WorldWideScience

Sample records for hierarchical homogeneous nanoarchitectures

  1. Free-standing and porous hierarchical nanoarchitectures constructed with cobalt cobaltite nanowalls for supercapacitors with high specific capacitances

    Science.gov (United States)

    Xiao, Yuanhua; Zhang, Aiqin; Liu, Shaojun; Zhao, Jihong; Fang, Shaoming; Jia, Dianzeng; Li, Feng

    2012-12-01

    Free-standing and porous hierarchical nanoarchitectures constructed with cobalt cobaltite (Co3O4) nanowalls have been successfully synthesized in large scale by calcining three dimensional (3D) hierarchical nanostructures consisting of single crystalline cobalt carbonate hydroxide hydrate - Co(CO3)0.5(OH)·0.11H2O nanowalls prepared with a solvothermal method. The step-by-step decomposition of the precursor can generate porous Co3O4 nanowalls with BET surface area of 88.34 m2 g-1. The as-prepared Co3O4 nanoarchitectures show superior specific capacitance to the most Co3O4 supercapacitor electrode materials to date. After continuously cycled for 1000 times of charge-discharge at 4 A g-1, the supercapacitors can retain ca 92.3% of their original specific capacitances. The excellent performances of the devices can be attributed to the porous and hierarchical 3D nanostructure of the materials.

  2. Nanoarchitecture Control Enabled by Ionic Liquids

    Science.gov (United States)

    Murdoch, Heather A.; Limmer, Krista R.; Labukas, Joseph P.

    2017-04-01

    Ionic liquids have many advantages over traditional aqueous electrosynthesis for fabrication of functional nanoarchitectures, including enabling the integration of nanoparticles into traditional coatings, superhydrophobicity, nanofoams, and other hierarchical structures. Shape and size control through ionic liquid selection and processing conditions can synthesize nanoparticles and nanoarchitectures without the use of capping agents, surfactants, or templates that are often deleterious to the functionality of the resultant system. Here we give a brief overview of some recent and interesting applications of ionic liquids to the synthesis of nanoparticles and nanoarchitectures.

  3. Chondroitin sulphate-guided construction of polypyrrole nanoarchitectures

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhengnan [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Zhu, Wenjun [Department of Prosthodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Liao, Jingwen [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Huang, Shishu [State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University (China); Department of Orthopaedics and Traumatology, The University of Hong Kong (China); Chen, Junqi; He, Tianrui [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Tan, Guoxin, E-mail: tanguoxin@126.com [Faculty of Light and Chemical, Guangdong University of Technology, Guangzhou 510006 (China); Ning, Chengyun, E-mail: imcyning@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China)

    2015-03-01

    Nanospheres, nanocones, and nanowires are three typical polypyrrole (PPy) nanoarchitectures and electrochemically polymerized with the dope of chondroitin sulphate (CS) in this study. CS, a functional biomacromolecule, guides the formation of PPy nanoarchitectures as the dopant and morphology-directing agent. Combined with our previous reported other PPy nanoarchitectures (such as nanotube arrays and nanowires), this work further proposed the novel mechanism of the construction of PPy/CS nanoarchitectures with the synergistic effect of CS molecular chains structure and the steric hindrance. Compared to the undoped PPy, MC3T3-E1 cells with PPy/CS nanoarchitectures possessed stronger proliferation and osteogenic differentiation capability. This suggests that PPy/CS nanoarchitectures have appropriate biocompatibility. Altogether, the nanoarchitectured PPy/CS may find application in the regeneration of bone defect. - Highlights: • The formation mechanism of PPy nanoarchitectures was proposed. • CS acted as biofunctional dopant and morphology-directing agent in PPy forming. • PPy-CS nanoarchitectures were dependent on the Py/CS ratio.

  4. 3D Self-Supported Nanoarchitectured Arrays Electrodes for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Xin Chen

    2012-01-01

    Full Text Available Three-dimensional self-supported nanoarchitectured arrays electrodes (3DSNAEs consisting of a direct growth of nanoarchitectured arrays on the conductive current collector, including homogeneous and heterogeneous nanoarchitectured arrays structures, have been currently studied as the most promising electrodes owing to their synergies resulting from the multistructure hybrid and integrating heterocomponents to address the requirements (high energy and power density of superperformance lithium ion batteries (LIBs applied in portable electronic consumer devices, electric vehicles, large-scale electricity storage, and so on. In the paper, recent advances in the strategies for the fabrication, selection of the different current collector substrates, and structural configuration of 3DSNAEs with different cathode and anode materials are investigated in detail. The intrinsic relationship of the unique structural characters, the conductive substrates, and electrochemical kinetic properties of 3DSNAEs is minutely analyzed. Finally, the future design trends and directions of 3DSNAEs are highlighted, which may open a new avenue of developing ideal multifunctional 3DSNAEs for further advanced LIBs.

  5. Functional Nanoarchitectures For Enhanced Drug Eluting Stents

    Science.gov (United States)

    Saleh, Yomna E.; Gepreel, Mohamed A.; Allam, Nageh K.

    2017-01-01

    Different strategies have been investigated to allow for optimum duration and conditions for endothelium healing through the enhancement of coronary stents. In this study, a nanoarchitectured system is proposed as a surface modification for drug eluting stents. Highly oriented nanotubes were vertically grown on the surface of a new Ni-free biocompatible Ti-based alloy, as a potential material for self-expandable stents. The fabricated nanotubes were self-grown from the potential stent substrate, which are also proposed to enhance endothelial proliferation while acting as drug reservoir to hinder Vascular Smooth Muscle Cells (VSMC) proliferation. Two morphologies were synthesized to investigate the effect of structure homogeneity on the intended application. The material was characterized by field-emission scanning electron microscope (FESEM), X-ray diffraction (XRD), Raman spectroscopy, energy dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). Nanoindentation technique was used to study the mechanical properties of the fabricated material. Cytotoxicity and proliferation studies were performed and compared for the two fabricated nanoarchitectures, versus smooth untextured samples, using in-vitro cultured endothelial cells. Finally, the drug loading capacity was experimentally studied and further supported by computational modeling of the release profile.

  6. The efficiency of average linkage hierarchical clustering algorithm associated multi-scale bootstrap resampling in identifying homogeneous precipitation catchments

    Science.gov (United States)

    Chuan, Zun Liang; Ismail, Noriszura; Shinyie, Wendy Ling; Lit Ken, Tan; Fam, Soo-Fen; Senawi, Azlyna; Yusoff, Wan Nur Syahidah Wan

    2018-04-01

    Due to the limited of historical precipitation records, agglomerative hierarchical clustering algorithms widely used to extrapolate information from gauged to ungauged precipitation catchments in yielding a more reliable projection of extreme hydro-meteorological events such as extreme precipitation events. However, identifying the optimum number of homogeneous precipitation catchments accurately based on the dendrogram resulted using agglomerative hierarchical algorithms are very subjective. The main objective of this study is to propose an efficient regionalized algorithm to identify the homogeneous precipitation catchments for non-stationary precipitation time series. The homogeneous precipitation catchments are identified using average linkage hierarchical clustering algorithm associated multi-scale bootstrap resampling, while uncentered correlation coefficient as the similarity measure. The regionalized homogeneous precipitation is consolidated using K-sample Anderson Darling non-parametric test. The analysis result shows the proposed regionalized algorithm performed more better compared to the proposed agglomerative hierarchical clustering algorithm in previous studies.

  7. A bamboo-inspired hierarchical nanoarchitecture of Ag/CuO/TiO_2 nanotube array for highly photocatalytic degradation of 2,4-dinitrophenol

    International Nuclear Information System (INIS)

    Zhang, Xuhong; Wang, Longlu; Liu, Chengbin; Ding, Yangbin; Zhang, Shuqu; Zeng, Yunxiong; Liu, Yutang; Luo, Shenglian

    2016-01-01

    Highlights: • Bamboo-like architecture of ternary photocatalyst. • High simulated solar light photocatalytic activity. • Integration of p-n heterojunction and Schottky junction. • Excellent stable recycling performance. - Abstract: The optimized geometrical configuration of muitiple active materials into hierarchical nanoarchitecture is essential for the creation of photocatalytic degradation system that can mimic natural photosynthesis. A bamboo-like architecture, CuO nanosheets and Ag nanoparticles co-decorated TiO_2 nanotube arrays (Ag/CuO/TiO_2), was fabricated by using simple solution-immersion and electrodeposition process. Under simulated solar light irradiation, the 2,4-dinitrophenol (2,4-DNP) photocatalytic degradation rate over Ag/CuO/TiO_2 was about 2.0, 1.5 and 1.2 times that over TiO_2 nanotubes, CuO/TiO_2 and Ag/TiO_2, respectively. The enhanced photocatalytic activity of ternary Ag/CuO/TiO_2 photocatalyst was ascribed to improved light absorption, reduced carrier recombination and more exposed active sites. Moreover, the excellent stability and reliability of the Ag/CuO/TiO_2 photocatalyst demonstrated a promising application for organic pollutant removal from water.

  8. Photonic nanoarchitectures of biologic origin in butterflies and beetles

    International Nuclear Information System (INIS)

    Biro, L.P.

    2010-01-01

    Photonic nanoarchitectures occurring in butterflies and beetles, which produce structural color in the visible range of the electromagnetic spectrum by the selective reflection of light, are investigated under the aspect of being used as possible 'blueprints' for artificial, bioinspired nanoarchitectures. The role of order and disorder and of regularity/irregularity in photonic nanoarchitectures of biologic origin is discussed. Three recent case studies are briefly reviewed for butterflies (Albulina metallica, Cyanophrys remus, Troides magellanus) and three for beetles (Hoeplia coerulea, Chrysochroa vittata, Charidotella egregia). The practical realization of bioinspired artificial structures is discussed for the A. metallica butterfly and for the C. vittata beetle.

  9. Photonic nanoarchitectures of biologic origin in butterflies and beetles

    Energy Technology Data Exchange (ETDEWEB)

    Biro, L.P., E-mail: biro@mfa.kfki.h [Research Institute for Technical Physics and Materials Science, H-1525 Budapest, POB 49 (Hungary)

    2010-05-25

    Photonic nanoarchitectures occurring in butterflies and beetles, which produce structural color in the visible range of the electromagnetic spectrum by the selective reflection of light, are investigated under the aspect of being used as possible 'blueprints' for artificial, bioinspired nanoarchitectures. The role of order and disorder and of regularity/irregularity in photonic nanoarchitectures of biologic origin is discussed. Three recent case studies are briefly reviewed for butterflies (Albulina metallica, Cyanophrys remus, Troides magellanus) and three for beetles (Hoeplia coerulea, Chrysochroa vittata, Charidotella egregia). The practical realization of bioinspired artificial structures is discussed for the A. metallica butterfly and for the C. vittata beetle.

  10. Bifacial DNA origami-directed discrete, three-dimensional, anisotropic plasmonic nanoarchitectures with tailored optical chirality.

    Science.gov (United States)

    Lan, Xiang; Chen, Zhong; Dai, Gaole; Lu, Xuxing; Ni, Weihai; Wang, Qiangbin

    2013-08-07

    Discrete three-dimensional (3D) plasmonic nanoarchitectures with well-defined spatial configuration and geometry have aroused increasing interest, as new optical properties may originate from plasmon resonance coupling within the nanoarchitectures. Although spherical building blocks have been successfully employed in constructing 3D plasmonic nanoarchitectures because their isotropic nature facilitates unoriented localization, it still remains challenging to assemble anisotropic building blocks into discrete and rationally tailored 3D plasmonic nanoarchitectures. Here we report the first example of discrete 3D anisotropic gold nanorod (AuNR) dimer nanoarchitectures formed using bifacial DNA origami as a template, in which the 3D spatial configuration is precisely tuned by rationally shifting the location of AuNRs on the origami template. A distinct plasmonic chiral response was experimentally observed from the discrete 3D AuNR dimer nanoarchitectures and appeared in a spatial-configuration-dependent manner. This study represents great progress in the fabrication of 3D plasmonic nanoarchitectures with tailored optical chirality.

  11. A bamboo-inspired hierarchical nanoarchitecture of Ag/CuO/TiO{sub 2} nanotube array for highly photocatalytic degradation of 2,4-dinitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuhong; Wang, Longlu [State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Liu, Chengbin, E-mail: chem_cbliu@hnu.edu.cn [State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Ding, Yangbin; Zhang, Shuqu; Zeng, Yunxiong [State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Liu, Yutang, E-mail: liuyutang@126.com [Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Luo, Shenglian [State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China)

    2016-08-05

    Highlights: • Bamboo-like architecture of ternary photocatalyst. • High simulated solar light photocatalytic activity. • Integration of p-n heterojunction and Schottky junction. • Excellent stable recycling performance. - Abstract: The optimized geometrical configuration of muitiple active materials into hierarchical nanoarchitecture is essential for the creation of photocatalytic degradation system that can mimic natural photosynthesis. A bamboo-like architecture, CuO nanosheets and Ag nanoparticles co-decorated TiO{sub 2} nanotube arrays (Ag/CuO/TiO{sub 2}), was fabricated by using simple solution-immersion and electrodeposition process. Under simulated solar light irradiation, the 2,4-dinitrophenol (2,4-DNP) photocatalytic degradation rate over Ag/CuO/TiO{sub 2} was about 2.0, 1.5 and 1.2 times that over TiO{sub 2} nanotubes, CuO/TiO{sub 2} and Ag/TiO{sub 2}, respectively. The enhanced photocatalytic activity of ternary Ag/CuO/TiO{sub 2} photocatalyst was ascribed to improved light absorption, reduced carrier recombination and more exposed active sites. Moreover, the excellent stability and reliability of the Ag/CuO/TiO{sub 2} photocatalyst demonstrated a promising application for organic pollutant removal from water.

  12. Bioinspired photonic nanoarchitectures from graphitic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tamaska, I.; Dobrik, G.; Nemes-Incze, P.; Kertesz, K.; Horvath, E.; Mark, G.I.; Jaszi, T.; Neumann, P.; Horvath, Z.E.; Biro, L.P., E-mail: biro@mfa.kfki.h

    2011-04-01

    Bioinspired, regular, rectangular (with periodicities of 600 nm and 700 nm), and random (with average characteristic distances of 600 nm and 750 nm) two dimensional (2D) photonic nanoarchitectures of 60 nm thickness were produced in graphite by Focused Ion Beam (FIB) nanomachining and subsequent controlled oxidation. The color of the nanoarchitectures was modified by the conformal deposition of 90 nm Al{sub 2}O{sub 3}. The regular patterns generate iridescent colors, while the random ones exhibit a remarkably constant color with the variation of the illumination and viewing conditions.

  13. Bioinspired photonic nanoarchitectures from graphitic thin films

    International Nuclear Information System (INIS)

    Tamaska, I.; Dobrik, G.; Nemes-Incze, P.; Kertesz, K.; Horvath, E.; Mark, G.I.; Jaszi, T.; Neumann, P.; Horvath, Z.E.; Biro, L.P.

    2011-01-01

    Bioinspired, regular, rectangular (with periodicities of 600 nm and 700 nm), and random (with average characteristic distances of 600 nm and 750 nm) two dimensional (2D) photonic nanoarchitectures of 60 nm thickness were produced in graphite by Focused Ion Beam (FIB) nanomachining and subsequent controlled oxidation. The color of the nanoarchitectures was modified by the conformal deposition of 90 nm Al 2 O 3 . The regular patterns generate iridescent colors, while the random ones exhibit a remarkably constant color with the variation of the illumination and viewing conditions.

  14. Hierarchical nanostructures assembled from ultrathin Bi2WO6 nanoflakes and their visible-light induced photocatalytic property

    International Nuclear Information System (INIS)

    Wang, Xiong; Tian, Peng; Lin, Ying; Li, Li

    2015-01-01

    Graphical abstract: Hierarchical Bi 2 WO 6 nanostructures assembled from nanoflakes were successfully synthesized by a facile hydrothermal method. The excellent photocatalytic activity and recycling performance might be mainly ascribed to the unique hierarchical nanostructures and are expected to offer the nanostructures promising applications in the field of wastewater treatment. - Highlights: • Hierarchical Bi 2 WO 6 nanostructures assembled from nanoflakes were successfully synthesized by a facile hydrothermal method. • Visible-light-induced photocatalytic efficiency of the obtained nanoarchitectures was enhanced about 6 times. • A possible mechanism was proposed. - Abstract: With the aid of ethylene glycol and sodium dodecylbenzene sulfonate, the hierarchical Bi 2 WO 6 nanoarchitectures assembled from nanoflakes could be attained by a facile solvothermal method. The synthetic strategy is versatile and environmentally friendly and a plausible growth-assembly process was proposed for the formation of the hierarchical nanostructures. The visible-light-irradiated photocatalytic activity was estimated by the degradation of rhodamine B. Compared with the sample prepared by a solid-state reaction, the visible-light-induced photocatalytic efficiency of the nanostructures was enhanced about 6 times. The photocatalysis tests show that the nanostructures exhibit excellent photocatalytic activity and recycling performance, which were mainly ascribed to the unique hierarchical nanostructures and are expected to offer promising applications in the field of wastewater treatment

  15. Biocompatible mesoporous and soft nanoarchitectures

    Czech Academy of Sciences Publication Activity Database

    Angelova, A.; Angelov, Borislav; Mutafchieva, R.; Lesieur, S.

    2015-01-01

    Roč. 25, č. 2 (2015), s. 214-232 ISSN 1574-1443 R&D Projects: GA ČR GAP208/10/1600 Institutional support: RVO:61389013 Keywords : soft nanoarchitectures * lipid bilayer building block * self-assembled nanochannel networks Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.308, year: 2015

  16. Hetero- and homogeneous three-dimensional hierarchical tungsten oxide nanostructures by hot-wire chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Houweling, Z.S., E-mail: Silvester.Houweling@asml.com [Utrecht University, Debye Institute for Nanomaterials Science, Nanophotonics—Physics of Devices, Princetonlaan 4, 3584 CB Utrecht (Netherlands); Harks, P.-P.R.M.L.; Kuang, Y.; Werf, C.H.M. van der [Utrecht University, Debye Institute for Nanomaterials Science, Nanophotonics—Physics of Devices, Princetonlaan 4, 3584 CB Utrecht (Netherlands); Geus, J.W. [Utrecht University, Inorganic Chemistry and Catalysis, Padualaan 8, 3584 CH Utrecht (Netherlands); Schropp, R.E.I. [Utrecht University, Debye Institute for Nanomaterials Science, Nanophotonics—Physics of Devices, Princetonlaan 4, 3584 CB Utrecht (Netherlands)

    2015-01-30

    We present the synthesis of three-dimensional tungsten oxide (WO{sub 3−x}) nanostructures, called nanocacti, using hot-wire chemical vapor deposition. The growth of the nanocacti is controlled through a succession of oxidation, reduction and re-oxidation processes. By using only a resistively heated W filament, a flow of ambient air and hydrogen at subatmospheric pressure, and a substrate heated to about 700 °C, branched nanostructures are deposited. We report three varieties of simple synthesis approaches to obtain hierarchical homo- and heterogeneous nanocacti. Furthermore, by using catalyst nanoparticles site-selection for the growth is demonstrated. The atomic, morphological and crystallographic compositions of the nanocacti are determined using a combination of electron microscopy techniques, energy-dispersive X-ray spectroscopy and electron diffraction. - Highlights: • Continuous upscalable hot-wire CVD of 3D hierarchical nanocacti • Controllable deposition of homo- and heterogeneous WO{sub 3−x}/WO{sub 3−y} nanocacti • Introduction of three synthesis routes comprising oxidation, reduction and re-oxidation processes • Growth of periodic arrays of hetero- and homogeneous hierarchical 3D nanocacti.

  17. A novel 3D nanoarchitecture of PrVO4 phosphor: Selective synthesis, characterization, and luminescence behavior

    International Nuclear Information System (INIS)

    Thirumalai, J.; Chandramohan, R.; Vijayan, T.A.

    2011-01-01

    Graphical abstract: Nanostructures of tetragonal PrVO 4 with novel 3D hierarchical architectures self-assembled nanorods were successfully synthesized by a hydrothermal method in ethylenediamine tetra-acetic acid (EDTA) mediated processes are ideal functional components for next generation luminescent devices. Research highlights: → Synthesis of self-assembled 3D nanoarchitecture of PrVO 4 phosphor. → Using template-free hydrothermal method. → pH, temperature and capping molecules control morphology of the products. → Detailed structural, morphology and luminescence were studied. - Abstract: Nanostructures of tetragonal PrVO 4 with novel 3D hierarchical architectures self-assembled nanorods were successfully synthesized by a hydrothermal method in ethylenediamine tetra-acetic acid (EDTA) mediated processes. Comprehensive structural, morphological studies like X-ray diffraction, scanning and transmission electron microscopy were employed to characterize the as-obtained products. In the hydrothermal process, EDTA not only acts as a chelating reagent to facilitate the formation of PrVO 4 , but also acts as a surface capping agent to adhere to the newly created surface and to promote the crystal splitting. The formation mechanisms of nanorods to hierarchical architectures were proposed on the basis of a series of surfactant and time-dependent experiments. Photoluminescence (PL) studies of PrVO 4 showed strong red emission upon UV illumination, and this implied potential application in the luminescent field. A possible growth mechanism of the sheaf-like PrVO 4 hierarchical nanocrystals is proposed and discussed.

  18. Passion fruit-like nano-architectures: a general synthesis route

    Science.gov (United States)

    Cassano, D.; David, J.; Luin, S.; Voliani, V.

    2017-03-01

    Noble metal nanostructures have demonstrated a number of intriguing features for both medicine and catalysis. However, accumulation issues have prevented their clinical translation, while their use in catalysis has shown serious efficiency and stability hurdles. Here we introduce a simple and robust synthetic protocol for passion fruit-like nano-architectures composed by a silica shell embedding polymeric arrays of ultrasmall noble metal nanoparticles. These nano-architectures show interesting features for both oncology and catalysis. They avoid the issue of persistence in organism thanks to their fast biodegradation in renal clearable building blocks. Furthermore, their calcination results in yolk-shell structures composed by naked metal or alloy nanospheres shielded from aggregation by a silica shell.

  19. Supramolecular nano-architectures and two-dimensional/three-dimensional aggregation of a bolaamphiphilic diacid at the air/water interface

    International Nuclear Information System (INIS)

    Jiao Tifeng; Liu Minghua

    2005-01-01

    The spreading behavior and nano-architectures of a bolaamphiphilic diacid, 1, 13-tridecandicarboxylic acid (TDA) on water surface and the subphase containing Eu(III) ion were investigated. It was found that although TDA itself could not spread on water surface, it could form an ultrathin film on the aqueous subphase containing Eu(III) ion. In addition, interesting nano-architectures were observed for the transferred film on mica surface. It was found that the formation and change of the nano-architectures were depended on the surface pressure and concentration of Eu(III) ion in the subphase. A rectangular slide morphology was observed for the film spread on an aqueous subphase containing lower concentration of Eu(III), while a walnut-like nano-architectures were observed for the film spread on a higher concentration of Eu(III) ion. Flower structure was observed at a higher surface pressure. The nano-architecture can be further regulated through mixing TDA with octadecylamine (OA) in which linear fiber nanostructure was obtained. It was revealed that while the nano-architectures were formed mainly through a three dimensional aggregation in the case of TDA/Eu(III) films, a two-dimensional aggregation occurred when TDA was mixed with OA. A series of methods such as atomic force microscope, field emission scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction were used to characterize the supramolecular structures. A possible mechanism for the formation of these nano-architectures was discussed

  20. Hierarchical Co-based Porous Layered Double Hydroxide Arrays Derived via Alkali Etching for High-performance Supercapacitors

    Science.gov (United States)

    Abushrenta, Nasser; Wu, Xiaochao; Wang, Junnan; Liu, Junfeng; Sun, Xiaoming

    2015-08-01

    Hierarchical nanoarchitecture and porous structure can both provide advantages for improving the electrochemical performance in energy storage electrodes. Here we report a novel strategy to synthesize new electrode materials, hierarchical Co-based porous layered double hydroxide (PLDH) arrays derived via alkali etching from Co(OH)2@CoAl LDH nanoarrays. This structure not only has the benefits of hierarchical nanoarrays including short ion diffusion path and good charge transport, but also possesses a large contact surface area owing to its porous structure which lead to a high specific capacitance (23.75 F cm-2 or 1734 F g-1 at 5 mA cm-2) and excellent cycling performance (over 85% after 5000 cycles). The enhanced electrode material is a promising candidate for supercapacitors in future application.

  1. Porous sheet-like and sphere-like nano-architectures of SnO2 nanoparticles via a solvent-thermal approach and their gas-sensing performances

    International Nuclear Information System (INIS)

    Jie Liu; Tang, Xin-Cun; Xiao, Yuan-Hua; Hai Jia,; Gong, Mei-Li; Huang, Fu-Qin

    2013-01-01

    Highlights: • Porous sheet-like and sphere-like nano-architectures of SnO 2 nanoparticles have been prepared. • A solvent-thermal approach without surfactant or polymer templates simply by changing the volume ratio of DMF to water. • The formation mechanism of nano-architectures is proposed in this article. • Porous sphere-like SnO 2 nano-architectures exhibit good sensitivity to the reduce vapors tested. • Sheet-like materials show better selectivity to ethanol. -- Abstract: Porous sheet-like and sphere-like nano-architectures of SnO 2 nanoparticles have been prepared via a solvent-thermal approach in the absence of any surfactant or polymer templates by simply changing the volume ratio of DMF to water. The nano-materials have been characterized by FESEM, XRD, IR, TEM and BET. A mechanism for the formation of nano-architectures is also proposed based on the assembly behaviors of DMF in water. The gas sensors constructed with porous sphere-like SnO 2 nano-architectures exhibit much higher sensitivity to the reduce vapors tested, compared to those from porous sheet-like SnO 2 materials, while the sheet-like materials show better selectivity to ethanol. The nano-architectures fabricated with the facile method are promising candidates for building chemical sensors with tunable performances

  2. Phonon Spectrum Engineering in Rolled-up Micro- and Nano-Architectures

    Directory of Open Access Journals (Sweden)

    Vladimir M. Fomin

    2015-10-01

    Full Text Available We report on a possibility of efficient engineering of the acoustic phonon energy spectrum in multishell tubular structures produced by a novel high-tech method of self-organization of micro- and nano-architectures. The strain-driven roll-up procedure paved the way for novel classes of metamaterials such as single semiconductor radial micro- and nano-crystals and multi-layer spiral micro- and nano-superlattices. The acoustic phonon dispersion is determined by solving the equations of elastodynamics for InAs and GaAs material systems. It is shown that the number of shells is an important control parameter of the phonon dispersion together with the structure dimensions and acoustic impedance mismatch between the superlattice layers. The obtained results suggest that rolled up nano-architectures are promising for thermoelectric applications owing to a possibility of significant reduction of the thermal conductivity without degradation of the electronic transport.

  3. Synthesis and Properties of Carbon Nanotube-Grafted Silica Nanoarchitecture-Reinforced Poly(Lactic Acid

    Directory of Open Access Journals (Sweden)

    Yao-Wen Hsu

    2017-07-01

    Full Text Available A novel nanoarchitecture-reinforced poly(lactic acid (PLA nanocomposite was prepared using multi-walled carbon nanotube (MWCNT-grafted silica nanohybrids as reinforcements. MWCNT-grafted silica nanohybrids were synthesized by the generation of silica nanoparticles on the MWCNT surface through the sol-gel technique. This synthetic method involves organo-modified MWCNTs that are dispersed in tetrahydrofuran, which incorporates tetraethoxysilane that undergoes an ultrasonic sol-gel process. Gelation yielded highly dispersed silica on the organo-modified MWCNTs. The structure and properties of the nanohybrids were established using 29Si nuclear magnetic resonance, Raman spectroscopy, wide-angle X-ray diffraction, thermogravimetric analysis, and transmission electron microscopy. The resulting MWCNT nanoarchitectures were covalently assembled into silica nanoparticles, which exhibited specific and controllable morphologies and were used to reinforce biodegradable PLA. The tensile strength and the heat deflection temperature (HDT of the PLA/MWCNT-grafted silica nanocomposites increased when the MWCNT-grafted silica was applied to the PLA matrix; by contrast, the surface resistivity of the PLA/MWCNT-grafted silica nanocomposites appeared to decline as the amount of MWCNT-grafted silica in the PLA matrix increased. Overall, the reinforcement of PLA using MWCNT-grafted silica nanoarchitectures was efficient and improved its mechanical properties, heat resistance, and electrical resistivity.

  4. Electrochemical Supercapacitor Electrodes from Sponge-like Graphene Nanoarchitectures with Ultrahigh Power Density.

    Science.gov (United States)

    Xu, Zhanwei; Li, Zhi; Holt, Chris M B; Tan, Xuehai; Wang, Huanlei; Amirkhiz, Babak Shalchi; Stephenson, Tyler; Mitlin, David

    2012-10-18

    We employed a microwave synthesis process of cobalt phthalocyanine molecules templated by acid-functionalized multiwalled carbon nanotubes to create three-dimensional sponge-like graphene nanoarchitectures suited for ionic liquid-based electrochemical capacitor electrodes that operate at very high scan rates. The sequential "bottom-up" molecular synthesis and subsequent carbonization process took less than 20 min to complete. The 3D nanoarchitectures are able to deliver an energy density of 7.1 W·h kg(-1) even at an extra high power density of 48 000 W kg(-1). In addition, the ionic liquid supercapacitor based on this material works very well at room temperature due to its fully opened structures, which is ideal for the high-power energy application requiring more tolerance to temperature variation. Moreover, the structures are stable in both ionic liquids and 1 M H2SO4, retaining 90 and 98% capacitance after 10 000 cycles, respectively.

  5. Hierarchical mesoporous graphene@Ni-Co-S arrays on nickel foam for high-performance supercapacitors

    International Nuclear Information System (INIS)

    Nguyen, Van Hoa; Lamiel, Charmaine; Shim, Jae-Jin

    2015-01-01

    Highlights: • Hierarchical mesoporous graphene@Ni-Co-S arays have been decorated on Ni foam. • The electrode exhibits a high specific capacitance of 9.2 F cm −1 at 100 mA cm −1 . • The electrode presents large electroactive surface area and excellent structural stability. - Abstract: Hierarchical mesoporous graphene and ternary nickel cobalt sulfide (Ni-Co-S) arrays on nickel foam were designed and fabricated by chemical vapor deposition and electrodeposition for supercapacitor applications. The electrodes exhibited rapid electron and ion transport, large electroactive surface area, and excellent structural stability owing to the highly conductive, mesoporous nature of graphene and the Ni-Co-S nanosheets, as well as to the open framework of the three-dimensional nanoarchitectures. The specific capacitance of the obtained electrode was as high as 9.2 F cm −1 at a high current density of 100 mA cm −1 , indicating promising applications as an efficient electrode for electrochemical capacitors

  6. Hierarchical mesoporous nickel cobaltite nanoneedle/carbon cloth arrays as superior flexible electrodes for supercapacitors

    Science.gov (United States)

    2014-01-01

    Hierarchical mesoporous NiCo2O4 nanoneedle arrays on carbon cloth have been fabricated by a simple hydrothermal approach combined with a post-annealing treatment. Such unique array nanoarchitectures exhibit remarkable electrochemical performance with high capacitance and desirable cycle life at high rates. When evaluated as an electrode material for supercapacitors, the NiCo2O4 nanoneedle arrays supported on carbon cloth was able to deliver high specific capacitance of 660 F g-1 at current densities of 2 A g-1 in 2 M KOH aqueous solution. In addition, the composite electrode shows excellent mechanical behavior and long-term cyclic stability (91.8% capacitance retention after 3,000 cycles). The fabrication method presented here is facile, cost-effective, and scalable, which may open a new pathway for real device applications. PMID:24661431

  7. Mesoporous titanium dioxide (TiO2) with hierarchically 3D dendrimeric architectures: formation mechanism and highly enhanced photocatalytic activity.

    Science.gov (United States)

    Li, Xiao-Yun; Chen, Li-Hua; Rooke, Joanna Claire; Deng, Zhao; Hu, Zhi-Yi; Wang, Shao-Zhuan; Wang, Li; Li, Yu; Krief, Alain; Su, Bao-Lian

    2013-03-15

    Mesoporous TiO(2) with a hierarchically 3D dendrimeric nanostructure comprised of nanoribbon building units has been synthesized via a spontaneous self-formation process from various titanium alkoxides. These hierarchically 3D dendrimeric architectures can be obtained by a very facile, template-free method, by simply dropping a titanium butoxide precursor into methanol solution. The novel configuration of the mesoporous TiO(2) nanostructure in nanoribbon building units yields a high surface area. The calcined samples show significantly enhanced photocatalytic activity and degradation rates owing to the mesoporosity and their improved crystallinity after calcination. Furthermore, the 3D dendrimeric architectures can be preserved after phase transformation from amorphous TiO(2) to anatase or rutile, which occurs during calcination. In addition, the spontaneous self-formation process of mesoporous TiO(2) with hierarchically 3D dendrimeric architectures from the hydrolysis and condensation reaction of titanium butoxide in methanol has been followed by in situ optical microscopy (OM), revealing the secret on the formation of hierarchically 3D dendrimeric nanostructures. Moreover, mesoporous TiO(2) nanostructures with similar hierarchically 3D dendrimeric architectures can also be obtained using other titanium alkoxides. The porosities and nanostructures of the resultant products were characterized by SEM, TEM, XRD, and N(2) adsorption-desorption measurements. The present work provides a facile and reproducible method for the synthesis of novel mesoporous TiO(2) nanoarchitectures, which in turn could herald the fabrication of more efficient photocatalysts. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. On/off-switchable anti-neoplastic nanoarchitecture

    Science.gov (United States)

    Patra, Hirak K.; Imani, Roghayeh; Jangamreddy, Jaganmohan R.; Pazoki, Meysam; Iglič, Aleš; Turner, Anthony P. F.; Tiwari, Ashutosh

    2015-09-01

    Throughout the world, there are increasing demands for alternate approaches to advanced cancer therapeutics. Numerous potentially chemotherapeutic compounds are developed every year for clinical trial and some of them are considered as potential drug candidates. Nanotechnology-based approaches have accelerated the discovery process, but the key challenge still remains to develop therapeutically viable and physiologically safe materials suitable for cancer therapy. Here, we report a high turnover, on/off-switchable functionally popping reactive oxygen species (ROS) generator using a smart mesoporous titanium dioxide popcorn (TiO2 Pops) nanoarchitecture. The resulting TiO2 Pops, unlike TiO2 nanoparticles (TiO2 NPs), are exceptionally biocompatible with normal cells. Under identical conditions, TiO2 Pops show very high photocatalytic activity compared to TiO2 NPs. Upon on/off-switchable photo activation, the TiO2 Pops can trigger the generation of high-turnover flash ROS and can deliver their potential anticancer effect by enhancing the intracellular ROS level until it crosses the threshold to open the ‘death gate’, thus reducing the survival of cancer cells by at least six times in comparison with TiO2 NPs without affecting the normal cells.

  9. Self-assembled hierarchical nanostructures for high-efficiency porous photonic crystals.

    Science.gov (United States)

    Passoni, Luca; Criante, Luigino; Fumagalli, Francesco; Scotognella, Francesco; Lanzani, Guglielmo; Di Fonzo, Fabio

    2014-12-23

    The nanoscale modulation of material properties such as porosity and morphology is used in the natural world to mold the flow of light and to obtain structural colors. The ability to mimic these strategies while adding technological functionality has the potential to open up a broad array of applications. Porous photonic crystals are one such technological candidate, but have typically underachieved in terms of available materials, structural and optical quality, compatibility with different substrates (e.g., silicon, flexible organics), and scalability. We report here an alternative fabrication method based on the bottom-up self-assembly of elementary building blocks from the gas phase into high surface area photonic hierarchical nanostructures at room temperature. Periodic refractive index modulation is achieved by stacking layers with different nanoarchitectures. High-efficiency porous Bragg reflectors are successfully fabricated with sub-micrometer thick films on glass, silicon, and flexible substrates. High diffraction efficiency broadband mirrors (R≈1), opto-fluidic switches, and arrays of photonic crystal pixels with size<10 μm are demonstrated. Possible applications in filtering, sensing, electro-optical modulation, solar cells, and photocatalysis are envisioned.

  10. TiO2 nanowire-templated hierarchical nanowire network as water-repelling coating

    Science.gov (United States)

    Hang, Tian; Chen, Hui-Jiuan; Xiao, Shuai; Yang, Chengduan; Chen, Meiwan; Tao, Jun; Shieh, Han-ping; Yang, Bo-ru; Liu, Chuan; Xie, Xi

    2017-12-01

    Extraordinary water-repelling properties of superhydrophobic surfaces make them novel candidates for a great variety of potential applications. A general approach to achieve superhydrophobicity requires low-energy coating on the surface and roughness on nano- and micrometre scale. However, typical construction of superhydrophobic surfaces with micro-nano structure through top-down fabrication is restricted by sophisticated fabrication techniques and limited choices of substrate materials. Micro-nanoscale topographies templated by conventional microparticles through surface coating may produce large variations in roughness and uncontrollable defects, resulting in poorly controlled surface morphology and wettability. In this work, micro-nanoscale hierarchical nanowire network was fabricated to construct self-cleaning coating using one-dimensional TiO2 nanowires as microscale templates. Hierarchical structure with homogeneous morphology was achieved by branching ZnO nanowires on the TiO2 nanowire backbones through hydrothermal reaction. The hierarchical nanowire network displayed homogeneous micro/nano-topography, in contrast to hierarchical structure templated by traditional microparticles. This hierarchical nanowire network film exhibited high repellency to both water and cell culture medium after functionalization with fluorinated organic molecules. The hierarchical structure templated by TiO2 nanowire coating significantly increased the surface superhydrophobicity compared to vertical ZnO nanowires with nanotopography alone. Our results demonstrated a promising strategy of using nanowires as microscale templates for the rational design of hierarchical coatings with desired superhydrophobicity that can also be applied to various substrate materials.

  11. Rational design of anatase TiO2 architecture with hierarchical nanotubes and hollow microspheres for high-performance dye-sensitized solar cells

    Science.gov (United States)

    Gu, Jiuwang; Khan, Javid; Chai, Zhisheng; Yuan, Yufei; Yu, Xiang; Liu, Pengyi; Wu, Mingmei; Mai, Wenjie

    2016-01-01

    Large surface area, sufficient light-harvesting and superior electron transport property are the major factors for an ideal photoanode of dye-sensitized solar cells (DSSCs), which requires rational design of the nanoarchitectures and smart integration of state-of-the-art technologies. In this work, a 3D anatase TiO2 architecture consisting of vertically aligned 1D hierarchical TiO2 nanotubes (NTs) with ultra-dense branches (HTNTs, bottom layer) and 0D hollow TiO2 microspheres with rough surface (HTS, top layer) is first successfully constructed on transparent conductive fluorine-doped tin oxide glass through a series of facile processes. When used as photoanodes, the DSSCs achieve a very large short-current density of 19.46 mA cm-2 and a high overall power conversion efficiency of 8.38%. The remarkable photovoltaic performance is predominantly ascribed to the enhanced charge transport capacity of the NTs (function as the electron highway), the large surface area of the branches (act as the electron branch lines), the pronounced light harvesting efficiency of the HTS (serve as the light scattering centers), and the engineered intimate interfaces between all of them (minimize the recombination effect). Our work demonstrates a possibility of fabricating superior photoanodes for high-performance DSSCs by rational design of nanoarchitectures and smart integration of multi-functional components.

  12. Architectural design, interior decoration, and three-dimensional plumbing en route to multifunctional nanoarchitectures.

    Science.gov (United States)

    Long, Jeffrey W

    2007-09-01

    Ultraporous aperiodic solids, such as aerogels and ambigels, are sol-gel-derived equivalents of architectures. The walls are defined by the nanoscopic, covalently bonded solid network of the gel. The vast open, interconnected space characteristic of a building is represented by the three-dimensionally continuous nanoscopic pore network. We discuss how an architectural construct serves as a powerful metaphor that guides the chemist in the design of aerogel-like nanoarchitectures and in their physical and chemical transformation into multifunctional objects that yield high performance for rate-critical applications.

  13. Probing properties, stability, and performances of hierarchical meso-porous materials with nano-scale interfaces

    International Nuclear Information System (INIS)

    Baldinozzi, Gianguido; Gosset, Dominique; Simeone, David; Muller, Guillaume; Laberty-Robert, Christel; Sanchez, Clement

    2012-01-01

    Nano-crystals growth mechanism embedded into meso-porous thin films has been determined directly from grazing incidence X-ray diffraction data. We have shown, for the first time, that surface capillary forces control the growth mechanism of nano-crystals into these nano-architectures. Moreover, these data allow an estimation of the surface tension of the nano-crystals organized into a 3-D nano-architecture. The analysis of the variations in the strain field of these nano-crystals gives information on the evolution of the microstructure of these meso-porous films, that is, the contacts among nano-crystals. This work represents the first application of grazing incidence X-ray for understanding stability and performances of meso-porous thin films. This approach can be used to understand the structural stability of these nano-architectures at high temperature. (authors)

  14. Self-Reconstructed Formation of a One-Dimensional Hierarchical Porous Nanostructure Assembled by Ultrathin TiO2 Nanobelts for Fast and Stable Lithium Storage.

    Science.gov (United States)

    Liu, Yuan; Yan, Xiaodong; Xu, Bingqing; Lan, Jinle; Yu, Yunhua; Yang, Xiaoping; Lin, Yuanhua; Nan, Cewen

    2018-06-06

    Owing to their unique structural advantages, TiO 2 hierarchical nanostructures assembled by low-dimensional (LD) building blocks have been extensively used in the energy-storage/-conversion field. However, it is still a big challenge to produce such advanced structures by current synthetic techniques because of the harsh conditions needed to generate primary LD subunits. Herein, a novel one-dimensional (1D) TiO 2 hierarchical porous fibrous nanostructure constructed by TiO 2 nanobelts is synthesized by combining a room-temperature aqueous solution growth mechanism with the electrospinning technology. The nanobelt-constructed 1D hierarchical nanoarchitecture is evolves directly from the amorphous TiO 2 /SiO 2 composite fibers in alkaline solutions at ambient conditions without any catalyst and other reactant. Benefiting from the unique structural features such as 1D nanoscale building blocks, large surface area, and numerous interconnected pores, as well as mixed phase anatase-TiO 2 (B), the optimum 1D TiO 2 hierarchical porous nanostructure shows a remarkable high-rate performance when tested as an anode material for lithium-ion batteries (107 mA h g -1 at ∼10 A g -1 ) and can be used in a hybrid lithium-ion supercapacitor with very stable lithium-storage performance (a capacity retention of ∼80% after 3000 cycles at 2 A g -1 ). The current work presents a scalable and cost-effective method for the synthesis of advanced TiO 2 hierarchical materials for high-power and stable energy-storage/-conversion devices.

  15. Bio-inspired Plasmonic Nanoarchitectured Hybrid System Towards Enhanced Far Red-to-Near Infrared Solar Photocatalysis

    OpenAIRE

    Runyu Yan; Min Chen; Han Zhou; Tian Liu; Xingwei Tang; Ke Zhang; Hanxing Zhu; Jinhua Ye; Di Zhang; Tongxiang Fan

    2016-01-01

    Solar conversion to fuels or to electricity in semiconductors using far red-to-near infrared (NIR) light, which accounts for about 40% of solar energy, is highly significant. One main challenge is the development of novel strategies for activity promotion and new basic mechanisms for NIR response. Mother Nature has evolved to smartly capture far red-to-NIR light via their intelligent systems due to unique micro/nanoarchitectures, thus motivating us for biomimetic design. Here we report the fi...

  16. Influence of the ZnO nanoarchitecture on the electrochemical performances of binder-free anodes for Li storage

    Energy Technology Data Exchange (ETDEWEB)

    Dall' Asta, V.; Tealdi, C.; Resmini, A.; Anselmi Tamburini, U.; Mustarelli, P., E-mail: piercarlo.mustarelli@unipv.it; Quartarone, E.

    2017-03-15

    Zinc oxide nanoarchitectures may be employed as binder-free, high specific capacity anodes for lithium batteries. By means of simple and low-impact wet chemistry approaches, we synthesized 1D (nanorods), 2D (single- and multi-layered nanosheets), and 3D (nanobrushes) ZnO arrays. These nanoarchitectures were compared as far as concerns their electrochemical properties and the structural modifications upon lithiation/delithiation. The best results were offered by 2D nanosheets, which showed reversible capacity of the order of 400 mAhg{sup −1} after 100 cycles at 1 Ag{sup −1}. This was due to: i) small nanoparticles, with average diameter of about 10 nm, which maximize the array specific surface area and favor the formation of the LiZn alloy; ii) the presence of a mesoporous texture, which allows larger space for accommodating the volume changes upon lithiation/delithiation. However, also these 2D structures showed large irreversible capacity losses. Our work highlights the need for more efficient buffering solutions in ZnO binder-free nanostructured anodes. - Graphical abstract: ZnO nanosheets as anode materials for lithium batteries.

  17. Bio-inspired Plasmonic Nanoarchitectured Hybrid System Towards Enhanced Far Red-to-Near Infrared Solar Photocatalysis

    Science.gov (United States)

    Yan, Runyu; Chen, Min; Zhou, Han; Liu, Tian; Tang, Xingwei; Zhang, Ke; Zhu, Hanxing; Ye, Jinhua; Zhang, Di; Fan, Tongxiang

    2016-01-01

    Solar conversion to fuels or to electricity in semiconductors using far red-to-near infrared (NIR) light, which accounts for about 40% of solar energy, is highly significant. One main challenge is the development of novel strategies for activity promotion and new basic mechanisms for NIR response. Mother Nature has evolved to smartly capture far red-to-NIR light via their intelligent systems due to unique micro/nanoarchitectures, thus motivating us for biomimetic design. Here we report the first demonstration of a new strategy, based on adopting nature’s far red-to-NIR responsive architectures for an efficient bio-inspired photocatalytic system. The system is constructed by controlled assembly of light-harvesting plasmonic nanoantennas onto a typical photocatalytic unit with butterfly wings’ 3D micro/nanoarchitectures. Experiments and finite-difference time-domain (FDTD) simulations demonstrate the structural effects on obvious far red-to-NIR photocatalysis enhancement, which originates from (1) Enhancing far red-to-NIR (700~1200 nm) harvesting, up to 25%. (2) Enhancing electric-field amplitude of localized surface plasmon (LSPs) to more than 3.5 times than that of the non-structured one, which promotes the rate of electron-hole pair formation, thus substantially reinforcing photocatalysis. This proof-of-concept study provides a new methodology for NIR photocatalysis and would potentially guide future conceptually new NIR responsive system designs.

  18. Bio-inspired Plasmonic Nanoarchitectured Hybrid System Towards Enhanced Far Red-to-Near Infrared Solar Photocatalysis.

    Science.gov (United States)

    Yan, Runyu; Chen, Min; Zhou, Han; Liu, Tian; Tang, Xingwei; Zhang, Ke; Zhu, Hanxing; Ye, Jinhua; Zhang, Di; Fan, Tongxiang

    2016-01-28

    Solar conversion to fuels or to electricity in semiconductors using far red-to-near infrared (NIR) light, which accounts for about 40% of solar energy, is highly significant. One main challenge is the development of novel strategies for activity promotion and new basic mechanisms for NIR response. Mother Nature has evolved to smartly capture far red-to-NIR light via their intelligent systems due to unique micro/nanoarchitectures, thus motivating us for biomimetic design. Here we report the first demonstration of a new strategy, based on adopting nature's far red-to-NIR responsive architectures for an efficient bio-inspired photocatalytic system. The system is constructed by controlled assembly of light-harvesting plasmonic nanoantennas onto a typical photocatalytic unit with butterfly wings' 3D micro/nanoarchitectures. Experiments and finite-difference time-domain (FDTD) simulations demonstrate the structural effects on obvious far red-to-NIR photocatalysis enhancement, which originates from (1) Enhancing far red-to-NIR (700~1200 nm) harvesting, up to 25%. (2) Enhancing electric-field amplitude of localized surface plasmon (LSPs) to more than 3.5 times than that of the non-structured one, which promotes the rate of electron-hole pair formation, thus substantially reinforcing photocatalysis. This proof-of-concept study provides a new methodology for NIR photocatalysis and would potentially guide future conceptually new NIR responsive system designs.

  19. Piezoelectric touch-sensitive flexible hybrid energy harvesting nanoarchitectures

    International Nuclear Information System (INIS)

    Choi, Dukhyun; Kim, Eok Su; Kim, Tae Sang; Lee, Sang Yoon; Choi, Jae-Young; Kim, Jong Min; Lee, Keun Young; Lee, Kang Hyuck; Kim, Sang-Woo

    2010-01-01

    In this work, we report a flexible hybrid nanoarchitecture that can be utilized as both an energy harvester and a touch sensor on a single platform without any cross-talk problems. Based on the electron transport and piezoelectric properties of a zinc oxide (ZnO) nanostructured thin film, a hybrid cell was designed and the total thickness was below 500 nm on a plastic substrate. Piezoelectric touch signals were demonstrated under independent and simultaneous operations with respect to photo-induced charges. Different levels of piezoelectric output signals from different magnitudes of touching pressures suggest new user-interface functions from our hybrid cell. From a signal controller, the decoupled performance of a hybrid cell as an energy harvester and a touch sensor was confirmed. Our hybrid approach does not require additional assembly processes for such multiplex systems of an energy harvester and a touch sensor since we utilize the coupled material properties of ZnO and output signal processing. Furthermore, the hybrid cell can provide a multi-type energy harvester by both solar and mechanical touching energies.

  20. Extraordinarily Stretchable All-Carbon Collaborative Nanoarchitectures for Epidermal Sensors

    KAUST Repository

    Cai, Yichen

    2017-06-16

    Multifunctional microelectronic components featuring large stretchability, high sensitivity, high signal-to-noise ratio (SNR), and broad sensing range have attracted a huge surge of interest with the fast developing epidermal electronic systems. Here, the epidermal sensors based on all-carbon collaborative percolation network are demonstrated, which consist 3D graphene foam and carbon nanotubes (CNTs) obtained by two-step chemical vapor deposition processes. The nanoscaled CNT networks largely enhance the stretchability and SNR of the 3D microarchitectural graphene foams, endowing the strain sensor with a gauge factor as high as 35, a wide reliable sensing range up to 85%, and excellent cyclic stability (>5000 cycles). The flexible and reversible strain sensor can be easily mounted on human skin as a wearable electronic device for real-time and high accuracy detecting of electrophysiological stimuli and even for acoustic vibration recognition. The rationally designed all-carbon nanoarchitectures are scalable, low cost, and promising in practical applications requiring extraordinary stretchability and ultrahigh SNRs.

  1. Extraordinarily Stretchable All-Carbon Collaborative Nanoarchitectures for Epidermal Sensors

    KAUST Repository

    Cai, Yichen; Shen, Jie; Dai, Ziyang; Zang, Xiaoxian; Dong, Qiuchun; Guan, Guofeng; Li, Lain-Jong; Huang, Wei; Dong, Xiaochen

    2017-01-01

    Multifunctional microelectronic components featuring large stretchability, high sensitivity, high signal-to-noise ratio (SNR), and broad sensing range have attracted a huge surge of interest with the fast developing epidermal electronic systems. Here, the epidermal sensors based on all-carbon collaborative percolation network are demonstrated, which consist 3D graphene foam and carbon nanotubes (CNTs) obtained by two-step chemical vapor deposition processes. The nanoscaled CNT networks largely enhance the stretchability and SNR of the 3D microarchitectural graphene foams, endowing the strain sensor with a gauge factor as high as 35, a wide reliable sensing range up to 85%, and excellent cyclic stability (>5000 cycles). The flexible and reversible strain sensor can be easily mounted on human skin as a wearable electronic device for real-time and high accuracy detecting of electrophysiological stimuli and even for acoustic vibration recognition. The rationally designed all-carbon nanoarchitectures are scalable, low cost, and promising in practical applications requiring extraordinary stretchability and ultrahigh SNRs.

  2. Nucleation and Crystal Growth in the Formation of Hierarchical Three-Dimensional Nanoarchitecture

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xudong [Univ. of Wisconsin, Madison, WI (United States)

    2018-02-02

    project brings a new level of transformative knowledge on nucleation and crystal growth in the SPCVD NR growth processes. Specifically, quantification of the activation energy landscape guided by the OL law will allow us to establish a critical knowledge base of nucleation kinetics for SPCVD synthesis of NR branches on different material surfaces. Studying the OA kinetics will establish a transformative knowledge base to support this new crystal growth mechanism that can be applied to many functional material systems. This research will pave the road toward a capable and versatile synthesis technology for creating 3D hierarchical mesoscale structures.

  3. Hierarchically porous MnO2 microspheres doped with homogeneously distributed Fe3O4 nanoparticles for supercapacitors.

    Science.gov (United States)

    Zhu, Jian; Tang, Shaochun; Xie, Hao; Dai, Yuming; Meng, Xiangkang

    2014-10-22

    Hierarchically porous yet densely packed MnO2 microspheres doped with Fe3O4 nanoparticles are synthesized via a one-step and low-cost ultrasound assisted method. The scalable synthesis is based on Fe(2+) and ultrasound assisted nucleation and growth at a constant temperature in a range of 25-70 °C. Single-crystalline Fe3O4 particles of 3-5 nm in diameter are homogeneously distributed throughout the spheres and none are on the surface. A systematic optimization of reaction parameters results in isolated, porous, and uniform Fe3O4-MnO2 composite spheres. The spheres' average diameter is dependent on the temperature, and thus is controllable in a range of 0.7-1.28 μm. The involved growth mechanism is discussed. The specific capacitance is optimized at an Fe/Mn atomic ratio of r = 0.075 to be 448 F/g at a scan rate of 5 mV/s, which is nearly 1.5 times that of the extremely high reported value for MnO2 nanostructures (309 F/g). Especially, such a structure allows significantly improved stability at high charging rates. The composite has a capacitance of 367.4 F/g at a high scan rate of 100 mV/s, which is 82% of that at 5 mV/s. Also, it has an excellent cycling performance with a capacitance retention of 76% after 5000 charge/discharge cycles at 5 A/g.

  4. Strong photocurrent enhancements in plasmonic organic photovoltaics by biomimetic nanoarchitectures with efficient light harvesting.

    Science.gov (United States)

    Leem, Jung Woo; Kim, Sehwan; Park, Chihyun; Kim, Eunkyoung; Yu, Jae Su

    2015-04-01

    We propose the biomimetic moth-eye nanoarchitectures as a novel plasmonic light-harvesting structure for further enhancing the solar-generated photocurrents in organic photovoltaics (OPVs). The full moth-eye nanoarchitectures are composed of two-dimensional hexagonal periodic grating arrays on surfaces of both the front zinc oxide (ZnO) and rear active layers, which are prepared by a simple and cost-effective soft imprint nanopatterning technique. For the 380 nm period ZnO and 650 nm period active gratings (i.e., ZnO(P380)/Active(P650)), the poly(3-hexylthiophene-2,5-diyl):indene-C60 bis-adduct (P3HT:ICBA)-based plasmonic OPVs exhibit an improvement of the absorption spectrum compared to the pristine OPVs over a broad wavelength range of 350-750 nm, showing absorption enhancement peaks at wavelengths of ∼370, 450, and 670 nm, respectively. This leads to a considerable increase of short-circuit current density (Jsc) from 10.9 to 13.32 mA/cm(2), showing a large Jsc enhancement percentage of ∼22.2%. As a result, the strongly improved power conversion efficiency (PCE) of 6.28% is obtained compared to that (i.e., PCE = 5.12%) of the pristine OPVs. For the angle-dependent light-absorption characteristics, the plasmonic OPVs with ZnO(P380)/Active(P650) have a better absorption performance than that of the pristine OPVs at incident angles of 20-70°. For optical absorption characteristics and near-field intensity distributions of plasmonic OPVs, theoretical analyses are also performed by a rigorous coupled-wave analysis method, which gives a similar tendency with the experimentally measured data.

  5. Hierarchical Assembly of Multifunctional Oxide-based Composite Nanostructures for Energy and Environmental Applications

    Directory of Open Access Journals (Sweden)

    Hui-Jan Lin

    2012-06-01

    Full Text Available Composite nanoarchitectures represent a class of nanostructured entities that integrates various dissimilar nanoscale building blocks including nanoparticles, nanowires, and nanofilms toward realizing multifunctional characteristics. A broad array of composite nanoarchitectures can be designed and fabricated, involving generic materials such as metal, ceramics, and polymers in nanoscale form. In this review, we will highlight the latest progress on composite nanostructures in our research group, particularly on various metal oxides including binary semiconductors, ABO3-type perovskites, A2BO4 spinels and quaternary dielectric hydroxyl metal oxides (AB(OH6 with diverse application potential. Through a generic template strategy in conjunction with various synthetic approaches—such as hydrothermal decomposition, colloidal deposition, physical sputtering, thermal decomposition and thermal oxidation, semiconductor oxide alloy nanowires, metal oxide/perovskite (spinel composite nanowires, stannate based nanocompostes, as well as semiconductor heterojunction—arrays and networks have been self-assembled in large scale and are being developed as promising classes of composite nanoarchitectures, which may open a new array of advanced nanotechnologies in solid state lighting, solar absorption, photocatalysis and battery, auto-emission control, and chemical sensing.

  6. A metal-organic framework derived hierarchical nickel-cobalt sulfide nanosheet array on Ni foam with enhanced electrochemical performance for supercapacitors.

    Science.gov (United States)

    Tao, Kai; Han, Xue; Ma, Qingxiang; Han, Lei

    2018-03-06

    Metal-organic frameworks (MOFs) have emerged as a new platform for the construction of various functional materials for energy related applications. Here, a facile MOF templating method is developed to fabricate a hierarchical nickel-cobalt sulfide nanosheet array on conductive Ni foam (Ni-Co-S/NF) as a binder-free electrode for supercapacitors. A uniform 2D Co-MOF nanowall array is first grown in situ on Ni foam in aqueous solution at room temperature, and then the Co-MOF nanowalls are converted into hierarchical Ni-Co-S nanoarchitectures via an etching and ion-exchange reaction with Ni(NO 3 ) 2 , and a subsequent solvothermal sulfurization. Taking advantage of the compositional and structural merits of the hierarchical Ni-Co-S nanosheet array and conductive Ni foam, such as fast electron transportation, short ion diffusion path, abundant active sites and rich redox reactions, the obtained Ni-Co-S/NF electrode exhibits excellent electrochemical capacitive performance (1406.9 F g -1 at 0.5 A g -1 , 53.9% retention at 10 A g -1 and 88.6% retention over 1000 cycles), which is superior to control CoS/NF. An asymmetric supercapacitor (ASC) assembled by using the as-fabricated Ni-Co-S/NF as the positive electrode and activated carbon (AC) as the negative electrode delivers a high energy density of 24.8 W h kg -1 at a high power density of 849.5 W kg -1 . Even when the power density is as high as 8.5 kW kg -1 , the ASC still exhibits a high energy density of 12.5 W h kg -1 . This facile synthetic strategy can also be extended to fabricate other hierarchical integrated electrodes for high-efficiency electrochemical energy conversion and storage devices.

  7. Multilayered nano-architecture of variable sized graphene nanosheets for enhanced supercapacitor electrode performance.

    Science.gov (United States)

    Biswas, Sanjib; Drzal, Lawrence T

    2010-08-01

    The diverse physical and chemical aspects of graphene nanosheets such as particle size surface area and edge chemistry were combined to fabricate a new supercapacitor electrode architecture consisting of a highly aligned network of large-sized nanosheets as a series of current collectors within a multilayer configuration of bulk electrode. Capillary driven self-assembly of monolayers of graphene nanosheets was employed to create a flexible, multilayer, free-standing film of highly hydrophobic nanosheets over large macroscopic areas. This nanoarchitecture exhibits a high-frequency capacitative response and a nearly rectangular cyclic voltammogram at 1000 mV/s scanning rate and possesses a rapid current response, small equivalent series resistance (ESR), and fast ionic diffusion for high-power electrical double-layer capacitor (EDLC) application.

  8. Complex dewetting scenarios of ultrathin silicon films for large-scale nanoarchitectures.

    Science.gov (United States)

    Naffouti, Meher; Backofen, Rainer; Salvalaglio, Marco; Bottein, Thomas; Lodari, Mario; Voigt, Axel; David, Thomas; Benkouider, Abdelmalek; Fraj, Ibtissem; Favre, Luc; Ronda, Antoine; Berbezier, Isabelle; Grosso, David; Abbarchi, Marco; Bollani, Monica

    2017-11-01

    Dewetting is a ubiquitous phenomenon in nature; many different thin films of organic and inorganic substances (such as liquids, polymers, metals, and semiconductors) share this shape instability driven by surface tension and mass transport. Via templated solid-state dewetting, we frame complex nanoarchitectures of monocrystalline silicon on insulator with unprecedented precision and reproducibility over large scales. Phase-field simulations reveal the dominant role of surface diffusion as a driving force for dewetting and provide a predictive tool to further engineer this hybrid top-down/bottom-up self-assembly method. Our results demonstrate that patches of thin monocrystalline films of metals and semiconductors share the same dewetting dynamics. We also prove the potential of our method by fabricating nanotransfer molding of metal oxide xerogels on silicon and glass substrates. This method allows the novel possibility of transferring these Si-based patterns on different materials, which do not usually undergo dewetting, offering great potential also for microfluidic or sensing applications.

  9. A hybrid deterministic-probabilistic approach to model the mechanical response of helically arranged hierarchical strands

    Science.gov (United States)

    Fraldi, M.; Perrella, G.; Ciervo, M.; Bosia, F.; Pugno, N. M.

    2017-09-01

    Very recently, a Weibull-based probabilistic strategy has been successfully applied to bundles of wires to determine their overall stress-strain behaviour, also capturing previously unpredicted nonlinear and post-elastic features of hierarchical strands. This approach is based on the so-called "Equal Load Sharing (ELS)" hypothesis by virtue of which, when a wire breaks, the load acting on the strand is homogeneously redistributed among the surviving wires. Despite the overall effectiveness of the method, some discrepancies between theoretical predictions and in silico Finite Element-based simulations or experimental findings might arise when more complex structures are analysed, e.g. helically arranged bundles. To overcome these limitations, an enhanced hybrid approach is proposed in which the probability of rupture is combined with a deterministic mechanical model of a strand constituted by helically-arranged and hierarchically-organized wires. The analytical model is validated comparing its predictions with both Finite Element simulations and experimental tests. The results show that generalized stress-strain responses - incorporating tension/torsion coupling - are naturally found and, once one or more elements break, the competition between geometry and mechanics of the strand microstructure, i.e. the different cross sections and helical angles of the wires in the different hierarchical levels of the strand, determines the no longer homogeneous stress redistribution among the surviving wires whose fate is hence governed by a "Hierarchical Load Sharing" criterion.

  10. High Performance Flexible Pseudocapacitor based on Nano-architectured Spinel Nickel Cobaltite Anchored Multiwall Carbon Nanotubes

    International Nuclear Information System (INIS)

    Shakir, Imran

    2014-01-01

    Highlights: • Two-step fabrication method for nano-architectured spinel nickel cobaltite (NiCo 2 O 4 ) anchored MWCNTs composite. • High performance flexible energy-storage devices. • The NiCo 2 O 4 anchored MWCNTs Exhibits 2032 Fg −1 capacitance which is 1.62 times greater than pristine NiCo 2 O 4 at 1 Ag −1 . - Abstract: We demonstrate a facile two-step fabrication method for nano-architectured spinel nickel cobaltite (NiCo 2 O 4 ) anchored multiwall carbon nanotubes (MWCNTs) based electrodes for high performance flexible energy-storage devices. As electrode materials for flexible supercapacitors, the NiCo 2 O 4 anchored MWCNTs exhibits a high specific capacitance of 2032 Fg −1 , which is nearly 1.62 times greater than pristine NiCo 2 O 4 nanoflakes at 1 Ag −1 . The synthesized NiCo 2 O 4 anchored MWCNTs composite shows excellent rate performance (83.96% capacity retention at 30 Ag −1 ) and stability with coulombic efficiency over 96% after 5,000 cycles when being fully charged/discharged at 1 Ag −1 . Furthermore, NiCo 2 O 4 anchored MWCNTs achieve a maximum energy density of 48.32 Whkg −1 at a power density of 480 Wkg −1 which is 60% higher than pristine NiCo 2 O 4 electrode and significantly outperformed electrode materials based on NiCo 2 O 4 which are currently used in the state-of-the-art supercapacitors throughout the literature. This superior rate performance and high-capacity value offered by NiCo 2 O 4 anchored MWCNTs is mainly due to enhanced electronic and ionic conductivity, which provides a short diffusion path for ions and an easy access of electrolyte flow to nickel cobaltite redox centers besides the high conductivity of MWCNTs

  11. Merging K-means with hierarchical clustering for identifying general-shaped groups.

    Science.gov (United States)

    Peterson, Anna D; Ghosh, Arka P; Maitra, Ranjan

    2018-01-01

    Clustering partitions a dataset such that observations placed together in a group are similar but different from those in other groups. Hierarchical and K -means clustering are two approaches but have different strengths and weaknesses. For instance, hierarchical clustering identifies groups in a tree-like structure but suffers from computational complexity in large datasets while K -means clustering is efficient but designed to identify homogeneous spherically-shaped clusters. We present a hybrid non-parametric clustering approach that amalgamates the two methods to identify general-shaped clusters and that can be applied to larger datasets. Specifically, we first partition the dataset into spherical groups using K -means. We next merge these groups using hierarchical methods with a data-driven distance measure as a stopping criterion. Our proposal has the potential to reveal groups with general shapes and structure in a dataset. We demonstrate good performance on several simulated and real datasets.

  12. Formation of 1D hierarchical structures composed of Ni{sub 3}S{sub 2} nanosheets on CNTs backbone for supercapacitors and photocatalytic H{sub 2} production

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ting; Wu, Hao Bin; Wang, Yabo; Xu, Rong; Lou, Xiong Wen [David] [School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457 (Singapore)

    2012-12-15

    One-dimensional (1D) hierarchical structures composed of Ni{sub 3}S{sub 2} nanosheets grown on carbon nanotube (CNT) backbone (denoted as CNT rate at Ni{sub 3}S{sub 2}) are fabricated by a rational multi-step transformation route. The first step involves coating the CNT backbone with a layer of silica to form CNT rate at SiO{sub 2}, which serves as the substrate for the growth of nickel silicate (NiSilicate) nanosheets in the second step to form CNT rate at SiO{sub 2} rate at NiSilicate core-double shell 1D structures. Finally the as-formed CNT rate at SiO{sub 2} rate at NiSilicate 1D structures are converted into CNT-supported Ni{sub 3}S{sub 2} nanosheets via hydrothermal treatment in the presence of Na{sub 2}S. Simultaneously the intermediate silica layer is eliminated during the hydrothermal treatment, leading to the formation of CNT rate at Ni{sub 3}S{sub 2} nanostructures. Because of the unique hybrid nano-architecture, the as-prepared 1D hierarchical structure is shown to exhibit excellent performance in both supercapacitors and photocatalytic H{sub 2} production. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. The effects of aging time on the size, morphology, oriented attachment and magnetic behavior of hematite nanocrystals synthesized by forced hydrolysis of FeIII solutions

    International Nuclear Information System (INIS)

    Luna, C.; Barriga-Castro, E.D.; Mendoza-Reséndez, R.

    2014-01-01

    Graphical abstract: -- Abstract: Three-dimensional (3-D) nanoarchitectures composed of self-organized hematite nanocrystals were successfully prepared by thermally induced hydrolysis of iron (III) solutions in the presence of urea and without additional stabilizers. The size, morphology and microstructure of these nanocrystal aggregates were investigated as a function of aging time using X-ray diffraction, transmission electron microscopy and selected area electron diffraction. The evolution of the microstructural parameters, including crystallite size, root mean square strain and lattice parameters, was analyzed by the Rietveld method using the MAUD software program and adopting the size–strain–shape Popa model. In addition, vibrating-sample magnetometry measurements were carried out to examine the magnetic behavior of the nanoarchitectures. These studies suggested that the formation mechanism of the observed nanoarchitectures consisted of several self-organization processes linked in hierarchical levels. The nanocrystals within these nanoarchitectures grew in size by Ostwald ripening and subsequent grain growth when they were aged at 98 °C in tightly capped tubes for an aging time that varied from 2 h up to 45 days. The crystal morphology evolved favoring a rhombohedral shape until intergrowth between the densely packed nanocrystals occurred. Consequently, the morphology of the nanoarchitectures, their effective magnetic anisotropy, the occurrence of the Morin transition and the exchange bias effect were also strongly dependent on the aging time

  14. Presynaptic active zones of mammalian neuromuscular junctions: Nanoarchitecture and selective impairments in aging.

    Science.gov (United States)

    Badawi, Yomna; Nishimune, Hiroshi

    2018-02-01

    Neurotransmitter release occurs at active zones, which are specialized regions of the presynaptic membrane. A dense collection of proteins at the active zone provides a platform for molecular interactions that promote recruitment, docking, and priming of synaptic vesicles. At mammalian neuromuscular junctions (NMJs), muscle-derived laminin β2 interacts with presynaptic voltage-gated calcium channels to organize active zones. The molecular architecture of presynaptic active zones has been revealed using super-resolution microscopy techniques that combine nanoscale resolution and multiple molecular identification. Interestingly, the active zones of adult NMJs are not stable structures and thus become impaired during aging due to the selective degeneration of specific active zone proteins. This review will discuss recent progress in the understanding of active zone nanoarchitecture and the mechanisms underlying active zone organization in mammalian NMJs. Furthermore, we will summarize the age-related degeneration of active zones at NMJs, and the role of exercise in maintaining active zones. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  15. A General Synthesis Strategy for Hierarchical Porous Metal Oxide Hollow Spheres

    Directory of Open Access Journals (Sweden)

    Huadong Fu

    2015-01-01

    Full Text Available The hierarchical porous TiO2 hollow spheres were successfully prepared by using the hydrothermally synthesized colloidal carbon spheres as templates and tetrabutyl titanate as inorganic precursors. The diameter and wall thickness of hollow TiO2 spheres were determined by the hard templates and concentration of tetrabutyl titanate. The particle size, dispersity, homogeneity, and surface state of the carbon spheres can be easily controlled by adjusting the hydrothermal conditions and adding certain amount of the surfactants. The prepared hollow spheres possessed the perfect spherical shape, monodispersity, and hierarchically pore structures, and the further experiment verified that the present approach can be used to prepare other metal oxide hollow spheres, which could be used as catalysis, fuel cells, lithium-air battery, gas sensor, and so on.

  16. Hierarchical mesoporous/microporous carbon with graphitized frameworks for high-performance lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Yingying Lv

    2014-11-01

    Full Text Available A hierarchical meso-/micro-porous graphitized carbon with uniform mesopores and ordered micropores, graphitized frameworks, and extra-high surface area of ∼2200 m2/g, was successfully synthesized through a simple one-step chemical vapor deposition process. The commercial mesoporous zeolite Y was utilized as a meso-/ micro-porous template, and the small-molecule methane was employed as a carbon precursor. The as-prepared hierarchical meso-/micro-porous carbons have homogeneously distributed mesopores as a host for electrolyte, which facilitate Li+ ions transport to the large-area micropores, resulting a high reversible lithium ion storage of 1000 mA h/g and a high columbic efficiency of 65% at the first cycle.

  17. Dielectric study on hierarchical water structures restricted in cement and wood materials

    International Nuclear Information System (INIS)

    Abe, Fumiya; Nishi, Akihiro; Saito, Hironobu; Asano, Megumi; Watanabe, Seiei; Kita, Rio; Shinyashiki, Naoki; Yagihara, Shin; Fukuzaki, Minoru; Sudo, Seiichi; Suzuki, Youki

    2017-01-01

    Dielectric relaxation processes for mortar observed by broadband dielectric spectroscopy were analyzed in the drying and hydration processes for an aging sample in the frequency region from 1 MHz up to 2 MHz. At least two processes for structured water in the kHz frequency region and another mHz relaxation process affected by ionic behaviors were observed. Comparison of the relaxation parameters obtained for the drying and hydration processes suggests an existence of hierarchical water structures in the exchange of water molecules, which are originally exchanged from free water observed at around 20 GHz. The water molecules reflected in the lower frequency process of the two kHz relaxation processes are more restricted and take more homogeneous structures than the higher kHz relaxation process. These structured water usually hidden in large ionic behaviors for wood samples was observed by electrodes covered by a thin Teflon film, and hierarchical water structures were also suggested for wood samples. Dielectric spectroscopy technique is an effective tool to analyze the new concept of hierarchical water structures in complex materials. (paper)

  18. Titanium-Phosphonate-Based Metal-Organic Frameworks with Hierarchical Porosity for Enhanced Photocatalytic Hydrogen Evolution

    KAUST Repository

    Li, Hui

    2018-02-01

    Photocatalytic hydrogen production is crucial for solar-to-chemical conversion process, wherein high-efficiency photocatalysts lie in the heart of this area. Herein a new photocatalyst of hierarchically mesoporous titanium-phosphonate-based metal-organic frameworks, featuring well-structured spheres, periodic mesostructure and large secondary mesoporosity, are rationally designed with the complex of polyelectrolyte and cathodic surfactant serving as the template. The well-structured hierarchical porosity and homogeneously incorporated phosphonate groups can favor the mass transfer and strong optical absorption during the photocatalytic reactions. Correspondingly, the titanium phosphonates exhibit significantly improved photocatalytic hydrogen evolution rate along with impressive stability. This work can provide more insights into designing advanced photocatalysts for energy conversion and render a tunable platform in photoelectrochemical field.

  19. Titanium-Phosphonate-Based Metal-Organic Frameworks with Hierarchical Porosity for Enhanced Photocatalytic Hydrogen Evolution

    KAUST Repository

    Li, Hui; Sun, Ying; Yuan, Zhong-Yong; Zhu, Yun-Pei; Ma, Tianyi

    2018-01-01

    Photocatalytic hydrogen production is crucial for solar-to-chemical conversion process, wherein high-efficiency photocatalysts lie in the heart of this area. Herein a new photocatalyst of hierarchically mesoporous titanium-phosphonate-based metal-organic frameworks, featuring well-structured spheres, periodic mesostructure and large secondary mesoporosity, are rationally designed with the complex of polyelectrolyte and cathodic surfactant serving as the template. The well-structured hierarchical porosity and homogeneously incorporated phosphonate groups can favor the mass transfer and strong optical absorption during the photocatalytic reactions. Correspondingly, the titanium phosphonates exhibit significantly improved photocatalytic hydrogen evolution rate along with impressive stability. This work can provide more insights into designing advanced photocatalysts for energy conversion and render a tunable platform in photoelectrochemical field.

  20. Three-dimensional cheese-like carbon nanoarchitecture with tremendous surface area and pore construction derived from corn as superior electrode materials for supercapacitors

    Science.gov (United States)

    Gopiraman, Mayakrishnan; Deng, Dian; Kim, Byoung-Suhk; Chung, Ill-Min; Kim, Ick Soo

    2017-07-01

    Highly porous carbon nanoarchitectures (HPCNs) were derived from biomass materials, namely, corn fibers (CF), corn leafs (CL), and corn cobs (CC). We surprisingly found that by a very simple activation process the CF, CL, and CC materials can be transformed into exciting two-dimensional (2D) and three-dimensional (3D) carbon nanoarchitectures with excellent physicochemical properties. FESEM and HRTEM results confirmed a three different carbon forms (such as foams-like carbon, carbon sheets with several holes and cheese-like carbon morphology) of HPCNs. Huge surface area (2394-3475 m2/g) with excellent pore properties of HPCNs was determined by BET analysis. Well condensed graphitic plans of HPCNs were confirmed by XRD, XPS and Raman analyses. As an electrode material, HPCNs demonstrated a maximum specific capacitance (Cs) of 575 F/g in 1.0 M H2SO4 with good stability over 20,000 cycles. The CC-700 °C showed a tremendous Cs of 375 F/g even at 20000th cycles. To the best of our knowledge, this is the highest Cs by the biomass derived activated carbons in aqueous electrolytes. The CC-700 °C exhibited excellent charge-discharge behavior at various current densities (0.5-10 A g-1). Notably, CC-700 °C demonstrated an excellent Cs of 207 F/g at current density of 10 A g-1. An extraordinary change-discharge behavior was noticed at low current density of 0.5 A g-1.

  1. Hierarchical ordering with partial pairwise hierarchical relationships on the macaque brain data sets.

    Directory of Open Access Journals (Sweden)

    Woosang Lim

    Full Text Available Hierarchical organizations of information processing in the brain networks have been known to exist and widely studied. To find proper hierarchical structures in the macaque brain, the traditional methods need the entire pairwise hierarchical relationships between cortical areas. In this paper, we present a new method that discovers hierarchical structures of macaque brain networks by using partial information of pairwise hierarchical relationships. Our method uses a graph-based manifold learning to exploit inherent relationship, and computes pseudo distances of hierarchical levels for every pair of cortical areas. Then, we compute hierarchy levels of all cortical areas by minimizing the sum of squared hierarchical distance errors with the hierarchical information of few cortical areas. We evaluate our method on the macaque brain data sets whose true hierarchical levels are known as the FV91 model. The experimental results show that hierarchy levels computed by our method are similar to the FV91 model, and its errors are much smaller than the errors of hierarchical clustering approaches.

  2. Statistical shear lag model - unraveling the size effect in hierarchical composites.

    Science.gov (United States)

    Wei, Xiaoding; Filleter, Tobin; Espinosa, Horacio D

    2015-05-01

    Numerous experimental and computational studies have established that the hierarchical structures encountered in natural materials, such as the brick-and-mortar structure observed in sea shells, are essential for achieving defect tolerance. Due to this hierarchy, the mechanical properties of natural materials have a different size dependence compared to that of typical engineered materials. This study aimed to explore size effects on the strength of bio-inspired staggered hierarchical composites and to define the influence of the geometry of constituents in their outstanding defect tolerance capability. A statistical shear lag model is derived by extending the classical shear lag model to account for the statistics of the constituents' strength. A general solution emerges from rigorous mathematical derivations, unifying the various empirical formulations for the fundamental link length used in previous statistical models. The model shows that the staggered arrangement of constituents grants composites a unique size effect on mechanical strength in contrast to homogenous continuous materials. The model is applied to hierarchical yarns consisting of double-walled carbon nanotube bundles to assess its predictive capabilities for novel synthetic materials. Interestingly, the model predicts that yarn gauge length does not significantly influence the yarn strength, in close agreement with experimental observations. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Three-dimensional hierarchical NiCo2O4 nanowire@Ni3S2 nanosheet core/shell arrays for flexible asymmetric supercapacitors

    Science.gov (United States)

    Liu, Bo; Kong, Dezhi; Huang, Zhi Xiang; Mo, Runwei; Wang, Ye; Han, Zhaojun; Cheng, Chuanwei; Yang, Hui Ying

    2016-05-01

    Three-dimensional (3D) hierarchical NiCo2O4@Ni3S2 core/shell arrays on Ni foam were synthesized by a facile, stepwise synthesis approach. The 3D heterogeneous NiCo2O4 nanostructure forms an interconnected web-like scaffold and serves as the core for the Ni3S2 shell. The as-prepared NiCo2O4@Ni3S2 nanowire array (NWA) electrodes exhibited excellent electrochemical performance, such as high specific areal capacitance and excellent cycling stability. The specific areal capacitance of 3.0 F cm-2 at a current density of 5 mA cm-2 is among the highest values and the only 6.7% capacitance decay after 10 000 cycles demonstrates the excellent cycling stability. A flexible asymmetric supercapacitor (ASC) was fabricated with activated carbon (AC) as the anode and the obtained NiCo2O4@Ni3S2 NWAs as the cathode. The ASC device exhibited a high energy density of 1.89 mW h cm-3 at 5.81 W cm-3 and a high power density of 56.33 W cm-3 at 0.94 mW h cm-3. As a result, the hybrid nanoarchitecture opens a new way to design high performance electrodes for electrochemical energy storage applications.Three-dimensional (3D) hierarchical NiCo2O4@Ni3S2 core/shell arrays on Ni foam were synthesized by a facile, stepwise synthesis approach. The 3D heterogeneous NiCo2O4 nanostructure forms an interconnected web-like scaffold and serves as the core for the Ni3S2 shell. The as-prepared NiCo2O4@Ni3S2 nanowire array (NWA) electrodes exhibited excellent electrochemical performance, such as high specific areal capacitance and excellent cycling stability. The specific areal capacitance of 3.0 F cm-2 at a current density of 5 mA cm-2 is among the highest values and the only 6.7% capacitance decay after 10 000 cycles demonstrates the excellent cycling stability. A flexible asymmetric supercapacitor (ASC) was fabricated with activated carbon (AC) as the anode and the obtained NiCo2O4@Ni3S2 NWAs as the cathode. The ASC device exhibited a high energy density of 1.89 mW h cm-3 at 5.81 W cm-3 and a high power

  4. Multilevel Optimization Framework for Hierarchical Stiffened Shells Accelerated by Adaptive Equivalent Strategy

    Science.gov (United States)

    Wang, Bo; Tian, Kuo; Zhao, Haixin; Hao, Peng; Zhu, Tianyu; Zhang, Ke; Ma, Yunlong

    2017-06-01

    In order to improve the post-buckling optimization efficiency of hierarchical stiffened shells, a multilevel optimization framework accelerated by adaptive equivalent strategy is presented in this paper. Firstly, the Numerical-based Smeared Stiffener Method (NSSM) for hierarchical stiffened shells is derived by means of the numerical implementation of asymptotic homogenization (NIAH) method. Based on the NSSM, a reasonable adaptive equivalent strategy for hierarchical stiffened shells is developed from the concept of hierarchy reduction. Its core idea is to self-adaptively decide which hierarchy of the structure should be equivalent according to the critical buckling mode rapidly predicted by NSSM. Compared with the detailed model, the high prediction accuracy and efficiency of the proposed model is highlighted. On the basis of this adaptive equivalent model, a multilevel optimization framework is then established by decomposing the complex entire optimization process into major-stiffener-level and minor-stiffener-level sub-optimizations, during which Fixed Point Iteration (FPI) is employed to accelerate convergence. Finally, the illustrative examples of the multilevel framework is carried out to demonstrate its efficiency and effectiveness to search for the global optimum result by contrast with the single-level optimization method. Remarkably, the high efficiency and flexibility of the adaptive equivalent strategy is indicated by compared with the single equivalent strategy.

  5. Hierarchical Nickel Sulfide Coated Halloysite Nanotubes For Efficient Energy Storage

    International Nuclear Information System (INIS)

    Li, Yanan; Zhou, Jie; Liu, Yun; Tang, Jian; Tang, Weihua

    2017-01-01

    Highlights: •An integration strategy was presented to construct Ni 3 S 2 based hierarchical composite. •Nanowhisker Ni 3 S 2 were densely integrated onto halloysite nanotubes. •The well-designed electrode exhibits remarkable capacitance and cycling stability. •This strategy provides good reference to electrode materials design for energy storage -- Abstract: Cost-effective and robust energy storage systems have attracted great attention for portable electronic devices. Three-dimensional electrodes can effectively enhance the charge transfer, increase the mechanical stability and thus improve the electrochemical performance upon continuous charge-discharge. The earth abundant halloysite nanotubes (HNTs) have shown immense potential in constructing nanoarchitectural composites. Here, we first demonstrate the development of hybrid composite of nickel sulfide (Ni 3 S 2 ) and HNTs with glucose as binders for efficient energy storage in supercapacitor. The surface sulfhydrylation of HNTs and glucose-assisted hydrothermal reaction are crucial for the preparation of well-structured composite. Due to the synergistic effect between components, the Ni 3 S 2 /HNTs@HS composite electrode delivers a capacity of 450.4C g −1 and high retention of 82.6% over 2000 cycles in three-electrode supercapacitors. Moreover, the Ni 3 S 2 /HNTs@HS//Whatman paper//Ni 3 S 2 /HNTs@HS two-electrode symmetric supercapacitor exhibits a maximum potential window of 1.3 V, with a capacity of 250C g −1 and performance loss of only 18.2% over 2000 cycling at 1 A g −1 . A maximum energy density of 79.6 Wh kg −1 is achieved at a power density of 1.03 kW kg −1 . Such excellent energy storage performance suggests the great potential of Ni 3 S 2 /HNTs@HS for high-efficiency energy storage systems.

  6. Hierarchical layered and semantic-based image segmentation using ergodicity map

    Science.gov (United States)

    Yadegar, Jacob; Liu, Xiaoqing

    2010-04-01

    Image segmentation plays a foundational role in image understanding and computer vision. Although great strides have been made and progress achieved on automatic/semi-automatic image segmentation algorithms, designing a generic, robust, and efficient image segmentation algorithm is still challenging. Human vision is still far superior compared to computer vision, especially in interpreting semantic meanings/objects in images. We present a hierarchical/layered semantic image segmentation algorithm that can automatically and efficiently segment images into hierarchical layered/multi-scaled semantic regions/objects with contextual topological relationships. The proposed algorithm bridges the gap between high-level semantics and low-level visual features/cues (such as color, intensity, edge, etc.) through utilizing a layered/hierarchical ergodicity map, where ergodicity is computed based on a space filling fractal concept and used as a region dissimilarity measurement. The algorithm applies a highly scalable, efficient, and adaptive Peano- Cesaro triangulation/tiling technique to decompose the given image into a set of similar/homogenous regions based on low-level visual cues in a top-down manner. The layered/hierarchical ergodicity map is built through a bottom-up region dissimilarity analysis. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level of detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanisms for contextual topological object/region relationship generation. Experiments have been conducted within the maritime image environment where the segmented layered semantic objects include the basic level objects (i.e. sky/land/water) and deeper level objects in the sky/land/water surfaces. Experimental results demonstrate the proposed algorithm has the capability to robustly and efficiently segment images into layered semantic objects

  7. A hierarchical cluster analysis of normal-tension glaucoma using spectral-domain optical coherence tomography parameters.

    Science.gov (United States)

    Bae, Hyoung Won; Ji, Yongwoo; Lee, Hye Sun; Lee, Naeun; Hong, Samin; Seong, Gong Je; Sung, Kyung Rim; Kim, Chan Yun

    2015-01-01

    Normal-tension glaucoma (NTG) is a heterogenous disease, and there is still controversy about subclassifications of this disorder. On the basis of spectral-domain optical coherence tomography (SD-OCT), we subdivided NTG with hierarchical cluster analysis using optic nerve head (ONH) parameters and retinal nerve fiber layer (RNFL) thicknesses. A total of 200 eyes of 200 NTG patients between March 2011 and June 2012 underwent SD-OCT scans to measure ONH parameters and RNFL thicknesses. We classified NTG into homogenous subgroups based on these variables using a hierarchical cluster analysis, and compared clusters to evaluate diverse NTG characteristics. Three clusters were found after hierarchical cluster analysis. Cluster 1 (62 eyes) had the thickest RNFL and widest rim area, and showed early glaucoma features. Cluster 2 (60 eyes) was characterized by the largest cup/disc ratio and cup volume, and showed advanced glaucomatous damage. Cluster 3 (78 eyes) had small disc areas in SD-OCT and were comprised of patients with significantly younger age, longer axial length, and greater myopia than the other 2 groups. A hierarchical cluster analysis of SD-OCT scans divided NTG patients into 3 groups based upon ONH parameters and RNFL thicknesses. It is anticipated that the small disc area group comprised of younger and more myopic patients may show unique features unlike the other 2 groups.

  8. Infrared detection based on localized modification of Morpho butterfly wings.

    Science.gov (United States)

    Zhang, Fangyu; Shen, Qingchen; Shi, Xindong; Li, Shipu; Wang, Wanlin; Luo, Zhen; He, Gufeng; Zhang, Peng; Tao, Peng; Song, Chengyi; Zhang, Wang; Zhang, Di; Deng, Tao; Shang, Wen

    2015-02-01

    Inspired by butterflies an advanced detection and sensing system is developed. The hierarchical nanoarchitecture of Morpho butterfly wings is shown to facilitate the selective modification of such a structure, which results in a sensitive infrared response. These findings offer a new path both for detecting infrared photons and for generating nanostructured bimaterial systems for high-performance sensing platforms. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The relationship between continuum homogeneity and statistical homogeneity in cosmology

    International Nuclear Information System (INIS)

    Stoeger, W.R.; Ellis, G.F.R.; Hellaby, C.

    1987-01-01

    Although the standard Friedmann-Lemaitre-Robertson-Walker (FLRW) Universe models are based on the concept that the Universe is spatially homogeneous, up to the present time no definition of this concept has been proposed that could in principle be tested by observation. Such a definition is here proposed, based on a simple spatial averaging procedure, which relates observable properties of the Universe to the continuum homogeneity idea that underlies the FLRW models. It turns out that the statistical homogeneity often used to describe the distribution of matter on a large scale does not imply spatial homogeneity according to this definition, and so cannot be simply related to a FLRW Universe model. Values are proposed for the homogeneity parameter and length scale of homogeneity of the Universe. (author)

  10. Mechanical Homogenization Increases Bacterial Homogeneity in Sputum

    Science.gov (United States)

    Stokell, Joshua R.; Khan, Ammad

    2014-01-01

    Sputum obtained from patients with cystic fibrosis (CF) is highly viscous and often heterogeneous in bacterial distribution. Adding dithiothreitol (DTT) is the standard method for liquefaction prior to processing sputum for molecular detection assays. To determine if DTT treatment homogenizes the bacterial distribution within sputum, we measured the difference in mean total bacterial abundance and abundance of Burkholderia multivorans between aliquots of DTT-treated sputum samples with and without a mechanical homogenization (MH) step using a high-speed dispersing element. Additionally, we measured the effect of MH on bacterial abundance. We found a significant difference between the mean bacterial abundances in aliquots that were subjected to only DTT treatment and those of the aliquots which included an MH step (all bacteria, P = 0.04; B. multivorans, P = 0.05). There was no significant effect of MH on bacterial abundance in sputum. Although our results are from a single CF patient, they indicate that mechanical homogenization increases the homogeneity of bacteria in sputum. PMID:24759710

  11. Hierarchical Network Design

    DEFF Research Database (Denmark)

    Thomadsen, Tommy

    2005-01-01

    Communication networks are immensely important today, since both companies and individuals use numerous services that rely on them. This thesis considers the design of hierarchical (communication) networks. Hierarchical networks consist of layers of networks and are well-suited for coping...... with changing and increasing demands. Two-layer networks consist of one backbone network, which interconnects cluster networks. The clusters consist of nodes and links, which connect the nodes. One node in each cluster is a hub node, and the backbone interconnects the hub nodes of each cluster and thus...... the clusters. The design of hierarchical networks involves clustering of nodes, hub selection, and network design, i.e. selection of links and routing of ows. Hierarchical networks have been in use for decades, but integrated design of these networks has only been considered for very special types of networks...

  12. Fabrication and biocompatibility of poly(L-lactic acid) and chitosan composite scaffolds with hierarchical microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Lou, Tao, E-mail: taolou72@aliyun.com [College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071 (China); Wang, Xuejun [College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071 (China); Yan, Xu [College of Physics & Collaborative Innovation Center for Low-Dimensional Nanomaterials and Optoelectronic Devices, Qingdao University, Qingdao 266071 (China); Miao, Yu [Department of Mechanical Engineering, Columbia University, New York, NY 10027 (United States); Long, Yun-Ze, E-mail: yunzelong@163.com [College of Physics & Collaborative Innovation Center for Low-Dimensional Nanomaterials and Optoelectronic Devices, Qingdao University, Qingdao 266071 (China); Yin, Hai-Lei [Department of Osteology, No. 401 Hospital of P. L. A., Qingdao 266071 (China); Sun, Bin [College of Physics & Collaborative Innovation Center for Low-Dimensional Nanomaterials and Optoelectronic Devices, Qingdao University, Qingdao 266071 (China); Song, Guojun [College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071 (China)

    2016-07-01

    The scaffold microstructure is crucial to reconstruct tissue normal functions. In this article, poly(L-lactic acid) and chitosan fiber (PLLA/CTSF) composite scaffolds with hierarchical microstructures both in fiber and pore sizes were successfully fabricated by combining thermal induced phase separation and salt leaching techniques. The composite scaffolds consisted of a nanofibrous PLLA matrix with diameter of 50–500 nm, and chitosan fibers with diameter of about 20 μm were homogenously distributed in the PLLA matrix as a microsized reinforcer. The composite scaffolds also had high porosity (> 94%) and hierarchical pore size, which were consisted of both micropores (50 nm–10 μm) and macropores (50–300 μm). By tailoring the microstructure and chemical composition, the mechanical property, pH buffer and protein adsorption capacity of the composite scaffold were improved significantly compared with those of PLLA scaffold. Cell culture results also revealed that the PLLA/CTSF composite scaffolds supported MG-63 osteoblast proliferation and penetration. - Highlights: • Composite scaffolds fabricated by combining thermal induced phase separation and salt leaching techniques • Hierarchical microstructure both in fiber and pore sizes • The scaffold microenvironment facilitates the protein adsorption, cell proliferation and penetration.

  13. Detecting Hierarchical Structure in Networks

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard

    2012-01-01

    Many real-world networks exhibit hierarchical organization. Previous models of hierarchies within relational data has focused on binary trees; however, for many networks it is unknown whether there is hierarchical structure, and if there is, a binary tree might not account well for it. We propose...... a generative Bayesian model that is able to infer whether hierarchies are present or not from a hypothesis space encompassing all types of hierarchical tree structures. For efficient inference we propose a collapsed Gibbs sampling procedure that jointly infers a partition and its hierarchical structure....... On synthetic and real data we demonstrate that our model can detect hierarchical structure leading to better link-prediction than competing models. Our model can be used to detect if a network exhibits hierarchical structure, thereby leading to a better comprehension and statistical account the network....

  14. Development of the hierarchical domain decomposition boundary element method for solving the three-dimensional multiregion neutron diffusion equations

    International Nuclear Information System (INIS)

    Chiba, Gou; Tsuji, Masashi; Shimazu, Yoichiro

    2001-01-01

    A hierarchical domain decomposition boundary element method (HDD-BEM) that was developed to solve a two-dimensional neutron diffusion equation has been modified to deal with three-dimensional problems. In the HDD-BEM, the domain is decomposed into homogeneous regions. The boundary conditions on the common inner boundaries between decomposed regions and the neutron multiplication factor are initially assumed. With these assumptions, the neutron diffusion equations defined in decomposed homogeneous regions can be solved respectively by applying the boundary element method. This part corresponds to the 'lower level' calculations. At the 'higher level' calculations, the assumed values, the inner boundary conditions and the neutron multiplication factor, are modified so as to satisfy the continuity conditions for the neutron flux and the neutron currents on the inner boundaries. These procedures of the lower and higher levels are executed alternately and iteratively until the continuity conditions are satisfied within a convergence tolerance. With the hierarchical domain decomposition, it is possible to deal with problems composing a large number of regions, something that has been difficult with the conventional BEM. In this paper, it is showed that a three-dimensional problem even with 722 regions can be solved with a fine accuracy and an acceptable computation time. (author)

  15. Functional annotation of hierarchical modularity.

    Directory of Open Access Journals (Sweden)

    Kanchana Padmanabhan

    Full Text Available In biological networks of molecular interactions in a cell, network motifs that are biologically relevant are also functionally coherent, or form functional modules. These functionally coherent modules combine in a hierarchical manner into larger, less cohesive subsystems, thus revealing one of the essential design principles of system-level cellular organization and function-hierarchical modularity. Arguably, hierarchical modularity has not been explicitly taken into consideration by most, if not all, functional annotation systems. As a result, the existing methods would often fail to assign a statistically significant functional coherence score to biologically relevant molecular machines. We developed a methodology for hierarchical functional annotation. Given the hierarchical taxonomy of functional concepts (e.g., Gene Ontology and the association of individual genes or proteins with these concepts (e.g., GO terms, our method will assign a Hierarchical Modularity Score (HMS to each node in the hierarchy of functional modules; the HMS score and its p-value measure functional coherence of each module in the hierarchy. While existing methods annotate each module with a set of "enriched" functional terms in a bag of genes, our complementary method provides the hierarchical functional annotation of the modules and their hierarchically organized components. A hierarchical organization of functional modules often comes as a bi-product of cluster analysis of gene expression data or protein interaction data. Otherwise, our method will automatically build such a hierarchy by directly incorporating the functional taxonomy information into the hierarchy search process and by allowing multi-functional genes to be part of more than one component in the hierarchy. In addition, its underlying HMS scoring metric ensures that functional specificity of the terms across different levels of the hierarchical taxonomy is properly treated. We have evaluated our

  16. Catalysis with hierarchical zeolites

    DEFF Research Database (Denmark)

    Holm, Martin Spangsberg; Taarning, Esben; Egeblad, Kresten

    2011-01-01

    Hierarchical (or mesoporous) zeolites have attracted significant attention during the first decade of the 21st century, and so far this interest continues to increase. There have already been several reviews giving detailed accounts of the developments emphasizing different aspects of this research...... topic. Until now, the main reason for developing hierarchical zeolites has been to achieve heterogeneous catalysts with improved performance but this particular facet has not yet been reviewed in detail. Thus, the present paper summaries and categorizes the catalytic studies utilizing hierarchical...... zeolites that have been reported hitherto. Prototypical examples from some of the different categories of catalytic reactions that have been studied using hierarchical zeolite catalysts are highlighted. This clearly illustrates the different ways that improved performance can be achieved with this family...

  17. Parallel hierarchical radiosity rendering

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Michael [Iowa State Univ., Ames, IA (United States)

    1993-07-01

    In this dissertation, the step-by-step development of a scalable parallel hierarchical radiosity renderer is documented. First, a new look is taken at the traditional radiosity equation, and a new form is presented in which the matrix of linear system coefficients is transformed into a symmetric matrix, thereby simplifying the problem and enabling a new solution technique to be applied. Next, the state-of-the-art hierarchical radiosity methods are examined for their suitability to parallel implementation, and scalability. Significant enhancements are also discovered which both improve their theoretical foundations and improve the images they generate. The resultant hierarchical radiosity algorithm is then examined for sources of parallelism, and for an architectural mapping. Several architectural mappings are discussed. A few key algorithmic changes are suggested during the process of making the algorithm parallel. Next, the performance, efficiency, and scalability of the algorithm are analyzed. The dissertation closes with a discussion of several ideas which have the potential to further enhance the hierarchical radiosity method, or provide an entirely new forum for the application of hierarchical methods.

  18. Hierarchical prisoner’s dilemma in hierarchical game for resource competition

    Science.gov (United States)

    Fujimoto, Yuma; Sagawa, Takahiro; Kaneko, Kunihiko

    2017-07-01

    Dilemmas in cooperation are one of the major concerns in game theory. In a public goods game, each individual cooperates by paying a cost or defecting without paying it, and receives a reward from the group out of the collected cost. Thus, defecting is beneficial for each individual, while cooperation is beneficial for the group. Now, groups (say, countries) consisting of individuals also play games. To study such a multi-level game, we introduce a hierarchical game in which multiple groups compete for limited resources by utilizing the collected cost in each group, where the power to appropriate resources increases with the population of the group. Analyzing this hierarchical game, we found a hierarchical prisoner’s dilemma, in which groups choose the defecting policy (say, armament) as a Nash strategy to optimize each group’s benefit, while cooperation optimizes the total benefit. On the other hand, for each individual, refusing to pay the cost (say, tax) is a Nash strategy, which turns out to be a cooperation policy for the group, thus leading to a hierarchical dilemma. Here the group reward increases with the group size. However, we find that there exists an optimal group size that maximizes the individual payoff. Furthermore, when the population asymmetry between two groups is large, the smaller group will choose a cooperation policy (say, disarmament) to avoid excessive response from the larger group, and the prisoner’s dilemma between the groups is resolved. Accordingly, the relevance of this hierarchical game on policy selection in society and the optimal size of human or animal groups are discussed.

  19. Hierarchical reorganization of dimensions in OLAP visualizations.

    Science.gov (United States)

    Lafon, Sébastien; Bouali, Fatma; Guinot, Christiane; Venturini, Gilles

    2013-11-01

    In this paper, we propose a new method for the visual reorganization of online analytical processing (OLAP) cubes that aims at improving their visualization. Our method addresses dimensions with hierarchically organized members. It uses a genetic algorithm that reorganizes k-ary trees. Genetic operators perform permutations of subtrees to optimize a visual homogeneity function. We propose several ways to reorganize an OLAP cube depending on which set of members is selected for the reorganization: all of the members, only the displayed members, or the members at a given level (level by level approach). The results that are evaluated by using optimization criteria show that our algorithm has a reliable performance even when it is limited to 1 minute runs. Our algorithm was integrated in an interactive 3D interface for OLAP. A user study was conducted to evaluate our approach with users. The results highlight the usefulness of reorganization in two OLAP tasks.

  20. Self-assembled three-dimensional hierarchical graphene/polypyrrole nanotube hybrid aerogel and its application for supercapacitors.

    Science.gov (United States)

    Ye, Shibing; Feng, Jiachun

    2014-06-25

    A three-dimensional hierarchical graphene/polypyrrole aerogel (GPA) has been fabricated using graphene oxide (GO) and already synthesized one-dimensional hollow polypyrrole nanotubes (PNTs) as the feedstock. The amphiphilic GO is helpful in effectively promoting the dispersion of well-defined PNTs to result in a stable, homogeneous GO/PNT complex solution, while the PNTs not only provide a large accessible surface area for fast transport of hydrate ions but also act as spacers to prevent the restacking of graphene sheets. By a simple one-step reduction self-assembly process, hierarchically structured, low-density, highly compressible GPAs are easily obtained, which favorably combine the advantages of graphene and PNTs. The supercapacitor electrodes based on such materials exhibit excellent electrochemical performance, including a high specific capacitance up to 253 F g(-1), good rate performance, and outstanding cycle stability. Moreover, this method may be feasible to prepare other graphene-based hybrid aerogels with structure-controllable nanostructures in large scale, thereby holding enormous potential in many application fields.

  1. Group-level self-definition and self-investment: a hierarchical (multicomponent) model of in-group identification.

    Science.gov (United States)

    Leach, Colin Wayne; van Zomeren, Martijn; Zebel, Sven; Vliek, Michael L W; Pennekamp, Sjoerd F; Doosje, Bertjan; Ouwerkerk, Jaap W; Spears, Russell

    2008-07-01

    Recent research shows individuals' identification with in-groups to be psychologically important and socially consequential. However, there is little agreement about how identification should be conceptualized or measured. On the basis of previous work, the authors identified 5 specific components of in-group identification and offered a hierarchical 2-dimensional model within which these components are organized. Studies 1 and 2 used confirmatory factor analysis to validate the proposed model of self-definition (individual self-stereotyping, in-group homogeneity) and self-investment (solidarity, satisfaction, and centrality) dimensions, across 3 different group identities. Studies 3 and 4 demonstrated the construct validity of the 5 components by examining their (concurrent) correlations with established measures of in-group identification. Studies 5-7 demonstrated the predictive and discriminant validity of the 5 components by examining their (prospective) prediction of individuals' orientation to, and emotions about, real intergroup relations. Together, these studies illustrate the conceptual and empirical value of a hierarchical multicomponent model of in-group identification.

  2. Micromechanics of hierarchical materials

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon, Jr.

    2012-01-01

    A short overview of micromechanical models of hierarchical materials (hybrid composites, biomaterials, fractal materials, etc.) is given. Several examples of the modeling of strength and damage in hierarchical materials are summarized, among them, 3D FE model of hybrid composites...... with nanoengineered matrix, fiber bundle model of UD composites with hierarchically clustered fibers and 3D multilevel model of wood considered as a gradient, cellular material with layered composite cell walls. The main areas of research in micromechanics of hierarchical materials are identified, among them......, the investigations of the effects of load redistribution between reinforcing elements at different scale levels, of the possibilities to control different material properties and to ensure synergy of strengthening effects at different scale levels and using the nanoreinforcement effects. The main future directions...

  3. Ultrafine Ag/MnO{sub x} nanowire-constructed hair-like nanoarchitecture: In situ synthesis, formation mechanism and its supercapacitive property

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yonghe; Wang, Zhenyu; Zhang, Yuefei, E-mail: yfzhang@bjut.edu.cn

    2015-09-25

    Graphical abstract: In this work, novel hair-like (HL) nanoarchitectures constructed by ultrafine MnO{sub x} nanowires (∼7 nm) entrapped with Ag nanoparticle were first synthesized by facile in situ reaction between Ag nanowires and KMnO{sub 4}, and a following hydrothermal method. The as-prepared HL Ag/MnO{sub x} nanocomposites as electrode delivered a high specific capacitance and good cycle stability. - Highlights: • Ultrafine MnO{sub x} nanowires with Ag nanoparticle dispersed on were in situ prepared. • Kirkendall effect and Ostwald ripening mechanism ascribed to developed morphology. • Desirable specific capacitance and cyclability made it candidate for supercapacitors. - Abstract: Hair-like (HL) nanoarchitectures constructed by ultrafine MnO{sub x} nanowires (∼7 nm) with ultrafine Ag nanoparticles anchored on were synthesized by in situ facile reaction between silver (Ag) nanowires and potassium permanganate (KMnO{sub 4}), and followed by a following hydrothermal method. Based on a serious of time-dependent experiments, an orderly merged Kirkendall effect and dissolution-recrystallization (Ostwald ripening) mechanism were proposed for the formation of this novel morphology. The as-prepared HL Ag/MnO{sub x} nanocomposites as electrode exhibited a high specific capacitance (526 Fg{sup −1} at scan rate of 5 mV s{sup −1} and 450 Fg{sup −1} at current density of 0.1 Ag{sup −1}), good rate capability (ca. 45.5% retention with reference to 205 Fg{sup −1} at 50 times higher current density of 5 Ag{sup −1}) and desirable cycle stability (ranging from initial of 237 Fg{sup −1} to 185 Fg{sup −1} after 800 cycles and still maintaining 87% retention compared to 800th cycle after another 2800 cycles at current density of 2 Ag{sup −1}). Such desirable performance could be attributed to HL Ag/MnO{sub x} nanocomposites core (tubular nanosheets) with uniform dispersion of the ultrafine Ag nanoparticals provides a direct pathway for electron

  4. Homogenization versus homogenization-free method to measure muscle glycogen fractions.

    Science.gov (United States)

    Mojibi, N; Rasouli, M

    2016-12-01

    The glycogen is extracted from animal tissues with or without homogenization using cold perchloric acid. Three methods were compared for determination of glycogen in rat muscle at different physiological states. Two groups of five rats were kept at rest or 45 minutes muscular activity. The glycogen fractions were extracted and measured by using three methods. The data of homogenization method shows that total glycogen decreased following 45 min physical activity and the change occurred entirely in acid soluble glycogen (ASG), while AIG did not change significantly. Similar results were obtained by using "total-glycogen-fractionation methods". The findings of "homogenization-free method" indicate that the acid insoluble fraction (AIG) was the main portion of muscle glycogen and the majority of changes occurred in AIG fraction. The results of "homogenization method" are identical with "total glycogen fractionation", but differ with "homogenization-free" protocol. The ASG fraction is the major portion of muscle glycogen and is more metabolically active form.

  5. How hierarchical is language use?

    Science.gov (United States)

    Frank, Stefan L.; Bod, Rens; Christiansen, Morten H.

    2012-01-01

    It is generally assumed that hierarchical phrase structure plays a central role in human language. However, considerations of simplicity and evolutionary continuity suggest that hierarchical structure should not be invoked too hastily. Indeed, recent neurophysiological, behavioural and computational studies show that sequential sentence structure has considerable explanatory power and that hierarchical processing is often not involved. In this paper, we review evidence from the recent literature supporting the hypothesis that sequential structure may be fundamental to the comprehension, production and acquisition of human language. Moreover, we provide a preliminary sketch outlining a non-hierarchical model of language use and discuss its implications and testable predictions. If linguistic phenomena can be explained by sequential rather than hierarchical structure, this will have considerable impact in a wide range of fields, such as linguistics, ethology, cognitive neuroscience, psychology and computer science. PMID:22977157

  6. Hierarchical architecture of active knits

    International Nuclear Information System (INIS)

    Abel, Julianna; Luntz, Jonathan; Brei, Diann

    2013-01-01

    Nature eloquently utilizes hierarchical structures to form the world around us. Applying the hierarchical architecture paradigm to smart materials can provide a basis for a new genre of actuators which produce complex actuation motions. One promising example of cellular architecture—active knits—provides complex three-dimensional distributed actuation motions with expanded operational performance through a hierarchically organized structure. The hierarchical structure arranges a single fiber of active material, such as shape memory alloys (SMAs), into a cellular network of interlacing adjacent loops according to a knitting grid. This paper defines a four-level hierarchical classification of knit structures: the basic knit loop, knit patterns, grid patterns, and restructured grids. Each level of the hierarchy provides increased architectural complexity, resulting in expanded kinematic actuation motions of active knits. The range of kinematic actuation motions are displayed through experimental examples of different SMA active knits. The results from this paper illustrate and classify the ways in which each level of the hierarchical knit architecture leverages the performance of the base smart material to generate unique actuation motions, providing necessary insight to best exploit this new actuation paradigm. (paper)

  7. Nested and Hierarchical Archimax copulas

    KAUST Repository

    Hofert, Marius

    2017-07-03

    The class of Archimax copulas is generalized to nested and hierarchical Archimax copulas in several ways. First, nested extreme-value copulas or nested stable tail dependence functions are introduced to construct nested Archimax copulas based on a single frailty variable. Second, a hierarchical construction of d-norm generators is presented to construct hierarchical stable tail dependence functions and thus hierarchical extreme-value copulas. Moreover, one can, by itself or additionally, introduce nested frailties to extend Archimax copulas to nested Archimax copulas in a similar way as nested Archimedean copulas extend Archimedean copulas. Further results include a general formula for the density of Archimax copulas.

  8. Nested and Hierarchical Archimax copulas

    KAUST Repository

    Hofert, Marius; Huser, Raphaë l; Prasad, Avinash

    2017-01-01

    The class of Archimax copulas is generalized to nested and hierarchical Archimax copulas in several ways. First, nested extreme-value copulas or nested stable tail dependence functions are introduced to construct nested Archimax copulas based on a single frailty variable. Second, a hierarchical construction of d-norm generators is presented to construct hierarchical stable tail dependence functions and thus hierarchical extreme-value copulas. Moreover, one can, by itself or additionally, introduce nested frailties to extend Archimax copulas to nested Archimax copulas in a similar way as nested Archimedean copulas extend Archimedean copulas. Further results include a general formula for the density of Archimax copulas.

  9. Multi-scale Homogenization of Caddisfly Metacomminities in Human-modified Landscapes

    Science.gov (United States)

    Simião-Ferreira, Juliana; Nogueira, Denis Silva; Santos, Anna Claudia; De Marco, Paulo; Angelini, Ronaldo

    2018-04-01

    The multiple scale of stream networks spatial organization reflects the hierarchical arrangement of streams habitats with increasingly levels of complexity from sub-catchments until entire hydrographic basins. Through these multiple spatial scales, local stream habitats form nested subsets of increasingly landscape scale and habitat size with varying contributions of both alpha and beta diversity for the regional diversity. Here, we aimed to test the relative importance of multiple nested hierarchical levels of spatial scales while determining alpha and beta diversity of caddisflies in regions with different levels of landscape degradation in a core Cerrado area in Brazil. We used quantitative environmental variables to test the hypothesis that landscape homogenization affects the contribution of alpha and beta diversity of caddisflies to regional diversity. We found that the contribution of alpha and beta diversity for gamma diversity varied according to landscape degradation. Sub-catchments with more intense agriculture had lower diversity at multiple levels, markedly alpha and beta diversities. We have also found that environmental predictors mainly associated with water quality, channel size, and habitat integrity (lower scores indicate stream degradation) were related to community dissimilarity at the catchment scale. For an effective management of the headwater biodiversity of caddisfly, towards the conservation of these catchments, heterogeneous streams with more pristine riparian vegetation found within the river basin need to be preserved in protected areas. Additionally, in the most degraded areas the restoration of riparian vegetation and size increase of protected areas will be needed to accomplish such effort.

  10. Hollow Carbon Nanopolyhedra for Enhanced Electrocatalysis via Confined Hierarchical Porosity.

    Science.gov (United States)

    Song, Xiaokai; Guo, Linli; Liao, Xuemei; Liu, Jian; Sun, Jianhua; Li, Xiaopeng

    2017-06-01

    A novel strategy for the fabrication of hollow Co and N-codoped carbon nanopolyhedra (H-CoNC) from metal-organic framework (MOF) using in situ evaporation of ZnO nanosphere templates is proposed. The excess Zn supply during the pyrolysis process is found beneficial in terms of high nitrogen (≈9.75 at%), relatively homogenous CoN bonding, and the electrochemically accessible hierarchical porous system. Compared with other reported "solid" CoNC of identical surface areas, the newly developed H-CoNC shows enhanced kinetic current in 0.1 m KOH electrolyte and elevated oxygen reduction reaction (ORR) performance in 6 m KOH. The latter exceeds results obtained with the benchmark 20 wt% Pt/C, which is related to the strong confinement of O 2 molecules in the H-CoNC hierarchical porous system. Furthermore, the H-CoNC displays great tolerance toward the methanol crossover and KSCN poisoning. Finally, the assembled Zn-air batteries with H-CoNC yield a record open circuit potential (1.59 V vs Zn, stabilized at 1.52 V), high power density (331.0 mW cm -2 ), and promising rate performance. This work provides a new guideline for the design of MOF-derived carbon materials, as well as novel insights into spatial confinement effect toward the ORR activity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. 7 CFR 58.920 - Homogenization.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Homogenization. 58.920 Section 58.920 Agriculture... Procedures § 58.920 Homogenization. Where applicable concentrated products shall be homogenized for the... homogenization and the pressure at which homogenization is accomplished will be that which accomplishes the most...

  12. Page Layout Analysis of the Document Image Based on the Region Classification in a Decision Hierarchical Structure

    Directory of Open Access Journals (Sweden)

    Hossein Pourghassem

    2010-10-01

    Full Text Available The conversion of document image to its electronic version is a very important problem in the saving, searching and retrieval application in the official automation system. For this purpose, analysis of the document image is necessary. In this paper, a hierarchical classification structure based on a two-stage segmentation algorithm is proposed. In this structure, image is segmented using the proposed two-stage segmentation algorithm. Then, the type of the image regions such as document and non-document image is determined using multiple classifiers in the hierarchical classification structure. The proposed segmentation algorithm uses two algorithms based on wavelet transform and thresholding. Texture features such as correlation, homogeneity and entropy that extracted from co-occurrenc matrix and also two new features based on wavelet transform are used to classifiy and lable the regions of the image. The hierarchical classifier is consisted of two Multilayer Perceptron (MLP classifiers and a Support Vector Machine (SVM classifier. The proposed algorithm is evaluated on a database consisting of document and non-document images that provides from Internet. The experimental results show the efficiency of the proposed approach in the region segmentation and classification. The proposed algorithm provides accuracy rate of 97.5% on classification of the regions.

  13. The Hierarchical Distribution of the Young Stellar Clusters in Six Local Star-forming Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Grasha, K.; Calzetti, D. [Astronomy Department, University of Massachusetts, Amherst, MA 01003 (United States); Adamo, A.; Messa, M. [Dept. of Astronomy, The Oskar Klein Centre, Stockholm University, Stockholm (Sweden); Kim, H. [Gemini Observatory, La Serena (Chile); Elmegreen, B. G. [IBM Research Division, T.J. Watson Research Center, Yorktown Hts., NY (United States); Gouliermis, D. A. [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Dale, D. A. [Dept. of Physics and Astronomy, University of Wyoming, Laramie, WY (United States); Fumagalli, M. [Institute for Computational Cosmology and Centre for Extragalactic Astronomy, Durham University, Durham (United Kingdom); Grebel, E. K.; Shabani, F. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120 Heidelberg (Germany); Johnson, K. E. [Dept. of Astronomy, University of Virginia, Charlottesville, VA (United States); Kahre, L. [Dept. of Astronomy, New Mexico State University, Las Cruces, NM (United States); Kennicutt, R. C. [Institute of Astronomy, University of Cambridge, Cambridge (United Kingdom); Pellerin, A. [Dept. of Physics and Astronomy, State University of New York at Geneseo, Geneseo NY (United States); Ryon, J. E.; Ubeda, L. [Space Telescope Science Institute, Baltimore, MD (United States); Smith, L. J. [European Space Agency/Space Telescope Science Institute, Baltimore, MD (United States); Thilker, D., E-mail: kgrasha@astro.umass.edu [Dept. of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD (United States)

    2017-05-10

    We present a study of the hierarchical clustering of the young stellar clusters in six local (3–15 Mpc) star-forming galaxies using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury Program LEGUS (Legacy ExtraGalactic UV Survey). We identified 3685 likely clusters and associations, each visually classified by their morphology, and we use the angular two-point correlation function to study the clustering of these stellar systems. We find that the spatial distribution of the young clusters and associations are clustered with respect to each other, forming large, unbound hierarchical star-forming complexes that are in general very young. The strength of the clustering decreases with increasing age of the star clusters and stellar associations, becoming more homogeneously distributed after ∼40–60 Myr and on scales larger than a few hundred parsecs. In all galaxies, the associations exhibit a global behavior that is distinct and more strongly correlated from compact clusters. Thus, populations of clusters are more evolved than associations in terms of their spatial distribution, traveling significantly from their birth site within a few tens of Myr, whereas associations show evidence of disruption occurring very quickly after their formation. The clustering of the stellar systems resembles that of a turbulent interstellar medium that drives the star formation process, correlating the components in unbound star-forming complexes in a hierarchical manner, dispersing shortly after formation, suggestive of a single, continuous mode of star formation across all galaxies.

  14. The Hierarchical Distribution of the Young Stellar Clusters in Six Local Star-forming Galaxies

    Science.gov (United States)

    Grasha, K.; Calzetti, D.; Adamo, A.; Kim, H.; Elmegreen, B. G.; Gouliermis, D. A.; Dale, D. A.; Fumagalli, M.; Grebel, E. K.; Johnson, K. E.; Kahre, L.; Kennicutt, R. C.; Messa, M.; Pellerin, A.; Ryon, J. E.; Smith, L. J.; Shabani, F.; Thilker, D.; Ubeda, L.

    2017-05-01

    We present a study of the hierarchical clustering of the young stellar clusters in six local (3-15 Mpc) star-forming galaxies using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury Program LEGUS (Legacy ExtraGalactic UV Survey). We identified 3685 likely clusters and associations, each visually classified by their morphology, and we use the angular two-point correlation function to study the clustering of these stellar systems. We find that the spatial distribution of the young clusters and associations are clustered with respect to each other, forming large, unbound hierarchical star-forming complexes that are in general very young. The strength of the clustering decreases with increasing age of the star clusters and stellar associations, becoming more homogeneously distributed after ˜40-60 Myr and on scales larger than a few hundred parsecs. In all galaxies, the associations exhibit a global behavior that is distinct and more strongly correlated from compact clusters. Thus, populations of clusters are more evolved than associations in terms of their spatial distribution, traveling significantly from their birth site within a few tens of Myr, whereas associations show evidence of disruption occurring very quickly after their formation. The clustering of the stellar systems resembles that of a turbulent interstellar medium that drives the star formation process, correlating the components in unbound star-forming complexes in a hierarchical manner, dispersing shortly after formation, suggestive of a single, continuous mode of star formation across all galaxies.

  15. The Hierarchical Distribution of the Young Stellar Clusters in Six Local Star-forming Galaxies

    International Nuclear Information System (INIS)

    Grasha, K.; Calzetti, D.; Adamo, A.; Messa, M.; Kim, H.; Elmegreen, B. G.; Gouliermis, D. A.; Dale, D. A.; Fumagalli, M.; Grebel, E. K.; Shabani, F.; Johnson, K. E.; Kahre, L.; Kennicutt, R. C.; Pellerin, A.; Ryon, J. E.; Ubeda, L.; Smith, L. J.; Thilker, D.

    2017-01-01

    We present a study of the hierarchical clustering of the young stellar clusters in six local (3–15 Mpc) star-forming galaxies using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury Program LEGUS (Legacy ExtraGalactic UV Survey). We identified 3685 likely clusters and associations, each visually classified by their morphology, and we use the angular two-point correlation function to study the clustering of these stellar systems. We find that the spatial distribution of the young clusters and associations are clustered with respect to each other, forming large, unbound hierarchical star-forming complexes that are in general very young. The strength of the clustering decreases with increasing age of the star clusters and stellar associations, becoming more homogeneously distributed after ∼40–60 Myr and on scales larger than a few hundred parsecs. In all galaxies, the associations exhibit a global behavior that is distinct and more strongly correlated from compact clusters. Thus, populations of clusters are more evolved than associations in terms of their spatial distribution, traveling significantly from their birth site within a few tens of Myr, whereas associations show evidence of disruption occurring very quickly after their formation. The clustering of the stellar systems resembles that of a turbulent interstellar medium that drives the star formation process, correlating the components in unbound star-forming complexes in a hierarchical manner, dispersing shortly after formation, suggestive of a single, continuous mode of star formation across all galaxies.

  16. Homogenization of Mammalian Cells.

    Science.gov (United States)

    de Araújo, Mariana E G; Lamberti, Giorgia; Huber, Lukas A

    2015-11-02

    Homogenization is the name given to the methodological steps necessary for releasing organelles and other cellular constituents as a free suspension of intact individual components. Most homogenization procedures used for mammalian cells (e.g., cavitation pump and Dounce homogenizer) rely on mechanical force to break the plasma membrane and may be supplemented with osmotic or temperature alterations to facilitate membrane disruption. In this protocol, we describe a syringe-based homogenization method that does not require specialized equipment, is easy to handle, and gives reproducible results. The method may be adapted for cells that require hypotonic shock before homogenization. We routinely use it as part of our workflow to isolate endocytic organelles from mammalian cells. © 2015 Cold Spring Harbor Laboratory Press.

  17. Neutrosophic Hierarchical Clustering Algoritms

    Directory of Open Access Journals (Sweden)

    Rıdvan Şahin

    2014-03-01

    Full Text Available Interval neutrosophic set (INS is a generalization of interval valued intuitionistic fuzzy set (IVIFS, whose the membership and non-membership values of elements consist of fuzzy range, while single valued neutrosophic set (SVNS is regarded as extension of intuitionistic fuzzy set (IFS. In this paper, we extend the hierarchical clustering techniques proposed for IFSs and IVIFSs to SVNSs and INSs respectively. Based on the traditional hierarchical clustering procedure, the single valued neutrosophic aggregation operator, and the basic distance measures between SVNSs, we define a single valued neutrosophic hierarchical clustering algorithm for clustering SVNSs. Then we extend the algorithm to classify an interval neutrosophic data. Finally, we present some numerical examples in order to show the effectiveness and availability of the developed clustering algorithms.

  18. Functionality and homogeneity.

    NARCIS (Netherlands)

    2011-01-01

    Functionality and homogeneity are two of the five Sustainable Safety principles. The functionality principle aims for roads to have but one exclusive function and distinguishes between traffic function (flow) and access function (residence). The homogeneity principle aims at differences in mass,

  19. The Hierarchical Perspective

    Directory of Open Access Journals (Sweden)

    Daniel Sofron

    2015-05-01

    Full Text Available This paper is focused on the hierarchical perspective, one of the methods for representing space that was used before the discovery of the Renaissance linear perspective. The hierarchical perspective has a more or less pronounced scientific character and its study offers us a clear image of the way the representatives of the cultures that developed it used to perceive the sensitive reality. This type of perspective is an original method of representing three-dimensional space on a flat surface, which characterises the art of Ancient Egypt and much of the art of the Middle Ages, being identified in the Eastern European Byzantine art, as well as in the Western European Pre-Romanesque and Romanesque art. At the same time, the hierarchical perspective is also present in naive painting and infantile drawing. Reminiscences of this method can be recognised also in the works of some precursors of the Italian Renaissance. The hierarchical perspective can be viewed as a subjective ranking criterion, according to which the elements are visually represented by taking into account their relevance within the image while perception is ignored. This paper aims to show how the main objective of the artists of those times was not to faithfully represent the objective reality, but rather to emphasize the essence of the world and its perennial aspects. This may represent a possible explanation for the refusal of perspective in the Egyptian, Romanesque and Byzantine painting, characterised by a marked two-dimensionality.

  20. Comparisons of Flow Patterns over a Hierarchical and a Non-hierarchical Surface in Relation to Biofouling Control

    Directory of Open Access Journals (Sweden)

    Bin Ahmad Fawzan Mohammed Ridha

    2018-01-01

    Full Text Available Biofouling can be defined as unwanted deposition and development of organisms on submerged surfaces. It is a major problem as it causes water contamination, infrastructures damage and increase in maintenance and operational cost especially in the shipping industry. There are a few methods that can prevent this problem. One of the most effective methods which is using chemicals particularly Tributyltin has been banned due to adverse effects on the environment. One of the non-toxic methods found to be effective is surface modification which involves altering the surface topography so that it becomes a low-fouling or a non-stick surface to biofouling organisms. Current literature suggested that non-hierarchical topographies has lower antifouling performance compared to hierarchical topographies. It is still unclear if the effects of the flow on these topographies could have aided in their antifouling properties. This research will use Computational Fluid Dynamics (CFD simulations to study the flow on these two topographies which also involves comparison study of the topographies used. According to the results obtained, it is shown that hierarchical topography has higher antifouling performance compared to non-hierarchical topography. This is because the fluid characteristics at the hierarchical topography is more favorable in controlling biofouling. In addition, hierarchical topography has higher wall shear stress distribution compared to non-hierarchical topography

  1. Homogenization of resonant chiral metamaterials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Menzel, C.; Rockstuhl, Carsten

    2010-01-01

    Homogenization of metamaterials is a crucial issue as it allows to describe their optical response in terms of effective wave parameters as, e.g., propagation constants. In this paper we consider the possible homogenization of chiral metamaterials. We show that for meta-atoms of a certain size...... an analytical criterion for performing the homogenization and a tool to predict the homogenization limit. We show that strong coupling between meta-atoms of chiral metamaterials may prevent their homogenization at all....

  2. Modelling of particulate matter pollution (PM10) over the Etang de Berre area Determination of areas of homogeneous pollution

    International Nuclear Information System (INIS)

    Brocheton, F.; Poulet, D.; Mesbah, B.; Hourdin, G.

    2010-01-01

    AIRFOBEP is the association in charge of the air quality monitoring in the Etang de Berre area. AIRFOBEP is managing a network of ten sensors to monitor the PMI (particulate matter index) particulate pollution. This network is updated once a year according to the Air Quality Monitoring Plan (PSQA). Optimizing this network needs to know how the particulate pollution is distributed in the area. In other words, to determine the limits of homogeneous zones of PM 10 pollution. The aim of the project presented in this article is to produce a map of homogeneous zones of PM 10 pollution in the Etang de Berre area. The project was carried out in two steps: - PM 10 atmospheric dispersion modeling, using a ADMS-URBAN software, - Statistic classification, based on the well known Hierarchical Ascending Classification (HAC) technique. Results of the atmospheric dispersion modeling was namely adjusted using an original technique for the 'background PM 10 pollution' computation. Good performances have been obtained when comparing modeling and measurements data. Finally, a set of five homogeneous zones was found to well describe the PM 10 pollution level distribution in the Etang de Berre area. (author)

  3. Adaptive hierarchical multi-agent organizations

    NARCIS (Netherlands)

    Ghijsen, M.; Jansweijer, W.N.H.; Wielinga, B.J.; Babuška, R.; Groen, F.C.A.

    2010-01-01

    In this chapter, we discuss the design of adaptive hierarchical organizations for multi-agent systems (MAS). Hierarchical organizations have a number of advantages such as their ability to handle complex problems and their scalability to large organizations. By introducing adaptivity in the

  4. Synthesis of ferrofluid based nanoarchitectured polypyrrole composites and its application for electromagnetic shielding

    Energy Technology Data Exchange (ETDEWEB)

    Varshney, Swati [Polymeric and Soft Materials Section, National Physical Laboratory (CSIR), New Delhi 110012 (India); Department of Chemistry, Delhi Institute of Tool Engineering, Okhla, New Delhi 110020 (India); Amity Institute of Advanced Research and Studies, Materials and Devices, AIARS (M and D), Amity University, Noida, UP 201303 (India); Ohlan, Anil [Department of Physics, M.D. University, Rohtak, Haryana 124001 (India); Jain, V.K. [Amity Institute of Advanced Research and Studies, Materials and Devices, AIARS (M and D), Amity University, Noida, UP 201303 (India); Dutta, V.P. [Department of Chemistry, Delhi Institute of Tool Engineering, Okhla, New Delhi 110020 (India); Dhawan, S.K., E-mail: skdhawan@mail.nplindia.ernet.in [Polymeric and Soft Materials Section, National Physical Laboratory (CSIR), New Delhi 110012 (India)

    2014-01-15

    The monodispersion of magnetic nanoparticles in conducting polymer is the prerequisite to make a high quality composite for tunable electromagnetic interference (EMI) shielding. To meet this challenge, we have designed and synthesized ferrofluid based nanoarchitectured polypyrrole composites containing Fe{sub 3}O{sub 4} (8–12 nm) via in situ oxidative polymerization. To tune the microwave signals, polypyrrole composites (PFF) with different monomer/ferrofluid weight ratios have been prepared and characterized in microwave frequency domain. A maximum shielding effectiveness value of SE{sub A(max)} = 20.4 dB (∼99% attenuation) due to the absorption of microwave has been observed in the frequency range of 12.4–18 GHz and attenuation level varied with ferrofluid loading. The electrical conductivity of PFF composite is of the order of 10{sup −2} S cm{sup −1} order and having superparamagnetic nature with saturation magnetization (M{sub s}) of 5.5 emu g{sup −1}. The lightweight PFF composites with high attenuations can provide full control over the atomic structure and are favorable for the practical EMI shielding application for commercial electronic appliances. - Highlights: • Aqueous ferrofluid has been incorporated in polypyrrole matrix leads to PFF nanocomposites. • PFF composites shows conductivity of the order of 10{sup −2} S cm{sup −1} and saturation magnetization of 5.5 emu g{sup −1}. • Shielding effectiveness of 23.5 dB (SE{sub A} ∼ 20.4 dB and SE{sub R} ∼ 3.1 dB) has been achieved. • Shielding effectiveness depends on the ferrofluid loading.

  5. Hierarchical video summarization

    Science.gov (United States)

    Ratakonda, Krishna; Sezan, M. Ibrahim; Crinon, Regis J.

    1998-12-01

    We address the problem of key-frame summarization of vide in the absence of any a priori information about its content. This is a common problem that is encountered in home videos. We propose a hierarchical key-frame summarization algorithm where a coarse-to-fine key-frame summary is generated. A hierarchical key-frame summary facilitates multi-level browsing where the user can quickly discover the content of the video by accessing its coarsest but most compact summary and then view a desired segment of the video with increasingly more detail. At the finest level, the summary is generated on the basis of color features of video frames, using an extension of a recently proposed key-frame extraction algorithm. The finest level key-frames are recursively clustered using a novel pairwise K-means clustering approach with temporal consecutiveness constraint. We also address summarization of MPEG-2 compressed video without fully decoding the bitstream. We also propose efficient mechanisms that facilitate decoding the video when the hierarchical summary is utilized in browsing and playback of video segments starting at selected key-frames.

  6. A Hierarchical Phosphorus Nanobarbed Nanowire Hybrid: Its Structure and Electrochemical Properties.

    Science.gov (United States)

    Zhao, Dan; Li, Beibei; Zhang, Jinying; Li, Xin; Xiao, Dingbin; Fu, Chengcheng; Zhang, Lihui; Li, Zhihui; Li, Jun; Cao, Daxian; Niu, Chunming

    2017-06-14

    Nanostructured phosphorus-carbon composites are promising materials for Li-ion and Na-ion battery anodes. A hierarchical phosphorus hybrid, SiC@graphene@P, has been synthesized by the chemical vapor deposition of phosphorus on the surfaces of barbed nanowires, where the barbs are vertically grown graphene nanosheets and the cores are SiC nanowires. A temperature-gradient vaporization-condensation method has been used to remove the unhybridized phosphorus particles formed by homogeneous nucleation. The vertically grown barb shaped graphene nanosheets and a high concentration of edge carbon atoms induced a fibrous red phosphorus (f-RP) growth with its {001} planes in parallel to {002} planes of nanographene sheets and led to a strong interpenetrated interface interaction between phosphorus and the surfaces of graphene nanosheets. This hybridization has been demonstrated to significantly enhance the electrochemical performances of phosphorus.

  7. Tunable fabrication of hierarchical hybrids via the incorporation of poly(dopamine) functional interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ting; Zhao, Xin; Zhang, Junxian; Dong, Jie; Zhang, Qinghua, E-mail: qhzhang@dhu.edu.cn

    2016-04-30

    Highlights: • PS/PDA with well-defined core/shell structures was prepared in aqueous solution. • Au NPs were coated on PS/PDA by in-situ reduction and self-assembly approach. • PS/PDA/Au had homogeneous and dense Au coatings with different shape. • Hierarchical spheres exhibited a well-defined core/shell structure maintaining the spherical morphology. - Abstract: Two kinds of ternary hybrids were prepared by anchoring different shapes and loadings of Au nanoparticles (NPs) on poly(dopamine) (PDA) functionalized polystyrene (PS) microspheres with two different strategies, i.e., in situ reduction and self-assembly approach. PDA coatings were firstly introduced to functionalize the hydrophobic PS surface with sufficient amino and hydroxyl groups, which enhanced the interaction between Au NPs and the polymer spheres. Thus, Au NPs could be easily immobilized onto the surface of the PDA/PS microspheres, and the hierarchical composite microspheres exhibited a well-defined core/shell structure without sacrificing the spherical PS morphology. PS/PDA/Au-R and PS/PDA/Au-A microspheres fabricated by in situ reduction and self-assembly approach showed different distinct Au nano-shell morphology with the corresponding optical, catalytic and electrochemical properties. Field emission scanning electron microscopy and transmission electronic microscopy verified these hierarchical structures with the ultrathin PDA film incorporating between the inner PS core and the outer Au NPs shell. X-ray diffraction and X-ray photoelectron spectroscopy confirmed the presence of PDA and Au layer on the surface of the composite particles. These green and facile methods with mild experimental conditions can extend to fabricate other polymer or inorganic substrates coated by various noble metals.

  8. Development of triple scale finite element analyses based on crystallographic homogenization methods

    International Nuclear Information System (INIS)

    Nakamachi, Eiji

    2004-01-01

    Crystallographic homogenization procedure is implemented in the piezoelectric and elastic-crystalline plastic finite element (FE) code to assess its macro-continuum properties of piezoelectric ceramics and BCC and FCC sheet metals. Triple scale hierarchical structure consists of an atom cluster, a crystal aggregation and a macro- continuum. In this paper, we focus to discuss a triple scale numerical analysis for piezoelectric material, and apply to assess a macro-continuum material property. At first, we calculate material properties of Perovskite crystal of piezoelectric material, XYO3 (such as BaTiO3 and PbTiO3) by employing ab-initio molecular analysis code CASTEP. Next, measured results of SEM and EBSD observations of crystal orientation distributions, shapes and boundaries of a real material (BaTiO3) are employed to define an inhomogeneity of crystal aggregation, which corresponds to a unit cell of micro-structure, and satisfies the periodicity condition. This procedure is featured as a first scaling up from the molecular to the crystal aggregation. Finally, the conventional homogenization procedure is implemented in FE code to evaluate a macro-continuum property. This final procedure is featured as a second scaling up from the crystal aggregation (unit cell) to macro-continuum. This triple scale analysis is applied to design piezoelectric ceramic and finds an optimum crystal orientation distribution, in which a macroscopic piezoelectric constant d33 has a maximum value

  9. Homogeneous crystal nucleation in polymers.

    Science.gov (United States)

    Schick, C; Androsch, R; Schmelzer, J W P

    2017-11-15

    The pathway of crystal nucleation significantly influences the structure and properties of semi-crystalline polymers. Crystal nucleation is normally heterogeneous at low supercooling, and homogeneous at high supercooling, of the polymer melt. Homogeneous nucleation in bulk polymers has been, so far, hardly accessible experimentally, and was even doubted to occur at all. This topical review summarizes experimental findings on homogeneous crystal nucleation in polymers. Recently developed fast scanning calorimetry, with cooling and heating rates up to 10 6 K s -1 , allows for detailed investigations of nucleation near and even below the glass transition temperature, including analysis of nuclei stability. As for other materials, the maximum homogeneous nucleation rate for polymers is located close to the glass transition temperature. In the experiments discussed here, it is shown that polymer nucleation is homogeneous at such temperatures. Homogeneous nucleation in polymers is discussed in the framework of the classical nucleation theory. The majority of our observations are consistent with the theory. The discrepancies may guide further research, particularly experiments to progress theoretical development. Progress in the understanding of homogeneous nucleation is much needed, since most of the modelling approaches dealing with polymer crystallization exclusively consider homogeneous nucleation. This is also the basis for advancing theoretical approaches to the much more complex phenomena governing heterogeneous nucleation.

  10. Evaluating Hierarchical Structure in Music Annotations.

    Science.gov (United States)

    McFee, Brian; Nieto, Oriol; Farbood, Morwaread M; Bello, Juan Pablo

    2017-01-01

    Music exhibits structure at multiple scales, ranging from motifs to large-scale functional components. When inferring the structure of a piece, different listeners may attend to different temporal scales, which can result in disagreements when they describe the same piece. In the field of music informatics research (MIR), it is common to use corpora annotated with structural boundaries at different levels. By quantifying disagreements between multiple annotators, previous research has yielded several insights relevant to the study of music cognition. First, annotators tend to agree when structural boundaries are ambiguous. Second, this ambiguity seems to depend on musical features, time scale, and genre. Furthermore, it is possible to tune current annotation evaluation metrics to better align with these perceptual differences. However, previous work has not directly analyzed the effects of hierarchical structure because the existing methods for comparing structural annotations are designed for "flat" descriptions, and do not readily generalize to hierarchical annotations. In this paper, we extend and generalize previous work on the evaluation of hierarchical descriptions of musical structure. We derive an evaluation metric which can compare hierarchical annotations holistically across multiple levels. sing this metric, we investigate inter-annotator agreement on the multilevel annotations of two different music corpora, investigate the influence of acoustic properties on hierarchical annotations, and evaluate existing hierarchical segmentation algorithms against the distribution of inter-annotator agreement.

  11. Evaluating Hierarchical Structure in Music Annotations

    Directory of Open Access Journals (Sweden)

    Brian McFee

    2017-08-01

    Full Text Available Music exhibits structure at multiple scales, ranging from motifs to large-scale functional components. When inferring the structure of a piece, different listeners may attend to different temporal scales, which can result in disagreements when they describe the same piece. In the field of music informatics research (MIR, it is common to use corpora annotated with structural boundaries at different levels. By quantifying disagreements between multiple annotators, previous research has yielded several insights relevant to the study of music cognition. First, annotators tend to agree when structural boundaries are ambiguous. Second, this ambiguity seems to depend on musical features, time scale, and genre. Furthermore, it is possible to tune current annotation evaluation metrics to better align with these perceptual differences. However, previous work has not directly analyzed the effects of hierarchical structure because the existing methods for comparing structural annotations are designed for “flat” descriptions, and do not readily generalize to hierarchical annotations. In this paper, we extend and generalize previous work on the evaluation of hierarchical descriptions of musical structure. We derive an evaluation metric which can compare hierarchical annotations holistically across multiple levels. sing this metric, we investigate inter-annotator agreement on the multilevel annotations of two different music corpora, investigate the influence of acoustic properties on hierarchical annotations, and evaluate existing hierarchical segmentation algorithms against the distribution of inter-annotator agreement.

  12. Feasibility Study of Aseptic Homogenization: Affecting Homogenization Steps on Quality of Sterilized Coconut Milk

    Directory of Open Access Journals (Sweden)

    Phungamngoen Chanthima

    2016-01-01

    Full Text Available Coconut milk is one of the most important protein-rich food sources available today. Separation of an emulsion into an aqueous phase and cream phase is commonly occurred and this leads an unacceptably physical defect of either fresh or processed coconut milk. Since homogenization steps are known to affect the stability of coconut milk. This work was aimed to study the effect of homogenization steps on quality of coconut milk. The samples were subject to high speed homogenization in the range of 5000-15000 rpm under sterilize temperatures at 120-140 °C for 15 min. The result showed that emulsion stability increase with increasing speed of homogenization. The lower fat particles were generated and easy to disperse in continuous phase lead to high stability. On the other hand, the stability of coconut milk decreased, fat globule increased, L value decreased and b value increased when the high sterilization temperature was applied. Homogenization after heating led to higher stability than homogenization before heating due to the reduced particle size of coconut milk after aggregation during sterilization process. The results implied that homogenization after sterilization process might play an important role on the quality of the sterilized coconut milk.

  13. 7 CFR 58.636 - Homogenization.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Homogenization. 58.636 Section 58.636 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.636 Homogenization. Homogenization of the pasteurized mix shall be accomplished to...

  14. Hierarchically Nanostructured Materials for Sustainable Environmental Applications

    Directory of Open Access Journals (Sweden)

    Zheng eRen

    2013-11-01

    Full Text Available This article presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions and multiple functionalities towards water remediation, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology.

  15. Hierarchically structured, nitrogen-doped carbon membranes

    KAUST Repository

    Wang, Hong; Wu, Tao

    2017-01-01

    The present invention is a structure, method of making and method of use for a novel macroscopic hierarchically structured, nitrogen-doped, nano-porous carbon membrane (HNDCMs) with asymmetric and hierarchical pore architecture that can be produced

  16. Hierarchically organized layout for visualization of biochemical pathways.

    Science.gov (United States)

    Tsay, Jyh-Jong; Wu, Bo-Liang; Jeng, Yu-Sen

    2010-01-01

    Many complex pathways are described as hierarchical structures in which a pathway is recursively partitioned into several sub-pathways, and organized hierarchically as a tree. The hierarchical structure provides a natural way to visualize the global structure of a complex pathway. However, none of the previous research on pathway visualization explores the hierarchical structures provided by many complex pathways. In this paper, we aim to develop algorithms that can take advantages of hierarchical structures, and give layouts that explore the global structures as well as local structures of pathways. We present a new hierarchically organized layout algorithm to produce layouts for hierarchically organized pathways. Our algorithm first decomposes a complex pathway into sub-pathway groups along the hierarchical organization, and then partition each sub-pathway group into basic components. It then applies conventional layout algorithms, such as hierarchical layout and force-directed layout, to compute the layout of each basic component. Finally, component layouts are joined to form a final layout of the pathway. Our main contribution is the development of algorithms for decomposing pathways and joining layouts. Experiment shows that our algorithm is able to give comprehensible visualization for pathways with hierarchies, cycles as well as complex structures. It clearly renders the global component structures as well as the local structure in each component. In addition, it runs very fast, and gives better visualization for many examples from previous related research. 2009 Elsevier B.V. All rights reserved.

  17. Regionalization Study of Satellite based Hydrological Model (SHM) in Hydrologically Homogeneous River Basins of India

    Science.gov (United States)

    Kumari, Babita; Paul, Pranesh Kumar; Singh, Rajendra; Mishra, Ashok; Gupta, Praveen Kumar; Singh, Raghvendra P.

    2017-04-01

    A new semi-distributed conceptual hydrological model, namely Satellite based Hydrological Model (SHM), has been developed under 'PRACRITI-2' program of Space Application Centre (SAC), Ahmedabad for sustainable water resources management of India by using data from Indian Remote Sensing satellites. Entire India is divided into 5km x 5km grid cells and properties at the center of the cells are assumed to represent the property of the cells. SHM contains five modules namely surface water, forest, snow, groundwater and routing. Two empirical equations (SCS-CN and Hargreaves) and water balance method have been used in the surface water module; the forest module is based on the calculations of water balancing & dynamics of subsurface. 2-D Boussinesq equation is used for groundwater modelling which is solved using implicit finite-difference. The routing module follows a distributed routing approach which requires flow path and network with the key point of travel time estimation. The aim of this study is to evaluate the performance of SHM using regionalization technique which also checks the usefulness of a model in data scarce condition or for ungauged basins. However, homogeneity analysis is pre-requisite to regionalization. Similarity index (Φ) and hierarchical agglomerative cluster analysis are adopted to test the homogeneity in terms of physical attributes of three basins namely Brahmani (39,033 km km^2)), Baitarani (10,982 km km^2)) and Kangsabati (9,660 km km^2)) with respect to Subarnarekha (29,196 km km^2)) basin. The results of both homogeneity analysis show that Brahmani basin is the most homogeneous with respect to Subarnarekha river basin in terms of physical characteristics (land use land cover classes, soiltype and elevation). The calibration and validation of model parameters of Brahmani basin is in progress which are to be transferred into the SHM set up of Subarnarekha basin and results are to be compared with the results of calibrated and validated

  18. Benchmarking monthly homogenization algorithms

    Science.gov (United States)

    Venema, V. K. C.; Mestre, O.; Aguilar, E.; Auer, I.; Guijarro, J. A.; Domonkos, P.; Vertacnik, G.; Szentimrey, T.; Stepanek, P.; Zahradnicek, P.; Viarre, J.; Müller-Westermeier, G.; Lakatos, M.; Williams, C. N.; Menne, M.; Lindau, R.; Rasol, D.; Rustemeier, E.; Kolokythas, K.; Marinova, T.; Andresen, L.; Acquaotta, F.; Fratianni, S.; Cheval, S.; Klancar, M.; Brunetti, M.; Gruber, C.; Prohom Duran, M.; Likso, T.; Esteban, P.; Brandsma, T.

    2011-08-01

    The COST (European Cooperation in Science and Technology) Action ES0601: Advances in homogenization methods of climate series: an integrated approach (HOME) has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies and because they represent two important types of statistics (additive and multiplicative). The algorithms were validated against a realistic benchmark dataset. The benchmark contains real inhomogeneous data as well as simulated data with inserted inhomogeneities. Random break-type inhomogeneities were added to the simulated datasets modeled as a Poisson process with normally distributed breakpoint sizes. To approximate real world conditions, breaks were introduced that occur simultaneously in multiple station series within a simulated network of station data. The simulated time series also contained outliers, missing data periods and local station trends. Further, a stochastic nonlinear global (network-wide) trend was added. Participants provided 25 separate homogenized contributions as part of the blind study as well as 22 additional solutions submitted after the details of the imposed inhomogeneities were revealed. These homogenized datasets were assessed by a number of performance metrics including (i) the centered root mean square error relative to the true homogeneous value at various averaging scales, (ii) the error in linear trend estimates and (iii) traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Contingency scores by themselves are not very informative. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve precipitation data

  19. Value distribution of meromorphic solutions of homogeneous and non-homogeneous complex linear differential-difference equations

    Directory of Open Access Journals (Sweden)

    Luo Li-Qin

    2016-01-01

    Full Text Available In this paper, we investigate the value distribution of meromorphic solutions of homogeneous and non-homogeneous complex linear differential-difference equations, and obtain the results on the relations between the order of the solutions and the convergence exponents of the zeros, poles, a-points and small function value points of the solutions, which show the relations in the case of non-homogeneous equations are sharper than the ones in the case of homogeneous equations.

  20. Hierarchical screening for multiple mental disorders.

    Science.gov (United States)

    Batterham, Philip J; Calear, Alison L; Sunderland, Matthew; Carragher, Natacha; Christensen, Helen; Mackinnon, Andrew J

    2013-10-01

    There is a need for brief, accurate screening when assessing multiple mental disorders. Two-stage hierarchical screening, consisting of brief pre-screening followed by a battery of disorder-specific scales for those who meet diagnostic criteria, may increase the efficiency of screening without sacrificing precision. This study tested whether more efficient screening could be gained using two-stage hierarchical screening than by administering multiple separate tests. Two Australian adult samples (N=1990) with high rates of psychopathology were recruited using Facebook advertising to examine four methods of hierarchical screening for four mental disorders: major depressive disorder, generalised anxiety disorder, panic disorder and social phobia. Using K6 scores to determine whether full screening was required did not increase screening efficiency. However, pre-screening based on two decision tree approaches or item gating led to considerable reductions in the mean number of items presented per disorder screened, with estimated item reductions of up to 54%. The sensitivity of these hierarchical methods approached 100% relative to the full screening battery. Further testing of the hierarchical screening approach based on clinical criteria and in other samples is warranted. The results demonstrate that a two-phase hierarchical approach to screening multiple mental disorders leads to considerable increases efficiency gains without reducing accuracy. Screening programs should take advantage of prescreeners based on gating items or decision trees to reduce the burden on respondents. © 2013 Elsevier B.V. All rights reserved.

  1. Self-assembled biomimetic superhydrophobic hierarchical arrays.

    Science.gov (United States)

    Yang, Hongta; Dou, Xuan; Fang, Yin; Jiang, Peng

    2013-09-01

    Here, we report a simple and inexpensive bottom-up technology for fabricating superhydrophobic coatings with hierarchical micro-/nano-structures, which are inspired by the binary periodic structure found on the superhydrophobic compound eyes of some insects (e.g., mosquitoes and moths). Binary colloidal arrays consisting of exemplary large (4 and 30 μm) and small (300 nm) silica spheres are first assembled by a scalable Langmuir-Blodgett (LB) technology in a layer-by-layer manner. After surface modification with fluorosilanes, the self-assembled hierarchical particle arrays become superhydrophobic with an apparent water contact angle (CA) larger than 150°. The throughput of the resulting superhydrophobic coatings with hierarchical structures can be significantly improved by templating the binary periodic structures of the LB-assembled colloidal arrays into UV-curable fluoropolymers by a soft lithography approach. Superhydrophobic perfluoroether acrylate hierarchical arrays with large CAs and small CA hysteresis can be faithfully replicated onto various substrates. Both experiments and theoretical calculations based on the Cassie's dewetting model demonstrate the importance of the hierarchical structure in achieving the final superhydrophobic surface states. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Hierarchically structured, nitrogen-doped carbon membranes

    KAUST Repository

    Wang, Hong

    2017-08-03

    The present invention is a structure, method of making and method of use for a novel macroscopic hierarchically structured, nitrogen-doped, nano-porous carbon membrane (HNDCMs) with asymmetric and hierarchical pore architecture that can be produced on a large-scale approach. The unique HNDCM holds great promise as components in separation and advanced carbon devices because they could offer unconventional fluidic transport phenomena on the nanoscale. Overall, the invention set forth herein covers a hierarchically structured, nitrogen-doped carbon membranes and methods of making and using such a membranes.

  3. Hierarchical Rhetorical Sentence Categorization for Scientific Papers

    Science.gov (United States)

    Rachman, G. H.; Khodra, M. L.; Widyantoro, D. H.

    2018-03-01

    Important information in scientific papers can be composed of rhetorical sentences that is structured from certain categories. To get this information, text categorization should be conducted. Actually, some works in this task have been completed by employing word frequency, semantic similarity words, hierarchical classification, and the others. Therefore, this paper aims to present the rhetorical sentence categorization from scientific paper by employing TF-IDF and Word2Vec to capture word frequency and semantic similarity words and employing hierarchical classification. Every experiment is tested in two classifiers, namely Naïve Bayes and SVM Linear. This paper shows that hierarchical classifier is better than flat classifier employing either TF-IDF or Word2Vec, although it increases only almost 2% from 27.82% when using flat classifier until 29.61% when using hierarchical classifier. It shows also different learning model for child-category can be built by hierarchical classifier.

  4. Hierarchical Recurrent Neural Hashing for Image Retrieval With Hierarchical Convolutional Features.

    Science.gov (United States)

    Lu, Xiaoqiang; Chen, Yaxiong; Li, Xuelong

    Hashing has been an important and effective technology in image retrieval due to its computational efficiency and fast search speed. The traditional hashing methods usually learn hash functions to obtain binary codes by exploiting hand-crafted features, which cannot optimally represent the information of the sample. Recently, deep learning methods can achieve better performance, since deep learning architectures can learn more effective image representation features. However, these methods only use semantic features to generate hash codes by shallow projection but ignore texture details. In this paper, we proposed a novel hashing method, namely hierarchical recurrent neural hashing (HRNH), to exploit hierarchical recurrent neural network to generate effective hash codes. There are three contributions of this paper. First, a deep hashing method is proposed to extensively exploit both spatial details and semantic information, in which, we leverage hierarchical convolutional features to construct image pyramid representation. Second, our proposed deep network can exploit directly convolutional feature maps as input to preserve the spatial structure of convolutional feature maps. Finally, we propose a new loss function that considers the quantization error of binarizing the continuous embeddings into the discrete binary codes, and simultaneously maintains the semantic similarity and balanceable property of hash codes. Experimental results on four widely used data sets demonstrate that the proposed HRNH can achieve superior performance over other state-of-the-art hashing methods.Hashing has been an important and effective technology in image retrieval due to its computational efficiency and fast search speed. The traditional hashing methods usually learn hash functions to obtain binary codes by exploiting hand-crafted features, which cannot optimally represent the information of the sample. Recently, deep learning methods can achieve better performance, since deep

  5. The SPH homogeneization method

    International Nuclear Information System (INIS)

    Kavenoky, Alain

    1978-01-01

    The homogeneization of a uniform lattice is a rather well understood topic while difficult problems arise if the lattice becomes irregular. The SPH homogeneization method is an attempt to generate homogeneized cross sections for an irregular lattice. Section 1 summarizes the treatment of an isolated cylindrical cell with an entering surface current (in one velocity theory); Section 2 is devoted to the extension of the SPH method to assembly problems. Finally Section 3 presents the generalisation to general multigroup problems. Numerical results are obtained for a PXR rod bundle assembly in Section 4

  6. Homogeneity of Inorganic Glasses

    DEFF Research Database (Denmark)

    Jensen, Martin; Zhang, L.; Keding, Ralf

    2011-01-01

    Homogeneity of glasses is a key factor determining their physical and chemical properties and overall quality. However, quantification of the homogeneity of a variety of glasses is still a challenge for glass scientists and technologists. Here, we show a simple approach by which the homogeneity...... of different glass products can be quantified and ranked. This approach is based on determination of both the optical intensity and dimension of the striations in glasses. These two characteristic values areobtained using the image processing method established recently. The logarithmic ratio between...

  7. Zeolitic materials with hierarchical porous structures.

    Science.gov (United States)

    Lopez-Orozco, Sofia; Inayat, Amer; Schwab, Andreas; Selvam, Thangaraj; Schwieger, Wilhelm

    2011-06-17

    During the past several years, different kinds of hierarchical structured zeolitic materials have been synthesized due to their highly attractive properties, such as superior mass/heat transfer characteristics, lower restriction of the diffusion of reactants in the mesopores, and low pressure drop. Our contribution provides general information regarding types and preparation methods of hierarchical zeolitic materials and their relative advantages and disadvantages. Thereafter, recent advances in the preparation and characterization of hierarchical zeolitic structures within the crystallites by post-synthetic treatment methods, such as dealumination or desilication; and structured devices by in situ and ex situ zeolite coatings on open-cellular ceramic foams as (non-reactive as well as reactive) supports are highlighted. Specific advantages of using hierarchical zeolitic catalysts/structures in selected catalytic reactions, such as benzene to phenol (BTOP) and methanol to olefins (MTO) are presented. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Processing of hierarchical syntactic structure in music.

    Science.gov (United States)

    Koelsch, Stefan; Rohrmeier, Martin; Torrecuso, Renzo; Jentschke, Sebastian

    2013-09-17

    Hierarchical structure with nested nonlocal dependencies is a key feature of human language and can be identified theoretically in most pieces of tonal music. However, previous studies have argued against the perception of such structures in music. Here, we show processing of nonlocal dependencies in music. We presented chorales by J. S. Bach and modified versions in which the hierarchical structure was rendered irregular whereas the local structure was kept intact. Brain electric responses differed between regular and irregular hierarchical structures, in both musicians and nonmusicians. This finding indicates that, when listening to music, humans apply cognitive processes that are capable of dealing with long-distance dependencies resulting from hierarchically organized syntactic structures. Our results reveal that a brain mechanism fundamental for syntactic processing is engaged during the perception of music, indicating that processing of hierarchical structure with nested nonlocal dependencies is not just a key component of human language, but a multidomain capacity of human cognition.

  9. Hierarchical Nanoceramics for Industrial Process Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ruud, James, A.; Brosnan, Kristen, H.; Striker, Todd; Ramaswamy, Vidya; Aceto, Steven, C.; Gao, Yan; Willson, Patrick, D.; Manoharan, Mohan; Armstrong, Eric, N., Wachsman, Eric, D.; Kao, Chi-Chang

    2011-07-15

    This project developed a robust, tunable, hierarchical nanoceramics materials platform for industrial process sensors in harsh-environments. Control of material structure at multiple length scales from nano to macro increased the sensing response of the materials to combustion gases. These materials operated at relatively high temperatures, enabling detection close to the source of combustion. It is anticipated that these materials can form the basis for a new class of sensors enabling widespread use of efficient combustion processes with closed loop feedback control in the energy-intensive industries. The first phase of the project focused on materials selection and process development, leading to hierarchical nanoceramics that were evaluated for sensing performance. The second phase focused on optimizing the materials processes and microstructures, followed by validation of performance of a prototype sensor in a laboratory combustion environment. The objectives of this project were achieved by: (1) synthesizing and optimizing hierarchical nanostructures; (2) synthesizing and optimizing sensing nanomaterials; (3) integrating sensing functionality into hierarchical nanostructures; (4) demonstrating material performance in a sensing element; and (5) validating material performance in a simulated service environment. The project developed hierarchical nanoceramic electrodes for mixed potential zirconia gas sensors with increased surface area and demonstrated tailored electrocatalytic activity operable at high temperatures enabling detection of products of combustion such as NOx close to the source of combustion. Methods were developed for synthesis of hierarchical nanostructures with high, stable surface area, integrated catalytic functionality within the structures for gas sensing, and demonstrated materials performance in harsh lab and combustion gas environments.

  10. The Case for a Hierarchical Cosmology

    Science.gov (United States)

    Vaucouleurs, G. de

    1970-01-01

    The development of modern theoretical cosmology is presented and some questionable assumptions of orthodox cosmology are pointed out. Suggests that recent observations indicate that hierarchical clustering is a basic factor in cosmology. The implications of hierarchical models of the universe are considered. Bibliography. (LC)

  11. Classification using Hierarchical Naive Bayes models

    DEFF Research Database (Denmark)

    Langseth, Helge; Dyhre Nielsen, Thomas

    2006-01-01

    Classification problems have a long history in the machine learning literature. One of the simplest, and yet most consistently well-performing set of classifiers is the Naïve Bayes models. However, an inherent problem with these classifiers is the assumption that all attributes used to describe......, termed Hierarchical Naïve Bayes models. Hierarchical Naïve Bayes models extend the modeling flexibility of Naïve Bayes models by introducing latent variables to relax some of the independence statements in these models. We propose a simple algorithm for learning Hierarchical Naïve Bayes models...

  12. Reflector homogenization

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.; Ragusa, J.; Santandrea, S. [Commissariat a l' Energie Atomique, Direction de l' Energie Nucleaire, Service d' Etudes de Reacteurs et de Modelisation Avancee, CEA de Saclay, DM2S/SERMA 91 191 Gif-sur-Yvette cedex (France)]. e-mail: richard.sanchez@cea.fr

    2004-07-01

    The problem of the determination of a homogeneous reflector that preserves a set of prescribed albedo is considered. Duality is used for a direct estimation of the derivatives needed in the iterative calculation of the optimal homogeneous cross sections. The calculation is based on the preservation of collapsed multigroup albedo obtained from detailed reference calculations and depends on the low-order operator used for core calculations. In this work we analyze diffusion and transport as low-order operators and argue that the P{sub 0} transfers are the best choice for the unknown cross sections to be adjusted. Numerical results illustrate the new approach for SP{sub N} core calculations. (Author)

  13. Reflector homogenization

    International Nuclear Information System (INIS)

    Sanchez, R.; Ragusa, J.; Santandrea, S.

    2004-01-01

    The problem of the determination of a homogeneous reflector that preserves a set of prescribed albedo is considered. Duality is used for a direct estimation of the derivatives needed in the iterative calculation of the optimal homogeneous cross sections. The calculation is based on the preservation of collapsed multigroup albedo obtained from detailed reference calculations and depends on the low-order operator used for core calculations. In this work we analyze diffusion and transport as low-order operators and argue that the P 0 transfers are the best choice for the unknown cross sections to be adjusted. Numerical results illustrate the new approach for SP N core calculations. (Author)

  14. Hybrid diffusion–transport spatial homogenization method

    International Nuclear Information System (INIS)

    Kooreman, Gabriel; Rahnema, Farzad

    2014-01-01

    Highlights: • A new hybrid diffusion–transport homogenization method. • An extension of the consistent spatial homogenization (CSH) transport method. • Auxiliary cross section makes homogenized diffusion consistent with heterogeneous diffusion. • An on-the-fly re-homogenization in transport. • The method is faster than fine-mesh transport by 6–8 times. - Abstract: A new hybrid diffusion–transport homogenization method has been developed by extending the consistent spatial homogenization (CSH) transport method to include diffusion theory. As in the CSH method, an “auxiliary cross section” term is introduced into the source term, making the resulting homogenized diffusion equation consistent with its heterogeneous counterpart. The method then utilizes an on-the-fly re-homogenization in transport theory at the assembly level in order to correct for core environment effects on the homogenized cross sections and the auxiliary cross section. The method has been derived in general geometry and tested in a 1-D boiling water reactor (BWR) core benchmark problem for both controlled and uncontrolled configurations. The method has been shown to converge to the reference solution with less than 1.7% average flux error in less than one third the computational time as the CSH method – 6 to 8 times faster than fine-mesh transport

  15. Hierarchical Mesoporous Lithium-Rich Li[Li0.2Ni0.2Mn0.6]O2 Cathode Material Synthesized via Ice Templating for Lithium-Ion Battery.

    Science.gov (United States)

    Li, Yu; Wu, Chuan; Bai, Ying; Liu, Lu; Wang, Hui; Wu, Feng; Zhang, Na; Zou, Yufeng

    2016-07-27

    Tuning hierarchical micro/nanostructure of electrode materials is a sought-after means to reinforce their electrochemical performance in the energy storage field. Herein, we introduce a type of hierarchical mesoporous Li[Li0.2Ni0.2Mn0.6]O2 microsphere composed of nanoparticles synthesized via an ice templating combined coprecipitation strategy. It is a low-cost, eco-friendly, and easily operated method using ice as a template to control material with homogeneous morphology and rich porous channels. The as-prepared material exhibits remarkably enhanced electrochemical performances with higher capacity, more excellent cycling stability and more superior rate property, compared with the sample prepared by conventional coprecipitation method. It has satisfactory initial discharge capacities of 280.1 mAh g(-1) at 0.1 C, 207.1 mAh g(-1) at 2 C, and 152.4 mAh g(-1) at 5 C, as well as good cycle performance. The enhanced electrochemical performance can be ascribed to the stable hierarchical microsized structure and the improved lithium-ion diffusion kinetics from the highly porous structure.

  16. Improved Adhesion and Compliancy of Hierarchical Fibrillar Adhesives.

    Science.gov (United States)

    Li, Yasong; Gates, Byron D; Menon, Carlo

    2015-08-05

    The gecko relies on van der Waals forces to cling onto surfaces with a variety of topography and composition. The hierarchical fibrillar structures on their climbing feet, ranging from mesoscale to nanoscale, are hypothesized to be key elements for the animal to conquer both smooth and rough surfaces. An epoxy-based artificial hierarchical fibrillar adhesive was prepared to study the influence of the hierarchical structures on the properties of a dry adhesive. The presented experiments highlight the advantages of a hierarchical structure despite a reduction of overall density and aspect ratio of nanofibrils. In contrast to an adhesive containing only nanometer-size fibrils, the hierarchical fibrillar adhesives exhibited a higher adhesion force and better compliancy when tested on an identical substrate.

  17. Construction of a Hierarchical Architecture of Covalent Organic Frameworks via a Postsynthetic Approach.

    Science.gov (United States)

    Zhang, Gen; Tsujimoto, Masahiko; Packwood, Daniel; Duong, Nghia Tuan; Nishiyama, Yusuke; Kadota, Kentaro; Kitagawa, Susumu; Horike, Satoshi

    2018-02-21

    Covalent organic frameworks (COFs) represent an emerging class of crystalline porous materials that are constructed by the assembly of organic building blocks linked via covalent bonds. Several strategies have been developed for the construction of new COF structures; however, a facile approach to fabricate hierarchical COF architectures with controlled domain structures remains a significant challenge, and has not yet been achieved. In this study, a dynamic covalent chemistry (DCC)-based postsynthetic approach was employed at the solid-liquid interface to construct such structures. Two-dimensional imine-bonded COFs having different aromatic groups were prepared, and a homogeneously mixed-linker structure and a heterogeneously core-shell hollow structure were fabricated by controlling the reactivity of the postsynthetic reactions. Solid-state nuclear magnetic resonance (NMR) spectroscopy and transmission electron microscopy (TEM) confirmed the structures. COFs prepared by a postsynthetic approach exhibit several functional advantages compared with their parent phases. Their Brunauer-Emmett-Teller (BET) surface areas are 2-fold greater than those of their parent phases because of the higher crystallinity. In addition, the hydrophilicity of the material and the stepwise adsorption isotherms of H 2 O vapor in the hierarchical frameworks were precisely controlled, which was feasible because of the distribution of various domains of the two COFs by controlling the postsynthetic reaction. The approach opens new routes for constructing COF architectures with functionalities that are not possible in a single phase.

  18. Electro-magnetostatic homogenization of bianisotropic metamaterials

    OpenAIRE

    Fietz, Chris

    2012-01-01

    We apply the method of asymptotic homogenization to metamaterials with microscopically bianisotropic inclusions to calculate a full set of constitutive parameters in the long wavelength limit. Two different implementations of electromagnetic asymptotic homogenization are presented. We test the homogenization procedure on two different metamaterial examples. Finally, the analytical solution for long wavelength homogenization of a one dimensional metamaterial with microscopically bi-isotropic i...

  19. Leadership styles across hierarchical levels in nursing departments.

    Science.gov (United States)

    Stordeur, S; Vandenberghe, C; D'hoore, W

    2000-01-01

    Some researchers have reported on the cascading effect of transformational leadership across hierarchical levels. One study examined this effect in nursing, but it was limited to a single hospital. To examine the cascading effect of leadership styles across hierarchical levels in a sample of nursing departments and to investigate the effect of hierarchical level on the relationships between leadership styles and various work outcomes. Based on a sample of eight hospitals, the cascading effect was tested using correlation analysis. The main sources of variation among leadership scores were determined with analyses of variance (ANOVA), and the interaction effect of hierarchical level and leadership styles on criterion variables was tested with moderated regression analysis. No support was found for a cascading effect of leadership across hierarchical levels. Rather, the variation of leadership scores was explained primarily by the organizational context. Transformational leadership had a stronger impact on criterion variables than transactional leadership. Interaction effects between leadership styles and hierarchical level were observed only for perceived unit effectiveness. The hospital's structure and culture are major determinants of leadership styles.

  20. Learning with hierarchical-deep models.

    Science.gov (United States)

    Salakhutdinov, Ruslan; Tenenbaum, Joshua B; Torralba, Antonio

    2013-08-01

    We introduce HD (or “Hierarchical-Deep”) models, a new compositional learning architecture that integrates deep learning models with structured hierarchical Bayesian (HB) models. Specifically, we show how we can learn a hierarchical Dirichlet process (HDP) prior over the activities of the top-level features in a deep Boltzmann machine (DBM). This compound HDP-DBM model learns to learn novel concepts from very few training example by learning low-level generic features, high-level features that capture correlations among low-level features, and a category hierarchy for sharing priors over the high-level features that are typical of different kinds of concepts. We present efficient learning and inference algorithms for the HDP-DBM model and show that it is able to learn new concepts from very few examples on CIFAR-100 object recognition, handwritten character recognition, and human motion capture datasets.

  1. Process-based modelling of tree and stand growth: towards a hierarchical treatment of multiscale processes

    International Nuclear Information System (INIS)

    Makela, A.

    2003-01-01

    A generally accepted method has not emerged for managing the different temporal and spatial scales in a forest ecosystem. This paper reviews a hierarchical-modular modelling tradition, with the main focus on individual tree growth throughout the rotation. At this scale, model performance requires (i) realistic long-term dynamic properties, (ii) realistic responses of growth and mortality of competing individuals, and (iii) realistic responses to ecophysio-logical inputs. Model development and validation are illustrated through allocation patterns, height growth, and size-related feedbacks. Empirical work to test the approach is reviewed. In this approach, finer scale effects are embedded in parameters calculated using more detailed, interacting modules. This is exemplified by (i) the within-year effect of weather on annual photosynthesis, (ii) the effects of fast soil processes on carbon allocation and photosynthesis, and (iii) the utilization of detailed stem structure to predict wood quality. Prevailing management paradigms are reflected in growth modelling. A shift of emphasis has occurred from productivity in homogeneous canopies towards, e.g., wood quality versus total yield, spatially more explicit models, and growth decline in old-growth forests. The new problems emphasize the hierarchy of the system and interscale interactions, suggesting that the hierarchical-modular approach could prove constructive. (author)

  2. Bilipschitz embedding of homogeneous fractals

    OpenAIRE

    Lü, Fan; Lou, Man-Li; Wen, Zhi-Ying; Xi, Li-Feng

    2014-01-01

    In this paper, we introduce a class of fractals named homogeneous sets based on some measure versions of homogeneity, uniform perfectness and doubling. This fractal class includes all Ahlfors-David regular sets, but most of them are irregular in the sense that they may have different Hausdorff dimensions and packing dimensions. Using Moran sets as main tool, we study the dimensions, bilipschitz embedding and quasi-Lipschitz equivalence of homogeneous fractals.

  3. Homogeneous anisotropic solutions of topologically massive gravity with a cosmological constant and their homogeneous deformations

    International Nuclear Information System (INIS)

    Moutsopoulos, George

    2013-01-01

    We solve the equations of topologically massive gravity (TMG) with a potentially non-vanishing cosmological constant for homogeneous metrics without isotropy. We only reproduce known solutions. We also discuss their homogeneous deformations, possibly with isotropy. We show that de Sitter space and hyperbolic space cannot be infinitesimally homogeneously deformed in TMG. We clarify some of their Segre–Petrov types and discuss the warped de Sitter spacetime. (paper)

  4. Homogeneous anisotropic solutions of topologically massive gravity with a cosmological constant and their homogeneous deformations

    Science.gov (United States)

    Moutsopoulos, George

    2013-06-01

    We solve the equations of topologically massive gravity (TMG) with a potentially non-vanishing cosmological constant for homogeneous metrics without isotropy. We only reproduce known solutions. We also discuss their homogeneous deformations, possibly with isotropy. We show that de Sitter space and hyperbolic space cannot be infinitesimally homogeneously deformed in TMG. We clarify some of their Segre-Petrov types and discuss the warped de Sitter spacetime.

  5. Benchmarking homogenization algorithms for monthly data

    Science.gov (United States)

    Venema, V. K. C.; Mestre, O.; Aguilar, E.; Auer, I.; Guijarro, J. A.; Domonkos, P.; Vertacnik, G.; Szentimrey, T.; Stepanek, P.; Zahradnicek, P.; Viarre, J.; Müller-Westermeier, G.; Lakatos, M.; Williams, C. N.; Menne, M. J.; Lindau, R.; Rasol, D.; Rustemeier, E.; Kolokythas, K.; Marinova, T.; Andresen, L.; Acquaotta, F.; Fratiannil, S.; Cheval, S.; Klancar, M.; Brunetti, M.; Gruber, C.; Prohom Duran, M.; Likso, T.; Esteban, P.; Brandsma, T.; Willett, K.

    2013-09-01

    The COST (European Cooperation in Science and Technology) Action ES0601: Advances in homogenization methods of climate series: an integrated approach (HOME) has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies. The algorithms were validated against a realistic benchmark dataset. Participants provided 25 separate homogenized contributions as part of the blind study as well as 22 additional solutions submitted after the details of the imposed inhomogeneities were revealed. These homogenized datasets were assessed by a number of performance metrics including i) the centered root mean square error relative to the true homogeneous values at various averaging scales, ii) the error in linear trend estimates and iii) traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve precipitation data. Moreover, state-of-the-art relative homogenization algorithms developed to work with an inhomogeneous reference are shown to perform best. The study showed that currently automatic algorithms can perform as well as manual ones.

  6. Hierarchical analysis of acceptable use policies

    Directory of Open Access Journals (Sweden)

    P. A. Laughton

    2008-01-01

    Full Text Available Acceptable use policies (AUPs are vital tools for organizations to protect themselves and their employees from misuse of computer facilities provided. A well structured, thorough AUP is essential for any organization. It is impossible for an effective AUP to deal with every clause and remain readable. For this reason, some sections of an AUP carry more weight than others, denoting importance. The methodology used to develop the hierarchical analysis is a literature review, where various sources were consulted. This hierarchical approach to AUP analysis attempts to highlight important sections and clauses dealt with in an AUP. The emphasis of the hierarchal analysis is to prioritize the objectives of an AUP.

  7. Virtual timers in hierarchical real-time systems

    NARCIS (Netherlands)

    Heuvel, van den M.M.H.P.; Holenderski, M.J.; Cools, W.A.; Bril, R.J.; Lukkien, J.J.; Zhu, D.

    2009-01-01

    Hierarchical scheduling frameworks (HSFs) provide means for composing complex real-time systems from welldefined subsystems. This paper describes an approach to provide hierarchically scheduled real-time applications with virtual event timers, motivated by the need for integrating priority

  8. Homogenization of resonant chiral metamaterials

    OpenAIRE

    Andryieuski, Andrei; Menzel, Christoph; Rockstuhl, Carsten; Malureanu, Radu; Lederer, Falk; Lavrinenko, Andrei

    2010-01-01

    Homogenization of metamaterials is a crucial issue as it allows to describe their optical response in terms of effective wave parameters as e.g. propagation constants. In this paper we consider the possible homogenization of chiral metamaterials. We show that for meta-atoms of a certain size a critical density exists above which increasing coupling between neighboring meta-atoms prevails a reasonable homogenization. On the contrary, a dilution in excess will induce features reminiscent to pho...

  9. Hierarchical modeling and analysis for spatial data

    CERN Document Server

    Banerjee, Sudipto; Gelfand, Alan E

    2003-01-01

    Among the many uses of hierarchical modeling, their application to the statistical analysis of spatial and spatio-temporal data from areas such as epidemiology And environmental science has proven particularly fruitful. Yet to date, the few books that address the subject have been either too narrowly focused on specific aspects of spatial analysis, or written at a level often inaccessible to those lacking a strong background in mathematical statistics.Hierarchical Modeling and Analysis for Spatial Data is the first accessible, self-contained treatment of hierarchical methods, modeling, and dat

  10. Hierarchical organization versus self-organization

    OpenAIRE

    Busseniers, Evo

    2014-01-01

    In this paper we try to define the difference between hierarchical organization and self-organization. Organization is defined as a structure with a function. So we can define the difference between hierarchical organization and self-organization both on the structure as on the function. In the next two chapters these two definitions are given. For the structure we will use some existing definitions in graph theory, for the function we will use existing theory on (self-)organization. In the t...

  11. Homogenization of neutronic diffusion models

    International Nuclear Information System (INIS)

    Capdebosq, Y.

    1999-09-01

    In order to study and simulate nuclear reactor cores, one needs to access the neutron distribution in the core. In practice, the description of this density of neutrons is given by a system of diffusion equations, coupled by non differential exchange terms. The strong heterogeneity of the medium constitutes a major obstacle to the numerical computation of this models at reasonable cost. Homogenization appears as compulsory. Heuristic methods have been developed since the origin by nuclear physicists, under a periodicity assumption on the coefficients. They consist in doing a fine computation one a single periodicity cell, to solve the system on the whole domain with homogeneous coefficients, and to reconstruct the neutron density by multiplying the solutions of the two computations. The objectives of this work are to provide mathematically rigorous basis to this factorization method, to obtain the exact formulas of the homogenized coefficients, and to start on geometries where two periodical medium are placed side by side. The first result of this thesis concerns eigenvalue problem models which are used to characterize the state of criticality of the reactor, under a symmetry assumption on the coefficients. The convergence of the homogenization process is proved, and formulas of the homogenized coefficients are given. We then show that without symmetry assumptions, a drift phenomenon appears. It is characterized by the mean of a real Bloch wave method, which gives the homogenized limit in the general case. These results for the critical problem are then adapted to the evolution model. Finally, the homogenization of the critical problem in the case of two side by side periodic medium is studied on a one dimensional on equation model. (authors)

  12. Recursive solutions for multi-group neutron kinetics diffusion equations in homogeneous three-dimensional rectangular domains with time dependent perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Claudio Z. [Universidade Federal de Pelotas, Capao do Leao (Brazil). Programa de Pos Graduacao em Modelagem Matematica; Bodmann, Bardo E.J.; Vilhena, Marco T. [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-graduacao em Engenharia Mecanica; Barros, Ricardo C. [Universidade do Estado do Rio de Janeiro, Nova Friburgo, RJ (Brazil). Inst. Politecnico

    2014-12-15

    In the present work we solve in analytical representation the three dimensional neutron kinetic diffusion problem in rectangular Cartesian geometry for homogeneous and bounded domains for any number of energy groups and precursor concentrations. The solution in analytical representation is constructed using a hierarchical procedure, i.e. the original problem is reduced to a problem previously solved by the authors making use of a combination of the spectral method and a recursive decomposition approach. Time dependent absorption cross sections of the thermal energy group are considered with step, ramp and Chebyshev polynomial variations. For these three cases, we present numerical results and discuss convergence properties and compare our results to those available in the literature.

  13. Orthogonality Measurement for Homogenous Projects-Bases

    Science.gov (United States)

    Ivan, Ion; Sandu, Andrei; Popa, Marius

    2009-01-01

    The homogenous projects-base concept is defined. Next, the necessary steps to create a homogenous projects-base are presented. A metric system is built, which then will be used for analyzing projects. The indicators which are meaningful for analyzing a homogenous projects-base are selected. The given hypothesis is experimentally verified. The…

  14. Deliberate change without hierarchical influence?

    DEFF Research Database (Denmark)

    Nørskov, Sladjana; Kesting, Peter; Ulhøi, John Parm

    2017-01-01

    reveals that deliberate change is indeed achievable in a non-hierarchical collaborative OSS community context. However, it presupposes the presence and active involvement of informal change agents. The paper identifies and specifies four key drivers for change agents’ influence. Originality....../value The findings contribute to organisational analysis by providing a deeper understanding of the importance of leadership in making deliberate change possible in non-hierarchical settings. It points to the importance of “change-by-conviction”, essentially based on voluntary behaviour. This can open the door...

  15. Multiparty hierarchical quantum-information splitting

    International Nuclear Information System (INIS)

    Wang Xinwen; Zhang Dengyu; Tang Shiqing; Xie Lijun

    2011-01-01

    We propose a scheme for multiparty hierarchical quantum-information splitting (QIS) with a multipartite entangled state, where a boss distributes a secret quantum state to two grades of agents asymmetrically. The agents who belong to different grades have different authorities for recovering the boss's secret. Except for the boss's Bell-state measurement, no nonlocal operation is involved. The presented scheme is also shown to be secure against eavesdropping. Such a hierarchical QIS is expected to find useful applications in the field of modern multipartite quantum cryptography.

  16. Biased trapping issue on weighted hierarchical networks

    Indian Academy of Sciences (India)

    archical networks which are based on the classic scale-free hierarchical networks. ... Weighted hierarchical networks; weight-dependent walks; mean first passage ..... The weighted networks can mimic some real-world natural and social systems to ... the Priority Academic Program Development of Jiangsu Higher Education ...

  17. Analytical solutions of time-fractional models for homogeneous Gardner equation and non-homogeneous differential equations

    Directory of Open Access Journals (Sweden)

    Olaniyi Samuel Iyiola

    2014-09-01

    Full Text Available In this paper, we obtain analytical solutions of homogeneous time-fractional Gardner equation and non-homogeneous time-fractional models (including Buck-master equation using q-Homotopy Analysis Method (q-HAM. Our work displays the elegant nature of the application of q-HAM not only to solve homogeneous non-linear fractional differential equations but also to solve the non-homogeneous fractional differential equations. The presence of the auxiliary parameter h helps in an effective way to obtain better approximation comparable to exact solutions. The fraction-factor in this method gives it an edge over other existing analytical methods for non-linear differential equations. Comparisons are made upon the existence of exact solutions to these models. The analysis shows that our analytical solutions converge very rapidly to the exact solutions.

  18. Anti-hierarchical evolution of the active galactic nucleus space density in a hierarchical universe

    International Nuclear Information System (INIS)

    Enoki, Motohiro; Ishiyama, Tomoaki; Kobayashi, Masakazu A. R.; Nagashima, Masahiro

    2014-01-01

    Recent observations show that the space density of luminous active galactic nuclei (AGNs) peaks at higher redshifts than that of faint AGNs. This downsizing trend in the AGN evolution seems to be contradictory to the hierarchical structure formation scenario. In this study, we present the AGN space density evolution predicted by a semi-analytic model of galaxy and AGN formation based on the hierarchical structure formation scenario. We demonstrate that our model can reproduce the downsizing trend of the AGN space density evolution. The reason for the downsizing trend in our model is a combination of the cold gas depletion as a consequence of star formation, the gas cooling suppression in massive halos, and the AGN lifetime scaling with the dynamical timescale. We assume that a major merger of galaxies causes a starburst, spheroid formation, and cold gas accretion onto a supermassive black hole (SMBH). We also assume that this cold gas accretion triggers AGN activity. Since the cold gas is mainly depleted by star formation and gas cooling is suppressed in massive dark halos, the amount of cold gas accreted onto SMBHs decreases with cosmic time. Moreover, AGN lifetime increases with cosmic time. Thus, at low redshifts, major mergers do not always lead to luminous AGNs. Because the luminosity of AGNs is correlated with the mass of accreted gas onto SMBHs, the space density of luminous AGNs decreases more quickly than that of faint AGNs. We conclude that the anti-hierarchical evolution of the AGN space density is not contradictory to the hierarchical structure formation scenario.

  19. Anti-hierarchical evolution of the active galactic nucleus space density in a hierarchical universe

    Energy Technology Data Exchange (ETDEWEB)

    Enoki, Motohiro [Faculty of Business Administration, Tokyo Keizai University, Kokubunji, Tokyo 185-8502 (Japan); Ishiyama, Tomoaki [Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Kobayashi, Masakazu A. R. [Research Center for Space and Cosmic Evolution, Ehime University, Matsuyama, Ehime 790-8577 (Japan); Nagashima, Masahiro, E-mail: enokimt@tku.ac.jp [Faculty of Education, Nagasaki University, Nagasaki, Nagasaki 852-8521 (Japan)

    2014-10-10

    Recent observations show that the space density of luminous active galactic nuclei (AGNs) peaks at higher redshifts than that of faint AGNs. This downsizing trend in the AGN evolution seems to be contradictory to the hierarchical structure formation scenario. In this study, we present the AGN space density evolution predicted by a semi-analytic model of galaxy and AGN formation based on the hierarchical structure formation scenario. We demonstrate that our model can reproduce the downsizing trend of the AGN space density evolution. The reason for the downsizing trend in our model is a combination of the cold gas depletion as a consequence of star formation, the gas cooling suppression in massive halos, and the AGN lifetime scaling with the dynamical timescale. We assume that a major merger of galaxies causes a starburst, spheroid formation, and cold gas accretion onto a supermassive black hole (SMBH). We also assume that this cold gas accretion triggers AGN activity. Since the cold gas is mainly depleted by star formation and gas cooling is suppressed in massive dark halos, the amount of cold gas accreted onto SMBHs decreases with cosmic time. Moreover, AGN lifetime increases with cosmic time. Thus, at low redshifts, major mergers do not always lead to luminous AGNs. Because the luminosity of AGNs is correlated with the mass of accreted gas onto SMBHs, the space density of luminous AGNs decreases more quickly than that of faint AGNs. We conclude that the anti-hierarchical evolution of the AGN space density is not contradictory to the hierarchical structure formation scenario.

  20. Discovering hierarchical structure in normal relational data

    DEFF Research Database (Denmark)

    Schmidt, Mikkel Nørgaard; Herlau, Tue; Mørup, Morten

    2014-01-01

    -parametric generative model for hierarchical clustering of similarity based on multifurcating Gibbs fragmentation trees. This allows us to infer and display the posterior distribution of hierarchical structures that comply with the data. We demonstrate the utility of our method on synthetic data and data of functional...

  1. Homogeneous Spaces and Equivariant Embeddings

    CERN Document Server

    Timashev, DA

    2011-01-01

    Homogeneous spaces of linear algebraic groups lie at the crossroads of algebraic geometry, theory of algebraic groups, classical projective and enumerative geometry, harmonic analysis, and representation theory. By standard reasons of algebraic geometry, in order to solve various problems on a homogeneous space it is natural and helpful to compactify it keeping track of the group action, i.e. to consider equivariant completions or, more generally, open embeddings of a given homogeneous space. Such equivariant embeddings are the subject of this book. We focus on classification of equivariant em

  2. Road Network Selection Based on Road Hierarchical Structure Control

    Directory of Open Access Journals (Sweden)

    HE Haiwei

    2015-04-01

    Full Text Available A new road network selection method based on hierarchical structure is studied. Firstly, road network is built as strokes which are then classified into hierarchical collections according to the criteria of betweenness centrality value (BC value. Secondly, the hierarchical structure of the strokes is enhanced using structural characteristic identification technique. Thirdly, the importance calculation model was established according to the relationships among the hierarchical structure of the strokes. Finally, the importance values of strokes are got supported with the model's hierarchical calculation, and with which the road network is selected. Tests are done to verify the advantage of this method by comparing it with other common stroke-oriented methods using three kinds of typical road network data. Comparision of the results show that this method had few need to semantic data, and could eliminate the negative influence of edge strokes caused by the criteria of BC value well. So, it is better to maintain the global hierarchical structure of road network, and suitable to meet with the selection of various kinds of road network at the same time.

  3. Hierarchically Structured Electrospun Fibers

    Directory of Open Access Journals (Sweden)

    Nicole E. Zander

    2013-01-01

    Full Text Available Traditional electrospun nanofibers have a myriad of applications ranging from scaffolds for tissue engineering to components of biosensors and energy harvesting devices. The generally smooth one-dimensional structure of the fibers has stood as a limitation to several interesting novel applications. Control of fiber diameter, porosity and collector geometry will be briefly discussed, as will more traditional methods for controlling fiber morphology and fiber mat architecture. The remainder of the review will focus on new techniques to prepare hierarchically structured fibers. Fibers with hierarchical primary structures—including helical, buckled, and beads-on-a-string fibers, as well as fibers with secondary structures, such as nanopores, nanopillars, nanorods, and internally structured fibers and their applications—will be discussed. These new materials with helical/buckled morphology are expected to possess unique optical and mechanical properties with possible applications for negative refractive index materials, highly stretchable/high-tensile-strength materials, and components in microelectromechanical devices. Core-shell type fibers enable a much wider variety of materials to be electrospun and are expected to be widely applied in the sensing, drug delivery/controlled release fields, and in the encapsulation of live cells for biological applications. Materials with a hierarchical secondary structure are expected to provide new superhydrophobic and self-cleaning materials.

  4. Hierarchical control of electron-transfer

    DEFF Research Database (Denmark)

    Westerhoff, Hans V.; Jensen, Peter Ruhdal; Egger, Louis

    1997-01-01

    In this chapter the role of electron transfer in determining the behaviour of the ATP synthesising enzyme in E. coli is analysed. It is concluded that the latter enzyme lacks control because of special properties of the electron transfer components. These properties range from absence of a strong...... back pressure by the protonmotive force on the rate of electron transfer to hierarchical regulation of the expression of the gens that encode the electron transfer proteins as a response to changes in the bioenergetic properties of the cell.The discussion uses Hierarchical Control Analysis...

  5. Layer-by-Layer-Assembled AuNPs-Decorated First-Generation Poly(amidoamine) Dendrimer with Reduced Graphene Oxide Core as Highly Sensitive Biosensing Platform with Controllable 3D Nanoarchitecture for Rapid Voltammetric Analysis of Ultratrace DNA Hybridization.

    Science.gov (United States)

    Jayakumar, Kumarasamy; Camarada, María Belén; Dharuman, Venkataraman; Rajesh, Rajendiran; Venkatesan, Rengarajan; Ju, Huangxian; Maniraj, Mahalingam; Rai, Abhishek; Barman, Sudipta Roy; Wen, Yangping

    2018-06-12

    The structure and electrochemical properties of layer-by-layer-assembled gold nanoparticles (AuNPs)-decorated first-generation (G1) poly(amidoamine) dendrimer (PD) with reduced graphene oxide (rGO) core as a highly sensitive and label-free biosensing platform with a controllable three-dimensional (3D) nanoarchitecture for the rapid voltammetric analysis of DNA hybridization at ultratrace levels were characterized. Mercaptopropinoic acid (MPA) was self-assembled onto Au substrate, then GG1PD formed by the covalent functionalization between the amino terminals of G1PD and carboxyl terminals of rGO was covalently linked onto MPA, and finally AuNPs were decorated onto GG1PD by strong physicochemical interaction between AuNPs and -OH of rGO in GG1PD, which was characterized through different techniques and confirmed by computational calculation. This 3D controllable thin-film electrode was optimized and evaluated using [Fe(CN) 6 ] 3-/4- as the redox probe and employed to covalently immobilize thiol-functionalized single-stranded DNA as biorecognition element to form the DNA nanobiosensor, which achieved fast, ultrasensitive, and high-selective differential pulse voltammetric analysis of DNA hybridization in a linear range from 1 × 10 -6 to 1 × 10 -13 g m -1 with a low detection limit of 9.07 × 10 -14 g m -1 . This work will open a new pathway for the controllable 3D nanoarchitecture of the layer-by-layer-assembled metal nanoparticles-functionalized lower-generation PD with two-dimensional layered nanomaterials as cores that can be employed as ultrasensitive and label-free nanobiodevices for the fast diagnosis of specific genome diseases in the field of biomedicine.

  6. Multi-objective hierarchical genetic algorithms for multilevel redundancy allocation optimization

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ranjan [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: ranjan.k@ks3.ecs.kyoto-u.ac.jp; Izui, Kazuhiro [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: izui@prec.kyoto-u.ac.jp; Yoshimura, Masataka [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: yoshimura@prec.kyoto-u.ac.jp; Nishiwaki, Shinji [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: shinji@prec.kyoto-u.ac.jp

    2009-04-15

    Multilevel redundancy allocation optimization problems (MRAOPs) occur frequently when attempting to maximize the system reliability of a hierarchical system, and almost all complex engineering systems are hierarchical. Despite their practical significance, limited research has been done concerning the solving of simple MRAOPs. These problems are not only NP hard but also involve hierarchical design variables. Genetic algorithms (GAs) have been applied in solving MRAOPs, since they are computationally efficient in solving such problems, unlike exact methods, but their applications has been confined to single-objective formulation of MRAOPs. This paper proposes a multi-objective formulation of MRAOPs and a methodology for solving such problems. In this methodology, a hierarchical GA framework for multi-objective optimization is proposed by introducing hierarchical genotype encoding for design variables. In addition, we implement the proposed approach by integrating the hierarchical genotype encoding scheme with two popular multi-objective genetic algorithms (MOGAs)-the strength Pareto evolutionary genetic algorithm (SPEA2) and the non-dominated sorting genetic algorithm (NSGA-II). In the provided numerical examples, the proposed multi-objective hierarchical approach is applied to solve two hierarchical MRAOPs, a 4- and a 3-level problems. The proposed method is compared with a single-objective optimization method that uses a hierarchical genetic algorithm (HGA), also applied to solve the 3- and 4-level problems. The results show that a multi-objective hierarchical GA (MOHGA) that includes elitism and mechanism for diversity preserving performed better than a single-objective GA that only uses elitism, when solving large-scale MRAOPs. Additionally, the experimental results show that the proposed method with NSGA-II outperformed the proposed method with SPEA2 in finding useful Pareto optimal solution sets.

  7. Multi-objective hierarchical genetic algorithms for multilevel redundancy allocation optimization

    International Nuclear Information System (INIS)

    Kumar, Ranjan; Izui, Kazuhiro; Yoshimura, Masataka; Nishiwaki, Shinji

    2009-01-01

    Multilevel redundancy allocation optimization problems (MRAOPs) occur frequently when attempting to maximize the system reliability of a hierarchical system, and almost all complex engineering systems are hierarchical. Despite their practical significance, limited research has been done concerning the solving of simple MRAOPs. These problems are not only NP hard but also involve hierarchical design variables. Genetic algorithms (GAs) have been applied in solving MRAOPs, since they are computationally efficient in solving such problems, unlike exact methods, but their applications has been confined to single-objective formulation of MRAOPs. This paper proposes a multi-objective formulation of MRAOPs and a methodology for solving such problems. In this methodology, a hierarchical GA framework for multi-objective optimization is proposed by introducing hierarchical genotype encoding for design variables. In addition, we implement the proposed approach by integrating the hierarchical genotype encoding scheme with two popular multi-objective genetic algorithms (MOGAs)-the strength Pareto evolutionary genetic algorithm (SPEA2) and the non-dominated sorting genetic algorithm (NSGA-II). In the provided numerical examples, the proposed multi-objective hierarchical approach is applied to solve two hierarchical MRAOPs, a 4- and a 3-level problems. The proposed method is compared with a single-objective optimization method that uses a hierarchical genetic algorithm (HGA), also applied to solve the 3- and 4-level problems. The results show that a multi-objective hierarchical GA (MOHGA) that includes elitism and mechanism for diversity preserving performed better than a single-objective GA that only uses elitism, when solving large-scale MRAOPs. Additionally, the experimental results show that the proposed method with NSGA-II outperformed the proposed method with SPEA2 in finding useful Pareto optimal solution sets

  8. Hierarchical Neural Regression Models for Customer Churn Prediction

    Directory of Open Access Journals (Sweden)

    Golshan Mohammadi

    2013-01-01

    Full Text Available As customers are the main assets of each industry, customer churn prediction is becoming a major task for companies to remain in competition with competitors. In the literature, the better applicability and efficiency of hierarchical data mining techniques has been reported. This paper considers three hierarchical models by combining four different data mining techniques for churn prediction, which are backpropagation artificial neural networks (ANN, self-organizing maps (SOM, alpha-cut fuzzy c-means (α-FCM, and Cox proportional hazards regression model. The hierarchical models are ANN + ANN + Cox, SOM + ANN + Cox, and α-FCM + ANN + Cox. In particular, the first component of the models aims to cluster data in two churner and nonchurner groups and also filter out unrepresentative data or outliers. Then, the clustered data as the outputs are used to assign customers to churner and nonchurner groups by the second technique. Finally, the correctly classified data are used to create Cox proportional hazards model. To evaluate the performance of the hierarchical models, an Iranian mobile dataset is considered. The experimental results show that the hierarchical models outperform the single Cox regression baseline model in terms of prediction accuracy, Types I and II errors, RMSE, and MAD metrics. In addition, the α-FCM + ANN + Cox model significantly performs better than the two other hierarchical models.

  9. Internal homogenization: effective permittivity of a coated sphere.

    Science.gov (United States)

    Chettiar, Uday K; Engheta, Nader

    2012-10-08

    The concept of internal homogenization is introduced as a complementary approach to the conventional homogenization schemes, which could be termed as external homogenization. The theory for the internal homogenization of the permittivity of subwavelength coated spheres is presented. The effective permittivity derived from the internal homogenization of coreshells is discussed for plasmonic and dielectric constituent materials. The effective model provided by the homogenization is a useful design tool in constructing coated particles with desired resonant properties.

  10. Homogenization methods for heterogeneous assemblies

    International Nuclear Information System (INIS)

    Wagner, M.R.

    1980-01-01

    The third session of the IAEA Technical Committee Meeting is concerned with the problem of homogenization of heterogeneous assemblies. Six papers will be presented on the theory of homogenization and on practical procedures for deriving homogenized group cross sections and diffusion coefficients. That the problem of finding so-called ''equivalent'' diffusion theory parameters for the use in global reactor calculations is of great practical importance. In spite of this, it is fair to say that the present state of the theory of second homogenization is far from being satisfactory. In fact, there is not even a uniquely accepted approach to the problem of deriving equivalent group diffusion parameters. Common agreement exists only about the fact that the conventional flux-weighting technique provides only a first approximation, which might lead to acceptable results in certain cases, but certainly does not guarantee the basic requirement of conservation of reaction rates

  11. Hierarchical Traces for Reduced NSM Memory Requirements

    Science.gov (United States)

    Dahl, Torbjørn S.

    This paper presents work on using hierarchical long term memory to reduce the memory requirements of nearest sequence memory (NSM) learning, a previously published, instance-based reinforcement learning algorithm. A hierarchical memory representation reduces the memory requirements by allowing traces to share common sub-sequences. We present moderated mechanisms for estimating discounted future rewards and for dealing with hidden state using hierarchical memory. We also present an experimental analysis of how the sub-sequence length affects the memory compression achieved and show that the reduced memory requirements do not effect the speed of learning. Finally, we analyse and discuss the persistence of the sub-sequences independent of specific trace instances.

  12. Hierarchical Structure in Semicrystalline Polymers Tethered to Nanospheres

    KAUST Repository

    Kim, Sung A

    2014-01-28

    We report on structural and dynamic transitions of polymers tethered to nanoparticles. In particular, we use X-ray diffraction, vibrational spectroscopy, and thermal measurements to investigate multiscale structure and dynamic transitions of poly(ethylene glycol) (PEG) chains densely grafted to SiO2 nanoparticles. The approach used for synthesizing these hybrid particles leads to homogeneous SiO2-PEG composites with polymer grafting densities as high as 1.5 chains/nm2, which allows the hybrid materials to exist as self-suspended suspensions with distinct hierarchical structure and thermal properties. On angstrom and nanometer length scales, the tethered PEG chains exhibit more dominant TTG conformations and helix unit cell structure, in comparison to the untethered polymer. The nanoparticle tethered PEG chains are also reported to form extended crystallites on tens of nanometers length scales and to exhibit more stable crystalline structure on small dimensions. On length scales comparable to the size of each hybrid SiO 2-PEG unit, the materials are amorphous presumably as a result of the difficulty fitting the nanoparticle anchors into the PEG crystal lattice. This structural change produces large effects on the thermal transitions of PEG molecules tethered to nanoparticles. © 2014 American Chemical Society.

  13. Hierarchical subtask discovery with non-negative matrix factorization

    CSIR Research Space (South Africa)

    Earle, AC

    2018-04-01

    Full Text Available Hierarchical reinforcement learning methods offer a powerful means of planning flexible behavior in complicated domains. However, learning an appropriate hierarchical decomposition of a domain into subtasks remains a substantial challenge. We...

  14. Hierarchical subtask discovery with non-negative matrix factorization

    CSIR Research Space (South Africa)

    Earle, AC

    2017-08-01

    Full Text Available Hierarchical reinforcement learning methods offer a powerful means of planning flexible behavior in complicated domains. However, learning an appropriate hierarchical decomposition of a domain into subtasks remains a substantial challenge. We...

  15. Homogeneous versus heterogeneous zeolite nucleation

    NARCIS (Netherlands)

    Dokter, W.H.; Garderen, van H.F.; Beelen, T.P.M.; Santen, van R.A.; Bras, W.

    1995-01-01

    Aggregates of fractal dimension were found in the intermediate gel phases that organize prior to nucleation and crystallization (shown right) of silicalite from a homogeneous reaction mixture. Small- and wide-angle X-ray scattering studies prove that for zeolites nucleation may be homogeneous or

  16. Statistical Significance for Hierarchical Clustering

    Science.gov (United States)

    Kimes, Patrick K.; Liu, Yufeng; Hayes, D. Neil; Marron, J. S.

    2017-01-01

    Summary Cluster analysis has proved to be an invaluable tool for the exploratory and unsupervised analysis of high dimensional datasets. Among methods for clustering, hierarchical approaches have enjoyed substantial popularity in genomics and other fields for their ability to simultaneously uncover multiple layers of clustering structure. A critical and challenging question in cluster analysis is whether the identified clusters represent important underlying structure or are artifacts of natural sampling variation. Few approaches have been proposed for addressing this problem in the context of hierarchical clustering, for which the problem is further complicated by the natural tree structure of the partition, and the multiplicity of tests required to parse the layers of nested clusters. In this paper, we propose a Monte Carlo based approach for testing statistical significance in hierarchical clustering which addresses these issues. The approach is implemented as a sequential testing procedure guaranteeing control of the family-wise error rate. Theoretical justification is provided for our approach, and its power to detect true clustering structure is illustrated through several simulation studies and applications to two cancer gene expression datasets. PMID:28099990

  17. Benchmarking homogenization algorithms for monthly data

    Directory of Open Access Journals (Sweden)

    V. K. C. Venema

    2012-01-01

    Full Text Available The COST (European Cooperation in Science and Technology Action ES0601: advances in homogenization methods of climate series: an integrated approach (HOME has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies and because they represent two important types of statistics (additive and multiplicative. The algorithms were validated against a realistic benchmark dataset. The benchmark contains real inhomogeneous data as well as simulated data with inserted inhomogeneities. Random independent break-type inhomogeneities with normally distributed breakpoint sizes were added to the simulated datasets. To approximate real world conditions, breaks were introduced that occur simultaneously in multiple station series within a simulated network of station data. The simulated time series also contained outliers, missing data periods and local station trends. Further, a stochastic nonlinear global (network-wide trend was added.

    Participants provided 25 separate homogenized contributions as part of the blind study. After the deadline at which details of the imposed inhomogeneities were revealed, 22 additional solutions were submitted. These homogenized datasets were assessed by a number of performance metrics including (i the centered root mean square error relative to the true homogeneous value at various averaging scales, (ii the error in linear trend estimates and (iii traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Contingency scores by themselves are not very informative. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve

  18. Hierarchically Nanoporous Bioactive Glasses for High Efficiency Immobilization of Enzymes

    DEFF Research Database (Denmark)

    He, W.; Min, D.D.; Zhang, X.D.

    2014-01-01

    Bioactive glasses with hierarchical nanoporosity and structures have been heavily involved in immobilization of enzymes. Because of meticulous design and ingenious hierarchical nanostructuration of porosities from yeast cell biotemplates, hierarchically nanostructured porous bioactive glasses can...... and products of catalytic reactions can freely diffuse through open mesopores (2–40 nm). The formation mechanism of hierarchically structured porous bioactive glasses, the immobilization mechanism of enzyme and the catalysis mechanism of immobilized enzyme are then discussed. The novel nanostructure...

  19. A second stage homogenization method

    International Nuclear Information System (INIS)

    Makai, M.

    1981-01-01

    A second homogenization is needed before the diffusion calculation of the core of large reactors. Such a second stage homogenization is outlined here. Our starting point is the Floquet theorem for it states that the diffusion equation for a periodic core always has a particular solution of the form esup(j)sup(B)sup(x) u (x). It is pointed out that the perturbation series expansion of function u can be derived by solving eigenvalue problems and the eigenvalues serve to define homogenized cross sections. With the help of these eigenvalues a homogenized diffusion equation can be derived the solution of which is cos Bx, the macroflux. It is shown that the flux can be expressed as a series of buckling. The leading term in this series is the well known Wigner-Seitz formula. Finally three examples are given: periodic absorption, a cell with an absorber pin in the cell centre, and a cell of three regions. (orig.)

  20. Sewage sludge solubilization by high-pressure homogenization.

    Science.gov (United States)

    Zhang, Yuxuan; Zhang, Panyue; Guo, Jianbin; Ma, Weifang; Fang, Wei; Ma, Boqiang; Xu, Xiangzhe

    2013-01-01

    The behavior of sludge solubilization using high-pressure homogenization (HPH) treatment was examined by investigating the sludge solid reduction and organics solubilization. The sludge volatile suspended solids (VSS) decreased from 10.58 to 6.67 g/L for the sludge sample with a total solids content (TS) of 1.49% after HPH treatment at a homogenization pressure of 80 MPa with four homogenization cycles; total suspended solids (TSS) correspondingly decreased from 14.26 to 9.91 g/L. About 86.15% of the TSS reduction was attributed to the VSS reduction. The increase of homogenization pressure from 20 to 80 MPa or homogenization cycle number from 1 to 4 was favorable to the sludge organics solubilization, and the protein and polysaccharide solubilization linearly increased with the soluble chemical oxygen demand (SCOD) solubilization. More proteins were solubilized than polysaccharides. The linear relationship between SCOD solubilization and VSS reduction had no significant change under different homogenization pressures, homogenization cycles and sludge solid contents. The SCOD of 1.65 g/L was solubilized for the VSS reduction of 1.00 g/L for the three experimental sludge samples with a TS of 1.00, 1.49 and 2.48% under all HPH operating conditions. The energy efficiency results showed that the HPH treatment at a homogenization pressure of 30 MPa with a single homogenization cycle for the sludge sample with a TS of 2.48% was the most energy efficient.

  1. Three Ways to Link Merge with Hierarchical Concept-Combination

    Directory of Open Access Journals (Sweden)

    Chris Thornton

    2016-11-01

    Full Text Available In the Minimalist Program, language competence is seen to stem from a fundamental ability to construct hierarchical structure, an operation dubbed ‘Merge’. This raises the problem of how to view hierarchical concept-combination. This is a conceptual operation which also builds hierarchical structure. We can conceive of a garden that consists of a lawn and a flower-bed, for example, or a salad consisting of lettuce, fennel and rocket, or a crew consisting of a pilot and engineer. In such cases, concepts are put together in a way that makes one the accommodating element with respect to the others taken in combination. The accommodating element becomes the root of a hierarchical unit. Since this unit is itself a concept, the operation is inherently recursive. Does this mean the mind has two independent systems of hierarchical construction? Or is some form of integration more likely? Following a detailed examination of the operations involved, this paper shows there are three main ways in which Merge might be linked to hierarchical concept-combination. Also examined are the architectural implications that arise in each case.

  2. Hierarchical modeling and its numerical implementation for layered thin elastic structures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jin-Rae [Hongik University, Sejong (Korea, Republic of)

    2017-05-15

    Thin elastic structures such as beam- and plate-like structures and laminates are characterized by the small thickness, which lead to classical plate and laminate theories in which the displacement fields through the thickness are assumed linear or higher-order polynomials. These classical theories are either insufficient to represent the complex stress variation through the thickness or may encounter the accuracy-computational cost dilemma. In order to overcome the inherent problem of classical theories, the concept of hierarchical modeling has been emerged. In the hierarchical modeling, the hierarchical models with different model levels are selected and combined within a structure domain, in order to make the modeling error be distributed as uniformly as possible throughout the problem domain. The purpose of current study is to explore the potential of hierarchical modeling for the effective numerical analysis of layered structures such as laminated composite. For this goal, the hierarchical models are constructed and the hierarchical modeling is implemented by selectively adjusting the level of hierarchical models. As well, the major characteristics of hierarchical models are investigated through the numerical experiments.

  3. A Coulomb explosion strategy to tailor the nano-architecture of α-MoO3 nanobelts and an insight into its intrinsic mechanism.

    Science.gov (United States)

    Zhang, Junli; Zhu, Liu; Yang, Yu; Yong, Huadong; Zhang, Junwei; Peng, Yong; Fu, Jiecai

    2018-05-03

    Tailoring the nanoarchitecture of materials is significant for the development of nanoscience and nanotechnology. To date, one of the most powerful strategies is convergent electron beam irradiation (EBI). However, only two main functions of knock-on or atomic displacement have been achieved to date. In this study, a Coulomb explosion phenomenon was found to occur in α-MoO3 nanobelts (NBs) under electron beam irradiation, which was controllable and could be used to efficiently create nanostructures such as holes, gaps, and other atomic/nanometer patterns on a single α-MoO3 NB. Theoretical simulations starting from the charging state, charging rate to the threshold time of Coulomb explosion reveal that the Coulomb explosion phenomenon should result from positive charging. The results also show that the multiple charged regions are quickly fragmented, and the monolayered α-MoO3 pieces can then be peeled off once the Coulombic repulsion is sufficient to break the Mo-O bonds in the crystalline structure. It is believed that this efficient and versatile strategy may open up a new avenue to tailor α-MoO3 NBs or other kind of transition metal dichalcogenides via the Coulomb explosion effect.

  4. Hierarchical surfaces for enhanced self-cleaning applications

    Science.gov (United States)

    Fernández, Ariadna; Francone, Achille; Thamdrup, Lasse H.; Johansson, Alicia; Bilenberg, Brian; Nielsen, Theodor; Guttmann, Markus; Sotomayor Torres, Clivia M.; Kehagias, Nikolaos

    2017-04-01

    In this study we present a flexible and adaptable fabrication method to create complex hierarchical structures over inherently hydrophobic resist materials. We have tested these surfaces for their superhydrophobic behaviour and successfully verified their self-cleaning properties. The followed approach allow us to design and produce superhydrophobic surfaces in a reproducible manner. We have analysed different combination of hierarchical micro-nanostructures for their application to self-cleaning surfaces. A static contact angle value of 170° with a hysteresis of 4° was achieved without the need of any additional chemical treatment on the fabricated hierarchical structures. Dynamic effects were analysed on these surfaces, obtaining a remarkable self-cleaning effect as well as a good robustness over impacting droplets.

  5. A literature review on biotic homogenization

    OpenAIRE

    Guangmei Wang; Jingcheng Yang; Chuangdao Jiang; Hongtao Zhao; Zhidong Zhang

    2009-01-01

    Biotic homogenization is the process whereby the genetic, taxonomic and functional similarity of two or more biotas increases over time. As a new research agenda for conservation biogeography, biotic homogenization has become a rapidly emerging topic of interest in ecology and evolution over the past decade. However, research on this topic is rare in China. Herein, we introduce the development of the concept of biotic homogenization, and then discuss methods to quantify its three components (...

  6. Hierarchical Micro-Nano Coatings by Painting

    Science.gov (United States)

    Kirveslahti, Anna; Korhonen, Tuulia; Suvanto, Mika; Pakkanen, Tapani A.

    2016-03-01

    In this paper, the wettability properties of coatings with hierarchical surface structures and low surface energy were studied. Hierarchically structured coatings were produced by using hydrophobic fumed silica nanoparticles and polytetrafluoroethylene (PTFE) microparticles as additives in polyester (PES) and polyvinyldifluoride (PVDF). These particles created hierarchical micro-nano structures on the paint surfaces and lowered or supported the already low surface energy of the paint. Two standard application techniques for paint application were employed and the presented coatings are suitable for mass production and use in large surface areas. By regulating the particle concentrations, it was possible to modify wettability properties gradually. Highly hydrophobic surfaces were achieved with the highest contact angle of 165∘. Dynamic contact angle measurements were carried out for a set of selected samples and low hysteresis was obtained. Produced coatings possessed long lasting durability in the air and in underwater conditions.

  7. Hierarchical virtual screening approaches in small molecule drug discovery.

    Science.gov (United States)

    Kumar, Ashutosh; Zhang, Kam Y J

    2015-01-01

    Virtual screening has played a significant role in the discovery of small molecule inhibitors of therapeutic targets in last two decades. Various ligand and structure-based virtual screening approaches are employed to identify small molecule ligands for proteins of interest. These approaches are often combined in either hierarchical or parallel manner to take advantage of the strength and avoid the limitations associated with individual methods. Hierarchical combination of ligand and structure-based virtual screening approaches has received noteworthy success in numerous drug discovery campaigns. In hierarchical virtual screening, several filters using ligand and structure-based approaches are sequentially applied to reduce a large screening library to a number small enough for experimental testing. In this review, we focus on different hierarchical virtual screening strategies and their application in the discovery of small molecule modulators of important drug targets. Several virtual screening studies are discussed to demonstrate the successful application of hierarchical virtual screening in small molecule drug discovery. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Assembly homogenization techniques for light water reactor analysis

    International Nuclear Information System (INIS)

    Smith, K.S.

    1986-01-01

    Recent progress in development and application of advanced assembly homogenization methods for light water reactor analysis is reviewed. Practical difficulties arising from conventional flux-weighting approximations are discussed and numerical examples given. The mathematical foundations for homogenization methods are outlined. Two methods, Equivalence Theory and Generalized Equivalence Theory which are theoretically capable of eliminating homogenization error are reviewed. Practical means of obtaining approximate homogenized parameters are presented and numerical examples are used to contrast the two methods. Applications of these techniques to PWR baffle/reflector homogenization and BWR bundle homogenization are discussed. Nodal solutions to realistic reactor problems are compared to fine-mesh PDQ calculations, and the accuracy of the advanced homogenization methods is established. Remaining problem areas are investigated, and directions for future research are suggested. (author)

  9. Improving homogeneity by dynamic speed limit systems.

    NARCIS (Netherlands)

    Nes, N. van Brandenberg, S. & Twisk, D.A.M.

    2010-01-01

    Homogeneity of driving speeds is an important variable in determining road safety; more homogeneous driving speeds increase road safety. This study investigates the effect of introducing dynamic speed limit systems on homogeneity of driving speeds. A total of 46 subjects twice drove a route along 12

  10. Mechanized syringe homogenization of human and animal tissues.

    Science.gov (United States)

    Kurien, Biji T; Porter, Andrew C; Patel, Nisha C; Kurono, Sadamu; Matsumoto, Hiroyuki; Scofield, R Hal

    2004-06-01

    Tissue homogenization is a prerequisite to any fractionation schedule. A plethora of hands-on methods are available to homogenize tissues. Here we report a mechanized method for homogenizing animal and human tissues rapidly and easily. The Bio-Mixer 1200 (manufactured by Innovative Products, Inc., Oklahoma City, OK) utilizes the back-and-forth movement of two motor-driven disposable syringes, connected to each other through a three-way stopcock, to homogenize animal or human tissue. Using this method, we were able to homogenize human or mouse tissues (brain, liver, heart, and salivary glands) in 5 min. From sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and a matrix-assisted laser desorption/ionization time-of-flight mass spectrometric enzyme assay for prolidase, we have found that the homogenates obtained were as good or even better than that obtained used a manual glass-on-Teflon (DuPont, Wilmington, DE) homogenization protocol (all-glass tube and Teflon pestle). Use of the Bio-Mixer 1200 to homogenize animal or human tissue precludes the need to stay in the cold room as is the case with the other hands-on homogenization methods available, in addition to freeing up time for other experiments.

  11. Introduction into Hierarchical Matrices

    KAUST Repository

    Litvinenko, Alexander

    2013-01-01

    Hierarchical matrices allow us to reduce computational storage and cost from cubic to almost linear. This technique can be applied for solving PDEs, integral equations, matrix equations and approximation of large covariance and precision matrices.

  12. Introduction into Hierarchical Matrices

    KAUST Repository

    Litvinenko, Alexander

    2013-12-05

    Hierarchical matrices allow us to reduce computational storage and cost from cubic to almost linear. This technique can be applied for solving PDEs, integral equations, matrix equations and approximation of large covariance and precision matrices.

  13. Homogeneity and thermodynamic identities in geometrothermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Quevedo, Hernando [Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares (Mexico); Universita di Roma ' ' La Sapienza' ' , Dipartimento di Fisica, Rome (Italy); ICRANet, Rome (Italy); Quevedo, Maria N. [Universidad Militar Nueva Granada, Departamento de Matematicas, Facultad de Ciencias Basicas, Bogota (Colombia); Sanchez, Alberto [CIIDET, Departamento de Posgrado, Queretaro (Mexico)

    2017-03-15

    We propose a classification of thermodynamic systems in terms of the homogeneity properties of their fundamental equations. Ordinary systems correspond to homogeneous functions and non-ordinary systems are given by generalized homogeneous functions. This affects the explicit form of the Gibbs-Duhem relation and Euler's identity. We show that these generalized relations can be implemented in the formalism of black hole geometrothermodynamics in order to completely fix the arbitrariness present in Legendre invariant metrics. (orig.)

  14. Homogeneity of Prototypical Attributes in Soccer Teams

    Directory of Open Access Journals (Sweden)

    Christian Zepp

    2015-09-01

    Full Text Available Research indicates that the homogeneous perception of prototypical attributes influences several intragroup processes. The aim of the present study was to describe the homogeneous perception of the prototype and to identify specific prototypical subcategories, which are perceived as homogeneous within sport teams. The sample consists of N = 20 soccer teams with a total of N = 278 athletes (age M = 23.5 years, SD = 5.0 years. The results reveal that subcategories describing the cohesiveness of the team and motivational attributes are mentioned homogeneously within sport teams. In addition, gender, identification, team size, and the championship ranking significantly correlate with the homogeneous perception of prototypical attributes. The results are discussed on the basis of theoretical and practical implications.

  15. Hierarchical surfaces for enhanced self-cleaning applications

    International Nuclear Information System (INIS)

    Fernández, Ariadna; Francone, Achille; Sotomayor Torres, Clivia M; Kehagias, Nikolaos; Thamdrup, Lasse H; Johansson, Alicia; Bilenberg, Brian; Nielsen, Theodor; Guttmann, Markus

    2017-01-01

    In this study we present a flexible and adaptable fabrication method to create complex hierarchical structures over inherently hydrophobic resist materials. We have tested these surfaces for their superhydrophobic behaviour and successfully verified their self-cleaning properties. The followed approach allow us to design and produce superhydrophobic surfaces in a reproducible manner. We have analysed different combination of hierarchical micro-nanostructures for their application to self-cleaning surfaces. A static contact angle value of 170° with a hysteresis of 4° was achieved without the need of any additional chemical treatment on the fabricated hierarchical structures. Dynamic effects were analysed on these surfaces, obtaining a remarkable self-cleaning effect as well as a good robustness over impacting droplets. (paper)

  16. Hierarchical processing in the prefrontal cortex in a variety of cognitive domains

    Directory of Open Access Journals (Sweden)

    Hyeon-Ae eJeon

    2014-11-01

    Full Text Available This review scrutinizes several findings on human hierarchical processing within the prefrontal cortex (PFC in diverse cognitive domains. Converging evidence from previous studies has shown that the PFC, specifically Brodmann area (BA 44, may function as the essential region for hierarchical processing across the domains. In language fMRI studies, BA 44 was significantly activated for the hierarchical processing of center-embedded sentences and this pattern of activations was also observed in artificial grammar. The same pattern was observed in the visuo-spatial domain where BA44 was actively involved in the processing of hierarchy for the visual symbol. Musical syntax, which is the rule-based arrangement of musical sets, has also been construed as hierarchical processing as in the language domain such that the activation in BA44 was observed in a chord sequence paradigm. P600 ERP was also engendered during the processing of musical hierarchy. Along with a longstanding idea that a human’s number faculty is developed as a by-product of language faculty, BA44 was closely involved in hierarchical processing in mental arithmetic. This review extended its discussion of hierarchical processing to hierarchical behavior, that is, human action which has been referred to as being hierarchically composed. Several lesion and TMS studies supported the involvement of BA44 for hierarchical processing in the action domain. Lastly, the hierarchical organization of cognitive controls was discussed within the PFC, forming a cascade of top-down hierarchical processes operating along a posterior-to-anterior axis of the lateral PFC including BA44 within the network. It is proposed that PFC is actively involved in different forms of hierarchical processing and specifically BA44 may play an integral role in the process. Taking levels of proficiency and subcortical areas into consideration may provide further insight into the functional role of BA44 for hierarchical

  17. Homogenization theory in reactor lattices

    International Nuclear Information System (INIS)

    Benoist, P.

    1986-02-01

    The purpose of the theory of homogenization of reactor lattices is to determine, by the mean of transport theory, the constants of a homogeneous medium equivalent to a given lattice, which allows to treat the reactor as a whole by diffusion theory. In this note, the problem is presented by laying emphasis on simplicity, as far as possible [fr

  18. Hierarchical Ag mesostructures for single particle SERS substrate

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Minwei, E-mail: xuminwei@xjtu.edu.cn; Zhang, Yin

    2017-01-30

    Highlights: • Hierarchical Ag mesostructures with the size of 250, 360 and 500 nm are synthesized via a seed-mediated approach. • The Ag mesostructures present the tailorable size and highly roughened surfaces. • The average enhancement factors for individual Ag mesostructures were estimated to be as high as 10{sup 6}. - Abstract: Hierarchical Ag mesostructures with highly rough surface morphology have been synthesized at room temperature through a simple seed-mediated approach. Electron microscopy characterizations indicate that the obtained Ag mesostructures exhibit a textured surface morphology with the flower-like architecture. Moreover, the particle size can be tailored easily in the range of 250–500 nm. For the growth process of the hierarchical Ag mesostructures, it is believed that the self-assembly mechanism is more reasonable rather than the epitaxial overgrowth of Ag seed. The oriented attachment of nanoparticles is revealed during the formation of Ag mesostructures. Single particle surface enhanced Raman spectra (sp-SERS) of crystal violet adsorbed on the hierarchical Ag mesostructures were measured. Results reveal that the hierarchical Ag mesostructures can be highly sensitive sp-SERS substrates with good reproducibility. The average enhancement factors for individual Ag mesostructures are estimated to be about 10{sup 6}.

  19. Immunophenotype Discovery, Hierarchical Organization, and Template-based Classification of Flow Cytometry Samples

    Directory of Open Access Journals (Sweden)

    Ariful Azad

    2016-08-01

    Full Text Available We describe algorithms for discovering immunophenotypes from large collections of flow cytometry (FC samples, and using them to organize the samples into a hierarchy based on phenotypic similarity. The hierarchical organization is helpful for effective and robust cytometry data mining, including the creation of collections of cell populations characteristic of different classes of samples, robust classification, and anomaly detection. We summarize a set of samples belonging to a biological class or category with a statistically derived template for the class. Whereas individual samples are represented in terms of their cell populations (clusters, a template consists of generic meta-populations (a group of homogeneous cell populations obtained from the samples in a class that describe key phenotypes shared among all those samples. We organize an FC data collection in a hierarchical data structure that supports the identification of immunophenotypes relevant to clinical diagnosis. A robust template-based classification scheme is also developed, but our primary focus is in the discovery of phenotypic signatures and inter-sample relationships in an FC data collection. This collective analysis approach is more efficient and robust since templates describe phenotypic signatures common to cell populations in several samples, while ignoring noise and small sample-specific variations.We have applied the template-base scheme to analyze several data setsincluding one representing a healthy immune system, and one of Acute Myeloid Leukemia (AMLsamples. The last task is challenging due to the phenotypic heterogeneity of the severalsubtypes of AML. However, we identified thirteen immunophenotypes corresponding to subtypes of AML, and were able to distinguish Acute Promyelocytic Leukemia from other subtypes of AML.

  20. Enhancement of anaerobic sludge digestion by high-pressure homogenization.

    Science.gov (United States)

    Zhang, Sheng; Zhang, Panyue; Zhang, Guangming; Fan, Jie; Zhang, Yuxuan

    2012-08-01

    To improve anaerobic sludge digestion efficiency, the effects of high-pressure homogenization (HPH) conditions on the anaerobic sludge digestion were investigated. The VS and TCOD were significantly removed with the anaerobic digestion, and the VS removal and TCOD removal increased with increasing the homogenization pressure and homogenization cycle number; correspondingly, the accumulative biogas production also increased with increasing the homogenization pressure and homogenization cycle number. The optimal homogenization pressure was 50 MPa for one homogenization cycle and 40 MPa for two homogenization cycles. The SCOD of the sludge supernatant significantly increased with increasing the homogenization pressure and homogenization cycle number due to the sludge disintegration. The relationship between the biogas production and the sludge disintegration showed that the accumulative biogas and methane production were mainly enhanced by the sludge disintegration, which accelerated the anaerobic digestion process and improved the methane content in the biogas. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Synthesis of ZnS hollow nanoneedles via the nanoscale Kirkendall effect

    International Nuclear Information System (INIS)

    Sun Hongyu; Chen Yan; Wang Xiaoliang; Xie Yanwu; Li Wei; Zhang Xiangyi

    2011-01-01

    The facile synthesis of one-dimensional II–VI semiconductor hollow nanostructures with sharp tips is of particular interest for their applications in novel nanodevices. In this study, by employing ZnO nanoneedles with lower symmetry structures as self-sacrificed templates, ZnS hollow nanoneedles with homogeneous thickness have been synthesized by a low temperature hydrothermal route through in situ chemical conversion manner and the nanoscale Kirkendall effect. The hollow needlelike structures obtained in the present study can be used as starting materials to create fantastic nanoarchitectures and may have important applications in optoelectronic nanodevices.

  2. Layered Fiberconcrete with Non-Homogeneous Fibers Distribution

    OpenAIRE

    Lūsis, V; Krasņikovs, A

    2013-01-01

    The aim of present research is to create fiberconcrete construction with non-homogeneous fibers distribution in it. Traditionally fibers are homogeneously dispersed in a concrete. At the same time in many situations fiberconcretes with homogeneously dispersed fibers are not optimal (majority of added fibers are not participating in a loads bearing process).

  3. Radiotracer investigation of cement raw meal homogenizers. Pt. 2

    International Nuclear Information System (INIS)

    Baranyai, L.

    1983-01-01

    Based on radioisotopic tracer technique a method has been worked out to study the homogenization and segregation processes of cement-industrial raw meal homogenizers. On-site measurements were carried out by this method in some Hungarian cement works to determine the optimal homogenization parameters of operating homogenizers. The motion and distribution of different raw meal fractions traced with 198 Au radioisotope was studied in homogenization processes proceeding with different parameters. In the first part of the publication the change of charge homogenity in time was discussed which had been measured as the resultant of mixing and separating processes. In the second part the parameters and types of homogenizers influencing the efficiency of homogenization have been detailed. (orig.) [de

  4. Radiotracer investigation of cement raw meal homogenizers. Pt. 2

    Energy Technology Data Exchange (ETDEWEB)

    Baranyai, L

    1983-12-01

    Based on radioisotopic tracer technique a method has been worked out to study the homogenization and segregation processes of cement-industrial raw meal homogenizers. On-site measurements were carried out by this method in some Hungarian cement works to determine the optimal homogenization parameters of operating homogenizers. The motion and distribution of different raw meal fractions traced with /sup 198/Au radioisotope was studied in homogenization processes proceeding with different parameters. In the first part of the publication the change of charge homogenity in time was discussed which had been measured as the resultant of mixing and separating processes. In the second part the parameters and types of homogenizers influencing the efficiency of homogenization have been detailed.

  5. Analysis hierarchical model for discrete event systems

    Science.gov (United States)

    Ciortea, E. M.

    2015-11-01

    The This paper presents the hierarchical model based on discrete event network for robotic systems. Based on the hierarchical approach, Petri network is analysed as a network of the highest conceptual level and the lowest level of local control. For modelling and control of complex robotic systems using extended Petri nets. Such a system is structured, controlled and analysed in this paper by using Visual Object Net ++ package that is relatively simple and easy to use, and the results are shown as representations easy to interpret. The hierarchical structure of the robotic system is implemented on computers analysed using specialized programs. Implementation of hierarchical model discrete event systems, as a real-time operating system on a computer network connected via a serial bus is possible, where each computer is dedicated to local and Petri model of a subsystem global robotic system. Since Petri models are simplified to apply general computers, analysis, modelling, complex manufacturing systems control can be achieved using Petri nets. Discrete event systems is a pragmatic tool for modelling industrial systems. For system modelling using Petri nets because we have our system where discrete event. To highlight the auxiliary time Petri model using transport stream divided into hierarchical levels and sections are analysed successively. Proposed robotic system simulation using timed Petri, offers the opportunity to view the robotic time. Application of goods or robotic and transmission times obtained by measuring spot is obtained graphics showing the average time for transport activity, using the parameters sets of finished products. individually.

  6. Hierarchical effects on target detection and conflict monitoring

    Science.gov (United States)

    Cao, Bihua; Gao, Feng; Ren, Maofang; Li, Fuhong

    2016-01-01

    Previous neuroimaging studies have demonstrated a hierarchical functional structure of the frontal cortices of the human brain, but the temporal course and the electrophysiological signature of the hierarchical representation remains unaddressed. In the present study, twenty-one volunteers were asked to perform a nested cue-target task, while their scalp potentials were recorded. The results showed that: (1) in comparison with the lower-level hierarchical targets, the higher-level targets elicited a larger N2 component (220–350 ms) at the frontal sites, and a smaller P3 component (350–500 ms) across the frontal and parietal sites; (2) conflict-related negativity (non-target minus target) was greater for the lower-level hierarchy than the higher-level, reflecting a more intensive process of conflict monitoring at the final step of target detection. These results imply that decision making, context updating, and conflict monitoring differ among different hierarchical levels of abstraction. PMID:27561989

  7. Programming with Hierarchical Maps

    DEFF Research Database (Denmark)

    Ørbæk, Peter

    This report desribes the hierarchical maps used as a central data structure in the Corundum framework. We describe its most prominent features, ague for its usefulness and briefly describe some of the software prototypes implemented using the technology....

  8. Homogenization approach in engineering

    International Nuclear Information System (INIS)

    Babuska, I.

    1975-10-01

    Homogenization is an approach which studies the macrobehavior of a medium by its microproperties. Problems with a microstructure play an essential role in such fields as mechanics, chemistry, physics, and reactor engineering. Attention is concentrated on a simple specific model problem to illustrate results and problems typical of the homogenization approach. Only the diffusion problem is treated here, but some statements are made about the elasticity of composite materials. The differential equation is solved for linear cases with and without boundaries and for the nonlinear case. 3 figures, 1 table

  9. Genetic Homogenization of Composite Materials

    Directory of Open Access Journals (Sweden)

    P. Tobola

    2009-04-01

    Full Text Available The paper is focused on numerical studies of electromagnetic properties of composite materials used for the construction of small airplanes. Discussions concentrate on the genetic homogenization of composite layers and composite layers with a slot. The homogenization is aimed to reduce CPU-time demands of EMC computational models of electrically large airplanes. First, a methodology of creating a 3-dimensional numerical model of a composite material in CST Microwave Studio is proposed focusing on a sufficient accuracy of the model. Second, a proper implementation of a genetic optimization in Matlab is discussed. Third, an association of the optimization script and a simplified 2-dimensional model of the homogeneous equivalent model in Comsol Multiphysics is proposed considering EMC issues. Results of computations are experimentally verified.

  10. Bubble dynamic templated deposition of three-dimensional palladium nanostructure catalysts: Approach to oxygen reduction using macro-, micro-, and nano-architectures on electrode surfaces

    International Nuclear Information System (INIS)

    Yang Guimei; Chen Xing; Li Jie; Guo Zheng; Liu Jinhuai; Huang Xingjiu

    2011-01-01

    Highlights: → We synthesize the Pd nanostructures by bubbles dynamic templated. → We obtain Pd nanobuds and Pd nanodendrites by changing the reaction precursor. → We obtain Pd macroelectrode voltammertric behavior using small amount of Pd materials. → We proved a ECE process. → The Pd nanostructures/GCE for O 2 reduction is a 2-step 4-electron process. - Abstract: Three-dimensional (3D) palladium (Pd) nanostructures (that is, nano-buds or nano-dendrites) are fabricated by bubble dynamic templated deposition of Pd onto a glassy carbon electrode (GCE). The morphology can be tailored by changing the precursor concentration and reaction time. Scanning electron microscopy images reveal that nano-buds or nano-dendrites consist of nanoparticles of 40-70 nm in diameter. The electrochemical reduction of oxygen is reported at such kinds of 3D nanostructure electrodes in aqueous solution. Data were collected using cyclic voltammetry. We demonstrate the Pd macroelectrode behavior of Pd nanostructure modified electrode by exploiting the diffusion model of macro-, micro-, and nano-architectures. In contrast to bare GCE, a significant positive shift and splitting of the oxygen reduction peak (vs Ag/AgCl/saturated KCl) at Pd nanostructure modified GCE was observed.

  11. Stimulus homogeneity enhances implicit learning: evidence from contextual cueing.

    Science.gov (United States)

    Feldmann-Wüstefeld, Tobias; Schubö, Anna

    2014-04-01

    Visual search for a target object is faster if the target is embedded in a repeatedly presented invariant configuration of distractors ('contextual cueing'). It has also been shown that the homogeneity of a context affects the efficiency of visual search: targets receive prioritized processing when presented in a homogeneous context compared to a heterogeneous context, presumably due to grouping processes at early stages of visual processing. The present study investigated in three Experiments whether context homogeneity also affects contextual cueing. In Experiment 1, context homogeneity varied on three levels of the task-relevant dimension (orientation) and contextual cueing was most pronounced for context configurations with high orientation homogeneity. When context homogeneity varied on three levels of the task-irrelevant dimension (color) and orientation homogeneity was fixed, no modulation of contextual cueing was observed: high orientation homogeneity led to large contextual cueing effects (Experiment 2) and low orientation homogeneity led to low contextual cueing effects (Experiment 3), irrespective of color homogeneity. Enhanced contextual cueing for homogeneous context configurations suggest that grouping processes do not only affect visual search but also implicit learning. We conclude that memory representation of context configurations are more easily acquired when context configurations can be processed as larger, grouped perceptual units. However, this form of implicit perceptual learning is only improved by stimulus homogeneity when stimulus homogeneity facilitates grouping processes on a dimension that is currently relevant in the task. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Hierarchical Porous Structures

    Energy Technology Data Exchange (ETDEWEB)

    Grote, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-07

    Materials Design is often at the forefront of technological innovation. While there has always been a push to generate increasingly low density materials, such as aero or hydrogels, more recently the idea of bicontinuous structures has gone more into play. This review will cover some of the methods and applications for generating both porous, and hierarchically porous structures.

  13. Multilevel Monte Carlo Approaches for Numerical Homogenization

    KAUST Repository

    Efendiev, Yalchin R.

    2015-10-01

    In this article, we study the application of multilevel Monte Carlo (MLMC) approaches to numerical random homogenization. Our objective is to compute the expectation of some functionals of the homogenized coefficients, or of the homogenized solutions. This is accomplished within MLMC by considering different sizes of representative volumes (RVEs). Many inexpensive computations with the smallest RVE size are combined with fewer expensive computations performed on larger RVEs. Likewise, when it comes to homogenized solutions, different levels of coarse-grid meshes are used to solve the homogenized equation. We show that, by carefully selecting the number of realizations at each level, we can achieve a speed-up in the computations in comparison to a standard Monte Carlo method. Numerical results are presented for both one-dimensional and two-dimensional test-cases that illustrate the efficiency of the approach.

  14. String pair production in non homogeneous backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Bolognesi, S. [Department of Physics “E. Fermi” University of Pisa, and INFN - Sezione di Pisa,Largo Pontecorvo, 3, Ed. C, 56127 Pisa (Italy); Rabinovici, E. [Racah Institute of Physics, The Hebrew University of Jerusalem,91904 Jerusalem (Israel); Tallarita, G. [Departamento de Ciencias, Facultad de Artes Liberales,Universidad Adolfo Ibáñez, Santiago 7941169 (Chile)

    2016-04-28

    We consider string pair production in non homogeneous electric backgrounds. We study several particular configurations which can be addressed with the Euclidean world-sheet instanton technique, the analogue of the world-line instanton for particles. In the first case the string is suspended between two D-branes in flat space-time, in the second case the string lives in AdS and terminates on one D-brane (this realizes the holographic Schwinger effect). In some regions of parameter space the result is well approximated by the known analytical formulas, either the particle pair production in non-homogeneous background or the string pair production in homogeneous background. In other cases we see effects which are intrinsically stringy and related to the non-homogeneity of the background. The pair production is enhanced already for particles in time dependent electric field backgrounds. The string nature enhances this even further. For spacial varying electrical background fields the string pair production is less suppressed than the rate of particle pair production. We discuss in some detail how the critical field is affected by the non-homogeneity, for both time and space dependent electric field backgrouds. We also comment on what could be an interesting new prediction for the small field limit. The third case we consider is pair production in holographic confining backgrounds with homogeneous and non-homogeneous fields.

  15. String pair production in non homogeneous backgrounds

    International Nuclear Information System (INIS)

    Bolognesi, S.; Rabinovici, E.; Tallarita, G.

    2016-01-01

    We consider string pair production in non homogeneous electric backgrounds. We study several particular configurations which can be addressed with the Euclidean world-sheet instanton technique, the analogue of the world-line instanton for particles. In the first case the string is suspended between two D-branes in flat space-time, in the second case the string lives in AdS and terminates on one D-brane (this realizes the holographic Schwinger effect). In some regions of parameter space the result is well approximated by the known analytical formulas, either the particle pair production in non-homogeneous background or the string pair production in homogeneous background. In other cases we see effects which are intrinsically stringy and related to the non-homogeneity of the background. The pair production is enhanced already for particles in time dependent electric field backgrounds. The string nature enhances this even further. For spacial varying electrical background fields the string pair production is less suppressed than the rate of particle pair production. We discuss in some detail how the critical field is affected by the non-homogeneity, for both time and space dependent electric field backgrouds. We also comment on what could be an interesting new prediction for the small field limit. The third case we consider is pair production in holographic confining backgrounds with homogeneous and non-homogeneous fields.

  16. Analyzing security protocols in hierarchical networks

    DEFF Research Database (Denmark)

    Zhang, Ye; Nielson, Hanne Riis

    2006-01-01

    Validating security protocols is a well-known hard problem even in a simple setting of a single global network. But a real network often consists of, besides the public-accessed part, several sub-networks and thereby forms a hierarchical structure. In this paper we first present a process calculus...... capturing the characteristics of hierarchical networks and describe the behavior of protocols on such networks. We then develop a static analysis to automate the validation. Finally we demonstrate how the technique can benefit the protocol development and the design of network systems by presenting a series...

  17. Hierarchical Analysis of the Omega Ontology

    Energy Technology Data Exchange (ETDEWEB)

    Joslyn, Cliff A.; Paulson, Patrick R.

    2009-12-01

    Initial delivery for mathematical analysis of the Omega Ontology. We provide an analysis of the hierarchical structure of a version of the Omega Ontology currently in use within the US Government. After providing an initial statistical analysis of the distribution of all link types in the ontology, we then provide a detailed order theoretical analysis of each of the four main hierarchical links present. This order theoretical analysis includes the distribution of components and their properties, their parent/child and multiple inheritance structure, and the distribution of their vertical ranks.

  18. Hierarchical composites: Analysis of damage evolution based on fiber bundle model

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon

    2011-01-01

    A computational model of multiscale composites is developed on the basis of the fiber bundle model with the hierarchical load sharing rule, and employed to study the effect of the microstructures of hierarchical composites on their damage resistance. Two types of hierarchical materials were consi...

  19. Homogeneous M2 duals

    International Nuclear Information System (INIS)

    Figueroa-O’Farrill, José; Ungureanu, Mara

    2016-01-01

    Motivated by the search for new gravity duals to M2 branes with N>4 supersymmetry — equivalently, M-theory backgrounds with Killing superalgebra osp(N|4) for N>4 — we classify (except for a small gap) homogeneous M-theory backgrounds with symmetry Lie algebra so(n)⊕so(3,2) for n=5,6,7. We find that there are no new backgrounds with n=6,7 but we do find a number of new (to us) backgrounds with n=5. All backgrounds are metrically products of the form AdS 4 ×P 7 , with P riemannian and homogeneous under the action of SO(5), or S 4 ×Q 7 with Q lorentzian and homogeneous under the action of SO(3,2). At least one of the new backgrounds is supersymmetric (albeit with only N=2) and we show that it can be constructed from a supersymmetric Freund-Rubin background via a Wick rotation. Two of the new backgrounds have only been approximated numerically.

  20. Homogeneous M2 duals

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa-O’Farrill, José [School of Mathematics and Maxwell Institute for Mathematical Sciences,The University of Edinburgh,James Clerk Maxwell Building, The King’s Buildings, Peter Guthrie Tait Road,Edinburgh EH9 3FD, Scotland (United Kingdom); Ungureanu, Mara [Humboldt-Universität zu Berlin, Institut für Mathematik,Unter den Linden 6, 10099 Berlin (Germany)

    2016-01-25

    Motivated by the search for new gravity duals to M2 branes with N>4 supersymmetry — equivalently, M-theory backgrounds with Killing superalgebra osp(N|4) for N>4 — we classify (except for a small gap) homogeneous M-theory backgrounds with symmetry Lie algebra so(n)⊕so(3,2) for n=5,6,7. We find that there are no new backgrounds with n=6,7 but we do find a number of new (to us) backgrounds with n=5. All backgrounds are metrically products of the form AdS{sub 4}×P{sup 7}, with P riemannian and homogeneous under the action of SO(5), or S{sup 4}×Q{sup 7} with Q lorentzian and homogeneous under the action of SO(3,2). At least one of the new backgrounds is supersymmetric (albeit with only N=2) and we show that it can be constructed from a supersymmetric Freund-Rubin background via a Wick rotation. Two of the new backgrounds have only been approximated numerically.

  1. Hierarchical cellular designs for load-bearing biocomposite beams and plates

    International Nuclear Information System (INIS)

    Burgueno, Rigoberto; Quagliata, Mario J.; Mohanty, Amar K.; Mehta, Geeta; Drzal, Lawrence T.; Misra, Manjusri

    2005-01-01

    Scrutiny into the composition of natural, or biological materials convincingly reveals that high material and structural efficiency can be attained, even with moderate-quality constituents, by hierarchical topologies, i.e., successively organized material levels or layers. The present study demonstrates that biologically inspired hierarchical designs can help improve the moderate properties of natural fiber polymer composites or biocomposites and allow them to compete with conventional materials for load-bearing applications. An overview of the mechanics concepts that allow hierarchical designs to achieve higher performance is presented, followed by observation and results from flexural tests on periodic and hierarchical cellular beams and plates made from industrial hemp fibers and unsaturated polyester resin biocomposites. The experimental data is shown to agree well with performance indices predicted by mechanics models. A procedure for the multi-scale integrated material/structural analysis of hierarchical cellular biocomposite components is presented and its advantages and limitations are discussed

  2. Fabrication of Superhydrophobic Surface with Controlled Wetting Property by Hierarchical Particles.

    Science.gov (United States)

    Xu, Jianxiong; Liu, Weiwei; Du, Jingjing; Tang, Zengmin; Xu, Lijian; Li, Na

    2015-04-01

    Hierarchical particles were prepared by synthetically joining appropriately functionalized polystyrene spheres of poly[styrene-co-(3-(4-vinylphenyl)pentane-2,4-dione)] (PS-co-PVPD) nanoparticles and poly(styrene-co-chloromethylstyrene) (PS-co-PCMS) microparticles. The coupling reaction of nucleophilic substitution of pendent β-diketone groups with benzyl chloride was used to form the hierarchical particles. Since the polymeric nanoparticles and microparticles were synthesized by dispersion polymerization and emulsion polymerization, respectively, both the core microparticles and the surface nanoparticles can be different size and chemical composition. By means of changing the size of the PS-co-PVPD surface nanoparticles, a series of hierarchical particles with different scale ratio of the micro/nano surface structure were successfully prepared. Moreover, by employing the PS-co-PVPD microparticles and PS-co-PCMS nanoparticles as building blocks, hierarchical particles with surface nanoaprticles of different composition were made. These as-prepared hierarchical particles were subsequently assembled on glass substrates to form particulate films. Contact angle measurement shows that superhydrophobic surfaces can be obtained and the contact angle of water on the hierarchically structured surface can be adjusted by the scale ratio of the micro/nano surface structure and surface chemical component of hierarchical particles.

  3. Discursive Hierarchical Patterning in Law and Management Cases

    Science.gov (United States)

    Lung, Jane

    2008-01-01

    This paper investigates the differences in the discursive patterning of cases in Law and Management. It examines a corpus of 271 Law and Management cases and discusses the kind of information that these two disciplines call for and how discourses are constructed in discursive hierarchical patterns. A discursive hierarchical pattern is a model…

  4. Two-Dimensional Homogeneous Fermi Gases

    Science.gov (United States)

    Hueck, Klaus; Luick, Niclas; Sobirey, Lennart; Siegl, Jonas; Lompe, Thomas; Moritz, Henning

    2018-02-01

    We report on the experimental realization of homogeneous two-dimensional (2D) Fermi gases trapped in a box potential. In contrast to harmonically trapped gases, these homogeneous 2D systems are ideally suited to probe local as well as nonlocal properties of strongly interacting many-body systems. As a first benchmark experiment, we use a local probe to measure the density of a noninteracting 2D Fermi gas as a function of the chemical potential and find excellent agreement with the corresponding equation of state. We then perform matter wave focusing to extract the momentum distribution of the system and directly observe Pauli blocking in a near unity occupation of momentum states. Finally, we measure the momentum distribution of an interacting homogeneous 2D gas in the crossover between attractively interacting fermions and bosonic dimers.

  5. Hierarchical modularity in human brain functional networks

    Directory of Open Access Journals (Sweden)

    David Meunier

    2009-10-01

    Full Text Available The idea that complex systems have a hierarchical modular organization originates in the early 1960s and has recently attracted fresh support from quantitative studies of large scale, real-life networks. Here we investigate the hierarchical modular (or “modules-within-modules” decomposition of human brain functional networks, measured using functional magnetic resonance imaging (fMRI in 18 healthy volunteers under no-task or resting conditions. We used a customized template to extract networks with more than 1800 regional nodes, and we applied a fast algorithm to identify nested modular structure at several hierarchical levels. We used mutual information, 0 < I < 1, to estimate the similarity of community structure of networks in different subjects, and to identify the individual network that is most representative of the group. Results show that human brain functional networks have a hierarchical modular organization with a fair degree of similarity between subjects, I=0.63. The largest 5 modules at the highest level of the hierarchy were medial occipital, lateral occipital, central, parieto-frontal and fronto-temporal systems; occipital modules demonstrated less sub-modular organization than modules comprising regions of multimodal association cortex. Connector nodes and hubs, with a key role in inter-modular connectivity, were also concentrated in association cortical areas. We conclude that methods are available for hierarchical modular decomposition of large numbers of high resolution brain functional networks using computationally expedient algorithms. This could enable future investigations of Simon's original hypothesis that hierarchy or near-decomposability of physical symbol systems is a critical design feature for their fast adaptivity to changing environmental conditions.

  6. Diffusion piecewise homogenization via flux discontinuity ratios

    International Nuclear Information System (INIS)

    Sanchez, Richard; Dante, Giorgio; Zmijarevic, Igor

    2013-01-01

    We analyze piecewise homogenization with flux-weighted cross sections and preservation of averaged currents at the boundary of the homogenized domain. Introduction of a set of flux discontinuity ratios (FDR) that preserve reference interface currents leads to preservation of averaged region reaction rates and fluxes. We consider the class of numerical discretizations with one degree of freedom per volume and per surface and prove that when the homogenization and computing meshes are equal there is a unique solution for the FDRs which exactly preserve interface currents. For diffusion sub-meshing we introduce a Jacobian-Free Newton-Krylov method and for all cases considered obtain an 'exact' numerical solution (eight digits for the interface currents). The homogenization is completed by extending the familiar full assembly homogenization via flux discontinuity factors to the sides of regions laying on the boundary of the piecewise homogenized domain. Finally, for the familiar nodal discretization we numerically find that the FDRs obtained with no sub-mesh (nearly at no cost) can be effectively used for whole-core diffusion calculations with sub-mesh. This is not the case, however, for cell-centered finite differences. (authors)

  7. Hierarchical Context Modeling for Video Event Recognition.

    Science.gov (United States)

    Wang, Xiaoyang; Ji, Qiang

    2016-10-11

    Current video event recognition research remains largely target-centered. For real-world surveillance videos, targetcentered event recognition faces great challenges due to large intra-class target variation, limited image resolution, and poor detection and tracking results. To mitigate these challenges, we introduced a context-augmented video event recognition approach. Specifically, we explicitly capture different types of contexts from three levels including image level, semantic level, and prior level. At the image level, we introduce two types of contextual features including the appearance context features and interaction context features to capture the appearance of context objects and their interactions with the target objects. At the semantic level, we propose a deep model based on deep Boltzmann machine to learn event object representations and their interactions. At the prior level, we utilize two types of prior-level contexts including scene priming and dynamic cueing. Finally, we introduce a hierarchical context model that systematically integrates the contextual information at different levels. Through the hierarchical context model, contexts at different levels jointly contribute to the event recognition. We evaluate the hierarchical context model for event recognition on benchmark surveillance video datasets. Results show that incorporating contexts in each level can improve event recognition performance, and jointly integrating three levels of contexts through our hierarchical model achieves the best performance.

  8. Homogeneous deuterium exchange using rhenium and platinum chloride catalysts

    International Nuclear Information System (INIS)

    Fawdry, R.M.

    1979-01-01

    Previous studies of homogeneous hydrogen isotope exchange are mostly confined to one catalyst, the tetrachloroplatinite salt. Recent reports have indicated that chloride salts of iridium and rhodium may also be homogeneous exchange catalysts similar to the tetrachloroplatinite, but with much lower activities. Exchange by these homogeneous catalysts is frequently accompanied by metal precipitation with the termination of homogeneous exchange, particularly in the case of alkane exchange. The studies presented in this thesis describe two different approaches to overcome this limitation of homogeneous hydrogen isotope exchange catalysts. The first approach was to improve the stability of an existing homogeneous catalyst and the second was to develop a new homogeneous exchange catalyst which is free of the instability limitation

  9. Bayesian nonparametric hierarchical modeling.

    Science.gov (United States)

    Dunson, David B

    2009-04-01

    In biomedical research, hierarchical models are very widely used to accommodate dependence in multivariate and longitudinal data and for borrowing of information across data from different sources. A primary concern in hierarchical modeling is sensitivity to parametric assumptions, such as linearity and normality of the random effects. Parametric assumptions on latent variable distributions can be challenging to check and are typically unwarranted, given available prior knowledge. This article reviews some recent developments in Bayesian nonparametric methods motivated by complex, multivariate and functional data collected in biomedical studies. The author provides a brief review of flexible parametric approaches relying on finite mixtures and latent class modeling. Dirichlet process mixture models are motivated by the need to generalize these approaches to avoid assuming a fixed finite number of classes. Focusing on an epidemiology application, the author illustrates the practical utility and potential of nonparametric Bayes methods.

  10. Hierarchical species distribution models

    Science.gov (United States)

    Hefley, Trevor J.; Hooten, Mevin B.

    2016-01-01

    Determining the distribution pattern of a species is important to increase scientific knowledge, inform management decisions, and conserve biodiversity. To infer spatial and temporal patterns, species distribution models have been developed for use with many sampling designs and types of data. Recently, it has been shown that count, presence-absence, and presence-only data can be conceptualized as arising from a point process distribution. Therefore, it is important to understand properties of the point process distribution. We examine how the hierarchical species distribution modeling framework has been used to incorporate a wide array of regression and theory-based components while accounting for the data collection process and making use of auxiliary information. The hierarchical modeling framework allows us to demonstrate how several commonly used species distribution models can be derived from the point process distribution, highlight areas of potential overlap between different models, and suggest areas where further research is needed.

  11. Hierarchical silica particles by dynamic multicomponent assembly

    DEFF Research Database (Denmark)

    Wu, Z. W.; Hu, Q. Y.; Pang, J. B.

    2005-01-01

    Abstract: Aerosol-assisted assembly of mesoporous silica particles with hierarchically controllable pore structure has been prepared using cetyltrimethylammonium bromide (CTAB) and poly(propylene oxide) (PPO, H[OCH(CH3)CH2],OH) as co-templates. Addition of the hydrophobic PPO significantly...... influences the delicate hydrophilic-hydrophobic balance in the well-studied CTAB-silicate co-assembling system, resulting in various mesostructures (such as hexagonal, lamellar, and hierarchical structure). The co-assembly of CTAB, silicate clusters, and a low-molecular-weight PPO (average M-n 425) results...... in a uniform lamellar structure, while the use of a high-molecular-weight PPO (average M-n 2000), which is more hydrophobic, leads to the formation of hierarchical pore structure that contains meso-meso or meso-macro pore structure. The role of PPO additives on the mesostructure evolution in the CTAB...

  12. Subtractive Structural Modification of Morpho Butterfly Wings.

    Science.gov (United States)

    Shen, Qingchen; He, Jiaqing; Ni, Mengtian; Song, Chengyi; Zhou, Lingye; Hu, Hang; Zhang, Ruoxi; Luo, Zhen; Wang, Ge; Tao, Peng; Deng, Tao; Shang, Wen

    2015-11-11

    Different from studies of butterfly wings through additive modification, this work for the first time studies the property change of butterfly wings through subtractive modification using oxygen plasma etching. The controlled modification of butterfly wings through such subtractive process results in gradual change of the optical properties, and helps the further understanding of structural optimization through natural evolution. The brilliant color of Morpho butterfly wings is originated from the hierarchical nanostructure on the wing scales. Such nanoarchitecture has attracted a lot of research effort, including the study of its optical properties, its potential use in sensing and infrared imaging, and also the use of such structure as template for the fabrication of high-performance photocatalytic materials. The controlled subtractive processes provide a new path to modify such nanoarchitecture and its optical property. Distinct from previous studies on the optical property of the Morpho wing structure, this study provides additional experimental evidence for the origination of the optical property of the natural butterfly wing scales. The study also offers a facile approach to generate new 3D nanostructures using butterfly wings as the templates and may lead to simpler structure models for large-scale man-made structures than those offered by original butterfly wings. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The homogeneous geometries of real hyperbolic space

    DEFF Research Database (Denmark)

    Castrillón López, Marco; Gadea, Pedro Martínez; Swann, Andrew Francis

    We describe the holonomy algebras of all canonical connections of homogeneous structures on real hyperbolic spaces in all dimensions. The structural results obtained then lead to a determination of the types, in the sense of Tricerri and Vanhecke, of the corresponding homogeneous tensors. We use...... our analysis to show that the moduli space of homogeneous structures on real hyperbolic space has two connected components....

  14. On a hierarchical construction of the anisotropic LTSN solution from the isotropic LTSN solution

    International Nuclear Information System (INIS)

    Foletto, Taline; Segatto, Cynthia F.; Bodmann, Bardo E.; Vilhena, Marco T.

    2015-01-01

    In this work, we present a recursive scheme targeting the hierarchical construction of anisotropic LTS N solution from the isotropic LTS N solution. The main idea relies in the decomposition of the associated LTS N anisotropic matrix as a sum of two matrices in which one matrix contains the isotropic and the other anisotropic part of the problem. The matrix containing the anisotropic part is considered as the source of the isotropic problem. The solution of this problem is made by the decomposition of the angular flux as a truncated series of intermediate functions and replace in the isotropic equation. After the replacement of these into the split isotropic equation, we construct a set of isotropic recursive problems, that are readily solved by the classic LTS N isotropic method. We apply this methodology to solve problems considering homogeneous and heterogeneous anisotropic regions. Numerical results are presented and compared with the classical LTS N anisotropic solution. (author)

  15. Spinor structures on homogeneous spaces

    International Nuclear Information System (INIS)

    Lyakhovskii, V.D.; Mudrov, A.I.

    1993-01-01

    For multidimensional models of the interaction of elementary particles, the problem of constructing and classifying spinor fields on homogeneous spaces is exceptionally important. An algebraic criterion for the existence of spinor structures on homogeneous spaces used in multidimensional models is developed. A method of explicit construction of spinor structures is proposed, and its effectiveness is demonstrated in examples. The results are of particular importance for harmonic decomposition of spinor fields

  16. Investigations into homogenization of electromagnetic metamaterials

    DEFF Research Database (Denmark)

    Clausen, Niels Christian Jerichau

    This dissertation encompasses homogenization methods, with a special interest into their applications to metamaterial homogenization. The first method studied is the Floquet-Bloch method, that is based on the assumption of a material being infinite periodic. Its field can then be expanded in term...

  17. Hierarchical classification with a competitive evolutionary neural tree.

    Science.gov (United States)

    Adams, R G.; Butchart, K; Davey, N

    1999-04-01

    A new, dynamic, tree structured network, the Competitive Evolutionary Neural Tree (CENT) is introduced. The network is able to provide a hierarchical classification of unlabelled data sets. The main advantage that the CENT offers over other hierarchical competitive networks is its ability to self determine the number, and structure, of the competitive nodes in the network, without the need for externally set parameters. The network produces stable classificatory structures by halting its growth using locally calculated heuristics. The results of network simulations are presented over a range of data sets, including Anderson's IRIS data set. The CENT network demonstrates its ability to produce a representative hierarchical structure to classify a broad range of data sets.

  18. Direct hierarchical assembly of nanoparticles

    Science.gov (United States)

    Xu, Ting; Zhao, Yue; Thorkelsson, Kari

    2014-07-22

    The present invention provides hierarchical assemblies of a block copolymer, a bifunctional linking compound and a nanoparticle. The block copolymers form one micro-domain and the nanoparticles another micro-domain.

  19. Band structures of two dimensional solid/air hierarchical phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y.L.; Tian, X.G. [State Key Laboratory for Mechanical Structure Strength and Vibration, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, C.Q., E-mail: chencq@tsinghua.edu.cn [Department of Engineering Mechanics, AML and CNMM, Tsinghua University, Beijing 100084 (China)

    2012-06-15

    The hierarchical phononic crystals to be considered show a two-order 'hierarchical' feature, which consists of square array arranged macroscopic periodic unit cells with each unit cell itself including four sub-units. Propagation of acoustic wave in such two dimensional solid/air phononic crystals is investigated by the finite element method (FEM) with the Bloch theory. Their band structure, wave filtering property, and the physical mechanism responsible for the broadened band gap are explored. The corresponding ordinary phononic crystal without hierarchical feature is used for comparison. Obtained results show that the solid/air hierarchical phononic crystals possess tunable outstanding band gap features, which are favorable for applications such as sound insulation and vibration attenuation.

  20. Poisson-Jacobi reduction of homogeneous tensors

    International Nuclear Information System (INIS)

    Grabowski, J; Iglesias, D; Marrero, J C; Padron, E; Urbanski, P

    2004-01-01

    The notion of homogeneous tensors is discussed. We show that there is a one-to-one correspondence between multivector fields on a manifold M, homogeneous with respect to a vector field Δ on M, and first-order polydifferential operators on a closed submanifold N of codimension 1 such that Δ is transversal to N. This correspondence relates the Schouten-Nijenhuis bracket of multivector fields on M to the Schouten-Jacobi bracket of first-order polydifferential operators on N and generalizes the Poissonization of Jacobi manifolds. Actually, it can be viewed as a super-Poissonization. This procedure of passing from a homogeneous multivector field to a first-order polydifferential operator can also be understood as a sort of reduction; in the standard case-a half of a Poisson reduction. A dual version of the above correspondence yields in particular the correspondence between Δ-homogeneous symplectic structures on M and contact structures on N

  1. Nearly Cyclic Pursuit and its Hierarchical variant for Multi-agent Systems

    DEFF Research Database (Denmark)

    Iqbal, Muhammad; Leth, John-Josef; Ngo, Trung Dung

    2015-01-01

    The rendezvous problem for multiple agents under nearly cyclic pursuit and hierarchical nearly cyclic pursuit is discussed in this paper. The control law designed under nearly cyclic pursuit strategy enables the agents to converge at a point dictated by a beacon. A hierarchical version of the nea......The rendezvous problem for multiple agents under nearly cyclic pursuit and hierarchical nearly cyclic pursuit is discussed in this paper. The control law designed under nearly cyclic pursuit strategy enables the agents to converge at a point dictated by a beacon. A hierarchical version...

  2. Non-homogeneous dynamic Bayesian networks for continuous data

    NARCIS (Netherlands)

    Grzegorczyk, Marco; Husmeier, Dirk

    Classical dynamic Bayesian networks (DBNs) are based on the homogeneous Markov assumption and cannot deal with non-homogeneous temporal processes. Various approaches to relax the homogeneity assumption have recently been proposed. The present paper presents a combination of a Bayesian network with

  3. Automatic Hierarchical Color Image Classification

    Directory of Open Access Journals (Sweden)

    Jing Huang

    2003-02-01

    Full Text Available Organizing images into semantic categories can be extremely useful for content-based image retrieval and image annotation. Grouping images into semantic classes is a difficult problem, however. Image classification attempts to solve this hard problem by using low-level image features. In this paper, we propose a method for hierarchical classification of images via supervised learning. This scheme relies on using a good low-level feature and subsequently performing feature-space reconfiguration using singular value decomposition to reduce noise and dimensionality. We use the training data to obtain a hierarchical classification tree that can be used to categorize new images. Our experimental results suggest that this scheme not only performs better than standard nearest-neighbor techniques, but also has both storage and computational advantages.

  4. Hierarchical clustering using correlation metric and spatial continuity constraint

    Science.gov (United States)

    Stork, Christopher L.; Brewer, Luke N.

    2012-10-02

    Large data sets are analyzed by hierarchical clustering using correlation as a similarity measure. This provides results that are superior to those obtained using a Euclidean distance similarity measure. A spatial continuity constraint may be applied in hierarchical clustering analysis of images.

  5. Static and dynamic friction of hierarchical surfaces.

    Science.gov (United States)

    Costagliola, Gianluca; Bosia, Federico; Pugno, Nicola M

    2016-12-01

    Hierarchical structures are very common in nature, but only recently have they been systematically studied in materials science, in order to understand the specific effects they can have on the mechanical properties of various systems. Structural hierarchy provides a way to tune and optimize macroscopic mechanical properties starting from simple base constituents and new materials are nowadays designed exploiting this possibility. This can be true also in the field of tribology. In this paper we study the effect of hierarchical patterned surfaces on the static and dynamic friction coefficients of an elastic material. Our results are obtained by means of numerical simulations using a one-dimensional spring-block model, which has previously been used to investigate various aspects of friction. Despite the simplicity of the model, we highlight some possible mechanisms that explain how hierarchical structures can significantly modify the friction coefficients of a material, providing a means to achieve tunability.

  6. Hierarchical Bayesian Modeling of Fluid-Induced Seismicity

    Science.gov (United States)

    Broccardo, M.; Mignan, A.; Wiemer, S.; Stojadinovic, B.; Giardini, D.

    2017-11-01

    In this study, we present a Bayesian hierarchical framework to model fluid-induced seismicity. The framework is based on a nonhomogeneous Poisson process with a fluid-induced seismicity rate proportional to the rate of injected fluid. The fluid-induced seismicity rate model depends upon a set of physically meaningful parameters and has been validated for six fluid-induced case studies. In line with the vision of hierarchical Bayesian modeling, the rate parameters are considered as random variables. We develop both the Bayesian inference and updating rules, which are used to develop a probabilistic forecasting model. We tested the Basel 2006 fluid-induced seismic case study to prove that the hierarchical Bayesian model offers a suitable framework to coherently encode both epistemic uncertainty and aleatory variability. Moreover, it provides a robust and consistent short-term seismic forecasting model suitable for online risk quantification and mitigation.

  7. Deep hierarchical attention network for video description

    Science.gov (United States)

    Li, Shuohao; Tang, Min; Zhang, Jun

    2018-03-01

    Pairing video to natural language description remains a challenge in computer vision and machine translation. Inspired by image description, which uses an encoder-decoder model for reducing visual scene into a single sentence, we propose a deep hierarchical attention network for video description. The proposed model uses convolutional neural network (CNN) and bidirectional LSTM network as encoders while a hierarchical attention network is used as the decoder. Compared to encoder-decoder models used in video description, the bidirectional LSTM network can capture the temporal structure among video frames. Moreover, the hierarchical attention network has an advantage over single-layer attention network on global context modeling. To make a fair comparison with other methods, we evaluate the proposed architecture with different types of CNN structures and decoders. Experimental results on the standard datasets show that our model has a more superior performance than the state-of-the-art techniques.

  8. Homogeneous Poisson structures

    International Nuclear Information System (INIS)

    Shafei Deh Abad, A.; Malek, F.

    1993-09-01

    We provide an algebraic definition for Schouten product and give a decomposition for any homogenenous Poisson structure in any n-dimensional vector space. A large class of n-homogeneous Poisson structures in R k is also characterized. (author). 4 refs

  9. Homogenization of High-Contrast Brinkman Flows

    KAUST Repository

    Brown, Donald L.

    2015-04-16

    Modeling porous flow in complex media is a challenging problem. Not only is the problem inherently multiscale but, due to high contrast in permeability values, flow velocities may differ greatly throughout the medium. To avoid complicated interface conditions, the Brinkman model is often used for such flows [O. Iliev, R. Lazarov, and J. Willems, Multiscale Model. Simul., 9 (2011), pp. 1350--1372]. Instead of permeability variations and contrast being contained in the geometric media structure, this information is contained in a highly varying and high-contrast coefficient. In this work, we present two main contributions. First, we develop a novel homogenization procedure for the high-contrast Brinkman equations by constructing correctors and carefully estimating the residuals. Understanding the relationship between scales and contrast values is critical to obtaining useful estimates. Therefore, standard convergence-based homogenization techniques [G. A. Chechkin, A. L. Piatniski, and A. S. Shamev, Homogenization: Methods and Applications, Transl. Math. Monogr. 234, American Mathematical Society, Providence, RI, 2007, G. Allaire, SIAM J. Math. Anal., 23 (1992), pp. 1482--1518], although a powerful tool, are not applicable here. Our second point is that the Brinkman equations, in certain scaling regimes, are invariant under homogenization. Unlike in the case of Stokes-to-Darcy homogenization [D. Brown, P. Popov, and Y. Efendiev, GEM Int. J. Geomath., 2 (2011), pp. 281--305, E. Marusic-Paloka and A. Mikelic, Boll. Un. Mat. Ital. A (7), 10 (1996), pp. 661--671], the results presented here under certain velocity regimes yield a Brinkman-to-Brinkman upscaling that allows using a single software platform to compute on both microscales and macroscales. In this paper, we discuss the homogenized Brinkman equations. We derive auxiliary cell problems to build correctors and calculate effective coefficients for certain velocity regimes. Due to the boundary effects, we construct

  10. Phylo-mLogo: an interactive and hierarchical multiple-logo visualization tool for alignment of many sequences

    Directory of Open Access Journals (Sweden)

    Lee DT

    2007-02-01

    Full Text Available Abstract Background When aligning several hundreds or thousands of sequences, such as epidemic virus sequences or homologous/orthologous sequences of some big gene families, to reconstruct the epidemiological history or their phylogenies, how to analyze and visualize the alignment results of many sequences has become a new challenge for computational biologists. Although there are several tools available for visualization of very long sequence alignments, few of them are applicable to the alignments of many sequences. Results A multiple-logo alignment visualization tool, called Phylo-mLogo, is presented in this paper. Phylo-mLogo calculates the variabilities and homogeneities of alignment sequences by base frequencies or entropies. Different from the traditional representations of sequence logos, Phylo-mLogo not only displays the global logo patterns of the whole alignment of multiple sequences, but also demonstrates their local homologous logos for each clade hierarchically. In addition, Phylo-mLogo also allows the user to focus only on the analysis of some important, structurally or functionally constrained sites in the alignment selected by the user or by built-in automatic calculation. Conclusion With Phylo-mLogo, the user can symbolically and hierarchically visualize hundreds of aligned sequences simultaneously and easily check the changes of their amino acid sites when analyzing many homologous/orthologous or influenza virus sequences. More information of Phylo-mLogo can be found at URL http://biocomp.iis.sinica.edu.tw/phylomlogo.

  11. Hierarchical Sets: Analyzing Pangenome Structure through Scalable Set Visualizations

    DEFF Research Database (Denmark)

    Pedersen, Thomas Lin

    2017-01-01

    of hierarchical sets by applying it to a pangenome based on 113 Escherichia and Shigella genomes and find it provides a powerful addition to pangenome analysis. The described clustering algorithm and visualizations are implemented in the hierarchicalSets R package available from CRAN (https...

  12. What are hierarchical models and how do we analyze them?

    Science.gov (United States)

    Royle, Andy

    2016-01-01

    In this chapter we provide a basic definition of hierarchical models and introduce the two canonical hierarchical models in this book: site occupancy and N-mixture models. The former is a hierarchical extension of logistic regression and the latter is a hierarchical extension of Poisson regression. We introduce basic concepts of probability modeling and statistical inference including likelihood and Bayesian perspectives. We go through the mechanics of maximizing the likelihood and characterizing the posterior distribution by Markov chain Monte Carlo (MCMC) methods. We give a general perspective on topics such as model selection and assessment of model fit, although we demonstrate these topics in practice in later chapters (especially Chapters 5, 6, 7, and 10 Chapter 5 Chapter 6 Chapter 7 Chapter 10)

  13. Facile synthesis and photocatalytic activity of zinc oxide hierarchical microcrystals

    KAUST Repository

    Xu, Xinjiang

    2013-04-04

    ZnO microcrystals with hierarchical structure have been synthesized by a simple solvothermal approach. The microcrystals were studied by means of X-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Research on the formation mechanism of the hierarchical microstructure shows that the coordination solvent and precursor concentration have considerable influence on the size and morphology of the microstructures. A possible formation mechanism of the hierarchical structure was suggested. Furthermore, the catalytic activity of the ZnO microcrystals was studied by treating low concentration Rhodamine B (RhB) solution under UV light, and research results show the hierarchical microstructures of ZnO display high catalytic activity in photocatalysis, the catalysis process follows first-order reaction kinetics, and the apparent rate constant k = 0.03195 min-1.

  14. A personal view on homogenization

    International Nuclear Information System (INIS)

    Tartar, L.

    1987-02-01

    The evolution of some ideas is first described. Under the name homogenization are collected all the mathematical results who help understanding the relations between the microstructure of a material and its macroscopic properties. Homogenization results are given through a critically detailed bibliography. The mathematical models given are systems of partial differential equations, supposed to describe some properties at a scale ε and we want to understand what will happen to the solutions if ε tends to 0

  15. Hierarchical decision making for flood risk reduction

    DEFF Research Database (Denmark)

    Custer, Rocco; Nishijima, Kazuyoshi

    2013-01-01

    . In current practice, structures are often optimized individually without considering benefits of having a hierarchy of protection structures. It is here argued, that the joint consideration of hierarchically integrated protection structures is beneficial. A hierarchical decision model is utilized to analyze...... and compare the benefit of large upstream protection structures and local downstream protection structures in regard to epistemic uncertainty parameters. Results suggest that epistemic uncertainty influences the outcome of the decision model and that, depending on the magnitude of epistemic uncertainty...

  16. Ionothermal synthesis of hierarchical BiOBr microspheres for water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dieqing [The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, 100 Guilin Road, Shanghai 200231 (China); Department of Chemistry and Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong (China); Wen, Meicheng; Jiang, Bo; Li, Guisheng [The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, 100 Guilin Road, Shanghai 200231 (China); Yu, Jimmy C., E-mail: jimyu@cuhk.edu.hk [Department of Chemistry and Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong (China)

    2012-04-15

    Graphical abstract: Hierarchical BiOBr microspheres were prepared from a bromine-containing ionic liquid. The material was found effective for removing heavy metals, degrading organic pollutants and killing bacteria. Highlight: Black-Right-Pointing-Pointer Ionothermal synthesis of BiOBr microspheres with hierarchical structure. Black-Right-Pointing-Pointer Efficient mass transfer and excellent light-harvesting ability. Black-Right-Pointing-Pointer Suitable for removing heavy metals and treatment of organic dyes. Black-Right-Pointing-Pointer Remarkable photocatalytic bactericidal property. - Abstract: Bismuth oxybromide (BiOBr) micropsheres with hierarchical morphologies have been fabricated via an ionothermal synthesis route. Ionic liquid acts as a unique soft material capable of promoting nucleation and in situ growth of 3D hierarchical BiOBr mesocrystals without the help of surfactants. The as-prepared BiOBr nanomaterials can effectively remove heavy metal ions and organic dyes from wastewater. They can also kill Micrococcus lylae, a Gram positive bacterium, in water under fluorescent light irradiation. Their high adaptability in water treatment may be ascribed to their hierarchical structure, allowing them high surface to volume ratio, facile species transportation and excellent light-harvesting ability.

  17. Ionothermal synthesis of hierarchical BiOBr microspheres for water treatment

    International Nuclear Information System (INIS)

    Zhang, Dieqing; Wen, Meicheng; Jiang, Bo; Li, Guisheng; Yu, Jimmy C.

    2012-01-01

    Graphical abstract: Hierarchical BiOBr microspheres were prepared from a bromine-containing ionic liquid. The material was found effective for removing heavy metals, degrading organic pollutants and killing bacteria. Highlight: ► Ionothermal synthesis of BiOBr microspheres with hierarchical structure. ► Efficient mass transfer and excellent light-harvesting ability. ► Suitable for removing heavy metals and treatment of organic dyes. ► Remarkable photocatalytic bactericidal property. - Abstract: Bismuth oxybromide (BiOBr) micropsheres with hierarchical morphologies have been fabricated via an ionothermal synthesis route. Ionic liquid acts as a unique soft material capable of promoting nucleation and in situ growth of 3D hierarchical BiOBr mesocrystals without the help of surfactants. The as-prepared BiOBr nanomaterials can effectively remove heavy metal ions and organic dyes from wastewater. They can also kill Micrococcus lylae, a Gram positive bacterium, in water under fluorescent light irradiation. Their high adaptability in water treatment may be ascribed to their hierarchical structure, allowing them high surface to volume ratio, facile species transportation and excellent light-harvesting ability.

  18. BiOCl nanowire with hierarchical structure and its Raman features

    International Nuclear Information System (INIS)

    Tian Ye; Guo Chuanfei; Guo Yanjun; Wang Qi; Liu Qian

    2012-01-01

    BiOCl is a promising V-VI-VII-compound semiconductor with excellent optical and electrical properties, and has great potential applications in photo-catalysis, photoelectric, etc. We successfully synthesize BiOCl nanowire with a hierarchical structure by combining wet etch (top-down) with liquid phase crystal growth (bottom-up) process, opening a novel method to construct ordered bismuth-based nanostructures. The morphology and lattice structures of Bi nanowires, β-Bi 2 O 3 nanowires and BiOCl nanowires with the hierarchical structure are investigated by scanning electron microscope (SEM) and transition electron microscope (TEM). The formation mechanism of such ordered BiOCl hierarchical structure is considered to mainly originate from the highly preferred growth, which is governed by the lattice match between (1 1 0) facet of BiOCl and (2 2 0) or (0 0 2) facet of β-Bi 2 O 3 . A schematic model is also illustrated to depict the formation process of the ordered BiOCl hierarchical structure. In addition, Raman properties of the BiOCl nanowire with the hierarchical structure are investigated deeply.

  19. Homogeneous turbulence dynamics

    CERN Document Server

    Sagaut, Pierre

    2018-01-01

    This book provides state-of-the-art results and theories in homogeneous turbulence, including anisotropy and compressibility effects with extension to quantum turbulence, magneto-hydodynamic turbulence  and turbulence in non-newtonian fluids. Each chapter is devoted to a given type of interaction (strain, rotation, shear, etc.), and presents and compares experimental data, numerical results, analysis of the Reynolds stress budget equations and advanced multipoint spectral theories. The role of both linear and non-linear mechanisms is emphasized. The link between the statistical properties and the dynamics of coherent structures is also addressed. Despite its restriction to homogeneous turbulence, the book is of interest to all people working in turbulence, since the basic physical mechanisms which are present in all turbulent flows are explained. The reader will find a unified presentation of the results and a clear presentation of existing controversies. Special attention is given to bridge the results obta...

  20. On Utmost Multiplicity of Hierarchical Stellar Systems

    Directory of Open Access Journals (Sweden)

    Gebrehiwot Y. M.

    2016-12-01

    Full Text Available According to theoretical considerations, multiplicity of hierarchical stellar systems can reach, depending on masses and orbital parameters, several hundred, while observational data confirm the existence of at most septuple (seven-component systems. In this study, we cross-match the stellar systems of very high multiplicity (six and more components in modern catalogues of visual double and multiple stars to find among them the candidates to hierarchical systems. After cross-matching the catalogues of closer binaries (eclipsing, spectroscopic, etc., some of their components were found to be binary/multiple themselves, what increases the system's degree of multiplicity. Optical pairs, known from literature or filtered by the authors, were flagged and excluded from the statistics. We compiled a list of hierarchical systems with potentially very high multiplicity that contains ten objects. Their multiplicity does not exceed 12, and we discuss a number of ways to explain the lack of extremely high multiplicity systems.

  1. Hierarchical capillary adhesion of microcantilevers or hairs

    International Nuclear Information System (INIS)

    Liu Jianlin; Feng Xiqiao; Xia Re; Zhao Hongping

    2007-01-01

    As a result of capillary forces, animal hairs, carbon nanotubes or nanowires of a periodically or randomly distributed array often assemble into hierarchical structures. In this paper, the energy method is adopted to analyse the capillary adhesion of microsized hairs, which are modelled as clamped microcantilevers wetted by liquids. The critical conditions for capillary adhesion of two hairs, three hairs or two bundles of hairs are derived in terms of Young's contact angle, elastic modulus and geometric sizes of the beams. Then, the hierarchical capillary adhesion of hairs is addressed. It is found that for multiple hairs or microcantilevers, the system tends to take a hierarchical structure as a result of the minimization of the total potential energy of the system. The level number of structural hierarchy increases with the increase in the number of hairs if they are sufficiently long. Additionally, we performed experiments to verify our theoretical solutions for the adhesion of microbeams

  2. About Hierarchical XML Structures, Replacement of Relational Data Structures in Construction and Implementation of ERP Systems

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available The projects essential objective is to develop a new ERP system, of homogeneous nature, based on XML structures, as a possible replacement for classic ERP systems. The criteria that guide the objective definition are modularity, portability and Web connectivity. This objective is connected to a series of secondary objectives, considering that the technological approach will be filtered through the economic, social and legislative environment for a validation-by-context study. Statistics and cybernetics are to be used for simulation purposes. The homogeneous approach is meant to provide strong modularity and portability, in relation with the n-tier principles, but the main advantage of the model is its opening to the semantic Web, based on a Small enterprise ontology defined with XML-driven languages. Shockwave solutions will be used for implementing client-oriented hypermedia elements and an XML Gate will be de-fined between black box modules, for a clear separation with obvious advantages. Security and the XMLTP project will be an important issue for XML transfers due to the conflict between the open architecture of the Web, the readability of XML data and the privacy elements which have to be preserved within a business environment. The projects finality is oriented on small business but the semantic Web perspective and the surprising new conflict between hierarchical/network data structures and relational ones will certainly widen its scope. The proposed model is meant to fulfill the IT compatibility requirements of the European environment, defined as a knowledge society. The paper is a brief of the contributions of the team re-search at the project type A applied to CNCSIS "Research on the Role of XML in Building Extensible and Homogeneous ERP Systems".

  3. A generalized model for homogenized reflectors

    International Nuclear Information System (INIS)

    Pogosbekyan, Leonid; Kim, Yeong Il; Kim, Young Jin; Joo, Hyung Kook

    1996-01-01

    A new concept of equivalent homogenization is proposed. The concept employs new set of homogenized parameters: homogenized cross sections (XS) and interface matrix (IM), which relates partial currents at the cell interfaces. The idea of interface matrix generalizes the idea of discontinuity factors (DFs), proposed and developed by K. Koebke and K. Smith. The method of K. Smith can be simulated within framework of new method, while the new method approximates hetero-geneous cell better in case of the steep flux gradients at the cell interfaces. The attractive shapes of new concept are:improved accuracy, simplicity of incorporation in the existing codes, equal numerical expenses in comparison to the K. Smith's approach. The new concept is useful for: (a) explicit reflector/baffle simulation; (b)control blades simulation; (c) mixed UO 2 /MOX core simulation. The offered model has been incorporated in the finite difference code and in the nodal code PANBOX. The numerical results show good accuracy of core calculations and insensitivity of homogenized parameters with respect to in-core conditions

  4. Advances in Applications of Hierarchical Bayesian Methods with Hydrological Models

    Science.gov (United States)

    Alexander, R. B.; Schwarz, G. E.; Boyer, E. W.

    2017-12-01

    Mechanistic and empirical watershed models are increasingly used to inform water resource decisions. Growing access to historical stream measurements and data from in-situ sensor technologies has increased the need for improved techniques for coupling models with hydrological measurements. Techniques that account for the intrinsic uncertainties of both models and measurements are especially needed. Hierarchical Bayesian methods provide an efficient modeling tool for quantifying model and prediction uncertainties, including those associated with measurements. Hierarchical methods can also be used to explore spatial and temporal variations in model parameters and uncertainties that are informed by hydrological measurements. We used hierarchical Bayesian methods to develop a hybrid (statistical-mechanistic) SPARROW (SPAtially Referenced Regression On Watershed attributes) model of long-term mean annual streamflow across diverse environmental and climatic drainages in 18 U.S. hydrological regions. Our application illustrates the use of a new generation of Bayesian methods that offer more advanced computational efficiencies than the prior generation. Evaluations of the effects of hierarchical (regional) variations in model coefficients and uncertainties on model accuracy indicates improved prediction accuracies (median of 10-50%) but primarily in humid eastern regions, where model uncertainties are one-third of those in arid western regions. Generally moderate regional variability is observed for most hierarchical coefficients. Accounting for measurement and structural uncertainties, using hierarchical state-space techniques, revealed the effects of spatially-heterogeneous, latent hydrological processes in the "localized" drainages between calibration sites; this improved model precision, with only minor changes in regional coefficients. Our study can inform advances in the use of hierarchical methods with hydrological models to improve their integration with stream

  5. A Hierarchical Dispatch Structure for Distribution Network Pricing

    OpenAIRE

    Yuan, Zhao; Hesamzadeh, Mohammad Reza

    2015-01-01

    This paper presents a hierarchical dispatch structure for efficient distribution network pricing. The dispatch coordination problem in the context of hierarchical network operators are addressed. We formulate decentralized generation dispatch into a bilevel optimization problem in which main network operator and the connected distribution network operator optimize their costs in two levels. By using Karush-Kuhn-Tucker conditions and Fortuny-Amat McCarl linearization, the bilevel optimization ...

  6. Dissolution test for homogeneity of mixed oxide fuel pellets

    International Nuclear Information System (INIS)

    Lerch, R.E.

    1979-08-01

    Experiments were performed to determine the relationship between fuel pellet homogeneity and pellet dissolubility. Although, in general, the amount of pellet residue decreased with increased homogeneity, as measured by the pellet figure of merit, the relationship was not absolute. Thus, all pellets with high figure of merit (excellent homogeneity) do not necessarily dissolve completely and all samples that dissolve completely do not necessarily have excellent homogeneity. It was therefore concluded that pellet dissolubility measurements could not be substituted for figure of merit determinations as a measurement of pellet homogeneity. 8 figures, 3 tables

  7. Homogenization patterns of the world's freshwater fish faunas.

    Science.gov (United States)

    Villéger, Sébastien; Blanchet, Simon; Beauchard, Olivier; Oberdorff, Thierry; Brosse, Sébastien

    2011-11-01

    The world is currently undergoing an unprecedented decline in biodiversity, which is mainly attributable to human activities. For instance, nonnative species introduction, combined with the extirpation of native species, affects biodiversity patterns, notably by increasing the similarity among species assemblages. This biodiversity change, called taxonomic homogenization, has rarely been assessed at the world scale. Here, we fill this gap by assessing the current homogenization status of one of the most diverse vertebrate groups (i.e., freshwater fishes) at global and regional scales. We demonstrate that current homogenization of the freshwater fish faunas is still low at the world scale (0.5%) but reaches substantial levels (up to 10%) in some highly invaded river basins from the Nearctic and Palearctic realms. In these realms experiencing high changes, nonnative species introductions rather than native species extirpations drive taxonomic homogenization. Our results suggest that the "Homogocene era" is not yet the case for freshwater fish fauna at the worldwide scale. However, the distressingly high level of homogenization noted for some biogeographical realms stresses the need for further understanding of the ecological consequences of homogenization processes.

  8. Homogen Mur - et udviklingsprojekt

    DEFF Research Database (Denmark)

    Dahl, Torben; Beim, Anne; Sørensen, Peter

    1997-01-01

    Mølletorvet i Slagelse er det første byggeri i Danmark, hvor ydervæggen er udført af homogene bærende og isolerende teglblokke. Byggeriet viser en række af de muligheder, der både med hensyn til konstruktioner, energiforhold og arkitektur ligger i anvendelsen af homogent blokmurværk.......Mølletorvet i Slagelse er det første byggeri i Danmark, hvor ydervæggen er udført af homogene bærende og isolerende teglblokke. Byggeriet viser en række af de muligheder, der både med hensyn til konstruktioner, energiforhold og arkitektur ligger i anvendelsen af homogent blokmurværk....

  9. Hierarchical materials: Background and perspectives

    DEFF Research Database (Denmark)

    2016-01-01

    Hierarchical design draws inspiration from analysis of biological materials and has opened new possibilities for enhancing performance and enabling new functionalities and extraordinary properties. With the development of nanotechnology, the necessary technological requirements for the manufactur...

  10. Hierarchical Planning Methodology for a Supply Chain Management

    Directory of Open Access Journals (Sweden)

    Virna ORTIZ-ARAYA

    2012-01-01

    Full Text Available Hierarchical production planning is a widely utilized methodology for real world capacitated production planning systems with the aim of establishing different decision–making levels of the planning issues on the time horizon considered. This paper presents a hierarchical approach proposed to a company that produces reusable shopping bags in Chile and Perú, to determine the optimal allocation of resources at the tactical level as well as over the most immediate planning horizon to meet customer demands for the next weeks. Starting from an aggregated production planning model, the aggregated decisions are disaggregated into refined decisions in two levels, using a couple of optimization models that impose appropriate constraints to keep coherence of the plan on the production system. The main features of the hierarchical solution approach are presented.

  11. Hierarchical Factoring Based On Image Analysis And Orthoblique Rotations.

    Science.gov (United States)

    Stankov, L

    1979-07-01

    The procedure for hierarchical factoring suggested by Schmid and Leiman (1957) is applied within the framework of image analysis and orthoblique rotational procedures. It is shown that this approach necessarily leads to correlated higher order factors. Also, one can obtain a smaller number of factors than produced by typical hierarchical procedures.

  12. Tuning the self-assembled 1,3:2,4-di(3,4-dimethylbenzylidene) sorbitol nanoarchitectures using the phase inversion method

    Science.gov (United States)

    Lai, Wei-Chi; Tseng, Shen-Jhen

    2013-11-01

    1,3:2,4-Di(3,4-dimethylbenzylidene) sorbitol (DMDBS) molecules can self-assemble into nanoscaled structures in organic solvents and polymer melts. The nanofibril structures were the mostly found. In this study, we used two phase inversion methods, i.e., dry and wet methods, to obtain different DMDBS nanoarchitectures. Poly(vinylidene fluoride) (PVDF) was chosen as polymer matrix, and the DMDBS structures were tuned by the process of PVDF membrane formation (crystallization and liquid-liquid demixing). When the membrane was prepared using the dry method, the DMDBS structure is controlled by the PVDF crystallization. Fewer DMDBS nanofibrils formed on the surfaces, and no nanofibrils were found in the cross-sections. On the other hand, when the membrane was prepared using the wet method, the liquid-liquid demixing (nonsolvent induced phase separation) occurred simultaneously as PVDF crystallized, and thus influenced the aggregation of DMDBS molecules. DMDBS is an amphiphilic molecule with two hydrophilic hydroxyl groups. The addition of nonsolvent (water) caused a large number of DMDBS molecules to aggregate outside the hydrophobic PVDF. In addition, a new structure "nanomat" was found. The mat was composed of DMDBS nanofibrils with diameters of 10-20 nm, similar to those observed in the dry method membranes. Fourier transform infra-red spectroscopy indicates that the DMDBS molecules self-assembled (aggregated) mainly through intermolecular hydrogen bonding in the presence of PVDF. The more intermolecular hydrogen bonding between DMDBS existed, the more excessive amounts of DMDBS molecules were, leading to the formation of nanomats.

  13. Ultrafast Hierarchical OTDM/WDM Network

    Directory of Open Access Journals (Sweden)

    Hideyuki Sotobayashi

    2003-12-01

    Full Text Available Ultrafast hierarchical OTDM/WDM network is proposed for the future core-network. We review its enabling technologies: C- and L-wavelength-band generation, OTDM-WDM mutual multiplexing format conversions, and ultrafast OTDM wavelengthband conversions.

  14. Facile fabrication of superhydrophobic surfaces with hierarchical structures.

    Science.gov (United States)

    Lee, Eunyoung; Lee, Kun-Hong

    2018-03-06

    Hierarchical structures were fabricated on the surfaces of SUS304 plates using a one-step process of direct microwave irradiation under a carbon dioxide atmosphere. The surface nanostructures were composed of chrome-doped hematite single crystals. Superhydrophobic surfaces with a water contact angle up to 169° were obtained by chemical modification of the hierarchical structures. The samples maintained superhydrophobicity under NaCl solution up to 2 weeks.

  15. At-tank Low-Activity Feed Homogeneity Analysis Verification

    International Nuclear Information System (INIS)

    DOUGLAS, J.G.

    2000-01-01

    This report evaluates the merit of selecting sodium, aluminum, and cesium-137 as analytes to indicate homogeneity of soluble species in low-activity waste (LAW) feed and recommends possible analytes and physical properties that could serve as rapid screening indicators for LAW feed homogeneity. The three analytes are adequate as screening indicators of soluble species homogeneity for tank waste when a mixing pump is used to thoroughly mix the waste in the waste feed staging tank and when all dissolved species are present at concentrations well below their solubility limits. If either of these conditions is violated, then the three indicators may not be sufficiently chemically representative of other waste constituents to reliably indicate homogeneity in the feed supernatant. Additional homogeneity indicators that should be considered are anions such as fluoride, sulfate, and phosphate, total organic carbon/total inorganic carbon, and total alpha to estimate the transuranic species. Physical property measurements such as gamma profiling, conductivity, specific gravity, and total suspended solids are recommended as possible at-tank methods for indicating homogeneity. Indicators of LAW feed homogeneity are needed to reduce the U.S. Department of Energy, Office of River Protection (ORP) Program's contractual risk by assuring that the waste feed is within the contractual composition and can be supplied to the waste treatment plant within the schedule requirements

  16. Hierarchical Multinomial Processing Tree Models: A Latent-Trait Approach

    Science.gov (United States)

    Klauer, Karl Christoph

    2010-01-01

    Multinomial processing tree models are widely used in many areas of psychology. A hierarchical extension of the model class is proposed, using a multivariate normal distribution of person-level parameters with the mean and covariance matrix to be estimated from the data. The hierarchical model allows one to take variability between persons into…

  17. Hierarchically nanostructured hydroxyapatite: hydrothermal synthesis, morphology control, growth mechanism, and biological activity

    Directory of Open Access Journals (Sweden)

    Ma MG

    2012-04-01

    Full Text Available Ming-Guo MaInstitute of Biomass Chemistry and Technology, College of Materials Science and Technology, Beijing Forestry University, Beijing, People's Republic of ChinaAbstract: Hierarchically nanosized hydroxyapatite (HA with flower-like structure assembled from nanosheets consisting of nanorod building blocks was successfully synthesized by using CaCl2, NaH2PO4, and potassium sodium tartrate via a hydrothermal method at 200°C for 24 hours. The effects of heating time and heating temperature on the products were investigated. As a chelating ligand and template molecule, the potassium sodium tartrate plays a key role in the formation of hierarchically nanostructured HA. On the basis of experimental results, a possible mechanism based on soft-template and self-assembly was proposed for the formation and growth of the hierarchically nanostructured HA. Cytotoxicity experiments indicated that the hierarchically nanostructured HA had good biocompatibility. It was shown by in-vitro experiments that mesenchymal stem cells could attach to the hierarchically nanostructured HA after being cultured for 48 hours.Objective: The purpose of this study was to develop facile and effective methods for the synthesis of novel hydroxyapatite (HA with hierarchical nanostructures assembled from independent and discrete nanobuilding blocks.Methods: A simple hydrothermal approach was applied to synthesize HA by using CaCl2, NaH2PO4, and potassium sodium tartrate at 200°C for 24 hours. The cell cytotoxicity of the hierarchically nanostructured HA was tested by MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay.Results: HA displayed the flower-like structure assembled from nanosheets consisting of nanorod building blocks. The potassium sodium tartrate was used as a chelating ligand, inducing the formation and self-assembly of HA nanorods. The heating time and heating temperature influenced the aggregation and morphology of HA. The cell viability did

  18. MR-AFS: a global hierarchical file-system

    International Nuclear Information System (INIS)

    Reuter, H.

    2000-01-01

    The next generation of fusion experiments will use object-oriented technology creating the need for world wide sharing of an underlying hierarchical file-system. The Andrew file system (AFS) is a well known and widely spread global distributed file-system. Multiple-resident-AFS (MR-AFS) combines the features of AFS with hierarchical storage management systems. Files in MR-AFS therefore may be migrated on secondary storage, such as roboted tape libraries. MR-AFS is in use at IPP for the current experiments and data originating from super-computer applications. Experiences and scalability issues are discussed

  19. Robust Real-Time Music Transcription with a Compositional Hierarchical Model.

    Science.gov (United States)

    Pesek, Matevž; Leonardis, Aleš; Marolt, Matija

    2017-01-01

    The paper presents a new compositional hierarchical model for robust music transcription. Its main features are unsupervised learning of a hierarchical representation of input data, transparency, which enables insights into the learned representation, as well as robustness and speed which make it suitable for real-world and real-time use. The model consists of multiple layers, each composed of a number of parts. The hierarchical nature of the model corresponds well to hierarchical structures in music. The parts in lower layers correspond to low-level concepts (e.g. tone partials), while the parts in higher layers combine lower-level representations into more complex concepts (tones, chords). The layers are learned in an unsupervised manner from music signals. Parts in each layer are compositions of parts from previous layers based on statistical co-occurrences as the driving force of the learning process. In the paper, we present the model's structure and compare it to other hierarchical approaches in the field of music information retrieval. We evaluate the model's performance for the multiple fundamental frequency estimation. Finally, we elaborate on extensions of the model towards other music information retrieval tasks.

  20. Hierarchical wave functions revisited

    International Nuclear Information System (INIS)

    Li Dingping.

    1997-11-01

    We study the hierarchical wave functions on a sphere and on a torus. We simplify some wave functions on a sphere or a torus using the analytic properties of wave functions. The open question, the construction of the wave function for quasi electron excitation on a torus, is also solved in this paper. (author)

  1. Hierarchically nanostructured hydroxyapatite: hydrothermal synthesis, morphology control, growth mechanism, and biological activity

    Science.gov (United States)

    Ma, Ming-Guo

    2012-01-01

    Hierarchically nanosized hydroxyapatite (HA) with flower-like structure assembled from nanosheets consisting of nanorod building blocks was successfully synthesized by using CaCl2, NaH2PO4, and potassium sodium tartrate via a hydrothermal method at 200°C for 24 hours. The effects of heating time and heating temperature on the products were investigated. As a chelating ligand and template molecule, the potassium sodium tartrate plays a key role in the formation of hierarchically nanostructured HA. On the basis of experimental results, a possible mechanism based on soft-template and self-assembly was proposed for the formation and growth of the hierarchically nanostructured HA. Cytotoxicity experiments indicated that the hierarchically nanostructured HA had good biocompatibility. It was shown by in-vitro experiments that mesenchymal stem cells could attach to the hierarchically nanostructured HA after being cultured for 48 hours. Objective The purpose of this study was to develop facile and effective methods for the synthesis of novel hydroxyapatite (HA) with hierarchical nanostructures assembled from independent and discrete nanobuilding blocks. Methods A simple hydrothermal approach was applied to synthesize HA by using CaCl2, NaH2PO4, and potassium sodium tartrate at 200°C for 24 hours. The cell cytotoxicity of the hierarchically nanostructured HA was tested by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Results HA displayed the flower-like structure assembled from nanosheets consisting of nanorod building blocks. The potassium sodium tartrate was used as a chelating ligand, inducing the formation and self-assembly of HA nanorods. The heating time and heating temperature influenced the aggregation and morphology of HA. The cell viability did not decrease with the increasing concentration of hierarchically nanostructured HA added. Conclusion A novel, simple and reliable hydrothermal route had been developed for the synthesis of

  2. Hierarchical partial order ranking

    International Nuclear Information System (INIS)

    Carlsen, Lars

    2008-01-01

    Assessing the potential impact on environmental and human health from the production and use of chemicals or from polluted sites involves a multi-criteria evaluation scheme. A priori several parameters are to address, e.g., production tonnage, specific release scenarios, geographical and site-specific factors in addition to various substance dependent parameters. Further socio-economic factors may be taken into consideration. The number of parameters to be included may well appear to be prohibitive for developing a sensible model. The study introduces hierarchical partial order ranking (HPOR) that remedies this problem. By HPOR the original parameters are initially grouped based on their mutual connection and a set of meta-descriptors is derived representing the ranking corresponding to the single groups of descriptors, respectively. A second partial order ranking is carried out based on the meta-descriptors, the final ranking being disclosed though average ranks. An illustrative example on the prioritisation of polluted sites is given. - Hierarchical partial order ranking of polluted sites has been developed for prioritization based on a large number of parameters

  3. Hierarchical control of a nuclear reactor using uncertain dynamics techniques

    International Nuclear Information System (INIS)

    Rovere, L.A.; Otaduy, P.J.; Brittain, C.R.; Perez, R.B.

    1988-01-01

    Recent advances in the nonlinear optimal control area are opening new possibilities towards its implementation in process control. Algorithms for multivariate control, hierarchical decomposition, parameter tracking, model uncertainties actuator saturation effects and physical limits to state variables can be implemented on the basis of a consistent mathematical formulation. In this paper, good agreement is shown between a centralized and a hierarchical implementation of a controller for a hypothetical nuclear power plant subject to multiple demands. The performance of the hierarchical distributed system in the presence of localized subsystem failures is analyzed. 4 refs., 13 figs

  4. Analytical and numerical studies of creation probabilities of hierarchical trees

    Directory of Open Access Journals (Sweden)

    S.S. Borysov

    2011-03-01

    Full Text Available We consider the creation conditions of diverse hierarchical trees both analytically and numerically. A connection between the probabilities to create hierarchical levels and the probability to associate these levels into a united structure is studied. We argue that a consistent probabilistic picture requires the use of deformed algebra. Our consideration is based on the study of the main types of hierarchical trees, among which both regular and degenerate ones are studied analytically, while the creation probabilities of Fibonacci, scale-free and arbitrary trees are determined numerically.

  5. Hierarchical drivers of reef-fish metacommunity structure.

    Science.gov (United States)

    MacNeil, M Aaron; Graham, Nicholas A J; Polunin, Nicholas V C; Kulbicki, Michel; Galzin, René; Harmelin-Vivien, Mireille; Rushton, Steven P

    2009-01-01

    Coral reefs are highly complex ecological systems, where multiple processes interact across scales in space and time to create assemblages of exceptionally high biodiversity. Despite the increasing frequency of hierarchically structured sampling programs used in coral-reef science, little progress has been made in quantifying the relative importance of processes operating across multiple scales. The vast majority of reef studies are conducted, or at least analyzed, at a single spatial scale, ignoring the implicitly hierarchical structure of the overall system in favor of small-scale experiments or large-scale observations. Here we demonstrate how alpha (mean local number of species), beta diversity (degree of species dissimilarity among local sites), and gamma diversity (overall species richness) vary with spatial scale, and using a hierarchical, information-theoretic approach, we evaluate the relative importance of site-, reef-, and atoll-level processes driving the fish metacommunity structure among 10 atolls in French Polynesia. Process-based models, representing well-established hypotheses about drivers of reef-fish community structure, were assembled into a candidate set of 12 hierarchical linear models. Variation in fish abundance, biomass, and species richness were unevenly distributed among transect, reef, and atoll levels, establishing the relative contribution of variation at these spatial scales to the structure of the metacommunity. Reef-fish biomass, species richness, and the abundance of most functional-groups corresponded primarily with transect-level habitat diversity and atoll-lagoon size, whereas detritivore and grazer abundances were largely correlated with potential covariates of larval dispersal. Our findings show that (1) within-transect and among-atoll factors primarily drive the relationship between alpha and gamma diversity in this reef-fish metacommunity; (2) habitat is the primary correlate with reef-fish metacommunity structure at

  6. Verification of homogenization in fast critical assembly analyses

    International Nuclear Information System (INIS)

    Chiba, Go

    2006-01-01

    In the present paper, homogenization procedures for fast critical assembly analyses are investigated. Errors caused by homogenizations are evaluated by the exact perturbation theory. In order to obtain reference solutions, three-dimensional plate-wise transport calculations are performed. It is found that the angular neutron flux along plate boundaries has a significant peak in the fission source energy range. To treat this angular dependence accurately, the double-Gaussian Chebyshev angular quadrature set with S 24 is applied. It is shown that the difference between the heterogeneous leakage theory and the homogeneous theory is negligible, and that transport cross sections homogenized with neutron flux significantly underestimate neutron leakage. The error in criticality caused by a homogenization is estimated at about 0.1%Δk/kk' in a small fast critical assembly. In addition, the neutron leakage is overestimated by both leakage theories when sodium plates in fuel lattices are voided. (author)

  7. Cosmic homogeneity: a spectroscopic and model-independent measurement

    Science.gov (United States)

    Gonçalves, R. S.; Carvalho, G. C.; Bengaly, C. A. P., Jr.; Carvalho, J. C.; Bernui, A.; Alcaniz, J. S.; Maartens, R.

    2018-03-01

    Cosmology relies on the Cosmological Principle, i.e. the hypothesis that the Universe is homogeneous and isotropic on large scales. This implies in particular that the counts of galaxies should approach a homogeneous scaling with volume at sufficiently large scales. Testing homogeneity is crucial to obtain a correct interpretation of the physical assumptions underlying the current cosmic acceleration and structure formation of the Universe. In this letter, we use the Baryon Oscillation Spectroscopic Survey to make the first spectroscopic and model-independent measurements of the angular homogeneity scale θh. Applying four statistical estimators, we show that the angular distribution of galaxies in the range 0.46 < z < 0.62 is consistent with homogeneity at large scales, and that θh varies with redshift, indicating a smoother Universe in the past. These results are in agreement with the foundations of the standard cosmological paradigm.

  8. Resolution of Singularities Introduced by Hierarchical Structure in Deep Neural Networks.

    Science.gov (United States)

    Nitta, Tohru

    2017-10-01

    We present a theoretical analysis of singular points of artificial deep neural networks, resulting in providing deep neural network models having no critical points introduced by a hierarchical structure. It is considered that such deep neural network models have good nature for gradient-based optimization. First, we show that there exist a large number of critical points introduced by a hierarchical structure in deep neural networks as straight lines, depending on the number of hidden layers and the number of hidden neurons. Second, we derive a sufficient condition for deep neural networks having no critical points introduced by a hierarchical structure, which can be applied to general deep neural networks. It is also shown that the existence of critical points introduced by a hierarchical structure is determined by the rank and the regularity of weight matrices for a specific class of deep neural networks. Finally, two kinds of implementation methods of the sufficient conditions to have no critical points are provided. One is a learning algorithm that can avoid critical points introduced by the hierarchical structure during learning (called avoidant learning algorithm). The other is a neural network that does not have some critical points introduced by the hierarchical structure as an inherent property (called avoidant neural network).

  9. A Modified Homogeneous Balance Method and Its Applications

    International Nuclear Information System (INIS)

    Liu Chunping

    2011-01-01

    A modified homogeneous balance method is proposed by improving some key steps in the homogeneous balance method. Bilinear equations of some nonlinear evolution equations are derived by using the modified homogeneous balance method. Generalized Boussinesq equation, KP equation, and mKdV equation are chosen as examples to illustrate our method. This approach is also applicable to a large variety of nonlinear evolution equations. (general)

  10. Hierarchically structured materials for lithium batteries

    International Nuclear Information System (INIS)

    Xiao, Jie; Zheng, Jianming; Li, Xiaolin; Shao, Yuyan; Zhang, Ji-Guang

    2013-01-01

    The lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles, including solely battery powered vehicles, plug-in hybrid electric vehicles, and hybrid electric vehicles. With the increasing demand for devices of high-energy densities (>500 Wh kg −1 ), new energy storage systems, such as lithium–oxygen (Li–O 2 ) batteries and other emerging systems beyond the conventional LIB, have attracted worldwide interest for both transportation and grid energy storage applications in recent years. It is well known that the electrochemical performance of these energy storage systems depends not only on the composition of the materials, but also on the structure of the electrode materials used in the batteries. Although the desired performance characteristics of batteries often have conflicting requirements with the micro/nano-structure of electrodes, hierarchically designed electrodes can be tailored to satisfy these conflicting requirements. This work will review hierarchically structured materials that have been successfully used in LIB and Li–O 2 batteries. Our goal is to elucidate (1) how to realize the full potential of energy materials through the manipulation of morphologies, and (2) how the hierarchical structure benefits the charge transport, promotes the interfacial properties and prolongs the electrode stability and battery lifetime. (paper)

  11. Multilevel Monte Carlo Approaches for Numerical Homogenization

    KAUST Repository

    Efendiev, Yalchin R.; Kronsbein, Cornelia; Legoll, Fré dé ric

    2015-01-01

    it comes to homogenized solutions, different levels of coarse-grid meshes are used to solve the homogenized equation. We show that, by carefully selecting the number of realizations at each level, we can achieve a speed-up in the computations in comparison

  12. A multiscale MD-FE model of diffusion in composite media with internal surface interaction based on numerical homogenization procedure.

    Science.gov (United States)

    Kojic, M; Milosevic, M; Kojic, N; Kim, K; Ferrari, M; Ziemys, A

    2014-02-01

    Mass transport by diffusion within composite materials may depend not only on internal microstructural geometry, but also on the chemical interactions between the transported substance and the material of the microstructure. Retrospectively, there is a gap in methods and theory to connect material microstructure properties with macroscale continuum diffusion characteristics. Here we present a new hierarchical multiscale model for diffusion within composite materials that couples material microstructural geometry and interactions between diffusing particles and the material matrix. This model, which bridges molecular dynamics (MD) and the finite element (FE) method, is employed to construct a continuum diffusion model based on a novel numerical homogenization procedure. The procedure is general and robust for evaluating constitutive material parameters of the continuum model. These parameters include the traditional bulk diffusion coefficients and, additionally, the distances from the solid surface accounting for surface interaction effects. We implemented our models to glucose diffusion through the following two geometrical/material configurations: tightly packed silica nanospheres, and a complex fibrous structure surrounding nanospheres. Then, rhodamine 6G diffusion analysis through an aga-rose gel network was performed, followed by a model validation using our experimental results. The microstructural model, numerical homogenization and continuum model offer a new platform for modeling and predicting mass diffusion through complex biological environment and within composite materials that are used in a wide range of applications, like drug delivery and nanoporous catalysts.

  13. Hierarchical structure of moral stages assessed by a sorting task

    NARCIS (Netherlands)

    Boom, J.; Brugman, D.; Van der Heijden, P.G.M.

    2001-01-01

    Following criticism of Kohlberg’s theory of moral judgment, an empirical re-examination of hierarchical stage structure was desirable. Utilizing Piaget’s concept of reflective abstraction as a basis, the hierarchical stage structure was investigated using a new method. Study participants (553 Dutch

  14. Identification of Homogeneous Stations for Quality Monitoring Network of Mashhad Aquifer Based on Nitrate Pollution

    Directory of Open Access Journals (Sweden)

    Moslem Akbarzadeh

    2017-01-01

    Full Text Available Introduction: For water resources monitoring, Evaluation of groundwater quality obtained via detailed analysis of pollution data. The most fundamental analysis is to identify the exact measurement of dangerous zones and homogenous station identification in terms of pollution. In case of quality evaluation, the monitoring improvement could be achieved via identifying homogenous wells in terms of pollution. Presenting a method for clustering is essential in large amounts of quality data for aquifer monitoring and quality evaluation, including identification of homogeneous stations of monitoring network and their clustering based on pollution. In this study, with the purpose of Mashhad aquifer quality evaluation, clustering have been studied based on Euclidean distance and Entropy criteria. Cluster analysis is the task of grouping a set of objects in such a way that objects in the same group (called a cluster are more similar (in some sense or another to each other than to those in other groups (clusters. SNI as a combined entropy measure for clustering calculated from dividing mutual information of two values (pollution index values to the joint entropy. These measures apply as similar distance criteria for monitoring stations clustering. Materials and Methods: First, nitrate data (as pollution index and electrical conductivity (EC (as covariate collected from the related locational situation of 287 wells in statistical period 2002 to 2011. Having identified the outlying data and estimating non-observed points by spatial-temporal Kriging method and then standardizes them, the clustering process was carried out. A similar distance of wells calculated through a clustering process based on Euclidean distance and Entropy (SNI criteria. This difference explained by characteristics such as the location of wells (longitude & latitude and the pollution index (nitrate. Having obtained a similar distance of each well to others, the hierarchical clustering

  15. Multiscale approach including microfibril scale to assess elastic constants of cortical bone based on neural network computation and homogenization method.

    Science.gov (United States)

    Barkaoui, Abdelwahed; Chamekh, Abdessalem; Merzouki, Tarek; Hambli, Ridha; Mkaddem, Ali

    2014-03-01

    The complexity and heterogeneity of bone tissue require a multiscale modeling to understand its mechanical behavior and its remodeling mechanisms. In this paper, a novel multiscale hierarchical approach including microfibril scale based on hybrid neural network (NN) computation and homogenization equations was developed to link nanoscopic and macroscopic scales to estimate the elastic properties of human cortical bone. The multiscale model is divided into three main phases: (i) in step 0, the elastic constants of collagen-water and mineral-water composites are calculated by averaging the upper and lower Hill bounds; (ii) in step 1, the elastic properties of the collagen microfibril are computed using a trained NN simulation. Finite element calculation is performed at nanoscopic levels to provide a database to train an in-house NN program; and (iii) in steps 2-10 from fibril to continuum cortical bone tissue, homogenization equations are used to perform the computation at the higher scales. The NN outputs (elastic properties of the microfibril) are used as inputs for the homogenization computation to determine the properties of mineralized collagen fibril. The mechanical and geometrical properties of bone constituents (mineral, collagen, and cross-links) as well as the porosity were taken in consideration. This paper aims to predict analytically the effective elastic constants of cortical bone by modeling its elastic response at these different scales, ranging from the nanostructural to mesostructural levels. Our findings of the lowest scale's output were well integrated with the other higher levels and serve as inputs for the next higher scale modeling. Good agreement was obtained between our predicted results and literature data. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Structural Group-based Auditing of Missing Hierarchical Relationships in UMLS

    Science.gov (United States)

    Chen, Yan; Gu, Huanying(Helen); Perl, Yehoshua; Geller, James

    2009-01-01

    The Metathesaurus of the UMLS was created by integrating various source terminologies. The inter-concept relationships were either integrated into the UMLS from the source terminologies or specially generated. Due to the extensive size and inherent complexity of the Metathesaurus, the accidental omission of some hierarchical relationships was inevitable. We present a recursive procedure which allows a human expert, with the support of an algorithm, to locate missing hierarchical relationships. The procedure starts with a group of concepts with exactly the same (correct) semantic type assignments. It then partitions the concepts, based on child-of hierarchical relationships, into smaller, singly rooted, hierarchically connected subgroups. The auditor only needs to focus on the subgroups with very few concepts and their concepts with semantic type reassignments. The procedure was evaluated by comparing it with a comprehensive manual audit and it exhibits a perfect error recall. PMID:18824248

  17. Hierarchical video summarization based on context clustering

    Science.gov (United States)

    Tseng, Belle L.; Smith, John R.

    2003-11-01

    A personalized video summary is dynamically generated in our video personalization and summarization system based on user preference and usage environment. The three-tier personalization system adopts the server-middleware-client architecture in order to maintain, select, adapt, and deliver rich media content to the user. The server stores the content sources along with their corresponding MPEG-7 metadata descriptions. In this paper, the metadata includes visual semantic annotations and automatic speech transcriptions. Our personalization and summarization engine in the middleware selects the optimal set of desired video segments by matching shot annotations and sentence transcripts with user preferences. Besides finding the desired contents, the objective is to present a coherent summary. There are diverse methods for creating summaries, and we focus on the challenges of generating a hierarchical video summary based on context information. In our summarization algorithm, three inputs are used to generate the hierarchical video summary output. These inputs are (1) MPEG-7 metadata descriptions of the contents in the server, (2) user preference and usage environment declarations from the user client, and (3) context information including MPEG-7 controlled term list and classification scheme. In a video sequence, descriptions and relevance scores are assigned to each shot. Based on these shot descriptions, context clustering is performed to collect consecutively similar shots to correspond to hierarchical scene representations. The context clustering is based on the available context information, and may be derived from domain knowledge or rules engines. Finally, the selection of structured video segments to generate the hierarchical summary efficiently balances between scene representation and shot selection.

  18. Hierarchical matrices algorithms and analysis

    CERN Document Server

    Hackbusch, Wolfgang

    2015-01-01

    This self-contained monograph presents matrix algorithms and their analysis. The new technique enables not only the solution of linear systems but also the approximation of matrix functions, e.g., the matrix exponential. Other applications include the solution of matrix equations, e.g., the Lyapunov or Riccati equation. The required mathematical background can be found in the appendix. The numerical treatment of fully populated large-scale matrices is usually rather costly. However, the technique of hierarchical matrices makes it possible to store matrices and to perform matrix operations approximately with almost linear cost and a controllable degree of approximation error. For important classes of matrices, the computational cost increases only logarithmically with the approximation error. The operations provided include the matrix inversion and LU decomposition. Since large-scale linear algebra problems are standard in scientific computing, the subject of hierarchical matrices is of interest to scientists ...

  19. Homogenization in powder compacts of UO2-PuO2

    International Nuclear Information System (INIS)

    Verma, R.

    1979-01-01

    The homogenization kinetics in mixed UO 2 -PuO 2 compacts have been studied by adopting a concentric core-shell model of diffusion. An equation relating the extent of homogenization expressed in terms of the fraction of UO 2 remaining undissolved and the time of annealing has been derived. From the equation, the periods required at different annealing temperatures to attain a specified level of homogenization have been calculated. These calculated homogenization times have been found to be in fair agreement with the experimentally observed homogenization times. The derived relationship has also been shown to satisfactorily predict homogenization in Cu-Ni powder compacts. (Auth.)

  20. Final Report of Optimization Algorithms for Hierarchical Problems, with Applications to Nanoporous Materials

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Stephen G.

    2013-11-11

    The research focuses on the modeling and optimization of nanoporous materials. In systems with hierarchical structure that we consider, the physics changes as the scale of the problem is reduced and it can be important to account for physics at the fine level to obtain accurate approximations at coarser levels. For example, nanoporous materials hold promise for energy production and storage. A significant issue is the fabrication of channels within these materials to allow rapid diffusion through the material. One goal of our research is to apply optimization methods to the design of nanoporous materials. Such problems are large and challenging, with hierarchical structure that we believe can be exploited, and with a large range of important scales, down to atomistic. This requires research on large-scale optimization for systems that exhibit different physics at different scales, and the development of algorithms applicable to designing nanoporous materials for many important applications in energy production, storage, distribution, and use. Our research has two major research thrusts. The first is hierarchical modeling. We plan to develop and study hierarchical optimization models for nanoporous materials. The models have hierarchical structure, and attempt to balance the conflicting aims of model fidelity and computational tractability. In addition, we analyze the general hierarchical model, as well as the specific application models, to determine their properties, particularly those properties that are relevant to the hierarchical optimization algorithms. The second thrust was to develop, analyze, and implement a class of hierarchical optimization algorithms, and apply them to the hierarchical models we have developed. We adapted and extended the optimization-based multigrid algorithms of Lewis and Nash to the optimization models exemplified by the hierarchical optimization model. This class of multigrid algorithms has been shown to be a powerful tool for

  1. Organization of excitable dynamics in hierarchical biological networks.

    Directory of Open Access Journals (Sweden)

    Mark Müller-Linow

    Full Text Available This study investigates the contributions of network topology features to the dynamic behavior of hierarchically organized excitable networks. Representatives of different types of hierarchical networks as well as two biological neural networks are explored with a three-state model of node activation for systematically varying levels of random background network stimulation. The results demonstrate that two principal topological aspects of hierarchical networks, node centrality and network modularity, correlate with the network activity patterns at different levels of spontaneous network activation. The approach also shows that the dynamic behavior of the cerebral cortical systems network in the cat is dominated by the network's modular organization, while the activation behavior of the cellular neuronal network of Caenorhabditis elegans is strongly influenced by hub nodes. These findings indicate the interaction of multiple topological features and dynamic states in the function of complex biological networks.

  2. Hierarchical Control for Multiple DC-Microgrids Clusters

    DEFF Research Database (Denmark)

    Shafiee, Qobad; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2014-01-01

    DC microgrids (MGs) have gained research interest during the recent years because of many potential advantages as compared to the ac system. To ensure reliable operation of a low-voltage dc MG as well as its intelligent operation with the other DC MGs, a hierarchical control is proposed in this p......DC microgrids (MGs) have gained research interest during the recent years because of many potential advantages as compared to the ac system. To ensure reliable operation of a low-voltage dc MG as well as its intelligent operation with the other DC MGs, a hierarchical control is proposed...

  3. Hierarchical MAS based control strategy for microgrid

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Z.; Li, T.; Huang, M.; Shi, J.; Yang, J.; Yu, J. [School of Information Science and Engineering, Yunnan University, Kunming 650091 (China); Xiao, Z. [School of Electrical and Electronic Engineering, Nanyang Technological University, Western Catchment Area, 639798 (Singapore); Wu, W. [Communication Branch of Yunnan Power Grid Corporation, Kunming, Yunnan 650217 (China)

    2010-09-15

    Microgrids have become a hot topic driven by the dual pressures of environmental protection concerns and the energy crisis. In this paper, a challenge for the distributed control of a modern electric grid incorporating clusters of residential microgrids is elaborated and a hierarchical multi-agent system (MAS) is proposed as a solution. The issues of how to realize the hierarchical MAS and how to improve coordination and control strategies are discussed. Based on MATLAB and ZEUS platforms, bilateral switching between grid-connected mode and island mode is performed under control of the proposed MAS to enhance and support its effectiveness. (authors)

  4. Humic acids-based hierarchical porous carbons as high-rate performance electrodes for symmetric supercapacitors.

    Science.gov (United States)

    Qiao, Zhi-jun; Chen, Ming-ming; Wang, Cheng-yang; Yuan, Yun-cai

    2014-07-01

    Two kinds of hierarchical porous carbons (HPCs) with specific surface areas of 2000 m(2)g(-1) were synthesized using leonardite humic acids (LHA) or biotechnology humic acids (BHA) precursors via a KOH activation process. Humic acids have a high content of oxygen-containing groups which enabled them to dissolve in aqueous KOH and facilitated the homogeneous KOH activation. The LHA-based HPC is made up of abundant micro-, meso-, and macropores and in 6M KOH it has a specific capacitance of 178 F g(-1) at 100 Ag(-1) and its capacitance retention on going from 0.05 to 100 A g(-1) is 64%. In contrast, the BHA-based HPC exhibits a lower capacitance retention of 54% and a specific capacitance of 157 F g(-1) at 100 A g(-1) which is due to the excessive micropores in the BHA-HPC. Moreover, LHA-HPC is produced in a higher yield than BHA-HPC (51 vs. 17 wt%). Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Multiperiod Hierarchical Location Problem of Transit Hub in Urban Agglomeration Area

    Directory of Open Access Journals (Sweden)

    Ting-ting Li

    2017-01-01

    Full Text Available With the rapid urbanization in developing countries, urban agglomeration area (UAA forms. Also, transportation demand in UAA grows rapidly and presents hierarchical feature. Therefore, it is imperative to develop models for transit hubs to guide the development of UAA and better meet the time-varying and hierarchical transportation demand. In this paper, the multiperiod hierarchical location problem of transit hub in urban agglomeration area (THUAA is studied. A hierarchical service network of THUAA with a multiflow, nested, and noncoherent structure is described. Then a multiperiod hierarchical mathematical programming model is proposed, aiming at minimizing the total demand weighted travel time. Moreover, an improved adaptive clonal selection algorithm is presented to solve the model. Both the model and algorithm are verified by the application to a real-life problem of Beijing-Tianjin-Hebei Region in China. The results of different scenarios in the case show that urban population migration has a great impact on the THUAA location scheme. Sustained and appropriate urban population migration helps to reduce travel time for urban residents.

  6. Homogeneity and Entropy

    Science.gov (United States)

    Tignanelli, H. L.; Vazquez, R. A.; Mostaccio, C.; Gordillo, S.; Plastino, A.

    1990-11-01

    RESUMEN. Presentamos una metodologia de analisis de la homogeneidad a partir de la Teoria de la Informaci6n, aplicable a muestras de datos observacionales. ABSTRACT:Standard concepts that underlie Information Theory are employed in order design a methodology that enables one to analyze the homogeneity of a given data sample. Key : DATA ANALYSIS

  7. Selection of suitable prodrug candidates for in vivo studies via in vitro studies; the correlation of prodrug stability in between cell culture homogenates and human tissue homogenates.

    Science.gov (United States)

    Tsume, Yasuhiro; Amidon, Gordon L

    2012-01-01

    To determine the correlations/discrepancies of drug stabilities between in the homogenates of human culture cells and of human tissues. Amino acid/dipeptide monoester prodrugs of floxuridine were chosen as the model drugs. The stabilities (half-lives) of floxuridine prodrugs in human tissues (pancreas, liver, and small intestine) homogenates were obtained and compared with ones in cell culture homogenates (AcPC-1, Capan-2, and Caco-2 cells) as well as human liver microsomes. The correlations of prodrug stability in human small bowel tissue homogenate vs. Caco-2 cell homogenate, human liver tissue homogenate vs. human liver microsomes, and human pancreatic tissue homogenate vs. pancreatic cell, AsPC-1 and Capan-2, homogenates were examined. The stabilities of floxuridine prodrugs in human small bowel homogenate exhibited the great correlation to ones in Caco-2 cell homogenate (slope = 1.0-1.3, r2 = 0.79-0.98). The stability of those prodrugs in human pancreas tissue homogenate also exhibited the good correlations to ones in AsPC-1 and Capan-2 cells homogenates (slope = 0.5-0.8, r2 = 0.58-0.79). However, the correlations of prodrug stabilities between in human liver tissue homogenates and in human liver microsomes were weaker than others (slope = 1.3-1.9, r2 = 0.07-0.24). The correlations of drug stabilities in cultured cell homogenates and in human tissue homogenates were compared. Those results exhibited wide range of correlations between in cell homogenate and in human tissue homogenate (r2 = 0.07 - 0.98). Those in vitro studies in cell homogenates would be good tools to predict drug stabilities in vivo and to select drug candidates for further developments. In the series of experiments, 5'-O-D-valyl-floxuridine and 5'-O-L-phenylalanyl-L-tyrosyl-floxuridine would be selected as candidates of oral drug targeting delivery for cancer chemotherapy due to their relatively good stabilities compared to other tested prodrugs.

  8. Hierarchical Trust Management of COI in Heterogeneous Mobile Networks

    Science.gov (United States)

    2017-08-01

    Report: Hierarchical Trust Management of COI in Heterogeneous Mobile Networks The views, opinions and/or findings contained in this report are those of...Institute & State University Title: Hierarchical Trust Management of COI in Heterogeneous Mobile Networks Report Term: 0-Other Email: irchen@vt.edu...Reconfigurability, Survivability and Intrusion Tolerance for Community of Interest (COI) Applications – Our proposed COI trust management protocol will

  9. Metastable states in the hierarchical Dyson model drive parallel processing in the hierarchical Hopfield network

    International Nuclear Information System (INIS)

    Agliari, Elena; Barra, Adriano; Guerra, Francesco; Galluzzi, Andrea; Tantari, Daniele; Tavani, Flavia

    2015-01-01

    In this paper, we introduce and investigate the statistical mechanics of hierarchical neural networks. First, we approach these systems à la Mattis, by thinking of the Dyson model as a single-pattern hierarchical neural network. We also discuss the stability of different retrievable states as predicted by the related self-consistencies obtained both from a mean-field bound and from a bound that bypasses the mean-field limitation. The latter is worked out by properly reabsorbing the magnetization fluctuations related to higher levels of the hierarchy into effective fields for the lower levels. Remarkably, mixing Amit's ansatz technique for selecting candidate-retrievable states with the interpolation procedure for solving for the free energy of these states, we prove that, due to gauge symmetry, the Dyson model accomplishes both serial and parallel processing. We extend this scenario to multiple stored patterns by implementing the Hebb prescription for learning within the couplings. This results in Hopfield-like networks constrained on a hierarchical topology, for which, by restricting to the low-storage regime where the number of patterns grows at its most logarithmical with the amount of neurons, we prove the existence of the thermodynamic limit for the free energy, and we give an explicit expression of its mean-field bound and of its related improved bound. We studied the resulting self-consistencies for the Mattis magnetizations, which act as order parameters, are studied and the stability of solutions is analyzed to get a picture of the overall retrieval capabilities of the system according to both mean-field and non-mean-field scenarios. Our main finding is that embedding the Hebbian rule on a hierarchical topology allows the network to accomplish both serial and parallel processing. By tuning the level of fast noise affecting it or triggering the decay of the interactions with the distance among neurons, the system may switch from sequential retrieval to

  10. Toward whole-core neutron transport without spatial homogenization

    International Nuclear Information System (INIS)

    Lewis, E. E.

    2009-01-01

    Full text of publication follows: A long-term goal of computational reactor physics is the deterministic analysis of power reactor core neutronics without incurring significant discretization errors in the energy, spatial or angular variables. In principle, given large enough parallel configurations with unlimited CPU time and memory, this goal could be achieved using existing three-dimensional neutron transport codes. In practice, however, solving the Boltzmann equation for neutrons over the six-dimensional phase space is made intractable by the nature of neutron cross-sections and the complexity and size of power reactor cores. Tens of thousands of energy groups would be required for faithful cross section representation. Likewise, the numerous material interfaces present in power reactor lattices require exceedingly fine spatial mesh structures; these ubiquitous interfaces preclude effective implementation of adaptive grid, mesh-less methods and related techniques that have been applied so successfully in other areas of engineering science. These challenges notwithstanding, substantial progress continues in the pursuit for more robust deterministic methods for whole-core neutronics analysis. This paper examines the progress over roughly the last decade, emphasizing the space-angle variables and the quest to eliminate errors attributable to spatial homogenization. As prolog we briefly assess 1990's methods used in light water reactor analysis and review the lessons learned from the C5G7 benchmark exercises which were originated in 1999 to appraise the ability of transport codes to perform core calculations without homogenization. We proceed by examining progress over the last decade much of which falls into three areas. These may be broadly characterized as reduced homogenization, dynamic homogenization and planar-axial synthesis. In the first, homogenization in three-dimensional calculations is reduced from the fuel assembly to the pin-cell level. In the second

  11. Homogenization models for thin rigid structured surfaces and films.

    Science.gov (United States)

    Marigo, Jean-Jacques; Maurel, Agnès

    2016-07-01

    A homogenization method for thin microstructured surfaces and films is presented. In both cases, sound hard materials are considered, associated with Neumann boundary conditions and the wave equation in the time domain is examined. For a structured surface, a boundary condition is obtained on an equivalent flat wall, which links the acoustic velocity to its normal and tangential derivatives (of the Myers type). For a structured film, jump conditions are obtained for the acoustic pressure and the normal velocity across an equivalent interface (of the Ventcels type). This interface homogenization is based on a matched asymptotic expansion technique, and differs slightly from the classical homogenization, which is known to fail for small structuration thicknesses. In order to get insight into what causes this failure, a two-step homogenization is proposed, mixing classical homogenization and matched asymptotic expansion. Results of the two homogenizations are analyzed in light of the associated elementary problems, which correspond to problems of fluid mechanics, namely, potential flows around rigid obstacles.

  12. Hierarchically structured carbon-coated SnO{sub 2}-Fe{sub 3}O{sub 4} microparticles with enhanced lithium storage performance

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Xiaohan; Shi, Chunsheng [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin, 300072 (China); Liu, Enzuo [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin, 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072 (China); Li, Jiajun [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin, 300072 (China); Zhao, Naiqin [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin, 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072 (China); Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin, 300072 (China); He, Chunnian, E-mail: cnhe08@tju.edu.cn [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin, 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072 (China); Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin, 300072 (China)

    2016-01-15

    Graphical abstract: Hierarchically structured SnO{sub 2}-Fe{sub 3}O{sub 4}@C microparticles for lithium-ion battery anode are developed by a facile and scalable strategy. - Highlights: • Hierarchically structured SnO{sub 2}-Fe{sub 3}O{sub 4}@C micrometer-sized particles were synthesized. • The SnO{sub 2}-Fe{sub 3}O{sub 4}@C micrometer-sized particles deliver high reversible lithium storage capacity. • The wrapped carbon layer can buffer the volume expansion of SnO{sub 2}-Fe{sub 3}O{sub 4}. - Abstract: A facile and scalable strategy was developed to fabricate SnO{sub 2}-Fe{sub 3}O{sub 4}@C micrometer-sized particles as a good lithium-ion battery anode. The obtained materials were constructed by aggregated nanoclusters (100–200 nm) consisting of SnO{sub 2}-Fe{sub 3}O{sub 4}@C nanospheres (20 ∼ 30 nm), in which SnO{sub 2} and Fe{sub 3}O{sub 4} nanoparticles (5 ∼ 8 nm) were homogeneously embedded in a percolating carbonaceous network with an average thickness of about 3 nm. SnO{sub 2}-Fe{sub 3}O{sub 4}@C microparticles were synthesized by a one-pot hydrothermal process followed by annealing under Ar and subsequent chemical vapor transformation (CVT) under vacuum. The peculiar strategy allows to obtain hierarchical structure of micrometer-sized particles including nanospheres, nanoclusters and micro-scale particles, and the combination of SnO{sub 2} and Fe{sub 3}O{sub 4} could promote the synergistic effects to enhance the reversible capacity as well as the structural stability. Meanwhile, the carbon layer, homogeneously covering the nanoparticles does not only accommodate the volume change of active materials to maintain the structural integrity but also forms a conductive network throughout the whole micro-sized structure during charge/discharge processes. As a result, the electrode of SnO{sub 2}-Fe{sub 3}O{sub 4}@C microparticles exhibits good rate performance (1056 mAh g{sup −1} at 0.1 C, 734 mAh g{sup −1} at 0.2 C, 449 mAh g{sup −1} at 0.5 C, 212

  13. Translating Management Practices in Hierarchical Organizations

    DEFF Research Database (Denmark)

    Wæraas, Arild; Nielsen, Jeppe Agger

    structures affect translators’ approaches taken towards management ideas. This paper reports the findings from a longitudinal case study of the translation of Leadership Pipeline in a Danish fire department and how the translators’ approach changed over time from a modifying to a reproducing mode. The study......This study examines how translators in a hierarchical context approach the translation of management practices. Although current translation theory and research emphasize the importance of contextual factors in translation processes, little research has investigated how strongly hierarchical...... finds that translation does not necessarily imply transformation of the management idea, pointing instead to aspects of exact imitation and copying of an ”original” idea. It also highlights how translation is likely to involve multiple and successive translation modes and, furthermore, that strongly...

  14. Carbon fiber reinforced hierarchical orthogrid stiffened cylinder: Fabrication and testing

    Science.gov (United States)

    Wu, Hao; Lai, Changlian; Sun, Fangfang; Li, Ming; Ji, Bin; Wei, Weiyi; Liu, Debo; Zhang, Xi; Fan, Hualin

    2018-04-01

    To get strong, stiff and light cylindrical shell, carbon fiber reinforced hierarchical orthogrid stiffened cylinders are designed and fabricated. The cylinder is stiffened by two-scale orthogrid. The primary orthogrid has thick and high ribs and contains several sub-orthogrid cells whose rib is much thinner and lower. The primary orthogrid stiffens the bending rigidity of the cylinder to resist the global instability while the sub-orthogrid stiffens the bending rigidity of the skin enclosed by the primary orthogrid to resist local buckling. The cylinder is fabricated by filament winding method based on a silicone rubber mandrel with hierarchical grooves. Axial compression tests are performed to reveal the failure modes. With hierarchical stiffeners, the cylinder fails at skin fracture and has high specific strength. The cylinder will fail at end crushing if the end of the cylinder is not thickened. Global instability and local buckling are well restricted by the hierarchical stiffeners.

  15. Sewage sludge disintegration by high-pressure homogenization: a sludge disintegration model.

    Science.gov (United States)

    Zhang, Yuxuan; Zhang, Panyue; Ma, Boqiang; Wu, Hao; Zhang, Sheng; Xu, Xin

    2012-01-01

    High-pressure homogenization (HPH) technology was applied as a pretreatment to disintegrate sewage sludge. The effects of homogenization pressure, homogenization cycle number, and total solid content on sludge disintegration were investigated. The sludge disintegration degree (DD(COD)), protein concentration, and polysaccharide concentration increased with the increase of homogenization pressure and homogenization cycle number, and decreased with the increase of sludge total solid (TS) content. The maximum DD(COD) of 43.94% was achieved at 80 MPa with four homogenization cycles for a 9.58 g/L TS sludge sample. A HPH sludge disintegration model of DD(COD) = kNaPb was established by multivariable linear regression to quantify the effects of homogenization parameters. The homogenization cycle exponent a and homogenization pressure exponent b were 0.4763 and 0.7324 respectively, showing that the effect of homogenization pressure (P) was more significant than that of homogenization cycle number (N). The value of the rate constant k decreased with the increase of sludge total solid content. The specific energy consumption increased with the increment of sludge disintegration efficiency. Lower specific energy consumption was required for higher total solid content sludge.

  16. Parameter-Invariant Hierarchical Exclusive Alphabet Design for 2-WRC with HDF Strategy

    Directory of Open Access Journals (Sweden)

    T. Uřičář

    2010-01-01

    Full Text Available Hierarchical eXclusive Code (HXC for the Hierarchical Decode and Forward (HDF strategy in the Wireless 2-Way Relay Channel (2-WRC has the achievable rate region extended beyond the classical MAC region. Although direct HXC design is in general highly complex, a layered approach to HXC design is a feasible solution. While the outer layer code of the layered HXC can be any state-of-the-art capacity approaching code, the inner layer must be designed in such a way that the exclusive property of hierarchical symbols (received at the relay will be provided. The simplest case of the inner HXC layer is a simple signal space channel symbol memoryless mapper called Hierarchical eXclusive Alphabet (HXA. The proper design of HXA is important, especially in the case of parametric channels, where channel parametrization (e.g. phase rotation can violate the exclusive property of hierarchical symbols (as seen by the relay, resulting in significant capacity degradation. In this paper we introduce an example of a geometrical approach to Parameter-Invariant HXA design, and we show that the corresponding hierarchical MAC capacity region extends beyond the classical MAC region, irrespective of the channel pametrization.

  17. Hierarchical Bayesian sparse image reconstruction with application to MRFM.

    Science.gov (United States)

    Dobigeon, Nicolas; Hero, Alfred O; Tourneret, Jean-Yves

    2009-09-01

    This paper presents a hierarchical Bayesian model to reconstruct sparse images when the observations are obtained from linear transformations and corrupted by an additive white Gaussian noise. Our hierarchical Bayes model is well suited to such naturally sparse image applications as it seamlessly accounts for properties such as sparsity and positivity of the image via appropriate Bayes priors. We propose a prior that is based on a weighted mixture of a positive exponential distribution and a mass at zero. The prior has hyperparameters that are tuned automatically by marginalization over the hierarchical Bayesian model. To overcome the complexity of the posterior distribution, a Gibbs sampling strategy is proposed. The Gibbs samples can be used to estimate the image to be recovered, e.g., by maximizing the estimated posterior distribution. In our fully Bayesian approach, the posteriors of all the parameters are available. Thus, our algorithm provides more information than other previously proposed sparse reconstruction methods that only give a point estimate. The performance of the proposed hierarchical Bayesian sparse reconstruction method is illustrated on synthetic data and real data collected from a tobacco virus sample using a prototype MRFM instrument.

  18. HiPS - Hierarchical Progressive Survey Version 1.0

    Science.gov (United States)

    Fernique, Pierre; Allen, Mark; Boch, Thomas; Donaldson, Tom; Durand, Daniel; Ebisawa, Ken; Michel, Laurent; Salgado, Jesus; Stoehr, Felix; Fernique, Pierre

    2017-05-01

    This document presents HiPS, a hierarchical scheme for the description, storage and access of sky survey data. The system is based on hierarchical tiling of sky regions at finer and finer spatial resolution which facilitates a progressive view of a survey, and supports multi-resolution zooming and panning. HiPS uses the HEALPix tessellation of the sky as the basis for the scheme and is implemented as a simple file structure with a direct indexing scheme that leads to practical implementations.

  19. A non-asymptotic homogenization theory for periodic electromagnetic structures.

    Science.gov (United States)

    Tsukerman, Igor; Markel, Vadim A

    2014-08-08

    Homogenization of electromagnetic periodic composites is treated as a two-scale problem and solved by approximating the fields on both scales with eigenmodes that satisfy Maxwell's equations and boundary conditions as accurately as possible. Built into this homogenization methodology is an error indicator whose value characterizes the accuracy of homogenization. The proposed theory allows one to define not only bulk, but also position-dependent material parameters (e.g. in proximity to a physical boundary) and to quantify the trade-off between the accuracy of homogenization and its range of applicability to various illumination conditions.

  20. Hierarchical sets: analyzing pangenome structure through scalable set visualizations

    Science.gov (United States)

    2017-01-01

    Abstract Motivation: The increase in available microbial genome sequences has resulted in an increase in the size of the pangenomes being analyzed. Current pangenome visualizations are not intended for the pangenome sizes possible today and new approaches are necessary in order to convert the increase in available information to increase in knowledge. As the pangenome data structure is essentially a collection of sets we explore the potential for scalable set visualization as a tool for pangenome analysis. Results: We present a new hierarchical clustering algorithm based on set arithmetics that optimizes the intersection sizes along the branches. The intersection and union sizes along the hierarchy are visualized using a composite dendrogram and icicle plot, which, in pangenome context, shows the evolution of pangenome and core size along the evolutionary hierarchy. Outlying elements, i.e. elements whose presence pattern do not correspond with the hierarchy, can be visualized using hierarchical edge bundles. When applied to pangenome data this plot shows putative horizontal gene transfers between the genomes and can highlight relationships between genomes that is not represented by the hierarchy. We illustrate the utility of hierarchical sets by applying it to a pangenome based on 113 Escherichia and Shigella genomes and find it provides a powerful addition to pangenome analysis. Availability and Implementation: The described clustering algorithm and visualizations are implemented in the hierarchicalSets R package available from CRAN (https://cran.r-project.org/web/packages/hierarchicalSets) Contact: thomasp85@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28130242

  1. Road network safety evaluation using Bayesian hierarchical joint model.

    Science.gov (United States)

    Wang, Jie; Huang, Helai

    2016-05-01

    Safety and efficiency are commonly regarded as two significant performance indicators of transportation systems. In practice, road network planning has focused on road capacity and transport efficiency whereas the safety level of a road network has received little attention in the planning stage. This study develops a Bayesian hierarchical joint model for road network safety evaluation to help planners take traffic safety into account when planning a road network. The proposed model establishes relationships between road network risk and micro-level variables related to road entities and traffic volume, as well as socioeconomic, trip generation and network density variables at macro level which are generally used for long term transportation plans. In addition, network spatial correlation between intersections and their connected road segments is also considered in the model. A road network is elaborately selected in order to compare the proposed hierarchical joint model with a previous joint model and a negative binomial model. According to the results of the model comparison, the hierarchical joint model outperforms the joint model and negative binomial model in terms of the goodness-of-fit and predictive performance, which indicates the reasonableness of considering the hierarchical data structure in crash prediction and analysis. Moreover, both random effects at the TAZ level and the spatial correlation between intersections and their adjacent segments are found to be significant, supporting the employment of the hierarchical joint model as an alternative in road-network-level safety modeling as well. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Hierarchical Microaggressions in Higher Education

    Science.gov (United States)

    Young, Kathryn; Anderson, Myron; Stewart, Saran

    2015-01-01

    Although there has been substantial research examining the effects of microaggressions in the public sphere, there has been little research that examines microaggressions in the workplace. This study explores the types of microaggressions that affect employees at universities. We coin the term "hierarchical microaggression" to represent…

  3. Homogenization of Large-Scale Movement Models in Ecology

    Science.gov (United States)

    Garlick, M.J.; Powell, J.A.; Hooten, M.B.; McFarlane, L.R.

    2011-01-01

    A difficulty in using diffusion models to predict large scale animal population dispersal is that individuals move differently based on local information (as opposed to gradients) in differing habitat types. This can be accommodated by using ecological diffusion. However, real environments are often spatially complex, limiting application of a direct approach. Homogenization for partial differential equations has long been applied to Fickian diffusion (in which average individual movement is organized along gradients of habitat and population density). We derive a homogenization procedure for ecological diffusion and apply it to a simple model for chronic wasting disease in mule deer. Homogenization allows us to determine the impact of small scale (10-100 m) habitat variability on large scale (10-100 km) movement. The procedure generates asymptotic equations for solutions on the large scale with parameters defined by small-scale variation. The simplicity of this homogenization procedure is striking when compared to the multi-dimensional homogenization procedure for Fickian diffusion,and the method will be equally straightforward for more complex models. ?? 2010 Society for Mathematical Biology.

  4. Hierarchical adaptive experimental design for Gaussian process emulators

    International Nuclear Information System (INIS)

    Busby, Daniel

    2009-01-01

    Large computer simulators have usually complex and nonlinear input output functions. This complicated input output relation can be analyzed by global sensitivity analysis; however, this usually requires massive Monte Carlo simulations. To effectively reduce the number of simulations, statistical techniques such as Gaussian process emulators can be adopted. The accuracy and reliability of these emulators strongly depend on the experimental design where suitable evaluation points are selected. In this paper a new sequential design strategy called hierarchical adaptive design is proposed to obtain an accurate emulator using the least possible number of simulations. The hierarchical design proposed in this paper is tested on various standard analytic functions and on a challenging reservoir forecasting application. Comparisons with standard one-stage designs such as maximin latin hypercube designs show that the hierarchical adaptive design produces a more accurate emulator with the same number of computer experiments. Moreover a stopping criterion is proposed that enables to perform the number of simulations necessary to obtain required approximation accuracy.

  5. Stability of glassy hierarchical networks

    Science.gov (United States)

    Zamani, M.; Camargo-Forero, L.; Vicsek, T.

    2018-02-01

    The structure of interactions in most animal and human societies can be best represented by complex hierarchical networks. In order to maintain close-to-optimal function both stability and adaptability are necessary. Here we investigate the stability of hierarchical networks that emerge from the simulations of an organization type with an efficiency function reminiscent of the Hamiltonian of spin glasses. Using this quantitative approach we find a number of expected (from everyday observations) and highly non-trivial results for the obtained locally optimal networks, including, for example: (i) stability increases with growing efficiency and level of hierarchy; (ii) the same perturbation results in a larger change for more efficient states; (iii) networks with a lower level of hierarchy become more efficient after perturbation; (iv) due to the huge number of possible optimal states only a small fraction of them exhibit resilience and, finally, (v) ‘attacks’ targeting the nodes selectively (regarding their position in the hierarchy) can result in paradoxical outcomes.

  6. Hierarchical Semantic Model of Geovideo

    Directory of Open Access Journals (Sweden)

    XIE Xiao

    2015-05-01

    Full Text Available The public security incidents were getting increasingly challenging with regard to their new features, including multi-scale mobility, multistage dynamic evolution, as well as spatiotemporal concurrency and uncertainty in the complex urban environment. However, the existing video models, which were used/designed for independent archive or local analysis of surveillance video, have seriously inhibited emergency response to the urgent requirements.Aiming at the explicit representation of change mechanism in video, the paper proposed a novel hierarchical geovideo semantic model using UML. This model was characterized by the hierarchical representation of both data structure and semantics based on the change-oriented three domains (feature domain, process domain and event domain instead of overall semantic description of video streaming; combining both geographical semantics and video content semantics, in support of global semantic association between multiple geovideo data. The public security incidents by video surveillance are inspected as an example to illustrate the validity of this model.

  7. Hierarchical graphs for rule-based modeling of biochemical systems

    Directory of Open Access Journals (Sweden)

    Hu Bin

    2011-02-01

    Full Text Available Abstract Background In rule-based modeling, graphs are used to represent molecules: a colored vertex represents a component of a molecule, a vertex attribute represents the internal state of a component, and an edge represents a bond between components. Components of a molecule share the same color. Furthermore, graph-rewriting rules are used to represent molecular interactions. A rule that specifies addition (removal of an edge represents a class of association (dissociation reactions, and a rule that specifies a change of a vertex attribute represents a class of reactions that affect the internal state of a molecular component. A set of rules comprises an executable model that can be used to determine, through various means, the system-level dynamics of molecular interactions in a biochemical system. Results For purposes of model annotation, we propose the use of hierarchical graphs to represent structural relationships among components and subcomponents of molecules. We illustrate how hierarchical graphs can be used to naturally document the structural organization of the functional components and subcomponents of two proteins: the protein tyrosine kinase Lck and the T cell receptor (TCR complex. We also show that computational methods developed for regular graphs can be applied to hierarchical graphs. In particular, we describe a generalization of Nauty, a graph isomorphism and canonical labeling algorithm. The generalized version of the Nauty procedure, which we call HNauty, can be used to assign canonical labels to hierarchical graphs or more generally to graphs with multiple edge types. The difference between the Nauty and HNauty procedures is minor, but for completeness, we provide an explanation of the entire HNauty algorithm. Conclusions Hierarchical graphs provide more intuitive formal representations of proteins and other structured molecules with multiple functional components than do the regular graphs of current languages for

  8. Hierarchical Spatial Concept Formation Based on Multimodal Information for Human Support Robots.

    Science.gov (United States)

    Hagiwara, Yoshinobu; Inoue, Masakazu; Kobayashi, Hiroyoshi; Taniguchi, Tadahiro

    2018-01-01

    In this paper, we propose a hierarchical spatial concept formation method based on the Bayesian generative model with multimodal information e.g., vision, position and word information. Since humans have the ability to select an appropriate level of abstraction according to the situation and describe their position linguistically, e.g., "I am in my home" and "I am in front of the table," a hierarchical structure of spatial concepts is necessary in order for human support robots to communicate smoothly with users. The proposed method enables a robot to form hierarchical spatial concepts by categorizing multimodal information using hierarchical multimodal latent Dirichlet allocation (hMLDA). Object recognition results using convolutional neural network (CNN), hierarchical k-means clustering result of self-position estimated by Monte Carlo localization (MCL), and a set of location names are used, respectively, as features in vision, position, and word information. Experiments in forming hierarchical spatial concepts and evaluating how the proposed method can predict unobserved location names and position categories are performed using a robot in the real world. Results verify that, relative to comparable baseline methods, the proposed method enables a robot to predict location names and position categories closer to predictions made by humans. As an application example of the proposed method in a home environment, a demonstration in which a human support robot moves to an instructed place based on human speech instructions is achieved based on the formed hierarchical spatial concept.

  9. Hierarchical Spatial Concept Formation Based on Multimodal Information for Human Support Robots

    Directory of Open Access Journals (Sweden)

    Yoshinobu Hagiwara

    2018-03-01

    Full Text Available In this paper, we propose a hierarchical spatial concept formation method based on the Bayesian generative model with multimodal information e.g., vision, position and word information. Since humans have the ability to select an appropriate level of abstraction according to the situation and describe their position linguistically, e.g., “I am in my home” and “I am in front of the table,” a hierarchical structure of spatial concepts is necessary in order for human support robots to communicate smoothly with users. The proposed method enables a robot to form hierarchical spatial concepts by categorizing multimodal information using hierarchical multimodal latent Dirichlet allocation (hMLDA. Object recognition results using convolutional neural network (CNN, hierarchical k-means clustering result of self-position estimated by Monte Carlo localization (MCL, and a set of location names are used, respectively, as features in vision, position, and word information. Experiments in forming hierarchical spatial concepts and evaluating how the proposed method can predict unobserved location names and position categories are performed using a robot in the real world. Results verify that, relative to comparable baseline methods, the proposed method enables a robot to predict location names and position categories closer to predictions made by humans. As an application example of the proposed method in a home environment, a demonstration in which a human support robot moves to an instructed place based on human speech instructions is achieved based on the formed hierarchical spatial concept.

  10. On hierarchical solutions to the BBGKY hierarchy

    Science.gov (United States)

    Hamilton, A. J. S.

    1988-01-01

    It is thought that the gravitational clustering of galaxies in the universe may approach a scale-invariant, hierarchical form in the small separation, large-clustering regime. Past attempts to solve the Born-Bogoliubov-Green-Kirkwood-Yvon (BBGKY) hierarchy in this regime have assumed a certain separable hierarchical form for the higher order correlation functions of galaxies in phase space. It is shown here that such separable solutions to the BBGKY equations must satisfy the condition that the clustered component of the solution has cluster-cluster correlations equal to galaxy-galaxy correlations to all orders. The solutions also admit the presence of an arbitrary unclustered component, which plays no dyamical role in the large-clustering regime. These results are a particular property of the specific separable model assumed for the correlation functions in phase space, not an intrinsic property of spatially hierarchical solutions to the BBGKY hierarchy. The observed distribution of galaxies does not satisfy the required conditions. The disagreement between theory and observation may be traced, at least in part, to initial conditions which, if Gaussian, already have cluster correlations greater than galaxy correlations.

  11. Statistical dynamics of ultradiffusion in hierarchical systems

    International Nuclear Information System (INIS)

    Gardner, S.

    1987-01-01

    In many types of disordered systems which exhibit frustration and competition, an ultrametric topology is found to exist in the space of allowable states. This ultrametric topology of states is associated with a hierarchical relaxation process called ultradiffusion. Ultradiffusion occurs in hierarchical non-linear (HNL) dynamical systems when constraints cause large scale, slow modes of motion to be subordinated to small scale, fast modes. Examples of ultradiffusion are found throughout condensed matter physics and critical phenomena (e.g. the states of spin glasses), in biophysics (e.g. the states of Hopfield networks) and in many other fields including layered computing based upon nonlinear dynamics. The statistical dynamics of ultradiffusion can be treated as a random walk on an ultrametric space. For reversible bifurcating ultrametric spaces the evolution equation governing the probability of a particle being found at site i at time t has a highly degenerate transition matrix. This transition matrix has a fractal geometry similar to the replica form proposed for spin glasses. The authors invert this fractal matrix using a recursive quad-tree (QT) method. Possible applications of hierarchical systems to communications and symbolic computing are discussed briefly

  12. Hierarchically Structured Electrospun Fibers

    Science.gov (United States)

    2013-01-07

    in the natural lotus and silver ragwort leaves. Figure 4. Examples of electrospun bio-mimics of natural hierarchical structures. (A) Lotus leaf...B) pillared poly(methyl methacrylate) (PMMA) electrospun fiber mimic; (C) silver ragwort leaf; (D) electrospun fiber mimic made from nylon 6 and...domains containing the protein in the surrounding EVA fibers [115]. A wide variety of core-shell fibers have been generated, including PCL/ gelatin

  13. Topology-based hierarchical scheduling using deficit round robin

    DEFF Research Database (Denmark)

    Yu, Hao; Yan, Ying; Berger, Michael Stubert

    2009-01-01

    according to the topology. The mapping process could be completed through the network management plane or by manual configuration. Based on the knowledge of the network, the scheduler can manage the traffic on behalf of other less advanced nodes, avoid potential traffic congestion, and provide flow...... protection and isolation. Comparisons between hierarchical scheduling, flow-based scheduling, and class-based scheduling schemes have been carried out under a symmetric tree topology. Results have shown that the hierarchical scheduling scheme provides better flow protection and isolation from attack...

  14. An Improved Hierarchical Genetic Algorithm for Sheet Cutting Scheduling with Process Constraints

    OpenAIRE

    Yunqing Rao; Dezhong Qi; Jinling Li

    2013-01-01

    For the first time, an improved hierarchical genetic algorithm for sheet cutting problem which involves n cutting patterns for m non-identical parallel machines with process constraints has been proposed in the integrated cutting stock model. The objective of the cutting scheduling problem is minimizing the weighted completed time. A mathematical model for this problem is presented, an improved hierarchical genetic algorithm (ant colony—hierarchical genetic algorithm) is developed for better ...

  15. Persymmetric Adaptive Detectors of Subspace Signals in Homogeneous and Partially Homogeneous Clutter

    Directory of Open Access Journals (Sweden)

    Ding Hao

    2015-08-01

    Full Text Available In the field of adaptive radar detection, an effective strategy to improve the detection performance is to exploit the structural information of the covariance matrix, especially in the case of insufficient reference cells. Thus, in this study, the problem of detecting multidimensional subspace signals is discussed by considering the persymmetric structure of the clutter covariance matrix, which implies that the covariance matrix is persymmetric about its cross diagonal. Persymmetric adaptive detectors are derived on the basis of the one-step principle as well as the two-step Generalized Likelihood Ratio Test (GLRT in homogeneous and partially homogeneous clutter. The proposed detectors consider the structural information of the covariance matrix at the design stage. Simulation results suggest performance improvement compared with existing detectors when reference cells are insufficient. Moreover, the detection performance is assessed with respect to the effects of the covariance matrix, signal subspace dimension, and mismatched performance of signal subspace as well as signal fluctuations.

  16. Hierarchy concepts: classification and preparation strategies for zeolite containing materials with hierarchical porosity.

    Science.gov (United States)

    Schwieger, Wilhelm; Machoke, Albert Gonche; Weissenberger, Tobias; Inayat, Amer; Selvam, Thangaraj; Klumpp, Michael; Inayat, Alexandra

    2016-06-13

    'Hierarchy' is a property which can be attributed to a manifold of different immaterial systems, such as ideas, items and organisations or material ones like biological systems within living organisms or artificial, man-made constructions. The property 'hierarchy' is mainly characterised by a certain ordering of individual elements relative to each other, often in combination with a certain degree of branching. Especially mass-flow related systems in the natural environment feature special hierarchically branched patterns. This review is a survey into the world of hierarchical systems with special focus on hierarchically porous zeolite materials. A classification of hierarchical porosity is proposed based on the flow distribution pattern within the respective pore systems. In addition, this review might serve as a toolbox providing several synthetic and post-synthetic strategies to prepare zeolitic or zeolite containing material with tailored hierarchical porosity. Very often, such strategies with their underlying principles were developed for improving the performance of the final materials in different technical applications like adsorptive or catalytic processes. In the present review, besides on the hierarchically porous all-zeolite material, special focus is laid on the preparation of zeolitic composite materials with hierarchical porosity capable to face the demands of industrial application.

  17. Hierarchical spatial structure of stream fish colonization and extinction

    Science.gov (United States)

    Hitt, N.P.; Roberts, J.H.

    2012-01-01

    Spatial variation in extinction and colonization is expected to influence community composition over time. In stream fish communities, local species richness (alpha diversity) and species turnover (beta diversity) are thought to be regulated by high extinction rates in headwater streams and high colonization rates in downstream areas. We evaluated the spatiotemporal structure of fish communities in streams originally surveyed by Burton and Odum 1945 (Ecology 26: 182-194) in Virginia, USA and explored the effects of species traits on extinction and colonization dynamics. We documented dramatic changes in fish community structure at both the site and stream scales. Of the 34 fish species observed, 20 (59%) were present in both time periods, but 11 (32%) colonized the study area and three (9%) were extirpated over time. Within streams, alpha diversity increased in two of three streams but beta diversity decreased dramatically in all streams due to fish community homogenization caused by colonization of common species and extirpation of rare species. Among streams, however, fish communities differentiated over time. Regression trees indicated that reproductive life-history traits such as spawning mound construction, associations with mound-building species, and high fecundity were important predictors of species persistence or colonization. Conversely, native fishes not associated with mound-building exhibited the highest rates of extirpation from streams. Our results demonstrate that stream fish colonization and extinction dynamics exhibit hierarchical spatial structure and suggest that mound-building fishes serve as keystone species for colonization of headwater streams.

  18. Layout optimization using the homogenization method

    Science.gov (United States)

    Suzuki, Katsuyuki; Kikuchi, Noboru

    1993-01-01

    A generalized layout problem involving sizing, shape, and topology optimization is solved by using the homogenization method for three-dimensional linearly elastic shell structures in order to seek a possibility of establishment of an integrated design system of automotive car bodies, as an extension of the previous work by Bendsoe and Kikuchi. A formulation of a three-dimensional homogenized shell, a solution algorithm, and several examples of computing the optimum layout are presented in this first part of the two articles.

  19. Peripheral nerve magnetic stimulation: influence of tissue non-homogeneity

    Directory of Open Access Journals (Sweden)

    Papazov Sava P

    2003-12-01

    Full Text Available Abstract Background Peripheral nerves are situated in a highly non-homogeneous environment, including muscles, bones, blood vessels, etc. Time-varying magnetic field stimulation of the median and ulnar nerves in the carpal region is studied, with special consideration of the influence of non-homogeneities. Methods A detailed three-dimensional finite element model (FEM of the anatomy of the wrist region was built to assess the induced currents distribution by external magnetic stimulation. The electromagnetic field distribution in the non-homogeneous domain was defined as an internal Dirichlet problem using the finite element method. The boundary conditions were obtained by analysis of the vector potential field excited by external current-driven coils. Results The results include evaluation and graphical representation of the induced current field distribution at various stimulation coil positions. Comparative study for the real non-homogeneous structure with anisotropic conductivities of the tissues and a mock homogeneous media is also presented. The possibility of achieving selective stimulation of either of the two nerves is assessed. Conclusion The model developed could be useful in theoretical prediction of the current distribution in the nerves during diagnostic stimulation and therapeutic procedures involving electromagnetic excitation. The errors in applying homogeneous domain modeling rather than real non-homogeneous biological structures are demonstrated. The practical implications of the applied approach are valid for any arbitrary weakly conductive medium.

  20. Molecular simulation of adsorption and transport in hierarchical porous materials.

    Science.gov (United States)

    Coasne, Benoit; Galarneau, Anne; Gerardin, Corine; Fajula, François; Villemot, François

    2013-06-25

    Adsorption and transport in hierarchical porous solids with micro- (~1 nm) and mesoporosities (>2 nm) are investigated by molecular simulation. Two models of hierarchical solids are considered: microporous materials in which mesopores are carved out (model A) and mesoporous materials in which microporous nanoparticles are inserted (model B). Adsorption isotherms for model A can be described as a linear combination of the adsorption isotherms for pure mesoporous and microporous solids. In contrast, adsorption in model B departs from adsorption in pure microporous and mesoporous solids; the inserted microporous particles act as defects, which help nucleate the liquid phase within the mesopore and shift capillary condensation toward lower pressures. As far as transport under a pressure gradient is concerned, the flux in hierarchical materials consisting of microporous solids in which mesopores are carved out obeys the Navier-Stokes equation so that Darcy's law is verified within the mesopore. Moreover, the flow in such materials is larger than in a single mesopore, due to the transfer between micropores and mesopores. This nonzero velocity at the mesopore surface implies that transport in such hierarchical materials involves slippage at the mesopore surface, although the adsorbate has a strong affinity for the surface. In contrast to model A, flux in model B is smaller than in a single mesopore, as the nanoparticles act as constrictions that hinder transport. By a subtle effect arising from fast transport in the mesopores, the presence of mesopores increases the number of molecules in the microporosity in hierarchical materials and, hence, decreases the flow in the micropores (due to mass conservation). As a result, we do not observe faster diffusion in the micropores of hierarchical materials upon flow but slower diffusion, which increases the contact time between the adsorbate and the surface of the microporosity.

  1. Packaging glass with hierarchically nanostructured surface

    KAUST Repository

    He, Jr-Hau; Fu, Hui-Chun

    2017-01-01

    An optical device includes an active region and packaging glass located on top of the active region. A top surface of the packaging glass includes hierarchical nanostructures comprised of honeycombed nanowalls (HNWs) and nanorod (NR) structures

  2. Selective hierarchical patterning of silicon nanostructures via soft nanostencil lithography.

    Science.gov (United States)

    Du, Ke; Ding, Junjun; Wathuthanthri, Ishan; Choi, Chang-Hwan

    2017-11-17

    It is challenging to hierarchically pattern high-aspect-ratio nanostructures on microstructures using conventional lithographic techniques, where photoresist (PR) film is not able to uniformly cover on the microstructures as the aspect ratio increases. Such non-uniformity causes poor definition of nanopatterns over the microstructures. Nanostencil lithography can provide an alternative means to hierarchically construct nanostructures on microstructures via direct deposition or plasma etching through a free-standing nanoporous membrane. In this work, we demonstrate the multiscale hierarchical fabrication of high-aspect-ratio nanostructures on microstructures of silicon using a free-standing nanostencil, which is a nanoporous membrane consisting of metal (Cr), PR, and anti-reflective coating. The nanostencil membrane is used as a deposition mask to define Cr nanodot patterns on the predefined silicon microstructures. Then, deep reactive ion etching is used to hierarchically create nanostructures on the microstructures using the Cr nanodots as an etch mask. With simple modification of the main fabrication processes, high-aspect-ratio nanopillars are selectively defined only on top of the microstructures, on bottom, or on both top and bottom.

  3. Spatial homogenization method based on the inverse problem

    International Nuclear Information System (INIS)

    Tóta, Ádám; Makai, Mihály

    2015-01-01

    Highlights: • We derive a spatial homogenization method in slab and cylindrical geometries. • The fluxes and the currents on the boundary are preserved. • The reaction rates and the integral of the fluxes are preserved. • We present verification computations utilizing two- and four-energy groups. - Abstract: We present a method for deriving homogeneous multi-group cross sections to replace a heterogeneous region’s multi-group cross sections; providing that the fluxes, the currents on the external boundary, the reaction rates and the integral of the fluxes are preserved. We consider one-dimensional geometries: a symmetric slab and a homogeneous cylinder. Assuming that the boundary fluxes are given, two response matrices (RMs) can be defined concerning the current and the flux integral. The first one derives the boundary currents from the boundary fluxes, while the second one derives the flux integrals from the boundary fluxes. Further RMs can be defined that connects reaction rates to the boundary fluxes. Assuming that these matrices are known, we present formulae that reconstruct the multi-group diffusion cross-section matrix, the diffusion coefficients and the reaction cross sections in case of one-dimensional (1D) homogeneous regions. We apply these formulae to 1D heterogeneous regions and thus obtain a homogenization method. This method produces such an equivalent homogeneous material, that the fluxes and the currents on the external boundary, the reaction rates and the integral of the fluxes are preserved for any boundary fluxes. We carry out the exact derivations in 1D slab and cylindrical geometries. Verification computations for the presented homogenization method were performed using two- and four-group material cross sections, both in a slab and in a cylindrical geometry

  4. Homogeneous bilateral block shifts

    Indian Academy of Sciences (India)

    Douglas class were classified in [3]; they are unilateral block shifts of arbitrary block size (i.e. dim H(n) can be anything). However, no examples of irreducible homogeneous bilateral block shifts of block size larger than 1 were known until now.

  5. Topotactic transformations of superstructures: from thin films to two-dimensional networks to nested two-dimensional networks.

    Science.gov (United States)

    Guo, Chuan Fei; Cao, Sihai; Zhang, Jianming; Tang, Haoying; Guo, Shengming; Tian, Ye; Liu, Qian

    2011-06-01

    Design and synthesis of super-nanostructures is one of the key and prominent topics in nanotechnology. Here we propose a novel methodology for synthesizing complex hierarchical superstructures using sacrificial templates composed of ordered two-dimensional (2D) nanostructures through lattice-directed topotactic transformations. The fabricated superstructures are nested 2D orthogonal Bi(2)S(3) networks composed of nanorods. Further investigation indicates that the lattice matching between the product and sacrificial template is the dominant mechanism for the formation of the superstructures, which agrees well with the simulation results based on an anisotropic nucleation and growth analysis. Our approach may provide a promising way toward a lattice-directed nonlithographic nanofabrication technique for making functional porous nanoarchitectures and electronic devices. © 2011 American Chemical Society

  6. Conceptual hierarchical modeling to describe wetland plant community organization

    Science.gov (United States)

    Little, A.M.; Guntenspergen, G.R.; Allen, T.F.H.

    2010-01-01

    Using multivariate analysis, we created a hierarchical modeling process that describes how differently-scaled environmental factors interact to affect wetland-scale plant community organization in a system of small, isolated wetlands on Mount Desert Island, Maine. We followed the procedure: 1) delineate wetland groups using cluster analysis, 2) identify differently scaled environmental gradients using non-metric multidimensional scaling, 3) order gradient hierarchical levels according to spatiotem-poral scale of fluctuation, and 4) assemble hierarchical model using group relationships with ordination axes and post-hoc tests of environmental differences. Using this process, we determined 1) large wetland size and poor surface water chemistry led to the development of shrub fen wetland vegetation, 2) Sphagnum and water chemistry differences affected fen vs. marsh / sedge meadows status within small wetlands, and 3) small-scale hydrologic differences explained transitions between forested vs. non-forested and marsh vs. sedge meadow vegetation. This hierarchical modeling process can help explain how upper level contextual processes constrain biotic community response to lower-level environmental changes. It creates models with more nuanced spatiotemporal complexity than classification and regression tree procedures. Using this process, wetland scientists will be able to generate more generalizable theories of plant community organization, and useful management models. ?? Society of Wetland Scientists 2009.

  7. Band structures of two dimensional solid/air hierarchical phononic crystals

    International Nuclear Information System (INIS)

    Xu, Y.L.; Tian, X.G.; Chen, C.Q.

    2012-01-01

    The hierarchical phononic crystals to be considered show a two-order “hierarchical” feature, which consists of square array arranged macroscopic periodic unit cells with each unit cell itself including four sub-units. Propagation of acoustic wave in such two dimensional solid/air phononic crystals is investigated by the finite element method (FEM) with the Bloch theory. Their band structure, wave filtering property, and the physical mechanism responsible for the broadened band gap are explored. The corresponding ordinary phononic crystal without hierarchical feature is used for comparison. Obtained results show that the solid/air hierarchical phononic crystals possess tunable outstanding band gap features, which are favorable for applications such as sound insulation and vibration attenuation.

  8. Lattice-Symmetry-Driven Epitaxy of Hierarchical GaN Nanotripods

    KAUST Repository

    Wang, Ping

    2017-01-18

    Lattice-symmetry-driven epitaxy of hierarchical GaN nanotripods is demonstrated. The nanotripods emerge on the top of hexagonal GaN nanowires, which are selectively grown on pillar-patterned GaN templates using molecular beam epitaxy. High-resolution transmission electron microscopy confirms that two kinds of lattice-symmetry, wurtzite (wz) and zinc-blende (zb), coexist in the GaN nanotripods. Periodical transformation between wz and zb drives the epitaxy of the hierarchical nanotripods with N-polarity. The zb-GaN is formed by the poor diffusion of adatoms, and it can be suppressed by improving the ability of the Ga adatoms to migrate as the growth temperature increased. This controllable epitaxy of hierarchical GaN nanotripods allows quantum dots to be located at the phase junctions of the nanotripods and nanowires, suggesting a new recipe for multichannel quantum devices.

  9. Intensity-based hierarchical elastic registration using approximating splines.

    Science.gov (United States)

    Serifovic-Trbalic, Amira; Demirovic, Damir; Cattin, Philippe C

    2014-01-01

    We introduce a new hierarchical approach for elastic medical image registration using approximating splines. In order to obtain the dense deformation field, we employ Gaussian elastic body splines (GEBS) that incorporate anisotropic landmark errors and rotation information. Since the GEBS approach is based on a physical model in form of analytical solutions of the Navier equation, it can very well cope with the local as well as global deformations present in the images by varying the standard deviation of the Gaussian forces. The proposed GEBS approximating model is integrated into the elastic hierarchical image registration framework, which decomposes a nonrigid registration problem into numerous local rigid transformations. The approximating GEBS registration scheme incorporates anisotropic landmark errors as well as rotation information. The anisotropic landmark localization uncertainties can be estimated directly from the image data, and in this case, they represent the minimal stochastic localization error, i.e., the Cramér-Rao bound. The rotation information of each landmark obtained from the hierarchical procedure is transposed in an additional angular landmark, doubling the number of landmarks in the GEBS model. The modified hierarchical registration using the approximating GEBS model is applied to register 161 image pairs from a digital mammogram database. The obtained results are very encouraging, and the proposed approach significantly improved all registrations comparing the mean-square error in relation to approximating TPS with the rotation information. On artificially deformed breast images, the newly proposed method performed better than the state-of-the-art registration algorithm introduced by Rueckert et al. (IEEE Trans Med Imaging 18:712-721, 1999). The average error per breast tissue pixel was less than 2.23 pixels compared to 2.46 pixels for Rueckert's method. The proposed hierarchical elastic image registration approach incorporates the GEBS

  10. Homogenization patterns of the world’s freshwater fish faunas

    Science.gov (United States)

    Villéger, Sébastien; Blanchet, Simon; Beauchard, Olivier; Oberdorff, Thierry; Brosse, Sébastien

    2011-01-01

    The world is currently undergoing an unprecedented decline in biodiversity, which is mainly attributable to human activities. For instance, nonnative species introduction, combined with the extirpation of native species, affects biodiversity patterns, notably by increasing the similarity among species assemblages. This biodiversity change, called taxonomic homogenization, has rarely been assessed at the world scale. Here, we fill this gap by assessing the current homogenization status of one of the most diverse vertebrate groups (i.e., freshwater fishes) at global and regional scales. We demonstrate that current homogenization of the freshwater fish faunas is still low at the world scale (0.5%) but reaches substantial levels (up to 10%) in some highly invaded river basins from the Nearctic and Palearctic realms. In these realms experiencing high changes, nonnative species introductions rather than native species extirpations drive taxonomic homogenization. Our results suggest that the “Homogocene era” is not yet the case for freshwater fish fauna at the worldwide scale. However, the distressingly high level of homogenization noted for some biogeographical realms stresses the need for further understanding of the ecological consequences of homogenization processes. PMID:22025692

  11. Hierarchical Fiber Structures Made by Electrospinning Polymers

    Science.gov (United States)

    Reneker, Darrell H.

    2009-03-01

    A filter for water purification that is very thin, with small interstices and high surface area per unit mass, can be made with nanofibers. The mechanical strength of a very thin sheet of nanofibers is not great enough to withstand the pressure drop of the fluid flowing through. If the sheet of nanofibers is made thicker, the strength will increase, but the flow will be reduced to an impractical level. An optimized filter can be made with nanometer scale structures supported on micron scale structures, which are in turn supported on millimeter scale structures. This leads to a durable hierarchical structure to optimize the filtration efficiency with a minimum amount of material. Buckling coils,ootnotetextTao Han, Darrell H Reneker, Alexander L. Yarin, Polymer, Volume 48, issue 20 (September 21, 2007), p. 6064-6076. electrical bending coilsootnotetextDarrell H. Reneker and Alexander L. Yarin, Polymer, Volume 49, Issue 10 (2008) Pages 2387-2425, DOI:10.1016/j.polymer.2008.02.002. Feature Article. and pendulum coilsootnotetextT. Han, D.H. Reneker, A.L. Yarin, Polymer, Volume 49, (2008) Pages 2160-2169, doi:10.1016/jpolymer.2008.01.0487878. spanning dimensions from a few microns to a few centimeters can be collected from a single jet by controlling the position and motion of a collector. Attractive routes to the design and construction of hierarchical structures for filtration are based on nanofibers supported on small coils that are in turn supported on larger coils, which are supported on even larger overlapping coils. ``Such top-down'' hierarchical structures are easy to make by electrospinning. In one example, a thin hierarchical structure was made, with a high surface area and small interstices, having an open area of over 50%, with the thinnest fibers supported at least every 15 microns.

  12. Hierarchical control of vehicular fuel cell / battery hybrid powertrain

    OpenAIRE

    Xu, Liangfei; Ouyang, Minggao; Li, Jianqiu; Hua, Jianfeng

    2010-01-01

    In a proton exchange membrane (PEM) fuel cell/battery hybrid vehicle, a fuel cell system fulfills the stationary power demand, and a traction battery provides the accelerating power and recycles braking energy. The entire system is coordinated by a distributed control system, incorporating three key strategies: 1) vehicle control, 2) fuel cell control and 3) battery management. They make up a hierarchical control system. This paper introduces a hierarchical control strategy for a fuel cell / ...

  13. Observational homogeneity of the Universe

    International Nuclear Information System (INIS)

    Bonnor, W.B.; Ellis, G.F.R.

    1986-01-01

    A new approach to observational homogeneity is presented. The observation that stars and galaxies in distant regions appear similar to those nearby may be taken to imply that matter has had a similar thermodynamic history in widely separated parts of the Universe (the Postulate of Uniform Thermal Histories, or PUTH). The supposition is now made that similar thermodynamic histories imply similar dynamical histories. Then the distant apparent similarity is evidence for spatial homogeneity of the Universe. General Relativity is used to test this idea, taking a perfect fluid model and implementing PUTH by the condition that the density and entropy per baryon shall be the same function of the proper time along all galaxy world-lines. (author)

  14. Cross section homogenization analysis for a simplified Candu reactor

    International Nuclear Information System (INIS)

    Pounders, Justin; Rahnema, Farzad; Mosher, Scott; Serghiuta, Dumitru; Turinsky, Paul; Sarsour, Hisham

    2008-01-01

    The effect of using zero current (infinite medium) boundary conditions to generate bundle homogenized cross sections for a stylized half-core Candu reactor problem is examined. Homogenized cross section from infinite medium lattice calculations are compared with cross sections homogenized using the exact flux from the reference core environment. The impact of these cross section differences is quantified by generating nodal diffusion theory solutions with both sets of cross sections. It is shown that the infinite medium spatial approximation is not negligible, and that ignoring the impact of the heterogeneous core environment on cross section homogenization leads to increased errors, particularly near control elements and the core periphery. (authors)

  15. Hydrogen Production by Homogeneous Catalysis: Alcohol Acceptorless Dehydrogenation

    DEFF Research Database (Denmark)

    Nielsen, Martin

    2015-01-01

    in hydrogen production from biomass using homogeneous catalysis. Homogeneous catalysis has the advance of generally performing transformations at much milder conditions than traditional heterogeneous catalysis, and hence it constitutes a promising tool for future applications for a sustainable energy sector...

  16. Dynamics of homogeneous nucleation

    DEFF Research Database (Denmark)

    Toxværd, Søren

    2015-01-01

    The classical nucleation theory for homogeneous nucleation is formulated as a theory for a density fluctuation in a supersaturated gas at a given temperature. But molecular dynamics simulations reveal that it is small cold clusters which initiates the nucleation. The temperature in the nucleating...

  17. Application of hierarchical matrices for partial inverse

    KAUST Repository

    Litvinenko, Alexander

    2013-11-26

    In this work we combine hierarchical matrix techniques (Hackbusch, 1999) and domain decomposition methods to obtain fast and efficient algorithms for the solution of multiscale problems. This combination results in the hierarchical domain decomposition (HDD) method, which can be applied for solution multi-scale problems. Multiscale problems are problems that require the use of different length scales. Using only the finest scale is very expensive, if not impossible, in computational time and memory. Domain decomposition methods decompose the complete problem into smaller systems of equations corresponding to boundary value problems in subdomains. Then fast solvers can be applied to each subdomain. Subproblems in subdomains are independent, much smaller and require less computational resources as the initial problem.

  18. Hierarchical control system of advanced robot manipulator

    International Nuclear Information System (INIS)

    Oomichi, Takeo; Okino, Akihisa; Nishihara, Masatoshi; Sakamoto, Taizou; Matsuda, Koichi; Ohnishi, Ken

    1990-01-01

    We introduce a double arm with 4-finger's manipulator system which process the large volume of information at high speed. This is under research/development many type of works in the harsh condition. Namely, hierarchization of instruction unit in which motion control system as real time processing unit, and task planning unit as non-real time processing unit, interface with operation through the task planning unit has been made. Also, high speed processing of large volume information has been realized by decentralizing the motion control unit by function, hierarchizing the high speed processing unit, and developing high speed transmission, IC which does not depend on computer OS to avoid the delay in transmission. (author)

  19. A multiscale MD–FE model of diffusion in composite media with internal surface interaction based on numerical homogenization procedure

    Science.gov (United States)

    Kojic, M.; Milosevic, M.; Kojic, N.; Kim, K.; Ferrari, M.; Ziemys, A.

    2014-01-01

    Mass transport by diffusion within composite materials may depend not only on internal microstructural geometry, but also on the chemical interactions between the transported substance and the material of the microstructure. Retrospectively, there is a gap in methods and theory to connect material microstructure properties with macroscale continuum diffusion characteristics. Here we present a new hierarchical multiscale model for diffusion within composite materials that couples material microstructural geometry and interactions between diffusing particles and the material matrix. This model, which bridges molecular dynamics (MD) and the finite element (FE) method, is employed to construct a continuum diffusion model based on a novel numerical homogenization procedure. The procedure is general and robust for evaluating constitutive material parameters of the continuum model. These parameters include the traditional bulk diffusion coefficients and, additionally, the distances from the solid surface accounting for surface interaction effects. We implemented our models to glucose diffusion through the following two geometrical/material configurations: tightly packed silica nanospheres, and a complex fibrous structure surrounding nanospheres. Then, rhodamine 6G diffusion analysis through an aga-rose gel network was performed, followed by a model validation using our experimental results. The microstructural model, numerical homogenization and continuum model offer a new platform for modeling and predicting mass diffusion through complex biological environment and within composite materials that are used in a wide range of applications, like drug delivery and nanoporous catalysts. PMID:24578582

  20. Masking effects of speech and music: does the masker's hierarchical structure matter?

    Science.gov (United States)

    Shi, Lu-Feng; Law, Yvonne

    2010-04-01

    Speech and music are time-varying signals organized by parallel hierarchical rules. Through a series of four experiments, this study compared the masking effects of single-talker speech and instrumental music on speech perception while manipulating the complexity of hierarchical and temporal structures of the maskers. Listeners' word recognition was found to be similar between hierarchically intact and disrupted speech or classical music maskers (Experiment 1). When sentences served as the signal, significantly greater masking effects were observed with disrupted than intact speech or classical music maskers (Experiment 2), although not with jazz or serial music maskers, which differed from the classical music masker in their hierarchical structures (Experiment 3). Removing the classical music masker's temporal dynamics or partially restoring it affected listeners' sentence recognition; yet, differences in performance between intact and disrupted maskers remained robust (Experiment 4). Hence, the effect of structural expectancy was largely present across maskers when comparing them before and after their hierarchical structure was purposefully disrupted. This effect seemed to lend support to the auditory stream segregation theory.

  1. Microsatellites Reveal Genetic Homogeneity among Outbreak Populations of Crown-of-Thorns Starfish (Acanthaster cf. solaris) on Australia’s Great Barrier Reef

    KAUST Repository

    Harrison, Hugo

    2017-03-10

    Specific patterns in the initiation and spread of reef-wide outbreaks of crown-of-thorns starfish are important, both to understand potential causes (or triggers) of outbreaks and to develop more effective and highly targeted management and containment responses. Using analyses of genetic diversity and structure (based on 17 microsatellite loci), this study attempted to resolve the specific origin for recent outbreaks of crown-of-thorns on Australia’s Great Barrier Reef (GBR). We assessed the genetic structure amongst 2705 starfish collected from 13 coral reefs in four regions that spanned ~1000 km of the GBR. Our results indicate that populations sampled across the full length of the GBR are genetically homogeneous (G’ST = −0.001; p = 0.948) with no apparent genetic structure between regions. Approximate Bayesian computational analyses suggest that all sampled populations had a common origin and that current outbreaking populations of crown-of-thorns starfish (CoTS) in the Swains are not independent of outbreak populations in the northern GBR. Despite hierarchical sampling and large numbers of CoTS genotyped from individual reefs and regions, limited genetic structure meant we were unable to determine a putative source population for the current outbreak of CoTS on the GBR. The very high genetic homogeneity of sampled populations and limited evidence of inbreeding indicate rapid expansion in population size from multiple, undifferentiated latent populations.

  2. Microsatellites Reveal Genetic Homogeneity among Outbreak Populations of Crown-of-Thorns Starfish (Acanthaster cf. solaris) on Australia’s Great Barrier Reef

    KAUST Repository

    Harrison, Hugo; Pratchett, Morgan; Messmer, Vanessa; Saenz-Agudelo, Pablo; Berumen, Michael L.

    2017-01-01

    Specific patterns in the initiation and spread of reef-wide outbreaks of crown-of-thorns starfish are important, both to understand potential causes (or triggers) of outbreaks and to develop more effective and highly targeted management and containment responses. Using analyses of genetic diversity and structure (based on 17 microsatellite loci), this study attempted to resolve the specific origin for recent outbreaks of crown-of-thorns on Australia’s Great Barrier Reef (GBR). We assessed the genetic structure amongst 2705 starfish collected from 13 coral reefs in four regions that spanned ~1000 km of the GBR. Our results indicate that populations sampled across the full length of the GBR are genetically homogeneous (G’ST = −0.001; p = 0.948) with no apparent genetic structure between regions. Approximate Bayesian computational analyses suggest that all sampled populations had a common origin and that current outbreaking populations of crown-of-thorns starfish (CoTS) in the Swains are not independent of outbreak populations in the northern GBR. Despite hierarchical sampling and large numbers of CoTS genotyped from individual reefs and regions, limited genetic structure meant we were unable to determine a putative source population for the current outbreak of CoTS on the GBR. The very high genetic homogeneity of sampled populations and limited evidence of inbreeding indicate rapid expansion in population size from multiple, undifferentiated latent populations.

  3. On Hierarchical Extensions of Large-Scale 4-regular Grid Network Structures

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup; Patel, A.; Knudsen, Thomas Phillip

    2004-01-01

    dependencies between the number of nodes and the distances in the structures. The perfect square mesh is introduced for hierarchies, and it is shown that applying ordered hierarchies in this way results in logarithmic dependencies between the number of nodes and the distances, resulting in better scaling...... structures. For example, in a mesh of 391876 nodes the average distance is reduced from 417.33 to 17.32 by adding hierarchical lines. This is gained by increasing the number of lines by 4.20% compared to the non-hierarchical structure. A similar hierarchical extension of the torus structure also results...

  4. Wetting and Dewetting Transitions on Submerged Superhydrophobic Surfaces with Hierarchical Structures.

    Science.gov (United States)

    Wu, Huaping; Yang, Zhe; Cao, Binbin; Zhang, Zheng; Zhu, Kai; Wu, Bingbing; Jiang, Shaofei; Chai, Guozhong

    2017-01-10

    The wetting transition on submersed superhydrophobic surfaces with hierarchical structures and the influence of trapped air on superhydrophobic stability are predicted based on the thermodynamics and mechanical analyses. The dewetting transition on the hierarchically structured surfaces is investigated, and two necessary thermodynamic conditions and a mechanical balance condition for dewetting transition are proposed. The corresponding thermodynamic phase diagram of reversible transition and the critical reversed pressure well explain the experimental results reported previously. Our theory provides a useful guideline for precise controlling of breaking down and recovering of superhydrophobicity by designing superhydrophobic surfaces with hierarchical structures under water.

  5. Similarity maps and hierarchical clustering for annotating FT-IR spectral images.

    Science.gov (United States)

    Zhong, Qiaoyong; Yang, Chen; Großerüschkamp, Frederik; Kallenbach-Thieltges, Angela; Serocka, Peter; Gerwert, Klaus; Mosig, Axel

    2013-11-20

    Unsupervised segmentation of multi-spectral images plays an important role in annotating infrared microscopic images and is an essential step in label-free spectral histopathology. In this context, diverse clustering approaches have been utilized and evaluated in order to achieve segmentations of Fourier Transform Infrared (FT-IR) microscopic images that agree with histopathological characterization. We introduce so-called interactive similarity maps as an alternative annotation strategy for annotating infrared microscopic images. We demonstrate that segmentations obtained from interactive similarity maps lead to similarly accurate segmentations as segmentations obtained from conventionally used hierarchical clustering approaches. In order to perform this comparison on quantitative grounds, we provide a scheme that allows to identify non-horizontal cuts in dendrograms. This yields a validation scheme for hierarchical clustering approaches commonly used in infrared microscopy. We demonstrate that interactive similarity maps may identify more accurate segmentations than hierarchical clustering based approaches, and thus are a viable and due to their interactive nature attractive alternative to hierarchical clustering. Our validation scheme furthermore shows that performance of hierarchical two-means is comparable to the traditionally used Ward's clustering. As the former is much more efficient in time and memory, our results suggest another less resource demanding alternative for annotating large spectral images.

  6. Hierarchical DSE for multi-ASIP platforms

    DEFF Research Database (Denmark)

    Micconi, Laura; Corvino, Rosilde; Gangadharan, Deepak

    2013-01-01

    This work proposes a hierarchical Design Space Exploration (DSE) for the design of multi-processor platforms targeted to specific applications with strict timing and area constraints. In particular, it considers platforms integrating multiple Application Specific Instruction Set Processors (ASIPs...

  7. Hierarchical quark mass matrices

    International Nuclear Information System (INIS)

    Rasin, A.

    1998-02-01

    I define a set of conditions that the most general hierarchical Yukawa mass matrices have to satisfy so that the leading rotations in the diagonalization matrix are a pair of (2,3) and (1,2) rotations. In addition to Fritzsch structures, examples of such hierarchical structures include also matrices with (1,3) elements of the same order or even much larger than the (1,2) elements. Such matrices can be obtained in the framework of a flavor theory. To leading order, the values of the angle in the (2,3) plane (s 23 ) and the angle in the (1,2) plane (s 12 ) do not depend on the order in which they are taken when diagonalizing. We find that any of the Cabbibo-Kobayashi-Maskawa matrix parametrizations that consist of at least one (1,2) and one (2,3) rotation may be suitable. In the particular case when the s 13 diagonalization angles are sufficiently small compared to the product s 12 s 23 , two special CKM parametrizations emerge: the R 12 R 23 R 12 parametrization follows with s 23 taken before the s 12 rotation, and vice versa for the R 23 R 12 R 23 parametrization. (author)

  8. A convenient procedure for magnetic field homogeneity evaluation

    International Nuclear Information System (INIS)

    Teles, J; Garrido, C E; Tannus, A

    2004-01-01

    In many areas of research that utilize magnetic fields in their studies, it is important to obtain fields with a spatial distribution as homogeneous as possible. A procedure usually utilized to evaluate and to optimize field homogeneity is the expansion of the measured field in spherical harmonic components. In addition to the methods proposed in the literature, we present a more convenient procedure for evaluation of field homogeneity inside a spherical volume. The procedure uses the orthogonality property of the spherical harmonics to find the field variance. It is shown that the total field variance is equal to the sum of the individual variances of each field component in the spherical harmonic expansion. Besides the advantages of the linear behaviour of the individual variances, there is the fact that the field variance and standard deviation are the best parameters to achieve global homogeneity field information

  9. A new concept of equivalent homogenization method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Pogoskekyan, Leonid; Kim, Young Il; Ju, Hyung Kook; Chang, Moon Hee [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-07-01

    A new concept of equivalent homogenization is proposed. The concept employs new set of homogenized parameters: homogenized cross sections (XS) and interface matrix (IM), which relates partial currents at the cell interfaces. The idea of interface matrix generalizes the idea of discontinuity factors (DFs), proposed and developed by K. Koebke and K. Smith. The offered concept covers both those of K. Koebke and K. Smith; both of them can be simulated within framework of new concept. Also, the offered concept covers Siemens KWU approach for baffle/reflector simulation, where the equivalent homogenized reflector XS are derived from the conservation of response matrix at the interface in 1D simi-infinite slab geometry. The IM and XS of new concept satisfy the same assumption about response matrix conservation in 1D semi-infinite slab geometry. It is expected that the new concept provides more accurate approximation of heterogeneous cell, especially in case of the steep flux gradients at the cell interfaces. The attractive shapes of new concept are: improved accuracy, simplicity of incorporation in the existing codes, equal numerical expenses in comparison to the K. Smith`s approach. The new concept is useful for: (a) explicit reflector/baffle simulation; (b) control blades simulation; (c) mixed UO{sub 2}/MOX core simulation. The offered model has been incorporated in the finite difference code and in the nodal code PANDOX. The numerical results show good accuracy of core calculations and insensitivity of homogenized parameters with respect to in-core conditions. 9 figs., 7 refs. (Author).

  10. Catalytic Fast Pyrolysis of Kraft Lignin over Hierarchical HZSM-5 and Hβ Zeolites

    Directory of Open Access Journals (Sweden)

    Yadong Bi

    2018-02-01

    Full Text Available The hierarchical HZSM-5 and Hβ zeolites were prepared by alkaline post-treatment methods adopting Na2CO3, TMAOH/NaOH mixture, and NaOH as desilication sources, respectively. More mesopores are produced over two kinds of zeolites, while the micropores portion is well preserved. The mesopores formed in hierarchical Hβ zeolites were directly related to the basicity of the alkaline solution, indicating that Hβ zeolite is more sensitive to the alkaline post-treatment. The hierarchical HZSM-5 and Hβ zeolites are more active than the parent one for catalytic fast pyrolysis (CFP of Kraft lignin. Hierarchical zeolites retained the function of acid catalysis, while additionally creating larger mesopores to ensure the entry of bulkier reactant molecules. The increase of the condensable volatiles yield can be attributed to the improvement of the mass transfer performance, which correlates well with the change of mesoporous surface area. In particular, the condensable volatiles yield for the optimized hierarchical Hβ reached approximately two times that of the parent Hβ zeolites. In contrast to the parent HZSM-5, the optimized hierarchical HZSM-5 zeolite significantly reduced the selectivity of oxygenates from 27.2% to 3.3%.

  11. Large-scale controllable synthesis of dumbbell-like BiVO4 photocatalysts with enhanced visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Lu Yang; Luo Yongsong; Kong Dezhi; Zhang Deyang; Jia Yonglei; Zhang Xinwei

    2012-01-01

    The controllable synthesis of novel dumbbell-like BiVO 4 hierarchical nanostructures has been successfully obtained via a simple hydrothermal route. The as-synthesized products were studied by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy and UV–vis absorption spectroscopy. The results showed that the nucleation and growth of the nanodumbbells were governed by an oriented aggregation growth mechanism. It is noteworthy that the concentration of poly(vinyl pyrrolidone) and the volume ratio of H 2 O to CH 3 COOH were crucial to the growth of the final nanoarchitectures. Control experiments were also carried out to investigate the factors which impact on the morphology of the products. Furthermore, the as-prepared BiVO 4 hierarchical nanostructures demonstrated the superior visible-light-driven photocatalytic efficiency, which is helpful for the separation and recycle considering their promising applications in harmful pollutants disposal. - Graphical Abstract: The controllable synthesis of novel dumbbell-like BiVO 4 hierarchical nanostructures has been successfully obtained via a simple hydrothermal route; the as-prepared BiVO 4 hierarchical nanostructures demonstrated the superior visible-light-driven photocatalytic efficiency. Highlights: ►Dumbbell-like BiVO 4 structures were synthesized and characterized for the first time. ► The volume ratios of H 2 O to CH 3 COOH were crucial to the final morphologies. ► Their photocatalytic activity was up to 90% under visible-light irradiation. ► Dumbbell-like BiVO 4 structures may utilize the pollutant disposal.

  12. Modular networks with hierarchical organization

    Indian Academy of Sciences (India)

    Several networks occurring in real life have modular structures that are arranged in a hierarchical fashion. In this paper, we have proposed a model for such networks, using a stochastic generation method. Using this model we show that, the scaling relation between the clustering and degree of the nodes is not a necessary ...

  13. Homogenization of aligned “fuzzy fiber” composites

    KAUST Repository

    Chatzigeorgiou, George

    2011-09-01

    The aim of this work is to study composites in which carbon fibers coated with radially aligned carbon nanotubes are embedded in a matrix. The effective properties of these composites are identified using the asymptotic expansion homogenization method in two steps. Homogenization is performed in different coordinate systems, the cylindrical and the Cartesian, and a numerical example are presented. © 2011 Elsevier Ltd. All rights reserved.

  14. Structural changes in heat resisting high nickel alloys during homogenization

    International Nuclear Information System (INIS)

    Kleshchev, A.S.; Korneeva, N.N.; Yurina, O.M.; Guzej, L.S.

    1981-01-01

    Effect of homogenization on the structure and technological plasticity of the KhN73MBTYu and KhN62BMKTYu alloys during treatment with pressure is investigated taking into account peculiarities if the phase composition. It is shown that homogenization of the KhN73MBTYu and KhN62BMKTYu alloys increases the technological plasticity. Homogenization efficiency is conditioned by the change of the grain boundaries and carbide morphology as well as by homogeneous distribution of the large γ'-phase [ru

  15. Hierarchical machining materials and their performance

    DEFF Research Database (Denmark)

    Sidorenko, Daria; Loginov, Pavel; Levashov, Evgeny

    2016-01-01

    as nanoparticles in the binder, or polycrystalline, aggregate-like reinforcements, also at several scale levels). Such materials can ensure better productivity, efficiency, and lower costs of drilling, cutting, grinding, and other technological processes. This article reviews the main groups of hierarchical...

  16. Packaging glass with hierarchically nanostructured surface

    KAUST Repository

    He, Jr-Hau

    2017-08-03

    An optical device includes an active region and packaging glass located on top of the active region. A top surface of the packaging glass includes hierarchical nanostructures comprised of honeycombed nanowalls (HNWs) and nanorod (NR) structures extending from the HNWs.

  17. Hierarchical Multiple Markov Chain Model for Unsupervised Texture Segmentation

    Czech Academy of Sciences Publication Activity Database

    Scarpa, G.; Gaetano, R.; Haindl, Michal; Zerubia, J.

    2009-01-01

    Roč. 18, č. 8 (2009), s. 1830-1843 ISSN 1057-7149 R&D Projects: GA ČR GA102/08/0593 EU Projects: European Commission(XE) 507752 - MUSCLE Institutional research plan: CEZ:AV0Z10750506 Keywords : Classification * texture analysis * segmentation * hierarchical image models * Markov process Subject RIV: BD - Theory of Information Impact factor: 2.848, year: 2009 http://library.utia.cas.cz/separaty/2009/RO/haindl-hierarchical multiple markov chain model for unsupervised texture segmentation.pdf

  18. Loops in hierarchical channel networks

    Science.gov (United States)

    Katifori, Eleni; Magnasco, Marcelo

    2012-02-01

    Nature provides us with many examples of planar distribution and structural networks having dense sets of closed loops. An archetype of this form of network organization is the vasculature of dicotyledonous leaves, which showcases a hierarchically-nested architecture. Although a number of methods have been proposed to measure aspects of the structure of such networks, a robust metric to quantify their hierarchical organization is still lacking. We present an algorithmic framework that allows mapping loopy networks to binary trees, preserving in the connectivity of the trees the architecture of the original graph. We apply this framework to investigate computer generated and natural graphs extracted from digitized images of dicotyledonous leaves and animal vasculature. We calculate various metrics on the corresponding trees and discuss the relationship of these quantities to the architectural organization of the original graphs. This algorithmic framework decouples the geometric information from the metric topology (connectivity and edge weight) and it ultimately allows us to perform a quantitative statistical comparison between predictions of theoretical models and naturally occurring loopy graphs.

  19. Homogeneous group, research, institution

    Directory of Open Access Journals (Sweden)

    Francesca Natascia Vasta

    2014-09-01

    Full Text Available The work outlines the complex connection among empiric research, therapeutic programs and host institution. It is considered the current research state in Italy. Italian research field is analyzed and critic data are outlined: lack of results regarding both the therapeutic processes and the effectiveness of eating disorders group analytic treatment. The work investigates on an eating disorders homogeneous group, led into an eating disorder outpatient service. First we present the methodological steps the research is based on including the strong connection among theory and clinical tools. Secondly clinical tools are described and the results commented. Finally, our results suggest the necessity of validating some more specifical hypothesis: verifying the relationship between clinical improvement (sense of exclusion and painful emotions reduction and specific group therapeutic processes; verifying the relationship between depressive feelings, relapses and transition trough a more differentiated groupal field.Keywords: Homogeneous group; Eating disorders; Institutional field; Therapeutic outcome

  20. Hierarchical modeling of molecular energies using a deep neural network

    Science.gov (United States)

    Lubbers, Nicholas; Smith, Justin S.; Barros, Kipton

    2018-06-01

    We introduce the Hierarchically Interacting Particle Neural Network (HIP-NN) to model molecular properties from datasets of quantum calculations. Inspired by a many-body expansion, HIP-NN decomposes properties, such as energy, as a sum over hierarchical terms. These terms are generated from a neural network—a composition of many nonlinear transformations—acting on a representation of the molecule. HIP-NN achieves the state-of-the-art performance on a dataset of 131k ground state organic molecules and predicts energies with 0.26 kcal/mol mean absolute error. With minimal tuning, our model is also competitive on a dataset of molecular dynamics trajectories. In addition to enabling accurate energy predictions, the hierarchical structure of HIP-NN helps to identify regions of model uncertainty.

  1. Is it possible to homogenize resonant chiral metamaterials ?

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Menzel, Christoph; Rockstuhl, Carsten

    2010-01-01

    Homogenization of metamaterials is very important as it makes possible description in terms of effective parameters. In this contribution we consider the homogenization of chiral metamaterials. We show that for some metamaterials there is an optimal meta-atom size which depends on the coupling...

  2. A nontransferring dry adhesive with hierarchical polymer nanohairs.

    Science.gov (United States)

    Jeong, Hoon Eui; Lee, Jin-Kwan; Kim, Hong Nam; Moon, Sang Heup; Suh, Kahp Y

    2009-04-07

    We present a simple yet robust method for fabricating angled, hierarchically patterned high-aspect-ratio polymer nanohairs to generate directionally sensitive dry adhesives. The slanted polymeric nanostructures were molded from an etched polySi substrate containing slanted nanoholes. An angled etching technique was developed to fabricate slanted nanoholes with flat tips by inserting an etch-stop layer of silicon dioxide. This unique etching method was equipped with a Faraday cage system to control the ion-incident angles in the conventional plasma etching system. The polymeric nanohairs were fabricated with tailored leaning angles, sizes, tip shapes, and hierarchical structures. As a result of controlled leaning angle and bulged flat top of the nanohairs, the replicated, slanted nanohairs showed excellent directional adhesion, exhibiting strong shear attachment (approximately 26 N/cm(2) in maximum) in the angled direction and easy detachment (approximately 2.2 N/cm(2)) in the opposite direction, with a hysteresis value of approximately 10. In addition to single scale nanohairs, monolithic, micro-nanoscale combined hierarchical hairs were also fabricated by using a 2-step UV-assisted molding technique. These hierarchical nanoscale patterns maintained their adhesive force even on a rough surface (roughness <20 microm) because of an increase in the contact area by the enhanced height of hierarchy, whereas simple nanohairs lost their adhesion strength. To demonstrate the potential applications of the adhesive patch, the dry adhesive was used to transport a large-area glass (47.5 x 37.5 cm(2), second-generation TFT-LCD glass), which could replace the current electrostatic transport/holding system with further optimization.

  3. A nontransferring dry adhesive with hierarchical polymer nanohairs

    KAUST Repository

    Jeong, H. E.

    2009-03-20

    We present a simple yet robust method for fabricating angled, hierarchically patterned high-aspect-ratio polymer nanohairs to generate directionally sensitive dry adhesives. The slanted polymeric nanostructures were molded from an etched polySi substrate containing slanted nanoholes. An angled etching technique was developed to fabricate slanted nanoholes with flat tips by inserting an etch-stop layer of silicon dioxide. This unique etching method was equipped with a Faraday cage system to control the ion-incident angles in the conventional plasma etching system. The polymeric nanohairs were fabricated with tailored leaning angles, sizes, tip shapes, and hierarchical structures. As a result of controlled leaning angle and bulged flat top of the nanohairs, the replicated, slanted nanohairs showed excellent directional adhesion, exhibiting strong shear attachment (approximately 26 N/cm(2) in maximum) in the angled direction and easy detachment (approximately 2.2 N/cm(2)) in the opposite direction, with a hysteresis value of approximately 10. In addition to single scale nanohairs, monolithic, micro-nanoscale combined hierarchical hairs were also fabricated by using a 2-step UV-assisted molding technique. These hierarchical nanoscale patterns maintained their adhesive force even on a rough surface (roughness <20 microm) because of an increase in the contact area by the enhanced height of hierarchy, whereas simple nanohairs lost their adhesion strength. To demonstrate the potential applications of the adhesive patch, the dry adhesive was used to transport a large-area glass (47.5 x 37.5 cm(2), second-generation TFT-LCD glass), which could replace the current electrostatic transport/holding system with further optimization.

  4. Convex Clustering: An Attractive Alternative to Hierarchical Clustering

    Science.gov (United States)

    Chen, Gary K.; Chi, Eric C.; Ranola, John Michael O.; Lange, Kenneth

    2015-01-01

    The primary goal in cluster analysis is to discover natural groupings of objects. The field of cluster analysis is crowded with diverse methods that make special assumptions about data and address different scientific aims. Despite its shortcomings in accuracy, hierarchical clustering is the dominant clustering method in bioinformatics. Biologists find the trees constructed by hierarchical clustering visually appealing and in tune with their evolutionary perspective. Hierarchical clustering operates on multiple scales simultaneously. This is essential, for instance, in transcriptome data, where one may be interested in making qualitative inferences about how lower-order relationships like gene modules lead to higher-order relationships like pathways or biological processes. The recently developed method of convex clustering preserves the visual appeal of hierarchical clustering while ameliorating its propensity to make false inferences in the presence of outliers and noise. The solution paths generated by convex clustering reveal relationships between clusters that are hidden by static methods such as k-means clustering. The current paper derives and tests a novel proximal distance algorithm for minimizing the objective function of convex clustering. The algorithm separates parameters, accommodates missing data, and supports prior information on relationships. Our program CONVEXCLUSTER incorporating the algorithm is implemented on ATI and nVidia graphics processing units (GPUs) for maximal speed. Several biological examples illustrate the strengths of convex clustering and the ability of the proximal distance algorithm to handle high-dimensional problems. CONVEXCLUSTER can be freely downloaded from the UCLA Human Genetics web site at http://www.genetics.ucla.edu/software/ PMID:25965340

  5. Hierarchical structure of stock price fluctuations in financial markets

    International Nuclear Information System (INIS)

    Gao, Ya-Chun; Cai, Shi-Min; Wang, Bing-Hong

    2012-01-01

    The financial market and turbulence have been broadly compared on account of the same quantitative methods and several common stylized facts they share. In this paper, the She–Leveque (SL) hierarchy, proposed to explain the anomalous scaling exponents deviating from Kolmogorov monofractal scaling of the velocity fluctuation in fluid turbulence, is applied to study and quantify the hierarchical structure of stock price fluctuations in financial markets. We therefore observed certain interesting results: (i) the hierarchical structure related to multifractal scaling generally presents in all the stock price fluctuations we investigated. (ii) The quantitatively statistical parameters that describe SL hierarchy are different between developed financial markets and emerging ones, distinctively. (iii) For the high-frequency stock price fluctuation, the hierarchical structure varies with different time periods. All these results provide a novel analogy in turbulence and financial market dynamics and an insight to deeply understand multifractality in financial markets. (paper)

  6. Ways of looking ahead: hierarchical planning in language production.

    Science.gov (United States)

    Lee, Eun-Kyung; Brown-Schmidt, Sarah; Watson, Duane G

    2013-12-01

    It is generally assumed that language production proceeds incrementally, with chunks of linguistic structure planned ahead of speech. Extensive research has examined the scope of language production and suggests that the size of planned chunks varies across contexts (Ferreira & Swets, 2002; Wagner & Jescheniak, 2010). By contrast, relatively little is known about the structure of advance planning, specifically whether planning proceeds incrementally according to the surface structure of the utterance, or whether speakers plan according to the hierarchical relationships between utterance elements. In two experiments, we examine the structure and scope of lexical planning in language production using a picture description task. Analyses of speech onset times and word durations show that speakers engage in hierarchical planning such that structurally dependent lexical items are planned together and that hierarchical planning occurs for both direct and indirect dependencies. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Multiple simultaneous fault diagnosis via hierarchical and single artificial neural networks

    International Nuclear Information System (INIS)

    Eslamloueyan, R.; Shahrokhi, M.; Bozorgmehri, R.

    2003-01-01

    Process fault diagnosis involves interpreting the current status of the plant given sensor reading and process knowledge. There has been considerable work done in this area with a variety of approaches being proposed for process fault diagnosis. Neural networks have been used to solve process fault diagnosis problems in chemical process, as they are well suited for recognizing multi-dimensional nonlinear patterns. In this work, the use of Hierarchical Artificial Neural Networks in diagnosing the multi-faults of a chemical process are discussed and compared with that of Single Artificial Neural Networks. The lower efficiency of Hierarchical Artificial Neural Networks , in comparison to Single Artificial Neural Networks, in process fault diagnosis is elaborated and analyzed. Also, the concept of a multi-level selection switch is presented and developed to improve the performance of hierarchical artificial neural networks. Simulation results indicate that application of multi-level selection switch increase the performance of the hierarchical artificial neural networks considerably

  8. Hierarchical Li1.2Mn0.54Ni0.13Co0.13O2 hollow spherical as cathode material for Li-ion battery

    Science.gov (United States)

    Zhang, Yu; Zhu, Tianjiao; Lin, Liu; Yuan, Mengwei; Li, Huifeng; Sun, Genban; Ma, Shulan

    2017-11-01

    Lithium-rich manganese-based layered materials have been considered as the most promising cathode materials for future high-energy-density lithium-ion batteries. However, a great loss of irreversible capacity at the initial cycle, poor cycle stability, and rate performance severely restrict its application. Herein, we develop a new strategy to synthesize hierarchical hollow Li1.2Mn0.54Ni0.13Co0.13O2 microspheres using sucrose and cetyltrimethylammonium bromide as a soft template combined with hydrothermal assisted homogeneous precipitation method. The hollow microspheres are assembled by the primary particles with the size of 50 nm. As a result, the as-prepared material exhibits high reversible capacity, good cycling stability, and excellent rate property. It delivers a high initial discharge capacity of 305.9 mAh g-1 at 28 mA g-1 with coulombic efficiency of 80%. Even at high current density of 560 mA g-1, the sample also shows a stable discharge capacity of 215 mAh g-1. The enhanced electrochemical properties are attributed to the stable hierarchical hollow sphere structure and the appropriate contact area between electrode and electrolyte, thus effectively improve the lithium-ion intercalation and deintercalation kinetics. [Figure not available: see fulltext.

  9. An Improved Hierarchical Genetic Algorithm for Sheet Cutting Scheduling with Process Constraints

    Directory of Open Access Journals (Sweden)

    Yunqing Rao

    2013-01-01

    Full Text Available For the first time, an improved hierarchical genetic algorithm for sheet cutting problem which involves n cutting patterns for m non-identical parallel machines with process constraints has been proposed in the integrated cutting stock model. The objective of the cutting scheduling problem is minimizing the weighted completed time. A mathematical model for this problem is presented, an improved hierarchical genetic algorithm (ant colony—hierarchical genetic algorithm is developed for better solution, and a hierarchical coding method is used based on the characteristics of the problem. Furthermore, to speed up convergence rates and resolve local convergence issues, a kind of adaptive crossover probability and mutation probability is used in this algorithm. The computational result and comparison prove that the presented approach is quite effective for the considered problem.

  10. An improved hierarchical genetic algorithm for sheet cutting scheduling with process constraints.

    Science.gov (United States)

    Rao, Yunqing; Qi, Dezhong; Li, Jinling

    2013-01-01

    For the first time, an improved hierarchical genetic algorithm for sheet cutting problem which involves n cutting patterns for m non-identical parallel machines with process constraints has been proposed in the integrated cutting stock model. The objective of the cutting scheduling problem is minimizing the weighted completed time. A mathematical model for this problem is presented, an improved hierarchical genetic algorithm (ant colony--hierarchical genetic algorithm) is developed for better solution, and a hierarchical coding method is used based on the characteristics of the problem. Furthermore, to speed up convergence rates and resolve local convergence issues, a kind of adaptive crossover probability and mutation probability is used in this algorithm. The computational result and comparison prove that the presented approach is quite effective for the considered problem.

  11. Urban pattern: Layout design by hierarchical domain splitting

    KAUST Repository

    Yang, Yongliang; Wang, Jun; Vouga, Etienne; Wonka, Peter

    2013-01-01

    We present a framework for generating street networks and parcel layouts. Our goal is the generation of high-quality layouts that can be used for urban planning and virtual environments. We propose a solution based on hierarchical domain splitting using two splitting types: streamline-based splitting, which splits a region along one or multiple streamlines of a cross field, and template-based splitting, which warps pre-designed templates to a region and uses the interior geometry of the template as the splitting lines. We combine these two splitting approaches into a hierarchical framework, providing automatic and interactive tools to explore the design space.

  12. Urban pattern: Layout design by hierarchical domain splitting

    KAUST Repository

    Yang, Yongliang

    2013-11-06

    We present a framework for generating street networks and parcel layouts. Our goal is the generation of high-quality layouts that can be used for urban planning and virtual environments. We propose a solution based on hierarchical domain splitting using two splitting types: streamline-based splitting, which splits a region along one or multiple streamlines of a cross field, and template-based splitting, which warps pre-designed templates to a region and uses the interior geometry of the template as the splitting lines. We combine these two splitting approaches into a hierarchical framework, providing automatic and interactive tools to explore the design space.

  13. Comparing hierarchical models via the marginalized deviance information criterion.

    Science.gov (United States)

    Quintero, Adrian; Lesaffre, Emmanuel

    2018-07-20

    Hierarchical models are extensively used in pharmacokinetics and longitudinal studies. When the estimation is performed from a Bayesian approach, model comparison is often based on the deviance information criterion (DIC). In hierarchical models with latent variables, there are several versions of this statistic: the conditional DIC (cDIC) that incorporates the latent variables in the focus of the analysis and the marginalized DIC (mDIC) that integrates them out. Regardless of the asymptotic and coherency difficulties of cDIC, this alternative is usually used in Markov chain Monte Carlo (MCMC) methods for hierarchical models because of practical convenience. The mDIC criterion is more appropriate in most cases but requires integration of the likelihood, which is computationally demanding and not implemented in Bayesian software. Therefore, we consider a method to compute mDIC by generating replicate samples of the latent variables that need to be integrated out. This alternative can be easily conducted from the MCMC output of Bayesian packages and is widely applicable to hierarchical models in general. Additionally, we propose some approximations in order to reduce the computational complexity for large-sample situations. The method is illustrated with simulated data sets and 2 medical studies, evidencing that cDIC may be misleading whilst mDIC appears pertinent. Copyright © 2018 John Wiley & Sons, Ltd.

  14. Moisture condensation behavior of hierarchically carbon nanotube-grafted carbon nanofibers.

    Science.gov (United States)

    Park, Kyu-Min; Lee, Byoung-Sun; Youk, Ji Ho; Lee, Jinyong; Yu, Woong-Reol

    2013-11-13

    Hierarchical micro/nanosurfaces with nanoscale roughness on microscale uneven substrates have been the subject of much recent research interest because of phenomena such as superhydrophobicity. However, an understanding of the effect of the difference in the scale of the hierarchical entities, i.e., nanoscale roughness on microscale uneven substrates as opposed to nanoscale roughness on (a larger) nanoscale uneven surface, is still lacking. In this study, we investigated the effect of the difference in scale between the nano- and microscale features. We fabricated carbon nanotube-grafted carbon nanofibers (CNFs) by dispersing a catalyst precursor in poly (acrylonitrile) (PAN) solution, electrospinning the PAN/catalyst precursor solution, carbonization of electrospun PAN nanofibers, and direct growth of carbon nanotubes (CNTs) on the CNFs. We investigated the relationships between the catalyst concentrations, the size of catalyst nanoparticles on CNFs, and the sizes of CNFs and CNTs. Interestingly, the hydrophobic behavior of micro/nano and nano/nano hierarchical surfaces with water droplets was similar; however a significant difference in the water condensation behavior was observed. Water condensed into smaller droplets on the nano/nano hierarchical surface, causing it to dry much faster.

  15. The hierarchical cobalt oxide-porous carbons composites and their high performance as an anode for lithium ion batteries enhanced by the excellent synergistic effect

    International Nuclear Information System (INIS)

    Zhao, Shuping; Liu, Wei; Liu, Shuang; Zhang, Yuan; Wang, Huanlei; Chen, Shougang

    2017-01-01

    Highlights: • The CoO/PBCs composites with unique hierarchical architecture by utilizing porous biocarbons derived from kapok fibers (KFs) have been successfully synthesized. • The unique structure is aggregated by CoO rods anchored on the surface or inside the porous carbons. • The CoO/PBCs composites exhibit excellent electrochemical performances. - Abstract: The designed metal oxide-carbon composites are always considered as a potential candidate for high-performance electrode materials. In this work, we fabricated the CoO rods-porous carbon composites with a unique hierarchical architecture by utilizing porous biocarbons derived from kapok fibers (KFs). As the composites of CoO nanocrystals with the mean size of 10 nm and graphene-like carbon sheets, the CoO rods are homogeneously anchored on or inside the porous carbons, thus achieving a 3D hierarchical porous structure. When tested as anode materials for lithium-ion batteries, the as-obtained composites exhibit the high lithium storage of 1057 mAh g"−"1. More importantly, the CoO rods/porous biocarbons composites display a superior long-term stable reversible capacity of about 550 mAh g"−"1 at the high current density of 5 A g"−"1 after 600 cycles. The superior electrochemical performance of the obtained composites has been attributed to the synergistic effect between CoO nanoparticles and porous biocarbons, which makes the composites favorable for fast electronic and ionic transfer, and superior stable structure. Therefore, we believe that the designed preparation of metal oxide architectures in low-cost and renewable porous biocarbons will be a valuable direction for exploring advanced electrode materials.

  16. Matrix-dependent multigrid-homogenization for diffusion problems

    Energy Technology Data Exchange (ETDEWEB)

    Knapek, S. [Institut fuer Informatik tu Muenchen (Germany)

    1996-12-31

    We present a method to approximately determine the effective diffusion coefficient on the coarse scale level of problems with strongly varying or discontinuous diffusion coefficients. It is based on techniques used also in multigrid, like Dendy`s matrix-dependent prolongations and the construction of coarse grid operators by means of the Galerkin approximation. In numerical experiments, we compare our multigrid-homogenization method with homogenization, renormalization and averaging approaches.

  17. Hierarchical scaffolds enhance osteogenic differentiation of human Wharton’s jelly derived stem cells

    International Nuclear Information System (INIS)

    Canha-Gouveia, Analuce; Rita Costa-Pinto, Ana; Martins, Albino M; Sousa, Rui A; Reis, Rui L; Neves, Nuno M; Silva, Nuno A; Salgado, António J; Sousa, Nuno; Faria, Susana

    2015-01-01

    Hierarchical structures, constituted by polymeric nano and microfibers, have been considered promising scaffolds for tissue engineering strategies, mainly because they mimic, in some way, the complexity and nanoscale detail observed in real organs. The chondrogenic potential of these scaffolds has been previously demonstrated, but their osteogenic potential is not yet corroborated. In order to assess if a hierarchical structure, with nanoscale details incorporated, is an improved scaffold for bone tissue regeneration, we evaluate cell adhesion, proliferation, and osteogenic differentiation of human Wharton’s jelly derived stem cells (hWJSCs), seeded into hierarchical fibrous scaffolds. Biological data corroborates that hierarchical fibrous scaffolds show an enhanced cell entrapment when compared to rapid prototyped scaffolds without nanofibers. Furthermore, upregulation of bone specific genes and calcium phosphate deposition confirms the successful osteogenic differentiation of hWJSCs on these scaffolds. These results support our hypothesis that a scaffold with hierarchical structure, in conjugation with hWJSCs, represents a possible feasible strategy for bone tissue engineering applications. (paper)

  18. Novel hierarchical microparticles super-assembled from nanoparticles with the induction of casein micelles

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Xiaopeng, E-mail: xpxiong@xmu.edu.cn; Duan, Jiangjiang; Wang, Yong; Yu, Zhaoju [Xiamen University, Department of Materials Science and Engineering, College of Materials (China)

    2013-08-15

    We have demonstrated a solution-based synthesis of novel waxberry-like hierarchical ZnO microparticles in the presence casein micelles under mild conditions. The microstructures of the sub-micrometer-sized hierarchical microparticles were characterized, and the synthesis conditions were optimized. The formation mechanism of the hierarchical microparticle was analyzed through control experiments. The hierarchical ZnO microparticles are found to be super-assemblies of 30-70 nm ZnO nanoparticles, which are thought to be based on casein micelle induction followed by Ostwald ripening. In the same manner, copper-based hierarchical microparticles with a similar morphology have also been successfully synthesized. By controlling the synthetic time or temperature, solid or hollow microparticles can be fabricated. The narrowly distributed ZnO microparticles have a high specific surface area, exhibiting great potential application in fields such as photocatalytic and energy conversion. Our findings may meanwhile open a new bottom-up strategy in order to construct structurally sophisticated nanomaterials.

  19. Novel hierarchical microparticles super-assembled from nanoparticles with the induction of casein micelles

    Science.gov (United States)

    Xiong, Xiaopeng; Duan, Jiangjiang; Wang, Yong; Yu, Zhaoju

    2013-08-01

    We have demonstrated a solution-based synthesis of novel waxberry-like hierarchical ZnO microparticles in the presence casein micelles under mild conditions. The microstructures of the sub-micrometer-sized hierarchical microparticles were characterized, and the synthesis conditions were optimized. The formation mechanism of the hierarchical microparticle was analyzed through control experiments. The hierarchical ZnO microparticles are found to be super-assemblies of 30-70 nm ZnO nanoparticles, which are thought to be based on casein micelle induction followed by Ostwald ripening. In the same manner, copper-based hierarchical microparticles with a similar morphology have also been successfully synthesized. By controlling the synthetic time or temperature, solid or hollow microparticles can be fabricated. The narrowly distributed ZnO microparticles have a high specific surface area, exhibiting great potential application in fields such as photocatalytic and energy conversion. Our findings may meanwhile open a new bottom-up strategy in order to construct structurally sophisticated nanomaterials.

  20. Novel hierarchical microparticles super-assembled from nanoparticles with the induction of casein micelles

    International Nuclear Information System (INIS)

    Xiong, Xiaopeng; Duan, Jiangjiang; Wang, Yong; Yu, Zhaoju

    2013-01-01

    We have demonstrated a solution-based synthesis of novel waxberry-like hierarchical ZnO microparticles in the presence casein micelles under mild conditions. The microstructures of the sub-micrometer-sized hierarchical microparticles were characterized, and the synthesis conditions were optimized. The formation mechanism of the hierarchical microparticle was analyzed through control experiments. The hierarchical ZnO microparticles are found to be super-assemblies of 30–70 nm ZnO nanoparticles, which are thought to be based on casein micelle induction followed by Ostwald ripening. In the same manner, copper-based hierarchical microparticles with a similar morphology have also been successfully synthesized. By controlling the synthetic time or temperature, solid or hollow microparticles can be fabricated. The narrowly distributed ZnO microparticles have a high specific surface area, exhibiting great potential application in fields such as photocatalytic and energy conversion. Our findings may meanwhile open a new bottom-up strategy in order to construct structurally sophisticated nanomaterials

  1. The Revised Hierarchical Model: A critical review and assessment

    OpenAIRE

    Kroll, Judith F.; van Hell, Janet G.; Tokowicz, Natasha; Green, David W.

    2010-01-01

    Brysbaert and Duyck (2009) suggest that it is time to abandon the Revised Hierarchical Model (Kroll and Stewart, 1994) in favor of connectionist models such as BIA+ (Dijkstra and Van Heuven, 2002) that more accurately account for the recent evidence on nonselective access in bilingual word recognition. In this brief response, we first review the history of the Revised Hierarchical Model (RHM), consider the set of issues that it was proposed to address, and then evaluate the evidence that supp...

  2. Cluster Based Hierarchical Routing Protocol for Wireless Sensor Network

    OpenAIRE

    Rashed, Md. Golam; Kabir, M. Hasnat; Rahim, Muhammad Sajjadur; Ullah, Shaikh Enayet

    2012-01-01

    The efficient use of energy source in a sensor node is most desirable criteria for prolong the life time of wireless sensor network. In this paper, we propose a two layer hierarchical routing protocol called Cluster Based Hierarchical Routing Protocol (CBHRP). We introduce a new concept called head-set, consists of one active cluster head and some other associate cluster heads within a cluster. The head-set members are responsible for control and management of the network. Results show that t...

  3. Hierarchical structure in the distribution of galaxies

    International Nuclear Information System (INIS)

    Schulman, L.S.; Seiden, P.E.; Technion - Israel Institute of Technology, Haifa; IBM Thomas J. Watson Research Center, Yorktown Heights, NY)

    1986-01-01

    The distribution of galaxies has a hierarchical structure with power-law correlations. This is usually thought to arise from gravity alone acting on an originally uniform distributioon. If, however, the original process of galaxy formation occurs through the stimulated birth of one galaxy due to a nearby recently formed galaxy, and if this process occurs near its percolation threshold, then a hierarchical structure with power-law correlations arises at the time of galaxy formation. If subsequent gravitational evolution within an expanding cosmology is such as to retain power-law correlations, the initial r exp -1 dropoff can steepen to the observed r exp -1.8. The distribution of galaxies obtained by this process produces clustering and voids, as observed. 23 references

  4. Subject-Verb Agreement in Children and Adults: Serial or Hierarchical Processing?

    Science.gov (United States)

    Negro, Isabelle; Chanquoy, Lucile; Fayol, Michel; Louis-Sidney, Maryse

    2005-01-01

    Two processes, serial and hierarchical, are generally opposed to account for grammatical encoding in language production. In a developmental perspective, the question addressed here is whether the subject-verb agreement during writing is computed serially, once the words are linearly ordered in the sentence, or hierarchically, as soon as the…

  5. Nonlinear vibration of a traveling belt with non-homogeneous boundaries

    Science.gov (United States)

    Ding, Hu; Lim, C. W.; Chen, Li-Qun

    2018-06-01

    Free and forced nonlinear vibrations of a traveling belt with non-homogeneous boundary conditions are studied. The axially moving materials in operation are always externally excited and produce strong vibrations. The moving materials with the homogeneous boundary condition are usually considered. In this paper, the non-homogeneous boundaries are introduced by the support wheels. Equilibrium deformation of the belt is produced by the non-homogeneous boundaries. In order to solve the equilibrium deformation, the differential and integral quadrature methods (DIQMs) are utilized to develop an iterative scheme. The influence of the equilibrium deformation on free and forced nonlinear vibrations of the belt is explored. The DIQMs are applied to solve the natural frequencies and forced resonance responses of transverse vibration around the equilibrium deformation. The Galerkin truncation method (GTM) is utilized to confirm the DIQMs' results. The numerical results demonstrate that the non-homogeneous boundary conditions cause the transverse vibration to deviate from the straight equilibrium, increase the natural frequencies, and lead to coexistence of square nonlinear terms and cubic nonlinear terms. Moreover, the influence of non-homogeneous boundaries can be exacerbated by the axial speed. Therefore, non-homogeneous boundary conditions of axially moving materials especially should be taken into account.

  6. Homogenization of Stokes and Navier-Stokes equations

    International Nuclear Information System (INIS)

    Allaire, G.

    1990-04-01

    This thesis is devoted to homogenization of Stokes and Navier-Stokes equations with a Dirichlet boundary condition in a domain containing many tiny obstacles. Tipycally those obstacles are distributed at the modes of a periodic lattice with same small period in each axe's direction, and their size is always asymptotically smaller than the lattice's step. With the help of the energy method, and thanks to a suitable pressure's extension, we prove the convergence of the homogenization process when the lattice's step tends to zero (and thus the number of obstacles tends to infinity). For a so-called critical size of the obstacles, the homogenized problem turns out to be a Brinkman's law (i.e. Stokes or Navier-Stokes equation plus a linear zero-order term for the velocity in the momentum equation). For obstacles which have a size smaller than the critical one, the limit problem reduces to the initial Stokes or Navier-Stokes equations, while for larger sizes the homogenized problem a Darcy's law. Furthermore, those results have been extended to the case of obstacles included in a hyperplane, and we establish a simple model of fluid flows through grids, which is based on a special form of Brinkman's law [fr

  7. A hierarchical spatiotemporal analog forecasting model for count data.

    Science.gov (United States)

    McDermott, Patrick L; Wikle, Christopher K; Millspaugh, Joshua

    2018-01-01

    Analog forecasting is a mechanism-free nonlinear method that forecasts a system forward in time by examining how past states deemed similar to the current state moved forward. Previous applications of analog forecasting has been successful at producing robust forecasts for a variety of ecological and physical processes, but it has typically been presented in an empirical or heuristic procedure, rather than as a formal statistical model. The methodology presented here extends the model-based analog method of McDermott and Wikle (Environmetrics, 27, 2016, 70) by placing analog forecasting within a fully hierarchical statistical framework that can accommodate count observations. Using a Bayesian approach, the hierarchical analog model is able to quantify rigorously the uncertainty associated with forecasts. Forecasting waterfowl settling patterns in the northwestern United States and Canada is conducted by applying the hierarchical analog model to a breeding population survey dataset. Sea surface temperature (SST) in the Pacific Ocean is used to help identify potential analogs for the waterfowl settling patterns.

  8. Detecting the overlapping and hierarchical community structure in complex networks

    International Nuclear Information System (INIS)

    Lancichinetti, Andrea; Fortunato, Santo; Kertesz, Janos

    2009-01-01

    Many networks in nature, society and technology are characterized by a mesoscopic level of organization, with groups of nodes forming tightly connected units, called communities or modules, that are only weakly linked to each other. Uncovering this community structure is one of the most important problems in the field of complex networks. Networks often show a hierarchical organization, with communities embedded within other communities; moreover, nodes can be shared between different communities. Here, we present the first algorithm that finds both overlapping communities and the hierarchical structure. The method is based on the local optimization of a fitness function. Community structure is revealed by peaks in the fitness histogram. The resolution can be tuned by a parameter enabling different hierarchical levels of organization to be investigated. Tests on real and artificial networks give excellent results.

  9. New insight in magnetic saturation behavior of nickel hierarchical structures

    Science.gov (United States)

    Ma, Ji; Zhang, Jianxing; Liu, Chunting; Chen, Kezheng

    2017-09-01

    It is unanimously accepted that non-ferromagnetic inclusions in a ferromagnetic system will lower down total saturation magnetization in unit of emu/g. In this study, ;lattice strain; was found to be another key factor to have critical impact on magnetic saturation behavior of the system. The lattice strain determined assembling patterns of primary nanoparticles in hierarchical structures and was intimately related with the formation process of these architectures. Therefore, flower-necklace-like and cauliflower-like nickel hierarchical structures were used as prototype systems to evidence the relationship between assembling patterns of primary nanoparticles and magnetic saturation behaviors of these architectures. It was found that the influence of lattice strain on saturation magnetization outperformed that of non-ferromagnetic inclusions in these hierarchical structures. This will enable new insights into fundamental understanding of related magnetic effects.

  10. Enhanced lithium storage performances of hierarchical hollow MoS₂ nanoparticles assembled from nanosheets.

    Science.gov (United States)

    Wang, Meng; Li, Guangda; Xu, Huayun; Qian, Yitai; Yang, Jian

    2013-02-01

    MoS(2), because of its layered structure and high theoretical capacity, has been regarded as a potential candidate for electrode materials in lithium secondary batteries. But it suffers from the poor cycling stability and low rate capability. Here, hierarchical hollow nanoparticles of MoS(2) nanosheets with an increased interlayer distance are synthesized by a simple solvothermal reaction at a low temperature. The formation of hierarchical hollow nanoparticles is based on the intermediate, K(2)NaMoO(3)F(3), as a self-sacrificed template. These hollow nanoparticles exhibit a reversible capacity of 902 mA h g(-1) at 100 mA g(-1) after 80 cycles, much higher than the solid counterpart. At a current density of 1000 mA g(-1), the reversible capacity of the hierarchical hollow nanoparticles could be still maintained at 780 mAh g(-1). The enhanced lithium storage performances of the hierarchical hollow nanoparticles in reversible capacities, cycling stability and rate performances can be attributed to their hierarchical surface, hollow structure feature and increased layer distance of S-Mo-S. Hierarchical hollow nanoparticles as an ensemble of these features, could be applied to other electrode materials for the superior electrochemical performance.

  11. Runtime Concepts of Hierarchical Software Components

    Czech Academy of Sciences Publication Activity Database

    Bureš, Tomáš; Hnětynka, P.; Plášil, František

    2007-01-01

    Roč. 8, special (2007), s. 454-463 ISSN 1525-9293 R&D Projects: GA AV ČR 1ET400300504 Institutional research plan: CEZ:AV0Z10300504 Keywords : component-based development * hierarchical components * connectors * controlers * runtime environment Subject RIV: JC - Computer Hardware ; Software

  12. Hierarchical production planning for consumer goods

    NARCIS (Netherlands)

    Kok, de A.G.

    1990-01-01

    Abstract In this paper the mathematical logic behind a hierarchical planning procedure is discussed. The planning procedure is used to derive production volumes of consumer products. The essence of the planning procedure is that first a commitment is made concerning the production volume for a

  13. Hierarchically Organized Behavior and Its Neural Foundations: A Reinforcement Learning Perspective

    Science.gov (United States)

    Botvinick, Matthew M.; Niv, Yael; Barto, Andrew C.

    2009-01-01

    Research on human and animal behavior has long emphasized its hierarchical structure--the divisibility of ongoing behavior into discrete tasks, which are comprised of subtask sequences, which in turn are built of simple actions. The hierarchical structure of behavior has also been of enduring interest within neuroscience, where it has been widely…

  14. Homogenized thermal conduction model for particulate foods

    OpenAIRE

    Chinesta , Francisco; Torres , Rafael; Ramón , Antonio; Rodrigo , Mari Carmen; Rodrigo , Miguel

    2002-01-01

    International audience; This paper deals with the definition of an equivalent thermal conductivity for particulate foods. An homogenized thermal model is used to asses the effect of particulate spatial distribution and differences in thermal conductivities. We prove that the spatial average of the conductivity can be used in an homogenized heat transfer model if the conductivity differences among the food components are not very large, usually the highest conductivity ratio between the foods ...

  15. Hierarchical zeolites from class F coal fly ash

    Science.gov (United States)

    Chitta, Pallavi

    Fly ash, a coal combustion byproduct is classified as types class C and class F. Class C fly ash is traditionally recycled for concrete applications and Class F fly ash often disposed in landfills. Class F poses an environmental hazard due to disposal and leaching of heavy metals into ground water and is important to be recycled in order to mitigate the environmental challenges. A major recycling option is to reuse the fly ash as a low-cost raw material for the production of crystalline zeolites, which serve as catalysts, detergents and adsorbents in the chemical industry. Most of the prior literature of fly ash conversion to zeolites does not focus on creating high zeolite surface area zeolites specifically with hierarchical pore structure, which are very important properties in developing a heterogeneous catalyst for catalysis applications. This research work aids in the development of an economical process for the synthesis of high surface area hierarchical zeolites from class F coal fly ash. In this work, synthesis of zeolites from fly ash using classic hydrothermal treatment approach and fusion pretreatment approach were examined. The fusion pretreatment method led to higher extent of dissolution of silica from quartz and mullite phases, which in turn led to higher surface area and pore size of the zeolite. A qualitative kinetic model developed here attributes the difference in silica content to Si/Al ratio of the beginning fraction of fly ash. At near ambient crystallization temperatures and longer crystallization times, the zeolite formed is a hierarchical faujasite with high surface area of at least 360 m2/g. This work enables the large scale recycling of class F coal fly ash to produce zeolites and mitigate environmental concerns. Design of experiments was used to predict surface area and pore sizes of zeolites - thus obviating the need for intense experimentation. The hierarchical zeolite catalyst supports tested for CO2 conversion, yielded hydrocarbons

  16. Stress generation and hierarchical fracturing in reactive systems

    Science.gov (United States)

    Jamtveit, B.; Iyer, K.; Royne, A.; Malthe-Sorenssen, A.; Mathiesen, J.; Feder, J.

    2007-12-01

    Hierarchical fracture patterns are the result of a slowly driven fracturing process that successively divides the rocks into smaller domains. In quasi-2D systems, such fracture patterns are characterized by four sided domains, and T-junctions where new fractures stop at right angles to pre-existing fractures. We describe fracturing of mm to dm thick enstatite layers in a dunite matrix from the Leka ophiolite complex in Norway. The fracturing process is driven by expansion of the dunite matrix during serpentinization. The cumulative distributions of fracture lengths show a scaling behavior that lies between a log - normal and power law (fractal) distribution. This is consistent with a simple fragmentation model in which domains are divided according to a 'top hat' distribution of new fracture positions within unfractured domains. Reaction-assisted hierarchical fracturing is also likely to be responsible for other (3-D) structures commonly observed in serpentinized ultramafic rocks, including the mesh-textures observed in individual olivine grains, and the high abundance of rectangular domains at a wide range of scales. Spectacular examples of 3-D hierarchical fracture patterns also form during the weathering of basaltic intrusions (dolerites). Incipient chemical weathering of dolerites in the Karoo Basin in South Africa occurs around water- filled fractures, originally produced by thermal contraction or by externally imposed stresses. This chemical weathering causes local expansion of the rock matrix and generates elastic stresses. On a mm to cm scale, these stresses lead to mechanical layer-by-layer spalling, producing the characteristic spheroidal weathering patterns. However, our field observations and computer simulations demonstrate that in confined environments, the spalling process alone is unable to relieve the elastic stresses. In such cases, chemical weathering drives a much larger scale hierarchical fracturing process in which fresh dolerite undergoes a

  17. Effect of Job Autonomy Upon Organizational Commitment of Employees at Different Hierarchical Level

    Directory of Open Access Journals (Sweden)

    Shalini Sisodia

    2013-10-01

    Full Text Available The main aim of the present study was to examine the effect of job autonomy upon organizational commitment of employees at different hierarchical level. A study was made on randomly selected 100 male employees who work in different organizations in Agra, who were administered Organizational Commitment Scale (by Allen & Meyer, 1990 and Job Autonomy Scale (by Das, Arora, & Singhal, 2000. On the basis of median of the job autonomy scores, the sample was divided into two groups (1 high job autonomy group and (2 low job autonomy group and on the basis of hierarchical level, the employees were divided into two groups (1 50 high hierarchical level employees’ including managers, etc. and (2 50 low hierarchical level employees, e.g. clerical staff, etc. The 2x2 factorial design was formed for this purpose and four groups of employees were formed (1 high hierarchy, high autonomy group (2 high hierarchy, low autonomy group(3 low hierarchy, high autonomy group and (4 low hierarchy, low autonomy group. A two-way analysis of variance was employed to compare the level of organizational commitment of each of the four groups. There is a significant difference found between job commitment of employees with high and low job autonomy (F = 4.670, p < .05. There is a significant difference found between job commitment of employees of high hierarchical group and those of low hierarchical group (F = 40.691, p < .01 and significant interaction effect found between job autonomy and hierarchical level upon organizational commitment of employees (F = 6.114, p < .05.

  18. A novel hierarchical ZnO disordered/ordered bilayer nanostructured film for dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yamin, E-mail: yaminfengccnuphy@outlook.com; Wu, Fei; Jiang, Jian; Zhu, Jianhui; Fodjouong, Ghislain Joel; Meng, Gaoxiang; Xing, Yanmin; Wang, Wenwu; Huang, Xintang, E-mail: xthuang@phy.ccnu.edu.cn

    2013-12-25

    Graphical abstract: A novel hierarchical disordered/ordered bilayer ZnO nanostructured film in the length of 18 μm have been successfully synthesized on the FTO substrate; the hierarchical ZnO nanostructured film electrodes applied in DSSCs exhibit photoelectric conversion efficiency as high as 5.16%. Highlights: •A novel hierarchical ZnO structure film was fabricated on a FTO substrate. •Hierarchical ZnO film is applied as the electrodes for dye sensitized solar cells. •The film possess high specific surface area and fast electron transport effect. •The light-scattering effect of the hierarchical film is pronounced. •The energy conversion efficiency of hierarchical ZnO electrode reaches to 5.16%. -- Abstract: A novel hierarchical ZnO nanostructured film is synthesized via a chemical bath deposition (CBD) method followed by a treatment of thermal decomposition onto a fluorine-doped tin oxide (FTO) substrate. This hierarchical film is composed of disordered ZnO nanorods (NRs) (top layer) and ordered ZnO nanowires (NWs) (bottom layer). The products possess the following features such as high specific surface area, fast electron transport, and pronounced light-scattering effect, which are quite suitable for dye sensitized solar cells (DSSCs) applications. A light-to-electricity conversion efficiency of 5.16% is achieved when the hierarchical ZnO nanostructured film is used as the photoanode under 100 mW cm{sup −2} illumination. This efficiency is found to be much higher than that of the DSSCs with pure ordered ZnO NWs (1.45%) and disordered ZnO NRs (3.31%) photoanodes.

  19. A novel hierarchical ZnO disordered/ordered bilayer nanostructured film for dye sensitized solar cells

    International Nuclear Information System (INIS)

    Feng, Yamin; Wu, Fei; Jiang, Jian; Zhu, Jianhui; Fodjouong, Ghislain Joel; Meng, Gaoxiang; Xing, Yanmin; Wang, Wenwu; Huang, Xintang

    2013-01-01

    Graphical abstract: A novel hierarchical disordered/ordered bilayer ZnO nanostructured film in the length of 18 μm have been successfully synthesized on the FTO substrate; the hierarchical ZnO nanostructured film electrodes applied in DSSCs exhibit photoelectric conversion efficiency as high as 5.16%. Highlights: •A novel hierarchical ZnO structure film was fabricated on a FTO substrate. •Hierarchical ZnO film is applied as the electrodes for dye sensitized solar cells. •The film possess high specific surface area and fast electron transport effect. •The light-scattering effect of the hierarchical film is pronounced. •The energy conversion efficiency of hierarchical ZnO electrode reaches to 5.16%. -- Abstract: A novel hierarchical ZnO nanostructured film is synthesized via a chemical bath deposition (CBD) method followed by a treatment of thermal decomposition onto a fluorine-doped tin oxide (FTO) substrate. This hierarchical film is composed of disordered ZnO nanorods (NRs) (top layer) and ordered ZnO nanowires (NWs) (bottom layer). The products possess the following features such as high specific surface area, fast electron transport, and pronounced light-scattering effect, which are quite suitable for dye sensitized solar cells (DSSCs) applications. A light-to-electricity conversion efficiency of 5.16% is achieved when the hierarchical ZnO nanostructured film is used as the photoanode under 100 mW cm −2 illumination. This efficiency is found to be much higher than that of the DSSCs with pure ordered ZnO NWs (1.45%) and disordered ZnO NRs (3.31%) photoanodes

  20. Hierarchical unilamellar vesicles of controlled compositional heterogeneity.

    Directory of Open Access Journals (Sweden)

    Maik Hadorn

    Full Text Available Eukaryotic life contains hierarchical vesicular architectures (i.e. organelles that are crucial for material production and trafficking, information storage and access, as well as energy production. In order to perform specific tasks, these compartments differ among each other in their membrane composition and their internal cargo and also differ from the cell membrane and the cytosol. Man-made structures that reproduce this nested architecture not only offer a deeper understanding of the functionalities and evolution of organelle-bearing eukaryotic life but also allow the engineering of novel biomimetic technologies. Here, we show the newly developed vesicle-in-water-in-oil emulsion transfer preparation technique to result in giant unilamellar vesicles internally compartmentalized by unilamellar vesicles of different membrane composition and internal cargo, i.e. hierarchical unilamellar vesicles of controlled compositional heterogeneity. The compartmentalized giant unilamellar vesicles were subsequently isolated by a separation step exploiting the heterogeneity of the membrane composition and the encapsulated cargo. Due to the controlled, efficient, and technically straightforward character of the new preparation technique, this study allows the hierarchical fabrication of compartmentalized giant unilamellar vesicles of controlled compositional heterogeneity and will ease the development of eukaryotic cell mimics that resemble their natural templates as well as the fabrication of novel multi-agent drug delivery systems for combination therapies and complex artificial microreactors.

  1. Anisotropic and Hierarchical Porosity in Multifunctional Ceramics

    Science.gov (United States)

    Lichtner, Aaron Zev

    The performance of multifunctional porous ceramics is often hindered by the seemingly contradictory effects of porosity on both mechanical and non-structural properties and yet a sufficient body of knowledge linking microstructure to these properties does not exist. Using a combination of tailored anisotropic and hierarchical materials, these disparate effects may be reconciled. In this project, a systematic investigation of the processing, characterization and properties of anisotropic and isotropic hierarchically porous ceramics was conducted. The system chosen was a composite ceramic intended as the cathode for a solid oxide fuel cell (SOFC). Comprehensive processing investigations led to the development of approaches to make hierarchical, anisotropic porous microstructures using directional freeze-casting of well dispersed slurries. The effect of all the important processing parameters was investigated. This resulted in an ability to tailor and control the important microstructural features including the scale of the microstructure, the macropore size and total porosity. Comparable isotropic porous ceramics were also processed using fugitive pore formers. A suite of characterization techniques including x-ray tomography and 3-D sectional scanning electron micrographs (FIB-SEM) was used to characterize and quantify the green and partially sintered microstructures. The effect of sintering temperature on the microstructure was quantified and discrete element simulations (DEM) were used to explain the experimental observations. Finally, the comprehensive mechanical properties, at room temperature, were investigated, experimentally and using DEM, for the different microstructures.

  2. Growth Mechanism of Pumpkin-Shaped Vaterite Hierarchical Structures

    Science.gov (United States)

    Ma, Guobin; Xu, Yifei; Wang, Mu

    2015-03-01

    CaCO3-based biominerals possess sophisticated hierarchical structures and promising mechanical properties. Recent researches imply that vaterite may play an important role in formation of CaCO3-based biominerals. However, as a less common polymorph of CaCO3, the growth mechanism of vaterite remains not very clear. Here we report the growth of a pumpkin-shaped vaterite hierarchical structure with a six-fold symmetrical axis and lamellar microstructure. We demonstrate that the growth is controlled by supersaturation and the intrinsic crystallographic anisotropy of vaterite. For the scenario of high supersaturation, the nucleation rate is higher than the lateral extension rate, favoring the ``double-leaf'' spherulitic growth. Meanwhile, nucleation occurs preferentially in as determined by the crystalline structure of vaterite, modulating the grown products with a hexagonal symmetry. The results are beneficial for an in-depth understanding of the biomineralization of CaCO3. The growth mechanism may also be applicable to interpret the formation of similar hierarchical structures of other materials. The authors gratefully acknowledge the financial support from National Science Foundation of China (Grant Nos. 51172104 and 50972057) and National Key Basic Research Program of China (Grant No. 2010CB630705).

  3. Proposing a Hierarchical Utility Package with Reference to Mobile Advertising

    OpenAIRE

    Shalini N. Tripathi; Masood H. Siddiqui

    2011-01-01

    Mobile advertising is a powerful tool for direct and interactive marketing. However effective marketing requires examining consumers’ psyche. This study proposes a hierarchical utility package (in the consumers’ perception) with reference to mobile advertising, thus enhancing its acceptance. Confirmatory factor analysis revealed four consolidated utility dimensions (with reference to mobile advertising). Binary logistic regression was used to create a hierarchical utility package with res...

  4. The MIL-88A-Derived Fe3O4-Carbon Hierarchical Nanocomposites for Electrochemical Sensing

    Science.gov (United States)

    Wang, Li; Zhang, Yayun; Li, Xia; Xie, Yingzhen; He, Juan; Yu, Jie; Song, Yonghai

    2015-01-01

    Metal or metal oxides/carbon nanocomposites with hierarchical superstructures have become one of the most promising functional materials in sensor, catalysis, energy conversion, etc. In this work, novel hierarchical Fe3O4/carbon superstructures have been fabricated based on metal-organic frameworks (MOFs)-derived method. Three kinds of Fe-MOFs (MIL-88A) with different morphologies were prepared beforehand as templates, and then pyrolyzed to fabricate the corresponding novel hierarchical Fe3O4/carbon superstructures. The systematic studies on the thermal decomposition process of the three kinds of MIL-88A and the effect of template morphology on the products were carried out in detail. Scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy and thermal analysis were employed to investigate the hierarchical Fe3O4/carbon superstructures. Based on these resulted hierarchical Fe3O4/carbon superstructures, a novel and sensitive nonenzymatic N-acetyl cysteine sensor was developed. The porous and hierarchical superstructures and large surface area of the as-formed Fe3O4/carbon superstructures eventually contributed to the good electrocatalytic activity of the prepared sensor towards the oxidation of N-acetyl cysteine. The proposed preparation method of the hierarchical Fe3O4/carbon superstructures is simple, efficient, cheap and easy to mass production. It might open up a new way for hierarchical superstructures preparation. PMID:26387535

  5. Hierarchical Bayesian modelling of mobility metrics for hazard model input calibration

    Science.gov (United States)

    Calder, Eliza; Ogburn, Sarah; Spiller, Elaine; Rutarindwa, Regis; Berger, Jim

    2015-04-01

    In this work we present a method to constrain flow mobility input parameters for pyroclastic flow models using hierarchical Bayes modeling of standard mobility metrics such as H/L and flow volume etc. The advantage of hierarchical modeling is that it can leverage the information in global dataset for a particular mobility metric in order to reduce the uncertainty in modeling of an individual volcano, especially important where individual volcanoes have only sparse datasets. We use compiled pyroclastic flow runout data from Colima, Merapi, Soufriere Hills, Unzen and Semeru volcanoes, presented in an open-source database FlowDat (https://vhub.org/groups/massflowdatabase). While the exact relationship between flow volume and friction varies somewhat between volcanoes, dome collapse flows originating from the same volcano exhibit similar mobility relationships. Instead of fitting separate regression models for each volcano dataset, we use a variation of the hierarchical linear model (Kass and Steffey, 1989). The model presents a hierarchical structure with two levels; all dome collapse flows and dome collapse flows at specific volcanoes. The hierarchical model allows us to assume that the flows at specific volcanoes share a common distribution of regression slopes, then solves for that distribution. We present comparisons of the 95% confidence intervals on the individual regression lines for the data set from each volcano as well as those obtained from the hierarchical model. The results clearly demonstrate the advantage of considering global datasets using this technique. The technique developed is demonstrated here for mobility metrics, but can be applied to many other global datasets of volcanic parameters. In particular, such methods can provide a means to better contain parameters for volcanoes for which we only have sparse data, a ubiquitous problem in volcanology.

  6. HIERARCHICAL ORGANIZATION OF INFORMATION, IN RELATIONAL DATABASES

    Directory of Open Access Journals (Sweden)

    Demian Horia

    2008-05-01

    Full Text Available In this paper I will present different types of representation, of hierarchical information inside a relational database. I also will compare them to find the best organization for specific scenarios.

  7. Soy Protein Isolate-Phosphatidylcholine Nanoemulsions Prepared Using High-Pressure Homogenization.

    Science.gov (United States)

    Li, Yang; Wu, Chang-Ling; Liu, Jun; Zhu, Ying; Zhang, Xiao-Yuan; Jiang, Lian-Zhou; Qi, Bao-Kun; Zhang, Xiao-Nan; Wang, Zhong-Jiang; Teng, Fei

    2018-05-07

    The nanoemulsions of soy protein isolate-phosphatidylcholine (SPI-PC) with different emulsion conditions were studied. Homogenization pressure and homogenization cycle times were varied, along with SPI and PC concentration. Evaluations included turbidity, particle size, ζ-potential, particle distribution index, and turbiscan stability index (TSI). The nanoemulsions had the best stability when SPI was at 1.5%, PC was at 0.22%, the homogenization pressure was 100 MPa and homogenization was performed 4 times. The average particle size of the SPI-PC nanoemulsions was 217 nm, the TSI was 3.02 and the emulsification yield was 93.4% of nanoemulsions.

  8. Three-Dimensional ZnO Hierarchical Nanostructures: Solution Phase Synthesis and Applications

    Directory of Open Access Journals (Sweden)

    Xiaoliang Wang

    2017-11-01

    Full Text Available Zinc oxide (ZnO nanostructures have been studied extensively in the past 20 years due to their novel electronic, photonic, mechanical and electrochemical properties. Recently, more attention has been paid to assemble nanoscale building blocks into three-dimensional (3D complex hierarchical structures, which not only inherit the excellent properties of the single building blocks but also provide potential applications in the bottom-up fabrication of functional devices. This review article focuses on 3D ZnO hierarchical nanostructures, and summarizes major advances in the solution phase synthesis, applications in environment, and electrical/electrochemical devices. We present the principles and growth mechanisms of ZnO nanostructures via different solution methods, with an emphasis on rational control of the morphology and assembly. We then discuss the applications of 3D ZnO hierarchical nanostructures in photocatalysis, field emission, electrochemical sensor, and lithium ion batteries. Throughout the discussion, the relationship between the device performance and the microstructures of 3D ZnO hierarchical nanostructures will be highlighted. This review concludes with a personal perspective on the current challenges and future research.

  9. The reflection of hierarchical cluster analysis of co-occurrence matrices in SPSS

    NARCIS (Netherlands)

    Zhou, Q.; Leng, F.; Leydesdorff, L.

    2015-01-01

    Purpose: To discuss the problems arising from hierarchical cluster analysis of co-occurrence matrices in SPSS, and the corresponding solutions. Design/methodology/approach: We design different methods of using the SPSS hierarchical clustering module for co-occurrence matrices in order to compare

  10. Hierarchical Diagnosis of Vocal Fold Disorders

    Science.gov (United States)

    Nikkhah-Bahrami, Mansour; Ahmadi-Noubari, Hossein; Seyed Aghazadeh, Babak; Khadivi Heris, Hossein

    This paper explores the use of hierarchical structure for diagnosis of vocal fold disorders. The hierarchical structure is initially used to train different second-level classifiers. At the first level normal and pathological signals have been distinguished. Next, pathological signals have been classified into neurogenic and organic vocal fold disorders. At the final level, vocal fold nodules have been distinguished from polyps in organic disorders category. For feature selection at each level of hierarchy, the reconstructed signal at each wavelet packet decomposition sub-band in 5 levels of decomposition with mother wavelet of (db10) is used to extract the nonlinear features of self-similarity and approximate entropy. Also, wavelet packet coefficients are used to measure energy and Shannon entropy features at different spectral sub-bands. Davies-Bouldin criterion has been employed to find the most discriminant features. Finally, support vector machines have been adopted as classifiers at each level of hierarchy resulting in the diagnosis accuracy of 92%.

  11. Quantum Ising model on hierarchical structures

    International Nuclear Information System (INIS)

    Lin Zhifang; Tao Ruibao.

    1989-11-01

    A quantum Ising chain with both the exchange couplings and the transverse fields arranged in a hierarchical way is considered. Exact analytical results for the critical line and energy gap are obtained. It is shown that when R 1 not= R 2 , where R 1 and R 2 are the hierarchical parameters for the exchange couplings and the transverse fields, respectively, the system undergoes a phase transition in a different universality class from the pure quantum Ising chain with R 1 =R 2 =1. On the other hand, when R 1 =R 2 =R, there exists a critical value R c dependent on the furcating number of the hierarchy. In case of R > R c , the system is shown to exhibit as Ising-like critical point with the critical behaviour the same as in the pure case, while for R c the system belongs to another universality class. (author). 19 refs, 2 figs

  12. Pattern and process of biotic homogenization in the New Pangaea.

    Science.gov (United States)

    Baiser, Benjamin; Olden, Julian D; Record, Sydne; Lockwood, Julie L; McKinney, Michael L

    2012-12-07

    Human activities have reorganized the earth's biota resulting in spatially disparate locales becoming more or less similar in species composition over time through the processes of biotic homogenization and biotic differentiation, respectively. Despite mounting evidence suggesting that this process may be widespread in both aquatic and terrestrial systems, past studies have predominantly focused on single taxonomic groups at a single spatial scale. Furthermore, change in pairwise similarity is itself dependent on two distinct processes, spatial turnover in species composition and changes in gradients of species richness. Most past research has failed to disentangle the effect of these two mechanisms on homogenization patterns. Here, we use recent statistical advances and collate a global database of homogenization studies (20 studies, 50 datasets) to provide the first global investigation of the homogenization process across major faunal and floral groups and elucidate the relative role of changes in species richness and turnover. We found evidence of homogenization (change in similarity ranging from -0.02 to 0.09) across nearly all taxonomic groups, spatial extent and grain sizes. Partitioning of change in pairwise similarity shows that overall change in community similarity is driven by changes in species richness. Our results show that biotic homogenization is truly a global phenomenon and put into question many of the ecological mechanisms invoked in previous studies to explain patterns of homogenization.

  13. Higher-order asymptotic homogenization of periodic materials with low scale separation

    NARCIS (Netherlands)

    Ameen, M.M.; Peerlings, R.H.J.; Geers, M.G.D

    2016-01-01

    In this work, we investigate the limits of classical homogenization theories pertaining to homogenization of periodic linear elastic composite materials at low scale separations and demonstrate the effectiveness of higher-order periodic homogenization in alleviating this limitation. Classical

  14. Sewage sludge disintegration by combined treatment of alkaline+high pressure homogenization.

    Science.gov (United States)

    Zhang, Yuxuan; Zhang, Panyue; Zhang, Guangming; Ma, Weifang; Wu, Hao; Ma, Boqiang

    2012-11-01

    Alkaline pretreatment combined with high pressure homogenization (HPH) was applied to promote sewage sludge disintegration. For sewage sludge with a total solid content of 1.82%, sludge disintegration degree (DD(COD)) with combined treatment was higher than the sum of DD(COD) with single alkaline and single HPH treatment. NaOH dosage ⩽0.04mol/L, homogenization pressure ⩽60MPa and a single homogenization cycle were the suitable conditions for combined sludge treatment. The combined sludge treatment showed a maximum DD(COD) of 59.26%. By regression analysis, the combined sludge disintegration model was established as 11-DD(COD)=0.713C(0.334)P(0.234)N(0.119), showing that the effect of operating parameters on sludge disintegration followed the order: NaOH dosage>homogenization pressure>number of homogenization cycle. The energy efficiency with combined sludge treatment significantly increased compared with that with single HPH treatment, and the high energy efficiency was achieved at low homogenization pressure with a single homogenization cycle. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Biomimetic synthesis of hierarchical crystalline hydroxyapatite fibers in large-scale

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Chaogang; Ge, Suxiang; Huang, Baojun; Bo, Yingying [Institute of Surface Micro and Nano Materials, Xuchang University, Xuchang, Henan Province 461000 (China); Zhang, Di [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030 (China); Zheng, Zhi, E-mail: zhengzhi9999@yahoo.com.cn [Institute of Surface Micro and Nano Materials, Xuchang University, Xuchang, Henan Province 461000 (China)

    2012-06-15

    Highlights: ► Crystalline hierarchical hydroxyapatite (HAp) fibers are synthesized. ► We employ a biomimetic route by using cotton cloth as a natural bio-template. ► We study the effects of pH, ultrasonic cleaning time, and calcination temperature. ► We obtain an optimized reaction condition. ► This is a low cost method for production of hierarchical HAp fibers. -- Abstract: Crystalline hierarchical hydroxyapatite [Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, HAp)] fibers were successfully synthesized via a biomimetic route by using cotton cloth as a natural bio-template. The effects of pH value, aging time, ultrasonic cleaning time, and calcination temperature on the purity and morphology of the resulting hydroxyapatite (HAp) were monitored by scanning election microscope (SEM), X-ray diffraction (XRD), and infrared spectrophotometer (IR) to obtain an optimized reaction condition, namely, pH 9, ultrasonic cleaning for 1 min, aging for 24 h, and calcination at 600 °C for 4 h. We found that the natural cellulose could not only control the morphology of HAp but also lower its phase transformation temperature. The impact of this method lies in its low cost and successful production of large-scale patterning of three-dimensional hierarchical HAp fibers.

  16. Biomimetic synthesis of hierarchical crystalline hydroxyapatite fibers in large-scale

    International Nuclear Information System (INIS)

    Xing, Chaogang; Ge, Suxiang; Huang, Baojun; Bo, Yingying; Zhang, Di; Zheng, Zhi

    2012-01-01

    Highlights: ► Crystalline hierarchical hydroxyapatite (HAp) fibers are synthesized. ► We employ a biomimetic route by using cotton cloth as a natural bio-template. ► We study the effects of pH, ultrasonic cleaning time, and calcination temperature. ► We obtain an optimized reaction condition. ► This is a low cost method for production of hierarchical HAp fibers. -- Abstract: Crystalline hierarchical hydroxyapatite [Ca 10 (PO 4 ) 6 (OH) 2 , HAp)] fibers were successfully synthesized via a biomimetic route by using cotton cloth as a natural bio-template. The effects of pH value, aging time, ultrasonic cleaning time, and calcination temperature on the purity and morphology of the resulting hydroxyapatite (HAp) were monitored by scanning election microscope (SEM), X-ray diffraction (XRD), and infrared spectrophotometer (IR) to obtain an optimized reaction condition, namely, pH 9, ultrasonic cleaning for 1 min, aging for 24 h, and calcination at 600 °C for 4 h. We found that the natural cellulose could not only control the morphology of HAp but also lower its phase transformation temperature. The impact of this method lies in its low cost and successful production of large-scale patterning of three-dimensional hierarchical HAp fibers.

  17. Universal Method for Creating Hierarchical Wrinkles on Thin-Film Surfaces.

    Science.gov (United States)

    Jung, Woo-Bin; Cho, Kyeong Min; Lee, Won-Kyu; Odom, Teri W; Jung, Hee-Tae

    2018-01-10

    One of the most interesting topics in physical science and materials science is the creation of complex wrinkled structures on thin-film surfaces because of their several advantages of high surface area, localized strain, and stress tolerance. In this study, a significant step was taken toward solving limitations imposed by the fabrication of previous artificial wrinkles. A universal method for preparing hierarchical three-dimensional wrinkle structures of thin films on a multiple scale (e.g., nanometers to micrometers) by sequential wrinkling with different skin layers was developed. Notably, this method was not limited to specific materials, and it was applicable to fabricating hierarchical wrinkles on all of the thin-film surfaces tested thus far, including those of metals, two-dimensional and one-dimensional materials, and polymers. The hierarchical wrinkles with multiscale structures were prepared by sequential wrinkling, in which a sacrificial layer was used as the additional skin layer between sequences. For example, a hierarchical MoS 2 wrinkle exhibited highly enhanced catalytic behavior because of the superaerophobicity and effective surface area, which are related to topological effects. As the developed method can be adopted to a majority of thin films, it is thought to be a universal method for enhancing the physical properties of various materials.

  18. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates.

    Science.gov (United States)

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N; Huang, Shenyan; Teng, Zhenke; Liu, Chain T; Asta, Mark D; Gao, Yanfei; Dunand, David C; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E; Liaw, Peter K

    2015-11-09

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. The present research will broaden the applications of ferritic alloys to higher temperatures.

  19. Hierarchical State Machines as Modular Horn Clauses

    Directory of Open Access Journals (Sweden)

    Pierre-Loïc Garoche

    2016-07-01

    Full Text Available In model based development, embedded systems are modeled using a mix of dataflow formalism, that capture the flow of computation, and hierarchical state machines, that capture the modal behavior of the system. For safety analysis, existing approaches rely on a compilation scheme that transform the original model (dataflow and state machines into a pure dataflow formalism. Such compilation often result in loss of important structural information that capture the modal behaviour of the system. In previous work we have developed a compilation technique from a dataflow formalism into modular Horn clauses. In this paper, we present a novel technique that faithfully compile hierarchical state machines into modular Horn clauses. Our compilation technique preserves the structural and modal behavior of the system, making the safety analysis of such models more tractable.

  20. Preparation of disk-like particles with micro/nano hierarchical structures.

    Science.gov (United States)

    Meng, Zhen; Yang, Wenbo; Chen, Pengpeng; Wang, Weina; Jia, Xudong; Xi, Kai

    2013-10-15

    A facile, reproductive method has been successfully developed to produce disk-like microparticles self-assembled from monodispersed hybrid silica nanoparticles under certain circumstance. The disk-like microparticles with micro/nano hierarchical structures could be obtained in large amount under a mild condition and further used to biomimetic design of the superhydrophobic surface of lotus leaf. After traditional surface modification with dodecyltrichlorosiliane, the static contact angle of water on the surface with micro/nano hierarchical structure could reach 168.8°. The method of surface modification could be further simplified by click reaction with the introduction of thiol groups under mild condition. The present strategy for constructing the surface with micro/nano hierarchical structures offers the advantage of simple and large area fabrication, which enables a variety of superhydrophobic applications. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Central Andean temperature and precipitation measurements and its homogenization

    Science.gov (United States)

    Hunziker, Stefan; Gubler, Stefanie

    2015-04-01

    Observation of climatological parameters and the homogenization of these time series have a well-established history in western countries. This is not the case for many other countries, such as Bolivia and Peru. In Bolivia and Peru, the organization of measurements, quality of measurement equipment, equipment maintenance, training of staff and data management are fundamentally different compared to the western standard. The data needs special attention, because many problems are not detected by standard quality control procedures. Information about the weather stations, best achieved by station visits, is very beneficial. If the cause of the problem is known, some of the data may be corrected. In this study, cases of typical problems and measurement errors will be demonstrated. Much of research on homogenization techniques (up to subdaily scale) has been completed in recent years. However, data sets of the quality of western station networks have been used, and little is known about the performance of homogenization methods on data sets from countries such as Bolivia and Peru. HOMER (HOMogenizaton softwarE in R) is one of the most recent and widely used homogenization softwares. Its performance is tested on Peruvian-like data that has been sourced from Swiss stations (similar station density and metadata availability). The Swiss station network is a suitable test bed, because climate gradients are strong and the terrain is complex, as is also found in the Central Andes. On the other hand, the Swiss station network is dense, and long time series and extensive metadata are available. By subsampling the station network and omitting the metadata, the conditions of a Peruvian test region are mimicked. Results are compared to a dataset homogenized by THOMAS (Tool for Homogenization of Monthly Data Series), the homogenization tool used by MeteoSwiss.

  2. Land-use intensification causes multitrophic homogenization of grassland communities.

    Science.gov (United States)

    Gossner, Martin M; Lewinsohn, Thomas M; Kahl, Tiemo; Grassein, Fabrice; Boch, Steffen; Prati, Daniel; Birkhofer, Klaus; Renner, Swen C; Sikorski, Johannes; Wubet, Tesfaye; Arndt, Hartmut; Baumgartner, Vanessa; Blaser, Stefan; Blüthgen, Nico; Börschig, Carmen; Buscot, Francois; Diekötter, Tim; Jorge, Leonardo Ré; Jung, Kirsten; Keyel, Alexander C; Klein, Alexandra-Maria; Klemmer, Sandra; Krauss, Jochen; Lange, Markus; Müller, Jörg; Overmann, Jörg; Pašalić, Esther; Penone, Caterina; Perović, David J; Purschke, Oliver; Schall, Peter; Socher, Stephanie A; Sonnemann, Ilja; Tschapka, Marco; Tscharntke, Teja; Türke, Manfred; Venter, Paul Christiaan; Weiner, Christiane N; Werner, Michael; Wolters, Volkmar; Wurst, Susanne; Westphal, Catrin; Fischer, Markus; Weisser, Wolfgang W; Allan, Eric

    2016-12-08

    Land-use intensification is a major driver of biodiversity loss. Alongside reductions in local species diversity, biotic homogenization at larger spatial scales is of great concern for conservation. Biotic homogenization means a decrease in β-diversity (the compositional dissimilarity between sites). Most studies have investigated losses in local (α)-diversity and neglected biodiversity loss at larger spatial scales. Studies addressing β-diversity have focused on single or a few organism groups (for example, ref. 4), and it is thus unknown whether land-use intensification homogenizes communities at different trophic levels, above- and belowground. Here we show that even moderate increases in local land-use intensity (LUI) cause biotic homogenization across microbial, plant and animal groups, both above- and belowground, and that this is largely independent of changes in α-diversity. We analysed a unique grassland biodiversity dataset, with abundances of more than 4,000 species belonging to 12 trophic groups. LUI, and, in particular, high mowing intensity, had consistent effects on β-diversity across groups, causing a homogenization of soil microbial, fungal pathogen, plant and arthropod communities. These effects were nonlinear and the strongest declines in β-diversity occurred in the transition from extensively managed to intermediate intensity grassland. LUI tended to reduce local α-diversity in aboveground groups, whereas the α-diversity increased in belowground groups. Correlations between the β-diversity of different groups, particularly between plants and their consumers, became weaker at high LUI. This suggests a loss of specialist species and is further evidence for biotic homogenization. The consistently negative effects of LUI on landscape-scale biodiversity underscore the high value of extensively managed grasslands for conserving multitrophic biodiversity and ecosystem service provision. Indeed, biotic homogenization rather than local diversity

  3. Hierarchical pre-segmentation without prior knowledge

    NARCIS (Netherlands)

    Kuijper, A.; Florack, L.M.J.

    2001-01-01

    A new method to pre-segment images by means of a hierarchical description is proposed. This description is obtained from an investigation of the deep structure of a scale space image – the input image and the Gaussian filtered ones simultaneously. We concentrate on scale space critical points –

  4. An Evolutionary Approach for Optimizing Hierarchical Multi-Agent System Organization

    OpenAIRE

    Shen, Zhiqi; Yu, Ling; Yu, Han

    2014-01-01

    It has been widely recognized that the performance of a multi-agent system is highly affected by its organization. A large scale system may have billions of possible ways of organization, which makes it impractical to find an optimal choice of organization using exhaustive search methods. In this paper, we propose a genetic algorithm aided optimization scheme for designing hierarchical structures of multi-agent systems. We introduce a novel algorithm, called the hierarchical genetic algorithm...

  5. A mechanical model of biomimetic adhesive pads with tilted and hierarchical structures.

    Science.gov (United States)

    Schargott, M

    2009-06-01

    A 3D model for hierarchical biomimetic adhesive pads is constructed. It is based on the main principles of the adhesive pads of the Tokay gecko and consists of hierarchical layers of vertical or tilted beams, where each layer is constructed in such a way that no cohesion between adjacent beams can occur. The elastic and adhesive properties are calculated analytically and numerically. For the adhesive contact on stochastically rough surfaces, the maximum adhesion force increases with increasing number of hierarchical layers. Additional calculations show that the adhesion force also depends on the height spectrum of the rough surface.

  6. A mechanical model of biomimetic adhesive pads with tilted and hierarchical structures

    Energy Technology Data Exchange (ETDEWEB)

    Schargott, M [Institute of Mechanics, Technische Universitaet Berlin, Strd 17 Juni 135, 10623 Berlin (Germany)], E-mail: martin.schargott@tu-berlin.de

    2009-06-01

    A 3D model for hierarchical biomimetic adhesive pads is constructed. It is based on the main principles of the adhesive pads of the Tokay gecko and consists of hierarchical layers of vertical or tilted beams, where each layer is constructed in such a way that no cohesion between adjacent beams can occur. The elastic and adhesive properties are calculated analytically and numerically. For the adhesive contact on stochastically rough surfaces, the maximum adhesion force increases with increasing number of hierarchical layers. Additional calculations show that the adhesion force also depends on the height spectrum of the rough surface.

  7. A mechanical model of biomimetic adhesive pads with tilted and hierarchical structures

    International Nuclear Information System (INIS)

    Schargott, M

    2009-01-01

    A 3D model for hierarchical biomimetic adhesive pads is constructed. It is based on the main principles of the adhesive pads of the Tokay gecko and consists of hierarchical layers of vertical or tilted beams, where each layer is constructed in such a way that no cohesion between adjacent beams can occur. The elastic and adhesive properties are calculated analytically and numerically. For the adhesive contact on stochastically rough surfaces, the maximum adhesion force increases with increasing number of hierarchical layers. Additional calculations show that the adhesion force also depends on the height spectrum of the rough surface

  8. Applications of a systematic homogenization theory for nodal diffusion methods

    International Nuclear Information System (INIS)

    Zhang, Hong-bin; Dorning, J.J.

    1992-01-01

    The authors recently have developed a self-consistent and systematic lattice cell and fuel bundle homogenization theory based on a multiple spatial scales asymptotic expansion of the transport equation in the ratio of the mean free path to the reactor characteristics dimension for use with nodal diffusion methods. The mathematical development leads naturally to self-consistent analytical expressions for homogenized diffusion coefficients and cross sections and flux discontinuity factors to be used in nodal diffusion calculations. The expressions for the homogenized nuclear parameters that follow from the systematic homogenization theory (SHT) are different from those for the traditional flux and volume-weighted (FVW) parameters. The calculations summarized here show that the systematic homogenization theory developed recently for nodal diffusion methods yields accurate values for k eff and assembly powers even when compared with the results of a fine mesh transport calculation. Thus, it provides a practical alternative to equivalence theory and GET (Ref. 3) and to simplified equivalence theory, which requires auxiliary fine-mesh calculations for assemblies embedded in a typical environment to determine the discontinuity factors and the equivalent diffusion coefficient for a homogenized assembly

  9. Spray structure as generated under homogeneous flash boiling nucleation regime

    International Nuclear Information System (INIS)

    Levy, M.; Levy, Y.; Sher, E.

    2014-01-01

    We show the effect of the initial pressure and temperature on the spatial distribution of droplets size and their velocity profile inside a spray cloud that is generated by a flash boiling mechanism under homogeneous nucleation regime. We used TSI's Phase Doppler Particle Analyzer (PDPA) to characterize the spray. We conclude that the homogeneous nucleation process is strongly affected by the initial liquid temperature while the initial pressure has only a minor effect. The spray shape is not affected by temperature or pressure under homogeneous nucleation regime. We noted that the only visible effect is in the spray opacity. Finally, homogeneous nucleation may be easily achieved by using a simple atomizer construction, and thus is potentially suitable for fuel injection systems in combustors and engines. - Highlights: • We study the characteristics of a spray that is generated by a flash boiling process. • In this study, the flash boiling process occurs under homogeneous nucleation regime. • We used Phase Doppler Particle Analyzer (PDPA) to characterize the spray. • The SMD has been found to be strongly affected by the initial liquid temperature. • Homogeneous nucleation may be easily achieved by using a simple atomizer unit

  10. Fabrication and properties of dual-level hierarchical structures mimicking gecko foot hairs.

    Science.gov (United States)

    Zhang, Peng; Liu, Shiyuan; Lv, Hao

    2013-02-01

    In nature, geckos have extraordinary adhesive capabilities. The multi-scale hierarchical structure of the gecko foot hairs, especially the high-aspect-ratio structure of its micro-scale seta and nano-scale spatulae is the critical factor of the gecko's ability to adopt and stick to any different surface with powerful adhesion force. In this paper, we present a simple and effective approach to fabricate dual-level hierarchical structures mimicking gecko foot hairs. Polydimethyl-siloxane (PDMS) hierarchical arrays were fabricated by demolding from a double stack mold that was composed of an SU-8 mold by thick film photolithography and a silicon mold by inductively coupled plasma (ICP) etching. Top pillars of the fabricated structures have 3 micom diameter and 18 microm in height, while base pillars have 25 microm diameter and 40 microm in height. The water droplet contact angle tests indicate that the hierarchical structures increase the hydrophobic property significantly compared with the single-level arrays and the unstructured polymers, exhibiting superhydrophobicity (154.2 degrees) like the Tokay gecko's (160.9 degrees). The shear force tests show that the top pillars make attachment through side contact with a value of about 0.25 N/cm2, and moreover, the hierarchical structures are demonstrated to be more suitable for contacting with rough surfaces.

  11. Qualitative analysis of homogeneous universes

    International Nuclear Information System (INIS)

    Novello, M.; Araujo, R.A.

    1980-01-01

    The qualitative behaviour of cosmological models is investigated in two cases: Homogeneous and isotropic Universes containing viscous fluids in a stokesian non-linear regime; Rotating expanding universes in a state which matter is off thermal equilibrium. (Author) [pt

  12. An iterative homogenization technique that preserves assembly core exchanges

    International Nuclear Information System (INIS)

    Mondot, Ph.; Sanchez, R.

    2003-01-01

    A new interactive homogenization procedure for reactor core calculations is proposed that requires iterative transport assembly and diffusion core calculations. At each iteration the transport solution of every assembly type is used to produce homogenized cross sections for the core calculation. The converged solution gives assembly fine multigroup transport fluxes that preserve macro-group assembly exchanges in the core. This homogenization avoids the periodic lattice-leakage model approximation and gives detailed assembly transport fluxes without need of an approximated flux reconstruction. Preliminary results are given for a one-dimensional core model. (authors)

  13. Metallographic Index-Based Quantification of the Homogenization State in Extrudable Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Panagiota I. Sarafoglou

    2016-05-01

    Full Text Available Extrudability of aluminum alloys of the 6xxx series is highly dependent on the microstructure of the homogenized billets. It is therefore very important to characterize quantitatively the state of homogenization of the as-cast billets. The quantification of the homogenization state was based on the measurement of specific microstructural indices, which describe the size and shape of the intermetallics and indicate the state of homogenization. The indices evaluated were the following: aspect ratio (AR, which is the ratio of the maximum to the minimum diameter of the particles, feret (F, which is the maximum caliper length, and circularity (C, which is a measure of how closely a particle resembles a circle in a 2D metallographic section. The method included extensive metallographic work and the measurement of a large number of particles, including a statistical analysis, in order to investigate the effect of homogenization time. Among the indices examined, the circularity index exhibited the most consistent variation with homogenization time. The lowest value of the circularity index coincided with the metallographic observation for necklace formation. Shorter homogenization times resulted in intermediate homogenization stages involving rounding of edges or particle pinching. The results indicated that the index-based quantification of the homogenization state could provide a credible method for the selection of homogenization process parameters towards enhanced extrudability.

  14. Scale of association: hierarchical linear models and the measurement of ecological systems

    Science.gov (United States)

    Sean M. McMahon; Jeffrey M. Diez

    2007-01-01

    A fundamental challenge to understanding patterns in ecological systems lies in employing methods that can analyse, test and draw inference from measured associations between variables across scales. Hierarchical linear models (HLM) use advanced estimation algorithms to measure regression relationships and variance-covariance parameters in hierarchically structured...

  15. Photophysics and energy transfer studies of Alq3 confined in the voids of nanoporous anodic alumina.

    Science.gov (United States)

    Mohammadpour, Arash; Utkin, Ilya; Bodepudi, Srikrishna Chanakya; Kar, Piyush; Fedosejevs, Robert; Pramanik, Sandipan; Shankar, Karthik

    2013-04-01

    We report on a hierarchical nanoarchitecture wherein distinct chromophores are deterministically placed at two different types of sites in a nanoporous metal oxide framework. One chromophore, namely Tris(8-hydroxyquinoline)aluminium(III) (Alq3), is embedded in the 1-2 nm sized nanovoids of anodic aluminum oxide (AAO) and another chromophore (carboxyfluorescein or pyrenebutyric acid) is anchored in the form of a monolayer to the surface of the walls of the cylindrical nanopores (- 20 nm in diameter) of AAO. We found the luminescence maximum to occur at 492 nm, blueshifted by at least 18 nm from the value in solutions and thin films. The excited state decay of Alq3 molecules in nanovoids was found to be biexponential with a fast component of 338 ps and a slower component of 2.26 ns, different from Alq3 thin films and solutions. Using a combination of steady state and time-resolved luminescence studies, we found that efficient Forster-type resonance energy transfer (FRET) from Alq3 in the nanovoids to the carboxyfluorescein monolayer could be used to pump the emission of surface-bound chromophores. Conversely, the emission of nanovoid-confined Alq3 could be pumped by energy transfer from a pyrenebutyric acid monolayer. Such intra-nanoarchitecture interactions between chromophores deterministically placed in different spatial locations are important in applications such as organic light emitting diodes, chemical sensors, energy transfer fluorescent labels, light harvesting antennas and organic spintronics.

  16. Simultaneous formation of multiscale hierarchical surface morphologies through sequential wrinkling and folding

    Science.gov (United States)

    Wang, Yu; Sun, Qingyang; Xiao, Jianliang

    2018-02-01

    Highly organized hierarchical surface morphologies possess various intriguing properties that could find important potential applications. In this paper, we demonstrate a facile approach to simultaneously form multiscale hierarchical surface morphologies through sequential wrinkling. This method combines surface wrinkling induced by thermal expansion and mechanical strain on a three-layer structure composed of an aluminum film, a hard Polydimethylsiloxane (PDMS) film, and a soft PDMS substrate. Deposition of the aluminum film on hard PDMS induces biaxial wrinkling due to thermal expansion mismatch, and recovering the prestrain in the soft PDMS substrate leads to wrinkling of the hard PDMS film. In total, three orders of wrinkling patterns form in this process, with wavelength and amplitude spanning 3 orders of magnitude in length scale. By increasing the prestrain in the soft PDMS substrate, a hierarchical wrinkling-folding structure was also obtained. This approach can be easily extended to other thin films for fabrication of multiscale hierarchical surface morphologies with potential applications in different areas.

  17. Effect of high-pressure homogenization on different matrices of food supplements.

    Science.gov (United States)

    Martínez-Sánchez, Ascensión; Tarazona-Díaz, Martha Patricia; García-González, Antonio; Gómez, Perla A; Aguayo, Encarna

    2016-12-01

    There is a growing demand for food supplements containing high amounts of vitamins, phenolic compounds and mineral content that provide health benefits. Those functional compounds have different solubility properties, and the maintenance of their compounds and the guarantee of their homogenic properties need the application of novel technologies. The quality of different drinkable functional foods after thermal processing (0.1 MPa) or high-pressure homogenization under two different conditions (80 MPa, 33 ℃ and 120 MPa, 43 ℃) was studied. Physicochemical characteristics and sensory qualities were evaluated throughout the six months of accelerated storage at 40 ℃ and 75% relative humidity (RH). Aroma and color were better maintained in high-pressure homogenization-treated samples than the thermally treated ones, which contributed significantly to extending their shelf life. The small particle size obtained after high-pressure homogenization treatments caused differences in turbidity and viscosity with respect to heat-treated samples. The use of high-pressure homogenization, more specifically, 120 MPa, provided active ingredient homogeneity to ensure uniform content in functional food supplements. Although the effect of high-pressure homogenization can be affected by the food matrix, high-pressure homogenization can be implemented as an alternative to conventional heat treatments in a commercial setting within the functional food supplement or pharmaceutical industry. © The Author(s) 2016.

  18. Rapid biotic homogenization of marine fish assemblages

    Science.gov (United States)

    Magurran, Anne E.; Dornelas, Maria; Moyes, Faye; Gotelli, Nicholas J.; McGill, Brian

    2015-01-01

    The role human activities play in reshaping biodiversity is increasingly apparent in terrestrial ecosystems. However, the responses of entire marine assemblages are not well-understood, in part, because few monitoring programs incorporate both spatial and temporal replication. Here, we analyse an exceptionally comprehensive 29-year time series of North Atlantic groundfish assemblages monitored over 5° latitude to the west of Scotland. These fish assemblages show no systematic change in species richness through time, but steady change in species composition, leading to an increase in spatial homogenization: the species identity of colder northern localities increasingly resembles that of warmer southern localities. This biotic homogenization mirrors the spatial pattern of unevenly rising ocean temperatures over the same time period suggesting that climate change is primarily responsible for the spatial homogenization we observe. In this and other ecosystems, apparent constancy in species richness may mask major changes in species composition driven by anthropogenic change. PMID:26400102

  19. Criticality of the Potts ferromagnet in Midgal-Kadanoff - like hierarchical lattices

    International Nuclear Information System (INIS)

    Silva, L.R. da; Tsallis, C.

    1987-01-01

    Within the real space renormalisation group framework, we discuss the critical point and exponent υ of the Potts ferromagnet in b-sized Migdal-Kadanoff-like hierarchical lattices. Both b → ∞ and b → 1 limits are exhibited. The important discrepancies that might exist between the exact results for d-dimensional hierarchical lattices and d-dimensional Bravais lattices are illustrated. (Author) [pt

  20. Hierarchical Bayesian Models of Subtask Learning

    Science.gov (United States)

    Anglim, Jeromy; Wynton, Sarah K. A.

    2015-01-01

    The current study used Bayesian hierarchical methods to challenge and extend previous work on subtask learning consistency. A general model of individual-level subtask learning was proposed focusing on power and exponential functions with constraints to test for inconsistency. To study subtask learning, we developed a novel computer-based booking…

  1. Nanoscale Analysis of a Hierarchical Hybrid Solar Cell in 3D.

    Science.gov (United States)

    Divitini, Giorgio; Stenzel, Ole; Ghadirzadeh, Ali; Guarnera, Simone; Russo, Valeria; Casari, Carlo S; Bassi, Andrea Li; Petrozza, Annamaria; Di Fonzo, Fabio; Schmidt, Volker; Ducati, Caterina

    2014-05-01

    A quantitative method for the characterization of nanoscale 3D morphology is applied to the investigation of a hybrid solar cell based on a novel hierarchical nanostructured photoanode. A cross section of the solar cell device is prepared by focused ion beam milling in a micropillar geometry, which allows a detailed 3D reconstruction of the titania photoanode by electron tomography. It is found that the hierarchical titania nanostructure facilitates polymer infiltration, thus favoring intermixing of the two semiconducting phases, essential for charge separation. The 3D nanoparticle network is analyzed with tools from stochastic geometry to extract information related to the charge transport in the hierarchical solar cell. In particular, the experimental dataset allows direct visualization of the percolation pathways that contribute to the photocurrent.

  2. Hierarchically Nanostructured Transition Metal Oxides for Lithium‐Ion Batteries

    Science.gov (United States)

    Zheng, Mingbo; Tang, Hao; Li, Lulu; Hu, Qin; Zhang, Li; Xue, Huaiguo

    2018-01-01

    Abstract Lithium‐ion batteries (LIBs) have been widely used in the field of portable electric devices because of their high energy density and long cycling life. To further improve the performance of LIBs, it is of great importance to develop new electrode materials. Various transition metal oxides (TMOs) have been extensively investigated as electrode materials for LIBs. According to the reaction mechanism, there are mainly two kinds of TMOs, one is based on conversion reaction and the other is based on intercalation/deintercalation reaction. Recently, hierarchically nanostructured TMOs have become a hot research area in the field of LIBs. Hierarchical architecture can provide numerous accessible electroactive sites for redox reactions, shorten the diffusion distance of Li‐ion during the reaction, and accommodate volume expansion during cycling. With rapid research progress in this field, a timely account of this advanced technology is highly necessary. Here, the research progress on the synthesis methods, morphological characteristics, and electrochemical performances of hierarchically nanostructured TMOs for LIBs is summarized and discussed. Some relevant prospects are also proposed. PMID:29593962

  3. Robust Pedestrian Classification Based on Hierarchical Kernel Sparse Representation

    Directory of Open Access Journals (Sweden)

    Rui Sun

    2016-08-01

    Full Text Available Vision-based pedestrian detection has become an active topic in computer vision and autonomous vehicles. It aims at detecting pedestrians appearing ahead of the vehicle using a camera so that autonomous vehicles can assess the danger and take action. Due to varied illumination and appearance, complex background and occlusion pedestrian detection in outdoor environments is a difficult problem. In this paper, we propose a novel hierarchical feature extraction and weighted kernel sparse representation model for pedestrian classification. Initially, hierarchical feature extraction based on a CENTRIST descriptor is used to capture discriminative structures. A max pooling operation is used to enhance the invariance of varying appearance. Then, a kernel sparse representation model is proposed to fully exploit the discrimination information embedded in the hierarchical local features, and a Gaussian weight function as the measure to effectively handle the occlusion in pedestrian images. Extensive experiments are conducted on benchmark databases, including INRIA, Daimler, an artificially generated dataset and a real occluded dataset, demonstrating the more robust performance of the proposed method compared to state-of-the-art pedestrian classification methods.

  4. Spontaneous compactification to homogeneous spaces

    International Nuclear Information System (INIS)

    Mourao, J.M.

    1988-01-01

    The spontaneous compactification of extra dimensions to compact homogeneous spaces is studied. The methods developed within the framework of coset space dimensional reduction scheme and the most general form of invariant metrics are used to find solutions of spontaneous compactification equations

  5. Hierarchical structure of biological systems: a bioengineering approach.

    Science.gov (United States)

    Alcocer-Cuarón, Carlos; Rivera, Ana L; Castaño, Victor M

    2014-01-01

    A general theory of biological systems, based on few fundamental propositions, allows a generalization of both Wierner and Berthalanffy approaches to theoretical biology. Here, a biological system is defined as a set of self-organized, differentiated elements that interact pair-wise through various networks and media, isolated from other sets by boundaries. Their relation to other systems can be described as a closed loop in a steady-state, which leads to a hierarchical structure and functioning of the biological system. Our thermodynamical approach of hierarchical character can be applied to biological systems of varying sizes through some general principles, based on the exchange of energy information and/or mass from and within the systems.

  6. Mobile Multicast in Hierarchical Proxy Mobile IPV6

    Science.gov (United States)

    Hafizah Mohd Aman, Azana; Hashim, Aisha Hassan A.; Mustafa, Amin; Abdullah, Khaizuran

    2013-12-01

    Mobile Internet Protocol Version 6 (MIPv6) environments have been developing very rapidly. Many challenges arise with the fast progress of MIPv6 technologies and its environment. Therefore the importance of improving the existing architecture and operations increases. One of the many challenges which need to be addressed is the need for performance improvement to support mobile multicast. Numerous approaches have been proposed to improve mobile multicast performance. This includes Context Transfer Protocol (CXTP), Hierarchical Mobile IPv6 (HMIPv6), Fast Mobile IPv6 (FMIPv6) and Proxy Mobile IPv6 (PMIPv6). This document describes multicast context transfer in hierarchical proxy mobile IPv6 (H-PMIPv6) to provide better multicasting performance in PMIPv6 domain.

  7. A novel method for a multi-level hierarchical composite with brick-and-mortar structure.

    Science.gov (United States)

    Brandt, Kristina; Wolff, Michael F H; Salikov, Vitalij; Heinrich, Stefan; Schneider, Gerold A

    2013-01-01

    The fascination for hierarchically structured hard tissues such as enamel or nacre arises from their unique structure-properties-relationship. During the last decades this numerously motivated the synthesis of composites, mimicking the brick-and-mortar structure of nacre. However, there is still a lack in synthetic engineering materials displaying a true hierarchical structure. Here, we present a novel multi-step processing route for anisotropic 2-level hierarchical composites by combining different coating techniques on different length scales. It comprises polymer-encapsulated ceramic particles as building blocks for the first level, followed by spouted bed spray granulation for a second level, and finally directional hot pressing to anisotropically consolidate the composite. The microstructure achieved reveals a brick-and-mortar hierarchical structure with distinct, however not yet optimized mechanical properties on each level. It opens up a completely new processing route for the synthesis of multi-level hierarchically structured composites, giving prospects to multi-functional structure-properties relationships.

  8. A novel method for a multi-level hierarchical composite with brick-and-mortar structure

    Science.gov (United States)

    Brandt, Kristina; Wolff, Michael F. H.; Salikov, Vitalij; Heinrich, Stefan; Schneider, Gerold A.

    2013-07-01

    The fascination for hierarchically structured hard tissues such as enamel or nacre arises from their unique structure-properties-relationship. During the last decades this numerously motivated the synthesis of composites, mimicking the brick-and-mortar structure of nacre. However, there is still a lack in synthetic engineering materials displaying a true hierarchical structure. Here, we present a novel multi-step processing route for anisotropic 2-level hierarchical composites by combining different coating techniques on different length scales. It comprises polymer-encapsulated ceramic particles as building blocks for the first level, followed by spouted bed spray granulation for a second level, and finally directional hot pressing to anisotropically consolidate the composite. The microstructure achieved reveals a brick-and-mortar hierarchical structure with distinct, however not yet optimized mechanical properties on each level. It opens up a completely new processing route for the synthesis of multi-level hierarchically structured composites, giving prospects to multi-functional structure-properties relationships.

  9. On integral representation, relaxation and homogenization for unbounded functionals

    International Nuclear Information System (INIS)

    Carbone, L.; De Arcangelis, R.

    1997-01-01

    A theory of integral representation, relaxation and homogenization for some types of variational functionals taking extended real values and possibly being not finite also on large classes of regular functions is presented. Some applications to gradient constrained relaxation and homogenization problems are given

  10. Flows and chemical reactions in homogeneous mixtures

    CERN Document Server

    Prud'homme, Roger

    2013-01-01

    Flows with chemical reactions can occur in various fields such as combustion, process engineering, aeronautics, the atmospheric environment and aquatics. The examples of application chosen in this book mainly concern homogeneous reactive mixtures that can occur in propellers within the fields of process engineering and combustion: - propagation of sound and monodimensional flows in nozzles, which may include disequilibria of the internal modes of the energy of molecules; - ideal chemical reactors, stabilization of their steady operation points in the homogeneous case of a perfect mixture and c

  11. Biominerals- hierarchical nanocomposites: the example of bone

    Science.gov (United States)

    Beniash, Elia

    2010-01-01

    Many organisms incorporate inorganic solids in their tissues to enhance their functional, primarily mechanical, properties. These mineralized tissues, also called biominerals, are unique organo-mineral nanocomposites, organized at several hierarchical levels, from nano- to macroscale. Unlike man made composite materials, which often are simple physical blends of their components, the organic and inorganic phases in biominerals interface at the molecular level. Although these tissues are made of relatively weak components at ambient conditions, their hierarchical structural organization and intimate interactions between different elements lead to superior mechanical properties. Understanding basic principles of formation, structure and functional properties of these tissues might lead to novel bioinspired strategies for material design and better treatments for diseases of the mineralized tissues. This review focuses on general principles of structural organization, formation and functional properties of biominerals on the example the bone tissues. PMID:20827739

  12. Poincaré Embeddings for Learning Hierarchical Representations

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Abstracts: Representation learning has become an invaluable approach for learning from symbolic data such as text and graphs. However, while complex symbolic datasets often exhibit a latent hierarchical structure, state-of-the-art methods typically do not account for this property. In this talk, I will discuss a new approach for learning hierarchical representations of symbolic data by embedding them into hyperbolic space -- or more precisely into an n-dimensional Poincaré ball. Due to the underlying hyperbolic geometry, this allows us to learn parsimonious representations of symbolic data by simultaneously capturing hierarchy and similarity. We introduce an efficient algorithm to learn the embeddings based on Riemannian optimization and show experimentally that Poincaré embeddings outperform Euclidean embeddings significantly on data with latent hierarchies, both in terms of representation capacity and in terms of generalization ability.      &...

  13. Hierarchical porous ZnO microflowers with ultra-high ethanol gas-sensing at low concentration

    Science.gov (United States)

    Song, Liming; Yue, He; Li, Haiying; Liu, Li; Li, Yu; Du, Liting; Duan, Haojie; Klyui, N. I.

    2018-05-01

    Hierarchical porous and non-porous ZnO microflowers have been successfully fabricated by hydrothermal method. Their crystal structure, morphology and gas-sensing properties were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and chemical gas sensing intelligent analysis system (CGS). Compared with hierarchical non-porous ZnO microflowers, hierarchical porous ZnO microflowers exhibited ultra-high sensitivity with 50 ppm ethanol at 260 °C and the response is 110, which is 1.8 times higher than that of non-porous ZnO microflowers. Moreover, the lowest concentration limit of hierarchical porous ZnO microflowers (non-porous ZnO microflowers) to ethanol is 0.1 (1) ppm, the response value is 1.6 (1).

  14. Combustion synthesized hierarchically porous WO{sub 3} for selective acetone sensing

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Chengjun; Liu, Xu; Guan, Hongtao; Chen, Gang; Xiao, Xuechun [Department of Materials Science and Engineering, Yunnan University, 650091, Kunming (China); Djerdj, Igor [Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb (Croatia); Wang, Yude, E-mail: ydwang@ynu.edu.cn [Department of Materials Science and Engineering, Yunnan University, 650091, Kunming (China); Yunnan Province Key Lab of Mico-Nano Materials and Technology, Yunnan University, 650091, Kunming (China)

    2016-12-01

    An easy, inexpensive combustion route was designed to synthesize hierarchically porous WO{sub 3}. The tungsten source was fresh peroxiotungstic acid by dissolving tungsten powder into hydrogen peroxide. To promote the combustion reaction, a combined fuel of both glycine and hydrazine hydrate was used. The microstructure was well-connected pores comprised of subunit nanoparticles. Upon exposing towards acetone gas, the porous WO{sub 3} based sensor exhibits high gas response, rapid response and recovery, and good selectivity in the range of 5–1000 ppm under working temperature of 300 °C. This excellent sensing performance was plausibly attributed to the porous morphology, which hence provides more active sites for the gas molecules' reaction. - Graphical abstract: Hierarchically porous WO{sub 3} synthesized by combustion process exhibits high gas response, rapid response and recovery, and excellent selectivity for acetone, making it to be promising candidates for practical detectors for acetone. - Highlights: • Hierarchically porous WO{sub 3} synthesized by combustion process. • Hierarchically porous WO{sub 3} exhibits high gas response and excellent selectivity for acetone. • The excellent sensing property was plausibly attributed to the porous morphology.

  15. Hierarchical SAPO‐34 Architectures with Tailored Acid Sites using Sustainable Sugar Templates

    Science.gov (United States)

    Miletto, Ivana; Ivaldi, Chiara; Paul, Geo; Chapman, Stephanie; Marchese, Leonardo; Raja, Robert

    2018-01-01

    Abstract In a distinct, bottom‐up synthetic methodology, monosaccharides (fructose and glucose) and disaccharides (sucrose) have been used as mesoporogens to template hierarchical SAPO‐34 catalysts. Detailed materials characterization, which includes solid‐state magic angle spinning NMR and probe‐based FTIR, reveals that, although the mesopore dimensions are modified by the identity of the sugar template, the desirable acid characteristics of the microporous framework are retained. When the activity of the hierarchical SAPO‐34 catalysts was evaluated in the industrially relevant Beckmann rearrangement, under liquid‐phase conditions, the enhanced mass‐transport properties of sucrose‐templated hierarchical SAPO‐34 were found to deliver a superior yield of ϵ‐caprolactam. PMID:29686961

  16. Large-scale Homogenization of Bulk Materials in Mammoth Silos

    NARCIS (Netherlands)

    Schott, D.L.

    2004-01-01

    This doctoral thesis concerns the large-scale homogenization of bulk materials in mammoth silos. The objective of this research was to determine the best stacking and reclaiming method for homogenization in mammoth silos. For this purpose a simulation program was developed to estimate the

  17. Automatic thoracic anatomy segmentation on CT images using hierarchical fuzzy models and registration

    Science.gov (United States)

    Sun, Kaioqiong; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Torigian, Drew A.

    2014-03-01

    This paper proposes a thoracic anatomy segmentation method based on hierarchical recognition and delineation guided by a built fuzzy model. Labeled binary samples for each organ are registered and aligned into a 3D fuzzy set representing the fuzzy shape model for the organ. The gray intensity distributions of the corresponding regions of the organ in the original image are recorded in the model. The hierarchical relation and mean location relation between different organs are also captured in the model. Following the hierarchical structure and location relation, the fuzzy shape model of different organs is registered to the given target image to achieve object recognition. A fuzzy connected delineation method is then used to obtain the final segmentation result of organs with seed points provided by recognition. The hierarchical structure and location relation integrated in the model provide the initial parameters for registration and make the recognition efficient and robust. The 3D fuzzy model combined with hierarchical affine registration ensures that accurate recognition can be obtained for both non-sparse and sparse organs. The results on real images are presented and shown to be better than a recently reported fuzzy model-based anatomy recognition strategy.

  18. Hierarchical analysis of urban space

    OpenAIRE

    Kataeva, Y.

    2014-01-01

    Multi-level structure of urban space, multitude of subjects of its transformation, which follow asymmetric interests, multilevel system of institutions which regulate interaction in the "population business government -public organizations" system, determine the use of hierarchic approach to the analysis of urban space. The article observes theoretical justification of using this approach to study correlations and peculiarities of interaction in urban space as in an intricately organized syst...

  19. A bioscaffolding strategy for hierarchical zeolites with a nanotube-trimodal network.

    Science.gov (United States)

    Li, Guannan; Huang, Haibo; Yu, Bowen; Wang, Yun; Tao, Jiawei; Wei, Yingxu; Li, Shougui; Liu, Zhongmin; Xu, Yan; Xu, Ruren

    2016-02-01

    Hierarchical zeolite monoliths with multimodal porosity are of paramount importance as they open up new horizons for advanced applications. So far, hierarchical zeolites based on nanotube scaffolds have never been reported. Inspired by the organization of biominerals, we have developed a novel precursor scaffolding-solid phase crystallization strategy for hierarchical zeolites with a unique nanotube scaffolding architecture and nanotube-trimodal network, where biomolecular self-assembly (BSA) provides a scaffolding blueprint. By vapor-treating Sil-1 seeded precursor scaffolds, zeolite MFI nanotube scaffolds are self-generated, during which evolution phenomena such as segmented voids and solid bridges are observed, in agreement with the Kirkendall effect in a solid-phase crystallization system. The nanotube walls are made of intergrown single crystals rendering good mechanical stability. The inner diameter of the nanotube is tunable between 30 and 90 nm by varying the thickness of the precursor layers. Macropores enclosed by cross-linked nanotubes can be modulated by the choice of BSA. Narrow mesopores are formed by intergrown nanocrystals. Hierarchical ZSM-5 monoliths with nanotube (90 nm), micropore (0.55 nm), mesopore (2 nm) and macropore (700 nm) exhibit superior catalytic performance in the methanol-to-hydrocarbon (MTH) conversion compared to conventional ZSM-5. BSA remains intact after crystallization, allowing a higher level of organization and functionalization of the zeolite nanotube scaffolds. The current work may afford a versatile strategy for hierarchical zeolite monoliths with nanotube scaffolding architectures and a nanotube-multimodal network leading to self-supporting and active zeolite catalysts, and for applications beyond.

  20. Hierarchical structures of ZnO spherical particles synthesized solvothermally

    Science.gov (United States)

    Saito, Noriko; Haneda, Hajime

    2011-12-01

    We review the solvothermal synthesis, using a mixture of ethylene glycol (EG) and water as the solvent, of zinc oxide (ZnO) particles having spherical and flower-like shapes and hierarchical nanostructures. The preparation conditions of the ZnO particles and the microscopic characterization of the morphology are summarized. We found the following three effects of the ratio of EG to water on the formation of hierarchical structures: (i) EG restricts the growth of ZnO microcrystals, (ii) EG promotes the self-assembly of small crystallites into spheroidal particles and (iii) the high water content of EG results in hollow spheres.

  1. Dynamics and thermodynamics in hierarchically organized systems applications in physics, biology and economics

    CERN Document Server

    Auger, P

    2013-01-01

    One of the most fundamental and efficient ways of conceptualizing complex systems is to organize them hierarchically. A hierarchically organized system is represented by a network of interconnected subsystems, each of which has its own network of subsystems, and so on, until some elementary subsystems are reached that are not further decomposed. This original and important book proposes a general mathematical theory of a hierarchical system and shows how it can be applied to very different topics such as physics (Hamiltonian systems), biology (coupling the molecular and the cellular levels), e

  2. Hierarchical Broadcasting in the Future Mobile Internet

    NARCIS (Netherlands)

    Hesselman, C.E.W.; Eertink, E.H.; Fernandez, Milagros; Crnkovic, Ivica; Fohler, Gerhard; Griwodz, Carsten; Plagemann, Thomas; Gruenbacher, Paul

    2002-01-01

    We describe an architecture for the hierarchical distribution of multimedia broadcasts in the future mobile Internet. The architecture supports network as well as application-layer mobility solutions, and uses stream control functions that are influenced by available network resources, user-defined

  3. Modular networks with hierarchical organization: The dynamical ...

    Indian Academy of Sciences (India)

    Most of the complex systems seen in real life also have associated dynamics [10], and the ... another example, this time a hierarchical structure, viz., the Cayley tree with b ..... natural constraints operating on networks in real life, such as the ...

  4. Hierarchic levels of a system classification of radiation-contaminated landscapes

    International Nuclear Information System (INIS)

    Dolyin, V.V.; Sushchik, Yu.Ya.; Bondarenko, G.M.; Shramenko, Yi.F.; Dudar, T.V.

    2001-01-01

    Five hierarchic levels of the systematic organization of natural landscapes are determined: substantial-phase, soil-profile, biogeocenotic, landscape, and geosystematic. Systems and subsystems of compounds of chemical elements and natural and man-caused factors that characterized properties and mechanisms of ecological self-organization of biogeocenoses are brought into accordance with each level. A scheme of hierarchic subordination of systems, subsystems, and processes is worked out. Leading links of transformation and migration of radionuclides that define the contamination of tropic chains are determined

  5. Time to failure of hierarchical load-transfer models of fracture

    DEFF Research Database (Denmark)

    Vázquez-Prada, M; Gómez, J B; Moreno, Y

    1999-01-01

    The time to failure, T, of dynamical models of fracture for a hierarchical load-transfer geometry is studied. Using a probabilistic strategy and juxtaposing hierarchical structures of height n, we devise an exact method to compute T, for structures of height n+1. Bounding T, for large n, we are a...... are able to deduce that the time to failure tends to a nonzero value when n tends to infinity. This numerical conclusion is deduced for both power law and exponential breakdown rules....

  6. Context updates are hierarchical

    Directory of Open Access Journals (Sweden)

    Anton Karl Ingason

    2016-10-01

    Full Text Available This squib studies the order in which elements are added to the shared context of interlocutors in a conversation. It focuses on context updates within one hierarchical structure and argues that structurally higher elements are entered into the context before lower elements, even if the structurally higher elements are pronounced after the lower elements. The crucial data are drawn from a comparison of relative clauses in two head-initial languages, English and Icelandic, and two head-final languages, Korean and Japanese. The findings have consequences for any theory of a dynamic semantics.

  7. Soluble Molecularly Imprinted Nanorods for Homogeneous Molecular Recognition

    Directory of Open Access Journals (Sweden)

    Rongning Liang

    2018-03-01

    Full Text Available Nowadays, it is still difficult for molecularly imprinted polymers (MIPs to achieve homogeneous recognition since they cannot be easily dissolved in organic or aqueous phase. To address this issue, soluble molecularly imprinted nanorods have been synthesized by using soluble polyaniline doped with a functionalized organic protonic acid as the polymer matrix. By employing 1-naphthoic acid as a model, the proposed imprinted nanorods exhibit an excellent solubility and good homogeneous recognition ability. The imprinting factor for the soluble imprinted nanoroads is 6.8. The equilibrium dissociation constant and the apparent maximum number of the proposed imprinted nanorods are 248.5 μM and 22.1 μmol/g, respectively. We believe that such imprinted nanorods may provide an appealing substitute for natural receptors in homogeneous recognition related fields.

  8. Soluble Molecularly Imprinted Nanorods for Homogeneous Molecular Recognition

    Science.gov (United States)

    Liang, Rongning; Wang, Tiantian; Zhang, Huan; Yao, Ruiqing; Qin, Wei

    2018-03-01

    Nowadays, it is still difficult for molecularly imprinted polymer (MIPs) to achieve homogeneous recognition since they cannot be easily dissolved in organic or aqueous phase. To address this issue, soluble molecularly imprinted nanorods have been synthesized by using soluble polyaniline doped with a functionalized organic protonic acid as the polymer matrix. By employing 1-naphthoic acid as a model, the proposed imprinted nanorods exhibit an excellent solubility and good homogeneous recognition ability. The imprinting factor for the soluble imprinted nanoroads is 6.8. The equilibrium dissociation constant and the apparent maximum number of the proposed imprinted nanorods are 248.5 μM and 22.1 μmol/g, respectively. We believe that such imprinted nanorods may provide an appealing substitute for natural receptors in homogeneous recognition related fields.

  9. Fuzzy hierarchical model for risk assessment principles, concepts, and practical applications

    CERN Document Server

    Chan, Hing Kai

    2013-01-01

    Risk management is often complicated by situational uncertainties and the subjective preferences of decision makers. Fuzzy Hierarchical Model for Risk Assessment introduces a fuzzy-based hierarchical approach to solve risk management problems considering both qualitative and quantitative criteria to tackle imprecise information.   This approach is illustrated through number of case studies using examples from the food, fashion and electronics sectors to cover a range of applications including supply chain management, green product design and green initiatives. These practical examples explore how this method can be adapted and fine tuned to fit other industries as well.   Supported by an extensive literature review, Fuzzy Hierarchical Model for Risk Assessment  comprehensively introduces a new method for project managers across all industries as well as researchers in risk management.

  10. Hierarchical Decompositions for the Computation of High-Dimensional Multivariate Normal Probabilities

    KAUST Repository

    Genton, Marc G.

    2017-09-07

    We present a hierarchical decomposition scheme for computing the n-dimensional integral of multivariate normal probabilities that appear frequently in statistics. The scheme exploits the fact that the formally dense covariance matrix can be approximated by a matrix with a hierarchical low rank structure. It allows the reduction of the computational complexity per Monte Carlo sample from O(n2) to O(mn+knlog(n/m)), where k is the numerical rank of off-diagonal matrix blocks and m is the size of small diagonal blocks in the matrix that are not well-approximated by low rank factorizations and treated as dense submatrices. This hierarchical decomposition leads to substantial efficiencies in multivariate normal probability computations and allows integrations in thousands of dimensions to be practical on modern workstations.

  11. Hierarchical Decompositions for the Computation of High-Dimensional Multivariate Normal Probabilities

    KAUST Repository

    Genton, Marc G.; Keyes, David E.; Turkiyyah, George

    2017-01-01

    We present a hierarchical decomposition scheme for computing the n-dimensional integral of multivariate normal probabilities that appear frequently in statistics. The scheme exploits the fact that the formally dense covariance matrix can be approximated by a matrix with a hierarchical low rank structure. It allows the reduction of the computational complexity per Monte Carlo sample from O(n2) to O(mn+knlog(n/m)), where k is the numerical rank of off-diagonal matrix blocks and m is the size of small diagonal blocks in the matrix that are not well-approximated by low rank factorizations and treated as dense submatrices. This hierarchical decomposition leads to substantial efficiencies in multivariate normal probability computations and allows integrations in thousands of dimensions to be practical on modern workstations.

  12. Searching for continuous gravitational wave signals. The hierarchical Hough transform algorithm

    International Nuclear Information System (INIS)

    Papa, M.; Schutz, B.F.; Sintes, A.M.

    2001-01-01

    It is well known that matched filtering techniques cannot be applied for searching extensive parameter space volumes for continuous gravitational wave signals. This is the reason why alternative strategies are being pursued. Hierarchical strategies are best at investigating a large parameter space when there exist computational power constraints. Algorithms of this kind are being implemented by all the groups that are developing software for analyzing the data of the gravitational wave detectors that will come online in the next years. In this talk I will report about the hierarchical Hough transform method that the GEO 600 data analysis team at the Albert Einstein Institute is developing. The three step hierarchical algorithm has been described elsewhere [8]. In this talk I will focus on some of the implementational aspects we are currently concerned with. (author)

  13. Hierarchical structure graphitic-like/MoS2 film as superlubricity material

    Science.gov (United States)

    Gong, Zhenbin; Jia, Xiaolong; Ma, Wei; Zhang, Bin; Zhang, Junyan

    2017-08-01

    Friction and wear result in a great amount of energy loss and the invalidation of mechanical parts, thus it is necessary to minimize friction in practical application. In this study, the graphitic-like/MoS2 films with hierarchical structure were synthesized by the combination of pulse current plasma chemical-vapor deposition and medium frequency unbalanced magnetron sputtering in preheated environment. This hierarchical structure composite with multilayer nano sheets endows the films excellent tribological performance, which easily achieves macro superlubricity (friction coefficient ∼0.004) under humid air. Furthermore, it is expected that hierarchical structure of graphitic-like/MoS2 films could match the requirements of large scale, high bear-capacity and wear-resistance of actual working conditions, which could be widely used in the industrial production as a promising superlubricity material.

  14. Homogeneity Study of UO2 Pellet Density for Quality Control

    International Nuclear Information System (INIS)

    Moon, Je Seon; Park, Chang Je; Kang, Kwon Ho; Moon, Heung Soo; Song, Kee Chan

    2005-01-01

    A homogeneity study has been performed with various densities of UO 2 pellets as the work of a quality control. The densities of the UO 2 pellets are distributed randomly due to several factors such as the milling conditions and sintering environments, etc. After sintering, total fourteen bottles were chosen for UO 2 density and each bottle had three samples. With these bottles, the between-bottle and within-bottle homogeneity were investigated via the analysis of the variance (ANOVA). From the results of ANOVA, the calculated F-value is used to determine whether the distribution is accepted or rejected from the view of a homogeneity under a certain confidence level. All the homogeneity checks followed the International Standard Guide 35

  15. The concept of a hierarchical cosmos

    Science.gov (United States)

    Grujić, P. V.

    2003-10-01

    The idea of a hierachically structured cosmos can be traced back to the Presocratic Hellada. In the fifth century BC Anaxagoras from Clazomenae developed an idea of a sort of fractal material world, by introducing the concept of seeds (spermata), or homoeomeries as Aristotle dubbed it later (Grujić 2001). Anaxagoras ideas have been grossly neglected during the Middle Ages, to be invoked by a number of post-Renaissance thinkers, like Leibniz, Kant, etc, though neither of them referred to their Greek predecessor. But the real resurrections of the hierarchical paradigm started at the beginning of the last century, with Fournier and Charlier (Grujić 2002). Second half of the 20th century witnessed an intensive development of the theoretical models based on the (multi)fractal paradigm, as well as a considerable body of the observational evidence in favour of the hierarchical cosmos (Saar 1988). We overview the state of the art of the cosmological fractal concept, both within the astrophysical (Sylos Labini et al 1998), methodological (Ribeiro 2001) and epistemological (Ribeiro and Videira 1998) context.

  16. A self-defining hierarchical data system

    Science.gov (United States)

    Bailey, J.

    1992-01-01

    The Self-Defining Data System (SDS) is a system which allows the creation of self-defining hierarchical data structures in a form which allows the data to be moved between different machine architectures. Because the structures are self-defining they can be used for communication between independent modules in a distributed system. Unlike disk-based hierarchical data systems such as Starlink's HDS, SDS works entirely in memory and is very fast. Data structures are created and manipulated as internal dynamic structures in memory managed by SDS itself. A structure may then be exported into a caller supplied memory buffer in a defined external format. This structure can be written as a file or sent as a message to another machine. It remains static in structure until it is reimported into SDS. SDS is written in portable C and has been run on a number of different machine architectures. Structures are portable between machines with SDS looking after conversion of byte order, floating point format, and alignment. A Fortran callable version is also available for some machines.

  17. iHAT: interactive Hierarchical Aggregation Table for Genetic Association Data

    Directory of Open Access Journals (Sweden)

    Heinrich Julian

    2012-05-01

    Full Text Available Abstract In the search for single-nucleotide polymorphisms which influence the observable phenotype, genome wide association studies have become an important technique for the identification of associations between genotype and phenotype of a diverse set of sequence-based data. We present a methodology for the visual assessment of single-nucleotide polymorphisms using interactive hierarchical aggregation techniques combined with methods known from traditional sequence browsers and cluster heatmaps. Our tool, the interactive Hierarchical Aggregation Table (iHAT, facilitates the visualization of multiple sequence alignments, associated metadata, and hierarchical clusterings. Different color maps and aggregation strategies as well as filtering options support the user in finding correlations between sequences and metadata. Similar to other visualizations such as parallel coordinates or heatmaps, iHAT relies on the human pattern-recognition ability for spotting patterns that might indicate correlation or anticorrelation. We demonstrate iHAT using artificial and real-world datasets for DNA and protein association studies as well as expression Quantitative Trait Locus data.

  18. A Hierarchal Risk Assessment Model Using the Evidential Reasoning Rule

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Ji

    2017-02-01

    Full Text Available This paper aims to develop a hierarchical risk assessment model using the newly-developed evidential reasoning (ER rule, which constitutes a generic conjunctive probabilistic reasoning process. In this paper, we first provide a brief introduction to the basics of the ER rule and emphasize the strengths for representing and aggregating uncertain information from multiple experts and sources. Further, we discuss the key steps of developing the hierarchical risk assessment framework systematically, including (1 formulation of risk assessment hierarchy; (2 representation of both qualitative and quantitative information; (3 elicitation of attribute weights and information reliabilities; (4 aggregation of assessment information using the ER rule and (5 quantification and ranking of risks using utility-based transformation. The proposed hierarchical risk assessment framework can potentially be implemented to various complex and uncertain systems. A case study on the fire/explosion risk assessment of marine vessels demonstrates the applicability of the proposed risk assessment model.

  19. Hierarchical VOOH hollow spheres for symmetrical and asymmetrical supercapacitor devices

    Science.gov (United States)

    Jing, Xuyang; Wang, Cong; Feng, Wenjing; Xing, Na; Jiang, Hanmei; Lu, Xiangyu; Zhang, Yifu; Meng, Changgong

    2018-01-01

    Hierarchical VOOH hollow spheres with low crystallinity composed of nanoparticles were prepared by a facile and template-free method, which involved a precipitation of precursor microspheres in aqueous solution at room temperature and subsequent hydrothermal reaction. Quasi-solid-state symmetric and asymmetric supercapacitor (SSC and ASC) devices were fabricated using hierarchical VOOH hollow spheres as the electrodes, and the electrochemical properties of the VOOH//VOOH SSC device and the VOOH//AC ASC device were studied by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS). Results demonstrated that the electrochemical performance of the VOOH//AC ASC device was better than that of the VOOH//VOOH SSC device. After 3000 cycles, the specific capacitance of the VOOH//AC ASC device retains 83% of the initial capacitance, while the VOOH//VOOH SSC device retains only 7.7%. Findings in this work proved that hierarchical VOOH hollow spheres could be a promising candidate as an ideal electrode material for supercapacitor devices.

  20. Hierarchical organisation of causal graphs

    International Nuclear Information System (INIS)

    Dziopa, P.

    1993-01-01

    This paper deals with the design of a supervision system using a hierarchy of models formed by graphs, in which the variables are the nodes and the causal relations between the variables of the arcs. To obtain a representation of the variables evolutions which contains only the relevant features of their real evolutions, the causal relations are completed with qualitative transfer functions (QTFs) which produce roughly the behaviour of the classical transfer functions. Major improvements have been made in the building of the hierarchical organization. First, the basic variables of the uppermost level and the causal relations between them are chosen. The next graph is built by adding intermediary variables to the upper graph. When the undermost graph has been built, the transfer functions parameters corresponding to its causal relations are identified. The second task consists in the upwelling of the information from the undermost graph to the uppermost one. A fusion procedure of the causal relations has been designed to compute the QFTs relevant for each level. This procedure aims to reduce the number of parameters needed to represent an evolution at a high level of abstraction. These techniques have been applied to the hierarchical modelling of nuclear process. (authors). 8 refs., 12 figs