WorldWideScience

Sample records for hierarchical hollow co9s8

  1. Hollow TiO2@Co9S8 Core-Branch Arrays as Bifunctional Electrocatalysts for Efficient Oxygen/Hydrogen Production.

    Science.gov (United States)

    Deng, Shengjue; Zhong, Yu; Zeng, Yinxiang; Wang, Yadong; Wang, Xiuli; Lu, Xihong; Xia, Xinhui; Tu, Jiangping

    2018-03-01

    Designing ever more efficient and cost-effective bifunctional electrocatalysts for oxygen/hydrogen evolution reactions (OER/HER) is greatly vital and challenging. Here, a new type of binder-free hollow TiO 2 @Co 9 S 8 core-branch arrays is developed as highly active OER and HER electrocatalysts for stable overall water splitting. Hollow core-branch arrays of TiO 2 @Co 9 S 8 are readily realized by the rational combination of crosslinked Co 9 S 8 nanoflakes on TiO 2 core via a facile and powerful sulfurization strategy. Arising from larger active surface area, richer/shorter transfer channels for ions/electrons, and reinforced structural stability, the as-obtained TiO 2 @Co 9 S 8 core-branch arrays show noticeable exceptional electrocatalytic performance, with low overpotentials of 240 and 139 mV at 10 mA cm -2 as well as low Tafel slopes of 55 and 65 mV Dec -1 for OER and HER in alkaline medium, respectively. Impressively, the electrolysis cell based on the TiO 2 @Co 9 S 8 arrays as both cathode and anode exhibits a remarkably low water splitting voltage of 1.56 V at 10 mA cm -2 and long-term durability with no decay after 10 d. The versatile fabrication protocol and smart branch-core design provide a new way to construct other advanced metal sulfides for energy conversion and storage.

  2. Facile synthesis of nickel-doped Co9S8 hollow nanoparticles with large surface-controlled pseudocapacitive and fast sodium storage

    Science.gov (United States)

    Zhou, Hepeng; Cao, Yijun; Ma, Zilong; Li, Shulei

    2018-05-01

    Transition metal sulfides are considered to be promising candidates as anodes for sodium ion batteries (SIBs). However, their further applications are limited by poor electrical conductivity and sluggish electrochemical kinetics. We report, for the first time, nickel-doped Co9S8 hollow nanoparticles as SIB anodes with enhanced electrical conductivity and a large pseudocapacitive effect, leading to fast kinetics. This compound exhibits excellent sodium storage performance, including a high capacity of 556.7 mA h g-1, a high rate capability of 2000 mA g-1 and an excellent stability up to 200 cycles. The results demonstrate that nickel-doped Co9S8 hollow nanoparticles are a promising anode material for SIBs.

  3. Fabrication of a 3D Hierarchical Sandwich Co9 S8 /α-MnS@N-C@MoS2 Nanowire Architectures as Advanced Electrode Material for High Performance Hybrid Supercapacitors.

    Science.gov (United States)

    Kandula, Syam; Shrestha, Khem Raj; Kim, Nam Hoon; Lee, Joong Hee

    2018-05-10

    Supercapacitors suffer from lack of energy density and impulse the energy density limit, so a new class of hybrid electrode materials with promising architectures is strongly desirable. Here, the rational design of a 3D hierarchical sandwich Co 9 S 8 /α-MnS@N-C@MoS 2 nanowire architecture is achieved during the hydrothermal sulphurization reaction by the conversion of binary mesoporous metal oxide core to corresponding individual metal sulphides core along with the formation of outer metal sulphide shell at the same time. Benefiting from the 3D hierarchical sandwich architecture, Co 9 S 8 /α-MnS@N-C@MoS 2 electrode exhibits enhanced electrochemical performance with high specific capacity/capacitance of 306 mA h g -1 /1938 F g -1 at 1 A g -1 , and excellent cycling stability with a specific capacity retention of 86.9% after 10 000 cycles at 10 A g -1 . Moreover, the fabricated asymmetric supercapacitor device using Co 9 S 8 /α-MnS@N-C@MoS 2 as the positive electrode and nitrogen doped graphene as the negative electrode demonstrates high energy density of 64.2 Wh kg -1 at 729.2 W kg -1 , and a promising energy density of 23.5 Wh kg -1 is still attained at a high power density of 11 300 W kg -1 . The hybrid electrode with 3D hierarchical sandwich architecture promotes enhanced energy density with excellent cyclic stability for energy storage. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Symmetrical synergy of hybrid Co9S8-MoSx electrocatalysts for hydrogen evolution reaction

    KAUST Repository

    Zhou, Xiaofeng

    2017-01-07

    There exists a strong demand to replace expensive noble metal catalysts with efficient and earth-abundant catalysts for hydrogen evolution reaction (HER). Recently the Co- and Mo-based sulfides such as CoS2, Co9S8, and MoSx have been considered as several promising HER candidates. Here, a highly active and stable hybrid electrocatalyst 3D flower-like hierarchical Co9S8 nanosheets incorporated with MoSx has been developed via a one-step sulfurization method. Since the amounts of Co9S8 and MoSx are easily adjustable, we verify that small amounts of MoSx promotes the HER activity of Co9S8, and vise versa. In other words, we validate that symmetric synergy for HER in the Co- and Mo-based sulfide hybrid catalysts, a long-standing question requiring clear experimental proofs. Meanwhile, the best electrocatalyst Co9S8-30@MoSx/CC in this study exhibits excellent HER performance with an overpotential of −98 mV at −10 mA/cm2, a small Tafel slope of 64.8 mV/dec, and prominent electrochemical stability.

  5. Preparation and characterization of Co9S8 nanocrystalline and ...

    Indian Academy of Sciences (India)

    Wintec

    vibrating sample magnetometer (VSM) and laser Raman spectrometer. The results show that the as-prepared. Co9S8 nanocrystal with a size of 6 nm take on weak paramagnetism at room temperature. The lengths and dia- meters of the nanorods were about 4 μm and 200 nm, respectively. The reason for the relative lower ...

  6. Symmetrical synergy of hybrid Co9S8-MoSx electrocatalysts for hydrogen evolution reaction

    KAUST Repository

    Zhou, Xiaofeng; Yang, Xiulin; Hedhili, Mohamed N.; Li, Henan; Min, Shixiong; Ming, Jun; Huang, Kuo-Wei; Zhang, Wenjing; Li, Lain-Jong

    2017-01-01

    There exists a strong demand to replace expensive noble metal catalysts with efficient and earth-abundant catalysts for hydrogen evolution reaction (HER). Recently the Co- and Mo-based sulfides such as CoS2, Co9S8, and MoSx have been considered

  7. Synthesis of Co9S8 and CoS nanocrystallites using Co(II ...

    Indian Academy of Sciences (India)

    Synthesis of Co9S8 and CoS nanocrystallites using Co(II) ... hydrothermal processing,24,25 etc. However, the ..... Cobalt sulphide nanoparticles were prepared by refluxing .... CdS nanostructures in ethylenediamine.28,29 Figure 2a shows.

  8. Mechanical Alloying Synthesis of Co9S8 Particles as Materials for Supercapacitors

    Directory of Open Access Journals (Sweden)

    Bo Li

    2016-06-01

    Full Text Available Cobalt sulfide (Co9S8 particles are compounded as the electrode materials of supercapacitors by a mechanical alloying method. They show excellent properties including good cycling stability and high specific capacitance. A supercapacitor is assembled using Co9S8 as the anode and activated carbon (AC as the cathode. It gains a maximum specific capacitance of 55 F·g−1 at a current density of 0.5 A·g−1, and also an energy density of 15 Wh·kg−1. Those results show that the novel and facile synthetic route may be able to offer a new way to synthesize alloy compounds with excellent supercapacitive properties.

  9. Chemical grafting of Co9S8 onto C60 for hydrogen spillover and storage.

    Science.gov (United States)

    Han, Lu; Qin, Wei; Zhou, Jia; Jian, Jiahuang; Lu, Songtao; Wu, Xiaohong; Fan, Guohua; Gao, Peng; Liu, Boyu

    2017-04-20

    Metal modified C 60 is considered to be a potential hydrogen storage medium due to its high theoretical capacity. Research interest is growing in various hybrid inorganic compounds-C 60 . While the design and synthesis of a novel hybrid inorganic compound-C 60 is difficult to attain, it has been theorized that the atomic hydrogen could transfer from the inorganic compound to the adjacent C 60 surfaces via spillover and surface diffusion. Here, as a proof of concept experiment, we graft Co 9 S 8 onto C 60 via a facile high energy ball milling process. The Raman, XPS, XRD, TEM, HTEM and EELS measurements have been conducted to evaluate the composition and structure of the pizza-like hybrid material. In addition, the electrochemical measurements and calculated results demonstrate that the chemical "bridges" (C-S bonds) between these two materials enhance the binding strength and, hence, facilitate the hydriding reaction of C 60 during the hydrogen storage process. As a result, an increased hydrogen storage capacity of 4.03 wt% is achieved, along with a favorable cycling stability of ∼80% after 50 cycles. Excluding the direct hydrogen storage contribution from Co 9 S 8 in the hybrid paper, the hydrogen storage ability of C 60 was enhanced by 5.9× through the hydriding reaction caused by the Co 9 S 8 modifier. Based on these experimental measurements and theoretical calculations, the unique chemical structure reported here could potentially inspire other C 60 -based advanced hybrids.

  10. Vertically Aligned Co9 S8 Nanotube Arrays onto Graphene Papers as High-Performance Flexible Electrodes for Supercapacitors.

    Science.gov (United States)

    Xiong, Dongbin; Li, Xifei; Bai, Zhimin; Li, Jianwei; Han, Yan; Li, Dejun

    2018-02-16

    Paper-like electrodes are emerging as a new category of advanced electrodes for flexible supercapacitors (SCs). Graphene, a promising two-dimensional material with high conductivity, can be easily processed into papers. Here, we report a rational design of flexible architecture with Co 9 S 8 nanotube arrays (NAs) grown onto graphene paper (GP) via a facile two-step hydrothermal method. When employed as flexible free-standing electrode for SCs, the proposed architectured Co 9 S 8 /GPs exhibits superior electrochemical performance with ultrahigh capacitance and outstanding rate capability (469 F g -1 at 10 A g -1 ). These results demonstrate that the new nanostructured Co 9 S 8 /GPs can be potentially applied in high performance flexible supercapacitors. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Facile synthesis of CoNi2S4/Co9S8 composites as advanced electrode materials for supercapacitors

    Science.gov (United States)

    Zhao, Fenglin; Huang, Wanxia; Zhang, Hongtao; Zhou, Dengmei

    2017-12-01

    In this paper, a facile chemical bath deposition method was utilized to synthesize three-dimensional nanostructured CoNi2S4/Co9S8 (CNSCS) composites as advanced electrode materials for high performance supercapacitors. CNSCS composites showed remarkable electrochemical performance owing to the high porosity, appropriate pore size distribution, novel architecture and synergistic effect of Ni/Co ions. The electrochemical tests revealed that CNSCS composites exhibited high specific capacitance (1183.3 Fg-1 at the current density of 2 Ag-1), excellent rate performance (74.9% retention with tenfold current density increase) and outstanding cycle life stability. Moreover, the effect of temperature on electrochemical performance of CNSCS composites was investigated and the results indicated the specific capacitance of CoNi2S4/Co9S8 can keep relatively stable in a wide temperature from 0 °C to 50 °C. These results indicated that the synthesized CNSCS composites can be a promising electrode materials candidate for supercapacitors and chemical bath deposition is a promising processing route for CNSCS composites production.

  12. Multiwalled carbon nanotube@a-C@Co9S8 nanocomposites: a high-capacity and long-life anode material for advanced lithium ion batteries

    Science.gov (United States)

    Zhou, Yanli; Yan, Dong; Xu, Huayun; Liu, Shuo; Yang, Jian; Qian, Yitai

    2015-02-01

    A one-dimensional MWCNT@a-C@Co9S8 nanocomposite has been prepared via a facile solvothermal reaction followed by a calcination process. The amorphous carbon layer between Co9S8 and MWCNT acts as a linker to increase the loading of sulfides on MWCNT. When evaluated as anode materials for lithium ion batteries, the MWCNT@a-C@Co9S8 nanocomposite shows the advantages of high capacity and long life, superior to Co9S8 nanoparticles and MWCNT@Co9S8 nanocomposites. The reversible capacity could be retained at 662 mA h g-1 after 120 cycles at 1 A g-1. The efficient synthesis and excellent performances of this nanocomposite offer numerous opportunities for other sulfides as a new anode for lithium ion batteries.A one-dimensional MWCNT@a-C@Co9S8 nanocomposite has been prepared via a facile solvothermal reaction followed by a calcination process. The amorphous carbon layer between Co9S8 and MWCNT acts as a linker to increase the loading of sulfides on MWCNT. When evaluated as anode materials for lithium ion batteries, the MWCNT@a-C@Co9S8 nanocomposite shows the advantages of high capacity and long life, superior to Co9S8 nanoparticles and MWCNT@Co9S8 nanocomposites. The reversible capacity could be retained at 662 mA h g-1 after 120 cycles at 1 A g-1. The efficient synthesis and excellent performances of this nanocomposite offer numerous opportunities for other sulfides as a new anode for lithium ion batteries. Electronic supplementary information (ESI) available: Infrared spectrogram (IR) of glucose treated MWCNT; TEM images of MWCNT@a-C treated by different concentrations of glucose; SEM and TEM images of the intermediate product obtained from the solvothermal reaction between thiourea and Co(Ac)2; EDS spectrum of MWCNT@a-C@Co9S8 composites; SEM and TEM images of MWCNT@Co9S8 nanocomposites obtained without the hydrothermal treatment by glucose; SEM and TEM images of Co9S8 nanoparticles; Galvanostatic discharge-charge profiles and cycling performance of MWCNT@a-C; TEM images

  13. Highly uniform Co_9S_8 nanoparticles grown on graphene nanosheets as advanced anode materials for improved Li-storage performance

    International Nuclear Information System (INIS)

    Liu, Shumin; Wang, Jinxian; Wang, Jianwei; Zhang, Feifei; Wang, Limin

    2016-01-01

    Highlights: • Co_9S_8/graphene nanocomposites were synthesized via a facile solvothermal method followed by thermal treatment in N_2 at 500 °C. • Highly uniform Co_9S_8 nanoparticles with a size of about 80–90 nm are evenly grafted on the surface of GNS. • Such unique Co_9S_8/GNS structure exhibits great electrochemical property, showing great potential as anode materials for LIB. - Abstract: A Co_9S_8/GNS (graphene nanosheets) nanocomposites has been synthesized via a facile solvothermal approach followed by thermal treatment in nitrogen at 500 °C using graphite oxide sheets, CoCl_2·6H_2O and thiourea as the starting materials. Highly uniform Co_9S_8 nanoparticles with a size of about 80–90 nm are evenly grafted on the surface of GNS, forming a unique Co_9S_8/GNS hybrid nanostructure. When evaluated as anode materials for lithium ion batteries, impressive electrochemical performances of the as-prepared nanocomposites are achieved compared to that of pure bulk Co_9S_8, with an high reversible capacity of 1480 mAh g"−"1. Moreover, the as-synthesized nanocomposites present excellent cycling durability and high-rate capability. The improvement in the electrochemical properties could be attributed to the well-designed structure of the Co_9S_8/GNS nanocomposite which possesses large number of accessible active sites for lithium-ion insertion, fast ion diffusion rate and good electronic conductivity.

  14. Co9 S8 /Co as a High-Performance Anode for Sodium-Ion Batteries with an Ether-Based Electrolyte.

    Science.gov (United States)

    Zhao, Yingying; Pang, Qiang; Wei, Yingjin; Wei, Luyao; Ju, Yanming; Zou, Bo; Gao, Yu; Chen, Gang

    2017-12-08

    Co 9 S 8 has been regarded as a desirable anode material for sodium-ion batteries because of its high theoretical capacity. In this study, a Co 9 S 8 anode material containing 5.5 wt % Co (Co 9 S 8 /Co) was prepared by a solid-state reaction. The electrochemical properties of the material were studied in carbonate and ether-based electrolytes (EBE). The results showed that the material had a longer cycle life and better rate capability in EBE. This excellent electrochemical performance was attributed to a low apparent activation energy and a low overpotential for Na deposition in EBE, which improved the electrode kinetic properties. Furthermore, EBE suppressed side reactions of the electrode and electrolyte, which avoided the formation of a solid electrolyte interphase film. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Gram-scale synthesis of catalytic Co9S8 nanocrystal ink as a cathode material for spray-deposited, large-area dye-sensitized solar cells.

    Science.gov (United States)

    Chang, Shu-Hao; Lu, Ming-De; Tung, Yung-Liang; Tuan, Hsing-Yu

    2013-10-22

    We report the development of Co9S8 nanocrystals as a cost-effective cathode material that can be readily combined with spraying techniques to fabricate large-area dye-sensitized solar cell (DSSC) devices and can be further connected with series or parallel cell architectures to obtain a relatively high output voltage or current. A gram-scale synthesis of Co9S8 nanocrystal is carried out via a noninjection reaction by mixing anhydrous CoCl2 with trioctylphosphine (TOP), dodecanethiol and oleylamine (OLA) at 250 °C. The Co9S8 nanocrystals possess excellent catalytic ability with respect to I(-)/I3(-) redox reactions. The Co9S8 nanocrystals are prepared as nanoinks to fabricate uniform, crack-free Co9S8 thin films on different substrates by using a spray deposition technique. These Co9S8 films are used as counter electrodes assembled with dye-adsorbed TiO2 photoanodes to fabricate DSSC devices having a working area of 2 cm(2) and an average power conversion efficiency (PCE) of 7.02 ± 0.18% under AM 1.5 solar illumination, which is comparable with the PCE of 7.2 ± 0.12% obtained using a Pt cathode. Furthermore, six 2 cm(2)-sized DSSC devices connected in series output an open-circuit voltage of 4.2 V that can power a wide range of electronic devices such as LED arrays and can charge commercial lithium ion batteries.

  16. Two-step hydrothermal synthesis of NiCo2S4/Co9S8 nanorods on nickel foam for high energy density asymmetric supercapacitors

    Science.gov (United States)

    Xu, Rui; Lin, Jianming; Wu, Jihuai; Huang, Miaoliang; Fan, Leqing; Chen, Hongwei; He, Xin; Wang, Yiting; Xu, Zedong

    2018-03-01

    It is still a huge challenge to obtain a high-energy-density asymmetric supercapacitors and develop an active electrode material with excellent electrochemical characteristics. Although NiCo2S4 has been considered as one of the promising positive electrode materials for asymmetric supercapacitors, the electrochemical performance of the NiCo2S4-based positive electrodes is still relatively low and cannot meet the demand in the devices. Herein, NiCo2S4/Co9S8 nanorods with a large capacitance are synthesized via a simple two-step hydrothermal treatment. A high-performance asymmetric supercapacitor operating at 1.6 V is successfully assembled using the NiCo2S4/Co9S8 nanorods as positive electrode and activated carbon as negative electrode in 3 M KOH aqueous electrolyte, which demonstrates a fairly high energy density of 49.6 Wh kg-1 at a power density of 123 W kg-1, an excellent capacitance of 0.91 F cm-2 (139.42 F g-1) at current density of 1 mA cm-2 as well as a remarkable cycling stability due to the high physical strength, the large specific surface area, and the good conductivity for NiCo2S4/Co9S8 nanorods and the brilliant synergistic effect for NiCo2S4 and Co9S8 electrode materials. The as-prepared NiCo2S4/Co9S8 nanorods open up a new platform as positive electrode material for high-energy-density asymmetric supercapacitors in energy-storage.

  17. Flexible asymmetric supercapacitors based upon Co9S8 nanorod//Co3O4@RuO2 nanosheet arrays on carbon cloth.

    Science.gov (United States)

    Xu, Jing; Wang, Qiufan; Wang, Xiaowei; Xiang, Qingyi; Liang, Bo; Chen, Di; Shen, Guozhen

    2013-06-25

    We have successfully fabricated flexible asymmetric supercapacitors (ASCs) based on acicular Co9S8 nanorod arrays as positive materials and Co3O4@RuO2 nanosheet arrays as negative materials on woven carbon fabrics. Co9S8 nanorod arrays were synthesized by a hydrothermal sulfuration treatment of acicular Co3O4 nanorod arrays, while the RuO2 was directly deposited on the Co3O4 nanorod arrays. Carbon cloth was selected as both the substrate and the current collector for its good conductivity, high flexibility, good physical strength, and lightweight architecture. Both aqueous KOH solutions and polyvinyl alcohol (PVA)/KOH were employed as electrolyte for electrochemical measurements. The as-fabricated ASCs can be cycled reversibly in the range of 0-1.6 V and exhibit superior electrochemical performance with an energy density of 1.21 mWh/cm(3) at a power density of 13.29 W/cm(3) in aqueous electrolyte and an energy density of 1.44 mWh/cm(3) at the power density of 0.89 W/cm(3) in solid-state electrolyte, which are almost 10-fold higher than those reported in early ASC work. Moreover, they present excellent cycling performance at multirate currents and large currents after thousands of cycles. The high-performance nanostructured ASCs have significant potential applications in portable electronics and electrical vehicles.

  18. Homogeneously Dispersed Co9S8 Anchored on Nitrogen and Sulfur Co-Doped Carbon Derived from Soybean as Bifunctional Oxygen Electrocatalysts and Supercapacitors.

    Science.gov (United States)

    Xiao, Zhen; Xiao, Guozheng; Shi, Minhao; Zhu, Ying

    2018-05-16

    Developing low-cost and highly active multifunctional electrocatalysts to replace noble metal catalysts is crucial for the commercialization of future clean energy technology. Herein, homogeneous Co 9 S 8 nanoparticles anchored on nitrogen and sulfur co-doped porous carbon nanomaterials (CoS@NSCs) are fabricated by pyrolysis of natural soybean treated with cobalt nitrate. The unique porous structures of the soybean are utilized to provide space for the oxidation and complexation reactions for cobalt compounds, thus leading to in situ generation of homogenously dispersed cobalt sulfide nanoparticles that anchored on the N,S co-doped carbon framework. Because of the coupling effect of cobalt sulfide and doping heteroatoms, CoS@NSC-800 not only displays excellent electrocatalytic performances with low overpotential and high current density toward both oxygen reduction reaction and oxygen evolution reaction comparable to the commercial Pt/C catalyst and IrO 2 catalyst, but also might be a promising candidate for high-performance supercapacitors. The method for the preparation of the multifunctional hybrids is simple but effective for the formation of uniformly distributed metal sulfide nanoparticles anchored on carbon materials, therefore providing a new perspective for the design and synthesis of multifunctional electrocatalysts for electrochemical energy conversion and storage at a large scale.

  19. Hierarchical VOOH hollow spheres for symmetrical and asymmetrical supercapacitor devices

    Science.gov (United States)

    Jing, Xuyang; Wang, Cong; Feng, Wenjing; Xing, Na; Jiang, Hanmei; Lu, Xiangyu; Zhang, Yifu; Meng, Changgong

    2018-01-01

    Hierarchical VOOH hollow spheres with low crystallinity composed of nanoparticles were prepared by a facile and template-free method, which involved a precipitation of precursor microspheres in aqueous solution at room temperature and subsequent hydrothermal reaction. Quasi-solid-state symmetric and asymmetric supercapacitor (SSC and ASC) devices were fabricated using hierarchical VOOH hollow spheres as the electrodes, and the electrochemical properties of the VOOH//VOOH SSC device and the VOOH//AC ASC device were studied by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS). Results demonstrated that the electrochemical performance of the VOOH//AC ASC device was better than that of the VOOH//VOOH SSC device. After 3000 cycles, the specific capacitance of the VOOH//AC ASC device retains 83% of the initial capacitance, while the VOOH//VOOH SSC device retains only 7.7%. Findings in this work proved that hierarchical VOOH hollow spheres could be a promising candidate as an ideal electrode material for supercapacitor devices.

  20. High-performance free-standing capacitor electrodes of multilayered Co9S8 plates wrapped by carbonized poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)/reduced graphene oxide

    Science.gov (United States)

    Yao, Tinghui; Li, Yali; Liu, Dequan; Gu, Yipeng; Qin, Shengchun; Guo, Xin; Guo, Hui; Ding, Yongqiang; Liu, Qiming; Chen, Qiang; Li, Junshuai; He, Deyan

    2018-03-01

    In this paper, a free-standing electrode structure composed of multilayered Co9S8 plates wrapped by carbonized poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)/reduced graphene oxide (PEDOT:PSS/rGO) layers is introduced. Excellent supercapacitive behaviors, especially long cycling stability at high current densities are delivered owing to the synergetic effects of stable electrical contact between the active material and carbonized PEDOT:PSS/rGO due to the wrapped configuration, efficient charge exchange between the multilayered Co9S8 plates and electrolyte, improved electrical conductance by rGO, and plenty of voids for accommodating volume changes. For the optimized electrode (starting materials: 0.5 mL PEDOT:PSS, 1.0 mL GO (6.0 mg mL-1) and 10.0 mg Co(OH)2), a specific capacitance of about 788.9 F g-1 at 1.0 A g-1 and good cycling stability of over 100% of the initial capacitance (∼488.6 F g-1) after 10000 cycles at a current density of 15.0 A g-1 can be achieved. The assembled asymmetric supercapacitor based on the optimized electrode//active carbon exhibits an energy density of ∼19.6 Wh kg-1 at a power density of 400.9 W kg-1.

  1. Hollow Carbon Nanopolyhedra for Enhanced Electrocatalysis via Confined Hierarchical Porosity.

    Science.gov (United States)

    Song, Xiaokai; Guo, Linli; Liao, Xuemei; Liu, Jian; Sun, Jianhua; Li, Xiaopeng

    2017-06-01

    A novel strategy for the fabrication of hollow Co and N-codoped carbon nanopolyhedra (H-CoNC) from metal-organic framework (MOF) using in situ evaporation of ZnO nanosphere templates is proposed. The excess Zn supply during the pyrolysis process is found beneficial in terms of high nitrogen (≈9.75 at%), relatively homogenous CoN bonding, and the electrochemically accessible hierarchical porous system. Compared with other reported "solid" CoNC of identical surface areas, the newly developed H-CoNC shows enhanced kinetic current in 0.1 m KOH electrolyte and elevated oxygen reduction reaction (ORR) performance in 6 m KOH. The latter exceeds results obtained with the benchmark 20 wt% Pt/C, which is related to the strong confinement of O 2 molecules in the H-CoNC hierarchical porous system. Furthermore, the H-CoNC displays great tolerance toward the methanol crossover and KSCN poisoning. Finally, the assembled Zn-air batteries with H-CoNC yield a record open circuit potential (1.59 V vs Zn, stabilized at 1.52 V), high power density (331.0 mW cm -2 ), and promising rate performance. This work provides a new guideline for the design of MOF-derived carbon materials, as well as novel insights into spatial confinement effect toward the ORR activity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Enhanced lithium storage performances of hierarchical hollow MoS₂ nanoparticles assembled from nanosheets.

    Science.gov (United States)

    Wang, Meng; Li, Guangda; Xu, Huayun; Qian, Yitai; Yang, Jian

    2013-02-01

    MoS(2), because of its layered structure and high theoretical capacity, has been regarded as a potential candidate for electrode materials in lithium secondary batteries. But it suffers from the poor cycling stability and low rate capability. Here, hierarchical hollow nanoparticles of MoS(2) nanosheets with an increased interlayer distance are synthesized by a simple solvothermal reaction at a low temperature. The formation of hierarchical hollow nanoparticles is based on the intermediate, K(2)NaMoO(3)F(3), as a self-sacrificed template. These hollow nanoparticles exhibit a reversible capacity of 902 mA h g(-1) at 100 mA g(-1) after 80 cycles, much higher than the solid counterpart. At a current density of 1000 mA g(-1), the reversible capacity of the hierarchical hollow nanoparticles could be still maintained at 780 mAh g(-1). The enhanced lithium storage performances of the hierarchical hollow nanoparticles in reversible capacities, cycling stability and rate performances can be attributed to their hierarchical surface, hollow structure feature and increased layer distance of S-Mo-S. Hierarchical hollow nanoparticles as an ensemble of these features, could be applied to other electrode materials for the superior electrochemical performance.

  3. Hierarchical CuO hollow microspheres: Controlled synthesis for enhanced lithium storage performance

    International Nuclear Information System (INIS)

    Guan Xiangfeng; Li Liping; Li Guangshe; Fu Zhengwei; Zheng Jing; Yan Tingjiang

    2011-01-01

    Graphical abstract: Hierarchical CuO microspheres with hollow interiors were formed through self-wrapping of a single layer of radically oriented CuO nanorods, and these microspheres showed excellent cycle performance and enhanced lithium storage capacity. Display Omitted Research highlights: → Hierarchical CuO hollow microspheres were prepared by a hydrothermal method. → The CuO hollow microspheres were assembled from radically oriented nanorods. → The growth mechanism was proposed to proceed via self-assembly and Ostwald's ripening. → The microspheres showed good cycle performance and enhanced lithium storage capacity. → Hierarchical microstructures with hollow interiors promote electrochemical property. - Abstract: In this work, hierarchical CuO hollow microspheres were hydrothermally prepared without use of any surfactants or templates. By controlling the formation reaction conditions and monitoring the relevant reaction processes using time-dependent experiments, it is demonstrated that hierarchical CuO microspheres with hollow interiors were formed through self-wrapping of a single layer of radically oriented CuO nanorods, and that hierarchical spheres could be tuned to show different morphologies and microstructures. As a consequence, the formation mechanism was proposed to proceed via a combined process of self-assembly and Ostwald's ripening. Further, these hollow microspheres were initiated as the anode material in lithium ion batteries, which showed excellent cycle performance and enhanced lithium storage capacity, most likely because of the synergetic effect of small diffusion lengths in building blocks of nanorods and proper void space that buffers the volume expansion. The strategy reported in this work is reproducible, which may help to significantly improve the electrochemical performance of transition metal oxide-based anode materials via designing the hollow structures necessary for developing lithium ion batteries and the relevant

  4. A General Synthesis Strategy for Hierarchical Porous Metal Oxide Hollow Spheres

    Directory of Open Access Journals (Sweden)

    Huadong Fu

    2015-01-01

    Full Text Available The hierarchical porous TiO2 hollow spheres were successfully prepared by using the hydrothermally synthesized colloidal carbon spheres as templates and tetrabutyl titanate as inorganic precursors. The diameter and wall thickness of hollow TiO2 spheres were determined by the hard templates and concentration of tetrabutyl titanate. The particle size, dispersity, homogeneity, and surface state of the carbon spheres can be easily controlled by adjusting the hydrothermal conditions and adding certain amount of the surfactants. The prepared hollow spheres possessed the perfect spherical shape, monodispersity, and hierarchically pore structures, and the further experiment verified that the present approach can be used to prepare other metal oxide hollow spheres, which could be used as catalysis, fuel cells, lithium-air battery, gas sensor, and so on.

  5. Hierarchical hollow spheres of Fe2O3 @polyaniline for lithium ion battery anodes.

    Science.gov (United States)

    Jeong, Jae-Min; Choi, Bong Gill; Lee, Soon Chang; Lee, Kyoung G; Chang, Sung-Jin; Han, Young-Kyu; Lee, Young Boo; Lee, Hyun Uk; Kwon, Soonjo; Lee, Gaehang; Lee, Chang-Soo; Huh, Yun Suk

    2013-11-20

    Hierarchical hollow spheres of Fe2 O3 @polyaniline are fabricated by template-free synthesis of iron oxides followed by a post in- and exterior construction. A combination of large surface area with porous structure, fast ion/electron transport, and mechanical integrity renders this material attractive as a lithium-ion anode, showing superior rate capability and cycling performance. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Hierarchical Ag/AgCl-TiO{sub 2} hollow spheres with enhanced visible-light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xu Long; Yin, Hao Yong [College of Materials Environment Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Nie, Qiu Lin, E-mail: nieqiulin@hdu.edu.cn [College of Materials Environment Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Wu, Wei Wei [College of Materials Environment Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Zhang, Yang; LiYuan, Qiu [College of Science, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2017-01-01

    The hierarchical Ag/AgCl-TiO{sub 2} hollow spheres were synthesized by depositing Ag/AgCl nanoparticles on TiO{sub 2} hollow spheres via a precipitation photoreduction method, and they were further characterized using TGA, SEM, TEM, XRD, XPS, UV–vis DRS and photoelectric chemical analysis. The analysis showed that the hierarchical Ag/AgCl-TiO{sub 2} hollow spheres exhibited the highest photocatalytic activity, which was approximately 13 times higher than that of TiO{sub 2} hollow spheres. The high photocatalytic activity of the composites is due to efficient electron-hole pairs separation at the photocatalyst interfaces, and localized surface plasmon resonance of Ag nanoparticles formed on AgCl particles in the degradation reaction. - Highlights: • TiO{sub 2} hollow spheres were prepared by a sacrificial template method. • The hollow spheres were modified with Ag/AgCl to form the heterojunctions. • The modification may produce synergistic effect of LSPR and hollow structure. • Visible light photocatalytic activity was enhanced on this hollow catalyst. • The mechanism of the improved photocatalytic performance was discussed.

  7. Facile Synthesis of Rambutan-Like ZnO Hierarchical Hollow Microspheres with Highly Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Ke-Jian Ju

    2015-01-01

    Full Text Available Rambutan-like ZnO hierarchical hollow microspheres (ZnO HHMs were constructed under hydrothermal conditions, using carboxyl methyl starch (CMS as a soft template. The resulting products were characterized by using X-ray diffraction (XRD, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. The experimental parameters and growth mechanism of rambutan-like ZnO HHMs were discussed in some detail. The as-prepared samples displayed improved photocatalytic activity for the degradation of rhodamine B under ultraviolet (UV irradiation.

  8. Hierarchical FeTiO3-TiO2 hollow spheres for efficient simulated sunlight-driven water oxidation.

    Science.gov (United States)

    Han, Taoran; Chen, Yajie; Tian, Guohui; Wang, Jian-Qiang; Ren, Zhiyu; Zhou, Wei; Fu, Honggang

    2015-10-14

    Oxygen generation is the key step for the photocatalytic overall water splitting and considered to be kinetically more challenging than hydrogen generation. Here, an effective water oxidation catalyst of hierarchical FeTiO3-TiO2 hollow spheres are prepared via a two-step sequential solvothermal processes and followed by thermal treatment. The existence of an effective heterointerface and built-in electric field in the surface space charge region in FeTiO3-TiO2 hollow spheres plays a positive role in promoting the separation of photoinduced electron-hole pairs. Surface photovoltage, transient-state photovoltage, fluorescence and electrochemical characterization are used to investigate the transfer process of photoinduced charge carriers. The photogenerated charge carriers in the hierarchical FeTiO3-TiO2 hollow spheres with a proper molar ratio display much higher separation efficiency and longer lifetime than those in the FeTiO3 alone. Moreover, it is suggested that the hierarchical porous hollow structure can contribute to the enhancement of light utilization, surface active sites and material transportation through the framework walls. This specific synergy significantly contributes to the remarkable improvement of the photocatalytic water oxidation activity of the hierarchical FeTiO3-TiO2 hollow spheres under simulated sunlight (AM1.5).

  9. Hierarchical Co3O4/PANI hollow nanocages: Synthesis and application for electrode materials of supercapacitors

    Science.gov (United States)

    Ren, Xiaohu; Fan, Huiqing; Ma, Jiangwei; Wang, Chao; Zhang, Mingchang; Zhao, Nan

    2018-05-01

    Hierarchically hollow Co3O4/polyaniline nanocages (Co3O4/PANI NCs) with enhanced specific capacitance and cycle performance for electrode material of supercapacitors are fabricated by combining self-sacrificing template and in situ polymerization route. Benefiting from the good conductivity of PANI improving an electron transport rate as well as high specific surface area from such a hollow structure, the electrode made of Co3O4/PANI NCs exhibits a large specific capacitance of 1301 F/g at the current density of 1 A/g, a much enhancement is obtained as compared with the pristine Co3O4 NCs electrode. The contact resistance (Re), charge-transfer (Rct) and Warburg resistance of Co3O4/PANI NCs electrode is significantly lower than that of the pristine Co3O4 NCs electrode, indicating the enhanced electrical conductivity. In addition, the Co3O4/PANI NCs electrode also displays superior cycling stability with 90 % capacitance retention after 2000 cycles. Moreover, an aqueous asymmetric supercapacitor was successfully assembled using Co3O4/PANI NCs as the positive electrode and activated carbon (AC) as the negative electrode, the assembled device exhibits a superior energy density of 41.5 Wh/kg at 0.8 kW/kg, outstanding power density of 15.9 kW/kg at 18.4 Wh/kg, which significantly transcending those of most previously reported. These results demonstrate that the hierarchically hollow Co3O4/PANI NCs composites have a potential for fabricating electrode of supercapacitors.

  10. Hierarchical Graphene-Encapsulated Hollow SnO2@SnS2 Nanostructures with Enhanced Lithium Storage Capability.

    Science.gov (United States)

    Xu, Wangwang; Xie, Zhiqiang; Cui, Xiaodan; Zhao, Kangning; Zhang, Lei; Dietrich, Grant; Dooley, Kerry M; Wang, Ying

    2015-10-14

    Complex hierarchical structures have received tremendous attention due to their superior properties over their constitute components. In this study, hierarchical graphene-encapsulated hollow SnO2@SnS2 nanostructures are successfully prepared by in situ sulfuration on the backbones of hollow SnO2 spheres via a simple hydrothermal method followed by a solvothermal surface modification. The as-prepared hierarchical SnO2@SnS2@rGO nanocomposite can be used as anode material in lithium ion batteries, exhibiting excellent cyclability with a capacity of 583 mAh/g after 100 electrochemical cycles at a specific current of 200 mA/g. This material shows a very low capacity fading of only 0.273% per cycle from the second to the 100th cycle, lower than the capacity degradation of bare SnO2 hollow spheres (0.830%) and single SnS2 nanosheets (0.393%). Even after being cycled at a range of specific currents varied from 100 mA/g to 2000 mA/g, hierarchical SnO2@SnS2@rGO nanocomposites maintain a reversible capacity of 664 mAh/g, which is much higher than single SnS2 nanosheets (374 mAh/g) and bare SnO2 hollow spheres (177 mAh/g). Such significantly improved electrochemical performance can be attributed to the unique hierarchical hollow structure, which not only effectively alleviates the stress resulting from the lithiation/delithiation process and maintaining structural stability during cycling but also reduces aggregation and facilitates ion transport. This work thus demonstrates the great potential of hierarchical SnO2@SnS2@rGO nanocomposites for applications as a high-performance anode material in next-generation lithium ion battery technology.

  11. Hierarchical NiO-SiO2 composite hollow microspheres with enhanced adsorption affinity towards Congo red in water.

    Science.gov (United States)

    Lei, Chunsheng; Zhu, Xiaofeng; Zhu, Bicheng; Yu, Jiaguo; Ho, Wingkei

    2016-03-15

    Hollow microspheres and hierarchical porous nanostructured materials with desired morphologies have gained remarkable attention for their potential applications in environmental technology. In this study, NiO-SiO2 hollow microspheres were prepared by co-precipitation with SiO2 and nickel salt as precursors, followed by dipping in alkaline solution and calcination. The samples were characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, nitrogen adsorption, and X-ray photoelectron spectroscopy. The synthesized hollow spheres were composed of a SiO2 shell and hierarchical porous NiO nanosheets on the surface. Adsorption experiments suggested that NiO-SiO2 composite particles were powerful adsorbents for removal of Congo red from water, with a maximum adsorption capacity of 204.1 mg/g. The high specific surface areas, hollow structures, and hierarchical porous surfaces of the hollow composite particles are suitable for various applications, including adsorption of pollutants, chemical separation, and water purification. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. One-step synthesis of hierarchically porous hybrid TiO2 hollow spheres with high photocatalytic activity

    Science.gov (United States)

    Liu, Ruiping; Ren, Feng; Yang, Jinlin; Su, Weiming; Sun, Zhiming; Zhang, Lei; Wang, Chang-an

    2016-03-01

    Hierarchically porous hybrid TiO2 hollow spheres were solvothermally synthesized successfully by using tetrabutyl titanate as titanium precursor and hydrated metal sulfates as soft templates. The as-prepared TiO2 spheres with hierarchically pore structures and high specific surface area and pore volume consisted of highly crystallized anatase TiO2 nanocrystals hybridized with a small amount of metal oxide from the hydrated sulfate. The proposed hydrated-sulfate assisted solvothermal (HAS) synthesis strategy was demonstrated to be widely applicable to various systems. Evaluation of the hybrid TiO2 hollow spheres for the photo-decomposition of methyl orange (MO) under visible-light irradiation revealed that they exhibited excellent photocatalytic activity and durability.

  13. Novel hollow microspheres of hierarchical zinc-aluminum layered double hydroxides and their enhanced adsorption capacity for phosphate in water

    International Nuclear Information System (INIS)

    Zhou, Jiabin; Yang, Siliang; Yu, Jiaguo; Shu, Zhan

    2011-01-01

    Highlights: → Hierarchical Zn-Al LDHs hollow microspheres were first synthesized by a simple hydrothermal method using urea as precipitating agent. → The morphology of Zn-Al LDHs can be tailored from irregular platelet to hollow microspheres by simply varying concentrations of urea. → The as-prepared samples exhibit high adsorption capacity (54.1-232 mg/g) for phosphate from aqueous solution. - Abstract: Hollow microspheres of hierarchical Zn-Al layered double hydroxides (LDHs) were synthesized by a simple hydrothermal method using urea as precipitating agent. The morphology and microstructure of the as-prepared samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), nitrogen adsorption-desorption isotherms and fourier transform infrared (FTIR) spectroscopy. It was found that the morphology of hierarchical Zn-Al LDHs can be tuned from irregular platelets to hollow microspheres by simply varying concentrations of urea. The effects of initial phosphate concentration and contact time on phosphate adsorption using various Zn-Al LDHs and their calcined products (LDOs) were investigated from batch tests. Our results indicate that the equilibrium adsorption data were best fitted by Langmuir isothermal model, with the maximum adsorption capacity of 54.1-232 mg/g; adsorption kinetics follows the pseudo-second-order kinetic equation and intra-particle diffusion model. In addition, Zn-Al LDOs are shown to be effective adsorbents for removing phosphate from aqueous solutions due to their hierarchical porous structures and high specific surface areas.

  14. Solvent-free synthesis of nanosized hierarchical sodalite zeolite with a multi-hollow polycrystalline structure

    KAUST Repository

    Zeng, Shangjing; Wang, Runwei; Li, Ang; Huang, Weiwei; Zhang, Zongtao; Qiu, Shilun

    2016-01-01

    A solvent-free route is developed for preparing nanoscale sodalite zeolite with a multi-hollow structure. Furthermore, the synthesis of nanosized hollow sodalite polycrystalline aggregates with a mesoporous structure and high crystallinity

  15. Hierarchical paramecium-like hollow and solid Au/Pt bimetallic nanostructures constructed using goethite as template

    Science.gov (United States)

    Liu, Wei; Repo, Eveliina; Heikkilä, Mikko; Leskelä, Markku; Sillanpää, Mika

    2010-10-01

    Novel hollow and solid paramecium-like hierarchical Au/Pt bimetallic nanostructures were constructed using goethite as template via a seed-mediated growth method. Transmission electron microscopy (TEM), ξ-potential measurement, UV-vis spectroscopy, energy dispersive x-ray spectroscopy (EDS), ICP-AES measurement, x-ray powder diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) were utilized to systematically characterize the bimetallic nanostructures. It is found that the core structure of the paramecium-like bimetallic nanomaterial is closely related to reducing agent. When ascorbic acid is used as reducing agent, goethite serves as in situ sacrificed template and hollow paramecium-like bimetallic structure is obtained. When NH2OH·HCl is used, solid nanostructure with preserved goethite core is produced. Heating the reaction solution is necessary to obtain the paramecium-like morphology with rough interconnected Pt cilia shell. The thickness of Pt cilia layer can be controlled by adjusting the molar ratio of H2PtCl6 to Au nanoseeds. The overgrowth of the rough Pt cilia is proposed to be via an autocatalytic and three-dimensional heterogeneous nucleation process first through flower-like morphology. Both the hollow and solid hierarchical paramecium-like Au/Pt bimetallic nanostructures show good catalytic activities.

  16. Hierarchical paramecium-like hollow and solid Au/Pt bimetallic nanostructures constructed using goethite as template

    International Nuclear Information System (INIS)

    Liu Wei; Repo, Eveliina; Sillanpaeae, Mika; Heikkilae, Mikko; Leskelae, Markku

    2010-01-01

    Novel hollow and solid paramecium-like hierarchical Au/Pt bimetallic nanostructures were constructed using goethite as template via a seed-mediated growth method. Transmission electron microscopy (TEM), ξ-potential measurement, UV-vis spectroscopy, energy dispersive x-ray spectroscopy (EDS), ICP-AES measurement, x-ray powder diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) were utilized to systematically characterize the bimetallic nanostructures. It is found that the core structure of the paramecium-like bimetallic nanomaterial is closely related to reducing agent. When ascorbic acid is used as reducing agent, goethite serves as in situ sacrificed template and hollow paramecium-like bimetallic structure is obtained. When NH 2 OH·HCl is used, solid nanostructure with preserved goethite core is produced. Heating the reaction solution is necessary to obtain the paramecium-like morphology with rough interconnected Pt cilia shell. The thickness of Pt cilia layer can be controlled by adjusting the molar ratio of H 2 PtCl 6 to Au nanoseeds. The overgrowth of the rough Pt cilia is proposed to be via an autocatalytic and three-dimensional heterogeneous nucleation process first through flower-like morphology. Both the hollow and solid hierarchical paramecium-like Au/Pt bimetallic nanostructures show good catalytic activities.

  17. Hierarchical paramecium-like hollow and solid Au/Pt bimetallic nanostructures constructed using goethite as template

    Energy Technology Data Exchange (ETDEWEB)

    Liu Wei; Repo, Eveliina; Sillanpaeae, Mika [Laboratory of Applied Environmental Chemistry, University of Eastern Finland, Patteristonkatu 1, FI-50100 Mikkeli (Finland); Heikkilae, Mikko; Leskelae, Markku, E-mail: weiliuzk@yahoo.cn, E-mail: mika.sillanpaa@uef.fi [Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, PO Box 55 (A.I. Virtasen aukio 1), FI-00014, Helsinki (Finland)

    2010-10-01

    Novel hollow and solid paramecium-like hierarchical Au/Pt bimetallic nanostructures were constructed using goethite as template via a seed-mediated growth method. Transmission electron microscopy (TEM), {xi}-potential measurement, UV-vis spectroscopy, energy dispersive x-ray spectroscopy (EDS), ICP-AES measurement, x-ray powder diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) were utilized to systematically characterize the bimetallic nanostructures. It is found that the core structure of the paramecium-like bimetallic nanomaterial is closely related to reducing agent. When ascorbic acid is used as reducing agent, goethite serves as in situ sacrificed template and hollow paramecium-like bimetallic structure is obtained. When NH{sub 2}OH{center_dot}HCl is used, solid nanostructure with preserved goethite core is produced. Heating the reaction solution is necessary to obtain the paramecium-like morphology with rough interconnected Pt cilia shell. The thickness of Pt cilia layer can be controlled by adjusting the molar ratio of H{sub 2}PtCl{sub 6} to Au nanoseeds. The overgrowth of the rough Pt cilia is proposed to be via an autocatalytic and three-dimensional heterogeneous nucleation process first through flower-like morphology. Both the hollow and solid hierarchical paramecium-like Au/Pt bimetallic nanostructures show good catalytic activities.

  18. Solvent-free synthesis of nanosized hierarchical sodalite zeolite with a multi-hollow polycrystalline structure

    KAUST Repository

    Zeng, Shangjing

    2016-08-03

    A solvent-free route is developed for preparing nanoscale sodalite zeolite with a multi-hollow structure. Furthermore, the synthesis of nanosized hollow sodalite polycrystalline aggregates with a mesoporous structure and high crystallinity is investigated by adding an organosilane surfactant as a mesopore-generating agent.

  19. Enhanced photocatalytic performance and degradation pathway of Rhodamine B over hierarchical double-shelled zinc nickel oxide hollow sphere heterojunction

    Science.gov (United States)

    Zhang, Ying; Zhou, Jiabin; Cai, Weiquan; Zhou, Jun; Li, Zhen

    2018-02-01

    In this study, hierarchical double-shelled NiO/ZnO hollow spheres heterojunction were prepared by calcination of the metallic organic frameworks (MOFs) as a sacrificial template in air via a one-step solvothermal method. Additionally, the photocatalytic activity of the as-prepared samples for the degradation of Rhodamine B (RhB) under UV-vis light irradiation were also investigated. NiO/ZnO microsphere comprised a core and a shell with unique hierarchically porous structure. The photocatalytic results showed that NiO/ZnO hollow spheres exhibited excellent catalytic activity for RhB degradation, causing complete decomposition of RhB (200 mL of 10 g/L) under UV-vis light irradiation within 3 h. Furthermore, the degradation pathway was proposed on the basis of the intermediates during the photodegradation process using liquid chromatography analysis coupled with mass spectroscopy (LC-MS). The improvement in photocatalytic performance could be attributed to the p-n heterojunction in the NiO/ZnO hollow spheres with hierarchically porous structure and the strong double-shell binding interaction, which enhances adsorption of the dye molecules on the catalyst surface and facilitates the electron/hole transfer within the framework. The degradation mechanism of pollutant is ascribed to the hydroxyl radicals (rad OH), which is the main oxidative species for the photocatalytic degradation of RhB. This work provides a facile and effective approach for the fabrication of porous metal oxides heterojunction with high photocatalytic activity and thus can be potentially used in the environmental purification.

  20. Hierarchical nanostructured hollow spherical carbon with mesoporous shell as a unique cathode catalyst support in proton exchange membrane fuel cell.

    Science.gov (United States)

    Fang, Baizeng; Kim, Jung Ho; Kim, Minsik; Kim, Minwoo; Yu, Jong-Sung

    2009-03-07

    Hierarchical nanostructured spherical carbon with hollow macroporous core in combination with mesoporous shell has been explored to support Pt cathode catalyst with high metal loading in proton exchange membrane fuel cell (PEMFC). The hollow core-mesoporous shell carbon (HCMSC) has unique structural characteristics such as large specific surface area and mesoporous volume, ensuring uniform dispersion of the supported high loading (60 wt%) Pt nanoparticles with small particle size, and well-developed three-dimensionally interconnected hierarchical porosity network, facilitating fast mass transport. The HCMSC-supported Pt(60 wt%) cathode catalyst has demonstrated markedly enhanced catalytic activity toward oxygen reduction and greatly improved PEMFC polarization performance compared with carbon black Vulcan XC-72 (VC)-supported ones. Furthermore, the HCMSC-supported Pt(40 wt%) or Pt(60 wt%) outperforms the HCMSC-supported Pt(20 wt%) even at a low catalyst loading of 0.2 mg Pt cm(-2) in the cathode, which is completely different from the VC-supported Pt catalysts. The capability of supporting high loading Pt is supposed to accelerate the commercialization of PEMFC due to the anticipated significant reduction in the amount of catalyst support required, diffusion layer thickness and fabricating cost of the supported Pt catalyst electrode.

  1. Co3O4 based non-enzymatic glucose sensor with high sensitivity and reliable stability derived from hollow hierarchical architecture

    Science.gov (United States)

    Tian, Liangliang; He, Gege; Cai, Yanhua; Wu, Shenping; Su, Yongyao; Yan, Hengqing; Yang, Cong; Chen, Yanling; Li, Lu

    2018-02-01

    Inspired by kinetics, the design of hollow hierarchical electrocatalysts through large-scale integration of building blocks is recognized as an effective approach to the achievement of superior electrocatalytic performance. In this work, a hollow, hierarchical Co3O4 architecture (Co3O4 HHA) was constructed using a coordinated etching and precipitation (CEP) method followed by calcination. The resulting Co3O4 HHA electrode exhibited excellent electrocatalytic activity in terms of high sensitivity (839.3 μA mM-1 cm-2) and reliable stability in glucose detection. The high sensitivity could be attributed to the large specific surface area (SSA), ample unimpeded penetration diffusion paths and high electron transfer rate originating from the unique two-dimensional (2D) sheet-like character and hollow porous architecture. The hollow hierarchical structure also affords sufficient interspace for accommodation of volume change and structural strain, resulting in enhanced stability. The results indicate that Co3O4 HHA could have potential for application in the design of non-enzymatic glucose sensors, and that the construction of hollow hierarchical architecture provides an efficient way to design highly active, stable electrocatalysts.

  2. Facile and tunable synthesis of hierarchical mesoporous silica materials ranging from flower structure with wrinkled edges to hollow structure with coarse surface

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Nanjing, E-mail: nanjing.hao@dartmouth.edu [Dartmouth College, Thayer School of Engineering (United States); Li, Laifeng; Tang, Fangqiong, E-mail: tangfq@mail.ipc.ac.cn [Chinese Academy of Sciences, Technical Institute of Physics and Chemistry (China)

    2016-11-15

    Mesoporous silica materials have attracted great attention in many fields. However, facile and tunable synthesis of hierarchical mesoporous silica structures is still a big challenge, and thus the development of them still lags behind. Herein, well-defined mesoporous silica flower structure with wrinkled edges and mesoporous silica hollow structure with coarse surface were synthesized simply by using poly(vinylpyrrolidone) and hexadecylamine as cotemplates in different water/ethanol solvent systems. The shape evolution from flower to hollow can be easily realized by tuning the volume ratio of water to ethanol, and the yields of both materials can reach gram scale. The formation mechanisms of mesoporous silica flower and hollow structures were also experimentally investigated and discussed. These novel hierarchical structures having unique physicochemical properties may bring many interesting insights into scientific research and technological application.

  3. Hierarchically structured MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors

    Science.gov (United States)

    Sun, Zhipeng; Firdoz, Shaik; Ying-Xuan Yap, Esther; Li, Lan; Lu, Xianmao

    2013-05-01

    We report a hierarchical Ni@MnO2 structure consisting of MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors. The Ni@MnO2 structure, which was prepared via a facile electrodeposition method, is highly porous and appears like a forest of pine trees grown vertically on a substrate. At a MnO2 mass loading of 0.35 mg cm-2, the Ni@MnO2 electrode demonstrated a specific capacitance of 1125 F g-1 that is close to the theoretical value. In addition, a remarkable high-rate performance (766 F g-1 at a discharge current density of 100 A g-1) was achieved. Electrochemical tests in a two-electrode configuration for the Ni@MnO2 structure with a high MnO2 loading of 3.6 mg cm-2 showed a low equivalent series resistance (ESR) of 1 Ω and a high specific power of 72 kW kg-1. This superior performance can be attributed to the highly porous and hierarchical structure of Ni@MnO2 that favors rapid diffusion of an electrolyte, highly conductive pathway for electron transport, and efficient material utilization.We report a hierarchical Ni@MnO2 structure consisting of MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors. The Ni@MnO2 structure, which was prepared via a facile electrodeposition method, is highly porous and appears like a forest of pine trees grown vertically on a substrate. At a MnO2 mass loading of 0.35 mg cm-2, the Ni@MnO2 electrode demonstrated a specific capacitance of 1125 F g-1 that is close to the theoretical value. In addition, a remarkable high-rate performance (766 F g-1 at a discharge current density of 100 A g-1) was achieved. Electrochemical tests in a two-electrode configuration for the Ni@MnO2 structure with a high MnO2 loading of 3.6 mg cm-2 showed a low equivalent series resistance (ESR) of 1 Ω and a high specific power of 72 kW kg-1. This superior performance can be attributed to the highly porous and hierarchical structure of Ni@MnO2 that favors rapid diffusion of an electrolyte, highly

  4. Hierarchical assembly of urchin-like alpha-iron oxide hollow microspheres and molybdenum disulphide nanosheets for ethanol gas sensing.

    Science.gov (United States)

    Zhang, Dongzhi; Fan, Xin; Yang, Aijun; Zong, Xiaoqi

    2018-08-01

    In this paper, we fabricated a high-performance ethanol sensor using layer-by-layer self-assembled urchin-like alpha-iron oxide (α-Fe 2 O 3 ) hollow microspheres/molybdenum disulphide (MoS 2 ) nanosheets heterostructure as sensitive materials. The nanostructural, morphological, and compositional properties of the as-prepared α-Fe 2 O 3 /MoS 2 heterostructure were characterized by X-ray diffraction (XRD), energy dispersive spectrometer (EDS), scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS), which confirmed its successful preparation and rationality. The α-Fe 2 O 3 /MoS 2 nanocomposite sensor shows good selectivity, excellent reproducibility, fast response/recovery time and low detection limit towards ethanol gas at room temperature, which is superior to the single component of α-Fe 2 O 3 hollow microspheres and MoS 2 nanosheets. Furthermore, the response of the α-Fe 2 O 3 /MoS 2 nanocomposite sensor as a function of ethanol gas concentration was also demonstrated. The enhanced ethanol sensing properties of the α-Fe 2 O 3 /MoS 2 nanocomposite sensor were ascribed to the synergistic effect and heterojunction between the urchin-Like α-Fe 2 O 3 hollow microspheres and MoS 2 nanosheets. This work verifies that the hierarchical α-Fe 2 O 3 /MoS 2 nanoheterostructure is a potential candidate for fabricating room-temperature ethanol gas sensor. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. TiO_2 hierarchical hollow microspheres with different size for application as anodes in high-performance lithium storage

    International Nuclear Information System (INIS)

    Wang, Xiaobing; Meng, Qiuxia; Wang, Yuanyuan; Liang, Huijun; Bai, Zhengyu; Wang, Kui; Lou, Xiangdong; Cai, Bibo; Yang, Lin

    2016-01-01

    Graphical abstract: In the application of lithium-ion batteries, the influences of microsphere sizes are more significant than the secondary nanoparticles size and crystallinity of TiO_2-HSs for their transfer resistance and cycling performance, so that the bigger sizes of TiO_2-HSs can retain high reversible capacities after 30 recycles. - Highlights: • Hierarchical hollow microspheres have size-effect in the application of lithium ion battery. • The microsphere sizes can significantly affect the cycling capacities of TiO_2. • The nanoparticles size affect the initial discharge capacity and lithium ion diffusion. • Controlled microsphere size is more significant for improving TiO_2 cycling capacities. - Abstract: Nowadays, the safety issue has greatly hindered the development of large capacity lithium-ion batteries (LIBs), especially in electric vehicles applications. TiO_2 is a kind of potential anode candidate for improving the safety of LIBs. However, it still needs to understand how to improve the performance of TiO_2 anode in the practical applications. Herein, we design a contrast experiment by using three sizes of TiO_2 hierarchical hollow microspheres (TiO_2-HSs). The research results indicated that the cycling performance of TiO_2-HSs anode can be affected by the size of microspheres, and the nanoparticles size of microspheres and crystallinity of TiO_2 can affect their initial discharge capacity and lithium ion diffusion. And, the influence of microspheres size is more significant. This may provide a new strategy for improving the lithium-ion storage property of TiO_2 anode material in the practical applications.

  6. High photocatalytic activity of hierarchical SiO2@C-doped TiO2 hollow spheres in UV and visible light towards degradation of rhodamine B.

    Science.gov (United States)

    Zhang, Ying; Chen, Juanrong; Hua, Li; Li, Songjun; Zhang, Xuanxuan; Sheng, Weichen; Cao, Shunsheng

    2017-10-15

    Ongoing research activities are targeted to explore high photocatalytic activity of TiO 2 -based photocatalysts for the degradation of environmental contaminants under UV and visible light irradiation. In this work, we devise a facile, cost-effective technique to in situ synthesize hierarchical SiO 2 @C-doped TiO 2 (SCT) hollow spheres for the first time. This strategy mainly contains the preparation of monodisperse cationic polystyrene spheres (CPS), sequential deposition of inner SiO 2 , the preparation of the sandwich-like CPS@SiO 2 @CPS particles, and formation of outer TiO 2 . After the one-step removal of CPS templates by calcination at 450°C, hierarchical SiO 2 @C-doped TiO 2 hollow spheres are in situ prepared. The morphology, hierarchical structure, and properties of SCT photocatalyst were characterized by TEM. SEM, STEM Mapping, BET, XRD, UV-vis spectroscopy, and XPS. Results strongly confirm the carbon doping in the outer TiO 2 lattice of SCT hollow spheres. When the as-synthesized SCT hollow spheres were employed as a photocatalyst for the degradation of Rhodamine B under visible-light and ultraviolet irradiation, the SCT photocatalyst exhibits a higher photocatalytic activity than commercial P25, effectively overcoming the limitations of poorer UV activity for many previous reported TiO 2 -based photocatalysts due to doping. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Bio-template-assisted synthesis of hierarchically hollow SiO2 microtubes and their enhanced formaldehyde adsorption performance

    International Nuclear Information System (INIS)

    Le, Yao; Guo, Daipeng; Cheng, Bei; Yu, Jiaguo

    2013-01-01

    The indoor air quality is crucial for human health, taking into account that people often spend more than 80% of their time in houses, offices and cars. Formaldehyde (HCHO) is a major pollutant and long-term exposure to HCHO may cause health problems such as nasal tumors and skin irritation. In this work, for the first time, hierarchically hollow silica microtubes (HHSM) were synthesized by a simple sol–gel and calcination method using cetyltrimethyl ammonium bromide (CTAB) and bio-template poplar catkin (PC) as co-templates and the PC/SiO 2 weight ratio R was varied from 0, 0.1, 0.3 and 1. The prepared samples were further modified with tetraethylenepentamine (TEPA) and characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), differential thermal analysis (DTA), thermal gravimetric analysis (TGA), and N 2 physisorption techniques. This was followed by formaldehyde adsorption tests at ambient temperature. The results showed that all the prepared HHSM samples contained small mesopores with peak pore size at ca. 2.5 nm and large several tens of nanometer-sized pores on the tube wall. The R exhibited an obvious influence on specific surface areas and the sample prepared at R = 0.3 exhibited highest specific surface area (896 m 2 /g). All the TEPA-modified samples exhibited enhanced formaldehyde adsorption performance. The maximum HCHO adsorption capacity (20.65 mg/g adsorbent) was achieved on the sample prepared at R = 0.3 and modified by 50 wt.% TEPA. The present study will provide new insight for the utilization of bio-template used for the fabrication of inorganic hollow tubes with high HCHO adsorption performance for indoor air purification.

  8. Self-Assembled 3D Flower-Like Hierarchical β-Ni(OH2Hollow Architectures and their In Situ Thermal Conversion to NiO

    Directory of Open Access Journals (Sweden)

    Liao Gui-Hong

    2009-01-01

    Full Text Available Abstract Three-dimensional (3D flower-like hierarchicalβ-Ni(OH2hollow architectures were synthesized by a facile hydrothermal route. The as-obtained products were well characterized by XRD, SEM, TEM (HRTEM, SAED, and DSC-TGA. It was shown that the 3D flower-like hierarchicalβ-Ni(OH2hollow architectures with a diameter of several micrometers are assembled from nanosheets with a thickness of 10–20 nm and a width of 0.5–2.5 μm. A rational mechanism of formation was proposed on the basis of a range of contrasting experiments. 3D flower-like hierarchical NiO hollow architectures with porous structure were obtained after thermal decomposition at appropriate temperatures. UV–Vis spectra reveal that the band gap of the as-synthesized NiO samples was about 3.57 eV, exhibiting obviously red shift compared with the bulk counterpart.

  9. Fabrication of α-Fe{sub 2}O{sub 3}/TiO{sub 2} bi-functional composites with hierarchical and hollow structures and their application in water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yinhui, E-mail: lillian09281@hotmail.com; Zhang, Na; Chen, Jianxin, E-mail: chjx2000@126.com; Li, Ruijuan; Li, Liang; Li, Kunyu [Hebei University of Technology, School of Marine Science and Engineering, Engineering Research Center of Seawater Utilization Technology, Ministry of Education (China)

    2016-02-15

    The α-Fe{sub 2}O{sub 3}/TiO{sub 2} bi-functional composites with hierarchical and hollow structures are fabricated through a hydrothermal route. The adsorption performance and photocatalytic activity of the composites towards Pb{sup 2+} are investigated in this work. Different adsorption kinetics models and equilibrium models are used to explore the adsorption behavior of hierarchical α-Fe{sub 2}O{sub 3}/TiO{sub 2} hollow spheres. Experimental data show that adsorption kinetics of the hierarchical α-Fe{sub 2}O{sub 3}/TiO{sub 2} hollow spheres can be fitted well by the pseudo-second-order model, while the isothermal data can be perfectly described by the Langmuir adsorption model. The maximum adsorption capacity of the hierarchical α-Fe{sub 2}O{sub 3}/TiO{sub 2} hollow spheres is 32.36 mg g{sup −1}. Moreover, the hierarchical α-Fe{sub 2}O{sub 3}/TiO{sub 2} hollow spheres possess photocatalytic oxidation character under simulated solar light irradiation. The results demonstrate that the hierarchical α-Fe{sub 2}O{sub 3}/TiO{sub 2} hollow spheres, as effective and cheap materials, can be applied to the removal of heavy metal ions from wastewater.

  10. Design and Synthesis of Hierarchical SiO2@C/TiO2 Hollow Spheres for High-Performance Supercapacitors.

    Science.gov (United States)

    Zhang, Ying; Zhao, Yan; Cao, Shunsheng; Yin, Zhengliang; Cheng, Li; Wu, Limin

    2017-09-06

    TiO 2 has been widely investigated as an electrode material because of its long cycle life and good durability, but the relatively low theoretical capacity restricts its practical application. Herein, we design and synthesize novel hierarchical SiO 2 @C/TiO 2 (HSCT) hollow spheres via a template-directed method. These unique HSCT hollow spheres combine advantages from both TiO 2 such as cycle stability and SiO 2 with a high accessible area and ionic transport. In particular, the existence of a C layer is able to enhance the electrical conductivity. The SiO 2 layer with a porous structure can increase the ion diffusion channels and accelerate the ion transfer from the outer to the inner layers. The electrochemical measurements demonstrate that the HSCT-hollow-sphere-based electrode manifests a high specific capacitance of 1018 F g -1 at 1 A g -1 which is higher than those for hollow TiO 2 (113 F g -1 ) and SiO 2 /TiO 2 (252 F g -1 ) electrodes, and substantially higher than those of all the previously reported TiO 2 -based electrodes.

  11. Hierarchical (Ni,Co)Se 2 /Carbon Hollow Rhombic Dodecahedra Derived from Metal-Organic Frameworks for Efficient Water-Splitting Electrocatalysis

    KAUST Repository

    Ming, Fangwang; Liang, Hanfeng; Shi, Huanhuan; Mei, Gui; Xu, Xun; Wang, Zhoucheng

    2017-01-01

    In this work, we demonstrate that the electrocatalytic activity of transition metal chalcogenides can be greatly enhanced by simultaneously engineering the active sites, surface area, and conductivity. Using metal-organic frameworks-derived (Ni,Co)Se2/C hollow rhombic dodecahedra (HRD) as a demonstration, we show that the incorporation of Ni into CoSe2 could generates additional active sites, the hierarchical hollow structure promotes the electrolyte diffusion, the in-situ hybridization with C improves the conductivity. As a result, the (Ni,Co)Se2/C HRD exhibit superior performance toward the overall water-splitting electrocatalysis in 1M KOH with a cell voltage as low as 1.58V at the current density of 10mAcm−2, making the (Ni,Co)Se2/C HRD as a promising alternative to noble metal catalysts for water splitting.

  12. Hierarchical (Ni,Co)Se 2 /Carbon Hollow Rhombic Dodecahedra Derived from Metal-Organic Frameworks for Efficient Water-Splitting Electrocatalysis

    KAUST Repository

    Ming, Fangwang

    2017-08-12

    In this work, we demonstrate that the electrocatalytic activity of transition metal chalcogenides can be greatly enhanced by simultaneously engineering the active sites, surface area, and conductivity. Using metal-organic frameworks-derived (Ni,Co)Se2/C hollow rhombic dodecahedra (HRD) as a demonstration, we show that the incorporation of Ni into CoSe2 could generates additional active sites, the hierarchical hollow structure promotes the electrolyte diffusion, the in-situ hybridization with C improves the conductivity. As a result, the (Ni,Co)Se2/C HRD exhibit superior performance toward the overall water-splitting electrocatalysis in 1M KOH with a cell voltage as low as 1.58V at the current density of 10mAcm−2, making the (Ni,Co)Se2/C HRD as a promising alternative to noble metal catalysts for water splitting.

  13. Self-assembly synthesis of hollow double silica @ mesoporous magnesium silicate magnetic hierarchical nanotubes with excellent performance for fast removal of cationic dyes

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Yaxi; Cui, Guijia; Liu, Yan; Li, Haizhen; Sun, Zebin; Yan, Shiqiang, E-mail: yansq@lzu.edu.cn

    2016-11-30

    Highlights: • Hollow double silica @ mesoporous magnesium silicate magnetic hierarchical nanotubes were synthesized for the first time. • MgSNTs showed excellent prformance for the removal of low concentration methylene blue and high concentration rodamine B. • It could be easily discovered from solution. - Abstract: In this work, novel hollow double silica @ mesoporous magnesium silicate magnetic hierarchical nanotubes (MgSNTs) were successfully synthesized by using magnetic mesoporous silica nanocapsules (MSNCs) as morphology templates via a hydrothermal method for the first time. MgSNTs were characterized by transmission electron microscopy, Mapping, X-ray diffraction, Fourier transform infraed spetroscopy, N{sub 2} adorption-desorption, X-ray photoelectron spectroscopy and vibrating sample magnetometry. The synthesized MgSNTs with high specific surface area (588 m{sup 2}/g), average pore width (7.13 nm) and pore volume (1.05 cm{sup 3}/g) had high removal efficiency for low concentration methylene blue (70 mg/L, 299 mg/g) and high adsorption capacities for high concentration rodamine B (300 mg/L, 752 mg/g). Besides, it could be easily recovered due with the help of γ-Fe{sub 2}O{sub 3} in the inner chamber. Moreover, the adsorption capacity, the influence of pH, adsorption kinetics and adsorption mechanism were also carefully and comprehensively investigated. The results indicated that magnetic magnesium silicate nanotubes (MgSNTs) using mesoporous silica nanocapsules as the assisted templates were promsing adsorbents for water purification.

  14. Co9S8 nanotubes: facile synthesis and application in the catalytic ...

    Indian Academy of Sciences (India)

    spectrometry and scanning electron microscopy. The result displays that the ... research interest due to their potential applications in cata- lysis, optical, electronic ... for catalysts, supercapacitors and Li-ion batteries [5–8]. In recent years, cobalt ...

  15. Hydroxyapatite hierarchically nanostructured porous hollow microspheres: rapid, sustainable microwave-hydrothermal synthesis by using creatine phosphate as an organic phosphorus source and application in drug delivery and protein adsorption.

    Science.gov (United States)

    Qi, Chao; Zhu, Ying-Jie; Lu, Bing-Qiang; Zhao, Xin-Yu; Zhao, Jing; Chen, Feng; Wu, Jin

    2013-04-22

    Hierarchically nanostructured porous hollow microspheres of hydroxyapatite (HAP) are a promising biomaterial, owing to their excellent biocompatibility and porous hollow structure. Traditionally, synthetic hydroxyapatite is prepared by using an inorganic phosphorus source. Herein, we report a new strategy for the rapid, sustainable synthesis of HAP hierarchically nanostructured porous hollow microspheres by using creatine phosphate disodium salt as an organic phosphorus source in aqueous solution through a microwave-assisted hydrothermal method. The as-obtained products are characterized by powder X-ray diffraction (XRD), Fourier-transform IR (FTIR) spectroscopy, SEM, TEM, Brunauer-Emmett-Teller (BET) nitrogen sorptometry, dynamic light scattering (DLS), and thermogravimetric analysis (TGA). SEM and TEM micrographs show that HAP hierarchically nanostructured porous hollow microspheres consist of HAP nanosheets or nanorods as the building blocks and DLS measurements show that the diameters of HAP hollow microspheres are within the range 0.8-1.5 μm. The specific surface area and average pore size of the HAP porous hollow microspheres are 87.3 m(2) g(-1) and 20.6 nm, respectively. The important role of creatine phosphate disodium salt and the influence of the experimental conditions on the products were systematically investigated. This method is facile, rapid, surfactant-free and environmentally friendly. The as-prepared HAP porous hollow microspheres show a relatively high drug-loading capacity and protein-adsorption ability, as well as sustained drug and protein release, by using ibuprofen as a model drug and hemoglobin (Hb) as a model protein, respectively. These experiments indicate that the as-prepared HAP porous hollow microspheres are promising for applications in biomedical fields, such as drug delivery and protein adsorption. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. L-cysteine-assisted synthesis of hierarchical NiS2 hollow spheres supported carbon nitride as photocatalysts with enhanced lifetime

    Science.gov (United States)

    Zhu, Chengzhang; Jiang, Zhifeng; Chen, Linlin; Qian, Kun; Xie, Jimin

    2017-03-01

    Novel hierarchical NiS2 hollow spheres modified by graphite-like carbon nitride were prepared using a facile L-cysteine-assisted solvothermal route. The NiS2/g-C3N4 composites exhibited excellent photocatalytic efficiency in rhodamine B, methyl orange and ciprofloxacin degradation as compared to single g-C3N4 and NiS2, which could be due to the synergistic effects of the unique hollow sphere-like structure, strong visible-light absorption and increased separation rate of the photoinduced electron-hole pairs at the intimate interface of heterojunctions. A suitable combination of g-C3N4 with NiS2 showed the best photocatalytic performance. In addition, an electron spin resonance and trapping experiment demonstrated that the photogenerated hydroxyl radicals and superoxide radicals were the two main photoactive species in photocatalysis. A possible photocatalytic mechanism of NiS2/g-C3N4 composites under visible light irradiation is also proposed. The strategy presented here can be extended to a general strategy for constructing 3D/2D heterostructured photocatalysts for broad applications in photocatalysis.

  17. A hierarchically assembled mesoporous ZnO hemisphere array and hollow microspheres for photocatalytic membrane water filtration.

    Science.gov (United States)

    Pan, Jia Hong; Zhang, Xiwang; Du, Alan J; Bai, Hongwei; Ng, Jiawei; Sun, Darren

    2012-05-28

    A mesoporous ZnO hemisphere array has been prepared via a topotactic transition of Zn(4)(OH)(6)CO(3)·H(2)O (ZCHH) by chemical bath deposition. Each hemisphere is comprised of a radially oriented nanoflake shell grown on the hemispherical interior. Reaction time-dependent SEM analysis shows that the morphological formation of ZCHH involves a deposition-growth-secondary growth-redeposition procedure. Upon calcination, ZCHH readily decomposes to nanocrystalline wurtzite-phase ZnO without significant change in morphology, and the release of CO(2) and H(2)O from ZCHH creates an additional mesoporous structure in both hemispherical interior and nanoflake shell. A similar process but without using a substrate has been developed for synthesis of mesoporous ZnO hollow microspheres in powder form. Both the elaborated superstructured photocatalysts consisting of mesoporous nanoflakes have been demonstrated to exhibit excellent performances in the photocatalytic membrane filtration.

  18. High-energy lithium-ion hybrid supercapacitors composed of hierarchical urchin-like WO3/C anodes and MOF-derived polyhedral hollow carbon cathodes.

    Science.gov (United States)

    Xu, Juan; Li, Yuanyuan; Wang, Lei; Cai, Qifa; Li, Qingwei; Gao, Biao; Zhang, Xuming; Huo, Kaifu; Chu, Paul K

    2016-09-22

    A lithium-ion hybrid supercapacitor (Li-HSC) comprising a Li-ion battery type anode and an electrochemical double layer capacitance (EDLC) type cathode has attracted much interest because it accomplishes a large energy density without compromising the power density. In this work, hierarchical carbon coated WO 3 (WO 3 /C) with a unique mesoporous structure and metal-organic framework derived nitrogen-doped carbon hollow polyhedra (MOF-NC) are prepared and adopted as the anode and the cathode for Li-HSCs. The hierarchical mesoporous WO 3 /C microspheres assembled by radially oriented WO 3 /C nanorods along the (001) plane enable effective Li + insertion, thus exhibit high capacity, excellent rate performance and a long cycling life due to their high Li + conductivity, electronic conductivity and structural robustness. The WO 3 /C structure shows a reversible specific capacity of 508 mA h g -1 at a 0.1 C rate (1 C = 696 mA h g -1 ) after 160 discharging-charging cycles with excellent rate capability. The MOF-NC achieved the specific capacity of 269.9 F g -1 at a current density of 0.2 A g -1 . At a high current density of 6 A g -1 , 92.4% of the initial capacity could be retained after 2000 discharging-charging cycles, suggesting excellent cycle stability. The Li-HSC comprising a WO 3 /C anode and a MOF-NC cathode boasts a large energy density of 159.97 W h kg -1 at a power density of 173.6 W kg -1 and 88.3% of the capacity is retained at a current density of 5 A g -1 after 3000 charging-discharging cycles, which are better than those previously reported for Li-HSCs. The high energy and power densities of the Li-HSCs of WO 3 /C//MOF-NC render large potential in energy storage.

  19. Rational design of anatase TiO2 architecture with hierarchical nanotubes and hollow microspheres for high-performance dye-sensitized solar cells

    Science.gov (United States)

    Gu, Jiuwang; Khan, Javid; Chai, Zhisheng; Yuan, Yufei; Yu, Xiang; Liu, Pengyi; Wu, Mingmei; Mai, Wenjie

    2016-01-01

    Large surface area, sufficient light-harvesting and superior electron transport property are the major factors for an ideal photoanode of dye-sensitized solar cells (DSSCs), which requires rational design of the nanoarchitectures and smart integration of state-of-the-art technologies. In this work, a 3D anatase TiO2 architecture consisting of vertically aligned 1D hierarchical TiO2 nanotubes (NTs) with ultra-dense branches (HTNTs, bottom layer) and 0D hollow TiO2 microspheres with rough surface (HTS, top layer) is first successfully constructed on transparent conductive fluorine-doped tin oxide glass through a series of facile processes. When used as photoanodes, the DSSCs achieve a very large short-current density of 19.46 mA cm-2 and a high overall power conversion efficiency of 8.38%. The remarkable photovoltaic performance is predominantly ascribed to the enhanced charge transport capacity of the NTs (function as the electron highway), the large surface area of the branches (act as the electron branch lines), the pronounced light harvesting efficiency of the HTS (serve as the light scattering centers), and the engineered intimate interfaces between all of them (minimize the recombination effect). Our work demonstrates a possibility of fabricating superior photoanodes for high-performance DSSCs by rational design of nanoarchitectures and smart integration of multi-functional components.

  20. Hierarchical cobalt poly-phosphide hollow spheres as highly active and stable electrocatalysts for hydrogen evolution over a wide pH range

    Science.gov (United States)

    Wu, Tianli; Pi, Mingyu; Wang, Xiaodeng; Guo, Weimeng; Zhang, Dingke; Chen, Shijian

    2018-01-01

    Exploring highly-efficient and low-cost non-noble metal electrocatalyst toward the hydrogen evolution reaction (HER) is highly desired for renewable energy system but remains challenging. In this work, three dimensional hierarchical porous cobalt poly-phosphide hollow spheres (CoP3 HSs) were prepared by topotactic phosphidation of the cobalt-based precursor via vacuum encapsulation technique. As a porous HER cathode, the CoP3 HSs delivers remarkable electrocatalytic performance over the wide pH range. It needs overpotentials of -69 mV and -118 mV with a small Tafel slope of 51 mV dec-1 to obtain current densities of 10 mA cm-2 and 50 mA cm-2, respectively, and maintains its electrocatalytic performance over 30 h in acidic solution. In addition, CoP3 also exhibit superior electrocatalytic performance and stability under neutral and alkaline conditions for the HER. Both experimental measurements and density functional theory (DFT) calculations are performed to explore the mechanism behind the excellent HER performance. The results of our study make the porous CoP3 HSs as a promising electrocatalyst for practical applications toward energy conversion system and present a new way for designing and fabricating HER electrodes through high degree of phosphorization and nano-porous architecture.

  1. Hierarchical Li1.2Mn0.54Ni0.13Co0.13O2 hollow spherical as cathode material for Li-ion battery

    Science.gov (United States)

    Zhang, Yu; Zhu, Tianjiao; Lin, Liu; Yuan, Mengwei; Li, Huifeng; Sun, Genban; Ma, Shulan

    2017-11-01

    Lithium-rich manganese-based layered materials have been considered as the most promising cathode materials for future high-energy-density lithium-ion batteries. However, a great loss of irreversible capacity at the initial cycle, poor cycle stability, and rate performance severely restrict its application. Herein, we develop a new strategy to synthesize hierarchical hollow Li1.2Mn0.54Ni0.13Co0.13O2 microspheres using sucrose and cetyltrimethylammonium bromide as a soft template combined with hydrothermal assisted homogeneous precipitation method. The hollow microspheres are assembled by the primary particles with the size of 50 nm. As a result, the as-prepared material exhibits high reversible capacity, good cycling stability, and excellent rate property. It delivers a high initial discharge capacity of 305.9 mAh g-1 at 28 mA g-1 with coulombic efficiency of 80%. Even at high current density of 560 mA g-1, the sample also shows a stable discharge capacity of 215 mAh g-1. The enhanced electrochemical properties are attributed to the stable hierarchical hollow sphere structure and the appropriate contact area between electrode and electrolyte, thus effectively improve the lithium-ion intercalation and deintercalation kinetics. [Figure not available: see fulltext.

  2. Rose-like monodisperse bismuth subcarbonate hierarchical hollow microspheres: One-pot template-free fabrication and excellent visible light photocatalytic activity and photochemical stability for NO removal in indoor air

    International Nuclear Information System (INIS)

    Dong, Fan; Lee, S.C.; Wu, Zhongbiao; Huang, Yu; Fu, Min; Ho, Wing-Kei; Zou, Shichun; Wang, Bo

    2011-01-01

    Graphical abstract: Rose-like monodisperse hierarchical nitrogen doped (BiO) 2 CO 3 hollow microspheres fabricated by a one-pot template-free method exhibit excellent visible light photocatalytic activity and photochemical stability in the removal of NO in indoor air. The special hierarchical microstructure, the high charge separation efficiency and two-band-gap structure in all contribute to the outstanding photocatalytic performance. Highlights: → Rose-like monodisperse hierarchical (BiO) 2 CO 3 hollow microspheres are fabricated. → The (BiO) 2 CO 3 microspheres are self-assembled of single-crystalline nanosheets. → Nitrogen is in situ doped into the lattice of hierarchical (BiO) 2 CO 3 microspheres. → The (BiO) 2 CO 3 microspheres exhibit outstanding visible light activity for NO removal. → The (BiO) 2 CO 3 microspheres also exhibit high photochemical stability. - Abstract: Rose-like monodisperse hierarchical (BiO) 2 CO 3 hollow microspheres are fabricated by a one-pot template-free method for the first time based on hydrothermal treatment of ammonia bismuth citrate and urea in water. The microstructure and band structure of the as-prepared (BiO) 2 CO 3 superstructure are characterized in detail by X-ray diffraction, Raman spectroscopy, Fourier transform-infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, N 2 adsorption-desorption isotherms, X-ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy. The monodisperse hierarchical (BiO) 2 CO 3 microspheres are constructed by the self-assembly of single-crystalline nanosheets. The aggregation of nanosheets result in the formation of three dimensional hierarchical framework containing mesopores and macropores, which is favorable for efficient transport of reaction molecules and harvesting of photo-energy. The result reveals the existence of special two-band-gap structure (3.25 and 2.0 eV) for (BiO) 2 CO 3 . The band gap of 3.25 eV is intrinsic and the

  3. High-performance non-enzymatic catalysts based on 3D hierarchical hollow porous Co3O4 nanododecahedras in situ decorated on carbon nanotubes for glucose detection and biofuel cell application.

    Science.gov (United States)

    Wang, Shiyue; Zhang, Xiaohua; Huang, Junlin; Chen, Jinhua

    2018-03-01

    In this work, high-performance non-enzymatic catalysts based on 3D hierarchical hollow porous Co 3 O 4 nanododecahedras in situ decorated on carbon nanotubes (3D Co 3 O 4 -HPND/CNTs) were successfully prepared via direct carbonizing metal-organic framework-67 in situ grown on carbon nanotubes. The morphology, microstructure, and composite of 3D Co 3 O 4 -HPND/CNTs were characterized by scanning electron microscopy, transmission electron microscopy, micropore and chemisorption analyzer, and X-ray diffraction. The electrochemical characterizations indicated that 3D Co 3 O 4 -HPND/CNTs present considerably catalytic activity toward glucose oxidation and could be promising for constructing high-performance electrochemical non-enzymatic glucose sensors and glucose/O 2 biofuel cell. When used for non-enzymatic glucose detection, the 3D Co 3 O 4 -HPND/CNTs modified glassy carbon electrode (3D Co 3 O 4 -HPND/CNTs/GCE) exhibited excellent analytical performance with high sensitivity (22.21 mA mM -1  cm -2 ), low detection limit of 0.35 μM (S/N = 3), fast response (less than 5 s) and good stability. On the other hand, when the 3D Co 3 O 4 -HPND/CNTs/GCE worked as an anode of a biofuel cell, a maximum power density of 210 μW cm -2 at 0.15 V could be obtained, and the open circuit potential was 0.68 V. The attractive 3D hierarchical porous structural features, the large surface area, and the excellent conductivity based on the continuous and effective electron transport network in 3D Co 3 O 4 -HPND/CNTs endow 3D Co 3 O 4 -HPND/CNTs with the enhanced electrochemical performance and promising applications in electrochemical sensing, biofuel cell, and other energy storage and conversion devices such as supercapacitor. Graphical abstract High-performance non-enzymatic catalysts for enzymeless glucose sensing and biofuel cell based on 3D hierarchical hollow porous Co 3 O 4 nanododecahedras anchored on carbon nanotubes were successfully prepared via direct carbonizing

  4. Carbon-covered Fe{sub 3}O{sub 4} hollow cubic hierarchical porous composite as the anode material for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shouhui, E-mail: csh2k@jxnu.edu.cn; Zhou, Rihui; Chen, Yaqin; Fu, Yuanyuan; Li, Ping; Song, Yonghai; Wang, Li, E-mail: lwanggroup@aliyun.com [Jiangxi Normal University, College of Chemistry and Chemical Engineering (China)

    2017-04-15

    In this work, Prussian blue nanocrystals, a kind of cubic metal-organic frameworks, was firstly covered by a uniform layer of resorcinol-formaldehyde (RF) resin, and then followed with heat treatment at different pyrolysis temperatures. The effects of pyrolysis temperature on the morphologies, phase, pore size, and electrochemical performance of the pyrolysis products were studied in this work. The composite generated at 600 {sup ∘}C, FexC600, was a hollow cubic composite of Fe{sub 3}O{sub 4} covered by a thin RF-derived carbon layer. The carbon layer on FexC600 was a robust and conductive protective layer, which can accommodate Fe{sub 3}O{sub 4} NPs and withstand the huge volume change of Fe{sub 3}O{sub 4} during the process of discharge and charge. When used as anodes for lithium-ion batteries, FexC600 showed excellent electrochemical performance. It delivered a discharge capacity of 1126 mAh g{sup −1} with a coulombic efficiency of 98.8% at the current density of 100 mA g{sup −1} after 100 times discharge/charge cycling. It even delivered a capacity of 492 mAh g{sup −1} at the current density of 500 mA g{sup −1}. This cubic hollow composite would be a promising alternative anode material for lithium-ion batteries.

  5. Hierarchical flower-like carbon nanosheet assembly with embedded hollow NiCo{sub 2}O{sub 4} nanoparticles for high- performance lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Ling; Qiu, Huajun; Luo, Pan; Li, Wenxiang; Zhang, Huijuan; Wang, Yu, E-mail: wangy@cqu.edu.cn

    2017-05-01

    Highlights: • Flower-like NiCo{sub 2}O{sub 4}@carbon nanosphere is firstly synthesized for Li-ion batteries. • The nanostructure exhibits the unique feature of hollow NiCo{sub 2}O{sub 4} nanoparticles embedded inside and graphitized carbon layers coating outside. • The sample reveals stable structure, large specific surface area and good electrical conductivity. • The composite exhibits superior rate capability, cycling capacity and excellent Coulombic efficiency. - Abstract: The fabrication of closely bounded metal oxides/carbon hybrid nano-structures is significant for its use in energy-related areas especially lithium ion batteries (LIBs). In this research, a flower-like carbon sphere with hollow NiCo{sub 2}O{sub 4} nanoparticles encapsulated inside the carbon thin nanopetal is fabricated by using a mixed basic carbonate nickel and cobalt sphere as the precursor and templates followed by the outer carbon membrane covering and two-step calcination process. When tested as anode material for LIBs, this flower-like carbon-based hybrid sphere demonstrates a significantly enhanced reversible capacity and cycling stability at various current densities.

  6. Carbon-covered Fe_3O_4 hollow cubic hierarchical porous composite as the anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Chen, Shouhui; Zhou, Rihui; Chen, Yaqin; Fu, Yuanyuan; Li, Ping; Song, Yonghai; Wang, Li

    2017-01-01

    In this work, Prussian blue nanocrystals, a kind of cubic metal-organic frameworks, was firstly covered by a uniform layer of resorcinol-formaldehyde (RF) resin, and then followed with heat treatment at different pyrolysis temperatures. The effects of pyrolysis temperature on the morphologies, phase, pore size, and electrochemical performance of the pyrolysis products were studied in this work. The composite generated at 600 "∘C, FexC600, was a hollow cubic composite of Fe_3O_4 covered by a thin RF-derived carbon layer. The carbon layer on FexC600 was a robust and conductive protective layer, which can accommodate Fe_3O_4 NPs and withstand the huge volume change of Fe_3O_4 during the process of discharge and charge. When used as anodes for lithium-ion batteries, FexC600 showed excellent electrochemical performance. It delivered a discharge capacity of 1126 mAh g"−"1 with a coulombic efficiency of 98.8% at the current density of 100 mA g"−"1 after 100 times discharge/charge cycling. It even delivered a capacity of 492 mAh g"−"1 at the current density of 500 mA g"−"1. This cubic hollow composite would be a promising alternative anode material for lithium-ion batteries.

  7. Core-shell composite of hierarchical MoS2 nanosheets supported on graphitized hollow carbon microspheres for high performance lithium-ion batteries

    International Nuclear Information System (INIS)

    Xia, Yuan; Wang, Beibei; Zhao, Xiaojun; Wang, Gang; Wang, Hui

    2016-01-01

    In this work, a core-shell composite composed of MoS 2 nanosheets grown on hollow carbon microspheres is synthesized by a hydrothermal and a subsequent annealing route. The result shows that well-graphitized hollow-carbon@highlycrystallineMoS 2 (HC@MoS 2 ) was obtained after the four-step reaction. And it is found that the synthesized MoS 2 is consist of 2H and 1T phases. The lithium storage property of the composite is investigated as an anode material for lithium-ion batteries. Benefited from the special morphology and structure, a stable capacity of 970 mAh g −1 for over 100 cycles at a current density of 0.25 A g −1 is realized on the material. Even at a high current density of 4 A g −1 , a reversible capacity as high as 560 mAh g −1 is delivered. Moreover, the reasons for the excellent electrochemical performance of the material are explored and discussed in detail.

  8. In situ grown hierarchical 50%BiOCl/BiOI hollow flowerlike microspheres on reduced graphene oxide nanosheets for enhanced visible-light photocatalytic degradation of rhodamine B

    Science.gov (United States)

    Su, Xiangde; Yang, Jinjin; Yu, Xiang; Zhu, Yi; Zhang, Yuanming

    2018-03-01

    50%BiOCl/BiOI/reduced graphene oxide (50%BiOCl/BiOI/rGO) composite photocatalyst was synthesized successfully by a facile one-step solvothermal route in this work. Reduction of graphene oxide (GO) took place in the process of solvothermal reaction and a new Bi-C bond between rGO and 50%BiOCl/BiOI was formed. The introduction of rGO affected the morphology of 50%BiOCl/BiOI, resulting in the transformation of 50%BiOCl/BiOI from solid microspheres to hollow microspheres. Both the introduction of rGO and formation of 50%BiOCl/BiOI hollow microspheres can facilitate the light absorption. The strong interaction between 50%BiOCl/BiOI and rGO and the electrical conductivity of rGO greatly improved the effective separation of photogenerated carriers. Hence, GOB-5 demonstrated the highest photocatalytic activity which was over twice of the pristine 50%BiOCl/BiOI in the presence of visible light. Mechanism study revealed that 50%BiOCl/BiOI generated electrons and holes in the presence of visible light, and holes together with rad O2- generated from reduction of O2 by electrons degraded the pollutant directly. Overall, this work provides an excellent reference to the synthesis of chemically bonded BiOX/BiOY (X, Y = Cl, Br, I)/rGO nanocomposite and helps to promote their applications in environmental protection and photoelectric conversion.

  9. Formation of Uniform Hollow Silica microcapsules

    Science.gov (United States)

    Yan, Huan; Kim, Chanjoong

    2013-03-01

    Microcapsules are small containers with diameters in the range of 0.1 - 100 μm. Mesoporous microcapsules with hollow morphologies possess unique properties such as low-density and high encapsulation capacity, while allowing controlled release by permeating substances with a specific size and chemistry. Our process is a one-step fabrication of monodisperse hollow silica capsules with a hierarchical pore structure and high size uniformity using double emulsion templates obtained by the glass-capillary microfluidic technique to encapsulate various active ingredients. These hollow silica microcapsules can be used as biomedical applications such as drug delivery and controlled release.

  10. Complex Hollow Nanostructures: Synthesis and Energy-Related Applications.

    Science.gov (United States)

    Yu, Le; Hu, Han; Wu, Hao Bin; Lou, Xiong Wen David

    2017-04-01

    Hollow nanostructures offer promising potential for advanced energy storage and conversion applications. In the past decade, considerable research efforts have been devoted to the design and synthesis of hollow nanostructures with high complexity by manipulating their geometric morphology, chemical composition, and building block and interior architecture to boost their electrochemical performance, fulfilling the increasing global demand for renewable and sustainable energy sources. In this Review, we present a comprehensive overview of the synthesis and energy-related applications of complex hollow nanostructures. After a brief classification, the design and synthesis of complex hollow nanostructures are described in detail, which include hierarchical hollow spheres, hierarchical tubular structures, hollow polyhedra, and multi-shelled hollow structures, as well as their hybrids with nanocarbon materials. Thereafter, we discuss their niche applications as electrode materials for lithium-ion batteries and hybrid supercapacitors, sulfur hosts for lithium-sulfur batteries, and electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. The potential superiorities of complex hollow nanostructures for these applications are particularly highlighted. Finally, we conclude this Review with urgent challenges and further research directions of complex hollow nanostructures for energy-related applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Hollow MEMS

    DEFF Research Database (Denmark)

    Larsen, Peter Emil

    Miniaturization of electro mechanical sensor systems to the micro range and beyond has shown impressive sensitivities measuring sample properties like mass, viscosity, acceleration, pressure and force just to name a few applications. In order to enable these kinds of measurements on liquid samples...... a hollow MEMS sensor has been designed, fabricated and tested. Combined density, viscosity, buoyant mass spectrometry and IR absorption spectroscopy are possible on liquid samples and micron sized suspended particles (e.g. single cells). Measurements are based on changes in the resonant behavior...... of these sensors. Optimization of the microfabrication process has led to a process yield of almost 100% .This is achieved despite the fact, that the process still offers a high degree of flexibility. By simple modifications the Sensor shape can be optimized for different size ranges and sensitivities...

  12. Fabrication of polymeric hollow nanospheres, hollow nanocubes and hollow plates

    Science.gov (United States)

    Cheng, Daming; Xia, Haibing; Chan, Hardy Sze On

    2006-03-01

    A facile strategy for fabricating polypyrrole-chitosan (PPy-CS) hollow nanostructures with different shapes (sphere, cube and plate) and a wide range of sizes (from 35 to 600 nm) is described. These hollow structures have been fabricated using silver bromide as a single template material for polymer nucleation and growth. PPy-CS hollow nanostructures are formed by reaction with an etching agent to remove the core. These hollow nanostructures have been extensively characterized using various techniques such as TEM, FT-IR, UV-vis, and XRD.

  13. Construction of anatase/rutile TiO2 hollow boxes for highly efficient photocatalytic performance

    Science.gov (United States)

    Jia, Changchao; Zhang, Xiao; Yang, Ping

    2018-02-01

    Hollow TiO2 hierarchical boxes with suitable anatase and rutile ratios were designed for photocatalysis. The unique hierarchical structure was fabricated via a Topotactic synthetic method. CaTiO3 cubes were acted as the sacrificial templates to create TiO2 hollow hierarchical boxes with well-defined phase distribution. The phase composition of the hollow TiO2 hierarchical boxes is similar to that of TiO2 P25 nanoparticles (∼80% anatase, and 20% rutile). Compared with nanaoparticles, TiO2 hollow boxes with hierarchical structures exhibited an excellent performance in the photocatalytic degradation of methylene blue organic pollutant. Quantificationally, the degradation rate of the hollow boxes is higher than that of TiO2 P25 nanoparticles by a factor of 2.7. This is ascribed that hollow structure provide an opportunity for using incident light more efficiently. The surface hierarchical and well-organized porous structures are beneficial to supply more active sites and enough transport channels for reactant molecules. The boxes consist of single crystal anatase and rutile combined well with each other, which gives photon-generated carriers transfer efficiently.

  14. Hierarchically Nanostructured Materials for Sustainable Environmental Applications

    Directory of Open Access Journals (Sweden)

    Zheng eRen

    2013-11-01

    Full Text Available This article presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions and multiple functionalities towards water remediation, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology.

  15. Hollow-Core Fiber Lamp

    Science.gov (United States)

    Yi, Lin (Inventor); Tjoelker, Robert L. (Inventor); Burt, Eric A. (Inventor); Huang, Shouhua (Inventor)

    2016-01-01

    Hollow-core capillary discharge lamps on the millimeter or sub-millimeter scale are provided. The hollow-core capillary discharge lamps achieve an increased light intensity ratio between 194 millimeters (useful) and 254 millimeters (useless) light than conventional lamps. The capillary discharge lamps may include a cone to increase light output. Hollow-core photonic crystal fiber (HCPCF) may also be used.

  16. HOLLOW FIBRE MEMBRANE

    NARCIS (Netherlands)

    Wessling, Matthias; Stamatialis, Dimitrios; Kopec, K.K.; Dutczak, S.M.

    2011-01-01

    The present invention relates to a process for manufacturing a hollow fibre membrane having a supporting layer and a separating layer, said process comprising: (a)extruding a spinning composition comprising a first polymer and a solvent for the first polymer through an inner annular orifice of a

  17. HOLLOW FIBRE MEMBRANE

    NARCIS (Netherlands)

    Wessling, Matthias; Stamatialis, Dimitrios; Kopec, K.K.; Dutczak, S.M.

    2013-01-01

    The present invention relates to a process for manufacturing a hollow fibre membrane having a supporting layer and a separating layer, said process comprising: (a) extruding a spinning composition comprising a first polymer and a solvent for the first polymer through an inner annular orifice of a

  18. Hollow bunches production

    CERN Document Server

    Hancock, S

    2017-01-01

    Hollow bunches address the issue of high-brightnessbeams suffering from transverse emittance growth in a strongspace charge regime. During the Proton Synchrotron (PS)injection plateau, the negative space charge tune shift canpush the beam onto theQy=6integer resonance. Modify-ing the longitudinal bunch profile in order to reduce the peakline charge density alleviates the detrimental impact of spacecharge. To this end we first produce longitudinally hollowphase space distributions in the PS Booster by exciting aparametric resonance with the phase loop feedback system.These inherently flat bunches are then transferred to the PS,where the beam becomes less prone to the emittance growthcaused by the integer resonance.During the late 2016 machine development sessions inthe PS Booster we profited from solved issues from 2015and managed to reliably extract hollow bunches of1.3eVsmatched longitudinal area. Furthermore, first results to cre-ate hollow bunches with larger longitudinal emittances to-wards the LHC Inject...

  19. Hydrothermal synthesis of lindgrenite with a hollow and prickly sphere-like architecture

    International Nuclear Information System (INIS)

    Xu Jiasheng; Xue Dongfeng

    2007-01-01

    Lindgrenite [Cu 3 (OH) 2 (MoO 4 ) 2 ] with a hollow and prickly sphere-like architecture has been synthesized via a simple and mild hydrothermal route in the absence of any external inorganic additives or organic structure-directing templates. The hierarchical lindgrenite particles are hollow and prickly spheres, which are comprised of numerous small crystal strips that are aligned perpendicularly to the spherical surface. Two factors are important for the formation of hollow and prickly architecture in the present process. One is the general phenomenon of Ostwald ripening in solution, which can be responsible for the hollow structure; the other is that lindgrenite crystals have a rhombic growth habit, which plays an important role in the formation of prickly surface. Furthermore, Cu 3 Mo 2 O 9 with the similar size and morphology can be easily obtained by a simple thermal treatment of the as-prepared lindgrenite in air atmosphere. - Graphical abstract: Lindgrenite [Cu 3 (OH) 2 (MoO 4 ) 2 ] with a hollow and prickly sphere-like architecture has been synthesized via a hydrothermal route. The hierarchical lindgrenite particles are hollow and prickly spheres, which are comprised of numerous crystal strips that are aligned perpendicularly to the spherical surface. Cu 3 Mo 2 O 9 with the similar size and morphology can be easily obtained by a thermal treatment of the as-prepared lindgrenite

  20. Mercury - the hollow planet

    Science.gov (United States)

    Rothery, D. A.

    2012-04-01

    Mercury is turning out to be a planet characterized by various kinds of endogenous hole (discounting impact craters), which are compared here. These include volcanic vents and collapse features on horizontal scales of tens of km, and smaller scale depressions ('hollows') associated with bright crater-floor deposits (BCFD). The BCFD hollows are tens of metres deep and kilometres or less across and are characteristically flat-floored, with steep, scalloped walls. Their form suggests that they most likely result from removal of surface material by some kind of mass-wasting process, probably associated with volume-loss caused by removal (via sublimation?) of a volatile component. These do not appear to be primarily a result of undermining. Determining the composition of the high-albedo bluish surface coating in BCFDs will be a key goal for BepiColombo instruments such as MIXS (Mercury Imaging Xray Spectrometer). In contrast, collapse features are non-circular rimless pits, typically on crater floors (pit-floor craters), whose morphology suggests collapse into void spaces left by magma withdrawal. This could be by drainage of either erupted lava (or impact melt) or of shallowly-intruded magma. Unlike the much smaller-scale BCFD hollows, these 'collapse pit' features tend to lack extensive flat floors and instead tend to be close to triangular in cross-section with inward slopes near to the critical angle of repose. The different scale and morphology of BCFD hollows and collapse pits argues for quite different modes of origin. However, BCFD hollows adjacent to and within the collapse pit inside Scarlatti crater suggest that the volatile material whose loss was responsible for the growth of the hollows may have been emplaced in association with the magma whose drainage caused the main collapse. Another kind of volcanic collapse can be seen within a 25 km-wide volcanic vent outside the southern rim of the Caloris basin (22.5° N, 146.1° E), on a 28 m/pixel MDIS NAC image

  1. Birefringent hollow core fibers

    DEFF Research Database (Denmark)

    Roberts, John

    2007-01-01

    Hollow core photonic crystal fiber (HC-PCF), fabricated according to a nominally non-birefringent design, shows a degree of un-controlled birefringence or polarization mode dispersion far in excess of conventional non polarization maintaining fibers. This can degrade the output pulse in many...... applications, and places emphasis on the development of polarization maintaining (PM) HC-PCF. The polarization cross-coupling characteristics of PM HC-PCF are very different from those of conventional PM fibers. The former fibers have the advantage of suffering far less from stress-field fluctuations...... and an increased overlap between the polarization modes at the glass interfaces. The interplay between these effects leads to a wavelength for optimum polarization maintenance, lambda(PM), which is detuned from the wavelength of highest birefringence. By a suitable fiber design involving antiresonance of the core...

  2. Hierarchical structures of ZnO spherical particles synthesized solvothermally

    Science.gov (United States)

    Saito, Noriko; Haneda, Hajime

    2011-12-01

    We review the solvothermal synthesis, using a mixture of ethylene glycol (EG) and water as the solvent, of zinc oxide (ZnO) particles having spherical and flower-like shapes and hierarchical nanostructures. The preparation conditions of the ZnO particles and the microscopic characterization of the morphology are summarized. We found the following three effects of the ratio of EG to water on the formation of hierarchical structures: (i) EG restricts the growth of ZnO microcrystals, (ii) EG promotes the self-assembly of small crystallites into spheroidal particles and (iii) the high water content of EG results in hollow spheres.

  3. Method for sizing hollow microspheres

    Science.gov (United States)

    Farnum, E.H.; Fries, R.J.

    1975-10-29

    Hollow Microspheres may be effectively sized by placing them beneath a screen stack completely immersed in an ultrasonic bath containing a liquid having a density at which the microspheres float and ultrasonically agitating the bath.

  4. Synthesis and electrochemical properties of porous double-shelled Mn2O3 hollow microspheres as a superior anode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Qiao, Yu; Yu, Yan; Jin, Yi; Guan, Yi-Biao; Chen, Chun-Hua

    2014-01-01

    Highlights: • Double-shelled Mn 2 O 3 hollow microspheres are prepared by a multi-step. • synthesis procedure. • Solid, hollow and yolk-structured Mn 2 O 3 spheres are prepared for comparison. • The double-shelled hollow Mn 2 O 3 is superior in electrochemical properties. - Abstract: By means of a specially designed multi-step synthesis procedure involving steps of precipitation, controlled oxidation, selective etching and calcination, porous double-shelled Mn 2 O 3 hollow microspheres are synthesized. Solid, hollow and yolk-structured Mn 2 O 3 are also similarly synthesized for comparison. X-ray diffraction, scanning and transmission electron microscopies, IR spectroscopy, thermogravimetry, and Brunauer-Emmett-Teller measurements are employed to investigate their structures and compositions. Galvanostatic cell cycling and impedance spectroscopy are used to characterize the electrochemical properties of Mn 2 O 3 /Li cells. The results show that the hierarchical hollow structured (double-shelled, hollow and yolk-structured) Mn 2 O 3 anode materials deliver higher reversible capacities and excellent cycling stabilities than the solid Mn 2 O 3 . Moreover, among the three hierarchical hollow structured samples, the double shelled sample possesses the best cycling performance, especially at a high current density

  5. Switching a Nanocluster Core from Hollow to Non-hollow

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa

    2016-03-24

    Modulating the structure-property relationship in atomically precise nanoclusters (NCs) is vital for developing novel NC materials and advancing their applications. While promising biphasic ligand-exchange (LE) strategies have been developed primarily to attain novel NCs, understanding the mechanistic aspects involved in tuning the core and the ligand-shell of NCs in such biphasic processes is challenging. Here, we design a single phase LE process that enabled us to elucidate the mechanism of how a hollow NC (e.g., [Ag44(SR)30]4-, -SR: thiolate) converts into a non-hollow NC (e.g., [Ag25(SR)18]-), and vice versa. Our study reveals that the complete LE of the hollow [Ag44(SPhF)30]4- NCs (–SPhF: 4-fluorobenzenethiolate) with incoming 2,4-dimethylbenzenethiol (HSPhMe2) induced distortions in the Ag44 structure forming the non-hollow [Ag25(SPhMe2)18]- by a disproportionation mechanism. While the reverse reaction of [Ag25(SPhMe2)18]- with HSPhF prompted an unusual dimerization of Ag25, followed by a rearrangement step that reproduces the original [Ag44(SPhF)30]4-. Remarkably, both the forward and the backward reactions proceed through similar size intermediates that seem to be governed by the boundary conditions set by the thermodynamic and electronic stability of the hollow and non-hollow metal cores. Furthermore, the resizing of NCs highlights the surprisingly long-range effect of the ligands which are felt by atoms far deep in the metal core, thus opening a new path for controlling the structural evolution of nanoparticles.

  6. The Electrospun Ceramic Hollow Nanofibers

    Directory of Open Access Journals (Sweden)

    Shahin Homaeigohar

    2017-11-01

    Full Text Available Hollow nanofibers are largely gaining interest from the scientific community for diverse applications in the fields of sensing, energy, health, and environment. The main reasons are: their extensive surface area that increases the possibilities of engineering, their larger accessible active area, their porosity, and their sensitivity. In particular, semiconductor ceramic hollow nanofibers show greater space charge modulation depth, higher electronic transport properties, and shorter ion or electron diffusion length (e.g., for an enhanced charging–discharging rate. In this review, we discuss and introduce the latest developments of ceramic hollow nanofiber materials in terms of synthesis approaches. Particularly, electrospinning derivatives will be highlighted. The electrospun ceramic hollow nanofibers will be reviewed with respect to their most widely studied components, i.e., metal oxides. These nanostructures have been mainly suggested for energy and environmental remediation. Despite the various advantages of such one dimensional (1D nanostructures, their fabrication strategies need to be improved to increase their practical use. The domain of nanofabrication is still advancing, and its predictable shortcomings and bottlenecks must be identified and addressed. Inconsistency of the hollow nanostructure with regard to their composition and dimensions could be one of such challenges. Moreover, their poor scalability hinders their wide applicability for commercialization and industrial use.

  7. The Riddle of the Apparently Hollow Himalaya

    Indian Academy of Sciences (India)

    The Riddle of the Apparently Hollow Himalaya. Ramesh .... It was as if the Himalayas were hollow inside. ... block would be consistent with the ground elevation in such a ... Alternative models and possible preference: Many refinements of.

  8. Hollow nanotubular toroidal polymer microrings.

    Science.gov (United States)

    Lee, Jiyeong; Baek, Kangkyun; Kim, Myungjin; Yun, Gyeongwon; Ko, Young Ho; Lee, Nam-Suk; Hwang, Ilha; Kim, Jeehong; Natarajan, Ramalingam; Park, Chan Gyung; Sung, Wokyung; Kim, Kimoon

    2014-02-01

    Despite the remarkable progress made in the self-assembly of nano- and microscale architectures with well-defined sizes and shapes, a self-organization-based synthesis of hollow toroids has, so far, proved to be elusive. Here, we report the synthesis of polymer microrings made from rectangular, flat and rigid-core monomers with anisotropically predisposed alkene groups, which are crosslinked with each other by dithiol linkers using thiol-ene photopolymerization. The resulting hollow toroidal structures are shape-persistent and mechanically robust in solution. In addition, their size can be tuned by controlling the initial monomer concentrations, an observation that is supported by a theoretical analysis. These hollow microrings can encapsulate guest molecules in the intratoroidal nanospace, and their peripheries can act as templates for circular arrays of metal nanoparticles.

  9. Copper Silicate Hydrate Hollow Spheres Constructed by Nanotubes Encapsulated in Reduced Graphene Oxide as Long-Life Lithium-Ion Battery Anode.

    Science.gov (United States)

    Wei, Xiujuan; Tang, Chunjuan; Wang, Xuanpeng; Zhou, Liang; Wei, Qiulong; Yan, Mengyu; Sheng, Jinzhi; Hu, Ping; Wang, Bolun; Mai, Liqiang

    2015-12-09

    Hierarchical copper silicate hydrate hollow spheres-reduced graphene oxide (RGO) composite is successfully fabricated by a facile hydrothermal method using silica as in situ sacrificing template. The electrochemical performance of the composite as lithium-ion battery anode was studied for the first time. Benefiting from the synergistic effect of the hierarchical hollow structure and conductive RGO matrix, the composite exhibits excellent long-life performance and rate capability. A capacity of 890 mAh/g is achieved after 200 cycles at 200 mA/g and a capacity of 429 mAh/g is retained after 800 cycles at 1000 mA/g. The results indicate that the strategy of combining hierarchical hollow structures with conductive RGO holds the potential in addressing the volume expansion issue of high capacity anode materials.

  10. Hollow fiber liquid supported membranes

    International Nuclear Information System (INIS)

    Violante, V.

    1987-01-01

    The hollow fiber system are well known and developed in the scientific literature because of their applicability in the process separation units. The authors approach to a mathematical model for a particular hollow fiber system, usin liquid membranes. The model has been developed in order to obtain a suitable tool for a sensitivy analysis and for a scaling-up. This kind of investigation is very usefull from an engineering point of view, to get a spread range of information to build up a pilot plant from the laboratory scale

  11. Hollow waveguide cavity ringdown spectroscopy

    Science.gov (United States)

    Dreyer, Chris (Inventor); Mungas, Greg S. (Inventor)

    2012-01-01

    Laser light is confined in a hollow waveguide between two highly reflective mirrors. This waveguide cavity is used to conduct Cavity Ringdown Absorption Spectroscopy of loss mechanisms in the cavity including absorption or scattering by gases, liquid, solids, and/or optical elements.

  12. Hollow core plasma channel generation

    International Nuclear Information System (INIS)

    Quast, Heinrich Martin

    2018-03-01

    The use of a hollow plasma channel in plasma-based acceleration has beneficial properties for the acceleration of electron and positron bunches. In the scope of the FLASHForward facility at DESY, the generation of such a plasma structure is examined. Therefore, the generation of a ring-shaped laser intensity profile with different techniques is analyzed. From the obtained intensity profiles the electron density of a hollow plasma channel is simulated in the focal region. Different parameters are scanned to understand their influence on the electron density distribution - an important parameter being, for example, the radius of the central region of the channel. In addition to the simulations, experiments are presented, during which a laser pulse is transformed into a hollow beam with a spiral phase plate. Subsequently, it forms a plasma during the interaction with hydrogen, where the plasma is imaged with interferometry. For energies above 0.9 mJ a hollow plasma structure can be observed at the location of first plasma formation.

  13. The Legend of Sleepy Hollow

    Institute of Scientific and Technical Information of China (English)

    Washington; Irving

    1987-01-01

    Part Ⅰ On the Eastern shore of the Hudson River there was a little valley, among high hills, which was one of the quietest places in the whole world. This little valley had long been known by the name of SIeepy Hollow. Many strange stories about ghosts were told and retold in the village situated there.

  14. Microstructured hollow fibers for ultrafiltration

    NARCIS (Netherlands)

    Culfaz, Pmar Zeynep; Culfaz, P.Z.; Rolevink, Hendrikus H.M.; van Rijn, C.J.M.; Lammertink, Rob G.H.; Wessling, Matthias

    2010-01-01

    Hollow fiber ultrafiltration membranes with a corrugated outer microstructure were prepared from a PES/PVP blend. The effect of spinning parameters such as air gap, take-up speed, polymer dope viscosity and coagulation value on the microstructure and membrane characteristics was investigated. Fibers

  15. Nanotubes within transition metal silicate hollow spheres: Facile preparation and superior lithium storage performances

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan; An, Yongling; Zhai, Wei; Gao, Xueping [Key Laboratory for Liquid–Solid Structural Evolution & Processing of Materials (Ministry of Education), Jinan 250100 (China); Feng, Jinkui, E-mail: jinkui@sdu.edu.cn [Key Laboratory for Liquid–Solid Structural Evolution & Processing of Materials (Ministry of Education), Jinan 250100 (China); Ci, Lijie [Key Laboratory for Liquid–Solid Structural Evolution & Processing of Materials (Ministry of Education), Jinan 250100 (China); Xiong, Shenglin [School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2015-10-15

    Highlights: • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} were successfully prepared by a facile hydrothermal method using SiO{sub 2} nanosphere. • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} were tested as anode materials for lithium batteries. • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} delivered superior electrochemical performance. • The lithium storage mechanism is probe via cyclic voltammetry and XPS. - Abstract: A series of transition metal silicate hollow spheres, including cobalt silicate (Co{sub 2}SiO{sub 4}), manganese silicate (MnSiO{sub 3}) and copper silicate (CuSiO{sub 3}.2H{sub 2}O, CuSiO{sub 3} as abbreviation in the text) were prepared via a simple and economic hydrothermal method by using silica spheres as chemical template. Time-dependent experiments confirmed that the resultants formed a novel type of hierarchical structure, hollow spheres assembled by numerous one-dimensional (1D) nanotubes building blocks. For the first time, the transition metal silicate hollow spheres were characterized as novel anode materials of Li-ion battery, which presented superior lithium storage capacities, cycle performance and rate performance. The 1D nanotubes assembly and hollow interior endow this kind of material facilitate fast lithium ion and electron transport and accommodate the big volume change during the conversion reactions. Our study shows that low-cost transition metal silicate with rationally designed nanostructures can be promising anode materials for high capacity lithium-ion battery.

  16. Three-dimensional interconnected cobalt oxide-carbon hollow spheres arrays as cathode materials for hybrid batteries

    Directory of Open Access Journals (Sweden)

    Jiye Zhan

    2016-06-01

    Full Text Available Hierarchical porous metal oxides arrays is critical for development of advanced energy storage devices. Herein, we report a facile template-assisted electro-deposition plus glucose decomposition method for synthesis of multilayer CoO/C hollow spheres arrays. The CoO/C arrays consist of multilayer interconnected hollow composite spheres with diameters of ∼350 nm as well as thin walls of ∼20 nm. Hierarchical hollow spheres architecture with 3D porous networks are achieved. As cathode of high-rate hybrid batteries, the multilayer CoO/C hollow sphere arrays exhibit impressive enhanced performances with a high capacity (73.5 mAh g−1 at 2 A g−1, and stable high-rate cycling life (70 mAh g−1 after 12,500 cycles at 2 A g−1. The improved electrochemical performance is owing to the composite hollow-sphere architecture with high contact area between the active materials and electrolyte as well as fast ion/electron transportation path.

  17. Catalysis with hierarchical zeolites

    DEFF Research Database (Denmark)

    Holm, Martin Spangsberg; Taarning, Esben; Egeblad, Kresten

    2011-01-01

    Hierarchical (or mesoporous) zeolites have attracted significant attention during the first decade of the 21st century, and so far this interest continues to increase. There have already been several reviews giving detailed accounts of the developments emphasizing different aspects of this research...... topic. Until now, the main reason for developing hierarchical zeolites has been to achieve heterogeneous catalysts with improved performance but this particular facet has not yet been reviewed in detail. Thus, the present paper summaries and categorizes the catalytic studies utilizing hierarchical...... zeolites that have been reported hitherto. Prototypical examples from some of the different categories of catalytic reactions that have been studied using hierarchical zeolite catalysts are highlighted. This clearly illustrates the different ways that improved performance can be achieved with this family...

  18. Hierarchical Network Design

    DEFF Research Database (Denmark)

    Thomadsen, Tommy

    2005-01-01

    Communication networks are immensely important today, since both companies and individuals use numerous services that rely on them. This thesis considers the design of hierarchical (communication) networks. Hierarchical networks consist of layers of networks and are well-suited for coping...... with changing and increasing demands. Two-layer networks consist of one backbone network, which interconnects cluster networks. The clusters consist of nodes and links, which connect the nodes. One node in each cluster is a hub node, and the backbone interconnects the hub nodes of each cluster and thus...... the clusters. The design of hierarchical networks involves clustering of nodes, hub selection, and network design, i.e. selection of links and routing of ows. Hierarchical networks have been in use for decades, but integrated design of these networks has only been considered for very special types of networks...

  19. Micromechanics of hierarchical materials

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon, Jr.

    2012-01-01

    A short overview of micromechanical models of hierarchical materials (hybrid composites, biomaterials, fractal materials, etc.) is given. Several examples of the modeling of strength and damage in hierarchical materials are summarized, among them, 3D FE model of hybrid composites...... with nanoengineered matrix, fiber bundle model of UD composites with hierarchically clustered fibers and 3D multilevel model of wood considered as a gradient, cellular material with layered composite cell walls. The main areas of research in micromechanics of hierarchical materials are identified, among them......, the investigations of the effects of load redistribution between reinforcing elements at different scale levels, of the possibilities to control different material properties and to ensure synergy of strengthening effects at different scale levels and using the nanoreinforcement effects. The main future directions...

  20. Programming with Hierarchical Maps

    DEFF Research Database (Denmark)

    Ørbæk, Peter

    This report desribes the hierarchical maps used as a central data structure in the Corundum framework. We describe its most prominent features, ague for its usefulness and briefly describe some of the software prototypes implemented using the technology....

  1. Introduction into Hierarchical Matrices

    KAUST Repository

    Litvinenko, Alexander

    2013-12-05

    Hierarchical matrices allow us to reduce computational storage and cost from cubic to almost linear. This technique can be applied for solving PDEs, integral equations, matrix equations and approximation of large covariance and precision matrices.

  2. Introduction into Hierarchical Matrices

    KAUST Repository

    Litvinenko, Alexander

    2013-01-01

    Hierarchical matrices allow us to reduce computational storage and cost from cubic to almost linear. This technique can be applied for solving PDEs, integral equations, matrix equations and approximation of large covariance and precision matrices.

  3. Fabrication of Metallic Hollow Nanoparticles

    Science.gov (United States)

    Kim, Jae-Woo (Inventor); Choi, Sr., Sang H. (Inventor); Lillehei, Peter T. (Inventor); Chu, Sang-Hyon (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2016-01-01

    Metal and semiconductor nanoshells, particularly transition metal nanoshells, are fabricated using dendrimer molecules. Metallic colloids, metallic ions or semiconductors are attached to amine groups on the dendrimer surface in stabilized solution for the surface seeding method and the surface seedless method, respectively. Subsequently, the process is repeated with additional metallic ions or semiconductor, a stabilizer, and NaBH.sub.4 to increase the wall thickness of the metallic or semiconductor lining on the dendrimer surface. Metallic or semiconductor ions are automatically reduced on the metallic or semiconductor nanoparticles causing the formation of hollow metallic or semiconductor nanoparticles. The void size of the formed hollow nanoparticles depends on the dendrimer generation. The thickness of the metallic or semiconductor thin film around the dendrimer depends on the repetition times and the size of initial metallic or semiconductor seeds.

  4. Space Charge Mitigation With Longitudinally Hollow Bunches

    CERN Multimedia

    Oeftiger, Adrian; Rumolo, Giovanni

    2016-01-01

    Hollow longitudinal phase space distributions have a flat profile and hence reduce the impact of transverse space charge. Dipolar parametric excitation with the phase loop feedback systems provides such hollow distributions under reproducible conditions. We present a procedure to create hollow bunches during the acceleration ramp of CERN’s PS Booster machine with minimal changes to the operational cycle. The improvements during the injection plateau of the downstream Proton Synchrotron are assessed in comparison to standard parabolic bunches.

  5. Method to fabricate hollow microneedle arrays

    Energy Technology Data Exchange (ETDEWEB)

    Kravitz, Stanley H [Placitas, NM; Ingersoll, David [Albuquerque, NM; Schmidt, Carrie [Los Lunas, NM; Flemming, Jeb [Albuquerque, NM

    2006-11-07

    An inexpensive and rapid method for fabricating arrays of hollow microneedles uses a photoetchable glass. Furthermore, the glass hollow microneedle array can be used to form a negative mold for replicating microneedles in biocompatible polymers or metals. These microneedle arrays can be used to extract fluids from plants or animals. Glucose transport through these hollow microneedles arrays has been found to be orders of magnitude more rapid than natural diffusion.

  6. Parallel hierarchical radiosity rendering

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Michael [Iowa State Univ., Ames, IA (United States)

    1993-07-01

    In this dissertation, the step-by-step development of a scalable parallel hierarchical radiosity renderer is documented. First, a new look is taken at the traditional radiosity equation, and a new form is presented in which the matrix of linear system coefficients is transformed into a symmetric matrix, thereby simplifying the problem and enabling a new solution technique to be applied. Next, the state-of-the-art hierarchical radiosity methods are examined for their suitability to parallel implementation, and scalability. Significant enhancements are also discovered which both improve their theoretical foundations and improve the images they generate. The resultant hierarchical radiosity algorithm is then examined for sources of parallelism, and for an architectural mapping. Several architectural mappings are discussed. A few key algorithmic changes are suggested during the process of making the algorithm parallel. Next, the performance, efficiency, and scalability of the algorithm are analyzed. The dissertation closes with a discussion of several ideas which have the potential to further enhance the hierarchical radiosity method, or provide an entirely new forum for the application of hierarchical methods.

  7. Neutrosophic Hierarchical Clustering Algoritms

    Directory of Open Access Journals (Sweden)

    Rıdvan Şahin

    2014-03-01

    Full Text Available Interval neutrosophic set (INS is a generalization of interval valued intuitionistic fuzzy set (IVIFS, whose the membership and non-membership values of elements consist of fuzzy range, while single valued neutrosophic set (SVNS is regarded as extension of intuitionistic fuzzy set (IFS. In this paper, we extend the hierarchical clustering techniques proposed for IFSs and IVIFSs to SVNSs and INSs respectively. Based on the traditional hierarchical clustering procedure, the single valued neutrosophic aggregation operator, and the basic distance measures between SVNSs, we define a single valued neutrosophic hierarchical clustering algorithm for clustering SVNSs. Then we extend the algorithm to classify an interval neutrosophic data. Finally, we present some numerical examples in order to show the effectiveness and availability of the developed clustering algorithms.

  8. Hollow nanocrystals and method of making

    Science.gov (United States)

    Alivisatos, A Paul [Oakland, CA; Yin, Yadong [Moreno Valley, CA; Erdonmez, Can Kerem [Berkeley, CA

    2011-07-05

    Described herein are hollow nanocrystals having various shapes that can be produced by a simple chemical process. The hollow nanocrystals described herein may have a shell as thin as 0.5 nm and outside diameters that can be controlled by the process of making.

  9. Hollow rods for the oil producing industry

    Energy Technology Data Exchange (ETDEWEB)

    Khalimova, L M; Elyasheva, M A

    1970-01-01

    Hollow sucker rods have several advantages over conventional ones. The hollow rods actuate the well pump and at the same time conduct produced fluids to surface. When paraffin deposition occurs, it can be minimized by injecting steam, hot oil or hot water into the hollow rod. Other chemicals, such as demulsifiers, scale inhibitors, corrosion inhibitors, etc., can also be placed in the well through the hollow rods. This reduces cost of preventive treatments, reduces number of workovers, increases oil production, and reduces cost of oil. Because the internal area of the rod is small, the passing liquids have a high velocity and thereby carry sand and dirt out of the well. This reduces pump wear between the piston and the plunger. Specifications of hollow rods, their operating characteristics, and results obtained with such rods under various circumstances are described.

  10. Hierarchical wave functions revisited

    International Nuclear Information System (INIS)

    Li Dingping.

    1997-11-01

    We study the hierarchical wave functions on a sphere and on a torus. We simplify some wave functions on a sphere or a torus using the analytic properties of wave functions. The open question, the construction of the wave function for quasi electron excitation on a torus, is also solved in this paper. (author)

  11. Hierarchical Porous Structures

    Energy Technology Data Exchange (ETDEWEB)

    Grote, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-07

    Materials Design is often at the forefront of technological innovation. While there has always been a push to generate increasingly low density materials, such as aero or hydrogels, more recently the idea of bicontinuous structures has gone more into play. This review will cover some of the methods and applications for generating both porous, and hierarchically porous structures.

  12. The Hierarchical Perspective

    Directory of Open Access Journals (Sweden)

    Daniel Sofron

    2015-05-01

    Full Text Available This paper is focused on the hierarchical perspective, one of the methods for representing space that was used before the discovery of the Renaissance linear perspective. The hierarchical perspective has a more or less pronounced scientific character and its study offers us a clear image of the way the representatives of the cultures that developed it used to perceive the sensitive reality. This type of perspective is an original method of representing three-dimensional space on a flat surface, which characterises the art of Ancient Egypt and much of the art of the Middle Ages, being identified in the Eastern European Byzantine art, as well as in the Western European Pre-Romanesque and Romanesque art. At the same time, the hierarchical perspective is also present in naive painting and infantile drawing. Reminiscences of this method can be recognised also in the works of some precursors of the Italian Renaissance. The hierarchical perspective can be viewed as a subjective ranking criterion, according to which the elements are visually represented by taking into account their relevance within the image while perception is ignored. This paper aims to show how the main objective of the artists of those times was not to faithfully represent the objective reality, but rather to emphasize the essence of the world and its perennial aspects. This may represent a possible explanation for the refusal of perspective in the Egyptian, Romanesque and Byzantine painting, characterised by a marked two-dimensionality.

  13. Hollow Micro-/Nanostructures: Synthesis and Applications

    KAUST Repository

    Lou, Xiong Wen (David)

    2008-11-03

    Hollow micro-nanostructures are of great interest in many current and emerging areas of technology. Perhaps the best-known example of the former is the use of fly-ash hollow particles generated from coal power plants as partial replacement for Portland cement, to produce concrete with enhanced strength and durability. This review is devoted to the progress made in the last decade in synthesis and applications of hollow micro-nanostructures. We present a comprehensive overview of synthetic strategies for hollow structures. These strategies are broadly categorized into four themes, which include well-established approaches, such as conventional hard-templating and soft-templating methods, as well as newly emerging methods based on sacrificial templating and template-free synthesis. Success in each has inspired multiple variations that continue to drive the rapid evolution of the field. The Review therefore focuses on the fundamentals of each process, pointing out advantages and disadvantages where appropriate. Strategies for generating more complex hollow structures, such as rattle-type and nonspherical hollow structures, are also discussed. Applications of hollow structures in lithium batteries, catalysis and sensing, and biomedical applications are reviewed. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA,.

  14. Hierarchical species distribution models

    Science.gov (United States)

    Hefley, Trevor J.; Hooten, Mevin B.

    2016-01-01

    Determining the distribution pattern of a species is important to increase scientific knowledge, inform management decisions, and conserve biodiversity. To infer spatial and temporal patterns, species distribution models have been developed for use with many sampling designs and types of data. Recently, it has been shown that count, presence-absence, and presence-only data can be conceptualized as arising from a point process distribution. Therefore, it is important to understand properties of the point process distribution. We examine how the hierarchical species distribution modeling framework has been used to incorporate a wide array of regression and theory-based components while accounting for the data collection process and making use of auxiliary information. The hierarchical modeling framework allows us to demonstrate how several commonly used species distribution models can be derived from the point process distribution, highlight areas of potential overlap between different models, and suggest areas where further research is needed.

  15. Bayesian nonparametric hierarchical modeling.

    Science.gov (United States)

    Dunson, David B

    2009-04-01

    In biomedical research, hierarchical models are very widely used to accommodate dependence in multivariate and longitudinal data and for borrowing of information across data from different sources. A primary concern in hierarchical modeling is sensitivity to parametric assumptions, such as linearity and normality of the random effects. Parametric assumptions on latent variable distributions can be challenging to check and are typically unwarranted, given available prior knowledge. This article reviews some recent developments in Bayesian nonparametric methods motivated by complex, multivariate and functional data collected in biomedical studies. The author provides a brief review of flexible parametric approaches relying on finite mixtures and latent class modeling. Dirichlet process mixture models are motivated by the need to generalize these approaches to avoid assuming a fixed finite number of classes. Focusing on an epidemiology application, the author illustrates the practical utility and potential of nonparametric Bayes methods.

  16. Hierarchically Structured Electrospun Fibers

    Science.gov (United States)

    2013-01-07

    in the natural lotus and silver ragwort leaves. Figure 4. Examples of electrospun bio-mimics of natural hierarchical structures. (A) Lotus leaf...B) pillared poly(methyl methacrylate) (PMMA) electrospun fiber mimic; (C) silver ragwort leaf; (D) electrospun fiber mimic made from nylon 6 and...domains containing the protein in the surrounding EVA fibers [115]. A wide variety of core-shell fibers have been generated, including PCL/ gelatin

  17. Hierarchical video summarization

    Science.gov (United States)

    Ratakonda, Krishna; Sezan, M. Ibrahim; Crinon, Regis J.

    1998-12-01

    We address the problem of key-frame summarization of vide in the absence of any a priori information about its content. This is a common problem that is encountered in home videos. We propose a hierarchical key-frame summarization algorithm where a coarse-to-fine key-frame summary is generated. A hierarchical key-frame summary facilitates multi-level browsing where the user can quickly discover the content of the video by accessing its coarsest but most compact summary and then view a desired segment of the video with increasingly more detail. At the finest level, the summary is generated on the basis of color features of video frames, using an extension of a recently proposed key-frame extraction algorithm. The finest level key-frames are recursively clustered using a novel pairwise K-means clustering approach with temporal consecutiveness constraint. We also address summarization of MPEG-2 compressed video without fully decoding the bitstream. We also propose efficient mechanisms that facilitate decoding the video when the hierarchical summary is utilized in browsing and playback of video segments starting at selected key-frames.

  18. Hierarchically Structured Electrospun Fibers

    Directory of Open Access Journals (Sweden)

    Nicole E. Zander

    2013-01-01

    Full Text Available Traditional electrospun nanofibers have a myriad of applications ranging from scaffolds for tissue engineering to components of biosensors and energy harvesting devices. The generally smooth one-dimensional structure of the fibers has stood as a limitation to several interesting novel applications. Control of fiber diameter, porosity and collector geometry will be briefly discussed, as will more traditional methods for controlling fiber morphology and fiber mat architecture. The remainder of the review will focus on new techniques to prepare hierarchically structured fibers. Fibers with hierarchical primary structures—including helical, buckled, and beads-on-a-string fibers, as well as fibers with secondary structures, such as nanopores, nanopillars, nanorods, and internally structured fibers and their applications—will be discussed. These new materials with helical/buckled morphology are expected to possess unique optical and mechanical properties with possible applications for negative refractive index materials, highly stretchable/high-tensile-strength materials, and components in microelectromechanical devices. Core-shell type fibers enable a much wider variety of materials to be electrospun and are expected to be widely applied in the sensing, drug delivery/controlled release fields, and in the encapsulation of live cells for biological applications. Materials with a hierarchical secondary structure are expected to provide new superhydrophobic and self-cleaning materials.

  19. Method for producing small hollow spheres

    International Nuclear Information System (INIS)

    Hendricks, C.D.

    1979-01-01

    A method is described for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T >approx. 600 0 C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10 3 μm) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants

  20. Microring embedded hollow polymer fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Linslal, C. L., E-mail: linslal@gmail.com; Sebastian, S.; Mathew, S.; Radhakrishnan, P.; Nampoori, V. P. N.; Girijavallabhan, C. P.; Kailasnath, M. [International School of Photonics, Cochin University of Science and Technology, Cochin 22 (India)

    2015-03-30

    Strongly modulated laser emission has been observed from rhodamine B doped microring resonator embedded in a hollow polymer optical fiber by transverse optical pumping. The microring resonator is fabricated on the inner wall of a hollow polymer fiber. Highly sharp lasing lines, strong mode selection, and a collimated laser beam are observed from the fiber. Nearly single mode lasing with a side mode suppression ratio of up to 11.8 dB is obtained from the strongly modulated lasing spectrum. The microring embedded hollow polymer fiber laser has shown efficient lasing characteristics even at a propagation length of 1.5 m.

  1. Modeling High Pressure Micro Hollow Cathode Discharges

    National Research Council Canada - National Science Library

    Boeuf, Jean-Pierre; Pitchford, Leanne

    2004-01-01

    This report results from a contract tasking CPAT as follows: The Grantee will perform theoretical modeling of point, surface, and volume high-pressure plasmas created using Micro Hollow Cathode Discharge sources...

  2. optimizing compressive strength characteristics of hollow building

    African Journals Online (AJOL)

    eobe

    Keywords: hollow building Blocks, granite dust, sand, partial replacement, compressive strength. 1. INTRODUCTION ... exposed to extreme climate. The physical ... Sridharan et al [13] conducted shear strength studies on soil-quarry dust.

  3. Hollow Micro-/Nanostructures: Synthesis and Applications

    KAUST Repository

    Lou, Xiong Wen (David); Archer, Lynden A.; Yang, Zichao

    2008-01-01

    for Portland cement, to produce concrete with enhanced strength and durability. This review is devoted to the progress made in the last decade in synthesis and applications of hollow micro-nanostructures. We present a comprehensive overview of synthetic

  4. Plasma generation using the hollow cathod

    International Nuclear Information System (INIS)

    Moon, K.J.

    1983-01-01

    A hollow cathode of tungsten was adapted to an University of California, Berkely, LBL bucket ion source to investigate ion density fluctuations at the extractior grid. Fluctuations in plasma ion density are observed to range between 100kHz to 2 MHz. The observed fluctuation frequencies of plasma ion density are found to be inversely proportional to the square root of ion masses. It is guessed that the plasma fluctuation are also correlated with the hollow cathode length. (Author)

  5. Adsorption characteristics of activated carbon hollow fibers

    Directory of Open Access Journals (Sweden)

    B. V. Kaludjerović

    2009-01-01

    Full Text Available Carbon hollow fibers were prepared with regenerated cellulose or polysulfone hollow fibers by chemical activation using sodium phosphate dibasic followed by the carbonization process. The activation process increases the adsorption properties of fibers which is more prominent for active carbone fibers obtained from the cellulose precursor. Chemical activation with sodium phosphate dibasic produces an active carbon material with both mesopores and micropores.

  6. Hollow cathode for positive ion sources

    International Nuclear Information System (INIS)

    Schechter, D.E.; Kim, J.; Tsai, C.C.

    1979-01-01

    Development to incorporate hollow cathodes into high power ion sources for neutral beam injection systems is being pursued. Hollow tube LaB 6 -type cathodes, similar to a UCLA design, have been constructed and tested in several ORNL ion source configurations. Results of testing include arc discharge parameters of >1000 and 500 amps for 0.5 and 10 second pulse lengths, respectively. Details of cathode construction and additional performance results are discussed

  7. Hollow-duct radiation delivery system investigation

    Directory of Open Access Journals (Sweden)

    Kramer D.

    2013-05-01

    Full Text Available Investigation of hollow-duct structure for high-power laser-diode-array radiation delivery into the end-pumped large-aperture gain media is reported. A ray tracing method has been used to evaluate the performance of the structure designed for maximum transmission efficiency and output beam profile homogeneity. Variable hollow-duct lengths as well as emanating angles of laser-diode-array have been taken into account.

  8. Context updates are hierarchical

    Directory of Open Access Journals (Sweden)

    Anton Karl Ingason

    2016-10-01

    Full Text Available This squib studies the order in which elements are added to the shared context of interlocutors in a conversation. It focuses on context updates within one hierarchical structure and argues that structurally higher elements are entered into the context before lower elements, even if the structurally higher elements are pronounced after the lower elements. The crucial data are drawn from a comparison of relative clauses in two head-initial languages, English and Icelandic, and two head-final languages, Korean and Japanese. The findings have consequences for any theory of a dynamic semantics.

  9. Bubble template synthesis of Sn2Nb2O7 hollow spheres for enhanced visible-light-driven photocatalytic hydrogen production.

    Science.gov (United States)

    Zhou, Chao; Zhao, Yufei; Bian, Tong; Shang, Lu; Yu, Huijun; Wu, Li-Zhu; Tung, Chen-Ho; Zhang, Tierui

    2013-10-28

    Hierarchical Sn2Nb2O7 hollow spheres were prepared for the first time via a facile hydrothermal route using bubbles generated in situ from the decomposition of urea as soft templates. The as-obtained hollow spheres with a large specific surface area of 58.3 m(2) g(-1) show improved visible-light-driven photocatalytic H2 production activity in lactic acid aqueous solutions, about 4 times higher than that of the bulk Sn2Nb2O7 sample prepared by a conventional high temperature solid state reaction method.

  10. Detecting Hierarchical Structure in Networks

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard

    2012-01-01

    Many real-world networks exhibit hierarchical organization. Previous models of hierarchies within relational data has focused on binary trees; however, for many networks it is unknown whether there is hierarchical structure, and if there is, a binary tree might not account well for it. We propose...... a generative Bayesian model that is able to infer whether hierarchies are present or not from a hypothesis space encompassing all types of hierarchical tree structures. For efficient inference we propose a collapsed Gibbs sampling procedure that jointly infers a partition and its hierarchical structure....... On synthetic and real data we demonstrate that our model can detect hierarchical structure leading to better link-prediction than competing models. Our model can be used to detect if a network exhibits hierarchical structure, thereby leading to a better comprehension and statistical account the network....

  11. Hierarchical quark mass matrices

    International Nuclear Information System (INIS)

    Rasin, A.

    1998-02-01

    I define a set of conditions that the most general hierarchical Yukawa mass matrices have to satisfy so that the leading rotations in the diagonalization matrix are a pair of (2,3) and (1,2) rotations. In addition to Fritzsch structures, examples of such hierarchical structures include also matrices with (1,3) elements of the same order or even much larger than the (1,2) elements. Such matrices can be obtained in the framework of a flavor theory. To leading order, the values of the angle in the (2,3) plane (s 23 ) and the angle in the (1,2) plane (s 12 ) do not depend on the order in which they are taken when diagonalizing. We find that any of the Cabbibo-Kobayashi-Maskawa matrix parametrizations that consist of at least one (1,2) and one (2,3) rotation may be suitable. In the particular case when the s 13 diagonalization angles are sufficiently small compared to the product s 12 s 23 , two special CKM parametrizations emerge: the R 12 R 23 R 12 parametrization follows with s 23 taken before the s 12 rotation, and vice versa for the R 23 R 12 R 23 parametrization. (author)

  12. Hierarchical partial order ranking

    International Nuclear Information System (INIS)

    Carlsen, Lars

    2008-01-01

    Assessing the potential impact on environmental and human health from the production and use of chemicals or from polluted sites involves a multi-criteria evaluation scheme. A priori several parameters are to address, e.g., production tonnage, specific release scenarios, geographical and site-specific factors in addition to various substance dependent parameters. Further socio-economic factors may be taken into consideration. The number of parameters to be included may well appear to be prohibitive for developing a sensible model. The study introduces hierarchical partial order ranking (HPOR) that remedies this problem. By HPOR the original parameters are initially grouped based on their mutual connection and a set of meta-descriptors is derived representing the ranking corresponding to the single groups of descriptors, respectively. A second partial order ranking is carried out based on the meta-descriptors, the final ranking being disclosed though average ranks. An illustrative example on the prioritisation of polluted sites is given. - Hierarchical partial order ranking of polluted sites has been developed for prioritization based on a large number of parameters

  13. Nested and Hierarchical Archimax copulas

    KAUST Repository

    Hofert, Marius; Huser, Raphaë l; Prasad, Avinash

    2017-01-01

    The class of Archimax copulas is generalized to nested and hierarchical Archimax copulas in several ways. First, nested extreme-value copulas or nested stable tail dependence functions are introduced to construct nested Archimax copulas based on a single frailty variable. Second, a hierarchical construction of d-norm generators is presented to construct hierarchical stable tail dependence functions and thus hierarchical extreme-value copulas. Moreover, one can, by itself or additionally, introduce nested frailties to extend Archimax copulas to nested Archimax copulas in a similar way as nested Archimedean copulas extend Archimedean copulas. Further results include a general formula for the density of Archimax copulas.

  14. Nested and Hierarchical Archimax copulas

    KAUST Repository

    Hofert, Marius

    2017-07-03

    The class of Archimax copulas is generalized to nested and hierarchical Archimax copulas in several ways. First, nested extreme-value copulas or nested stable tail dependence functions are introduced to construct nested Archimax copulas based on a single frailty variable. Second, a hierarchical construction of d-norm generators is presented to construct hierarchical stable tail dependence functions and thus hierarchical extreme-value copulas. Moreover, one can, by itself or additionally, introduce nested frailties to extend Archimax copulas to nested Archimax copulas in a similar way as nested Archimedean copulas extend Archimedean copulas. Further results include a general formula for the density of Archimax copulas.

  15. Kerr Hollow Quarry Remediation Project

    International Nuclear Information System (INIS)

    Walker, K.L.

    1993-01-01

    The Kerr Hollow Quarry is a 3-acre flooded limestone quarry located near the Y-12 Facility on the Oak Ridge Reservation. The quarry was used in the 1940s as a source of construction material for the Department of Energy in Oak Ridge, Tennessee. Its use was discontinued in the early 1950s, and it was allowed to flood with water. The quarry presently has a maximum water depth of approximately 55 ft. During the period between the early 1950s until about 1988, the quarry was used for the treatment and disposal of a variety of materials including water-reactive, alkali metals, shock-sensitive chemicals, and compressed gas cylinders. For some of these materials, the treatment consisted of dropping the vessels containing the materials into the quarry from a high bluff located on one side of the quarry. The vessels were then punctured by gun shot, and the materials were allowed to react with the water and sink to the bottom of the quarry. Very few disposal records exist for the period from 1952 to 1962. The records after that time, from 1962 until 1988, indicate some 50 t of hazardous and nonhazardous materials were disposed of in the quarry. This report documents remediation efforts that have taken place at the quarry beginning in September 1990

  16. Transmutations across hierarchical levels

    International Nuclear Information System (INIS)

    O'Neill, R.V.

    1977-01-01

    The development of large-scale ecological models depends implicitly on a concept known as hierarchy theory which views biological systems in a series of hierarchical levels (i.e., organism, population, trophic level, ecosystem). The theory states that an explanation of a biological phenomenon is provided when it is shown to be the consequence of the activities of the system's components, which are themselves systems in the next lower level of the hierarchy. Thus, the behavior of a population is explained by the behavior of the organisms in the population. The initial step in any modeling project is, therefore, to identify the system components and the interactions between them. A series of examples of transmutations in aquatic and terrestrial ecosystems are presented to show how and why changes occur. The types of changes are summarized and possible implications of transmutation for hierarchy theory, for the modeler, and for the ecological theoretician are discussed

  17. Trees and Hierarchical Structures

    CERN Document Server

    Haeseler, Arndt

    1990-01-01

    The "raison d'etre" of hierarchical dustering theory stems from one basic phe­ nomenon: This is the notorious non-transitivity of similarity relations. In spite of the fact that very often two objects may be quite similar to a third without being that similar to each other, one still wants to dassify objects according to their similarity. This should be achieved by grouping them into a hierarchy of non-overlapping dusters such that any two objects in ~ne duster appear to be more related to each other than they are to objects outside this duster. In everyday life, as well as in essentially every field of scientific investigation, there is an urge to reduce complexity by recognizing and establishing reasonable das­ sification schemes. Unfortunately, this is counterbalanced by the experience of seemingly unavoidable deadlocks caused by the existence of sequences of objects, each comparatively similar to the next, but the last rather different from the first.

  18. Optimisation by hierarchical search

    Science.gov (United States)

    Zintchenko, Ilia; Hastings, Matthew; Troyer, Matthias

    2015-03-01

    Finding optimal values for a set of variables relative to a cost function gives rise to some of the hardest problems in physics, computer science and applied mathematics. Although often very simple in their formulation, these problems have a complex cost function landscape which prevents currently known algorithms from efficiently finding the global optimum. Countless techniques have been proposed to partially circumvent this problem, but an efficient method is yet to be found. We present a heuristic, general purpose approach to potentially improve the performance of conventional algorithms or special purpose hardware devices by optimising groups of variables in a hierarchical way. We apply this approach to problems in combinatorial optimisation, machine learning and other fields.

  19. Synthesis and release of trace elements from hollow and porous hydroxyapatite spheres

    International Nuclear Information System (INIS)

    Xia Wei; Grandfield, Kathryn; Schwenke, Almut; Engqvist, Haakan

    2011-01-01

    It is known that organic species regulate fabrication of hierarchical biological forms via solution methods. However, in this study, we observed that the presence of inorganic ions plays an important role in the formation and regulation of biological spherical hydroxyapatite formation. We present a mineralization method to prepare ion-doped hydroxyapatite spheres with a hierarchical structure that is free of organic surfactants and biological additives. Porous and hollow strontium-doped hydroxyapatite spheres were synthesized via controlling the concentration of strontium ions in a calcium and phosphate buffer solution. Similarly, fluoride and silicon-doped hydroxyapatite spheres were synthesized. While spherical particle formation was attainable at low and high temperature for Sr-doped hydroxyapatite, it was only possible at high temperature in the F/Si-doped system. The presence of inorganic ions not only plays an important role in the formation and regulation of biological spherical hydroxyapatite, but also could introduce pharmaceutical effects as a result of trace element release. Such ion release results showed a sustained release with pH responsive behavior, and significantly influenced the hydroxyapatite re-precipitation. These ion-doped hydroxyapatite spheres with hollow and porous structure could have promising applications as bone/tooth materials, drug delivery systems, and chromatography supports.

  20. How hierarchical is language use?

    Science.gov (United States)

    Frank, Stefan L.; Bod, Rens; Christiansen, Morten H.

    2012-01-01

    It is generally assumed that hierarchical phrase structure plays a central role in human language. However, considerations of simplicity and evolutionary continuity suggest that hierarchical structure should not be invoked too hastily. Indeed, recent neurophysiological, behavioural and computational studies show that sequential sentence structure has considerable explanatory power and that hierarchical processing is often not involved. In this paper, we review evidence from the recent literature supporting the hypothesis that sequential structure may be fundamental to the comprehension, production and acquisition of human language. Moreover, we provide a preliminary sketch outlining a non-hierarchical model of language use and discuss its implications and testable predictions. If linguistic phenomena can be explained by sequential rather than hierarchical structure, this will have considerable impact in a wide range of fields, such as linguistics, ethology, cognitive neuroscience, psychology and computer science. PMID:22977157

  1. Hollow Mill for Extraction of Stripped Titanium Screws: An Easy ...

    African Journals Online (AJOL)

    countries. The known alternative in such condition is ... Key words: Hollow mill, stripped screws, titanium locked plates ... used a locally manufactured stainless steel hollow mill, ... head ‑ plate hole” assembly as a mono‑block single unit. In.

  2. Method for the production of fabricated hollow microspheroids

    Science.gov (United States)

    Wickramanayake, Shan; Luebke, David R.

    2015-06-09

    The method relates to the fabrication of a polymer microspheres comprised of an asymmetric layer surrounding a hollow interior. The fabricated hollow microsphere is generated from a nascent hollow microsphere comprised of an inner core of core fluid surrounded by a dope layer of polymer dope, where the thickness of the dope layer is at least 10% and less than 50% of the diameter of the inner core. The nascent hollow microsphere is exposed to a gaseous environment, generating a vitrified hollow microsphere, which is subsequently immersed in a coagulation bath. Solvent exchange produces a fabricated hollow microsphere comprised of a densified outer skin surrounding a macroporous inner layer, which surrounds a hollow interior. In an embodiment, the polymer is a polyimide or a polyamide-imide, and the non-solvent in the core fluid and the coagulation bath is water. The fabricated hollow microspheres are particularly suited as solvent supports for gas separation processes.

  3. Development of tree hollows in pedunculate oak (Quercus robur)

    OpenAIRE

    Ranius, Thomas; Niklasson, Mats; Berg, Niclas

    2009-01-01

    Many invertebrates, birds and mammals are dependent on hollow trees. For landscape planning that aims at persistence of species inhabiting hollow trees it is crucial to understand the development of such trees. In this study we constructed an individual-based simulation model to predict diameter distribution and formation of hollows in oak tree populations. Based on tree-ring data from individual trees, we estimated the ages when hollow formation commences for pedunculate oak (Quercus robur) ...

  4. Transmission properties of hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Falk, Charlotte Ijeoma; Hald, Jan; Petersen, Jan C.

    2010-01-01

    Variations in optical transmission of four types of hollow-core photonic bandgap fibers are measured as a function of laser frequency. These variations influence the potential accuracy of gas sensors based on molecular spectroscopy in hollow-core fibers.......Variations in optical transmission of four types of hollow-core photonic bandgap fibers are measured as a function of laser frequency. These variations influence the potential accuracy of gas sensors based on molecular spectroscopy in hollow-core fibers....

  5. Adiabatic Rearrangement of Hollow PV Towers

    Directory of Open Access Journals (Sweden)

    Eric A Hendricks

    2010-10-01

    Full Text Available Diabatic heating from deep moist convection in the hurricane eyewall produces a towering annular structure of elevated potential vorticity (PV. This structure has been referred to as a hollow PV tower. The sign reversal of the radial gradient of PV satisfies the Charney-Stern necessary condition for combined barotropic-baroclinic instability. For thin enough annular structures, small perturbations grow exponentially, extract energy from the mean flow, and lead to hollow tower breakdown, with significant vortex structural and intensity change. The three-dimensional adiabatic rearrangements of two prototypical hurricane-like hollow PV towers (one thick and one thin are examined in an idealized framework. For both hollow towers, dynamic instability causes air parcels with high PV to be mixed into the eye preferentially at lower levels, where unstable PV wave growth rates are the largest. Little or no mixing is found to occur at upper levels. The mixing at lower and middle levels is most rapid for the breakdown of the thin hollow tower, consistent with previous barotropic results. For both hollow towers, this advective rearrangement of PV affects the tropical cyclone structure and intensity in a number of ways. First, the minimum central pressure and maximum azimuthal mean velocity simultaneously decrease, consistent with previous barotropic results. Secondly, isosurfaces of absolute angular momentum preferentially shift inward at low levels, implying an adiabatic mechanism by which hurricane eyewall tilt can form. Thirdly, a PV bridge, similar to that previously found in full-physics hurricane simulations, develops as a result of mixing at the isentropic levels where unstable PV waves grow most rapidly. Finally, the balanced mass field resulting from the PV rearrangement is warmer in the eye between 900 and 700 hPa. The location of this warming is consistent with observed warm anomalies in the eye, indicating that in certain instances the hurricane

  6. Studies on pulsed hollow cathode capillary discharges

    Energy Technology Data Exchange (ETDEWEB)

    Choi, P; Dumitrescu-Zoita, C; Larour, J; Rous, J [Ecole Polytechnique, 91 - Palaiseau (France). Lab. de Physique des Milieux Ionises; Favre, M; Moreno, J; Chuaqui, H; Wyndham, E [Pontificia Univ. Catolica de Chile, Santiago (Chile). Facultad de Fisica; Zambra, M [Comision Chilena de Energia Nuclear, Santiago (Chile); Wong, C S [Univ. of Malaya, Kuala Lumpur (Malaysia). Plasma Research Lab

    1997-12-31

    Preliminary results on radiation characteristics of pulsed hollow cathode capillary discharges are presented. The device combines the on axis electron beam assisted ionization capabilities of the transient hollow cathode discharge with a novel high voltage low inductance geometrical design, which integrates the local energy storage into the electrode system. A nanosecond regime high temperature plasma is produced in a long, high aspect ratio capillary, with light emission in the UV to XUV region. The discharge is operated from near vacuum to pressure in the 1000 mTorr range. (author). 2 figs., 7 refs.

  7. Microfabricated hollow microneedle array using ICP etcher

    Science.gov (United States)

    Ji, Jing; Tay, Francis E. H.; Miao, Jianmin

    2006-04-01

    This paper presents a developed process for fabrication of hollow silicon microneedle arrays. The inner hollow hole and the fluidic reservoir are fabricated in deep reactive ion etching. The profile of outside needles is achieved by the developed fabrication process, which combined isotropic etching and anisotropic etching with inductively coupled plasma (ICP) etcher. Using the combination of SF6/O2 isotropic etching chemistry and Bosch process, the high aspect ratio 3D and high density microneedle arrays are fabricated. The generated needle external geometry can be controlled by etching variables in the isotropic and anisotropic cases.

  8. Microfabricated hollow microneedle array using ICP etcher

    International Nuclear Information System (INIS)

    Ji Jing; Tay, Francis E H; Miao Jianmin

    2006-01-01

    This paper presents a developed process for fabrication of hollow silicon microneedle arrays. The inner hollow hole and the fluidic reservoir are fabricated in deep reactive ion etching. The profile of outside needles is achieved by the developed fabrication process, which combined isotropic etching and anisotropic etching with inductively coupled plasma (ICP) etcher. Using the combination of SF 6 /O 2 isotropic etching chemistry and Bosch process, the high aspect ratio 3D and high density microneedle arrays are fabricated. The generated needle external geometry can be controlled by etching variables in the isotropic and anisotropic cases

  9. Microfabricated hollow microneedle array using ICP etcher

    Energy Technology Data Exchange (ETDEWEB)

    Ji Jing [Mechanical Engineering National University of Singapore, 119260, Singapore (Singapore); Tay, Francis E H [Mechanical Engineering National University of Singapore, 119260, Singapore (Singapore); Miao Jianmin [MicroMachines Center, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore)

    2006-04-01

    This paper presents a developed process for fabrication of hollow silicon microneedle arrays. The inner hollow hole and the fluidic reservoir are fabricated in deep reactive ion etching. The profile of outside needles is achieved by the developed fabrication process, which combined isotropic etching and anisotropic etching with inductively coupled plasma (ICP) etcher. Using the combination of SF{sub 6}/O{sub 2} isotropic etching chemistry and Bosch process, the high aspect ratio 3D and high density microneedle arrays are fabricated. The generated needle external geometry can be controlled by etching variables in the isotropic and anisotropic cases.

  10. Computational predictions of zinc oxide hollow structures

    Science.gov (United States)

    Tuoc, Vu Ngoc; Huan, Tran Doan; Thao, Nguyen Thi

    2018-03-01

    Nanoporous materials are emerging as potential candidates for a wide range of technological applications in environment, electronic, and optoelectronics, to name just a few. Within this active research area, experimental works are predominant while theoretical/computational prediction and study of these materials face some intrinsic challenges, one of them is how to predict porous structures. We propose a computationally and technically feasible approach for predicting zinc oxide structures with hollows at the nano scale. The designed zinc oxide hollow structures are studied with computations using the density functional tight binding and conventional density functional theory methods, revealing a variety of promising mechanical and electronic properties, which can potentially find future realistic applications.

  11. Hierarchical Discriminant Analysis

    Directory of Open Access Journals (Sweden)

    Di Lu

    2018-01-01

    Full Text Available The Internet of Things (IoT generates lots of high-dimensional sensor intelligent data. The processing of high-dimensional data (e.g., data visualization and data classification is very difficult, so it requires excellent subspace learning algorithms to learn a latent subspace to preserve the intrinsic structure of the high-dimensional data, and abandon the least useful information in the subsequent processing. In this context, many subspace learning algorithms have been presented. However, in the process of transforming the high-dimensional data into the low-dimensional space, the huge difference between the sum of inter-class distance and the sum of intra-class distance for distinct data may cause a bias problem. That means that the impact of intra-class distance is overwhelmed. To address this problem, we propose a novel algorithm called Hierarchical Discriminant Analysis (HDA. It minimizes the sum of intra-class distance first, and then maximizes the sum of inter-class distance. This proposed method balances the bias from the inter-class and that from the intra-class to achieve better performance. Extensive experiments are conducted on several benchmark face datasets. The results reveal that HDA obtains better performance than other dimensionality reduction algorithms.

  12. Hierarchical Linked Views

    Energy Technology Data Exchange (ETDEWEB)

    Erbacher, Robert; Frincke, Deb

    2007-07-02

    Coordinated views have proven critical to the development of effective visualization environments. This results from the fact that a single view or representation of the data cannot show all of the intricacies of a given data set. Additionally, users will often need to correlate more data parameters than can effectively be integrated into a single visual display. Typically, development of multiple-linked views results in an adhoc configuration of views and associated interactions. The hierarchical model we are proposing is geared towards more effective organization of such environments and the views they encompass. At the same time, this model can effectively integrate much of the prior work on interactive and visual frameworks. Additionally, we expand the concept of views to incorporate perceptual views. This is related to the fact that visual displays can have information encoded at various levels of focus. Thus, a global view of the display provides overall trends of the data while focusing in on individual elements provides detailed specifics. By integrating interaction and perception into a single model, we show how one impacts the other. Typically, interaction and perception are considered separately, however, when interaction is being considered at a fundamental level and allowed to direct/modify the visualization directly we must consider them simultaneously and how they impact one another.

  13. Hollow-in-Hollow Carbon Spheres for Lithium-ion Batteries with Superior Capacity and Cyclic Performance

    International Nuclear Information System (INIS)

    Zang, Jun; Ye, Jianchuan; Fang, Xiaoliang; Zhang, Xiangwu; Zheng, Mingsen; Dong, Quanfeng

    2015-01-01

    Highlights: • Hollow-in-hollow structured HIHCS was synthesized via a facile templating strategy. • The HCS core and hollow carbon shell constitute the hollow-in-hollow structure. • The HIHCS exhibited superior rate capability and cycle stability as anode material. • The excellent performance is attributed to the unique hollow-in-hollow structure. - Abstract: Hollow spheres structured materials have been intensively pursued due to their unique properties for energy storage. In this paper, hollow-in-hollow carbon spheres (HIHCS) with a multi-shelled structure were successfully synthesized using a facile hard-templating procedure. When evaluated as anode material for lithium-ion batteries, the resultant HIHCS anode exhibited superior capacity and cycling stability than HCS. It could deliver reversible capacities of 937, 481, 401, 304 and 236 mAh g −1 at current densities of 0.1 A g −1 , 1 A g −1 , 2 A g −1 , 5 A g −1 and 10 A g −1 , respectively. And capacity fading is not apparent in 500 cycles at 5 A g −1 . The excellent performance of the HIHCS anode is ascribed to its unique hollow-in-hollow structure and high specific surface area.

  14. Molecular motor transport through hollow nanowires

    DEFF Research Database (Denmark)

    Lard, Mercy; Ten Siethoff, Lasse; Generosi, Johanna

    2014-01-01

    -driven motion of fluorescent probes (actin filaments) through 80 nm wide, Al2O 3 hollow nanowires of micrometer length. The motor-driven transport is orders of magnitude faster than would be possible by passive diffusion. The system represents a necessary element for advanced devices based on gliding assays...

  15. Hollow micro string based calorimeter device

    DEFF Research Database (Denmark)

    2014-01-01

    positions so as to form a free released double clamped string in-between said two longitudinally distanced positions said micro-channel string comprising a microfluidic channel having a closed cross section and extending in the longitudinal direction of the hollow string, acoustical means adapted...

  16. Hollow fibre supported liquid membrane extraction of ...

    African Journals Online (AJOL)

    A simple sample pre-treatment method utilizing hollow fibre supported liquid membrane (HFSLM) was carried out on pharmaceuticals samples comprising of cough syrups (CS1 and CS2) and an anti-inflammatory product (AI). The active ingredients targeted in the extraction process were diphenylhydramine (DPH), ...

  17. TEACHING PHYSICS: Biking around a hollow sphere

    Science.gov (United States)

    Mak, Se-yuen; Yip, Din-yan

    1999-11-01

    The conditions required for a cyclist riding a motorbike in a horizontal circle on or above the equator of a hollow sphere are derived using concepts of equilibrium and the condition for uniform circular motion. The result is compared with an empirical analysis based on a video show. Some special cases of interest derived from the general solution are elaborated.

  18. Direct hierarchical assembly of nanoparticles

    Science.gov (United States)

    Xu, Ting; Zhao, Yue; Thorkelsson, Kari

    2014-07-22

    The present invention provides hierarchical assemblies of a block copolymer, a bifunctional linking compound and a nanoparticle. The block copolymers form one micro-domain and the nanoparticles another micro-domain.

  19. Hierarchical materials: Background and perspectives

    DEFF Research Database (Denmark)

    2016-01-01

    Hierarchical design draws inspiration from analysis of biological materials and has opened new possibilities for enhancing performance and enabling new functionalities and extraordinary properties. With the development of nanotechnology, the necessary technological requirements for the manufactur...

  20. Functional annotation of hierarchical modularity.

    Directory of Open Access Journals (Sweden)

    Kanchana Padmanabhan

    Full Text Available In biological networks of molecular interactions in a cell, network motifs that are biologically relevant are also functionally coherent, or form functional modules. These functionally coherent modules combine in a hierarchical manner into larger, less cohesive subsystems, thus revealing one of the essential design principles of system-level cellular organization and function-hierarchical modularity. Arguably, hierarchical modularity has not been explicitly taken into consideration by most, if not all, functional annotation systems. As a result, the existing methods would often fail to assign a statistically significant functional coherence score to biologically relevant molecular machines. We developed a methodology for hierarchical functional annotation. Given the hierarchical taxonomy of functional concepts (e.g., Gene Ontology and the association of individual genes or proteins with these concepts (e.g., GO terms, our method will assign a Hierarchical Modularity Score (HMS to each node in the hierarchy of functional modules; the HMS score and its p-value measure functional coherence of each module in the hierarchy. While existing methods annotate each module with a set of "enriched" functional terms in a bag of genes, our complementary method provides the hierarchical functional annotation of the modules and their hierarchically organized components. A hierarchical organization of functional modules often comes as a bi-product of cluster analysis of gene expression data or protein interaction data. Otherwise, our method will automatically build such a hierarchy by directly incorporating the functional taxonomy information into the hierarchy search process and by allowing multi-functional genes to be part of more than one component in the hierarchy. In addition, its underlying HMS scoring metric ensures that functional specificity of the terms across different levels of the hierarchical taxonomy is properly treated. We have evaluated our

  1. TEOA-mediated formation of hollow core-shell structured CoNi2S4 nanospheres as a high-performance electrode material for supercapacitors

    Science.gov (United States)

    Liang, Jun; Li, Meng; Chai, Yao; Luo, Min; Li, Li

    2017-09-01

    In this study, we report for the first time a cost-effective and general approach for the high-yield synthesis of a hierarchical core-shell and hollow structure of ternary CoNi2S4 in a triethanolamine (TEOA)-assisted hydrothermal system. It is found that a continuous increase in TEOA usages facilitates the formation and transformation of hierarchical CoNi2S4 hollow nanospheres, and the formation mechanism of the unique structure is revealed to be assembly-then-inside-out evacuation and Ostwald ripening mechanism during the sulfidation process. More importantly, when used as faradaic electrode for supercapacitors, the hierarchical hollow CoNi2S4 nanospheres display not only exceptional pseudocapacitve performance with high specific capacitance (2035 Fg-1 at 1 Ag-1) and excellent rate capability (1215 Fg-1 at 20 Ag-1), but also superior cycling stability, with only about 8.7% loss over 3000 cycles at 10 Ag-1. This work can provide some guidance for us in the structural and compositional tuning of mixed binary-metal sulfides toward many desired applications.

  2. Evidence of fire resistance of hollow-core slabs

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Sørensen, Lars Schiøtt; Giuliani, Luisa

    is therefore going on in the Netherlands about the fire resistance of hollow-core slabs. In 2014 the producers of hollow-core slabs have published a report of a project called Holcofire containing a collection of 162 fire tests on hollow-core slabs giving for the first time an overview of the fire tests made....... The present paper analyses the evidence now available for assessment of the fire resistance of extruded hollow-core slabs. The 162 fire tests from the Holcofire report are compared against the requirements for testing from the product standard for hollow-core slabs EN1168 and knowledge about the possible......Hollow-core slabs have during the past 50 years comprised a variety of different structures with different cross-sections and reinforcement. At present the extruded hollow-core slabs without cross-reinforcement in the bottom flange and usually round or oval longitudinal channels (holes...

  3. Hierarchical architecture of active knits

    International Nuclear Information System (INIS)

    Abel, Julianna; Luntz, Jonathan; Brei, Diann

    2013-01-01

    Nature eloquently utilizes hierarchical structures to form the world around us. Applying the hierarchical architecture paradigm to smart materials can provide a basis for a new genre of actuators which produce complex actuation motions. One promising example of cellular architecture—active knits—provides complex three-dimensional distributed actuation motions with expanded operational performance through a hierarchically organized structure. The hierarchical structure arranges a single fiber of active material, such as shape memory alloys (SMAs), into a cellular network of interlacing adjacent loops according to a knitting grid. This paper defines a four-level hierarchical classification of knit structures: the basic knit loop, knit patterns, grid patterns, and restructured grids. Each level of the hierarchy provides increased architectural complexity, resulting in expanded kinematic actuation motions of active knits. The range of kinematic actuation motions are displayed through experimental examples of different SMA active knits. The results from this paper illustrate and classify the ways in which each level of the hierarchical knit architecture leverages the performance of the base smart material to generate unique actuation motions, providing necessary insight to best exploit this new actuation paradigm. (paper)

  4. Evolution of nickel sulfide hollow spheres through topotactic transformation

    Science.gov (United States)

    Wei, Chengzhen; Lu, Qingyi; Sun, Jing; Gao, Feng

    2013-11-01

    In this study, a topotactic transformation route was proposed to synthesize single-crystalline β-NiS hollow spheres with uniform phase and morphology evolving from polycrystalline α-NiS hollow spheres. Uniform polycrystalline α-NiS hollow spheres were firstly prepared with thiourea and glutathione as sulfur sources under hydrothermal conditions through the Kirkendall effect. By increasing the reaction temperature the polycrystalline α-NiS hollow spheres were transformed to uniform β-NiS hollow spheres. The β-NiS crystals obtained through the topotactic transformation route not only have unchanged morphology of hollow spheres but are also single-crystalline in nature. The as-prepared NiS hollow spheres display a good ability to remove the organic pollutant Congo red from water, which makes them have application potential in water treatment.In this study, a topotactic transformation route was proposed to synthesize single-crystalline β-NiS hollow spheres with uniform phase and morphology evolving from polycrystalline α-NiS hollow spheres. Uniform polycrystalline α-NiS hollow spheres were firstly prepared with thiourea and glutathione as sulfur sources under hydrothermal conditions through the Kirkendall effect. By increasing the reaction temperature the polycrystalline α-NiS hollow spheres were transformed to uniform β-NiS hollow spheres. The β-NiS crystals obtained through the topotactic transformation route not only have unchanged morphology of hollow spheres but are also single-crystalline in nature. The as-prepared NiS hollow spheres display a good ability to remove the organic pollutant Congo red from water, which makes them have application potential in water treatment. Electronic supplementary information (ESI) available: XRD patterns; SEM images and TEM images. See DOI: 10.1039/c3nr03371f

  5. Novel hierarchical microparticles super-assembled from nanoparticles with the induction of casein micelles

    Science.gov (United States)

    Xiong, Xiaopeng; Duan, Jiangjiang; Wang, Yong; Yu, Zhaoju

    2013-08-01

    We have demonstrated a solution-based synthesis of novel waxberry-like hierarchical ZnO microparticles in the presence casein micelles under mild conditions. The microstructures of the sub-micrometer-sized hierarchical microparticles were characterized, and the synthesis conditions were optimized. The formation mechanism of the hierarchical microparticle was analyzed through control experiments. The hierarchical ZnO microparticles are found to be super-assemblies of 30-70 nm ZnO nanoparticles, which are thought to be based on casein micelle induction followed by Ostwald ripening. In the same manner, copper-based hierarchical microparticles with a similar morphology have also been successfully synthesized. By controlling the synthetic time or temperature, solid or hollow microparticles can be fabricated. The narrowly distributed ZnO microparticles have a high specific surface area, exhibiting great potential application in fields such as photocatalytic and energy conversion. Our findings may meanwhile open a new bottom-up strategy in order to construct structurally sophisticated nanomaterials.

  6. Novel hierarchical microparticles super-assembled from nanoparticles with the induction of casein micelles

    International Nuclear Information System (INIS)

    Xiong, Xiaopeng; Duan, Jiangjiang; Wang, Yong; Yu, Zhaoju

    2013-01-01

    We have demonstrated a solution-based synthesis of novel waxberry-like hierarchical ZnO microparticles in the presence casein micelles under mild conditions. The microstructures of the sub-micrometer-sized hierarchical microparticles were characterized, and the synthesis conditions were optimized. The formation mechanism of the hierarchical microparticle was analyzed through control experiments. The hierarchical ZnO microparticles are found to be super-assemblies of 30–70 nm ZnO nanoparticles, which are thought to be based on casein micelle induction followed by Ostwald ripening. In the same manner, copper-based hierarchical microparticles with a similar morphology have also been successfully synthesized. By controlling the synthetic time or temperature, solid or hollow microparticles can be fabricated. The narrowly distributed ZnO microparticles have a high specific surface area, exhibiting great potential application in fields such as photocatalytic and energy conversion. Our findings may meanwhile open a new bottom-up strategy in order to construct structurally sophisticated nanomaterials

  7. Novel hierarchical microparticles super-assembled from nanoparticles with the induction of casein micelles

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Xiaopeng, E-mail: xpxiong@xmu.edu.cn; Duan, Jiangjiang; Wang, Yong; Yu, Zhaoju [Xiamen University, Department of Materials Science and Engineering, College of Materials (China)

    2013-08-15

    We have demonstrated a solution-based synthesis of novel waxberry-like hierarchical ZnO microparticles in the presence casein micelles under mild conditions. The microstructures of the sub-micrometer-sized hierarchical microparticles were characterized, and the synthesis conditions were optimized. The formation mechanism of the hierarchical microparticle was analyzed through control experiments. The hierarchical ZnO microparticles are found to be super-assemblies of 30-70 nm ZnO nanoparticles, which are thought to be based on casein micelle induction followed by Ostwald ripening. In the same manner, copper-based hierarchical microparticles with a similar morphology have also been successfully synthesized. By controlling the synthetic time or temperature, solid or hollow microparticles can be fabricated. The narrowly distributed ZnO microparticles have a high specific surface area, exhibiting great potential application in fields such as photocatalytic and energy conversion. Our findings may meanwhile open a new bottom-up strategy in order to construct structurally sophisticated nanomaterials.

  8. Surface functionalized hollow silica particles and composites

    KAUST Repository

    Rodionov, Valentin; Khanh, Vu Bao

    2017-01-01

    Composition comprising hollow spherical silica particles having outside particle walls and inside particle walls, wherein the particles have an average particle size of about 10 nm to about 500 nm and an average wall thickness of about 10 nm to about 50 nm; and wherein the particles are functionalized with at least one organic functional group on the outside particle wall, on the inside particle wall, or on both the outside and inside particle walls, wherein the organic functional group is in a reacted or unreacted form. The organic functional group can be epoxy. The particles can be mixed with polymer precursor or a polymer material such as epoxy to form a prepreg or a nanocomposite. Lightweight but strong materials can be formed. Low loadings of hollow particles can be used.

  9. Space Charge Mitigation by Hollow Bunches

    CERN Multimedia

    Oeftiger, AO

    2014-01-01

    To satisfy the requirements of the HL-LHC (High Luminosity Large Hadron Collider), the LHC injector chain will need to supply a higher brightness, i.e. deliver the same transverse beam emittances \\epsilon_{x,y} while providing a higher intensity N. However, a larger number of particles per bunch enhances space charge effects. One approach to mitigate the impact of space charge is to change the longitudinal phase space distribution: hollow bunches feature a depleted bunch centre and a densely populated periphery. Thus, the spatial line density maximum is depressed which ultimately decreases the tune spread imposed by space charge. Therefore, a higher intensity can be accepted while keeping the same overall space charge tune shift. 3 different methods to create hollow bunches in the PSBooster are simulated.

  10. Surface functionalized hollow silica particles and composites

    KAUST Repository

    Rodionov, Valentin

    2017-05-26

    Composition comprising hollow spherical silica particles having outside particle walls and inside particle walls, wherein the particles have an average particle size of about 10 nm to about 500 nm and an average wall thickness of about 10 nm to about 50 nm; and wherein the particles are functionalized with at least one organic functional group on the outside particle wall, on the inside particle wall, or on both the outside and inside particle walls, wherein the organic functional group is in a reacted or unreacted form. The organic functional group can be epoxy. The particles can be mixed with polymer precursor or a polymer material such as epoxy to form a prepreg or a nanocomposite. Lightweight but strong materials can be formed. Low loadings of hollow particles can be used.

  11. Mesoporous hollow spheres from soap bubbling.

    Science.gov (United States)

    Yu, Xianglin; Liang, Fuxin; Liu, Jiguang; Lu, Yunfeng; Yang, Zhenzhong

    2012-02-01

    The smaller and more stable bubbles can be generated from the large parent bubbles by rupture. In the presence of a bubble blowing agent, hollow spheres can be prepared by bubbling a silica sol. Herein, the trapped gas inside the bubble acts as a template. When the porogen, i.e., other surfactant, is introduced, a mesostructured shell forms by the co-assembly with the silica sol during sol-gel process. Morphological evolution emphasizes the prerequisite of an intermediate interior gas flow rate and high exterior gas flow rate for hollow spheres. The method is valid for many compositions from inorganic, polymer to their composites. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Chalcogenide glass hollow core microstructured optical fibers

    Directory of Open Access Journals (Sweden)

    Vladimir S. eShiryaev

    2015-03-01

    Full Text Available The recent developments on chalcogenide glass hollow core microstructured optical fibers (HC-MOFs are presented. The comparative analysis of simulated optical properties for chalcogenide HC-MOFs of negative-curvature with different size and number of capillaries is given. The technique for the manufacture of microstructured chalcogenide preforms, which includes the assembly of the substrate glass tube and 8-10 capillaries, is described. Further trends to improve the optical transmission in chalcogenide NCHCFs are considered.

  13. Comparison of hollow cathode discharge plasma configurations

    International Nuclear Information System (INIS)

    Farnell, Casey C; Farnell, Cody C; Williams, John D

    2011-01-01

    Hollow cathodes used in plasma contactor and electric propulsion devices provide electrons for sustaining plasma discharges and enabling plasma bridge neutralization. Life tests show erosion on hollow cathodes exposed to the plasma environment produced in the region downstream of these devices. To explain the observed erosion, plasma flow field measurements are presented for hollow cathode generated plasmas using both directly immersed probes and remotely located plasma diagnostics. Measurements on two cathode discharge configurations are presented: (1) an open, no magnetic field configuration and (2) a setup simulating the discharge chamber environment of an ion thruster. In the open cathode configuration, large amplitude plasma potential oscillations, ranging from 20 to 85 V within a 34 V discharge, were observed using a fast response emissive probe. These oscillations were observed over a dc potential profile that included a well-defined potential hill structure. A remotely located electrostatic analyzer (ESA) was used to measure the energy of ions produced within the plasma, and energies were detected that met, and in some cases exceeded, the peak oscillatory plasma potentials detected by the emissive probe. In the ion thruster discharge chamber configuration, plasma potentials from the emissive probe again agreed with ion energies recorded by the remotely located ESA; however, much lower ion energies were detected compared with the open configuration. A simplified ion-transit model that uses temporal and spatial plasma property measurements is presented and used to predict far-field plasma streaming properties. Comparisons between the model and remote measurements are presented.

  14. Formation of hollow atoms above a surface

    Science.gov (United States)

    Briand, Jean Pierre; Phaneuf, Ronald; Terracol, Stephane; Xie, Zuqi

    2012-06-01

    Slow highly stripped ions approaching or penetrating surfaces are known to capture electrons into outer shells of the ions, leaving the innermost shells empty, and forming hollow atoms. Electron capture occurs above and below the surfaces. The existence of hollow atoms below surfaces e.g. Ar atoms whose K and L shells are empty, with all electrons lying in the M and N shells, was demonstrated in 1990 [1]. At nm above surfaces, the excited ions may not have enough time to decay before hitting the surfaces, and the formation of hollow atoms above surfaces has even been questioned [2]. To observe it, one must increase the time above the surface by decelerating the ions. We have for the first time decelerated O^7+ ions to energies as low as 1 eV/q, below the minimum energy gained by the ions due to the acceleration by their image charge. As expected, no ion backscattering (trampoline effect) above dielectric (Ge) was observed and at the lowest ion kinetic energies, most of the observed x-rays were found to be emitted by the ions after surface contact. [4pt] [1] J. P. Briand et al., Phys.Rev.Lett. 65(1990)159.[0pt] [2] J.P. Briand, AIP Conference Proceedings 215 (1990) 513.

  15. A novel synthesis of micrometer silica hollow sphere

    International Nuclear Information System (INIS)

    Pan Wen; Ye Junwei; Ning Guiling; Lin Yuan; Wang Jing

    2009-01-01

    Silica microcapsules (hollow spheres) were synthesized successfully by a novel CTAB-stabilized water/oil emulsion system mediated hydrothermal method. The addition of urea to a solution of aqueous phase was an essential step of the simple synthetic procedure of silica hollow spheres, which leads to the formation of silica hollow spheres with smooth shell during hydrothermal process. The intact hollow spheres were obtained by washing the as-synthesized solid products with distilled water to remove the organic components. A large amount of silanol groups were retained in the hollow spheres by this facile route without calcination. The morphologies and optical properties of the product were characterized by transmission electron microscopy, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy. Furthermore, on the basis of a series of SEM observations, phenomenological elucidation of a mechanism for the growth of the silica hollow spheres has been presented

  16. Ni hollow spheres as catalysts for methanol and ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Changwei [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Hu, Yonghong; Rong, Jianhua; Liu, Yingliang [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); Jiang, San Ping [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2007-08-15

    In this paper, we successfully synthesized Ni hollow spheres consisting of needle-like nickel particles by using silica spheres as template with gold nanoparticles seeding method. The Ni hollow spheres are applied to methanol and ethanol electrooxidation in alkaline media. The results show that the Ni hollow spheres give a very high activity for alcohol electrooxidation at a very low nickel loading of 0.10 mg cm{sup -2}. The current on Ni hollow spheres is much higher than that on Ni particles. The onset potential and peak potential on Ni hollow spheres are more negative than that on Ni particles for methanol and ethanol electrooxidation. The Ni hollow spheres may be of great potential in alcohol sensor and direct alcohol fuel cells. (author)

  17. Deliberate change without hierarchical influence?

    DEFF Research Database (Denmark)

    Nørskov, Sladjana; Kesting, Peter; Ulhøi, John Parm

    2017-01-01

    reveals that deliberate change is indeed achievable in a non-hierarchical collaborative OSS community context. However, it presupposes the presence and active involvement of informal change agents. The paper identifies and specifies four key drivers for change agents’ influence. Originality....../value The findings contribute to organisational analysis by providing a deeper understanding of the importance of leadership in making deliberate change possible in non-hierarchical settings. It points to the importance of “change-by-conviction”, essentially based on voluntary behaviour. This can open the door...

  18. Review of Synthetic Methods to Form Hollow Polymer Nanocapsules

    Energy Technology Data Exchange (ETDEWEB)

    Barker, Madeline T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-03-13

    Syntactic foams have grown in interest due to the widened range of applications because of their mechanical strength and high damage tolerance. In the past, hollow glass or ceramic particles were used to create the pores. This paper reviews literature focused on the controlled synthesis of hollow polymer spheres with diameters ranging from 100 –200 nm. By using hollow polymer spheres, syntactic foams could reach ultra-low densities.

  19. Manufacturing hollow obturator with resilient denture liner on post hemimaxillectomy

    Directory of Open Access Journals (Sweden)

    Michael Josef Kridanto Kamadjaja

    2006-03-01

    Full Text Available A resilient denture liner is placed in the part of the hollow obturator base that contacts to post hemimaxillectomy mucosa. Replacing the resilient denture liner can makes the hollow obturator has an intimate contact with the mucosa, so it can prevents the mouth liquid enter to the cavum nasi and sinus, also eliminates painful because of using the hollow obturator. Resilient denture liner is a soft and resilient material that applied to the fitting surface of a denture in order to allow a more distribution of load. A case was reported about using the hollow obturator with resilient denture liner on post hemimaxillectomy to overcome these problems.

  20. Hollow spheres: crucial building blocks for novel nanostructures and nanophotonics

    Directory of Open Access Journals (Sweden)

    Zhong Kuo

    2018-03-01

    Full Text Available In this review, we summarize the latest developments in research specifically derived from the unique properties of hollow microspheres, in particular, hollow silica spheres with uniform shells. We focus on applications in nanosphere (colloidal lithography and nanophotonics. The lithography from a layer of hollow spheres can result in nanorings, from a multilayer in unique nano-architecture. In nanophotonics, disordered hollow spheres can result in antireflection coatings, while ordered colloidal crystals (CCs of hollow spheres exhibit unique refractive index enhancement upon infiltration, ideal for optical sensing. Furthermore, whispering gallery mode (WGM inside the shell of hollow spheres has also been demonstrated to enhance light absorption to improve the performance of solar cells. These applications differ from the classical applications of hollow spheres, based only on their low density and large surface area, such as catalysis and chemical sensing. We provide a brief overview of the synthesis and self-assembly approaches of the hollow spheres. We elaborate on their unique optical features leading to defect mode lasing, optomicrofluidics, and the existence of WGMs inside shell for light management. Finally, we provide a perspective on the direction towards which future research relevant to hollow spheres might be directed.

  1. Hollow spheres: crucial building blocks for novel nanostructures and nanophotonics

    Science.gov (United States)

    Zhong, Kuo; Song, Kai; Clays, Koen

    2018-03-01

    In this review, we summarize the latest developments in research specifically derived from the unique properties of hollow microspheres, in particular, hollow silica spheres with uniform shells. We focus on applications in nanosphere (colloidal) lithography and nanophotonics. The lithography from a layer of hollow spheres can result in nanorings, from a multilayer in unique nano-architecture. In nanophotonics, disordered hollow spheres can result in antireflection coatings, while ordered colloidal crystals (CCs) of hollow spheres exhibit unique refractive index enhancement upon infiltration, ideal for optical sensing. Furthermore, whispering gallery mode (WGM) inside the shell of hollow spheres has also been demonstrated to enhance light absorption to improve the performance of solar cells. These applications differ from the classical applications of hollow spheres, based only on their low density and large surface area, such as catalysis and chemical sensing. We provide a brief overview of the synthesis and self-assembly approaches of the hollow spheres. We elaborate on their unique optical features leading to defect mode lasing, optomicrofluidics, and the existence of WGMs inside shell for light management. Finally, we provide a perspective on the direction towards which future research relevant to hollow spheres might be directed.

  2. Preparation of TiO2 hollow fibers using poly(vinylidene fluoride) hollow fiber microfiltration membrane as a template

    International Nuclear Information System (INIS)

    Lu Haiqiang; Zhang Lixiong; Xing Weihong; Wang Huanting; Xu Nanping

    2005-01-01

    TiO 2 hollow fibers were successfully prepared by using poly(vinylidene fluoride) hollow fiber microfiltration membrane as a template. The preparation procedure includes repeated impregnation of the TiO 2 precursor in the pores of the polymeric membrane, and calcination to burn off the template, producing the TiO 2 hollow fibers. The TiO 2 hollow fibers were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). TiO 2 hollow fibers with other structures, such as honeycomb monolith and spring, were also prepared by preshaping the polymeric membranes into the honeycomb structure and spring, respectively. The phase structure of the TiO 2 hollow fibers could be readily adjusted by changing the calcination temperature

  3. Modular networks with hierarchical organization

    Indian Academy of Sciences (India)

    Several networks occurring in real life have modular structures that are arranged in a hierarchical fashion. In this paper, we have proposed a model for such networks, using a stochastic generation method. Using this model we show that, the scaling relation between the clustering and degree of the nodes is not a necessary ...

  4. Hierarchical Microaggressions in Higher Education

    Science.gov (United States)

    Young, Kathryn; Anderson, Myron; Stewart, Saran

    2015-01-01

    Although there has been substantial research examining the effects of microaggressions in the public sphere, there has been little research that examines microaggressions in the workplace. This study explores the types of microaggressions that affect employees at universities. We coin the term "hierarchical microaggression" to represent…

  5. Erythrocyte-like hollow carbon capsules and their application in proton exchange membrane fuel cells.

    Science.gov (United States)

    Kim, Jung Ho; Yu, Jong-Sung

    2010-12-14

    Hierarchical nanostructured erythrocyte-like hollow carbon (EHC) with a hollow hemispherical macroporous core of ca. 230 nm in diameter and 30-40 nm thick mesoporous shell was synthesized and explored as a cathode catalyst support in a proton exchange membrane fuel cell (PEMFC). The morphology control of EHC was successfully achieved using solid core/mesoporous shell (SCMS) silica template and different styrene/furfuryl alcohol mixture compositions by a nanocasting method. The EHC-supported Pt (20 wt%) cathodes prepared have demonstrated markedly enhanced catalytic activity towards oxygen reduction reactions (ORRs) and greatly improved PEMFC polarization performance compared to carbon black Vulcan XC-72 (VC)-supported ones, probably due to the superb structural characteristics of the EHC such as uniform size, well-developed porosity, large specific surface area and pore volume. In particular, Pt/EHC cathodes exhibited ca. 30-60% higher ORR activity than a commercial Johnson Matthey Pt catalyst at a low catalyst loading of 0.2 mg Pt cm(-2).

  6. Modelling and Characterization of Effective Thermal Conductivity of Single Hollow Glass Microsphere and Its Powder.

    Science.gov (United States)

    Liu, Bing; Wang, Hui; Qin, Qing-Hua

    2018-01-14

    Tiny hollow glass microsphere (HGM) can be applied for designing new light-weighted and thermal-insulated composites as high strength core, owing to its hollow structure. However, little work has been found for studying its own overall thermal conductivity independent of any matrix, which generally cannot be measured or evaluated directly. In this study, the overall thermal conductivity of HGM is investigated experimentally and numerically. The experimental investigation of thermal conductivity of HGM powder is performed by the transient plane source (TPS) technique to provide a reference to numerical results, which are obtained by a developed three-dimensional two-step hierarchical computational method. In the present method, three heterogeneous HGM stacking elements representing different distributions of HGMs in the powder are assumed. Each stacking element and its equivalent homogeneous solid counterpart are, respectively, embedded into a fictitious matrix material as fillers to form two equivalent composite systems at different levels, and then the overall thermal conductivity of each stacking element can be numerically determined through the equivalence of the two systems. The comparison of experimental and computational results indicates the present computational modeling can be used for effectively predicting the overall thermal conductivity of single HGM and its powder in a flexible way. Besides, it is necessary to note that the influence of thermal interfacial resistance cannot be removed from the experimental results in the TPS measurement.

  7. Hierarchically structured, nitrogen-doped carbon membranes

    KAUST Repository

    Wang, Hong; Wu, Tao

    2017-01-01

    The present invention is a structure, method of making and method of use for a novel macroscopic hierarchically structured, nitrogen-doped, nano-porous carbon membrane (HNDCMs) with asymmetric and hierarchical pore architecture that can be produced

  8. Elaborate Manipulation for Sub-10 nm Hollow Catalyst Sensitized Heterogeneous Oxide Nanofibers for Room Temperature Chemical Sensors.

    Science.gov (United States)

    Jang, Ji-Soo; Choi, Seon-Jin; Koo, Won-Tae; Kim, Sang-Joon; Cheong, Jun Young; Kim, Il-Doo

    2017-07-26

    Room-temperature (RT) operation sensors are constantly in increasing demand because of their low power consumption, simple operation, and long lifetime. However, critical challenges such as low sensing performance, vulnerability under highly humid state, and poor recyclability hinder their commercialization. In this work, sub-10 nm hollow, bimetallic Pt-Ag nanoparticles (NPs) were successfully formed by galvanic replacement reaction in bioinspired hollow protein templates and sensitized on the multidimensional SnO 2 -WO 3 heterojunction nanofibers (HNFs). Formation of hollow, bimetallic NPs resulted in the double-side catalytic effect, rendering both surface and inner side chemical reactions. Subsequently, SnO 2 -WO 3 HNFs were synthesized by incorporating 2D WO 3 nanosheets (NSs) with 0D SnO 2 sphere by c-axis growth inhibition effect and fluid dynamics of liquid Sn during calcination. Hierarchically assembled HNFs effectively modulate surface depletion layer of 2D WO 3 NSs by electron transfers from WO 3 to SnO 2 stemming from creation of heterojunction. Careful combination of bimetallic catalyst NPs with HNFs provided an extreme recyclability under exhaled breath (95 RH%) with outstanding H 2 S sensitivity. Such sensing platform clearly distinguished between the breath of healthy people and simulated halitosis patients.

  9. Daylight photocatalysis performance of biomorphic CeO2 hollow fibers prepared with lens cleaning paper as biotemplate

    International Nuclear Information System (INIS)

    Qian, Junchao; Chen, Feng; Wang, Fang; Zhao, Xiaobing; Chen, Zhigang

    2012-01-01

    Highlights: ► A novel, simple and eco-friendly approach for hierarchical, biomorphic CeO 2 hollow fibers with mesoporous tube walls is presented by using paper as template. ► The biomorphic CeO 2 fibers was composed of nanosheets with bimodal pore-size mesoporous distribution and exhibited high light-harvesting under sunlight irradiation. ► The CeO 2 microfibers biomimicking the natural plant structures have promising application for photodegradation of organic pollutants in water. -- Abstract: Hierarchical, biomorphic CeO 2 hollow fibers with mesoporous tube walls have been fabricated using lens cleaning paper as biotemplates. After sintered at 550 °C in air, the cellulosic fibers of paper were converted into micro-tubes composing of CeO 2 crystallites with grain size about 8 nm. The photocatalytic activity of the CeO 2 fibers was evaluated by photodegradation efficiency of methylene blue in aqueous solution under daylight irradiation. The characterized results show that the CeO 2 fibers faithfully replicated micro-fibrous structure derived from original template and possessed dramatic enhanced photocatalytic activity compared with bulk CeO 2 . This simple biotemplate method provides a cost-effective and eco-friendly route to obtain high performance photocatalysts.

  10. Daylight photocatalysis performance of biomorphic CeO{sub 2} hollow fibers prepared with lens cleaning paper as biotemplate

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Junchao; Chen, Feng [Department of Material Science and Engineering, Jiangsu University, 212013 Zhenjiang (China); Wang, Fang; Zhao, Xiaobing [Department of Materials Science and Engineering, Changzhou University, 213164 Changzhou (China); Chen, Zhigang, E-mail: ziyou1900@gmail.com [Department of Material Science and Engineering, Jiangsu University, 212013 Zhenjiang (China); Jiangsu Key Laboratory for Environment Functional Materials, 215009 Suzhou University of Science and Technology, Suzhou (China); State Key laboratory of Crystal Material, Shandong University, 250100 Jinan (China)

    2012-08-15

    Highlights: ► A novel, simple and eco-friendly approach for hierarchical, biomorphic CeO{sub 2} hollow fibers with mesoporous tube walls is presented by using paper as template. ► The biomorphic CeO{sub 2} fibers was composed of nanosheets with bimodal pore-size mesoporous distribution and exhibited high light-harvesting under sunlight irradiation. ► The CeO{sub 2} microfibers biomimicking the natural plant structures have promising application for photodegradation of organic pollutants in water. -- Abstract: Hierarchical, biomorphic CeO{sub 2} hollow fibers with mesoporous tube walls have been fabricated using lens cleaning paper as biotemplates. After sintered at 550 °C in air, the cellulosic fibers of paper were converted into micro-tubes composing of CeO{sub 2} crystallites with grain size about 8 nm. The photocatalytic activity of the CeO{sub 2} fibers was evaluated by photodegradation efficiency of methylene blue in aqueous solution under daylight irradiation. The characterized results show that the CeO{sub 2} fibers faithfully replicated micro-fibrous structure derived from original template and possessed dramatic enhanced photocatalytic activity compared with bulk CeO{sub 2}. This simple biotemplate method provides a cost-effective and eco-friendly route to obtain high performance photocatalysts.

  11. Hollow mandrin facilitates external ventricular drainage placement.

    Science.gov (United States)

    Heese, O; Regelsberger, J; Kehler, U; Westphal, M

    2005-07-01

    Placement of ventricular catheters is a routine procedure in neurosurgery. Ventricle puncture is done using a flexible ventricular catheter stabilised by a solid steel mandrin in order to improve stability during brain penetration. A correct catheter placement is confirmed after removing the solid steel mandrin by observation of cerebrospinal fluid (CSF) flow out of the flexible catheter. Incorrect placement makes further punctures necessary. The newly developed device allows CSF flow observation during the puncture procedure and in addition precise intracranial pressure (ICP) measurement. The developed mandrin is hollow with a blunt tip. On one side 4-5 small holes with a diameter of 0.8 mm are drilled corresponding exactly with the holes in the ventricular catheter, allowing CSF to pass into the hollow mandrin as soon as the ventricle is reached. By connecting a small translucent tube at the distal portion of the hollow mandrin ICP can be measured without loss of CSF. The system has been used in 15 patients with subarachnoid haemorrhage (SAH) or intraventricular haemeorrhage (IVH) and subsequent hydrocephalus. The new system improved the external ventricular drainage implantation procedure. In all 15 patients catheter placement was correct. ICP measurement was easy to perform immediately at ventricle puncture. In 4 patients at puncture no spontaneous CSF flow was observed, therefore by connecting a syringe and gentle aspiration of CSF correct placement was confirmed in this unexpected low pressure hydrocephalus. Otherwise by using the conventional technique further punctures would have been necessary. Advantages of the new technique are less puncture procedures with a lower risk of damage to neural structures and reduced risk of intracranial haemorrhages. Implantation of the ventricular catheter to far into the brain can be monitored and this complication can be overcome. Using the connected pressure monitoring tube an exact measurement of the opening

  12. Hollow-Fiber Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Settles, Joseph

    2013-01-01

    The hollow-fiber spacesuit water membrane evaporator (HoFi SWME) is being developed to perform the thermal control function for advanced spacesuits and spacecraft to take advantage of recent advances in micropore membrane technology in providing a robust, heat-rejection device that is less sensitive to contamination than is the sublimator. After recent contamination tests, a commercial-off-the-shelf (COTS) micro porous hollow-fiber membrane was selected for prototype development as the most suitable candidate among commercial hollow-fiber evaporator alternatives. An innovative design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was developed into a full-scale prototype for the spacesuit application. Vacuum chamber testing has been performed to characterize heat rejection as a function of inlet water temperature and water vapor back-pressure, and to show contamination resistance to the constituents expected to be found in potable water produced by the wastewater reclamation distillation processes. Other tests showed tolerance to freezing and suitability to reject heat in a Mars pressure environment. In summary, HoFi SWME is a lightweight, compact evaporator for heat rejection in the spacesuit that is robust, contamination- insensitive, freeze-tolerant, and able to reject the required heat of spacewalks in microgravity, lunar, and Martian environments. The HoFi is packaged to reject 810 W of heat through 800 hours of use in a vacuum environment, and 370 W in a Mars environment. The device also eliminates free gas and dissolved gas from the coolant loop.

  13. Template-Free Synthesis of Sb2S3 Hollow Microspheres as Anode Materials for Lithium-Ion and Sodium-Ion Batteries

    Science.gov (United States)

    Xie, Jianjun; Liu, Li; Xia, Jing; Zhang, Yue; Li, Min; Ouyang, Yan; Nie, Su; Wang, Xianyou

    2018-03-01

    Hierarchical Sb2S3 hollow microspheres assembled by nanowires have been successfully synthesized by a simple and practical hydrothermal reaction. The possible formation process of this architecture was investigated by X-ray diffraction, focused-ion beam-scanning electron microscopy dual-beam system, and transmission electron microscopy. When used as the anode material for lithium-ion batteries, Sb2S3 hollow microspheres manifest excellent rate property and enhanced lithium-storage capability and can deliver a discharge capacity of 674 mAh g-1 at a current density of 200 mA g-1 after 50 cycles. Even at a high current density of 5000 mA g-1, a discharge capacity of 541 mAh g-1 is achieved. Sb2S3 hollow microspheres also display a prominent sodium-storage capacity and maintain a reversible discharge capacity of 384 mAh g-1 at a current density of 200 mA g-1 after 50 cycles. The remarkable lithium/sodium-storage property may be attributed to the synergetic effect of its nanometer size and three-dimensional hierarchical architecture, and the outstanding stability property is attributed to the sufficient interior void space, which can buffer the volume expansion. [Figure not available: see fulltext.

  14. Porous-wall hollow glass microspheres as carriers for biomolecules

    Science.gov (United States)

    Li, Shuyi; Dynan, William S; Wicks, George; Serkiz, Steven

    2013-09-17

    The present invention includes compositions of porous-wall hollow glass microspheres and one or more biomolecules, wherein the one or more biomolecules are positioned within a void location within the hollow glass microsphere, and the use of such compositions for the diagnostic and/or therapeutic delivery of biomolecules.

  15. Fabrication of Closed Hollow Bulb Obturator Using Thermoplastic Resin Material

    Directory of Open Access Journals (Sweden)

    Bidhan Shrestha

    2015-01-01

    Full Text Available Purpose. Closed hollow bulb obturators are used for the rehabilitation of postmaxillectomy patients. However, the time consuming process, complexity of fabrication, water leakage, and discoloration are notable disadvantages of this technique. This paper describes a clinical report of fabricating closed hollow bulb obturator using a single flask and one time processing method for an acquired maxillary defect. Hard thermoplastic resin sheet has been used for the fabrication of hollow bulb part of the obturator. Method. After fabrication of master cast conventionally, bulb and lid part of the defect were formed separately and joined by autopolymerizing acrylic resin to form one sized smaller hollow body. During packing procedure, the defect area was loaded with heat polymerizing acrylic resin and then previously fabricated smaller hollow body was adapted over it. The whole area was then loaded with heat cure acrylic. Further processes were carried out conventionally. Conclusion. This technique uses single flask which reduces laboratory time and makes the procedure simple. The thickness of hollow bulb can be controlled and light weight closed hollow bulb prosthesis can be fabricated. It also minimizes the disadvantages of closed hollow bulb obturator such as water leakage, bacterial infection, and discoloration.

  16. Fe2O3 hollow sphere nanocomposites for supercapacitor applications

    Science.gov (United States)

    Zhao, Yu; Wen, Yang; Xu, Bing; Lu, Lu; Ren, Reiming

    2018-02-01

    Nanomaterials have attracted increasing interest in electrochemical energy storage and conversion. Hollow sphere Fe2O3 nanocomposites were successfully prepared through facile low temperature water-bath method with carbon sphere as hard template. The morphology and microstructure of samples were characterized by X-ray diffraction (XRD) and Scanning electron microscope (SEM), respectively. Through hydrolysis mechanism, using ferric chloride direct hydrolysis, iron hydroxide coated on the surface of carbon sphere, after high temperature calcination can form the hollow spherical iron oxide materials. Electrochemical performances of the hollow sphere Fe2O3 nanocomposites electrodes were investigated by cyclic voltammery (CV) and galvanostatic charge/discharge. The Pure hollow sphere Fe2O3 nanocomposites achieves a specific capacitance of 125 F g-1 at the current density of 85 mA g-1. The results indicate that the uniform dispersion of hollow ball structure can effectively reduce the particle reunion in the process of charging and discharging.

  17. Automatic Hierarchical Color Image Classification

    Directory of Open Access Journals (Sweden)

    Jing Huang

    2003-02-01

    Full Text Available Organizing images into semantic categories can be extremely useful for content-based image retrieval and image annotation. Grouping images into semantic classes is a difficult problem, however. Image classification attempts to solve this hard problem by using low-level image features. In this paper, we propose a method for hierarchical classification of images via supervised learning. This scheme relies on using a good low-level feature and subsequently performing feature-space reconfiguration using singular value decomposition to reduce noise and dimensionality. We use the training data to obtain a hierarchical classification tree that can be used to categorize new images. Our experimental results suggest that this scheme not only performs better than standard nearest-neighbor techniques, but also has both storage and computational advantages.

  18. Hierarchical matrices algorithms and analysis

    CERN Document Server

    Hackbusch, Wolfgang

    2015-01-01

    This self-contained monograph presents matrix algorithms and their analysis. The new technique enables not only the solution of linear systems but also the approximation of matrix functions, e.g., the matrix exponential. Other applications include the solution of matrix equations, e.g., the Lyapunov or Riccati equation. The required mathematical background can be found in the appendix. The numerical treatment of fully populated large-scale matrices is usually rather costly. However, the technique of hierarchical matrices makes it possible to store matrices and to perform matrix operations approximately with almost linear cost and a controllable degree of approximation error. For important classes of matrices, the computational cost increases only logarithmically with the approximation error. The operations provided include the matrix inversion and LU decomposition. Since large-scale linear algebra problems are standard in scientific computing, the subject of hierarchical matrices is of interest to scientists ...

  19. Hierarchical Semantic Model of Geovideo

    Directory of Open Access Journals (Sweden)

    XIE Xiao

    2015-05-01

    Full Text Available The public security incidents were getting increasingly challenging with regard to their new features, including multi-scale mobility, multistage dynamic evolution, as well as spatiotemporal concurrency and uncertainty in the complex urban environment. However, the existing video models, which were used/designed for independent archive or local analysis of surveillance video, have seriously inhibited emergency response to the urgent requirements.Aiming at the explicit representation of change mechanism in video, the paper proposed a novel hierarchical geovideo semantic model using UML. This model was characterized by the hierarchical representation of both data structure and semantics based on the change-oriented three domains (feature domain, process domain and event domain instead of overall semantic description of video streaming; combining both geographical semantics and video content semantics, in support of global semantic association between multiple geovideo data. The public security incidents by video surveillance are inspected as an example to illustrate the validity of this model.

  20. Hybrid and hierarchical composite materials

    CERN Document Server

    Kim, Chang-Soo; Sano, Tomoko

    2015-01-01

    This book addresses a broad spectrum of areas in both hybrid materials and hierarchical composites, including recent development of processing technologies, structural designs, modern computer simulation techniques, and the relationships between the processing-structure-property-performance. Each topic is introduced at length with numerous  and detailed examples and over 150 illustrations.   In addition, the authors present a method of categorizing these materials, so that representative examples of all material classes are discussed.

  1. Hierarchical analysis of urban space

    OpenAIRE

    Kataeva, Y.

    2014-01-01

    Multi-level structure of urban space, multitude of subjects of its transformation, which follow asymmetric interests, multilevel system of institutions which regulate interaction in the "population business government -public organizations" system, determine the use of hierarchic approach to the analysis of urban space. The article observes theoretical justification of using this approach to study correlations and peculiarities of interaction in urban space as in an intricately organized syst...

  2. Statistical Significance for Hierarchical Clustering

    Science.gov (United States)

    Kimes, Patrick K.; Liu, Yufeng; Hayes, D. Neil; Marron, J. S.

    2017-01-01

    Summary Cluster analysis has proved to be an invaluable tool for the exploratory and unsupervised analysis of high dimensional datasets. Among methods for clustering, hierarchical approaches have enjoyed substantial popularity in genomics and other fields for their ability to simultaneously uncover multiple layers of clustering structure. A critical and challenging question in cluster analysis is whether the identified clusters represent important underlying structure or are artifacts of natural sampling variation. Few approaches have been proposed for addressing this problem in the context of hierarchical clustering, for which the problem is further complicated by the natural tree structure of the partition, and the multiplicity of tests required to parse the layers of nested clusters. In this paper, we propose a Monte Carlo based approach for testing statistical significance in hierarchical clustering which addresses these issues. The approach is implemented as a sequential testing procedure guaranteeing control of the family-wise error rate. Theoretical justification is provided for our approach, and its power to detect true clustering structure is illustrated through several simulation studies and applications to two cancer gene expression datasets. PMID:28099990

  3. Long-term evaluation of hollow screw and hollow cylinder dental implants : Clinical and radiographic results after 10 years

    NARCIS (Netherlands)

    Telleman, Gerdien; Meijer, Henny J. A.; Raghoebar, Gerry M.

    Background: In 1988, an implant manufacturer offered a new dental implant system, with a wide choice of hollow cylinder (HC) and hollow screw (HS) implants. The purpose of this retrospective study of HS and HC implants was to evaluate clinical and radiographic parameters of peri-implant tissue and

  4. Air Separation Using Hollow Fiber Membranes

    Science.gov (United States)

    Huang, Stephen E.

    2004-01-01

    The NASA Glenn Research Center in partnership with the Ohio Aerospace Institute provides internship programs for high school and college students in the areas of science, engineering, professional administrative, and other technical areas. During the summer of 2004, I worked with Dr. Clarence T. Chang at NASA Glenn Research Center s combustion branch on air separation using hollow fiber membrane technology. . In light of the accident of Trans World Airline s flight 800, FAA has mandated that a suitable solution be created to prevent the ignition of fuel tanks in aircrafts. In order for any type of fuel to ignite, three important things are needed: fuel vapor, oxygen, and an energy source. Two different ways to make fuel tanks less likely to ignite are reformulating the fuel to obtain a lower vapor pressure for the fuel and or using an On Board Inert Gas Generating System (OBIGGS) to inert the Central Wing Tank. goal is to accomplish the mission, which means that the Air Separation Module (ASM) tends to be bulky and heavy. The primary goal for commercial aviation companies is to transport as much as they can with the least amount of cost and fuel per person, therefore the ASM must be compact and light as possible. The plan is to take bleed air from the aircraft s engines to pass air through a filter first to remove particulates and then pass the air through the ASM containing hollow fiber membranes. In the lab, there will be a heating element provided to simulate the temperature of the bleed air that will be entering the ASM and analysis of the separated air will be analyzed by a Gas Chromatograph/Mass Spectrometer (GC/MS). The GUMS will separate the different compounds in the exit streams of the ASM and provide information on the performance of hollow fiber membranes. Hopefully I can develop ways to improve efficiency of the ASM. different types of jet fuel were analyzed and data was well represented on SAE Paper 982485. Data consisted of the concentrations of over

  5. Experimental study on hollow structural component by explosive welding

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Mianjun, E-mail: dmjwl@163.com [PLA University of Science and Technology, Nanjing 210007 (China); Wei, Ling, E-mail: 386006087@qq.com [Tongda College, Nanjing University of Posts and Telecommunication, Nanjing 210007 (China); Hong, Jin [PLA University of Science and Technology, Nanjing 210007 (China); Ran, Hong [Southwestern Institute of Physics, Chengdu 610041 (China); Ma, Rui; Wang, Yaohua [PLA University of Science and Technology, Nanjing 210007 (China)

    2014-12-15

    Highlights: • This paper relates to a study on a thin double-layers hollow structural component by using an explosive welding technology. • This thin double-layer hollow structural component is an indispensable component required for certain core equipment of thermonuclear experimental reactor. • An adjusted explosive welding technology for manufacturing an inconel625 hollow structural component was developed which cannot be made by common technology. • The result shows that a metallurgical bonding was realized by the ribs and slabs of the hollow sheet. • The shearing strength of bonding interface exceeds that of the parent metal. - Abstract: A large thin-walled hollow structural component with sealed channels is required for the vacuum chamber of a thermonuclear experimental reactor, with inconel625 as its fabrication material. This hollow structural component is rarely manufactured by normal machining method, and its manufacture is also problematic in the field of explosive welding. With this in mind, we developed an adjusted explosive welding technology which involves a two-step design, setting and annealing technology. The joints were evaluated using optical microscope and scanning electron microscope, and a mechanical experiment was conducted, involving micro-hardness test, cold helium leak test and hydraulic pressure test. The results showed that a metallurgical bonding was realized by the ribs and slabs, and the shearing strength of the bonding interface exceeded that of the parent metal. Hence, the hollow structural component has a good comprehensive mechanical performance and sealing property.

  6. Experimental study on hollow structural component by explosive welding

    International Nuclear Information System (INIS)

    Duan, Mianjun; Wei, Ling; Hong, Jin; Ran, Hong; Ma, Rui; Wang, Yaohua

    2014-01-01

    Highlights: • This paper relates to a study on a thin double-layers hollow structural component by using an explosive welding technology. • This thin double-layer hollow structural component is an indispensable component required for certain core equipment of thermonuclear experimental reactor. • An adjusted explosive welding technology for manufacturing an inconel625 hollow structural component was developed which cannot be made by common technology. • The result shows that a metallurgical bonding was realized by the ribs and slabs of the hollow sheet. • The shearing strength of bonding interface exceeds that of the parent metal. - Abstract: A large thin-walled hollow structural component with sealed channels is required for the vacuum chamber of a thermonuclear experimental reactor, with inconel625 as its fabrication material. This hollow structural component is rarely manufactured by normal machining method, and its manufacture is also problematic in the field of explosive welding. With this in mind, we developed an adjusted explosive welding technology which involves a two-step design, setting and annealing technology. The joints were evaluated using optical microscope and scanning electron microscope, and a mechanical experiment was conducted, involving micro-hardness test, cold helium leak test and hydraulic pressure test. The results showed that a metallurgical bonding was realized by the ribs and slabs, and the shearing strength of the bonding interface exceeded that of the parent metal. Hence, the hollow structural component has a good comprehensive mechanical performance and sealing property

  7. Hollow metal nanostructures for enhanced plasmonics (Conference Presentation)

    Science.gov (United States)

    Genç, Aziz; Patarroyo, Javier; Sancho-Parramon, Jordi; Duchamp, Martial; Gonzalez, Edgar; Bastus, Neus G.; Houben, Lothar; Dunin-Borkowski, Rafal; Puntes, Victor F.; Arbiol, Jordi

    2016-03-01

    Complex metal nanoparticles offer a great playground for plasmonic nanoengineering, where it is possible to cover plasmon resonances from ultraviolet to near infrared by modifying the morphologies from solid nanocubes to nanoframes, multiwalled hollow nanoboxes or even nanotubes with hybrid (alternating solid and hollow) structures. We experimentally show that structural modifications, i.e. void size and final morphology, are the dominant determinants for the final plasmonic properties, while compositional variations allow us to get a fine tuning. EELS mappings of localized surface plasmon resonances (LSPRs) reveal an enhanced plasmon field inside the voids of hollow AuAg nanostructures along with a more homogeneous distributions of the plasmon fields around the nanostructures. With the present methodology and the appropriate samples we are able to compare the effects of hybridization at the nanoscale in hollow nanostructures. Boundary element method (BEM) simulations also reveal the effects of structural nanoengineering on plasmonic properties of hollow metal nanostructures. Possibility of tuning the LSPR properties of hollow metal nanostructures in a wide range of energy by modifying the void size/shell thickness is shown by BEM simulations, which reveals that void size is the dominant factor for tuning the LSPRs. As a proof of concept for enhanced plasmonic properties, we show effective label free sensing of bovine serum albumin (BSA) with some of our hollow nanostructures. In addition, the different plasmonic modes observed have also been studied and mapped in 3D.

  8. Boron nitride hollow nanospheres: Synthesis, formation mechanism and dielectric property

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, B.; Tang, X.H. [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Huang, X.X., E-mail: swliza@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Xia, L. [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Zhang, X.D. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, C.J. [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Wen, G.W., E-mail: g.wen@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-04-15

    Highlights: • BN hollow nanospheres are fabricated in large scale via a new CVD method. • Morphology and structure are elucidated by complementary analytical techniques. • Formation mechanism is proposed based on experimental observations. • Dielectric properties are investigated in the X-band microwave frequencies. • BN hollow nanospheres show lower dielectric loss than regular BN powders. - Abstract: Boron nitride (BN) hollow nanospheres have been successfully fabricated by pyrolyzing vapors decomposed from ammonia borane (NH{sub 3}BH{sub 3}) at 1300 °C. The final products have been extensively characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The BN hollow nanospheres were ranging from 100 to 300 nm in diameter and around 30–100 nm in thickness. The internal structure of the products was found dependent on the reaction temperatures. A possible formation mechanism of the BN hollow nanospheres was proposed on the basis of the experimental observations. Dielectric measurements in the X-band microwave frequencies (8–12 GHz) showed that the dielectric loss of the paraffin filled by the BN hollow nanospheres was lower than that filled by regular BN powders, which indicated that the BN hollow nanospheres could be potentially used as low-density fillers for microwave radomes.

  9. Improved Rare-Earth Emitter Hollow Cathode

    Science.gov (United States)

    Goebel, Dan M.

    2011-01-01

    An improvement has been made to the design of the hollow cathode geometry that was created for the rare-earth electron emitter described in Compact Rare Earth Emitter Hollow Cathode (NPO-44923), NASA Tech Briefs, Vol. 34, No. 3 (March 2010), p. 52. The original interior assembly was made entirely of graphite in order to be compatible with the LaB6 material, which cannot be touched by metals during operation due to boron diffusion causing embrittlement issues in high-temperature refractory materials. Also, the graphite tube was difficult to machine and was subject to vibration-induced fracturing. This innovation replaces the graphite tube with one made out of refractory metal that is relatively easy to manufacture. The cathode support tube is made of molybdenum or molybdenum-rhenium. This material is easily gun-bored to near the tolerances required, and finish machined with steps at each end that capture the orifice plate and the mounting flange. This provides the manufacturability and robustness needed for flight applications, and eliminates the need for expensive e-beam welding used in prior cathodes. The LaB6 insert is protected from direct contact with the refractory metal tube by thin, graphite sleeves in a cup-arrangement around the ends of the insert. The sleeves, insert, and orifice plate are held in place by a ceramic spacer and tungsten spring inserted inside the tube. To heat the cathode, an insulating tube is slipped around the refractory metal hollow tube, which can be made of high-temperature materials like boron nitride or aluminum nitride. A screw-shaped slot, or series of slots, is machined in the outside of the ceramic tube to constrain a refractory metal wire wound inside the slot that is used as the heater. The screw slot can hold a single heater wire that is then connected to the front of the cathode tube by tack-welding to complete the electrical circuit, or it can be a double slot that takes a bifilar wound heater with both leads coming out

  10. Hierarchal scalar and vector tetrahedra

    International Nuclear Information System (INIS)

    Webb, J.P.; Forghani, B.

    1993-01-01

    A new set of scalar and vector tetrahedral finite elements are presented. The elements are hierarchal, allowing mixing of polynomial orders; scalar orders up to 3 and vector orders up to 2 are defined. The vector elements impose tangential continuity on the field but not normal continuity, making them suitable for representing the vector electric or magnetic field. Further, the scalar and vector elements are such that they can easily be used in the same mesh, a requirement of many quasi-static formulations. Results are presented for two 50 Hz problems: the Bath Cube, and TEAM Problem 7

  11. Hollow fiber membranes and methods for forming same

    Science.gov (United States)

    Bhandari, Dhaval Ajit; McCloskey, Patrick Joseph; Howson, Paul Edward; Narang, Kristi Jean; Koros, William

    2016-03-22

    The invention provides improved hollow fiber membranes having at least two layers, and methods for forming the same. The methods include co-extruding a first composition, a second composition, and a third composition to form a dual layer hollow fiber membrane. The first composition includes a glassy polymer; the second composition includes a polysiloxane; and the third composition includes a bore fluid. The dual layer hollow fiber membranes include a first layer and a second layer, the first layer being a porous layer which includes the glassy polymer of the first composition, and the second layer being a polysiloxane layer which includes the polysiloxane of the second composition.

  12. Axisymmetric Vibration of Piezo-Lemv Composite Hollow Multilayer Cylinder

    Directory of Open Access Journals (Sweden)

    E. S. Nehru

    2012-01-01

    Full Text Available Axisymmetric vibration of an infinite piezolaminated multilayer hollow cylinder made of piezoelectric layers of 6 mm class and an isotropic LEMV (Linear Elastic Materials with Voids layers is studied. The frequency equations are obtained for the traction free outer surface with continuity conditions at the interfaces. Numerical results are carried out for the inner, middle, and outer hollow piezoelectric layers bonded by LEMV (It is hypothetical material layers and the dispersion curves are compared with that of a similar 3-layer model and of 3 and 5 layer models with inner, middle, and outer hollow piezoelectric layers bonded by CFRP (Carbon fiber reinforced plastics.

  13. Recovery of uranium from seawater using amidoxime hollow fibers

    International Nuclear Information System (INIS)

    Saito, K.; Uezu, K.; Hori, T.; Furusaki, S.; Sugo, T.; Okamoto, J.

    1988-01-01

    A novel amidoxime-group-containing adsorbent of hollow-fiber form (AO-H fiber) was prepared by radiation-induced graft polymerization of acrylonitrile onto a polyethylene hollow fiber, followed by chemical conversion of the produced cyano group to an amidoxime group. Distribution of the amidoxime group was uniform throughout hollow-fiber membrane. The fixed-bed adsorption column, 30 cm in length and charged with the bundle of AO-H fibers, was found to adsorb uranium from natural seawater at a sufficiently high rate: 0.66 mg uranium per g of adsorbent in 25 days

  14. Development of hollow electron beams for proton and ion collimation

    CERN Document Server

    Stancari, G; Kuznetsov, G; Shiltsev, V; Still, D A; Valishev, A; Vorobiev, L G; Assmann, R; Kabantsev, A

    2012-01-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams.

  15. Development of hollow electron beams for proton and ion collimation

    CERN Document Server

    Stancari, G.; Kuznetsov, G.; Shiltsev, V.; Still, D.A.; Valishev, A.; Vorobiev, L.G.; Assmann, R.; Kabantsev, A.

    2010-01-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams

  16. Generation and propagation characteristics of a localized hollow beam

    Science.gov (United States)

    Xia, Meng; Wang, Zhizhang; Yin, Yaling; Zhou, Qi; Xia, Yong; Yin, Jianping

    2018-05-01

    A succinct experimental scheme is demonstrated to generate a localized hollow beam by using a π-phase binary bitmap and a convergent thin lens. The experimental results show that the aspect ratio of the dark-spot size of the hollow beam can be effectively controlled by the focal length of the lens. The measured beam profiles in free space also agree with the theoretical modeling. The studies hold great promise that such a hollow beam can be used to cool trapped atoms (or molecules) by Sisyphus cooling and to achieve an optically-trapped Bose–Einstein condensate by optical-potential evaporative cooling.

  17. Two-piece hollow bulb obturator

    Directory of Open Access Journals (Sweden)

    Subramaniam Elangovan

    2011-01-01

    Full Text Available There are various types of obturator fabrication achievable by prosthodontist. Maxillectomy, which is a term used by head and neck surgeons and prosthodontists to describe the partial or total removal of the maxilla in patients suffering from benign or malignant neoplasms is a defect for which to provide an effective obturator is a difficult task for the maxillofacial prosthodontist. Multidisciplinary treatment planning is essential to achieve adequate retention and function for the prosthesis. Speech is often unintelligible as a result of the marked defects in articulation and nasal resonance. This paper describes how to achieve the goal for esthetics and phonetics and also describes the fabrication of a hollow obturator by two piece method, which is simple and maybe used as definitive obturator for maximum comfort of the patient.

  18. Uranium vapor generator: pulsed hollow cathode lamp

    International Nuclear Information System (INIS)

    Carleer, M.; Gagne, J.; Leblanc, B.; Demers, Y.; Mongeau, B.

    1979-01-01

    The production of uranium vapors has been studied in the 5 L 0 6 ground state using a pulsed hollow cathode lamp. The evolution of the 238 U ( 5 L 0 6 ) concentration with time has been studied with Xe and Ar as buffer gases. A density of 2.7 x 10 13 atoms cm -3 was obtained with Xe as a buffer gas. In addition, those measurements, obtained from the absorption of a laser beam tuned to the 5758.143 A ( 5 L 0 6 -17,361 7 L 6 ) transition, allowed the determination of the transition probability A=2.1 x 10 5 sec -1 and of the branching ratio BR=0.08 for this transition

  19. Barium Depletion in Hollow Cathode Emitters

    Science.gov (United States)

    Polk, James E.; Capece, Angela M.; Mikellides, Ioannis G.; Katz, Ira

    2009-01-01

    The effect of tungsten erosion, transport and redeposition on the operation of dispenser hollow cathodes was investigated in detailed examinations of the discharge cathode inserts from an 8200 hour and a 30,352 hour ion engine wear test. Erosion and subsequent re-deposition of tungsten in the electron emission zone at the downstream end of the insert reduces the porosity of the tungsten matrix, preventing the ow of barium from the interior. This inhibits the interfacial reactions of the barium-calcium-aluminate impregnant with the tungsten in the pores. A numerical model of barium transport in the internal xenon discharge plasma shows that the barium required to reduce the work function in the emission zone can be supplied from upstream through the gas phase. Barium that flows out of the pores of the tungsten insert is rapidly ionized in the xenon discharge and pushed back to the emitter surface by the electric field and drag from the xenon ion flow. This barium ion flux is sufficient to maintain a barium surface coverage at the downstream end greater than 0.6, even if local barium production at that point is inhibited by tungsten deposits. The model also shows that the neutral barium pressure exceeds the equilibrium vapor pressure of the impregnant decomposition reaction over much of the insert length, so the reactions are suppressed. Only a small region upstream of the zone blocked by tungsten deposits is active and supplies the required barium. These results indicate that hollow cathode failure models based on barium depletion rates in vacuum dispenser cathodes are very conservative.

  20. Loops in hierarchical channel networks

    Science.gov (United States)

    Katifori, Eleni; Magnasco, Marcelo

    2012-02-01

    Nature provides us with many examples of planar distribution and structural networks having dense sets of closed loops. An archetype of this form of network organization is the vasculature of dicotyledonous leaves, which showcases a hierarchically-nested architecture. Although a number of methods have been proposed to measure aspects of the structure of such networks, a robust metric to quantify their hierarchical organization is still lacking. We present an algorithmic framework that allows mapping loopy networks to binary trees, preserving in the connectivity of the trees the architecture of the original graph. We apply this framework to investigate computer generated and natural graphs extracted from digitized images of dicotyledonous leaves and animal vasculature. We calculate various metrics on the corresponding trees and discuss the relationship of these quantities to the architectural organization of the original graphs. This algorithmic framework decouples the geometric information from the metric topology (connectivity and edge weight) and it ultimately allows us to perform a quantitative statistical comparison between predictions of theoretical models and naturally occurring loopy graphs.

  1. Hierarchically nested river landform sequences

    Science.gov (United States)

    Pasternack, G. B.; Weber, M. D.; Brown, R. A.; Baig, D.

    2017-12-01

    River corridors exhibit landforms nested within landforms repeatedly down spatial scales. In this study we developed, tested, and implemented a new way to create river classifications by mapping domains of fluvial processes with respect to the hierarchical organization of topographic complexity that drives fluvial dynamism. We tested this approach on flow convergence routing, a morphodynamic mechanism with different states depending on the structure of nondimensional topographic variability. Five nondimensional landform types with unique functionality (nozzle, wide bar, normal channel, constricted pool, and oversized) represent this process at any flow. When this typology is nested at base flow, bankfull, and floodprone scales it creates a system with up to 125 functional types. This shows how a single mechanism produces complex dynamism via nesting. Given the classification, we answered nine specific scientific questions to investigate the abundance, sequencing, and hierarchical nesting of these new landform types using a 35-km gravel/cobble river segment of the Yuba River in California. The nested structure of flow convergence routing landforms found in this study revealed that bankfull landforms are nested within specific floodprone valley landform types, and these types control bankfull morphodynamics during moderate to large floods. As a result, this study calls into question the prevailing theory that the bankfull channel of a gravel/cobble river is controlled by in-channel, bankfull, and/or small flood flows. Such flows are too small to initiate widespread sediment transport in a gravel/cobble river with topographic complexity.

  2. Stability of glassy hierarchical networks

    Science.gov (United States)

    Zamani, M.; Camargo-Forero, L.; Vicsek, T.

    2018-02-01

    The structure of interactions in most animal and human societies can be best represented by complex hierarchical networks. In order to maintain close-to-optimal function both stability and adaptability are necessary. Here we investigate the stability of hierarchical networks that emerge from the simulations of an organization type with an efficiency function reminiscent of the Hamiltonian of spin glasses. Using this quantitative approach we find a number of expected (from everyday observations) and highly non-trivial results for the obtained locally optimal networks, including, for example: (i) stability increases with growing efficiency and level of hierarchy; (ii) the same perturbation results in a larger change for more efficient states; (iii) networks with a lower level of hierarchy become more efficient after perturbation; (iv) due to the huge number of possible optimal states only a small fraction of them exhibit resilience and, finally, (v) ‘attacks’ targeting the nodes selectively (regarding their position in the hierarchy) can result in paradoxical outcomes.

  3. Hierarchical modeling of active materials

    International Nuclear Information System (INIS)

    Taya, Minoru

    2003-01-01

    Intelligent (or smart) materials are increasingly becoming key materials for use in actuators and sensors. If an intelligent material is used as a sensor, it can be embedded in a variety of structure functioning as a health monitoring system to make their life longer with high reliability. If an intelligent material is used as an active material in an actuator, it plays a key role of making dynamic movement of the actuator under a set of stimuli. This talk intends to cover two different active materials in actuators, (1) piezoelectric laminate with FGM microstructure, (2) ferromagnetic shape memory alloy (FSMA). The advantage of using the FGM piezo laminate is to enhance its fatigue life while maintaining large bending displacement, while that of use in FSMA is its fast actuation while providing a large force and stroke capability. Use of hierarchical modeling of the above active materials is a key design step in optimizing its microstructure for enhancement of their performance. I will discuss briefly hierarchical modeling of the above two active materials. For FGM piezo laminate, we will use both micromechanical model and laminate theory, while for FSMA, the modeling interfacing nano-structure, microstructure and macro-behavior is discussed. (author)

  4. Hierarchical organisation of causal graphs

    International Nuclear Information System (INIS)

    Dziopa, P.

    1993-01-01

    This paper deals with the design of a supervision system using a hierarchy of models formed by graphs, in which the variables are the nodes and the causal relations between the variables of the arcs. To obtain a representation of the variables evolutions which contains only the relevant features of their real evolutions, the causal relations are completed with qualitative transfer functions (QTFs) which produce roughly the behaviour of the classical transfer functions. Major improvements have been made in the building of the hierarchical organization. First, the basic variables of the uppermost level and the causal relations between them are chosen. The next graph is built by adding intermediary variables to the upper graph. When the undermost graph has been built, the transfer functions parameters corresponding to its causal relations are identified. The second task consists in the upwelling of the information from the undermost graph to the uppermost one. A fusion procedure of the causal relations has been designed to compute the QFTs relevant for each level. This procedure aims to reduce the number of parameters needed to represent an evolution at a high level of abstraction. These techniques have been applied to the hierarchical modelling of nuclear process. (authors). 8 refs., 12 figs

  5. Development of ultralight, super-elastic, hierarchical metallic meta-structures with i3DP technology

    Science.gov (United States)

    Zhang, Dongxing; Xiao, Junfeng; Moorlag, Carolyn; Guo, Qiuquan; Yang, Jun

    2017-11-01

    Lightweight and mechanically robust materials show promising applications in thermal insulation, energy absorption, and battery catalyst supports. This study demonstrates an effective method for creation of ultralight metallic structures based on initiator-integrated 3D printing technology (i3DP), which provides a possible platform to design the materials with the best geometric parameters and desired mechanical performance. In this study, ultralight Ni foams with 3D interconnected hollow tubes were fabricated, consisting of hierarchical features spanning three scale orders ranging from submicron to centimeter. The resultant materials can achieve an ultralight density of as low as 5.1 mg cm-3 and nearly recover after significant compression up to 50%. Due to a high compression ratio, the hierarchical structure exhibits superior properties in terms of energy absorption and mechanical efficiency. The relationship of structural parameters and mechanical response was established. The ability of achieving ultralight density printing approach provides metallic structures with substantial benefits from the hierarchical design and fabrication flexibility to ultralight applications.

  6. Polyazole hollow fiber membranes for direct contact membrane distillation

    KAUST Repository

    Maab, Husnul; Alsaadi, Ahmad Salem; Francis, Lijo; Livazovic, Sara; Ghaffour, NorEddine; Amy, Gary L.; Nunes, Suzana Pereira

    2013-01-01

    Porous hollow fiber membranes were fabricated from fluorinated polyoxadiazole and polytriazole by a dry-wet spinning method for application in desalination of Red Sea water by direct contact membrane distillation (DCMD). The data were compared with commercially available hollow fiber MD membranes prepared from poly(vinylidene fluoride). The membranes were characterized by electron microscopy, liquid entry pressure (LEP), and pore diameter measurements. Finally, the hollow fiber membranes were tested for DCMD. Salt selectivity as high as 99.95% and water fluxes as high as 35 and 41 L m -2 h-1 were demonstrated, respectively, for polyoxadiazole and polytriazole hollow fiber membranes, operating at 80 C feed temperature and 20 C permeate. © 2013 American Chemical Society.

  7. Development of Hollow Cathode of High Power Middle Pressure Arcjet

    National Research Council Canada - National Science Library

    Vaulin, Eujeni

    1995-01-01

    ...: Determine integral performances of arcjet devices in nitrogen, ammonia, and their mixtures using hollow cathode devices at low and high current levels, perform short term tests (up to 50 hours...

  8. Ultraviolet Generation by Atmospheric Micro-Hollow Cathode Discharges

    National Research Council Canada - National Science Library

    Cooper, J

    2004-01-01

    Report developed under STTR contract for topic AFO3TOl9. This report documents the program objectives, work performed, results obtained, and future plans for a program to develop micro-hollow cathode discharge (MHCD...

  9. Hollow porous-wall glass microspheres for hydrogen storage

    Science.gov (United States)

    Heung, Leung K.; Schumacher, Ray F.; Wicks, George G.

    2010-02-23

    A porous wall hollow glass microsphere is provided having a diameter range of between 1 to 200 microns, a density of between 1.0 to 2.0 gm/cc, a porous-wall structure having wall openings defining an average pore size of between 10 to 1000 angstroms, and which contains therein a hydrogen storage material. The porous-wall structure facilitates the introduction of a hydrogen storage material into the interior of the porous wall hollow glass microsphere. In this manner, the resulting hollow glass microsphere can provide a membrane for the selective transport of hydrogen through the porous walls of the microsphere, the small pore size preventing gaseous or liquid contaminants from entering the interior of the hollow glass microsphere.

  10. Fundamental investigation on the impact strength of hollow fan blades

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, T; Miyachi, T; Sofue, Y

    1985-01-01

    Models of hollow fan blades were made and tested to prove that their strength is sufficient for use in real engines. The hollow blades were fabricated by diffusion bonding of two titanium alloy (6Al-4V-Ti) plates, one of which had three spanwise stiffners and the other being flat plate. The model as a nontwisted tapered blade. Impact tests were carried out on the hollow fan blade models in which the ingestion of a 1.5 pounds bird was simulated. Solid blades with the same external form were also tested by similar methods for comparison. The results of these tests show that properly designed hollow blades have sufficient stiffness and strength for use as fan blades in the turbo-fan engine.

  11. Coprecipitation-assisted hydrothermal synthesis of PLZT hollow nanospheres

    International Nuclear Information System (INIS)

    Zhu, Renqiang; Zhu, Kongjun; Qiu, Jinhao; Bai, Lin; Ji, Hongli

    2010-01-01

    Lanthanum-modified lead zirconate titanate Pb 1-x La x (Zr 1-y Ti y )O 3 (PLZT) hollow nanospheres have been successfully prepared via a template-free hydrothermal method using the well-mixed coprecipitated precursors and the KOH mineralizer. The structure, composition, and morphology of the PLZT hollow nanospheres were characterized by XRD (X-ray diffraction), ICP (inductive coupled plasma emission spectrometer), FTIR (Fourier transform infrared spectra), TG/DTA (thermogravimetric analysis and differential thermal analysis), TEM (transmission electron microscopy) and SEAD (selected area diffraction). The results show that the composition and the morphology control of the PLZT products are determined by the KOH concentration. The PLZT hollow nanospheres with uniform size of about 4 nm were synthesized in the presence of 5 M KOH. The crystalline nanoparticles can be prepared at dilute KOH, in contrast to the amorphous powders prepared at concentrated KOH. Formation mechanisms of the PLZT hollow nanospheres are also discussed.

  12. Spray Modeling for Outwardly-Opening Hollow-Cone Injector

    KAUST Repository

    Sim, Jaeheon; Badra, Jihad; Elwardani, Ahmed Elsaid; Im, Hong G.

    2016-01-01

    linear instability sheet atomization (LISA) model was originally developed for pressure swirl hollow-cone injectors with moderate spray angle and toroidal ligament breakups. Therefore, it is not appropriate for the outwardly-opening injectors having wide

  13. Polyazole hollow fiber membranes for direct contact membrane distillation

    KAUST Repository

    Maab, Husnul

    2013-08-07

    Porous hollow fiber membranes were fabricated from fluorinated polyoxadiazole and polytriazole by a dry-wet spinning method for application in desalination of Red Sea water by direct contact membrane distillation (DCMD). The data were compared with commercially available hollow fiber MD membranes prepared from poly(vinylidene fluoride). The membranes were characterized by electron microscopy, liquid entry pressure (LEP), and pore diameter measurements. Finally, the hollow fiber membranes were tested for DCMD. Salt selectivity as high as 99.95% and water fluxes as high as 35 and 41 L m -2 h-1 were demonstrated, respectively, for polyoxadiazole and polytriazole hollow fiber membranes, operating at 80 C feed temperature and 20 C permeate. © 2013 American Chemical Society.

  14. Investigation of concrete mixtures incorporating hollow plastic microspheres.

    Science.gov (United States)

    1981-01-01

    This study investigated the potential of hollow plastic microspheres, HPM, for providing non-air-entrained portland cement concrete resistance to damage from cycles of freezing and thawing. In the study, a mixture with an air-entraining agent (vinsol...

  15. Block copolymer/homopolymer dual-layer hollow fiber membranes

    KAUST Repository

    Hilke, Roland; Neelakanda, Pradeep; Behzad, Ali Reza; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2014-01-01

    We manufactured the first time block copolymer dual-layer hollow fiber membranes and dual layer flat sheet membranes manufactured by double solution casting and phase inversion in water. The support porous layer was based on polystyrene

  16. A bio-inspired N-doped porous carbon electrocatalyst with hierarchical superstructure for efficient oxygen reduction reaction

    Science.gov (United States)

    Miao, Yue-E.; Yan, Jiajie; Ouyang, Yue; Lu, Hengyi; Lai, Feili; Wu, Yue; Liu, Tianxi

    2018-06-01

    The bio-inspired hierarchical "grape cluster" superstructure provides an effective integration of one-dimensional carbon nanofibers (CNF) with isolated carbonaceous nanoparticles into three-dimensional (3D) conductive frameworks for efficient electron and mass transfer. Herein, a 3D N-doped porous carbon electrocatalyst consisting of carbon nanofibers with grape-like N-doped hollow carbon particles (CNF@NC) has been prepared through a simple electrospinning strategy combined with in-situ growth and carbonization processes. Such a bio-inspired hierarchically organized conductive network largely facilitates both the mass diffusion and electron transfer during the oxygen reduction reactions (ORR). Therefore, the metal-free CNF@NC catalyst demonstrates superior catalytic activity with an absolute four-electron transfer mechanism, strong methanol tolerance and good long-term stability towards ORR in alkaline media.

  17. 3D hollow nanostructures as building blocks for multifunctional plasmonics

    KAUST Repository

    De Angelis, Francesco De; Malerba, Mario; Patrini, Maddalena; Miele, Ermanno; Das, Gobind; Toma, Andrea; Proietti Zaccaria, Remo; Di Fabrizio, Enzo M.

    2013-01-01

    We present an advanced and robust technology to realize 3D hollow plasmonic nanostructures which are tunable in size, shape, and layout. The presented architectures offer new and unconventional properties such as the realization of 3D plasmonic hollow nanocavities with high electric field confinement and enhancement, finely structured extinction profiles, and broad band optical absorption. The 3D nature of the devices can overcome intrinsic difficulties related to conventional architectures in a wide range of multidisciplinary applications. © 2013 American Chemical Society.

  18. 3D hollow nanostructures as building blocks for multifunctional plasmonics

    KAUST Repository

    De Angelis, Francesco De

    2013-08-14

    We present an advanced and robust technology to realize 3D hollow plasmonic nanostructures which are tunable in size, shape, and layout. The presented architectures offer new and unconventional properties such as the realization of 3D plasmonic hollow nanocavities with high electric field confinement and enhancement, finely structured extinction profiles, and broad band optical absorption. The 3D nature of the devices can overcome intrinsic difficulties related to conventional architectures in a wide range of multidisciplinary applications. © 2013 American Chemical Society.

  19. Preparation and Application of Hollow Silica/magnetic Nanocomposite Particle

    Science.gov (United States)

    Wang, Cheng-Chien; Lin, Jing-Mo; Lin, Chun-Rong; Wang, Sheng-Chang

    The hollow silica/cobalt ferrite (CoFe2O4) magnetic microsphere with amino-groups were successfully prepared via several steps, including preparing the chelating copolymer microparticles as template by soap-free emulsion polymerization, manufacturing the hollow cobalt ferrite magnetic microsphere by in-situ chemical co-precipitation following calcinations, and surface modifying of the hollow magnetic microsphere by 3-aminopropyltrime- thoxysilane via the sol-gel method. The average diameter of polymer microspheres was ca. 200 nm from transmission electron microscope (TEM) measurement. The structure of the hollow magnetic microsphere was characterized by using TEM and scanning electron microscope (SEM). The spinel-type lattice of CoFe2O4 shell layer was identified by using XRD measurement. The diameter of CoFe2O4 crystalline grains ranged from 54.1 nm to 8.5 nm which was estimated by Scherrer's equation. Additionally, the hollow silica/cobalt ferrite microsphere possesses superparamagnetic property after VSM measurement. The result of BET measurement reveals the hollow magnetic microsphere which has large surface areas (123.4m2/g). After glutaraldehyde modified, the maximum value of BSA immobilization capacity of the hollow magnetic microsphere was 33.8 mg/g at pH 5.0 buffer solution. For microwave absorption, when the hollow magnetic microsphere was compounded within epoxy resin, the maximum reflection loss of epoxy resins could reach -35dB at 5.4 GHz with 1.9 mm thickness.

  20. Monodisperse Hollow Tricolor Pigment Particles for Electronic Paper

    Directory of Open Access Journals (Sweden)

    Meng Xianwei

    2009-01-01

    Full Text Available Abstract A general approach has been designed to blue, green, and red pigments by metal ions doping hollow TiO 2. The reaction involves initial formation of PS at TiO2 core–shell nanoparticles via a mixed-solvent method, and then mixing with metal ions solution containing PEG, followed calcining in the atmosphere. The as-prepared hollow pigments exhibit uniform size, bright color, and tunable density, which are fit for electronic paper display.

  1. Control of Dispersion in Hollow Core Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Roberts, John

    2007-01-01

    The dispersion of hollow core photonic crystal fibers can be tailored by modifying a single ring of holes in the cladding. The dispersion can be lowered and flattened, or alternatively greatly increased, in a controlled manner.......The dispersion of hollow core photonic crystal fibers can be tailored by modifying a single ring of holes in the cladding. The dispersion can be lowered and flattened, or alternatively greatly increased, in a controlled manner....

  2. Thin-walled reinforcement lattice structure for hollow CMC buckets

    Science.gov (United States)

    de Diego, Peter

    2017-06-27

    A hollow ceramic matrix composite (CMC) turbine bucket with an internal reinforcement lattice structure has improved vibration properties and stiffness. The lattice structure is formed of thin-walled plies made of CMC. The wall structures are arranged and located according to high stress areas within the hollow bucket. After the melt infiltration process, the mandrels melt away, leaving the wall structure to become the internal lattice reinforcement structure of the bucket.

  3. Highly efficient fluorescence sensing with hollow core photonic crystal fibers

    DEFF Research Database (Denmark)

    Smolka, Stephan; Barth, Michael; Benson, Oliver

    2008-01-01

    We investigate hollow core photonic crystal fibers for ultra-sensitive fluorescence detection by selectively infiltrating the central hole with fluorophores. Dye concentrations down to 10(-9) M can be detected using only nanoliter sample volumes.......We investigate hollow core photonic crystal fibers for ultra-sensitive fluorescence detection by selectively infiltrating the central hole with fluorophores. Dye concentrations down to 10(-9) M can be detected using only nanoliter sample volumes....

  4. Multicollinearity in hierarchical linear models.

    Science.gov (United States)

    Yu, Han; Jiang, Shanhe; Land, Kenneth C

    2015-09-01

    This study investigates an ill-posed problem (multicollinearity) in Hierarchical Linear Models from both the data and the model perspectives. We propose an intuitive, effective approach to diagnosing the presence of multicollinearity and its remedies in this class of models. A simulation study demonstrates the impacts of multicollinearity on coefficient estimates, associated standard errors, and variance components at various levels of multicollinearity for finite sample sizes typical in social science studies. We further investigate the role multicollinearity plays at each level for estimation of coefficient parameters in terms of shrinkage. Based on these analyses, we recommend a top-down method for assessing multicollinearity in HLMs that first examines the contextual predictors (Level-2 in a two-level model) and then the individual predictors (Level-1) and uses the results for data collection, research problem redefinition, model re-specification, variable selection and estimation of a final model. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Distributed hierarchical radiation monitoring system

    International Nuclear Information System (INIS)

    Barak, D.

    1985-01-01

    A solution to the problem of monitoring the radiation levels in and around a nuclear facility is presented in this paper. This is a private case of a large scale general purpose data acqisition system with high reliability, availability and short maintenance time. The physical layout of the detectors in the plant, and the strict control demands dictated a distributed and hierarchical system. The system is comprised of three levels, each level contains modules. Level one contains the Control modules which collects data from groups of detectors and executes emergency local control tasks. In level two are the Group controllers which concentrate data from the Control modules, and enable local display and communication. The system computer is in level three, enabling the plant operator to receive information from the detectors and execute control tasks. The described system was built and is operating successfully for about two years. (author)

  6. Hierarchical Control for Smart Grids

    DEFF Research Database (Denmark)

    Trangbæk, K; Bendtsen, Jan Dimon; Stoustrup, Jakob

    2011-01-01

    of autonomous consumers. The control system is tasked with balancing electric power production and consumption within the smart grid, and makes active use of the flexibility of a large number of power producing and/or power consuming units. The objective is to accommodate the load variation on the grid, arising......This paper deals with hierarchical model predictive control (MPC) of smart grid systems. The design consists of a high level MPC controller, a second level of so-called aggregators, which reduces the computational and communication-related load on the high-level control, and a lower level...... on one hand from varying consumption, and on the other hand by natural variations in power production e.g. from wind turbines. The high-level MPC problem is solved using quadratic optimisation, while the aggregator level can either involve quadratic optimisation or simple sorting-based min-max solutions...

  7. Silver Films with Hierarchical Chirality.

    Science.gov (United States)

    Ma, Liguo; Cao, Yuanyuan; Duan, Yingying; Han, Lu; Che, Shunai

    2017-07-17

    Physical fabrication of chiral metallic films usually results in singular or large-sized chirality, restricting the optical asymmetric responses to long electromagnetic wavelengths. The chiral molecule-induced formation of silver films prepared chemically on a copper substrate through a redox reaction is presented. Three levels of chirality were identified: primary twisted nanoflakes with atomic crystal lattices, secondary helical stacking of these nanoflakes to form nanoplates, and tertiary micrometer-sized circinates consisting of chiral arranged nanoplates. The chiral Ag films exhibited multiple plasmonic absorption- and scattering-based optical activities at UV/Vis wavelengths based on their hierarchical chirality. The Ag films showed chiral selectivity for amino acids in catalytic electrochemical reactions, which originated from their primary atomic crystal lattices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Hierarchical coarse-graining transform.

    Science.gov (United States)

    Pancaldi, Vera; King, Peter R; Christensen, Kim

    2009-03-01

    We present a hierarchical transform that can be applied to Laplace-like differential equations such as Darcy's equation for single-phase flow in a porous medium. A finite-difference discretization scheme is used to set the equation in the form of an eigenvalue problem. Within the formalism suggested, the pressure field is decomposed into an average value and fluctuations of different kinds and at different scales. The application of the transform to the equation allows us to calculate the unknown pressure with a varying level of detail. A procedure is suggested to localize important features in the pressure field based only on the fine-scale permeability, and hence we develop a form of adaptive coarse graining. The formalism and method are described and demonstrated using two synthetic toy problems.

  9. Adaptive hierarchical multi-agent organizations

    NARCIS (Netherlands)

    Ghijsen, M.; Jansweijer, W.N.H.; Wielinga, B.J.; Babuška, R.; Groen, F.C.A.

    2010-01-01

    In this chapter, we discuss the design of adaptive hierarchical organizations for multi-agent systems (MAS). Hierarchical organizations have a number of advantages such as their ability to handle complex problems and their scalability to large organizations. By introducing adaptivity in the

  10. The Case for a Hierarchical Cosmology

    Science.gov (United States)

    Vaucouleurs, G. de

    1970-01-01

    The development of modern theoretical cosmology is presented and some questionable assumptions of orthodox cosmology are pointed out. Suggests that recent observations indicate that hierarchical clustering is a basic factor in cosmology. The implications of hierarchical models of the universe are considered. Bibliography. (LC)

  11. Discovering hierarchical structure in normal relational data

    DEFF Research Database (Denmark)

    Schmidt, Mikkel Nørgaard; Herlau, Tue; Mørup, Morten

    2014-01-01

    -parametric generative model for hierarchical clustering of similarity based on multifurcating Gibbs fragmentation trees. This allows us to infer and display the posterior distribution of hierarchical structures that comply with the data. We demonstrate the utility of our method on synthetic data and data of functional...

  12. Biased trapping issue on weighted hierarchical networks

    Indian Academy of Sciences (India)

    archical networks which are based on the classic scale-free hierarchical networks. ... Weighted hierarchical networks; weight-dependent walks; mean first passage ..... The weighted networks can mimic some real-world natural and social systems to ... the Priority Academic Program Development of Jiangsu Higher Education ...

  13. Superb adsorption capacity of hierarchical calcined Ni/Mg/Al layered double hydroxides for Congo red and Cr(VI) ions

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Chunsheng [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); College of Environmental & Safety Engineering, Changzhou University, Changzhou 213164 (China); Zhu, Xiaofeng [College of Environmental & Safety Engineering, Changzhou University, Changzhou 213164 (China); Zhu, Bicheng; Jiang, Chuanjia; Le, Yao [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Yu, Jiaguo, E-mail: jiaguoyu@yahoo.com [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2017-01-05

    Highlights: • Ni/Mg/Al layered double hydroxides (NMA-LDHs) synthesized. • NMA-LDHs with hierarchically hollow microsphere structure. • Calcined NMA-LDHs have large adsorption capacities for CR and Cr(VI) ions. - Abstract: The preparation of hierarchical porous materials as catalysts and sorbents has attracted much attention in the field of environmental pollution control. Herein, Ni/Mg/Al layered double hydroxides (NMA-LDHs) hierarchical flower-like hollow microspheres were synthesized by a hydrothermal method. After the NMA-LDHs was calcined at 600 °C, NMA-LDHs transformed into Ni/Mg/Al layered double oxides (NMA-LDOs), which maintained the hierarchical flower-like hollow structure. The crystal phase, morphology, and microstructure of the as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy elemental mapping, Fourier transform infrared spectroscopy, and nitrogen adsorption−desorption methods. Both the calcined and non-calcined NMA-LDHs were examined for their performance to remove Congo red (CR) and hexavalent chromium (Cr(VI)) ions in aqueous solution. The maximum monolayer adsorption capacities of CR and Cr(VI) ions over the NMA-LDOs sample were 1250 and 103.4 mg/g at 30 °C, respectively. Thermodynamic studies indicated that the adsorption process was endothermic in nature. In addition, the addition of coexisting anions negatively influenced the adsorption capacity of Cr(VI) ions, in the following order: CO{sub 3}{sup 2−} > SO{sub 4}{sup 2−} > H{sub 2}PO{sub 4}{sup −} > Cl{sup −}. This work will provide new insight into the design and fabrication of advanced adsorption materials for water pollutant removal.

  14. Hierarchical Rhetorical Sentence Categorization for Scientific Papers

    Science.gov (United States)

    Rachman, G. H.; Khodra, M. L.; Widyantoro, D. H.

    2018-03-01

    Important information in scientific papers can be composed of rhetorical sentences that is structured from certain categories. To get this information, text categorization should be conducted. Actually, some works in this task have been completed by employing word frequency, semantic similarity words, hierarchical classification, and the others. Therefore, this paper aims to present the rhetorical sentence categorization from scientific paper by employing TF-IDF and Word2Vec to capture word frequency and semantic similarity words and employing hierarchical classification. Every experiment is tested in two classifiers, namely Naïve Bayes and SVM Linear. This paper shows that hierarchical classifier is better than flat classifier employing either TF-IDF or Word2Vec, although it increases only almost 2% from 27.82% when using flat classifier until 29.61% when using hierarchical classifier. It shows also different learning model for child-category can be built by hierarchical classifier.

  15. Processing of hierarchical syntactic structure in music.

    Science.gov (United States)

    Koelsch, Stefan; Rohrmeier, Martin; Torrecuso, Renzo; Jentschke, Sebastian

    2013-09-17

    Hierarchical structure with nested nonlocal dependencies is a key feature of human language and can be identified theoretically in most pieces of tonal music. However, previous studies have argued against the perception of such structures in music. Here, we show processing of nonlocal dependencies in music. We presented chorales by J. S. Bach and modified versions in which the hierarchical structure was rendered irregular whereas the local structure was kept intact. Brain electric responses differed between regular and irregular hierarchical structures, in both musicians and nonmusicians. This finding indicates that, when listening to music, humans apply cognitive processes that are capable of dealing with long-distance dependencies resulting from hierarchically organized syntactic structures. Our results reveal that a brain mechanism fundamental for syntactic processing is engaged during the perception of music, indicating that processing of hierarchical structure with nested nonlocal dependencies is not just a key component of human language, but a multidomain capacity of human cognition.

  16. Barium depletion in hollow cathode emitters

    International Nuclear Information System (INIS)

    Polk, James E.; Mikellides, Ioannis G.; Katz, Ira; Capece, Angela M.

    2016-01-01

    Dispenser hollow cathodes rely on a consumable supply of Ba released by BaO-CaO-Al 2 O 3 source material in the pores of a tungsten matrix to maintain a low work function surface. The examination of cathode emitters from long duration tests shows deposits of tungsten at the downstream end that appear to block the flow of Ba from the interior. In addition, a numerical model of Ba transport in the cathode plasma indicates that the Ba partial pressure in the insert may exceed the equilibrium vapor pressure of the dominant Ba-producing reaction, and it was postulated previously that this would suppress Ba loss in the upstream part of the emitter. New measurements of the Ba depletion depth from a cathode insert operated for 8200 h reveal that Ba loss is confined to a narrow region near the downstream end, confirming this hypothesis. The Ba transport model was modified to predict the depletion depth with time. A comparison of the calculated and measured depletion depths gives excellent qualitative agreement, and quantitative agreement was obtained assuming an insert temperature 70 °C lower than measured beginning-of-life values

  17. Solvothermal Synthesis of Hierarchical Colloidal Nanocrystal Assemblies of ZnFe2O4 and Their Application in Water Treatment

    Directory of Open Access Journals (Sweden)

    Peizhi Guo

    2016-09-01

    Full Text Available Hierarchical colloidal nanocrystal assemblies (CNAs of ZnFe2O4 have been synthesized controllably by a solvothermal method. Hollow ZnFe2O4 spheres can be formed with the volume ratios of ethylene glycol to ethanol of 1:4 in the starting systems, while solid ZnFe2O4 CNAs are obtained by adjusting the volume proportion of ethylene glycol to ethanol from 1:2 to 2:1. Magnetometric measurement data showed that the ZnFe2O4 CNAs obtained with the volume ratios of 1:2 and 1:1 exhibited weak ferromagnetic behavior with high saturation magnetization values of 60.4 and 60.3 emu·g−1, respectively. However, hollow spheres showed a saturation magnetization value of 52.0 emu·g−1, but the highest coercivity among all the samples. It was found that hollow spheres displayed the best ability to adsorb Congo red dye among all the CNAs. The formation mechanisms of ZnFe2O4 CNAs, as well as the relationship between their structure, crystallite size, and properties were discussed based on the experimental results.

  18. Solvothermal Synthesis of Hierarchical Colloidal Nanocrystal Assemblies of ZnFe₂O₄ and Their Application in Water Treatment.

    Science.gov (United States)

    Guo, Peizhi; Lv, Meng; Han, Guangting; Wen, Changna; Wang, Qianbin; Li, Hongliang; Zhao, Xiusong

    2016-09-29

    Hierarchical colloidal nanocrystal assemblies (CNAs) of ZnFe₂O₄ have been synthesized controllably by a solvothermal method. Hollow ZnFe₂O₄ spheres can be formed with the volume ratios of ethylene glycol to ethanol of 1:4 in the starting systems, while solid ZnFe₂O₄ CNAs are obtained by adjusting the volume proportion of ethylene glycol to ethanol from 1:2 to 2:1. Magnetometric measurement data showed that the ZnFe₂O₄ CNAs obtained with the volume ratios of 1:2 and 1:1 exhibited weak ferromagnetic behavior with high saturation magnetization values of 60.4 and 60.3 emu·g -1 , respectively. However, hollow spheres showed a saturation magnetization value of 52.0 emu·g -1 , but the highest coercivity among all the samples. It was found that hollow spheres displayed the best ability to adsorb Congo red dye among all the CNAs. The formation mechanisms of ZnFe₂O₄ CNAs, as well as the relationship between their structure, crystallite size, and properties were discussed based on the experimental results.

  19. Hollow raspberry-like PdAg alloy nanospheres: High electrocatalytic activity for ethanol oxidation in alkaline media

    Science.gov (United States)

    Peng, Cheng; Hu, Yongli; Liu, Mingrui; Zheng, Yixiong

    2015-03-01

    Palladium-silver (PdAg) alloy nanospheres with unique structure were prepared using a one-pot procedure based on the galvanic replacement reaction. Their electrocatalytic activity for ethanol oxidation in alkaline media was evaluated. The morphology and crystal structure of the samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Electrochemical characterization techniques, including cyclic voltammetry (CV) and chronoamperometry (CA) measurements were used to analyze the electrochemical performance of the PdAg alloy nanospheres. The SEM and TEM images showed that the PdAg alloy nanospheres exhibit a hierarchical nanostructure with hollow interiors and porous walls. Compared to the commercial Pd/C catalyst, the as-prepared PdAg alloy nanospheres exhibit superior electrocatalytic activity and stability towards ethanol electro-oxidation in alkaline media, showing its potential as a new non-Pt electro-catalyst for direct alcohol fuel cells (DAFCs).

  20. Solvent-induced synthesis of nitrogen-doped hollow carbon spheres with tunable surface morphology for supercapacitors

    Science.gov (United States)

    Liu, Feng; Yuan, Ren-Lu; Zhang, Ning; Ke, Chang-Ce; Ma, Shao-Xia; Zhang, Ru-Liang; Liu, Lei

    2018-04-01

    Nitrogen doped hollow carbon spheres (NHCSs) with tunable surface morphology have been prepared through one-pot carbonization method by using melamine-formaldehyde spheres as template and resorcinol-based resin as carbon precursor in ethanol-water solution. Well-dispersed NHCSs with particle size of 800 nm were obtained and the surface of NHCSs turn from smooth to tough, wrinkled, and finally concave by increasing the ethanol concentration. The fabricated NHCSs possessed high nitrogen content (3.99-4.83%) and hierarchical micro-dual mesoporous structure with surface area range of 265-405 m2 g-1 and total pore volume of 0.18-0.29 cm3 g-1, which contributed to high specific capacitance, excellent rate capability and long cycle life.

  1. Three-dimensional hierarchical porous tubular carbon as a host matrix for long-term lithium-selenium batteries

    Science.gov (United States)

    Jia, Min; Lu, Shiyu; Chen, Yuming; Liu, Ting; Han, Jin; Shen, Bolei; Wu, Xiaoshuai; Bao, Shu-Juan; Jiang, Jian; Xu, Maowen

    2017-11-01

    Lithium-selenium (Li-Se) batteries are of great interest as a representative family of electrochemical energy storage systems because of their high theoretical volumetric capacity and considerable electronic conductivity. However, the main drawback of Se electrodes is the rapid capacity fading caused by the dissolution of polyselenides upon cycling. Here, we report a simple, economical, and effective method for the synthesis of three-dimensional (3D) hierarchical porous carbon with a hollow tubular structure as a host matrix for loading Se and trapping polyselenides. The as-obtained porous tubular carbon shows a superior specific surface area of 1786 m2 g-1, a high pore volume of 0.79 cm3 g-1, and many nanostructured pores. Benefiting from the unique structural characteristics, the resulting hierarchical porous carbon/Se composite exhibits a high capacity of 515 mAh g-1 at 0.2 C. More importantly, a remarkable cycling stability over 900 cycles at 2 C with a capacity fading rate of merely 0.02% per cycle can be achieved. The 3D hollow porous tubular carbon can be also used for other high-performance electrodes of electrochemical energy storage.

  2. One-step synthesis of SnCo nanoconfined in hierarchical carbon nanostructures for lithium ion battery anode.

    Science.gov (United States)

    Qin, Jian; Liu, Dongye; Zhang, Xiang; Zhao, Naiqin; Shi, Chunsheng; Liu, En-Zuo; He, Fang; Ma, Liying; Li, Qunying; Li, Jiajun; He, Chunnian

    2017-10-26

    A new strategy for the one-step synthesis of a 0D SnCo nanoparticles-1D carbon nanotubes-3D hollow carbon submicrocube cluster (denoted as SnCo@CNT-3DC) hierarchical nanostructured material was developed via a simple chemical vapor deposition (CVD) process with the assistance of a water-soluble salt (NaCl). The adopted NaCl not only acted as a cubic template for inducing the formation of the 3D hollow carbon submicrocube cluster but also provides a substrate for the SnCo catalysts impregnation and CNT growth, ultimately leading to the successful construction of the unique 0D-1D-3D structured SnCo@CNT-3DC during the CVD of C 2 H 2 . When utilized as a lithium-ion battery anode, the SnCo@CNT-3DC composite electrode demonstrated an excellent rate performance and cycling stability for Li-ion storage. Specifically, an impressive reversible capacity of 826 mA h g -1 after 100 cycles at 0.1 A g -1 and a high rate capacity of 278 mA h g -1 even after 1000 cycles at 5 A g -1 were achieved. This remarkable electrochemical performance could be ascribed to the unique hierarchical nanostructure of SnCo@CNT-3DC, which guarantees a deep permeation of electrolytes and a shortened lithium salt diffusion pathway in the solid phase as well as numerous hyperchannels for electron transfer.

  3. Hollow Fluffy Co3O4 Cages as Efficient Electroactive Materials for Supercapacitors and Oxygen Evolution Reaction.

    Science.gov (United States)

    Zhou, Xuemei; Shen, Xuetao; Xia, Zhaoming; Zhang, Zhiyun; Li, Jing; Ma, Yuanyuan; Qu, Yongquan

    2015-09-16

    Nano-/micrometer multiscale hierarchical structures not only provide large surface areas for surface redox reactions but also ensure efficient charge conductivity, which is of benefit for utilization in areas of electrochemical energy conversion and storage. Herein, hollow fluffy cages (HFC) of Co3O4, constructed of ultrathin nanosheets, were synthesized by the formation of Co(OH)2 hollow cages and subsequent calcination at 250 °C. The large surface area (245.5 m2 g(-1)) of HFC Co3O4 annealed at 250 °C ensures the efficient interaction between electrolytes and electroactive components and provides more active sites for the surface redox reactions. The hierarchical structures minimize amount of the grain boundaries and facilitate the charge transfer process. Thin thickness of nanosheets (2-3 nm) ensures the highly active sites for the surface redox reactions. As a consequence, HFC Co3O4 as the supercapacitor electrode exhibits a superior rate capability, shows an excellent cycliability of 10,000 cycles at 10 A g(-1), and delivers large specific capacitances of 948.9 and 536.8 F g(-1) at 1 and 40 A g(-1), respectively. Catalytic studies of HFC Co3O4 for oxygen evolution reaction display a much higher turnover frequency of 1.67×10(-2) s(-1) in pH 14.0 KOH electrolyte at 400 mV overpotential and a lower Tafel slope of 70 mV dec(-1). HFC Co3O4 with the efficient electrochemical activity and good stability can remain a promising candidate for the electrochemical energy conversion and storage.

  4. The Fabrication of Ga2O3/ZSM-5 Hollow Fibers for Efficient Catalytic Conversion of n-Butane into Light Olefins and Aromatics

    Directory of Open Access Journals (Sweden)

    Jing Han

    2016-01-01

    Full Text Available In this study, the dehydrogenation component of Ga2O3 was introduced into ZSM-5 nanocrystals to prepare Ga2O3/ZSM-5 hollow fiber-based bifunctional catalysts. The physicochemical features of as-prepared catalysts were characterized by means of XRD, BET, SEM, STEM, NH3-TPD, etc., and their performances for the catalytic conversion of n-butane to produce light olefins and aromatics were investigated. The results indicated that a very small amount of gallium can cause a marked enhancement in the catalytic activity of ZSM-5 because of the synergistic effect of the dehydrogenation and aromatization properties of Ga2O3 and the cracking function of ZSM-5. Compared with Ga2O3/ZSM-5 nanoparticles, the unique hierarchical macro-meso-microporosity of the as-prepared hollow fibers can effectively enlarge the bifunctionality by enhancing the accessibility of active sites and the diffusion. Consequently, Ga2O3/ZSM-5 hollow fibers show excellent catalytic conversion of n-butane, with the highest yield of light olefins plus aromatics at 600 °C by 87.6%, which is 56.3%, 24.6%, and 13.3% higher than that of ZSM-5, ZSM-5 zeolite fibers, and Ga2O3/ZSM-5, respectively.

  5. Hierarchical ordering with partial pairwise hierarchical relationships on the macaque brain data sets.

    Directory of Open Access Journals (Sweden)

    Woosang Lim

    Full Text Available Hierarchical organizations of information processing in the brain networks have been known to exist and widely studied. To find proper hierarchical structures in the macaque brain, the traditional methods need the entire pairwise hierarchical relationships between cortical areas. In this paper, we present a new method that discovers hierarchical structures of macaque brain networks by using partial information of pairwise hierarchical relationships. Our method uses a graph-based manifold learning to exploit inherent relationship, and computes pseudo distances of hierarchical levels for every pair of cortical areas. Then, we compute hierarchy levels of all cortical areas by minimizing the sum of squared hierarchical distance errors with the hierarchical information of few cortical areas. We evaluate our method on the macaque brain data sets whose true hierarchical levels are known as the FV91 model. The experimental results show that hierarchy levels computed by our method are similar to the FV91 model, and its errors are much smaller than the errors of hierarchical clustering approaches.

  6. Study of the hollow cathode plasma electron-gun

    International Nuclear Information System (INIS)

    Zhang Yonghui; Jiang Jinsheng; Chang Anbi

    2003-01-01

    For developing a novel high-current, long pulse width electron source, the theoretics and mechanism of the hollow cathode plasma electron-gun are analyzed in detail in this paper, the structure and the physical process of hollow cathode plasma electron-gun are also studied. This gun overcomes the limitations of most high-power microwave tubes, which employ either thermionic cathodes that produce low current-density beams because of the limitation of the space charge, or field-emission cathodes that offer high current density but provide only short pulse width because of plasma closure of the accelerating gap. In the theories studying on hollow cathode plasma electron-gun, the characteristic of the hollow-cathode discharge is introduced, the action during the forming of plasma of the stimulating electrode and the modulating anode are discussed, the movement of electrons and ions and the primary parameters are analyzed, and the formulas of the electric field, beam current density and the stabilization conditions of the beam current are also presented in this paper. The numerical simulation is carried out based on Poisson's equation, and the equations of current continuity and movement. And the optimized result is reported. On this basis, we have designed a hollow-cathode-plasma electron-gun, whose output pulse current is 2 kA, and pulse width is 1 microsecond

  7. Hollow proppants and a process for their manufacture

    Science.gov (United States)

    Jones, A.H.; Cutler, R.A.

    1985-10-15

    Hollow, fine-grained ceramic proppants are less expensive and improve fracture control when compared to conventional proppants (dense alumina, mullite, bauxite, zirconia, etc.). Hollow proppants of the present invention have been fabricated by spray drying, followed by sintering in order to obtain a dense case and a hollow core. These proppants generally have high sphericity and roundness (Krumbein sphericity and roundness greater than 0.8), have diameters on average between 2,250 and 125 [mu]m, depending on proppant size required, and have strength equal to or greater than that of sand. The hollow core, the size of which can be controlled, permits better fracture control in hydraulic fracturing treatments since the proppant can be transported in lower viscosity fluids. Hollow proppants produced at the same cost/weight as conventional proppants also provide for lower costs, since less weight is required to fill the same volume. The fine-grained (preferably less than 5 [mu]m in diameter) ceramic case provides the strength necessary to withstand closure stresses and prevent crushing. 6 figs.

  8. Classification using Hierarchical Naive Bayes models

    DEFF Research Database (Denmark)

    Langseth, Helge; Dyhre Nielsen, Thomas

    2006-01-01

    Classification problems have a long history in the machine learning literature. One of the simplest, and yet most consistently well-performing set of classifiers is the Naïve Bayes models. However, an inherent problem with these classifiers is the assumption that all attributes used to describe......, termed Hierarchical Naïve Bayes models. Hierarchical Naïve Bayes models extend the modeling flexibility of Naïve Bayes models by introducing latent variables to relax some of the independence statements in these models. We propose a simple algorithm for learning Hierarchical Naïve Bayes models...

  9. Hierarchical analysis of acceptable use policies

    Directory of Open Access Journals (Sweden)

    P. A. Laughton

    2008-01-01

    Full Text Available Acceptable use policies (AUPs are vital tools for organizations to protect themselves and their employees from misuse of computer facilities provided. A well structured, thorough AUP is essential for any organization. It is impossible for an effective AUP to deal with every clause and remain readable. For this reason, some sections of an AUP carry more weight than others, denoting importance. The methodology used to develop the hierarchical analysis is a literature review, where various sources were consulted. This hierarchical approach to AUP analysis attempts to highlight important sections and clauses dealt with in an AUP. The emphasis of the hierarchal analysis is to prioritize the objectives of an AUP.

  10. Hierarchical modeling and analysis for spatial data

    CERN Document Server

    Banerjee, Sudipto; Gelfand, Alan E

    2003-01-01

    Among the many uses of hierarchical modeling, their application to the statistical analysis of spatial and spatio-temporal data from areas such as epidemiology And environmental science has proven particularly fruitful. Yet to date, the few books that address the subject have been either too narrowly focused on specific aspects of spatial analysis, or written at a level often inaccessible to those lacking a strong background in mathematical statistics.Hierarchical Modeling and Analysis for Spatial Data is the first accessible, self-contained treatment of hierarchical methods, modeling, and dat

  11. Hierarchically structured, nitrogen-doped carbon membranes

    KAUST Repository

    Wang, Hong

    2017-08-03

    The present invention is a structure, method of making and method of use for a novel macroscopic hierarchically structured, nitrogen-doped, nano-porous carbon membrane (HNDCMs) with asymmetric and hierarchical pore architecture that can be produced on a large-scale approach. The unique HNDCM holds great promise as components in separation and advanced carbon devices because they could offer unconventional fluidic transport phenomena on the nanoscale. Overall, the invention set forth herein covers a hierarchically structured, nitrogen-doped carbon membranes and methods of making and using such a membranes.

  12. Construct 3D porous hollow Co3O4 micro-sphere: A potential oxidizer of nano-energetic materials with superior reactivity

    Science.gov (United States)

    Wang, Jun; Zheng, Bo; Qiao, Zhiqiang; Chen, Jin; Zhang, Liyuan; Zhang, Long; Li, Zhaoqian; Zhang, Xingquan; Yang, Guangcheng

    2018-06-01

    High energy density and rapid reactivity are the future trend for nano-energetic materials. Energetic performance of nano-energetic materials depends on the interfacial diffusion and mass transfer during the reacted process. However, the development of desired structure to significantly enhance reactivity still remains challenging. Here we focused on the design and preparation of 3D porous hollow Co3O4 micro-spheres, in which gas-blowing agents (air) and maximize interfacial interactions were introduced to enhance mass transport and reduce the diffusion distance between the oxidizer and fuel (Aluminum). The 3D hierarchical Co3O4/Al based nano-energetic materials show a low-onset decomposition temperature (423 °C), and high heat output (3118 J g-1) resulting from porous and hollow nano-structure of Co3O4 micro-spheres. Furthermore, 3D hierarchical Co3O4/Al arrays were directly fabricated on the silicon substrate, which was fully compatible with silicon-based microelectromechanical systems to achieve functional nanoenergetics-on-a-chip. This approach provides a simple and efficient way to fabricate 3D ordered nano-energetic arrays with superior reactivity and the potential on the application in micro-energetic devices.

  13. Hierarchical porous Co3O4 films with size-adjustable pores as Li ion battery anodes with excellent rate performances

    International Nuclear Information System (INIS)

    Zhao, Guangyu; Xu, Zhanming; Zhang, Li; Sun, Kening

    2013-01-01

    Highlights: •Template-free synthesis of hierarchical porous Co 3 O 4 films on Ni foams. •Hierarchical porous Co 3 O 4 films with size-adjustable pores. •Excellent rate performances (650 mAh g −1 at 30 C) as Li ion battery anodes. -- Abstract: Constructing hierarchical porous structures on the current collectors is an attractive strategy for improving the rate performance of the Li ion battery electrodes. However, preparing hierarchical porous structures normally requires hard or soft templates to create hollows or pores in different sizes. Rigorous preparation conditions are needed to control the size (especially nanosize) and size distribution of the pores obtained by conventional methods. Herein, we describe a template-free two-step synthesis process to prepare hierarchical porous Co 3 O 4 films on Ni foam substrates. In this synthesis process, free-standing mesoporous precursor flakes are deposited on Ni foams by an electrochemical method. Subsequently, the meosporous precursor flake arrays are calcined to obtain hierarchical porous Co 3 O 4 films. More strikingly, the size of the mesopores in the flakes can be adjusted by altering the calcination temperature. The structure and morphology of the samples are characterized by scanning electron microscopy, transmission electron microscopy and Brunauer–Emmett–Teller measurements. The relationship of the in-flake-pore size and the calcinations temperature is proposed here. Electrochemical tests have revealed that the hierarchical porous Co 3 O 4 films demonstrate excellent rate performances (650 mAh g −1 at 30 C) as Li ion battery anodes due to the hierarchical porous structure, which endows fast ion transmission

  14. Bottom-up-then-up-down Route for Multi-level Construction of Hierarchical Bi2S3 Superstructures with Magnetism Alteration

    Science.gov (United States)

    Wei, Chengzhen; Wang, Lanfang; Dang, Liyun; Chen, Qun; Lu, Qingyi; Gao, Feng

    2015-01-01

    A bottom-up-then-up-down route was proposed to construct multi-level Bi2S3 hierarchical architectures assembled by two-dimensional (2D) Bi2S3 sheet-like networks. BiOCOOH hollow spheres and flower-like structures, which are both assembled by 2D BiOCOOH nanosheets, were prepared first by a “bottom-up” route through a “quasi-emulsion” mechanism. Then the BiOCOOH hierarchical structures were transferred to hierarchical Bi2S3 architectures through an “up-down” route by an ion exchange method. The obtained Bi2S3 nanostructures remain hollow-spherical and flower-like structures of the precursors but the constructing blocks are changed to 2D sheet-like networks interweaving by Bi2S3 nanowires. The close matching of crystal lattices between Bi2S3 and BiOCOOH was believed to be the key reason for the topotactic transformation from BiOCOOH nanosheets to 2D Bi2S3 sheet-like nanowire networks. Magnetism studies reveal that unlike diamagnetism of comparative Bi2S3 nanostructures, the obtained multi-level Bi2S3 structures display S-type hysteresis and ferromagnetism at low field which might result from ordered structure of 2D networks. PMID:26028331

  15. Pressure effects in hollow and solid iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Silva, N.J.O., E-mail: nunojoao@ua.pt [Departamento de Física and CICECO, Universidade de Aveiro, 3810-193 Aveiro (Portugal); Saisho, S.; Mito, M. [Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550 (Japan); Millán, A.; Palacio, F. [Instituto de Ciencia de Materiales de Aragón, CSIC - Universidad de Zaragoza. Departamento de Física de la Materia Condensada, Facultad de Ciencias, 50009 Zaragoza (Spain); Cabot, A. [Universitat de Barcelona and Catalonia Energy Research Institute, Barcelona (Spain); Iglesias, Ò.; Labarta, A. [Departament de Física Fonamental, Universitat de Barcelona and Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain)

    2013-06-15

    We report a study on the pressure response of the anisotropy energy of hollow and solid maghemite nanoparticles. The differences between the maghemite samples are understood in terms of size, magnetic anisotropy and shape of the particles. In particular, the differences between hollow and solid samples are due to the different shape of the nanoparticles and by comparing both pressure responses it is possible to conclude that the shell has a larger pressure response when compared to the core. - Highlights: ► Study of the pressure response of core and shell magnetic anisotropy. ► Contrast between hollow and solid maghemite nanoparticles. ► Disentanglement of nanoparticles core and shell magnetic properties.

  16. Enhancement of acoustical performance of hollow tube sound absorber

    International Nuclear Information System (INIS)

    Putra, Azma; Khair, Fazlin Abd; Nor, Mohd Jailani Mohd

    2016-01-01

    This paper presents acoustical performance of hollow structures utilizing the recycled lollipop sticks as acoustic absorbers. The hollow cross section of the structures is arranged facing the sound incidence. The effects of different length of the sticks and air gap on the acoustical performance are studied. The absorption coefficient was measured using impedance tube method. Here it is found that improvement on the sound absorption performance is achieved by introducing natural kapok fiber inserted into the void between the hollow structures. Results reveal that by inserting the kapok fibers, both the absorption bandwidth and the absorption coefficient increase. For test sample backed by a rigid surface, best performance of sound absorption is obtained for fibers inserted at the front and back sides of the absorber. And for the case of test sample with air gap, this is achieved for fibers introduced only at the back side of the absorber.

  17. Hollow volcanic tumulus caves of Kilauea Caldera, Hawaii County, Hawaii

    Directory of Open Access Journals (Sweden)

    William R. Halliday

    1998-01-01

    Full Text Available In addition to lava tube caves with commonly noted features, sizable subcrustal spaces of several types exist on the floor of Kilauea Caldera. Most of these are formed by drainage of partially stabilized volcanic structures enlarged or formed by injection of very fluid lava beneath a plastic crust. Most conspicuous are hollow tumuli, possibly first described by Walker in 1991. Walker mapped and described the outer chamber of Tumulus E-I Cave. Further exploration has revealed that it has a hyperthermic inner room beneath an adjoining tumulus with no connection evident on the surface. Two lengthy, sinuous hollow tumuli also are present in this part of the caldera. These findings support Walkers conclusions that hollow tumuli provide valuable insights into tumulus-forming mechanisms, and provide information about the processes of emplacement of pahoehoe sheet flows.

  18. Management of maxillectomy defect with a hybrid hollow bulb obturator

    Science.gov (United States)

    Singh, Kamleshwar; Singh, Saumyendra V; Mishra, Niraj; Agrawal, Kaushal Kishor

    2013-01-01

    A woman having already undergone maxillectomy came to the department complaining of difficulty in eating and speech. During the construction of an obturator, the bulb area should be hollowed to reduce weight so that the teeth and supporting tissues are not stressed unnecessarily. The conventional open design drains fluid from the adjacent mucosa, possibly increasing the weight of the prosthesis, and is difficult to clean. The closed bulb design does not drain secretions and may cause obstruction and susceptibility to infection in the paranasal and pharyngeal regions, though it is easier to maintain. An alternative to the two designs, combining their advantages, is presented in this report. As the open hollow part of the obturator was shallow, it was easy to clean. Making the inferior part of the bulb hollow and closed led to a reduction in the overall weight of the prosthesis while increasing its resonance. PMID:23436886

  19. Hollow-core fibers for high power pulse delivery

    DEFF Research Database (Denmark)

    Michieletto, Mattia; Lyngsø, Jens K.; Jakobsen, Christian

    2016-01-01

    We investigate hollow-core fibers for fiber delivery of high power ultrashort laser pulses. We use numerical techniques to design an anti-resonant hollow-core fiber having one layer of non-touching tubes to determine which structures offer the best optical properties for the delivery of high power...... picosecond pulses. A novel fiber with 7 tubes and a core of 30 mu m was fabricated and it is here described and characterized, showing remarkable low loss, low bend loss, and good mode quality. Its optical properties are compared to both a 10 mu m and a 18 mu m core diameter photonic band gap hollow......-core fiber. The three fibers are characterized experimentally for the delivery of 22 picosecond pulses at 1032nm. We demonstrate flexible, diffraction limited beam delivery with output average powers in excess of 70W. (C) 2016 Optical Society of America...

  20. Forged hollows (alloy 617) for PNP-hot gas collectors

    International Nuclear Information System (INIS)

    Hofmann, F.

    1984-01-01

    When the partners in the PNP-Project decided to manufacture components, such as gas collectors, from material of type alloy 617, the problem arose that required semi-fabricated products, especially forged hollows weighing several tons each, were not available. As VDM (Vereinigte Deutsche Metallwerke AG) had already experience in production of other semi-fabricated products of this alloy, attempts were made based on this knowledge, to develop manufacturing methods for forged hollows. The aim was to produce hollows as long as possible, and to keep the welding cost minimum. Welded seams are always critical during fabrication, as well as during later inspection under actual operating conditions. The three stage plan used to perform the above task illustrates the development aims is described

  1. Enhancement of acoustical performance of hollow tube sound absorber

    Energy Technology Data Exchange (ETDEWEB)

    Putra, Azma, E-mail: azma.putra@utem.edu.my; Khair, Fazlin Abd, E-mail: fazlinabdkhair@student.utem.edu.my; Nor, Mohd Jailani Mohd, E-mail: jai@utem.edu.my [Centre for Advanced Research on Energy, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal Melaka 76100 Malaysia (Malaysia)

    2016-03-29

    This paper presents acoustical performance of hollow structures utilizing the recycled lollipop sticks as acoustic absorbers. The hollow cross section of the structures is arranged facing the sound incidence. The effects of different length of the sticks and air gap on the acoustical performance are studied. The absorption coefficient was measured using impedance tube method. Here it is found that improvement on the sound absorption performance is achieved by introducing natural kapok fiber inserted into the void between the hollow structures. Results reveal that by inserting the kapok fibers, both the absorption bandwidth and the absorption coefficient increase. For test sample backed by a rigid surface, best performance of sound absorption is obtained for fibers inserted at the front and back sides of the absorber. And for the case of test sample with air gap, this is achieved for fibers introduced only at the back side of the absorber.

  2. Method and apparatus for producing small hollow spheres

    International Nuclear Information System (INIS)

    Hendricks, C.D.

    1979-01-01

    A method and apparatus are described for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T greater than or equal to 600 0 C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10 3 μm) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants

  3. Fire resistance of extruded hollow-core slabs

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Sørensen, Lars Schiøtt; Giuliani, Luisa

    2017-01-01

    to the structural codes with data derived from a standard fire test and from a thorough examination of the comprehensive test documentation available on fire exposed hollow-core slabs. Findings – Mechanisms for loss of load-bearing capacity are clarified, and evidence of the fire resistance is found. Originality......Purpose – Prefabricated extruded hollow-core slabs are preferred building components for floor structures in several countries. It is therefore important to be able to document the fire resistance of these slabs proving fulfilment of standard fire resistance requirements of 60 and 120 min found...... in most national building regulations. The paper aims to present a detailed analysis of the mechanisms responsible for the loss of loadbearing capacity of hollow-core slabs when exposed to fire. Design/methodology/approach – Furthermore, it compares theoretica calculation and assessment according...

  4. Fabrication of Polyacrylonitrile Hollow Fiber Membranes from Ionic Liquid Solutions

    KAUST Repository

    Kim, Dooli; Moreno Chaparro, Nicolas; Nunes, Suzana Pereira

    2015-01-01

    The interest in green processes and products has increased to reduce the negative impact of many industrial processes to the environment. Solvents, which play a crucial role in the fabrication of membranes, need to be replaced by sustainable and less toxic solvent alternatives for commonly used polymers. The purpose of this study is the fabrication of greener hollow fiber membranes based on polyacrylonitrile (PAN), substituting dimethylformamide (DMF) by less toxic mixtures of ionic liquids (IL) and dimethylsulfoxide (DMSO). A thermodynamic analysis was conducted, estimating the Gibbs free energy of mixing to find the most convenient solution compositions. Hollow fiber membranes were manufactured and optimized. As a result, a uniform pattern and high porosity were observed in the inner surface of the membranes prepared from the ionic liquid solutions. The membranes were coated with a polyamide layer by interfacial polymerization the hollow fiber membranes were applied in forward osmosis experiments by using sucrose solutions as draw solution.

  5. Sharp tipped plastic hollow microneedle array by microinjection moulding

    Science.gov (United States)

    Yung, K. L.; Xu, Yan; Kang, Chunlei; Liu, H.; Tam, K. F.; Ko, S. M.; Kwan, F. Y.; Lee, Thomas M. H.

    2012-01-01

    A method of producing sharp tipped plastic hollow microneedle arrays using microinjection moulding is presented in this paper. Unlike traditional approaches, three mould inserts were used to create the sharp tips of the microneedles. Mould inserts with low surface roughness were fabricated using a picosecond laser machine. Sharp tipped plastic hollow microneedles 500 µm in height were fabricated using a microinjection moulding machine developed by the authors’ group. In addition, the strength of the microneedle was studied by simulation and penetration experiments. Results show that the microneedles can penetrate into skin, delivering liquid successfully without any breakage or severe deformation. Techniques presented in this paper can be used to fabricate sharp tipped plastic hollow microneedle arrays massively with low cost.

  6. Sharp tipped plastic hollow microneedle array by microinjection moulding

    International Nuclear Information System (INIS)

    Yung, K L; Xu, Yan; Kang, Chunlei; Liu, H; Tam, K F; Ko, S M; Kwan, F Y; Lee, Thomas M H

    2012-01-01

    A method of producing sharp tipped plastic hollow microneedle arrays using microinjection moulding is presented in this paper. Unlike traditional approaches, three mould inserts were used to create the sharp tips of the microneedles. Mould inserts with low surface roughness were fabricated using a picosecond laser machine. Sharp tipped plastic hollow microneedles 500 µm in height were fabricated using a microinjection moulding machine developed by the authors’ group. In addition, the strength of the microneedle was studied by simulation and penetration experiments. Results show that the microneedles can penetrate into skin, delivering liquid successfully without any breakage or severe deformation. Techniques presented in this paper can be used to fabricate sharp tipped plastic hollow microneedle arrays massively with low cost. (paper)

  7. Fabrication of Polyacrylonitrile Hollow Fiber Membranes from Ionic Liquid Solutions

    KAUST Repository

    Kim, Dooli

    2015-10-08

    The interest in green processes and products has increased to reduce the negative impact of many industrial processes to the environment. Solvents, which play a crucial role in the fabrication of membranes, need to be replaced by sustainable and less toxic solvent alternatives for commonly used polymers. The purpose of this study is the fabrication of greener hollow fiber membranes based on polyacrylonitrile (PAN), substituting dimethylformamide (DMF) by less toxic mixtures of ionic liquids (IL) and dimethylsulfoxide (DMSO). A thermodynamic analysis was conducted, estimating the Gibbs free energy of mixing to find the most convenient solution compositions. Hollow fiber membranes were manufactured and optimized. As a result, a uniform pattern and high porosity were observed in the inner surface of the membranes prepared from the ionic liquid solutions. The membranes were coated with a polyamide layer by interfacial polymerization the hollow fiber membranes were applied in forward osmosis experiments by using sucrose solutions as draw solution.

  8. Emission mechanism in high current hollow cathode arcs

    International Nuclear Information System (INIS)

    Krishnan, M.

    1976-01-01

    Large (2 cm-diameter) hollow cathodes have been operated in a magnetoplasmadynamic (MPD) arc over wide ranges of current (0.25 to 17 kA) and mass flow (10 -3 to 8 g/sec), with orifice current densities and mass fluxes encompassing those encountered in low current steady-state hollow cathode arcs. Detailed cathode interior measurements of current and potential distributions show that maximum current penetration into the cathode is about one diameter axially upstream from the tip, with peak inner surface current attachment up to one cathode diameter upstream of the tip. The spontaneous attachment of peak current upstream of the cathode tip is suggested as a criterion for characteristic hollow cathode operation. This empirical criterion is verified by experiment

  9. Zeolitic materials with hierarchical porous structures.

    Science.gov (United States)

    Lopez-Orozco, Sofia; Inayat, Amer; Schwab, Andreas; Selvam, Thangaraj; Schwieger, Wilhelm

    2011-06-17

    During the past several years, different kinds of hierarchical structured zeolitic materials have been synthesized due to their highly attractive properties, such as superior mass/heat transfer characteristics, lower restriction of the diffusion of reactants in the mesopores, and low pressure drop. Our contribution provides general information regarding types and preparation methods of hierarchical zeolitic materials and their relative advantages and disadvantages. Thereafter, recent advances in the preparation and characterization of hierarchical zeolitic structures within the crystallites by post-synthetic treatment methods, such as dealumination or desilication; and structured devices by in situ and ex situ zeolite coatings on open-cellular ceramic foams as (non-reactive as well as reactive) supports are highlighted. Specific advantages of using hierarchical zeolitic catalysts/structures in selected catalytic reactions, such as benzene to phenol (BTOP) and methanol to olefins (MTO) are presented. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. HIERARCHICAL ORGANIZATION OF INFORMATION, IN RELATIONAL DATABASES

    Directory of Open Access Journals (Sweden)

    Demian Horia

    2008-05-01

    Full Text Available In this paper I will present different types of representation, of hierarchical information inside a relational database. I also will compare them to find the best organization for specific scenarios.

  11. Hierarchical DSE for multi-ASIP platforms

    DEFF Research Database (Denmark)

    Micconi, Laura; Corvino, Rosilde; Gangadharan, Deepak

    2013-01-01

    This work proposes a hierarchical Design Space Exploration (DSE) for the design of multi-processor platforms targeted to specific applications with strict timing and area constraints. In particular, it considers platforms integrating multiple Application Specific Instruction Set Processors (ASIPs...

  12. Packaging glass with hierarchically nanostructured surface

    KAUST Repository

    He, Jr-Hau

    2017-08-03

    An optical device includes an active region and packaging glass located on top of the active region. A top surface of the packaging glass includes hierarchical nanostructures comprised of honeycombed nanowalls (HNWs) and nanorod (NR) structures extending from the HNWs.

  13. Packaging glass with hierarchically nanostructured surface

    KAUST Repository

    He, Jr-Hau; Fu, Hui-Chun

    2017-01-01

    An optical device includes an active region and packaging glass located on top of the active region. A top surface of the packaging glass includes hierarchical nanostructures comprised of honeycombed nanowalls (HNWs) and nanorod (NR) structures

  14. Hierarchical organization versus self-organization

    OpenAIRE

    Busseniers, Evo

    2014-01-01

    In this paper we try to define the difference between hierarchical organization and self-organization. Organization is defined as a structure with a function. So we can define the difference between hierarchical organization and self-organization both on the structure as on the function. In the next two chapters these two definitions are given. For the structure we will use some existing definitions in graph theory, for the function we will use existing theory on (self-)organization. In the t...

  15. Hierarchical decision making for flood risk reduction

    DEFF Research Database (Denmark)

    Custer, Rocco; Nishijima, Kazuyoshi

    2013-01-01

    . In current practice, structures are often optimized individually without considering benefits of having a hierarchy of protection structures. It is here argued, that the joint consideration of hierarchically integrated protection structures is beneficial. A hierarchical decision model is utilized to analyze...... and compare the benefit of large upstream protection structures and local downstream protection structures in regard to epistemic uncertainty parameters. Results suggest that epistemic uncertainty influences the outcome of the decision model and that, depending on the magnitude of epistemic uncertainty...

  16. A method for manufacturing a hollow mems structure

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to a method for manufacturing an at least partly hollow MEMS structure. In a first step one or more through-going openings is/are provided in core material. The one or more through-going openings is/are then covered by an etch-stop layer. After this step, a bottom...... further comprises the step of creating bottom and top conductors in the respective bottom and top layers. Finally, excess core material is removed in order to create the at least partly hollow MEMS structure which may include a MEMS inductor....

  17. Rotary compression process for producing toothed hollow shafts

    Directory of Open Access Journals (Sweden)

    J. Tomczak

    2014-10-01

    Full Text Available The paper presents the results of numerical analyses of the rotary compression process for hollow stepped shafts with herringbone teeth. The numerical simulations were performed by Finite Element Method (FEM, using commercial software package DEFORM-3D. The results of numerical modelling aimed at determining the effect of billet wall thickness on product shape and the rotary compression process are presented. The distributions of strains, temperatures, damage criterion and force parameters of the process determined in the simulations are given, too. The numerical results obtained confirm the possibility of producing hollow toothed shafts from tube billet by rotary compression methods.

  18. Preparation and Electrochemical Properties of Silver Doped Hollow Carbon Nanofibers

    Directory of Open Access Journals (Sweden)

    LI Fu

    2016-11-01

    Full Text Available Silver doped PAN-based hollow carbon nanofibers were prepared combining co-electrospinning with in situ reduction technique subsequently heat treatment to improve the electrochemical performances of carbon based supercapacitor electrodes. The morphology, structure and electrochemical performances of the resulted nanofiber were studied. The results show that the silver nanoparticles can be doped on the surface of hollow carbon nanofibers and the addition of silver favors the improvement of the electrochemical performances, exhibiting the enhanced reversibility of electrode reaction and the capacitance and the reduced charge transfer impedance.

  19. Antiresonant hollow core fiber with seven nested capillaries

    DEFF Research Database (Denmark)

    Antonio-Lopez, Jose E.; Habib, Selim; Van Newkirk, Amy

    2016-01-01

    We report an antiresonant hollow core fiber formed of 7 non-touching capillaries with inner tubes. The fiber has a core diameter of ∼33μm and a core wall of ∼780nm of thickness. We demonstrate robust single mode operation at 1064nm and broad transmission bandwidth.......We report an antiresonant hollow core fiber formed of 7 non-touching capillaries with inner tubes. The fiber has a core diameter of ∼33μm and a core wall of ∼780nm of thickness. We demonstrate robust single mode operation at 1064nm and broad transmission bandwidth....

  20. Soliton formation in hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2009-01-01

    of an approximate scaling relation is tested. It is concluded that compression of input pulses of several ps duration and sub-MW peak power can lead to a formation of solitons with ∼100 fs duration and multi-megawatt peak powers. The dispersion slope of realistic hollow-core fibers appears to be the main obstacle......The formation of solitons upon compression of linearly chirped pulses in hollow-core photonic bandgap fibers is investigated numerically. The dependence of soliton duration on the chirp and power of the input pulse and on the dispersion slope of the fiber is investigated, and the validity...

  1. The Nature of Mercury's Hollows, and Space Weathering Close to the Sun

    Science.gov (United States)

    Blewett, D. T.; Chabot, N. L.; Denevi, B. W.; Ernst, C. M.

    2018-05-01

    Hollows are a landform that appear to form by loss of a volatile-bearing phase from silicate rock. Hollows are very young and are likely to be forming in the present day. Hollows may be an analog for extreme weathering on near-Sun asteroids.

  2. Hierarchical Nanoceramics for Industrial Process Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ruud, James, A.; Brosnan, Kristen, H.; Striker, Todd; Ramaswamy, Vidya; Aceto, Steven, C.; Gao, Yan; Willson, Patrick, D.; Manoharan, Mohan; Armstrong, Eric, N., Wachsman, Eric, D.; Kao, Chi-Chang

    2011-07-15

    This project developed a robust, tunable, hierarchical nanoceramics materials platform for industrial process sensors in harsh-environments. Control of material structure at multiple length scales from nano to macro increased the sensing response of the materials to combustion gases. These materials operated at relatively high temperatures, enabling detection close to the source of combustion. It is anticipated that these materials can form the basis for a new class of sensors enabling widespread use of efficient combustion processes with closed loop feedback control in the energy-intensive industries. The first phase of the project focused on materials selection and process development, leading to hierarchical nanoceramics that were evaluated for sensing performance. The second phase focused on optimizing the materials processes and microstructures, followed by validation of performance of a prototype sensor in a laboratory combustion environment. The objectives of this project were achieved by: (1) synthesizing and optimizing hierarchical nanostructures; (2) synthesizing and optimizing sensing nanomaterials; (3) integrating sensing functionality into hierarchical nanostructures; (4) demonstrating material performance in a sensing element; and (5) validating material performance in a simulated service environment. The project developed hierarchical nanoceramic electrodes for mixed potential zirconia gas sensors with increased surface area and demonstrated tailored electrocatalytic activity operable at high temperatures enabling detection of products of combustion such as NOx close to the source of combustion. Methods were developed for synthesis of hierarchical nanostructures with high, stable surface area, integrated catalytic functionality within the structures for gas sensing, and demonstrated materials performance in harsh lab and combustion gas environments.

  3. Evaluating Hierarchical Structure in Music Annotations.

    Science.gov (United States)

    McFee, Brian; Nieto, Oriol; Farbood, Morwaread M; Bello, Juan Pablo

    2017-01-01

    Music exhibits structure at multiple scales, ranging from motifs to large-scale functional components. When inferring the structure of a piece, different listeners may attend to different temporal scales, which can result in disagreements when they describe the same piece. In the field of music informatics research (MIR), it is common to use corpora annotated with structural boundaries at different levels. By quantifying disagreements between multiple annotators, previous research has yielded several insights relevant to the study of music cognition. First, annotators tend to agree when structural boundaries are ambiguous. Second, this ambiguity seems to depend on musical features, time scale, and genre. Furthermore, it is possible to tune current annotation evaluation metrics to better align with these perceptual differences. However, previous work has not directly analyzed the effects of hierarchical structure because the existing methods for comparing structural annotations are designed for "flat" descriptions, and do not readily generalize to hierarchical annotations. In this paper, we extend and generalize previous work on the evaluation of hierarchical descriptions of musical structure. We derive an evaluation metric which can compare hierarchical annotations holistically across multiple levels. sing this metric, we investigate inter-annotator agreement on the multilevel annotations of two different music corpora, investigate the influence of acoustic properties on hierarchical annotations, and evaluate existing hierarchical segmentation algorithms against the distribution of inter-annotator agreement.

  4. Evaluating Hierarchical Structure in Music Annotations

    Directory of Open Access Journals (Sweden)

    Brian McFee

    2017-08-01

    Full Text Available Music exhibits structure at multiple scales, ranging from motifs to large-scale functional components. When inferring the structure of a piece, different listeners may attend to different temporal scales, which can result in disagreements when they describe the same piece. In the field of music informatics research (MIR, it is common to use corpora annotated with structural boundaries at different levels. By quantifying disagreements between multiple annotators, previous research has yielded several insights relevant to the study of music cognition. First, annotators tend to agree when structural boundaries are ambiguous. Second, this ambiguity seems to depend on musical features, time scale, and genre. Furthermore, it is possible to tune current annotation evaluation metrics to better align with these perceptual differences. However, previous work has not directly analyzed the effects of hierarchical structure because the existing methods for comparing structural annotations are designed for “flat” descriptions, and do not readily generalize to hierarchical annotations. In this paper, we extend and generalize previous work on the evaluation of hierarchical descriptions of musical structure. We derive an evaluation metric which can compare hierarchical annotations holistically across multiple levels. sing this metric, we investigate inter-annotator agreement on the multilevel annotations of two different music corpora, investigate the influence of acoustic properties on hierarchical annotations, and evaluate existing hierarchical segmentation algorithms against the distribution of inter-annotator agreement.

  5. Hierarchical screening for multiple mental disorders.

    Science.gov (United States)

    Batterham, Philip J; Calear, Alison L; Sunderland, Matthew; Carragher, Natacha; Christensen, Helen; Mackinnon, Andrew J

    2013-10-01

    There is a need for brief, accurate screening when assessing multiple mental disorders. Two-stage hierarchical screening, consisting of brief pre-screening followed by a battery of disorder-specific scales for those who meet diagnostic criteria, may increase the efficiency of screening without sacrificing precision. This study tested whether more efficient screening could be gained using two-stage hierarchical screening than by administering multiple separate tests. Two Australian adult samples (N=1990) with high rates of psychopathology were recruited using Facebook advertising to examine four methods of hierarchical screening for four mental disorders: major depressive disorder, generalised anxiety disorder, panic disorder and social phobia. Using K6 scores to determine whether full screening was required did not increase screening efficiency. However, pre-screening based on two decision tree approaches or item gating led to considerable reductions in the mean number of items presented per disorder screened, with estimated item reductions of up to 54%. The sensitivity of these hierarchical methods approached 100% relative to the full screening battery. Further testing of the hierarchical screening approach based on clinical criteria and in other samples is warranted. The results demonstrate that a two-phase hierarchical approach to screening multiple mental disorders leads to considerable increases efficiency gains without reducing accuracy. Screening programs should take advantage of prescreeners based on gating items or decision trees to reduce the burden on respondents. © 2013 Elsevier B.V. All rights reserved.

  6. SINGLE-STRAND SPIDER SILK TEMPLATING FOR THE FORMATION OF HIERARCHICALLY ORDERED MESOPOROUS SILICA HOLLOW FIBERS. (R828134)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  7. Self-templated Synthesis of Nickel Silicate Hydroxide/Reduced Graphene Oxide Composite Hollow Microspheres as Highly Stable Supercapacitor Electrode Material.

    Science.gov (United States)

    Zhang, Yanhua; Zhou, Wenjie; Yu, Hong; Feng, Tong; Pu, Yong; Liu, Hongdong; Xiao, Wei; Tian, Liangliang

    2017-12-01

    Nickel silicate hydroxide/reduced graphene oxide (Ni 3 Si 2 O 5 (OH) 4 /RGO) composite hollow microspheres were one-pot hydrothermally synthesized by employing graphene oxide (GO)-wrapped SiO 2 microspheres as the template and silicon source, which were prepared through sonication-assisted interfacial self-assembly of tiny GO sheets on positively charged SiO 2 substrate microspheres. The composition, morphology, structure, and phase of Ni 3 Si 2 O 5 (OH) 4 /RGO microspheres as well as their electrochemical properties were carefully studied. It was found that Ni 3 Si 2 O 5 (OH) 4 /RGO microspheres featured distinct hierarchical porous morphology with hollow architecture and a large specific surface area as high as 67.6 m 2  g -1 . When utilized as a supercapacitor electrode material, Ni 3 Si 2 O 5 (OH) 4 /RGO hollow microspheres released a maximum specific capacitance of 178.9 F g -1 at the current density of 1 A g -1 , which was much higher than that of the contrastive bare Ni 3 Si 2 O 5 (OH) 4 hollow microspheres and bare RGO material developed in this work, displaying enhanced supercapacitive behavior. Impressively, the Ni 3 Si 2 O 5 (OH) 4 /RGO microsphere electrode exhibited outstanding rate capability and long-term cycling stability and durability with 97.6% retention of the initial capacitance after continuous charging/discharging for up to 5000 cycles at the current density of 6 A g -1 , which is superior or comparable to that of most of other reported nickel-based electrode materials, hence showing promising application potential in the energy storage area.

  8. Construction of a Hierarchical Architecture of Covalent Organic Frameworks via a Postsynthetic Approach.

    Science.gov (United States)

    Zhang, Gen; Tsujimoto, Masahiko; Packwood, Daniel; Duong, Nghia Tuan; Nishiyama, Yusuke; Kadota, Kentaro; Kitagawa, Susumu; Horike, Satoshi

    2018-02-21

    Covalent organic frameworks (COFs) represent an emerging class of crystalline porous materials that are constructed by the assembly of organic building blocks linked via covalent bonds. Several strategies have been developed for the construction of new COF structures; however, a facile approach to fabricate hierarchical COF architectures with controlled domain structures remains a significant challenge, and has not yet been achieved. In this study, a dynamic covalent chemistry (DCC)-based postsynthetic approach was employed at the solid-liquid interface to construct such structures. Two-dimensional imine-bonded COFs having different aromatic groups were prepared, and a homogeneously mixed-linker structure and a heterogeneously core-shell hollow structure were fabricated by controlling the reactivity of the postsynthetic reactions. Solid-state nuclear magnetic resonance (NMR) spectroscopy and transmission electron microscopy (TEM) confirmed the structures. COFs prepared by a postsynthetic approach exhibit several functional advantages compared with their parent phases. Their Brunauer-Emmett-Teller (BET) surface areas are 2-fold greater than those of their parent phases because of the higher crystallinity. In addition, the hydrophilicity of the material and the stepwise adsorption isotherms of H 2 O vapor in the hierarchical frameworks were precisely controlled, which was feasible because of the distribution of various domains of the two COFs by controlling the postsynthetic reaction. The approach opens new routes for constructing COF architectures with functionalities that are not possible in a single phase.

  9. Hollow density profile on electron cyclotron resonance heating JFT-2M plasma

    International Nuclear Information System (INIS)

    Yamauchi, Toshihiko; Hoshino, Katsumichi; Kawashima, Hisato; Ogawa, Toshihide; Kawakami, Tomohide; Shiina, Tomio; Ishige, Youichi

    1998-01-01

    The first hollow electron density profile in the central region on the JAERI Fusion Torus-2M (JFT-2M) is measured during electron cyclotron resonance heating (ECRH) with a TV Thomson scattering system (TVTS). The peripheral region is not hollow but is accumulated due to pump-out from the central region. The hollowness increases with time but is saturated at ∼40 ms and maintains a constant hollow ratio. The hollowness is strongly related to the steep temperature gradient of the heated zone. (author)

  10. High performance yttrium-doped BSCF hollow fibre membranes

    DEFF Research Database (Denmark)

    Haworth, P.; Smart, S.; Glasscock, Julie

    2012-01-01

    measurements in air was similar for both compositions, suggesting that the higher oxygen fluxes obtained for BSCFY hollow fibres could be attributed to the higher non-stoichiometry due to yttrium addition to the BSCF crystal structure. In addition, the improvement of oxygen fluxes for small wall thickness (∼0...

  11. Measurements on the source properties of a hollow cathode

    NARCIS (Netherlands)

    Vogels, J.M.M.J.; Konings, L.U.E.; Koelman, J.M.V.A.; Schram, D.C.; Bötticher, W.; Wenk, H.; Schulz-Gulde, E.

    1983-01-01

    The ion production rate of a hollow cathode in a magnetized arc has been measured. At low magnetic fields supersonic ion drifts have been observed. The ionized fraction of the gas flow decreases with increasing flow and the ion flux saturates at high flow rates

  12. Auger electron and X-ray spectroscopy of hollow atoms

    NARCIS (Netherlands)

    Morgenstern, R; Johnson, RL; Schmidtbocking, H; Sonntag, BF

    1997-01-01

    Hollow atoms as formed during collisions of multiply charged ions on metallic, semiconducting and insulating surfaces have in recent years successfully been investigated by various spectroscopic methods: low- and high-resolution X-ray spectroscopy as well as high resolution Auger electron

  13. The magnetic properties of the hollow cylindrical ideal remanence magnet

    DEFF Research Database (Denmark)

    Bjørk, Rasmus

    2016-01-01

    We consider the magnetic properties of the hollow cylindrical ideal remanence magnet. This magnet is the cylindrical permanent magnet that generates a uniform field in the cylinder bore, using the least amount of magnetic energy to do so. The remanence distribution of this magnet is derived...

  14. Preparation of hollow fiber membranes for gas separation

    NARCIS (Netherlands)

    Li, Shu-Guang

    1994-01-01

    Today, immersion precipitation is the most often used process for the preparation of gas separation membranes from polymeric materials. In this process a polymer solution in the form of a thin liquid film or hollow fiber is immersed in a nonsolvent bath where the polymer precipitates and forms a

  15. Fire Response of Concrete Filled Hollow Steel Sections

    DEFF Research Database (Denmark)

    Nyman, Simon; Virdi, Kuldeep

    2011-01-01

    Advanced and simplified methods of analysis and design for the fire resistance of structural elements and assemblages of structures have been developed in recent years. Some simplified methods for the fire design of concrete filled tubes have appeared in Eurocode 4 part 1.2. Experience to date in...... hollow sections....

  16. theoretical investigation of stresses distributions in hollow sandcrete

    African Journals Online (AJOL)

    user

    The test thin plate distributes the load on the block and the hollow block is regarded as a two ... Some research works had been done on the relationship between cavity ... The results would help reduce the cost, labour and time necessary to.

  17. Hollow Nanospheres Array Fabrication via Nano-Conglutination Technology.

    Science.gov (United States)

    Zhang, Man; Deng, Qiling; Xia, Liangping; Shi, Lifang; Cao, Axiu; Pang, Hui; Hu, Song

    2015-09-01

    Hollow nanospheres array is a special nanostructure with great applications in photonics, electronics and biochemistry. The nanofabrication technique with high resolution is crucial to nanosciences and nano-technology. This paper presents a novel nonconventional nano-conglutination technology combining polystyrenes spheres (PSs) self-assembly, conglutination and a lift-off process to fabricate the hollow nanospheres array with nanoholes. A self-assembly monolayer of PSs was stuck off from the quartz wafer by the thiol-ene adhesive material, and then the PSs was removed via a lift-off process and the hollow nanospheres embedded into the thiol-ene substrate was obtained. Thiolene polymer is a UV-curable material via "click chemistry" reaction at ambient conditions without the oxygen inhibition, which has excellent chemical and physical properties to be attractive as the adhesive material in nano-conglutination technology. Using the technique, a hollow nanospheres array with the nanoholes at the diameter of 200 nm embedded into the rigid thiol-ene substrate was fabricated, which has great potential to serve as a reaction container, catalyst and surface enhanced Raman scattering substrate.

  18. Silicon micromachined hollow microneedles for transdermal liquid transport

    NARCIS (Netherlands)

    Gardeniers, Johannes G.E.; Lüttge, Regina; Berenschot, Johan W.; de Boer, Meint J.; Yeshurun, Shuki Y.; Hefetz, Meir; van 't Oever, Ronny; van den Berg, Albert

    2003-01-01

    This paper presents a novel process for the fabrication of out-of-plane hollow microneedles in silicon. The fabrication method consists of a sequence of deep-reactive ion etching (DRIE), anisotropic wet etching and conformal thin film deposition, and allows needle shapes with different,

  19. Silicon micromachined hollow microneedles for transdermal liquid transport

    NARCIS (Netherlands)

    Gardeniers, J.G.E.; Luttge, R.; Berenschot, J.W.; Boer, de M.J.; Yeshurun, S.Y.; Hefetz, M.; Oever, van't R.; Berg, van den A.

    2003-01-01

    This paper presents a novel process for the fabrication of out-of-plane hollow micro needles in silicon. The fabrication method consists of a sequence of deep-reactive ion etching (DRIE), anisotropic wet etching and conformal thin film deposition, and allows needle shapes with different,

  20. A microring multimode laser using hollow polymer optical fibre

    Indian Academy of Sciences (India)

    Dye-doped optical fibre; fibre laser; microcavity; whispering gallery mode. ... Cylindrical microcavities with diameters 155, 340 and 615 m were fabricated from a dye-doped hollow polymer optical fibre preform. ... International School of Photonics, Cochin University of Science and Technology, Kochi 682 022, India ...

  1. Hollow-core photonic band gap fibers for particle acceleration

    Directory of Open Access Journals (Sweden)

    Robert J. Noble

    2011-12-01

    Full Text Available Photonic band gap (PBG dielectric fibers with hollow cores are being studied both theoretically and experimentally for use as laser driven accelerator structures. The hollow core functions as both a longitudinal waveguide for the transverse-magnetic (TM accelerating fields and a channel for the charged particles. The dielectric surrounding the core is permeated by a periodic array of smaller holes to confine the mode, forming a photonic crystal fiber in which modes exist in frequency passbands, separated by band gaps. The hollow core acts as a defect which breaks the crystal symmetry, and so-called defect, or trapped modes having frequencies in the band gap will only propagate near the defect. We describe the design of 2D hollow-core PBG fibers to support TM defect modes with high longitudinal fields and high characteristic impedance. Using as-built dimensions of industrially made fibers, we perform a simulation analysis of prototype PBG fibers with dimensions appropriate for speed-of-light TM modes.

  2. Fabrication and Characterization of Nanoenergetic Hollow Spherical Hexanitrostibene (HNS Derivatives

    Directory of Open Access Journals (Sweden)

    Xiong Cao

    2018-05-01

    Full Text Available The spherization of nanoenergetic materials is the best way to improve the sensitivity and increase loading densities and detonation properties for weapons and ammunition, but the preparation of spherical nanoenergetic materials with high regularization, uniform size and monodispersity is still a challenge. In this paper, nanoenergetic hollow spherical hexanitrostibene (HNS derivatives were fabricated via a one-pot copolymerization strategy, which is based on the reaction of HNS and piperazine in acetonitrile solution. Characterization results indicated the as-prepared reaction nanoenergetic products were HNS-derived oligomers, where a free radical copolymerization reaction process was inferred. The hollow sphere structure of the HNS derivatives was characterized by scanning electron microscopy (SEM, transmission electron microscope (TEM, and synchrotron radiation X-ray imaging technology. The properties of the nanoenergetic hollow spherical derivatives, including thermal decomposition and sensitivity are discussed in detail. Sensitivity studies showed that the nanoenergetic derivatives exhibited lower impact, friction and spark sensitivity than raw HNS. Thermogravimetric-differential scanning calorimeter (TG-DSC results showed that continuous exothermic decomposition occurred in the whole temperature range, which indicated that nanoenergetic derivatives have a unique role in thermal applications. Therefore, nanoenergetic hollow spherical HNS derivatives could provide a new way to modify the properties of certain energetic compounds and fabricate spherical nanomaterials to improve the charge configuration.

  3. High selectivity ZIF-93 hollow fiber membranes for gas separation.

    Science.gov (United States)

    Cacho-Bailo, Fernando; Caro, Guillermo; Etxeberría-Benavides, Miren; Karvan, Oğuz; Téllez, Carlos; Coronas, Joaquín

    2015-06-30

    Zeolitic imidazolate framework-93 (ZIF-93) continuous membranes were synthesized on the inner side of P84 co-polyimide hollow fiber supports by microfluidics. MOFs and polymers showed high compatibility and the membrane exhibited H2-CH4 and CO2-CH4 separation selectivities of 97 (100 °C) and 17 (35 °C), respectively.

  4. Morphology conserving aminopropyl functionalization of hollow silica nanospheres in toluene

    Science.gov (United States)

    Dobó, Dorina G.; Berkesi, Dániel; Kukovecz, Ákos

    2017-07-01

    Inorganic nanostructures containing cavities of monodisperse diameter distribution find applications in e.g. catalysis, adsorption and drug delivery. One of their possible synthesis routes is the template assisted core-shell synthesis. We synthesized hollow silica spheres around polystyrene cores by the sol-gel method. The polystyrene template was removed by heat treatment leaving behind a hollow spherical shell structure. The surface of the spheres was then modified by adding aminopropyl groups. Here we present the first experimental evidence that toluene is a suitable alternative functionalization medium for the resulting thin shells, and report the comprehensive characterization of the amino-functionalized hollow silica spheres based on scanning electron microscopy, transmission electron microscopy, N2 adsorption, FT-IR spectroscopy, Raman spectroscopy and electrokinetic potential measurement. Both the presence of the amino groups and the preservation of the hollow spherical morphology were unambiguously proven. The introduction of the amine functionality adds amphoteric character to the shell as shown by the zeta potential vs. pH function. Unlike pristine silica particles, amino-functionalized nanosphere aqueous sols can be stable at both acidic and basic conditions.

  5. comparative analysis of the compressive strength of hollow

    African Journals Online (AJOL)

    user

    2016-04-02

    Apr 2, 2016 ... Previous analysis showed that cavity size and number on one hand and combinations thickness affect the compressive strength of hollow sandcrete blocks. Series arrangement of the cavities is common but parallel arrangement has been recommended. This research performed a comparative analysis of ...

  6. Biotemplate synthesis of monodispersed iron phosphate hollow microspheres

    International Nuclear Information System (INIS)

    Cao Feng; Li Dongxu

    2010-01-01

    Monodispersed iron phosphate hollow microspheres with a high degree of crystallization were prepared through a facile in situ deposition method using rape pollen grains as a biotemplate. The functional group on the surface of the pollen grains could adsorb Fe 3+ , which provided the nucleation sites for growth of iron phosphate nanoparticles. After being sintered at 600 deg. C for 10 h, the pollen grains were removed and iron phosphate hollow microspheres were obtained. A scanning electron microscope and x-ray diffraction were applied to characterize the morphology and crystalline structure of the pollen grains, iron phosphate-coated pollen grains and iron phosphate hollow microspheres. Differential scanning calorimetry and thermogravity analyses were performed to investigate the thermal behavior of the iron phosphate-coated pollen grains during the calcinations. Energy dispersive spectroscopy and Fourier transform infrared spectroscopy were utilized to investigate the interaction between the pollen grains and iron phosphate. The effect of the pollen wall on the surface morphology of these iron phosphate hollow microspheres was also proven in this work.

  7. Biotemplate synthesis of monodispersed iron phosphate hollow microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Cao Feng; Li Dongxu, E-mail: dongxuli@njut.edu.c [College of Materials Science and Engineering, Nanjing University of Technology, Jiangsu Nanjing 210009 (China)

    2010-03-15

    Monodispersed iron phosphate hollow microspheres with a high degree of crystallization were prepared through a facile in situ deposition method using rape pollen grains as a biotemplate. The functional group on the surface of the pollen grains could adsorb Fe{sup 3+}, which provided the nucleation sites for growth of iron phosphate nanoparticles. After being sintered at 600 deg. C for 10 h, the pollen grains were removed and iron phosphate hollow microspheres were obtained. A scanning electron microscope and x-ray diffraction were applied to characterize the morphology and crystalline structure of the pollen grains, iron phosphate-coated pollen grains and iron phosphate hollow microspheres. Differential scanning calorimetry and thermogravity analyses were performed to investigate the thermal behavior of the iron phosphate-coated pollen grains during the calcinations. Energy dispersive spectroscopy and Fourier transform infrared spectroscopy were utilized to investigate the interaction between the pollen grains and iron phosphate. The effect of the pollen wall on the surface morphology of these iron phosphate hollow microspheres was also proven in this work.

  8. Characterization of silane coated hollow sphere alumina-reinforced

    Indian Academy of Sciences (India)

    Silane coated hollow sphere alumina ceramic particles were moulded with ultra high molecular weight polyethylene (UHMWPE) to form a series of composites with alumina weight percent in the range from 15 to 50. The composites were prepared in a cylindrical mould using powder-processing technique. The composites ...

  9. Hollow beam formation in the extraction region of ECRIS

    International Nuclear Information System (INIS)

    Batygin, Y.; Goto, A.; Yano, Y.

    1995-01-01

    Beam optics in the extraction system of an ECR ion source (ECRIS) are examined both analytically and numerically, by taking nonlinear effect due to aberrations of einzel lens into account. It is shown that this effect can cause hollow beam formation. Simple analytical criteria to keep the good beam quality in the focusing system are given. (author)

  10. Mixed matrix microporous hollow fibers with ion-exchange functionality

    NARCIS (Netherlands)

    Kiyono, R.; Kiyono, R.; Koops, G.H.; Wessling, Matthias; Strathmann, H.

    2004-01-01

    Heterogeneous hollow fiber membranes with cation exchange functionality are prepared using a wet spinning technique. The spinning dope solutions are prepared by dispersing finely ground cation ion-exchange resin (CER) particles in an N-methyl pyrrolidone solution of polysulfone (PSF). The polymer

  11. Synthesis of Porous Inorganic Hollow Fibers without Harmful Solvents

    NARCIS (Netherlands)

    Shukla, Sushumna; de Wit, Patrick; Luiten-Olieman, Maria W.J.; Kappert, Emiel; Nijmeijer, Arian; Benes, Nieck Edwin

    2015-01-01

    A route for the fabrication of porous inorganic hollow fibers with high surface-area-to-volume ratio that avoids harmful solvents is presented. The approach is based on bio-ionic gelation of an aqueous mixture of inorganic particles and sodium alginate during wet spinning. In a subsequent thermal

  12. Tensile Strength of GFRP Reinforcing Bars with Hollow Section

    Directory of Open Access Journals (Sweden)

    Young-Jun You

    2015-01-01

    Full Text Available Fiber reinforced polymer (FRP has been proposed to replace steel as a reinforcing bar (rebar due to its high tensile strength and noncorrosive material properties. One obstacle in using FRP rebars is high price. Generally FRP is more expensive than conventional steel rebar. There are mainly two ways to reduce the cost. For example, one is making the price of each composition cost of FRP rebar (e.g., fibers, resin, etc. lower than steel rebar. Another is making an optimized design for cross section and reducing the material cost. The former approach is not easy because the steel price is very low in comparison with component materials of FRP. For the latter approach, the cost could be cut down by reducing the material cost. Therefore, an idea of making hollow section over the cross section of FRP rebar was proposed in this study by optimizing the cross section design with acceptable tensile performance in comparison with steel rebar. In this study, glass reinforced polymer (GFRP rebars with hollow section and 19 mm of outer diameter were manufactured and tested to evaluate the tensile performance in accordance with the hollowness ratio. From the test results, it was observed that the tensile strength decreased almost linearly with increase of hollowness ratio and the elastic modulus decreased nonlinearly.

  13. Permeation of supercritical carbon dioxide through polymeric hollow fiber membranes

    NARCIS (Netherlands)

    Patil, V.E.; Broeke, van den L.J.P.; Vercauteren, F.F.; Keurentjes, J.T.F.

    2006-01-01

    Permeation of carbon dioxide was measured for two types of composite polymeric hollow fiber membranes for feed pressures up to 18 MPa at a temp. of 313 K. support membrane. The membranes consist of a polyamide copolymer (IPC) layer or a poly(vinyl alc.) (PVA) layer on top of a polyethersulfone

  14. Mathematical modelling of dextran filtration through hollow fibre membranes

    DEFF Research Database (Denmark)

    Vinther, Frank; Pinelo, Manuel; Brøns, Morten

    2014-01-01

    In this paper we present a mathematical model of an ultrafiltration process. The results of the model are produced using standard numerical techniques with Comsol Multiphysics. The model describes the fluid flow and separation in hollow fibre membranes. The flow of solute and solvent within the h...

  15. Confinement less spectral behavior in hollow-core Bragg fibers

    DEFF Research Database (Denmark)

    Foroni, M.; Passaro, D.; Poli, F.

    2007-01-01

    The influence of each cross-section geometric parameter on hollow-core Bragg fiber guiding properties has been numerically investigated. Fabricated fibers have been modeled, giving insight into the spectral behavior of the confinement loss. It has been verified that, by changing the amount...

  16. Biodegradable hollow fibres for the controlled release of drugs

    NARCIS (Netherlands)

    Schakenraad, J.M.; Oosterbaan, J.A.; Nieuwenhuis, P.; Molenaar, I.; Olijslager, J.; Potman, W.; Eenink, M.J.D.; Feijen, Jan

    1988-01-01

    Biodegradable hollow fibres of poly-l-lactic acid (PLLA) filled with a suspension of the contraceptive hormone levonorgestrel in castor oil were implanted subcutaneously in rats to study the rate of drug release, rate of biodegradation and tissue reaction caused by the implant. The in vivo drug

  17. Hollow-core infrared fiber incorporating metal-wire metamaterial

    DEFF Research Database (Denmark)

    Yan, Min; Mortensen, Asger

    2009-01-01

    Infrared (IR) light is considered important for short-range wireless communication, thermal sensing, spectroscopy, material processing, medical surgery, astronomy etc. However, IR light is in general much harder to transport than optical light or microwave radiation. Existing hollow-core IR...

  18. safety of carbon fibre reinforced plastic hollow sections in compression

    African Journals Online (AJOL)

    ADMINUSER

    2014-01-06

    Jan 6, 2014 ... Steel hollow sections were also designed using the same method. This serves as a basis of ..... used for the numerical analysis and design of circular and rectangular model sections. The software was used to analyse failure ...

  19. Hollow fiber ultrafiltration membranes with microstructured inner skin

    NARCIS (Netherlands)

    Culfaz, P.Z.; Wessling, Matthias; Lammertink, Rob G.H.

    2011-01-01

    Hollow fiber membranes with microstructured inner surfaces were fabricated from a PES/PVP blend using a spinneret with a microstructured needle. The effect of spinning parameters such as polymer dope flow rate, bore liquid flowrate, air gap and take-up speed on the microstructure and shape of the

  20. Faraday effect in hollow quantum cylinder of finite thickness

    International Nuclear Information System (INIS)

    Ismailov, T.G.; Jabrailova, G.G.

    2009-01-01

    The interband Faraday rotation in hollow quantum cylinder of finite thickness is theoretically investigated. Faraday rotation in the dependence on incident light energy for different values of cylinder thickness. It is seen that the resonance peaks appear on Faraday rotation curve. The roles of selection are obtained

  1. Evolution of radiation resistant hollow fibers membranes for nuclear

    International Nuclear Information System (INIS)

    Neelam Kumari; Raut, D.R.; Bhardwaj, Y.K.; Mohapatra, P.K.

    2014-01-01

    We have evaluated hollow fiber supported liquid membrane (HFSLM) technique for the separation of actinides, fission products and other valuables from the nuclear waste solutions. In this technique, ligand responsible for separation of metal ion is held in tiny pores of membrane. Any drastic change as a consequence of irradiation, like change in pore size, change in hydrophobicity of polymeric material can be fatal for separation process as it may lead dislodging of carrier ligands from the pores. It was therefore needed to study the irradiation stability of hollow fibers. We have earlier showed that polypropylene fibers were stable up to 500 radiation dose and we therefore need to look into other options. In the present work, hollow fiber membranes made from polyether ether ketone (PEEK), polysulphone (PS). Polymers were evaluated for their radiation stability after exposing to varying absorbed dose of gamma radiation. The hollow fibers were irradiated to 100 KGy, 200 KGy, 500 KGy and 1000 KGy and its changes in hydrophobicity were measured using contact angle measurement studies

  2. Compact Rare Earth Emitter Hollow Cathode

    Science.gov (United States)

    Watkins, Ronald; Goebel, Dan; Hofer, Richard

    2010-01-01

    A compact, high-current, hollow cathode utilizing a lanthanum hexaboride (LaB6) thermionic electron emitter has been developed for use with high-power Hall thrusters and ion thrusters. LaB6 cathodes are being investigated due to their long life, high current capabilities, and less stringent xenon purity and handling requirements compared to conventional barium oxide (BaO) dispenser cathodes. The new cathode features a much smaller diameter than previously developed versions that permit it to be mounted on axis of a Hall thruster ( internally mounted ), as opposed to the conventional side-mount position external to the outer magnetic circuit ("externally mounted"). The cathode has also been reconfigured to be capable of surviving vibrational loads during launch and is designed to solve the significant heater and materials compatibility problems associated with the use of this emitter material. This has been accomplished in a compact design with the capability of high-emission current (10 to 60 A). The compact, high-current design has a keeper diameter that allows the cathode to be mounted on the centerline of a 6- kW Hall thruster, inside the iron core of the inner electromagnetic coil. Although designed for electric propulsion thrusters in spacecraft station- keeping, orbit transfer, and interplanetary applications, the LaB6 cathodes are applicable to the plasma processing industry in applications such as optical coatings and semiconductor processing where reactive gases are used. Where current electrical propulsion thrusters with BaO emitters have limited life and need extremely clean propellant feed systems at a significant cost, these LaB6 cathodes can run on the crudest-grade xenon propellant available without impact. Moreover, in a laboratory environment, LaB6 cathodes reduce testing costs because they do not require extended conditioning periods under hard vacuum. Alternative rare earth emitters, such as cerium hexaboride (CeB6) can be used in this

  3. Plasma processes inside dispenser hollow cathodes

    International Nuclear Information System (INIS)

    Mikellides, Ioannis G.; Katz, Ira; Goebel, Dan M.; Polk, James E.; Jameson, Kristina K.

    2006-01-01

    A two-dimensional fluid model of the plasma and neutral gas inside dispenser orificed hollow cathodes has been developed to quantify plasma processes that ultimately determine the life of the porous emitters inserted in these devices. The model self-consistently accounts for electron emission from the insert as well as for electron and ion flux losses from the plasma. Two cathodes, which are distinctively different in size and operating conditions, have been simulated numerically. It is found that the larger cathode, with outer tube diameter of 1.5 cm and orifice diameter of 0.3 cm, establishes an effective emission zone that spans approximately the full length of the emitter when operated at a discharge current of 25 A and a flow rate of 5.5 sccm. The net heating of the emitter is caused by ions that are produced by ionization of the neutral gas inside the tube and are then accelerated by the sheath along the emitter. The smaller cathode, with an outer diameter of 0.635 cm and an orifice diameter of 0.1 cm, does not exhibit the same operational characteristics. At a flow rate of 4.25 sccm and discharge current of 12 A, the smaller cathode requires 4.5 times the current density near the orifice and operates with more than 6 times the neutral particle density compared to the large cathode. As a result, the plasma particle density is almost one order of magnitude higher compared to the large cathode. The plasma density in this small cathode is high enough such that the Debye length is sufficiently small to allow 'sheath funneling' into the pores of the emitter. By accessing areas deeper into the insert material, it is postulated that the overall emission of electrons is significantly enhanced. The maximum emission current density is found to be about 1 A/mm 2 in the small cathode, which is about one order of magnitude higher than attained in the large cathode. The effective emission zone in the small cathode extends to about 15% of the emitter length only, and the

  4. Recent progress in hollow sphere-based electrodes for high-performance supercapacitors

    Science.gov (United States)

    Zhao, Yan; Chen, Min; Wu, Limin

    2016-08-01

    Hollow spheres have drawn much attention in the area of energy storage and conversion, especially in high-performance supercapacitors owing to their well-defined morphologies, uniform size, low density and large surface area. And quite some significant breakthroughs have been made in advanced supercapacitor electrode materials with hollow sphere structures. In this review, we summarize and discuss the synthesis and application of hollow spheres with controllable structure and morphology as electrode materials for supercapacitors. First, we briefly introduce the fabrication strategies of hollow spheres for electrode materials. Then, we discuss in detail the recent advances in various hollow sphere-based electrode materials for supercapacitors, including single-shelled, yolk-shelled, urchin-like, double-shelled, multi-shelled, and mesoporous hollow structure-based symmetric and asymmetric supercapacitor devices. We conclude this review with some perspectives on the future research and development of the hollow sphere-based electrode materials.

  5. A novel approach to fabrication of superparamagnetite hollow silica/magnetic composite spheres

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Junjie, E-mail: yuanjunjie@tongji.edu.c [School of Materials Science and Engineering, Tongji University, Shanghai 200092 (China); Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433 (China); Zhang Xiong; Qian He [School of Materials Science and Engineering, Tongji University, Shanghai 200092 (China)

    2010-08-15

    We described a method for synthesizing hollow silica/magnetic composite spheres using sulfonic acid functionalized hollow silica spheres (SAFHSS) as templates. The Fe{sub 3}O{sub 4} nanoparticles were deposited on or imbedded in the hollow silica shell by a precipitation reaction. The morphologies, composition and properties of the hollow composite spheres were characterized by transmission electron microscopy, Fourier transform infrared analysis, X-ray diffraction measurement and vibrating-sample magnetometry measurement. The results indicated crystal sizes and amount of the Fe{sub 3}O{sub 4} nanoparticles on the SAFHSS. The magnetic properties of the hollow composite spheres were controlled by adjusting the proportion between Fe{sup 2+} and Fe{sup 3+} and iron ion total concentration. When appropriate loading species were added into the system, superparamagnetite hollow composite spheres were obtained. The method also could be applicable to prepare other superparamagnetite hollow silica/ferrite composite spheres.

  6. Hollow fiber apparatus and use thereof for fluids separations and heat and mass transfers

    Energy Technology Data Exchange (ETDEWEB)

    Bikson, Benjamin; Etter, Stephen; Ching, Nathaniel

    2017-04-18

    A hollow fiber fluid separation device includes a hollow fiber cartridge, comprising a plurality of hollow fiber membranes arranged around a central tubular core, a first tubesheet and a second tubesheet encapsulating respective distal ends of the hollow fiber bundle. The tubesheets have boreholes in fluid communication with bores of the hollow fiber membrane. In at least one of the tubesheets, the boreholes are formed radially and are in communication with the central tubular core. The hollow fiber fluid separation device can be utilized in liquid separation applications such as ultrafiltration and in gas separation processes such as air separation. The design disclosed herein is light weight and compact and is particularly advantageous at high operating temperatures when the pressure of the feed fluid introduced into the bores of hollow fibers is higher than the pressure on the shell side of the device.

  7. Recent progress in hollow sphere-based electrodes for high-performance supercapacitors.

    Science.gov (United States)

    Zhao, Yan; Chen, Min; Wu, Limin

    2016-08-26

    Hollow spheres have drawn much attention in the area of energy storage and conversion, especially in high-performance supercapacitors owing to their well-defined morphologies, uniform size, low density and large surface area. And quite some significant breakthroughs have been made in advanced supercapacitor electrode materials with hollow sphere structures. In this review, we summarize and discuss the synthesis and application of hollow spheres with controllable structure and morphology as electrode materials for supercapacitors. First, we briefly introduce the fabrication strategies of hollow spheres for electrode materials. Then, we discuss in detail the recent advances in various hollow sphere-based electrode materials for supercapacitors, including single-shelled, yolk-shelled, urchin-like, double-shelled, multi-shelled, and mesoporous hollow structure-based symmetric and asymmetric supercapacitor devices. We conclude this review with some perspectives on the future research and development of the hollow sphere-based electrode materials.

  8. Analysis hierarchical model for discrete event systems

    Science.gov (United States)

    Ciortea, E. M.

    2015-11-01

    The This paper presents the hierarchical model based on discrete event network for robotic systems. Based on the hierarchical approach, Petri network is analysed as a network of the highest conceptual level and the lowest level of local control. For modelling and control of complex robotic systems using extended Petri nets. Such a system is structured, controlled and analysed in this paper by using Visual Object Net ++ package that is relatively simple and easy to use, and the results are shown as representations easy to interpret. The hierarchical structure of the robotic system is implemented on computers analysed using specialized programs. Implementation of hierarchical model discrete event systems, as a real-time operating system on a computer network connected via a serial bus is possible, where each computer is dedicated to local and Petri model of a subsystem global robotic system. Since Petri models are simplified to apply general computers, analysis, modelling, complex manufacturing systems control can be achieved using Petri nets. Discrete event systems is a pragmatic tool for modelling industrial systems. For system modelling using Petri nets because we have our system where discrete event. To highlight the auxiliary time Petri model using transport stream divided into hierarchical levels and sections are analysed successively. Proposed robotic system simulation using timed Petri, offers the opportunity to view the robotic time. Application of goods or robotic and transmission times obtained by measuring spot is obtained graphics showing the average time for transport activity, using the parameters sets of finished products. individually.

  9. Self-assembled biomimetic superhydrophobic hierarchical arrays.

    Science.gov (United States)

    Yang, Hongta; Dou, Xuan; Fang, Yin; Jiang, Peng

    2013-09-01

    Here, we report a simple and inexpensive bottom-up technology for fabricating superhydrophobic coatings with hierarchical micro-/nano-structures, which are inspired by the binary periodic structure found on the superhydrophobic compound eyes of some insects (e.g., mosquitoes and moths). Binary colloidal arrays consisting of exemplary large (4 and 30 μm) and small (300 nm) silica spheres are first assembled by a scalable Langmuir-Blodgett (LB) technology in a layer-by-layer manner. After surface modification with fluorosilanes, the self-assembled hierarchical particle arrays become superhydrophobic with an apparent water contact angle (CA) larger than 150°. The throughput of the resulting superhydrophobic coatings with hierarchical structures can be significantly improved by templating the binary periodic structures of the LB-assembled colloidal arrays into UV-curable fluoropolymers by a soft lithography approach. Superhydrophobic perfluoroether acrylate hierarchical arrays with large CAs and small CA hysteresis can be faithfully replicated onto various substrates. Both experiments and theoretical calculations based on the Cassie's dewetting model demonstrate the importance of the hierarchical structure in achieving the final superhydrophobic surface states. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Rapid and selective detection of acetone using hierarchical ZnO gas sensor for hazardous odor markers application.

    Science.gov (United States)

    Jia, Qianqian; Ji, Huiming; Zhang, Ying; Chen, Yalu; Sun, Xiaohong; Jin, Zhengguo

    2014-07-15

    Hierarchical nanostructured ZnO dandelion-like spheres were synthesized via solvothermal reaction at 200°C for 4h. The products were pure hexagonal ZnO with large exposure of (002) polar facet. Side-heating gas sensor based on hierarchical ZnO spheres was prepared to evaluate the acetone gas sensing properties. The detection limit to acetone for the ZnO sensor is 0.25ppm. The response (Ra/Rg) toward 100ppm acetone was 33 operated at 230°C and the response time was as short as 3s. The sensor exhibited remarkable acetone selectivity with negligible response toward other hazardous gases and water vapor. The high proportion of electron depletion region and oxygen vacancies contributed to high gas response sensitivity. The hollow and porous structure of dandelion-like ZnO spheres facilitated the diffusion of gas molecules, leading to a rapid response speed. The largely exposed (002) polar facets could adsorb acetone gas molecules easily and efficiently, resulting in a rapid response speed and good selectivity of hierarchical ZnO spheres gas sensor at low operating temperature. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Static and dynamic friction of hierarchical surfaces.

    Science.gov (United States)

    Costagliola, Gianluca; Bosia, Federico; Pugno, Nicola M

    2016-12-01

    Hierarchical structures are very common in nature, but only recently have they been systematically studied in materials science, in order to understand the specific effects they can have on the mechanical properties of various systems. Structural hierarchy provides a way to tune and optimize macroscopic mechanical properties starting from simple base constituents and new materials are nowadays designed exploiting this possibility. This can be true also in the field of tribology. In this paper we study the effect of hierarchical patterned surfaces on the static and dynamic friction coefficients of an elastic material. Our results are obtained by means of numerical simulations using a one-dimensional spring-block model, which has previously been used to investigate various aspects of friction. Despite the simplicity of the model, we highlight some possible mechanisms that explain how hierarchical structures can significantly modify the friction coefficients of a material, providing a means to achieve tunability.

  12. Learning with hierarchical-deep models.

    Science.gov (United States)

    Salakhutdinov, Ruslan; Tenenbaum, Joshua B; Torralba, Antonio

    2013-08-01

    We introduce HD (or “Hierarchical-Deep”) models, a new compositional learning architecture that integrates deep learning models with structured hierarchical Bayesian (HB) models. Specifically, we show how we can learn a hierarchical Dirichlet process (HDP) prior over the activities of the top-level features in a deep Boltzmann machine (DBM). This compound HDP-DBM model learns to learn novel concepts from very few training example by learning low-level generic features, high-level features that capture correlations among low-level features, and a category hierarchy for sharing priors over the high-level features that are typical of different kinds of concepts. We present efficient learning and inference algorithms for the HDP-DBM model and show that it is able to learn new concepts from very few examples on CIFAR-100 object recognition, handwritten character recognition, and human motion capture datasets.

  13. Hierarchical silica particles by dynamic multicomponent assembly

    DEFF Research Database (Denmark)

    Wu, Z. W.; Hu, Q. Y.; Pang, J. B.

    2005-01-01

    Abstract: Aerosol-assisted assembly of mesoporous silica particles with hierarchically controllable pore structure has been prepared using cetyltrimethylammonium bromide (CTAB) and poly(propylene oxide) (PPO, H[OCH(CH3)CH2],OH) as co-templates. Addition of the hydrophobic PPO significantly...... influences the delicate hydrophilic-hydrophobic balance in the well-studied CTAB-silicate co-assembling system, resulting in various mesostructures (such as hexagonal, lamellar, and hierarchical structure). The co-assembly of CTAB, silicate clusters, and a low-molecular-weight PPO (average M-n 425) results...... in a uniform lamellar structure, while the use of a high-molecular-weight PPO (average M-n 2000), which is more hydrophobic, leads to the formation of hierarchical pore structure that contains meso-meso or meso-macro pore structure. The role of PPO additives on the mesostructure evolution in the CTAB...

  14. Deep hierarchical attention network for video description

    Science.gov (United States)

    Li, Shuohao; Tang, Min; Zhang, Jun

    2018-03-01

    Pairing video to natural language description remains a challenge in computer vision and machine translation. Inspired by image description, which uses an encoder-decoder model for reducing visual scene into a single sentence, we propose a deep hierarchical attention network for video description. The proposed model uses convolutional neural network (CNN) and bidirectional LSTM network as encoders while a hierarchical attention network is used as the decoder. Compared to encoder-decoder models used in video description, the bidirectional LSTM network can capture the temporal structure among video frames. Moreover, the hierarchical attention network has an advantage over single-layer attention network on global context modeling. To make a fair comparison with other methods, we evaluate the proposed architecture with different types of CNN structures and decoders. Experimental results on the standard datasets show that our model has a more superior performance than the state-of-the-art techniques.

  15. On Utmost Multiplicity of Hierarchical Stellar Systems

    Directory of Open Access Journals (Sweden)

    Gebrehiwot Y. M.

    2016-12-01

    Full Text Available According to theoretical considerations, multiplicity of hierarchical stellar systems can reach, depending on masses and orbital parameters, several hundred, while observational data confirm the existence of at most septuple (seven-component systems. In this study, we cross-match the stellar systems of very high multiplicity (six and more components in modern catalogues of visual double and multiple stars to find among them the candidates to hierarchical systems. After cross-matching the catalogues of closer binaries (eclipsing, spectroscopic, etc., some of their components were found to be binary/multiple themselves, what increases the system's degree of multiplicity. Optical pairs, known from literature or filtered by the authors, were flagged and excluded from the statistics. We compiled a list of hierarchical systems with potentially very high multiplicity that contains ten objects. Their multiplicity does not exceed 12, and we discuss a number of ways to explain the lack of extremely high multiplicity systems.

  16. Hierarchical Micro-Nano Coatings by Painting

    Science.gov (United States)

    Kirveslahti, Anna; Korhonen, Tuulia; Suvanto, Mika; Pakkanen, Tapani A.

    2016-03-01

    In this paper, the wettability properties of coatings with hierarchical surface structures and low surface energy were studied. Hierarchically structured coatings were produced by using hydrophobic fumed silica nanoparticles and polytetrafluoroethylene (PTFE) microparticles as additives in polyester (PES) and polyvinyldifluoride (PVDF). These particles created hierarchical micro-nano structures on the paint surfaces and lowered or supported the already low surface energy of the paint. Two standard application techniques for paint application were employed and the presented coatings are suitable for mass production and use in large surface areas. By regulating the particle concentrations, it was possible to modify wettability properties gradually. Highly hydrophobic surfaces were achieved with the highest contact angle of 165∘. Dynamic contact angle measurements were carried out for a set of selected samples and low hysteresis was obtained. Produced coatings possessed long lasting durability in the air and in underwater conditions.

  17. Hierarchical capillary adhesion of microcantilevers or hairs

    International Nuclear Information System (INIS)

    Liu Jianlin; Feng Xiqiao; Xia Re; Zhao Hongping

    2007-01-01

    As a result of capillary forces, animal hairs, carbon nanotubes or nanowires of a periodically or randomly distributed array often assemble into hierarchical structures. In this paper, the energy method is adopted to analyse the capillary adhesion of microsized hairs, which are modelled as clamped microcantilevers wetted by liquids. The critical conditions for capillary adhesion of two hairs, three hairs or two bundles of hairs are derived in terms of Young's contact angle, elastic modulus and geometric sizes of the beams. Then, the hierarchical capillary adhesion of hairs is addressed. It is found that for multiple hairs or microcantilevers, the system tends to take a hierarchical structure as a result of the minimization of the total potential energy of the system. The level number of structural hierarchy increases with the increase in the number of hairs if they are sufficiently long. Additionally, we performed experiments to verify our theoretical solutions for the adhesion of microbeams

  18. Hierarchical Traces for Reduced NSM Memory Requirements

    Science.gov (United States)

    Dahl, Torbjørn S.

    This paper presents work on using hierarchical long term memory to reduce the memory requirements of nearest sequence memory (NSM) learning, a previously published, instance-based reinforcement learning algorithm. A hierarchical memory representation reduces the memory requirements by allowing traces to share common sub-sequences. We present moderated mechanisms for estimating discounted future rewards and for dealing with hidden state using hierarchical memory. We also present an experimental analysis of how the sub-sequence length affects the memory compression achieved and show that the reduced memory requirements do not effect the speed of learning. Finally, we analyse and discuss the persistence of the sub-sequences independent of specific trace instances.

  19. Effects of inherent/enhanced solid acidity and morphology of diatomite templates on the synthesis and porosity of hierarchically porous carbon.

    Science.gov (United States)

    Liu, Dong; Yuan, Peng; Tan, Daoyong; Liu, Hongmei; Fan, Mingde; Yuan, Aihua; Zhu, Jianxi; He, Hongping

    2010-12-21

    The inherent or enhanced solid acidity of raw or activated diatomite is found to have significant effects on the synthesis of hierarchically porous diatomite-templated carbon with high surface area and special porous structure. The solid acidity makes raw/activated diatomite a catalyst for the generation of porous carbon, and the porous parameters of the carbon products are strongly dependent on the solid acidity of diatomite templates. The morphology of diatomite also dramatically affects the textural structure of porous carbon. Two types of macroporous structures in the carbon product, the partially solid pillars and the ordered hollow tubes, derive from the replication of the central and the edge pores of diatom shell, respectively. The hierarchically porous carbon shows good capability for the adsorption of solvent naphtha and H(2), enabling potential applications in adsorption and gas storage.

  20. Hierarchical control of electron-transfer

    DEFF Research Database (Denmark)

    Westerhoff, Hans V.; Jensen, Peter Ruhdal; Egger, Louis

    1997-01-01

    In this chapter the role of electron transfer in determining the behaviour of the ATP synthesising enzyme in E. coli is analysed. It is concluded that the latter enzyme lacks control because of special properties of the electron transfer components. These properties range from absence of a strong...... back pressure by the protonmotive force on the rate of electron transfer to hierarchical regulation of the expression of the gens that encode the electron transfer proteins as a response to changes in the bioenergetic properties of the cell.The discussion uses Hierarchical Control Analysis...

  1. Analyzing security protocols in hierarchical networks

    DEFF Research Database (Denmark)

    Zhang, Ye; Nielson, Hanne Riis

    2006-01-01

    Validating security protocols is a well-known hard problem even in a simple setting of a single global network. But a real network often consists of, besides the public-accessed part, several sub-networks and thereby forms a hierarchical structure. In this paper we first present a process calculus...... capturing the characteristics of hierarchical networks and describe the behavior of protocols on such networks. We then develop a static analysis to automate the validation. Finally we demonstrate how the technique can benefit the protocol development and the design of network systems by presenting a series...

  2. Hierarchical MAS based control strategy for microgrid

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Z.; Li, T.; Huang, M.; Shi, J.; Yang, J.; Yu, J. [School of Information Science and Engineering, Yunnan University, Kunming 650091 (China); Xiao, Z. [School of Electrical and Electronic Engineering, Nanyang Technological University, Western Catchment Area, 639798 (Singapore); Wu, W. [Communication Branch of Yunnan Power Grid Corporation, Kunming, Yunnan 650217 (China)

    2010-09-15

    Microgrids have become a hot topic driven by the dual pressures of environmental protection concerns and the energy crisis. In this paper, a challenge for the distributed control of a modern electric grid incorporating clusters of residential microgrids is elaborated and a hierarchical multi-agent system (MAS) is proposed as a solution. The issues of how to realize the hierarchical MAS and how to improve coordination and control strategies are discussed. Based on MATLAB and ZEUS platforms, bilateral switching between grid-connected mode and island mode is performed under control of the proposed MAS to enhance and support its effectiveness. (authors)

  3. Multiparty hierarchical quantum-information splitting

    International Nuclear Information System (INIS)

    Wang Xinwen; Zhang Dengyu; Tang Shiqing; Xie Lijun

    2011-01-01

    We propose a scheme for multiparty hierarchical quantum-information splitting (QIS) with a multipartite entangled state, where a boss distributes a secret quantum state to two grades of agents asymmetrically. The agents who belong to different grades have different authorities for recovering the boss's secret. Except for the boss's Bell-state measurement, no nonlocal operation is involved. The presented scheme is also shown to be secure against eavesdropping. Such a hierarchical QIS is expected to find useful applications in the field of modern multipartite quantum cryptography.

  4. Hierarchical Analysis of the Omega Ontology

    Energy Technology Data Exchange (ETDEWEB)

    Joslyn, Cliff A.; Paulson, Patrick R.

    2009-12-01

    Initial delivery for mathematical analysis of the Omega Ontology. We provide an analysis of the hierarchical structure of a version of the Omega Ontology currently in use within the US Government. After providing an initial statistical analysis of the distribution of all link types in the ontology, we then provide a detailed order theoretical analysis of each of the four main hierarchical links present. This order theoretical analysis includes the distribution of components and their properties, their parent/child and multiple inheritance structure, and the distribution of their vertical ranks.

  5. The crazy hollow formation (Eocene) of central Utah

    Science.gov (United States)

    Weiss, M.P.; Warner, K.N.

    2001-01-01

    The Late Eocene Crazy Hollow Formation is a fluviatile and lacustrine unit that was deposited locally in the southwest arm of Lake Uinta during and after the last stages of the lake the deposited the Green River Formation. Most exposures of the Crazy Hollow are located in Sanpete and Sevier Counties. The unit is characterized by a large variety of rock types, rapid facies changes within fairly short distances, and different lithofacies in the several areas where outcrops of the remnants of the formation are concentrated. Mudstone is dominant, volumetrically, but siltstone, shale, sandstone, conglomerate and several varieties of limestone are also present. The fine-grained rocks are mostly highly colored, especially in shades of yellow, orange and red. Sand grains, pebbles and small cobbles of well-rounded black chert are widespread, and "salt-and-pepper sandstone" is the conspicuous characteristic of the Crazy Hollow. The salt-and-pepper sandstone consists of grains of black chert, white chert, quartz and minor feldspar. The limestone beds and lenses are paludal and lacustrine in origin; some are fossiliferous, and contain the same fauna found in the Green River Formation. With trivial exceptions, the Crazy Hollow Formation lies on the upper, limestone member of the Green River Formation, and the beds of the two units are always accordant in attitude. The nature of the contact differs locally: at some sites there is gradation from the Green River to the Crazy Hollow; at others, rocks typical of the two units intertongue; elsewhere there is a disconformity between the two. A variety of bedrock units overlie the Crazy Hollow at different sites. In the southeasternmost districts it is overlain by the late Eocene formation of Aurora; in western Sevier County it is overlain by the Miocene-Pliocene Sevier River Formation; in northernmost Sanpete County it is overlain by the Oligocene volcanics of the Moroni Formation. At many sites bordering Sanpete and Sevier Valleys

  6. The high surface energy of NiO {110} facets incorporated into TiO{sub 2} hollow microspheres by etching Ti plate for enhanced photocatalytic and photoelectrochemical activity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian; Cui, Hongzhi, E-mail: cuihongzhi1965@163.com; Song, Xiaojie; Wei, Na; Tian, Jian, E-mail: jiantian@sdust.edu.cn

    2017-02-28

    Highlights: • NiO/TiO{sub 2} hollow microspheres were fabricated by etching Ti plate. • The incorporated NiO nanoparticles exposed high surface energy {110} facets. • The p–n junction catalysts improved photoelectrochemical and photocatalytic activity. • Using this synthesis strategy, other mixed semiconducting metal oxide microspheres. - Abstract: We present a rational design for the controllable synthesis of NiO/TiO{sub 2} hollow microspheres (NTHMs) with Ti plate via a one-pot template-free synthesis strategy. Specifically, to enhance the formation of hollow microspheres, part of the titanium source is provided by the Ti plate. The hollow spherical NiO/TiO{sub 2} particles possess unique microstructural characteristics, namely, a higher specific surface area (∼65.82 m{sup 2} g{sup −1}), a larger mesoporous structure (∼7.79 nm), and hierarchical nanoarchitectures connected with mesopores within the shell (monodispersed size of ∼1 μm and shell thickness of ∼80 nm). In addition, as a cocatalyst for improved catalytic activity, the incorporated NiO nanoparticles with exposed high surface energy {110} facets displayed an outstanding performance. It has been proven that this facile nanostructure possesses remarkably high photoelectrochemical and photocatalytic activities. The main mechanism for enhancement of photocatalytic activity is attributed to the construction of p-n junctions with an inner electric field between TiO{sub 2} and NiO, which can dramatically enhance the separation efficiency of the photogenerated electron-hole pairs. This strategy could be applied to fabricate mixed metal oxide hollow microspheres toward the photoelectrochemical catalysis.

  7. Runtime Concepts of Hierarchical Software Components

    Czech Academy of Sciences Publication Activity Database

    Bureš, Tomáš; Hnětynka, P.; Plášil, František

    2007-01-01

    Roč. 8, special (2007), s. 454-463 ISSN 1525-9293 R&D Projects: GA AV ČR 1ET400300504 Institutional research plan: CEZ:AV0Z10300504 Keywords : component-based development * hierarchical components * connectors * controlers * runtime environment Subject RIV: JC - Computer Hardware ; Software

  8. Hierarchical Broadcasting in the Future Mobile Internet

    NARCIS (Netherlands)

    Hesselman, C.E.W.; Eertink, E.H.; Fernandez, Milagros; Crnkovic, Ivica; Fohler, Gerhard; Griwodz, Carsten; Plagemann, Thomas; Gruenbacher, Paul

    2002-01-01

    We describe an architecture for the hierarchical distribution of multimedia broadcasts in the future mobile Internet. The architecture supports network as well as application-layer mobility solutions, and uses stream control functions that are influenced by available network resources, user-defined

  9. Hierarchical regression analysis in structural Equation Modeling

    NARCIS (Netherlands)

    de Jong, P.F.

    1999-01-01

    In a hierarchical or fixed-order regression analysis, the independent variables are entered into the regression equation in a prespecified order. Such an analysis is often performed when the extra amount of variance accounted for in a dependent variable by a specific independent variable is the main

  10. Modular networks with hierarchical organization: The dynamical ...

    Indian Academy of Sciences (India)

    Most of the complex systems seen in real life also have associated dynamics [10], and the ... another example, this time a hierarchical structure, viz., the Cayley tree with b ..... natural constraints operating on networks in real life, such as the ...

  11. A hierarchical model for ordinal matrix factorization

    DEFF Research Database (Denmark)

    Paquet, Ulrich; Thomson, Blaise; Winther, Ole

    2012-01-01

    This paper proposes a hierarchical probabilistic model for ordinal matrix factorization. Unlike previous approaches, we model the ordinal nature of the data and take a principled approach to incorporating priors for the hidden variables. Two algorithms are presented for inference, one based...

  12. Hierarchical Control for Multiple DC Microgrids Clusters

    DEFF Research Database (Denmark)

    Shafiee, Qobad; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2014-01-01

    This paper presents a distributed hierarchical control framework to ensure reliable operation of dc Microgrid (MG) clusters. In this hierarchy, primary control is used to regulate the common bus voltage inside each MG locally. An adaptive droop method is proposed for this level which determines...

  13. Ultrafast Hierarchical OTDM/WDM Network

    Directory of Open Access Journals (Sweden)

    Hideyuki Sotobayashi

    2003-12-01

    Full Text Available Ultrafast hierarchical OTDM/WDM network is proposed for the future core-network. We review its enabling technologies: C- and L-wavelength-band generation, OTDM-WDM mutual multiplexing format conversions, and ultrafast OTDM wavelengthband conversions.

  14. Hierarchical machining materials and their performance

    DEFF Research Database (Denmark)

    Sidorenko, Daria; Loginov, Pavel; Levashov, Evgeny

    2016-01-01

    as nanoparticles in the binder, or polycrystalline, aggregate-like reinforcements, also at several scale levels). Such materials can ensure better productivity, efficiency, and lower costs of drilling, cutting, grinding, and other technological processes. This article reviews the main groups of hierarchical...

  15. A hierarchical classification scheme of psoriasis images

    DEFF Research Database (Denmark)

    Maletti, Gabriela Mariel; Ersbøll, Bjarne Kjær

    2003-01-01

    A two-stage hierarchical classification scheme of psoriasis lesion images is proposed. These images are basically composed of three classes: normal skin, lesion and background. The scheme combines conventional tools to separate the skin from the background in the first stage, and the lesion from...

  16. Hierarchical pre-segmentation without prior knowledge

    NARCIS (Netherlands)

    Kuijper, A.; Florack, L.M.J.

    2001-01-01

    A new method to pre-segment images by means of a hierarchical description is proposed. This description is obtained from an investigation of the deep structure of a scale space image – the input image and the Gaussian filtered ones simultaneously. We concentrate on scale space critical points –

  17. Hierarchical spatial organization of geographical networks

    International Nuclear Information System (INIS)

    Travencolo, Bruno A N; Costa, Luciano da F

    2008-01-01

    In this work, we propose a hierarchical extension of the polygonality index as the means to characterize geographical planar networks. By considering successive neighborhoods around each node, it is possible to obtain more complete information about the spatial order of the network at progressive spatial scales. The potential of the methodology is illustrated with respect to synthetic and real geographical networks

  18. Hierarchical Context Modeling for Video Event Recognition.

    Science.gov (United States)

    Wang, Xiaoyang; Ji, Qiang

    2016-10-11

    Current video event recognition research remains largely target-centered. For real-world surveillance videos, targetcentered event recognition faces great challenges due to large intra-class target variation, limited image resolution, and poor detection and tracking results. To mitigate these challenges, we introduced a context-augmented video event recognition approach. Specifically, we explicitly capture different types of contexts from three levels including image level, semantic level, and prior level. At the image level, we introduce two types of contextual features including the appearance context features and interaction context features to capture the appearance of context objects and their interactions with the target objects. At the semantic level, we propose a deep model based on deep Boltzmann machine to learn event object representations and their interactions. At the prior level, we utilize two types of prior-level contexts including scene priming and dynamic cueing. Finally, we introduce a hierarchical context model that systematically integrates the contextual information at different levels. Through the hierarchical context model, contexts at different levels jointly contribute to the event recognition. We evaluate the hierarchical context model for event recognition on benchmark surveillance video datasets. Results show that incorporating contexts in each level can improve event recognition performance, and jointly integrating three levels of contexts through our hierarchical model achieves the best performance.

  19. Hierarchical production planning for consumer goods

    NARCIS (Netherlands)

    Kok, de A.G.

    1990-01-01

    Abstract In this paper the mathematical logic behind a hierarchical planning procedure is discussed. The planning procedure is used to derive production volumes of consumer products. The essence of the planning procedure is that first a commitment is made concerning the production volume for a

  20. Hierarchical Bayesian Models of Subtask Learning

    Science.gov (United States)

    Anglim, Jeromy; Wynton, Sarah K. A.

    2015-01-01

    The current study used Bayesian hierarchical methods to challenge and extend previous work on subtask learning consistency. A general model of individual-level subtask learning was proposed focusing on power and exponential functions with constraints to test for inconsistency. To study subtask learning, we developed a novel computer-based booking…

  1. Micropore and nanopore fabrication in hollow antiresonant reflecting optical waveguides.

    Science.gov (United States)

    Holmes, Matthew R; Shang, Tao; Hawkins, Aaron R; Rudenko, Mikhail; Measor, Philip; Schmidt, Holger

    2010-01-01

    We demonstrate the fabrication of micropore and nanopore features in hollow antiresonant reflecting optical waveguides to create an electrical and optical analysis platform that can size select and detect a single nanoparticle. Micropores (4 μm diameter) are reactive-ion etched through the top SiO(2) and SiN layers of the waveguides, leaving a thin SiN membrane above the hollow core. Nanopores are formed in the SiN membranes using a focused ion-beam etch process that provides control over the pore size. Openings as small as 20 nm in diameter are created. Optical loss measurements indicate that micropores did not significantly alter the loss along the waveguide.

  2. MD210 Note: Creation of Hollow Bunches in the PSB

    CERN Document Server

    Oeftiger, Adrian; Findlay, Alan James; Hancock, Steven; Rumolo, Giovanni; CERN. Geneva. ATS Department

    2016-01-01

    MD210 aims for the creation of longitudinally hollow bunches in the CERN PS Booster. The first three sessions have been carried out using the radial loop feedback system in order to drive the beam on a dipolar parametric resonance (instead of the phase loop). It has been found that the damping by the phase loop inhibits the excitation of the resonance to a major extent. The hollow distributions generated under these circumstances fail to reach a satisfying bunching factor. Nonetheless, proving the principally successful application of this technique to the PS Booster promises good results once the phase loop system supports trim functions. The approach, actions and detailed results of the first three MD sessions are presented in this paper.

  3. Sputter deposition of BSCCO films from a hollow cathode

    International Nuclear Information System (INIS)

    Lanagan, M.T.; Kampwirth, R.T.; Doyle, K.; Kowalski, S.; Miller, D.; Gray, K.E.

    1991-01-01

    High-T c superconducting thin films were deposited onto MgO single crystal substrates from a hollow cathode onto ceramic targets with the nominal composition of Bi 2 Sr 2 CaCu 2 O x . Films similar in composition to those used for the targets were deposited on MgO substrates by rf sputtering. The effects of sputtering time, rf power, and post-annealing on film microstructure and properties were studied in detail. Substrate temperature was found to have a significant influence on the film characteristics. Initial results show that deposition rates from a hollow cathode are an order of magnitude higher than those of a planar magnetron source at equivalent power levels. Large deposition rates allow for the coating of long lengths of wire

  4. Hollow viscus injury in children: Starship Hospital experience

    Directory of Open Access Journals (Sweden)

    Upadhyay Vipul

    2007-06-01

    Full Text Available Abstract Starship Children's Hospital in Auckland, New Zealand, serves a population of 1.2 million people and is a tertiary institution for pediatric trauma. This study is designed to review all cases of abdominal injury (blunt and penetrating that resulted in injury of a hollow abdominal viscus including the stomach, duodenum, small intestine, large intestine and urinary bladder. The mechanism of injury; diagnosis and outcome were studied. This was done by retrospective chart review of patients admitted from January 1995 to December 2001. Thirty two injuries were found in 29 children. The age ranged from 7 months to 15 years with boys represented more commonly. Small bowel was the most frequently injured hollow viscus. Computerized Tomography (CT scan is an extremely useful tool for the diagnosis of HVI.

  5. Block copolymer/homopolymer dual-layer hollow fiber membranes

    KAUST Repository

    Hilke, Roland

    2014-12-01

    We manufactured the first time block copolymer dual-layer hollow fiber membranes and dual layer flat sheet membranes manufactured by double solution casting and phase inversion in water. The support porous layer was based on polystyrene and the selective layer with isopores was formed by micelle assembly of polystyrene-. b-poly-4-vinyl pyridine. The dual layers had an excellent interfacial adhesion and pore interconnectivity. The dual membranes showed pH response behavior like single layer block copolymer membranes with a low flux for pH values less than 3, a fast increase between pH4 and pH6 and a constant high flux level for pH values above 7. The dry/wet spinning process was optimized to produce dual layer hollow fiber membranes with polystyrene internal support layer and a shell block copolymer selective layer.

  6. Holographic entanglement entropy for hollow cones and banana shaped regions

    Energy Technology Data Exchange (ETDEWEB)

    Dorn, Harald [Institut für Physik und IRIS Adlershof, Humboldt-Universität zu Berlin,Zum Großen Windkanal 6, D-12489 Berlin (Germany)

    2016-06-09

    We consider banana shaped regions as examples of compact regions, whose boundary has two conical singularities. Their regularised holographic entropy is calculated with all divergent as well as finite terms. The coefficient of the squared logarithmic divergence, also in such a case with internally curved boundary, agrees with that calculated in the literature for infinite circular cones with their internally flat boundary. For the otherwise conformally invariant coefficient of the ordinary logarithmic divergence an anomaly under exceptional conformal transformations is observed. The construction of minimal submanifolds, needed for the entanglement entropy of cones, requires fine-tuning of Cauchy data. Perturbations of such fine-tuning leads to solutions relevant for hollow cones. The divergent parts for the entanglement entropy of hollow cones are calculated. Increasing the difference between the opening angles of their outer and inner boundary, one finds a transition between connected solutions for small differences to disconnected solutions for larger ones.

  7. Thermomechanical Assessment of the Collector for the Hollow Electron Lens

    CERN Document Server

    Anderson, George Bowers

    2017-01-01

    The hollow electron lens (HEL) is a system proposed for the High Luminosity upgrade of the Large Hadron Collider LHC (HL-LHC) [1]. Being considered for installation at LHC point 4, the HEL improves halo control and collimation of proton beams in the collider [2]. This is achieved by creating a hollow tube of electrons using an electron gun. This axisymmetric electron cloud travels around the proton beam for a few meters, overlapping with the proton beam halo, until the electron cloud is dissipated in a collector, which is the focus of this project. A 3D image of the HEL system is found in Figure 1 and a further technical description of such electron lenses is available in [3].

  8. Spectroscopy of Rb atoms in hollow-core fibers

    International Nuclear Information System (INIS)

    Slepkov, Aaron D.; Bhagwat, Amar R.; Venkataraman, Vivek; Londero, Pablo; Gaeta, Alexander L.

    2010-01-01

    Recent demonstrations of light-matter interactions with atoms and molecules confined to hollow waveguides offer great promise for ultralow-light-level applications. The use of waveguides allows for tight optical confinement over interaction lengths much greater than what could be achieved in bulk geometries. However, the combination of strong atom-photon interactions and nonuniformity of guided light modes gives rise to spectroscopic features that must be understood in order to take full advantage of the properties of such systems. We use light-induced atomic desorption to generate an optically dense Rb vapor at room temperature inside a hollow-core photonic band-gap fiber. Saturable-absorption spectroscopy and passive slow-light experiments reveal large ac Stark shifts, power broadening, and transit-time broadening, that are present in this system even at nanowatt powers.

  9. Motion Control of Urea-Powered Biocompatible Hollow Microcapsules.

    Science.gov (United States)

    Ma, Xing; Wang, Xu; Hahn, Kersten; Sánchez, Samuel

    2016-03-22

    The quest for biocompatible microswimmers powered by compatible fuel and with full motion control over their self-propulsion is a long-standing challenge in the field of active matter and microrobotics. Here, we present an active hybrid microcapsule motor based on Janus hollow mesoporous silica microparticles powered by the biocatalytic decomposition of urea at physiological concentrations. The directional self-propelled motion lasts longer than 10 min with an average velocity of up to 5 body lengths per second. Additionally, we control the velocity of the micromotor by chemically inhibiting and reactivating the enzymatic activity of urease. The incorporation of magnetic material within the Janus structure provides remote magnetic control on the movement direction. Furthermore, the mesoporous/hollow structure can load both small molecules and larger particles up to hundreds of nanometers, making the hybrid micromotor an active and controllable drug delivery microsystem.

  10. Fire resistance of extruded hollow-core slabs

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Giuliani, Luisa; Sørensen, Lars Schiøtt

    2016-01-01

    Prefabricated extruded hollow-core slabs are preferred building components for floor structures in several countries. It is therefore important to be able to document the fire resistance of these slabs proving fulfilment of standard fire resistance requirements of 60- and 120 minutes found in most...... a standard fire test and from a thorough examination of the comprehensive test documentation available on fire exposed hollow-core slabs. Mechanisms for loss of load-bearing capacity are clarified, and evidence of the fire resistance is found. For the first time the mechanisms responsible for loss of load......-bearing capacity are identified and test results and calculation approach are for the first time Applied in accordance with each other for assessment of fire resistance of the structure....

  11. Preparation of hollow shell ICF targets using a depolymerizing model

    International Nuclear Information System (INIS)

    Letts, S.A.; Fearon, E.M.; Buckley, S.R.

    1994-11-01

    A new technique for producing hollow shell laser fusion capsules was developed that starts with a depolymerizable mandrel. In this technique we use poly(alpha-methylstyrene) (PAMS) beads or shells as mandrels which are overcoated with plasma polymer. The PAMS mandrel is thermally depolymerized to gas phase monomer, which diffuses through the permeable and thermally more stable plasma polymer coating, leaving a hollow shell. We have developed methods for controlling the size of the PAMS mandrel by either grinding to make smaller sizes or melt sintering to form larger mandrels. Sphericity and surface finish are improved by heating the PAMS mandrels in hot water using a surfactant to prevent aggregation. Using this technique we have made shells from 200 μm to 5 mm diameter with 15 to 100 μm wall thickness having sphericity better than 2 μm and surface finish better than 10 nm RMS

  12. Silica needle template fabrication of metal hollow microneedle arrays

    International Nuclear Information System (INIS)

    Zhu, M W; Li, H W; Chen, X L; Tang, Y F; Lu, M H; Chen, Y F

    2009-01-01

    Drug delivery through hollow microneedle (HMN) arrays has now been recognized as one of the most promising techniques because it minimizes the shortcomings of the traditional drug delivery methods and has many exciting advantages—pain free and tunable release rates, for example. However, this drug delivery method has been hindered greatly from mass clinical application because of the high fabrication cost of HMN arrays. Hence, we developed a simple and cost-effective procedure using silica needles as templates to massively fabricate HMN arrays by using popular materials and industrially applicable processes of micro- imprint, hot embossing, electroplating and polishing. Metal HMN arrays with high quality are prepared with great flexibility with tunable parameters of area, length of needle, size of hollow and array dimension. This efficient and cost-effective fabrication method can also be applied to other applications after minor alterations, such as preparation of optic, acoustic and solar harvesting materials and devices

  13. PREPARATION AND CHARACTERIZATION OF POROUS WALLED HOLLOW GLASS MICROSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Raszewski, F; Erich Hansen, E; Ray Schumacher, R; David Peeler, D

    2008-04-21

    Porous-walled hollow glass microspheres (PWHGMs) of a modified alkali borosilicate composition have been successfully fabricated by combining the technology of producing hollow glass microspheres (HGMs) with the knowledge associated with porous glasses. HGMs are first formed by a powder glass--flame process, which are then transformed to PWHGMs by heat treatment and subsequent treatment in acid. Pore diameter and pore volume are most influenced by heat treatment temperature. Pore diameter is increased by a factor of 10 when samples are heat treated prior to acid leaching; 100 {angstrom} in non-heat treated samples to 1000 {angstrom} in samples heat treated at 600 C for 8 hours. As heat treatment time is increased from 8 hours to 24 hours there is a slight shift increase in pore diameter and little or no change in pore volume.

  14. Electrodepositing of Au on hollow PS micro-spheres

    International Nuclear Information System (INIS)

    Sun Jingyuan; Zhang Yunwang; Du Kai; Wan Xiaobo; Xiao Jiang; Zhang Wei; Zhang Lin; Chen Jing

    2010-01-01

    Using the self-regulating new micro-sphere electrodepositing device, the techniques of electrodepositing gold on hollow PS micro-spheres were established. The experiment was carried out under the following conditions: voltage was about 0.7 ∼ 0.8 V, current density was 2.0 mA · cm -2 , the temperature was 45 degree C, cathode rotating rate was 250 r · min -1 , flow rate of the solution was 7 mL · min -1 · cm -2 . Hollow gold-plated micro-spheres were prepared with well spherical symmetry, uniform thickness and surface smoothness under 500 nm. The speed of the gold depositing was 6 μm · h -1 . (authors)

  15. Silica needle template fabrication of metal hollow microneedle arrays

    Science.gov (United States)

    Zhu, M. W.; Li, H. W.; Chen, X. L.; Tang, Y. F.; Lu, M. H.; Chen, Y. F.

    2009-11-01

    Drug delivery through hollow microneedle (HMN) arrays has now been recognized as one of the most promising techniques because it minimizes the shortcomings of the traditional drug delivery methods and has many exciting advantages—pain free and tunable release rates, for example. However, this drug delivery method has been hindered greatly from mass clinical application because of the high fabrication cost of HMN arrays. Hence, we developed a simple and cost-effective procedure using silica needles as templates to massively fabricate HMN arrays by using popular materials and industrially applicable processes of micro- imprint, hot embossing, electroplating and polishing. Metal HMN arrays with high quality are prepared with great flexibility with tunable parameters of area, length of needle, size of hollow and array dimension. This efficient and cost-effective fabrication method can also be applied to other applications after minor alterations, such as preparation of optic, acoustic and solar harvesting materials and devices.

  16. Analysis of residual stresses in a long hollow cylinder

    International Nuclear Information System (INIS)

    Tokovyy, Yuriy V.; Ma, Chien-Ching

    2011-01-01

    This paper presents an analytical method for solving the axisymmetric stress problem for a long hollow cylinder subjected to locally-distributed residual (incompatible) strains. This method is based on direct integration of the equilibrium and compatibility equations, which thereby have been reduced to the set of two governing equations for two key functions with corresponding boundary and integral conditions. The governing equations were solved by making use of the Fourier integral transformation. Application of the method is illustrated with an analysis of the welding residual stresses in a butt-welded thick-walled pipe. - Highlights: → A solution to the axisymmetric stress problem for a hollow cylinder is constructed. → The cylinder is subjected to a field of locally-distributed residual strains. → The method is based on direct integration of the equilibrium equations. → An application of our solution to analysis of welding residual stresses is considered.

  17. Controlling magnetic and electric dipole modes in hollow silicon nanocylinders.

    Science.gov (United States)

    van de Haar, Marie Anne; van de Groep, Jorik; Brenny, Benjamin J M; Polman, Albert

    2016-02-08

    We propose a dielectric nanoresonator geometry consisting of hollow dielectric nanocylinders which support geometrical resonances. We fabricate such hollow Si particles with an outer diameter of 108-251 nm on a Si substrate, and determine their resonant modes with cathodo-luminescence (CL) spectroscopy and optical dark-field (DF) scattering measurements. The scattering behavior is numerically investigated in a systematic fashion as a function of wavelength and particle geometry. We find that the additional design parameter as a result of the introduction of a center gap can be used to control the relative spectral spacing of the resonant modes, which will enable additional control over the angular radiation pattern of the scatterers. Furthermore, the gap offers direct access to the enhanced magnetic dipole modal field in the center of the particle.

  18. Hierarchical modularity in human brain functional networks

    Directory of Open Access Journals (Sweden)

    David Meunier

    2009-10-01

    Full Text Available The idea that complex systems have a hierarchical modular organization originates in the early 1960s and has recently attracted fresh support from quantitative studies of large scale, real-life networks. Here we investigate the hierarchical modular (or “modules-within-modules” decomposition of human brain functional networks, measured using functional magnetic resonance imaging (fMRI in 18 healthy volunteers under no-task or resting conditions. We used a customized template to extract networks with more than 1800 regional nodes, and we applied a fast algorithm to identify nested modular structure at several hierarchical levels. We used mutual information, 0 < I < 1, to estimate the similarity of community structure of networks in different subjects, and to identify the individual network that is most representative of the group. Results show that human brain functional networks have a hierarchical modular organization with a fair degree of similarity between subjects, I=0.63. The largest 5 modules at the highest level of the hierarchy were medial occipital, lateral occipital, central, parieto-frontal and fronto-temporal systems; occipital modules demonstrated less sub-modular organization than modules comprising regions of multimodal association cortex. Connector nodes and hubs, with a key role in inter-modular connectivity, were also concentrated in association cortical areas. We conclude that methods are available for hierarchical modular decomposition of large numbers of high resolution brain functional networks using computationally expedient algorithms. This could enable future investigations of Simon's original hypothesis that hierarchy or near-decomposability of physical symbol systems is a critical design feature for their fast adaptivity to changing environmental conditions.

  19. Measuring Beam Quality of Hollow Core Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Shephard, J.D.; Roberts, John; Jones, J.D.C.

    2006-01-01

    In this paper, the authors measure the quality of the delivered beam from hollow core photonic crystal fibers (HC-PCFs). The$M^2$parameter is determined, and the near- to far-field transition is examined. The influence on these properties due to the presence of a core surround mode is evaluated.......17 for the same output beam. This highlights the need for careful consideration when measuring and describing the beam quality delivered by these novel photonic fibers....

  20. Preparation, Modification, and Application of Hollow Gold Nanospheres

    Directory of Open Access Journals (Sweden)

    Qiong-Qiong Ren

    2015-01-01

    Full Text Available Hollow gold nanospheres (HGNs have great potential applications in biological sensing, biomedical imaging, photothermal therapy, and drug delivery due to their unique localized surface plasmon resonance (LSPR feature, easy modification, good biocompatibility, and excellent photothermal conversion properties. In this review, the latest developments of HGNs in biosensing, bioimaging, photothermal therapy, and drug delivery are summarized, the synthesis methods, surface modification and bioconjugation of HGNs are also covered in this summary.

  1. Deployment of a pentagonal hollow-rope tensegrity module

    OpenAIRE

    Rhode-Barbarigos , Landolf; Bel Hadj Ali , Nizar; Motro , René; Smith , Ian F.C.

    2011-01-01

    International audience; Tensegrity structures are spatial reticulated structures composed of cables and struts. Tensegrity systems are good candidates for adaptive and deployable structures and thus have applications in various engineering fields. A "hollow-rope" tensegrity system composed of tensegrity-ring modules has been demonstrated by the authors to be a viable system for a pedestrian bridge. This paper focuses on the deployment of pentagonal ring modules. A geometric study is performed...

  2. Design aspects of a deployable tensegrity-hollow-rope footbridge

    OpenAIRE

    Rhode-Barbarigos , Landolf; Bel Hadj Ali , Nizar; Motro , René; Smith , Ian F.C.

    2012-01-01

    International audience; Tensegrity structures are composed of cables and struts in a pre-stressed self-equilibrium. Although tensegrity first appeared in the 1950s, it is seldom used in civil engineering. This paper focuses on the design aspects of a deployable tensegrity-hollow-rope footbridge. Deployment is usually not a critical design case for traditional deployable structures. However, for tensegrity systems deployment may be critical due to the actuation required. In this paper, deploym...

  3. Hierarchical subtask discovery with non-negative matrix factorization

    CSIR Research Space (South Africa)

    Earle, AC

    2018-04-01

    Full Text Available Hierarchical reinforcement learning methods offer a powerful means of planning flexible behavior in complicated domains. However, learning an appropriate hierarchical decomposition of a domain into subtasks remains a substantial challenge. We...

  4. Hierarchical subtask discovery with non-negative matrix factorization

    CSIR Research Space (South Africa)

    Earle, AC

    2017-08-01

    Full Text Available Hierarchical reinforcement learning methods offer a powerful means of planning flexible behavior in complicated domains. However, learning an appropriate hierarchical decomposition of a domain into subtasks remains a substantial challenge. We...

  5. Virtual timers in hierarchical real-time systems

    NARCIS (Netherlands)

    Heuvel, van den M.M.H.P.; Holenderski, M.J.; Cools, W.A.; Bril, R.J.; Lukkien, J.J.; Zhu, D.

    2009-01-01

    Hierarchical scheduling frameworks (HSFs) provide means for composing complex real-time systems from welldefined subsystems. This paper describes an approach to provide hierarchically scheduled real-time applications with virtual event timers, motivated by the need for integrating priority

  6. Sandwich-structured hollow fiber membranes for osmotic power generation

    KAUST Repository

    Fu, Feng Jiang; Zhang, Sui; Chung, Neal Tai-Shung

    2015-01-01

    In this work, a novel sandwich-structured hollow fiber membrane has been developed via a specially designed spinneret and optimized spinning conditions. With this specially designed spinneret, the outer layer, which is the most crucial part of the sandwich-structured membrane, is maintained the same as the traditional dual-layer membrane. The inner substrate layer is separated into two layers: (1) an ultra-thin middle layer comprising a high molecular weight polyvinylpyrrolidone (PVP) additive to enhance integration with the outer polybenzimidazole (PBI) selective layer, and (2) an inner-layer to provide strong mechanical strength for the membrane. Experimental results show that a high water permeability and good mechanical strength could be achieved without the expensive post treatment process to remove PVP which was necessary for the dual-layer pressure retarded osmosis (PRO) membranes. By optimizing the composition, the membrane shows a maximum power density of 6.23W/m2 at a hydraulic pressure of 22.0bar when 1M NaCl and 10mM NaCl are used as the draw and feed solutions, respectively. To our best knowledge, this is the best phase inversion hollow fiber membrane with an outer selective PBI layer for osmotic power generation. In addition, this is the first work that shows how to fabricate sandwich-structured hollow fiber membranes for various applications. © 2015 Elsevier B.V.

  7. Gamma Radiation Induced Preparation of Functional Conducting Polymer Hollow Spheres

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. -P.; Gopalan, A. I.; Philips, M. F.; Jeong, K.M., E-mail: kplee@knu.ac.kr [Department of Chemistry Education, Teacher' s College, Kyungpook National University 1370, Sankyuk-dong, Buk-gu, Daegu 702-701 (Korea, Republic of)

    2010-07-01

    New materials are sought for applications in many of the emerging fields that include catalysis, sensors, biomedical, optics and electronic application. With the advent of nanotechnology, innovative materials with novel properties are being synthesized towards target applications. Changing the sizes of particles, chemical, optical, and mechanical properties of the materials can often be tailored according to the specific needs of the application. Nanocrystalline, nanoparticles, nanocapsules, nanoporous materials, nanofibers, nanowires, fullerenes, nanotubes, nanosprings, nanobelts, dendrimers and nanospheres, ets, are few of the nanostructured materials. The examples of nanostructured materials include semiconducting nanowire quantum dots for gas sensing and self-assembled flower-like architectures. Self-assembly of nanoparticles can result in specific structures with unique and useful electronic, optical, and magnetic properties. Self or induced assemby of simple nanoparticles and rods could result into complex geometries, such as nanoflowers, binary superlattices, optical grating. Over the past decade, hollow spherical nanomaterials have received considerable attention due to their interesting properties such as low density, high surface area and good permeation. Various methods like solvothermal, self-assembly, sonochemical, solvent evaporation, chemical vapor deposition, microwave-assisted aqueous hydrothermal and electrochemical are being pursued for the production of hollow spherical materials. Polymer capsules and hollow spheres have increasingly received interest because of their large surface area and potential applications in catalysis, controlled delivery, artificial cells, light fillers and photonics.

  8. Large-scale preparation of hollow graphitic carbon nanospheres

    International Nuclear Information System (INIS)

    Feng, Jun; Li, Fu; Bai, Yu-Jun; Han, Fu-Dong; Qi, Yong-Xin; Lun, Ning; Lu, Xi-Feng

    2013-01-01

    Hollow graphitic carbon nanospheres (HGCNSs) were synthesized on large scale by a simple reaction between glucose and Mg at 550 °C in an autoclave. Characterization by X-ray diffraction, Raman spectroscopy and transmission electron microscopy demonstrates the formation of HGCNSs with an average diameter of 10 nm or so and a wall thickness of a few graphenes. The HGCNSs exhibit a reversible capacity of 391 mAh g −1 after 60 cycles when used as anode materials for Li-ion batteries. -- Graphical abstract: Hollow graphitic carbon nanospheres could be prepared on large scale by the simple reaction between glucose and Mg at 550 °C, which exhibit superior electrochemical performance to graphite. Highlights: ► Hollow graphitic carbon nanospheres (HGCNSs) were prepared on large scale at 550 °C ► The preparation is simple, effective and eco-friendly. ► The in situ yielded MgO nanocrystals promote the graphitization. ► The HGCNSs exhibit superior electrochemical performance to graphite.

  9. Breaking the glass ceiling: hollow OmniGuide fibers

    Science.gov (United States)

    Johnson, Steven G.; Ibanescu, Mihai; Skorobogatiy, Maksim A.; Weisberg, Ori; Engeness, Torkel D.; Soljacic, Marin; Jacobs, Steven A.; Joannopoulos, John D.; Fink, Yoel

    2002-04-01

    We argue that OmniGuide fibers, which guide light within a hollow core by concentric multilayer films having the property of omnidirectional reflection, have the potential to lift several physical limitations of silica fibers. We show how the strong confinement in OmniGuide fibers greatly suppresses the properties of the cladding materials: even if highly lossy and nonlinear materials are employed, both the intrinsic losses and nonlinearities of silica fibers can be surpassed by orders of magnitude. This feat, impossible to duplicate in an index-guided fiber with existing materials, would open up new regimes for long-distance propagation and dense wavelength-division multiplexing (DWDM). The OmniGuide-fiber modes bear a strong analogy to those of hollow metallic waveguides; from this analogy, we are able to derive several general scaling laws with core radius. Moreover, there is strong loss discrimination between guided modes, depending upon their degree of confinement in the hollow core: this allows large, ostensibly multi-mode cores to be used, with the lowest-loss TE01 mode propagating in an effectively single-mode fashion. Finally, because this TE01 mode is a cylindrically symmetrical ('azimuthally' polarized) singlet state, it is immune to polarization-mode dispersion (PMD), unlike the doubly-degenerate linearly-polarized modes in silica fibers that are vulnerable to birefringence.

  10. Determination of corrosion potential of coated hollow spheres

    International Nuclear Information System (INIS)

    Fedorkova, Andrea; Orinakova, Renata; Orinak, Andrej; Dudrova, Eva; Kupkova, Miriam; Kalavsky, Frantisek

    2008-01-01

    Copper hollow spheres were created on porous iron particles by electro-less deposition. The consequent Ni plating was applied to improve the mechanical properties of copper hollow micro-particles. Corrosion properties of coated hollow spheres were investigated using potentiodynamic polarisation method in 1 mol dm -3 NaCl solution. Surface morphology and composition were studied by scanning electron microscopy (SEM), light microscopy (LM) and energy-dispersive X-ray spectroscopy (EDX). Original iron particles, uncoated copper spheres and iron particles coated with nickel were studied as the reference materials. The effect of particle composition, particularly Ni content on the corrosion potential value was investigated. The results indicated that an increase in the amount of Ni coating layer deteriorated corrosion resistivity of coated copper spheres. Amount of Ni coating layer depended on conditions of Ni electrolysis, mainly on electrolysis time and current intensity. Corrosion behaviour of sintered particles was also explored by potentiodynamic polarisation experiments for the sake of comparison. Formation of iron rich micro-volumes on the particle surface during sintering caused the corrosion potential shift towards more negative values. A detailed study of the morphological changes between non-sintered and sintered micro-particles provided explanation of differences in corrosion potential (E corr )

  11. Development of hollow anode penning ion source for laboratory application

    Energy Technology Data Exchange (ETDEWEB)

    Das, B.K., E-mail: dasbabu31@gmail.com [Energetics and Electromagnetics Division, Bhabha Atomic Research Centre, Autonagar, Visakhapatnam (India); Shyam, A.; Das, R. [Energetics and Electromagnetics Division, Bhabha Atomic Research Centre, Autonagar, Visakhapatnam (India); Rao, A.D.P. [Department of Nuclear Physics, Andhra University, Visakhapatnam (India)

    2012-03-21

    The research work presented here focuses for the development of miniature penning type ion source. One hollow anode penning type ion source was developed in our laboratory. The size of the ion source is 38 mm diameter and 55 mm length. The ion source consists of two cathodes, a hollow anode and one piece of rare earth permanent magnet. The plasma was created in the plasma region between cathodes and the hollow anode. The J Multiplication-Sign B force in the region helps for efficient ionization of the gas even in the high vacuum region{approx}1 Multiplication-Sign 10{sup -5} Torr. The ions were extracted in the axial direction with help of the potential difference between the electrodes and the geometry of the extraction angle. The effect of the extraction electrode geometry for efficient extraction of the ions from the plasma region was examined. This ion source is a self extracted ion source. The self extracted phenomena reduce the cost and the size of the ion source. The extracted ion current was measured by a graphite probe. An ion current of more than 200 {mu}A was observed at the probe placed 70 mm apart from the extraction electrode. In this paper, the structure of the ion source, effect of operating pressure, potential difference and the magnetic field on the extracted ion current is reported.

  12. Synthesis of hollow carbon nanoshells and their application for supercapacitors

    Science.gov (United States)

    Rudakov, G. A.; Sosunov, A. V.; Ponomarev, R. S.; Khenner, V. K.; Reza, Md. Shamim; Sumanasekera, Gamini

    2018-01-01

    This work is devoted to the study of the synthesis, the description of the structure, and the use of hollow carbon nanoshells 3-5 nm in size. Hollow carbon nanoshells were synthesized by thermolysis of a mixture of nickel acetate and citric acid in the temperature range of 500-700°C. During the chemical reaction, nickel nuclei 3-5 nm in size are formed, separated from each other by carbon layers. At an annealing temperature of 600°C, the most ordered, close-packed structure is formed, evenly distributed throughout the sample. The etching of nickel with nitric acid resulted in hollow carbon nanoshells with a high specific surface area ( 1200 m2/g) and a homogeneous structure. Raman spectroscopy shows that the graphene-like structure of carbon nanoshells is preserved before and after the etching of nickel, and their defect density does not increase, which enables them to be subjected to new processing (functionalization) in order to obtain additional physical properties. The resulting carbon nanoshells were used as active material of the supercapacitor electrodes. The conducted electrochemical measurements showed that the specific capacitance of the supercapacitor did not fall below 120 F/g at a current density of 0.3 to 3 A after 800 charge/discharge cycles.

  13. Large-scale preparation of hollow graphitic carbon nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jun; Li, Fu [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Bai, Yu-Jun, E-mail: byj97@126.com [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); State Key laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Han, Fu-Dong; Qi, Yong-Xin; Lun, Ning [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Lu, Xi-Feng [Lunan Institute of Coal Chemical Engineering, Jining 272000 (China)

    2013-01-15

    Hollow graphitic carbon nanospheres (HGCNSs) were synthesized on large scale by a simple reaction between glucose and Mg at 550 Degree-Sign C in an autoclave. Characterization by X-ray diffraction, Raman spectroscopy and transmission electron microscopy demonstrates the formation of HGCNSs with an average diameter of 10 nm or so and a wall thickness of a few graphenes. The HGCNSs exhibit a reversible capacity of 391 mAh g{sup -1} after 60 cycles when used as anode materials for Li-ion batteries. -- Graphical abstract: Hollow graphitic carbon nanospheres could be prepared on large scale by the simple reaction between glucose and Mg at 550 Degree-Sign C, which exhibit superior electrochemical performance to graphite. Highlights: Black-Right-Pointing-Pointer Hollow graphitic carbon nanospheres (HGCNSs) were prepared on large scale at 550 Degree-Sign C Black-Right-Pointing-Pointer The preparation is simple, effective and eco-friendly. Black-Right-Pointing-Pointer The in situ yielded MgO nanocrystals promote the graphitization. Black-Right-Pointing-Pointer The HGCNSs exhibit superior electrochemical performance to graphite.

  14. Optimization of Deacetylation Process for Regenerated Cellulose Hollow Fiber Membranes

    Directory of Open Access Journals (Sweden)

    Xuezhong He

    2017-01-01

    Full Text Available Cellulose acetate (CA hollow fibers were spun from a CA+ Polyvinylpyrrolidone (PVP/N-methyl-2-pyrrolidone (NMP/H2O dope solution and regenerated by deacetylation. The complete deacetylation time of 0.5 h was found at a high concentration (0.2 M NaOH ethanol (96% solution. The reaction rate of deacetylation with 0.5 M NaOH was faster in a 50% ethanol compared to a 96 vol.% ethanol. The hydrogen bond between CA and tertiary amide group of PVP was confirmed. The deacetylation parameters of NaOH concentration, reaction time, swelling time, and solution were investigated by orthogonal experimental design (OED method. The degree of cross-linking, the residual acetyl content, and the PVP content in the deacetylated membranes were determined by FTIR analysis. The conjoint analysis in the Statistical Product and Service Solutions (SPSS software was used to analyze the OED results, and the importance of the deacetylation parameters was sorted as Solution > Swelling time > Reaction time > Concentration. The optimal deacetylation condition of 96 vol.% ethanol solution, swelling time 24 h, the concentration of NaOH (0.075 M, and the reaction time (2 h were identified. The regenerated cellulose hollow fibers under the optimal deacetylation condition can be further used as precursors for preparation of hollow fiber carbon membranes.

  15. Photonic bandgap narrowing in conical hollow core Bragg fibers

    Energy Technology Data Exchange (ETDEWEB)

    Ozturk, Fahri Emre; Yildirim, Adem; Kanik, Mehmet [UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey); Bayindir, Mehmet, E-mail: bayindir@nano.org.tr [UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey); Department of Physics, Bilkent University, 06800 Ankara (Turkey)

    2014-08-18

    We report the photonic bandgap engineering of Bragg fibers by controlling the thickness profile of the fiber during the thermal drawing. Conical hollow core Bragg fibers were produced by thermal drawing under a rapidly alternating load, which was applied by introducing steep changes to the fiber drawing speed. In conventional cylindrical Bragg fibers, light is guided by omnidirectional reflections from interior dielectric mirrors with a single quarter wave stack period. In conical fibers, the diameter reduction introduced a gradient of the quarter wave stack period along the length of the fiber. Therefore, the light guided within the fiber encountered slightly smaller dielectric layer thicknesses at each reflection, resulting in a progressive blueshift of the reflectance spectrum. As the reflectance spectrum shifts, longer wavelengths of the initial bandgap cease to be omnidirectionally reflected and exit through the cladding, which narrows the photonic bandgap. A narrow transmission bandwidth is particularly desirable in hollow waveguide mid-infrared sensing schemes, where broadband light is coupled to the fiber and the analyte vapor is introduced into the hollow core to measure infrared absorption. We carried out sensing simulations using the absorption spectrum of isopropyl alcohol vapor to demonstrate the importance of narrow bandgap fibers in chemical sensing applications.

  16. Gamma Radiation Induced Preparation of Functional Conducting Polymer Hollow Spheres

    International Nuclear Information System (INIS)

    Lee, K.-P.; Gopalan, A.I.; Philips, M.F.; Jeong, K.M.

    2010-01-01

    New materials are sought for applications in many of the emerging fields that include catalysis, sensors, biomedical, optics and electronic application. With the advent of nanotechnology, innovative materials with novel properties are being synthesized towards target applications. Changing the sizes of particles, chemical, optical, and mechanical properties of the materials can often be tailored according to the specific needs of the application. Nanocrystalline, nanoparticles, nanocapsules, nanoporous materials, nanofibers, nanowires, fullerenes, nanotubes, nanosprings, nanobelts, dendrimers and nanospheres, ets, are few of the nanostructured materials. The examples of nanostructured materials include semiconducting nanowire quantum dots for gas sensing and self-assembled flower-like architectures. Self-assembly of nanoparticles can result in specific structures with unique and useful electronic, optical, and magnetic properties. Self or induced assemby of simple nanoparticles and rods could result into complex geometries, such as nanoflowers, binary superlattices, optical grating. Over the past decade, hollow spherical nanomaterials have received considerable attention due to their interesting properties such as low density, high surface area and good permeation. Various methods like solvothermal, self-assembly, sonochemical, solvent evaporation, chemical vapor deposition, microwave-assisted aqueous hydrothermal and electrochemical are being pursued for the production of hollow spherical materials. Polymer capsules and hollow spheres have increasingly received interest because of their large surface area and potential applications in catalysis, controlled delivery, artificial cells, light fillers and photonics

  17. Laser-driven ion acceleration with hollow laser beams

    International Nuclear Information System (INIS)

    Brabetz, C.; Kester, O.; Busold, S.; Bagnoud, V.; Cowan, T.; Deppert, O.; Jahn, D.; Roth, M.; Schumacher, D.

    2015-01-01

    The laser-driven acceleration of protons from thin foils irradiated by hollow high-intensity laser beams in the regime of target normal sheath acceleration (TNSA) is reported for the first time. The use of hollow beams aims at reducing the initial emission solid angle of the TNSA source, due to a flattening of the electron sheath at the target rear side. The experiments were conducted at the PHELIX laser facility at the GSI Helmholtzzentrum für Schwerionenforschung GmbH with laser intensities in the range from 10 18  W cm −2 to 10 20  W cm −2 . We observed an average reduction of the half opening angle by (3.07±0.42)° or (13.2±2.0)% when the targets have a thickness between 12 μm and 14 μm. In addition, the highest proton energies were achieved with the hollow laser beam in comparison to the typical Gaussian focal spot

  18. Laser-driven ion acceleration with hollow laser beams

    Energy Technology Data Exchange (ETDEWEB)

    Brabetz, C., E-mail: c.brabetz@gsi.de; Kester, O. [Goethe-Universität Frankfurt am Main, 60323 Frankfurt (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Busold, S.; Bagnoud, V. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Helmholtz-Institut Jena, 07743 Jena (Germany); Cowan, T. [Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Technische Universität Dresden, 01069 Dresden (Germany); Deppert, O.; Jahn, D.; Roth, M. [Technische Universität Darmstadt, 64277 Darmstadt (Germany); Schumacher, D. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany)

    2015-01-15

    The laser-driven acceleration of protons from thin foils irradiated by hollow high-intensity laser beams in the regime of target normal sheath acceleration (TNSA) is reported for the first time. The use of hollow beams aims at reducing the initial emission solid angle of the TNSA source, due to a flattening of the electron sheath at the target rear side. The experiments were conducted at the PHELIX laser facility at the GSI Helmholtzzentrum für Schwerionenforschung GmbH with laser intensities in the range from 10{sup 18} W cm{sup −2} to 10{sup 20} W cm{sup −2}. We observed an average reduction of the half opening angle by (3.07±0.42)° or (13.2±2.0)% when the targets have a thickness between 12 μm and 14 μm. In addition, the highest proton energies were achieved with the hollow laser beam in comparison to the typical Gaussian focal spot.

  19. Molecular beam sampling of a hollow cathode arc

    International Nuclear Information System (INIS)

    Theuws, P.

    1981-01-01

    This thesis deals with the description of the process of molecular beam sampling of a Hollow Cathode Arc. The aim of the study is twofold, i.e. investigation of the applicability of molecular beam sampling as a plasma diagnostic and the use of a Hollow Cathode Arc as a high intensity beam source for ground state atoms and metastable state atoms in the superthermal energy range. Suitable models are introduced, describing the process of molecular beam sampling of both ground state atoms and metastable state atoms. Fast ground state atoms produced by ion-atom collisions. The experimental facilities, i.e. the Hollow Cathode Arc, the time-of-flight machine and the dye laser system are described. And an alternative detection scheme for ground state atoms is presented and experimental results on the molecular beam sampling of a low density plasma (densities 10 19 -10 20 m -3 ) in the long arc configuration are reported. The results on the short arc configuration (densities 10 21 -10 22 m -3 ) are discussed. (Auth.)

  20. Sandwich-structured hollow fiber membranes for osmotic power generation

    KAUST Repository

    Fu, Feng Jiang

    2015-11-01

    In this work, a novel sandwich-structured hollow fiber membrane has been developed via a specially designed spinneret and optimized spinning conditions. With this specially designed spinneret, the outer layer, which is the most crucial part of the sandwich-structured membrane, is maintained the same as the traditional dual-layer membrane. The inner substrate layer is separated into two layers: (1) an ultra-thin middle layer comprising a high molecular weight polyvinylpyrrolidone (PVP) additive to enhance integration with the outer polybenzimidazole (PBI) selective layer, and (2) an inner-layer to provide strong mechanical strength for the membrane. Experimental results show that a high water permeability and good mechanical strength could be achieved without the expensive post treatment process to remove PVP which was necessary for the dual-layer pressure retarded osmosis (PRO) membranes. By optimizing the composition, the membrane shows a maximum power density of 6.23W/m2 at a hydraulic pressure of 22.0bar when 1M NaCl and 10mM NaCl are used as the draw and feed solutions, respectively. To our best knowledge, this is the best phase inversion hollow fiber membrane with an outer selective PBI layer for osmotic power generation. In addition, this is the first work that shows how to fabricate sandwich-structured hollow fiber membranes for various applications. © 2015 Elsevier B.V.

  1. Recent progress on the fabrication of hollow microspheres

    International Nuclear Information System (INIS)

    Wang Aijuan; Lu Yupeng; Sun Ruixue

    2007-01-01

    Hollow microspheres represent a special class of materials, on which intense interest has been paid in the fields of material science, medicine, chemistry and chromatography. Several methods, including templating method, emulsion processing, high temperature smelting and layer-by-layer self-assembly technique, have been used to produce this kind of materials. However, most of the current needs for hollow microspheres are limited because of the disadvantages of these fabricating methods, such as time-consuming and relatively complex fabricating process. Spray drying method, as a simple and feasible technology, has also been used to fabricate this kind of materials. This method can improve the efficiency and save the time to some extent, and thus gains more and more interest recently. The factors of influencing the product morphology, including inlet air temperature, atomized pressure, feed rate, initial slurry concentration, primary powders size and additives, are reviewed in this paper. In addition, several kinds of typical hollow microspheres fabricated by this method are also listed particularly

  2. Innovative hydrogen storage in hollow glass-microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Keding, M.; Schmid, G.; Tajmar, M. [Austrian Research Centers, Vienna (Austria)

    2009-07-01

    Hydrogen storage technologies are becoming increasingly important for a number of future applications. The Austrian Research Centers (ARC) are developing a unique hydrogen storage system that combines the advantages of both hollow glass microsphere and chemical compound hydrogen storage, but eliminates their respective drawbacks. Water is utilized as a functional liquid to carry the hollow glass microspheres that are loaded with up to 700 bar of hydrogen gas. Sodium borohydride (NaBH{sub 4}) is then injected together with the glass microspheres into a reaction chamber where the water reacts catalytically with the NaBH{sub 4} producing hydrogen and heat. The heat is then utilized to release the hydrogen from the hollow glass microspheres providing a double hydrogen generation process without any external energy or heat during storage or gas release. The paper described this hydrogen storage system with particular reference to microspheres, the coating process, the experimental facility and NaBH{sub 4} test results. It was concluded that hydrogen storage and production on demand is possible with microspheres and sodium borohydride solution. 9 refs., 16 figs.

  3. Hybrid welding of hollow section beams for a telescopic lifter

    Science.gov (United States)

    Jernstroem, Petteri

    2003-03-01

    Modern lifting equipment is normally constructed using hollow section beams in a telescopic arrangement. Telescopic lifters are used in a variety number of applications including e.g. construction and building maintenance. Also rescue sector is one large application field. It is very important in such applications to use a lightweight and stable beam construction, which gives a high degree of flexibility in working high and width. To ensure a high weld quality of hollow section beams, high efficiency and minimal distortion, a welding process with a high power density is needed. The alternatives, in practice, which fulfill these requirements, are laser welding and hybrid welding. In this paper, the use of hybrid welding process (combination of CO2 laser welding and GMAW) in welding of hollow section beam structure is presented. Compared to laser welding, hybrid welding allows wider joint tolerances, which enables joints to be prepared and fit-up less accurately, aving time and manufacturing costs. A prerequisite for quality and effective use of hybrid welding is, however, a complete understanding of the process and its capabilities, which must be taken into account during both product design and manufacture.

  4. SU-8 hollow cantilevers for AFM cell adhesion studies

    Science.gov (United States)

    Martinez, Vincent; Behr, Pascal; Drechsler, Ute; Polesel-Maris, Jérôme; Potthoff, Eva; Vörös, Janos; Zambelli, Tomaso

    2016-05-01

    A novel fabrication method was established to produce flexible, transparent, and robust tipless hollow atomic force microscopy (AFM) cantilevers made entirely from SU-8. Channels of 3 μm thickness and several millimeters length were integrated into 12 μm thick and 40 μm wide cantilevers. Connected to a pressure controller, the devices showed high sealing performance with no leakage up to 6 bars. Changing the cantilever lengths from 100 μm to 500 μm among the same wafer allowed the targeting of various spring constants ranging from 0.5 to 80 N m-1 within a single fabrication run. These hollow polymeric AFM cantilevers were operated in the optical beam deflection configuration. To demonstrate the performance of the device, single-cell force spectroscopy experiments were performed with a single probe detaching in a serial protocol more than 100 Saccharomyces cerevisiae yeast cells from plain glass and glass coated with polydopamine while measuring adhesion forces in the sub-nanoNewton range. SU-8 now offers a new alternative to conventional silicon-based hollow cantilevers with more flexibility in terms of complex geometric design and surface chemistry modification.

  5. SU-8 hollow cantilevers for AFM cell adhesion studies

    International Nuclear Information System (INIS)

    Martinez, Vincent; Behr, Pascal; Vörös, Janos; Zambelli, Tomaso; Drechsler, Ute; Polesel-Maris, Jérôme; Potthoff, Eva

    2016-01-01

    A novel fabrication method was established to produce flexible, transparent, and robust tipless hollow atomic force microscopy (AFM) cantilevers made entirely from SU-8. Channels of 3 μm thickness and several millimeters length were integrated into 12 μm thick and 40 μm wide cantilevers. Connected to a pressure controller, the devices showed high sealing performance with no leakage up to 6 bars. Changing the cantilever lengths from 100 μm to 500 μm among the same wafer allowed the targeting of various spring constants ranging from 0.5 to 80 N m −1 within a single fabrication run. These hollow polymeric AFM cantilevers were operated in the optical beam deflection configuration. To demonstrate the performance of the device, single-cell force spectroscopy experiments were performed with a single probe detaching in a serial protocol more than 100 Saccharomyces cerevisiae yeast cells from plain glass and glass coated with polydopamine while measuring adhesion forces in the sub-nanoNewton range. SU-8 now offers a new alternative to conventional silicon-based hollow cantilevers with more flexibility in terms of complex geometric design and surface chemistry modification. (paper)

  6. Hollow fiber adsorbents for CO2 capture: Kinetic sorption performance

    KAUST Repository

    Lively, Ryan P.

    2011-07-01

    We describe a CO 2 capture platform based on hollow polymeric fibers with sorbent particles embedded in the porous fiber wall for post-combustion CO 2 capture. These fibers are intended for use in a rapid temperature swing adsorption (RTSA) process. The RTSA system utilizes the hollow fiber morphology by flowing cooling water on the bore-side of the fibers during sorption to prevent temperature rise associated with the sorption enthalpy. Steam or hot water is flowed through the bores during desorption to desorb CO 2 rapidly. To minimize material transfer between the bore and the fiber wall, a dense Neoprene ® lumen layer is cast on the bore-side of the fiber wall. In this paper, the key sorption step and associated kinetic resistances for the uncooled fibers are examined and evaluated for this portion of the RTSA process. Chopped fibers in a packed bed, as well as fibers assembled into a parallel flow module, have been tested in a simulated flue gas stream. Kinetic limitations in the hollow fiber modules are largely overcome by increasing the superficial gas velocity and the fiber packing in the module-indicating that film diffusion is the controlling mass transfer limitation in the fiber system. The un-cooled fiber modules lose apparent capacity as superficial velocities are increased, likely indicating non-isothermal operation, whereas the actively-cooled fibers in the packed bed maintain apparent capacity at all flowrates studied. © 2011 Elsevier B.V.

  7. Preparation of SnO 2 /Carbon Composite Hollow Spheres and Their Lithium Storage Properties

    KAUST Repository

    Lou, Xiong Wen; Deng, Da; Lee, Jim Yang; Archer, Lynden A.

    2008-01-01

    In this work, we present a novel concept of structural design for preparing functional composite hollow spheres and derived double-shelled hollow spheres. The approach involves two main steps: preparation of porous hollow spheres of one component and deposition of the other component onto both the interior and exterior surfaces of the shell as well as in the pores. We demonstrate the concept by preparing SnO2/carbon composite hollow spheres and evaluate them as potential anode materials for lithium-ion batteries. These SnO2/carbon hollow spheres are able to deliver a reversible Li storage capacity of 473 mA h g-1 after 50 cycles. Unusual double-shelled carbon hollow spheres are obtained by selective removal of the sandwiched porous SnO2 shells. © 2008 American Chemical Society.

  8. Synthesis of barium-strontium titanate hollow tubes using Kirkendall effect

    Science.gov (United States)

    Chen, Xuncai; Im, SangHyuk; Kim, Jinsoo; Kim, Woo-Sik

    2018-02-01

    (BaSr)TiO3 hexagonal hollow tubes was fabricated by a solid-state interfacial reaction including a Kirkendall diffusion. Using a co-precipitation and sol-gel process, a core@shell structure of (BaSr)CO3@TiO2 rods were prepared, and then converted to (BaSr)TiO3 hollow tubes at 750 °C. This was a first achievement of single-phase crystal hollow tube. Here, the inner diameter and wall thickness of hollow tube were about 700 nm and 130 nm, respectively. The fabrication of (BaSr)TiO3 hollow tubes was monitored with scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), transmission electron microscopy (TEM), and X-ray diffraction (XRD) to investigate their formation mechanism. The present synthetic approach would provide a new insight into the design and fabrication of hollow architectures of many perovskite oxides.

  9. Preparation of SnO 2 /Carbon Composite Hollow Spheres and Their Lithium Storage Properties

    KAUST Repository

    Lou, Xiong Wen

    2008-10-28

    In this work, we present a novel concept of structural design for preparing functional composite hollow spheres and derived double-shelled hollow spheres. The approach involves two main steps: preparation of porous hollow spheres of one component and deposition of the other component onto both the interior and exterior surfaces of the shell as well as in the pores. We demonstrate the concept by preparing SnO2/carbon composite hollow spheres and evaluate them as potential anode materials for lithium-ion batteries. These SnO2/carbon hollow spheres are able to deliver a reversible Li storage capacity of 473 mA h g-1 after 50 cycles. Unusual double-shelled carbon hollow spheres are obtained by selective removal of the sandwiched porous SnO2 shells. © 2008 American Chemical Society.

  10. Preparation and surface encapsulation of hollow TiO nanoparticles for electrophoretic displays

    International Nuclear Information System (INIS)

    Zhao Qian; Tan Tingfeng; Qi Peng; Wang Shirong; Bian Shuguang; Li Xianggao; An Yong; Liu Zhaojun

    2011-01-01

    Hollow black TiO nanosparticles were obtained via deposition of inorganic coating on the surface of hollow core-shell polymer latex with Ti(OBu) 4 as precursor and subsequent calcination in ammonia gas. Hollow TiO particles were characterized by scanning electron microscope, transmission electronic microscopy, X-ray diffraction, and thermogravimetric analysis. Encapsulation of TiO via dispersion polymerization was promoved by pretreating the pigments with 3-(trimethoxysilyl) propyl methacrylate, making it possible to prepare hollow TiO-polymer particles. When St and DVB were used as polymerization monomer, hollow TiO-polymer core-shell particles came into being via dispersion polymerization, and the lipophilic degree is 28.57%. Glutin-arabic gum microcapsules containing TiO-polymer particles electrophoretic liquid were prepared using via complex coacervation. It was founded that hollow TiO-polymer particles had enough electrophoretic mobility after coating with polymer.

  11. Hierarchically Nanoporous Bioactive Glasses for High Efficiency Immobilization of Enzymes

    DEFF Research Database (Denmark)

    He, W.; Min, D.D.; Zhang, X.D.

    2014-01-01

    Bioactive glasses with hierarchical nanoporosity and structures have been heavily involved in immobilization of enzymes. Because of meticulous design and ingenious hierarchical nanostructuration of porosities from yeast cell biotemplates, hierarchically nanostructured porous bioactive glasses can...... and products of catalytic reactions can freely diffuse through open mesopores (2–40 nm). The formation mechanism of hierarchically structured porous bioactive glasses, the immobilization mechanism of enzyme and the catalysis mechanism of immobilized enzyme are then discussed. The novel nanostructure...

  12. Enhanced arsenic removal from water by hierarchically porous CeO₂-ZrO₂ nanospheres: role of surface- and structure-dependent properties.

    Science.gov (United States)

    Xu, Weihong; Wang, Jing; Wang, Lei; Sheng, Guoping; Liu, Jinhuai; Yu, Hanqing; Huang, Xing-Jiu

    2013-09-15

    Arsenic contaminated natural water is commonly used as drinking water source in some districts of Asia. To meet the increasingly strict drinking water standards, exploration of efficient arsenic removal methods is highly desired. In this study, hierarchically porous CeO₂-ZrO₂ nanospheres were synthesized, and their suitability as arsenic sorbents was examined. The CeO₂-ZrO₂ hollow nanospheres showed an adsorption capacity of 27.1 and 9.2 mg g(-1) for As(V) and As(III), respectively, at an equilibrium arsenic concentration of 0.01 mg L(-1) (the standard for drinking water) under neutral conditions, indicating a high arsenic removal performance of the adsorbent at low arsenic concentrations. Such a great arsenic adsorption capacity was attributed to the high surface hydroxyl density and presence of hierarchically porous network in the hollow nanospheres. The analysis of Fourier transformed infrared spectra and X-ray photoelectron spectroscopy demonstrated that the adsorption of arsenic on the CeO₂-ZrO₂ nanospheres was completed through the formation of a surface complex by substituting hydroxyl with arsenic species. In addition, the CeO₂-ZrO₂ nanospheres were able to remove over 97% arsenic in real underground water with initial arsenic concentration of 0.376 mg L(-1) to meet the guideline limit of arsenic in drinking water regulated by the World Health Organization without any pre-treatment and/or pH adjustment. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Compact and Robust Refilling and Connectorization of Hollow Core Photonic Crystal Fiber Gas Reference Cells

    Science.gov (United States)

    Poberezhskiy, Ilya Y.; Meras, Patrick; Chang, Daniel H.; Spiers, Gary D.

    2007-01-01

    This slide presentation reviews a method for refilling and connectorization of hollow core photonic crystal fiber gas reference cells. Thees hollow-core photonic crystal fiber allow optical propagation in air or vacuum and are for use as gas reference cell is proposed and demonstrated. It relies on torch-sealing a quartz filling tube connected to a mechanical splice between regular and hollow-core fibers.

  14. Synthesis of solid and hollow ATO spheres by carbothermal reduction of ATO nanoparticles

    International Nuclear Information System (INIS)

    Chai Chunfang; Huang Zaiyin; Liao Dankui; Tan Xuecai; Wu Jian; Yuan Aiqun

    2007-01-01

    Solid and hollow ATO spheres were fabricated by heating ATO nanoparticles and graphite mixture in a tube furnace. The as-synthesized samples were characterized by EDS, XRD, FE-SEM, TEM and HRTEM. The size of the solid spheres could be controlled by adjusting the rate of Ar flow and deposition positions. The hollow spheres were synthesized in an alumina tube system under conditions of a relatively high oxygen concentration. The growth mechanism of solid and hollow spheres was analysed

  15. A simple approach to hollow maxillary complete denture fabrication: An innovative technique

    Directory of Open Access Journals (Sweden)

    Kathleen Manuela D'souza

    2017-01-01

    Full Text Available A severely atrophic maxillary arch exhibits reduced denture bearing area and increased inter-ridge distance, thus, affecting retention of the complete denture. Such clinical situations necessitate the fabrication of a hollow complete denture to reduce the weight of the prosthesis and increase retention. This article describes a simple technique to fabricate a hollow maxillary complete denture using salt and thermoplastic poly (methyl methacrylate sheet. The vacuum-formed thermoplastic matrix regulates the quantity of salt and determines its placement in the unpolymerized denture base material during the denture packing stage. The matrix lining the hollow cavity also aids to reinforce the hollow denture base.

  16. Process for fabricating PBI hollow fiber asymmetric membranes for gas separation and liquid separation

    Science.gov (United States)

    Jayaweera, Indira; Krishnan, Gopala N.; Sanjurjo, Angel; Jayaweera, Palitha; Bhamidi, Srinivas

    2016-04-26

    The invention provides methods for preparing an asymmetric hollow fiber, the asymmetric hollow fibers prepared by such methods, and uses of the asymmetric hollow fibers. One method involves passing a polymeric solution through an outer annular orifice of a tube-in-orifice spinneret, passing a bore fluid though an inner tube of the spinneret, dropping the polymeric solution and bore fluid through an atmosphere over a dropping distance, and quenching the polymeric solution and bore fluid in a bath to form an asymmetric hollow fiber.

  17. Method for selecting hollow microspheres for use in laser fusion targets

    Science.gov (United States)

    Farnum, Eugene H.; Fries, R. Jay; Havenhill, Jerry W.; Smith, Maurice Lee; Stoltz, Daniel L.

    1976-01-01

    Hollow microspheres having thin and very uniform wall thickness are useful as containers for the deuterium and tritium gas mixture used as a fuel in laser fusion targets. Hollow microspheres are commercially available; however, in commercial lots only a very small number meet the rigid requirements for use in laser fusion targets. Those meeting these requirements may be separated from the unsuitable ones by subjecting the commercial lot to size and density separations and then by subjecting those hollow microspheres thus separated to an external pressurization at which those which are aspherical or which have nonuniform walls are broken and separating the sound hollow microspheres from the broken ones.

  18. Mesoscale cavities in hollow-core waveguides for quantum optics with atomic ensembles

    Directory of Open Access Journals (Sweden)

    Haapamaki C.M.

    2016-08-01

    Full Text Available Single-mode hollow-core waveguides loaded with atomic ensembles offer an excellent platform for light–matter interactions and nonlinear optics at low photon levels. We review and discuss possible approaches for incorporating mirrors, cavities, and Bragg gratings into these waveguides without obstructing their hollow cores. With these additional features controlling the light propagation in the hollow-core waveguides, one could potentially achieve optical nonlinearities controllable by single photons in systems with small footprints that can be integrated on a chip. We propose possible applications such as single-photon transistors and superradiant lasers that could be implemented in these enhanced hollow-core waveguides.

  19. Enhanced arsenic removal from water by hierarchically porous CeO{sub 2}–ZrO{sub 2} nanospheres: Role of surface- and structure-dependent properties

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Weihong; Wang, Jing; Wang, Lei [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Sheng, Guoping [Department of Chemistry, University of Science and Technology of China, Hefei 230026 (China); Liu, Jinhuai [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Yu, Hanqing [Department of Chemistry, University of Science and Technology of China, Hefei 230026 (China); Huang, Xing-Jiu, E-mail: xingjiuhuang@iim.ac.cn [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China)

    2013-09-15

    Highlights: • The CeO{sub 2}–ZrO{sub 2} hollow nanospheres had strong affinity and selectivity to arsenic. •The adsorbent showed excellent ability to remove arsenic at low concentrations. • The adsorption mechanism was investigated by FTIR and XPS. • The adsorbent showed potential application for drinking water treatment. -- Abstract: Arsenic contaminated natural water is commonly used as drinking water source in some districts of Asia. To meet the increasingly strict drinking water standards, exploration of efficient arsenic removal methods is highly desired. In this study, hierarchically porous CeO{sub 2}–ZrO{sub 2} nanospheres were synthesized, and their suitability as arsenic sorbents was examined. The CeO{sub 2}–ZrO{sub 2} hollow nanospheres showed an adsorption capacity of 27.1 and 9.2 mg g{sup −1} for As(V) and As(III), respectively, at an equilibrium arsenic concentration of 0.01 mg L{sup −1} (the standard for drinking water) under neutral conditions, indicating a high arsenic removal performance of the adsorbent at low arsenic concentrations. Such a great arsenic adsorption capacity was attributed to the high surface hydroxyl density and presence of hierarchically porous network in the hollow nanospheres. The analysis of Fourier transformed infrared spectra and X-ray photoelectron spectroscopy demonstrated that the adsorption of arsenic on the CeO{sub 2}–ZrO{sub 2} nanospheres was completed through the formation of a surface complex by substituting hydroxyl with arsenic species. In addition, the CeO{sub 2}–ZrO{sub 2} nanospheres were able to remove over 97% arsenic in real underground water with initial arsenic concentration of 0.376 mg L{sup −1} to meet the guideline limit of arsenic in drinking water regulated by the World Health Organization without any pre-treatment and/or pH adjustment.

  20. Application of hierarchical matrices for partial inverse

    KAUST Repository

    Litvinenko, Alexander

    2013-11-26

    In this work we combine hierarchical matrix techniques (Hackbusch, 1999) and domain decomposition methods to obtain fast and efficient algorithms for the solution of multiscale problems. This combination results in the hierarchical domain decomposition (HDD) method, which can be applied for solution multi-scale problems. Multiscale problems are problems that require the use of different length scales. Using only the finest scale is very expensive, if not impossible, in computational time and memory. Domain decomposition methods decompose the complete problem into smaller systems of equations corresponding to boundary value problems in subdomains. Then fast solvers can be applied to each subdomain. Subproblems in subdomains are independent, much smaller and require less computational resources as the initial problem.

  1. Translating Management Practices in Hierarchical Organizations

    DEFF Research Database (Denmark)

    Wæraas, Arild; Nielsen, Jeppe Agger

    structures affect translators’ approaches taken towards management ideas. This paper reports the findings from a longitudinal case study of the translation of Leadership Pipeline in a Danish fire department and how the translators’ approach changed over time from a modifying to a reproducing mode. The study......This study examines how translators in a hierarchical context approach the translation of management practices. Although current translation theory and research emphasize the importance of contextual factors in translation processes, little research has investigated how strongly hierarchical...... finds that translation does not necessarily imply transformation of the management idea, pointing instead to aspects of exact imitation and copying of an ”original” idea. It also highlights how translation is likely to involve multiple and successive translation modes and, furthermore, that strongly...

  2. Hierarchical structure in the distribution of galaxies

    International Nuclear Information System (INIS)

    Schulman, L.S.; Seiden, P.E.; Technion - Israel Institute of Technology, Haifa; IBM Thomas J. Watson Research Center, Yorktown Heights, NY)

    1986-01-01

    The distribution of galaxies has a hierarchical structure with power-law correlations. This is usually thought to arise from gravity alone acting on an originally uniform distributioon. If, however, the original process of galaxy formation occurs through the stimulated birth of one galaxy due to a nearby recently formed galaxy, and if this process occurs near its percolation threshold, then a hierarchical structure with power-law correlations arises at the time of galaxy formation. If subsequent gravitational evolution within an expanding cosmology is such as to retain power-law correlations, the initial r exp -1 dropoff can steepen to the observed r exp -1.8. The distribution of galaxies obtained by this process produces clustering and voids, as observed. 23 references

  3. Biominerals- hierarchical nanocomposites: the example of bone

    Science.gov (United States)

    Beniash, Elia

    2010-01-01

    Many organisms incorporate inorganic solids in their tissues to enhance their functional, primarily mechanical, properties. These mineralized tissues, also called biominerals, are unique organo-mineral nanocomposites, organized at several hierarchical levels, from nano- to macroscale. Unlike man made composite materials, which often are simple physical blends of their components, the organic and inorganic phases in biominerals interface at the molecular level. Although these tissues are made of relatively weak components at ambient conditions, their hierarchical structural organization and intimate interactions between different elements lead to superior mechanical properties. Understanding basic principles of formation, structure and functional properties of these tissues might lead to novel bioinspired strategies for material design and better treatments for diseases of the mineralized tissues. This review focuses on general principles of structural organization, formation and functional properties of biominerals on the example the bone tissues. PMID:20827739

  4. Noise enhances information transfer in hierarchical networks.

    Science.gov (United States)

    Czaplicka, Agnieszka; Holyst, Janusz A; Sloot, Peter M A

    2013-01-01

    We study the influence of noise on information transmission in the form of packages shipped between nodes of hierarchical networks. Numerical simulations are performed for artificial tree networks, scale-free Ravasz-Barabási networks as well for a real network formed by email addresses of former Enron employees. Two types of noise are considered. One is related to packet dynamics and is responsible for a random part of packets paths. The second one originates from random changes in initial network topology. We find that the information transfer can be enhanced by the noise. The system possesses optimal performance when both kinds of noise are tuned to specific values, this corresponds to the Stochastic Resonance phenomenon. There is a non-trivial synergy present for both noisy components. We found also that hierarchical networks built of nodes of various degrees are more efficient in information transfer than trees with a fixed branching factor.

  5. Quantum Ising model on hierarchical structures

    International Nuclear Information System (INIS)

    Lin Zhifang; Tao Ruibao.

    1989-11-01

    A quantum Ising chain with both the exchange couplings and the transverse fields arranged in a hierarchical way is considered. Exact analytical results for the critical line and energy gap are obtained. It is shown that when R 1 not= R 2 , where R 1 and R 2 are the hierarchical parameters for the exchange couplings and the transverse fields, respectively, the system undergoes a phase transition in a different universality class from the pure quantum Ising chain with R 1 =R 2 =1. On the other hand, when R 1 =R 2 =R, there exists a critical value R c dependent on the furcating number of the hierarchy. In case of R > R c , the system is shown to exhibit as Ising-like critical point with the critical behaviour the same as in the pure case, while for R c the system belongs to another universality class. (author). 19 refs, 2 figs

  6. Hierarchical State Machines as Modular Horn Clauses

    Directory of Open Access Journals (Sweden)

    Pierre-Loïc Garoche

    2016-07-01

    Full Text Available In model based development, embedded systems are modeled using a mix of dataflow formalism, that capture the flow of computation, and hierarchical state machines, that capture the modal behavior of the system. For safety analysis, existing approaches rely on a compilation scheme that transform the original model (dataflow and state machines into a pure dataflow formalism. Such compilation often result in loss of important structural information that capture the modal behaviour of the system. In previous work we have developed a compilation technique from a dataflow formalism into modular Horn clauses. In this paper, we present a novel technique that faithfully compile hierarchical state machines into modular Horn clauses. Our compilation technique preserves the structural and modal behavior of the system, making the safety analysis of such models more tractable.

  7. Hierarchical control system of advanced robot manipulator

    International Nuclear Information System (INIS)

    Oomichi, Takeo; Okino, Akihisa; Nishihara, Masatoshi; Sakamoto, Taizou; Matsuda, Koichi; Ohnishi, Ken

    1990-01-01

    We introduce a double arm with 4-finger's manipulator system which process the large volume of information at high speed. This is under research/development many type of works in the harsh condition. Namely, hierarchization of instruction unit in which motion control system as real time processing unit, and task planning unit as non-real time processing unit, interface with operation through the task planning unit has been made. Also, high speed processing of large volume information has been realized by decentralizing the motion control unit by function, hierarchizing the high speed processing unit, and developing high speed transmission, IC which does not depend on computer OS to avoid the delay in transmission. (author)

  8. Hierarchically structured distributed microprocessor network for control

    International Nuclear Information System (INIS)

    Greenwood, J.R.; Holloway, F.W.; Rupert, P.R.; Ozarski, R.G.; Suski, G.J.

    1979-01-01

    To satisfy a broad range of control-analysis and data-acquisition requirements for Shiva, a hierarchical, computer-based, modular-distributed control system was designed. This system handles the more than 3000 control elements and 1000 data acquisition units in a severe high-voltage, high-current environment. The control system design gives one a flexible and reliable configuration to meet the development milestones for Shiva within critical time limits

  9. Preliminary results from the hierarchical glitch pipeline

    International Nuclear Information System (INIS)

    Mukherjee, Soma

    2007-01-01

    This paper reports on the preliminary results obtained from the hierarchical glitch classification pipeline on LIGO data. The pipeline that has been under construction for the past year is now complete and end-to-end tested. It is ready to generate analysis results on a daily basis. The details of the pipeline, the classification algorithms employed and the results obtained with one days analysis on the gravitational wave and several auxiliary and environmental channels from all three LIGO detectors are discussed

  10. Hierarchical Fiber Structures Made by Electrospinning Polymers

    Science.gov (United States)

    Reneker, Darrell H.

    2009-03-01

    A filter for water purification that is very thin, with small interstices and high surface area per unit mass, can be made with nanofibers. The mechanical strength of a very thin sheet of nanofibers is not great enough to withstand the pressure drop of the fluid flowing through. If the sheet of nanofibers is made thicker, the strength will increase, but the flow will be reduced to an impractical level. An optimized filter can be made with nanometer scale structures supported on micron scale structures, which are in turn supported on millimeter scale structures. This leads to a durable hierarchical structure to optimize the filtration efficiency with a minimum amount of material. Buckling coils,ootnotetextTao Han, Darrell H Reneker, Alexander L. Yarin, Polymer, Volume 48, issue 20 (September 21, 2007), p. 6064-6076. electrical bending coilsootnotetextDarrell H. Reneker and Alexander L. Yarin, Polymer, Volume 49, Issue 10 (2008) Pages 2387-2425, DOI:10.1016/j.polymer.2008.02.002. Feature Article. and pendulum coilsootnotetextT. Han, D.H. Reneker, A.L. Yarin, Polymer, Volume 49, (2008) Pages 2160-2169, doi:10.1016/jpolymer.2008.01.0487878. spanning dimensions from a few microns to a few centimeters can be collected from a single jet by controlling the position and motion of a collector. Attractive routes to the design and construction of hierarchical structures for filtration are based on nanofibers supported on small coils that are in turn supported on larger coils, which are supported on even larger overlapping coils. ``Such top-down'' hierarchical structures are easy to make by electrospinning. In one example, a thin hierarchical structure was made, with a high surface area and small interstices, having an open area of over 50%, with the thinnest fibers supported at least every 15 microns.

  11. Hierarchical video summarization based on context clustering

    Science.gov (United States)

    Tseng, Belle L.; Smith, John R.

    2003-11-01

    A personalized video summary is dynamically generated in our video personalization and summarization system based on user preference and usage environment. The three-tier personalization system adopts the server-middleware-client architecture in order to maintain, select, adapt, and deliver rich media content to the user. The server stores the content sources along with their corresponding MPEG-7 metadata descriptions. In this paper, the metadata includes visual semantic annotations and automatic speech transcriptions. Our personalization and summarization engine in the middleware selects the optimal set of desired video segments by matching shot annotations and sentence transcripts with user preferences. Besides finding the desired contents, the objective is to present a coherent summary. There are diverse methods for creating summaries, and we focus on the challenges of generating a hierarchical video summary based on context information. In our summarization algorithm, three inputs are used to generate the hierarchical video summary output. These inputs are (1) MPEG-7 metadata descriptions of the contents in the server, (2) user preference and usage environment declarations from the user client, and (3) context information including MPEG-7 controlled term list and classification scheme. In a video sequence, descriptions and relevance scores are assigned to each shot. Based on these shot descriptions, context clustering is performed to collect consecutively similar shots to correspond to hierarchical scene representations. The context clustering is based on the available context information, and may be derived from domain knowledge or rules engines. Finally, the selection of structured video segments to generate the hierarchical summary efficiently balances between scene representation and shot selection.

  12. Internet advertising effectiveness by using hierarchical model

    OpenAIRE

    RAHMANI, Samaneh

    2015-01-01

    Abstract. Present paper has been developed with the title of internet advertising effectiveness by using hierarchical model. Presenting the question: Today Internet is an important channel in marketing and advertising. The reason for this could be the ability of the Internet to reduce costs and people’s access to online services[1]. Also advertisers can easily access a multitude of users and communicate with them at low cost [9]. On the other hand, compared to traditional advertising, interne...

  13. A Hierarchical Agency Model of Deposit Insurance

    OpenAIRE

    Jonathan Carroll; Shino Takayama

    2010-01-01

    This paper develops a hierarchical agency model of deposit insurance. The main purpose is to undertake a game theoretic analysis of the consequences of deposit insurance schemes and their effects on monitoring incentives for banks. Using this simple framework, we analyze both risk- independent and risk-dependent premium schemes along with reserve requirement constraints. The results provide policymakers with not only a better understanding of the effects of deposit insurance on welfare and th...

  14. Hierarchical antifouling brushes for biosensing applications

    Czech Academy of Sciences Publication Activity Database

    de los Santos Pereira, Andres; Riedel, Tomáš; Brynda, Eduard; Rodriguez-Emmenegger, Cesar

    2014-01-01

    Roč. 202, 31 October (2014), s. 1313-1321 ISSN 0925-4005 R&D Projects: GA ČR GAP205/12/1702; GA MŠk(CZ) EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : hierarchically structured brushes * affinity biosensors * fouling Subject RIV: CE - Biochemistry Impact factor: 4.097, year: 2014

  15. Poly(vinyl alcohol)-Assisted Fabrication of Hollow Carbon Spheres/Reduced Graphene Oxide Nanocomposites for High-Performance Lithium-Ion Battery Anodes.

    Science.gov (United States)

    Zhang, Yunqiang; Ma, Qiang; Wang, Shulan; Liu, Xuan; Li, Li

    2018-05-22

    Three-dimensional hollow carbon spheres/reduced graphene oxide (DHCSs/RGO) nanocomposites with high-level heteroatom doping and hierarchical pores are fabricated via a versatile method. Poly(vinyl alcohol) (PVA) that serves as a dispersant and nucleating agent is used as the nonremoval template for synthesizing melamine resin (MR) spheres with abundant heteroatoms, which are subsequently composited with graphene oxide (GO). Use of PVA and implementation of freezing treatment prevent agglomeration of MR spheres within the GO network. Molten KOH is used to achieve the one-step carbonization/activation/reduction for the synthesis of DHCSs/RGO. DHCSs/RGO annealed at 700 °C shows superior discharge capacity of 1395 mA h/g at 0.1 A/g and 606 mA h/g at 5 A/g as well as excellent retentive capacity of 755 mA h/g after 600 cycles at a current density of 2 A/g. An extra CO 2 activation leads to further enhancement of electrochemical performance with outstanding discharge capacity of 1709 mA h/g at 0.1 A/g and 835 mA h/g at 2 A/g after 600 cycles. This work may improve our understanding of the synthesis of graphene-like nanocomposites with hollow and porous carbon architectures and fabrication of high-performance functional devices.

  16. On hierarchical solutions to the BBGKY hierarchy

    Science.gov (United States)

    Hamilton, A. J. S.

    1988-01-01

    It is thought that the gravitational clustering of galaxies in the universe may approach a scale-invariant, hierarchical form in the small separation, large-clustering regime. Past attempts to solve the Born-Bogoliubov-Green-Kirkwood-Yvon (BBGKY) hierarchy in this regime have assumed a certain separable hierarchical form for the higher order correlation functions of galaxies in phase space. It is shown here that such separable solutions to the BBGKY equations must satisfy the condition that the clustered component of the solution has cluster-cluster correlations equal to galaxy-galaxy correlations to all orders. The solutions also admit the presence of an arbitrary unclustered component, which plays no dyamical role in the large-clustering regime. These results are a particular property of the specific separable model assumed for the correlation functions in phase space, not an intrinsic property of spatially hierarchical solutions to the BBGKY hierarchy. The observed distribution of galaxies does not satisfy the required conditions. The disagreement between theory and observation may be traced, at least in part, to initial conditions which, if Gaussian, already have cluster correlations greater than galaxy correlations.

  17. Hierarchical unilamellar vesicles of controlled compositional heterogeneity.

    Directory of Open Access Journals (Sweden)

    Maik Hadorn

    Full Text Available Eukaryotic life contains hierarchical vesicular architectures (i.e. organelles that are crucial for material production and trafficking, information storage and access, as well as energy production. In order to perform specific tasks, these compartments differ among each other in their membrane composition and their internal cargo and also differ from the cell membrane and the cytosol. Man-made structures that reproduce this nested architecture not only offer a deeper understanding of the functionalities and evolution of organelle-bearing eukaryotic life but also allow the engineering of novel biomimetic technologies. Here, we show the newly developed vesicle-in-water-in-oil emulsion transfer preparation technique to result in giant unilamellar vesicles internally compartmentalized by unilamellar vesicles of different membrane composition and internal cargo, i.e. hierarchical unilamellar vesicles of controlled compositional heterogeneity. The compartmentalized giant unilamellar vesicles were subsequently isolated by a separation step exploiting the heterogeneity of the membrane composition and the encapsulated cargo. Due to the controlled, efficient, and technically straightforward character of the new preparation technique, this study allows the hierarchical fabrication of compartmentalized giant unilamellar vesicles of controlled compositional heterogeneity and will ease the development of eukaryotic cell mimics that resemble their natural templates as well as the fabrication of novel multi-agent drug delivery systems for combination therapies and complex artificial microreactors.

  18. Hierarchically structured materials for lithium batteries

    International Nuclear Information System (INIS)

    Xiao, Jie; Zheng, Jianming; Li, Xiaolin; Shao, Yuyan; Zhang, Ji-Guang

    2013-01-01

    The lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles, including solely battery powered vehicles, plug-in hybrid electric vehicles, and hybrid electric vehicles. With the increasing demand for devices of high-energy densities (>500 Wh kg −1 ), new energy storage systems, such as lithium–oxygen (Li–O 2 ) batteries and other emerging systems beyond the conventional LIB, have attracted worldwide interest for both transportation and grid energy storage applications in recent years. It is well known that the electrochemical performance of these energy storage systems depends not only on the composition of the materials, but also on the structure of the electrode materials used in the batteries. Although the desired performance characteristics of batteries often have conflicting requirements with the micro/nano-structure of electrodes, hierarchically designed electrodes can be tailored to satisfy these conflicting requirements. This work will review hierarchically structured materials that have been successfully used in LIB and Li–O 2 batteries. Our goal is to elucidate (1) how to realize the full potential of energy materials through the manipulation of morphologies, and (2) how the hierarchical structure benefits the charge transport, promotes the interfacial properties and prolongs the electrode stability and battery lifetime. (paper)

  19. Anisotropic and Hierarchical Porosity in Multifunctional Ceramics

    Science.gov (United States)

    Lichtner, Aaron Zev

    The performance of multifunctional porous ceramics is often hindered by the seemingly contradictory effects of porosity on both mechanical and non-structural properties and yet a sufficient body of knowledge linking microstructure to these properties does not exist. Using a combination of tailored anisotropic and hierarchical materials, these disparate effects may be reconciled. In this project, a systematic investigation of the processing, characterization and properties of anisotropic and isotropic hierarchically porous ceramics was conducted. The system chosen was a composite ceramic intended as the cathode for a solid oxide fuel cell (SOFC). Comprehensive processing investigations led to the development of approaches to make hierarchical, anisotropic porous microstructures using directional freeze-casting of well dispersed slurries. The effect of all the important processing parameters was investigated. This resulted in an ability to tailor and control the important microstructural features including the scale of the microstructure, the macropore size and total porosity. Comparable isotropic porous ceramics were also processed using fugitive pore formers. A suite of characterization techniques including x-ray tomography and 3-D sectional scanning electron micrographs (FIB-SEM) was used to characterize and quantify the green and partially sintered microstructures. The effect of sintering temperature on the microstructure was quantified and discrete element simulations (DEM) were used to explain the experimental observations. Finally, the comprehensive mechanical properties, at room temperature, were investigated, experimentally and using DEM, for the different microstructures.

  20. Statistical dynamics of ultradiffusion in hierarchical systems

    International Nuclear Information System (INIS)

    Gardner, S.

    1987-01-01

    In many types of disordered systems which exhibit frustration and competition, an ultrametric topology is found to exist in the space of allowable states. This ultrametric topology of states is associated with a hierarchical relaxation process called ultradiffusion. Ultradiffusion occurs in hierarchical non-linear (HNL) dynamical systems when constraints cause large scale, slow modes of motion to be subordinated to small scale, fast modes. Examples of ultradiffusion are found throughout condensed matter physics and critical phenomena (e.g. the states of spin glasses), in biophysics (e.g. the states of Hopfield networks) and in many other fields including layered computing based upon nonlinear dynamics. The statistical dynamics of ultradiffusion can be treated as a random walk on an ultrametric space. For reversible bifurcating ultrametric spaces the evolution equation governing the probability of a particle being found at site i at time t has a highly degenerate transition matrix. This transition matrix has a fractal geometry similar to the replica form proposed for spin glasses. The authors invert this fractal matrix using a recursive quad-tree (QT) method. Possible applications of hierarchical systems to communications and symbolic computing are discussed briefly

  1. In-situ construction of Au nanoparticles confined in double-shelled TiO2/mSiO2 hollow architecture for excellent catalytic activity and enhanced thermal stability

    Science.gov (United States)

    Fang, Jiasheng; Zhang, Yiwei; Zhou, Yuming; Zhang, Chao; Zhao, Shuo; Zhang, Hongxing; Sheng, Xiaoli

    2017-01-01

    A facile strategy has been developed for the synthesis of H-TS-Au microspheres (MCs) with double-shelled hollow architecture and sub-5 nm Au nanoparticles (Au NPs). The synthetic procedure involves the successive sol-gel template-assisted method for the preparation of uniform hierarchical hollow-in-hollow H-TS MCs with TiO2/mSiO2 as yolks/shells, and the unique deposition-precipitation method mediated with Au(en)2Cl3 precursors for the in-situ construction of extremely stable Au NPs under a low-temperature hydrogen reduction. The synthesized H-TS-Au MCs were characterized by TEM, SEM, FTIR, XRD, BET and UV-vis absorption spectra. Catalytic activity of H-TS-Au was evaluated using the reduction of 4-nitrophenol (4-NP) into 4-aminophenol (4-AP) by NaBH4. Results established that H-TS-Au MCs possessed a large-size double-shelled architecture with high structural integrity and robustness,which can effectively confine numerous tiny Au NPs and restrict them from sintering aggregation even up to further calcination at 800 °C. Owing to the advantageous structural configuration and the synergistic effect of TiO2/mSiO2 double shells, the H-TS-Au MCs were demonstrated to exhibit a remarkable catalytic activity and stability, and preserve the intact morphology after 6 repeating reduction of 4-NP.

  2. Mercury's Hollows: New Information on Distribution and Morphology from MESSENGER Observations at Low Altitude

    Science.gov (United States)

    Blewett, D. T.; Stadermann, A. C.; Chabot, N. L.; Denevi, B. W.; Ernst, C. M.; Peplowski, P. N.

    2014-12-01

    MESSENGER's orbital mission at Mercury led to the discovery of an unusual landform not known from other airless rocky bodies of the Solar System. Hollows are irregularly shaped, shallow, rimless depressions, often occurring in clusters and with high-reflectance interiors and halos. The fresh appearance of hollows suggests that they are relatively young features. For example, hollows are uncratered, and talus aprons downslope of hollows in certain cases appear to be covering small impact craters (100-200 in diameter). Hence, some hollows may be actively forming at present. The characteristics of hollows are suggestive of formation via destruction of a volatile-bearing phase (possibly one or more sulfides) through solar heating, micrometeoroid bombardment, and/or ion impact. Previous analysis showed that hollows are associated with low-reflectance material (LRM), a color unit identified from global color images. The material hosting hollows has often been excavated from depth by basin or crater impacts. Hollows are small features (tens of meters to several kilometers), so their detection and characterization with MESSENGER's global maps have been limited. MESSENGER's low-altitude orbits provide opportunities for collection of images at high spatial resolutions, which reveal new occurrences of hollows and offer views of hollows with unprecedented detail. As of this writing, we have examined more than 21,000 images with pixel sizes Shadow-length measurements were made on 280 images, yielding the depths of 1343 individual hollows. The mean depth is 30 m, with a standard deviation of 17 m. We also explored correlations between the geographic locations of hollows and maps provided by the MESSENGER geochemical sensors (X-Ray, Gamma-Ray, and Neutron Spectrometers), including the abundances of Al/Si, Ca/Si, Fe/Si, K, Mg/Si, and S/Si, as well as total neutron cross-section. No clear compositional trends emerged; it is likely that any true compositional preference for terrain

  3. [Study on Hollow Brick Wall's Surface Temperature with Infrared Thermal Imaging Method].

    Science.gov (United States)

    Tang, Ming-fang; Yin, Yi-hua

    2015-05-01

    To address the characteristic of uneven surface temperature of hollow brick wall, the present research adopts soft wares of both ThermaCAM P20 and ThermaCAM Reporter to test the application of infrared thermal image technique in measuring surface temperature of hollow brick wall, and further analyzes the thermal characteristics of hollow brick wall, and building material's impact on surface temperature distribution including hollow brick, masonry mortar, and so on. The research selects the construction site of a three-story-high residential, carries out the heat transfer experiment, and further examines the exterior wall constructed by 3 different hollow bricks including sintering shale hollow brick, masonry mortar and brick masonry. Infrared thermal image maps are collected, including 3 kinds of sintering shale hollow brick walls under indoor heating in winter; and temperature data of wall surface, and uniformity and frequency distribution are also collected for comparative analysis between 2 hollow bricks and 2 kinds of mortar masonry. The results show that improving heat preservation of hollow brick aid masonry mortar can effectively improve inner wall surface temperature and indoor thermal environment; non-uniformity of surface temperature decreases from 0. 6 to 0. 4 °C , and surface temperature frequency distribution changes from the asymmetric distribution into a normal distribution under the condition that energy-saving sintering shale hollow brick wall is constructed by thermal mortar replacing cement mortar masonry; frequency of average temperature increases as uniformity of surface temperature increases. This research provides a certain basis for promotion and optimization of hollow brick wall's thermal function.

  4. Pt monolayer shell on hollow Pd core electrocatalysts: Scale up synthesis, structure, and activity for the oxygen reduction reaction

    Directory of Open Access Journals (Sweden)

    Vukmirovic Miomir B.

    2013-01-01

    Full Text Available We report on synthesis, characterization and the oxygen reduction reaction (ORR kinetics of Pt monolayer shell on Pd(hollow, or Pd-Au(hollow core electrocatalysts. Comparison between the ORR catalytic activity of the electrocatalysts with hollow cores and those of Pt solid and Pt hollow nanoparticles has been obtained using the rotating disk electrode technique. Hollow nanoparticles were made using Ni or Cu nanoparticles as sacrificial templates. The Pt ORR specific and mass activities of the electrocatalysts with hollow cores were found considerably higher than those of the electrocatalysts with the solid cores. We attribute this enhanced Pt activity to the smooth surface morphology and hollow-induced lattice contraction, in addition to the mass-saving geometry of hollow particles.

  5. Spray Modeling for Outwardly-Opening Hollow-Cone Injector

    KAUST Repository

    Sim, Jaeheon

    2016-04-05

    The outwardly-opening piezoelectric injector is gaining popularity as a high efficient spray injector due to its precise control of the spray. However, few modeling studies have been reported on these promising injectors. Furthermore, traditional linear instability sheet atomization (LISA) model was originally developed for pressure swirl hollow-cone injectors with moderate spray angle and toroidal ligament breakups. Therefore, it is not appropriate for the outwardly-opening injectors having wide spray angles and string-like film structures. In this study, a new spray injection modeling was proposed for outwardly-opening hollow-cone injector. The injection velocities are computed from the given mass flow rate and injection pressure instead of ambiguous annular nozzle geometry. The modified Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) breakup model is used with adjusted initial Sauter mean diameter (SMD) for modeling breakup of string-like structure. Spray injection was modeled using a Lagrangian discrete parcel method within the framework of commercial CFD software CONVERGE, and the new model was implemented through the user-defined functions. A Siemens outwardly-opening hollow-cone spray injector was characterized and validated with existing experimental data at the injection pressure of 100 bar. It was found that the collision modeling becomes important in the current injector because of dense spray near nozzle. The injection distribution model showed insignificant effects on spray due to small initial droplets. It was demonstrated that the new model can predict the liquid penetration length and local SMD with improved accuracy for the injector under study.

  6. Hollow fiber membrane lumen modified by polyzwitterionic grafting

    KAUST Repository

    Le, Ngoc Lieu

    2016-08-24

    In this study, we demonstrate an effective way to modify the lumen of polyetherimide hollow fibers by grafting zwitterionic poly(sulfobetaine) to increase the membrane resistance to fouling. Surface-selective grafting of the protective hydrogel layers has been achieved in a facile two-step process. The first step is the adsorption of a macromolecular redox co-initiator on the lumen-side surface of the membrane, which in the second step, after flushing the lumen of the membrane with a solution comprising monomers and a complementary redox initiator, triggers the in situ cross-linking copolymerization at room temperature. The success of grafting reaction has been verified by the surface elemental analyses using X-ray photoelectron spectroscopy (XPS) and the surface charge evaluation using zeta potential measurements. The hydrophilicity of the grafted porous substrate is improved as indicated by the change of contact angle value from 44° to 30°, due to the hydration layer on the surface produced by the zwitterionic poly(sulfobetaine). Compared to the pristine polyetherimide (PEI) substrate, the poly(sulfobetaine) grafted substrates exhibit high fouling resistance against bovine serum albumin (BSA) adsorption, E. coli attachment and cell growth on the surface. Fouling minimization in the lumen is important for the use of hollow fibers in different processes. For instance, it is needed to preserve power density of pressure-retarded osmosis (PRO). In high-pressure PRO tests, a control membrane based on PEI with an external polyamide selective layer was seriously fouled by BSA, leading to a high water flux drop of 37%. In comparison, the analogous membrane, whose lumen was modified with poly(sulfobetaine), not only had a less water flux decline but also had better flux recovery, up to 87% after cleaning and hydraulic pressure impulsion. Clearly, grafting PRO hollow fiber membranes with zwitterionic polymeric hydrogels as a protective layer potentially sustains PRO

  7. Polymeric hollow fiber heat exchanger as an automotive radiator

    International Nuclear Information System (INIS)

    Krásný, Ivo; Astrouski, Ilya; Raudenský, Miroslav

    2016-01-01

    Highlights: • Polymeric hollow fiber heat exchanger as an automotive radiator is proposed. • The mechanism of heat transfer (HT) relies on diameter of polymeric hollow fiber. • Grimson equation is sufficient for approximate prediction of the heat transfers. - Abstract: Nowadays, different automotive parts (tubing, covers, manifolds, etc.) are made of plastics because of their superior characteristics, low weight, chemical resistance, reasonable price and several other aspects. Manufacturing technologies are already well-established and the application of plastics is proven. Following this trend, the production of compact and light all-plastic radiators seems reasonable. Two plastic heat exchangers were manufactured based on polypropylene tubes of diameter 0.6 and 0.8 mm (so-called fibers) and tested. The heat transfer performance and pressure drops were studied with hot (60 °C) ethyleneglycol-water brine flowing inside the fibers and air (20 °C) outside because these conditions are conventional for car radiator operation. It was observed that heat transfer rates (up to 10.2 kW), overall heat transfer coefficients (up to 335 W/m"2 K), and pressure drops are competitive to conventional aluminium finned-tube radiators. Moreover, influence of fiber diameter was studied. It was observed that air-side convective coefficients rise with a decrease of fiber diameter. Air-side pressure drops of plastic prototypes were slightly higher than of aluminium radiator but it is expected that additional optimization will eliminate this drawback. Experimentally obtained air-side heat transfer coefficients were compared with the theoretical prediction using the Grimson equation and the Churchill and Bernstein approach. It was found that the Grimson equation is sufficient for approximate prediction of the outer HTCs and can be used for engineering calculations. Further work will concentrate on optimizing and developing a polymeric hollow fiber heat exchanger with reduced size

  8. Eddy current system for inspection of train hollow axles

    Energy Technology Data Exchange (ETDEWEB)

    Chady, Tomasz; Psuj, Grzegorz; Sikora, Ryszard; Kowalczyk, Jacek; Spychalski, Ireneusz [Department of Electrical and Computer Engineering, Faculty of Electrical Engineering, West Pomeranian University of Technology, Szczecin (Poland)

    2014-02-18

    The structural integrity of wheelsets used in rolling stock is of great importance to the safety. In this paper, electromagnetic system with an eddy current transducer suitable for the inspection of hollow axles have been presented. The transducer was developed to detect surface braking defects having depth not smaller than 0.5 mm. Ultrasound technique can be utilized to inspect the whole axle, but it is not sufficiently sensitive to shallow defects located close to the surface. Therefore, the electromagnetic technique is proposed to detect surface breaking cracks that cannot be detected by ultrasonic technique.

  9. An experiment in heat conduction using hollow cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Ortuno, M; Marquez, A; Gallego, S; Neipp, C; Belendez, A, E-mail: a.belendez@ua.es [Departamento de Fisica, IngenierIa de Sistemas y TeorIa de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)

    2011-07-15

    An experimental apparatus was designed and built to allow students to carry out heat conduction experiments in hollow cylinders made of different materials, as well as to determine the thermal conductivity of these materials. The evolution of the temperature difference between the inner and outer walls of the cylinder as a function of time is analysed, and when the process reaches the steady state regime the thermal conductivity can be easily calculated. Several materials such as wood, plastic and metals are considered and the values of their thermal conductivities, obtained experimentally, are compared with those given in the reference list.

  10. FEM analysis of hollow hub forming in rolling extrusion process

    Directory of Open Access Journals (Sweden)

    J. Bartnicki

    2014-10-01

    Full Text Available In this paper are presented the results of numerical calculations of rolling extrusion process of a hollow hub. As the flanges manufacturing at both sides of the product is required, in the analyzed process of rolling extrusion, a rear bumper was implemented as additional tool limiting axial metal flow. Numerical calculations of the hub forming process were conducted basing on finite element method, applying software Deform3D and Simufact in conditions of three dimensional state of strain. The obtained satisfactory results show that it is possible to conduct the further research works of experimental character, with the application of a modernized aggregate for the rolling extrusion process PO-2.

  11. ESR hollows molten metal/slag interface detection

    International Nuclear Information System (INIS)

    Harris, B.; Klein, H.J.

    1983-01-01

    A system for detecting the location of a molten metal/slag interface during the casting of electroslag remelted hollows includes a gamma ray radiation source and a scintillation counter. The source and counter reside outside the casting mould and are held in fixed spatial relationships with respect to one another and with respect to the mandrel. The radiation from the source is directed chordally through the mould and through the annular casting zone, defined between the sidewalls of the upwardly driven mandrel and the mould without contacting said mandrel. The counter provides an electrical signal responsive to the rate of radiation events detected thereby. (author)

  12. Few photon switching with slow light in hollow fiber

    DEFF Research Database (Denmark)

    Bajcsy, Michal; Hofferberth, S.; Balic, Vlatko

    2009-01-01

    Cold atoms confined inside a hollow-core photonic-crystal fiber with core diameters of a few photon wavelengths are a promising medium for studying nonlinear optical interactions at extremely low light levels. The high electric field intensity per photon and interaction lengths not limited...... by diffraction are some of the unique features of this system. Here, we present the results of our first nonlinear optics experiments in this system including a demonstration of an all-optical switch that is activated at energies corresponding to few hundred optical photons per pulse....

  13. Cherenkov interaction of hollow electron beam with a dielectric waveguide

    International Nuclear Information System (INIS)

    Karbushev, N.I.; Shlapakovskij, A.S.

    1989-01-01

    The waveguide excitation methods are used to study magnetized hollow electron beam interaction with electromagnetic waves of a waveguide with a dielectric bush. Characteristic equation with explicit presentation of depression coefficients and the beam coupling with the synchronous wave is derived. Dependences of depression and coupling coefficients on the beam and waveguide parameters are studied. the current limiting values of small and large space charge regimes are determined. Coefficients of synchronous wave amplification by a beam and oscillation set up conditions in the considered finite length system are determined

  14. Method of production of hollow silicon nitride articles

    International Nuclear Information System (INIS)

    Parr, N.L.; Brown, R.L.

    1971-01-01

    The hollow articles prepared according to the invention have a high density, exhibit no internal stresses and correspond to high demands of tolerance and surface quality. One obtains these by flame spraying silicon powder on a pre-heated form designed with separating agent - e.g. NaCl. After removing the form, the silicon is nitridated to silicon nitride by heating in N 2 or in an atmosphere of ammonia. This process can be interrupted if the article is also to be mechanically processed, and then the nitridation can be completed. (Hoe/LH) [de

  15. The magnetic properties of the hollow cylindrical ideal remanence magnet

    DEFF Research Database (Denmark)

    Bjørk, Rasmus

    2016-01-01

    We consider the magnetic properties of the hollow cylindrical ideal remanence magnet. This magnet is the cylindrical permanent magnet that generates a uniform field in the cylinder bore, using the least amount of magnetic energy to do so. The remanence distribution of this magnet is derived...... and the generated field is compared to that of a Halbach cylinder of equal dimensions. The ideal remanence magnet is shown in most cases to generate a significantly lower field than the equivalent Halbach cylinder, although the field is generated with higher efficiency. The most efficient Halbach cylinder is shown...... to generate a field exactly twice as large as the equivalent ideal remanence magnet....

  16. Computer simulations of laser driven implosion of seeded hollow pellets

    International Nuclear Information System (INIS)

    Larsen, J.T.

    1974-01-01

    The use of a hollow pellet of high r/Δ r permits the successful generation of thermonuclear energy for a moderate laser input. Incorporation of a medium-z material is required for minimization of plasma instabilities and thus suppression of pathologically hot electrons. Designs of this nature are capable of giving yield ratios in excess of 20 for 100 kJ input. It is also likely that a lower-z material may be advantageous to minimize the x-rays radiation into the DT, but this will be at the sacrifice of using less laser power to remain below the plasma instability threshold. (U.S.)

  17. Electrochemistry in hollow-channel paper analytical devices.

    Science.gov (United States)

    Renault, Christophe; Anderson, Morgan J; Crooks, Richard M

    2014-03-26

    In the present article we provide a detailed analysis of fundamental electrochemical processes in a new class of paper-based analytical devices (PADs) having hollow channels (HCs). Voltammetry and amperometry were applied under flow and no flow conditions yielding reproducible electrochemical signals that can be described by classical electrochemical theory as well as finite-element simulations. The results shown here provide new and quantitative insights into the flow within HC-PADs. The interesting new result is that despite their remarkable simplicity these HC-PADs exhibit electrochemical and hydrodynamic behavior similar to that of traditional microelectrochemical devices.

  18. Mode Division Multiplexing Exploring Hollow-Core Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Xu, Jing; Lyngso, Jens Kristian; Leick, Lasse

    2013-01-01

    We review our recent exploratory investigations on mode division multiplexing using hollow-core photonic bandgap fibers (HC-PBGFs). Compared with traditional multimode fibers, HC-PBGFs have several attractive features such as ultra-low nonlinearities, low-loss transmission window around 2 µm etc....... After having discussed the potential and challenges of using HC-PBGFs as transmission fibers for mode multiplexing applications, we will report a number of recent proof-of-concept results obtained in our group using direct detection receivers. The first one is the transmission of two 10.7 Gbit/s non...

  19. Bamboo-inspired optimal design for functionally graded hollow cylinders.

    Directory of Open Access Journals (Sweden)

    Motohiro Sato

    Full Text Available The optimal distribution of the reinforcing fibers for stiffening hollow cylindrical composites is explored using the linear elasticity theory. The spatial distribution of the vascular bundles in wild bamboo, a nature-designed functionally graded material, is the basis for the design. Our results suggest that wild bamboos maximize their flexural rigidity by optimally regulating the radial gradation of their vascular bundle distribution. This fact provides us with a plant-mimetic design principle that enables the realization of high-stiffness and lightweight cylindrical composites.

  20. Nonlinear modes in the hollow-cores of liquid vortices

    KAUST Repository

    Amaouche, Mustapha; Ait Abderrahmane, Hamid; Vatistas, Georgios H.

    2013-01-01

    In this paper we show that the wave patterns observed on the interfacial contours of hollow-core vortices, produced within a shallow layer of fluid contained in stationary cylinder and driven by a rotating disk at the bottom [G.H. Vatistas, H.A. Abderrahmane, M.H. Kamran Siddiqui, Experimental confirmation of Kelvin's equilibria, Phys. Rev. Lett. 100 (2008) 174503-174504], can be described as travelling cnoidal waves. These rotating stationary waves are obtained as solutions of a Korteweg-de Vries type equation, in accordance with the geometrical and kinematic characteristics of the observed polygonal patterns. © 2013 Elsevier Masson SAS. All rights reserved.

  1. Nonlinear modes in the hollow-cores of liquid vortices

    KAUST Repository

    Amaouche, Mustapha

    2013-09-01

    In this paper we show that the wave patterns observed on the interfacial contours of hollow-core vortices, produced within a shallow layer of fluid contained in stationary cylinder and driven by a rotating disk at the bottom [G.H. Vatistas, H.A. Abderrahmane, M.H. Kamran Siddiqui, Experimental confirmation of Kelvin\\'s equilibria, Phys. Rev. Lett. 100 (2008) 174503-174504], can be described as travelling cnoidal waves. These rotating stationary waves are obtained as solutions of a Korteweg-de Vries type equation, in accordance with the geometrical and kinematic characteristics of the observed polygonal patterns. © 2013 Elsevier Masson SAS. All rights reserved.

  2. Simple atom trap in a conical hollow mirror: Numerical analysis

    International Nuclear Information System (INIS)

    Kim, J. A.; Lee, K. I.; Nha, H.; Noh, H. R.; Yoo, S. H.; Jhe, W

    1996-01-01

    We analyze the trap dynamic in a conical hollow (axicon) mirror system. Atom's trajectory is ring shaped if we move the coil (magnetic field) axis off the mirror axis and if we overlap these two axes trap cloud is ball shaped and it is consistent with experiment. We also make a simple comparison between 6-beam MOT and axicon MOT in the ball shaped case, and it shows that at low velocity limit the axicon MOT and typical 6-beam MOT have nearly same trap properties. The axicon trap may be useful as precooled atom source for many other atomic physics experiments such as cold atomic beam, atom funnel, and atom waveguide.

  3. Hydrometallurgical minor actinide separation in hollow fiber modules

    International Nuclear Information System (INIS)

    Geist, A.; Weigl, M.; Gompper, K.

    2004-01-01

    Hollow fiber modules (HFM) were used as phase contacting devices for hydrometallurgical minor actinide separation in the Partitioning and Transmutation context. Two single-HFM setups, one using commercially available HFM, the other one using miniature HFM, have been developed and manufactured. Several very successful DIAMEX and SANEX once-through tests were performed. The major advantage of the new miniature HFM is their size drastically reducing chemicals consumption: only several 10 mL of feed phases are required for a test. (authors)

  4. Atomization of thorium in a hollow-cathode type discharge

    International Nuclear Information System (INIS)

    Pianarosa, P.; Demers, Y.; Gagne, J.M.

    1984-01-01

    The atomization of thorium metal in a hollow-cathode electrical discharge has been investigated. Laser absorption spectroscopy with the laser tuned on the 5760.55 A (0-17355 1 cm -1 ) transition of Th I was used to evaluate the density of atoms in the 3 F 2 ground state. The results obtained (densities up to 10 13 atoms cm -3 ) show that our discharge tube is a suitable source of thorium metal atoms for laser assisted spectroscopic analysis of this element. (author)

  5. Southern Appalachian hillslope erosion rates measured by soil and detrital radiocarbon in hollows

    Science.gov (United States)

    T.C. Hales; K.M. Scharer; R.M. Wooten

    2012-01-01

    Understanding the dynamics of sediment generation and transport on hillslopes provides important constraints on the rate of sediment output from orogenic systems. Hillslope sediment fluxes are recorded by organic material found in the deposits infilling unchanneled convergent topographic features called hollows. This study describes the first hollow infilling rates...

  6. Calculation of shear strength of prestressed hollow core slabs by use of plastic theory

    DEFF Research Database (Denmark)

    Hoang, Linh Cao; Jørgensen, H.G.; Nielsen, Mogens Peter

    2014-01-01

    Th is paper deals with calculations of the shear capacity of precast, prestressed hollow core slabs. Such slabs are often used as floor systems in building structures. A common way to produce hollow core slabs is to use the extrusion technique where long strips of slabs are extruded and thereafter...

  7. Determination of thermal characteristics of standard and improved hollow concrete blocks using different measurement techniques

    DEFF Research Database (Denmark)

    Caruana, C.; Yousif, C.; Bacher, Peder

    2017-01-01

    The lighter weight, improved thermal properties and better acoustic insulation of hollow-core concrete blocks are few of the characteristics that one encounters when comparing them to traditional Maltese globigerina limestone solid blocks. As a result, hollow concrete blocks have recently been...

  8. High-power picosecond pulse delivery through hollow core photonic band gap fibers

    DEFF Research Database (Denmark)

    Michieletto, Mattia; Johansen, Mette Marie; Lyngsø, Jens Kristian

    2015-01-01

    We demonstrated robust and bend insensitive fiber delivery of high power pulsed laser with diffraction limited beam quality for two different kind of hollow core photonic band gap fibers......We demonstrated robust and bend insensitive fiber delivery of high power pulsed laser with diffraction limited beam quality for two different kind of hollow core photonic band gap fibers...

  9. Investigation of the Rolling Motion of a Hollow Cylinder Using a Smartphone's Digital Compass

    Science.gov (United States)

    Wattanayotin, Phattara; Puttharugsa, Chokchai; Khemmani, Supitch

    2017-01-01

    This study used a smartphone's digital compass to observe the rolling motion of a hollow cylinder on an inclined plane. The smartphone (an iPhone 4s) was attached to the end of one side of a hollow cylinder to record the experimental data using the SensorLog application. In the experiment, the change of angular position was measured by the…

  10. Ionization processes in a transient hollow cathode discharge before electric breakdown: statistical distribution

    International Nuclear Information System (INIS)

    Zambra, M.; Favre, M.; Moreno, J.; Wyndham, E.; Chuaqui, H.; Choi, P.

    1998-01-01

    The charge formation processes in a hollow cathode region (HCR) of transient hollow cathode discharge have been studied at the final phase. The statistical distribution that describe different processes of ionization have been represented by Gaussian distributions. Nevertheless, was observed a better representation of these distributions when the pressure is near a minimum value, just before breakdown

  11. Sweep gas membrane distillation in a membrane contactor with metallic hollow fibers

    NARCIS (Netherlands)

    Shukla, Sushumna; Benes, Nieck Edwin; Vankelecom, I.F.J.; Mericq, J.P.; Belleville, M.P.; Hengl, N.; Sanchez Marcano, Jose

    2015-01-01

    This work revolves around the use of porous metal hollow fibers in membrane distillation. Various stages are covered, starting from membrane synthesis up to the testing of a pilot scale membrane module. Mechanically stable metal hollow fibers have been synthesized by phase inversion of a stainless

  12. Self-assembly of calcium phosphate nanoparticles into hollow spheres induced by dissolved amino acids

    NARCIS (Netherlands)

    Hagmeyer, D.; Ganesan, K.; Ruesing, J.; Schunk, D.; Mayer, C.; Dey, A.; Sommerdijk, N.A.J.M.; Epple, M.

    2011-01-01

    Nanoparticles of calcium phosphate assemble spontaneously within a few seconds into hollow spheres with a diameter around 200–300 nm in the presence of dissolved amino acids and dipeptides. The process of formation was followed by cryo-transmission electron microscopy (cryoTEM), proving their hollow

  13. Engineering Porous Polymer Hollow Fiber Microfluidic Reactors for Sustainable C-H Functionalization.

    Science.gov (United States)

    He, Yingxin; Rezaei, Fateme; Kapila, Shubhender; Rownaghi, Ali A

    2017-05-17

    Highly hydrophilic and solvent-stable porous polyamide-imide (PAI) hollow fibers were created by cross-linking of bare PAI hollow fibers with 3-aminopropyl trimethoxysilane (APS). The APS-grafted PAI hollow fibers were then functionalized with salicylic aldehyde for binding catalytically active Pd(II) ions through a covalent postmodification method. The catalytic activity of the composite hollow fiber microfluidic reactors (Pd(II) immobilized APS-grafted PAI hollow fibers) was tested via heterogeneous Heck coupling reaction of aryl halides under both batch and continuous-flow reactions in polar aprotic solvents at high temperature (120 °C) and low operating pressure. X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma (ICP) analyses of the starting and recycled composite hollow fibers indicated that the fibers contain very similar loadings of Pd(II), implying no degree of catalyst leaching from the hollow fibers during reaction. The composite hollow fiber microfluidic reactors showed long-term stability and strong control over the leaching of Pd species.

  14. High performance micro-engineered hollow fiber membranes by smart spinneret design

    NARCIS (Netherlands)

    de Jong, J.; Nijdam, W.; van Rijn, C.J.M.; Visser, Tymen; Bolhuis-Versteeg, Lydia A.M.; Kapantaidakis, G.; Koops, G.H.; Wessling, Matthias

    2005-01-01

    Can hollow fiber membranes be produced in other geometries than circular? If so, are membrane properties maintained and what could be the possible benefits of other geometries? This article gives answers and describes the fabrication of micro-structured hollow fiber membranes using micro-fabricated

  15. Low-Loss Hollow-Core Anti-Resonant Fibers With Semi-Circular Nested Tubes

    DEFF Research Database (Denmark)

    Habib, Selim; Bang, Ole; Bache, Morten

    2016-01-01

    Hollow-core fibers with a single ring of circular antiresonant tubes as the cladding provide a simple way of getting a negative-curvature hollow core, resulting in broadband low-loss transmission with little power overlap in the glass. These fibers show a significant improvement in loss performan...

  16. Polymer blends used to develop felodipine-loaded hollow microspheres for improved oral bioavailability.

    Science.gov (United States)

    Pi, Chao; Feng, Ting; Liang, Jing; Liu, Hao; Huang, Dongmei; Zhan, Chenglin; Yuan, Jiyuan; Lee, Robert J; Zhao, Ling; Wei, Yumeng

    2018-06-01

    Felodipine (FD) has been widely used in anti-hypertensive treatment. However, it has extremely low aqueous solubility and poor bioavailability. To address these problems, FD hollow microspheres as multiple-unit dosage forms were synthesized by a solvent diffusion evaporation method. Particle size of the hollow microspheres, types of ethylcellulose (EC), amounts of EC, polyvinyl pyrrolidone (PVP) and FD were investigated based on an orthogonal experiment of three factors and three levels. In addition, the release kinetics in vitro and pharmacokinetics in beagle dogs of the optimized FD hollow microspheres was investigated and compared with Plendil (commercial FD sustained-release tablets) as a single-unit dosage form. Results showed that the optimal formulation was composed of EC 10 cp :PVP:FD (0.9:0.16:0.36, w/w). The FD hollow microspheres were globular with a hollow structure and have high drug loading (17.69±0.44%) and floating rate (93.82±4.05%) in simulated human gastric fluid after 24h. Pharmacokinetic data showed that FD hollow microspheres exhibited sustained-release behavior and significantly improved relative bioavailability of FD compared with the control. Pharmacodynamic study showed that the FD hollow microspheres could effectively lower blood pressure. Therefore, these findings demonstrated that the hollow microspheres were an effective sustained-release delivery system for FD. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Charge exchange induced X-ray transitions of hollow ions in laser field ionized plasmas

    International Nuclear Information System (INIS)

    Rosmej, F.B.; Hoffmann, D.H.H.; Faenov, A. Ya.; Pikuz, T.A.; Magunov, A.I.; Skobelev, I.Yu.; Auguste, T.; D'Oliveira, P.; Hulin, S.; Monot, P.

    2000-01-01

    Double electron charge exchange is proposed for the formation of hollow He-like ions when laser field ionized nuclei penetrate into the residual gas. Using transitions from different configurations in hollow ions a method for the determination of the electron temperature in the long lasting recombination phase is developed

  18. Self-assembled three-dimensional hierarchical graphene/polypyrrole nanotube hybrid aerogel and its application for supercapacitors.

    Science.gov (United States)

    Ye, Shibing; Feng, Jiachun

    2014-06-25

    A three-dimensional hierarchical graphene/polypyrrole aerogel (GPA) has been fabricated using graphene oxide (GO) and already synthesized one-dimensional hollow polypyrrole nanotubes (PNTs) as the feedstock. The amphiphilic GO is helpful in effectively promoting the dispersion of well-defined PNTs to result in a stable, homogeneous GO/PNT complex solution, while the PNTs not only provide a large accessible surface area for fast transport of hydrate ions but also act as spacers to prevent the restacking of graphene sheets. By a simple one-step reduction self-assembly process, hierarchically structured, low-density, highly compressible GPAs are easily obtained, which favorably combine the advantages of graphene and PNTs. The supercapacitor electrodes based on such materials exhibit excellent electrochemical performance, including a high specific capacitance up to 253 F g(-1), good rate performance, and outstanding cycle stability. Moreover, this method may be feasible to prepare other graphene-based hybrid aerogels with structure-controllable nanostructures in large scale, thereby holding enormous potential in many application fields.

  19. Dual layer hollow fiber sorbents for trace H2S removal from gas streams

    KAUST Repository

    Bhandari, Dhaval A.; Bessho, Naoki; Koros, William J.

    2013-01-01

    Hollow fiber sorbents are pseudo monolithic materials with potential use in various adsorption based applications. Dual layer hollow fiber sorbents have the potential to allow thermal regeneration without direct contact of the regeneration fluid with the sorbent particles. This paper considers the application of dual layer hollow fiber sorbents for a case involving trace amounts of H2S removal from a simulated gas stream and offers a comparison with single layer hollow fiber sorbents. The effect of spin dope composition and core layer zeolite loading on the gas flux, H2S transient sorption capacity and pore structure are also studied. This work can be used as a guide to develop and optimize dual layer hollow fiber sorbent properties beyond the specific example considered here. © 2013 Elsevier Ltd.

  20. A hollow definitive obturator fabrication technique for management of partial maxillectomy.

    Science.gov (United States)

    Patil, Pravinkumar Gajanan; Patil, Smita Pravinkumar

    2012-11-01

    Maxillary obturator prosthesis is the most frequent treatment option for management of partial or total maxillectomy. Heavy weight of the obturators is often a dislocating factor. Hollowing the prosthesis to reduce its weight is the well established fact. The alternate technique to hollow-out the prosthesis has been described in this article which is a variation of previously described processing techniques. A pre-shaped wax-bolus was incorporated inside the flasks during packing of the heat-polymerized acrylic resin to automatically create the hollow space. The processing technique described is a single step flasking procedure to construct a closed-hollow-obturator prosthesis as a single unit. To best understand the technique, this article describes management of a patient who had undergone partial maxillectomy secondary to squamous cell carcinoma rehabilitated with a hollow-obturator prosthesis.