus verus. This species produces Tragacanth and has economic value. A stratified- random sampling was applied to 100 sites (50 presence- 50 absence of given species, and produced environmental and edaphic factors maps by using Kriging and Inverse Distance Weighting methods in the ArcGIS software for the whole study area. Relationships between species occurrence and environmental factors were determined by Logistic Regression Tree model and extended to the whole study area. The results indicated species occurrence has strong correlation with environmental factors such as mean daily temperature and clay, EC and organic carbon content of the soil. Species occurrence showed direct relationship with mean daily temperature and clay and organic carbon, and inverse relationship with EC. Model accuracy was evaluated both by Cohen’s kappa statistics (κ and by area under Receiver Operating Characteristics curve based on independent test data set. Their values (kappa=0.9, Auc of ROC=0.96 indicated the high power of LRT to create potential habitat map on local scales. This model, therefore, can be applied to recognize potential sites for rangeland reclamation projects.

  16. Hierarchical Self Assembly of Patterns from the Robinson Tilings: DNA Tile Design in an Enhanced Tile Assembly Model.

    Science.gov (United States)

    Padilla, Jennifer E; Liu, Wenyan; Seeman, Nadrian C

    2012-06-01

    We introduce a hierarchical self assembly algorithm that produces the quasiperiodic patterns found in the Robinson tilings and suggest a practical implementation of this algorithm using DNA origami tiles. We modify the abstract Tile Assembly Model, (aTAM), to include active signaling and glue activation in response to signals to coordinate the hierarchical assembly of Robinson patterns of arbitrary size from a small set of tiles according to the tile substitution algorithm that generates them. Enabling coordinated hierarchical assembly in the aTAM makes possible the efficient encoding of the recursive process of tile substitution.

  17. Going Mobile: An Empirical Model for Explaining Successful Information Logistics in Ward Rounds.

    Science.gov (United States)

    Esdar, Moritz; Liebe, Jan-David; Babitsch, Birgit; Hübner, Ursula

    2018-01-01

    Medical ward rounds are critical focal points of inpatient care that call for uniquely flexible solutions to provide clinical information at the bedside. While this fact is undoubted, adoption rates of mobile IT solutions remain rather low. Our goal was to investigate if and how mobile IT solutions influence successful information provision at the bedside, i.e. clinical information logistics, as well as to shed light at socio-organizational factors that facilitate adoption rates from a user-centered perspective. Survey data were collected from 373 medical and nursing directors of German, Austrian and Swiss hospitals and analyzed using variance-based Structural Equation Modelling (SEM). The adoption of mobile IT solutions explains large portions of clinical information logistics and is in itself associated with an organizational culture of innovation and end user participation. Results should encourage decision makers to understand mobility as a core constituent of information logistics and thus to promote close end-user participation as well as to work towards building a culture of innovation.

  18. A comparative study on entrepreneurial attitudes modeled with logistic regression and Bayes nets.

    Science.gov (United States)

    López Puga, Jorge; García García, Juan

    2012-11-01

    Entrepreneurship research is receiving increasing attention in our context, as entrepreneurs are key social agents involved in economic development. We compare the success of the dichotomic logistic regression model and the Bayes simple classifier to predict entrepreneurship, after manipulating the percentage of missing data and the level of categorization in predictors. A sample of undergraduate university students (N = 1230) completed five scales (motivation, attitude towards business creation, obstacles, deficiencies, and training needs) and we found that each of them predicted different aspects of the tendency to business creation. Additionally, our results show that the receiver operating characteristic (ROC) curve is affected by the rate of missing data in both techniques, but logistic regression seems to be more vulnerable when faced with missing data, whereas Bayes nets underperform slightly when categorization has been manipulated. Our study sheds light on the potential entrepreneur profile and we propose to use Bayesian networks as an additional alternative to overcome the weaknesses of logistic regression when missing data are present in applied research.

  19. Comprehensive Logistics

    CERN Document Server

    Gudehus, Timm

    2012-01-01

    Modern logistics comprises operative logistics, analytical logistics and management of logistic networks. Central task of operative logistics is the efficient supply of required goods at the right place within the right time. Tasks of analytical logistics are designing optimal networks and systems, developing strategies for planning, scheduling and operation, and organizing efficient order and performance processes. Logistic management plans, implements and operates logistic networks and schedules orders, stocks and resources. This reference-book offers a unique survey of modern logistics. It contains proven strategies, rules and tools for the solution of a multitude of logistic problems. The analytically derived algorithms and formulas can be used for the computer-based planning of logistic systems and for the dynamic scheduling of orders and resources in supply networks. They enable significant improvements of performance, quality and costs. Their application is demonstrated by several examples from industr...

  20. TYPE Ia SUPERNOVA LIGHT CURVE INFERENCE: HIERARCHICAL MODELS IN THE OPTICAL AND NEAR-INFRARED

    International Nuclear Information System (INIS)

    Mandel, Kaisey S.; Narayan, Gautham; Kirshner, Robert P.

    2011-01-01

    We have constructed a comprehensive statistical model for Type Ia supernova (SN Ia) light curves spanning optical through near-infrared (NIR) data. A hierarchical framework coherently models multiple random and uncertain effects, including intrinsic supernova (SN) light curve covariances, dust extinction and reddening, and distances. An improved BAYESN Markov Chain Monte Carlo code computes probabilistic inferences for the hierarchical model by sampling the global probability density of parameters describing individual SNe and the population. We have applied this hierarchical model to optical and NIR data of 127 SNe Ia from PAIRITEL, CfA3, Carnegie Supernova Project, and the literature. We find an apparent population correlation between the host galaxy extinction A V and the ratio of total-to-selective dust absorption R V . For SNe with low dust extinction, A V ∼ V ∼ 2.5-2.9, while at high extinctions, A V ∼> 1, low values of R V < 2 are favored. The NIR luminosities are excellent standard candles and are less sensitive to dust extinction. They exhibit low correlation with optical peak luminosities, and thus provide independent information on distances. The combination of NIR and optical data constrains the dust extinction and improves the predictive precision of individual SN Ia distances by about 60%. Using cross-validation, we estimate an rms distance modulus prediction error of 0.11 mag for SNe with optical and NIR data versus 0.15 mag for SNe with optical data alone. Continued study of SNe Ia in the NIR is important for improving their utility as precise and accurate cosmological distance indicators.

  1. Process-based modelling of tree and stand growth: towards a hierarchical treatment of multiscale processes

    International Nuclear Information System (INIS)

    Makela, A.

    2003-01-01

    A generally accepted method has not emerged for managing the different temporal and spatial scales in a forest ecosystem. This paper reviews a hierarchical-modular modelling tradition, with the main focus on individual tree growth throughout the rotation. At this scale, model performance requires (i) realistic long-term dynamic properties, (ii) realistic responses of growth and mortality of competing individuals, and (iii) realistic responses to ecophysio-logical inputs. Model development and validation are illustrated through allocation patterns, height growth, and size-related feedbacks. Empirical work to test the approach is reviewed. In this approach, finer scale effects are embedded in parameters calculated using more detailed, interacting modules. This is exemplified by (i) the within-year effect of weather on annual photosynthesis, (ii) the effects of fast soil processes on carbon allocation and photosynthesis, and (iii) the utilization of detailed stem structure to predict wood quality. Prevailing management paradigms are reflected in growth modelling. A shift of emphasis has occurred from productivity in homogeneous canopies towards, e.g., wood quality versus total yield, spatially more explicit models, and growth decline in old-growth forests. The new problems emphasize the hierarchy of the system and interscale interactions, suggesting that the hierarchical-modular approach could prove constructive. (author)

  2. Hierarchical modeling and robust synthesis for the preliminary design of large scale complex systems

    Science.gov (United States)

    Koch, Patrick Nathan

    Large-scale complex systems are characterized by multiple interacting subsystems and the analysis of multiple disciplines. The design and development of such systems inevitably requires the resolution of multiple conflicting objectives. The size of complex systems, however, prohibits the development of comprehensive system models, and thus these systems must be partitioned into their constituent parts. Because simultaneous solution of individual subsystem models is often not manageable iteration is inevitable and often excessive. In this dissertation these issues are addressed through the development of a method for hierarchical robust preliminary design exploration to facilitate concurrent system and subsystem design exploration, for the concurrent generation of robust system and subsystem specifications for the preliminary design of multi-level, multi-objective, large-scale complex systems. This method is developed through the integration and expansion of current design techniques: (1) Hierarchical partitioning and modeling techniques for partitioning large-scale complex systems into more tractable parts, and allowing integration of subproblems for system synthesis, (2) Statistical experimentation and approximation techniques for increasing both the efficiency and the comprehensiveness of preliminary design exploration, and (3) Noise modeling techniques for implementing robust preliminary design when approximate models are employed. The method developed and associated approaches are illustrated through their application to the preliminary design of a commercial turbofan turbine propulsion system; the turbofan system-level problem is partitioned into engine cycle and configuration design and a compressor module is integrated for more detailed subsystem-level design exploration, improving system evaluation.

  3. A Hierarchical Feature Extraction Model for Multi-Label Mechanical Patent Classification

    Directory of Open Access Journals (Sweden)

    Jie Hu

    2018-01-01

    Full Text Available Various studies have focused on feature extraction methods for automatic patent classification in recent years. However, most of these approaches are based on the knowledge from experts in related domains. Here we propose a hierarchical feature extraction model (HFEM for multi-label mechanical patent classification, which is able to capture both local features of phrases as well as global and temporal semantics. First, a n-gram feature extractor based on convolutional neural networks (CNNs is designed to extract salient local lexical-level features. Next, a long dependency feature extraction model based on the bidirectional long–short-term memory (BiLSTM neural network model is proposed to capture sequential correlations from higher-level sequence representations. Then the HFEM algorithm and its hierarchical feature extraction architecture are detailed. We establish the training, validation and test datasets, containing 72,532, 18,133, and 2679 mechanical patent documents, respectively, and then check the performance of HFEMs. Finally, we compared the results of the proposed HFEM and three other single neural network models, namely CNN, long–short-term memory (LSTM, and BiLSTM. The experimental results indicate that our proposed HFEM outperforms the other compared models in both precision and recall.

  4. A hierarchical bayesian model to quantify uncertainty of stream water temperature forecasts.

    Directory of Open Access Journals (Sweden)

    Guillaume Bal

    Full Text Available Providing generic and cost effective modelling approaches to reconstruct and forecast freshwater temperature using predictors as air temperature and water discharge is a prerequisite to understanding ecological processes underlying the impact of water temperature and of global warming on continental aquatic ecosystems. Using air temperature as a simple linear predictor of water temperature can lead to significant bias in forecasts as it does not disentangle seasonality and long term trends in the signal. Here, we develop an alternative approach based on hierarchical Bayesian statistical time series modelling of water temperature, air temperature and water discharge using seasonal sinusoidal periodic signals and time varying means and amplitudes. Fitting and forecasting performances of this approach are compared with that of simple linear regression between water and air temperatures using i an emotive simulated example, ii application to three French coastal streams with contrasting bio-geographical conditions and sizes. The time series modelling approach better fit data and does not exhibit forecasting bias in long term trends contrary to the linear regression. This new model also allows for more accurate forecasts of water temperature than linear regression together with a fair assessment of the uncertainty around forecasting. Warming of water temperature forecast by our hierarchical Bayesian model was slower and more uncertain than that expected with the classical regression approach. These new forecasts are in a form that is readily usable in further ecological analyses and will allow weighting of outcomes from different scenarios to manage climate change impacts on freshwater wildlife.

  5. A conceptual modeling framework for discrete event simulation using hierarchical control structures

    Science.gov (United States)

    Furian, N.; O’Sullivan, M.; Walker, C.; Vössner, S.; Neubacher, D.

    2015-01-01

    Conceptual Modeling (CM) is a fundamental step in a simulation project. Nevertheless, it is only recently that structured approaches towards the definition and formulation of conceptual models have gained importance in the Discrete Event Simulation (DES) community. As a consequence, frameworks and guidelines for applying CM to DES have emerged and discussion of CM for DES is increasing. However, both the organization of model-components and the identification of behavior and system control from standard CM approaches have shortcomings that limit CM’s applicability to DES. Therefore, we discuss the different aspects of previous CM frameworks and identify their limitations. Further, we present the Hierarchical Control Conceptual Modeling framework that pays more attention to the identification of a models’ system behavior, control policies and dispatching routines and their structured representation within a conceptual model. The framework guides the user step-by-step through the modeling process and is illustrated by a worked example. PMID:26778940

  6. Efficient Design of Distribution Logistics by Using a Model-Based Decision Support System

    OpenAIRE

    J. Becker; R. Arnold

    2016-01-01

    The design of distribution logistics has a decisive impact on a company's logistics costs and performance. Hence, such solutions make an essential contribution to corporate success. This article describes a decision support system for analyzing the potential of distribution logistics in terms of logistics costs and performance. In contrast to previous procedures of business process re-engineering (BPR), this method maps distribution logistics holistically under variable distribution structure...

  7. Evaluating penalized logistic regression models to predict Heat-Related Electric grid stress days

    Energy Technology Data Exchange (ETDEWEB)

    Bramer, L. M.; Rounds, J.; Burleyson, C. D.; Fortin, D.; Hathaway, J.; Rice, J.; Kraucunas, I.

    2017-11-01

    Understanding the conditions associated with stress on the electricity grid is important in the development of contingency plans for maintaining reliability during periods when the grid is stressed. In this paper, heat-related grid stress and the relationship with weather conditions is examined using data from the eastern United States. Penalized logistic regression models were developed and applied to predict stress on the electric grid using weather data. The inclusion of other weather variables, such as precipitation, in addition to temperature improved model performance. Several candidate models and datasets were examined. A penalized logistic regression model fit at the operation-zone level was found to provide predictive value and interpretability. Additionally, the importance of different weather variables observed at different time scales were examined. Maximum temperature and precipitation were identified as important across all zones while the importance of other weather variables was zone specific. The methods presented in this work are extensible to other regions and can be used to aid in planning and development of the electrical grid.

  8. A Case Study Using Modeling and Simulation to Predict Logistics Supply Chain Issues

    Science.gov (United States)

    Tucker, David A.

    2007-01-01

    Optimization of critical supply chains to deliver thousands of parts, materials, sub-assemblies, and vehicle structures as needed is vital to the success of the Constellation Program. Thorough analysis needs to be performed on the integrated supply chain processes to plan, source, make, deliver, and return critical items efficiently. Process modeling provides simulation technology-based, predictive solutions for supply chain problems which enable decision makers to reduce costs, accelerate cycle time and improve business performance. For example, United Space Alliance, LLC utilized this approach in late 2006 to build simulation models that recreated shuttle orbiter thruster failures and predicted the potential impact of thruster removals on logistics spare assets. The main objective was the early identification of possible problems in providing thruster spares for the remainder of the Shuttle Flight Manifest. After extensive analysis the model results were used to quantify potential problems and led to improvement actions in the supply chain. Similarly the proper modeling and analysis of Constellation parts, materials, operations, and information flows will help ensure the efficiency of the critical logistics supply chains and the overall success of the program.

  9. Modeling Energy Efficiency As A Green Logistics Component In Vehicle Assembly Line

    Science.gov (United States)

    Oumer, Abduaziz; Mekbib Atnaw, Samson; Kie Cheng, Jack; Singh, Lakveer

    2016-11-01

    This paper uses System Dynamics (SD) simulation to investigate the concept green logistics in terms of energy efficiency in automotive industry. The car manufacturing industry is considered to be one of the highest energy consuming industries. An efficient decision making model is proposed that capture the impacts of strategic decisions on energy consumption and environmental sustainability. The sources of energy considered in this research are electricity and fuel; which are the two main types of energy sources used in a typical vehicle assembly plant. The model depicts the performance measurement for process- specific energy measures of painting, welding, and assembling processes. SD is the chosen simulation method and the main green logistics issues considered are Carbon Dioxide (CO2) emission and energy utilization. The model will assist decision makers acquire an in-depth understanding of relationship between high level planning and low level operation activities on production, environmental impacts and costs associated. The results of the SD model signify the existence of positive trade-offs between green practices of energy efficiency and the reduction of CO2 emission.

  10. Development and validation of logistic prognostic models by predefined SAS-macros

    Directory of Open Access Journals (Sweden)

    Ziegler, Christoph

    2006-02-01

    Full Text Available In medical decision making about therapies or diagnostic procedures in the treatment of patients the prognoses of the course or of the magnitude of diseases plays a relevant role. Beside of the subjective attitude of the clinician mathematical models can help in providing such prognoses. Such models are mostly multivariate regression models. In the case of a dichotomous outcome the logistic model will be applied as the standard model. In this paper we will describe SAS-macros for the development of such a model, for examination of the prognostic performance, and for model validation. The rational for this developmental approach of a prognostic modelling and the description of the macros can only given briefly in this paper. Much more details are given in. These 14 SAS-macros are a tool for setting up the whole process of deriving a prognostic model. Especially the possibility of validating the model by a standardized software tool gives an opportunity, which is not used in general in published prognostic models. Therefore, this can help to develop new models with good prognostic performance for use in medical applications.

  11. An Integrated Multiechelon Logistics Model with Uncertain Delivery Lead Time and Quality Unreliability

    Directory of Open Access Journals (Sweden)

    Ming-Feng Yang

    2016-01-01

    Full Text Available Nowadays, in order to achieve advantages in supply chain management, how to keep inventory in adequate level and how to enhance customer service level are two critical practices for decision makers. Generally, uncertain lead time and defective products have much to do with inventory and service level. Therefore, this study mainly aims at developing a multiechelon integrated just-in-time inventory model with uncertain lead time and imperfect quality to enhance the benefits of the logistics model. In addition, the Ant Colony Algorithm (ACA is established to determine the optimal solutions. Moreover, based on our proposed model and analysis, the ACA is more efficient than Particle Swarm Optimization (PSO and Lingo in SMEIJI model. An example is provided in this study to illustrate how production run and defective rate have an effect on system costs. Finally, the results of our research could provide some managerial insights which support decision makers in real-world operations.

  12. Hierarchical modeling of plasma and transport phenomena in a dielectric barrier discharge reactor

    Science.gov (United States)

    Bali, N.; Aggelopoulos, C. A.; Skouras, E. D.; Tsakiroglou, C. D.; Burganos, V. N.

    2017-12-01

    A novel dual-time hierarchical approach is developed to link the plasma process to macroscopic transport phenomena in the interior of a dielectric barrier discharge (DBD) reactor that has been used for soil remediation (Aggelopoulos et al 2016 Chem. Eng. J. 301 353-61). The generation of active species by plasma reactions is simulated at the microseconds (µs) timescale, whereas convection and thermal conduction are simulated at the macroscopic (minutes) timescale. This hierarchical model is implemented in order to investigate the influence of the plasma DBD process on the transport and reaction mechanisms during remediation of polluted soil. In the microscopic model, the variables of interest include the plasma-induced reactive concentrations, while in the macroscopic approach, the temperature distribution, and the velocity field both inside the discharge gap and within the polluted soil material as well. For the latter model, the Navier-Stokes and Darcy Brinkman equations for the transport phenomena in the porous domain are solved numerically using a FEM software. The effective medium theory is employed to provide estimates of the effective time-evolving and three-phase transport properties in the soil sample. Model predictions considering the temporal evolution of the plasma remediation process are presented and compared with corresponding experimental data.

  13. A model of shape memory materials with hierarchical twinning: statics and dynamics

    International Nuclear Information System (INIS)

    Saxena, A.; Bishop, A.R.; Wu, Y.; Lookman, T.

    1995-01-01

    We consider a model of shape memory materials in which hierarchical twinning near the habit plane (austenite-martensite interface) is a new and crucial ingredient. The model includes (1) a triple-well potential (φ 6 model) in local shear strain, (2) strain gradient terms up to second order in strain and fourth order in gradient, and (3) all symmetry allowed compositional fluctuation-induced strain gradient terms. The last term favors hierarchy which enables communication between macroscopic (cm) and microscopic (A) regions essential for shape memory. Hierarchy also stabilizes tweed formation (criss-cross patterns of twins). External stress or pressure modulates (''patterns'') the spacing of domain walls. Therefore the ''pattern'' is encoded in the modulated hierarchical variation of the depth and width of the twins. This hierarchy of length scales provides a related hierarchy of time scales and thus the possibility of non-exponential decay. The four processes of the complete shape memory cycle-write, record, erase and recall-are explained within this model. Preliminary results based on 2D molecular dynamics are shown for tweed and hierarchy formation. (orig.)

  14. Relating Memory To Functional Performance In Normal Aging to Dementia Using Hierarchical Bayesian Cognitive Processing Models

    Science.gov (United States)

    Shankle, William R.; Pooley, James P.; Steyvers, Mark; Hara, Junko; Mangrola, Tushar; Reisberg, Barry; Lee, Michael D.

    2012-01-01

    Determining how cognition affects functional abilities is important in Alzheimer’s disease and related disorders (ADRD). 280 patients (normal or ADRD) received a total of 1,514 assessments using the Functional Assessment Staging Test (FAST) procedure and the MCI Screen (MCIS). A hierarchical Bayesian cognitive processing (HBCP) model was created by embedding a signal detection theory (SDT) model of the MCIS delayed recognition memory task into a hierarchical Bayesian framework. The SDT model used latent parameters of discriminability (memory process) and response bias (executive function) to predict, simultaneously, recognition memory performance for each patient and each FAST severity group. The observed recognition memory data did not distinguish the six FAST severity stages, but the latent parameters completely separated them. The latent parameters were also used successfully to transform the ordinal FAST measure into a continuous measure reflecting the underlying continuum of functional severity. HBCP models applied to recognition memory data from clinical practice settings accurately translated a latent measure of cognition to a continuous measure of functional severity for both individuals and FAST groups. Such a translation links two levels of brain information processing, and may enable more accurate correlations with other levels, such as those characterized by biomarkers. PMID:22407225

  15. Hierarchical Bayesian Markov switching models with application to predicting spawning success of shovelnose sturgeon

    Science.gov (United States)

    Holan, S.H.; Davis, G.M.; Wildhaber, M.L.; DeLonay, A.J.; Papoulias, D.M.

    2009-01-01

    The timing of spawning in fish is tightly linked to environmental factors; however, these factors are not very well understood for many species. Specifically, little information is available to guide recruitment efforts for endangered species such as the sturgeon. Therefore, we propose a Bayesian hierarchical model for predicting the success of spawning of the shovelnose sturgeon which uses both biological and behavioural (longitudinal) data. In particular, we use data that were produced from a tracking study that was conducted in the Lower Missouri River. The data that were produced from this study consist of biological variables associated with readiness to spawn along with longitudinal behavioural data collected by using telemetry and archival data storage tags. These high frequency data are complex both biologically and in the underlying behavioural process. To accommodate such complexity we developed a hierarchical linear regression model that uses an eigenvalue predictor, derived from the transition probability matrix of a two-state Markov switching model with generalized auto-regressive conditional heteroscedastic dynamics. Finally, to minimize the computational burden that is associated with estimation of this model, a parallel computing approach is proposed. ?? Journal compilation 2009 Royal Statistical Society.

  16. Hierarchical Bayesian modelling of gene expression time series across irregularly sampled replicates and clusters.

    Science.gov (United States)

    Hensman, James; Lawrence, Neil D; Rattray, Magnus

    2013-08-20

    Time course data from microarrays and high-throughput sequencing experiments require simple, computationally efficient and powerful statistical models to extract meaningful biological signal, and for tasks such as data fusion and clustering. Existing methodologies fail to capture either the temporal or replicated nature of the experiments, and often impose constraints on the data collection process, such as regularly spaced samples, or similar sampling schema across replications. We propose hierarchical Gaussian processes as a general model of gene expression time-series, with application to a variety of problems. In particular, we illustrate the method's capacity for missing data imputation, data fusion and clustering.The method can impute data which is missing both systematically and at random: in a hold-out test on real data, performance is significantly better than commonly used imputation methods. The method's ability to model inter- and intra-cluster variance leads to more biologically meaningful clusters. The approach removes the necessity for evenly spaced samples, an advantage illustrated on a developmental Drosophila dataset with irregular replications. The hierarchical Gaussian process model provides an excellent statistical basis for several gene-expression time-series tasks. It has only a few additional parameters over a regular GP, has negligible additional complexity, is easily implemented and can be integrated into several existing algorithms. Our experiments were implemented in python, and are available from the authors' website: http://staffwww.dcs.shef.ac.uk/people/J.Hensman/.

  17. Diagnostics for generalized linear hierarchical models in network meta-analysis.

    Science.gov (United States)

    Zhao, Hong; Hodges, James S; Carlin, Bradley P

    2017-09-01

    Network meta-analysis (NMA) combines direct and indirect evidence comparing more than 2 treatments. Inconsistency arises when these 2 information sources differ. Previous work focuses on inconsistency detection, but little has been done on how to proceed after identifying inconsistency. The key issue is whether inconsistency changes an NMA's substantive conclusions. In this paper, we examine such discrepancies from a diagnostic point of view. Our methods seek to detect influential and outlying observations in NMA at a trial-by-arm level. These observations may have a large effect on the parameter estimates in NMA, or they may deviate markedly from other observations. We develop formal diagnostics for a Bayesian hierarchical model to check the effect of deleting any observation. Diagnostics are specified for generalized linear hierarchical NMA models and investigated for both published and simulated datasets. Results from our example dataset using either contrast- or arm-based models and from the simulated datasets indicate that the sources of inconsistency in NMA tend not to be influential, though results from the example dataset suggest that they are likely to be outliers. This mimics a familiar result from linear model theory, in which outliers with low leverage are not influential. Future extensions include incorporating baseline covariates and individual-level patient data. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Hierarchical spatial models for predicting pygmy rabbit distribution and relative abundance

    Science.gov (United States)

    Wilson, T.L.; Odei, J.B.; Hooten, M.B.; Edwards, T.C.

    2010-01-01

    Conservationists routinely use species distribution models to plan conservation, restoration and development actions, while ecologists use them to infer process from pattern. These models tend to work well for common or easily observable species, but are of limited utility for rare and cryptic species. This may be because honest accounting of known observation bias and spatial autocorrelation are rarely included, thereby limiting statistical inference of resulting distribution maps. We specified and implemented a spatially explicit Bayesian hierarchical model for a cryptic mammal species (pygmy rabbit Brachylagus idahoensis). Our approach used two levels of indirect sign that are naturally hierarchical (burrows and faecal pellets) to build a model that allows for inference on regression coefficients as well as spatially explicit model parameters. We also produced maps of rabbit distribution (occupied burrows) and relative abundance (number of burrows expected to be occupied by pygmy rabbits). The model demonstrated statistically rigorous spatial prediction by including spatial autocorrelation and measurement uncertainty. We demonstrated flexibility of our modelling framework by depicting probabilistic distribution predictions using different assumptions of pygmy rabbit habitat requirements. Spatial representations of the variance of posterior predictive distributions were obtained to evaluate heterogeneity in model fit across the spatial domain. Leave-one-out cross-validation was conducted to evaluate the overall model fit. Synthesis and applications. Our method draws on the strengths of previous work, thereby bridging and extending two active areas of ecological research: species distribution models and multi-state occupancy modelling. Our framework can be extended to encompass both larger extents and other species for which direct estimation of abundance is difficult. ?? 2010 The Authors. Journal compilation ?? 2010 British Ecological Society.

  19. Research on vehicles and cargos matching model based on virtual logistics platform

    Science.gov (United States)

    Zhuang, Yufeng; Lu, Jiang; Su, Zhiyuan

    2018-04-01

    Highway less than truckload (LTL) transportation vehicles and cargos matching problem is a joint optimization problem of typical vehicle routing and loading, which is also a hot issue of operational research. This article based on the demand of virtual logistics platform, for the problem of the highway LTL transportation, the matching model of the idle vehicle and the transportation order is set up and the corresponding genetic algorithm is designed. Then the algorithm is implemented by Java. The simulation results show that the solution is satisfactory.

  20. VIRTUAL MODEL OF A ROLLER CONVEYOR INTEGRATED INTO A LOGISTIC FLOW

    Directory of Open Access Journals (Sweden)

    POPESCU Adrian

    2015-11-01

    Full Text Available In this article is presented, with the help of graphics, a logistic flow for palletizing and wrapping operations. The loaded pallets are transported by means of a roller conveyor. Creating the virtual model for the conveyer allows us to emphasize the compatibility elements between on the one hand the mechanical assemblies of the flow components and on the other hand the subassemblies of the conveyer structure. The paper has focused on the presentation of the conveyor specific assembly and how are placed the sensors on the mechanical structure of the conveyor. Finally, the main working phases are graphically presented within the flow, highlighting the loaded pallet positions in the flow.

  1. MATHEMATICAL MODEL FOR CALCULATION OF INFORMATION RISKS FOR INFORMATION AND LOGISTICS SYSTEM

    Directory of Open Access Journals (Sweden)

    A. G. Korobeynikov

    2015-05-01

    Full Text Available Subject of research. The paper deals with mathematical model for assessment calculation of information risks arising during transporting and distribution of material resources in the conditions of uncertainty. Meanwhile information risks imply the danger of origin of losses or damage as a result of application of information technologies by the company. Method. The solution is based on ideology of the transport task solution in stochastic statement with mobilization of mathematical modeling theory methods, the theory of graphs, probability theory, Markov chains. Creation of mathematical model is performed through the several stages. At the initial stage, capacity on different sites depending on time is calculated, on the basis of information received from information and logistic system, the weight matrix is formed and the digraph is under construction. Then there is a search of the minimum route which covers all specified vertexes by means of Dejkstra algorithm. At the second stage, systems of differential Kolmogorov equations are formed using information about the calculated route. The received decisions show probabilities of resources location in concrete vertex depending on time. At the third stage, general probability of the whole route passing depending on time is calculated on the basis of multiplication theorem of probabilities. Information risk, as time function, is defined by multiplication of the greatest possible damage by the general probability of the whole route passing. In this case information risk is measured in units of damage which corresponds to that monetary unit which the information and logistic system operates with. Main results. Operability of the presented mathematical model is shown on a concrete example of transportation of material resources where places of shipment and delivery, routes and their capacity, the greatest possible damage and admissible risk are specified. The calculations presented on a diagram showed

  2. Effects of Perfectly Correlated and Anti-Correlated Noise in a Logistic Growth Model

    International Nuclear Information System (INIS)

    Zhang Li; Cao Li

    2011-01-01

    The logistic growth model with correlated additive and multiplicative Gaussian white noise is used to analyze tumor cell population. The effects of perfectly correlated and anti-correlated noise on the stationary properties of tumor cell population are studied. As in both cases the diffusion coefficient has zero point in real number field, some special features of the system are arisen. It is found that in both cases, the increase of the multiplicative noise intensity cause tumor cell extinction. In the perfectly anti-correlated case, the stationary probability distribution as a function of tumor cell population exhibit two extrema. (general)

  3. Estimating effectiveness in HIV prevention trials with a Bayesian hierarchical compound Poisson frailty model

    Science.gov (United States)

    Coley, Rebecca Yates; Browna, Elizabeth R.

    2016-01-01

    Inconsistent results in recent HIV prevention trials of pre-exposure prophylactic interventions may be due to heterogeneity in risk among study participants. Intervention effectiveness is most commonly estimated with the Cox model, which compares event times between populations. When heterogeneity is present, this population-level measure underestimates intervention effectiveness for individuals who are at risk. We propose a likelihood-based Bayesian hierarchical model that estimates the individual-level effectiveness of candidate interventions by accounting for heterogeneity in risk with a compound Poisson-distributed frailty term. This model reflects the mechanisms of HIV risk and allows that some participants are not exposed to HIV and, therefore, have no risk of seroconversion during the study. We assess model performance via simulation and apply the model to data from an HIV prevention trial. PMID:26869051

  4. Hierarchical competition models with the Allee effect II: the case of immigration.

    Science.gov (United States)

    Assas, Laila; Dennis, Brian; Elaydi, Saber; Kwessi, Eddy; Livadiotis, George

    2015-01-01

    This is part II of an earlier paper that dealt with hierarchical models with the Allee effect but with no immigration. In this paper, we greatly simplify the proofs in part I and provide a proof of the global dynamics of the non-hyperbolic cases that were previously conjectured. Then, we show how immigration to one of the species or to both would, drastically, change the dynamics of the system. It is shown that if the level of immigration to one or to both species is above a specified level, then there will be no extinction region where both species go to extinction.

  5. High-accuracy critical exponents for O(N) hierarchical 3D sigma models

    International Nuclear Information System (INIS)

    Godina, J. J.; Li, L.; Meurice, Y.; Oktay, M. B.

    2006-01-01

    The critical exponent γ and its subleading exponent Δ in the 3D O(N) Dyson's hierarchical model for N up to 20 are calculated with high accuracy. We calculate the critical temperatures for the measure δ(φ-vector.φ-vector-1). We extract the first coefficients of the 1/N expansion from our numerical data. We show that the leading and subleading exponents agree with Polchinski equation and the equivalent Litim equation, in the local potential approximation, with at least 4 significant digits

  6. A hierarchical Markov decision process modeling feeding and marketing decisions of growing pigs

    DEFF Research Database (Denmark)

    Pourmoayed, Reza; Nielsen, Lars Relund; Kristensen, Anders Ringgaard

    2016-01-01

    Feeding is the most important cost in the production of growing pigs and has a direct impact on the marketing decisions, growth and the final quality of the meat. In this paper, we address the sequential decision problem of when to change the feed-mix within a finisher pig pen and when to pick pigs...... for marketing. We formulate a hierarchical Markov decision process with three levels representing the decision process. The model considers decisions related to feeding and marketing and finds the optimal decision given the current state of the pen. The state of the system is based on information from on...

  7. Warehouse Logistics

    OpenAIRE

    Panibratetc, Anastasiia

    2015-01-01

    This research is a review of warehouse logistics on the example of Kannustalo Oy, located in Kannus, Western region of Finland. Kannustalo is an international company of designing, manufacturing and assembling block and turn-key houses. The research subject is logistics process in warehouse system of industrial company. In my work I discussed about theoretical aspect of logistics, logistic functions and processes. Later I considered warehouse as a part of logistics system and provided inf...

  8. Nonlinear dynamics in a business-cycle model with logistic population growth

    International Nuclear Information System (INIS)

    Brianzoni, Serena; Mammana, Cristiana; Michetti, Elisabetta

    2009-01-01

    We consider a discrete-time growth model of the Solow type where workers and shareholders have different but constant saving rates and the population growth dynamics is described by the logistic equation able to exhibit complicated dynamics. We show conditions for the resulting system having a compact global attractor and we describe its structure. We also perform a mainly numerical analysis using the critical lines method able to describe the strange attractor and the absorbing area, in order to show how cyclical or complex fluctuations may be produced in a business-cycle model. We study the dynamic behaviour of the model under different ranges of the main parameters, i.e. the elasticity of substitution between the two production factors and the one in the logistic equation (namely μ). We prove the existence of complex dynamics when the elasticity of substitution between production factors drops below one (so that capital income declines) or μ increases (so that the amplitude of movements in the population growth rate increases).

  9. Effective factors contraceptive use by logistic regression model in Tehran, 1996

    Directory of Open Access Journals (Sweden)

    Ramezani F

    1999-07-01

    Full Text Available Despite unwillingness to fertility, about 30% of couples do not use any kind of contraception and this will lead to unwanted pregnancy. In this clinical trial study, 4177 subjects who had at least one alive child, and delivered in one of the 12 university hospitals in Tehran were recruited. This study was conducted in 1996. The questionnaire included some questions about contraceptive use, their attitudes about unwantedness or wantedness of their current pregnancies. Data were analysed using a Logistic Regrassion Model. Results showed that 20.3% of those who had no fertility intention, did not use any kind of contraception methods, 41.1% of the subjects who were using a contraception method before pregnancy, had got pregnant unwantedly. Based on Logistic Regression Model; age, education, previous familiarity of women with contraception methods and husband's education were the most significant factors in contraceptive use. Subjects who were 20 years old and less or 35 years old and more and illeterate subjects were at higher risk for unuse of contraception methods. This risk was not related to the gender of their children that suggests a positive change in their perspectives towards sex and the number of children. It is suggested that health politicians choose an appropriate model to enhance the literacy, education and counseling for the correct usage of contraceptives and prevention of unwanted pregnancy.

  10. A production inventory model with exponential demand rate and reverse logistics

    Directory of Open Access Journals (Sweden)

    Ritu Raj

    2014-08-01

    Full Text Available The objective of this paper is to develop an integrated production inventory model for reworkable items with exponential demand rate. This is a three-layer supply chain model with perspectives of supplier, producer and retailer. Supplier delivers raw material to the producer and finished goods to the retailer. We consider perfect and imperfect quality products, product reliability and reworking of imperfect items. After screening, defective items reworked at a cost just after the regular manufacturing schedule. At the beginning, the manufacturing system starts produce perfect items, after some time the manufacturing system can undergo into “out-of-control” situation from “in-control” situation, which is controlled by reverse logistic technique. This paper deliberates the effects of business strategies like optimum order size of raw material, exponential demand rate, production rate is demand dependent, idle times and reverse logistics for an integrated marketing system. Mathematica is used to develop the optimal solution of production rate and raw material order for maximum expected average profit. A numerical example and sensitivity analysis is illustrated to validate the model.

  11. A transport logistic and cost model for use in repository design specification

    International Nuclear Information System (INIS)

    Gray, L.S.; Manville, W.D.

    1998-01-01

    UK Nirex Ltd (Nirex) is responsible for developing a deep repository for the disposal of the United Kingdom's intermediate level waste and some low level waste. It also needs to be able to predict the total cost of the transport operations, and to compute the costs attributable to different combinations of sites and types of waste packages. This paper draws on work carried out as part of the assessment of Sellafield as a potential repository site, but will also show that many aspects of the transport system are independent of the actual repository location. To analyze the effects of all these possible scenarios and proposed operating practices on the costs and logistics of radioactive waste transport, Nirex commissioned the development of a flexible computer model from a software developer with the appropriate expertise. This paper describes how the LOGCOST model has been used to provide the information required for the repository design specification, and how it can readily be adapted to different potential repository locations and to changing requirements. In conclusion, it can be said that LOGCOST is a very effective transport and logistics model based on the Excel spread-sheet. The examples given have shown how LOGCOST can provide detailed predictions of radioactive waste transport costs, and how LOGCOST can be readily adapted to a new repository site or any other focal point for a transport network. (O.M.)

  12. A Comparison of the One-and Three-Parameter Logistic Models on Measures of Test Efficiency.

    Science.gov (United States)

    Benson, Jeri

    Two methods of item selection were used to select sets of 40 items from a 50-item verbal analogies test, and the resulting item sets were compared for relative efficiency. The BICAL program was used to select the 40 items having the best mean square fit to the one parameter logistic (Rasch) model. The LOGIST program was used to select the 40 items…

  13. Logistic regression model for diagnosis of transition zone prostate cancer on multi-parametric MRI.

    Science.gov (United States)

    Dikaios, Nikolaos; Alkalbani, Jokha; Sidhu, Harbir Singh; Fujiwara, Taiki; Abd-Alazeez, Mohamed; Kirkham, Alex; Allen, Clare; Ahmed, Hashim; Emberton, Mark; Freeman, Alex; Halligan, Steve; Taylor, Stuart; Atkinson, David; Punwani, Shonit

    2015-02-01

    We aimed to develop logistic regression (LR) models for classifying prostate cancer within the transition zone on multi-parametric magnetic resonance imaging (mp-MRI). One hundred and fifty-five patients (training cohort, 70 patients; temporal validation cohort, 85 patients) underwent mp-MRI and transperineal-template-prostate-mapping (TPM) biopsy. Positive cores were classified by cancer definitions: (1) any-cancer; (2) definition-1 [≥Gleason 4 + 3 or ≥ 6 mm cancer core length (CCL)] [high risk significant]; and (3) definition-2 (≥Gleason 3 + 4 or ≥ 4 mm CCL) cancer [intermediate-high risk significant]. For each, logistic-regression mp-MRI models were derived from the training cohort and validated internally and with the temporal cohort. Sensitivity/specificity and the area under the receiver operating characteristic (ROC-AUC) curve were calculated. LR model performance was compared to radiologists' performance. Twenty-eight of 70 patients from the training cohort, and 25/85 patients from the temporal validation cohort had significant cancer on TPM. The ROC-AUC of the LR model for classification of cancer was 0.73/0.67 at internal/temporal validation. The radiologist A/B ROC-AUC was 0.65/0.74 (temporal cohort). For patients scored by radiologists as Prostate Imaging Reporting and Data System (Pi-RADS) score 3, sensitivity/specificity of radiologist A 'best guess' and LR model was 0.14/0.54 and 0.71/0.61, respectively; and radiologist B 'best guess' and LR model was 0.40/0.34 and 0.50/0.76, respectively. LR models can improve classification of Pi-RADS score 3 lesions similar to experienced radiologists. • MRI helps find prostate cancer in the anterior of the gland • Logistic regression models based on mp-MRI can classify prostate cancer • Computers can help confirm cancer in areas doctors are uncertain about.

  14. Logistic regression model for diagnosis of transition zone prostate cancer on multi-parametric MRI

    Energy Technology Data Exchange (ETDEWEB)

    Dikaios, Nikolaos; Halligan, Steve; Taylor, Stuart; Atkinson, David; Punwani, Shonit [University College London, Centre for Medical Imaging, London (United Kingdom); University College London Hospital, Departments of Radiology, London (United Kingdom); Alkalbani, Jokha; Sidhu, Harbir Singh; Fujiwara, Taiki [University College London, Centre for Medical Imaging, London (United Kingdom); Abd-Alazeez, Mohamed; Ahmed, Hashim; Emberton, Mark [University College London, Research Department of Urology, London (United Kingdom); Kirkham, Alex; Allen, Clare [University College London Hospital, Departments of Radiology, London (United Kingdom); Freeman, Alex [University College London Hospital, Department of Histopathology, London (United Kingdom)

    2014-09-17

    We aimed to develop logistic regression (LR) models for classifying prostate cancer within the transition zone on multi-parametric magnetic resonance imaging (mp-MRI). One hundred and fifty-five patients (training cohort, 70 patients; temporal validation cohort, 85 patients) underwent mp-MRI and transperineal-template-prostate-mapping (TPM) biopsy. Positive cores were classified by cancer definitions: (1) any-cancer; (2) definition-1 [≥Gleason 4 + 3 or ≥ 6 mm cancer core length (CCL)] [high risk significant]; and (3) definition-2 (≥Gleason 3 + 4 or ≥ 4 mm CCL) cancer [intermediate-high risk significant]. For each, logistic-regression mp-MRI models were derived from the training cohort and validated internally and with the temporal cohort. Sensitivity/specificity and the area under the receiver operating characteristic (ROC-AUC) curve were calculated. LR model performance was compared to radiologists' performance. Twenty-eight of 70 patients from the training cohort, and 25/85 patients from the temporal validation cohort had significant cancer on TPM. The ROC-AUC of the LR model for classification of cancer was 0.73/0.67 at internal/temporal validation. The radiologist A/B ROC-AUC was 0.65/0.74 (temporal cohort). For patients scored by radiologists as Prostate Imaging Reporting and Data System (Pi-RADS) score 3, sensitivity/specificity of radiologist A 'best guess' and LR model was 0.14/0.54 and 0.71/0.61, respectively; and radiologist B 'best guess' and LR model was 0.40/0.34 and 0.50/0.76, respectively. LR models can improve classification of Pi-RADS score 3 lesions similar to experienced radiologists. (orig.)

  15. Logistic regression model for diagnosis of transition zone prostate cancer on multi-parametric MRI

    International Nuclear Information System (INIS)

    Dikaios, Nikolaos; Halligan, Steve; Taylor, Stuart; Atkinson, David; Punwani, Shonit; Alkalbani, Jokha; Sidhu, Harbir Singh; Fujiwara, Taiki; Abd-Alazeez, Mohamed; Ahmed, Hashim; Emberton, Mark; Kirkham, Alex; Allen, Clare; Freeman, Alex

    2015-01-01

    We aimed to develop logistic regression (LR) models for classifying prostate cancer within the transition zone on multi-parametric magnetic resonance imaging (mp-MRI). One hundred and fifty-five patients (training cohort, 70 patients; temporal validation cohort, 85 patients) underwent mp-MRI and transperineal-template-prostate-mapping (TPM) biopsy. Positive cores were classified by cancer definitions: (1) any-cancer; (2) definition-1 [≥Gleason 4 + 3 or ≥ 6 mm cancer core length (CCL)] [high risk significant]; and (3) definition-2 (≥Gleason 3 + 4 or ≥ 4 mm CCL) cancer [intermediate-high risk significant]. For each, logistic-regression mp-MRI models were derived from the training cohort and validated internally and with the temporal cohort. Sensitivity/specificity and the area under the receiver operating characteristic (ROC-AUC) curve were calculated. LR model performance was compared to radiologists' performance. Twenty-eight of 70 patients from the training cohort, and 25/85 patients from the temporal validation cohort had significant cancer on TPM. The ROC-AUC of the LR model for classification of cancer was 0.73/0.67 at internal/temporal validation. The radiologist A/B ROC-AUC was 0.65/0.74 (temporal cohort). For patients scored by radiologists as Prostate Imaging Reporting and Data System (Pi-RADS) score 3, sensitivity/specificity of radiologist A 'best guess' and LR model was 0.14/0.54 and 0.71/0.61, respectively; and radiologist B 'best guess' and LR model was 0.40/0.34 and 0.50/0.76, respectively. LR models can improve classification of Pi-RADS score 3 lesions similar to experienced radiologists. (orig.)

  16. Impact of communities, health, and emotional-related factors on smoking use: comparison of joint modeling of mean and dispersion and Bayes' hierarchical models on add health survey.

    Science.gov (United States)

    Pu, Jie; Fang, Di; Wilson, Jeffrey R

    2017-02-03

    The analysis of correlated binary data is commonly addressed through the use of conditional models with random effects included in the systematic component as opposed to generalized estimating equations (GEE) models that addressed the random component. Since the joint distribution of the observations is usually unknown, the conditional distribution is a natural approach. Our objective was to compare the fit of different binary models for correlated data in Tabaco use. We advocate that the joint modeling of the mean and dispersion may be at times just as adequate. We assessed the ability of these models to account for the intraclass correlation. In so doing, we concentrated on fitting logistic regression models to address smoking behaviors. Frequentist and Bayes' hierarchical models were used to predict conditional probabilities, and the joint modeling (GLM and GAM) models were used to predict marginal probabilities. These models were fitted to National Longitudinal Study of Adolescent to Adult Health (Add Health) data for Tabaco use. We found that people were less likely to smoke if they had higher income, high school or higher education and religious. Individuals were more likely to smoke if they had abused drug or alcohol, spent more time on TV and video games, and been arrested. Moreover, individuals who drank alcohol early in life were more likely to be a regular smoker. Children who experienced mistreatment from their parents were more likely to use Tabaco regularly. The joint modeling of the mean and dispersion models offered a flexible and meaningful method of addressing the intraclass correlation. They do not require one to identify random effects nor distinguish from one level of the hierarchy to the other. Moreover, once one can identify the significant random effects, one can obtain similar results to the random coefficient models. We found that the set of marginal models accounting for extravariation through the additional dispersion submodel produced

  17. Large-scale model of flow in heterogeneous and hierarchical porous media

    Science.gov (United States)

    Chabanon, Morgan; Valdés-Parada, Francisco J.; Ochoa-Tapia, J. Alberto; Goyeau, Benoît

    2017-11-01

    Heterogeneous porous structures are very often encountered in natural environments, bioremediation processes among many others. Reliable models for momentum transport are crucial whenever mass transport or convective heat occurs in these systems. In this work, we derive a large-scale average model for incompressible single-phase flow in heterogeneous and hierarchical soil porous media composed of two distinct porous regions embedding a solid impermeable structure. The model, based on the local mechanical equilibrium assumption between the porous regions, results in a unique momentum transport equation where the global effective permeability naturally depends on the permeabilities at the intermediate mesoscopic scales and therefore includes the complex hierarchical structure of the soil. The associated closure problem is numerically solved for various configurations and properties of the heterogeneous medium. The results clearly show that the effective permeability increases with the volume fraction of the most permeable porous region. It is also shown that the effective permeability is sensitive to the dimensionality spatial arrangement of the porous regions and in particular depends on the contact between the impermeable solid and the two porous regions.

  18. Evolutionary-Hierarchical Bases of the Formation of Cluster Model of Innovation Economic Development

    Directory of Open Access Journals (Sweden)

    Yuliya Vladimirovna Dubrovskaya

    2016-10-01

    Full Text Available The functioning of a modern economic system is based on the interaction of objects of different hierarchical levels. Thus, the problem of the study of innovation processes taking into account the mutual influence of the activities of these economic actors becomes important. The paper dwells evolutionary basis for the formation of models of innovation development on the basis of micro and macroeconomic analysis. Most of the concepts recognized that despite a big number of diverse models, the coordination of the relations between economic agents is of crucial importance for the successful innovation development. According to the results of the evolutionary-hierarchical analysis, the authors reveal key phases of the development of forms of business cooperation, science and government in the domestic economy. It has become the starting point of the conception of the characteristics of the interaction in the cluster models of innovation development of the economy. Considerable expectancies on improvement of the national innovative system are connected with the development of cluster and network structures. The main objective of government authorities is the formation of mechanisms and institutions that will foster cooperation between members of the clusters. The article explains that the clusters cannot become the factors in the growth of the national economy, not being an effective tool for interaction between the actors of the regional innovative systems.

  19. Bayesian hierarchical model for variations in earthquake peak ground acceleration within small-aperture arrays

    KAUST Repository

    Rahpeyma, Sahar; Halldorsson, Benedikt; Hrafnkelsson, Birgir; Jonsson, Sigurjon

    2018-01-01

    Knowledge of the characteristics of earthquake ground motion is fundamental for earthquake hazard assessments. Over small distances, relative to the source–site distance, where uniform site conditions are expected, the ground motion variability is also expected to be insignificant. However, despite being located on what has been characterized as a uniform lava‐rock site condition, considerable peak ground acceleration (PGA) variations were observed on stations of a small‐aperture array (covering approximately 1 km2) of accelerographs in Southwest Iceland during the Ölfus earthquake of magnitude 6.3 on May 29, 2008 and its sequence of aftershocks. We propose a novel Bayesian hierarchical model for the PGA variations accounting separately for earthquake event effects, station effects, and event‐station effects. An efficient posterior inference scheme based on Markov chain Monte Carlo (MCMC) simulations is proposed for the new model. The variance of the station effect is certainly different from zero according to the posterior density, indicating that individual station effects are different from one another. The Bayesian hierarchical model thus captures the observed PGA variations and quantifies to what extent the source and recording sites contribute to the overall variation in ground motions over relatively small distances on the lava‐rock site condition.

  20. Bayesian hierarchical model for variations in earthquake peak ground acceleration within small-aperture arrays

    KAUST Repository

    Rahpeyma, Sahar

    2018-04-17

    Knowledge of the characteristics of earthquake ground motion is fundamental for earthquake hazard assessments. Over small distances, relative to the source–site distance, where uniform site conditions are expected, the ground motion variability is also expected to be insignificant. However, despite being located on what has been characterized as a uniform lava‐rock site condition, considerable peak ground acceleration (PGA) variations were observed on stations of a small‐aperture array (covering approximately 1 km2) of accelerographs in Southwest Iceland during the Ölfus earthquake of magnitude 6.3 on May 29, 2008 and its sequence of aftershocks. We propose a novel Bayesian hierarchical model for the PGA variations accounting separately for earthquake event effects, station effects, and event‐station effects. An efficient posterior inference scheme based on Markov chain Monte Carlo (MCMC) simulations is proposed for the new model. The variance of the station effect is certainly different from zero according to the posterior density, indicating that individual station effects are different from one another. The Bayesian hierarchical model thus captures the observed PGA variations and quantifies to what extent the source and recording sites contribute to the overall variation in ground motions over relatively small distances on the lava‐rock site condition.

  1. A hierarchical probabilistic model for rapid object categorization in natural scenes.

    Directory of Open Access Journals (Sweden)

    Xiaofu He

    Full Text Available Humans can categorize objects in complex natural scenes within 100-150 ms. This amazing ability of rapid categorization has motivated many computational models. Most of these models require extensive training to obtain a decision boundary in a very high dimensional (e.g., ∼6,000 in a leading model feature space and often categorize objects in natural scenes by categorizing the context that co-occurs with objects when objects do not occupy large portions of the scenes. It is thus unclear how humans achieve rapid scene categorization.To address this issue, we developed a hierarchical probabilistic model for rapid object categorization in natural scenes. In this model, a natural object category is represented by a coarse hierarchical probability distribution (PD, which includes PDs of object geometry and spatial configuration of object parts. Object parts are encoded by PDs of a set of natural object structures, each of which is a concatenation of local object features. Rapid categorization is performed as statistical inference. Since the model uses a very small number (∼100 of structures for even complex object categories such as animals and cars, it requires little training and is robust in the presence of large variations within object categories and in their occurrences in natural scenes. Remarkably, we found that the model categorized animals in natural scenes and cars in street scenes with a near human-level performance. We also found that the model located animals and cars in natural scenes, thus overcoming a flaw in many other models which is to categorize objects in natural context by categorizing contextual features. These results suggest that coarse PDs of object categories based on natural object structures and statistical operations on these PDs may underlie the human ability to rapidly categorize scenes.

  2. A fuzzy Bi-linear management model in reverse logistic chains

    Directory of Open Access Journals (Sweden)

    Tadić Danijela

    2016-01-01

    Full Text Available The management of the electrical and electronic waste (WEEE problem in the uncertain environment has a critical effect on the economy and environmental protection of each region. The considered problem can be stated as a fuzzy non-convex optimization problem with linear objective function and a set of linear and non-linear constraints. The original problem is reformulated by using linear relaxation into a fuzzy linear programming problem. The fuzzy rating of collecting point capacities and fix costs of recycling centers are modeled by triangular fuzzy numbers. The optimal solution of the reformulation model is found by using optimality concept. The proposed model is verified through an illustrative example with real-life data. The obtained results represent an input for future research which should include a good benchmark base for tested reverse logistic chains and their continuous improvement. [Projekat Ministarstva nauke Republike Srbije, br. 035033: Sustainable development technology and equipment for the recycling of motor vehicles

  3. A New Availability-Payment Model for Pricing Performance-Based Logistics Contracts

    Science.gov (United States)

    2014-05-01

    Grant number: N00244‐13‐1‐0009 A New “Availability‐ Payment ”  Model  for Pricing Performance‐ Based Logistics Contracts A. KashaniPour, X. Zhu, P...DATE MAY 2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE A New ’Availability‐ Payment ’ Model for...is how the  payment   model  in the contract  quantifies the contractor’s  performance for awarding incentives  or penalties Discrete‐Event Simulator ut

  4. A dust spectral energy distribution model with hierarchical Bayesian inference - I. Formalism and benchmarking

    Science.gov (United States)

    Galliano, Frédéric

    2018-05-01

    This article presents a new dust spectral energy distribution (SED) model, named HerBIE, aimed at eliminating the noise-induced correlations and large scatter obtained when performing least-squares fits. The originality of this code is to apply the hierarchical Bayesian approach to full dust models, including realistic optical properties, stochastic heating, and the mixing of physical conditions in the observed regions. We test the performances of our model by applying it to synthetic observations. We explore the impact on the recovered parameters of several effects: signal-to-noise ratio, SED shape, sample size, the presence of intrinsic correlations, the wavelength coverage, and the use of different SED model components. We show that this method is very efficient: the recovered parameters are consistently distributed around their true values. We do not find any clear bias, even for the most degenerate parameters, or with extreme signal-to-noise ratios.

  5. Merging information from multi-model flood projections in a hierarchical Bayesian framework

    Science.gov (United States)

    Le Vine, Nataliya

    2016-04-01

    Multi-model ensembles are becoming widely accepted for flood frequency change analysis. The use of multiple models results in large uncertainty around estimates of flood magnitudes, due to both uncertainty in model selection and natural variability of river flow. The challenge is therefore to extract the most meaningful signal from the multi-model predictions, accounting for both model quality and uncertainties in individual model estimates. The study demonstrates the potential of a recently proposed hierarchical Bayesian approach to combine information from multiple models. The approach facilitates explicit treatment of shared multi-model discrepancy as well as the probabilistic nature of the flood estimates, by treating the available models as a sample from a hypothetical complete (but unobserved) set of models. The advantages of the approach are: 1) to insure an adequate 'baseline' conditions with which to compare future changes; 2) to reduce flood estimate uncertainty; 3) to maximize use of statistical information in circumstances where multiple weak predictions individually lack power, but collectively provide meaningful information; 4) to adjust multi-model consistency criteria when model biases are large; and 5) to explicitly consider the influence of the (model performance) stationarity assumption. Moreover, the analysis indicates that reducing shared model discrepancy is the key to further reduction of uncertainty in the flood frequency analysis. The findings are of value regarding how conclusions about changing exposure to flooding are drawn, and to flood frequency change attribution studies.

  6. Exploring the Use of Microworld Models to Train Army Logistics Management Skills

    National Research Council Canada - National Science Library

    Levy, Dina

    2001-01-01

    The Army faces new challenges in training its logistics managers. As the Army evolves into a force-projection Army, the design and management of large-scale logistics systems assume increasing importance...

  7. A Logistic Regression Based Auto Insurance Rate-Making Model Designed for the Insurance Rate Reform

    Directory of Open Access Journals (Sweden)

    Zhengmin Duan

    2018-02-01

    Full Text Available Using a generalized linear model to determine the claim frequency of auto insurance is a key ingredient in non-life insurance research. Among auto insurance rate-making models, there are very few considering auto types. Therefore, in this paper we are proposing a model that takes auto types into account by making an innovative use of the auto burden index. Based on this model and data from a Chinese insurance company, we built a clustering model that classifies auto insurance rates into three risk levels. The claim frequency and the claim costs are fitted to select a better loss distribution. Then the Logistic Regression model is employed to fit the claim frequency, with the auto burden index considered. Three key findings can be concluded from our study. First, more than 80% of the autos with an auto burden index of 20 or higher belong to the highest risk level. Secondly, the claim frequency is better fitted using the Poisson distribution, however the claim cost is better fitted using the Gamma distribution. Lastly, based on the AIC criterion, the claim frequency is more adequately represented by models that consider the auto burden index than those do not. It is believed that insurance policy recommendations that are based on Generalized linear models (GLM can benefit from our findings.

  8. Hierarchical neural network model of the visual system determining figure/ground relation

    Science.gov (United States)

    Kikuchi, Masayuki

    2017-07-01

    One of the most important functions of the visual perception in the brain is figure/ground interpretation from input images. Figural region in 2D image corresponding to object in 3D space are distinguished from background region extended behind the object. Previously the author proposed a neural network model of figure/ground separation constructed on the standpoint that local geometric features such as curvatures and outer angles at corners are extracted and propagated along input contour in a single layer network (Kikuchi & Akashi, 2001). However, such a processing principle has the defect that signal propagation requires manyiterations despite the fact that actual visual system determines figure/ground relation within the short period (Zhou et al., 2000). In order to attain speed-up for determining figure/ground, this study incorporates hierarchical architecture into the previous model. This study confirmed the effect of the hierarchization as for the computation time by simulation. As the number of layers increased, the required computation time reduced. However, such speed-up effect was saturatedas the layers increased to some extent. This study attempted to explain this saturation effect by the notion of average distance between vertices in the area of complex network, and succeeded to mimic the saturation effect by computer simulation.

  9. Toward combining thematic information with hierarchical multiscale segmentations using tree Markov random field model

    Science.gov (United States)

    Zhang, Xueliang; Xiao, Pengfeng; Feng, Xuezhi

    2017-09-01

    It has been a common idea to produce multiscale segmentations to represent the various geographic objects in high-spatial resolution remote sensing (HR) images. However, it remains a great challenge to automatically select the proper segmentation scale(s) just according to the image information. In this study, we propose a novel way of information fusion at object level by combining hierarchical multiscale segmentations with existed thematic information produced by classification or recognition. The tree Markov random field (T-MRF) model is designed for the multiscale combination framework, through which the object type is determined as close as the existed thematic information. At the same time, the object boundary is jointly determined by the thematic labels and the multiscale segments through the minimization of the energy function. The benefits of the proposed T-MRF combination model include: (1) reducing the dependence of segmentation scale selection when utilizing multiscale segmentations; (2) exploring the hierarchical context naturally imbedded in the multiscale segmentations. The HR images in both urban and rural areas are used in the experiments to show the effectiveness of the proposed combination framework on these two aspects.

  10. Empirical Bayes ranking and selection methods via semiparametric hierarchical mixture models in microarray studies.

    Science.gov (United States)

    Noma, Hisashi; Matsui, Shigeyuki

    2013-05-20

    The main purpose of microarray studies is screening of differentially expressed genes as candidates for further investigation. Because of limited resources in this stage, prioritizing genes are relevant statistical tasks in microarray studies. For effective gene selections, parametric empirical Bayes methods for ranking and selection of genes with largest effect sizes have been proposed (Noma et al., 2010; Biostatistics 11: 281-289). The hierarchical mixture model incorporates the differential and non-differential components and allows information borrowing across differential genes with separation from nuisance, non-differential genes. In this article, we develop empirical Bayes ranking methods via a semiparametric hierarchical mixture model. A nonparametric prior distribution, rather than parametric prior distributions, for effect sizes is specified and estimated using the "smoothing by roughening" approach of Laird and Louis (1991; Computational statistics and data analysis 12: 27-37). We present applications to childhood and infant leukemia clinical studies with microarrays for exploring genes related to prognosis or disease progression. Copyright © 2012 John Wiley & Sons, Ltd.

  11. Hierarchical modeling of genome-wide Short Tandem Repeat (STR) markers infers native American prehistory.

    Science.gov (United States)

    Lewis, Cecil M

    2010-02-01

    This study examines a genome-wide dataset of 678 Short Tandem Repeat loci characterized in 444 individuals representing 29 Native American populations as well as the Tundra Netsi and Yakut populations from Siberia. Using these data, the study tests four current hypotheses regarding the hierarchical distribution of neutral genetic variation in native South American populations: (1) the western region of South America harbors more variation than the eastern region of South America, (2) Central American and western South American populations cluster exclusively, (3) populations speaking the Chibchan-Paezan and Equatorial-Tucanoan language stock emerge as a group within an otherwise South American clade, (4) Chibchan-Paezan populations in Central America emerge together at the tips of the Chibchan-Paezan cluster. This study finds that hierarchical models with the best fit place Central American populations, and populations speaking the Chibchan-Paezan language stock, at a basal position or separated from the South American group, which is more consistent with a serial founder effect into South America than that previously described. Western (Andean) South America is found to harbor similar levels of variation as eastern (Equatorial-Tucanoan and Ge-Pano-Carib) South America, which is inconsistent with an initial west coast migration into South America. Moreover, in all relevant models, the estimates of genetic diversity within geographic regions suggest a major bottleneck or founder effect occurring within the North American subcontinent, before the peopling of Central and South America. 2009 Wiley-Liss, Inc.

  12. An approach based on Hierarchical Bayesian Graphical Models for measurement interpretation under uncertainty

    Science.gov (United States)

    Skataric, Maja; Bose, Sandip; Zeroug, Smaine; Tilke, Peter

    2017-02-01

    It is not uncommon in the field of non-destructive evaluation that multiple measurements encompassing a variety of modalities are available for analysis and interpretation for determining the underlying states of nature of the materials or parts being tested. Despite and sometimes due to the richness of data, significant challenges arise in the interpretation manifested as ambiguities and inconsistencies due to various uncertain factors in the physical properties (inputs), environment, measurement device properties, human errors, and the measurement data (outputs). Most of these uncertainties cannot be described by any rigorous mathematical means, and modeling of all possibilities is usually infeasible for many real time applications. In this work, we will discuss an approach based on Hierarchical Bayesian Graphical Models (HBGM) for the improved interpretation of complex (multi-dimensional) problems with parametric uncertainties that lack usable physical models. In this setting, the input space of the physical properties is specified through prior distributions based on domain knowledge and expertise, which are represented as Gaussian mixtures to model the various possible scenarios of interest for non-destructive testing applications. Forward models are then used offline to generate the expected distribution of the proposed measurements which are used to train a hierarchical Bayesian network. In Bayesian analysis, all model parameters are treated as random variables, and inference of the parameters is made on the basis of posterior distribution given the observed data. Learned parameters of the posterior distribution obtained after the training can therefore be used to build an efficient classifier for differentiating new observed data in real time on the basis of pre-trained models. We will illustrate the implementation of the HBGM approach to ultrasonic measurements used for cement evaluation of cased wells in the oil industry.

  13. Study on Maritime Logistics Warehousing Center Model and Precision Marketing Strategy Optimization Based on Fuzzy Method and Neural Network Model

    Directory of Open Access Journals (Sweden)

    Xiao Kefeng

    2017-08-01

    Full Text Available The bulk commodity, different with the retail goods, has a uniqueness in the location selection, the chosen of transportation program and the decision objectives. How to make optimal decisions in the facility location, requirement distribution, shipping methods and the route selection and establish an effective distribution system to reduce the cost has become a burning issue for the e-commerce logistics, which is worthy to be deeply and systematically solved. In this paper, Logistics warehousing center model and precision marketing strategy optimization based on fuzzy method and neural network model is proposed to solve this problem. In addition, we have designed principles of the fuzzy method and neural network model to solve the proposed model because of its complexity. Finally, we have solved numerous examples to compare the results of lingo and Matlab, we use Matlab and lingo just to check the result and to illustrate the numerical example, we can find from the result, the multi-objective model increases logistics costs and improves the efficiency of distribution time.

  14. Bayesian hierarchical models for smoothing in two-phase studies, with application to small area estimation.

    Science.gov (United States)

    Ross, Michelle; Wakefield, Jon

    2015-10-01

    Two-phase study designs are appealing since they allow for the oversampling of rare sub-populations which improves efficiency. In this paper we describe a Bayesian hierarchical model for the analysis of two-phase data. Such a model is particularly appealing in a spatial setting in which random effects are introduced to model between-area variability. In such a situation, one may be interested in estimating regression coefficients or, in the context of small area estimation, in reconstructing the population totals by strata. The efficiency gains of the two-phase sampling scheme are compared to standard approaches using 2011 birth data from the research triangle area of North Carolina. We show that the proposed method can overcome small sample difficulties and improve on existing techniques. We conclude that the two-phase design is an attractive approach for small area estimation.

  15. A Bayesian Hierarchical Model for Relating Multiple SNPs within Multiple Genes to Disease Risk

    Directory of Open Access Journals (Sweden)

    Lewei Duan

    2013-01-01

    Full Text Available A variety of methods have been proposed for studying the association of multiple genes thought to be involved in a common pathway for a particular disease. Here, we present an extension of a Bayesian hierarchical modeling strategy that allows for multiple SNPs within each gene, with external prior information at either the SNP or gene level. The model involves variable selection at the SNP level through latent indicator variables and Bayesian shrinkage at the gene level towards a prior mean vector and covariance matrix that depend on external information. The entire model is fitted using Markov chain Monte Carlo methods. Simulation studies show that the approach is capable of recovering many of the truly causal SNPs and genes, depending upon their frequency and size of their effects. The method is applied to data on 504 SNPs in 38 candidate genes involved in DNA damage response in the WECARE study of second breast cancers in relation to radiotherapy exposure.

  16. Parallel Motion Simulation of Large-Scale Real-Time Crowd in a Hierarchical Environmental Model

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2012-01-01

    Full Text Available This paper presents a parallel real-time crowd simulation method based on a hierarchical environmental model. A dynamical model of the complex environment should be constructed to simulate the state transition and propagation of individual motions. By modeling of a virtual environment where virtual crowds reside, we employ different parallel methods on a topological layer, a path layer and a perceptual layer. We propose a parallel motion path matching method based on the path layer and a parallel crowd simulation method based on the perceptual layer. The large-scale real-time crowd simulation becomes possible with these methods. Numerical experiments are carried out to demonstrate the methods and results.

  17. AN APPLICATION OF THE LOGISTIC REGRESSION MODEL IN THE EXPERIMENTAL PHYSICAL CHEMISTRY

    Directory of Open Access Journals (Sweden)

    Elpidio Corral-López

    2015-06-01

    Full Text Available The calculation of intensive properties molar volumes of ethanol-water mixtures by experimental densities and tangent method in the Physical Chemistry Laboratory presents the problem of making manually the molar volume curve versus mole fraction and the trace of the tangent line trace. The advantage of using a statistical model the Logistic Regression on a Texas VOYAGE graphing calculator allowed trace the curve and the tangents in situ, and also evaluate the students work during the experimental session. The error percentage between the molar volumes calculated using literature data and those obtained with statistical method is minimal, which validates the model. It is advantageous use the calculator with this application as a teaching support tool, reducing the evaluation time of 3 weeks to 3 hours.

  18. Threshold Dynamics of a Huanglongbing Model with Logistic Growth in Periodic Environments

    Directory of Open Access Journals (Sweden)

    Jianping Wang

    2014-01-01

    Full Text Available We analyze the impact of seasonal activity of psyllid on the dynamics of Huanglongbing (HLB infection. A new model about HLB transmission with Logistic growth in psyllid insect vectors and periodic coefficients has been investigated. It is shown that the global dynamics are determined by the basic reproduction number R0 which is defined through the spectral radius of a linear integral operator. If R0 1, then the disease persists. Numerical values of parameters of the model are evaluated taken from the literatures. Furthermore, numerical simulations support our analytical conclusions and the sensitive analysis on the basic reproduction number to the changes of average and amplitude values of the recruitment function of citrus are shown. Finally, some useful comments on controlling the transmission of HLB are given.

  19. Q-Matrix Optimization Based on the Linear Logistic Test Model.

    Science.gov (United States)

    Ma, Lin; Green, Kelly E

    This study explored optimization of item-attribute matrices with the linear logistic test model (Fischer, 1973), with optimal models explaining more variance in item difficulty due to identified item attributes. Data were 8th-grade mathematics test item responses of two TIMSS 2007 booklets. The study investigated three categories of attributes (content, cognitive process, and comprehensive cognitive process) at two grain levels (larger, smaller) and also compared results with random attribute matrices. The proposed attributes accounted for most of the variance in item difficulty for two assessment booklets (81% and 65%). The variance explained by the content attributes was very small (13% to 31%), less than variance explained by the comprehensive cognitive process attributes which explained much more variance than the content and cognitive process attributes. The variances explained by the grain level were similar to each other. However, the attributes did not predict the item difficulties of two assessment booklets equally.

  20. Stability and bifurcation analysis of an SIR epidemic model with logistic growth and saturated treatment

    International Nuclear Information System (INIS)

    Li, Jinhui; Teng, Zhidong; Wang, Guangqing; Zhang, Long; Hu, Cheng

    2017-01-01

    In this paper, we introduce the saturated treatment and logistic growth rate into an SIR epidemic model with bilinear incidence. The treatment function is assumed to be a continuously differential function which describes the effect of delayed treatment when the medical condition is limited and the number of infected individuals is large enough. Sufficient conditions for the existence and local stability of the disease-free and positive equilibria are established. And the existence of the stable limit cycles also is obtained. Moreover, by using the theory of bifurcations, it is shown that the model exhibits backward bifurcation, Hopf bifurcation and Bogdanov–Takens bifurcations. Finally, the numerical examples are given to illustrate the theoretical results and obtain some additional interesting phenomena, involving double stable periodic solutions and stable limit cycles.