WorldWideScience

Sample records for hierarchical fault simulation

  1. Logic and fault simulation on the Mach1000 hardware accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Hofstadler, P.

    1988-03-01

    This document describes an interface between Mentor Graphics brand workstations and the Mach1000 simulation accelerator from Silicon Solutions (Zycad) Corp. It discusses logic and fault simulation concepts, system administration, dimulation models, hierarchical fault reporting, and hierarchical fault analysis. The tools that are presented perform simulations (MX), report fault simulation results hierarchically (Faultreverse arrowAnalyze), and schedule jobs to share the Mach1000 (SSD). In addition, a method of hierarchical fault analysis is developed that allows the use to determine whether a fault is undetectable or at best possibly detectable (divergent). The tools that implement the hierarchical fault analysis method are also presented. Numerous example problems are worked throughout to clarify and demonstrate the concepts that are being discussed.

  2. Hierarchical Simulation to Assess Hardware and Software Dependability

    Science.gov (United States)

    Ries, Gregory Lawrence

    1997-01-01

    This thesis presents a method for conducting hierarchical simulations to assess system hardware and software dependability. The method is intended to model embedded microprocessor systems. A key contribution of the thesis is the idea of using fault dictionaries to propagate fault effects upward from the level of abstraction where a fault model is assumed to the system level where the ultimate impact of the fault is observed. A second important contribution is the analysis of the software behavior under faults as well as the hardware behavior. The simulation method is demonstrated and validated in four case studies analyzing Myrinet, a commercial, high-speed networking system. One key result from the case studies shows that the simulation method predicts the same fault impact 87.5% of the time as is obtained by similar fault injections into a real Myrinet system. Reasons for the remaining discrepancy are examined in the thesis. A second key result shows the reduction in the number of simulations needed due to the fault dictionary method. In one case study, 500 faults were injected at the chip level, but only 255 propagated to the system level. Of these 255 faults, 110 shared identical fault dictionary entries at the system level and so did not need to be resimulated. The necessary number of system-level simulations was therefore reduced from 500 to 145. Finally, the case studies show how the simulation method can be used to improve the dependability of the target system. The simulation analysis was used to add recovery to the target software for the most common fault propagation mechanisms that would cause the software to hang. After the modification, the number of hangs was reduced by 60% for fault injections into the real system.

  3. A Novel Data Hierarchical Fusion Method for Gas Turbine Engine Performance Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Feng Lu

    2016-10-01

    Full Text Available Gas path fault diagnosis involves the effective utilization of condition-based sensor signals along engine gas path to accurately identify engine performance failure. The rapid development of information processing technology has led to the use of multiple-source information fusion for fault diagnostics. Numerous efforts have been paid to develop data-based fusion methods, such as neural networks fusion, while little research has focused on fusion architecture or the fusion of different method kinds. In this paper, a data hierarchical fusion using improved weighted Dempster–Shaffer evidence theory (WDS is proposed, and the integration of data-based and model-based methods is presented for engine gas-path fault diagnosis. For the purpose of simplifying learning machine typology, a recursive reduced kernel based extreme learning machine (RR-KELM is developed to produce the fault probability, which is considered as the data-based evidence. Meanwhile, the model-based evidence is achieved using particle filter-fuzzy logic algorithm (PF-FL by engine health estimation and component fault location in feature level. The outputs of two evidences are integrated using WDS evidence theory in decision level to reach a final recognition decision of gas-path fault pattern. The characteristics and advantages of two evidences are analyzed and used as guidelines for data hierarchical fusion framework. Our goal is that the proposed methodology provides much better performance of gas-path fault diagnosis compared to solely relying on data-based or model-based method. The hierarchical fusion framework is evaluated in terms to fault diagnosis accuracy and robustness through a case study involving fault mode dataset of a turbofan engine that is generated by the general gas turbine simulation. These applications confirm the effectiveness and usefulness of the proposed approach.

  4. Adaptive Sampling in Hierarchical Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Knap, J; Barton, N R; Hornung, R D; Arsenlis, A; Becker, R; Jefferson, D R

    2007-07-09

    We propose an adaptive sampling methodology for hierarchical multi-scale simulation. The method utilizes a moving kriging interpolation to significantly reduce the number of evaluations of finer-scale response functions to provide essential constitutive information to a coarser-scale simulation model. The underlying interpolation scheme is unstructured and adaptive to handle the transient nature of a simulation. To handle the dynamic construction and searching of a potentially large set of finer-scale response data, we employ a dynamic metric tree database. We study the performance of our adaptive sampling methodology for a two-level multi-scale model involving a coarse-scale finite element simulation and a finer-scale crystal plasticity based constitutive law.

  5. Memory Circuit Fault Simulator

    Science.gov (United States)

    Sheldon, Douglas J.; McClure, Tucker

    2013-01-01

    Spacecraft are known to experience significant memory part-related failures and problems, both pre- and postlaunch. These memory parts include both static and dynamic memories (SRAM and DRAM). These failures manifest themselves in a variety of ways, such as pattern-sensitive failures, timingsensitive failures, etc. Because of the mission critical nature memory devices play in spacecraft architecture and operation, understanding their failure modes is vital to successful mission operation. To support this need, a generic simulation tool that can model different data patterns in conjunction with variable write and read conditions was developed. This tool is a mathematical and graphical way to embed pattern, electrical, and physical information to perform what-if analysis as part of a root cause failure analysis effort.

  6. Hierarchical Network Design Using Simulated Annealing

    DEFF Research Database (Denmark)

    Thomadsen, Tommy; Clausen, Jens

    2002-01-01

    networks are described and a mathematical model is proposed for a two level version of the hierarchical network problem. The problem is to determine which edges should connect nodes, and how demand is routed in the network. The problem is solved heuristically using simulated annealing which as a sub...

  7. Dynamic fault simulation of wind turbines using commercial simulation tools

    DEFF Research Database (Denmark)

    Lund, Torsten; Eek, Jarle; Uski, Sanna

    2005-01-01

    This paper compares the commercial simulation tools: PSCAD/EMTDC, PowerFactory, SIMPOW and PSS/E for analysing fault sequences defined in the Danish grid code requirements for wind turbines connected to a voltage level below 100 kV. Both symmetrical and unsymmetrical faults are analysed. The devi......This paper compares the commercial simulation tools: PSCAD/EMTDC, PowerFactory, SIMPOW and PSS/E for analysing fault sequences defined in the Danish grid code requirements for wind turbines connected to a voltage level below 100 kV. Both symmetrical and unsymmetrical faults are analysed....... The deviations and the reasons for the deviations between the tools are stated. The simulation models are imple-mented using the built-in library components of the simulation tools with exception of the mechanical drive-train model, which had to be user-modeled in PowerFactory and PSS/E....

  8. Adaptive Hierarchical Voltage Control of a DFIG-Based Wind Power Plant for a Grid Fault

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinho; Muljadi, Eduard; Park, Jung-Wook; Kang, Yong Cheol

    2016-11-01

    This paper proposes an adaptive hierarchical voltage control scheme of a doubly-fed induction generator (DFIG)-based wind power plant (WPP) that can secure more reserve of reactive power (Q) in the WPP against a grid fault. To achieve this, each DFIG controller employs an adaptive reactive power to voltage (Q-V) characteristic. The proposed adaptive Q-V characteristic is temporally modified depending on the available Q capability of a DFIG; it is dependent on the distance from a DFIG to the point of common coupling (PCC). The proposed characteristic secures more Q reserve in the WPP than the fixed one. Furthermore, it allows DFIGs to promptly inject up to the Q limit, thereby improving the PCC voltage support. To avert an overvoltage after the fault clearance, washout filters are implemented in the WPP and DFIG controllers; they can prevent a surplus Q injection after the fault clearance by eliminating the accumulated values in the proportional-integral controllers of both controllers during the fault. Test results demonstrate that the scheme can improve the voltage support capability during the fault and suppress transient overvoltage after the fault clearance under scenarios of various system and fault conditions; therefore, it helps ensure grid resilience by supporting the voltage stability.

  9. Multi-Level Simulated Fault Injection for Data Dependent Reliability Analysis of RTL Circuit Descriptions

    Directory of Open Access Journals (Sweden)

    NIMARA, S.

    2016-02-01

    Full Text Available This paper proposes data-dependent reliability evaluation methodology for digital systems described at Register Transfer Level (RTL. It uses a hybrid hierarchical approach, combining the accuracy provided by Gate Level (GL Simulated Fault Injection (SFI and the low simulation overhead required by RTL fault injection. The methodology comprises the following steps: the correct simulation of the RTL system, according to a set of input vectors, hierarchical decomposition of the system into basic RTL blocks, logic synthesis of basic RTL blocks, data-dependent SFI for the GL netlists, and RTL SFI. The proposed methodology has been validated in terms of accuracy on a medium sized circuit – the parallel comparator used in Check Node Unit (CNU of the Low-Density Parity-Check (LDPC decoders. The methodology has been applied for the reliability analysis of a 128-bit Advanced Encryption Standard (AES crypto-core, for which the GL simulation was prohibitive in terms of required computational resources.

  10. Fault diagnosis based on continuous simulation models

    Science.gov (United States)

    Feyock, Stefan

    1987-01-01

    The results are described of an investigation of techniques for using continuous simulation models as basis for reasoning about physical systems, with emphasis on the diagnosis of system faults. It is assumed that a continuous simulation model of the properly operating system is available. Malfunctions are diagnosed by posing the question: how can we make the model behave like that. The adjustments that must be made to the model to produce the observed behavior usually provide definitive clues to the nature of the malfunction. A novel application of Dijkstra's weakest precondition predicate transformer is used to derive the preconditions for producing the required model behavior. To minimize the size of the search space, an envisionment generator based on interval mathematics was developed. In addition to its intended application, the ability to generate qualitative state spaces automatically from quantitative simulations proved to be a fruitful avenue of investigation in its own right. Implementations of the Dijkstra transform and the envisionment generator are reproduced in the Appendix.

  11. Accelerated Hierarchical Collision Detection for Simulation using CUDA

    DEFF Research Database (Denmark)

    Jørgensen, Jimmy Alison; Fugl, Andreas Rune; Petersen, Henrik Gordon

    2010-01-01

    In this article we present a GPU accelerated, hybrid, narrow phase collision detection algorithm for simulation purposes. The algorithm is based on hierarchical bounding volume tree structures of oriented bounding boxes (OBB) that in the past has shown to be efficient for collision detection. The...

  12. A Hierarchical Evaluation of Regional Climate Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Lai-Yung R.; Ringler, Todd; Collins, William D.; Taylor, Mark; Ashfaq, Moetasim

    2013-08-20

    Global climate models (GCMs) are the primary tools for predicting the evolution of the climate system. Through decades of development, GCMs have demonstrated useful skill in simulating climate at continental to global scales. However, large uncertainties remain in projecting climate change at regional scales, which limit our ability to inform decisions on climate change adaptation and mitigation. To bridge this gap, different modeling approaches including nested regional climate models (RCMs), global stretch-grid models, and global high-resolution atmospheric models have been used to provide regional climate simulations (Leung et al. 2003). In previous efforts to evaluate these approaches, isolating their relative merits was not possible because factors such as dynamical frameworks, physics parameterizations, and model resolutions were not systematically constrained. With advances in high performance computing, it is now feasible to run coupled atmosphere-ocean GCMs at horizontal resolution comparable to what RCMs use today. Global models with local refinement using unstructured grids have become available for modeling regional climate (e.g., Rauscher et al. 2012; Ringler et al. 2013). While they offer opportunities to improve climate simulations, significant efforts are needed to test their veracity for regional-scale climate simulations.

  13. Modeling and Fault Simulation of Propellant Filling System

    Science.gov (United States)

    Jiang, Yunchun; Liu, Weidong; Hou, Xiaobo

    2012-05-01

    Propellant filling system is one of the key ground plants in launching site of rocket that use liquid propellant. There is an urgent demand for ensuring and improving its reliability and safety, and there is no doubt that Failure Mode Effect Analysis (FMEA) is a good approach to meet it. Driven by the request to get more fault information for FMEA, and because of the high expense of propellant filling, in this paper, the working process of the propellant filling system in fault condition was studied by simulating based on AMESim. Firstly, based on analyzing its structure and function, the filling system was modular decomposed, and the mathematic models of every module were given, based on which the whole filling system was modeled in AMESim. Secondly, a general method of fault injecting into dynamic system was proposed, and as an example, two typical faults - leakage and blockage - were injected into the model of filling system, based on which one can get two fault models in AMESim. After that, fault simulation was processed and the dynamic characteristics of several key parameters were analyzed under fault conditions. The results show that the model can simulate effectively the two faults, and can be used to provide guidance for the filling system maintain and amelioration.

  14. Simulation of secondary fault shear displacements - method and application

    Science.gov (United States)

    Fälth, Billy; Hökmark, Harald; Lund, Björn; Mai, P. Martin; Munier, Raymond

    2014-05-01

    We present an earthquake simulation method to calculate dynamically and statically induced shear displacements on faults near a large earthquake. Our results are aimed at improved safety assessment of underground waste storage facilities, e.g. a nuclear waste repository. For our simulations, we use the distinct element code 3DEC. We benchmark 3DEC by running an earthquake simulation and then compare the displacement waveforms at a number of surface receivers with the corresponding results obtained from the COMPSYN code package. The benchmark test shows a good agreement in terms of both phase and amplitude. In our application to a potential earthquake near a storage facility, we use a model with a pre-defined earthquake fault plane (primary fault) surrounded by numerous smaller discontinuities (target fractures) representing faults in which shear movements may be induced by the earthquake. The primary fault and the target fractures are embedded in an elastic medium. Initial stresses are applied and the fault rupture mechanism is simulated through a programmed reduction of the primary fault shear strength, which is initiated at a pre-defined hypocenter. The rupture is propagated at a typical rupture propagation speed and arrested when it reaches the fault plane boundaries. The primary fault residual strength properties are uniform over the fault plane. The method allows for calculation of target fracture shear movements induced by static stress redistribution as well as by dynamic effects. We apply the earthquake simulation method in a model of the Forsmark nuclear waste repository site in Sweden with rock mass properties, in situ stresses and fault geometries according to the description of the site established by the Swedish Nuclear Fuel and Waste Management Co (SKB). The target fracture orientations are based on the Discrete Fracture Network model developed for the site. With parameter values set to provide reasonable upper bound estimates of target fracture

  15. Numerical Simulation Study of the Sanchiao Fault Earthquake Scenarios

    Science.gov (United States)

    Wang, Yi-Min; Lee, Shiann-Jong

    2015-04-01

    Sanchiao fault is a western boundary fault of the Taipei basin located in northern Taiwan, close to the densely populated Taipei metropolitan area. Recent study indicated that there is about 40 km of the fault trace extended to the marine area offshore northern Taiwan. Combining the marine and terrestrial parts, the total fault length of Sanchiao fault could be nearly 70 kilometers which implies that this fault has potential to produce a big earthquake. In this study, we analyze several Sanchiao fault earthquake scenarios based on the recipe for predicting strong ground motion. The characterized source parameters include fault length, rupture area, seismic moment, asperity, and slip pattern on the fault plane. According to the assumption of the characterized source model, Sanchiao fault has been inferred to have the potential to produce an earthquake with moment magnitude (Mw) larger than 7.0. Three-dimensional seismic simulation results based upon spectral-element method (SEM) indicate that peak ground acceleration (PGA) is significantly stronger along the fault trace. The basin effect also plays an important role when wave propagates in the Taipei basin which cause seismic wave amplified and prolong the shaking for a very long time. Among all rupture scenarios, the rupture propagated from north to south is the most serious one. Owing to the rupture directivity as well as the basin effects, large PGA (>1g) was observed in the Taipei basin, especially in the northwest side. The results of these scenario earthquake simulations will provide important physically-based numerical data for earthquake mitigation and seismic hazard assessment.

  16. Kinematic Earthquake Ground‐Motion Simulations on Listric Normal Faults

    KAUST Repository

    Passone, Luca

    2017-11-28

    Complex finite-faulting source processes have important consequences for near-source ground motions, but empirical ground-motion prediction equations still lack near-source data and hence cannot fully capture near-fault shaking effects. Using a simulation-based approach, we study the effects of specific source parameterizations on near-field ground motions where empirical data are limited. Here, we investigate the effects of fault listricity through near-field kinematic ground-motion simulations. Listric faults are defined as curved faults in which dip decreases with depth, resulting in a concave upward profile. The listric profiles used in this article are built by applying a specific shape function and varying the initial dip and the degree of listricity. Furthermore, we consider variable rupture speed and slip distribution to generate ensembles of kinematic source models. These ensembles are then used in a generalized 3D finite-difference method to compute synthetic seismograms; the corresponding shaking levels are then compared in terms of peak ground velocities (PGVs) to quantify the effects of breaking fault planarity. Our results show two general features: (1) as listricity increases, the PGVs decrease on the footwall and increase on the hanging wall, and (2) constructive interference of seismic waves emanated from the listric fault causes PGVs over two times higher than those observed for the planar fault. Our results are relevant for seismic hazard assessment for near-fault areas for which observations are scarce, such as in the listric Campotosto fault (Italy) located in an active seismic area under a dam.

  17. Hierarchical Fault Diagnosis for a Hybrid System Based on a Multidomain Model

    Directory of Open Access Journals (Sweden)

    Jiming Ma

    2015-01-01

    Full Text Available The diagnosis procedure is performed by integrating three steps: multidomain modeling, event identification, and failure event classification. Multidomain model can describe the normal and fault behaviors of hybrid systems efficiently and can meet the diagnosis requirements of hybrid systems. Then the multidomain model is used to simulate and obtain responses under different failure events; the responses are further utilized as a priori information when training the event identification library. Finally, a brushless DC motor is selected as the study case. The experimental result indicates that the proposed method could identify the known and unknown failure events of the studied system. In particular, for a system with less response information under a failure event, the accuracy of diagnosis seems to be higher. The presented method integrates the advantages of current quantitative and qualitative diagnostic procedures and can distinguish between failures caused by parametric and abrupt structure faults. Another advantage of our method is that it can remember unknown failure types and automatically extend the adaptive resonance theory neural network library, which is extremely useful for complex hybrid systems.

  18. Hierarchical Stochastic Simulation Algorithm for SBML Models of Genetic Circuits

    Directory of Open Access Journals (Sweden)

    Leandro eWatanabe

    2014-11-01

    Full Text Available This paper describes a hierarchical stochastic simulation algorithm which has been implemented within iBioSim, a tool used to model, analyze, and visualize genetic circuits. Many biological analysis tools flatten out hierarchy before simulation, but there are many disadvantages associated with this approach. First, the memory required to represent the model can quickly expand in the process. Second, the flattening process is computationally expensive. Finally, when modeling a dynamic cellular population within iBioSim, inlining the hierarchy of the model is inefficient since models must grow dynamically over time. This paper discusses a new approach to handle hierarchy on the fly to make the tool faster and more memory-efficient. This approach yields significant performance improvements as compared to the former flat analysis method.

  19. An Intelligent Hierarchical Approach to Actuator Fault Diagnosis and Accommodation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal presents a novel intelligent hierarchical approach to detection, isolation, and accommodation of primary aerodynamic actuator failures. The proposed...

  20. Modeling and simulation of longwall scraper conveyor considering operational faults

    Directory of Open Access Journals (Sweden)

    Cenacewicz Krzysztof

    2016-06-01

    Full Text Available The paper provides a description of analytical model of a longwall scraper conveyor, including its electrical, mechanical, measurement and control actuating systems, as well as presentation of its implementation in the form of computer simulator in the Matlab®/Simulink® environment. Using this simulator eight scenarios typical of usual operational conditions of an underground scraper conveyor can be generated. Moreover, the simulator provides a possibility of modeling various operational faults and taking into consideration a measurement noise generated by transducers. The analysis of various combinations of scenarios of operation and faults with description is presented. The simulator developed may find potential application in benchmarking of diagnostic systems, testing of algorithms of operational control or can be used for supporting the modeling of real processes occurring in similar systems.

  1. Fault simulator trainer for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Koerting, K. (Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.))

    1983-03-01

    A new nuclear power plant control simulator, developed at Karlsruhe for training operators, is described, based on an office type minicomputer with visual displays representing the various relevant reactor parameters, commands, controls status and safety arrangements.

  2. CONFIG - Adapting qualitative modeling and discrete event simulation for design of fault management systems

    Science.gov (United States)

    Malin, Jane T.; Basham, Bryan D.

    1989-01-01

    CONFIG is a modeling and simulation tool prototype for analyzing the normal and faulty qualitative behaviors of engineered systems. Qualitative modeling and discrete-event simulation have been adapted and integrated, to support early development, during system design, of software and procedures for management of failures, especially in diagnostic expert systems. Qualitative component models are defined in terms of normal and faulty modes and processes, which are defined by invocation statements and effect statements with time delays. System models are constructed graphically by using instances of components and relations from object-oriented hierarchical model libraries. Extension and reuse of CONFIG models and analysis capabilities in hybrid rule- and model-based expert fault-management support systems are discussed.

  3. Simulation-driven machine learning: Bearing fault classification

    Science.gov (United States)

    Sobie, Cameron; Freitas, Carina; Nicolai, Mike

    2018-01-01

    Increasing the accuracy of mechanical fault detection has the potential to improve system safety and economic performance by minimizing scheduled maintenance and the probability of unexpected system failure. Advances in computational performance have enabled the application of machine learning algorithms across numerous applications including condition monitoring and failure detection. Past applications of machine learning to physical failure have relied explicitly on historical data, which limits the feasibility of this approach to in-service components with extended service histories. Furthermore, recorded failure data is often only valid for the specific circumstances and components for which it was collected. This work directly addresses these challenges for roller bearings with race faults by generating training data using information gained from high resolution simulations of roller bearing dynamics, which is used to train machine learning algorithms that are then validated against four experimental datasets. Several different machine learning methodologies are compared starting from well-established statistical feature-based methods to convolutional neural networks, and a novel application of dynamic time warping (DTW) to bearing fault classification is proposed as a robust, parameter free method for race fault detection.

  4. Faults

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Through the study of faults and their effects, much can be learned about the size and recurrence intervals of earthquakes. Faults also teach us about crustal...

  5. Fault Risk Assessment of Underwater Vehicle Steering System Based on Virtual Prototyping and Monte Carlo Simulation

    Directory of Open Access Journals (Sweden)

    He Deyu

    2016-09-01

    Full Text Available Assessing the risks of steering system faults in underwater vehicles is a human-machine-environment (HME systematic safety field that studies faults in the steering system itself, the driver’s human reliability (HR and various environmental conditions. This paper proposed a fault risk assessment method for an underwater vehicle steering system based on virtual prototyping and Monte Carlo simulation. A virtual steering system prototype was established and validated to rectify a lack of historic fault data. Fault injection and simulation were conducted to acquire fault simulation data. A Monte Carlo simulation was adopted that integrated randomness due to the human operator and environment. Randomness and uncertainty of the human, machine and environment were integrated in the method to obtain a probabilistic risk indicator. To verify the proposed method, a case of stuck rudder fault (SRF risk assessment was studied. This method may provide a novel solution for fault risk assessment of a vehicle or other general HME system.

  6. New Insights About Pre-Stress and Fault Interaction at Fault Step-Overs from 3D Numerical Simulations

    Science.gov (United States)

    Kroll, K.; Oglesby, D. D.; Richards-Dinger, K. B.; Dieterich, J. H.

    2014-12-01

    The stressing conditions on faults continuously evolve due to several factors, such as tectonic stressing, fault interactions, pore-fluid perturbations, and viscoelastic relaxation. Initial stressing conditions have a profound effect on the rupture process, including rupture propagation through stepover regions. Knowledge of rupture behavior near fault stepovers is critically important to properly quantify and mitigate seismic hazards. Previous studies have shown that stepovers along faults can influence both the earthquake magnitude and recurrence interval when rupture either jumps across or is arrested at a stepover. Landmark investigations of en echelon fault interaction with uniform initial stresses that promote super-shear rupture reported successful jumps occur at step-over widths ≤ 2.5 and 5 km for compressional and extensional stepovers, respectively (Harris and Day, 1993). We use the 3D quasi-dynamic, physics-based simulator RSQSim to investigate how stress evolution effects rupture propagation at fault stepovers over multiple earthquake cycles. Comparisons of single-event ruptures at fault stepovers between RSQSim and the dynamic finite element code FaultMod demonstrate nucleation locations on the receiver fault similar to those of Harris and Day (1993). These simulations use uniform initial stresses with rate- and state- and slip-weakening dependent friction for RSQSim and FaultMod, respectively. Here, we present results from multi-cycle event simulations on en echelon faults using evolved stress states that arise due to fault interaction and tectonic loading. Results indicate that successful rupture jumps only occur at stepover widths of 1-1.5 km for both fault step types. The spatial pattern of rupture re-nucleation locations is strongly influenced by the evolved stress state and is dissimilar to the pattern predicted by studies. Finally, initial rupture nucleation always occurs before the magnitude of the pre-stress reaches values high enough to

  7. Broadband Ground Motion Simulations for the Puente Hills Fault System

    Science.gov (United States)

    Graves, R. W.

    2005-12-01

    Recent geologic studies have identified the seismic potential of the Puente Hills fault system. This system is comprised of multiple blind thrust segments, a portion of which ruptured in the Mw 5.9 Whittier-Narrows earthquake. Rupture of the entire system could generate a Mw 7.2 (or larger) earthquake. To assess the potential hazard posed by the fault system, we have simulated the response for several earthquake scenarios. These simulations are unprecedented in scope and scale. Broadband (0-10 Hz) ground motions are computed at 66,000 sites, covering most of the LA metropolitan region. Low frequency (f 1 Hz) motions are calculated using a stochastic approach. We consider scenarios ranging from Mw 6.7 to Mw 7.2, including both high and low stress drop events. Finite-fault rupture models for these scenarios are generated following a wavenumber filtering technique (K-2 model) that has been calibrated against recent earthquakes. In all scenarios, strong rupture directivity channels large amplitude pulses of motion directly into the Los Angeles basin, which then propagate southward as basin surface waves. Typically, the waveforms near downtown Los Angeles are dominated by a strong, concentrated pulse of motion. At Long Beach (across the LA basin from the rupture) the waveforms are dominated by late arriving longer period surface waves. The great density of sites used in the calculation allows the construction of detailed maps of various ground motion parameters (PGA, PGV, SA), as well as full animations of the propagating broadband wave field. Additionally, the broadband time histories are available for use in non-linear response analyses of built structures.

  8. Fault-tolerant Control of Unmanned Underwater Vehicles with Continuous Faults: Simulations and Experiments

    Directory of Open Access Journals (Sweden)

    Qian Liu

    2009-12-01

    Full Text Available A novel thruster fault diagnosis and accommodation method for open-frame underwater vehicles is presented in the paper. The proposed system consists of two units: a fault diagnosis unit and a fault accommodation unit. In the fault diagnosis unit an ICMAC (Improved Credit Assignment Cerebellar Model Articulation Controllers neural network information fusion model is used to realize the fault identification of the thruster. The fault accommodation unit is based on direct calculations of moment and the result of fault identification is used to find the solution of the control allocation problem. The approach resolves the continuous faulty identification of the UV. Results from the experiment are provided to illustrate the performance of the proposed method in uncertain continuous faulty situation.

  9. 3D Dynamic Rupture Simulations Across Interacting Faults: the Mw7.0, 2010, Haiti Earthquake

    Science.gov (United States)

    Douilly, R.; Aochi, H.; Calais, E.; Freed, A. M.; Aagaard, B.

    2014-12-01

    The mechanisms controlling rupture propagation between fault segments during an earthquake are key to the hazard posed by fault systems. Rupture initiation on a fault segment sometimes transfers to a larger fault, resulting in a significant event (e.g.i, 2002 M7.9Denali and 2010 M7.1 Darfield earthquakes). In other cases rupture is constrained to the initial segment and does not transfer to nearby faults, resulting in events of moderate magnitude. This is the case of the 1989 M6.9 Loma Prieta and 2010 M7.0 Haiti earthquakes which initiated on reverse faults abutting against a major strike-slip plate boundary fault but did not propagate onto it. Here we investigatethe rupture dynamics of the Haiti earthquake, seeking to understand why rupture propagated across two segments of the Léogâne fault but did not propagate to the adjacenent Enriquillo Plantain Garden Fault, the major 200 km long plate boundary fault cutting through southern Haiti. We use a Finite Element Model to simulate the nucleation and propagation of rupture on the Léogâne fault, varying friction and background stress to determine the parameter set that best explains the observed earthquake sequence. The best-fit simulation is in remarkable agreement with several finite fault inversions and predicts ground displacement in very good agreement with geodetic and geological observations. The two slip patches inferred from finite-fault inversions are explained by the successive rupture of two fault segments oriented favorably with respect to the rupture propagation, while the geometry of the Enriquillo fault did not allow shear stress to reach failure. Although our simulation results replicate well the ground deformation consistent with the geodetic surface observation but convolving the ground motion with the soil amplification from the microzonation study will correctly account for the heterogeneity of the PGA throughout the rupture area.

  10. Fault attacks, injection techniques and tools for simulation

    NARCIS (Netherlands)

    Piscitelli, R.; Bhasin, S.; Regazzoni, F.

    2015-01-01

    Faults attacks are a serious threat to secure devices, because they are powerful and they can be performed with extremely cheap equipment. Resistance against fault attacks is often evaluated directly on the manufactured devices, as commercial tools supporting fault evaluation do not usually provide

  11. Ranking of Business Process Simulation Software Tools with DEX/QQ Hierarchical Decision Model.

    Science.gov (United States)

    Damij, Nadja; Boškoski, Pavle; Bohanec, Marko; Mileva Boshkoska, Biljana

    2016-01-01

    The omnipresent need for optimisation requires constant improvements of companies' business processes (BPs). Minimising the risk of inappropriate BP being implemented is usually performed by simulating the newly developed BP under various initial conditions and "what-if" scenarios. An effectual business process simulations software (BPSS) is a prerequisite for accurate analysis of an BP. Characterisation of an BPSS tool is a challenging task due to the complex selection criteria that includes quality of visual aspects, simulation capabilities, statistical facilities, quality reporting etc. Under such circumstances, making an optimal decision is challenging. Therefore, various decision support models are employed aiding the BPSS tool selection. The currently established decision support models are either proprietary or comprise only a limited subset of criteria, which affects their accuracy. Addressing this issue, this paper proposes a new hierarchical decision support model for ranking of BPSS based on their technical characteristics by employing DEX and qualitative to quantitative (QQ) methodology. Consequently, the decision expert feeds the required information in a systematic and user friendly manner. There are three significant contributions of the proposed approach. Firstly, the proposed hierarchical model is easily extendible for adding new criteria in the hierarchical structure. Secondly, a fully operational decision support system (DSS) tool that implements the proposed hierarchical model is presented. Finally, the effectiveness of the proposed hierarchical model is assessed by comparing the resulting rankings of BPSS with respect to currently available results.

  12. Simulation of a flexible wind turbine response to a grid fault

    DEFF Research Database (Denmark)

    Hansen, Anca D.; Cutululis, A. Nicolaos; Sørensen, Poul

    2007-01-01

    in power system simulation tools applying simplified mechanical models of the drive train. This paper presents simulations of the wind turbine load response to grid faults with an advanced aeroelastic computer code (HAWC2). The core of this code is an advanced model for the flexible structure of the wind......The purpose of this work is to illustrate the impact of a grid fault on the mechanical loads of a wind turbine. Grid faults generate transients in the generator electromagnetic torque, which are propagated in the wind turbine, stressing its mechanical components. Grid faults are normally simulated...... turbines, taking the flexibility of the tower, blades and other components of the wind turbines into account. The effect of a grid fault on the wind turbine flexible structure is assessed for a typical fixed speed wind turbine, equipped with an induction generator....

  13. Simulations of the Complex Hierarchical Growth of Structure

    Science.gov (United States)

    Hallman, E. J.; Ryu, D.; Kang, H.; Jones, T. W.

    2003-12-01

    We will present results from cosmological numerical hydro/n-body simulations. Specifically we target complex structures in the clusters of galaxies that form, and in their immediate environment. These features include shocks and cold fronts. Clusters are synthetically observed, and the images are analyzed for evidence of these structures. Using time-resolved movies of the simulations in progress, we examine the evolution of clusters and groups in the simulations and its observable consequences. The simulations use an Eulerian TVD type scheme for the gas and a particle mesh N-body method. The simulated volumes are (50h-1 Mpc)3 and (100h-1 Mpc)3 respectively. Each is represented by 10243 uniformly spaced grid points. The simulation evolves from early times (z 40-60), from primordial density fluctuations in a concordance model LCDM universe, until the current epoch. A wide array of complex structures form in the simulations, including filaments, accretion shocks, merger shocks and cluster internal shocks, as well as contact discontinuities which may give rise to the observed cold fronts. These features appear inside clusters, as well as in the surrounding warm/hot medium, and serve as a key diagnostic of the dynamical state of the gas, as well as a tracer of its evolution. This work is supported by the NSF and the Minnesota Supercomputing Institute.

  14. Hierarchical Petascale Simulation Framework for Stress Corrosion Cracking

    Energy Technology Data Exchange (ETDEWEB)

    Vashishta, Priya

    2014-12-01

    Reaction Dynamics in Energetic Materials: Detonation is a prototype of mechanochemistry, in which mechanically and thermally induced chemical reactions far from equilibrium exhibit vastly different behaviors. It is also one of the hardest multiscale physics problems, in which diverse length and time scales play important roles. The CACS group has performed multimillion-atom reactive MD simulations to reveal a novel two-stage reaction mechanism during the detonation of cyclotrimethylenetrinitramine (RDX) crystal. Rapid production of N2 and H2O within ~10 ps is followed by delayed production of CO molecules within ~ 1 ns. They found that further decomposition towards the final products is inhibited by the formation of large metastable C- and O-rich clusters with fractal geometry. The CACS group has also simulated the oxidation dynamics of close-packed aggregates of aluminum nanoparticles passivated by oxide shells. Their simulation results suggest an unexpectedly active role of the oxide shell as a nanoreactor.

  15. Simulations of tremor-related creep reveal a weak crustal root of the San Andreas Fault

    Science.gov (United States)

    Shelly, David R.; Bradley, Andrew M.; Johnson, Kaj M.

    2013-01-01

    Deep aseismic roots of faults play a critical role in transferring tectonic loads to shallower, brittle crustal faults that rupture in large earthquakes. Yet, until the recent discovery of deep tremor and creep, direct inference of the physical properties of lower-crustal fault roots has remained elusive. Observations of tremor near Parkfield, CA provide the first evidence for present-day localized slip on the deep extension of the San Andreas Fault and triggered transient creep events. We develop numerical simulations of fault slip to show that the spatiotemporal evolution of triggered tremor near Parkfield is consistent with triggered fault creep governed by laboratory-derived friction laws between depths of 20–35 km on the fault. Simulated creep and observed tremor northwest of Parkfield nearly ceased for 20–30 days in response to small coseismic stress changes of order 104 Pa from the 2003 M6.5 San Simeon Earthquake. Simulated afterslip and observed tremor following the 2004 M6.0 Parkfield earthquake show a coseismically induced pulse of rapid creep and tremor lasting for 1 day followed by a longer 30 day period of sustained accelerated rates due to propagation of shallow afterslip into the lower crust. These creep responses require very low effective normal stress of ~1 MPa on the deep San Andreas Fault and near-neutral-stability frictional properties expected for gabbroic lower-crustal rock.

  16. Numerical Simulation of Seismicity in Active-Fault System in the Japanese Island

    Science.gov (United States)

    Kuwahara, Y.; Cho, I.

    2016-12-01

    We have conducted numerical simulations of seismicity in an active-fault system in the Japanese island to investigate the effects of stress transfer interaction of large earthquakes. Sixty major active faults were embedded into a 3D realistic rheological structure model of the crust and mantle of the central part of the main island of Japan for FEM simulations. The rheological model has been constructed, considering geophysical and geological data (Cho & Kuwahara, 2013a, b). The model consists of two layers: an upper part is of the elastic layer with non-uniform thickness and a lower one is of a Maxwell viscoelastic layer with a uniform viscosity of 10E21Pas. Tectonic stress assumed in the simulations is a superposition of an E-W compressional stress to an entire body of the model and stresses caused by a collision of the Izu Peninsula to the main land of Japan. Active fault geometries, such as position, strike, dip, length and width, were given with reference to results of a fault evaluation by the Headquarters for Earthquake Research Promotion of the MEXT (a ministry of the Japanese government). We have also introduced a shear zone with 5-km thickness and viscous edge zones into the model as deep extension and both lateral edges of each active fault, respectively, with the same Maxwell viscoelastic properties as the lower layer of the structure model. Earthquake ruptures on the active faults were triggered on the occasion that a shear stress reached a presumed level on some monitoring points on the fault plane. Stresses on the monitoring points were a superposition of the tectonic stress above-mentioned and Green's functions beforehand calculated for the rheology structure model from the ruptured fault to the other faults. Thus, we can show the calculation results of return period of an earthquake cycle of each active fault and its fluctuation due to the stress perturbations from earthquakes on other active faults

  17. Multi-physics simulations using a hierarchical interchangeable software interface

    Science.gov (United States)

    Portegies Zwart, Simon F.; McMillan, Stephen L. W.; van Elteren, Arjen; Pelupessy, F. Inti; de Vries, Nathan

    2013-03-01

    We introduce a general-purpose framework for interconnecting scientific simulation programs using a homogeneous, unified interface. Our framework is intrinsically parallel, and conveniently separates all component numerical modules in memory. This strict separation allows automatic unit conversion, distributed execution of modules on different cores within a cluster or grid, and orderly recovery from errors. The framework can be efficiently implemented and incurs an acceptable overhead. In practice, we measure the time spent in the framework to be less than 1% of the wall-clock time. Due to the unified structure of the interface, incorporating multiple modules addressing the same physics in different ways is relatively straightforward. Different modules may be advanced serially or in parallel. Despite initial concerns, we have encountered relatively few problems with this strict separation between modules, and the results of our simulations are consistent with earlier results using more traditional monolithic approaches. This framework provides a platform to combine existing simulation codes or develop new physical solver codes within a rich “ecosystem” of interchangeable modules.

  18. Dynamic rupture simulations on complex fault zone structures with off-fault plasticity using the ADER-DG method

    Science.gov (United States)

    Wollherr, Stephanie; Gabriel, Alice-Agnes; Igel, Heiner

    2015-04-01

    zones or branched faults. Studying the interplay of stress conditions and angle dependence of neighbouring branches including inelastic material behaviour and its effects on rupture jumps and seismic activation helps to advance our understanding of earthquake source processes. An application is the simulation of a real large-scale subduction zone scenario including plasticity to validate the coupling of our dynamic rupture calculations to a tsunami model in the framework of the ASCETE project (http://www.ascete.de/). Andrews, D. J. (2005): Rupture dynamics with energy loss outside the slip zone, J. Geophys. Res., 110, B01307. Heinecke, A. (2014), A. Breuer, S. Rettenberger, M. Bader, A.-A. Gabriel, C. Pelties, A. Bode, W. Barth, K. Vaidyanathan, M. Smelyanskiy and P. Dubey: Petascale High Order Dynamic Rupture Earthquake Simulations on Heterogeneous Supercomputers. In Supercomputing 2014, The International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, New Orleans, LA, USA, November 2014. Roten, D. (2014), K. B. Olsen, S.M. Day, Y. Cui, and D. Fäh: Expected seismic shaking in Los Angeles reduced by San Andreas fault zone plasticity, Geophys. Res. Lett., 41, 2769-2777.

  19. Fuzzy delay model based fault simulator for crosstalk delay fault test ...

    Indian Academy of Sciences (India)

    The delays of a logic gates or interconnect are affected by various fabrication process parameters and however accurate the delay models are, it is very difficult to model the process uncertainties. In this paper, the fuzzy delay model is employed for test generation of crosstalk delay faults in asynchronous sequential circuits.

  20. Coulomb stress changes imparted by simulated M>7 earthquakes to major fault surfaces in Southern California

    Science.gov (United States)

    Rollins, J. C.; Ely, G. P.; Jordan, T. H.

    2011-12-01

    To study static stress interactions between faults in southern California and identify cases where one large earthquake could trigger another, we select fourteen M>7 events simulated by the SCEC/CME CyberShake project and calculate the Coulomb stress changes those events impart to major fault surfaces in the UCERF2 fault model for the region. CyberShake simulates between 6 and 32 slip distributions for each event at a slip sampling resolution of 1 km, and we calculate stress changes on fault surfaces at the same resolution, a level of detail which is unprecedented in studies of stress transfer and which allows us to study the way that variabilities in slip on the source can affect imparted stress changes. We find that earthquakes rupturing the southern San Andreas fault generally decrease Coulomb stress on right-lateral faults in the Los Angeles basin, while M>7 events on the San Jacinto, Elsinore, Newport-Inglewood and Palos Verdes faults generally decrease stress on parallel right-lateral faults but increase Coulomb stress on the Mojave or San Bernardino sections of the San Andreas. Stress interactions between strike-slip and thrust faults and between the San Andreas and Garlock faults depend on the rupture area of the source. Coulomb stress changes imparted by simulated SAF events to locations on the San Jacinto and Garlock faults within ~8 km of the San Andreas appear to be influenced more by the nearby distribution of high and low slip on the San Andreas than by the overall slip distribution across the entire rupture. Using a simplified model, we calculate that an area of no slip surrounded by high slip on a rupture imparts strong Coulomb stress increases ≤7 km to either side of the source fault, possibly explaining the apparent ~8-km range of influence of local slip on the San Andreas. Additionally, we devise a method for evaluating uncertainty values in Coulomb stress changes caused by uncertainties in the strike, dip and rake of the receiver fault. These

  1. Accounting for Fault Roughness in Pseudo-Dynamic Ground-Motion Simulations

    KAUST Repository

    Mai, Paul Martin

    2017-04-03

    Geological faults comprise large-scale segmentation and small-scale roughness. These multi-scale geometrical complexities determine the dynamics of the earthquake rupture process, and therefore affect the radiated seismic wavefield. In this study, we examine how different parameterizations of fault roughness lead to variability in the rupture evolution and the resulting near-fault ground motions. Rupture incoherence naturally induced by fault roughness generates high-frequency radiation that follows an ω−2 decay in displacement amplitude spectra. Because dynamic rupture simulations are computationally expensive, we test several kinematic source approximations designed to emulate the observed dynamic behavior. When simplifying the rough-fault geometry, we find that perturbations in local moment tensor orientation are important, while perturbations in local source location are not. Thus, a planar fault can be assumed if the local strike, dip, and rake are maintained. We observe that dynamic rake angle variations are anti-correlated with the local dip angles. Testing two parameterizations of dynamically consistent Yoffe-type source-time function, we show that the seismic wavefield of the approximated kinematic ruptures well reproduces the radiated seismic waves of the complete dynamic source process. This finding opens a new avenue for an improved pseudo-dynamic source characterization that captures the effects of fault roughness on earthquake rupture evolution. By including also the correlations between kinematic source parameters, we outline a new pseudo-dynamic rupture modeling approach for broadband ground-motion simulation.

  2. Accounting for Fault Roughness in Pseudo-Dynamic Ground-Motion Simulations

    Science.gov (United States)

    Mai, P. Martin; Galis, Martin; Thingbaijam, Kiran K. S.; Vyas, Jagdish C.; Dunham, Eric M.

    2017-09-01

    Geological faults comprise large-scale segmentation and small-scale roughness. These multi-scale geometrical complexities determine the dynamics of the earthquake rupture process, and therefore affect the radiated seismic wavefield. In this study, we examine how different parameterizations of fault roughness lead to variability in the rupture evolution and the resulting near-fault ground motions. Rupture incoherence naturally induced by fault roughness generates high-frequency radiation that follows an ω-2 decay in displacement amplitude spectra. Because dynamic rupture simulations are computationally expensive, we test several kinematic source approximations designed to emulate the observed dynamic behavior. When simplifying the rough-fault geometry, we find that perturbations in local moment tensor orientation are important, while perturbations in local source location are not. Thus, a planar fault can be assumed if the local strike, dip, and rake are maintained. We observe that dynamic rake angle variations are anti-correlated with the local dip angles. Testing two parameterizations of dynamically consistent Yoffe-type source-time function, we show that the seismic wavefield of the approximated kinematic ruptures well reproduces the radiated seismic waves of the complete dynamic source process. This finding opens a new avenue for an improved pseudo-dynamic source characterization that captures the effects of fault roughness on earthquake rupture evolution. By including also the correlations between kinematic source parameters, we outline a new pseudo-dynamic rupture modeling approach for broadband ground-motion simulation.

  3. Battery System Modeling for a Military Electric Propulsion Vehicle with a Fault Simulation

    Directory of Open Access Journals (Sweden)

    Hyeongcheol Lee

    2013-10-01

    Full Text Available This paper describes the development process and results of a battery system model with a fault simulation for electric propulsion vehicles. The developed battery system model can be used to verify control and fault diagnosis strategies of the supervisory controller in an electric propulsion vehicle. To develop this battery system model, three sub-models, including a battery model, a relay assembly model, and a battery management system (BMS model, are connected together like in the target real battery system. Comparison results between the real battery system hardware and the battery system model show a similar tendency and values. Furthermore, the fault injection test of the model shows that the proposed battery system model can simulate a failure situation consistent with a real system. It is possible for the model to emulate the battery characteristics and fault situation if it is used in the development process of a BMS or for supervisory control strategies for electric propulsion systems.

  4. A Hierarchical FEM approach for Simulation of Geometrical and Material induced Instability of Composite Structures

    DEFF Research Database (Denmark)

    Hansen, Anders L.; Lund, Erik; Pinho, Silvestre T.

    2009-01-01

    In this paper a hierarchical FE approach is utilized to simulate delamination in a composite plate loaded in uni-axial compression. Progressive delamination is modelled by use of cohesive interface elements that are automatically embedded. The non-linear problem is solved quasi-statically in which...... the interaction between material degradation and structural instability is solved iteratively. The effect of fibre bridging is studied numerically and in-plane failure is predicted using physically based failure criteria....

  5. Battery System Modeling for a Military Electric Propulsion Vehicle with a Fault Simulation

    OpenAIRE

    Ham, Hyeongjin; Han, Kyuhong; Lee, Hyeongcheol

    2013-01-01

    This paper describes the development process and results of a battery system model with a fault simulation for electric propulsion vehicles. The developed battery system model can be used to verify control and fault diagnosis strategies of the supervisory controller in an electric propulsion vehicle. To develop this battery system model, three sub-models, including a battery model, a relay assembly model, and a battery management system (BMS) model, are connected together like in the target r...

  6. Fault mechanism analysis and simulation for continuity resistance test of electrical components in aircraft engine

    Science.gov (United States)

    Shi, Xudong; Yin, Yaping; Wang, Jialin; Sun, Zhaorong

    2017-01-01

    A large number of electrical components are used in civil aircraft engines, whose electrical circuits are usually intricate and complicated. Continuity resistance is an important parameter for the operating state of electrical components. Electrical continuity fault has serious impact on the reliability of the aircraft engine. In this paper, mathematical models of electrical components are established, and simulation is made by Simulink to analyze the electrical continuity fault.

  7. Making simulations with the MNPBEM toolbox big: Hierarchical matrices and iterative solvers

    Science.gov (United States)

    Hohenester, Ulrich

    2018-01-01

    MNPBEM is a Matlab toolbox for the simulation of metallic nanoparticles using a boundary element method (BEM) approach (Hohenester and Trügler, 2012), which is currently used by many research groups in the field of plasmonics. In this paper we introduce an extension for more efficient and faster simulations of large nanoparticles with several thousand to ten thousand boundary elements. Our approach is based on hierarchical matrices, for matrix compression and faster matrix manipulations, as well as iterative solvers for the BEM working equations. We discuss implementation details and present results for a few selected plasmonics applications.

  8. Simulation of the long-term behaviour of a fault with two asperities

    Directory of Open Access Journals (Sweden)

    M. Dragoni

    2010-12-01

    Full Text Available A system made of two sliding blocks coupled by a spring is employed to simulate the long-term behaviour of a fault with two asperities. An analytical solution is given for the motion of the system in the case of blocks having the same friction. An analysis of the phase space shows that orbits can reach a limit cycle only after entering a particular subset of the space. There is an infinite number of different limit cycles, characterized by the difference between the forces applied to the blocks or, as an alternative, by the recurrence pattern of block motions. These results suggest that the recurrence pattern of seismic events produced by the equivalent fault system is associated with a particular stress distribution which repeats periodically. Admissible stress distributions require a certain degree of inhomogeneity, which depends on the geometry of fault system. Aperiodicity may derive from stress transfers from neighboring faults.

  9. A hierarchical lattice spring model to simulate the mechanics of 2-D materials-based composites

    Science.gov (United States)

    Brely, Lucas; Bosia, Federico; Pugno, Nicola

    2015-07-01

    In the field of engineering materials, strength and toughness are typically two mutually exclusive properties. Structural biological materials such as bone, tendon or dentin have resolved this conflict and show unprecedented damage tolerance, toughness and strength levels. The common feature of these materials is their hierarchical heterogeneous structure, which contributes to increased energy dissipation before failure occurring at different scale levels. These structural properties are the key to exceptional bioinspired material mechanical properties, in particular for nanocomposites. Here, we develop a numerical model in order to simulate the mechanisms involved in damage progression and energy dissipation at different size scales in nano- and macro-composites, which depend both on the heterogeneity of the material and on the type of hierarchical structure. Both these aspects have been incorporated into a 2-dimensional model based on a Lattice Spring Model, accounting for geometrical nonlinearities and including statistically-based fracture phenomena. The model has been validated by comparing numerical results to continuum and fracture mechanics results as well as finite elements simulations, and then employed to study how structural aspects impact on hierarchical composite material properties. Results obtained with the numerical code highlight the dependence of stress distributions on matrix properties and reinforcement dispersion, geometry and properties, and how failure of sacrificial elements is directly involved in the damage tolerance of the material. Thanks to the rapidly developing field of nanocomposite manufacture, it is already possible to artificially create materials with multi-scale hierarchical reinforcements. The developed code could be a valuable support in the design and optimization of these advanced materials, drawing inspiration and going beyond biological materials with exceptional mechanical properties.

  10. A hierarchical lattice spring model to simulate the mechanics of 2-D materials-based composites

    Directory of Open Access Journals (Sweden)

    Lucas eBrely

    2015-07-01

    Full Text Available In the field of engineering materials, strength and toughness are typically two mutually exclusive properties. Structural biological materials such as bone, tendon or dentin have resolved this conflict and show unprecedented damage tolerance, toughness and strength levels. The common feature of these materials is their hierarchical heterogeneous structure, which contributes to increased energy dissipation before failure occurring at different scale levels. These structural properties are the key to exceptional bioinspired material mechanical properties, in particular for nanocomposites. Here, we develop a numerical model in order to simulate the mechanisms involved in damage progression and energy dissipation at different size scales in nano- and macro-composites, which depend both on the heterogeneity of the material and on the type of hierarchical structure. Both these aspects have been incorporated into a 2-dimensional model based on a Lattice Spring Model, accounting for geometrical nonlinearities and including statistically-based fracture phenomena. The model has been validated by comparing numerical results to continuum and fracture mechanics results as well as finite elements simulations, and then employed to study how structural aspects impact on hierarchical composite material properties. Results obtained with the numerical code highlight the dependence of stress distributions on matrix properties and reinforcement dispersion, geometry and properties, and how failure of sacrificial elements is directly involved in the damage tolerance of the material. Thanks to the rapidly developing field of nanocomposite manufacture, it is already possible to artificially create materials with multi-scale hierarchical reinforcements. The developed code could be a valuable support in the design and optimization of these advanced materials, drawing inspiration and going beyond biological materials with exceptional mechanical properties.

  11. Parallel Motion Simulation of Large-Scale Real-Time Crowd in a Hierarchical Environmental Model

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2012-01-01

    Full Text Available This paper presents a parallel real-time crowd simulation method based on a hierarchical environmental model. A dynamical model of the complex environment should be constructed to simulate the state transition and propagation of individual motions. By modeling of a virtual environment where virtual crowds reside, we employ different parallel methods on a topological layer, a path layer and a perceptual layer. We propose a parallel motion path matching method based on the path layer and a parallel crowd simulation method based on the perceptual layer. The large-scale real-time crowd simulation becomes possible with these methods. Numerical experiments are carried out to demonstrate the methods and results.

  12. The Design and Semi-Physical Simulation Test of Fault-Tolerant Controller for Aero Engine

    Science.gov (United States)

    Liu, Yuan; Zhang, Xin; Zhang, Tianhong

    2017-11-01

    A new fault-tolerant control method for aero engine is proposed, which can accurately diagnose the sensor fault by Kalman filter banks and reconstruct the signal by real-time on-board adaptive model combing with a simplified real-time model and an improved Kalman filter. In order to verify the feasibility of the method proposed, a semi-physical simulation experiment has been carried out. Besides the real I/O interfaces, controller hardware and the virtual plant model, semi-physical simulation system also contains real fuel system. Compared with the hardware-in-the-loop (HIL) simulation, semi-physical simulation system has a higher degree of confidence. In order to meet the needs of semi-physical simulation, a rapid prototyping controller with fault-tolerant control ability based on NI CompactRIO platform is designed and verified on the semi-physical simulation test platform. The result shows that the controller can realize the aero engine control safely and reliably with little influence on controller performance in the event of fault on sensor.

  13. Quantification of Fault-Zone Plasticity Effects with Spontaneous Rupture Simulations

    Science.gov (United States)

    Roten, D.; Olsen, K. B.; Day, S. M.; Cui, Y.

    2017-09-01

    Previous studies have shown that plastic yielding in crustal rocks in the fault zone may impose a physical limit to extreme ground motions. We explore the effects of fault-zone non-linearity on peak ground velocities (PGVs) by simulating a suite of surface-rupturing strike-slip earthquakes in a medium governed by Drucker-Prager plasticity using the AWP-ODC finite-difference code. Our simulations cover magnitudes ranging from 6.5 to 8.0, three different rock strength models, and average stress drops of 3.5 and 7.0 MPa, with a maximum frequency of 1 Hz and a minimum shear-wave velocity of 500 m/s. Friction angles and cohesions in our rock models are based on strength criteria which are frequently used for fractured rock masses in civil and mining engineering. For an average stress drop of 3.5 MPa, plastic yielding reduces near-fault PGVs by 15-30% in pre-fractured, low strength rock, but less than 1% in massive, high-quality rock. These reductions are almost insensitive to magnitude. If the stress drop is doubled, plasticity reduces near-fault PGVs by 38-45% and 5-15% in rocks of low and high strength, respectively. Because non-linearity reduces slip rates and static slip near the surface, plasticity acts in addition to, and may partially be emulated by, a shallow velocity-strengthening layer. The effects of plasticity are exacerbated if a fault damage zone with reduced shear-wave velocities and reduced rock strength is present. In the linear case, fault-zone trapped waves result in higher near-surface peak slip rates and ground velocities compared to simulations without a low-velocity zone. These amplifications are balanced out by fault-zone plasticity if rocks in the damage zone exhibit low-to-moderate strength throughout the depth extent of the low-velocity zone (˜5 km). We also perform dynamic non-linear simulations of a high stress drop (8 MPa) M 7.8 earthquake rupturing the southern San Andreas fault along 250 km from Indio to Lake Hughes. Non-linearity in the

  14. Use of controlled dynamic impacts on hierarchically structured seismically hazardous faults for seismically safe relaxation of shear stresses

    Science.gov (United States)

    Ruzhich, Valery V.; Psakhie, Sergey G.; Levina, Elena A.; Shilko, Evgeny V.; Grigoriev, Alexandr S.

    2017-12-01

    In the paper we briefly outline the experience in forecasting catastrophic earthquakes and the general problems in ensuring seismic safety. The purpose of our long-term research is the development and improvement of the methods of man-caused impacts on large-scale fault segments to safely reduce the negative effect of seismodynamic failure. Various laboratory and large-scale field experiments were carried out in the segments of tectonic faults in Baikal rift zone and in main cracks in block-structured ice cove of Lake Baikal using the developed measuring systems and special software for identification and treatment of deformation response of faulty segments to man-caused impacts. The results of the study let us to ground the necessity of development of servo-controlled technologies, which are able to provide changing the shear resistance and deformation regime of fault zone segments by applying vibrational and pulse triggering impacts. We suppose that the use of triggering impacts in highly stressed segments of active faults will promote transferring the geodynamic state of these segments from a metastable to a more stable and safe state.

  15. Tsunami simulations of the 1867 Virgin Island earthquake: Constraints on epicenter location and fault parameters

    Science.gov (United States)

    Barkan, Roy; ten Brink, Uri S.

    2010-01-01

    The 18 November 1867 Virgin Island earthquake and the tsunami that closely followed caused considerable loss of life and damage in several places in the northeast Caribbean region. The earthquake was likely a manifestation of the complex tectonic deformation of the Anegada Passage, which cuts across the Antilles island arc between the Virgin Islands and the Lesser Antilles. In this article, we attempt to characterize the 1867 earthquake with respect to fault orientation, rake, dip, fault dimensions, and first tsunami wave propagating phase, using tsunami simulations that employ high-resolution multibeam bathymetry. In addition, we present new geophysical and geological observations from the region of the suggested earthquake source. Results of our tsunami simulations based on relative amplitude comparison limit the earthquake source to be along the northern wall of the Virgin Islands basin, as suggested by Reid and Taber (1920), or on the carbonate platform north of the basin, and not in the Virgin Islands basin, as commonly assumed. The numerical simulations suggest the 1867 fault was striking 120°–135° and had a mixed normal and left-lateral motion. First propagating wave phase analysis suggests a fault striking 300°–315° is also possible. The best-fitting rupture length was found to be relatively small (50 km), probably indicating the earthquake had a moment magnitude of ∼7.2. Detailed multibeam echo sounder surveys of the Anegada Passage bathymetry between St. Croix and St. Thomas reveal a scarp, which cuts the northern wall of the Virgin Islands basin. High-resolution seismic profiles further indicate it to be a reasonable fault candidate. However, the fault orientation and the orientation of other subparallel faults in the area are more compatible with right-lateral motion. For the other possible source region, no clear disruption in the bathymetry or seismic profiles was found on the carbonate platform north of the basin.

  16. Simulating Spatio-Temporal Slip Evolution of Fault Zones at Different Evolutionary Stages

    Science.gov (United States)

    Hillers, G.; Mai, M.; Ben-Zion, Y.

    2004-12-01

    Previous studies of spatio-temporal evolution of slip on a fault governed by rate-and-state friction (e.g., Rice, 1993; Ben-Zion and Rice, 1995, 1997; Tullis, 1996; Lapusta et al., 2000) employed frictional properties corresponding to fairly homogeneous faults. In most cases, the only types of heterogeneities were the lab-based depth-variations of the parameters a and b that produce transitions between stable velocity-strengthening and unstable velocity-weakening regimes. In this study we use a constant a-b profile and a depth-dependent distribution of the critical slip distance parameter L. In addition, correlated heterogeneities of L along strike are used to model geometrical heterogeneities on faults related to roughness. More specifically, we will perform 3D quasi-static and quasi-dynamic simulations of slip on a strike-slip fault using a family of 2D anisotropic correlated distributions of L having different correlation lengths along strike and downdip. The depth-variation of L over the depth range 3km histories. The 3D code with various cases of anisotropic correlated distributions of L will be used to study many issues related to observed complex behavior of seismogenic faults including: (1) Nucleation and arrest properties of failure episodes on a heterogeneous fault governed by RSD friction. (2) Comparison between properties of final simulated slip histories and those of the inverted slip histories. (3) Frequency-size and temporal statistics of simulated earthquakes on a heterogeneous fault governed by rate-and-state friction.

  17. Piloted Simulator Evaluation Results of New Fault-Tolerant Flight Control Algorithm

    NARCIS (Netherlands)

    Lombaerts, T.J.J.; Smaili, M.H.; Stroosma, O.; Chu, Q.P.; Mulder, J.A.; Joosten, D.A.

    2010-01-01

    A high fidelity aircraft simulation model, reconstructed using the Digital Flight Data Recorder (DFDR) of the 1992 Amsterdam Bijlmermeer aircraft accident (Flight 1862), has been used to evaluate a new Fault-Tolerant Flight Control Algorithm in an online piloted evaluation. This paper focuses on the

  18. Simulation of an on-board hierarchical multistage digital FDM demultiplexer for mobile SCPC satellite communications

    Science.gov (United States)

    Eyssele, Helmut; Goeckler, Heinz

    1990-04-01

    Focus is placed on the finite-precision time-domain simulation of the hierarchical multistage method for the demultiplexing of an FDM signal composed of L = 32 slot signals. This approach is based on the processing of complex signals by linear-phase FIR filters, where at any stage of processing the respective signals are always oversampled by a factor of two. The FDM demultiplexer is part of a multicarrier demodulator to be used in the return link (from the mobile vehicle to the earth station) of a future satellite digital communication system. The simulation results fully confirm previously predicted system performance by modelling the distortions (spectral foldover and quantization noise) inherent in the system.

  19. A conceptual modeling framework for discrete event simulation using hierarchical control structures.

    Science.gov (United States)

    Furian, N; O'Sullivan, M; Walker, C; Vössner, S; Neubacher, D

    2015-08-01

    Conceptual Modeling (CM) is a fundamental step in a simulation project. Nevertheless, it is only recently that structured approaches towards the definition and formulation of conceptual models have gained importance in the Discrete Event Simulation (DES) community. As a consequence, frameworks and guidelines for applying CM to DES have emerged and discussion of CM for DES is increasing. However, both the organization of model-components and the identification of behavior and system control from standard CM approaches have shortcomings that limit CM's applicability to DES. Therefore, we discuss the different aspects of previous CM frameworks and identify their limitations. Further, we present the Hierarchical Control Conceptual Modeling framework that pays more attention to the identification of a models' system behavior, control policies and dispatching routines and their structured representation within a conceptual model. The framework guides the user step-by-step through the modeling process and is illustrated by a worked example.

  20. Quantification of Ground Motion Reductions by Fault Zone Plasticity with 3D Spontaneous Rupture Simulations

    Science.gov (United States)

    Roten, D.; Olsen, K. B.; Cui, Y.; Day, S. M.

    2015-12-01

    We explore the effects of fault zone nonlinearity on peak ground velocities (PGVs) by simulating a suite of surface rupturing earthquakes in a visco-plastic medium. Our simulations, performed with the AWP-ODC 3D finite difference code, cover magnitudes from 6.5 to 8.0, with several realizations of the stochastic stress drop for a given magnitude. We test three different models of rock strength, with friction angles and cohesions based on criteria which are frequently applied to fractured rock masses in civil engineering and mining. We use a minimum shear-wave velocity of 500 m/s and a maximum frequency of 1 Hz. In rupture scenarios with average stress drop (~3.5 MPa), plastic yielding reduces near-fault PGVs by 15 to 30% in pre-fractured, low-strength rock, but less than 1% in massive, high quality rock. These reductions are almost insensitive to the scenario earthquake magnitude. In the case of high stress drop (~7 MPa), however, plasticity reduces near-fault PGVs by 38 to 45% in rocks of low strength and by 5 to 15% in rocks of high strength. Because plasticity reduces slip rates and static slip near the surface, these effects can partially be captured by defining a shallow velocity-strengthening layer. We also perform a dynamic nonlinear simulation of a high stress drop M 7.8 earthquake rupturing the southern San Andreas fault along 250 km from Indio to Lake Hughes. With respect to the viscoelastic solution (a), nonlinearity in the fault damage zone and in near-surface deposits would reduce long-period (> 1 s) peak ground velocities in the Los Angeles basin by 15-50% (b), depending on the strength of crustal rocks and shallow sediments. These simulation results suggest that nonlinear effects may be relevant even at long periods, especially for earthquakes with high stress drop.

  1. Analysis and Simulation of Fault Characteristics of Power Switch Failures in Distribution Electronic Power Transformers

    Directory of Open Access Journals (Sweden)

    Dan Wang

    2013-08-01

    Full Text Available This paper presents research on the voltage and current distortion in the input stage, isolation stage and output stage of Distribution Electronic Power transformer (D-EPT after the open-circuit and short-circuit faults of its power switches. In this paper, the operational principles and the control methods for input stage, isolation stage and output stage of D-EPT, which work as a cascaded H-bridge rectifier, DC-DC converter and inverter, respectively, are introduced. Based on conclusions derived from the performance analysis of D-EPT after the faults, this paper comes up with the effects from its topology design and control scheme on the current and voltage distortion. According to the EPT fault characteristics, since the waveforms of relevant components heavily depend on the location of the faulty switch, it is very easy to locate the exact position of the faulty switch. Finally, the fault characteristics peculiar to D-EPT are analyzed, and further discussed with simulation on the Saber platform, as well as a fault location diagnosis algorithm.

  2. Centrifugal compressor fault diagnosis based on qualitative simulation and thermal parameters

    Science.gov (United States)

    Lu, Yunsong; Wang, Fuli; Jia, Mingxing; Qi, Yuanchen

    2016-12-01

    This paper concerns fault diagnosis of centrifugal compressor based on thermal parameters. An improved qualitative simulation (QSIM) based fault diagnosis method is proposed to diagnose the faults of centrifugal compressor in a gas-steam combined-cycle power plant (CCPP). The qualitative models under normal and two faulty conditions have been built through the analysis of the principle of centrifugal compressor. To solve the problem of qualitative description of the observations of system variables, a qualitative trend extraction algorithm is applied to extract the trends of the observations. For qualitative states matching, a sliding window based matching strategy which consists of variables operating ranges constraints and qualitative constraints is proposed. The matching results are used to determine which QSIM model is more consistent with the running state of system. The correct diagnosis of two typical faults: seal leakage and valve stuck in the centrifugal compressor has validated the targeted performance of the proposed method, showing the advantages of fault roots containing in thermal parameters.

  3. Three-dimensional dynamic rupture simulations across interacting faults: The Mw7.0, 2010, Haiti earthquake

    Science.gov (United States)

    Douilly, R.; Aochi, H.; Calais, E.; Freed, A. M.

    2015-02-01

    The mechanisms controlling rupture propagation between fault segments during a large earthquake are key to the hazard posed by fault systems. Rupture initiation on a smaller fault sometimes transfers to a larger fault, resulting in a significant event (e.g., 2002 M7.9 Denali USA and 2010 M7.1 Darfield New Zealand earthquakes). In other cases rupture is constrained to the initial fault and does not transfer to nearby faults, resulting in events of more moderate magnitude. This was the case of the 1989 M6.9 Loma Prieta and 2010 M7.0 Haiti earthquakes which initiated on reverse faults abutting against a major strike-slip plate boundary fault but did not propagate onto it. Here we investigate the rupture dynamics of the Haiti earthquake, seeking to understand why rupture propagated across two segments of the Léogâne fault but did not propagate to the adjacent Enriquillo Plantain Garden Fault, the major 200 km long plate boundary fault cutting through southern Haiti. We use a finite element model to simulate propagation of rupture on the Léogâne fault, varying friction and background stress to determine the parameter set that best explains the observed earthquake sequence, in particular, the ground displacement. The two slip patches inferred from finite fault inversions are explained by the successive rupture of two fault segments oriented favorably with respect to the rupture propagation, while the geometry of the Enriquillo fault did not allow shear stress to reach failure.

  4. Relationship between parallel faults and stress field in rock mass based on numerical simulation

    Science.gov (United States)

    Imai, Y.; Mikada, H.; Goto, T.; Takekawa, J.

    2012-12-01

    Parallel cracks and faults, caused by earthquakes and crustal deformations, are often observed in various scales from regional to laboratory scales. However, the mechanism of formation of these parallel faults has not been quantitatively clarified, yet. Since the stress field plays a key role to the nucleation of parallel faults, it is fundamentally to investigate the failure and the extension of cracks in a large-scale rock mass (not with a laboratory-scale specimen) due to mechanically loaded stress field. In this study, we developed a numerical simulations code for rock mass failures under different loading conditions, and conducted rock failure experiments using this code. We assumed a numerical rock mass consisting of basalt with a rectangular shape for the model. We also assumed the failure of rock mass in accordance with the Mohr-Coulomb criterion, and the distribution of the initial tensile and compressive strength of rock elements to be the Weibull model. In this study, we use the Hamiltonian Particle Method (HPM), one of the particle methods, to represent large deformation and the destruction of materials. Out simulation results suggest that the confining pressure would have dominant influence for the initiation of parallel faults and their conjugates in compressive conditions. We conclude that the shearing force would provoke the propagation of parallel fractures along the shearing direction, but prevent that of fractures to the conjugate direction.

  5. Simulating Gravity Changes in Topologically Realistic Driven Earthquake Fault Systems: First Results

    Science.gov (United States)

    Schultz, Kasey W.; Sachs, Michael K.; Heien, Eric M.; Rundle, John B.; Turcotte, Don L.; Donnellan, Andrea

    2016-03-01

    Currently, GPS and InSAR measurements are used to monitor deformation produced by slip on earthquake faults. It has been suggested that another method to accomplish many of the same objectives would be through satellite-based gravity measurements. The Gravity Recovery and Climate Experiment (GRACE) mission has shown that it is possible to make detailed gravity measurements from space for climate dynamics and other purposes. To build the groundwork for a more advanced satellite-based gravity survey, we must estimate the level of accuracy needed for precise estimation of fault slip in earthquakes. We turn to numerical simulations of earthquake fault systems and use these to estimate gravity changes. The current generation of Virtual California (VC) simulates faults of any orientation, dip, and rake. In this work, we discuss these computations and the implications they have for accuracies needed for a dedicated gravity monitoring mission. Preliminary results are in agreement with previous results calculated from an older and simpler version of VC. Computed gravity changes are in the range of tens of μGal over distances up to a few hundred kilometers, near the detection threshold for GRACE.

  6. Ball bearing defect models: A study of simulated and experimental fault signatures

    Science.gov (United States)

    Mishra, C.; Samantaray, A. K.; Chakraborty, G.

    2017-07-01

    Numerical model based virtual prototype of a system can serve as a tool to generate huge amount of data which replace the dependence on expensive and often difficult to conduct experiments. However, the model must be accurate enough to substitute the experiments. The abstraction level and details considered during model development depend on the purpose for which simulated data should be generated. This article concerns development of simulation models for deep groove ball bearings which are used in a variety of rotating machinery. The purpose of the model is to generate vibration signatures which usually contain features of bearing defects. Three different models with increasing level-of-complexity are considered: a bearing kinematics based planar motion block diagram model developed in MATLAB Simulink which does not explicitly consider cage and traction dynamics, a planar motion model with cage, traction and contact dynamics developed using multi-energy domain bond graph formalism in SYMBOLS software, and a detailed spatial multi-body dynamics model with complex contact and traction mechanics developed using ADAMS software. Experiments are conducted using Spectra Quest machine fault simulator with different prefabricated faulted bearings. The frequency domain characteristics of simulated and experimental vibration signals for different bearing faults are compared and conclusions are drawn regarding usefulness of the developed models.

  7. Ground Motion Simulations of Scenario Earthquake Ruptures of the Hayward Fault

    Science.gov (United States)

    Aagaard, B.; Graves, R.; Larsen, S.; Ma, S.; Rodgers, A.; Brocher, T.; Graymer, R.; Harris, R.; Lienkaemper, J.; Ponce, D.; Schwartz, D.; Simpson, R.; Spudich, P.; Dreger, D.; Petersson, A.; Boatwright, J.

    2008-12-01

    We compute ground motions in the San Francisco Bay area for a suite of 35 magnitude 6.7--7.2 scenario earthquake ruptures involving the Hayward fault. The suite of scenarios encompasses variability in rupture length, hypocenter, distribution of slip, rupture speed, and rise time. The five rupture lengths include the Hayward fault and portions thereof, as well as combined rupture of the Hayward and Rodgers Creek faults and the Hayward and Calaveras faults. For most rupture lengths, we consider three hypocenters, yielding north-to-south rupture, bilateral rupture, and south-to-north rupture. We also consider multiple random realizations of the slip distribution, accounting for creeping patches (Funning et al., 2007) either through simple assumptions about how creep reduces coseismic slip or a slip-predictable approach. The kinematic rupture models include local variations in rupture speed and use a ray-tracing algorithm to propagate the rupture front. Although we are not attempting to simulate the 1868 Hayward fault earthquake in detail, a few of the scenarios are designed to have source parameters that might be similar to this event. This collaborative effort involves four modeling groups, using different wave propagation codes and domains of various sizes and resolutions, computing long-period (T > 1--2 s) or broadband (T > 0.1 s) synthetic ground motions for overlapping subsets of the suite of scenarios. The simulations incorporate the 3-D geologic structure as described by the USGS 3-D Geologic Model (Jachens et al., 2006; Watt et al., 2007) and USGS Bay Area Velocity Model (Brocher et al., 2007). The simulations illustrate the dramatic increase in intensity of shaking for a magnitude 7.0 bilateral rupture of the entire Hayward fault compared with a magnitude 6.8 bilateral rupture of the southern two-thirds of the fault; the area subjected to shaking stronger than MMI VII increases from about 10% to more than 40% of the San Francisco Bay urban area. For a given

  8. Asperity generation and its relationship to seismicity on a planar fault: a laboratory simulation

    Science.gov (United States)

    Selvadurai, P. A.; Glaser, S. D.

    2017-02-01

    Earthquake faults, and all frictional surfaces, establish contact through asperities. A detailed knowledge of how asperities form will enable a better understanding of the manner in which they communicate during foreshock failure sequences that are observed, leading to the larger main shock. We present results of experiments where a pressure sensitive film was used to map, size and measure the magnitudes of the normal stresses at asperities along a seismogenic section of a laboratory simulated fault. We measured seismicity acoustically and foreshocks were found to be the result of localized asperity failure during the nucleation phase of gross fault rupture. Since surface roughness plays an important role in how asperities are formed, two Hurst exponents were measured to characterize a highly worn interface using roughness profiles: (i) long wavelength estimates (H ˜ 0.45) and (ii) short wavelength estimates (H ˜ 0.8-1.2). The short wavelength roughness estimates were computed at the scale of single asperity junction points. Macroscopically, the number of asperities and real contact area increased with additional application of normal force while the mean normal stress remained constant. The ratio of real to nominal contact area was low - ranging from 0.02 distance on foreshocking asperities was estimated to be d0 ˜ 0.65-3 μm. The critical slip distance d0 was ˜1.8-11.5 per cent of the premonitory slip needed to initiate gross fault rupture of the interface (20-40 μm) and the overall slip necessary to initiate gross fault rupture was on the order of the average asperity diameter (52 μm). Foreshocks may be due to a change in the critical slip distance, at localized sections of the fault, caused by the two distinct roughness profiles measured at short and long length scales.

  9. Numerical simulations of stick-slip in fluid saturated granular fault gouge

    Science.gov (United States)

    Dorostkar, O.; Johnson, P. A.; Guyer, R. A.; Marone, C.; Carmeliet, J.

    2016-12-01

    Fluids play a key role in determining the frictional strength and stability of faults. For example, fluid flow and fluid-solid interaction in fault gouge can trigger seismicity, alter earthquake nucleation properties and cause fault zone weakening. We present results of 3D numerical simulations of stick-slip behavior in dry and saturated granular fault gouge. In the saturated case, the gouge is fully saturated and drainage is possible through the boundaries. We model the solid phase (particles) with the discrete element method (DEM) while the fluid is described by the Navier-Stokes equations and solved by computational fluid dynamics (CFD). In our model, granular gouge is sheared between two rough plates under boundary conditions of constant normal stress and constant shearing velocity at the layer boundaries. A phase-space study including shearing velocity and normal stress is taken to identify the conditions for stick-slip regime. We analyzed slip events for dry and saturated cases to determine shear stress drop, released kinetic energy and compaction. The presence of fluid tends to cause larger slip events. We observe a close correlation between the kinetic energy of the particles and of the fluid. In short, during slip, fluid flow induced by the failure and compaction of the granular system, mobilizes the particles, which increases their kinetic energy, leading to greater slip. We further observe that the solid-fluid interaction forces are equal or larger than the solid-solid interaction forces during the slip event, indicating the important influence of the fluid on the granular system. Our simulations can explain the behaviors observed in experimental studies and we are working to apply our results to tectonic faults.

  10. Local Interaction Simulation Approach for Fault Detection in Medical Ultrasonic Transducers

    Directory of Open Access Journals (Sweden)

    Z. Hashemiyan

    2015-01-01

    Full Text Available A new approach is proposed for modelling medical ultrasonic transducers operating in air. The method is based on finite elements and the local interaction simulation approach. The latter leads to significant reductions of computational costs. Transmission and reception properties of the transducer are analysed using in-air reverberation patterns. The proposed approach can help to provide earlier detection of transducer faults and their identification, reducing the risk of misdiagnosis due to poor image quality.

  11. Simulation of Low Nickel Content Alloys For Industrial Ground Fault Circuit-Breaker Relays

    OpenAIRE

    Messal, Oualid; Sixdenier, Fabien; Morel, Laurent; Burais, Noël; Waeckerle, Thierry

    2014-01-01

    International audience; The aim of this paper is to simulate the performances of a ground fault circuit-breaker (GFCB) relay with new low nickel content alloys. Indeed, in the construction industry, the materials become more expensive as their nickel content increases. Moreover, the demand for nickel is particularly sensitive to the economic conjuncture. Therefore, an original electromagnetic relay model has been developed and validated in different working conditions (current amplitude, freq...

  12. Permeability evolution of normal faults with clay smear: insights from structural observations in water saturated sandbox models and numerical simulations

    Science.gov (United States)

    Kettermann, Michael; Urai, Janos L.; Vrolijk, Peter J.

    2017-04-01

    Fault processes are complex phenomena that defy reliable prediction. Clay smear in particular is difficult to predict for sub-surface flow applications and would benefit from an improved understanding of controlling processes. In this study, we present a series of water-saturated sandbox experiments producing large clay smear surfaces up to 500 cm2. In these experiments, we couple across-fault flow measurements with structural analysis of post-mortem excavated clay smear surfaces. To develop a tool for evaluating the evolving fault structure during formation, we compare measured flow data to simplified numerical flow simulations. Results show diagnostic relationships between the observed fault structures and measured cross-fault flow. In experiments with one or two clay layers and a cumulative thickness of 10 mm and 100 mm displacement, we observe that normally consolidated clay, in a structural domain of graben faulting, initially yields in hybrid brittle/ductile failure. Characteristic for this type of failure is an early breaching of the clay layer by brittle fracturing causing increased cross-fault flow. However, the type of failure varies laterally and shear failure occurs as well. We observed that holes preferably form beneath extensional parts of the footwall cutoff. These can be identified in map-view as the fault curves towards the hanging wall. During the evolution of the fault, this is typically followed by fault back-stepping, formation of clay smears and reworking of clay fragments in the fault. These processes lead to slower increases of cross-fault flux. Holes that formed during the early breaching of the clay layer mostly remain open during the evolution of a fault, although there is some evidence for occasional resealing of holes. Fault zones are segmented by fault lenses, breached relays and clay smears in which sand and clay mix by deformation. Experiments with two clay layers show that holes rarely form at the same position on the fault planes

  13. Simulation and Measurement of the Transmission Distortions of the Digital Television DVB-T/H Part 2: Hierarchical Modulation Performance

    Directory of Open Access Journals (Sweden)

    R. Stukavec

    2010-09-01

    Full Text Available The paper deals with the second part of results of the Czech Science Foundation research project that was aimed into the simulation and measurement of the transmission distortions of the digital terrestrial television according to DVB-T/H standards. In this part the hierarchical modulation performance characteristics and its simulation and laboratory measurements are presented. The paper deals with the hierarchical oriented COFDM modulator for the digital terrestrial television transmission and DVB-T/H standards and possible utilization of this technique in real broadcasting scenarios – fixed, portable and mobile digital TV, all in one TV channel. Impact of the hierarchical modulation on Modulation Error Rate from I/Q constellations and Bit Error Rates before and after Viterbi decoding in DVB-T/H signal decoding are evaluated and discussed.

  14. Fault-Tolerant Robot Programming through Simulation with Realistic Sensor Models

    Directory of Open Access Journals (Sweden)

    Thomas Bräunl

    2006-06-01

    Full Text Available We introduce a simulation system for mobile robots that allows a realistic interaction of multiple robots in a common environment. The simulated robots are closely modeled after robots from the EyeBot family and have an identical application programmer interface. The simulation supports driving commands at two levels of abstraction as well as numerous sensors such as shaft encoders, infrared distance sensors, and compass. Simulation of on-board digital cameras via synthetic images allows the use of image processing routines for robot control within the simulation. Specific error models for actuators, distance sensors, camera sensor, and wireless communication have been implemented. Progressively increasing error levels for an application program allows for testing and improving its robustness and fault-tolerance.

  15. Fault-Tolerant Robot Programming through Simulation with Realistic Sensor Models

    Directory of Open Access Journals (Sweden)

    Axel Waggershauser

    2008-11-01

    Full Text Available We introduce a simulation system for mobile robots that allows a realistic interaction of multiple robots in a common environment. The simulated robots are closely modeled after robots from the EyeBot family and have an identical application programmer interface. The simulation supports driving commands at two levels of abstraction as well as numerous sensors such as shaft encoders, infrared distance sensors, and compass. Simulation of on-board digital cameras via synthetic images allows the use of image processing routines for robot control within the simulation. Specific error models for actuators, distance sensors, camera sensor, and wireless communication have been implemented. Progressively increasing error levels for an application program allows for testing and improving its robustness and fault-tolerance.

  16. Interaction Behavior between Thrust Faulting and the National Highway No. 3 - Tianliao III bridge as Determined using Numerical Simulation

    Science.gov (United States)

    Li, C. H.; Wu, L. C.; Chan, P. C.; Lin, M. L.

    2016-12-01

    The National Highway No. 3 - Tianliao III Bridge is located in the southwestern Taiwan mudstone area and crosses the Chekualin fault. Since the bridge was opened to traffic, it has been repaired 11 times. To understand the interaction behavior between thrust faulting and the bridge, a discrete element method-based software program, PFC, was applied to conduct a numerical analysis. A 3D model for simulating the thrust faulting and bridge was established, as shown in Fig. 1. In this conceptual model, the length and width were 50 and 10 m, respectively. Part of the box bottom was moveable, simulating the displacement of the thrust fault. The overburden stratum had a height of 5 m with fault dip angles of 20° (Fig. 2). The bottom-up strata were mudstone, clay, and sand, separately. The uplift was 1 m, which was 20% of the stratum thickness. In accordance with the investigation, the position of the fault tip was set, depending on the fault zone, and the bridge deformation was observed (Fig. 3). By setting "Monitoring Balls" in the numerical model to analyzes bridge displacement, we determined that the bridge deck deflection increased as the uplift distance increased. Furthermore, the force caused by the loading of the bridge deck and fault dislocation was determined to cause a down deflection of the P1 and P2 bridge piers. Finally, the fault deflection trajectory of the P4 pier displayed the maximum displacement (Fig. 4). Similar behavior has been observed through numerical simulation as well as field monitoring data. Usage of the discrete element model (PFC3D) to simulate the deformation behavior between thrust faulting and the bridge provided feedback for the design and improved planning of the bridge.

  17. 3D Dynamic Rupture Simulation Across a Complex Fault System: the Mw7.0, 2010, Haiti Earthquake

    Science.gov (United States)

    Douilly, R.; Aochi, H.; Calais, E.; Freed, A. M.

    2013-12-01

    Earthquakes ruptures sometimes take place on a secondary fault and surprisingly do not activate an adjacent major one. The 1989 Loma Prieta earthquake is a classic case where rupture occurred on a blind thrust while the adjacent San Andreas Fault was not triggered during the process. Similar to Loma Prieta, the Mw7.0, January 12 2010, Haiti earthquake also ruptured a secondary blind thrust, the Léogâne fault, adjacent to the main plate boundary, the Enriquillo Plantain Garden Fault, which did not rupture during this event. Aftershock relocalizations delineate the Léogâne rupture with two north dipping segments with slightly different dip, where the easternmost segment had mostly dip-slip motion and the westernmost one had mostly strike-slip motion. In addition, an offshore south dipping structure inferred from the aftershocks to the west of the rupture zone coincides with the offshore Trois Baies reverse fault, a region of increase in Coulomb stress increase. In this study, we investigate the rupture dynamics of the Haiti earthquake in a complex fault system of multiple segments identified by the aftershock relocations. We suppose a background stress regime that is consistent with the type of motion of each fault and with the regional tectonic regime. We initiate a nucleation on the east segment of the Léogâne fault by defining a circular region with a 2 km radius where shear stress is slightly greater than the yield stress. By varying friction on faults and background stress, we find a range of plausible scenarios. In the absence of near-field seismic records of the event, we score the different models against the static deformation field derived from GPS and InSAR at the surface. All the plausible simulations show that the rupture propagates from the eastern to the western segment along the Léogâne fault, but not on the Enriquillo fault nor on the Trois Baies fault. The best-fit simulation shows a significant increase of shear stresses on the Trois Baies

  18. Evaluation of Cepstrum Algorithm with Impact Seeded Fault Data of Helicopter Oil Cooler Fan Bearings and Machine Fault Simulator Data

    Science.gov (United States)

    2013-02-01

    Demodulation of a specific high frequency band and extracting energy from the envelope spectrum at the bearing fault frequencies have shown to be...stages of bearing damage (2). One of the more popular techniques is the high frequency envelope method, also referred to as bearing envelope analysis...the frequency is the cepstrum method. The cepstrum method can determine discrete fault frequencies, which provide the advantage of detecting

  19. The Effects of Off-Fault Plasticity in Earthquake Cycle Simulations

    Science.gov (United States)

    Erickson, B. A.; Dunham, E. M.

    2012-12-01

    Field observations of damage zones around faults reveal regions of fractured or pulverized rocks on the order of several hundred meters surrounding a highly damaged fault core. It has been postulated that these damage zones are the result of the fracturing and healing within the fault zone due to many years of seismogenic cycling. In dynamic rupture simulations which account for inelastic deformation, the influence of plasticity has been shown to significantly alter rupture propagation speed and the residual stress field left near the fault. Plastic strain near the Earth's surface has also been shown to account for a fraction of the inferred shallow slip deficit. We are developing an efficient numerical method to simulate full earthquake cycles of multiple events with rate-and-state friction laws and off-fault plasticity. Although the initial stress state prior to an earthquake is not well understood, our method evolves the system through the interseismic period, therefore generating self-consistent initial conditions prior to rupture. Large time steps can be taken during the interseismic period while much smaller time steps are required to fully resolve quasi-dynamic rupture where we use the the radiation damping approximation to the inertial term for computational efficiency. So far our cycle simulations have been done assuming a linear elastic medium. We have concurrently begun developing methods for allowing plastic deformation in our cycle simulations where the stress is constrained by a Drucker-Prager yield criterion. The idea is to simulate multiple events which allow for inelastic response, in order to understand how plasticity alters the rupture process during each event in the cycle. We will use this model to see what fraction of coseismic strain is accommodated by inelastic deformation throughout the entire earthquake cycle from the interseismic period through the mainshock. Modeling earthquake cycles with plasticity will also allow us to study how an

  20. A comparison among observations and earthquake simulator results for the allcal2 California fault model

    Science.gov (United States)

    Tullis, Terry. E.; Richards-Dinger, Keith B.; Barall, Michael; Dieterich, James H.; Field, Edward H.; Heien, Eric M.; Kellogg, Louise; Pollitz, Fred F.; Rundle, John B.; Sachs, Michael K.; Turcotte, Donald L.; Ward, Steven N.; Yikilmaz, M. Burak

    2012-01-01

    In order to understand earthquake hazards we would ideally have a statistical description of earthquakes for tens of thousands of years. Unfortunately the ∼100‐year instrumental, several 100‐year historical, and few 1000‐year paleoseismological records are woefully inadequate to provide a statistically significant record. Physics‐based earthquake simulators can generate arbitrarily long histories of earthquakes; thus they can provide a statistically meaningful history of simulated earthquakes. The question is, how realistic are these simulated histories? This purpose of this paper is to begin to answer that question. We compare the results between different simulators and with information that is known from the limited instrumental, historic, and paleoseismological data.As expected, the results from all the simulators show that the observational record is too short to properly represent the system behavior; therefore, although tests of the simulators against the limited observations are necessary, they are not a sufficient test of the simulators’ realism. The simulators appear to pass this necessary test. In addition, the physics‐based simulators show similar behavior even though there are large differences in the methodology. This suggests that they represent realistic behavior. Different assumptions concerning the constitutive properties of the faults do result in enhanced capabilities of some simulators. However, it appears that the similar behavior of the different simulators may result from the fault‐system geometry, slip rates, and assumed strength drops, along with the shared physics of stress transfer.This paper describes the results of running four earthquake simulators that are described elsewhere in this issue of Seismological Research Letters. The simulators ALLCAL (Ward, 2012), VIRTCAL (Sachs et al., 2012), RSQSim (Richards‐Dinger and Dieterich, 2012), and ViscoSim (Pollitz, 2012) were run on our most recent all‐California fault

  1. Monte Carlo simulation for slip rate sensitivity analysis in Cimandiri fault area

    Energy Technology Data Exchange (ETDEWEB)

    Pratama, Cecep, E-mail: great.pratama@gmail.com [Graduate Program of Earth Science, Faculty of Earth Science and Technology, ITB, JalanGanesa no. 10, Bandung 40132 (Indonesia); Meilano, Irwan [Geodesy Research Division, Faculty of Earth Science and Technology, ITB, JalanGanesa no. 10, Bandung 40132 (Indonesia); Nugraha, Andri Dian [Global Geophysical Group, Faculty of Mining and Petroleum Engineering, ITB, JalanGanesa no. 10, Bandung 40132 (Indonesia)

    2015-04-24

    Slip rate is used to estimate earthquake recurrence relationship which is the most influence for hazard level. We examine slip rate contribution of Peak Ground Acceleration (PGA), in probabilistic seismic hazard maps (10% probability of exceedance in 50 years or 500 years return period). Hazard curve of PGA have been investigated for Sukabumi using a PSHA (Probabilistic Seismic Hazard Analysis). We observe that the most influence in the hazard estimate is crustal fault. Monte Carlo approach has been developed to assess the sensitivity. Then, Monte Carlo simulations properties have been assessed. Uncertainty and coefficient of variation from slip rate for Cimandiri Fault area has been calculated. We observe that seismic hazard estimates is sensitive to fault slip rate with seismic hazard uncertainty result about 0.25 g. For specific site, we found seismic hazard estimate for Sukabumi is between 0.4904 – 0.8465 g with uncertainty between 0.0847 – 0.2389 g and COV between 17.7% – 29.8%.

  2. Application of adaptive hierarchical sparse grid collocation to the uncertainty quantification of nuclear reactor simulators

    Energy Technology Data Exchange (ETDEWEB)

    Yankov, A.; Downar, T. [University of Michigan, 2355 Bonisteel Blvd, Ann Arbor, MI 48109 (United States)

    2013-07-01

    Recent efforts in the application of uncertainty quantification to nuclear systems have utilized methods based on generalized perturbation theory and stochastic sampling. While these methods have proven to be effective they both have major drawbacks that may impede further progress. A relatively new approach based on spectral elements for uncertainty quantification is applied in this paper to several problems in reactor simulation. Spectral methods based on collocation attempt to couple the approximation free nature of stochastic sampling methods with the determinism of generalized perturbation theory. The specific spectral method used in this paper employs both the Smolyak algorithm and adaptivity by using Newton-Cotes collocation points along with linear hat basis functions. Using this approach, a surrogate model for the outputs of a computer code is constructed hierarchically by adaptively refining the collocation grid until the interpolant is converged to a user-defined threshold. The method inherently fits into the framework of parallel computing and allows for the extraction of meaningful statistics and data that are not within reach of stochastic sampling and generalized perturbation theory. This paper aims to demonstrate the advantages of spectral methods-especially when compared to current methods used in reactor physics for uncertainty quantification-and to illustrate their full potential. (authors)

  3. AVR microcontroller simulator for software implemented hardware fault tolerance algorithms research

    Science.gov (United States)

    Piotrowski, Adam; Tarnowski, Szymon; Napieralski, Andrzej

    2008-01-01

    Reliability of new, advanced electronic systems becomes a serious problem especially in places like accelerators and synchrotrons, where sophisticated digital devices operate closely to radiation sources. One of the possible solutions to harden the microprocessor-based system is a strict programming approach known as the Software Implemented Hardware Fault Tolerance. Unfortunately, in real environments it is not possible to perform precise and accurate tests of the new algorithms due to hardware limitation. This paper highlights the AVR-family microcontroller simulator project equipped with an appropriate monitoring and the SEU injection systems.

  4. On dynamics of seismicity simulated by the models of blocks-and-faults systems

    Directory of Open Access Journals (Sweden)

    I. A. Vorobieva

    1997-06-01

    Full Text Available The major results obtained by numerical simulation of block structure dynamics are juxtaposed and analysed: the possibilities to reconstruct tectonic driving forces from territorial distribution of seismicity, clustering of earthquakes in the model, and dependence of the occurrence of strong earthquakes on fragmentation of the media, and on rotation of blocks. These results show that modelling of block structure dynamics is a useful tool to study relations between the geometry of faults and block movements and earthquake flow, including premonitory seismicity patterns, to test the existing earthquake prediction algorithms, and to develop new ones.

  5. Learning to Overcome Hierarchical Pressures to Achieve Safer Patient Care: An Interprofessional Simulation for Nursing, Medical, and Physician Assistant Students.

    Science.gov (United States)

    Reeves, Susan A; Denault, Deanna; Huntington, Jonathan T; Ogrinc, Greg; Southard, Douglas R; Vebell, Renee

    To positively impact patient safety, the Institute of Medicine, as well as the Quality and Safety Education for Nurses initiative, has recommended clinician training in structured communication techniques. Such techniques are particularly useful in overcoming hierarchical barriers in health care settings. This article describes an interprofessional simulation program to teach structured communication techniques to preprofessional nursing, medical, and physician assistant students. The teaching and evaluation plans are described to aid replication.

  6. Formation and loss of hierarchical structure in two-dimensional MHD simulations of wave-driven turbulence in interstellar clouds

    OpenAIRE

    Elmegreen, Bruce G.

    1999-01-01

    Two dimensional compressible magneto-hydrodynamical (MHD) simulations run for 20 crossing times on a 800x640 grid with two stable thermal states show persistent hierarchical density structures and Kolmogorov turbulent motions in the interaction zone between incoming non-linear Alfven waves. These structures and motions are similar to what are commonly observed in weakly self-gravitating interstellar clouds, suggesting that these clouds get their fractal structures from non-linear magnetic wav...

  7. Hierarchical sliding mode control for under-actuated cranes design, analysis and simulation

    CERN Document Server

    Qian, Dianwei

    2015-01-01

    This book reports on the latest developments in sliding mode overhead crane control, presenting novel research ideas and findings on sliding mode control (SMC), hierarchical SMC and compensator design-based hierarchical sliding mode. The results, which were previously scattered across various journals and conference proceedings, are now presented in a systematic and unified form. The book will be of interest to researchers, engineers and graduate students in control engineering and mechanical engineering who want to learn the methods and applications of SMC.

  8. Broadband Strong Ground Motion Simulation For a Potential Mw 7.1 Earthquake on The Enriquillo Fault in Haiti

    Science.gov (United States)

    Douilly, R.; Mavroeidis, G. P.; Calais, E.

    2015-12-01

    The devastating 2010 Haiti earthquake showed the need to be more vigilant toward mitigation for future earthquakes in the region. Previous studies have shown that this earthquake did not occur on the Enriquillo Fault, the main plate boundary fault running through the heavily populated Port-au-Prince region, but on the nearby and previously unknown Léogâne transpressional fault. Slip on that fault has increased stresses on the Enriquillo Fault mostly in the region closer to Port-au-Prince, the most populated city of the country. Here we investigate the ground shaking level in this region if a rupture similar to the Mw 7.0 2010 Haiti earthquake occurred on the Enriquillo fault. We use a finite element method and assumptions on regional stress to simulate low frequency dynamic rupture propagation for a 53 km long segment. We introduce some heterogeneity by creating two slip patches with shear traction 10% greater than the initial shear traction on the fault. The final slip distribution is similar in distribution and magnitude to previous finite fault inversions for the 2010 Haiti earthquake. The high-frequency ground motion components are calculated using the specific barrier model, and the hybrid synthetics are obtained by combining the low-frequencies (f 1Hz) from the stochastic simulation using matched filtering at a crossover frequency of 1 Hz. The average horizontal peak ground acceleration, computed at several sites of interest through Port-au-Prince, has a value of 0.35g. We also compute response spectra at those sites and compare them to the spectra from the microzonation study.

  9. Probabilistic Approach to Enable Extreme-Scale Simulations under Uncertainty and System Faults. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Knio, Omar [Duke Univ., Durham, NC (United States). Dept. of Mechanical Engineering and Materials Science

    2017-05-05

    The current project develops a novel approach that uses a probabilistic description to capture the current state of knowledge about the computational solution. To effectively spread the computational effort over multiple nodes, the global computational domain is split into many subdomains. Computational uncertainty in the solution translates into uncertain boundary conditions for the equation system to be solved on those subdomains, and many independent, concurrent subdomain simulations are used to account for this bound- ary condition uncertainty. By relying on the fact that solutions on neighboring subdomains must agree with each other, a more accurate estimate for the global solution can be achieved. Statistical approaches in this update process make it possible to account for the effect of system faults in the probabilistic description of the computational solution, and the associated uncertainty is reduced through successive iterations. By combining all of these elements, the probabilistic reformulation allows splitting the computational work over very many independent tasks for good scalability, while being robust to system faults.

  10. Research on burnout fault of moulded case circuit breaker based on finite element simulation

    Science.gov (United States)

    Xue, Yang; Chang, Shuai; Zhang, Penghe; Xu, Yinghui; Peng, Chuning; Shi, Erwei

    2017-09-01

    In the failure event of molded case circuit breaker, overheating of the molded case near the wiring terminal has a very important proportion. The burnout fault has become an important factor restricting the development of molded case circuit breaker. This paper uses the finite element simulation software to establish the model of molded case circuit breaker by coupling multi-physics field. This model can simulate the operation and study the law of the temperature distribution. The simulation results show that the temperature near the wiring terminal, especially the incoming side of the live wire, of the molded case circuit breaker is much higher than that of the other areas. The steady-state and transient simulation results show that the temperature at the wiring terminals is abnormally increased by increasing the contact resistance of the wiring terminals. This is consistent with the frequent occurrence of burnout of the molded case in this area. Therefore, this paper holds that the burnout failure of the molded case circuit breaker is mainly caused by the abnormal increase of the contact resistance of the wiring terminal.

  11. Healing and sliding stability of simulated anhydrite fault gouge : Effects of water, temperature and CO2

    NARCIS (Netherlands)

    Pluymakers, Anne M H; Niemeijer, André R.

    2015-01-01

    Anhydrite-bearing faults are currently of interest to 1) CO2-storage sites capped by anhydrite caprocks (such as those found in the North Sea) and 2) seismically active faults in evaporite formations (such as the Italian Apennines). In order to assess the likelihood of fault reactivation, the mode

  12. Design and Co-simulation of Hierarchical Architecture for Demand Response Control and Coordination

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Lévesque, Martin; Bak-Jensen, Birgitte

    2017-01-01

    Demand response (DR) plays a key role for optimum asset utilization and to avoid or delay the need of new infrastructure investment. However, coordinated execution of multiple DRs is desired to maximize the DR benefits. In this study, we propose a hierarchical DR architecture (HDRA) to control an...

  13. Hybrid hierarchical bio-based materials: Development and characterization through experimentation and computational simulations

    Science.gov (United States)

    Haq, Mahmoodul

    but seems to decrease toughness. Thus, the traditionally seen opposite measures of stiffness and toughness can be brought to an efficient balance through the combination of bio-resin and nanoclay. A multiscale computational approach, namely a multi-FE based approach, was implemented to the developed materials to extrapolate the experimental matrix, to provide insight into nano-scale behavior beyond measurements and to hopefully serve as a tool for computational design of hybrid materials. Additionally, an enhanced RVE for modeling the three-phase material was determined by solving a topology optimization based material layout problem to determine the distribution of bio-resin, thereby allowing modeling the nanostructure in greater detail and closer to reality. Overall, eco-friendly, tailorable, cost-effective and multiscale reinforced bio-based composites were successfully developed. The improved multifaceted features possible for these sustainable bio-based materials are likely to increase their appeal for use in transportation and housing structural applications. Additionally, it is believed that the approach of understanding complex materials by integrating simulations and experiments, as attempted in this work, holds great promise, and a similar methodology can be applied for other types of hierarchical materials, thereby providing guidance in designing those materials.

  14. Modelling and Numerical Simulations of In-Air Reverberation Images for Fault Detection in Medical Ultrasonic Transducers: A Feasibility Study

    Directory of Open Access Journals (Sweden)

    W. Kochański

    2015-01-01

    Full Text Available A simplified two-dimensional finite element model which simulates the in-air reverberation image produced by medical ultrasonic transducers has been developed. The model simulates a linear array consisting of 128 PZT-5A crystals, a tungsten-epoxy backing layer, an Araldite matching layer, and a Perspex lens layer. The thickness of the crystal layer is chosen to simulate pulses centered at 4 MHz. The model is used to investigate whether changes in the electromechanical properties of the individual transducer layers (backing layer, crystal layer, matching layer, and lens layer have an effect on the simulated in-air reverberation image generated. Changes in the electromechanical properties are designed to simulate typical medical transducer faults such as crystal drop-out, lens delamination, and deterioration in piezoelectric efficiency. The simulations demonstrate that fault-related changes in transducer behaviour can be observed in the simulated in-air reverberation image pattern. This exploratory approach may help to provide insight into deterioration in transducer performance and help with early detection of faults.

  15. Hierarchical FeTiO3-TiO2 hollow spheres for efficient simulated sunlight-driven water oxidation

    Science.gov (United States)

    Han, Taoran; Chen, Yajie; Tian, Guohui; Wang, Jian-Qiang; Ren, Zhiyu; Zhou, Wei; Fu, Honggang

    2015-09-01

    Oxygen generation is the key step for the photocatalytic overall water splitting and considered to be kinetically more challenging than hydrogen generation. Here, an effective water oxidation catalyst of hierarchical FeTiO3-TiO2 hollow spheres are prepared via a two-step sequential solvothermal processes and followed by thermal treatment. The existence of an effective heterointerface and built-in electric field in the surface space charge region in FeTiO3-TiO2 hollow spheres plays a positive role in promoting the separation of photoinduced electron-hole pairs. Surface photovoltage, transient-state photovoltage, fluorescence and electrochemical characterization are used to investigate the transfer process of photoinduced charge carriers. The photogenerated charge carriers in the hierarchical FeTiO3-TiO2 hollow spheres with a proper molar ratio display much higher separation efficiency and longer lifetime than those in the FeTiO3 alone. Moreover, it is suggested that the hierarchical porous hollow structure can contribute to the enhancement of light utilization, surface active sites and material transportation through the framework walls. This specific synergy significantly contributes to the remarkable improvement of the photocatalytic water oxidation activity of the hierarchical FeTiO3-TiO2 hollow spheres under simulated sunlight (AM1.5).Oxygen generation is the key step for the photocatalytic overall water splitting and considered to be kinetically more challenging than hydrogen generation. Here, an effective water oxidation catalyst of hierarchical FeTiO3-TiO2 hollow spheres are prepared via a two-step sequential solvothermal processes and followed by thermal treatment. The existence of an effective heterointerface and built-in electric field in the surface space charge region in FeTiO3-TiO2 hollow spheres plays a positive role in promoting the separation of photoinduced electron-hole pairs. Surface photovoltage, transient-state photovoltage, fluorescence and

  16. eLoom and Flatland: specification, simulation and visualization engines for the study of arbitrary hierarchical neural architectures.

    Science.gov (United States)

    Caudell, Thomas P; Xiao, Yunhai; Healy, Michael J

    2003-01-01

    eLoom is an open source graph simulation software tool, developed at the University of New Mexico (UNM), that enables users to specify and simulate neural network models. Its specification language and libraries enables users to construct and simulate arbitrary, potentially hierarchical network structures on serial and parallel processing systems. In addition, eLoom is integrated with UNM's Flatland, an open source virtual environments development tool to provide real-time visualizations of the network structure and activity. Visualization is a useful method for understanding both learning and computation in artificial neural networks. Through 3D animated pictorially representations of the state and flow of information in the network, a better understanding of network functionality is achieved. ART-1, LAPART-II, MLP, and SOM neural networks are presented to illustrate eLoom and Flatland's capabilities.

  17. Computing elastic‐rebound‐motivated rarthquake probabilities in unsegmented fault models: a new methodology supported by physics‐based simulators

    Science.gov (United States)

    Field, Edward H.

    2015-01-01

    A methodology is presented for computing elastic‐rebound‐based probabilities in an unsegmented fault or fault system, which involves computing along‐fault averages of renewal‐model parameters. The approach is less biased and more self‐consistent than a logical extension of that applied most recently for multisegment ruptures in California. It also enables the application of magnitude‐dependent aperiodicity values, which the previous approach does not. Monte Carlo simulations are used to analyze long‐term system behavior, which is generally found to be consistent with that of physics‐based earthquake simulators. Results cast doubt that recurrence‐interval distributions at points on faults look anything like traditionally applied renewal models, a fact that should be considered when interpreting paleoseismic data. We avoid such assumptions by changing the "probability of what" question (from offset at a point to the occurrence of a rupture, assuming it is the next event to occur). The new methodology is simple, although not perfect in terms of recovering long‐term rates in Monte Carlo simulations. It represents a reasonable, improved way to represent first‐order elastic‐rebound predictability, assuming it is there in the first place, and for a system that clearly exhibits other unmodeled complexities, such as aftershock triggering.

  18. Simulation of 2003 Bam (Iran) earthquake using empirical Green's function method via very small and near-fault events

    Science.gov (United States)

    Riahi, Ali; Sadeghi, Hossein; Hosseini, Sayyed Keivan

    2015-06-01

    The 2003 Bam, Iran, earthquake (Mw = 6.6) was recorded by the BAM accelerometer station. Since the causative fault was located just below the city, the accelerometer recorded the main shock, a foreshock and several local aftershocks. To study the scenario of rupturing, we simulated all components of the observed main shock waveform via the empirical Green's function method. 28 selected aftershocks and the single foreshock are used to simulate the main shock in the frequency range of 0.5-5 Hz. Since the events were very close to the station, some small events may not have similar path effects to the main shock. Therefore, it is essential to employ some appropriate changes to the waveforms to alleviate path difference effects. The starting point of the rupture is identified in the centre of the strong motion generation area and is located approximately 5 km south of the BAM station and in depth of about 7 km. The horizontal simulated components imply that the main shock was located west of the BAM station. In contrast, significant variation in the ratio of amplitudes in EW and NS components may be used to discuss the possibility of dissimilarity in the focal mechanism of the small events. Most aftershocks with similar mechanisms to the main shock, that is similar EW/NS maximum amplitude ratio, have capacity to simulate certain peaks of their horizontal components. However, some small events with different mechanisms are only able to simulate the peaks of up to one horizontal component. Some changes were applied to the empirical Green's function method to incorporate two small events by using a combined fault model. While the two aftershocks have different mechanisms, some combinations may improve simulations. The rupture initiating point at the middle of the fault plane and improved simulations by combination of two fault surfaces with different focal mechanisms may suggest a bilateral rupture and combination of two focal mechanisms for the main shock of the Bam

  19. Modeling of fluid injection and withdrawal induced fault activation using discrete element based hydro-mechanical and dynamic coupled simulator

    Science.gov (United States)

    Yoon, Jeoung Seok; Zang, Arno; Zimmermann, Günter; Stephansson, Ove

    2016-04-01

    Operation of fluid injection into and withdrawal from the subsurface for various purposes has been known to induce earthquakes. Such operations include hydraulic fracturing for shale gas extraction, hydraulic stimulation for Enhanced Geothermal System development and waste water disposal. Among these, several damaging earthquakes have been reported in the USA in particular in the areas of high-rate massive amount of wastewater injection [1] mostly with natural fault systems. Oil and gas production have been known to induce earthquake where pore fluid pressure decreases in some cases by several tens of Mega Pascal. One recent seismic event occurred in November 2013 near Azle, Texas where a series of earthquakes began along a mapped ancient fault system [2]. It was studied that a combination of brine production and waste water injection near the fault generated subsurface pressures sufficient to induced earthquakes on near-critically stressed faults. This numerical study aims at investigating the occurrence mechanisms of such earthquakes induced by fluid injection [3] and withdrawal by using hydro-geomechanical coupled dynamic simulator (Itasca's Particle Flow Code 2D). Generic models are setup to investigate the sensitivity of several parameters which include fault orientation, frictional properties, distance from the injection well to the fault, amount of fluid withdrawal around the injection well, to the response of the fault systems and the activation magnitude. Fault slip movement over time in relation to the diffusion of pore pressure is analyzed in detail. Moreover, correlations between the spatial distribution of pore pressure change and the locations of induced seismic events and fault slip rate are investigated. References [1] Keranen KM, Weingarten M, Albers GA, Bekins BA, Ge S, 2014. Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection, Science 345, 448, DOI: 10.1126/science.1255802. [2] Hornbach MJ, DeShon HR

  20. A Novel Personalized Diagnosis Methodology Using Numerical Simulation and an Intelligent Method to Detect Faults in a Shaft

    Directory of Open Access Journals (Sweden)

    Jiawei Xiang

    2016-12-01

    Full Text Available Personalized medicine is a hot topic to develop a medical procedure for healthcare. Motivated by molecular dynamics simulation-based personalized medicine, we propose a novel numerical simulation-based personalized diagnosis methodology and explain the fundamental procedures. As an example, a personalized fault diagnosis method is developed using the finite element method (FEM, wavelet packet transform (WPT and support vector machine (SVM to detect faults in a shaft. The shaft unbalance, misalignment, rub-impact and the combination of rub-impact and unbalance are investigated using the present method. The method includes three steps. In the first step, Theil’s inequality coefficient (TIC-based FE model updating technique is employed to determine the boundary conditions, and the fault-induced FE model of the faulty shaft is constructed. Further, the vibration signals of the faulty shaft are obtained using numerical simulation. In the second step, WPT is employed to decompose the vibration signal into several signal components. Specific time-domain feature parameters of all of the signal components are calculated to generate the training samples to train the SVM. Finally, the measured vibration signal and its components decomposed by WPT serve as a test sample to the trained SVM. The fault types are finally determined. In the simulation of a simple shaft, the classification accuracy rates of unbalance, misalignment, rub-impact and the combination of rub-impact and unbalance are 93%, 95%, 89% and 91%, respectively, whereas in the experimental investigations, these decreased to 82%, 87%, 73% and 79%. In order to increase the fault diagnosis precision and general applicability, further works are continuously improving the personalized diagnosis methodology and the corresponding specific methods.

  1. Multi-Physics Modelling of Fault Mechanics Using REDBACK: A Parallel Open-Source Simulator for Tightly Coupled Problems

    Science.gov (United States)

    Poulet, Thomas; Paesold, Martin; Veveakis, Manolis

    2017-03-01

    Faults play a major role in many economically and environmentally important geological systems, ranging from impermeable seals in petroleum reservoirs to fluid pathways in ore-forming hydrothermal systems. Their behavior is therefore widely studied and fault mechanics is particularly focused on the mechanisms explaining their transient evolution. Single faults can change in time from seals to open channels as they become seismically active and various models have recently been presented to explain the driving forces responsible for such transitions. A model of particular interest is the multi-physics oscillator of Alevizos et al. (J Geophys Res Solid Earth 119(6), 4558-4582, 2014) which extends the traditional rate and state friction approach to rate and temperature-dependent ductile rocks, and has been successfully applied to explain spatial features of exposed thrusts as well as temporal evolutions of current subduction zones. In this contribution we implement that model in REDBACK, a parallel open-source multi-physics simulator developed to solve such geological instabilities in three dimensions. The resolution of the underlying system of equations in a tightly coupled manner allows REDBACK to capture appropriately the various theoretical regimes of the system, including the periodic and non-periodic instabilities. REDBACK can then be used to simulate the drastic permeability evolution in time of such systems, where nominally impermeable faults can sporadically become fluid pathways, with permeability increases of several orders of magnitude.

  2. Numerical simulation of earthquake rupture sequences on the Manila thrust fault: Effects of seamount subduction

    Science.gov (United States)

    Yu, H.; Liu, Y.; Ning, J.; He, C.; Zhang, L.

    2015-12-01

    The Manila subduction zone is located at the convergent boundary between the Philippine Sea Plate and the Sunda/Eurasian Plate from offshore Taiwan to northern Luzon of Philippines, where only infrequent M7 earthquakes were observed in modern seismological instrumentation history. The lack of great events (M8+) indicates the subduction fault is either aseismically slipping or is accumulating strain energy toward rapid release in a great earthquake. Here we conduct numerical simulations of earthquake rupture sequences in the framework of rate-state-friction along the 15-19.5ºN segment of the 3D plate boundary with subducted seamounts. Rate-state frictional properties are constrained by laboratory friction experiments conducted on IODP Expedition 349, South China Sea (SCS), drilling samples from the basaltic basement rock under 100ºC - 600ºC, effective normal stress of 50 MPa and pore pressure of 100 MPa. During the modeled 2000-year period, the maximum magnitude of earthquakes is Mw7. Each sequence repeats every ~200 years and is consisted of three sub-events, event 1 (Mw7) that can overcome the barrier, where dip angle changes most rapidly along the strike, to rupture the entire fault. Events 2 (Mw 6.4) and 3 (Mw 5.7) are of smaller magnitudes and result in north-south segmented rupture pattern. We further quantify the potential of earthquake nucleation by the S-ratio (lower S ratio means the initial stress is closer to peak strength, hence more likely to nucleate an earthquake). The subducted seamount shows higher S-ratios than its surroundings mostly, implying an unlikely nucleate area. Our results are qualitatively similar to 2D subduction earthquake modeling by Herrendörfer et al. (2015, 2-3 events per supercycle and median long-term S is 0.5-1). Finally, we plan to use our coseismic rupture model results as inputs for a tsunami propagation model in SCS. Compared to the kinematic seafloor deformation input, our physics-based earthquake source model and its

  3. Numerical fracture simulation using Hamiltonian Particle Method -Relationship of parallel faulting to stress filed and elastic parameters of rock mass-

    Science.gov (United States)

    Imai, Y.; Mikada, H.; Goto, T.; Takekawa, J.

    2011-12-01

    Echelon faults are a group of parallel shear failures of rock that have a certain angle to stress axis. These parallel cracks can be observed as various sizes from plate-scale to laboratory-scale. In the area surrounding Japan, one of the typical example is found in the Izu Peninsula and the offshore area. In these areas, the conjugate parallel faults can be also observed. The mechanism and the formation of these parallel and conjugate faults are not well investigated, and there still remains an important geophysical subject. In the Izu Peninsula, the crust mainly suffers the compressional stress force by the subduction of the Philippine Sea Plate and strike slip forces of two large shear faults. In this study, we conduct numerical simulations of rock mass failure under various conditions to discuss the forming mechanism of these parallel and conjugate fractures. If we find the relationship between the formation of echelon faults and stress field applied to rock mass, we could infer stress field loaded to the crust from the pattern of faults. For numerical simulation, the Finite Difference Method (FDM) and the Finite Element Method (FEM) are widely used to solve solid deformation problems. In these methods, the failure at faults or cracks, however, would not be well simulated when the displacement becomes large or the grid-based structure is broken. On the other hand, particle methods are free from these difficulties. Therefore, we use the Hamiltonian Particle Method (HPM), i.e., one of the particle methods to simulate the formation of echelon faults to investigate the nucleation conditions. We assume a rectangular plate and change the type of forces acting on the plate for simplifying Izu area. The model represents a two-dimensional plane strain. In Izu area, the oceanic crust is composed mainly of basalt. Thus, we assume that the parameters of the rock mass are basaltic. The density and Young's modulus of the model are determined to match those of basalt. In

  4. Analysis of lightning fault detection, location and protection on short and long transmission lines using Real Time Digital Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Andre Luiz Pereira de [Siemens Ltda., Sao Paulo, SP (Brazil)], E-mail: andreluiz.oliveira@siemens.com

    2007-07-01

    The purpose of this paper is to present an analysis of lightning fault detection, location and protection using numeric distance relays applied in high voltage transmission lines, more specifically in the 500 kV transmission lines of CEMIG (Brazilian Energy Utility) between the Vespasiano 2 - Neves 1 (short line - 23.9 km) and Vespasiano 2 - Mesquita (long line - 148.6 km) substations. The analysis was based on the simulations results of numeric distance protective relays on power transmission lines, realized in September 02 to 06, 2002, at Siemens AG's facilities (Erlangen - Germany), using Real Time Digital Simulator (RTDS{sup TM}). Several lightning faults simulations were accomplished, in several conditions of the electrical power system where the protective relays would be installed. The results are presented not only with the times of lightning faults elimination, but also all the functionality of a protection system, including the correct detection, location and other advantages that these modern protection devices make possible to the power system. (author)

  5. Fault diagnosis

    Science.gov (United States)

    Abbott, Kathy

    1990-01-01

    The objective of the research in this area of fault management is to develop and implement a decision aiding concept for diagnosing faults, especially faults which are difficult for pilots to identify, and to develop methods for presenting the diagnosis information to the flight crew in a timely and comprehensible manner. The requirements for the diagnosis concept were identified by interviewing pilots, analyzing actual incident and accident cases, and examining psychology literature on how humans perform diagnosis. The diagnosis decision aiding concept developed based on those requirements takes abnormal sensor readings as input, as identified by a fault monitor. Based on these abnormal sensor readings, the diagnosis concept identifies the cause or source of the fault and all components affected by the fault. This concept was implemented for diagnosis of aircraft propulsion and hydraulic subsystems in a computer program called Draphys (Diagnostic Reasoning About Physical Systems). Draphys is unique in two important ways. First, it uses models of both functional and physical relationships in the subsystems. Using both models enables the diagnostic reasoning to identify the fault propagation as the faulted system continues to operate, and to diagnose physical damage. Draphys also reasons about behavior of the faulted system over time, to eliminate possibilities as more information becomes available, and to update the system status as more components are affected by the fault. The crew interface research is examining display issues associated with presenting diagnosis information to the flight crew. One study examined issues for presenting system status information. One lesson learned from that study was that pilots found fault situations to be more complex if they involved multiple subsystems. Another was pilots could identify the faulted systems more quickly if the system status was presented in pictorial or text format. Another study is currently under way to

  6. Synthesis, structure and properties of hierarchical nanostructured porous materials studied by molecular dynamics simulations

    Science.gov (United States)

    Chae, Kisung

    For applications of porous materials in many fields of technological importance, such as catalysis, filtration, separation, energy storage and conversion, the efficiency is often limited by chemical kinetics, and/or diffusion of reactants and products to and from the active sites. Hierarchical nanostructured porous materials (HNPMs) that possess both mesopores (2 nm gas transport in HNPCs, a computationally efficient reflecting particle method (RPM) together with a perturbation-relaxation loop was developed in this work to make the pressure drop consistent for various structures and transport conditions. The mimetic nanocasting technique and the RPM method can be easily extended to study the synthesis-structure-transport properties relations in many other HNPMs. A complete feedback loop among synthesis, structure and properties will help identify the proper synthesis parameters to design the optimal porous structures for a particular application. This will speed up the applications of HNPMs in many fields, such as electrodes for supercapacitors, lithium ion batteries and fuel cells, catalyst supports, materials for gas sensing and hydrogen storage, etc.

  7. Ground motion modeling of Hayward fault scenario earthquakes II:Simulation of long-period and broadband ground motions

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard, B T; Graves, R W; Rodgers, A; Brocher, T M; Simpson, R W; Dreger, D; Petersson, N A; Larsen, S C; Ma, S; Jachens, R C

    2009-11-04

    We simulate long-period (T > 1.0-2.0 s) and broadband (T > 0.1 s) ground motions for 39 scenarios earthquakes (Mw 6.7-7.2) involving the Hayward, Calaveras, and Rodgers Creek faults. For rupture on the Hayward fault we consider the effects of creep on coseismic slip using two different approaches, both of which reduce the ground motions compared with neglecting the influence of creep. Nevertheless, the scenario earthquakes generate strong shaking throughout the San Francisco Bay area with about 50% of the urban area experiencing MMI VII or greater for the magnitude 7.0 scenario events. Long-period simulations of the 2007 Mw 4.18 Oakland and 2007 Mw 4.5 Alum Rock earthquakes show that the USGS Bay Area Velocity Model version 08.3.0 permits simulation of the amplitude and duration of shaking throughout the San Francisco Bay area, with the greatest accuracy in the Santa Clara Valley (San Jose area). The ground motions exhibit a strong sensitivity to the rupture length (or magnitude), hypocenter (or rupture directivity), and slip distribution. The ground motions display a much weaker sensitivity to the rise time and rupture speed. Peak velocities, peak accelerations, and spectral accelerations from the synthetic broadband ground motions are, on average, slightly higher than the Next Generation Attenuation (NGA) ground-motion prediction equations. We attribute at least some of this difference to the relatively narrow width of the Hayward fault ruptures. The simulations suggest that the Spudich and Chiou (2008) directivity corrections to the NGA relations could be improved by including a dependence on the rupture speed and increasing the areal extent of rupture directivity with period. The simulations also indicate that the NGA relations may under-predict amplification in shallow sedimentary basins.

  8. Simulation of electrical and thermal behavior of high temperature superconducting fault current limiting transformer (HTc-SFCLT)

    Energy Technology Data Exchange (ETDEWEB)

    Kurupakorn, C [Department of Electrical Engineering and Computer Science, Nagoya University, Nagoya 464-8603 (Japan); Kojima, H [EcoTopia Science Institute, Nagoya University, Nagoya 464-8603 (Japan); Hayakawa, N [Department of Electrical Engineering and Computer Science, Nagoya University, Nagoya 464-8603 (Japan); Endo, F [EcoTopia Science Institute, Nagoya University, Nagoya 464-8603 (Japan); Kashima, N [Chubu Electric Power Co., Inc., Nagoya 459-8522 (Japan); Nagaya, S [Chubu Electric Power Co., Inc., Nagoya 459-8522 (Japan); Noe, M [Forschungszentrum Karlsruhe, Karlsruhe D-76021 (Germany); Okubo, H [EcoTopia Science Institute, Nagoya University, Nagoya 464-8603 (Japan)

    2006-06-01

    Superconducting Fault Current Limiting Transformer (SFCLT) is expected to perform functions both of transformer in the normal operating condition and of fault current limiter in the system fault condition. As the Phase-3 of the SFCLT project, we have been developing SFCLT based on Bi2212/CuNi bulk coils at LN{sub 2} temperature and verified its technical feasibility. In this paper, we developed a numerical model for evaluation of the electrical and thermal behavior of HTc-SFCLT such as current limitation and recovery characteristics. This model took into account E-J characteristics of Bi2212/CuNi bulk coil and its electrical and thermal transient phenomena during the operation of HTc-SFCLT. The simulated current agreed well with the experimental data with the error of less than 5%. The excellent current limitation and self recovery characteristics obtained by the experiments could also be reproduced. With the numerical model, current and thermal behavior of HTc-SFCLT was simulated for different parameters of conductor configuration, which would be useful for the future design and optimization of HTc-SFCLT.

  9. Multiscale spatial Monte Carlo simulations: multigriding, computational singular perturbation, and hierarchical stochastic closures.

    Science.gov (United States)

    Chatterjee, Abhijit; Vlachos, Dionisios G

    2006-02-14

    Monte Carlo (MC) simulation of most spatially distributed systems is plagued by several problems, namely, execution of one process at a time, large separation of time scales of various processes, and large length scales. Recently, a coarse-grained Monte Carlo (CGMC) method was introduced that can capture large length scales at reasonable computational times. An inherent assumption in this CGMC method revolves around a mean-field closure invoked in each coarse cell that is inaccurate for short-ranged interactions. Two new approaches are explored to improve upon this closure. The first employs the local quasichemical approximation, which is applicable to first nearest-neighbor interactions. The second, termed multiscale CGMC method, employs singular perturbation ideas on multiple grids to capture the entire cluster probability distribution function via short microscopic MC simulations on small, fine-grid lattices by taking advantage of the time scale separation of multiple processes. Computational strategies for coupling the fast process at small length scales (fine grid) with the slow processes at large length scales (coarse grid) are discussed. Finally, the binomial tau-leap method is combined with the multiscale CGMC method to execute multiple processes over the entire lattice and provide additional computational acceleration. Numerical simulations demonstrate that in the presence of fast diffusion and slow adsorption and desorption processes the two new approaches provide more accurate solutions in comparison to the previously introduced CGMC method.

  10. Space- and Time-Dependent Probabilities for Earthquake Fault Systems from Numerical Simulations: Feasibility Study and First Results

    Science.gov (United States)

    van Aalsburg, Jordan; Rundle, John B.; Grant, Lisa B.; Rundle, Paul B.; Yakovlev, Gleb; Turcotte, Donald L.; Donnellan, Andrea; Tiampo, Kristy F.; Fernandez, Jose

    2010-08-01

    In weather forecasting, current and past observational data are routinely assimilated into numerical simulations to produce ensemble forecasts of future events in a process termed "model steering". Here we describe a similar approach that is motivated by analyses of previous forecasts of the Working Group on California Earthquake Probabilities (WGCEP). Our approach is adapted to the problem of earthquake forecasting using topologically realistic numerical simulations for the strike-slip fault system in California. By systematically comparing simulation data to observed paleoseismic data, a series of spatial probability density functions (PDFs) can be computed that describe the probable locations of future large earthquakes. We develop this approach and show examples of PDFs associated with magnitude M > 6.5 and M > 7.0 earthquakes in California.

  11. Frictional properties of simulated anhydrite-dolomite fault gouge and implications for seismogenic potential

    NARCIS (Netherlands)

    Pluymakers, A.M.H.; Niemeijer, A.R.; Spiers, C.J.

    The frictional properties of anhydrite-dolomite fault gouges, and the effects of CO2 upon them, are of key importance in assessing the risks associated with CO2 storage in reservoir formations capped by anhydrite-dolomite sequences, and in understanding seismicity occurring in such formations (such

  12. Simulation of Electric Faults in Doubly-Fed Induction Generators Employing Advanced Mathematical Modelling

    DEFF Research Database (Denmark)

    Martens, Sebastian; Mijatovic, Nenad; Holbøll, Joachim

    2015-01-01

    in many areas of electrical machine analysis. However, for fault investigations, the phase-coordinate representation has been found more suitable. This paper presents a mathematical model in phase coordinates of the DFIG with two parallel windings per rotor phase. The model has been implemented in Matlab...

  13. Effects of temperature and CO2 on the frictional behavior of simulated anhydrite fault rock

    NARCIS (Netherlands)

    Pluymakers, Anne M.H.; Samuelson, Jon E.; Niemeijer, André; Spiers, Christopher

    2014-01-01

    The frictional behavior of anhydrite‐bearing faults is of interest to a) the safety and effectiveness of CO2 storage in anhydrite‐capped reservoirs, b) seismicity induced by hydrocarbon production, and c) natural seismicity nucleated in evaporite formations. We performed direct shear experiments on

  14. Hierarchical assembly of block copolymer micelles into reversible networks: MC simulations

    Science.gov (United States)

    Wang, Zilu; Dormidontova, Elena

    2015-03-01

    The rapid development of nanoscience has considerably expanded the range of building blocks for complex self-assembled nanostructure formation, which show great potential for numerous advanced applications. We apply Monte Carlo simulations to gain understanding of molecular mechanism of self-assembly of nanostructures formed by diblock copolymer micelles interconnected by means of metal-ligand complexation. These systems exhibit interesting chemical and mechanical stimuli-responsive behavior and possess two levels of self-assembly: 1) self-assembly of diblock copolymers into micelles and 2) reversible inter-micelle bridging by coordination bonding between metal ions and ligands attached to the corona of nanoparticles, which is responsible for the network viscoelastic properties. Using MC simulations we investigate the effect of metal-ligand complexation on diblock-copolymer micelle formation and vice versa. We analyze the extent of intra- and inter-micelle loops and bridges formed by metal-ligand complexation in relation to the degree of crosslinking and elastic properties of the network. The effect of polymer concentration, hydrophilic block length, metal to oligomer ratio and type of complexation (2:1 or 3:1) on equilibrium properties of reversible networks will be discussed.

  15. Geophysical Finite-Element Simulation Tool (GeoFEST): Algorithms and Validation for Quasistatic Regional Faulted Crust Problems

    Science.gov (United States)

    Parker, Jay; Lyzenga, Gregory; Norton, Charles; Zuffada, Cinzia; Glasscoe, Margaret; Lou, John; Donnellan, Andrea

    2008-04-01

    GeoFEST (Geophysical Finite Element Simulation Tool) is a two- and three-dimensional finite element software package for the modeling of solid stress and strain in geophysical and other continuum domain applications. It is one of the featured high-performance applications of the NASA QuakeSim project. The program is targeted to be compiled and run on UNIX systems, and is running on diverse systems including sequential and message-passing parallel systems. Solution to the elliptical partial differential equations is obtained by finite element basis sampling, resulting in a sparse linear system primarily solved by conjugate gradient iteration to a tolerance level; on sequential systems a Crout factorization for the direct inversion of the linear system is also supported. The physics models supported include isotropic linear elasticity and both Newtonian and power-law viscoelasticity, via implicit quasi-static time stepping. In addition to triangular, quadrilateral, tetrahedral and hexahedral continuum elements, GeoFEST supports split-node faulting, body forces, and surface tractions. This software and related mesh refinement strategies have been validated on a variety of test cases with rigorous comparison to analytical solutions. These include a box-shaped domain with imposed motion on one surface, a pair of strike slip faults in stepover arrangement, and two community-agreed benchmark cases: a strike slip fault in an enclosing box, and a quarter-domain circular fault problem. Scientific applications of the code include the modeling of static and transient co- and post-seismic earth deformation, Earth response to glacial, atmospheric and hydrological loading, and other scenarios involving the bulk deformation of geologic media.

  16. FAULT DIAGNOSIS WITH MULTI-STATE ALARMS IN A NUCLEAR POWER CONTROL SIMULATOR

    Energy Technology Data Exchange (ETDEWEB)

    Austin Ragsdale; Roger Lew; Brian P. Dyre; Ronald L. Boring

    2012-10-01

    This research addresses how alarm systems can increase operator performance within nuclear power plant operations. The experiment examined the effect of two types of alarm systems (two-state and three-state alarms) on alarm compliance and diagnosis for two types of faults differing in complexity. We hypothesized three-state alarms would improve performance in alarm recognition and fault diagnoses over that of two-state alarms. We used sensitivity and criterion based on Signal Detection Theory to measure performance. We further hypothesized that operator trust would be highest when using three-state alarms. The findings from this research showed participants performed better and had more trust in three-state alarms compared to two-state alarms. Furthermore, these findings have significant theoretical implications and practical applications as they apply to improving the efficiency and effectiveness of nuclear power plant operations.

  17. Simulation of Near-Fault High-Frequency Ground Motions from the Representation Theorem

    Science.gov (United States)

    Beresnev, Igor A.

    2017-11-01

    "What is the maximum possible ground motion near an earthquake fault?" is an outstanding question of practical significance in earthquake seismology. In establishing a possible theoretical cap on extreme ground motions, the representation integral of elasticity, providing an exact, within limits of applicability, solution for fault radiation at any frequency, is an under-utilized tool. The application of a numerical procedure leading to synthetic ground displacement, velocity, and acceleration time histories to modeling of the record at the Lucerne Valley hard-rock station, uniquely located at 1.1 km from the rupture of the M w 7.2 Landers, California event, using a seismologically constrained temporal form of slip on the fault, reveals that the shape of the displacement waveform can be modeled closely, given the simplicity of the theoretical model. High precision in the double integration, as well as carefully designed smoothing and filtering, are necessary to suppress the numerical noise in the high-frequency (velocity and acceleration) synthetic motions. The precision of the integration of at least eight decimal digits ensures the numerical error in the displacement waveforms generally much lower than 0.005% and reduces the error in the peak velocities and accelerations to the levels acceptable to make the representation theorem a reliable tool in the practical evaluation of the magnitude of maximum possible ground motions in a wide-frequency range of engineering interest.

  18. PEM fuel cell fault detection and identification using differential method: simulation and experimental validation

    Science.gov (United States)

    Frappé, E.; de Bernardinis, A.; Bethoux, O.; Candusso, D.; Harel, F.; Marchand, C.; Coquery, G.

    2011-05-01

    PEM fuel cell performance and lifetime strongly depend on the polymer membrane and MEA hydration. As the internal moisture is very sensitive to the operating conditions (temperature, stoichiometry, load current, water management…), keeping the optimal working point is complex and requires real-time monitoring. This article focuses on PEM fuel cell stack health diagnosis and more precisely on stack fault detection monitoring. This paper intends to define new, simple and effective methods to get relevant information on usual faults or malfunctions occurring in the fuel cell stack. For this purpose, the authors present a fault detection method using simple and non-intrusive on-line technique based on the space signature of the cell voltages. The authors have the objective to minimize the number of embedded sensors and instrumentation in order to get a precise, reliable and economic solution in a mass market application. A very low number of sensors are indeed needed for this monitoring and the associated algorithm can be implemented on-line. This technique is validated on a 20-cell PEMFC stack. It demonstrates that the developed method is particularly efficient in flooding case. As a matter of fact, it uses directly the stack as a sensor which enables to get a quick feedback on its state of health.

  19. Sandia's fault analysis system for non-DFT designs

    Energy Technology Data Exchange (ETDEWEB)

    Hofstadler, P.

    1987-01-01

    A toolset is described that is used to do comprehensive fault analysis on Sandia's past, present, and future generation designs. This toolset provides very fast realistic fault simulation at both the gate and switch level, hierarchical fault reporting, and automatic annotation of undetectable faults. The toolset is built around the Mentor Graphics design system and a Mach1000 hardware accelerator from Silicon Solutions. This session describes the work at Sandia National Laboratories' Center for Radiation Hardened Microelectronics (the CRM) in Albuquerque, New Mexico. The CRM designs and manufactures radiation hardened microelectronics for hostile environments. CRM parts are used in satellites, deep space probes, and weapon systems - hence the reliability of these parts must be exceedingly high. Since the yield of a radiation hardened process is inherently low, Sandia must insure high test vector coverage of all detectable faults.

  20. Parallel, Multigrid Finite Element Simulator for Fractured/Faulted and Other Complex Reservoirs based on Common Component Architecture (CCA)

    Energy Technology Data Exchange (ETDEWEB)

    Milind Deo; Chung-Kan Huang; Huabing Wang

    2008-08-31

    Black-oil, compositional and thermal simulators have been developed to address different physical processes in reservoir simulation. A number of different types of discretization methods have also been proposed to address issues related to representing the complex reservoir geometry. These methods are more significant for fractured reservoirs where the geometry can be particularly challenging. In this project, a general modular framework for reservoir simulation was developed, wherein the physical models were efficiently decoupled from the discretization methods. This made it possible to couple any discretization method with different physical models. Oil characterization methods are becoming increasingly sophisticated, and it is possible to construct geologically constrained models of faulted/fractured reservoirs. Discrete Fracture Network (DFN) simulation provides the option of performing multiphase calculations on spatially explicit, geologically feasible fracture sets. Multiphase DFN simulations of and sensitivity studies on a wide variety of fracture networks created using fracture creation/simulation programs was undertaken in the first part of this project. This involved creating interfaces to seamlessly convert the fracture characterization information into simulator input, grid the complex geometry, perform the simulations, and analyze and visualize results. Benchmarking and comparison with conventional simulators was also a component of this work. After demonstration of the fact that multiphase simulations can be carried out on complex fracture networks, quantitative effects of the heterogeneity of fracture properties were evaluated. Reservoirs are populated with fractures of several different scales and properties. A multiscale fracture modeling study was undertaken and the effects of heterogeneity and storage on water displacement dynamics in fractured basements were investigated. In gravity-dominated systems, more oil could be recovered at a given pore

  1. Large Eddy Simulation Modeling of Flashback and Flame Stabilization in Hydrogen-Rich Gas Turbines Using a Hierarchical Validation Approach

    Energy Technology Data Exchange (ETDEWEB)

    Clemens, Noel [Univ. of Texas, Austin, TX (United States)

    2015-09-30

    This project was a combined computational and experimental effort to improve predictive capability for boundary layer flashback of premixed swirl flames relevant to gas-turbine power plants operating with high-hydrogen-content fuels. During the course of this project, significant progress in modeling was made on four major fronts: 1) use of direct numerical simulation of turbulent flames to understand the coupling between the flame and the turbulent boundary layer; 2) improved modeling capability for flame propagation in stratified pre-mixtures; 3) improved portability of computer codes using the OpenFOAM platform to facilitate transfer to industry and other researchers; and 4) application of LES to flashback in swirl combustors, and a detailed assessment of its capabilities and limitations for predictive purposes. A major component of the project was an experimental program that focused on developing a rich experimental database of boundary layer flashback in swirl flames. Both methane and high-hydrogen fuels, including effects of elevated pressure (1 to 5 atm), were explored. For this project, a new model swirl combustor was developed. Kilohertz-rate stereoscopic PIV and chemiluminescence imaging were used to investigate the flame propagation dynamics. In addition to the planar measurements, a technique capable of detecting the instantaneous, time-resolved 3D flame front topography was developed and applied successfully to investigate the flow-flame interaction. The UT measurements and legacy data were used in a hierarchical validation approach where flows with increasingly complex physics were used for validation. First component models were validated with DNS and literature data in simplified configurations, and this was followed by validation with the UT 1-atm flashback cases, and then the UT high-pressure flashback cases. The new models and portable code represent a major improvement over what was available before this project was initiated.

  2. Subband Coding, Wavelet Packet and Prony Analysis of Simulated and Measured Earth Faults on Compensated 10 kV Power Distribution Network

    DEFF Research Database (Denmark)

    Sørensen, Stefan; Nielsen, Hans Ove

    2002-01-01

    This paper deals with the subband coding (wavelet multiresolution analysis) and Wavelet packet signal processing tool on corrected PSCAD/EMTD® simulations and some results of a full scale earth fault experiment carried out on the Petersen-Coil compensated 10 kV research/laboratory distribution...... network at Kyndbyvaerket, Denmark. The PSCAD/EMTD® simulation model is equivalent to the research/laboratory network at Kyndbyvaerket, build on 25 corrected cable models and 4 line models in a radial network of approximately 7.4 km length connected to four distribution transformers. The purpose is to show...... fault transients and the Prony estimated exponential damped sinusoids....

  3. Hierarchical multiple peeling simulations

    OpenAIRE

    Bosia, F.; Colella, S; Mattoli, V.; Mazzolai, B; Pugno, N. M.

    2014-01-01

    The phenomenon of the exceptional dry adhesion achieved by some natural biological materials has been widely investigated in recent years. In particular, the analysis of the terminal elements of gecko pads and their specific structure and topology has led to the development of bioinspired synthetic fibrillar adhesives, including mushroom-shaped tips. To model the expected adhesion and detachment behaviour of multiple contacts, only recently the last author has derived a theory of multiple pee...

  4. PEM Fuel Cells with Bio-Ethanol Processor Systems A Multidisciplinary Study of Modelling, Simulation, Fault Diagnosis and Advanced Control

    CERN Document Server

    Feroldi, Diego; Outbib, Rachid

    2012-01-01

    An apparently appropriate control scheme for PEM fuel cells may actually lead to an inoperable plant when it is connected to other unit operations in a process with recycle streams and energy integration. PEM Fuel Cells with Bio-Ethanol Processor Systems presents a control system design that provides basic regulation of the hydrogen production process with PEM fuel cells. It then goes on to construct a fault diagnosis system to improve plant safety above this control structure. PEM Fuel Cells with Bio-Ethanol Processor Systems is divided into two parts: the first covers fuel cells and the second discusses plants for hydrogen production from bio-ethanol to feed PEM fuel cells. Both parts give detailed analyses of modeling, simulation, advanced control, and fault diagnosis. They give an extensive, in-depth discussion of the problems that can occur in fuel cell systems and propose a way to control these systems through advanced control algorithms. A significant part of the book is also given over to computer-aid...

  5. Comparative Simulations of 2D and 3D Mixed Convection Flow in a Faulted Basin: an Example from the Yarmouk Gorge, Israel and Jordan

    Science.gov (United States)

    Magri, F.; Inbar, N.; Raggad, M.; Möller, S.; Siebert, C.; Möller, P.; Kuehn, M.

    2014-12-01

    Lake Kinneret (Lake Tiberias or Sea of Galilee) is the most important freshwater reservoir in the Northern Jordan Valley. Simulations that couple fluid flow, heat and mass transport are built to understand the mechanisms responsible for the salinization of this important resource. Here the effects of permeability distribution on 2D and 3D convective patterns are compared. 2D simulations indicate that thermal brine in Haon and some springs in the Yamourk Gorge (YG) are the result of mixed convection, i.e. the interaction between the regional flow from the bordering heights and thermally-driven flow (Magri et al., 2014). Calibration of the calculated temperature profiles suggests that the faults in Haon and the YG provides paths for ascending hot waters, whereas the fault in the Golan recirculates water between 1 and 2 km depths. At higher depths, faults induce 2D layered convection in the surrounding units. The 2D assumption for a faulted basin can oversimplify the system, and the conclusions might not be fully correct. The 3D results also point to mixed convection as the main mechanism for the thermal anomalies. However, in 3D the convective structures are more complex allowing for longer flow paths and residence times. In the fault planes, hydrothermal convection develops in a finger regime enhancing inflow and outflow of heat in the system. Hot springs can form locally at the surface along the fault trace. By contrast, the layered cells extending from the faults into the surrounding sediments are preserved and are similar to those simulated in 2D. The results are consistent with the theory from Zhao et al. (2003), which predicts that 2D and 3D patterns have the same probability to develop given the permeability and temperature ranges encountered in geothermal fields. The 3D approach has to be preferred to the 2D in order to capture all patterns of convective flow, particularly in the case of planar high permeability regions such as faults. Magri, F., et al., 2014

  6. Sensitivity of tsunami wave profiles and inundation simulations to earthquake slip and fault geometry for the 2011 Tohoku earthquake

    KAUST Repository

    Goda, Katsuichiro

    2014-09-01

    In this study, we develop stochastic random-field slip models for the 2011 Tohoku earthquake and conduct a rigorous sensitivity analysis of tsunami hazards with respect to the uncertainty of earthquake slip and fault geometry. Synthetic earthquake slip distributions generated from the modified Mai-Beroza method captured key features of inversion-based source representations of the mega-thrust event, which were calibrated against rich geophysical observations of this event. Using original and synthesised earthquake source models (varied for strike, dip, and slip distributions), tsunami simulations were carried out and the resulting variability in tsunami hazard estimates was investigated. The results highlight significant sensitivity of the tsunami wave profiles and inundation heights to the coastal location and the slip characteristics, and indicate that earthquake slip characteristics are a major source of uncertainty in predicting tsunami risks due to future mega-thrust events.

  7. Simulation of broad-band strong ground motion for a hypothetical Mw 7.1 earthquake on the Enriquillo Fault in Haiti

    Science.gov (United States)

    Douilly, Roby; Mavroeidis, George P.; Calais, Eric

    2017-10-01

    The devastating 2010 Mw 7.0 Haiti earthquake demonstrated the need to improve mitigation and preparedness for future seismic events in the region. Previous studies have shown that the earthquake did not occur on the Enriquillo Fault, the main plate boundary fault running through the heavily populated Port-au-Prince region, but on the nearby and previously unknown transpressional Léogâne Fault. Slip on that fault has increased stresses on the segment of Enriquillo Fault to the east of Léogâne, which terminates in the ˜3-million-inhabitant capital city of Port-au-Prince. In this study, we investigate ground shaking in the vicinity of Port-au-Prince, if a hypothetical rupture similar to the 2010 Haiti earthquake occurred on that segment of the Enriquillo Fault. We use a finite element method and assumptions on regional tectonic stress to simulate the low-frequency ground motion components using dynamic rupture propagation for a 52-km-long segment. We consider eight scenarios by varying parameters such as hypocentre location, initial shear stress and fault dip. The high-frequency ground motion components are simulated using the specific barrier model in the context of the stochastic modeling approach. The broad-band ground motion synthetics are subsequently obtained by combining the low-frequency components from the dynamic rupture simulation with the high-frequency components from the stochastic simulation using matched filtering at a crossover frequency of 1 Hz. Results show that rupture on a vertical Enriquillo Fault generates larger horizontal permanent displacements in Léogâne and Port-au-Prince than rupture on a south-dipping Enriquillo Fault. The mean horizontal peak ground acceleration (PGA), computed at several sites of interest throughout Port-au-Prince, has a value of ˜0.45 g, whereas the maximum horizontal PGA in Port-au-Prince is ˜0.60 g. Even though we only consider a limited number of rupture scenarios, our results suggest more intense ground

  8. Frictional and sealing behavior of simulated anhydrite fault gouge : Effects of CO2 and implications for fault stability and caprock integrity

    NARCIS (Netherlands)

    Pluymakers, A.M.H.

    2015-01-01

    To limit climate change, humanity needs to limit atmospheric CO2 concentrations, hence reduce CO2 emissions. An attractive option to do this involves capture at industrial sources followed by storage in depleted oil and gas reservoirs. In such reservoir systems, faults cutting the topseal are

  9. A general CFD framework for fault-resilient simulations based on multi-resolution information fusion

    Science.gov (United States)

    Lee, Seungjoon; Kevrekidis, Ioannis G.; Karniadakis, George Em

    2017-10-01

    We develop a general CFD framework for multi-resolution simulations to target multiscale problems but also resilience in exascale simulations, where faulty processors may lead to gappy, in space-time, simulated fields. We combine approximation theory and domain decomposition together with statistical learning techniques, e.g. coKriging, to estimate boundary conditions and minimize communications by performing independent parallel runs. To demonstrate this new simulation approach, we consider two benchmark problems. First, we solve the heat equation (a) on a small number of spatial "patches" distributed across the domain, simulated by finite differences at fine resolution and (b) on the entire domain simulated at very low resolution, thus fusing multi-resolution models to obtain the final answer. Second, we simulate the flow in a lid-driven cavity in an analogous fashion, by fusing finite difference solutions obtained with fine and low resolution assuming gappy data sets. We investigate the influence of various parameters for this framework, including the correlation kernel, the size of a buffer employed in estimating boundary conditions, the coarseness of the resolution of auxiliary data, and the communication frequency across different patches in fusing the information at different resolution levels. In addition to its robustness and resilience, the new framework can be employed to generalize previous multiscale approaches involving heterogeneous discretizations or even fundamentally different flow descriptions, e.g. in continuum-atomistic simulations.

  10. Computational Fluid Dynamics based Fault Simulations of a Vertical Axis Wind Turbines

    Science.gov (United States)

    Park, Kyoo-seon; Asim, Taimoor; Mishra, Rakesh

    2012-05-01

    Due to depleting fossil fuels and a rapid increase in the fuel prices globally, the search for alternative energy sources is becoming more and more significant. One of such energy source is the wind energy which can be harnessed with the use of wind turbines. The fundamental principle of wind turbines is to convert the wind energy into first mechanical and then into electrical form. The relatively simple operation of such turbines has stirred the researchers to come up with innovative designs for global acceptance and to make these turbines commercially viable. Furthermore, the maintenance of wind turbines has long been a topic of interest. Condition based monitoring of wind turbines is essential to maintain continuous operation of wind turbines. The present work focuses on the difference in the outputs of a vertical axis wind turbine (VAWT) under different operational conditions. A Computational Fluid Dynamics (CFD) technique has been used for various blade configurations of a VAWT. The results indicate that there is significant degradation in the performance output of wind turbines as the number of blades broken or missing from the VAWT increases. The study predicts the faults in the blades of VAWTs by monitoring its output.

  11. Fault Detection for Industrial Processes

    Directory of Open Access Journals (Sweden)

    Yingwei Zhang

    2012-01-01

    Full Text Available A new fault-relevant KPCA algorithm is proposed. Then the fault detection approach is proposed based on the fault-relevant KPCA algorithm. The proposed method further decomposes both the KPCA principal space and residual space into two subspaces. Compared with traditional statistical techniques, the fault subspace is separated based on the fault-relevant influence. This method can find fault-relevant principal directions and principal components of systematic subspace and residual subspace for process monitoring. The proposed monitoring approach is applied to Tennessee Eastman process and penicillin fermentation process. The simulation results show the effectiveness of the proposed method.

  12. Simulative and experimental investigation on stator winding turn and unbalanced supply voltage fault diagnosis in induction motors using Artificial Neural Networks.

    Science.gov (United States)

    Lashkari, Negin; Poshtan, Javad; Azgomi, Hamid Fekri

    2015-11-01

    The three-phase shift between line current and phase voltage of induction motors can be used as an efficient fault indicator to detect and locate inter-turn stator short-circuit (ITSC) fault. However, unbalanced supply voltage is one of the contributing factors that inevitably affect stator currents and therefore the three-phase shift. Thus, it is necessary to propose a method that is able to identify whether the unbalance of three currents is caused by ITSC or supply voltage fault. This paper presents a feedforward multilayer-perceptron Neural Network (NN) trained by back propagation, based on monitoring negative sequence voltage and the three-phase shift. The data which are required for training and test NN are generated using simulated model of stator. The experimental results are presented to verify the superior accuracy of the proposed method. Copyright © 2015. Published by Elsevier Ltd.

  13. Investigation of interseismic deformation along the central section of the North Anatolian fault (Turkey) using InSAR observations and earthquake-cycle simulations

    Science.gov (United States)

    Fialko, Y.; Kaneko, Y.; Tong, X.; Sandwell, D. T.; Furuya, M.

    2011-12-01

    We present high-resolution measurements of interseismic deformation along the central section of the North Anatolian fault (NAF) in Turkey using L-band Interferometric Synthetic Aperture Radar (InSAR) data collected by the Advanced Land Observing Satellite (ALOS) of the Japan Aerospace Exploration Agency. We generated satellite line-of-sight (LOS) velocities for the three ascending ALOS tracks (603-605) covering the NAF between 31.2-33.2 deg. East. LOS velocity maps for each track were obtained by averaging 15 to 30 radar interferograms spanning a time period of 4 years between 2007 and 2010. The average LOS velocities reveal discontinuities of up to ~6 mm/year across the geologically mapped fault trace. Assuming that these discontinuities are due to horizontal surface motion, they imply fault creep at a rate of ~10 mm/year, accounting for nearly half of the relative plate motion accommodated by this segment of the NAF. The inferred lateral extent of significant shallow creep is in excess of 60 km. These inferences are broadly consistent with previously reported trilateration surveys and InSAR results based on C-band ERS data (Cakir et al., 2005) that suggested that the NAF segment near Ismetpasa may be only partially locked. If so, the deeper locked portion of the fault must be characterized by a higher stressing rate, and presumably shorter recurrence interval. We are modeling available InSAR and GPS data using numerical simulations of spontaneous earthquake sequences that incorporate laboratory-derived rate-and-state friction laws. The goal of these simulations is to constrain key parameters of fault friction such as the depth extent of the velocity-strengthening and velocity-weakening layers, the long-term fault slip rate, and stress evolution in the seismogenic crust.

  14. Hierarchical photocatalysts.

    Science.gov (United States)

    Li, Xin; Yu, Jiaguo; Jaroniec, Mietek

    2016-05-07

    As a green and sustainable technology, semiconductor-based heterogeneous photocatalysis has received much attention in the last few decades because it has potential to solve both energy and environmental problems. To achieve efficient photocatalysts, various hierarchical semiconductors have been designed and fabricated at the micro/nanometer scale in recent years. This review presents a critical appraisal of fabrication methods, growth mechanisms and applications of advanced hierarchical photocatalysts. Especially, the different synthesis strategies such as two-step templating, in situ template-sacrificial dissolution, self-templating method, in situ template-free assembly, chemically induced self-transformation and post-synthesis treatment are highlighted. Finally, some important applications including photocatalytic degradation of pollutants, photocatalytic H2 production and photocatalytic CO2 reduction are reviewed. A thorough assessment of the progress made in photocatalysis may open new opportunities in designing highly effective hierarchical photocatalysts for advanced applications ranging from thermal catalysis, separation and purification processes to solar cells.

  15. Fault tolerant cooperative control for UAV rendezvous problem subject to actuator faults

    Science.gov (United States)

    Jiang, T.; Meskin, N.; Sobhani-Tehrani, E.; Khorasani, K.; Rabbath, C. A.

    2007-04-01

    This paper investigates the problem of fault tolerant cooperative control for UAV rendezvous problem in which multiple UAVs are required to arrive at their designated target despite presence of a fault in the thruster of any UAV. An integrated hierarchical scheme is proposed and developed that consists of a cooperative rendezvous planning algorithm at the team level and a nonlinear fault detection and isolation (FDI) subsystem at individual UAV's actuator/sensor level. Furthermore, a rendezvous re-planning strategy is developed that interfaces the rendezvous planning algorithm with the low-level FDI. A nonlinear geometric approach is used for the FDI subsystem that can detect and isolate faults in various UAV actuators including thrusters and control surfaces. The developed scheme is implemented for a rendezvous scenario with three Aerosonde UAVs, a single target, and presence of a priori known threats. Simulation results reveal the effectiveness of our proposed scheme in fulfilling the rendezvous mission objective that is specified as a successful intercept of Aerosondes at their designated target, despite the presence of severe loss of effectiveness in Aerosondes engine thrusters.

  16. The Italian Project S2 - Task 4:Near-fault earthquake ground motion simulation in the Sulmona alluvial basin

    Science.gov (United States)

    Stupazzini, M.; Smerzini, C.; Cauzzi, C.; Faccioli, E.; Galadini, F.; Gori, S.

    2009-04-01

    ), OpenSHA: A Developing Community-Modeling Environment for Seismic Hazard Analysis, Seism. Res. Lett. 74, 406-419. Stupazzini M., R. Paolucci, H. Igel (2009), Near-fault earthquake ground motion simulation in the Grenoble Valley by a high-performance spectral element code, accepted for publication in Bull. of the Seism. Soc. of America.

  17. Hierarchical XP

    OpenAIRE

    Jacobi, Carsten; Rumpe, Bernhard

    2014-01-01

    XP is a light-weight methodology suited particularly for small-sized teams that develop software which has only vague or rapidly changing requirements. The discipline of systems engineering knows it as approach of incremental system change or also of "muddling through". In this paper, we introduce three well known methods of reorganizing companies, namely, the holistic approach, the incremental approach, and the hierarchical approach. We show similarities between software engineering methods ...

  18. Faults Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Through the study of faults and their effects, much can be learned about the size and recurrence intervals of earthquakes. Faults also teach us about crustal...

  19. Fault Estimation

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.

    2002-01-01

    This paper presents a range of optimization based approaches to fault diagnosis. A variety of fault diagnosis prob-lems are reformulated in the so-called standard problem setup introduced in the literature on robust control. Once the standard problem formulations are given, the fault diagnosis pr...

  20. Validation of an RMS DFIG simulation model according to new German model. Validation standard FGW TR4 at balanced and unbalanced grid faults

    Energy Technology Data Exchange (ETDEWEB)

    Fortmann, Jens [REpower Systems AG, Rendsburg (Germany); Engelhardt, Stephan; Kretschmann, Joerg [Woodward SEG, Kempen (Germany); Feltes, Christian; Erlich, Istvan [Duisburg-Essen Univ., Duisburg (Germany)

    2009-07-01

    There is an increased international interest in the validation of simulation models for grid integration studies. Several countries (Spain, Australia, UK, Germany) have requirements for simulation models now as part of their grid code. In Germany, triggered by the new renewable energy law (EEG), an effort has been going on to create a standard for validating electrical simulation models of wind turbines. The model validation approach chosen will be described. The aim of this validation approach is quantify the error between measurement and simulation. This is necessary in order to give a reliable figure for the model uncertainty for the use of the model in studies. Results of FRT-measurements with balanced and unbalanced faults of a 2 MW turbine will be compared to the results of an RMS DFIG model. It can be shown that the validation approach can be applied with success both to balanced and unbalanced faults. An IEC effort has recently been started to create an international standard for wind turbine modeling and model validation. The validation approach presented could contribute to the proposed IEC simulation standard. (orig.)

  1. Linear-scaling density-functional simulations of charged point defects in Al2O3 using hierarchical sparse matrix algebra.

    Science.gov (United States)

    Hine, N D M; Haynes, P D; Mostofi, A A; Payne, M C

    2010-09-21

    We present calculations of formation energies of defects in an ionic solid (Al(2)O(3)) extrapolated to the dilute limit, corresponding to a simulation cell of infinite size. The large-scale calculations required for this extrapolation are enabled by developments in the approach to parallel sparse matrix algebra operations, which are central to linear-scaling density-functional theory calculations. The computational cost of manipulating sparse matrices, whose sizes are determined by the large number of basis functions present, is greatly improved with this new approach. We present details of the sparse algebra scheme implemented in the ONETEP code using hierarchical sparsity patterns, and demonstrate its use in calculations on a wide range of systems, involving thousands of atoms on hundreds to thousands of parallel processes.

  2. Simulation of strong motions in Fukuoka City during the 2005 West Off Fukuoka Prefecture Earthquake with special reference to thick Quaternary sediments around the Kego fault

    Science.gov (United States)

    Satoh, Toshimi; Kawase, Hiroshi

    2006-01-01

    We simulate velocity records at two stations in the building damaged area near the Kego fault in Fukuoka City by 1-D wave propagation theory during the 2005 West Off Fukuoka Prefecture Earthquake, Japan. Here we use the pre-Tertiary bedrock wave deconvolved from the record observed at a K-NET station outside of the damaged area. The observed velocity waveforms and pseudo velocity response spectra in the period range from 0.7 to 10 seconds in the predominant direction (N20°E) components are reasonably reproduced. Velocity pulses with a period of about 1 to 2 seconds in observed velocity waveforms at two stations are found to be amplified by the Quaternary sediments above the pre-Tertiary bedrock. After we confirmed the validity of our approach through the simulation, we predict the peak ground velocity (PGV) distribution around the Kego fault by considering 1-D response of Quaternary sediments at each site. The predicted PGV distribution of N20?E components is largest (about 80 cm/s) in the northeast side of the Kego fault and agrees well with the building damage distribution. Our result shows that the 1-D site responses of Quaternary sediments mainly contributed to the difference of PGVs inside and outside of the damaged area in Fukuoka City.

  3. A Fault-oblivious Extreme-scale Execution Environment

    Energy Technology Data Exchange (ETDEWEB)

    Sadayappan, Ponnuswamy [The Ohio State Univ., Columbus, OH (United States)

    2016-08-31

    Exascale computing systems will provide a thousand-fold increase in parallelism and a proportional increase in failure rate relative to today's machines. Systems software for exascale machines must provide the infrastructure to support existing applications while simultaneously enabling efficient execution of new programming models that naturally express dynamic, adaptive, irregular computation; coupled simulations; and massive data analysis in a highly unreliable hardware environment with billions of threads of execution. We propose a new approach to the data and work distribution model provided by system software based on the unifying formalism of an abstract file system. The proposed hierarchical data model provides simple, familiar visibility and access to data structures through the file system hierarchy, while providing fault tolerance through selective redundancy. The hierarchical task model features work queues whose form and organization are represented as file system objects. Data and work are both first class entities. By exposing the relationships between data and work to the runtime system, information is available to optimize execution time and provide fault tolerance. The data distribution scheme provides replication (where desirable and possible) for fault tolerance and efficiency, and it is hierarchical to make it possible to take advantage of locality. The user, tools, and applications, including legacy applications, can interface with the data, work queues, and one another through the abstract file model. This runtime environment will provide multiple interfaces to support traditional Message Passing Interface applications, languages developed under DARPA's High Productivity Computing Systems program, as well as other, experimental programming models. We will validate our runtime system with pilot codes on existing platforms and will use simulation to validate for exascale-class platforms. In this final report, we summarize research

  4. Detection and treatment of faults in manufacturing systems based on Petri Nets

    OpenAIRE

    Riascos, L. A. M.; Moscato, L. A.; Miyagi, P. E.

    2004-01-01

    This paper introduces a methodology for modeling and analyzing fault-tolerant manufacturing systems that not only optimizes normal productive processes, but also performs detection and treatment of faults. This approach is based on the hierarchical and modular integration of Petri Nets. The modularity provides the integration of three types of processes: those representing the productive process, fault detection, and fault treatment. The hierarchical aspect of the approach permits us to consi...

  5. It's a small world after all: contrasting hierarchical and edge networks in a simulated intelligence analysis task.

    Science.gov (United States)

    Stanton, Neville A; Walker, Guy H; Sorensen, Linda J

    2012-01-01

    This article presents the rationale behind an important enhancement to a socio-technical model of organisations and teams derived from military research. It combines this with empirical results which take advantage of these enhancements. In Part 1, a new theoretical legacy for the model is developed based on Ergonomics theories and insights. This allows team communications data to be plotted into the model and for it to demonstrate discriminate validity between alternative team structures. Part 2 presents multinational data from the Experimental Laboratory for Investigating Collaboration, Information-sharing, and Trust (ELICIT) community. It was surprising to see that teams in both traditional hierarchical command and control and networked 'peer-to-peer' organisations operate in broadly the same area of the model, a region occupied by networks of communication exhibiting 'small world' properties. Small world networks may be of considerable importance for the Ergonomics analysis of team organisation and performance. This article is themed around macro and systems Ergonomics, and examines the effects of command and control structures. Despite some differences in behaviour and measures of agility, when given the freedom to do so, participants organised themselves into a small world network. This network type has important and interesting implications for the Ergonomics design of teams and organisations.

  6. Fault Analysis in Solar Photovoltaic Arrays

    Science.gov (United States)

    Zhao, Ye

    Fault analysis in solar photovoltaic (PV) arrays is a fundamental task to increase reliability, efficiency and safety in PV systems. Conventional fault protection methods usually add fuses or circuit breakers in series with PV components. But these protection devices are only able to clear faults and isolate faulty circuits if they carry a large fault current. However, this research shows that faults in PV arrays may not be cleared by fuses under some fault scenarios, due to the current-limiting nature and non-linear output characteristics of PV arrays. First, this thesis introduces new simulation and analytic models that are suitable for fault analysis in PV arrays. Based on the simulation environment, this thesis studies a variety of typical faults in PV arrays, such as ground faults, line-line faults, and mismatch faults. The effect of a maximum power point tracker on fault current is discussed and shown to, at times, prevent the fault current protection devices to trip. A small-scale experimental PV benchmark system has been developed in Northeastern University to further validate the simulation conclusions. Additionally, this thesis examines two types of unique faults found in a PV array that have not been studied in the literature. One is a fault that occurs under low irradiance condition. The other is a fault evolution in a PV array during night-to-day transition. Our simulation and experimental results show that overcurrent protection devices are unable to clear the fault under "low irradiance" and "night-to-day transition". However, the overcurrent protection devices may work properly when the same PV fault occurs in daylight. As a result, a fault under "low irradiance" and "night-to-day transition" might be hidden in the PV array and become a potential hazard for system efficiency and reliability.

  7. Fault-related dolomitization in the Orpesa Ranges (Iberian Chain, E Spain): reactive transport simulations and field data constraints

    Science.gov (United States)

    Gomez-Rivas, E.; Martin-Martin, J. D.; Corbella, M.; Teixell, A.

    2009-04-01

    The relationships between hydrothermal fluid circulation and fracturing that lead to mineral dissolution and/or precipitation in carbonate rocks have direct impacts on the evolution and final distribution of hydrocarbon reservoir permeability. Understanding the coupling between these processes is important for predicting permeability and improving hydrocarbon recovery. We present a case study of dolomitization processes in Cretaceous limestone from the Orpesa Ranges (Iberian Chain, E Spain). Extending over part of the Maestrat Cretaceous Basin, the Orpesa area is deformed by extensional faults. These faults accommodated thick sequences of shallow marine limestone, mainly during Aptian times. The syn-rift carbonates are partially dolomitized due to the circulation and mixing of hydrothermal fluids along normal faults and bedding. Both Aptian and later Neogene extensional faults must have served as conduits for the circulation of fluids. MVT deposits of Paleocene age are well documented in the Maestrat basin and may also be related to dolomitization. Samples of host rocks and vein fillings have been collected along strike and analyzed in different fault sections to characterize fluid and rock composition, track flow pathways and map the relationships of fluid flow with respect to the main normal faults in the area. Using field and geochemical data from the Orpesa Ranges carbonates, we have developed reactive-transport models to study the influence of different parameters in the dolomitization of carbonates related to the circulation and mixing of hydrothermal fluids at the outcrop scale. We present results from models that were run with constant and non-constant permeability. The main parameters analyzed include: initial porosity and permeability of layers and fractures, composition of fluids, groundwater and brines flux, composition of layers, reactive surface of minerals, differences in vertical and horizontal permeability, and presence or absence of stratigraphic

  8. A Multi-level hierarchic Markov process with Bayesian updating for herd optimization and simulation in dairy cattle

    NARCIS (Netherlands)

    Demeter, R.M.; Kristensen, A.R.; Dijkstra, J.; Oude Lansink, A.G.J.M.; Meuwissen, M.P.M.; Arendonk, van J.A.M.

    2011-01-01

    Herd optimization models that determine economically optimal insemination and replacement decisions are valuable research tools to study various aspects of farming systems. The aim of this study was to develop a herd optimization and simulation model for dairy cattle. The model determines

  9. Finding faults

    Energy Technology Data Exchange (ETDEWEB)

    Barber, J.; Duke, J. [Surpac Minex Group (Australia)

    2005-04-01

    The Surpac Minex Group has been building a geologic model to represent the coal seam structure at the Carbones del Cerrejon LLC mine in north eastern Colombia which is bonded by major reserve and normal faults. This is being achieved through a new software faulting tool. The tool combines existing Minex modelling with new fault interpretation tools. New software that permits 3-D photogrammetry and seismic data can also be incorporated. 6 figs.

  10. GO2OGS 1.0: a versatile workflow to integrate complex geological information with fault data into numerical simulation models

    Science.gov (United States)

    Fischer, T.; Naumov, D.; Sattler, S.; Kolditz, O.; Walther, M.

    2015-11-01

    We offer a versatile workflow to convert geological models built with the ParadigmTM GOCAD© (Geological Object Computer Aided Design) software into the open-source VTU (Visualization Toolkit unstructured grid) format for usage in numerical simulation models. Tackling relevant scientific questions or engineering tasks often involves multidisciplinary approaches. Conversion workflows are needed as a way of communication between the diverse tools of the various disciplines. Our approach offers an open-source, platform-independent, robust, and comprehensible method that is potentially useful for a multitude of environmental studies. With two application examples in the Thuringian Syncline, we show how a heterogeneous geological GOCAD model including multiple layers and faults can be used for numerical groundwater flow modeling, in our case employing the OpenGeoSys open-source numerical toolbox for groundwater flow simulations. The presented workflow offers the chance to incorporate increasingly detailed data, utilizing the growing availability of computational power to simulate numerical models.

  11. GO2OGS 1.0: a versatile workflow to integrate complex geological information with fault data into numerical simulation models

    Directory of Open Access Journals (Sweden)

    T. Fischer

    2015-11-01

    open-source VTU (Visualization Toolkit unstructured grid format for usage in numerical simulation models. Tackling relevant scientific questions or engineering tasks often involves multidisciplinary approaches. Conversion workflows are needed as a way of communication between the diverse tools of the various disciplines. Our approach offers an open-source, platform-independent, robust, and comprehensible method that is potentially useful for a multitude of environmental studies. With two application examples in the Thuringian Syncline, we show how a heterogeneous geological GOCAD model including multiple layers and faults can be used for numerical groundwater flow modeling, in our case employing the OpenGeoSys open-source numerical toolbox for groundwater flow simulations. The presented workflow offers the chance to incorporate increasingly detailed data, utilizing the growing availability of computational power to simulate numerical models.

  12. PV Systems Reliability Final Technical Report: Ground Fault Detection

    Energy Technology Data Exchange (ETDEWEB)

    Lavrova, Olga [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Flicker, Jack David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Johnson, Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    We have examined ground faults in PhotoVoltaic (PV) arrays and the efficacy of fuse, current detection (RCD), current sense monitoring/relays (CSM), isolation/insulation (Riso) monitoring, and Ground Fault Detection and Isolation (GFID) using simulations based on a Simulation Program with Integrated Circuit Emphasis SPICE ground fault circuit model, experimental ground faults installed on real arrays, and theoretical equations.

  13. A membrane computing simulator of trans-hierarchical antibiotic resistance evolution dynamics in nested ecological compartments (ARES).

    Science.gov (United States)

    Campos, Marcelino; Llorens, Carlos; Sempere, José M; Futami, Ricardo; Rodriguez, Irene; Carrasco, Purificación; Capilla, Rafael; Latorre, Amparo; Coque, Teresa M; Moya, Andres; Baquero, Fernando

    2015-08-05

    Antibiotic resistance is a major biomedical problem upon which public health systems demand solutions to construe the dynamics and epidemiological risk of resistant bacteria in anthropogenically-altered environments. The implementation of computable models with reciprocity within and between levels of biological organization (i.e. essential nesting) is central for studying antibiotic resistances. Antibiotic resistance is not just the result of antibiotic-driven selection but more properly the consequence of a complex hierarchy of processes shaping the ecology and evolution of the distinct subcellular, cellular and supra-cellular vehicles involved in the dissemination of resistance genes. Such a complex background motivated us to explore the P-system standards of membrane computing an innovative natural computing formalism that abstracts the notion of movement across membranes to simulate antibiotic resistance evolution processes across nested levels of micro- and macro-environmental organization in a given ecosystem. In this article, we introduce ARES (Antibiotic Resistance Evolution Simulator) a software device that simulates P-system model scenarios with five types of nested computing membranes oriented to emulate a hierarchy of eco-biological compartments, i.e. a) peripheral ecosystem; b) local environment; c) reservoir of supplies; d) animal host; and e) host's associated bacterial organisms (microbiome). Computational objects emulating molecular entities such as plasmids, antibiotic resistance genes, antimicrobials, and/or other substances can be introduced into this framework and may interact and evolve together with the membranes, according to a set of pre-established rules and specifications. ARES has been implemented as an online server and offers additional tools for storage and model editing and downstream analysis. The stochastic nature of the P-system model implemented in ARES explicitly links within and between host dynamics into a simulation, with

  14. Tool for Viewing Faults Under Terrain

    Science.gov (United States)

    Siegel, Herbert, L.; Li, P. Peggy

    2005-01-01

    Multi Surface Light Table (MSLT) is an interactive software tool that was developed in support of the QuakeSim project, which has created an earthquake- fault database and a set of earthquake- simulation software tools. MSLT visualizes the three-dimensional geometries of faults embedded below the terrain and animates time-varying simulations of stress and slip. The fault segments, represented as rectangular surfaces at dip angles, are organized into collections, that is, faults. An interface built into MSLT queries and retrieves fault definitions from the QuakeSim fault database. MSLT also reads time-varying output from one of the QuakeSim simulation tools, called "Virtual California." Stress intensity is represented by variations in color. Slips are represented by directional indicators on the fault segments. The magnitudes of the slips are represented by the duration of the directional indicators in time. The interactive controls in MSLT provide a virtual track-ball, pan and zoom, translucency adjustment, simulation playback, and simulation movie capture. In addition, geographical information on the fault segments and faults is displayed on text windows. Because of the extensive viewing controls, faults can be seen in relation to one another, and to the terrain. These relations can be realized in simulations. Correlated slips in parallel faults are visible in the playback of Virtual California simulations.

  15. Robust Fault Diagnosis Design for Linear Multiagent Systems with Incipient Faults

    Directory of Open Access Journals (Sweden)

    Jingping Xia

    2015-01-01

    Full Text Available The design of a robust fault estimation observer is studied for linear multiagent systems subject to incipient faults. By considering the fact that incipient faults are in low-frequency domain, the fault estimation of such faults is proposed for discrete-time multiagent systems based on finite-frequency technique. Moreover, using the decomposition design, an equivalent conclusion is given. Simulation results of a numerical example are presented to demonstrate the effectiveness of the proposed techniques.

  16. A Deep Learning Approach for Fault Diagnosis of Induction Motors in Manufacturing

    Science.gov (United States)

    Shao, Si-Yu; Sun, Wen-Jun; Yan, Ru-Qiang; Wang, Peng; Gao, Robert X.

    2017-11-01

    Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors, as it directly influences the performance of fault recognition. However, high quality features need expert knowledge and human intervention. In this paper, a deep learning approach based on deep belief networks (DBN) is developed to learn features from frequency distribution of vibration signals with the purpose of characterizing working status of induction motors. It combines feature extraction procedure with classification task together to achieve automated and intelligent fault diagnosis. The DBN model is built by stacking multiple-units of restricted Boltzmann machine (RBM), and is trained using layer-by-layer pre-training algorithm. Compared with traditional diagnostic approaches where feature extraction is needed, the presented approach has the ability of learning hierarchical representations, which are suitable for fault classification, directly from frequency distribution of the measurement data. The structure of the DBN model is investigated as the scale and depth of the DBN architecture directly affect its classification performance. Experimental study conducted on a machine fault simulator verifies the effectiveness of the deep learning approach for fault diagnosis of induction motors. This research proposes an intelligent diagnosis method for induction motor which utilizes deep learning model to automatically learn features from sensor data and realize working status recognition.

  17. A Deep Learning Approach for Fault Diagnosis of Induction Motors in Manufacturing

    Science.gov (United States)

    Shao, Si-Yu; Sun, Wen-Jun; Yan, Ru-Qiang; Wang, Peng; Gao, Robert X.

    2017-10-01

    Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors, as it directly influences the performance of fault recognition. However, high quality features need expert knowledge and human intervention. In this paper, a deep learning approach based on deep belief networks (DBN) is developed to learn features from frequency distribution of vibration signals with the purpose of characterizing working status of induction motors. It combines feature extraction procedure with classification task together to achieve automated and intelligent fault diagnosis. The DBN model is built by stacking multiple-units of restricted Boltzmann machine (RBM), and is trained using layer-by-layer pre-training algorithm. Compared with traditional diagnostic approaches where feature extraction is needed, the presented approach has the ability of learning hierarchical representations, which are suitable for fault classification, directly from frequency distribution of the measurement data. The structure of the DBN model is investigated as the scale and depth of the DBN architecture directly affect its classification performance. Experimental study conducted on a machine fault simulator verifies the effectiveness of the deep learning approach for fault diagnosis of induction motors. This research proposes an intelligent diagnosis method for induction motor which utilizes deep learning model to automatically learn features from sensor data and realize working status recognition.

  18. mm_par2.0: An object-oriented molecular dynamics simulation program parallelized using a hierarchical scheme with MPI and OPENMP

    Science.gov (United States)

    Oh, Kwang Jin; Kang, Ji Hoon; Myung, Hun Joo

    2012-02-01

    We have revised a general purpose parallel molecular dynamics simulation program mm_par using the object-oriented programming. We parallelized the revised version using a hierarchical scheme in order to utilize more processors for a given system size. The benchmark result will be presented here. New version program summaryProgram title: mm_par2.0 Catalogue identifier: ADXP_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXP_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2 390 858 No. of bytes in distributed program, including test data, etc.: 25 068 310 Distribution format: tar.gz Programming language: C++ Computer: Any system operated by Linux or Unix Operating system: Linux Classification: 7.7 External routines: We provide wrappers for FFTW [1], Intel MKL library [2] FFT routine, and Numerical recipes [3] FFT, random number generator, and eigenvalue solver routines, SPRNG [4] random number generator, Mersenne Twister [5] random number generator, space filling curve routine. Catalogue identifier of previous version: ADXP_v1_0 Journal reference of previous version: Comput. Phys. Comm. 174 (2006) 560 Does the new version supersede the previous version?: Yes Nature of problem: Structural, thermodynamic, and dynamical properties of fluids and solids from microscopic scales to mesoscopic scales. Solution method: Molecular dynamics simulation in NVE, NVT, and NPT ensemble, Langevin dynamics simulation, dissipative particle dynamics simulation. Reasons for new version: First, object-oriented programming has been used, which is known to be open for extension and closed for modification. It is also known to be better for maintenance. Second, version 1.0 was based on atom decomposition and domain decomposition scheme [6] for parallelization. However, atom

  19. Simulating Earthquake Rupture and Off-Fault Fracture Response: Application to the Safety Assessment of the Swedish Nuclear Waste Repository

    KAUST Repository

    Falth, B.

    2014-12-09

    To assess the long-term safety of a deep repository of spent nuclear fuel, upper bound estimates of seismically induced secondary fracture shear displacements are needed. For this purpose, we analyze a model including an earthquake fault, which is surrounded by a number of smaller discontinuities representing fractures on which secondary displacements may be induced. Initial stresses are applied and a rupture is initiated at a predefined hypocenter and propagated at a specified rupture speed. During rupture we monitor shear displacements taking place on the nearby fracture planes in response to static as well as dynamic effects. As a numerical tool, we use the 3Dimensional Distinct Element Code (3DEC) because it has the capability to handle numerous discontinuities with different orientations and at different locations simultaneously. In tests performed to benchmark the capability of our method to generate and propagate seismic waves, 3DEC generates results in good agreement with results from both Stokes solution and the Compsyn code package. In a preliminary application of our method to the nuclear waste repository site at Forsmark, southern Sweden, we assume end-glacial stress conditions and rupture on a shallow, gently dipping, highly prestressed fault with low residual strength. The rupture generates nearly complete stress drop and an M-w 5.6 event on the 12 km(2) rupture area. Of the 1584 secondary fractures (150 m radius), with a wide range of orientations and locations relative to the fault, a majority move less than 5 mm. The maximum shear displacement is some tens of millimeters at 200 m fault-fracture distance.

  20. Near-Fault Broadband Ground Motion Simulations Using Empirical Green's Functions: Application to the Upper Rhine Graben (France-Germany) Case Study

    Science.gov (United States)

    Del Gaudio, Sergio; Hok, Sebastien; Festa, Gaetano; Causse, Mathieu; Lancieri, Maria

    2017-09-01

    Seismic hazard estimation relies classically on data-based ground motion prediction equations (GMPEs) giving the expected motion level as a function of several parameters characterizing the source and the sites of interest. However, records of moderate to large earthquakes at short distances from the faults are still rare. For this reason, it is difficult to obtain a reliable ground motion prediction for such a class of events and distances where also the largest amount of damage is usually observed. A possible strategy to fill this lack of information is to generate synthetic accelerograms based on an accurate modeling of both extended fault rupture and wave propagation process. The development of such modeling strategies is essential for estimating seismic hazard close to faults in moderate seismic activity zones, where data are even scarcer. For that reason, we selected a target site in Upper Rhine Graben (URG), at the French-German border. URG is a region where faults producing micro-seismic activity are very close to the sites of interest (e.g., critical infrastructures like supply lines, nuclear power plants, etc.) needing a careful investigation of seismic hazard. In this work, we demonstrate the feasibility of performing near-fault broadband ground motion numerical simulations in a moderate seismic activity region such as URG and discuss some of the challenges related to such an application. The modeling strategy is to couple the multi-empirical Green's function technique (multi-EGFt) with a k -2 kinematic source model. One of the advantages of the multi-EGFt is that it does not require a detailed knowledge of the propagation medium since the records of small events are used as the medium transfer function, if, at the target site, records of small earthquakes located on the target fault are available. The selection of suitable events to be used as multi-EGF is detailed and discussed in our specific situation where less number of events are available. We

  1. Structural Transformation from the Unreconstructed (1×1) Structure to the (7×7) Dimer Adatom Stacking-Fault Structure on Si(111) Studied by Monte Carlo Simulations

    Science.gov (United States)

    Itoh, Makoto

    2017-10-01

    Surface reconstruction process from the unreconstructed (1×1) structure to the (7×7) dimer adatom stacking-fault (DAS) structure on Si(111) is studied by Monte Carlo simulations. For this purpose, we have developed a double layer model consisting of adatoms and the three-pointed plane rotors in the first and second layers, respectively. Monte Carlo simulations are carried out to find that creation, annihilation, and coalescence of non-periodic structures frequently occur in the initial stage of the transformation, and the coalescence is found to cause abrupt changes in the sizes of such structures. At later stages, a partial corner hole is created and changes to a proper corner hole when the vertexes of three half cells surrounding it become in phase with each other. Then, there occurs the formation of the (N×N)-DAS structures (N = 5, 7, 9, or 11), among which the (7×7)-DAS structure finally dominates over others.

  2. The temporal dynamics of global-to-local feedback in the formation of hierarchical motion patterns: psychophysics and computational simulations.

    Science.gov (United States)

    Hock, Howard S; Schöner, Gregor; Brownlow, Stacey; Taler, Dana

    2011-05-01

    Four motion quartets, each ambiguous with respect to the perception of parallel-path horizontal or vertical motion, were arranged in a diamond configuration. Both global parallel-path motion (the same motion axis for all the quartets), which is typical for multiquartet stimuli, and global rotational rocking are perceived. Experiment 1 indicated that rotational rocking is established at different levels of processing. Globally, larger displacements of each quartet's elements increase the angle of rotation and, thereby, the perception of rotational rocking. Locally, larger displacements have the opposite effect, weakening motion percepts. Experiment 2 showed that global-to-local feedback affects the local perception of rotation-consistent versus rotation-inconsistent motion directions. Experiment 3 provided evidence for hysteresis effects indicative of competition between global rotational rocking and parallel-path motion. The experimental results were simulated by a two-level dynamical model incorporating global-to-local feedback, with recurrent feedforward/feedback loops creating detection instabilities that amplify activation at both global and local levels of the rotational-rocking pattern.

  3. Solar Dynamic Power System Fault Diagnosis

    Science.gov (United States)

    Momoh, James A.; Dias, Lakshman G.

    1996-01-01

    The objective of this research is to conduct various fault simulation studies for diagnosing the type and location of faults in the power distribution system. Different types of faults are simulated at different locations within the distribution system and the faulted waveforms are monitored at measurable nodes such as at the output of the DDCU's. These fault signatures are processed using feature extractors such as FFT and wavelet transforms. The extracted features are fed to a clustering based neural network for training and subsequent testing using previously unseen data. Different load models consisting of constant impedance and constant power are used for the loads. Open circuit faults and short circuit faults are studied. It is concluded from present studies that using features extracted from wavelet transforms give better success rates during ANN testing. The trained ANN's are capable of diagnosing fault types and approximate locations in the solar dynamic power distribution system.

  4. Seismological Studies for Tensile Faults

    Directory of Open Access Journals (Sweden)

    Gwo-Bin Ou

    2008-01-01

    Full Text Available A shear slip fault, an equivalence of a double couple source, has often been assumed to be a kinematic source model in ground motion simulation. Estimation of seismic moment based on the shear slip model indicates the size of an earthquake. However, if the dislocation of the hanging wall relative to the footwall includes not only a shear slip tangent to the fault plane but also expansion and compression normal to the fault plane, the radiating seismic waves will feature differences from those out of the shear slip fault. Taking account of the effects resulting from expansion and compression to a fault plane, we can resolve the tension and pressure axes as well as the fault plane solution more exactly from ground motions than previously, and can evaluate how far a fault zone opens or contracts during a developing rupture. In addition to a tensile angle and Poisson¡¦s ratio for the medium, a tensile fault with five degrees of freedom has been extended from the shear slip fault with only three degrees of freedom, strike, dip, and slip.

  5. Concatenated codes for fault tolerant quantum computing

    Energy Technology Data Exchange (ETDEWEB)

    Knill, E.; Laflamme, R.; Zurek, W.

    1995-05-01

    The application of concatenated codes to fault tolerant quantum computing is discussed. We have previously shown that for quantum memories and quantum communication, a state can be transmitted with error {epsilon} provided each gate has error at most c{epsilon}. We show how this can be used with Shor`s fault tolerant operations to reduce the accuracy requirements when maintaining states not currently participating in the computation. Viewing Shor`s fault tolerant operations as a method for reducing the error of operations, we give a concatenated implementation which promises to propagate the reduction hierarchically. This has the potential of reducing the accuracy requirements in long computations.

  6. Fault Monitooring and Fault Recovery Control for Position Moored Tanker

    DEFF Research Database (Denmark)

    Fang, Shaoji; Blanke, Mogens

    2009-01-01

    This paper addresses fault tolerant control for position mooring of a shuttle tanker operating in the North Sea. A complete framework for fault diagnosis is presented but the loss of a sub-sea mooring line buoyancy element is given particular attention, since this fault could lead to line breakage...... and risky abortion of an oil-loading operation. With signicant drift forces from waves, non-Gaussian elements dominate in residuals and fault diagnosis need be designed using dedicated change detection for the type of distribution encountered. In addition to dedicated diagnosis, an optimal position...... algorithm is proposed to accommodate buoyancy element failure and keep the mooring system in a safe state. Detection properties and fault-tolerant control are demonstrated by high delity simulations...

  7. Modelling of fault reactivation and fault slip in producing gas fields using a slip-weakening friction law.

    NARCIS (Netherlands)

    Wassing, B.B.T., Buijze, L., Orlic, B.

    2016-01-01

    Geomechanical numerical simulations were conducted to analyze the stability of faults during gas production. A FLAC3D model of a fault intersecting a producing gas reservoir was developed which incorporates the fully dynamic behavior of the fault and surrounding rock mass, and a fault frictional

  8. Effects of healing on the seismogenic potential of carbonate fault rocks : Experiments on samples from the Longmenshan Fault, Sichuan, China

    NARCIS (Netherlands)

    Chen, Jianye; Verberne, Berend A.; Spiers, Christopher J.

    2015-01-01

    Fault slip and healing history may crucially affect the fault seismogenic potential in the earthquake nucleation regime. Here we report direct shear friction tests on simulated gouges derived from a carbonate fault breccia, and from a clay/carbonate fault-core gouge, retrieved from a surface

  9. A Feasibility Study of an FEM Simulation Used in Co-Seismic Deformations: A Case Study of a Dip-Slip Fault

    Directory of Open Access Journals (Sweden)

    Xiaoguang Lin

    2013-01-01

    Full Text Available For this study, we conducted a numerical simulation on co-seismic displacement for a dip-slip fault in a half-space medium based upon a finite element method (FEM. After investigating technical problems of modeling, source and boundary treatment, we calculated co-seismic deformation with consideration to topography. To verify the numerical simulation results, the simulated co-seismic displacement was compared with that calculated using a dislocation theory. As a case study, considering the seismic parameters of the 2008 Wenchuan earthquake (M 8.0 as a source model, we calculate the co-seismic displacements with or without consideration of the terrain model in the finite element model to observe terrain effects on co-seismic deformation. Results show that topography has a non-negligible effect on co-seismic displacement, reaching from -11.59 to 4.0 cm in horizontal displacement, and from -3.28 to 3.28 cm in vertical displacement. The relative effects are 9.05 and 2.95% for horizontal and vertical displacement, respectively. Such a terrain effect is sufficiently large and can be detected by modern geodetic measurements such as GPS. Therefore, we conclude that the topography should be considered in applying dislocation theory to calculate co-seismic deformations.

  10. Fault Detection for Shipboard Monitoring and Decision Support Systems

    DEFF Research Database (Denmark)

    Lajic, Zoran; Nielsen, Ulrik Dam

    2009-01-01

    In this paper a basic idea of a fault-tolerant monitoring and decision support system will be explained. Fault detection is an important part of the fault-tolerant design for in-service monitoring and decision support systems for ships. In the paper, a virtual example of fault detection...... will be presented for a containership with a real decision support system onboard. All possible faults can be simulated and detected using residuals and the generalized likelihood ratio (GLR) algorithm....

  11. Hybrid and hierarchical composite materials

    CERN Document Server

    Kim, Chang-Soo; Sano, Tomoko

    2015-01-01

    This book addresses a broad spectrum of areas in both hybrid materials and hierarchical composites, including recent development of processing technologies, structural designs, modern computer simulation techniques, and the relationships between the processing-structure-property-performance. Each topic is introduced at length with numerous  and detailed examples and over 150 illustrations.   In addition, the authors present a method of categorizing these materials, so that representative examples of all material classes are discussed.

  12. Fault Current Characteristics of the DFIG under Asymmetrical Fault Conditions

    Directory of Open Access Journals (Sweden)

    Fan Xiao

    2015-09-01

    Full Text Available During non-severe fault conditions, crowbar protection is not activated and the rotor windings of a doubly-fed induction generator (DFIG are excited by the AC/DC/AC converter. Meanwhile, under asymmetrical fault conditions, the electrical variables oscillate at twice the grid frequency in synchronous dq frame. In the engineering practice, notch filters are usually used to extract the positive and negative sequence components. In these cases, the dynamic response of a rotor-side converter (RSC and the notch filters have a large influence on the fault current characteristics of the DFIG. In this paper, the influence of the notch filters on the proportional integral (PI parameters is discussed and the simplified calculation models of the rotor current are established. Then, the dynamic performance of the stator flux linkage under asymmetrical fault conditions is also analyzed. Based on this, the fault characteristics of the stator current under asymmetrical fault conditions are studied and the corresponding analytical expressions of the stator fault current are obtained. Finally, digital simulation results validate the analytical results. The research results are helpful to meet the requirements of a practical short-circuit calculation and the construction of a relaying protection system for the power grid with penetration of DFIGs.

  13. Development of Fault Models for Hybrid Fault Detection and Diagnostics Algorithm: October 1, 2014 -- May 5, 2015

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Howard; Braun, James E.

    2015-12-31

    This report describes models of building faults created for OpenStudio to support the ongoing development of fault detection and diagnostic (FDD) algorithms at the National Renewable Energy Laboratory. Building faults are operating abnormalities that degrade building performance, such as using more energy than normal operation, failing to maintain building temperatures according to the thermostat set points, etc. Models of building faults in OpenStudio can be used to estimate fault impacts on building performance and to develop and evaluate FDD algorithms. The aim of the project is to develop fault models of typical heating, ventilating and air conditioning (HVAC) equipment in the United States, and the fault models in this report are grouped as control faults, sensor faults, packaged and split air conditioner faults, water-cooled chiller faults, and other uncategorized faults. The control fault models simulate impacts of inappropriate thermostat control schemes such as an incorrect thermostat set point in unoccupied hours and manual changes of thermostat set point due to extreme outside temperature. Sensor fault models focus on the modeling of sensor biases including economizer relative humidity sensor bias, supply air temperature sensor bias, and water circuit temperature sensor bias. Packaged and split air conditioner fault models simulate refrigerant undercharging, condenser fouling, condenser fan motor efficiency degradation, non-condensable entrainment in refrigerant, and liquid line restriction. Other fault models that are uncategorized include duct fouling, excessive infiltration into the building, and blower and pump motor degradation.

  14. An Active Fault-Tolerant Control Method Ofunmanned Underwater Vehicles with Continuous and Uncertain Faults

    Directory of Open Access Journals (Sweden)

    Daqi Zhu

    2008-11-01

    Full Text Available This paper introduces a novel thruster fault diagnosis and accommodation system for open-frame underwater vehicles with abrupt faults. The proposed system consists of two subsystems: a fault diagnosis subsystem and a fault accommodation sub-system. In the fault diagnosis subsystem a ICMAC(Improved Credit Assignment Cerebellar Model Articulation Controllers neural network is used to realize the on-line fault identification and the weighting matrix computation. The fault accommodation subsystem uses a control algorithm based on weighted pseudo-inverse to find the solution of the control allocation problem. To illustrate the proposed method effective, simulation example, under multi-uncertain abrupt faults, is given in the paper.

  15. Fault diagnosis using a task-specific shell and its verification results by connecting to an operator training simulator for regional load dispatchingand supervisoty control centers. Shindan'yo shell wo mochiita kosho kukan hantei to shiten kyuden seigyosho keito un'yo simulator deno kensho kekka

    Energy Technology Data Exchange (ETDEWEB)

    Komai, K.; Fukui, S.; Matsumoto, K. (Mitsubishi Electric Corp., Tokyo (Japan)); Moridera, D.; Kobayashi, T. (Chubu Electric Power Co. Inc., Nagoya (Japan))

    1994-02-20

    Power systems are getting more and more complicated and large-scaled, and the social demand for the stable supply of power is becoming strong. Recently, for supporting the intellectual diagnosis of the operation in the fault-restoration, several fault diagnosis as well as the know-how base system of fault restoration are developed. In this paper, the fault diagnosing efficiency inducted to the fault restoration support system for the regional load dispatching and supervisory control centers are described along with the verification results thereof. Mitsubishi Electric Diagnostic Application-specific expert system SHell (MELDASH), the shell for constructing know-how system used exclusively for diagnosis based on dispersion phenomenon model, is used in the fault diagnosis. It is confirmed by the verification results on the the functions of fault diagnosis in 79 cases in the practical systems connecting to an operator training simulator that the trial systems have sufficient efficiency from the viewpoint of diagnosis accuracy. 7 refs., 14 figs., 2 tabs.

  16. Combinatorial Optimization Algorithms for Dynamic Multiple Fault Diagnosis in Automotive and Aerospace Applications

    Science.gov (United States)

    Kodali, Anuradha

    outcomes of multiple binary classifiers over time using a sliding window or block dynamic fusion method that exploits temporal data correlations over time. We solve this NP-hard optimization problem via a Lagrangian relaxation (variational) technique. The third step optimizes the classifier parameters, viz., probabilities of detection and false alarm, using a genetic algorithm. The proposed algorithm is demonstrated by computing the diagnostic performance metrics on a twin-spool commercial jet engine, an automotive engine, and UCI datasets (problems with high classification error are specifically chosen for experimentation). We show that the primal-dual optimization framework performed consistently better than any traditional fusion technique, even when it is forced to give a single fault decision across a range of classification problems. Secondly, we implement the inference algorithms to diagnose faults in vehicle systems that are controlled by a network of electronic control units (ECUs). The faults, originating from various interactions and especially between hardware and software, are particularly challenging to address. Our basic strategy is to divide the fault universe of such cyber-physical systems in a hierarchical manner, and monitor the critical variables/signals that have impact at different levels of interactions. The proposed diagnostic strategy is validated on an electrical power generation and storage system (EPGS) controlled by two ECUs in an environment with CANoe/MATLAB co-simulation. Eleven faults are injected with the failures originating in actuator hardware, sensor, controller hardware and software components. Diagnostic matrix is established to represent the relationship between the faults and the test outcomes (also known as fault signatures) via simulations. The results show that the proposed diagnostic strategy is effective in addressing the interaction-caused faults.

  17. Optimal fault signal estimation

    NARCIS (Netherlands)

    Stoorvogel, Antonie Arij; Niemann, H.H.; Saberi, A.; Sannuti, P.

    2002-01-01

    We consider here both fault identification and fault signal estimation. Regarding fault identification, we seek either exact or almost fault identification. On the other hand, regarding fault signal estimation, we seek either $H_2$ optimal, $H_2$ suboptimal or Hinfinity suboptimal estimation. By

  18. 3D ground‐motion simulations of Mw 7 earthquakes on the Salt Lake City segment of the Wasatch fault zone: Variability of long‐period (T≥1  s) ground motions and sensitivity to kinematic rupture parameters

    Science.gov (United States)

    Moschetti, Morgan P.; Hartzell, Stephen; Ramirez-Guzman, Leonardo; Frankel, Arthur; Angster, Stephen J.; Stephenson, William J.

    2017-01-01

    We examine the variability of long‐period (T≥1  s) earthquake ground motions from 3D simulations of Mw 7 earthquakes on the Salt Lake City segment of the Wasatch fault zone, Utah, from a set of 96 rupture models with varying slip distributions, rupture speeds, slip velocities, and hypocenter locations. Earthquake ruptures were prescribed on a 3D fault representation that satisfies geologic constraints and maintained distinct strands for the Warm Springs and for the East Bench and Cottonwood faults. Response spectral accelerations (SA; 1.5–10 s; 5% damping) were measured, and average distance scaling was well fit by a simple functional form that depends on the near‐source intensity level SA0(T) and a corner distance Rc:SA(R,T)=SA0(T)(1+(R/Rc))−1. Period‐dependent hanging‐wall effects manifested and increased the ground motions by factors of about 2–3, though the effects appeared partially attributable to differences in shallow site response for sites on the hanging wall and footwall of the fault. Comparisons with modern ground‐motion prediction equations (GMPEs) found that the simulated ground motions were generally consistent, except within deep sedimentary basins, where simulated ground motions were greatly underpredicted. Ground‐motion variability exhibited strong lateral variations and, at some sites, exceeded the ground‐motion variability indicated by GMPEs. The effects on the ground motions of changing the values of the five kinematic rupture parameters can largely be explained by three predominant factors: distance to high‐slip subevents, dynamic stress drop, and changes in the contributions from directivity. These results emphasize the need for further characterization of the underlying distributions and covariances of the kinematic rupture parameters used in 3D ground‐motion simulations employed in probabilistic seismic‐hazard analyses.

  19. Multi-port power converter for segmented PEM fuel cell in transport application. Simulation with fault-tolerant strategy

    Science.gov (United States)

    De Bernardinis, A.; Frappé, E.; Béthoux, O.; Marchand, C.; Coquery, G.

    2012-05-01

    To fulfill the transport applications, either for traction or on-board auxiliaries systems, a power generator based on fuel cell needs significant power. For this purpose, long fuel cell stacks, either mono- or multi-stack systems, are already implemented as technological solutions. Long stacks though may be affected by spatial discrepancies (fluidics, temperature) causing possible failures. The latter often occur on localized stack sections. A corrective action has to be taken to quickly restore the fuel cell's state of health. As an alternative to fluidic action, segmented electric action is explored in this paper. First, an "All or Nothing" solution achieved with electrical by-pass circuits is analyzed: it proved simple to implement but restrictive to exploit. Consequently, a "gradual" action is proposed by using the power electronics converter associated to the fuel cell. Hence, the present work investigates the approach consisting in individually driving the electric power delivered by each segment of a long polymer electrolyte membrane fuel cell stack. Each segment is controlled independently according to its state of health. To achieve this objective, the article provides an extended multi-criteria analysis of several power converter topologies. The converter topology has to be in agreement with transportation specifications: simple, compact, having a high efficiency and should be adapted to manage fuel cell degraded modes. Among several studied topologies, resonant isolated boost stands out as a candidate topology. The related multi-port architecture and algorithm structure are analyzed by numerical simulations, taking into account degraded modes and technology considerations.

  20. Catalysis with hierarchical zeolites

    DEFF Research Database (Denmark)

    Holm, Martin Spangsberg; Taarning, Esben; Egeblad, Kresten

    2011-01-01

    topic. Until now, the main reason for developing hierarchical zeolites has been to achieve heterogeneous catalysts with improved performance but this particular facet has not yet been reviewed in detail. Thus, the present paper summaries and categorizes the catalytic studies utilizing hierarchical...

  1. Fault tolerant operation of switched reluctance machine

    Science.gov (United States)

    Wang, Wei

    The energy crisis and environmental challenges have driven industry towards more energy efficient solutions. With nearly 60% of electricity consumed by various electric machines in industry sector, advancement in the efficiency of the electric drive system is of vital importance. Adjustable speed drive system (ASDS) provides excellent speed regulation and dynamic performance as well as dramatically improved system efficiency compared with conventional motors without electronics drives. Industry has witnessed tremendous grow in ASDS applications not only as a driving force but also as an electric auxiliary system for replacing bulky and low efficiency auxiliary hydraulic and mechanical systems. With the vast penetration of ASDS, its fault tolerant operation capability is more widely recognized as an important feature of drive performance especially for aerospace, automotive applications and other industrial drive applications demanding high reliability. The Switched Reluctance Machine (SRM), a low cost, highly reliable electric machine with fault tolerant operation capability, has drawn substantial attention in the past three decades. Nevertheless, SRM is not free of fault. Certain faults such as converter faults, sensor faults, winding shorts, eccentricity and position sensor faults are commonly shared among all ASDS. In this dissertation, a thorough understanding of various faults and their influence on transient and steady state performance of SRM is developed via simulation and experimental study, providing necessary knowledge for fault detection and post fault management. Lumped parameter models are established for fast real time simulation and drive control. Based on the behavior of the faults, a fault detection scheme is developed for the purpose of fast and reliable fault diagnosis. In order to improve the SRM power and torque capacity under faults, the maximum torque per ampere excitation are conceptualized and validated through theoretical analysis and

  2. Influence of fault asymmetric dislocation on the gravity changes

    Directory of Open Access Journals (Sweden)

    Duan Hurong

    2014-08-01

    Full Text Available A fault is a planar fracture or discontinuity in a volume of rock, across which there has been significant displacement along the fractures as a result of earth movement. Large faults within the Earth’s crust result from the action of plate tectonic forces, with the largest forming the boundaries between the plates, energy release associated with rapid movement on active faults is the cause of most earthquakes. The relationship between unevenness dislocation and gravity changes was studied on the theoretical thought of differential fault. Simulated observation values were adopted to deduce the gravity changes with the model of asymmetric fault and the model of Okada, respectively. The characteristic of unevennes fault momentum distribution is from two end points to middle by 0 according to a certain continuous functional increase. However, the fault momentum distribution in the fault length range is a constant when the Okada model is adopted. Numerical simulation experiments for the activities of the strike-slip fault, dip-slip fault and extension fault were carried out, respectively, to find that both the gravity contours and the gravity variation values are consistent when either of the two models is adopted. The apparent difference lies in that the values at the end points are 17. 97% for the strike-slip fault, 25. 58% for the dip-slip fault, and 24. 73% for the extension fault.

  3. Applying wavelet entropy principle in fault classification

    Energy Technology Data Exchange (ETDEWEB)

    El Safty, S.; El-Zonkoly, A. [Arab Academy for Science and Technology, Miami, Alexandria, P.O.1029 (Egypt)

    2009-11-15

    The ability to detect and classify the type of fault plays a great role in the protection of power system. This procedure is required to be precise with no time consumption. In this paper detection of fault type has been implemented using wavelet analysis together with wavelet entropy principle. The simulation of power system is carried out using PSCAD/EMTDC. Different types of faults were studied obtaining various current waveforms. These current waveforms were decomposed using wavelet analysis into different approximation and details. The wavelet entropies of such decompositions are analyzed reaching a successful methodology for fault classification. The suggested approach is tested using different fault types and proven successful identification for the type of fault. (author)

  4. The 2016 Kaikōura Earthquake Revealed by Kinematic Source Inversion and Seismic Wavefield Simulations: Slow Rupture Propagation on a Geometrically Complex Crustal Fault Network

    Science.gov (United States)

    Holden, C.; Kaneko, Y.; D'Anastasio, E.; Benites, R.; Fry, B.; Hamling, I. J.

    2017-11-01

    The 2016 Kaikōura (New Zealand) earthquake generated large ground motions and resulted in multiple onshore and offshore fault ruptures, a profusion of triggered landslides, and a regional tsunami. Here we examine the rupture evolution using two kinematic modeling techniques based on analysis of local strong-motion and high-rate GPS data. Our kinematic models capture a complex pattern of slowly (Vr < 2 km/s) propagating rupture from south to north, with over half of the moment release occurring in the northern source region, mostly on the Kekerengu fault, 60 s after the origin time. Both models indicate rupture reactivation on the Kekerengu fault with the time separation of 11 s between the start of the original failure and start of the subsequent one. We further conclude that most near-source waveforms can be explained by slip on the crustal faults, with little (<8%) or no contribution from the subduction interface.

  5. Fault zone fabric and fault weakness

    NARCIS (Netherlands)

    Collettini, C.; Niemeijer, A.; Viti, C.; Marone, C.

    2009-01-01

    Geological and geophysical evidence suggests that some crustal faults are weak1–6 compared to laboratory measurements of frictional strength7. Explanations for fault weakness include the presence of weak minerals4, high fluid pressures within the fault core8,9 and dynamic processes such as

  6. Simultaneous Sensor and Process Fault Diagnostics for Propellant Feed System

    Science.gov (United States)

    Cao, J.; Kwan, C.; Figueroa, F.; Xu, R.

    2006-01-01

    The main objective of this research is to extract fault features from sensor faults and process faults by using advanced fault detection and isolation (FDI) algorithms. A tank system that has some common characteristics to a NASA testbed at Stennis Space Center was used to verify our proposed algorithms. First, a generic tank system was modeled. Second, a mathematical model suitable for FDI has been derived for the tank system. Third, a new and general FDI procedure has been designed to distinguish process faults and sensor faults. Extensive simulations clearly demonstrated the advantages of the new design.

  7. Reverse fault growth and fault interaction with frictional interfaces: insights from analogue models

    Science.gov (United States)

    Bonanno, Emanuele; Bonini, Lorenzo; Basili, Roberto; Toscani, Giovanni; Seno, Silvio

    2017-04-01

    The association of faulting and folding is a common feature in mountain chains, fold-and-thrust belts, and accretionary wedges. Kinematic models are developed and widely used to explain a range of relationships between faulting and folding. However, these models may result not to be completely appropriate to explain shortening in mechanically heterogeneous rock bodies. Weak layers, bedding surfaces, or pre-existing faults placed ahead of a propagating fault tip may influence the fault propagation rate itself and the associated fold shape. In this work, we employed clay analogue models to investigate how mechanical discontinuities affect the propagation rate and the associated fold shape during the growth of reverse master faults. The simulated master faults dip at 30° and 45°, recalling the range of the most frequent dip angles for active reverse faults that occurs in nature. The mechanical discontinuities are simulated by pre-cutting the clay pack. For both experimental setups (30° and 45° dipping faults) we analyzed three different configurations: 1) isotropic, i.e. without precuts; 2) with one precut in the middle of the clay pack; and 3) with two evenly-spaced precuts. To test the repeatability of the processes and to have a statistically valid dataset we replicate each configuration three times. The experiments were monitored by collecting successive snapshots with a high-resolution camera pointing at the side of the model. The pictures were then processed using the Digital Image Correlation method (D.I.C.), in order to extract the displacement and shear-rate fields. These two quantities effectively show both the on-fault and off-fault deformation, indicating the activity along the newly-formed faults and whether and at what stage the discontinuities (precuts) are reactivated. To study the fault propagation and fold shape variability we marked the position of the fault tips and the fold profiles for every successive step of deformation. Then we compared

  8. Statistical significance for hierarchical clustering.

    Science.gov (United States)

    Kimes, Patrick K; Liu, Yufeng; Neil Hayes, David; Marron, James Stephen

    2017-09-01

    Cluster analysis has proved to be an invaluable tool for the exploratory and unsupervised analysis of high-dimensional datasets. Among methods for clustering, hierarchical approaches have enjoyed substantial popularity in genomics and other fields for their ability to simultaneously uncover multiple layers of clustering structure. A critical and challenging question in cluster analysis is whether the identified clusters represent important underlying structure or are artifacts of natural sampling variation. Few approaches have been proposed for addressing this problem in the context of hierarchical clustering, for which the problem is further complicated by the natural tree structure of the partition, and the multiplicity of tests required to parse the layers of nested clusters. In this article, we propose a Monte Carlo based approach for testing statistical significance in hierarchical clustering which addresses these issues. The approach is implemented as a sequential testing procedure guaranteeing control of the family-wise error rate. Theoretical justification is provided for our approach, and its power to detect true clustering structure is illustrated through several simulation studies and applications to two cancer gene expression datasets. © 2017, The International Biometric Society.

  9. Introduction into Hierarchical Matrices

    KAUST Repository

    Litvinenko, Alexander

    2013-12-05

    Hierarchical matrices allow us to reduce computational storage and cost from cubic to almost linear. This technique can be applied for solving PDEs, integral equations, matrix equations and approximation of large covariance and precision matrices.

  10. Programming with Hierarchical Maps

    DEFF Research Database (Denmark)

    Ørbæk, Peter

    This report desribes the hierarchical maps used as a central data structure in the Corundum framework. We describe its most prominent features, ague for its usefulness and briefly describe some of the software prototypes implemented using the technology....

  11. Micromechanics of hierarchical materials

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon, Jr.

    2012-01-01

    A short overview of micromechanical models of hierarchical materials (hybrid composites, biomaterials, fractal materials, etc.) is given. Several examples of the modeling of strength and damage in hierarchical materials are summarized, among them, 3D FE model of hybrid composites...... with nanoengineered matrix, fiber bundle model of UD composites with hierarchically clustered fibers and 3D multilevel model of wood considered as a gradient, cellular material with layered composite cell walls. The main areas of research in micromechanics of hierarchical materials are identified, among them......, the investigations of the effects of load redistribution between reinforcing elements at different scale levels, of the possibilities to control different material properties and to ensure synergy of strengthening effects at different scale levels and using the nanoreinforcement effects. The main future directions...

  12. Fault classification method for the driving safety of electrified vehicles

    Science.gov (United States)

    Wanner, Daniel; Drugge, Lars; Stensson Trigell, Annika

    2014-05-01

    A fault classification method is proposed which has been applied to an electric vehicle. Potential faults in the different subsystems that can affect the vehicle directional stability were collected in a failure mode and effect analysis. Similar driveline faults were grouped together if they resembled each other with respect to their influence on the vehicle dynamic behaviour. The faults were physically modelled in a simulation environment before they were induced in a detailed vehicle model under normal driving conditions. A special focus was placed on faults in the driveline of electric vehicles employing in-wheel motors of the permanent magnet type. Several failures caused by mechanical and other faults were analysed as well. The fault classification method consists of a controllability ranking developed according to the functional safety standard ISO 26262. The controllability of a fault was determined with three parameters covering the influence of the longitudinal, lateral and yaw motion of the vehicle. The simulation results were analysed and the faults were classified according to their controllability using the proposed method. It was shown that the controllability decreased specifically with increasing lateral acceleration and increasing speed. The results for the electric driveline faults show that this trend cannot be generalised for all the faults, as the controllability deteriorated for some faults during manoeuvres with low lateral acceleration and low speed. The proposed method is generic and can be applied to various other types of road vehicles and faults.

  13. Hierarchical Nanoceramics for Industrial Process Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ruud, James, A.; Brosnan, Kristen, H.; Striker, Todd; Ramaswamy, Vidya; Aceto, Steven, C.; Gao, Yan; Willson, Patrick, D.; Manoharan, Mohan; Armstrong, Eric, N., Wachsman, Eric, D.; Kao, Chi-Chang

    2011-07-15

    This project developed a robust, tunable, hierarchical nanoceramics materials platform for industrial process sensors in harsh-environments. Control of material structure at multiple length scales from nano to macro increased the sensing response of the materials to combustion gases. These materials operated at relatively high temperatures, enabling detection close to the source of combustion. It is anticipated that these materials can form the basis for a new class of sensors enabling widespread use of efficient combustion processes with closed loop feedback control in the energy-intensive industries. The first phase of the project focused on materials selection and process development, leading to hierarchical nanoceramics that were evaluated for sensing performance. The second phase focused on optimizing the materials processes and microstructures, followed by validation of performance of a prototype sensor in a laboratory combustion environment. The objectives of this project were achieved by: (1) synthesizing and optimizing hierarchical nanostructures; (2) synthesizing and optimizing sensing nanomaterials; (3) integrating sensing functionality into hierarchical nanostructures; (4) demonstrating material performance in a sensing element; and (5) validating material performance in a simulated service environment. The project developed hierarchical nanoceramic electrodes for mixed potential zirconia gas sensors with increased surface area and demonstrated tailored electrocatalytic activity operable at high temperatures enabling detection of products of combustion such as NOx close to the source of combustion. Methods were developed for synthesis of hierarchical nanostructures with high, stable surface area, integrated catalytic functionality within the structures for gas sensing, and demonstrated materials performance in harsh lab and combustion gas environments.

  14. Analysis of a hardware and software fault tolerant processor for critical applications

    Science.gov (United States)

    Dugan, Joanne B.

    1993-01-01

    Computer systems for critical applications must be designed to tolerate software faults as well as hardware faults. A unified approach to tolerating hardware and software faults is characterized by classifying faults in terms of duration (transient or permanent) rather than source (hardware or software). Errors arising from transient faults can be handled through masking or voting, but errors arising from permanent faults require system reconfiguration to bypass the failed component. Most errors which are caused by software faults can be considered transient, in that they are input-dependent. Software faults are triggered by a particular set of inputs. Quantitative dependability analysis of systems which exhibit a unified approach to fault tolerance can be performed by a hierarchical combination of fault tree and Markov models. A methodology for analyzing hardware and software fault tolerant systems is applied to the analysis of a hypothetical system, loosely based on the Fault Tolerant Parallel Processor. The models consider both transient and permanent faults, hardware and software faults, independent and related software faults, automatic recovery, and reconfiguration.

  15. On concentrated solute sources in faulted aquifers

    Science.gov (United States)

    Robinson, N. I.; Werner, A. D.

    2017-06-01

    Finite aperture faults and fractures within aquifers (collectively called 'faults' hereafter) theoretically enable flowing water to move through them but with refractive displacement, both on entry and exit. When a 2D or 3D point source of solute concentration is located upstream of the fault, the plume emanating from the source relative to one in a fault-free aquifer is affected by the fault, both before it and after it. Previous attempts to analyze this situation using numerical methods faced challenges in overcoming computational constraints that accompany requisite fine mesh resolutions. To address these, an analytical solution of this problem is developed and interrogated using statistical evaluation of solute distributions. The method of solution is based on novel spatial integral representations of the source with axes rotated from the direction of uniform water flow and aligning with fault faces and normals. Numerical exemplification is given to the case of a 2D steady state source, using various parameter combinations. Statistical attributes of solute plumes show the relative impact of parameters, the most important being, fault rotation, aperture and conductivity ratio. New general observations of fault-affected solution plumes are offered, including: (a) the plume's mode (i.e. peak concentration) on the downstream face of the fault is less displaced than the refracted groundwater flowline, but at some distance downstream of the fault, these realign; (b) porosities have no influence in steady state calculations; (c) previous numerical modeling results of barrier faults show significant boundary effects. The current solution adds to available benchmark problems involving fractures, faults and layered aquifers, in which grid resolution effects are often barriers to accurate simulation.

  16. A Novel Fault Early Warning Model Based on Fault Gene Table for Smart Distribution Grids

    Directory of Open Access Journals (Sweden)

    Min Xiang

    2017-11-01

    Full Text Available Since a smart distribution grid has a diversity of components and complicated topology; it is very hard to achieve fault early warning for each part. A fault early warning model for smart distribution grid combining a back propagation (BP neural network with a gene sequence alignment algorithm is proposed. Firstly; the operational state of smart distribution grid is divided into four states; and a BP neural network is adopted to explore the operational state from the historical fault data of the smart distribution grid. This obtains the relationship between each state transition time sequence and corresponding fault, and is used to construct the fault gene table. Then; a state transition time sequence is obtained online periodically, which is matched with each gene in fault gene table by an improved Smith–Waterman algorithm. If the maximum match score exceeds the given threshold, the relevant fault will be detected early. Finally, plenty of time domain simulation is performed on the proposed fault early warning model to IEEE-14 bus. The simulation results show that the proposed model can achieve efficient early fault warning of smart distribution grids.

  17. Fault-Tolerant Approach for Modular Multilevel Converters under Submodule Faults

    DEFF Research Database (Denmark)

    Deng, Fujin; Tian, Yanjun; Zhu, Rongwu

    2016-01-01

    The modular multilevel converter (MMC) is attractive for medium- or high-power applications because of the advantages of its high modularity, availability, and high power quality. The fault-tolerant operation is one of the important issues for the MMC. This paper proposed a fault-tolerant approach...... for the MMC under submodule (SM) faults. The characteristic of the MMC with arms containing different number of healthy SMs under faults is analyzed. Based on the characteristic, the proposed approach can effectively keep the MMC operation as normal under SM faults. It can effectively improve the MMC...... performance under SM faults but without the knowledge of the number of the faulty SMs in the arm, without extra demand on communication systems, which potentially increases the reliability. The time-domain simulation studies with the PSCAD/EMTDC are conducted and a down-scale MMC prototype is also tested...

  18. Guaranteed Cost Fault-Tolerant Control for Networked Control Systems with Sensor Faults

    Directory of Open Access Journals (Sweden)

    Qixin Zhu

    2015-01-01

    Full Text Available For the large scale and complicated structure of networked control systems, time-varying sensor faults could inevitably occur when the system works in a poor environment. Guaranteed cost fault-tolerant controller for the new networked control systems with time-varying sensor faults is designed in this paper. Based on time delay of the network transmission environment, the networked control systems with sensor faults are modeled as a discrete-time system with uncertain parameters. And the model of networked control systems is related to the boundary values of the sensor faults. Moreover, using Lyapunov stability theory and linear matrix inequalities (LMI approach, the guaranteed cost fault-tolerant controller is verified to render such networked control systems asymptotically stable. Finally, simulations are included to demonstrate the theoretical results.

  19. Parallel hierarchical radiosity rendering

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Michael [Iowa State Univ., Ames, IA (United States)

    1993-07-01

    In this dissertation, the step-by-step development of a scalable parallel hierarchical radiosity renderer is documented. First, a new look is taken at the traditional radiosity equation, and a new form is presented in which the matrix of linear system coefficients is transformed into a symmetric matrix, thereby simplifying the problem and enabling a new solution technique to be applied. Next, the state-of-the-art hierarchical radiosity methods are examined for their suitability to parallel implementation, and scalability. Significant enhancements are also discovered which both improve their theoretical foundations and improve the images they generate. The resultant hierarchical radiosity algorithm is then examined for sources of parallelism, and for an architectural mapping. Several architectural mappings are discussed. A few key algorithmic changes are suggested during the process of making the algorithm parallel. Next, the performance, efficiency, and scalability of the algorithm are analyzed. The dissertation closes with a discussion of several ideas which have the potential to further enhance the hierarchical radiosity method, or provide an entirely new forum for the application of hierarchical methods.

  20. Application of Similarity in Fault Diagnosis of Power Electronics Circuits

    Science.gov (United States)

    Rongjie, Wang; Yiju, Zhan; Meiqian, Chen; Haifeng, Zhou; Kewei, Guo

    A method of fault diagnosis was proposed for power electronics circuits based on S transforms similarity. At first, the standard module time-frequency matrixes of S transforms for all fault signals were constructed, then the similarity of fault signals' module time-frequency matrixes to standard module time-frequency matrixes were calculated, and according to the principle of maximum similarity, the faults were diagnosed. The simulation result of fault diagnosis of a thyristor in a three-phase full-bridge controlled rectifier shows that the method can accurately diagnose faults and locate the fault element for power electronics circuits, and it has excellent performance for noise robustness and calculation complexity, thus it also has good practical engineering value in the solution to the fault problems for power electronics circuits.

  1. Coordination Control Strategy for Compound Fault of MMC-HVDC

    Directory of Open Access Journals (Sweden)

    Zhang Ming Guang

    2016-01-01

    Full Text Available Single-line to ground fault of DC side and sub-module fault are typical faults of MMC-HVDC. When each of the above faults occurs, the system will give a signal for circuit-breaker releasing, this will result in interruption of power delivery, the stability of the system is greatly reduced. When these two faults occur simultaneously, research on control strategy for compound fault will help to improve the reliability of the system. While single-line to ground fault of DC side happens, only the electric potential auxiliary point of DC side is changed, system’s power transport normally. When sub-module is fault, redundancy fault-tolerated control strategy is presented, which replace the failed sub-modules with equal number of redundant sub-modules, it can restrain the fluctuation of direct current. A double terminals and 21 voltage-level MMC-HVDC system simulation model is set up in PSCAD/EMTDC. From the computation and simulation results, it is concluded that the proposed control strategy is correct for above compound fault, it can achieve rapid recovery after faults, effectively improve fault tolerance of the system, develop the stability and reliability of the system.

  2. Source model of the 1703 Genroku Kanto earthquake tsunami based on historical documents and numerical simulations: modeling of an offshore fault along the Sagami Trough

    Science.gov (United States)

    Yanagisawa, Hideaki; Goto, Kazuhisa

    2017-10-01

    The 1703 Genroku Kanto earthquake and the resulting tsunami caused catastrophic damage in the Kanto region of Japan. Previous modeling of the 1703 earthquake applied inversion analyses of the observed terrestrial crustal deformations along the coast of the southern Boso Peninsula and revealed that the tsunami was generated along the Sagami Trough. Although these models readily explained the observed crustal deformation, they were unable to model an offshore fault along the Sagami Trough because of difficulties related to the distance of the offshore fault from the shoreline. In addition, information regarding the terrestrial crustal deformation is insufficient to constrain such inverted models. To model an offshore fault and investigate the triggering of large tsunamis off the Pacific coast of the Boso Peninsula, we studied historical documents related to the 1703 tsunami from Choshi City. Based on these historical documents, we estimated tsunami heights of ≥5.9, 11.4-11.7, ≥7.7, 10.8 and ≥4.8 m for the Choshi City regions of Isejiga- ura, Kobatake- ike, Nagasaki, Tokawa and Na'arai, respectively. Although previous studies assumed that the tsunami heights ranged from 3.0 to 4.0 m in Choshi City, we revealed that the tsunami reached heights exceeded 11 m in the city. We further studied the fault model of the 1703 Genroku Kanto earthquake numerically using the newly obtained tsunami height data. Consequently, we determined that the source of the 1703 earthquake was a 120-km-long offshore fault along the Sagami Trough, which is in close proximity to the Japan Trench. Our results suggest that earthquake energies resulting in magnitudes greater than Mw 8.32 along the entire length of the Sagami Trough could have been released during the 1703 Genroku Kanto earthquake.[Figure not available: see fulltext.

  3. Experimental validation and effect of modelling assumptions in the hierarchical multi-scale simulation of the cup drawing of AA6016 sheets

    Science.gov (United States)

    Ramírez, M. A.; Schouwenaars, R.; Eyckens, P.; Gawad, J.; Kestens, L.; Van Bael, A.; Van Houtte, P.

    2017-01-01

    An essential step in the improvement of design strategies for a wide range of industrial deep drawing applications is the development of methods which allow for the precise prediction of shape and processing parameters. Earlier work has demonstrated, in a clear but qualitative manner, the capabilities of the hierarchical multiscale (HMS) model, which predicts the anisotropic plastic properties of metallic materials based on a statistical analysis of microstructure-based anisotropy and a continuous description of the yield locus. The method is implemented into the ABAQUS finite-element software but, until recently, little attention had been paid to other factors which determine the accuracy of a finite element prediction in general, such as mesh size, friction coefficient and rigid/elastic modelling of the tools. Through the analysis of cup drawing, which is a well-established laboratory-scale test relevant to industrial applications, a quantitative comparison is provided between measured cup geometry and punch force and modelling results for commercial AA6016T4 aluminium sheets. The relatively weak earing behaviour of these materials serves to emphasise the small differences still found between model and experiment, which may be addressed by future refinement of the micromechanical component of the HMS. Average cup height and punch force, which is an important process parameter omitted in earlier studies, depend primarily on the friction coefficient and assumptions in the modelling of the tools. Considering the balance between accuracy and precision, it is concluded that the proposed methodology has matured sufficiently to be used as a design tool at industrial level.

  4. Hierarchical Network Design

    DEFF Research Database (Denmark)

    Thomadsen, Tommy

    2005-01-01

    design. The papers have all been submitted for journals, and except for two papers, are awaiting review. The papers are mostly concerned with optimal methods and, in a few cases, heuristics for designing hierarchical and ring networks. All papers develop bounds which are used in the optimal methods...... danne grundlag for et studie af design af hierarkiske netværk. Afhandlings vigtigste bidrag best ar af syv artikler, der er inkluderet i appendiks. Artiklerne handler om design af hierarkisk netværk og ring netværk. Artiklerne er alle indsendt til videnskablige journaler og afventer bedømmelse, bortset......Communication networks are immensely important today, since both companies and individuals use numerous services that rely on them. This thesis considers the design of hierarchical (communication) networks. Hierarchical networks consist of layers of networks and are well-suited for coping...

  5. Science based integrated approach to advanced nuclear fuel development - integrated multi-scale multi-physics hierarchical modeling and simulation framework Part III: cladding

    Energy Technology Data Exchange (ETDEWEB)

    Tome, Carlos N [Los Alamos National Laboratory; Caro, J A [Los Alamos National Laboratory; Lebensohn, R A [Los Alamos National Laboratory; Unal, Cetin [Los Alamos National Laboratory; Arsenlis, A [LLNL; Marian, J [LLNL; Pasamehmetoglu, K [INL

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Reactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems to develop predictive tools is critical. Not only are fabrication and performance models needed to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. In this paper we review the current status of the advanced modeling and simulation of nuclear reactor cladding, with emphasis on what is available and what is to be developed in each scale of the project, how we propose to pass information from one scale to the next, and what experimental information is required for benchmarking and advancing the modeling at each scale level.

  6. Quantifying rock's structural fabric: a multi-scale hierarchical approach to natural fracture systems and stochastic modelling

    Science.gov (United States)

    Hardebol, Nico; Bertotti, Giovanni; Weltje, Gert Jan

    2014-05-01

    We propose the description of fracture-fault systems in terms of a multi-scale hierarchical network. In most generic form, such arrangement is referred to as a structural fabric and applicable across the length scale spectrum. The statistical characterisation combines the fracture length and orientation distributions and intersection-termination relationships. The aim is a parameterised description of the network that serves as input in stochastic network simulations that should reproduce the essence of natural fracture networks and encompass its variability. The quality of the stochastically generated fabric is determined by comparison with deterministic descriptions on which the model parameterisation is based. Both the deterministic and stochastic derived fracture network description can serve as input in fluid flow or mechanical simulations that accounts explicitly for the discrete features and the response of the system can be compared. The deterministic description of our current study in the framework of tight gas reservoirs is obtained from coastal pavements that expose a horizontal slice through a fracture-fault network system in fine grained sediments in Yorkshire, UK. Fracture hierarchies have often been described at one observation scale as a two-tier hierarchy in terms of 1st order systematic joints and 2nd order cross-joints. New in our description is the bridging between km-sized faults with notable displacement down to sub-meter scale shear and opening mode fractures. This study utilized a drone to obtain cm-resolution imagery of pavements from ~30m altitude and the large coverage up to 1-km by flying at a ~80m. This unique set of images forms the basis for the digitizing of the fracture-fault pattern and helped determining the nested nature of the network as well as intersection and abutment relationships. Fracture sets were defined from the highest to lowest hierarchical order and probability density functions were defined for the length

  7. Fault detection and isolation in systems with parametric faults

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik

    1999-01-01

    The problem of fault detection and isolation of parametric faults is considered in this paper. A fault detection problem based on parametric faults are associated with internal parameter variations in the dynamical system. A fault detection and isolation method for parametric faults is formulated...

  8. Iowa Bedrock Faults

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This fault coverage locates and identifies all currently known/interpreted fault zones in Iowa, that demonstrate offset of geologic units in exposure or subsurface...

  9. Layered Fault Management Architecture

    National Research Council Canada - National Science Library

    Sztipanovits, Janos

    2004-01-01

    ... UAVs or Organic Air Vehicles. The approach of this effort was to analyze fault management requirements of formation flight for fleets of UAVs, and develop a layered fault management architecture which demonstrates significant...

  10. Robust fault detection and isolation in stochastic systems

    Science.gov (United States)

    George, Jemin

    2012-07-01

    This article outlines the formulation of a robust fault detection and isolation (FDI) scheme that can precisely detect and isolate simultaneous actuator and sensor faults for uncertain linear stochastic systems. The given robust fault detection scheme based on the discontinuous robust observer approach would be able to distinguish between model uncertainties and actuator failures and therefore eliminate the problem of false alarms. Since the proposed approach involves estimating sensor faults, it can also be used for sensor fault identification and the reconstruction of true outputs from faulty sensor outputs. Simulation results presented here validate the effectiveness of the proposed robust FDI system.

  11. Fault Analysis and Detection in Microgrids with High PV Penetration

    Energy Technology Data Exchange (ETDEWEB)

    El Khatib, Mohamed [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hernandez Alvidrez, Javier [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ellis, Abraham [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    In this report we focus on analyzing current-controlled PV inverters behaviour under faults in order to develop fault detection schemes for microgrids with high PV penetration. Inverter model suitable for steady state fault studies is presented and the impact of PV inverters on two protection elements is analyzed. The studied protection elements are superimposed quantities based directional element and negative sequence directional element. Additionally, several non-overcurrent fault detection schemes are discussed in this report for microgrids with high PV penetration. A detailed time-domain simulation study is presented to assess the performance of the presented fault detection schemes under different microgrid modes of operation.

  12. Development of intelligent simulations at LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, C.T.

    1994-03-01

    The Virtual Commander Project (VCom) is developing a capability for semiautomated optimal control of simulation entities. Properties of our control paradigm are goal-directed planning, hierarchical plan generation, automated fault detection, adaptive plan repair, and optimized cooperation and coordination among units, in addition to more conventional rule-driven behaviors. VCom has been applied to planning armor engagements at the battalion level and below. We are currently investigating movement-to-contact and fire-and-movement maneuvers. These capabilities will be demonstrated in April in conjunction with the Joint Conflict Model (JCM) a large, entity-level, constructive combat simulation. Both simulations have been developed to interoperate in a distributed computing environment using Distributed Interactive Simulation (DIS) protocols. Prototype applications have been demonstrated in other civilian and military contexts. A focus of our current work is the rapid prototyping of such applications.

  13. Software fault tolerance

    OpenAIRE

    Kazinov, Tofik Hasanaga; Mostafa, Jalilian Shahrukh

    2009-01-01

    Because of our present inability to produce errorfree software, software fault tolerance is and will contiune to be an important consideration in software system. The root cause of software design errors in the complexity of the systems. This paper surveys various software fault tolerance techniquest and methodologies. They are two gpoups: Single version and Multi version software fault tolerance techniques. It is expected that software fault tolerance research will benefit from this research...

  14. Stator Fault Modelling of Induction Motors

    DEFF Research Database (Denmark)

    Thomsen, Jesper Sandberg; Kallesøe, Carsten

    2006-01-01

    In this paper a model of an induction motor affected by stator faults is presented. Two different types of faults are considered, these are; disconnection of a supply phase, and inter-turn and turn-turn short circuits inside the stator. The output of the derived model is compared to real measurem......In this paper a model of an induction motor affected by stator faults is presented. Two different types of faults are considered, these are; disconnection of a supply phase, and inter-turn and turn-turn short circuits inside the stator. The output of the derived model is compared to real...... measurements from a specially designed induction motor. With this motor it is possible to simulate both terminal disconnections, inter-turn and turn-turn short circuits. The results show good agreement between the measurements and the simulated signals obtained from the model. In the tests focus...

  15. Fault Detection and Isolation for Spacecraft

    DEFF Research Database (Denmark)

    Jensen, Hans-Christian Becker; Wisniewski, Rafal

    2002-01-01

    This article realizes nonlinear Fault Detection and Isolation for actuators, given there is no measurement of the states in the actuators. The Fault Detection and Isolation of the actuators is instead based on angular velocity measurement of the spacecraft and knowledge about the dynamics...... of the satellite. The algorithms presented in this paper are based on a geometric approach to achieve nonlinear Fault Detection and Isolation. The proposed algorithms are tested in a simulation study and the pros and cons of the algorithms are discussed....

  16. Fault Tolerant Feedback Control

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.

    2001-01-01

    An architecture for fault tolerant feedback controllers based on the Youla parameterization is suggested. It is shown that the Youla parameterization will give a residual vector directly in connection with the fault diagnosis part of the fault tolerant feedback controller. It turns out that there...

  17. Performance based fault diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2002-01-01

    Different aspects of fault detection and fault isolation in closed-loop systems are considered. It is shown that using the standard setup known from feedback control, it is possible to formulate fault diagnosis problems based on a performance index in this general standard setup. It is also shown...

  18. Hierarchical Porous Structures

    Energy Technology Data Exchange (ETDEWEB)

    Grote, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-07

    Materials Design is often at the forefront of technological innovation. While there has always been a push to generate increasingly low density materials, such as aero or hydrogels, more recently the idea of bicontinuous structures has gone more into play. This review will cover some of the methods and applications for generating both porous, and hierarchically porous structures.

  19. Microparticles with hierarchical porosity

    Science.gov (United States)

    Petsev, Dimiter N; Atanassov, Plamen; Pylypenko, Svitlana; Carroll, Nick; Olson, Tim

    2012-12-18

    The present disclosure provides oxide microparticles with engineered hierarchical porosity and methods of manufacturing the same. Also described are structures that are formed by templating, impregnating, and/or precipitating the oxide microparticles and method for forming the same. Suitable applications include catalysts, electrocatalysts, electrocatalysts support materials, capacitors, drug delivery systems, sensors and chromatography.

  20. Fault Diagnosis in HVAC Chillers

    Science.gov (United States)

    Choi, Kihoon; Namuru, Setu M.; Azam, Mohammad S.; Luo, Jianhui; Pattipati, Krishna R.; Patterson-Hine, Ann

    2005-01-01

    Modern buildings are being equipped with increasingly sophisticated power and control systems with substantial capabilities for monitoring and controlling the amenities. Operational problems associated with heating, ventilation, and air-conditioning (HVAC) systems plague many commercial buildings, often the result of degraded equipment, failed sensors, improper installation, poor maintenance, and improperly implemented controls. Most existing HVAC fault-diagnostic schemes are based on analytical models and knowledge bases. These schemes are adequate for generic systems. However, real-world systems significantly differ from the generic ones and necessitate modifications of the models and/or customization of the standard knowledge bases, which can be labor intensive. Data-driven techniques for fault detection and isolation (FDI) have a close relationship with pattern recognition, wherein one seeks to categorize the input-output data into normal or faulty classes. Owing to the simplicity and adaptability, customization of a data-driven FDI approach does not require in-depth knowledge of the HVAC system. It enables the building system operators to improve energy efficiency and maintain the desired comfort level at a reduced cost. In this article, we consider a data-driven approach for FDI of chillers in HVAC systems. To diagnose the faults of interest in the chiller, we employ multiway dynamic principal component analysis (MPCA), multiway partial least squares (MPLS), and support vector machines (SVMs). The simulation of a chiller under various fault conditions is conducted using a standard chiller simulator from the American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE). We validated our FDI scheme using experimental data obtained from different types of chiller faults.

  1. Low-velocity fault-zone guided waves: Numerical investigations of trapping efficiency

    Science.gov (United States)

    Li, Y.-G.; Vidale, J.E.

    1996-01-01

    Recent observations have shown that shear waves trapped within low-velocity fault zones may be the most sensitive measure of fault-zone structure (Li et al., 1994a, 1994b). Finite-difference simulations demonstrate the effects of several types of complexity on observations of fault-zone trapped waves. Overlying sediments with a thickness more than one or two fault-zone widths and fault-zone step-overs more than one or two fault widths disrupt the wave guide. Fault kinks and changes in fault-zone width with depth leave readily observable trapped waves. We also demonstrate the effects of decreased trapped wave excitation with increasing hypocentral offset from the fault and the effects of varying the contrast between the velocity in the fault zone and surrounding hard rock. Careful field studies may provide dramatic improvements in our knowledge of fault-zone structure.

  2. Modeling Fluid Flow in Faulted Basins

    Directory of Open Access Journals (Sweden)

    Faille I.

    2014-07-01

    Full Text Available This paper presents a basin simulator designed to better take faults into account, either as conduits or as barriers to fluid flow. It computes hydrocarbon generation, fluid flow and heat transfer on the 4D (space and time geometry obtained by 3D volume restoration. Contrary to classical basin simulators, this calculator does not require a structured mesh based on vertical pillars nor a multi-block structure associated to the fault network. The mesh follows the sediments during the evolution of the basin. It deforms continuously with respect to time to account for sedimentation, erosion, compaction and kinematic displacements. The simulation domain is structured in layers, in order to handle properly the corresponding heterogeneities and to follow the sedimentation processes (thickening of the layers. In each layer, the mesh is unstructured: it may include several types of cells such as tetrahedra, hexahedra, pyramid, prism, etc. However, a mesh composed mainly of hexahedra is preferred as they are well suited to the layered structure of the basin. Faults are handled as internal boundaries across which the mesh is non-matching. Different models are proposed for fault behavior such as impervious fault, flow across fault or conductive fault. The calculator is based on a cell centered Finite Volume discretisation, which ensures conservation of physical quantities (mass of fluid, heat at a discrete level and which accounts properly for heterogeneities. The numerical scheme handles the non matching meshes and guaranties appropriate connection of cells across faults. Results on a synthetic basin demonstrate the capabilities of this new simulator.

  3. Modeling of flow in faulted and fractured media

    Energy Technology Data Exchange (ETDEWEB)

    Oeian, Erlend

    2004-03-01

    . Thus, the main purpose of this chapter is to go into more details on the various parameters and derivations compared to the papers. Details of the ATHENA simulator is presented in Chapt. 3, including both earlier and recent additions. The main focus of this chapter is on code development issues like platform portability, 'safe' parallel programming and general improvements. Due to the code specific details, the content of this paper is for the most part not covered in the Part II papers. Chapt. 4 includes the domain decomposition framework and details on the parallel implementation. Based on the fault modeling aspects introduced in Chapt. 1, a brief review of existing numerical fracture flow techniques are given in Chapt. 5. Also, a hierarchical approach for including fractures at different scales within the ATHENA simulator is given here. This includes both discretization issues and methods for up scaling. After summary and conclusions in Chapt. 6, Part I ends with Chapt. 7 including suggestions on further work within the ATHENA simulator framework in particular and on numerical techniques for fractured porous media flow in general.

  4. Hierarchical models and functional traits

    NARCIS (Netherlands)

    van Loon, E.E.; Shamoun-Baranes, J.; Sierdsema, H.; Bouten, W.; Cramer, W.; Badeck, F.; Krukenberg, B.; Klotz, S.; Kühn, I.; Schweiger, O.; Böhning-Gaese, K.; Schaefer, H.-C.; Kissling, D.; Brandl, R.; Brändle, M.; Fricke, R.; Leuschner, C.; Buschmann, H.; Köckermann, B.; Rose, L.

    2006-01-01

    Hierarchical models for animal abundance prediction are conceptually elegant. They are generally more parsimonous than non-hierarchical models derived from the same data, give relatively robust predictions and automatically provide consistent output at multiple (spatio-temporal) scales. Another

  5. Model based Fault Detection and Isolation for Driving Motors of a Ground Vehicle

    Directory of Open Access Journals (Sweden)

    Young-Joon Kim

    2016-04-01

    Full Text Available This paper proposes model based current sensor and position sensor fault detection and isolation algorithm for driving motor of In-wheel independent drive electric vehicle. From low level perspective, fault diagnosis conducted and analyzed to enhance robustness and stability. Composing state equation of interior permanent magnet synchronous motor (IPMSM, current sensor fault and position sensor fault diagnosed with parity equation. Validation and usefulness of algorithm confirmed based on IPMSM fault occurrence simulation data.

  6. Adaptive backstepping control for three axis microsatellite attitude pointing under actuator faults

    Science.gov (United States)

    MOHAMMED, M. A. SI; BOUSSADIA, H.; BELLAR, A.; ADNANE, A.

    2017-01-01

    This paper presents the design of Low Earth Orbit (LEO) micro-satellite attitude controller using reaction wheels, and under actuator faults. Firstly, a backstepping controller is developed when the actuator is fault-free. Then, a fault tolerant controller is designed to compensate the actuator fault. Two types of this latter are considered (additive and multiplicative faults). The presented control strategy is based on adaptive backstepping technique. The simulation results clearly demonstrate the effectiveness of the presented technique.

  7. Hierarchical pattern of microfibrils in a 3D fluorapatite-gelatine nanocomposite: simulation of a bio-related structure building process.

    Science.gov (United States)

    Paparcone, Raffaella; Kniep, Rüdiger; Brickmann, Jürgen

    2009-04-07

    The shape development of a biomimetic fluorapatite-gelatine nanocomposite on the mum scale is characterised by a fractal mechanism with the origin being intrinsically coded in a (central) elongated hexagonal-prismatic seed. The 3D superstructure of the seed is distinctively overlaid by a pattern consisting of gelatine microfibrils. The orientation of the microfibrils is assumed to be controlled by an intrinsic electrical field generated by the nanocomposite during development and growth of the seed. In order to confirm this assumption and to get more detailed information on orientational relations of the complex nanocomposite we simulated the pattern formation process up to the microm scale. The results from experimental studies and simulation results on an atomistic level support a model scenario wherein the elementary building blocks for the aggregation are represented by elongated hexagonal-prismatic objects (A-units), with the embedded collagen triple-helices in their centers. The interactions of the A-units are consequently modelled by three contributions: the crystal energy part (originating from the pair-wise interactions of the "apatite shells" of the prismatic units), the electrostatic interaction (originating from the unit charges located at the ends of the collagen triple helices), and the interaction energy of the A-units mediated by the solvent. The next level of complexity is related to the fact that micro fibrils were found in the fluorapatite-gelatine nanocomposites. They consist of bundles of triple helical protein molecules, which are embedded within the 3D-hexagonal prismatic arrangement of the A-units. In our approach we consider the microfibrils as chains of flexible dipoles with effective dipole moments. The crystal growth processes is modelled as an energetically controlled stepwise association of elementary building blocks of different kind on a 3D-grid. The remarkable and excellent qualitative agreement between the simulated fibril patterns

  8. Information Based Fault Diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2008-01-01

    Fault detection and isolation, (FDI) of parametric faults in dynamic systems will be considered in this paper. An active fault diagnosis (AFD) approach is applied. The fault diagnosis will be investigated with respect to different information levels from the external inputs to the systems....... These inputs are disturbance inputs, reference inputs and auxilary inputs. The diagnosis of the system is derived by an evaluation of the signature from the inputs in the residual outputs. The changes of the signatures form the external inputs are used for detection and isolation of the parametric faults....

  9. A novel KFCM based fault diagnosis method for unknown faults in satellite reaction wheels.

    Science.gov (United States)

    Hu, Di; Sarosh, Ali; Dong, Yun-Feng

    2012-03-01

    Reaction wheels are one of the most critical components of the satellite attitude control system, therefore correct diagnosis of their faults is quintessential for efficient operation of these spacecraft. The known faults in any of the subsystems are often diagnosed by supervised learning algorithms, however, this method fails to work correctly when a new or unknown fault occurs. In such cases an unsupervised learning algorithm becomes essential for obtaining the correct diagnosis. Kernel Fuzzy C-Means (KFCM) is one of the unsupervised algorithms, although it has its own limitations; however in this paper a novel method has been proposed for conditioning of KFCM method (C-KFCM) so that it can be effectively used for fault diagnosis of both known and unknown faults as in satellite reaction wheels. The C-KFCM approach involves determination of exact class centers from the data of known faults, in this way discrete number of fault classes are determined at the start. Similarity parameters are derived and determined for each of the fault data point. Thereafter depending on the similarity threshold each data point is issued with a class label. The high similarity points fall into one of the 'known-fault' classes while the low similarity points are labeled as 'unknown-faults'. Simulation results show that as compared to the supervised algorithm such as neural network, the C-KFCM method can effectively cluster historical fault data (as in reaction wheels) and diagnose the faults to an accuracy of more than 91%. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Multicollinearity in hierarchical linear models.

    Science.gov (United States)

    Yu, Han; Jiang, Shanhe; Land, Kenneth C

    2015-09-01

    This study investigates an ill-posed problem (multicollinearity) in Hierarchical Linear Models from both the data and the model perspectives. We propose an intuitive, effective approach to diagnosing the presence of multicollinearity and its remedies in this class of models. A simulation study demonstrates the impacts of multicollinearity on coefficient estimates, associated standard errors, and variance components at various levels of multicollinearity for finite sample sizes typical in social science studies. We further investigate the role multicollinearity plays at each level for estimation of coefficient parameters in terms of shrinkage. Based on these analyses, we recommend a top-down method for assessing multicollinearity in HLMs that first examines the contextual predictors (Level-2 in a two-level model) and then the individual predictors (Level-1) and uses the results for data collection, research problem redefinition, model re-specification, variable selection and estimation of a final model. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Fault isolability conditions for linear systems with additive faults

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    2006-01-01

    In this paper, we shall show that an unlimited number of additive single faults can be isolated under mild conditions if a general isolation scheme is applied. Multiple faults are also covered. The approach is algebraic and is based on a set representation of faults, where all faults within a set...... can occur simultaneously, whereas faults belonging to different fault sets appear disjoint in time. The proposed fault detection and isolation (FDI) scheme consists of three steps. A fault detection (FD) step is followed by a fault set isolation (FSI) step. Here the fault set is isolated wherein...... the faults have occurred. The last step is a fault isolation (FI) of the faults occurring in a specific fault set, i.e. equivalent with the standard FI step....

  12. Adaptive FTC based on Control Allocation and Fault Accommodation for Satellite Reaction Wheels

    DEFF Research Database (Denmark)

    Baldi, P.; Blanke, Mogens; Castaldi, P.

    2016-01-01

    This paper proposes an active fault tolerant control scheme to cope with faults or failures affecting the flywheel spin rate sensors or satellite reaction wheel motors. The active fault tolerant control system consists of a fault detection and diagnosis module along with a control allocation...... estimation filters, which do not need a priori information about the internal model of the signal to be estimated. The adaptive control allocation and sensor fault accommodation can handle both temporal faults and failures. Simulation results illustrate the convincing fault correction and attitude control...

  13. The GEM fault database: an update on design and approach

    Science.gov (United States)

    Gould, M.; Grant, L.; Donnellan, A.; McLeod, D.

    2003-04-01

    We are developing a fault database for California, USA that includes geological and paleoseismic data. This abstract describes our approach to designing the database. The fault database is part of a larger database system that must manage a variety of types of earthquake science data and information. One of the most critical aspects of our proposed system is that it must support interoperability for a variety of application programs, tools, and simulation packages, as well as heterogeneous data. Our system must also be designed to handle real and simulated data. For hypothesis testing and predictive simulation, it is important to separate nonprimary parameters from primary observations, and to know the source of input data. Our goal is to design and develop a database that includes primary geologic and paleoseismic fault parameters, as well as separate nonprimary fault parameters, with all data referenced to the original source. The fault database should accommodate primary observational parameters such as fault location and geometry, kinematic indicators, slip rate, rupture history and recurrence observations, and measurements of displacement. Nonprimary parameters include fault names, strand names, segments, characteristic recurrence interval, and magnitude. Our database will include simulated faults, mapped faults, and hypothesized faults for testing through our simulations. The separation of primary and nonprimary data will allow assimilation of data into models with minimal bias. An XML scheme will be utilized to describe parameters of faults and input data. The fault database will eventually be supported by a state-of-the-art commercially-available general-purpose database management system (DBMS). Initially, our database system will be developed on a public domain DBMS. We have developed extended entity relationships, which will be mapped to a relational database and will initially be implemented in MySQL.

  14. Fault Tolerant Position-mooring Control for Offshore Vessels

    DEFF Research Database (Denmark)

    Blanke, Mogens; Nguyen, Trong Dong

    2018-01-01

    by a system to handle faults in mooring lines, sensors or thrusters. Simulations and model basin experiments are carried out to validate the concept for scenarios with single or multiple faults. The results demonstrate that enhanced availability and safety are obtainable with this design approach. While......Fault-tolerance is crucial to maintain safety in offshore operations. The objective of this paper is to show how systematic analysis and design of fault-tolerance is conducted for a complex automation system, exemplified by thruster assisted Position-mooring. Using redundancy as required....... Functional faults that are only detectable, are rendered isolable through an active isolation approach. Once functional faults are isolated, they are handled by fault accommodation techniques to meet overall control objectives specified by class requirements. The paper illustrates the generic methodology...

  15. Research on variational mode decomposition in rolling bearings fault diagnosis of the multistage centrifugal pump

    Science.gov (United States)

    Zhang, Ming; Jiang, Zhinong; Feng, Kun

    2017-09-01

    Rolling bearing faults are among the primary causes of breakdown in multistage centrifugal pump. A novel method of rolling bearings fault diagnosis based on variational mode decomposition is presented in this contribution. The rolling bearing fault signal calculating model of different location defect is established by failure mechanism analysis, and the simulation vibration signal of the proposed fault model is investigated by FFT and envelope analysis. A comparison has gone to evaluate the performance of bearing defect characteristic extraction for rolling bearings simulation signal by using VMD and EMD. The result of comparison verifies the VMD can accurately extract the principal mode of bearing fault signal, and it better than EMD in bearing defect characteristic extraction. The VMD is then applied to detect different location fault features for rolling bearings fault diagnosis via modeling simulation vibration signal and practical vibration signal. The analysis result of simulation and experiment proves that the proposed method can successfully diagnosis rolling bearings fault.

  16. Hierarchical species distribution models

    Science.gov (United States)

    Hefley, Trevor J.; Hooten, Mevin B.

    2016-01-01

    Determining the distribution pattern of a species is important to increase scientific knowledge, inform management decisions, and conserve biodiversity. To infer spatial and temporal patterns, species distribution models have been developed for use with many sampling designs and types of data. Recently, it has been shown that count, presence-absence, and presence-only data can be conceptualized as arising from a point process distribution. Therefore, it is important to understand properties of the point process distribution. We examine how the hierarchical species distribution modeling framework has been used to incorporate a wide array of regression and theory-based components while accounting for the data collection process and making use of auxiliary information. The hierarchical modeling framework allows us to demonstrate how several commonly used species distribution models can be derived from the point process distribution, highlight areas of potential overlap between different models, and suggest areas where further research is needed.

  17. A Unified Nonlinear Adaptive Approach for Detection and Isolation of Engine Faults

    Science.gov (United States)

    Tang, Liang; DeCastro, Jonathan A.; Zhang, Xiaodong; Farfan-Ramos, Luis; Simon, Donald L.

    2010-01-01

    A challenging problem in aircraft engine health management (EHM) system development is to detect and isolate faults in system components (i.e., compressor, turbine), actuators, and sensors. Existing nonlinear EHM methods often deal with component faults, actuator faults, and sensor faults separately, which may potentially lead to incorrect diagnostic decisions and unnecessary maintenance. Therefore, it would be ideal to address sensor faults, actuator faults, and component faults under one unified framework. This paper presents a systematic and unified nonlinear adaptive framework for detecting and isolating sensor faults, actuator faults, and component faults for aircraft engines. The fault detection and isolation (FDI) architecture consists of a parallel bank of nonlinear adaptive estimators. Adaptive thresholds are appropriately designed such that, in the presence of a particular fault, all components of the residual generated by the adaptive estimator corresponding to the actual fault type remain below their thresholds. If the faults are sufficiently different, then at least one component of the residual generated by each remaining adaptive estimator should exceed its threshold. Therefore, based on the specific response of the residuals, sensor faults, actuator faults, and component faults can be isolated. The effectiveness of the approach was evaluated using the NASA C-MAPSS turbofan engine model, and simulation results are presented.

  18. Hierarchically Structured Electrospun Fibers

    Directory of Open Access Journals (Sweden)

    Nicole E. Zander

    2013-01-01

    Full Text Available Traditional electrospun nanofibers have a myriad of applications ranging from scaffolds for tissue engineering to components of biosensors and energy harvesting devices. The generally smooth one-dimensional structure of the fibers has stood as a limitation to several interesting novel applications. Control of fiber diameter, porosity and collector geometry will be briefly discussed, as will more traditional methods for controlling fiber morphology and fiber mat architecture. The remainder of the review will focus on new techniques to prepare hierarchically structured fibers. Fibers with hierarchical primary structures—including helical, buckled, and beads-on-a-string fibers, as well as fibers with secondary structures, such as nanopores, nanopillars, nanorods, and internally structured fibers and their applications—will be discussed. These new materials with helical/buckled morphology are expected to possess unique optical and mechanical properties with possible applications for negative refractive index materials, highly stretchable/high-tensile-strength materials, and components in microelectromechanical devices. Core-shell type fibers enable a much wider variety of materials to be electrospun and are expected to be widely applied in the sensing, drug delivery/controlled release fields, and in the encapsulation of live cells for biological applications. Materials with a hierarchical secondary structure are expected to provide new superhydrophobic and self-cleaning materials.

  19. Data Fault Detection in Medical Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2015-03-01

    Full Text Available Medical body sensors can be implanted or attached to the human body to monitor the physiological parameters of patients all the time. Inaccurate data due to sensor faults or incorrect placement on the body will seriously influence clinicians’ diagnosis, therefore detecting sensor data faults has been widely researched in recent years. Most of the typical approaches to sensor fault detection in the medical area ignore the fact that the physiological indexes of patients aren’t changing synchronously at the same time, and fault values mixed with abnormal physiological data due to illness make it difficult to determine true faults. Based on these facts, we propose a Data Fault Detection mechanism in Medical sensor networks (DFD-M. Its mechanism includes: (1 use of a dynamic-local outlier factor (D-LOF algorithm to identify outlying sensed data vectors; (2 use of a linear regression model based on trapezoidal fuzzy numbers to predict which readings in the outlying data vector are suspected to be faulty; (3 the proposal of a novel judgment criterion of fault state according to the prediction values. The simulation results demonstrate the efficiency and superiority of DFD-M.

  20. Formal Validation of Fault Management Design Solutions

    Science.gov (United States)

    Gibson, Corrina; Karban, Robert; Andolfato, Luigi; Day, John

    2013-01-01

    The work presented in this paper describes an approach used to develop SysML modeling patterns to express the behavior of fault protection, test the model's logic by performing fault injection simulations, and verify the fault protection system's logical design via model checking. A representative example, using a subset of the fault protection design for the Soil Moisture Active-Passive (SMAP) system, was modeled with SysML State Machines and JavaScript as Action Language. The SysML model captures interactions between relevant system components and system behavior abstractions (mode managers, error monitors, fault protection engine, and devices/switches). Development of a method to implement verifiable and lightweight executable fault protection models enables future missions to have access to larger fault test domains and verifiable design patterns. A tool-chain to transform the SysML model to jpf-Statechart compliant Java code and then verify the generated code via model checking was established. Conclusions and lessons learned from this work are also described, as well as potential avenues for further research and development.

  1. Hierarchical Calibration and Validation Framework of Bench-scale Computational Fluid Dynamics Simulations for Solvent-based Carbon Capture: Part 2. Chemical Absorption across a Wetted Wall Column

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao; Xu, Zhijie; Lai, Canhai; Whyatt, Greg A.; Marcy, Peter; Sun, Xin

    2018-02-01

    The first part of this paper (Part 1) presents a numerical model for non-reactive physical mass transfer across a wetted wall column (WWC). In Part 2, we improved the existing computational fluid dynamics (CFD) model to simulate chemical absorption occurring in a WWC as a bench-scale study of solvent-based carbon dioxide (CO2) capture. To generate data for WWC model validation, CO2 mass transfer across a monoethanolamine (MEA) solvent was first measured on a WWC experimental apparatus. The numerical model developed in this work has the ability to account for both chemical absorption and desorption of CO2 in MEA. In addition, the overall mass transfer coefficient predicted using traditional/empirical correlations is conducted and compared with CFD prediction results for both steady and wavy falling films. A Bayesian statistical calibration algorithm is adopted to calibrate the reaction rate constants in chemical absorption/desorption of CO2 across a falling film of MEA. The posterior distributions of the two transport properties, i.e., Henry’s constant and gas diffusivity in the non-reacting nitrous oxide (N2O)/MEA system obtained from Part 1 of this study, serves as priors for the calibration of CO2 reaction rate constants after using the N2O/CO2 analogy method. The calibrated model can be used to predict the CO2 mass transfer in a WWC for a wider range of operating conditions.

  2. Experimental Investigation of Thrust Fault Rupture Mechanics

    Science.gov (United States)

    Gabuchian, Vahe

    Thrust fault earthquakes are investigated in the laboratory by generating dynamic shear ruptures along pre-existing frictional faults in rectangular plates. A considerable body of evidence suggests that dip-slip earthquakes exhibit enhanced ground motions in the acute hanging wall wedge as an outcome of broken symmetry between hanging and foot wall plates with respect to the earth surface. To understand the physical behavior of thrust fault earthquakes, particularly ground motions near the earth surface, ruptures are nucleated in analog laboratory experiments and guided up-dip towards the simulated earth surface. The transient slip event and emitted radiation mimic a natural thrust earthquake. High-speed photography and laser velocimeters capture the rupture evolution, outputting a full-field view of photo-elastic fringe contours proportional to maximum shearing stresses as well as continuous ground motion velocity records at discrete points on the specimen. Earth surface-normal measurements validate selective enhancement of hanging wall ground motions for both sub-Rayleigh and super-shear rupture speeds. The earth surface breaks upon rupture tip arrival to the fault trace, generating prominent Rayleigh surface waves. A rupture wave is sensed in the hanging wall but is, however, absent from the foot wall plate: a direct consequence of proximity from fault to seismometer. Signatures in earth surface-normal records attenuate with distance from the fault trace. Super-shear earthquakes feature greater amplitudes of ground shaking profiles, as expected from the increased tectonic pressures required to induce super-shear transition. Paired stations measure fault parallel and fault normal ground motions at various depths, which yield slip and opening rates through direct subtraction of like components. Peak fault slip and opening rates associated with the rupture tip increase with proximity to the fault trace, a result of selective ground motion amplification in the

  3. Current Sensor Fault Reconstruction for PMSM Drives

    Directory of Open Access Journals (Sweden)

    Gang Huang

    2016-01-01

    Full Text Available This paper deals with a current sensor fault reconstruction algorithm for the torque closed-loop drive system of an interior PMSM. First, sensor faults are equated to actuator ones by a new introduced state variable. Then, in αβ coordinates, based on the motor model with active flux linkage, a current observer is constructed with a specific sliding mode equivalent control methodology to eliminate the effects of unknown disturbances, and the phase current sensor faults are reconstructed by means of an adaptive method. Finally, an αβ axis current fault processing module is designed based on the reconstructed value. The feasibility and effectiveness of the proposed method are verified by simulation and experimental tests on the RT-LAB platform.

  4. Current Sensor Fault Reconstruction for PMSM Drives.

    Science.gov (United States)

    Huang, Gang; Luo, Yi-Ping; Zhang, Chang-Fan; He, Jing; Huang, Yi-Shan

    2016-01-30

    This paper deals with a current sensor fault reconstruction algorithm for the torque closed-loop drive system of an interior PMSM. First, sensor faults are equated to actuator ones by a new introduced state variable. Then, in αβ coordinates, based on the motor model with active flux linkage, a current observer is constructed with a specific sliding mode equivalent control methodology to eliminate the effects of unknown disturbances, and the phase current sensor faults are reconstructed by means of an adaptive method. Finally, an αβ axis current fault processing module is designed based on the reconstructed value. The feasibility and effectiveness of the proposed method are verified by simulation and experimental tests on the RT-LAB platform.

  5. Reset Tree-Based Optical Fault Detection

    Directory of Open Access Journals (Sweden)

    Howon Kim

    2013-05-01

    Full Text Available In this paper, we present a new reset tree-based scheme to protect cryptographic hardware against optical fault injection attacks. As one of the most powerful invasive attacks on cryptographic hardware, optical fault attacks cause semiconductors to misbehave by injecting high-energy light into a decapped integrated circuit. The contaminated result from the affected chip is then used to reveal secret information, such as a key, from the cryptographic hardware. Since the advent of such attacks, various countermeasures have been proposed. Although most of these countermeasures are strong, there is still the possibility of attack. In this paper, we present a novel optical fault detection scheme that utilizes the buffers on a circuit’s reset signal tree as a fault detection sensor. To evaluate our proposal, we model radiation-induced currents into circuit components and perform a SPICE simulation. The proposed scheme is expected to be used as a supplemental security tool.

  6. Study on Permanent Magnet Synchronous Demagnetization Fault Performance

    Directory of Open Access Journals (Sweden)

    Zhiyan ZHANG

    2014-06-01

    Full Text Available The relationship of permanent magnetic material characteristic parameters was analyzed, and a simulation method of a permanent magnet synchronous motor (PMSM rotor demagnetization fault was put forward. Based on this, a simulation model of the PMSM under partial demagnetization and uniform demagnetization fault were established, and different degrees demagnetization fault was simulated. Relationship between output torque and initial phase was gained by applying different initial angle current excitation source in order to establish the reasonable simulation model. Simulation results show that magnetic field strength and output torque get smaller and smaller with increasingly fault severity. The magnetic field asymmetry of PMSM partial demagnetization is more and more serious with increasingly fault severity, and the magnetic field scale of PMSM uniform demagnetization decreased significantly. The harmonic analyses using Fast Fourier Transform (FFT show that the fault diagnosis method based on the harmonic wave analysis is only suitable for partial demagnetization fault of the PMSM, and not apply to uniform demagnetization fault of the PMSM.

  7. Open Fault Detection and Tolerant Control for a Five Phase Inverter Driving System

    Directory of Open Access Journals (Sweden)

    Seung-Koo Baek

    2016-05-01

    Full Text Available This paper proposes a fault detection and the improved fault-tolerant control for an open fault in the five-phase inverter driving system. The five-phase induction machine has a merit of fault-tolerant control due to its increased number of phases. This paper analyzes an open fault pattern of one switch and proposes an effective fault detection method based upon this analysis. The proposed fault detection method using the analyzed patterns is applied in the power inverter. In addition, when the open fault occurs in the one switch of the induction machine driving system, the proposed fault-tolerant control method is used to operate the induction machine using the remaining healthy phases, after performing the fault detection method. Simulation and experiment results are provided to validate the proposed technique.

  8. A Novel Protection Scheme against Fault Resistance for AC Microgrid

    Directory of Open Access Journals (Sweden)

    Xinrui Liu

    2017-01-01

    Full Text Available The faults characteristics of the lines in AC microgrid are weakened due to the fault resistance, which may refuse protection action. To solve the problems caused by different types of the faults through fault resistance (FTFR, the faults where the fault point resistance is greater than zero in AC microgrid, a novel FTFR protection scheme based on the active power of 0-frame component or d-frame component consumed by fault resistance is proposed in this paper as the backup protection of FTFR. This proposed protection scheme utilizes the active power of 0-frame component or d-frame component consumed by fault resistance to identify internal FTFR and external faults. It performs well in grid-connected mode and islanded mode by adopting self-adaptive threshold and is not affected by the factors such as the fault position and the fault resistance value. The theoretical analysis and various simulations show that this protection scheme can identify and isolate different types of internal FTFR in AC microgrid with high reliability and high sensitivity.

  9. Study on Application of New Approach of Fault Current Limiters in Fault Ride through Capability Improvement of DFIG Based Wind Turbine

    DEFF Research Database (Denmark)

    Naderi, Seyed Behzad; Davari, Pooya; Zhou, Dao

    2018-01-01

    . The proposed FCL can insert a controllable resistance in fault current pass to not only restrict fault current level and compensate voltage sag in the stator but also consume pre-fault output active power of the DFIG regarding wind speed variation. Simulation results and analytics are presented to prove...

  10. Realization of User Level Fault Tolerant Policy Management through a Holistic Approach for Fault Correlation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byung H [ORNL; Naughton, III, Thomas J [ORNL; Agarwal, Pratul K [ORNL; Bernholdt, David E [ORNL; Geist, Al [ORNL; Tippens, Jennifer L [ORNL

    2011-01-01

    Many modern scientific applications, which are designed to utilize high performance parallel com- puters, occupy hundreds of thousands of computational cores running for days or even weeks. Since many scien- tists compete for resources, most supercomputing centers practice strict scheduling policies and perform meticulous accounting on their usage. Thus computing resources and time assigned to a user is considered invaluable. However, most applications are not well prepared for un- foreseeable faults, still relying on primitive fault tolerance techniques. Considering that ever-plunging mean time to interrupt (MTTI) is making scientific applications more vulnerable to faults, it is increasingly important to provide users not only an improved fault tolerant environment, but also a framework to support their own fault tolerance policies so that their allocation times can be best utilized. This paper addresses a user level fault tolerance policy management based on a holistic approach to digest and correlate fault related information. It introduces simple semantics with which users express their policies on faults, and illustrates how event correlation techniques can be applied to manage and determine the most preferable user policies. The paper also discusses an implementation of the framework using open source software, and demonstrates, as an example, how a molecular dynamics simulation application running on the institutional cluster at Oak Ridge National Laboratory benefits from it.

  11. Fault Predictive Control of Compact Disk Players

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Wickerhauser, Mladen Victor

    2006-01-01

    Optical disc players such as CD-players have problems playing certain discs with surface faults like scratches and fingerprints. The problem is to be found in the servo controller which positions the optical pick-up, such that the laser beam is focused on the information track. A scheme handling ...... of the feature based control scheme, such that a prediction step is included. The proposed scheme is compared with the feature based control scheme, in the perspective of handling surface faults, by simulations. These simulations show the improvements given by the proposed algorithm....

  12. Parallel Temporal Dynamics in Hierarchical Cognitive Control

    Science.gov (United States)

    Ranti, Carolyn; Chatham, Christopher H.; Badre, David

    2015-01-01

    Cognitive control allows us to follow abstract rules in order to choose appropriate responses given our desired outcomes. Cognitive control is often conceptualized as a hierarchical decision process, wherein decisions made at higher, more abstract levels of control asymmetrically influence lower-level decisions. These influences could evolve sequentially across multiple levels of a hierarchical decision, consistent with much prior evidence for central bottlenecks and seriality in decision-making processes. However, here, we show that multiple levels of hierarchical cognitive control are processed primarily in parallel. Human participants selected responses to stimuli using a complex, multiply contingent (third order) rule structure. A response deadline procedure allowed assessment of the accuracy and timing of decisions made at each level of the hierarchy. In contrast to a serial decision process, error rates across levels of the decision mostly declined simultaneously and at identical rates, with only a slight tendency to complete the highest level decision first. Simulations with a biologically plausible neural network model demonstrate how such parallel processing could emerge from a previously developed hierarchically nested frontostriatal architecture. Our results support a parallel processing model of cognitive control, in which uncertainty on multiple levels of a decision is reduced simultaneously. PMID:26051820

  13. Representational Learning for Fault Diagnosis of Wind Turbine Equipment: A Multi-Layered Extreme Learning Machines Approach

    Directory of Open Access Journals (Sweden)

    Zhi-Xin Yang

    2016-05-01

    Full Text Available Reliable and quick response fault diagnosis is crucial for the wind turbine generator system (WTGS to avoid unplanned interruption and to reduce the maintenance cost. However, the conditional data generated from WTGS operating in a tough environment is always dynamical and high-dimensional. To address these challenges, we propose a new fault diagnosis scheme which is composed of multiple extreme learning machines (ELM in a hierarchical structure, where a forwarding list of ELM layers is concatenated and each of them is processed independently for its corresponding role. The framework enables both representational feature learning and fault classification. The multi-layered ELM based representational learning covers functions including data preprocessing, feature extraction and dimension reduction. An ELM based autoencoder is trained to generate a hidden layer output weight matrix, which is then used to transform the input dataset into a new feature representation. Compared with the traditional feature extraction methods which may empirically wipe off some “insignificant’ feature information that in fact conveys certain undiscovered important knowledge, the introduced representational learning method could overcome the loss of information content. The computed output weight matrix projects the high dimensional input vector into a compressed and orthogonally weighted distribution. The last single layer of ELM is applied for fault classification. Unlike the greedy layer wise learning method adopted in back propagation based deep learning (DL, the proposed framework does not need iterative fine-tuning of parameters. To evaluate its experimental performance, comparison tests are carried out on a wind turbine generator simulator. The results show that the proposed diagnostic framework achieves the best performance among the compared approaches in terms of accuracy and efficiency in multiple faults detection of wind turbines.

  14. How Faults Shape the Earth.

    Science.gov (United States)

    Bykerk-Kauffman, Ann

    1992-01-01

    Presents fault activity with an emphasis on earthquakes and changes in continent shapes. Identifies three types of fault movement: normal, reverse, and strike faults. Discusses the seismic gap theory, plate tectonics, and the principle of superposition. Vignettes portray fault movement, and the locations of the San Andreas fault and epicenters of…

  15. Fault tolerant control with torque limitation based on fault mode for ten-phase permanent magnet synchronous motor

    Directory of Open Access Journals (Sweden)

    Guo Hong

    2015-10-01

    Full Text Available This paper proposes a novel fault tolerant control with torque limitation based on the fault mode for the ten-phase permanent magnet synchronous motor (PMSM under various open-circuit and short-circuit fault conditions, which includes the optimal torque control and the torque limitation control based on the fault mode. The optimal torque control is adopted to guarantee the ripple-free electromagnetic torque operation for the ten-phase motor system under the post-fault condition. Furthermore, we systematically analyze the load capacity of the ten-phase motor system under different fault modes. And a torque limitation control approach based on the fault mode is proposed, which was not available earlier. This approach is able to ensure the safety operation of the faulted motor system in long operating time without causing the overheat fault. The simulation result confirms that the proposed fault tolerant control for the ten-phase motor system is able to guarantee the ripple-free electromagnetic torque and the safety operation in long operating time under the normal and fault conditions.

  16. Graphical User Interface Aided Online Fault Diagnosis of Electric Motor - DC motor case study

    Directory of Open Access Journals (Sweden)

    POSTALCIOGLU OZGEN, S.

    2009-10-01

    Full Text Available This paper contains graphical user interface (GUI aided online fault diagnosis for DC motor. The aim of the research is to prevent system faults. Online fault diagnosis has been studied. Design of fault diagnosis has two main levels: Level 1 comprises a traditional control loop; Level 2 contains knowledge based fault diagnosis. Fault diagnosis technique contains feature extraction module, feature cluster module and fault decision module. Wavelet analysis has been used for the feature extraction module. For the feature cluster module, fuzzy cluster has been applied. Faults effects are examined on the system using statistical analysis. In this study Fault Diagnosis technique obtains fault detection, identification and halting the system. In the meantime graphical user interface (GUI is opened when fault is detected. GUI shows the measurement value, fault time and fault type. This property gives some information about the system to the personnel. As seen from the simulation results, faults can be detected and identified as soon as fault appears. In summary, if the system has a fault diagnosis structure, system dangerous situations can be avoided.

  17. Context updates are hierarchical

    Directory of Open Access Journals (Sweden)

    Anton Karl Ingason

    2016-10-01

    Full Text Available This squib studies the order in which elements are added to the shared context of interlocutors in a conversation. It focuses on context updates within one hierarchical structure and argues that structurally higher elements are entered into the context before lower elements, even if the structurally higher elements are pronounced after the lower elements. The crucial data are drawn from a comparison of relative clauses in two head-initial languages, English and Icelandic, and two head-final languages, Korean and Japanese. The findings have consequences for any theory of a dynamic semantics.

  18. Relationship between displacement and gravity change of Uemachi faults and surrounding faults of Osaka basin, Southwest Japan

    Science.gov (United States)

    Inoue, N.; Kitada, N.; Kusumoto, S.; Itoh, Y.; Takemura, K.

    2011-12-01

    The Osaka basin surrounded by the Rokko and Ikoma Ranges is one of the typical Quaternary sedimentary basins in Japan. The Osaka basin has been filled by the Pleistocene Osaka group and the later sediments. Several large cities and metropolitan areas, such as Osaka and Kobe are located in the Osaka basin. The basin is surrounded by E-W trending strike slip faults and N-S trending reverse faults. The N-S trending 42-km-long Uemachi faults traverse in the central part of the Osaka city. The Uemachi faults have been investigated for countermeasures against earthquake disaster. It is important to reveal the detailed fault parameters, such as length, dip and recurrence interval, so on for strong ground motion simulation and disaster prevention. For strong ground motion simulation, the fault model of the Uemachi faults consist of the two parts, the north and south parts, because of the no basement displacement in the central part of the faults. The Ministry of Education, Culture, Sports, Science and Technology started the project to survey of the Uemachi faults. The Disaster Prevention Institute of Kyoto University is carried out various surveys from 2009 to 2012 for 3 years. The result of the last year revealed the higher fault activity of the branch fault than main faults in the central part (see poster of "Subsurface Flexure of Uemachi Fault, Japan" by Kitada et al., in this meeting). Kusumoto et al. (2001) reported that surrounding faults enable to form the similar basement relief without the Uemachi faults model based on a dislocation model. We performed various parameter studies for dislocation model and gravity changes based on simplified faults model, which were designed based on the distribution of the real faults. The model was consisted 7 faults including the Uemachi faults. The dislocation and gravity change were calculated based on the Okada et al. (1985) and Okubo et al. (1993) respectively. The results show the similar basement displacement pattern to the

  19. Detecting Hierarchical Structure in Networks

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard

    2012-01-01

    a generative Bayesian model that is able to infer whether hierarchies are present or not from a hypothesis space encompassing all types of hierarchical tree structures. For efficient inference we propose a collapsed Gibbs sampling procedure that jointly infers a partition and its hierarchical structure......Many real-world networks exhibit hierarchical organization. Previous models of hierarchies within relational data has focused on binary trees; however, for many networks it is unknown whether there is hierarchical structure, and if there is, a binary tree might not account well for it. We propose....... On synthetic and real data we demonstrate that our model can detect hierarchical structure leading to better link-prediction than competing models. Our model can be used to detect if a network exhibits hierarchical structure, thereby leading to a better comprehension and statistical account the network....

  20. Fault Location in Power Electrical Traction Line System

    Directory of Open Access Journals (Sweden)

    Yimin Zhou

    2012-11-01

    Full Text Available In this paper, methods of fault location are discussed in electrical traction single-end direct power supply network systems. Based on the distributed parameter model of the system, the position of the short-circuit fault can be located with the aid of the current and voltage value at the measurement end of the electrical traction line. Furthermore, the influence of the transient resistance, the position of the locomotive, locomotive load for fault location are also discussed. MATLAB simulation tool is used for the simulation experiments. Simulation results are proved the effectiveness of the proposed algorithms.

  1. Nested and Hierarchical Archimax copulas

    KAUST Repository

    Hofert, Marius

    2017-07-03

    The class of Archimax copulas is generalized to nested and hierarchical Archimax copulas in several ways. First, nested extreme-value copulas or nested stable tail dependence functions are introduced to construct nested Archimax copulas based on a single frailty variable. Second, a hierarchical construction of d-norm generators is presented to construct hierarchical stable tail dependence functions and thus hierarchical extreme-value copulas. Moreover, one can, by itself or additionally, introduce nested frailties to extend Archimax copulas to nested Archimax copulas in a similar way as nested Archimedean copulas extend Archimedean copulas. Further results include a general formula for the density of Archimax copulas.

  2. Uncovering dynamic fault trees

    NARCIS (Netherlands)

    Junges, Sebastian; Guck, Dennis; Katoen, Joost P.; Stoelinga, Mariëlle Ida Antoinette

    Fault tree analysis is a widespread industry standard for assessing system reliability. Standard (static) fault trees model the failure behaviour of systems in dependence of their component failures. To overcome their limited expressive power, common dependability patterns, such as spare management,

  3. Generic hierarchical engine for mask data preparation

    Science.gov (United States)

    Kalus, Christian K.; Roessl, Wolfgang; Schnitker, Uwe; Simecek, Michal

    2002-07-01

    Electronic layouts are usually flattened on their path from the hierarchical source downstream to the wafer. Mask data preparation has certainly been identified as a severe bottleneck since long. Data volumes are not only doubling every year along the ITRS roadmap. With the advent of optical proximity correction and phase-shifting masks data volumes are escalating up to non-manageable heights. Hierarchical treatment is one of the most powerful means to keep memory and CPU consumption in reasonable ranges. Only recently, however, has this technique acquired more public attention. Mask data preparation is the most critical area calling for a sound infrastructure to reduce the handling problem. Gaining more and more attention though, are other applications such as large area simulation and manufacturing rule checking (MRC). They all would profit from a generic engine capable to efficiently treat hierarchical data. In this paper we will present a generic engine for hierarchical treatment which solves the major problem, steady transitions along cell borders. Several alternatives exist how to walk through the hierarchy tree. They have, to date, not been thoroughly investigated. One is a bottom-up attempt to treat cells starting with the most elementary cells. The other one is a top-down approach which lends itself to creating a new hierarchy tree. In addition, since the variety, degree of hierarchy and quality of layouts extends over a wide range a generic engine has to take intelligent decisions when exploding the hierarchy tree. Several applications will be shown, in particular how far the limits can be pushed with the current hierarchical engine.

  4. The evolution of faults formed by shearing across joint zones in sandstone

    Science.gov (United States)

    Myers, Rodrick; Aydin, Atilla

    2004-05-01

    The evolution of strike-slip and normal faults formed by slip along joint zones is documented by detailed field studies in the Jurassic Aztec Sandstone in the Valley of Fire State Park, Nevada, USA. Zones of closely spaced planar sub-parallel joints arranged en échelon are sheared, forming faults. Fracturing occurs as a result of shearing, forming new joints. Later shearing along these joints leads to successively formed small faults and newer joints. This process is repeated through many generations of fracturing with increasing fault slip producing a hierarchical array of structures. Strain localization produced by shearing of joint zones at irregularities in joint traces, fracture intersections, and in the span between adjacent sheared joints results in progressive fragmentation of the weakened sandstone, which leads to the formation of gouge along the fault zone. The length and continuity of the gouge and associated slip surfaces is related to the slip magnitude and fault geometry with slip ranging from several millimeters to about 150 m. Distributed damage in a zone surrounding the gouge core is related to the original joint zone configuration (step sense, individual sheared joint overlaps and separation), shear sense, and slip magnitude. Our evolutionary model of fault development helps to explain some outstanding issues concerning complexities in faulting such as, the variability in development of fault rock and fault related fractures, and the failure processes in faults.

  5. Fault Isolation and quality assessment for shipboard monitoring

    DEFF Research Database (Denmark)

    Lajic, Zoran; Nielsen, Ulrik Dam; Blanke, Mogens

    2010-01-01

    system and to improve multi-sensor data fusion for the particular system. Fault isolation is an important part of the fault tolerant design for in-service monitoring and decision support systems for ships. In the paper, a virtual example of fault isolation will be presented. Several possible faults...... will be simulated and isolated using residuals and the generalized likelihood ratio (GLR) algorithm. It will be demonstrated that the approach can be used to increase accuracy of sea state estimations employing sensor fusion quality test....

  6. Fault isolation in parallel coupled wind turbine converters

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Thøgersen, Paul Bach; Stoustrup, Jakob

    2010-01-01

    Parallel converters in wind turbine give a number advantages, such as fault tolerance due to the redundant converters. However, it might be difficult to isolate gain faults in one of the converters if only a combined power measurement is available. In this paper a scheme using orthogonal power...... references to the converters is proposed. Simulations on a wind turbine with 5 parallel converters show a clear potential of this scheme for isolation of this gain fault to the correct converter in which the fault occurs....

  7. Fault Analysis for Protection Purposes in Maritime Applications

    DEFF Research Database (Denmark)

    Ciontea, Catalin-Iosif; Bak, Claus Leth; Blaabjerg, Frede

    2016-01-01

    The method of symmetrical components simplifies analysis of a three-phase network and provides information regarding the existance of a fault in the system. This concept is applied to a radial power system in the maritime sector. A fault analysis is performed for the main types of faults, applied...... in different locations of the network. The fault current is measured using the curent transformers that are already present in the system as part of a time-inverse overcurrent protection. Simulation results show that the symmetrical components of the currents seen by these current transformers can be used...

  8. Faults in the Collection Grid of Offshore Wind Farms

    DEFF Research Database (Denmark)

    Lunow, Morten Erlandsson; Holbøll, Joachim; Henriksen, Mogens

    2008-01-01

    This paper deals with transient conditions in the collection grid of offshore wind farms under different faults. A model of a standard wind farm was established in two versions, with a floating and a grounded collection grid respectively. Line to ground faults and three-phase to ground faults were...... applied at critical points at worst-case phase angle and the results compared. The simulations show that it is better with a grounded collection grid, since lack of a ground reference will prevent the system from recovering after a line to ground fault....

  9. Fault Tolerant Control Systems

    DEFF Research Database (Denmark)

    Bøgh, S.A.

    failures. It is often feasible to increase availability for these control loops by designing the control system to perform on-line detection and reconfiguration in case of faults before the safety system makes a close-down of the process. A general development methodology is given in the thesis......This thesis considered the development of fault tolerant control systems. The focus was on the category of automated processes that do not necessarily comprise a high number of identical sensors and actuators to maintain safe operation, but still have a potential for improving immunity to component...... that carried the control system designer through the steps necessary to consider fault handling in an early design phase. It was shown how an existing control loop with interface to the plant wide control system could be extended with three additional modules to obtain fault tolerance: Fault detection...

  10. Solar system fault detection

    Science.gov (United States)

    Farrington, R.B.; Pruett, J.C. Jr.

    1984-05-14

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  11. Basement Fault Reactivation by Fluid Injection into Sedimentary Reservoirs

    Science.gov (United States)

    Peter, Eichhubl; Fan, Zhiqiang; Zhu, Cheng

    2017-04-01

    Many suspected injection-induced earthquakes occur in crystalline basement rather than in the overlying sedimentary injection reservoir. To address why earthquakes nucleate in the basement rather than the injection layer we investigate the relationship between pore pressure diffusion, rock matrix deformation, and induced fault reactivation through 3D fully coupled poroelastic finite element models. These models simulate the temporal and spatial perturbation of pore pressure and solid stresses within a basement fault that extends into overlying sedimentary layers and that is conductive for flow along the fault but a barrier for flow across. We compare the effects of direct pore pressure communication and indirect poroelastic stress transfer from the injection reservoir to the fault on increasing the Coulomb failure stress that could reactivate the basement fault for normal, reverse, and strike-slip faulting stress regimes. Our numerical results demonstrate that volumetric expansion of the reservoir causes a bending of the fault near the injector and induces shear tractions along the downdip direction of the fault in the basement. These induced shear tractions act to increase the Coulomb failure stress for a normal faulting stress regime, and decrease the Coulomb failure stress for a reverse faulting regime. For a strike-slip faulting stress regime, the induced shear tractions increase the Coulomb failure stress both in the reservoir and basement. The induced normal traction on the fault reduces the Coulomb failure stress in all three tectonic regimes, but is larger in the reservoir than in the basement due to the more pronounced poroelastic effect in the reservoir. As a result, strike-slip stress regimes favor fault reactivation in the basement. Whereas the magnitude of the direct pore pressure increase exceeds the magnitude of induced poroelastic stress change, the poroelastic stress change increases the Coulomb failure stress in the basement fault for the normal

  12. Fuzzy classifier for fault diagnosis in analog electronic circuits.

    Science.gov (United States)

    Kumar, Ashwani; Singh, A P

    2013-11-01

    Many studies have presented different approaches for the fault diagnosis with fault models having ± 50% variation in the component values in analog electronic circuits. There is still a need of the approaches which provide the fault diagnosis with the variation in the component value below ± 50%. A new single and multiple fault diagnosis technique for soft faults in analog electronic circuit using fuzzy classifier has been proposed in this paper. This technique uses the simulation before test (SBT) approach by analyzing the frequency response of the analog circuit under faulty and fault free conditions. Three signature parameters peak gain, frequency and phase associated with peak gain, of the frequency response of the analog circuit are observed and extracted such that they give unique values for faulty and fault free configuration of the circuit. The single and double fault models with the component variations from ± 10% to ± 50% are considered. The fuzzy classifier along the classification of faults gives the estimated component value under faulty and faultfree conditions. The proposed method is validated using simulated data and the real time data for a benchmark analog circuit. The comparative analysis is also presented for both the validations. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Fault diagnosis for the Space Shuttle main engine

    Science.gov (United States)

    Duyar, Ahmet; Merrill, Walter

    1992-01-01

    A conceptual design of a model-based fault detection and diagnosis system is developed for the Space Shuttle main engine. The design approach consists of process modeling, residual generation, and fault detection and diagnosis. The engine is modeled using a discrete time, quasilinear state-space representation. Model parameters are determined by identification. Residuals generated from the model are used by a neural network to detect and diagnose engine component faults. Fault diagnosis is accomplished by training the neural network to recognize the pattern of the respective fault signatures. Preliminary results for a failed valve, generated using a full, nonlinear simulation of the engine, are presented. These results indicate that the developed approach can be used for fault detection and diagnosis. The results also show that the developed model is an accurate and reliable predictor of the highly nonlinear and very complex engine.

  14. Bond graph model-based fault diagnosis of hybrid systems

    CERN Document Server

    Borutzky, Wolfgang

    2015-01-01

    This book presents a bond graph model-based approach to fault diagnosis in mechatronic systems appropriately represented by a hybrid model. The book begins by giving a survey of the fundamentals of fault diagnosis and failure prognosis, then recalls state-of-art developments referring to latest publications, and goes on to discuss various bond graph representations of hybrid system models, equations formulation for switched systems, and simulation of their dynamic behavior. The structured text: • focuses on bond graph model-based fault detection and isolation in hybrid systems; • addresses isolation of multiple parametric faults in hybrid systems; • considers system mode identification; • provides a number of elaborated case studies that consider fault scenarios for switched power electronic systems commonly used in a variety of applications; and • indicates that bond graph modelling can also be used for failure prognosis. In order to facilitate the understanding of fault diagnosis and the presented...

  15. A weighted dissimilarity index to isolate faults during alarm floods

    CERN Document Server

    Charbonnier, S; Gayet, P

    2015-01-01

    A fault-isolation method based on pattern matching using the alarm lists raised by the SCADA system during an alarm flood is proposed. A training set composed of faults is used to create fault templates. Alarm vectors generated by unknown faults are classified by comparing them with the fault templates using an original weighted dissimilarity index that increases the influence of the few alarms relevant to diagnose the fault. Different decision strategies are proposed to support the operator in his decision making. The performances are evaluated on two sets of data: an artificial set and a set obtained from a highly realistic simulator of the CERN Large Hadron Collider process connected to the real CERN SCADA system.

  16. A Novel Fault Identification Using WAMS/PMU

    Directory of Open Access Journals (Sweden)

    ZHANG, Y.

    2012-05-01

    Full Text Available The important premise of the novel adaptive backup protection based on wide area information is to identify the fault in a real-time and on-line way. In this paper, the principal components analysis theory is introduced into the field of fault detection to locate precisely the fault by mean of the voltage and current phasor data from the PMUs. Massive simulation experiments have fully proven that the fault identification can be performed successfully by principal component analysis and calculation. Our researches indicate that the variable with the biggest coefficient in principal component usually corresponds to the fault. Under the influence of noise, the results are still accurate and reliable. So, the principal components fault identification has strong anti-interference ability and great redundancy.

  17. Model-based fault diagnosis in PEM fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Escobet, T.; de Lira, S.; Puig, V.; Quevedo, J. [Automatic Control Department (ESAII), Universitat Politecnica de Catalunya (UPC), Rambla Sant Nebridi 10, 08222 Terrassa (Spain); Feroldi, D.; Riera, J.; Serra, M. [Institut de Robotica i Informatica Industrial (IRI), Consejo Superior de Investigaciones Cientificas (CSIC), Universitat Politecnica de Catalunya (UPC) Parc Tecnologic de Barcelona, Edifici U, Carrer Llorens i Artigas, 4-6, Planta 2, 08028 Barcelona (Spain)

    2009-07-01

    In this work, a model-based fault diagnosis methodology for PEM fuel cell systems is presented. The methodology is based on computing residuals, indicators that are obtained comparing measured inputs and outputs with analytical relationships, which are obtained by system modelling. The innovation of this methodology is based on the characterization of the relative residual fault sensitivity. To illustrate the results, a non-linear fuel cell simulator proposed in the literature is used, with modifications, to include a set of fault scenarios proposed in this work. Finally, it is presented the diagnosis results corresponding to these fault scenarios. It is remarkable that with this methodology it is possible to diagnose and isolate all the faults in the proposed set in contrast with other well known methodologies which use the binary signature matrix of analytical residuals and faults. (author)

  18. Fault-tolerant control of heavy-haul trains

    Science.gov (United States)

    Zhuan, Xiangtao; Xia, Xiaohua

    2010-06-01

    The fault-tolerant control (FTC) of heavy-haul trains is discussed on the basis of the speed regulation proposed in previous works. The fault modes of trains are assumed and the corresponding fault detection and isolation (FDI) are studied. The FDI of sensor faults is based on a geometric approach for residual generators. The FDI of a braking system is based on the observation of the steady-state speed. From the difference of the steady-state speeds between the fault system and the faultless system, one can get fault information. Simulation tests were conducted on the suitability of the FDIs and the redesigned speed regulators. It is shown that the proposed FTC does not explicitly worsen the performance of the speed regulator in the case of a faultless system, while it obviously improves the performance of the speed regulator in the case of a faulty system.

  19. Cross-fault pressure depletion, Zechstein carbonate reservoir, Weser-Ems area, Northern German Gas Basin

    Energy Technology Data Exchange (ETDEWEB)

    Corona, F.V.; Brauckmann, F.; Beckmann, H.; Gobi, A.; Grassmann, S.; Neble, J.; Roettgen, K. [ExxonMobil Production Deutschland GmbH (EMPG), Hannover (Germany)

    2013-08-01

    A cross-fault pressure depletion study in Upper Permian Zechstein Ca2 carbonate reservoir was undertaken in the Weser-Ems area of the Northern German Gas Basin. The primary objectives are to develop a practical workflow to define cross-fault pressures scenarios for Zechstein Ca2 reservoir drillwells, to determine the key factors of cross-fault pressure behavior in this platform carbonate reservoir, and to translate the observed cross-fault pressure depletion to fault transmissibility for reservoir simulation models. Analysis of Zechstein Ca2 cross-fault pressures indicates that most Zechstein-cutting faults appear to act as fluid-flow baffles with some local occurrences of fault seal. Moreover, there appears to be distinct cross-fault baffling or pressure depletion trends that may be related to the extent of the separating fault or fault system, degree of reservoir flow-path tortuosity, and quality of reservoir juxtaposition. Based on the above observations, a three-part workflow was developed consisting of (1) careful interpretation and mapping of faults and fault networks, (2) analysis of reservoir juxtaposition and reservoir juxtaposition quality, and (3) application of the observed cross-fault pressure depletion trends. This approach is field-analog based, is practical, and is being used currently to provide reliable and supportable pressure prediction scenarios for subsequent Zechstein fault-bounded drill-well opportunities.

  20. Trees and Hierarchical Structures

    CERN Document Server

    Haeseler, Arndt

    1990-01-01

    The "raison d'etre" of hierarchical dustering theory stems from one basic phe­ nomenon: This is the notorious non-transitivity of similarity relations. In spite of the fact that very often two objects may be quite similar to a third without being that similar to each other, one still wants to dassify objects according to their similarity. This should be achieved by grouping them into a hierarchy of non-overlapping dusters such that any two objects in ~ne duster appear to be more related to each other than they are to objects outside this duster. In everyday life, as well as in essentially every field of scientific investigation, there is an urge to reduce complexity by recognizing and establishing reasonable das­ sification schemes. Unfortunately, this is counterbalanced by the experience of seemingly unavoidable deadlocks caused by the existence of sequences of objects, each comparatively similar to the next, but the last rather different from the first.

  1. Engine gearbox fault diagnosis using empirical mode ...

    Indian Academy of Sciences (India)

    This paper presents engine gearbox fault diagnosis based on empirical mode decomposition (EMD) and Naı¨ve Bayes algorithm. In this study, vibration signals from a gear box are acquired with healthy and different simulated faulty conditions of gear and bearing. The vibration signals are decomposed into a finite number ...

  2. Analogue modelling of different angle thrust-wrench fault interference in a brittle medium

    NARCIS (Netherlands)

    Rosas, F.M.; Duarte, João C.; Schellart, W. P.; Tomás, R.; Grigorova, V.; Terrinha, P.

    2015-01-01

    Analogue modelling experiments of thrust-wrench fault interference in a brittle medium are presented and discussed. Simultaneous reactivation of confining strike-slip and thrust faults bounding a (corner) zone of interference defined by the angle between the two fault systems is simulated, instead

  3. Fault diagnosis of CMOS LSI with various leakage current state using abnormal IDDQ phenomenon

    Science.gov (United States)

    Sanada, Masaru; Fujioka, Hiromu

    1998-08-01

    Abnormal IDDQ is the signal to indicate the presence of physical damage in a circuit. By using this phenomenon, a CAD-based fault diagnosis technique has been developed for CMOS-LSI with various leakage current state. This method of progressively reducing the faulty block works by extracting inner logic state of each block, which composes hierarchical circuit and LSI circuit, from logic simulation and by deriving test vector numbers with abnormal IDDQ. Two kinds of complex leakage state are abnormal state of LSI with penetration current from VDD to GND in normal state and with multiple faults. At the former state, test vector numbers with true abnormal IDDQ are extracted by subtracting operation between normal and unusual current value, and the latter, by classification of multiple values. The fundamental diagnosis technique employs the comparative operation of each block to determine whether the same input logic state with abnormal IDDQ exists in the input logic state with normal IDDQ or not. The former block is regarded as normal block and the latter is as faulty block. This diagnosis method for LSI with various leakage current state detects easily the faulty blocks of each abnormal IDDQ state.

  4. Fault Management Metrics

    Science.gov (United States)

    Johnson, Stephen B.; Ghoshal, Sudipto; Haste, Deepak; Moore, Craig

    2017-01-01

    This paper describes the theory and considerations in the application of metrics to measure the effectiveness of fault management. Fault management refers here to the operational aspect of system health management, and as such is considered as a meta-control loop that operates to preserve or maximize the system's ability to achieve its goals in the face of current or prospective failure. As a suite of control loops, the metrics to estimate and measure the effectiveness of fault management are similar to those of classical control loops in being divided into two major classes: state estimation, and state control. State estimation metrics can be classified into lower-level subdivisions for detection coverage, detection effectiveness, fault isolation and fault identification (diagnostics), and failure prognosis. State control metrics can be classified into response determination effectiveness and response effectiveness. These metrics are applied to each and every fault management control loop in the system, for each failure to which they apply, and probabilistically summed to determine the effectiveness of these fault management control loops to preserve the relevant system goals that they are intended to protect.

  5. Fault-tolerant design

    CERN Document Server

    Dubrova, Elena

    2013-01-01

    This textbook serves as an introduction to fault-tolerance, intended for upper-division undergraduate students, graduate-level students and practicing engineers in need of an overview of the field.  Readers will develop skills in modeling and evaluating fault-tolerant architectures in terms of reliability, availability and safety.  They will gain a thorough understanding of fault tolerant computers, including both the theory of how to design and evaluate them and the practical knowledge of achieving fault-tolerance in electronic, communication and software systems.  Coverage includes fault-tolerance techniques through hardware, software, information and time redundancy.  The content is designed to be highly accessible, including numerous examples and exercises.  Solutions and powerpoint slides are available for instructors.   ·         Provides textbook coverage of the fundamental concepts of fault-tolerance; ·         Describes a variety of basic techniques for achieving fault-toleran...

  6. Systematic Fault Tolerant Control Based on Adaptive Thau Observer Estimation for Quadrotor Uavs

    Directory of Open Access Journals (Sweden)

    Cen Zhaohui

    2015-03-01

    Full Text Available A systematic fault tolerant control (FTC scheme based on fault estimation for a quadrotor actuator, which integrates normal control, active and passive FTC and fault parking is proposed in this paper. Firstly, an adaptive Thau observer (ATO is presented to estimate the quadrotor rotor fault magnitudes, and then faults with different magnitudes and time-varying natures are rated into corresponding fault severity levels based on the pre-defined fault-tolerant boundaries. Secondly, a systematic FTC strategy which can coordinate various FTC methods is designed to compensate for failures depending on the fault types and severity levels. Unlike former stand-alone passive FTC or active FTC, our proposed FTC scheme can compensate for faults in a way of condition-based maintenance (CBM, and especially consider the fatal failures that traditional FTC techniques cannot accommodate to avoid the crashing of UAVs. Finally, various simulations are carried out to show the performance and effectiveness of the proposed method.

  7. Research on the Sparse Representation for Gearbox Compound Fault Features Using Wavelet Bases

    Directory of Open Access Journals (Sweden)

    Chunyan Luo

    2015-01-01

    Full Text Available The research on gearbox fault diagnosis has been gaining increasing attention in recent years, especially on single fault diagnosis. In engineering practices, there is always more than one fault in the gearbox, which is demonstrated as compound fault. Hence, it is equally important for gearbox compound fault diagnosis. Both bearing and gear faults in the gearbox tend to result in different kinds of transient impulse responses in the captured signal and thus it is necessary to propose a potential approach for compound fault diagnosis. Sparse representation is one of the effective methods for feature extraction from strong background noise. Therefore, sparse representation under wavelet bases for compound fault features extraction is developed in this paper. With the proposed method, the different transient features of both bearing and gear can be separated and extracted. Both the simulated study and the practical application in the gearbox with compound fault verify the effectiveness of the proposed method.

  8. Fault tolerant control for uncertain systems with parametric faults

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2006-01-01

    A fault tolerant control (FTC) architecture based on active fault diagnosis (AFD) and the YJBK (Youla, Jarb, Bongiorno and Kucera)parameterization is applied in this paper. Based on the FTC architecture, fault tolerant control of uncertain systems with slowly varying parametric faults...

  9. Fault Analysis in Cryptography

    CERN Document Server

    Joye, Marc

    2012-01-01

    In the 1970s researchers noticed that radioactive particles produced by elements naturally present in packaging material could cause bits to flip in sensitive areas of electronic chips. Research into the effect of cosmic rays on semiconductors, an area of particular interest in the aerospace industry, led to methods of hardening electronic devices designed for harsh environments. Ultimately various mechanisms for fault creation and propagation were discovered, and in particular it was noted that many cryptographic algorithms succumb to so-called fault attacks. Preventing fault attacks without

  10. Nonlinear observer based fault detection and isolation for a momentum wheel

    DEFF Research Database (Denmark)

    Jensen, Hans-Christian Becker; Wisniewski, Rafal

    2001-01-01

    This article realizes nonlinear Fault Detection and Isolation for a momentum wheel. The Fault Detection and Isolation is based on a Failure Mode and Effect Analysis, which states which faults might occur and can be detected. The algorithms presented in this paper are based on a geometric approach...... toachieve nonlinear Fault Detection and Isolation. The proposed algorithms are tested in a simulation study and the pros and cons of the algorithm are discussed....

  11. Quaternary Fault Lines

    Data.gov (United States)

    Department of Homeland Security — This data set contains locations and information on faults and associated folds in the United States that are believed to be sources of M>6 earthquakes during the...

  12. Hierarchical multifunctional nanocomposites

    Science.gov (United States)

    Ghasemi-Nejhad, Mehrdad N.

    2014-03-01

    properties of the fibers can also be improved by the growth of nanotubes on the fibers. The combination of the two will produce super-performing materials, not currently available. Since the improvement of fiber starts with carbon nanotube grown on micron-size fibers (and matrix with a nanomaterial) to give the macro-composite, this process is a bottom-up "hierarchical" advanced manufacturing process, and since the resulting nanocomposites will have "multifunctionality" with improve properties in various functional areas such as chemical and fire resistance, damping, stiffness, strength, fracture toughness, EMI shielding, and electrical and thermal conductivity, the resulting nanocomposites are in fact "multifunctional hierarchical nanocomposites." In this paper, the current state of knowledge in processing, performance, and characterization of these materials are addressed.

  13. A cognitive fault diagnosis system for distributed sensor networks.

    Science.gov (United States)

    Alippi, Cesare; Ntalampiras, Stavros; Roveri, Manuel

    2013-08-01

    This paper introduces a novel cognitive fault diagnosis system (FDS) for distributed sensor networks that takes advantage of spatial and temporal relationships among sensors. The proposed FDS relies on a suitable functional graph representation of the network and a two-layer hierarchical architecture designed to promptly detect and isolate faults. The lower processing layer exploits a novel change detection test (CDT) based on hidden Markov models (HMMs) configured to detect variations in the relationships between couples of sensors. HMMs work in the parameter space of linear time-invariant dynamic systems, approximating, over time, the relationship between two sensors; changes in the approximating model are detected by inspecting the HMM likelihood. Information provided by the CDT layer is then passed to the cognitive one, which, by exploiting the graph representation of the network, aggregates information to discriminate among faults, changes in the environment, and false positives induced by the model bias of the HMMs.

  14. Towards a hierarchical optimization modeling framework for ...

    Science.gov (United States)

    Background:Bilevel optimization has been recognized as a 2-player Stackelberg game where players are represented as leaders and followers and each pursue their own set of objectives. Hierarchical optimization problems, which are a generalization of bilevel, are especially difficult because the optimization is nested, meaning that the objectives of one level depend on solutions to the other levels. We introduce a hierarchical optimization framework for spatially targeting multiobjective green infrastructure (GI) incentive policies under uncertainties related to policy budget, compliance, and GI effectiveness. We demonstrate the utility of the framework using a hypothetical urban watershed, where the levels are characterized by multiple levels of policy makers (e.g., local, regional, national) and policy followers (e.g., landowners, communities), and objectives include minimization of policy cost, implementation cost, and risk; reduction of combined sewer overflow (CSO) events; and improvement in environmental benefits such as reduced nutrient run-off and water availability. Conclusions: While computationally expensive, this hierarchical optimization framework explicitly simulates the interaction between multiple levels of policy makers (e.g., local, regional, national) and policy followers (e.g., landowners, communities) and is especially useful for constructing and evaluating environmental and ecological policy. Using the framework with a hypothetical urba

  15. Fault lubrication during earthquakes.

    Science.gov (United States)

    Di Toro, G; Han, R; Hirose, T; De Paola, N; Nielsen, S; Mizoguchi, K; Ferri, F; Cocco, M; Shimamoto, T

    2011-03-24

    The determination of rock friction at seismic slip rates (about 1 m s(-1)) is of paramount importance in earthquake mechanics, as fault friction controls the stress drop, the mechanical work and the frictional heat generated during slip. Given the difficulty in determining friction by seismological methods, elucidating constraints are derived from experimental studies. Here we review a large set of published and unpublished experiments (∼300) performed in rotary shear apparatus at slip rates of 0.1-2.6 m s(-1). The experiments indicate a significant decrease in friction (of up to one order of magnitude), which we term fault lubrication, both for cohesive (silicate-built, quartz-built and carbonate-built) rocks and non-cohesive rocks (clay-rich, anhydrite, gypsum and dolomite gouges) typical of crustal seismogenic sources. The available mechanical work and the associated temperature rise in the slipping zone trigger a number of physicochemical processes (gelification, decarbonation and dehydration reactions, melting and so on) whose products are responsible for fault lubrication. The similarity between (1) experimental and natural fault products and (2) mechanical work measures resulting from these laboratory experiments and seismological estimates suggests that it is reasonable to extrapolate experimental data to conditions typical of earthquake nucleation depths (7-15 km). It seems that faults are lubricated during earthquakes, irrespective of the fault rock composition and of the specific weakening mechanism involved.

  16. Simulations

    CERN Document Server

    Ngada, Narcisse

    2015-06-15

    The complexity and cost of building and running high-power electrical systems make the use of simulations unavoidable. The simulations available today provide great understanding about how systems really operate. This paper helps the reader to gain an insight into simulation in the field of power converters for particle accelerators. Starting with the definition and basic principles of simulation, two simulation types, as well as their leading tools, are presented: analog and numerical simulations. Some practical applications of each simulation type are also considered. The final conclusion then summarizes the main important items to keep in mind before opting for a simulation tool or before performing a simulation.

  17. Hierarchical Discriminant Analysis

    Directory of Open Access Journals (Sweden)

    Di Lu

    2018-01-01

    Full Text Available The Internet of Things (IoT generates lots of high-dimensional sensor intelligent data. The processing of high-dimensional data (e.g., data visualization and data classification is very difficult, so it requires excellent subspace learning algorithms to learn a latent subspace to preserve the intrinsic structure of the high-dimensional data, and abandon the least useful information in the subsequent processing. In this context, many subspace learning algorithms have been presented. However, in the process of transforming the high-dimensional data into the low-dimensional space, the huge difference between the sum of inter-class distance and the sum of intra-class distance for distinct data may cause a bias problem. That means that the impact of intra-class distance is overwhelmed. To address this problem, we propose a novel algorithm called Hierarchical Discriminant Analysis (HDA. It minimizes the sum of intra-class distance first, and then maximizes the sum of inter-class distance. This proposed method balances the bias from the inter-class and that from the intra-class to achieve better performance. Extensive experiments are conducted on several benchmark face datasets. The results reveal that HDA obtains better performance than other dimensionality reduction algorithms.

  18. Fault-patch stress-transfer efficiency in presence of sub-patch geometric complexity

    KAUST Repository

    Zielke, Olaf

    2015-04-01

    It is well known that faults are not planar surfaces. Instead they exhibit self-similar or self-affine properties that span a wide range of spatial (sub-micrometer to tens-of-kilometer). This geometric fault roughness has a distinct impact on amount and distribution of stresses/strains induced in the medium and on other portions of the fault. However, when numerically simulated (for example in multi-cycle EQ rupture simulations or Coulomb failure stress calculations) this roughness is largely ignored: individual fault patches --the incremental elements that build the fault surface in the respective computer models-- are planar and fault roughness at this and lower spatial scales is not considered. As a result, the fault-patch stress-transfer efficiency may be systematically too large in those numerical simulations with respect to the "actual" efficiency level. Here, we investigate the effect of sub-patch geometric complexity on fault-patch stress-transfer efficiency. For that, we sub-divide a fault patch (e.g., 1x1km) into a large number of sub-patches (e.g., 20x20m) and determine amount of induced stresses at selected positions around that patch for different levels and realizations of fault roughness. For each fault roughness level, we compute mean and standard deviation of the induced stresses, enabling us to compute the coefficient of variation. We normalize those values with stresses from the corresponding single (planar) fault patch, providing scaling factors and their variability for stress transfer efficiency. Given a certain fault roughness that is assumed for a fault, this work provides the means to implement the sub-patch fault roughness into investigations based on fault-patch interaction schemes.

  19. Fault Detection in Singular Bilinear Systems

    Directory of Open Access Journals (Sweden)

    Sara Mansouri Nasab

    2011-10-01

    Full Text Available Singular systems naturally exist in many physicall and practical systems in control issues. Also, a big group of nonlinear systems which can not be estimated by linear systems are carfully estimated by bilinear systems. On the other hand, if the user in sensetive systems dose not detect the fault on time,a considerable amount of facilities and information will be damaged and destroyed; therefore,the fault detection and recognition in singular bilinear systems with unknown input disturbances and faults by using bilinear sliding mode observer, is done in this paper because of the importance that singular bilinear systems have in modeling physical systems and undesirable effect of fault on performances of systems. For this perpose, have at first singular bilinear system is decomposed, then a sliding mode observer is considered for it. More over, a method is given for fault detection and isolation base on sliding mode observer. And at the end, we have a simulation for a numeral example to illustrate the effect of given method.

  20. Hierarchical clustering for graph visualization

    CERN Document Server

    Clémençon, Stéphan; Rossi, Fabrice; Tran, Viet Chi

    2012-01-01

    This paper describes a graph visualization methodology based on hierarchical maximal modularity clustering, with interactive and significant coarsening and refining possibilities. An application of this method to HIV epidemic analysis in Cuba is outlined.

  1. Direct hierarchical assembly of nanoparticles

    Science.gov (United States)

    Xu, Ting; Zhao, Yue; Thorkelsson, Kari

    2014-07-22

    The present invention provides hierarchical assemblies of a block copolymer, a bifunctional linking compound and a nanoparticle. The block copolymers form one micro-domain and the nanoparticles another micro-domain.

  2. Hierarchical materials: Background and perspectives

    DEFF Research Database (Denmark)

    2016-01-01

    Hierarchical design draws inspiration from analysis of biological materials and has opened new possibilities for enhancing performance and enabling new functionalities and extraordinary properties. With the development of nanotechnology, the necessary technological requirements for the manufactur...

  3. Hierarchical classification as relational framing.

    Science.gov (United States)

    Slattery, Brian; Stewart, Ian

    2014-01-01

    The purpose of this study was to model hierarchical classification as contextually controlled, generalized relational responding or relational framing. In Experiment 1, a training procedure involving nonarbitrarily related multidimensional stimuli was used to establish two arbitrary shapes as contextual cues for 'member of' and 'includes' relational responding, respectively. Subsequently those cues were used to establish a network of arbitrary stimuli in particular hierarchical relations with each other, and then test for derivation of further untrained hierarchical relations as well as for transformation of functions. Resultant patterns of relational framing showed properties of transitive class containment, asymmetrical class containment, and unilateral property induction, consistent with conceptions of hierarchical classification as described within the cognitive developmental literature. Experiment 2 extended the basic model by using "fuzzy category" stimuli and providing a better controlled test of transformation of functions. Limitations and future research directions are discussed. © Society for the Experimental Analysis of Behavior.

  4. Grid faults' impact on wind turbine structural loads

    DEFF Research Database (Denmark)

    Hansen, Anca D.; Cutululis, A. Nicolaos; Sørensen, Poul

    2007-01-01

    The objective of this work is to illustrate the impact of the grid faults on the wind turbine structural loads. Grid faults are typically simulated in detailed power system simulation tools, which by applying simplified mechanical models, are not able to provide a throughout insight on the struct...... of the wind turbine during grid faults. The effect of a grid fault on the wind turbine flexible structure is assessed for a typical fixed speed wind turbine, equipped with an induction generator.......The objective of this work is to illustrate the impact of the grid faults on the wind turbine structural loads. Grid faults are typically simulated in detailed power system simulation tools, which by applying simplified mechanical models, are not able to provide a throughout insight...... on the structural loads caused by sudden disturbances on the grid. On the other hand, structural loads of the wind turbine are typically assessed in advanced aerolastic computer codes, which by applying simplified electrical models do not provide detailed electrical insight. This paper presents a simulation...

  5. Sparse Signal Representations of Bearing Fault Signals for Exhibiting Bearing Fault Features

    Directory of Open Access Journals (Sweden)

    Wei Peng

    2016-01-01

    Full Text Available Sparse signal representations attract much attention in the community of signal processing because only a few coefficients are required to represent a signal and these coefficients make the signal understandable. For bearing faults’ diagnosis, bearing faults signals collected from transducers are often overwhelmed by strong low-frequency periodic signals and heavy noises. In this paper, a joint signal processing method is proposed to extract sparse envelope coefficients, which are the sparse signal representations of bearing fault signals. Firstly, to enhance bearing fault signals, particle swarm optimization is introduced to tune the parameters of wavelet transform and the optimal wavelet transform is used for retaining one of the resonant frequency bands. Thus, sparse wavelet coefficients are obtained. Secondly, to reduce the in-band noises existing in the sparse wavelet coefficients, an adaptive morphological analysis with an iterative local maximum detection method is developed to extract sparse envelope coefficients. Simulated and real bearing fault signals are investigated to illustrate how the sparse envelope coefficients are extracted. The results show that the sparse envelope coefficients can be used to represent bearing fault features and identify different localized bearing faults.

  6. The effect of mechanical discontinuities on the growth of faults

    Science.gov (United States)

    Bonini, Lorenzo; Basili, Roberto; Bonanno, Emanuele; Toscani, Giovanni; Burrato, Pierfrancesco; Seno, Silvio; Valensise, Gianluca

    2016-04-01

    The growth of natural faults is controlled by several factors, including the nature of host rocks, the strain rate, the temperature, and the presence of fluids. In this work we focus on the mechanical characteristics of host rocks, and in particular on the role played by thin mechanical discontinuities on the upward propagation of faults and on associated secondary effects such as folding and fracturing. Our approach uses scaled, analogue models where natural rocks are simulated by wet clay (kaolin). A clay cake is placed above two rigid blocks in a hanging wall/footwall configuration on either side of a planar fault. Fault activity is simulated by motor-controlled movements of the hanging wall. We reproduce three types of faults: a 45°-dipping normal fault, a 45°-dipping reverse fault and a 30°-dipping reverse fault. These angles are selected as representative of most natural dip-slip faults. The analogues of the mechanical discontinuities are obtained by precutting the wet clay cake before starting the hanging wall movement. We monitor the experiments with high-resolution cameras and then obtain most of the data through the Digital Image Correlation method (D.I.C.). This technique accurately tracks the trajectories of the particles of the analogue material during the deformation process: this allows us to extract displacement field vectors plus the strain and shear rate distributions on the lateral side of the clay block, where the growth of new faults is best seen. Initially we run a series of isotropic experiments, i.e. experiments without discontinuities, to generate a reference model: then we introduce the discontinuities. For the extensional models they are cut at different dip angles, from horizontal to 45°-dipping, both synthetic and antithetic with respect to the master fault, whereas only horizontal discontinuities are introduced in the contractional models. Our experiments show that such discontinuities control: 1) the propagation rate of faults

  7. Active Fault Isolation in MIMO Systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2014-01-01

    isolation is based directly on the input/output s ignals applied for the fault detection. It is guaranteed that the fault group includes the fault that had occurred in the system. The second step is individual fault isolation in the fault group . Both types of isolation are obtained by applying dedicated......Active fault isolation of parametric faults in closed-loop MIMO system s are considered in this paper. The fault isolation consists of two steps. T he first step is group- wise fault isolation. Here, a group of faults is isolated from other pos sible faults in the system. The group-wise fault...

  8. Faults in Linux

    DEFF Research Database (Denmark)

    Palix, Nicolas Jean-Michel; Thomas, Gaël; Saha, Suman

    2011-01-01

    a major problem? To answer these questions, we have transported the experiments of Chou et al. to Linux versions 2.6.0 to 2.6.33, released between late 2003 and early 2010. We find that Linux has more than doubled in size during this period, but that the number of faults per line of code has been......In 2001, Chou et al. published a study of faults found by applying a static analyzer to Linux versions 1.0 through 2.4.1. A major result of their work was that the drivers directory contained up to 7 times more of certain kinds of faults than other directories. This result inspired a number...... decreasing. And, even though drivers still accounts for a large part of the kernel code and contains the most faults, its fault rate is now below that of other directories, such as arch (HAL) and fs (file systems). These results can guide further development and research efforts. To enable others...

  9. On the Estimation of Hierarchical Latent Regression Models for Large-Scale Assessments

    Science.gov (United States)

    Li, Deping; Oranje, Andreas; Jiang, Yanlin

    2009-01-01

    To find population proficiency distributions, a two-level hierarchical linear model may be applied to large-scale survey assessments such as the National Assessment of Educational Progress (NAEP). The model and parameter estimation are developed and a simulation was carried out to evaluate parameter recovery. Subsequently, both a hierarchical and…

  10. Hierarchical Naive Bayes for genetic association studies.

    Science.gov (United States)

    Malovini, Alberto; Barbarini, Nicola; Bellazzi, Riccardo; de Michelis, Francesca

    2012-01-01

    Genome Wide Association Studies represent powerful approaches that aim at disentangling the genetic and molecular mechanisms underlying complex traits. The usual "one-SNP-at-the-time" testing strategy cannot capture the multi-factorial nature of this kind of disorders. We propose a Hierarchical Naïve Bayes classification model for taking into account associations in SNPs data characterized by Linkage Disequilibrium. Validation shows that our model reaches classification performances superior to those obtained by the standard Naïve Bayes classifier for simulated and real datasets. In the Hierarchical Naïve Bayes implemented, the SNPs mapping to the same region of Linkage Disequilibrium are considered as "details" or "replicates" of the locus, each contributing to the overall effect of the region on the phenotype. A latent variable for each block, which models the "population" of correlated SNPs, can be then used to summarize the available information. The classification is thus performed relying on the latent variables conditional probability distributions and on the SNPs data available. The developed methodology has been tested on simulated datasets, each composed by 300 cases, 300 controls and a variable number of SNPs. Our approach has been also applied to two real datasets on the genetic bases of Type 1 Diabetes and Type 2 Diabetes generated by the Wellcome Trust Case Control Consortium. The approach proposed in this paper, called Hierarchical Naïve Bayes, allows dealing with classification of examples for which genetic information of structurally correlated SNPs are available. It improves the Naïve Bayes performances by properly handling the within-loci variability.

  11. Fault Reconstruction Based on Sliding Mode Observer for Current Sensors of PMSM

    Directory of Open Access Journals (Sweden)

    Changfan Zhang

    2016-01-01

    Full Text Available This paper deals with a method of phase current sensor fault reconstruction for permanent magnet synchronous motor (PMSM drives. A new state variable is introduced so that an augmented system can be constructed to treat PMSM sensor faults as actuator faults. This method uses the PMSM two-phase stationary reference frame fault model and a sliding mode variable structure observer to reconstruct fault signals. A logic algorithm is built to isolate and identify the faulty sensor for a stator phase current fault after reconstructing the two-phase stationary reference frame fault signals, which allows the phase fault signals to be reconstructed. Simulation results are presented to illustrate the functionality of the theoretical developments.

  12. Diagnosis and Fault-Tolerant Control for Thruster-Assisted Position Mooring System

    DEFF Research Database (Denmark)

    Nguyen, Trong Dong; Blanke, Mogens; Sørensen, Asgeir

    2007-01-01

    Development of fault-tolerant control systems is crucial to maintain safe operation of o®shore installations. The objective of this paper is to develop a fault- tolerant control for thruster-assisted position mooring (PM) system with faults occurring in the mooring lines. Faults in line......'s pretension or line breaks will degrade the performance of the positioning of the vessel. Faults will be detected and isolated through a fault diagnosis procedure. When faults are detected, they can be accommodated through the control action in which only parameter of the controlled plant has to be updated...... to cope with the faulty condition. Simulations will be carried out to verify the advantages of the fault-tolerant control strategy for the PM system....

  13. Fuzzy Inference System Approach for Locating Series, Shunt, and Simultaneous Series-Shunt Faults in Double Circuit Transmission Lines.

    Science.gov (United States)

    Swetapadma, Aleena; Yadav, Anamika

    2015-01-01

    Many schemes are reported for shunt fault location estimation, but fault location estimation of series or open conductor faults has not been dealt with so far. The existing numerical relays only detect the open conductor (series) fault and give the indication of the faulty phase(s), but they are unable to locate the series fault. The repair crew needs to patrol the complete line to find the location of series fault. In this paper fuzzy based fault detection/classification and location schemes in time domain are proposed for both series faults, shunt faults, and simultaneous series and shunt faults. The fault simulation studies and fault location algorithm have been developed using Matlab/Simulink. Synchronized phasors of voltage and current signals of both the ends of the line have been used as input to the proposed fuzzy based fault location scheme. Percentage of error in location of series fault is within 1% and shunt fault is 5% for all the tested fault cases. Validation of percentage of error in location estimation is done using Chi square test with both 1% and 5% level of significance.

  14. What is Fault Tolerant Control

    DEFF Research Database (Denmark)

    Blanke, Mogens; Frei, C. W.; Kraus, K.

    2000-01-01

    availability and reduce the risk of safety hazards. Its aim is to prevent that simple faults develop into serious failure. Fault-tolerant control merges several disciplines to achieve this goal, including on-line fault diagnosis, automatic condition assessment and calculation of remedial actions when a fault......Faults in automated processes will often cause undesired reactions and shut-down of a controlled plant, and the consequences could be damage to the plant, to personnel or the environment. Fault-tolerant control is the synonym for a set of recent techniques that were developed to increase plant...

  15. Onboard Nonlinear Engine Sensor and Component Fault Diagnosis and Isolation Scheme

    Science.gov (United States)

    Tang, Liang; DeCastro, Jonathan A.; Zhang, Xiaodong

    2011-01-01

    A method detects and isolates in-flight sensor, actuator, and component faults for advanced propulsion systems. In sharp contrast to many conventional methods, which deal with either sensor fault or component fault, but not both, this method considers sensor fault, actuator fault, and component fault under one systemic and unified framework. The proposed solution consists of two main components: a bank of real-time, nonlinear adaptive fault diagnostic estimators for residual generation, and a residual evaluation module that includes adaptive thresholds and a Transferable Belief Model (TBM)-based residual evaluation scheme. By employing a nonlinear adaptive learning architecture, the developed approach is capable of directly dealing with nonlinear engine models and nonlinear faults without the need of linearization. Software modules have been developed and evaluated with the NASA C-MAPSS engine model. Several typical engine-fault modes, including a subset of sensor/actuator/components faults, were tested with a mild transient operation scenario. The simulation results demonstrated that the algorithm was able to successfully detect and isolate all simulated faults as long as the fault magnitudes were larger than the minimum detectable/isolable sizes, and no misdiagnosis occurred

  16. Multiple-step fault estimation for interval type-II T-S fuzzy system of hypersonic vehicle with time-varying elevator faults

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2017-03-01

    Full Text Available This article proposes a multiple-step fault estimation algorithm for hypersonic flight vehicles that uses an interval type-II Takagi–Sugeno fuzzy model. An interval type-II Takagi–Sugeno fuzzy model is developed to approximate the nonlinear dynamic system and handle the parameter uncertainties of hypersonic firstly. Then, a multiple-step time-varying additive fault estimation algorithm is designed to estimate time-varying additive elevator fault of hypersonic flight vehicles. Finally, the simulation is conducted in both aspects of modeling and fault estimation; the validity and availability of such method are verified by a series of the comparison of numerical simulation results.

  17. A New Method of Improving Transformer Restricted Earth Fault Protection

    Directory of Open Access Journals (Sweden)

    KRSTIVOJEVIC, J. P.

    2014-08-01

    Full Text Available A new method of avoiding malfunctioning of the transformer restricted earth fault (REF protection is presented. Application of the proposed method would eliminate unnecessary operation of REF protection in the cases of faults outside protected zone of a transformer or a magnetizing inrush accompanied by current transformer (CT saturation. On the basis of laboratory measurements and simulations the paper presents a detailed performance assessment of the proposed method which is based on digital phase comparator. The obtained results show that the new method was stable and precise for all tested faults and that its application would allow making a clear and precise difference between an internal fault and: (i external fault or (ii magnetizing inrush. The proposed method would improve performance of REF protection and reduce probability of maloperation due to CT saturation. The new method is robust and characterized by high speed of operation and high reliability and security.

  18. Automatic identification of otologic drilling faults: a preliminary report.

    Science.gov (United States)

    Shen, Peng; Feng, Guodong; Cao, Tianyang; Gao, Zhiqiang; Li, Xisheng

    2009-09-01

    A preliminary study was carried out to identify parameters to characterize drilling faults when using an otologic drill under various operating conditions. An otologic drill was modified by the addition of four sensors. Under consistent conditions, the drill was used to simulate three important types of drilling faults and the captured data were analysed to extract characteristic signals. A multisensor information fusion system was designed to fuse the signals and automatically identify the faults. When identifying drilling faults, there was a high degree of repeatability and regularity, with an average recognition rate of >70%. This study shows that the variables measured change in a fashion that allows the identification of particular drilling faults, and that it is feasible to use these data to provide rapid feedback for a control system. Further experiments are being undertaken to implement such a system.

  19. Fault-tolerant Control of a Cyber-physical System

    Science.gov (United States)

    Roxana, Rusu-Both; Eva-Henrietta, Dulf

    2017-10-01

    Cyber-physical systems represent a new emerging field in automatic control. The fault system is a key component, because modern, large scale processes must meet high standards of performance, reliability and safety. Fault propagation in large scale chemical processes can lead to loss of production, energy, raw materials and even environmental hazard. The present paper develops a multi-agent fault-tolerant control architecture using robust fractional order controllers for a (13C) cryogenic separation column cascade. The JADE (Java Agent DEvelopment Framework) platform was used to implement the multi-agent fault tolerant control system while the operational model of the process was implemented in Matlab/SIMULINK environment. MACSimJX (Multiagent Control Using Simulink with Jade Extension) toolbox was used to link the control system and the process model. In order to verify the performance and to prove the feasibility of the proposed control architecture several fault simulation scenarios were performed.

  20. An Improved Wavelet‐Based Multivariable Fault Detection Scheme

    KAUST Repository

    Harrou, Fouzi

    2017-07-06

    Data observed from environmental and engineering processes are usually noisy and correlated in time, which makes the fault detection more difficult as the presence of noise degrades fault detection quality. Multiscale representation of data using wavelets is a powerful feature extraction tool that is well suited to denoising and decorrelating time series data. In this chapter, we combine the advantages of multiscale partial least squares (MSPLSs) modeling with those of the univariate EWMA (exponentially weighted moving average) monitoring chart, which results in an improved fault detection system, especially for detecting small faults in highly correlated, multivariate data. Toward this end, we applied EWMA chart to the output residuals obtained from MSPLS model. It is shown through simulated distillation column data the significant improvement in fault detection can be obtained by using the proposed methods as compared to the use of the conventional partial least square (PLS)‐based Q and EWMA methods and MSPLS‐based Q method.

  1. Fault diagnosis for a class of nonlinear systems via ESO.

    Science.gov (United States)

    Yan, Bingyong; Tian, Zuohua; Shi, Songjiao; Weng, Zhengxin

    2008-10-01

    In this paper, a novel fault detection and identification (FDI) scheme for a class of nonlinear systems is presented. First of all, an augment system is constructed by making the unknown system faults as an extended system state. Then based on the ESO theory, a novel fault diagnosis filter is constructed to diagnose the nonlinear system faults. An extension to a class of nonlinear uncertain systems is then made. An outstanding feature of this scheme is that it can simultaneously detect and identify the shape and magnitude of the system faults in real time without training the network compared with the neural network-based FDI schemes. Finally, simulation examples are given to illustrate the feasibility and effectiveness of the proposed approach.

  2. On Line Current Monitoring and Application of a Residual Method for Eccentricity Fault Detection

    Directory of Open Access Journals (Sweden)

    METATLA, A.

    2011-02-01

    Full Text Available This work concerns the monitoring and diagnosis of faults in induction motors. We develop an approach based on residual analysis of stator currents to detect and diagnose faults eccentricity static, dynamic and mixed in three phase induction motor. To simulate the behavior of motor failure, a model is proposed based on the approach of magnetically coupled coils. The simulation results show the importance of the approach applied for the detection and diagnosis of fault in three phase induction motor.

  3. Analysis of Error Propagation Within Hierarchical Air Combat Models

    Science.gov (United States)

    2016-06-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited ANALYSIS OF ERROR ...COVERED Master’s thesis 4. TITLE AND SUBTITLE ANALYSIS OF ERROR PROPAGATION WITHIN HIERARCHICAL AIR COMBAT MODELS 5. FUNDING NUMBERS 6...variance analysis , sampling methods, metamodeling, error propagation, Lanchester equations, agent- based simulation, design of experiments

  4. Higher-Order Hierarchical Legendre Basis Functions in Applications

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Jørgensen, Erik; Meincke, Peter

    2007-01-01

    degree of orthogonality. The basis functions are well-suited for solution of complex electromagnetic problems involving multiple homogeneous or inhomogeneous dielectric regions, metallic surfaces, layered media, etc. This paper presents real-life complex antenna radiation problems modeled...... with electromagnetic simulation tools based on the higher-order hierarchical Legendre basis functions....

  5. Simulation Model of a Transient

    DEFF Research Database (Denmark)

    Jauch, Clemens; Sørensen, Poul; Bak-Jensen, Birgitte

    2005-01-01

    This paper describes the simulation model of a controller that enables an active-stall wind turbine to ride through transient faults. The simulated wind turbine is connected to a simple model of a power system. Certain fault scenarios are specified and the turbine shall be able to sustain operation...... in case of such faults. The design of the controller is described and its performance assessed by simulations. The control strategies are explained and the behaviour of the turbine discussed....

  6. SOM neural network fault diagnosis method of polymerization kettle equipment optimized by improved PSO algorithm.

    Science.gov (United States)

    Wang, Jie-sheng; Li, Shu-xia; Gao, Jie

    2014-01-01

    For meeting the real-time fault diagnosis and the optimization monitoring requirements of the polymerization kettle in the polyvinyl chloride resin (PVC) production process, a fault diagnosis strategy based on the self-organizing map (SOM) neural network is proposed. Firstly, a mapping between the polymerization process data and the fault pattern is established by analyzing the production technology of polymerization kettle equipment. The particle swarm optimization (PSO) algorithm with a new dynamical adjustment method of inertial weights is adopted to optimize the structural parameters of SOM neural network. The fault pattern classification of the polymerization kettle equipment is to realize the nonlinear mapping from symptom set to fault set according to the given symptom set. Finally, the simulation experiments of fault diagnosis are conducted by combining with the industrial on-site historical data of the polymerization kettle and the simulation results show that the proposed PSO-SOM fault diagnosis strategy is effective.

  7. SOM Neural Network Fault Diagnosis Method of Polymerization Kettle Equipment Optimized by Improved PSO Algorithm

    Directory of Open Access Journals (Sweden)

    Jie-sheng Wang

    2014-01-01

    Full Text Available For meeting the real-time fault diagnosis and the optimization monitoring requirements of the polymerization kettle in the polyvinyl chloride resin (PVC production process, a fault diagnosis strategy based on the self-organizing map (SOM neural network is proposed. Firstly, a mapping between the polymerization process data and the fault pattern is established by analyzing the production technology of polymerization kettle equipment. The particle swarm optimization (PSO algorithm with a new dynamical adjustment method of inertial weights is adopted to optimize the structural parameters of SOM neural network. The fault pattern classification of the polymerization kettle equipment is to realize the nonlinear mapping from symptom set to fault set according to the given symptom set. Finally, the simulation experiments of fault diagnosis are conducted by combining with the industrial on-site historical data of the polymerization kettle and the simulation results show that the proposed PSO-SOM fault diagnosis strategy is effective.

  8. Hydraulic structure of a fault zone at seismogenic depths (Gole Larghe Fault Zone, Italian Southern Alps)

    Science.gov (United States)

    Bistacchi, Andrea; Mittempergher, Silvia; Di Toro, Giulio; Smith, Steve; Garofalo, Paolo; Vho, Alice

    2016-04-01

    The Gole Larghe Fault Zone (GLFZ, Italian Southern Alps) was exhumed from c. 8 km depth, where it was characterized by seismic activity (pseudotachylytes), but also by hydrous fluid flow (alteration halos and precipitation of hydrothermal minerals in veins and cataclasites). Thanks to glacier-polished outcrops exposing the fault zone over a continuous area > 1 km2, the fault zone architecture has been quantitatively described with an unprecedented detail (Bistacchi 2011, PAGEOPH; Smith 2013, JSG; Mittempergher 2016, this meeting), providing a rich dataset to generate 3D Discrete Fracture Network (DFN) models and simulate the fault zone hydraulic properties. Based on field and microstructural evidence, we infer that the opening and closing of fractures resulted in a toggle-switch mechanism for fluid flow during the seismic cycle: higher permeability was obtained in the syn- to early post-seismic period, when the largest number of fractures was (re)opened by off-fault deformation, then permeability dropped due to hydrothermal mineral precipitation and fracture sealing. Since the fracture network that we observe now in the field is the result of the cumulative deformation history of the fault zone, which probably includes thousands of earthquakes, a fundamental parameter that cannot be directly evaluated in the field is the fraction of fractures-faults that were open immediately after a single earthquake. Postseismic permeability has been evaluated in a few cases in the world thanks to seismological evidences of fluid migration along active fault systems. Therefore, we were able to develop a parametric hydraulic model of the GLFZ and calibrate it, varying the fraction of faults/fractures that were open in the postseismic period, to obtain on one side realistic fluid flow and permeability values, and on the other side a flow pattern consistent with the observed alteration/mineralization pattern. The fraction of open fractures is very close to the percolation threshold

  9. Wind turbine fault detection and fault tolerant control

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Johnson, Kathryn

    2013-01-01

    In this updated edition of a previous wind turbine fault detection and fault tolerant control challenge, we present a more sophisticated wind turbine model and updated fault scenarios to enhance the realism of the challenge and therefore the value of the solutions. This paper describes...... the challenge model and the requirements for challenge participants. In addition, it motivates many of the faults by citing publications that give field data from wind turbine control tests....

  10. Constraining fault growth rates and fault evolution in New Zealand

    OpenAIRE

    Lamarche, G.; Bull, J. M.; Barnes, P.M.; Taylor, S.K.; Horgan, H.

    2000-01-01

    Understanding how faults propagate, grow and interact in fault systems is important because they are primarily responsible for the distribution of strain in the upper crust. They localise deformation and stress release, often producing surface displacements that control sedimentation and fluid flow either by acting as conduits or barriers. Identifying fault spatial distribution, quantifying activity, evaluating linkage mechanism, and estimating fault growth rates are key components in seismic...

  11. Application of three fault growth criteria to the Puente Hills thrust system, Los Angeles, California, USA

    Science.gov (United States)

    Olson, Erik L.; Cooke, Michele L.

    2005-10-01

    Three-dimensional mechanical models are used to evaluate the performance of different fault growth criteria in predicting successive growth of three échelon thrust faults similar to the segments of the Puente Hills thrust system of the Los Angeles basin, California. Four sequential Boundary Element Method models explore the growth of successive échelon faults within the system by simulating snapshots of deformation at different stages of development. These models use three criteria, (1) energy release rate, (2) strain energy density, and (3) Navier-Coulomb stress, to characterize the lateral growth of the fault system. We simulate the growth of an échelon thrust fault system to evaluate the suitability of each of these criteria for assessing fault growth. Each of these three factors predicts a portion of the incipient fault geometry (i.e. location or orientation); however, each provides different information. In each model, energy release rate along the westernmost (leading) tip of the Puente Hills thrust drops with growth of the next neighboring fault; this result supports the overall lateral development of successive échelon segments. Within each model, regions of high strain energy density and Navier-Coulomb stress envelope at least a portion of the next fault to develop, although the strain energy density has stronger correlation than Navier-Coulomb stress to the location of incipient faulting. In each model, one of the two predicted planes of maximum Navier-Coulomb stress ahead of the leading fault tip matches the strike but not the dip of the incipient fault plane recreating part of the fault orientation. The incipient fault dip is best predicted by the orientation of the strain energy density envelopes around the leading fault tip. Furthermore, the energy release rate and pattern of strain energy density can be used to characterize potential soft linkage (overlap) or hard linkage (connection) of échelon faults within the system.

  12. Lithological 3D grid model of the Vuonos area built by using geostatistical simulation honoring the 3D fault model and structural trends of the Outokumpu association rocks in Eastern Finland

    Science.gov (United States)

    Laine, Eevaliisa

    2015-04-01

    The Outokumpu mining district - a metallogenic province about 100 km long x 60 km wide - hosts a Palaeoproterozoic sulfide deposit characterized by an unusual lithological association. It is located in the North Karelia Schist Belt , which was thrust on the late Archaean gneissic-granitoid basement of the Karelian craton during the early stages of the Svecofennian Orogeny between 1.92 and 1.87 Ga (Koistinen 1981). Two major tectono-stratigraphic units can be distinguished, a lower, parautochthonous 'Lower Kaleva' unit and an upper, allochthonous 'upper Kaleva' unit or 'Outokumpu allochthon'. The latter consists of tightly-folded deep marine turbiditic mica schists and metagraywackes containing intercalations of black schist, and the Outo¬kumpu assemblage, which comprises ca. 1950 Ma old, serpentinized peridotites surrounded by carbonate-calc-silicate ('skarn')-quartz rocks. The ore body is enclosed in the Outokumpu assemblage, which is thought to be part of a disrupted and incomplete ophiolite complex (Vuollo & Piirainen 1989) that can be traced to the Kainuu schist belt further north where the well-preserved Jormua ophiolite is ex¬posed (Kontinen 1987, Peltonen & Kontinen 2004). Outokumpu can be divided into blocks divided by faults and shear zones (Saalmann and Laine, 2014). The aim of this study was to make a 3D lithological model of a small part of the Outokumpu association rocks in the Vuonos area honoring the 3D fault model built by Saalmann and Laine (2014). The Vuonos study area is also a part of the Outokumpu mining camp area (Aatos et al. 2013, 2014). Fault and shear structures was used in geostatistical gridding and simulation of the lithologies. Several possible realizations of the structural grids, conforming the main lithological trends were built. Accordingly, it was possible to build a 3D structural grid containing information of the distribution of the possible lithologies and an estimation the associated uncertainties. References: Aatos, S

  13. Fault Diagnosis and Fault-Tolerant Control of Wind Turbines via a Discrete Time Controller with a Disturbance Compensator

    Directory of Open Access Journals (Sweden)

    Yolanda Vidal

    2015-05-01

    Full Text Available This paper develops a fault diagnosis (FD and fault-tolerant control (FTC of pitch actuators in wind turbines. This is accomplished by combining a disturbance compensator with a controller, both of which are formulated in the discrete time domain. The disturbance compensator has a dual purpose: to estimate the actuator fault (which is used by the FD algorithm and to design the discrete time controller to obtain an FTC. That is, the pitch actuator faults are estimated, and then, the pitch control laws are appropriately modified to achieve an FTC with a comparable behavior to the fault-free case. The performance of the FD and FTC schemes is tested in simulations with the aero-elastic code FAST.

  14. Computer hardware fault administration

    Science.gov (United States)

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-09-14

    Computer hardware fault administration carried out in a parallel computer, where the parallel computer includes a plurality of compute nodes. The compute nodes are coupled for data communications by at least two independent data communications networks, where each data communications network includes data communications links connected to the compute nodes. Typical embodiments carry out hardware fault administration by identifying a location of a defective link in the first data communications network of the parallel computer and routing communications data around the defective link through the second data communications network of the parallel computer.

  15. Fault Tolerant Computer Architecture

    CERN Document Server

    Sorin, Daniel

    2009-01-01

    For many years, most computer architects have pursued one primary goal: performance. Architects have translated the ever-increasing abundance of ever-faster transistors provided by Moore's law into remarkable increases in performance. Recently, however, the bounty provided by Moore's law has been accompanied by several challenges that have arisen as devices have become smaller, including a decrease in dependability due to physical faults. In this book, we focus on the dependability challenge and the fault tolerance solutions that architects are developing to overcome it. The two main purposes

  16. Fault tolerant control based on active fault diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2005-01-01

    An active fault diagnosis (AFD) method will be considered in this paper in connection with a Fault Tolerant Control (FTC) architecture based on the YJBK parameterization of all stabilizing controllers. The architecture consists of a fault diagnosis (FD) part and a controller reconfiguration (CR) ...

  17. ESR dating of fault rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Kwon [Kangwon National Univ., Chuncheon (Korea, Republic of)

    2002-03-15

    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then trow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs grain size shows a plateau for grains below critical size : these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected from the Yangsan fault system. ESR dates from the this fault system range from 870 to 240 ka. Results of this research suggest that long-term cyclic fault activity continued into the pleistocene.

  18. Fault diagnosis of induction motors

    CERN Document Server

    Faiz, Jawad; Joksimović, Gojko

    2017-01-01

    This book is a comprehensive, structural approach to fault diagnosis strategy. The different fault types, signal processing techniques, and loss characterisation are addressed in the book. This is essential reading for work with induction motors for transportation and energy.

  19. Fault management and systems knowledge

    Science.gov (United States)

    2016-12-01

    Pilots are asked to manage faults during flight operations. This leads to the training question of the type and depth of system knowledge required to respond to these faults. Based on discussions with multiple airline operators, there is agreement th...

  20. Improving Multiple Fault Diagnosability using Possible Conflicts

    Data.gov (United States)

    National Aeronautics and Space Administration — Multiple fault diagnosis is a difficult problem for dynamic systems. Due to fault masking, compensation, and relative time of fault occurrence, multiple faults can...

  1. Development of a fault test experimental facility model using Matlab

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Iraci Martinez; Moraes, Davi Almeida, E-mail: martinez@ipen.br, E-mail: dmoraes@dk8.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The Fault Test Experimental Facility was developed to simulate a PWR nuclear power plant and is instrumented with temperature, level and pressure sensors. The Fault Test Experimental Facility can be operated to generate normal and fault data, and these failures can be added initially small, and their magnitude being increasing gradually. This work presents the Fault Test Experimental Facility model developed using the Matlab GUIDE (Graphical User Interface Development Environment) toolbox that consists of a set of functions designed to create interfaces in an easy and fast way. The system model is based on the mass and energy inventory balance equations. Physical as well as operational aspects are taken into consideration. The interface layout looks like a process flowchart and the user can set the input variables. Besides the normal operation conditions, there is the possibility to choose a faulty variable from a list. The program also allows the user to set the noise level for the input variables. Using the model, data were generated for different operational conditions, both under normal and fault conditions with different noise levels added to the input variables. Data generated by the model will be compared with Fault Test Experimental Facility data. The Fault Test Experimental Facility theoretical model results will be used for the development of a Monitoring and Fault Detection System. (author)

  2. Three-Phase Fault Currents Evaluation for Nigerian 28-Bus 330kv Transmission System

    Science.gov (United States)

    Adepoju, Gafari A.; Tijani, Muhammed A.; Sanusi, Mufutau A.; Olatunji, Dauda O.

    2012-03-01

    Fault studies are important power system analysis for stable and economical operations of power systems. Faults are categorised as symmetrical and unsymmetrical. In this paper, three-phase symmetrical fault is simulated using the Nigerian 28-Bus, 330kV Transmission Grid. Two different MatLab based programmes were developed; one program was for Load Flow Studies which determines prefault conditions for the power system based on Newton-Raphson method. The other program determines fault current magnitudes for threephase short-circuit on the power system. The information gained from the fault studies can be used for proper relay selections, settings, performances and coordination.

  3. Combined Geometric and Neural Network Approach to Generic Fault Diagnosis in Satellite Reaction Wheels

    DEFF Research Database (Denmark)

    Baldi, P.; Blanke, Mogens; Castaldi, P.

    2015-01-01

    to allow design of generalized fault estimation filters, which do not need a priori information about the faults internal model. Simulation results with a detailed nonlinear spacecraft model, which includes disturbances, show that the proposed diagnosis scheme can deal with faults affecting both reaction......This paper suggests a novel diagnosis scheme for detection, isolation and estimation of faults affecting satellite reaction wheels. Both spin rate measurements and actuation torque defects are dealt with. The proposed system consists of a fault detection and isolation module composed by a bank...

  4. Normal Fault Growth on Mars

    Science.gov (United States)

    Morris, A. P.; Wyrick, D. Y.; Ferrill, D. A.

    2008-12-01

    Displacement versus length relationships of faults on Earth and Mars have been used to describe and interpret the evolution of faults and fault systems, infer differences in the relative strengths of strata, and evaluate variations in fault-system response to differences in gravity from planet to planet. In this presentation, we focus on maximum throw versus trace length (Dmax/L) of continuously mappable faults and Dmax/L of individual fault segments. Fault analyses on Mars have the advantage of a planetary surface devoid of vegetation and largely unaffected by weathering and erosion. Areas on the flanks of Alba Patera, Mars, were chosen because they are well imaged by all generations of data coverage, contain fault systems that have a range of developmental characteristics, and formed in a relatively simple tectonic setting dominated by extension. Footwall and hanging wall cutoff traces of more than 300 faults were interpreted using Viking imagery and ArcGIS software. Throw was obtained by calculating the elevation difference between adjacent footwall and hanging wall points using Mars Orbiter Laser Altimeter data. Throw versus along-strike trace length plots were constructed for each interpreted fault. Single fault segments are defined as having one well-defined displacement maximum bounded by two near-zero displacement minima. Segments within a multi-segment fault were identified by counting displacement maxima along the fault trace. The number of segments incorporated into multi-segment faults is positively correlated with the fault trace length. In a plot of Dmax versus L, whole faults are distributed approximately along a locus of Dmax = K × Ln, where K = 5 × 10-4 to 5 × 10-2 and n = 1. This is in agreement with previous studies of faults on Mars. Single fault segments form a distinct population whose distribution is described approximately by the same equation but where K = 1.7 × 10-3. Dmax/L ratios for multi-segment faults represent an apparently self

  5. Fault Tolerant Wind Farm Control

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2013-01-01

    In the recent years the wind turbine industry has focused on optimizing the cost of energy. One of the important factors in this is to increase reliability of the wind turbines. Advanced fault detection, isolation and accommodation are important tools in this process. Clearly most faults are deal...... scenarios. This benchmark model is used in an international competition dealing with Wind Farm fault detection and isolation and fault tolerant control....

  6. Hierarchical Sliding Mode Algorithm for Athlete Robot Walking

    Directory of Open Access Journals (Sweden)

    Van Dong Hai Nguyen

    2017-01-01

    Full Text Available Dynamic equations and the control law for a class of robots with elastic underactuated MIMO system of legs, athlete Robot, are discussed in this paper. The dynamic equations are determined by Euler-Lagrange method. A new method based on hierarchical sliding mode for controlling postures is also introduced. Genetic algorithm is applied to design the oscillator for robot motion. Then, a hierarchical sliding mode controller is implemented to control basic posture of athlete robot stepping. Successful simulation results show the motion of athlete robot.

  7. The engine fuel system fault analysis

    Science.gov (United States)

    Zhang, Yong; Song, Hanqiang; Yang, Changsheng; Zhao, Wei

    2017-05-01

    For improving the reliability of the engine fuel system, the typical fault factor of the engine fuel system was analyzed from the point view of structure and functional. The fault character was gotten by building the fuel system fault tree. According the utilizing of fault mode effect analysis method (FMEA), several factors of key component fuel regulator was obtained, which include the fault mode, the fault cause, and the fault influences. All of this made foundation for next development of fault diagnosis system.

  8. Ground Fault Overvoltage With Inverter-Interfaced Distributed Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Ropp, Michael; Hoke, Anderson; Chakraborty, Sudipta; Schutz, Dustin; Mouw, Chris; Nelson, Austin; McCarty, Michael; Wang, Trudie; Sorenson, Adam

    2017-04-01

    Ground Fault Overvoltage can occur in situations in which a four-wire distribution circuit is energized by an ungrounded voltage source during a single phase to ground fault. The phenomenon is well-documented with ungrounded synchronous machines, but there is considerable discussion about whether inverters cause this phenomenon, and consequently whether inverters require effective grounding. This paper examines the overvoltages that can be supported by inverters during single phase to ground faults via theory, simulation and experiment, identifies the relevant physical mechanisms, quantifies expected levels of overvoltage, and makes recommendations for optimal mitigation.

  9. Automatic fault detection for big solar heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Wiese, Frank; Vajen, Klaus; Krause, Michael [Univ. Kassel (Germany). Inst. fuer Thermische Energietechnik; Knoch, Andreas [Wagner und Co. Solartechnik, Coelbe (Germany)

    2008-07-01

    Solar heating systems require a permanent function control to ensure a proper operation. A new method with automatic fault detection for large solar heating systems has been developed. In a first and second step faults are identified by checking the reliability of individual measured values and via logical expressions of linked measured values. Since not all faults are identified by these simple procedures, in a third step measured energy gains are compared to simulated energy ones. The method has been tested and several failures have been identified. The method is characterized by a high level of automation and only few additional sensors are needed. (orig.)

  10. Formal fault tree semantics

    OpenAIRE

    Schellhorn, Gerhard

    2002-01-01

    Formal fault tree semantics / G. Schellhorn, A. Thums, and W. Reif. - In: IDPT : Proceedings of the Sixth World Conference on Integrated Design and Process Technology : June 23 - 27, 2003, Pasadena, California / SDPS, Society for Design & Process Science. - 2002. - 1CD-ROM

  11. Diagnosing Intermittent Faults

    NARCIS (Netherlands)

    Van Gemund, A.J.C.; Abreu, R.F.; Zoeteweij, P.

    2008-01-01

    In this working report we outline how to determine the intermittency parameters gj from the activity matrix A (context: DX’08 paper Abreu, Zoeteweij, Van Gemund). We start with the single fault (SF) case and show that averaging over the error vector e is the exact way. We also show that in this way

  12. Network Power Fault Detection

    OpenAIRE

    Siviero, Claudio

    2013-01-01

    Network power fault detection. At least one first network device is instructed to temporarily disconnect from a power supply path of a network, and at least one characteristic of the power supply path of the network is measured at a second network device connected to the network while the at least one first network device is temporarily disconnected from the network

  13. Detecting Faults from Encoded Information

    NARCIS (Netherlands)

    Persis, Claudio De

    2003-01-01

    The problem of fault detection for linear continuous-time systems via encoded information is considered. The encoded information is received at a remote location by the monitoring deiice and assessed to infer the occurrence of the fault. A class of faults is considered which allows to use a simple

  14. Thermochronometric and textural evidence for seismicity via asperity flash heating on exhumed hematite fault mirrors, Wasatch fault zone, UT, USA

    Science.gov (United States)

    McDermott, Robert G.; Ault, Alexis K.; Evans, James P.; Reiners, Peter W.

    2017-08-01

    Exhumed faults record the temperatures produced by earthquakes. We show that transient elevated fault surface temperatures preserved in the rock record are quantifiable through microtextural analysis, fault-rock thermochronometry, and thermomechanical modeling. We apply this approach to a network of mirrored, minor, hematite-coated fault surfaces in the exhumed, seismogenic Wasatch fault zone, UT, USA. Polygonal and lobate hematite crystal morphologies, coupled with hematite (U-Th)/He data patterns from these surfaces and host rock apatite (U-Th)/He data, are best explained by friction-generated heat at slip interface geometric asperities. These observations inform thermomechanical simulations of flash heating at frictional contacts and resulting fractional He loss over generated fault surface time-temperature histories. Temperatures of >∼700-1200 °C, depending on asperity size, are sufficient to induce 85-100% He loss from hematite within 200 μm of the fault surface. Spatially-isolated, high-temperature microtextures imply spatially-variable heat generation and decay. Our results reveal that flash heating of asperities and associated frictional weakening likely promote small earthquakes (Mw ≈ - 3 to 3) on Wasatch hematite fault mirrors. We suggest that similar thermal processes and resultant dynamic weakening may facilitate larger earthquakes.

  15. Fault-Related Sanctuaries

    Science.gov (United States)

    Piccardi, L.

    2001-12-01

    Beyond the study of historical surface faulting events, this work investigates the possibility, in specific cases, of identifying pre-historical events whose memory survives in myths and legends. The myths of many famous sacred places of the ancient world contain relevant telluric references: "sacred" earthquakes, openings to the Underworld and/or chthonic dragons. Given the strong correspondence with local geological evidence, these myths may be considered as describing natural phenomena. It has been possible in this way to shed light on the geologic origin of famous myths (Piccardi, 1999, 2000 and 2001). Interdisciplinary researches reveal that the origin of several ancient sanctuaries may be linked in particular to peculiar geological phenomena observed on local active faults (like ground shaking and coseismic surface ruptures, gas and flames emissions, strong underground rumours). In many of these sanctuaries the sacred area is laid directly above the active fault. In a few cases, faulting has affected also the archaeological relics, right through the main temple (e.g. Delphi, Cnidus, Hierapolis of Phrygia). As such, the arrangement of the cult site and content of relative myths suggest that specific points along the trace of active faults have been noticed in the past and worshiped as special `sacred' places, most likely interpreted as Hades' Doors. The mythological stratification of most of these sanctuaries dates back to prehistory, and points to a common derivation from the cult of the Mother Goddess (the Lady of the Doors), which was largely widespread since at least 25000 BC. The cult itself was later reconverted into various different divinities, while the `sacred doors' of the Great Goddess and/or the dragons (offspring of Mother Earth and generally regarded as Keepers of the Doors) persisted in more recent mythologies. Piccardi L., 1999: The "Footprints" of the Archangel: Evidence of Early-Medieval Surface Faulting at Monte Sant'Angelo (Gargano, Italy

  16. Deliberate change without hierarchical influence?

    DEFF Research Database (Denmark)

    Nørskov, Sladjana; Kesting, Peter; Ulhøi, John Parm

    2017-01-01

    Purpose This paper aims to present that deliberate change is strongly associated with formal structures and top-down influence. Hierarchical configurations have been used to structure processes, overcome resistance and get things done. But is deliberate change also possible without formal...... reveals that deliberate change is indeed achievable in a non-hierarchical collaborative OSS community context. However, it presupposes the presence and active involvement of informal change agents. The paper identifies and specifies four key drivers for change agents’ influence. Originality....../value The findings contribute to organisational analysis by providing a deeper understanding of the importance of leadership in making deliberate change possible in non-hierarchical settings. It points to the importance of “change-by-conviction”, essentially based on voluntary behaviour. This can open the door...

  17. Static Correctness of Hierarchical Procedures

    DEFF Research Database (Denmark)

    Schwartzbach, Michael Ignatieff

    1990-01-01

    basis for a general type hierarchy with static type checking, which enables first-order polymorphism combined with multiple inheritance and specialization in a language with assignments. We extend the results to include opaque types. An opaque version of a type is different from the original but has......A system of hierarchical, fully recursive types in a truly imperative language allows program fragments written for small types to be reused for all larger types. To exploit this property to enable type-safe hierarchical procedures, it is necessary to impose a static requirement on procedure calls....... We introduce an example language and prove the existence of a sound requirement which preserves static correctness while allowing hierarchical procedures. This requirement is further shown to be optimal, in the sense that it imposes as few restrictions as possible. This establishes the theoretical...

  18. A Controllable Earthquake Rupture Experiment on the Homestake Fault

    Science.gov (United States)

    Germanovich, L. N.; Murdoch, L. C.; Garagash, D.; Reches, Z.; Martel, S. J.; Gwaba, D.; Elsworth, D.; Lowell, R. P.; Onstott, T. C.

    2010-12-01

    Fault-slip is typically simulated in the laboratory at the cm-to-dm scale. Laboratory results are then up-scaled by orders of magnitude to understand faulting and earthquakes processes. We suggest an experimental approach to reactivate faults in-situ at scales ~10-100 m using thermal techniques and fluid injection to modify in situ stresses and the fault strength to the point where the rock fails. Mines where the modified in-situ stresses are sufficient to drive faulting, present an opportunity to conduct such experiments. During our recent field work in the former Homestake gold mine in the northern Black Hills, South Dakota, we found a large fault present on multiple mine levels. The fault is subparallel to the local foliation in the Poorman formation, a Proterozoic metamorphic rock deformed into regional-scale folds with axes plunging ~40° to the SSE. The fault extends at least 1.5 km along strike and dip, with a center ~1.5 km deep. It strikes ~320-340° N, dips ~45-70° NE, and is recognized by a ~0.3-0.5 m thick distinct gouge that contains crushed host rock and black material that appears to be graphite. Although we could not find clear evidence for fault displacement, secondary features suggest that it is a normal fault. The size and distinct structure of this fault make it a promising target for in-situ experimentation of fault strength, hydrological properties, and slip nucleation processes. Most earthquakes are thought to be the result of unstable slip on existing faults, Activation of the Homestake fault in response to the controlled fluid injection and thermally changing background stresses is likely to be localized on a crack-like patch. Slow patch propagation, moderated by the injection rate and the rate of change of the background stresses, may become unstable, leading to the nucleation of a small earthquake (dynamic) rupture. This controlled instability is intimately related to the dependence of the fault strength on the slip process and has been

  19. Incipient Stator Insulation Fault Detection of Permanent Magnet Synchronous Wind Generators Based on Hilbert–Huang Transformation

    DEFF Research Database (Denmark)

    Wang, Chao; Liu, Xiao; Chen, Zhe

    2014-01-01

    Incipient stator winding fault in permanent magnet synchronous wind generators (PMSWGs) is very difficult to be detected as the fault generated variations in terminal electrical parameters are very weak and chaotic. This paper simulates the incipient stator winding faults at different degree...

  20. Structural integrity of hierarchical composites

    Directory of Open Access Journals (Sweden)

    Marco Paggi

    2012-01-01

    Full Text Available Interface mechanical problems are of paramount importance in engineering and materials science. Traditionally, due to the complexity of modelling their mechanical behaviour, interfaces are often treated as defects and their features are not explored. In this study, a different approach is illustrated, where the interfaces play an active role in the design of innovative hierarchical composites and are fundamental for their structural integrity. Numerical examples regarding cutting tools made of hierarchical cellular polycrystalline materials are proposed, showing that tailoring of interface properties at the different scales is the way to achieve superior mechanical responses that cannot be obtained using standard materials

  1. Fault-Related Controls on Upward Hydrothermal Flow: An Integrated Geological Study of the Têt Fault System, Eastern Pyrénées (France

    Directory of Open Access Journals (Sweden)

    Audrey Taillefer

    2017-01-01

    Full Text Available The way faults control upward fluid flow in nonmagmatic hydrothermal systems in extensional context is still unclear. In the Eastern Pyrénées, an alignment of twenty-nine hot springs (29°C to 73°C, along the normal Têt fault, offers the opportunity to study this process. Using an integrated multiscale geological approach including mapping, remote sensing, and macro- and microscopic analyses of fault zones, we show that emergence is always located in crystalline rocks at gneiss-metasediments contacts, mostly in the Têt fault footwall. The hot springs distribution is related to high topographic reliefs, which are associated with fault throw and segmentation. In more detail, emergence localizes either (1 in brittle fault damage zones at the intersection between the Têt fault and subsidiary faults or (2 in ductile faults where dissolution cavities are observed along foliations, allowing juxtaposition of metasediments. Using these observations and 2D simple numerical simulation, we propose a hydrogeological model of upward hydrothermal flow. Meteoric fluids, infiltrated at high elevation in the fault footwall relief, get warmer at depth because of the geothermal gradient. Topography-related hydraulic gradient and buoyancy forces cause hot fluid rise along permeability anisotropies associated with lithological juxtapositions, fracture, and fault zone compositions.

  2. Integrated Fault Diagnosis Algorithm for Motor Sensors of In-Wheel Independent Drive Electric Vehicles

    Science.gov (United States)

    Jeon, Namju; Lee, Hyeongcheol

    2016-01-01

    An integrated fault-diagnosis algorithm for a motor sensor of in-wheel independent drive electric vehicles is presented. This paper proposes a method that integrates the high- and low-level fault diagnoses to improve the robustness and performance of the system. For the high-level fault diagnosis of vehicle dynamics, a planar two-track non-linear model is first selected, and the longitudinal and lateral forces are calculated. To ensure redundancy of the system, correlation between the sensor and residual in the vehicle dynamics is analyzed to detect and separate the fault of the drive motor system of each wheel. To diagnose the motor system for low-level faults, the state equation of an interior permanent magnet synchronous motor is developed, and a parity equation is used to diagnose the fault of the electric current and position sensors. The validity of the high-level fault-diagnosis algorithm is verified using Carsim and Matlab/Simulink co-simulation. The low-level fault diagnosis is verified through Matlab/Simulink simulation and experiments. Finally, according to the residuals of the high- and low-level fault diagnoses, fault-detection flags are defined. On the basis of this information, an integrated fault-diagnosis strategy is proposed. PMID:27973431

  3. Integrated Fault Diagnosis Algorithm for Motor Sensors of In-Wheel Independent Drive Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Namju Jeon

    2016-12-01

    Full Text Available An integrated fault-diagnosis algorithm for a motor sensor of in-wheel independent drive electric vehicles is presented. This paper proposes a method that integrates the high- and low-level fault diagnoses to improve the robustness and performance of the system. For the high-level fault diagnosis of vehicle dynamics, a planar two-track non-linear model is first selected, and the longitudinal and lateral forces are calculated. To ensure redundancy of the system, correlation between the sensor and residual in the vehicle dynamics is analyzed to detect and separate the fault of the drive motor system of each wheel. To diagnose the motor system for low-level faults, the state equation of an interior permanent magnet synchronous motor is developed, and a parity equation is used to diagnose the fault of the electric current and position sensors. The validity of the high-level fault-diagnosis algorithm is verified using Carsim and Matlab/Simulink co-simulation. The low-level fault diagnosis is verified through Matlab/Simulink simulation and experiments. Finally, according to the residuals of the high- and low-level fault diagnoses, fault-detection flags are defined. On the basis of this information, an integrated fault-diagnosis strategy is proposed.

  4. Integrated Fault Diagnosis Algorithm for Motor Sensors of In-Wheel Independent Drive Electric Vehicles.

    Science.gov (United States)

    Jeon, Namju; Lee, Hyeongcheol

    2016-12-12

    An integrated fault-diagnosis algorithm for a motor sensor of in-wheel independent drive electric vehicles is presented. This paper proposes a method that integrates the high- and low-level fault diagnoses to improve the robustness and performance of the system. For the high-level fault diagnosis of vehicle dynamics, a planar two-track non-linear model is first selected, and the longitudinal and lateral forces are calculated. To ensure redundancy of the system, correlation between the sensor and residual in the vehicle dynamics is analyzed to detect and separate the fault of the drive motor system of each wheel. To diagnose the motor system for low-level faults, the state equation of an interior permanent magnet synchronous motor is developed, and a parity equation is used to diagnose the fault of the electric current and position sensors. The validity of the high-level fault-diagnosis algorithm is verified using Carsim and Matlab/Simulink co-simulation. The low-level fault diagnosis is verified through Matlab/Simulink simulation and experiments. Finally, according to the residuals of the high- and low-level fault diagnoses, fault-detection flags are defined. On the basis of this information, an integrated fault-diagnosis strategy is proposed.

  5. Nucleation and growth of geological faults

    Directory of Open Access Journals (Sweden)

    D. Stoyan

    2011-08-01

    Full Text Available We present a new model of fault nucleation and growth based on the Weibull theory, already widely used in fracture research engineering. We propose that, according to a birth-and-growth process, germs (nuclei are born at random instants at random spatial locations and then grow with time. This leads to a satisfactory formulation of fault length distribution, different from classical statistical laws. Especially, this formulation reconciles previous analyses of fault datasets displaying power-law and/or exponential behaviors. The Weibull parameters can be statistically estimated in a simple way. We show that the model can be successfully fitted to natural data in Kenya and Ethiopia. In contrast to existing descriptive models developed for geological fault systems, such as fractal approaches, the Weibull theory allows to characterize the strength of the material, i.e. its resistance to deformation. Since this model is very general, we expect that it can be applied in many situations, and for simulations of geological fracture processes. The model is independent of deformation intensity and type and therefore allows a better constraint of the seismic risk in threatened regions.

  6. Internal Leakage Fault Detection and Tolerant Control of Single-Rod Hydraulic Actuators

    Directory of Open Access Journals (Sweden)

    Jianyong Yao

    2014-01-01

    Full Text Available The integration of internal leakage fault detection and tolerant control for single-rod hydraulic actuators is present in this paper. Fault detection is a potential technique to provide efficient condition monitoring and/or preventive maintenance, and fault tolerant control is a critical method to improve the safety and reliability of hydraulic servo systems. Based on quadratic Lyapunov functions, a performance-oriented fault detection method is proposed, which has a simple structure and is prone to implement in practice. The main feature is that, when a prescribed performance index is satisfied (even a slight fault has occurred, there is no fault alarmed; otherwise (i.e., a severe fault has occurred, the fault is detected and then a fault tolerant controller is activated. The proposed tolerant controller, which is based on the parameter adaptive methodology, is also prone to realize, and the learning mechanism is simple since only the internal leakage is considered in parameter adaptation and thus the persistent exciting (PE condition is easily satisfied. After the activation of the fault tolerant controller, the control performance is gradually recovered. Simulation results on a hydraulic servo system with both abrupt and incipient internal leakage fault demonstrate the effectiveness of the proposed fault detection and tolerant control method.

  7. Earthquake Probability Assessment for the Active Faults in Central Taiwan: A Case Study

    Directory of Open Access Journals (Sweden)

    Yi-Rui Lee

    2016-06-01

    Full Text Available Frequent high seismic activities occur in Taiwan due to fast plate motions. According to the historical records the most destructive earthquakes in Taiwan were caused mainly by inland active faults. The Central Geological Survey (CGS of Taiwan has published active fault maps in Taiwan since 1998. There are 33 active faults noted in the 2012 active fault map. After the Chi-Chi earthquake, CGS launched a series of projects to investigate the details to better understand each active fault in Taiwan. This article collected this data to develop active fault parameters and referred to certain experiences from Japan and the United States to establish a methodology for earthquake probability assessment via active faults. We consider the active faults in Central Taiwan as a good example to present the earthquake probability assessment process and results. The appropriate “probability model” was used to estimate the conditional probability where M ≥ 6.5 and M ≥ 7.0 earthquakes. Our result shows that the highest earthquake probability for M ≥ 6.5 earthquake occurring in 30, 50, and 100 years in Central Taiwan is the Tachia-Changhua fault system. Conversely, the lowest earthquake probability is the Chelungpu fault. The goal of our research is to calculate the earthquake probability of the 33 active faults in Taiwan. The active fault parameters are important information that can be applied in the following seismic hazard analysis and seismic simulation.

  8. Transient stability of DFIG wind turbines at an external short-circuit fault

    DEFF Research Database (Denmark)

    Sun, Tao; Chen, Zhe; Blaabjerg, Frede

    2005-01-01

    concentrates on the transient stability of variable speed wind turbines with doubly fed induction generators (DFIGs) at an external short-circuit fault. A simulation model of a MW-level variable speed wind turbine with a DFIG developed in PSCAD/EMTDC is presented and the control and protection schemes...... are described in detail. The transient process of grid-connected wind turbines with DFIGs at an external shortcircuit fault is analysed, and in critical post-fault situations a measure is proposed for the voltage recovery of DFIG wind turbines after fault clearance. Simulation results demonstrate...

  9. Development of Hydrologic Characterization Technology of Fault Zones

    Energy Technology Data Exchange (ETDEWEB)

    Karasaki, Kenzi; Onishi, Tiemi; Wu, Yu-Shu

    2008-03-31

    Through an extensive literature survey we find that there is very limited amount of work on fault zone hydrology, particularly in the field using borehole testing. The common elements of a fault include a core, and damage zones. The core usually acts as a barrier to the flow across it, whereas the damage zone controls the flow either parallel to the strike or dip of a fault. In most of cases the damage zone isthe one that is controlling the flow in the fault zone and the surroundings. The permeability of damage zone is in the range of two to three orders of magnitude higher than the protolith. The fault core can have permeability up to seven orders of magnitude lower than the damage zone. The fault types (normal, reverse, and strike-slip) by themselves do not appear to be a clear classifier of the hydrology of fault zones. However, there still remains a possibility that other additional geologic attributes and scaling relationships can be used to predict or bracket the range of hydrologic behavior of fault zones. AMT (Audio frequency Magneto Telluric) and seismic reflection techniques are often used to locate faults. Geochemical signatures and temperature distributions are often used to identify flow domains and/or directions. ALSM (Airborne Laser Swath Mapping) or LIDAR (Light Detection and Ranging) method may prove to be a powerful tool for identifying lineaments in place of the traditional photogrammetry. Nonetheless not much work has been done to characterize the hydrologic properties of faults by directly testing them using pump tests. There are some uncertainties involved in analyzing pressure transients of pump tests: both low permeability and high permeability faults exhibit similar pressure responses. A physically based conceptual and numerical model is presented for simulating fluid and heat flow and solute transport through fractured fault zones using a multiple-continuum medium approach. Data from the Horonobe URL site are analyzed to demonstrate the

  10. Fault analysis for condition monitoring of induction motors

    Science.gov (United States)

    Nandi, Subhasis

    Recently, research has picked up a fervent pace in the area of fault diagnosis of electrical machines. Like adjustable speed drives, fault prognosis has become almost indispensable. The manufacturers of these drives are now keen to include diagnostic features in the software to decrease machine down time and improve salability. Prodigious improvement in signal processing hardware and software has made this possible. Primarily, these techniques depend upon locating specific harmonic components in the line current, also known as motor current signature analysis (MCSA). These harmonic components are usually different for different types of faults. However, with multiple faults or different varieties of drive schemes, MCSA can become an onerous task as different types of faults and time harmonics may end up generating similar signatures. Thus, other signals such as speed, torque, noise, vibration, etc., are also explored for their frequency contents. Sometimes, altogether different techniques such as thermal measurements, chemical analysis, etc., are also employed to find out the nature and the degree of the fault. It is indeed evident that this area is vast in scope. Going by the present trend, human involvement in the actual fault detection decision making is slowly being replaced by automated tools such as expert systems, neural networks, fuzzy logic based systems; to name a few. However, this cannot be achieved without detailed fault analysis and subsequent recognition of the fault pattern. Keeping this in mind, simulation studies of the broken bar and eccentricity related faults using MCSA have been taken up. Also, a common theoretical basis for the different types (static, dynamic and mixed) of eccentricity related faults which give different signatures for different pole and rotor bar combinations has been developed. This will be of great importance both from fault diagnosis as well as sensorless drive applications' viewpoint. Finally, the insight gained from

  11. Parallel hierarchical global illumination

    Energy Technology Data Exchange (ETDEWEB)

    Snell, Quinn O. [Iowa State Univ., Ames, IA (United States)

    1997-10-08

    Solving the global illumination problem is equivalent to determining the intensity of every wavelength of light in all directions at every point in a given scene. The complexity of the problem has led researchers to use approximation methods for solving the problem on serial computers. Rather than using an approximation method, such as backward ray tracing or radiosity, the authors have chosen to solve the Rendering Equation by direct simulation of light transport from the light sources. This paper presents an algorithm that solves the Rendering Equation to any desired accuracy, and can be run in parallel on distributed memory or shared memory computer systems with excellent scaling properties. It appears superior in both speed and physical correctness to recent published methods involving bidirectional ray tracing or hybrid treatments of diffuse and specular surfaces. Like progressive radiosity methods, it dynamically refines the geometry decomposition where required, but does so without the excessive storage requirements for ray histories. The algorithm, called Photon, produces a scene which converges to the global illumination solution. This amounts to a huge task for a 1997-vintage serial computer, but using the power of a parallel supercomputer significantly reduces the time required to generate a solution. Currently, Photon can be run on most parallel environments from a shared memory multiprocessor to a parallel supercomputer, as well as on clusters of heterogeneous workstations.

  12. Hierarchical Engineered Materials and Structures

    Science.gov (United States)

    2012-11-30

    of lightweight cellular materials (such as honeycombs and foams ) which are commonly used in "hierarchically designed" structural materials, especially...response past the elevated yield stress is modeled as perfectly plastic. The viscoelastic properties are not modeled because it is assumed that the

  13. Fault linkage and continental breakup

    Science.gov (United States)

    Cresswell, Derren; Lymer, Gaël; Reston, Tim; Stevenson, Carl; Bull, Jonathan; Sawyer, Dale; Morgan, Julia

    2017-04-01

    The magma-poor rifted margin off the west coast of Galicia (NW Spain) has provided some of the key observations in the development of models describing the final stages of rifting and continental breakup. In 2013, we collected a 68 x 20 km 3D seismic survey across the Galicia margin, NE Atlantic. Processing through to 3D Pre-stack Time Migration (12.5 m bin-size) and 3D depth conversion reveals the key structures, including an underlying detachment fault (the S detachment), and the intra-block and inter-block faults. These data reveal multiple phases of faulting, which overlap spatially and temporally, have thinned the crust to between zero and a few km thickness, producing 'basement windows' where crustal basement has been completely pulled apart and sediments lie directly on the mantle. Two approximately N-S trending fault systems are observed: 1) a margin proximal system of two linked faults that are the upward extension (breakaway faults) of the S; in the south they form one surface that splays northward to form two faults with an intervening fault block. These faults were thus demonstrably active at one time rather than sequentially. 2) An oceanward relay structure that shows clear along strike linkage. Faults within the relay trend NE-SW and heavily dissect the basement. The main block bounding faults can be traced from the S detachment through the basement into, and heavily deforming, the syn-rift sediments where they die out, suggesting that the faults propagated up from the S detachment surface. Analysis of the fault heaves and associated maps at different structural levels show complementary fault systems. The pattern of faulting suggests a variation in main tectonic transport direction moving oceanward. This might be interpreted as a temporal change during sequential faulting, however the transfer of extension between faults and the lateral variability of fault blocks suggests that many of the faults across the 3D volume were active at least in part

  14. Grid Faults Impact on the Mechanical Loads of Active Stall Wind Turbine

    DEFF Research Database (Denmark)

    Iov, Florin; Cutululis, Nicolaos A.; Hansen, Anca D.

    2008-01-01

    Emphasis in this paper is on the fault ride-through operation impact on the wind turbines structural loads. Grid faults are typically simulated in power system simulation tools using simplified drive train mechanical model, approach which doesn't allow a thorough investigation of structural loads....... This paper presents a two-steps simulation procedure, where two complimentary tools are combined, i.e. power system simulation tool and advanced aeroelastic simulation code. The goal is to investigate the whole integrated wind turbine design and to provide insight both into the structural as well...... as the electrical design of the wind turbine response during grid faults. The two-step simulation procedure is assessed by means of a simulation example. The effect of a grid fault on the structural part of a typical fixed speed wind turbine, equipped with an induction generator, is assessed....

  15. Hierarchical Control Scheme for Improving Transient Voltage Recovery of a DFIG-Based WPP

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinho; Muljadi, Eduard; Kang, Yong Cheol

    2015-06-05

    Modern grid codes require that wind power plants (WPPs) inject reactive power according to the voltage dip at a point of interconnection (POI). This requirement helps to support a POI voltage during a fault. However, if a fault is cleared, the POI and wind turbine generator (WTG) voltages are likely to exceed acceptable levels unless the WPP reduces the injected reactive power quickly. This might deteriorate the stability of a grid by allowing the disconnection of WTGs to avoid any damage. This paper proposes a hierarchical control scheme of a doubly-fed induction generator (DFIG)-based WPP. The proposed scheme aims to improve the reactive power injecting capability during the fault and suppress the overvoltage after the fault clearance. To achieve the former, an adaptive reactive power-to-voltage scheme is implemented in each DFIG controller so that a DFIG with a larger reactive power capability will inject more reactive power. To achieve the latter, a washout filter is used to capture a high frequency component contained in the WPP voltage, which is used to remove the accumulated values in the proportional-integral controllers. Test results indicate that the scheme successfully supports the grid voltage during the fault, and recovers WPP voltages without exceeding the limit after the fault clearance.

  16. Insights in Fault Flow Behaviour from Onshore Nigeria Petroleum System Modelling

    Directory of Open Access Journals (Sweden)

    Woillez Marie-Noëlle

    2017-09-01

    Full Text Available Faults are complex geological features acting either as permeability barrier, baffle or drain to fluid flow in sedimentary basins. Their role can be crucial for over-pressure building and hydrocarbon migration, therefore they have to be properly integrated in basin modelling. The ArcTem basin simulator included in the TemisFlow software has been specifically designed to improve the modelling of faulted geological settings and to get a numerical representation of fault zones closer to the geological description. Here we present new developments in the simulator to compute fault properties through time as a function of available geological parameters, for single-phase 2D simulations. We have used this new prototype to model pressure evolution on a siliciclastic 2D section located onshore in the Niger Delta. The section is crossed by several normal growth faults which subdivide the basin into several sedimentary units and appear to be lateral limits of strong over-pressured zones. Faults are also thought to play a crucial role in hydrocarbons migration from the deep source rocks to shallow reservoirs. We automatically compute the Shale Gouge Ratio (SGR along the fault planes through time, as well as the fault displacement velocity. The fault core permeability is then computed as a function of the SGR, including threshold values to account for shale smear formation. Longitudinal fault fluid flow is enhanced during periods of high fault slip velocity. The method allows us to simulate both along-fault drainages during the basin history as well as overpressure building at present-day. The simulated pressures are at first order within the range of observed pressures we had at our disposal.

  17. Fault geometry, rupture dynamics and ground motion from potential earthquakes on the North Anatolian Fault under the Sea of Marmara

    KAUST Repository

    Oglesby, David D.

    2012-03-01

    Using the 3-D finite-element method, we develop dynamic spontaneous rupture models of earthquakes on the North Anatolian Fault system in the Sea of Marmara, Turkey, considering the geometrical complexity of the fault system in this region. We find that the earthquake size, rupture propagation pattern and ground motion all strongly depend on the interplay between the initial (static) regional pre-stress field and the dynamic stress field radiated by the propagating rupture. By testing several nucleation locations, we observe that those far from an oblique normal fault stepover segment (near Istanbul) lead to large through-going rupture on the entire fault system, whereas nucleation locations closer to the stepover segment tend to produce ruptures that die out in the stepover. However, this pattern can change drastically with only a 10° rotation of the regional stress field. Our simulations also reveal that while dynamic unclamping near fault bends can produce a new mode of supershear rupture propagation, this unclamping has a much smaller effect on the speed of the peak in slip velocity along the fault. Finally, we find that the complex fault geometry leads to a very complex and asymmetric pattern of near-fault ground motion, including greatly amplified ground motion on the insides of fault bends. The ground-motion pattern can change significantly with different hypocentres, even beyond the typical effects of directivity. The results of this study may have implications for seismic hazard in this region, for the dynamics and ground motion of geometrically complex faults, and for the interpretation of kinematic inverse rupture models.

  18. METHODS AND MODELS OF HIERARCHIZATION OF THE TOURIST ATTRACTIONS. STUDY CASE: NEAMȚ COUNTY

    Directory of Open Access Journals (Sweden)

    CEHAN Alexandra

    2015-06-01

    Full Text Available The aim of the present study is to emphasise the utility of hierachization in the field of tourism, utility proved through the creation of a tourist attractiveness index based on both quantitative and qualitative features. This index, besides determining the hierarchical position of each tourist attraction, proves useful for pointing out the most important tourist areas of Neamt County, these results being obtained through data collection and analysis and through the creation of primary indices. The outcome of this study is, therefore, a generally applicable instrument for any tourist hierarchization approaches, whose efficiency is discussed in the end by comparing the values obtained for each territorial unit of the county through the use of this instrument with the values assigned to the same units by the Spatial Planning of National Territory. In this way are highlighted the advantages this method of hierarchization brings to the process of evaluation of tourism potential, as well as its faults.

  19. Fault Characteristics of Full Power Inverted Source Considering Low-voltage Ride Through Control Strategy

    Science.gov (United States)

    Zhang, Chi; Zeng, Jie; Zhao, Wei; Zhong, Guobin; Xu, Qi; Luo, Pandian; Li, Weiren; Liu, Bohan

    2017-05-01

    New energy source is thriving in China. However, the fault characteristics of grids have been altered significantly with the penetration of new energy source increasing. In conventional researches, the fault features of wind farms were discussed briefly or simply overlooked. This paper began with the theoretical analysis of control system of full power inverted (FPI) sources and indicated that the response time of current control loop is 8.5 ms, while the steady state current of FPI source is controlled by reference values and set value of current limiter; the expressions of steady state current of FPI source were presented then. In addition, main factors affecting fault current, including different active power generation before fault, different fault locations and different fault types, were analyzed comprehensively and compared through simulation to gain a clear insight into the whole process of faults. The research is helpful to obtain a better understanding of new energy source.

  20. Actuator Fault Estimation and Reconfiguration Control for the Quad-Rotor Helicopter

    Directory of Open Access Journals (Sweden)

    Fuyang Chen

    2016-02-01

    Full Text Available In this paper, an improved reconfiguration control scheme via an H∞ fault observer and adaptive control is studied for the quad-rotor helicopter with actuator faults. The bilinear problem is eliminated by constructing fault compensation and control law reconfiguration in the adaptive controller. Fault estimation is achieved by designing the fault observer with an H∞ performance index, which is applied to evaluate the ‘locking in place’ fault of the actuator in a quad-rotor helicopter. By drawing the H∞ performance index into the adaptive fault observer, an asymptotically convergent estimated error can be attained and the burden of the adaptive controller is alleviated. Some simulation and experimental results confirm the availability of the reconfiguration control scheme.

  1. Fault Self-Diagnosis for Modular Robotic Systems Using M-Lattice Modules

    Directory of Open Access Journals (Sweden)

    Enguang Guan

    2015-04-01

    Full Text Available In the domain of modular robotic systems, self-configuration, self-diagnosis and self-repair are known to be highly challenging tasks. This paper presents a novel fault self-diagnosis strategy which consists of two parts: fault detection and fault message transmission. In fault detection, a bionic synchronization ‘healthy heartbeat’ method is used to guarantee the high efficiency of the exogenous detection strategy. For fault message transmission, the Dijkstra method is modified to be capable of guiding the passage of fault messages along the optimal path. In a modular robotic system, fault message transmission depends mainly on local communications between adjacent modules, so there is no need for global broadcast information. Computational simulations of one system form, M-Lattice, have demonstrated the practical effectiveness of the proposed strategy. The strategy should be applicable in modular robotic systems in general.

  2. Double Fault Detection of Cone-Shaped Redundant IMUs Using Wavelet Transformation and EPSA

    Directory of Open Access Journals (Sweden)

    Wonhee Lee

    2014-02-01

    Full Text Available A model-free hybrid fault diagnosis technique is proposed to improve the performance of single and double fault detection and isolation. This is a model-free hybrid method which combines the extended parity space approach (EPSA with a multi-resolution signal decomposition by using a discrete wavelet transform (DWT. Conventional EPSA can detect and isolate single and double faults. The performance of fault detection and isolation is influenced by the relative size of noise and fault. In this paper; the DWT helps to cancel the high frequency sensor noise. The proposed technique can improve low fault detection and isolation probability by utilizing the EPSA with DWT. To verify the effectiveness of the proposed fault detection method Monte Carlo numerical simulations are performed for a redundant inertial measurement unit (RIMU.

  3. Active-Varying Sampling-Based Fault Detection Filter Design for Networked Control Systems

    Directory of Open Access Journals (Sweden)

    Yu-Long Wang

    2014-01-01

    Full Text Available This paper is concerned with fault detection filter design for continuous-time networked control systems considering packet dropouts and network-induced delays. The active-varying sampling period method is introduced to establish a new discretized model for the considered networked control systems. The mutually exclusive distribution characteristic of packet dropouts and network-induced delays is made full use of to derive less conservative fault detection filter design criteria. Compared with the fault detection filter design adopting a constant sampling period, the proposed active-varying sampling-based fault detection filter design can improve the sensitivity of the residual signal to faults and shorten the needed time for fault detection. The simulation results illustrate the merits and effectiveness of the proposed fault detection filter design.

  4. Comparison of impedance based fault location methods for power distribution systems

    Energy Technology Data Exchange (ETDEWEB)

    Mora-Florez, J. [Electrical Engineering School, Technological University of Pereira (UTP), La Julita, Pereira (Colombia); Melendez, J. [Electronics, Computer Engineering and Automatics Department, University of Girona (UdG), EPS, Campus Montilivi, 17071 Girona (Spain); Carrillo-Caicedo, G. [Electrical Engineering School, Industrial University of Santander (UIS), Cra 27-Cll 9, Bucaramanga (Colombia)

    2008-04-15

    Performance of 10 fault location methods for power distribution systems has been compared. The analyzed methods use only measurements of voltage and current at the substation. Fundamental component during pre-fault and fault are used in these methods to estimate the apparent impedance viewed from the measurement point. Deviation between pre-fault and fault impedance together with the system parameters are used to estimate the distance to the fault point. Fundamental aspects of each method have been considered in the analysis. Power system topology, line and load models and the necessity of additional information are relevant aspects that differentiate one method from another. The 10 selected methods have been implemented, tested and compared in a simulated network. The paper reports the results for several scenarios defined by significant values of the fault location and impedance. The estimated error has been used as a performance index in the comparison. (author)

  5. Application of a Bank of Kalman Filters for Aircraft Engine Fault Diagnostics

    Science.gov (United States)

    Kobayashi, Takahisa; Simon, Donald L.

    2003-01-01

    In this paper, a bank of Kalman filters is applied to aircraft gas turbine engine sensor and actuator fault detection and isolation (FDI) in conjunction with the detection of component faults. This approach uses multiple Kalman filters, each of which is designed for detecting a specific sensor or actuator fault. In the event that a fault does occur, all filters except the one using the correct hypothesis will produce large estimation errors, thereby isolating the specific fault. In the meantime, a set of parameters that indicate engine component performance is estimated for the detection of abrupt degradation. The proposed FDI approach is applied to a nonlinear engine simulation at nominal and aged conditions, and the evaluation results for various engine faults at cruise operating conditions are given. The ability of the proposed approach to reliably detect and isolate sensor and actuator faults is demonstrated.

  6. Fault diagnosis technology based on Wigner-Ville distribution in power electronics circuit

    Science.gov (United States)

    Rongjie, Wang; Yiju, Zhan; Meiqian, Chen; Haifeng, Zhou

    2011-09-01

    Based on Wigner-Ville distribution similarity, a method of fault diagnosis is proposed for power electronics circuits. After setting up the module time-frequency matrices of Wigner-Ville distribution for all fault signals, the similarities between the module time-frequency matrices of the fault signal and the former standard are then calculated, thus arriving at the diagnosis according to the principle of maximum similarity. The simulation result of fault diagnosis of a thyristor in a three-phase full-bridge-controlled rectifier shows that the method can accurately identify the fault types as well as the location of the fault elements for power electronics circuits, and it has an excellent performance for noise robustness and calculation complexity. Therefore, it is quite practically valuable in the solution to the fault problems for power electronics circuits.

  7. Multi-faults decoupling on turbo-expander using differential-based ensemble empirical mode decomposition

    Science.gov (United States)

    Li, Hongguang; Li, Ming; Li, Cheng; Li, Fucai; Meng, Guang

    2017-09-01

    This paper dedicates on the multi-faults decoupling of turbo-expander rotor system using Differential-based Ensemble Empirical Mode Decomposition (DEEMD). DEEMD is an improved version of DEMD to resolve the imperfection of mode mixing. The nonlinear behaviors of the turbo-expander considering temperature gradient with crack, rub-impact and pedestal looseness faults are investigated respectively, so that the baseline for the multi-faults decoupling can be established. DEEMD is then utilized on the vibration signals of the rotor system with coupling faults acquired by numerical simulation, and the results indicate that DEEMD can successfully decouple the coupling faults, which is more efficient than EEMD. DEEMD is also applied on the vibration signal of the misalignment coupling with rub-impact fault obtained during the adjustment of the experimental system. The conclusion shows that DEEMD can decompose the practical multi-faults signal and the industrial prospect of DEEMD is verified as well.

  8. Dependence of equilibrium stacking fault width on thickness of Cu thin films: A molecular dynamics study

    Science.gov (United States)

    Rohith, P.; Sainath, G.; Choudhary, B. K.

    2017-05-01

    In face centered cubic systems, due to decrease in energy all perfect dislocations dissociates into two Shockley partials separated by stacking fault width. The stacking fault width, which influences the deformation behavior depends on many factors such as composition, stacking fault energy, temperature, surface energy and applied stress. Additionally in thin films, thickness also influences the stacking fault width of dissociated dislocations. In this paper, we investigate the effect of thin film thickness on stacking fault width in Cu using molecular dynamics simulations. The results indicate that with increase in film thickness from 1.25 nm to 11 nm, the stacking fault width increases from 1.6 nm to 3.12 nm. A bi-linear behavior has been observed. Above 11 nm thickness, the width of stacking fault has attained a saturation at higher thickness. This thickness dependent dissociation has been explained using the concept of image dislocations and associated image forces.

  9. Modeling fluid flow and heat transfer at Basin and Range faults: preliminary results for Leach hot springs, Nevada

    Science.gov (United States)

    López, Dina L.; Smith, Leslie; Storey, Michael L.; Nielson, Dennis L.

    1994-01-01

    The hydrothermal systems of the Basin and Range Province are often located at or near major range bounding normal faults. The flow of fluid and energy at these faults is affected by the advective transfer of heat and fluid from an to the adjacent mountain ranges and valleys, This paper addresses the effect of the exchange of fluid and energy between the country rock, the valley fill sediments, and the fault zone, on the fluid and heat flow regimes at the fault plane. For comparative purposes, the conditions simulated are patterned on Leach Hot Springs in southern Grass Valley, Nevada. Our simulations indicated that convection can exist at the fault plane even when the fault is exchanging significant heat and fluid with the surrounding country rock and valley fill sediments. The temperature at the base of the fault decreased with increasing permeability of the country rock. Higher groundwater discharge from the fault and lower temperatures at the base of the fault are favored by high country rock permabilities and fault transmissivities. Preliminary results suggest that basal temperatures and flow rates for Leach Hot Springs can not be simulated with a fault 3 km deep and an average regional heat flow of 150 mW/m2 because the basal temperature and mass discharge rates are too low. A fault permeable to greater depths or a higher regional heat flow may be indicated for these springs.

  10. Statistical Feature Extraction for Fault Locations in Nonintrusive Fault Detection of Low Voltage Distribution Systems

    Directory of Open Access Journals (Sweden)

    Hsueh-Hsien Chang

    2017-04-01

    Full Text Available This paper proposes statistical feature extraction methods combined with artificial intelligence (AI approaches for fault locations in non-intrusive single-line-to-ground fault (SLGF detection of low voltage distribution systems. The input features of the AI algorithms are extracted using statistical moment transformation for reducing the dimensions of the power signature inputs measured by using non-intrusive fault monitoring (NIFM techniques. The data required to develop the network are generated by simulating SLGF using the Electromagnetic Transient Program (EMTP in a test system. To enhance the identification accuracy, these features after normalization are given to AI algorithms for presenting and evaluating in this paper. Different AI techniques are then utilized to compare which identification algorithms are suitable to diagnose the SLGF for various power signatures in a NIFM system. The simulation results show that the proposed method is effective and can identify the fault locations by using non-intrusive monitoring techniques for low voltage distribution systems.

  11. Adaptive Vibration Control System for MR Damper Faults

    Directory of Open Access Journals (Sweden)

    Juan C. Tudón-Martínez

    2015-01-01

    Full Text Available Several methods have been proposed to estimate the force of a semiactive damper, particularly of a magnetorheological damper because of its importance in automotive and civil engineering. Usually, all models have been proposed assuming experimental data in nominal operating conditions and some of them are estimated for control purposes. Because dampers are prone to fail, fault estimation is useful to design adaptive vibration controllers to accommodate the malfunction in the suspension system. This paper deals with the diagnosis and estimation of faults in an automotive magnetorheological damper. A robust LPV observer is proposed to estimate the lack of force caused by a damper leakage in a vehicle corner. Once the faulty damper is isolated in the vehicle and the fault is estimated, an Adaptive Vibration Control System is proposed to reduce the fault effect using compensation forces from the remaining healthy dampers. To fulfill the semiactive damper constraints in the fault adaptation, an LPV controller is designed for vehicle comfort and road holding. Simulation results show that the fault observer has good performance with robustness to noise and road disturbances and the proposed AVCS improves the comfort up to 24% with respect to a controlled suspension without fault tolerance features.

  12. Fault Tolerant Control for Civil Structures Based on LMI Approach

    Directory of Open Access Journals (Sweden)

    Chunxu Qu

    2013-01-01

    Full Text Available The control system may lose the performance to suppress the structural vibration due to the faults in sensors or actuators. This paper designs the filter to perform the fault detection and isolation (FDI and then reforms the control strategy to achieve the fault tolerant control (FTC. The dynamic equation of the structure with active mass damper (AMD is first formulated. Then, an estimated system is built to transform the FDI filter design problem to the static gain optimization problem. The gain is designed to minimize the gap between the estimated system and the practical system, which can be calculated by linear matrix inequality (LMI approach. The FDI filter is finally used to isolate the sensor faults and reform the FTC strategy. The efficiency of FDI and FTC is validated by the numerical simulation of a three-story structure with AMD system with the consideration of sensor faults. The results show that the proposed FDI filter can detect the sensor faults and FTC controller can effectively tolerate the faults and suppress the structural vibration.

  13. APPLICATION OF ARTIFICIAL INTELLIGENCE TECHNIQUES IN PROCESS FAULT DIAGNOSIS

    Directory of Open Access Journals (Sweden)

    M.A. HUSSAIN

    2007-12-01

    Full Text Available Chemical processes are systems that include complicated network of material, energy and process flow. As time passes, the performance of chemical process gradually degrades due to the deterioration of process equipments and components. The early detection and diagnosis of faults in chemical processes is very important both from the viewpoint of plant safety as well as reduced manufacturing costs. The conventional way used in fault detection and diagnosis is through the use of models of the process, which is not easy to be achieved in many cases. In recent years, an artificial intelligence technique such as neural network has been successfully used for pattern recognition and as such it can be suitable for use in fault diagnosis of processes [1]. The application of neural network methods in process fault detection and diagnosis is demonstrated in this work in two case studies using simulated chemical plant systems. Both systems were successfully diagnosed of the faults introduced in them. The neural networks were able to generalise to successfully diagnosed fault combinations it was not explicitly trained upon. Thus, neural network can be fully applied in industries as it has shown several advantages over the conventional way in fault diagnosis.

  14. ESR dating of fault rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Kwon [Kangwon National Univ., Chuncheon (Korea, Republic of)

    2003-02-15

    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then grow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs. grain size shows a plateau for grains below critical size; these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected near the Gori nuclear reactor. Most of the ESR signals of fault rocks collected from the basement are saturated. This indicates that the last movement of the faults had occurred before the Quaternary period. However, ESR dates from the Oyong fault zone range from 370 to 310 ka. Results of this research suggest that long-term cyclic fault activity of the Oyong fault zone continued into the Pleistocene.

  15. Optimization of Hierarchical System for Data Acquisition

    Directory of Open Access Journals (Sweden)

    V. Novotny

    2011-04-01

    Full Text Available Television broadcasting over IP networks (IPTV is one of a number of network applications that are except of media distribution also interested in data acquisition from group of information resources of variable size. IP-TV uses Real-time Transport Protocol (RTP protocol for media streaming and RTP Control Protocol (RTCP protocol for session quality feedback. Other applications, for example sensor networks, have data acquisition as the main task. Current solutions have mostly problem with scalability - how to collect and process information from large amount of end nodes quickly and effectively? The article deals with optimization of hierarchical system of data acquisition. Problem is mathematically described, delay minima are searched and results are proved by simulations.

  16. In-flight Fault Detection and Isolation in Aircraft Flight Control Systems

    Science.gov (United States)

    Azam, Mohammad; Pattipati, Krishna; Allanach, Jeffrey; Poll, Scott; Patterson-Hine, Ann

    2005-01-01

    In this paper we consider the problem of test design for real-time fault detection and isolation (FDI) in the flight control system of fixed-wing aircraft. We focus on the faults that are manifested in the control surface elements (e.g., aileron, elevator, rudder and stabilizer) of an aircraft. For demonstration purposes, we restrict our focus on the faults belonging to nine basic fault classes. The diagnostic tests are performed on the features extracted from fifty monitored system parameters. The proposed tests are able to uniquely isolate each of the faults at almost all severity levels. A neural network-based flight control simulator, FLTZ(Registered TradeMark), is used for the simulation of various faults in fixed-wing aircraft flight control systems for the purpose of FDI.

  17. Application of ENN-1 for Fault Diagnosis of Wind Power Systems

    Directory of Open Access Journals (Sweden)

    Meng-Hui Wang

    2012-01-01

    Full Text Available Maintaining a wind turbine and ensuring secure is not easy because of long-term exposure to the environment and high installation locations. Wind turbines need fully functional condition-monitoring and fault diagnosis systems that prevent accidents and reduce maintenance costs. This paper presents a simulator design for fault diagnosis of wind power systems and further proposes some fault diagnosis technologies such as signal analysis, feature selecting, and diagnosis methods. First, this paper uses a wind power simulator to produce fault conditions and features from the monitoring sensors. Then an extension neural network type-1- (ENN-1- based method is proposed to develop the core of the fault diagnosis system. The proposed system will benefit the development of real fault diagnosis systems with testing models that demonstrate satisfactory results.

  18. Fault detection in processes represented by PLS models using an EWMA control scheme

    KAUST Repository

    Harrou, Fouzi

    2016-10-20

    Fault detection is important for effective and safe process operation. Partial least squares (PLS) has been used successfully in fault detection for multivariate processes with highly correlated variables. However, the conventional PLS-based detection metrics, such as the Hotelling\\'s T and the Q statistics are not well suited to detect small faults because they only use information about the process in the most recent observation. Exponentially weighed moving average (EWMA), however, has been shown to be more sensitive to small shifts in the mean of process variables. In this paper, a PLS-based EWMA fault detection method is proposed for monitoring processes represented by PLS models. The performance of the proposed method is compared with that of the traditional PLS-based fault detection method through a simulated example involving various fault scenarios that could be encountered in real processes. The simulation results clearly show the effectiveness of the proposed method over the conventional PLS method.

  19. Real-time fault diagnosis and fault-tolerant control

    OpenAIRE

    Gao, Zhiwei; Ding, Steven X.; Cecati, Carlo

    2015-01-01

    This "Special Section on Real-Time Fault Diagnosis and Fault-Tolerant Control" of the IEEE Transactions on Industrial Electronics is motivated to provide a forum for academic and industrial communities to report recent theoretic/application results in real-time monitoring, diagnosis, and fault-tolerant design, and exchange the ideas about the emerging research direction in this field. Twenty-three papers were eventually selected through a strict peer-reviewed procedure, which represent the mo...

  20. Hierarchical Prisoner's Dilemma in Hierarchical Public-Goods Game

    CERN Document Server

    Fujimoto, Yuma; Kaneko, Kunihiko

    2016-01-01

    The dilemma in cooperation is one of the major concerns in game theory. In a public-goods game, each individual pays a cost for cooperation, or to prevent defection, and receives a reward from the collected cost in a group. Thus, defection is beneficial for each individual, while cooperation is beneficial for the group. Now, groups (say, countries) consisting of individual players also play games. To study such a multi-level game, we introduce a hierarchical public-goods (HPG) game in which two groups compete for finite resources by utilizing costs collected from individuals in each group. Analyzing this HPG game, we found a hierarchical prisoner's dilemma, in which groups choose the defection policy (say, armaments) as a Nash strategy to optimize each group's benefit, while cooperation optimizes the total benefit. On the other hand, for each individual within a group, refusing to pay the cost (say, tax) is a Nash strategy, which turns to be a cooperation policy for the group, thus leading to a hierarchical d...

  1. Feasibility study for a generalized gate logic software simulator

    Science.gov (United States)

    Mcgough, J. G.

    1983-01-01

    Unit-delay simulation, event driven simulation, zero-delay simulation, simulation techniques, 2-valued versus multivalued logic, network initialization, gate operations and alternate network representations, parallel versus serial mode simulation fault modelling, extension of multiprocessor systems, and simulation timing are discussed. Functional level networks, gate equivalent circuits, the prototype BDX-930 network model, fault models, identifying detected faults for BGLOSS are discussed. Preprocessor tasks, postprocessor tasks, executive tasks, and a library of bliss coded macros for GGLOSS are also discussed.

  2. A Prognostic Method for Fault Detection in Wind Turbine Drivetrains

    DEFF Research Database (Denmark)

    Nejada, Amir R.; Odgaard, Peter Fogh; Gao, Zhen

    2014-01-01

    In this paper, a prognostic method is presented for fault detection in gears and bearings in wind turbine drivetrains. This method is based on angular velocity measurements from the gearbox input shaft and the output to the generator, using two additional angular velocity sensors on the intermedi......In this paper, a prognostic method is presented for fault detection in gears and bearings in wind turbine drivetrains. This method is based on angular velocity measurements from the gearbox input shaft and the output to the generator, using two additional angular velocity sensors...... on the intermediate shafts inside the gearbox. An angular velocity error function is defined and compared in the faulty and fault-free conditions in frequency domain. Faults can be detected from the change in the energy level of the frequency spectrum of an error function. The method is demonstrated by detecting...... bearing faults in three locations: the high-speed shaft stage, the planetary stage and the intermediate-speed shaft stage. Simulations of the faulty and fault-free cases are performed on a gearbox model implemented in multibody dynamic simulation software. The global loads on the gearbox are obtained from...

  3. Imaging of Subsurface Faults using Refraction Migration with Fault Flooding

    KAUST Repository

    Metwally, Ahmed Mohsen Hassan

    2017-05-31

    We propose a novel method for imaging shallow faults by migration of transmitted refraction arrivals. The assumption is that there is a significant velocity contrast across the fault boundary that is underlain by a refracting interface. This procedure, denoted as refraction migration with fault flooding, largely overcomes the difficulty in imaging shallow faults with seismic surveys. Numerical results successfully validate this method on three synthetic examples and two field-data sets. The first field-data set is next to the Gulf of Aqaba and the second example is from a seismic profile recorded in Arizona. The faults detected by refraction migration in the Gulf of Aqaba data were in agreement with those indicated in a P-velocity tomogram. However, a new fault is detected at the end of the migration image that is not clearly seen in the traveltime tomogram. This result is similar to that for the Arizona data where the refraction image showed faults consistent with those seen in the P-velocity tomogram, except it also detected an antithetic fault at the end of the line. This fault cannot be clearly seen in the traveltime tomogram due to the limited ray coverage.

  4. Simulation

    DEFF Research Database (Denmark)

    Gould, Derek A; Chalmers, Nicholas; Johnson, Sheena J

    2012-01-01

    Recognition of the many limitations of traditional apprenticeship training is driving new approaches to learning medical procedural skills. Among simulation technologies and methods available today, computer-based systems are topical and bring the benefits of automated, repeatable, and reliable...... performance assessments. Human factors research is central to simulator model development that is relevant to real-world imaging-guided interventional tasks and to the credentialing programs in which it would be used....

  5. Decentralized Fault Management for Service Dependability in Ubiquitous Networks

    DEFF Research Database (Denmark)

    Grønbæk, Lars Jesper

    2010-01-01

    simulation model. Some of the main findings are: i) certain imperfection trade-off settings of the Diagnosis component lead to worse end-user service reliability than if no fault management is conducted, ii) using end-user service state information in the decision process can help improve service reliability......Obtaining reliable operation of end-user services in future ubiquitous networking environments is challenging. Faults occur and heterogeneous networks make it difficult to deploy network wide fault management mechanisms. This PhD lecture presents a study on the options an end-node has to mitigate......) unobservable and incomplete network state information, ii) unreliable observations, and iii) dynamic environments calling for adaptation in the fault management process. In the study, focus is on potential gains in the interaction between the components of Observation, Diagnosis, Decision and Remediation...

  6. Fault Detection and Localization Method for Modular Multilevel Converters

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe; Khan, Mohammad Rezwan

    2015-01-01

    The modular multilevel converter (MMC) is attractive for medium- or high-power applications because of the advantages of its high modularity, availability, and high power quality. However, reliability is one of the most important issues for MMCs those are made of large number of power electronic...... submodules (SMs). This paper proposed an effective fault detection and localization method for MMCs. An MMC fault can be detected by comparing the measured state variables and the estimated state variables with a Kalman Filter. The fault localization is based on the failure characteristics of the SM...... in the MMC. The proposed method can be implemented with less computational intensity and complexity, even in case that multiple SMs faults occur in a short time interval. The proposed method is not only implemented in simulations with professional tool PSCAD/EMTDC, but also verified with a down-scale MMC...

  7. A benchmark for fault tolerant flight control evaluation

    Science.gov (United States)

    Smaili, H.; Breeman, J.; Lombaerts, T.; Stroosma, O.

    2013-12-01

    A large transport aircraft simulation benchmark (REconfigurable COntrol for Vehicle Emergency Return - RECOVER) has been developed within the GARTEUR (Group for Aeronautical Research and Technology in Europe) Flight Mechanics Action Group 16 (FM-AG(16)) on Fault Tolerant Control (2004 2008) for the integrated evaluation of fault detection and identification (FDI) and reconfigurable flight control strategies. The benchmark includes a suitable set of assessment criteria and failure cases, based on reconstructed accident scenarios, to assess the potential of new adaptive control strategies to improve aircraft survivability. The application of reconstruction and modeling techniques, based on accident flight data, has resulted in high-fidelity nonlinear aircraft and fault models to evaluate new Fault Tolerant Flight Control (FTFC) concepts and their real-time performance to accommodate in-flight failures.

  8. Proposed fault diagnostics of a broken rotor bar induction motor fed from PWM inverter

    Directory of Open Access Journals (Sweden)

    Faeka M.H. Khater

    2016-12-01

    Full Text Available This paper presents a fault diagnostics technique for a three-phase squirrel cage induction motor. The method is developed using a simplified model affected by bar resistance variation. Based on 3-phase time domain model, the rotor broken bar with different conditions has been simulated to investigate the resulting torque speed characteristic in each condition. The developed fault diagnostics system is capable of identifying the type of the broken-bar faults in the squirrel cage induction machines.

  9. Automatic mechanical fault assessment of small wind energy systems in microgrids using electric signature analysis

    DEFF Research Database (Denmark)

    Skrimpas, Georgios Alexandros; Marhadi, Kun Saptohartyadi; Jensen, Bogi Bech

    2013-01-01

    of islanded operation. In this paper, the fault assessment is achieved efficiently and consistently via electric signature analysis (ESA). In ESA the fault related frequency components are manifested as sidebands of the existing current and voltage time harmonics. The energy content between the fundamental, 5...... element model where dynamic eccentricity and bearing outer race defect are simulated under varying fault severity and electric loading conditions....

  10. Fault-related controls on hydrothermal flows in Eastern Pyrénées (France)

    Science.gov (United States)

    Taillefer, Audrey; Soliva, Roger; Guillou-Frottier, Laurent; Le Goff, Elisabeth; Martin, Guillaume

    2017-04-01

    The way faults control upward fluid flow in extensive hydrothermal systems without an abnormal heat source such as volcanic or plutonic activity is still unclear. In the Eastern Pyrénées, an alignment of 29 hot springs (from 29°C to 73°C) along the Têt normal Fault offers the opportunity to study this process. Using an integrated multi-scale geological approach including mapping, remote sensing, macro and microscopic analyses of fault zones, we show that hot springs locate close to high topographic reliefs related to fault throw and segmentation. Emergences are always in crystalline rocks at gneiss-metasediments contacts, mostly in the Têt Fault footwall. In more details, they localize either (1) in brittle fault damage zones at the intersection between the Têt Fault and subsidiary faults, and (2) into hercynian ductile faults where dissolution cavities run along shear zones. Using these observations and 2D preliminary numerical simulations, we propose a hydrogeological model of upward hydrothermal flow. Meteoric fluids infiltrate at high altitude in the fault footwall relief where they acquire temperature because of the geothermal gradient. Hydraulic gradient and buoyancy forces allow them to upflow along fault-related permeability anisotropies. The identification and prioritization of the features controlling this kind of system have important implications for geothermal exploration and for the understanding of fluid-flow into the brittle Earth's crust in general.

  11. Fault Detection, Isolation, and Accommodation for LTI Systems Based on GIMC Structure

    Directory of Open Access Journals (Sweden)

    D. U. Campos-Delgado

    2008-01-01

    Full Text Available In this contribution, an active fault-tolerant scheme that achieves fault detection, isolation, and accommodation is developed for LTI systems. Faults and perturbations are considered as additive signals that modify the state or output equations. The accommodation scheme is based on the generalized internal model control architecture recently proposed for fault-tolerant control. In order to improve the performance after a fault, the compensation is considered in two steps according with a fault detection and isolation algorithm. After a fault scenario is detected, a general fault compensator is activated. Finally, once the fault is isolated, a specific compensator is introduced. In this setup, multiple faults could be treated simultaneously since their effect is additive. Design strategies for a nominal condition and under model uncertainty are presented in the paper. In addition, performance indices are also introduced to evaluate the resulting fault-tolerant scheme for detection, isolation, and accommodation. Hard thresholds are suggested for detection and isolation purposes, meanwhile, adaptive ones are considered under model uncertainty to reduce the conservativeness. A complete simulation evaluation is carried out for a DC motor setup.

  12. Study of Intelligent Photovoltaic System Fault Diagnostic Scheme Based on Chaotic Signal Synchronization

    Directory of Open Access Journals (Sweden)

    Chin-Tsung Hsieh

    2013-01-01

    Full Text Available As the photovoltaic system consists of many equipment components, manual inspection will be very costly. This study proposes the photovoltaic system fault diagnosis based on chaotic signal synchronization. First, MATLAB was used to simulate the fault conditions of solar system, and the maximum power point tracking (MPPT was used to ensure the system's stable power and capture and record the system fault feature signals. The dynamic errors of various fault signals were extracted by chaotic signal synchronization, and the dynamic error data of various fault signals were recorded completely. In the photovoltaic system, the captured output voltage signal was used as the characteristic values for fault recognition, and the extension theory was used to create the joint domain and classical domain of various fault conditions according to the collected feature data. The matter-element model of extension engineering was constructed. Finally, the whole fault diagnosis system is only needed to capture the voltage signal of the solar photovoltaic system, so as to know the exact fault condition effectively and rapidly. The proposed fault diagnostor can be implemented by embedded system and be combined with ZigBee wireless network module in the future, thus reducing labor cost and building a complete portable renewable energy system fault diagnostor.

  13. Fault diagnostics for turbo-shaft engine sensors based on a simplified on-board model.

    Science.gov (United States)

    Lu, Feng; Huang, Jinquan; Xing, Yaodong

    2012-01-01

    Combining a simplified on-board turbo-shaft model with sensor fault diagnostic logic, a model-based sensor fault diagnosis method is proposed. The existing fault diagnosis method for turbo-shaft engine key sensors is mainly based on a double redundancies technique, and this can't be satisfied in some occasions as lack of judgment. The simplified on-board model provides the analytical third channel against which the dual channel measurements are compared, while the hardware redundancy will increase the structure complexity and weight. The simplified turbo-shaft model contains the gas generator model and the power turbine model with loads, this is built up via dynamic parameters method. Sensor fault detection, diagnosis (FDD) logic is designed, and two types of sensor failures, such as the step faults and the drift faults, are simulated. When the discrepancy among the triplex channels exceeds a tolerance level, the fault diagnosis logic determines the cause of the difference. Through this approach, the sensor fault diagnosis system achieves the objectives of anomaly detection, sensor fault diagnosis and redundancy recovery. Finally, experiments on this method are carried out on a turbo-shaft engine, and two types of faults under different channel combinations are presented. The experimental results show that the proposed method for sensor fault diagnostics is efficient.

  14. A Novel Approach of Impulsive Signal Extraction for Early Fault Detection of Rolling Element Bearing

    Directory of Open Access Journals (Sweden)

    Hu Aijun

    2017-01-01

    Full Text Available The fault signals of rolling element bearing are often characterized by the presence of periodic impulses, which are modulated high-frequency harmonic components. The features of early fault in rolling bearing are very weak, which are often masked by background noise. The impulsiveness of the vibration signal has affected the identification of characteristic frequency for the early fault detection of the bearing. In this paper, a novel approach based on morphological operators is presented for impulsive signal extraction of early fault in rolling element bearing. The combination Top-Hat (CTH is proposed to extract the impulsive signal and enhance the impulsiveness of the bearing fault signal, and the envelope analysis is applied to reveal the fault-related signatures. The impulsive extraction performance of the proposed CTH is compared with that of finite impulse response filter (FIR by analyzing the simulated bearing fault signals, and the result indicates that the CTH is more effective in extracting impulsive signals. The method is evaluated using real fault signals from defective bearings with early rolling element fault and early fault located on the outer race. The results show that the proposed method is able to enhance the impulsiveness of early bearing fault signals.

  15. Multicast Routing of Hierarchical Data

    Science.gov (United States)

    Shacham, Nachum

    1992-01-01

    The issue of multicast of broadband, real-time data in a heterogeneous environment, in which the data recipients differ in their reception abilities, is considered. Traditional multicast schemes, which are designed to deliver all the source data to all recipients, offer limited performance in such an environment, since they must either force the source to overcompress its signal or restrict the destination population to those who can receive the full signal. We present an approach for resolving this issue by combining hierarchical source coding techniques, which allow recipients to trade off reception bandwidth for signal quality, and sophisticated routing algorithms that deliver to each destination the maximum possible signal quality. The field of hierarchical coding is briefly surveyed and new multicast routing algorithms are presented. The algorithms are compared in terms of network utilization efficiency, lengths of paths, and the required mechanisms for forwarding packets on the resulting paths.

  16. Hierarchical matrices algorithms and analysis

    CERN Document Server

    Hackbusch, Wolfgang

    2015-01-01

    This self-contained monograph presents matrix algorithms and their analysis. The new technique enables not only the solution of linear systems but also the approximation of matrix functions, e.g., the matrix exponential. Other applications include the solution of matrix equations, e.g., the Lyapunov or Riccati equation. The required mathematical background can be found in the appendix. The numerical treatment of fully populated large-scale matrices is usually rather costly. However, the technique of hierarchical matrices makes it possible to store matrices and to perform matrix operations approximately with almost linear cost and a controllable degree of approximation error. For important classes of matrices, the computational cost increases only logarithmically with the approximation error. The operations provided include the matrix inversion and LU decomposition. Since large-scale linear algebra problems are standard in scientific computing, the subject of hierarchical matrices is of interest to scientists ...

  17. High-performance hierarchical fracturing

    Science.gov (United States)

    Cobb, Nicolas B.; Zhang, Weidong

    2002-07-01

    We describe in more detail a mask data preparation (MDP) flow previously proposed. The focus on this paper is a performance comparison of hierarchical fracturing techniques compared to standard fracturing. Our flow uses GDSII data as input, including a GDSII-based job deck description. The output is maximally compacted, trapezoidal mask writer (MW) formatted data. Our flow takes advantage of hierarchy explicit in the GDSII file(s). This allows optimal determination of 'cover cells', which are repeatable groups of patterns within the data. The use of cover cells allows a reduction of fracturing runtime. In one case, a 21 GB MEBES file was fractured in 30 hours using the standard technique and 53 minutes using the hierarchical cover cell technique.

  18. Topological properties of hierarchical networks.

    Science.gov (United States)

    Agliari, Elena; Barra, Adriano; Galluzzi, Andrea; Guerra, Francesco; Tantari, Daniele; Tavani, Flavia

    2015-06-01

    Hierarchical networks are attracting a renewal interest for modeling the organization of a number of biological systems and for tackling the complexity of statistical mechanical models beyond mean-field limitations. Here we consider the Dyson hierarchical construction for ferromagnets, neural networks, and spin glasses, recently analyzed from a statistical-mechanics perspective, and we focus on the topological properties of the underlying structures. In particular, we find that such structures are weighted graphs that exhibit a high degree of clustering and of modularity, with a small spectral gap; the robustness of such features with respect to the presence of thermal noise is also studied. These outcomes are then discussed and related to the statistical-mechanics scenario in full consistency. Last, we look at these weighted graphs as Markov chains and we show that in the limit of infinite size, the emergence of ergodicity breakdown for the stochastic process mirrors the emergence of metastabilities in the corresponding statistical mechanical analysis.

  19. Topological properties of hierarchical networks

    Science.gov (United States)

    Agliari, Elena; Barra, Adriano; Galluzzi, Andrea; Guerra, Francesco; Tantari, Daniele; Tavani, Flavia

    2015-06-01

    Hierarchical networks are attracting a renewal interest for modeling the organization of a number of biological systems and for tackling the complexity of statistical mechanical models beyond mean-field limitations. Here we consider the Dyson hierarchical construction for ferromagnets, neural networks, and spin glasses, recently analyzed from a statistical-mechanics perspective, and we focus on the topological properties of the underlying structures. In particular, we find that such structures are weighted graphs that exhibit a high degree of clustering and of modularity, with a small spectral gap; the robustness of such features with respect to the presence of thermal noise is also studied. These outcomes are then discussed and related to the statistical-mechanics scenario in full consistency. Last, we look at these weighted graphs as Markov chains and we show that in the limit of infinite size, the emergence of ergodicity breakdown for the stochastic process mirrors the emergence of metastabilities in the corresponding statistical mechanical analysis.

  20. Automatic Hierarchical Color Image Classification

    Directory of Open Access Journals (Sweden)

    Jing Huang

    2003-02-01

    Full Text Available Organizing images into semantic categories can be extremely useful for content-based image retrieval and image annotation. Grouping images into semantic classes is a difficult problem, however. Image classification attempts to solve this hard problem by using low-level image features. In this paper, we propose a method for hierarchical classification of images via supervised learning. This scheme relies on using a good low-level feature and subsequently performing feature-space reconfiguration using singular value decomposition to reduce noise and dimensionality. We use the training data to obtain a hierarchical classification tree that can be used to categorize new images. Our experimental results suggest that this scheme not only performs better than standard nearest-neighbor techniques, but also has both storage and computational advantages.

  1. Star Cluster Structure from Hierarchical Star Formation

    Science.gov (United States)

    Grudic, Michael; Hopkins, Philip; Murray, Norman; Lamberts, Astrid; Guszejnov, David; Schmitz, Denise; Boylan-Kolchin, Michael

    2018-01-01

    Young massive star clusters (YMCs) spanning 104-108 M⊙ in mass generally have similar radial surface density profiles, with an outer power-law index typically between -2 and -3. This similarity suggests that they are shaped by scale-free physics at formation. Recent multi-physics MHD simulations of YMC formation have also produced populations of YMCs with this type of surface density profile, allowing us to narrow down the physics necessary to form a YMC with properties as observed. We show that the shallow density profiles of YMCs are a natural result of phase-space mixing that occurs as they assemble from the clumpy, hierarchically-clustered configuration imprinted by the star formation process. We develop physical intuition for this process via analytic arguments and collisionless N-body experiments, elucidating the connection between star formation physics and star cluster structure. This has implications for the early-time structure and evolution of proto-globular clusters, and prospects for simulating their formation in the FIRE cosmological zoom-in simulations.

  2. A new approach for modeling generalization gradients: a case for hierarchical models

    Science.gov (United States)

    Vanbrabant, Koen; Boddez, Yannick; Verduyn, Philippe; Mestdagh, Merijn; Hermans, Dirk; Raes, Filip

    2015-01-01

    A case is made for the use of hierarchical models in the analysis of generalization gradients. Hierarchical models overcome several restrictions that are imposed by repeated measures analysis-of-variance (rANOVA), the default statistical method in current generalization research. More specifically, hierarchical models allow to include continuous independent variables and overcomes problematic assumptions such as sphericity. We focus on how generalization research can benefit from this added flexibility. In a simulation study we demonstrate the dominance of hierarchical models over rANOVA. In addition, we show the lack of efficiency of the Mauchly's sphericity test in sample sizes typical for generalization research, and confirm how violations of sphericity increase the probability of type I errors. A worked example of a hierarchical model is provided, with a specific emphasis on the interpretation of parameters relevant for generalization research. PMID:26074834

  3. Final Technical Report: PV Fault Detection Tool.

    Energy Technology Data Exchange (ETDEWEB)

    King, Bruce Hardison [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Christian Birk [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    The PV Fault Detection Tool project plans to demonstrate that the FDT can (a) detect catastrophic and degradation faults and (b) identify the type of fault. This will be accomplished by collecting fault signatures using different instruments and integrating this information to establish a logical controller for detecting, diagnosing and classifying each fault.

  4. Hierarchical Architecturing for Layered Thermoelectric Sulfides and Chalcogenides

    Directory of Open Access Journals (Sweden)

    Priyanka Jood

    2015-03-01

    Full Text Available Sulfides are promising candidates for environment-friendly and cost-effective thermoelectric materials. In this article, we review the recent progress in all-length-scale hierarchical architecturing for sulfides and chalcogenides, highlighting the key strategies used to enhance their thermoelectric performance. We primarily focus on TiS2-based layered sulfides, misfit layered sulfides, homologous chalcogenides, accordion-like layered Sn chalcogenides, and thermoelectric minerals. CS2 sulfurization is an appropriate method for preparing sulfide thermoelectric materials. At the atomic scale, the intercalation of guest atoms/layers into host crystal layers, crystal-structural evolution enabled by the homologous series, and low-energy atomic vibration effectively scatter phonons, resulting in a reduced lattice thermal conductivity. At the nanoscale, stacking faults further reduce the lattice thermal conductivity. At the microscale, the highly oriented microtexture allows high carrier mobility in the in-plane direction, leading to a high thermoelectric power factor.

  5. SEISMOLOGY: Watching the Hayward Fault.

    Science.gov (United States)

    Simpson, R W

    2000-08-18

    The Hayward fault, located on the east side of the San Francisco Bay, represents a natural laboratory for seismologists, because it does not sleep silently between major earthquakes. In his Perspective, Simpson discusses the study by Bürgmann et al., who have used powerful new techniques to study the fault. The results indicate that major earthquakes cannot originate in the northern part of the fault. However, surface-rupturing earthquakes have occurred in the area, suggesting that they originated to the north or south of the segment studied by Bürgmann et al. Fundamental questions remain regarding the mechanism by which plate tectonic stresses are transferred to the Hayward fault.

  6. Advanced cloud fault tolerance system

    Science.gov (United States)

    Sumangali, K.; Benny, Niketa

    2017-11-01

    Cloud computing has become a prevalent on-demand service on the internet to store, manage and process data. A pitfall that accompanies cloud computing is the failures that can be encountered in the cloud. To overcome these failures, we require a fault tolerance mechanism to abstract faults from users. We have proposed a fault tolerant architecture, which is a combination of proactive and reactive fault tolerance. This architecture essentially increases the reliability and the availability of the cloud. In the future, we would like to compare evaluations of our proposed architecture with existing architectures and further improve it.

  7. Physical fault tolerance of nanoelectronics.

    Science.gov (United States)

    Szkopek, Thomas; Roychowdhury, Vwani P; Antoniadis, Dimitri A; Damoulakis, John N

    2011-04-29

    The error rate in complementary transistor circuits is suppressed exponentially in electron number, arising from an intrinsic physical implementation of fault-tolerant error correction. Contrariwise, explicit assembly of gates into the most efficient known fault-tolerant architecture is characterized by a subexponential suppression of error rate with electron number, and incurs significant overhead in wiring and complexity. We conclude that it is more efficient to prevent logical errors with physical fault tolerance than to correct logical errors with fault-tolerant architecture.

  8. An Overview of Transmission Line Protection by Artificial Neural Network: Fault Detection, Fault Classification, Fault Location, and Fault Direction Discrimination

    Directory of Open Access Journals (Sweden)

    Anamika Yadav

    2014-01-01

    Full Text Available Contemporary power systems are associated with serious issues of faults on high voltage transmission lines. Instant isolation of fault is necessary to maintain the system stability. Protective relay utilizes current and voltage signals to detect, classify, and locate the fault in transmission line. A trip signal will be sent by the relay to a circuit breaker with the purpose of disconnecting the faulted line from the rest of the system in case of a disturbance for maintaining the stability of the remaining healthy system. This paper focuses on the studies of fault detection, fault classification, fault location, fault phase selection, and fault direction discrimination by using artificial neural networks approach. Artificial neural networks are valuable for power system applications as they can be trained with offline data. Efforts have been made in this study to incorporate and review approximately all important techniques and philosophies of transmission line protection reported in the literature till June 2014. This comprehensive and exhaustive survey will reduce the difficulty of new researchers to evaluate different ANN based techniques with a set of references of all concerned contributions.

  9. Fault Tolerant Distributive Processing

    Science.gov (United States)

    Quesnell, Harris

    1982-12-01

    A fault tolerant design used to enhanced the survivability of a distributive processing system is described. Based on physical limitations, mission duration and maintenance support, the approach has emphasized functional redundancy in place of the traditional hardware or software level redundancy. A top down architecture within the system's hierarchy allows sharing of common resources. Various techniques used to enhance the survivability of the hardware at the equipment, module and component level were analyzed. The intent of the on going work is to demonstrate the ability of a distributive processing system to maintain itself for a long period of time.

  10. Perspective View, Garlock Fault

    Science.gov (United States)

    2000-01-01

    California's Garlock Fault, marking the northwestern boundary of the Mojave Desert, lies at the foot of the mountains, running from the lower right to the top center of this image, which was created with data from NASA's shuttle Radar Topography Mission (SRTM), flown in February 2000. The data will be used by geologists studying fault dynamics and landforms resulting from active tectonics. These mountains are the southern end of the Sierra Nevada and the prominent canyon emerging at the lower right is Lone Tree canyon. In the distance, the San Gabriel Mountains cut across from the leftside of the image. At their base lies the San Andreas Fault which meets the Garlock Fault near the left edge at Tejon Pass. The dark linear feature running from lower right to upper left is State Highway 14 leading from the town of Mojave in the distance to Inyokern and the Owens Valley in the north. The lighter parallel lines are dirt roads related to power lines and the Los Angeles Aqueduct which run along the base of the mountains.This type of display adds the important dimension of elevation to the study of land use and environmental processes as observed in satellite images. The perspective view was created by draping a Landsat satellite image over an SRTM elevation model. Topography is exaggerated 1.5 times vertically. The Landsat image was provided by the United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota.Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed

  11. Simulation

    CERN Document Server

    Ross, Sheldon

    2006-01-01

    Ross's Simulation, Fourth Edition introduces aspiring and practicing actuaries, engineers, computer scientists and others to the practical aspects of constructing computerized simulation studies to analyze and interpret real phenomena. Readers learn to apply results of these analyses to problems in a wide variety of fields to obtain effective, accurate solutions and make predictions about future outcomes. This text explains how a computer can be used to generate random numbers, and how to use these random numbers to generate the behavior of a stochastic model over time. It presents the statist

  12. Algorithm of parallel: hierarchical transformation and its implementation on FPGA

    Science.gov (United States)

    Timchenko, Leonid I.; Petrovskiy, Mykola S.; Kokryatskay, Natalia I.; Barylo, Alexander S.; Dembitska, Sofia V.; Stepanikuk, Dmytro S.; Suleimenov, Batyrbek; Zyska, Tomasz; Uvaysova, Svetlana; Shedreyeva, Indira

    2017-08-01

    In this paper considers the algorithm of laser beam spots image classification in atmospheric-optical transmission systems. It discusses the need for images filtering using adaptive methods, using, for example, parallel-hierarchical networks. The article also highlights the need to create high-speed memory devices for such networks. Implementation and simulation results of the developed method based on the PLD are demonstrated, which shows that the presented method gives 15-20% better prediction results than similar methods.

  13. Hierarchical Coloured Petrinet Based Healthcare Infrastructure Interdependency Model

    OpenAIRE

    Nivedita, N.; S. Durbha

    2014-01-01

    To ensure a resilient Healthcare Critical Infrastructure, understanding the vulnerabilities and analysing the interdependency on other critical infrastructures is important. To model this critical infrastructure and its dependencies, Hierarchal Coloured petri net modelling approach for simulating the vulnerability of Healthcare Critical infrastructure in a disaster situation is studied.. The model enables to analyse and understand various state changes, which occur when there is a di...

  14. The role of thin, mechanical discontinuities on the propagation of reverse faults: insights from analogue models

    Science.gov (United States)

    Bonanno, Emanuele; Bonini, Lorenzo; Basili, Roberto; Toscani, Giovanni; Seno, Silvio

    2016-04-01

    Fault-related folding kinematic models are widely used to explain accommodation of crustal shortening. These models, however, include simplifications, such as the assumption of constant growth rate of faults. This value sometimes is not constant in isotropic materials, and even more variable if one considers naturally anisotropic geological systems. , This means that these simplifications could lead to incorrect interpretations of the reality. In this study, we use analogue models to evaluate how thin, mechanical discontinuities, such as beddings or thin weak layers, influence the propagation of reverse faults and related folds. The experiments are performed with two different settings to simulate initially-blind master faults dipping at 30° and 45°. The 30° dip represents one of the Andersonian conjugate fault, and 45° dip is very frequent in positive reactivation of normal faults. The experimental apparatus consists of a clay layer placed above two plates: one plate, the footwall, is fixed; the other one, the hanging wall, is mobile. Motor-controlled sliding of the hanging wall plate along an inclined plane reproduces the reverse fault movement. We run thirty-six experiments: eighteen with dip of 30° and eighteen with dip of 45°. For each dip-angle setting, we initially run isotropic experiments that serve as a reference. Then, we run the other experiments with one or two discontinuities (horizontal precuts performed into the clay layer). We monitored the experiments collecting side photographs every 1.0 mm of displacement of the master fault. These images have been analyzed through PIVlab software, a tool based on the Digital Image Correlation method. With the "displacement field analysis" (one of the PIVlab tools) we evaluated, the variation of the trishear zone shape and how the master-fault tip and newly-formed faults propagate into the clay medium. With the "strain distribution analysis", we observed the amount of the on-fault and off-fault deformation

  15. Simulation of the fault transitory of the feedwater controller in a Boiling water reactor with the Ramona-3B code; Simulacion del transitorio de falla del controlador de agua de alimentacion en un reactor de agua en ebullicion con el codigo RAMONA-3B

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez M, J.L.; Ortiz V, J. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2005-07-01

    The obtained results when carrying out the simulation of the fault transitory of the feedwater controller (FCAA) with the Ramona-3B code, happened in the Unit 2 of the Laguna Verde power plant (CNLV), in September of the year 2000 are presented. The transitory originates as consequence of the controller's fault of speed of a turbo pump of feedwater. The work includes a short description of the event, the suppositions considered for the simulation and the obtained results. Also, a discussion of the impact of the transitory event is presented on aspects of reactor safety. Although the carried out simulation is limited by the capacities of the code and for the lack of available information, it was found that even in a conservative situation, the power was incremented only in 12% above the nominal value, while that the thermal limit determined by the minimum reason of the critical power, MCPR, always stayed above the limit values of operation and safety. (Author)

  16. Fault Diagnosis for Constant Deceleration Braking System of Mine Hoist based on Principal Component Analysis and SVM

    Directory of Open Access Journals (Sweden)

    Li Juan-Juan

    2017-01-01

    Full Text Available Based on AMESim simulation platform, the pressure-time curve of constant deceleration braking system is obtained in this paper firstly, by simulating three typical faults of brake, the spring stiffness decrease, the brake shoe friction coefficient decrease and brake leaking. Then pressure data on the curve for each time are seen as a variable and the curve is chosen as the fault sample, analysed by the method of Principal Component Analysis (PCA. Last, principal components or sum of variance contribution rates more than 95% are selected as sample eigenvalues and Support Vector Machine (SVM is used for fault diagnosis. Diagnosis results show that all testing faults can be identified accurately, which indicates SVM model has an extremely excellent ability to identify faults. To further verify the performance of SVM for fault identification, BP neural network is established to compare. The result shows that SVM model is more accurate than BP neural network in fault recognition.

  17. Central Asia Active Fault Database

    Science.gov (United States)

    Mohadjer, Solmaz; Ehlers, Todd A.; Kakar, Najibullah

    2014-05-01

    The ongoing collision of the Indian subcontinent with Asia controls active tectonics and seismicity in Central Asia. This motion is accommodated by faults that have historically caused devastating earthquakes and continue to pose serious threats to the population at risk. Despite international and regional efforts to assess seismic hazards in Central Asia, little attention has been given to development of a comprehensive database for active faults in the region. To address this issue and to better understand the distribution and level of seismic hazard in Central Asia, we are developing a publically available database for active faults of Central Asia (including but not limited to Afghanistan, Tajikistan, Kyrgyzstan, northern Pakistan and western China) using ArcGIS. The database is designed to allow users to store, map and query important fault parameters such as fault location, displacement history, rate of movement, and other data relevant to seismic hazard studies including fault trench locations, geochronology constraints, and seismic studies. Data sources integrated into the database include previously published maps and scientific investigations as well as strain rate measurements and historic and recent seismicity. In addition, high resolution Quickbird, Spot, and Aster imagery are used for selected features to locate and measure offset of landforms associated with Quaternary faulting. These features are individually digitized and linked to attribute tables that provide a description for each feature. Preliminary observations include inconsistent and sometimes inaccurate information for faults documented in different studies. For example, the Darvaz-Karakul fault which roughly defines the western margin of the Pamir, has been mapped with differences in location of up to 12 kilometers. The sense of motion for this fault ranges from unknown to thrust and strike-slip in three different studies despite documented left-lateral displacements of Holocene and late

  18. Structure and flow properties of syn-rift border faults: The interplay between fault damage and fault-related chemical alteration (Dombjerg Fault, Wollaston Forland, NE Greenland)

    Science.gov (United States)

    Kristensen, Thomas B.; Rotevatn, Atle; Peacock, David C. P.; Henstra, Gijs A.; Midtkandal, Ivar; Grundvåg, Sten-Andreas

    2016-11-01

    Structurally controlled, syn-rift, clastic depocentres are of economic interest as hydrocarbon reservoirs; understanding the structure of their bounding faults is of great relevance, e.g. in the assessment of fault-controlled hydrocarbon retention potential. Here we investigate the structure of the Dombjerg Fault Zone (Wollaston Forland, NE Greenland), a syn-rift border fault that juxtaposes syn-rift deep-water hanging-wall clastics against a footwall of crystalline basement. A series of discrete fault strands characterize the central fault zone, where discrete slip surfaces, fault rock assemblages and extreme fracturing are common. A chemical alteration zone (CAZ) of fault-related calcite cementation envelops the fault and places strong controls on the style of deformation, particularly in the hanging-wall. The hanging-wall damage zone includes faults, joints, veins and, outside the CAZ, disaggregation deformation bands. Footwall deformation includes faults, joints and veins. Our observations suggest that the CAZ formed during early-stage fault slip and imparted a mechanical control on later fault-related deformation. This study thus gives new insights to the structure of an exposed basin-bounding fault and highlights a spatiotemporal interplay between fault damage and chemical alteration, the latter of which is often underreported in fault studies. To better elucidate the structure, evolution and flow properties of faults (outcrop or subsurface), both fault damage and fault-related chemical alteration must be considered.

  19. A new and accurate fault location algorithm for combined transmission lines using Adaptive Network-Based Fuzzy Inference System

    Energy Technology Data Exchange (ETDEWEB)

    Sadeh, Javad; Afradi, Hamid [Electrical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, P.O. Box: 91775-1111, Mashhad (Iran)

    2009-11-15

    This paper presents a new and accurate algorithm for locating faults in a combined overhead transmission line with underground power cable using Adaptive Network-Based Fuzzy Inference System (ANFIS). The proposed method uses 10 ANFIS networks and consists of 3 stages, including fault type classification, faulty section detection and exact fault location. In the first part, an ANFIS is used to determine the fault type, applying four inputs, i.e., fundamental component of three phase currents and zero sequence current. Another ANFIS network is used to detect the faulty section, whether the fault is on the overhead line or on the underground cable. Other eight ANFIS networks are utilized to pinpoint the faults (two for each fault type). Four inputs, i.e., the dc component of the current, fundamental frequency of the voltage and current and the angle between them, are used to train the neuro-fuzzy inference systems in order to accurately locate the faults on each part of the combined line. The proposed method is evaluated under different fault conditions such as different fault locations, different fault inception angles and different fault resistances. Simulation results confirm that the proposed method can be used as an efficient means for accurate fault location on the combined transmission lines. (author)

  20. Fault Management Design Strategies

    Science.gov (United States)

    Day, John C.; Johnson, Stephen B.

    2014-01-01

    Development of dependable systems relies on the ability of the system to determine and respond to off-nominal system behavior. Specification and development of these fault management capabilities must be done in a structured and principled manner to improve our understanding of these systems, and to make significant gains in dependability (safety, reliability and availability). Prior work has described a fundamental taxonomy and theory of System Health Management (SHM), and of its operational subset, Fault Management (FM). This conceptual foundation provides a basis to develop framework to design and implement FM design strategies that protect mission objectives and account for system design limitations. Selection of an SHM strategy has implications for the functions required to perform the strategy, and it places constraints on the set of possible design solutions. The framework developed in this paper provides a rigorous and principled approach to classifying SHM strategies, as well as methods for determination and implementation of SHM strategies. An illustrative example is used to describe the application of the framework and the resulting benefits to system and FM design and dependability.

  1. Implementation of a Wind Farm Turbine Control System with Short-Term Grid Faults Management

    DEFF Research Database (Denmark)

    Marra, Francesco; Rasmussen, Tonny Wederberg; Garcia-Valle, Rodrigo

    2010-01-01

    with the implementation of a control strategy in order to stay connected under grid faults. The method aimed to ensure that a wind farm turbine remains connected and no electric power is delivered to the grid during the fault period. The overall system was modelled and simulated by using the software Matlab/Simulink....

  2. Application of a Bank of Kalman Filters for Aircraft Engine Fault Diagnostics

    National Research Council Canada - National Science Library

    Kobayashi, Takahisa

    2003-01-01

    .... The proposed FDI approach is applied to a nonlinear engine simulation at nominal and aged conditions, and the evaluation results for various engine faults at cruise operating conditions are given. The ability of the proposed approach to reliably detect and isolate sensor and actuator faults is demonstrated. (7 tables, 4 figures, 17 refs.)

  3. Transient Monitoring Function–Based Fault Detection for Inverter-Interfaced Microgrids

    DEFF Research Database (Denmark)

    Sadeghkhani, Iman; Esmail Hamedani Golshan, Mohamad; Mehrizi-Sani, Ali

    2017-01-01

    One of the major challenges in protection of the inverter-interfaced islanded microgrids is their limited fault current level. This degrades the performance of traditional overcurrent protection schemes. This paper proposes a fault detection strategy based on monitoring the transient response of ......-domain simulation case studies using the CIGRE benchmark low voltage microgrid network....

  4. Traumatic injury and perceived injustice: Fault attributions matter in a "no-fault" compensation state.

    Directory of Open Access Journals (Sweden)

    Liane J Ioannou

    Full Text Available Traumatic injury can lead to loss, suffering and feelings of injustice. Previous research has shown that perceived injustice is associated with poorer physical and mental wellbeing in persons with chronic pain. This study aimed to identify the relative association between injury, compensation and pain-related characteristics and perceived injustice 12-months after traumatic injury.433 participants were recruited from the Victorian Orthopedic Trauma Outcomes Registry and Victorian State Trauma Registry, and completed questionnaires at 12-14 months after injury as part of an observational cohort study. Using hierarchical linear regression we examined the relationships between baseline demographics (sex, age, education, comorbidities, injury (injury severity, hospital length of stay, compensation (compensation status, fault, lawyer involvement, and health outcomes (SF-12 and perceived injustice. We then examined how much additional variance in perceived injustice was related to worse pain severity, interference, self-efficacy, catastrophizing, kinesiophobia or disability.Only a small portion of variance in perceived injustice was related to baseline demographics (especially education level, and injury severity. Attribution of fault to another, consulting a lawyer, health-related quality of life, disability and the severity of pain-related cognitions explained the majority of variance in perceived injustice. While univariate analyses showed that compensable injury led to higher perceptions of injustice, this did not remain significant when adjusting for all other factors, including fault attribution and consulting a lawyer.In addition to the "justice" aspects of traumatic injury, the health impacts of injury, emotional distress related to pain (catastrophizing, and the perceived impact of pain on activity (pain self-efficacy, had stronger associations with perceptions of injustice than either injury or pain severity. To attenuate the likelihood of

  5. Uncertainty Handling in Disaster Management Using Hierarchical Rough Set Granulation

    Science.gov (United States)

    Sheikhian, H.; Delavar, M. R.; Stein, A.

    2015-08-01

    Uncertainty is one of the main concerns in geospatial data analysis. It affects different parts of decision making based on such data. In this paper, a new methodology to handle uncertainty for multi-criteria decision making problems is proposed. It integrates hierarchical rough granulation and rule extraction to build an accurate classifier. Rough granulation provides information granules with a detailed quality assessment. The granules are the basis for the rule extraction in granular computing, which applies quality measures on the rules to obtain the best set of classification rules. The proposed methodology is applied to assess seismic physical vulnerability in Tehran. Six effective criteria reflecting building age, height and material, topographic slope and earthquake intensity of the North Tehran fault have been tested. The criteria were discretized and the data set was granulated using a hierarchical rough method, where the best describing granules are determined according to the quality measures. The granules are fed into the granular computing algorithm resulting in classification rules that provide the highest prediction quality. This detailed uncertainty management resulted in 84% accuracy in prediction in a training data set. It was applied next to the whole study area to obtain the seismic vulnerability map of Tehran. A sensitivity analysis proved that earthquake intensity is the most effective criterion in the seismic vulnerability assessment of Tehran.

  6. UNCERTAINTY HANDLING IN DISASTER MANAGEMENT USING HIERARCHICAL ROUGH SET GRANULATION

    Directory of Open Access Journals (Sweden)

    H. Sheikhian

    2015-08-01

    Full Text Available Uncertainty is one of the main concerns in geospatial data analysis. It affects different parts of decision making based on such data. In this paper, a new methodology to handle uncertainty for multi-criteria decision making problems is proposed. It integrates hierarchical rough granulation and rule extraction to build an accurate classifier. Rough granulation provides information granules with a detailed quality assessment. The granules are the basis for the rule extraction in granular computing, which applies quality measures on the rules to obtain the best set of classification rules. The proposed methodology is applied to assess seismic physical vulnerability in Tehran. Six effective criteria reflecting building age, height and material, topographic slope and earthquake intensity of the North Tehran fault have been tested. The criteria were discretized and the data set was granulated using a hierarchical rough method, where the best describing granules are determined according to the quality measures. The granules are fed into the granular computing algorithm resulting in classification rules that provide the highest prediction quality. This detailed uncertainty management resulted in 84% accuracy in prediction in a training data set. It was applied next to the whole study area to obtain the seismic vulnerability map of Tehran. A sensitivity analysis proved that earthquake intensity is the most effective criterion in the seismic vulnerability assessment of Tehran.

  7. Fault tolerance in "multiprocessor systems

    Indian Academy of Sciences (India)

    puter architecture; [multiprocessor systems; reconfiguration; system- level diagnosis; VLSI processor arrays. 1. Introduction. Fault-tolerant computing can be defined as the ability to execute specified algorithms correctly inspite of the presence of faults. The complexity of supersystems and the increasing use of such computer ...

  8. Combined Geometric and Neural Network Approach to Generic Fault Diagnosis in Satellite Actuators and Sensors

    DEFF Research Database (Denmark)

    Baldi, P.; Blanke, Mogens; Castaldi, P.

    2016-01-01

    This paper presents a novel scheme for diagnosis of faults affecting the sensors measuring the satellite attitude, body angular velocity and flywheel spin rates as well as defects related to the control torques provided by satellite reaction wheels. A nonlinear geometric design is used to avoid...... that aerodynamic disturbance torques have unwanted influence on the residuals exploited for fault detection and isolation. Radial basis function neural networks are used to obtain fault estimation filters that do not need a priori information about the fault internal models. Simulation results are based...... on a detailed nonlinear satellite model with embedded disturbance description. The results document the efficacy of the proposed diagnosis scheme....

  9. Gyro-based Maximum-Likelihood Thruster Fault Detection and Identification

    Science.gov (United States)

    Wilson, Edward; Lages, Chris; Mah, Robert; Clancy, Daniel (Technical Monitor)

    2002-01-01

    When building smaller, less expensive spacecraft, there is a need for intelligent fault tolerance vs. increased hardware redundancy. If fault tolerance can be achieved using existing navigation sensors, cost and vehicle complexity can be reduced. A maximum likelihood-based approach to thruster fault detection and identification (FDI) for spacecraft is developed here and applied in simulation to the X-38 space vehicle. The system uses only gyro signals to detect and identify hard, abrupt, single and multiple jet on- and off-failures. Faults are detected within one second and identified within one to five accords,

  10. Neural adaptive observer-based sensor and actuator fault detection in nonlinear systems: Application in UAV.

    Science.gov (United States)

    Abbaspour, Alireza; Aboutalebi, Payam; Yen, Kang K; Sargolzaei, Arman

    2017-03-01

    A new online detection strategy is developed to detect faults in sensors and actuators of unmanned aerial vehicle (UAV) systems. In this design, the weighting parameters of the Neural Network (NN) are updated by using the Extended Kalman Filter (EKF). Online adaptation of these weighting parameters helps to detect abrupt, intermittent, and incipient faults accurately. We apply the proposed fault detection system to a nonlinear dynamic model of the WVU YF-22 unmanned aircraft for its evaluation. The simulation results show that the new method has better performance in comparison with conventional recurrent neural network-based fault detection strategies. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Fault-tolerant architectures for superconducting qubits

    Energy Technology Data Exchange (ETDEWEB)

    DiVincenzo, David P [IBM Research Division, Thomas J Watson Research Center, Yorktown Heights, NY 10598 (United States)], E-mail: divince@watson.ibm.com

    2009-12-15

    In this short review, I draw attention to new developments in the theory of fault tolerance in quantum computation that may give concrete direction to future work in the development of superconducting qubit systems. The basics of quantum error-correction codes, which I will briefly review, have not significantly changed since their introduction 15 years ago. But an interesting picture has emerged of an efficient use of these codes that may put fault-tolerant operation within reach. It is now understood that two-dimensional surface codes, close relatives of the original toric code of Kitaev, can be adapted as shown by Raussendorf and Harrington to effectively perform logical gate operations in a very simple planar architecture, with error thresholds for fault-tolerant operation simulated to be 0.75%. This architecture uses topological ideas in its functioning, but it is not 'topological quantum computation'-there are no non-abelian anyons in sight. I offer some speculations on the crucial pieces of superconducting hardware that could be demonstrated in the next couple of years that would be clear stepping stones towards this surface-code architecture.

  12. Fault tolerant control for switched linear systems

    CERN Document Server

    Du, Dongsheng; Shi, Peng

    2015-01-01

    This book presents up-to-date research and novel methodologies on fault diagnosis and fault tolerant control for switched linear systems. It provides a unified yet neat framework of filtering, fault detection, fault diagnosis and fault tolerant control of switched systems. It can therefore serve as a useful textbook for senior and/or graduate students who are interested in knowing the state-of-the-art of filtering, fault detection, fault diagnosis and fault tolerant control areas, as well as recent advances in switched linear systems.  

  13. Distributed Hierarchical Control versus an Economic Model for Cloud Resource Management

    OpenAIRE

    Marinescu, Dan C.; Paya, Ashkan; Morrison, John P.; Healy, Philip

    2015-01-01

    We investigate a hierarchically organized cloud infrastructure and compare distributed hierarchical control based on resource monitoring with market mechanisms for resource management. The latter do not require a model of the system, incur a low overhead, are robust, and satisfy several other desiderates of autonomic computing. We introduce several performance measures and report on simulation studies which show that a straightforward bidding scheme supports an effective admission control mec...

  14. Web Application for Hierarchical Organizational Structure Optimization – Human Resource Management Case Study

    Directory of Open Access Journals (Sweden)

    Kofjač Davorin

    2015-08-01

    Full Text Available Background and Purpose: In a complex strictly hierarchical organizational structure, undesired oscillations may occur, which have not yet been adequately addressed. Therefore, parameter values, which define fluctuations and transitions from one state to another, need to be optimized to prevent oscillations and to keep parameter values between lower and upper bounds. The objective was to develop a simulation model of hierarchical organizational structure as a web application to help in solving the aforementioned problem.

  15. Nonlinear Process Fault Diagnosis Based on Serial Principal Component Analysis.

    Science.gov (United States)

    Deng, Xiaogang; Tian, Xuemin; Chen, Sheng; Harris, Chris J

    2016-12-22

    Many industrial processes contain both linear and nonlinear parts, and kernel principal component analysis (KPCA), widely used in nonlinear process monitoring, may not offer the most effective means for dealing with these nonlinear processes. This paper proposes a new hybrid linear-nonlinear statistical modeling approach for nonlinear process monitoring by closely integrating linear principal component analysis (PCA) and nonlinear KPCA using a serial model structure, which we refer to as serial PCA (SPCA). Specifically, PCA is first applied to extract PCs as linear features, and to decompose the data into the PC subspace and residual subspace (RS). Then, KPCA is performed in the RS to extract the nonlinear PCs as nonlinear features. Two monitoring statistics are constructed for fault detection, based on both the linear and nonlinear features extracted by the proposed SPCA. To effectively perform fault identification after a fault is detected, an SPCA similarity factor method is built for fault recognition, which fuses both the linear and nonlinear features. Unlike PCA and KPCA, the proposed method takes into account both linear and nonlinear PCs simultaneously, and therefore, it can better exploit the underlying process's structure to enhance fault diagnosis performance. Two case studies involving a simulated nonlinear process and the benchmark Tennessee Eastman process demonstrate that the proposed SPCA approach is more effective than the existing state-of-the-art approach based on KPCA alone, in terms of nonlinear process fault detection and identification.

  16. Fault tolerance control for proton exchange membrane fuel cell systems

    Science.gov (United States)

    Wu, Xiaojuan; Zhou, Boyang

    2016-08-01

    Fault diagnosis and controller design are two important aspects to improve proton exchange membrane fuel cell (PEMFC) system durability. However, the two tasks are often separately performed. For example, many pressure and voltage controllers have been successfully built. However, these controllers are designed based on the normal operation of PEMFC. When PEMFC faces problems such as flooding or membrane drying, a controller with a specific design must be used. This paper proposes a unique scheme that simultaneously performs fault diagnosis and tolerance control for the PEMFC system. The proposed control strategy consists of a fault diagnosis, a reconfiguration mechanism and adjustable controllers. Using a back-propagation neural network, a model-based fault detection method is employed to detect the PEMFC current fault type (flooding, membrane drying or normal). According to the diagnosis results, the reconfiguration mechanism determines which backup controllers to be selected. Three nonlinear controllers based on feedback linearization approaches are respectively built to adjust the voltage and pressure difference in the case of normal, membrane drying and flooding conditions. The simulation results illustrate that the proposed fault tolerance control strategy can track the voltage and keep the pressure difference at desired levels in faulty conditions.

  17. Centrifuge modeling of buried continuous pipelines subjected to normal faulting

    Science.gov (United States)

    Moradi, Majid; Rojhani, Mahdi; Galandarzadeh, Abbas; Takada, Shiro

    2013-03-01

    Seismic ground faulting is the greatest hazard for continuous buried pipelines. Over the years, researchers have attempted to understand pipeline behavior mostly via numerical modeling such as the finite element method. The lack of well-documented field case histories of pipeline failure from seismic ground faulting and the cost and complicated facilities needed for full-scale experimental simulation mean that a centrifuge-based method to determine the behavior of pipelines subjected to faulting is best to verify numerical approaches. This paper presents results from three centrifuge tests designed to investigate continuous buried steel pipeline behavior subjected to normal faulting. The experimental setup and procedure are described and the recorded axial and bending strains induced in a pipeline are presented and compared to those obtained via analytical methods. The influence of factors such as faulting offset, burial depth and pipe diameter on the axial and bending strains of pipes and on ground soil failure and pipeline deformation patterns are also investigated. Finally, the tensile rupture of a pipeline due to normal faulting is investigated.

  18. Hall Sensor Output Signal Fault-Detection & Safety Implementation Logic

    Directory of Open Access Journals (Sweden)

    Lee SangHun

    2016-01-01

    Full Text Available Recently BLDC motors have been popular in various industrial applications and electric mobility. Recently BLDC motors have been popular in various industrial applications and electric mobility. In most brushless direct current (BLDC motor drives, there are three hall sensors as a position reference. Low resolution hall effect sensor is popularly used to estimate the rotor position because of its good comprehensive performance such as low cost, high reliability and sufficient precision. Various possible faults may happen in a hall effect sensor. This paper presents a fault-tolerant operation method that allows the control of a BLDC motor with one faulty hall sensor and presents the hall sensor output fault-tolerant control strategy. The situations considered are when the output from a hall sensor stays continuously at low or high levels, or a short-time pulse appears on a hall sensor signal. For fault detection, identification of a faulty signal and generating a substitute signal, this method only needs the information from the hall sensors. There are a few research work on hall effect sensor failure of BLDC motor. The conventional fault diagnosis methods are signal analysis, model based analysis and knowledge based analysis. The proposed method is signal based analysis using a compensation signal for reconfiguration and therefore fault diagnosis can be fast. The proposed method is validated to execute the simulation using PSIM.

  19. Constraining fault growth rates and fault evolution in New Zealand

    Science.gov (United States)

    Lamarche, Geoffroy; Bull, Jonathan M.; Barnes, Phil M.; Taylor, Susanna K.; Horgan, Huw

    2000-10-01

    Understanding how faults propagate, grow, and interact in fault systems is important because they are primarily responsible for distributing strain in the upper crust. They localize deformation and stress release, often producing surface displacements that control sedimentation and fluid flow, either by acting as conduits or barriers. Identifying fault spatial distribution, quantifying activity, evaluating linkage mechanisms, and estimating fault growth rates are key components in seismic risk evaluation. Scientists from the National Institute of Water and Atmospheric Research (NIWA), New Zealand, and the Southampton Oceanography Centre, United Kingdom, are working on a collaborative project that aims to improve understanding of faulting processes in the Earth's crust.The program comprises two research cruises to survey the Whakatane Graben, New Zealand, which is a zone of intense seismicity active extensional faulting, and rapid subsidence within the back-arc region of the Pacific-Australia plate boundary zone (Figure 1). Few places in the world offer the same opportunity to study the mechanisms by which major crustal faults have grown from small- to large-scale structures capable of generating moderate to large-magnitude earthquakes.

  20. Fault ride-through enhancement of fixed speed wind turbine using bridge-type fault current limiter

    Directory of Open Access Journals (Sweden)

    Mostafa I. Marei

    2016-05-01

    Full Text Available The interaction between wind energy turbines and the grid results in two main problems, increasing the short-circuit level and reducing the Fault Ride-Through (FRT capability during faults. The objective of this paper is to solve these problems, for fixed speed Wind Energy Systems (WECS, utilizing the bridge-type Fault Current Limiter (FCL with a discharging resistor. A simple cascaded control system is proposed for the FCL to regulate the terminal voltage of the generator and limit the current. The system is simulated on PSCAD/EMTDC software to evaluate the dynamic performance of the proposed WECS compensated by FCL. The simulation results show the potentials of the FCL as a simple and effective method for solving grid interconnection problems of WECS.

  1. A Generalised Fault Protection Structure Proposed for Uni-grounded Low-Voltage AC Microgrids

    Science.gov (United States)

    Bui, Duong Minh; Chen, Shi-Lin; Lien, Keng-Yu; Jiang, Jheng-Lun

    2016-04-01

    This paper presents three main configurations of uni-grounded low-voltage AC microgrids. Transient situations of a uni-grounded low-voltage (LV) AC microgrid (MG) are simulated through various fault tests and operation transition tests between grid-connected and islanded modes. Based on transient simulation results, available fault protection methods are proposed for main and back-up protection of a uni-grounded AC microgrid. In addition, concept of a generalised fault protection structure of uni-grounded LVAC MGs is mentioned in the paper. As a result, main contributions of the paper are: (i) definition of different uni-grounded LVAC MG configurations; (ii) analysing transient responses of a uni-grounded LVAC microgrid through line-to-line faults, line-to-ground faults, three-phase faults and a microgrid operation transition test, (iii) proposing available fault protection methods for uni-grounded microgrids, such as: non-directional or directional overcurrent protection, under/over voltage protection, differential current protection, voltage-restrained overcurrent protection, and other fault protection principles not based on phase currents and voltages (e.g. total harmonic distortion detection of currents and voltages, using sequence components of current and voltage, 3I0 or 3V0 components), and (iv) developing a generalised fault protection structure with six individual protection zones to be suitable for different uni-grounded AC MG configurations.

  2. Fault Tolerant and Optimal Control of Wind Turbines with Distributed High-Speed Generators

    Directory of Open Access Journals (Sweden)

    Urs Giger

    2017-01-01

    Full Text Available In this paper, the control scheme of a distributed high-speed generator system with a total amount of 12 generators and nominal generator speed of 7000 min − 1 is studied. Specifically, a fault tolerant control (FTC scheme is proposed to keep the turbine in operation in the presence of up to four simultaneous generator faults. The proposed controller structure consists of two layers: The upper layer is the baseline controller, which is separated into a partial load region with the generator torque as an actuating signal and the full-load operation region with the collective pitch angle as the other actuating signal. In addition, the lower layer is responsible for the fault diagnosis and FTC characteristics of the distributed generator drive train. The fault reconstruction and fault tolerant control strategy are tested in simulations with several actuator faults of different types.

  3. A Spectrum Detection Approach for Bearing Fault Signal Based on Spectral Kurtosis

    Directory of Open Access Journals (Sweden)

    Yunfeng Li

    2017-01-01

    Full Text Available According to the similarity between Morlet wavelet and fault signal and the sensitive characteristics of spectral kurtosis for the impact signal, a new wavelet spectrum detection approach based on spectral kurtosis for bearing fault signal is proposed. This method decreased the band-pass filter range and reduced the wavelet window width significantly. As a consequence, the bearing fault signal was detected adaptively, and time-frequency characteristics of the fault signal can be extracted accurately. The validity of this method was verified by the identifications of simulated shock signal and test bearing fault signal. The method provides a new understanding of wavelet spectrum detection based on spectral kurtosis for rolling element bearing fault signal.

  4. Robust Fault Detection for a Class of Uncertain Nonlinear Systems Based on Multiobjective Optimization

    Directory of Open Access Journals (Sweden)

    Bingyong Yan

    2015-01-01

    Full Text Available A robust fault detection scheme for a class of nonlinear systems with uncertainty is proposed. The proposed approach utilizes robust control theory and parameter optimization algorithm to design the gain matrix of fault tracking approximator (FTA for fault detection. The gain matrix of FTA is designed to minimize the effects of system uncertainty on residual signals while maximizing the effects of system faults on residual signals. The design of the gain matrix of FTA takes into account the robustness of residual signals to system uncertainty and sensitivity of residual signals to system faults simultaneously, which leads to a multiobjective optimization problem. Then, the detectability of system faults is rigorously analyzed by investigating the threshold of residual signals. Finally, simulation results are provided to show the validity and applicability of the proposed approach.

  5. A New Fast Peak Current Controller for Transient Voltage Faults for Power Converters

    Directory of Open Access Journals (Sweden)

    Jesús Muñoz-Cruzado-Alba

    2015-12-01

    Full Text Available Power converters are the basic unit for the transient voltage fault ride through capability for most renewable distributed generators (DGs. When a transient fault happens, the grid voltage will drop suddenly and probably will also suffer a phase-jump event as well. State-of-the-art voltage fault control techniques regulate the current injected during the grid fault. However, the beginning of the fault could be too fast for the inner current control loops of the inverter, and transient over-current would be expected. In order to avoid the excessive peak current of the methods presented in the literature, a new fast peak current control (FPCC technique is proposed. Controlling the peak current magnitude avoids undesirable disconnection of the distributed generator in a fault state and improves the life expectancy of the converter. Experimental and simulation tests with high power converters provide the detailed behaviour of the method with excellent results.

  6. Compound faults detection in gearbox via meshing resonance and spectral kurtosis methods

    Science.gov (United States)

    Wang, Tianyang; Chu, Fulei; Han, Qinkai; Kong, Yun

    2017-03-01

    Kurtosis-based impulsive component identification is one of the most effective algorithms in detecting localized faults in both gearboxes and rolling bearings. However, if localized faults exist in both gear tooth and rolling bearing simultaneously it is difficult to tell the differences between the two types of defects. As such, this study proposes a new method to solve the problem by using the meshing resonance and spectral kurtosis (SK) algorithms together. In specific, the raw signal is first decomposed into different frequency bands and levels, and then the corresponding Kurtogram and MRgram are calculated via the fault SK analysis and the meshing index. Furthermore, the resonance frequency bands induced by localized faults of the gear tooth and rolling bearing are separately identified by comparing the Kurtogram and the MRgram. Finally, the compound faults are respectively detected using envelope analysis. The effectiveness of the proposed method has been validated via both simulated and experimental gearboxes vibration signals with compound faults.

  7. Extension of the Accurate Voltage-Sag Fault Location Method in Electrical Power Distribution Systems

    Directory of Open Access Journals (Sweden)

    Youssef Menchafou

    2016-03-01

    Full Text Available Accurate Fault location in an Electric Power Distribution System (EPDS is important in maintaining system reliability. Several methods have been proposed in the past. However, the performances of these methods either show to be inefficient or are a function of the fault type (Fault Classification, because they require the use of an appropriate algorithm for each fault type. In contrast to traditional approaches, an accurate impedance-based Fault Location (FL method is presented in this paper. It is based on the voltage-sag calculation between two measurement points chosen carefully from the available strategic measurement points of the line, network topology and current measurements at substation. The effectiveness and the accuracy of the proposed technique are demonstrated for different fault types using a radial power flow system. The test results are achieved from the numerical simulation using the data of a distribution line recognized in the literature.

  8. Ocean Economy and Fault Diagnosis of Electric Submersible Pump applied in Floating platform

    Directory of Open Access Journals (Sweden)

    Panlong Zhang

    2017-04-01

    Full Text Available Ocean economy plays a crucial role in the strengthening maritime safety industry and in the welfare of human beings. Electric Submersible Pumps (ESP have been widely used in floating platforms on the sea to provide oil for machines. However, the ESP fault may lead to ocean environment pollution, on the other hand, a timely fault diagnosis of ESP can improve the ocean economy. In order to meet the strict regulations of the ocean economy and environmental protection, the fault diagnosis of ESP system has become more and more popular in many countries. The vibration mechanical models of typical faults have been able to successfully diagnose the faults of ESP. And different types of sensors are used to monitor the vibration signal for the signal analysis and fault diagnosis in the ESP system. Meanwhile, physical sensors would increase the fault diagnosis challenge. Nowadays, the method of neural network for the fault diagnosis of ESP has been applied widely, which can diagnose the fault of an electric pump accurately based on the large database. To reduce the number of sensors and to avoid the large database, in this paper, algorithms are designed based on feature extraction to diagnose the fault of the ESP system. Simulation results show that the algorithms can achieve the prospective objectives superbly.

  9. Distributed Fault Detection Based on Credibility and Cooperation for WSNs in Smart Grids.

    Science.gov (United States)

    Shao, Sujie; Guo, Shaoyong; Qiu, Xuesong

    2017-04-28

    Due to the increasingly important role in monitoring and data collection that sensors play, accurate and timely fault detection is a key issue for wireless sensor networks (WSNs) in smart grids. This paper presents a novel distributed fault detection mechanism for WSNs based on credibility and cooperation. Firstly, a reasonable credibility model of a sensor is established to identify any suspicious status of the sensor according to its own temporal data correlation. Based on the credibility model, the suspicious sensor is then chosen to launch fault diagnosis requests. Secondly, the sending time of fault diagnosis request is discussed to avoid the transmission overhead brought about by unnecessary diagnosis requests and improve the efficiency of fault detection based on neighbor cooperation. The diagnosis reply of a neighbor sensor is analyzed according to its own status. Finally, to further improve the accuracy of fault detection, the diagnosis results of neighbors are divided into several classifications to judge the fault status of the sensors which launch the fault diagnosis requests. Simulation results show that this novel mechanism can achieve high fault detection ratio with a small number of fault diagnoses and low data congestion probability.

  10. Distributed Fault Detection Based on Credibility and Cooperation for WSNs in Smart Grids

    Science.gov (United States)

    Shao, Sujie; Guo, Shaoyong; Qiu, Xuesong

    2017-01-01

    Due to the increasingly important role in monitoring and data collection that sensors play, accurate and timely fault detection is a key issue for wireless sensor networks (WSNs) in smart grids. This paper presents a novel distributed fault detection mechanism for WSNs based on credibility and cooperation. Firstly, a reasonable credibility model of a sensor is established to identify any suspicious status of the sensor according to its own temporal data correlation. Based on the credibility model, the suspicious sensor is then chosen to launch fault diagnosis requests. Secondly, the sending time of fault diagnosis request is discussed to avoid the transmission overhead brought about by unnecessary diagnosis requests and improve the efficiency of fault detection based on neighbor cooperation. The diagnosis reply of a neighbor sensor is analyzed according to its own status. Finally, to further improve the accuracy of fault detection, the diagnosis results of neighbors are divided into several classifications to judge the fault status of the sensors which launch the fault diagnosis requests. Simulation results show that this novel mechanism can achieve high fault detection ratio with a small number of fault diagnoses and low data congestion probability. PMID:28452925

  11. Residual generation for fault detection and isolation in a class of uncertain nonlinear systems

    Science.gov (United States)

    Ma, Hong-Jun; Yang, Guang-Hong

    2013-02-01

    This article studies the problem of fault detection and isolation (FDI) for a class of uncertain nonlinear systems via a residual signal generated by a novel nonlinear adaptive observer. The considered faults are modelled by a set of time-varying vectors, in which a prescribed subset of faults are specially monitored and thus separable from the other faults. In the presence of Lipschitz-like nonlinearities and modelling uncertainties, the sensitivity of the residual signal to the monitored faults and its insensitivity to the other faults are rigorously analysed. Under a persistent excitation condition, the performances of the proposed fault diagnosis scheme, including the robustness to uncertainties, the quickness of estimation, the accuracy of estimation, the sensitivity to the monitored faults and the insensitivity to the complement faults, are quantified by a series of explicit design functions relevant to the observer parameters. It turns out that the number of faults which can be completely diagnosed is independent of the number of output sensors. A simulation example is given to illustrate the effectiveness of the proposed FDI method.

  12. Study on Fault Diagnosis of Rolling Bearing Based on Time-Frequency Generalized Dimension

    Directory of Open Access Journals (Sweden)

    Yu Yuan

    2015-01-01

    Full Text Available The condition monitoring technology and fault diagnosis technology of mechanical equipment played an important role in the modern engineering. Rolling bearing is the most common component of mechanical equipment which sustains and transfers the load. Therefore, fault diagnosis of rolling bearings has great significance. Fractal theory provides an effective method to describe the complexity and irregularity of the vibration signals of rolling bearings. In this paper a novel multifractal fault diagnosis approach based on time-frequency domain signals was proposed. The method and numerical algorithm of Multi-fractal analysis in time-frequency domain were provided. According to grid type J and order parameter q in algorithm, the value range of J and the cut-off condition of q were optimized based on the effect on the dimension calculation. Simulation experiments demonstrated that the effective signal identification could be complete by multifractal method in time-frequency domain, which is related to the factors such as signal energy and distribution. And the further fault diagnosis experiments of bearings showed that the multifractal method in time-frequency domain can complete the fault diagnosis, such as the fault judgment and fault types. And the fault detection can be done in the early stage of fault. Therefore, the multifractal method in time-frequency domain used in fault diagnosis of bearing is a practicable method.

  13. Active fault traces along Bhuj Fault and Katrol Hill Fault, and ...

    Indian Academy of Sciences (India)

    observed on the left bank of a stream cutting the terrace. Faulting is well revealed by 10–30 cm thick gouge. Lack of any corroborating evidence show- ing displacement of Quaternary deposits makes it difficult to decipher the active nature of the fault. However, the probability cannot be ruled- out. In the outlet of the small ...

  14. Hybrid fault diagnosis of nonlinear systems using neural parameter estimators.

    Science.gov (United States)

    Sobhani-Tehrani, E; Talebi, H A; Khorasani, K

    2014-02-01

    This paper presents a novel integrated hybrid approach for fault diagnosis (FD) of nonlinear systems taking advantage of both the system's mathematical model and the adaptive nonlinear approximation capability of computational intelligence techniques. Unlike most FD techniques, the proposed solution simultaneously accomplishes fault detection, isolation, and identification (FDII) within a unified diagnostic module. At the core of this solution is a bank of adaptive neural parameter estimators (NPEs) associated with a set of single-parameter fault models. The NPEs continuously estimate unknown fault parameters (FPs) that are indicators of faults in the system. Two NPE structures, series-parallel and parallel, are developed with their exclusive set of desirable attributes. The parallel scheme is extremely robust to measurement noise and possesses a simpler, yet more solid, fault isolation logic. In contrast, the series-parallel scheme displays short FD delays and is robust to closed-loop system transients due to changes in control commands. Finally, a fault tolerant observer (FTO) is designed to extend the capability of the two NPEs that originally assumes full state measurements for systems that have only partial state measurements. The proposed FTO is a neural state estimator that can estimate unmeasured states even in the presence of faults. The estimated and the measured states then comprise the inputs to the two proposed FDII schemes. Simulation results for FDII of reaction wheels of a three-axis stabilized satellite in the presence of disturbances and noise demonstrate the effectiveness of the proposed FDII solutions under partial state measurements. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Dynamics of Earthquake Faults

    CERN Document Server

    Carlson, J M; Shaw, B E

    1993-01-01

    We present an overview of our ongoing studies of the rich dynamical behavior of the uniform, deterministic Burridge--Knopoff model of an earthquake fault. We discuss the behavior of the model in the context of current questions in seismology. Some of the topics considered include: (1) basic properties of the model, such as the magnitude vs. frequency distribution and the distinction between small and large events; (2) dynamics of individual events, including dynamical selection of rupture propagation speeds; (3) generalizations of the model to more realistic, higher dimensional models; (4) studies of predictability, in which artificial catalogs generated by the model are used to test and determine the limitations of pattern recognition algorithms used in seismology.

  16. Characteristic Analysis and Fault-Tolerant Control of Circulating Current for Modular Multilevel Converters under Sub-Module Faults

    Directory of Open Access Journals (Sweden)

    Wen Wu

    2017-11-01

    Full Text Available A modular multilevel converter (MMC is considered to be a promising topology for medium- or high-power applications. However, a significantly increased amount of sub-modules (SMs in each arm also increase the risk of failures. Focusing on the fault-tolerant operation issue for the MMC under SM faults, the operation characteristics of MMC with different numbers of faulty SMs in the arms are analyzed and summarized in this paper. Based on the characteristics, a novel circulating current-suppressing (CCS fault-tolerant control strategy comprised of a basic control unit (BCU and virtual resistance compensation control unit (VRCCU in two parts is proposed, which has three main features: (i it can suppress the multi-different frequency components of the circulating current under different SM fault types simultaneously; (ii it can help fast limiting of the transient fault current caused at the faulty SM bypassed moment; and (iii it does not need extra communication systems to acquire the information of the number of faulty SMs. Moreover, by analyzing the stability performance of the proposed controller using the Root-Locus criterion, the election principle of the value of virtual resistance is revealed. Finally, the efficiency of the control strategy is confirmed with the simulation and experiment studies under different fault conditions.

  17. Fault detection and fault tolerant control of a smart base isolation system with magneto-rheological damper

    Science.gov (United States)

    Wang, Han; Song, Gangbing

    2011-08-01

    Fault detection and isolation (FDI) in real-time systems can provide early warnings for faulty sensors and actuator signals to prevent events that lead to catastrophic failures. The main objective of this paper is to develop FDI and fault tolerant control techniques for base isolation systems with magneto-rheological (MR) dampers. Thus, this paper presents a fixed-order FDI filter design procedure based on linear matrix inequalities (LMI). The necessary and sufficient conditions for the existence of a solution for detecting and isolating faults using the H_{\\infty } formulation is provided in the proposed filter design. Furthermore, an FDI-filter-based fuzzy fault tolerant controller (FFTC) for a base isolation structure model was designed to preserve the pre-specified performance of the system in the presence of various unknown faults. Simulation and experimental results demonstrated that the designed filter can successfully detect and isolate faults from displacement sensors and accelerometers while maintaining excellent performance of the base isolation technology under faulty conditions.

  18. Absolute age determination of quaternary faults

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Chang Sik; Lee, Seok Hoon; Choi, Man Sik [Korea Basic Science Institute, Seoul (Korea, Republic of)] (and others)

    2000-03-15

    To constrain the age of neotectonic fault movement, Rb-Sr, K-Ar, U-series disequilibrium, C-14 and Be-10 methods were applied to the fault gouges, fracture infillings and sediments from the Malbang, Ipsil, Wonwonsa faults faults in the Ulsan fault zone, Yangsan fault in the Yeongdeog area and southeastern coastal area. Rb-Sr and K-Ar data imply that the fault movement of the Ulan fault zone initiated at around 30 Ma and preliminary dating result for the Yang san fault is around 70 Ma in the Yeongdeog area. K-Ar and U-series disequilibrium dating results for fracture infillings in the Ipsil fault are consistent with reported ESR ages. Radiocarbon ages of quaternary sediments from the Jeongjari area are discordant with stratigraphic sequence. Carbon isotope data indicate a difference of sedimentry environment for those samples. Be-10 dating results for the Suryum fault area are consistent with reported OSL results.

  19. Use of a goal-tree fault-tree method in display design

    Energy Technology Data Exchange (ETDEWEB)

    Paulsen, Jette Lundtang

    2004-07-01

    This paper describes the development and use of a combination of a goal tree and a fault tree as a method to extract the necessary information the operator must have to prevent incipient failures to propagate into severe events. The paper also describes the difference and the similarities to the Abstraction Hierarchy and how to combine the methods. Furthermore are described how to use graphical elements in a hierarchical display. (Author)

  20. A benchmark for fault tolerant flight control evaluation

    NARCIS (Netherlands)

    Smaili, H.; Breeman, J.; Lombaerts, T.; Stroosma, O.

    2013-01-01

    A large transport aircraft simulation benchmark (REconfigurable COntrol for Vehicle Emergency Return ? RECOVER) has been developed within the GARTEUR (Group for Aeronautical Research and Technology in Europe) Flight Mechanics Action Group 16 (FM-AG(16)) on Fault Tolerant Control (2004 2008) for the

  1. Stochastic finite-fault modelling of strong earthquakes in Narmada ...

    Indian Academy of Sciences (India)

    In the present study, the prevailing seismotectonic conditions specified by parameters associated with source, path and site conditions are appraised. Stochastic finite-fault models are formulated for each scenario earthquake. The simulated peak ground accelerations for the rock sites from the possible mean maximum ...

  2. Sensor fault diagnosis for automotive engines with real data ...

    African Journals Online (AJOL)

    Five different sensors are investigated for an automotive engine including throttle angle, manifold pressure, manifold temperature, crankshaft speed and engine torque. The engine data is acquired from a one-litre Volkswagen petrol engine test bed under different operating states, and then simulated multiplicative faults are ...

  3. Stochastic search techniques for post-fault restoration of electrical ...

    Indian Academy of Sciences (India)

    Three stochastic search techniques have been used to find the optimal sequence of operations required to restore supply in an electrical distribution system on the occurrence of a fault. The three techniques are the genetic algorithm,simulated annealing and the tabu search. The performance of these techniques has been ...

  4. Rapid Transient Fault Insertion in Large Digital Systems

    NARCIS (Netherlands)

    Rohani, A.; Kerkhoff, Hans G.

    This paper presents a technique for rapidtransientfault injection, regarding the CPU time, to perform simulation-based fault-injection in complex System-on-Chip Systems (SoCs). The proposed approach can be applied to complex circuits, as it is not required to modify the top-level modules of a

  5. Hierarchical organisation of causal graphs

    Energy Technology Data Exchange (ETDEWEB)

    Dziopa, P. [CEA Centre d`Etudes de la Vallee du Rhone, 30 - Marcoule (France). Dept. des Procedes de Retraitement; Gentil, S. [ENSIEG, 38 - Saint-Martin d`Heres (France)

    1993-12-31

    This paper deals with the design of a supervision system using a hierarchy of models formed by graphs, in which the variables are the nodes and the causal relations between the variables of the arcs. To obtain a representation of the variables evolutions which contains only the relevant features of their real evolutions, the causal relations are completed with qualitative transfer functions (QTFs) which produce roughly the behaviour of the classical transfer functions. Major improvements have been made in the building of the hierarchical organization. First, the basic variables of the uppermost level and the causal relations between them are chosen. The next graph is built by adding intermediary variables to the upper graph. When the undermost graph has been built, the transfer functions parameters corresponding to its causal relations are identified. The second task consists in the upwelling of the information from the undermost graph to the uppermost one. A fusion procedure of the causal relations has been designed to compute the QFTs relevant for each level. This procedure aims to reduce the number of parameters needed to represent an evolution at a high level of abstraction. These techniques have been applied to the hierarchical modelling of nuclear process. (authors). 8 refs., 12 figs.

  6. Fault self-repair strategy based on evolvable hardware and reparation balance technology

    Directory of Open Access Journals (Sweden)

    Zhang Junbin

    2014-10-01

    Full Text Available In the face of harsh natural environment applications such as earth-orbiting and deep space satellites, underwater sea vehicles, strong electromagnetic interference and temperature stress, the circuits faults appear easily. Circuit faults will inevitably lead to serious losses of availability or impeded mission success without self-repair over the mission duration. Traditional fault-repair methods based on redundant fault-tolerant technique are straightforward to implement, yet their area, power and weight cost can be excessive. Moreover they utilize all plug-in or component level circuits to realize redundant backup, such that their applicability is limited. Hence, a novel self-repair technology based on evolvable hardware (EHW and reparation balance technology (RBT is proposed. Its cost is low, and fault self-repair of various circuits and devices can be realized through dynamic configuration. Making full use of the fault signals, correcting circuit can be found through EHW technique to realize the balance and compensation of the fault output-signals. In this paper, the self-repair model was analyzed which based on EHW and RBT technique, the specific self-repair strategy was studied, the corresponding self-repair circuit fault system was designed, and the typical faults were simulated and analyzed which combined with the actual electronic devices. Simulation results demonstrated that the proposed fault self-repair strategy was feasible. Compared to traditional techniques, fault self-repair based on EHW consumes fewer hardware resources, and the scope of fault self-repair was expanded significantly.

  7. Hierarchical Structures in Hypertext Learning Environments

    NARCIS (Netherlands)

    Bezdan, Eniko; Kester, Liesbeth; Kirschner, Paul A.

    2011-01-01

    Bezdan, E., Kester, L., & Kirschner, P. A. (2011, 9 September). Hierarchical Structures in Hypertext Learning Environments. Presentation for the visit of KU Leuven, Open University, Heerlen, The Netherlands.

  8. Discovering hierarchical structure in normal relational data

    DEFF Research Database (Denmark)

    Schmidt, Mikkel Nørgaard; Herlau, Tue; Mørup, Morten

    2014-01-01

    Hierarchical clustering is a widely used tool for structuring and visualizing complex data using similarity. Traditionally, hierarchical clustering is based on local heuristics that do not explicitly provide assessment of the statistical saliency of the extracted hierarchy. We propose a non......-parametric generative model for hierarchical clustering of similarity based on multifurcating Gibbs fragmentation trees. This allows us to infer and display the posterior distribution of hierarchical structures that comply with the data. We demonstrate the utility of our method on synthetic data and data of functional...

  9. Hierarchical Robust and Adaptive Nonlinear Control Design

    National Research Council Canada - National Science Library

    Haddad, Wassim

    2003-01-01

    The authors proposed the development of a general multiechelon hierarchical nonlinear switching control design framework that minimizes control law complexity subject to the achievement of control law robustness...

  10. Automatic Channel Fault Detection on a Small Animal APD-Based Digital PET Scanner

    Science.gov (United States)

    Charest, Jonathan; Beaudoin, Jean-François; Cadorette, Jules; Lecomte, Roger; Brunet, Charles-Antoine; Fontaine, Réjean

    2014-10-01

    Avalanche photodiode (APD) based positron emission tomography (PET) scanners show enhanced imaging capabilities in terms of spatial resolution and contrast due to the one to one coupling and size of individual crystal-APD detectors. However, to ensure the maximal performance, these PET scanners require proper calibration by qualified scanner operators, which can become a cumbersome task because of the huge number of channels they are made of. An intelligent system (IS) intends to alleviate this workload by enabling a diagnosis of the observational errors of the scanner. The IS can be broken down into four hierarchical blocks: parameter extraction, channel fault detection, prioritization and diagnosis. One of the main activities of the IS consists in analyzing available channel data such as: normalization coincidence counts and single count rates, crystal identification classification data, energy histograms, APD bias and noise thresholds to establish the channel health status that will be used to detect channel faults. This paper focuses on the first two blocks of the IS: parameter extraction and channel fault detection. The purpose of the parameter extraction block is to process available data on individual channels into parameters that are subsequently used by the fault detection block to generate the channel health status. To ensure extensibility, the channel fault detection block is divided into indicators representing different aspects of PET scanner performance: sensitivity, timing, crystal identification and energy. Some experiments on a 8 cm axial length LabPET scanner located at the Sherbrooke Molecular Imaging Center demonstrated an erroneous channel fault detection rate of 10% (with a 95% confidence interval (CI) of [9, 11]) which is considered tolerable. Globally, the IS achieves a channel fault detection efficiency of 96% (CI: [95, 97]), which proves that many faults can be detected automatically. Increased fault detection efficiency would be

  11. Architecture of thrust faults with alongstrike variations in fault-plane dip: anatomy of the Lusatian Fault, Bohemian Massif

    Czech Academy of Sciences Publication Activity Database

    Coubal, Miroslav; Adamovič, Jiří; Málek, Jiří; Prouza, V.

    2014-01-01

    Roč. 59, č. 3 (2014), s. 183-208 ISSN 1802-6222 Institutional support: RVO:67985831 ; RVO:67985891 Keywords : fault architecture * fault plane geometry * drag structures * thrust fault * sandstone * Lusatian Fault Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.405, year: 2014

  12. The Deformation of Overburden Soil and Interaction with Pile Foundations of Bridges Induced by Normal Faulting

    Science.gov (United States)

    Wu, Liang-Chun; Li, Chien-Hung; Chan, Pei-Chen; Lin, Ming-Lang

    2017-04-01

    According to the investigations of well-known disastrous earthquakes in recent years, ground deformation induced by faulting is one of the causes for engineering structure damages in addition to strong ground motion. Most of structures located on faulting zone has been destroyed by fault offset. Take the Norcia Earthquake in Italy (2016, Mw=6.2) as an example, the highway bridge in Arquata crossing the rupture area of the active normal fault suffered a quantity of displacement which causing abutment settlement, the piers of bridge fractured and so on. However, The Seismic Design Provisions and Commentary for Highway Bridges in Taiwan, the stating of it in the general rule of first chapter, the design in bridges crossing active fault: "This specification is not applicable of making design in bridges crossing or near active fault, that design ought to the other particular considerations ".This indicates that the safty of bridges crossing active fault are not only consider the seismic performance, the most ground deformation should be attended. In this research, to understand the failure mechanism and the deformation characteristics, we will organize the case which the bridges subjected faulting at home and abroad. The processes of research are through physical sandbox experiment and numerical simulation by discrete element models (PFC3-D). The normal fault case in Taiwan is Shanchiao Fault. As above, the research can explore the deformation in overburden soil and the influences in the foundations of bridges by normal faulting. While we can understand the behavior of foundations, we will make the bridge superstructures into two separations, simple beam and continuous beam and make a further research on the main control variables in bridges by faulting. Through the above mentioned, we can then give appropriate suggestions about planning considerations and design approaches. This research presents results from sandbox experiment and 3-D numerical analysis to simulate

  13. Numerical analysis of the effects induced by normal faults and dip angles on rock bursts

    Science.gov (United States)

    Jiang, Lishuai; Wang, Pu; Zhang, Peipeng; Zheng, Pengqiang; Xu, Bin

    2017-10-01

    The study of mining effects under the influences of a normal fault and its dip angle is significant for the prediction and prevention of rock bursts. Based on the geological conditions of panel 2301N in a coalmine, the evolution laws of the strata behaviors of the working face affected by a fault and the instability of the fault induced by mining operations with the working face of the footwall and hanging wall advancing towards a normal fault are studied using UDEC numerical simulation. The mechanism that induces rock burst is revealed, and the influence characteristics of the fault dip angle are analyzed. The results of the numerical simulation are verified by conducting a case study regarding the microseismic events. The results of this study serve as a reference for the prediction of rock bursts and their classification into hazardous areas under similar conditions.

  14. Coordination between Fault-Ride-Through Capability and Overcurrent Protection of DFIG Generatorsfor Wind Farms

    DEFF Research Database (Denmark)

    Bak-Jensen, Birgitte; Kawady, Tamer A.; Abdel-Rahman, Mansour H.

    2009-01-01

    -Through (FRT) mainly aims to delay a disconnecting of the DFIG units during grid faults for a possible time to restore the system stability if the fault is cleared within a permissible time. This strategy may, however, affect the performance of related protective elements during fault periods. In this paper......, the Coor-dination between Fault Ride-Through Capability and Overcur-rent Protection of DFIG Wind Generators in MV Networks is in-vestigated. Simulation test cases using MATLAB-Simulink are implemented on a 345-MW wind farm in AL-Zaafarana, Egypt. The simulation results show the influence of FRT capability......Due to the increasing penetration of wind farms in power systems, stability issues arise strongly for power system operation. Doubly-Fed Induction Generators (DFIG) are charac-terized with some unique features during normal/abnormal op-erating conditions as compared with singly-fed ones. Fault ride...

  15. Fault condition recognition of rolling bearing in bridge crane based on PSO–KPCA

    Directory of Open Access Journals (Sweden)

    He Yan

    2017-01-01

    Full Text Available When the rolling bearing in bridge crane gets out of order and often accompanies with occurrence of nonlinear behaviours, its fault information is weak and it is difficult to extract fault features and to distinguish diverse failure modes. Kernel principal component analysis (KPCA may realize nonlinear mapping to solve nonlinear problems. In the paper the particle swarm optimization (PSO)is applied to optimization of kernel function parameter to reduce its bind set-up. The optimal mathematical model of kernel parameters is constructed by means of thought of fisher discriminate functions .And then it is used to bridge crane rolling bearing simulated faults recognition. The simulation results show that KPCA optimized by PSO can effectively classify fault conditions of rolling bearing. It can be concluded that non-linear mapping capability of KPCA after its function parameter by PSO is greatly improved and the KPCA-PSO is very suit for slight and incipient mechanical fault condition recognition.

  16. Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs

    Science.gov (United States)

    We have conducted numerical simulation studies to assess the potential for injection-induced fault reactivation and notable seismic events associated with shale-gas hydraulic fracturing operations. The modeling is generally tuned toward conditions usually encountered in the Marce...

  17. Deep Fault Drilling Project—Alpine Fault, New Zealand

    Directory of Open Access Journals (Sweden)

    Rupert Sutherland

    2009-09-01

    Full Text Available The Alpine Fault, South Island, New Zealand, constitutes a globally significant natural laboratory for research into how active plate-bounding continental faults work and, in particular, how rocks exposed at the surface today relate to deep-seated processes of tectonic deformation, seismogenesis, and mineralization. The along-strike homogeneity of the hanging wall, rapid rate of dextral-reverse slip on an inclined fault plane, and relatively shallow depths to mechanical and chemical transitions make the Alpine Fault and the broader South Island plate boundary an important international site for multi-disciplinary research and a realistic target for an ambitious long-term program of scientific drilling investigations.

  18. Fault Monitoring and Fault Recovery Control for Position Moored Tanker

    DEFF Research Database (Denmark)

    Fang, Shaoji; Blanke, Mogens

    2011-01-01

    This paper addresses fault tolerant control for position mooring of a shuttle tanker operating in the North Sea. A complete framework for fault diagnosis is presented but the loss of a sub-sea mooring line buoyancy element is given particular attention, since this fault could lead to mooring line...... breakage and a high-risk abortion of an oil-loading operation. With significant drift forces from waves, non-Gaussian elements dominate forces and the residuals designed for fault diagnosis. Hypothesis testing need be designed using dedicated change detection for the type of distribution encountered....... In addition to dedicated diagnosis, an optimal position algorithm is proposed to accommodate buoyancy element failure and keep the mooring system in a safe state. Furthermore, even in the case of line breakage, this optimal position strategy could be utilised to avoid breakage of a second mooring line...

  19. Fusion information entropy method of rolling bearing fault diagnosis based on n-dimensional characteristic parameter distance

    Science.gov (United States)

    Ai, Yan-Ting; Guan, Jiao-Yue; Fei, Cheng-Wei; Tian, Jing; Zhang, Feng-Ling

    2017-05-01

    To monitor rolling bearing operating status with casings in real time efficiently and accurately, a fusion method based on n-dimensional characteristic parameters distance (n-DCPD) was proposed for rolling bearing fault diagnosis with two types of signals including vibration signal and acoustic emission signals. The n-DCPD was investigated based on four information entropies (singular spectrum entropy in time domain, power spectrum entropy in frequency domain, wavelet space characteristic spectrum entropy and wavelet energy spectrum entropy in time-frequency domain) and the basic thought of fusion information entropy fault diagnosis method with n-DCPD was given. Through rotor simulation test rig, the vibration and acoustic emission signals of six rolling bearing faults (ball fault, inner race fault, outer race fault, inner-ball faults, inner-outer faults and normal) are collected under different operation conditions with the emphasis on the rotation speed from 800 rpm to 2000 rpm. In the light of the proposed fusion information entropy method with n-DCPD, the diagnosis of rolling bearing faults was completed. The fault diagnosis results show that the fusion entropy method holds high precision in the recognition of rolling bearing faults. The efforts of this study provide a novel and useful methodology for the fault diagnosis of an aeroengine rolling bearing.

  20. Method of locating ground faults

    Science.gov (United States)

    Patterson, Richard L. (Inventor); Rose, Allen H. (Inventor); Cull, Ronald C. (Inventor)

    1994-01-01

    The present invention discloses a method of detecting and locating current imbalances such as ground faults in multiwire systems using the Faraday effect. As an example, for 2-wire or 3-wire (1 ground wire) electrical systems, light is transmitted along an optical path which is exposed to magnetic fields produced by currents flowing in the hot and neutral wires. The rotations produced by these two magnetic fields cancel each other, therefore light on the optical path does not read the effect of either. However, when a ground fault occurs, the optical path is exposed to a net Faraday effect rotation due to the current imbalance thereby exposing the ground fault.