WorldWideScience

Sample records for hierarchical event based

  1. Analysis hierarchical model for discrete event systems

    Science.gov (United States)

    Ciortea, E. M.

    2015-11-01

    The This paper presents the hierarchical model based on discrete event network for robotic systems. Based on the hierarchical approach, Petri network is analysed as a network of the highest conceptual level and the lowest level of local control. For modelling and control of complex robotic systems using extended Petri nets. Such a system is structured, controlled and analysed in this paper by using Visual Object Net ++ package that is relatively simple and easy to use, and the results are shown as representations easy to interpret. The hierarchical structure of the robotic system is implemented on computers analysed using specialized programs. Implementation of hierarchical model discrete event systems, as a real-time operating system on a computer network connected via a serial bus is possible, where each computer is dedicated to local and Petri model of a subsystem global robotic system. Since Petri models are simplified to apply general computers, analysis, modelling, complex manufacturing systems control can be achieved using Petri nets. Discrete event systems is a pragmatic tool for modelling industrial systems. For system modelling using Petri nets because we have our system where discrete event. To highlight the auxiliary time Petri model using transport stream divided into hierarchical levels and sections are analysed successively. Proposed robotic system simulation using timed Petri, offers the opportunity to view the robotic time. Application of goods or robotic and transmission times obtained by measuring spot is obtained graphics showing the average time for transport activity, using the parameters sets of finished products. individually.

  2. Hierarchical Context Modeling for Video Event Recognition.

    Science.gov (United States)

    Wang, Xiaoyang; Ji, Qiang

    2016-10-11

    Current video event recognition research remains largely target-centered. For real-world surveillance videos, targetcentered event recognition faces great challenges due to large intra-class target variation, limited image resolution, and poor detection and tracking results. To mitigate these challenges, we introduced a context-augmented video event recognition approach. Specifically, we explicitly capture different types of contexts from three levels including image level, semantic level, and prior level. At the image level, we introduce two types of contextual features including the appearance context features and interaction context features to capture the appearance of context objects and their interactions with the target objects. At the semantic level, we propose a deep model based on deep Boltzmann machine to learn event object representations and their interactions. At the prior level, we utilize two types of prior-level contexts including scene priming and dynamic cueing. Finally, we introduce a hierarchical context model that systematically integrates the contextual information at different levels. Through the hierarchical context model, contexts at different levels jointly contribute to the event recognition. We evaluate the hierarchical context model for event recognition on benchmark surveillance video datasets. Results show that incorporating contexts in each level can improve event recognition performance, and jointly integrating three levels of contexts through our hierarchical model achieves the best performance.

  3. Research on a Hierarchical Dynamic Automatic Voltage Control System Based on the Discrete Event-Driven Method

    Directory of Open Access Journals (Sweden)

    Yong Min

    2013-06-01

    Full Text Available In this paper, concepts and methods of hybrid control systems are adopted to establish a hierarchical dynamic automatic voltage control (HD-AVC system, realizing the dynamic voltage stability of power grids. An HD-AVC system model consisting of three layers is built based on the hybrid control method and discrete event-driven mechanism. In the Top Layer, discrete events are designed to drive the corresponding control block so as to avoid solving complex multiple objective functions, the power system’s characteristic matrix is formed and the minimum amplitude eigenvalue (MAE is calculated through linearized differential-algebraic equations. MAE is applied to judge the system’s voltage stability and security and construct discrete events. The Middle Layer is responsible for management and operation, which is also driven by discrete events. Control values of the control buses are calculated based on the characteristics of power systems and the sensitivity method. Then control values generate control strategies through the interface block. In the Bottom Layer, various control devices receive and implement the control commands from the Middle Layer. In this way, a closed-loop power system voltage control is achieved. Computer simulations verify the validity and accuracy of the HD-AVC system, and verify that the proposed HD-AVC system is more effective than normal voltage control methods.

  4. Stress reaction process-based hierarchical recognition algorithm for continuous intrusion events in optical fiber prewarning system

    Science.gov (United States)

    Qu, Hongquan; Yuan, Shijiao; Wang, Yanping; Yang, Dan

    2018-04-01

    To improve the recognition performance of optical fiber prewarning system (OFPS), this study proposed a hierarchical recognition algorithm (HRA). Compared with traditional methods, which employ only a complex algorithm that includes multiple extracted features and complex classifiers to increase the recognition rate with a considerable decrease in recognition speed, HRA takes advantage of the continuity of intrusion events, thereby creating a staged recognition flow inspired by stress reaction. HRA is expected to achieve high-level recognition accuracy with less time consumption. First, this work analyzed the continuity of intrusion events and then presented the algorithm based on the mechanism of stress reaction. Finally, it verified the time consumption through theoretical analysis and experiments, and the recognition accuracy was obtained through experiments. Experiment results show that the processing speed of HRA is 3.3 times faster than that of a traditional complicated algorithm and has a similar recognition rate of 98%. The study is of great significance to fast intrusion event recognition in OFPS.

  5. Unified framework for triaxial accelerometer-based fall event detection and classification using cumulants and hierarchical decision tree classifier.

    Science.gov (United States)

    Kambhampati, Satya Samyukta; Singh, Vishal; Manikandan, M Sabarimalai; Ramkumar, Barathram

    2015-08-01

    In this Letter, the authors present a unified framework for fall event detection and classification using the cumulants extracted from the acceleration (ACC) signals acquired using a single waist-mounted triaxial accelerometer. The main objective of this Letter is to find suitable representative cumulants and classifiers in effectively detecting and classifying different types of fall and non-fall events. It was discovered that the first level of the proposed hierarchical decision tree algorithm implements fall detection using fifth-order cumulants and support vector machine (SVM) classifier. In the second level, the fall event classification algorithm uses the fifth-order cumulants and SVM. Finally, human activity classification is performed using the second-order cumulants and SVM. The detection and classification results are compared with those of the decision tree, naive Bayes, multilayer perceptron and SVM classifiers with different types of time-domain features including the second-, third-, fourth- and fifth-order cumulants and the signal magnitude vector and signal magnitude area. The experimental results demonstrate that the second- and fifth-order cumulant features and SVM classifier can achieve optimal detection and classification rates of above 95%, as well as the lowest false alarm rate of 1.03%.

  6. Hierarchical Discrete Event Supervisory Control of Aircraft Propulsion Systems

    Science.gov (United States)

    Yasar, Murat; Tolani, Devendra; Ray, Asok; Shah, Neerav; Litt, Jonathan S.

    2004-01-01

    This paper presents a hierarchical application of Discrete Event Supervisory (DES) control theory for intelligent decision and control of a twin-engine aircraft propulsion system. A dual layer hierarchical DES controller is designed to supervise and coordinate the operation of two engines of the propulsion system. The two engines are individually controlled to achieve enhanced performance and reliability, necessary for fulfilling the mission objectives. Each engine is operated under a continuously varying control system that maintains the specified performance and a local discrete-event supervisor for condition monitoring and life extending control. A global upper level DES controller is designed for load balancing and overall health management of the propulsion system.

  7. Control of discrete event systems modeled as hierarchical state machines

    Science.gov (United States)

    Brave, Y.; Heymann, M.

    1991-01-01

    The authors examine a class of discrete event systems (DESs) modeled as asynchronous hierarchical state machines (AHSMs). For this class of DESs, they provide an efficient method for testing reachability, which is an essential step in many control synthesis procedures. This method utilizes the asynchronous nature and hierarchical structure of AHSMs, thereby illustrating the advantage of the AHSM representation as compared with its equivalent (flat) state machine representation. An application of the method is presented where an online minimally restrictive solution is proposed for the problem of maintaining a controlled AHSM within prescribed legal bounds.

  8. A Hierarchical Convolutional Neural Network for vesicle fusion event classification.

    Science.gov (United States)

    Li, Haohan; Mao, Yunxiang; Yin, Zhaozheng; Xu, Yingke

    2017-09-01

    Quantitative analysis of vesicle exocytosis and classification of different modes of vesicle fusion from the fluorescence microscopy are of primary importance for biomedical researches. In this paper, we propose a novel Hierarchical Convolutional Neural Network (HCNN) method to automatically identify vesicle fusion events in time-lapse Total Internal Reflection Fluorescence Microscopy (TIRFM) image sequences. Firstly, a detection and tracking method is developed to extract image patch sequences containing potential fusion events. Then, a Gaussian Mixture Model (GMM) is applied on each image patch of the patch sequence with outliers rejected for robust Gaussian fitting. By utilizing the high-level time-series intensity change features introduced by GMM and the visual appearance features embedded in some key moments of the fusion process, the proposed HCNN architecture is able to classify each candidate patch sequence into three classes: full fusion event, partial fusion event and non-fusion event. Finally, we validate the performance of our method on 9 challenging datasets that have been annotated by cell biologists, and our method achieves better performances when comparing with three previous methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Spontaneous and Hierarchical Segmentation of Non-functional Events

    DEFF Research Database (Denmark)

    Nielbo, Kristoffer Laigaard

    2012-01-01

    information associations and, further, that the simulations’ ecological validity can be increased through the use of input based on a motion capture device, while the results still support the main findings. Part 4 is a general discussion, which reviews the empirical findings and the corresponding model...... four main parts that span research history and contemporary theories of perception and cognition (Theory), methodology of the dual approach (Methodology), empirical investigations (Synthesizing and analyzing perception of non-functional events), and a general discussion (General discussion). Part 1...... ritual behavior. Part 1 concludes with five primary theoretical hypotheses: I) non-functional events will increase the human event segmentation rate; II) transitions between events will increase the cognitive prediction error signal independent of event type, but this signal will be chronically high...

  10. Hierarchical MAS based control strategy for microgrid

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Z.; Li, T.; Huang, M.; Shi, J.; Yang, J.; Yu, J. [School of Information Science and Engineering, Yunnan University, Kunming 650091 (China); Xiao, Z. [School of Electrical and Electronic Engineering, Nanyang Technological University, Western Catchment Area, 639798 (Singapore); Wu, W. [Communication Branch of Yunnan Power Grid Corporation, Kunming, Yunnan 650217 (China)

    2010-09-15

    Microgrids have become a hot topic driven by the dual pressures of environmental protection concerns and the energy crisis. In this paper, a challenge for the distributed control of a modern electric grid incorporating clusters of residential microgrids is elaborated and a hierarchical multi-agent system (MAS) is proposed as a solution. The issues of how to realize the hierarchical MAS and how to improve coordination and control strategies are discussed. Based on MATLAB and ZEUS platforms, bilateral switching between grid-connected mode and island mode is performed under control of the proposed MAS to enhance and support its effectiveness. (authors)

  11. Hierarchical event selection for video storyboards with a case study on snooker video visualization.

    Science.gov (United States)

    Parry, Matthew L; Legg, Philip A; Chung, David H S; Griffiths, Iwan W; Chen, Min

    2011-12-01

    Video storyboard, which is a form of video visualization, summarizes the major events in a video using illustrative visualization. There are three main technical challenges in creating a video storyboard, (a) event classification, (b) event selection and (c) event illustration. Among these challenges, (a) is highly application-dependent and requires a significant amount of application specific semantics to be encoded in a system or manually specified by users. This paper focuses on challenges (b) and (c). In particular, we present a framework for hierarchical event representation, and an importance-based selection algorithm for supporting the creation of a video storyboard from a video. We consider the storyboard to be an event summarization for the whole video, whilst each individual illustration on the board is also an event summarization but for a smaller time window. We utilized a 3D visualization template for depicting and annotating events in illustrations. To demonstrate the concepts and algorithms developed, we use Snooker video visualization as a case study, because it has a concrete and agreeable set of semantic definitions for events and can make use of existing techniques of event detection and 3D reconstruction in a reliable manner. Nevertheless, most of our concepts and algorithms developed for challenges (b) and (c) can be applied to other application areas. © 2010 IEEE

  12. Hierarchical video summarization based on context clustering

    Science.gov (United States)

    Tseng, Belle L.; Smith, John R.

    2003-11-01

    A personalized video summary is dynamically generated in our video personalization and summarization system based on user preference and usage environment. The three-tier personalization system adopts the server-middleware-client architecture in order to maintain, select, adapt, and deliver rich media content to the user. The server stores the content sources along with their corresponding MPEG-7 metadata descriptions. In this paper, the metadata includes visual semantic annotations and automatic speech transcriptions. Our personalization and summarization engine in the middleware selects the optimal set of desired video segments by matching shot annotations and sentence transcripts with user preferences. Besides finding the desired contents, the objective is to present a coherent summary. There are diverse methods for creating summaries, and we focus on the challenges of generating a hierarchical video summary based on context information. In our summarization algorithm, three inputs are used to generate the hierarchical video summary output. These inputs are (1) MPEG-7 metadata descriptions of the contents in the server, (2) user preference and usage environment declarations from the user client, and (3) context information including MPEG-7 controlled term list and classification scheme. In a video sequence, descriptions and relevance scores are assigned to each shot. Based on these shot descriptions, context clustering is performed to collect consecutively similar shots to correspond to hierarchical scene representations. The context clustering is based on the available context information, and may be derived from domain knowledge or rules engines. Finally, the selection of structured video segments to generate the hierarchical summary efficiently balances between scene representation and shot selection.

  13. Constructing storyboards based on hierarchical clustering analysis

    Science.gov (United States)

    Hasebe, Satoshi; Sami, Mustafa M.; Muramatsu, Shogo; Kikuchi, Hisakazu

    2005-07-01

    There are growing needs for quick preview of video contents for the purpose of improving accessibility of video archives as well as reducing network traffics. In this paper, a storyboard that contains a user-specified number of keyframes is produced from a given video sequence. It is based on hierarchical cluster analysis of feature vectors that are derived from wavelet coefficients of video frames. Consistent use of extracted feature vectors is the key to avoid a repetition of computationally-intensive parsing of the same video sequence. Experimental results suggest that a significant reduction in computational time is gained by this strategy.

  14. Sparsey^TM: Spatiotemporal Event Recognition via Deep Hierarchical Sparse Distributed Codes

    Directory of Open Access Journals (Sweden)

    Gerard J Rinkus

    2014-12-01

    Full Text Available The visual cortex’s hierarchical, multi-level organization is captured in many biologically inspired computational vision models, the general idea being that progressively larger scale (spatially/temporally and more complex visual features are represented in progressively higher areas. However, most earlier models use localist representations (codes in each representational field (which we equate with the cortical macrocolumn, mac, at each level. In localism, each represented feature/concept/event (hereinafter item is coded by a single unit. The model we describe, Sparsey, is hierarchical as well but crucially, it uses sparse distributed coding (SDC in every mac in all levels. In SDC, each represented item is coded by a small subset of the mac’s units. The SDCs of different items can overlap and the size of overlap between items can be used to represent their similarity. The difference between localism and SDC is crucial because SDC allows the two essential operations of associative memory, storing a new item and retrieving the best-matching stored item, to be done in fixed time for the life of the model. Since the model’s core algorithm, which does both storage and retrieval (inference, makes a single pass over all macs on each time step, the overall model’s storage/retrieval operation is also fixed-time, a criterion we consider essential for scalability to the huge (Big Data problems. A 2010 paper described a non-hierarchical version of this model in the context of purely spatial pattern processing. Here, we elaborate a fully hierarchical model (arbitrary numbers of levels and macs per level, describing novel model principles like progressive critical periods, dynamic modulation of principal cells’ activation functions based on a mac-level familiarity measure, representation of multiple simultaneously active hypotheses, a novel method of time warp invariant recognition, and we report results showing learning/recognition of

  15. Hierarchical structure for audio-video based semantic classification of sports video sequences

    Science.gov (United States)

    Kolekar, M. H.; Sengupta, S.

    2005-07-01

    A hierarchical structure for sports event classification based on audio and video content analysis is proposed in this paper. Compared to the event classifications in other games, those of cricket are very challenging and yet unexplored. We have successfully solved cricket video classification problem using a six level hierarchical structure. The first level performs event detection based on audio energy and Zero Crossing Rate (ZCR) of short-time audio signal. In the subsequent levels, we classify the events based on video features using a Hidden Markov Model implemented through Dynamic Programming (HMM-DP) using color or motion as a likelihood function. For some of the game-specific decisions, a rule-based classification is also performed. Our proposed hierarchical structure can easily be applied to any other sports. Our results are very promising and we have moved a step forward towards addressing semantic classification problems in general.

  16. EMIR: a configurable hierarchical system for event monitoring and incident response

    Science.gov (United States)

    Deich, William T. S.

    2014-07-01

    The Event Monitor and Incident Response system (emir) is a flexible, general-purpose system for monitoring and responding to all aspects of instrument, telescope, and general facility operations, and has been in use at the Automated Planet Finder telescope for two years. Responses to problems can include both passive actions (e.g. generating alerts) and active actions (e.g. modifying system settings). Emir includes a monitor-and-response daemon, plus graphical user interfaces and text-based clients that automatically configure themselves from data supplied at runtime by the daemon. The daemon is driven by a configuration file that describes each condition to be monitored, the actions to take when the condition is triggered, and how the conditions are aggregated into hierarchical groups of conditions. Emir has been implemented for the Keck Task Library (KTL) keyword-based systems used at Keck and Lick Observatories, but can be readily adapted to many event-driven architectures. This paper discusses the design and implementation of Emir , and the challenges in balancing the competing demands for simplicity, flexibility, power, and extensibility. Emir 's design lends itself well to multiple purposes, and in addition to its core monitor and response functions, it provides an effective framework for computing running statistics, aggregate values, and summary state values from the primitive state data generated by other subsystems, and even for creating quick-and-dirty control loops for simple systems.

  17. Sparse Event Modeling with Hierarchical Bayesian Kernel Methods

    Science.gov (United States)

    2016-01-05

    SECURITY CLASSIFICATION OF: The research objective of this proposal was to develop a predictive Bayesian kernel approach to model count data based on...several predictive variables. Such an approach, which we refer to as the Poisson Bayesian kernel model, is able to model the rate of occurrence of... kernel methods made use of: (i) the Bayesian property of improving predictive accuracy as data are dynamically obtained, and (ii) the kernel function

  18. Communication Base Station Log Analysis Based on Hierarchical Clustering

    Directory of Open Access Journals (Sweden)

    Zhang Shao-Hua

    2017-01-01

    Full Text Available Communication base stations generate massive data every day, these base station logs play an important value in mining of the business circles. This paper use data mining technology and hierarchical clustering algorithm to group the scope of business circle for the base station by recording the data of these base stations.Through analyzing the data of different business circle based on feature extraction and comparing different business circle category characteristics, which can choose a suitable area for operators of commercial marketing.

  19. Cluster Based Hierarchical Routing Protocol for Wireless Sensor Network

    OpenAIRE

    Rashed, Md. Golam; Kabir, M. Hasnat; Rahim, Muhammad Sajjadur; Ullah, Shaikh Enayet

    2012-01-01

    The efficient use of energy source in a sensor node is most desirable criteria for prolong the life time of wireless sensor network. In this paper, we propose a two layer hierarchical routing protocol called Cluster Based Hierarchical Routing Protocol (CBHRP). We introduce a new concept called head-set, consists of one active cluster head and some other associate cluster heads within a cluster. The head-set members are responsible for control and management of the network. Results show that t...

  20. Road Network Selection Based on Road Hierarchical Structure Control

    Directory of Open Access Journals (Sweden)

    HE Haiwei

    2015-04-01

    Full Text Available A new road network selection method based on hierarchical structure is studied. Firstly, road network is built as strokes which are then classified into hierarchical collections according to the criteria of betweenness centrality value (BC value. Secondly, the hierarchical structure of the strokes is enhanced using structural characteristic identification technique. Thirdly, the importance calculation model was established according to the relationships among the hierarchical structure of the strokes. Finally, the importance values of strokes are got supported with the model's hierarchical calculation, and with which the road network is selected. Tests are done to verify the advantage of this method by comparing it with other common stroke-oriented methods using three kinds of typical road network data. Comparision of the results show that this method had few need to semantic data, and could eliminate the negative influence of edge strokes caused by the criteria of BC value well. So, it is better to maintain the global hierarchical structure of road network, and suitable to meet with the selection of various kinds of road network at the same time.

  1. Topology-based hierarchical scheduling using deficit round robin

    DEFF Research Database (Denmark)

    Yu, Hao; Yan, Ying; Berger, Michael Stubert

    2009-01-01

    according to the topology. The mapping process could be completed through the network management plane or by manual configuration. Based on the knowledge of the network, the scheduler can manage the traffic on behalf of other less advanced nodes, avoid potential traffic congestion, and provide flow...... protection and isolation. Comparisons between hierarchical scheduling, flow-based scheduling, and class-based scheduling schemes have been carried out under a symmetric tree topology. Results have shown that the hierarchical scheduling scheme provides better flow protection and isolation from attack...

  2. Hierarchical modeling for rare event detection and cell subset alignment across flow cytometry samples.

    Directory of Open Access Journals (Sweden)

    Andrew Cron

    Full Text Available Flow cytometry is the prototypical assay for multi-parameter single cell analysis, and is essential in vaccine and biomarker research for the enumeration of antigen-specific lymphocytes that are often found in extremely low frequencies (0.1% or less. Standard analysis of flow cytometry data relies on visual identification of cell subsets by experts, a process that is subjective and often difficult to reproduce. An alternative and more objective approach is the use of statistical models to identify cell subsets of interest in an automated fashion. Two specific challenges for automated analysis are to detect extremely low frequency event subsets without biasing the estimate by pre-processing enrichment, and the ability to align cell subsets across multiple data samples for comparative analysis. In this manuscript, we develop hierarchical modeling extensions to the Dirichlet Process Gaussian Mixture Model (DPGMM approach we have previously described for cell subset identification, and show that the hierarchical DPGMM (HDPGMM naturally generates an aligned data model that captures both commonalities and variations across multiple samples. HDPGMM also increases the sensitivity to extremely low frequency events by sharing information across multiple samples analyzed simultaneously. We validate the accuracy and reproducibility of HDPGMM estimates of antigen-specific T cells on clinically relevant reference peripheral blood mononuclear cell (PBMC samples with known frequencies of antigen-specific T cells. These cell samples take advantage of retrovirally TCR-transduced T cells spiked into autologous PBMC samples to give a defined number of antigen-specific T cells detectable by HLA-peptide multimer binding. We provide open source software that can take advantage of both multiple processors and GPU-acceleration to perform the numerically-demanding computations. We show that hierarchical modeling is a useful probabilistic approach that can provide a

  3. Hierarchical graphs for rule-based modeling of biochemical systems

    Directory of Open Access Journals (Sweden)

    Hu Bin

    2011-02-01

    Full Text Available Abstract Background In rule-based modeling, graphs are used to represent molecules: a colored vertex represents a component of a molecule, a vertex attribute represents the internal state of a component, and an edge represents a bond between components. Components of a molecule share the same color. Furthermore, graph-rewriting rules are used to represent molecular interactions. A rule that specifies addition (removal of an edge represents a class of association (dissociation reactions, and a rule that specifies a change of a vertex attribute represents a class of reactions that affect the internal state of a molecular component. A set of rules comprises an executable model that can be used to determine, through various means, the system-level dynamics of molecular interactions in a biochemical system. Results For purposes of model annotation, we propose the use of hierarchical graphs to represent structural relationships among components and subcomponents of molecules. We illustrate how hierarchical graphs can be used to naturally document the structural organization of the functional components and subcomponents of two proteins: the protein tyrosine kinase Lck and the T cell receptor (TCR complex. We also show that computational methods developed for regular graphs can be applied to hierarchical graphs. In particular, we describe a generalization of Nauty, a graph isomorphism and canonical labeling algorithm. The generalized version of the Nauty procedure, which we call HNauty, can be used to assign canonical labels to hierarchical graphs or more generally to graphs with multiple edge types. The difference between the Nauty and HNauty procedures is minor, but for completeness, we provide an explanation of the entire HNauty algorithm. Conclusions Hierarchical graphs provide more intuitive formal representations of proteins and other structured molecules with multiple functional components than do the regular graphs of current languages for

  4. Naturalizing sense of agency with a hierarchical event-control approach.

    Directory of Open Access Journals (Sweden)

    Devpriya Kumar

    Full Text Available Unraveling the mechanisms underlying self and agency has been a difficult scientific problem. We argue for an event-control approach for naturalizing the sense of agency by focusing on the role of perception-action regularities present at different hierarchical levels and contributing to the sense of self as an agent. The amount of control at different levels of the control hierarchy determines the sense of agency. The current study investigates this approach in a set of two experiments using a scenario containing multiple agents sharing a common goal where one of the agents is partially controlled by the participant. The participant competed with other agents for achieving the goal and subsequently answered questions on identification (which agent was controlled by the participant, the degree to which they are confident about their identification (sense of identification and the degree to which the participant believed he/she had control over his/her actions (sense of authorship. Results indicate a hierarchical relationship between goal-level control (higher level and perceptual-motor control (lower level for sense of agency. Sense of identification ratings increased with perceptual-motor control when the goal was not completed but did not vary with perceptual-motor control when the goal was completed. Sense of authorship showed a similar interaction effect only in experiment 2 that had only one competing agent unlike the larger number of competing agents in experiment 1. The effect of hierarchical control can also be seen in the misidentification pattern and misidentification was greater with the agent affording greater control. Results from the two studies support the event-control approach in understanding sense of agency as grounded in control. The study also offers a novel paradigm for empirically studying sense of agency and self.

  5. Skeleton-based Hierarchical Shape Segmentation

    NARCIS (Netherlands)

    Reniers, Dennie; Telea, Alexandru

    2007-01-01

    We present an effective framework for segmenting 3D shapes into meaningful components using the curve skeleton. Our algorithm identifies a number of critical points on the curve skeleton, either fully automatically as the junctions of the curve skeleton, or based on user input. We use these points

  6. Event-Based Conceptual Modeling

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    2009-01-01

    The purpose of the paper is to obtain insight into and provide practical advice for event-based conceptual modeling. We analyze a set of event concepts and use the results to formulate a conceptual event model that is used to identify guidelines for creation of dynamic process models and static...... information models. We characterize events as short-duration processes that have participants, consequences, and properties, and that may be modeled in terms of information structures. The conceptual event model is used to characterize a variety of event concepts and it is used to illustrate how events can...... be used to integrate dynamic modeling of processes and static modeling of information structures. The results are unique in the sense that no other general event concept has been used to unify a similar broad variety of seemingly incompatible event concepts. The general event concept can be used...

  7. Event-Based Conceptual Modeling

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    The paper demonstrates that a wide variety of event-based modeling approaches are based on special cases of the same general event concept, and that the general event concept can be used to unify the otherwise unrelated fields of information modeling and process modeling. A set of event......-based modeling approaches are analyzed and the results are used to formulate a general event concept that can be used for unifying the seemingly unrelated event concepts. Events are characterized as short-duration processes that have participants, consequences, and properties, and that may be modeled in terms...... of information structures. The general event concept can be used to guide systems analysis and design and to improve modeling approaches....

  8. LSTM-Based Hierarchical Denoising Network for Android Malware Detection

    OpenAIRE

    Yan, Jinpei; Qi, Yong; Rao, Qifan

    2018-01-01

    Mobile security is an important issue on Android platform. Most malware detection methods based on machine learning models heavily rely on expert knowledge for manual feature engineering, which are still difficult to fully describe malwares. In this paper, we present LSTM-based hierarchical denoise network (HDN), a novel static Android malware detection method which uses LSTM to directly learn from the raw opcode sequences extracted from decompiled Android files. However, most opcode sequence...

  9. A conceptual modeling framework for discrete event simulation using hierarchical control structures

    Science.gov (United States)

    Furian, N.; O’Sullivan, M.; Walker, C.; Vössner, S.; Neubacher, D.

    2015-01-01

    Conceptual Modeling (CM) is a fundamental step in a simulation project. Nevertheless, it is only recently that structured approaches towards the definition and formulation of conceptual models have gained importance in the Discrete Event Simulation (DES) community. As a consequence, frameworks and guidelines for applying CM to DES have emerged and discussion of CM for DES is increasing. However, both the organization of model-components and the identification of behavior and system control from standard CM approaches have shortcomings that limit CM’s applicability to DES. Therefore, we discuss the different aspects of previous CM frameworks and identify their limitations. Further, we present the Hierarchical Control Conceptual Modeling framework that pays more attention to the identification of a models’ system behavior, control policies and dispatching routines and their structured representation within a conceptual model. The framework guides the user step-by-step through the modeling process and is illustrated by a worked example. PMID:26778940

  10. A conceptual modeling framework for discrete event simulation using hierarchical control structures.

    Science.gov (United States)

    Furian, N; O'Sullivan, M; Walker, C; Vössner, S; Neubacher, D

    2015-08-01

    Conceptual Modeling (CM) is a fundamental step in a simulation project. Nevertheless, it is only recently that structured approaches towards the definition and formulation of conceptual models have gained importance in the Discrete Event Simulation (DES) community. As a consequence, frameworks and guidelines for applying CM to DES have emerged and discussion of CM for DES is increasing. However, both the organization of model-components and the identification of behavior and system control from standard CM approaches have shortcomings that limit CM's applicability to DES. Therefore, we discuss the different aspects of previous CM frameworks and identify their limitations. Further, we present the Hierarchical Control Conceptual Modeling framework that pays more attention to the identification of a models' system behavior, control policies and dispatching routines and their structured representation within a conceptual model. The framework guides the user step-by-step through the modeling process and is illustrated by a worked example.

  11. Intensity-based hierarchical elastic registration using approximating splines.

    Science.gov (United States)

    Serifovic-Trbalic, Amira; Demirovic, Damir; Cattin, Philippe C

    2014-01-01

    We introduce a new hierarchical approach for elastic medical image registration using approximating splines. In order to obtain the dense deformation field, we employ Gaussian elastic body splines (GEBS) that incorporate anisotropic landmark errors and rotation information. Since the GEBS approach is based on a physical model in form of analytical solutions of the Navier equation, it can very well cope with the local as well as global deformations present in the images by varying the standard deviation of the Gaussian forces. The proposed GEBS approximating model is integrated into the elastic hierarchical image registration framework, which decomposes a nonrigid registration problem into numerous local rigid transformations. The approximating GEBS registration scheme incorporates anisotropic landmark errors as well as rotation information. The anisotropic landmark localization uncertainties can be estimated directly from the image data, and in this case, they represent the minimal stochastic localization error, i.e., the Cramér-Rao bound. The rotation information of each landmark obtained from the hierarchical procedure is transposed in an additional angular landmark, doubling the number of landmarks in the GEBS model. The modified hierarchical registration using the approximating GEBS model is applied to register 161 image pairs from a digital mammogram database. The obtained results are very encouraging, and the proposed approach significantly improved all registrations comparing the mean-square error in relation to approximating TPS with the rotation information. On artificially deformed breast images, the newly proposed method performed better than the state-of-the-art registration algorithm introduced by Rueckert et al. (IEEE Trans Med Imaging 18:712-721, 1999). The average error per breast tissue pixel was less than 2.23 pixels compared to 2.46 pixels for Rueckert's method. The proposed hierarchical elastic image registration approach incorporates the GEBS

  12. Biomedical application of hierarchically built structures based on metal oxides

    Science.gov (United States)

    Korovin, M. S.; Fomenko, A. N.

    2017-12-01

    Nowadays, the use of hierarchically built structures in biology and medicine arouses much interest. The aim of this work is to review and summarize the available literature data about hierarchically organized structures in biomedical application. Nanoparticles can serve as an example of such structures. Medicine holds a special place among various application methods of similar systems. Special attention is paid to inorganic nanoparticles based on different metal oxides and hydroxides, such as iron, zinc, copper, and aluminum. Our investigations show that low-dimensional nanostructures based on aluminum oxides and hydroxides have an inhibitory effect on tumor cells and possess an antimicrobial activity. At the same time, it is obvious that the large-scale use of nanoparticles by humans needs to thoroughly study their properties. Special attention should be paid to the study of nanoparticle interaction with living biological objects. The numerous data show that there is no clear understanding of interaction mechanisms between nanoparticles and various cell types.

  13. Agent-based distributed hierarchical control of dc microgrid systems

    DEFF Research Database (Denmark)

    Meng, Lexuan; Vasquez, Juan Carlos; Guerrero, Josep M.

    2014-01-01

    In order to enable distributed control and management for microgrids, this paper explores the application of information consensus and local decisionmaking methods formulating an agent based distributed hierarchical control system. A droop controlled paralleled DC/DC converter system is taken as ....... Standard genetic algorithm is applied in each local control system in order to search for a global optimum. Hardware-in-Loop simulation results are shown to demonstrate the effectiveness of the method.......In order to enable distributed control and management for microgrids, this paper explores the application of information consensus and local decisionmaking methods formulating an agent based distributed hierarchical control system. A droop controlled paralleled DC/DC converter system is taken...... as a case study. The objective is to enhance the system efficiency by finding the optimal sharing ratio of load current. Virtual resistances in local control systems are taken as decision variables. Consensus algorithms are applied for global information discovery and local control systems coordination...

  14. SETH: A Hierarchical, Agent-based Architecture for Smart Spaces

    OpenAIRE

    Marsá Maestre, Iván

    2008-01-01

    The ultimate goal of any smart environment is to release users from the tasks they usually perform to achieve comfort, efficiency, and service personalization. To achieve this goal, we propose to use multiagent systems. In this report we describe the SETH architectur: a hierarchical, agent-based solution intended to be applicable to different smart space scenarios, ranging from small environments, like smart homes or smart offices, to large smart spaces like cities.

  15. Robust Pedestrian Classification Based on Hierarchical Kernel Sparse Representation

    Directory of Open Access Journals (Sweden)

    Rui Sun

    2016-08-01

    Full Text Available Vision-based pedestrian detection has become an active topic in computer vision and autonomous vehicles. It aims at detecting pedestrians appearing ahead of the vehicle using a camera so that autonomous vehicles can assess the danger and take action. Due to varied illumination and appearance, complex background and occlusion pedestrian detection in outdoor environments is a difficult problem. In this paper, we propose a novel hierarchical feature extraction and weighted kernel sparse representation model for pedestrian classification. Initially, hierarchical feature extraction based on a CENTRIST descriptor is used to capture discriminative structures. A max pooling operation is used to enhance the invariance of varying appearance. Then, a kernel sparse representation model is proposed to fully exploit the discrimination information embedded in the hierarchical local features, and a Gaussian weight function as the measure to effectively handle the occlusion in pedestrian images. Extensive experiments are conducted on benchmark databases, including INRIA, Daimler, an artificially generated dataset and a real occluded dataset, demonstrating the more robust performance of the proposed method compared to state-of-the-art pedestrian classification methods.

  16. LSTM-Based Hierarchical Denoising Network for Android Malware Detection

    Directory of Open Access Journals (Sweden)

    Jinpei Yan

    2018-01-01

    Full Text Available Mobile security is an important issue on Android platform. Most malware detection methods based on machine learning models heavily rely on expert knowledge for manual feature engineering, which are still difficult to fully describe malwares. In this paper, we present LSTM-based hierarchical denoise network (HDN, a novel static Android malware detection method which uses LSTM to directly learn from the raw opcode sequences extracted from decompiled Android files. However, most opcode sequences are too long for LSTM to train due to the gradient vanishing problem. Hence, HDN uses a hierarchical structure, whose first-level LSTM parallelly computes on opcode subsequences (we called them method blocks to learn the dense representations; then the second-level LSTM can learn and detect malware through method block sequences. Considering that malicious behavior only appears in partial sequence segments, HDN uses method block denoise module (MBDM for data denoising by adaptive gradient scaling strategy based on loss cache. We evaluate and compare HDN with the latest mainstream researches on three datasets. The results show that HDN outperforms these Android malware detection methods,and it is able to capture longer sequence features and has better detection efficiency than N-gram-based malware detection which is similar to our method.

  17. A hierarchical fuzzy rule-based approach to aphasia diagnosis.

    Science.gov (United States)

    Akbarzadeh-T, Mohammad-R; Moshtagh-Khorasani, Majid

    2007-10-01

    Aphasia diagnosis is a particularly challenging medical diagnostic task due to the linguistic uncertainty and vagueness, inconsistencies in the definition of aphasic syndromes, large number of measurements with imprecision, natural diversity and subjectivity in test objects as well as in opinions of experts who diagnose the disease. To efficiently address this diagnostic process, a hierarchical fuzzy rule-based structure is proposed here that considers the effect of different features of aphasia by statistical analysis in its construction. This approach can be efficient for diagnosis of aphasia and possibly other medical diagnostic applications due to its fuzzy and hierarchical reasoning construction. Initially, the symptoms of the disease which each consists of different features are analyzed statistically. The measured statistical parameters from the training set are then used to define membership functions and the fuzzy rules. The resulting two-layered fuzzy rule-based system is then compared with a back propagating feed-forward neural network for diagnosis of four Aphasia types: Anomic, Broca, Global and Wernicke. In order to reduce the number of required inputs, the technique is applied and compared on both comprehensive and spontaneous speech tests. Statistical t-test analysis confirms that the proposed approach uses fewer Aphasia features while also presenting a significant improvement in terms of accuracy.

  18. Hierarchical polypyrrole based composites for high performance asymmetric supercapacitors

    Science.gov (United States)

    Chen, Gao-Feng; Liu, Zhao-Qing; Lin, Jia-Ming; Li, Nan; Su, Yu-Zhi

    2015-06-01

    An advanced asymmetric supercapacitor with high energy density, exploiting hierarchical polypyrrole (PPy) based composites as both the anode [three dimensional (3D) chuzzle-like Ni@PPy@MnO2] and (3D cochleate-like Ni@MnO2@PPy) cathode, has been developed. The ultrathin PPy and flower-like MnO2 orderly coating on the high-conductivity 3D-Ni enhance charge storage while the unique 3D chuzzle-like and 3D cochleate-like structures provide storage chambers and fast ion transport pathways for benefiting the transport of electrolyte ions. The 3D cochleate-like Ni@MnO2@PPy possesses excellent pseudocapacitance with a relatively negative voltage window while preserved EDLC and free transmission channels conducive to hold the high power, providing an ideal cathode for the asymmetric supercapacitor. It is the first report of assembling hierarchical PPy based composites as both the anode and cathode for asymmetric supercapacitor, which exhibits wide operation voltage of 1.3-1.5 V with maximum energy and power densities of 59.8 Wh kg-1 and 7500 W kg-1.

  19. Efficiently dense hierarchical graphene based aerogel electrode for supercapacitors

    Science.gov (United States)

    Wang, Xin; Lu, Chengxing; Peng, Huifen; Zhang, Xin; Wang, Zhenkun; Wang, Gongkai

    2016-08-01

    Boosting gravimetric and volumetric capacitances simultaneously at a high rate is still a discrepancy in development of graphene based supercapacitors. We report the preparation of dense hierarchical graphene/activated carbon composite aerogels via a reduction induced self-assembly process coupled with a drying post treatment. The compact and porous structures of composite aerogels could be maintained. The drying post treatment has significant effects on increasing the packing density of aerogels. The introduced activated carbons play the key roles of spacers and bridges, mitigating the restacking of adjacent graphene nanosheets and connecting lateral and vertical graphene nanosheets, respectively. The optimized aerogel with a packing density of 0.67 g cm-3 could deliver maximum gravimetric and volumetric capacitances of 128.2 F g-1 and 85.9 F cm-3, respectively, at a current density of 1 A g-1 in aqueous electrolyte, showing no apparent degradation to the specific capacitance at a current density of 10 A g-1 after 20000 cycles. The corresponding gravimetric and volumetric capacitances of 116.6 F g-1 and 78.1 cm-3 with an acceptable cyclic stability are also achieved in ionic liquid electrolyte. The results show a feasible strategy of designing dense hierarchical graphene based aerogels for supercapacitors.

  20. Unsupervised active learning based on hierarchical graph-theoretic clustering.

    Science.gov (United States)

    Hu, Weiming; Hu, Wei; Xie, Nianhua; Maybank, Steve

    2009-10-01

    Most existing active learning approaches are supervised. Supervised active learning has the following problems: inefficiency in dealing with the semantic gap between the distribution of samples in the feature space and their labels, lack of ability in selecting new samples that belong to new categories that have not yet appeared in the training samples, and lack of adaptability to changes in the semantic interpretation of sample categories. To tackle these problems, we propose an unsupervised active learning framework based on hierarchical graph-theoretic clustering. In the framework, two promising graph-theoretic clustering algorithms, namely, dominant-set clustering and spectral clustering, are combined in a hierarchical fashion. Our framework has some advantages, such as ease of implementation, flexibility in architecture, and adaptability to changes in the labeling. Evaluations on data sets for network intrusion detection, image classification, and video classification have demonstrated that our active learning framework can effectively reduce the workload of manual classification while maintaining a high accuracy of automatic classification. It is shown that, overall, our framework outperforms the support-vector-machine-based supervised active learning, particularly in terms of dealing much more efficiently with new samples whose categories have not yet appeared in the training samples.

  1. Dynamic anticipatory processing of hierarchical sequential events: a common role for Broca's area and ventral premotor cortex across domains?

    Science.gov (United States)

    Fiebach, Christian J; Schubotz, Ricarda I

    2006-05-01

    This paper proposes a domain-general model for the functional contribution of ventral premotor cortex (PMv) and adjacent Broca's area to perceptual, cognitive, and motor processing. We propose to understand this frontal region as a highly flexible sequence processor, with the PMv mapping sequential events onto stored structural templates and Broca's Area involved in more complex, hierarchical or hypersequential processing. This proposal is supported by reference to previous functional neuroimaging studies investigating abstract sequence processing and syntactic processing.

  2. Hierarchical-control-based output synchronization of coexisting attractor networks

    International Nuclear Information System (INIS)

    Yun-Zhong, Song; Yi-Fa, Tang

    2010-01-01

    This paper introduces the concept of hierarchical-control-based output synchronization of coexisting attractor networks. Within the new framework, each dynamic node is made passive at first utilizing intra-control around its own arena. Then each dynamic node is viewed as one agent, and on account of that, the solution of output synchronization of coexisting attractor networks is transformed into a multi-agent consensus problem, which is made possible by virtue of local interaction between individual neighbours; this distributed working way of coordination is coined as inter-control, which is only specified by the topological structure of the network. Provided that the network is connected and balanced, the output synchronization would come true naturally via synergy between intra and inter-control actions, where the Tightness is proved theoretically via convex composite Lyapunov functions. For completeness, several illustrative examples are presented to further elucidate the novelty and efficacy of the proposed scheme. (general)

  3. Multiscale experimental mechanics of hierarchical carbon-based materials.

    Science.gov (United States)

    Espinosa, Horacio D; Filleter, Tobin; Naraghi, Mohammad

    2012-06-05

    Investigation of the mechanics of natural materials, such as spider silk, abalone shells, and bone, has provided great insight into the design of materials that can simultaneously achieve high specific strength and toughness. Research has shown that their emergent mechanical properties are owed in part to their specific self-organization in hierarchical molecular structures, from nanoscale to macroscale, as well as their mixing and bonding. To apply these findings to manmade materials, researchers have devoted significant efforts in developing a fundamental understanding of multiscale mechanics of materials and its application to the design of novel materials with superior mechanical performance. These efforts included the utilization of some of the most promising carbon-based nanomaterials, such as carbon nanotubes, carbon nanofibers, and graphene, together with a variety of matrix materials. At the core of these efforts lies the need to characterize material mechanical behavior across multiple length scales starting from nanoscale characterization of constituents and their interactions to emerging micro- and macroscale properties. In this report, progress made in experimental tools and methods currently used for material characterization across multiple length scales is reviewed, as well as a discussion of how they have impacted our current understanding of the mechanics of hierarchical carbon-based materials. In addition, insight is provided into strategies for bridging experiments across length scales, which are essential in establishing a multiscale characterization approach. While the focus of this progress report is in experimental methods, their concerted use with theoretical-computational approaches towards the establishment of a robust material by design methodology is also discussed, which can pave the way for the development of novel materials possessing unprecedented mechanical properties. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Hierarchical Factoring Based On Image Analysis And Orthoblique Rotations.

    Science.gov (United States)

    Stankov, L

    1979-07-01

    The procedure for hierarchical factoring suggested by Schmid and Leiman (1957) is applied within the framework of image analysis and orthoblique rotational procedures. It is shown that this approach necessarily leads to correlated higher order factors. Also, one can obtain a smaller number of factors than produced by typical hierarchical procedures.

  5. Global Crop Monitoring: A Satellite-Based Hierarchical Approach

    Directory of Open Access Journals (Sweden)

    Bingfang Wu

    2015-04-01

    Full Text Available Taking advantage of multiple new remote sensing data sources, especially from Chinese satellites, the CropWatch system has expanded the scope of its international analyses through the development of new indicators and an upgraded operational methodology. The approach adopts a hierarchical system covering four spatial levels of detail: global, regional, national (thirty-one key countries including China and “sub-countries” (for the nine largest countries. The thirty-one countries encompass more that 80% of both production and exports of maize, rice, soybean and wheat. The methodology resorts to climatic and remote sensing indicators at different scales. The global patterns of crop environmental growing conditions are first analyzed with indicators for rainfall, temperature, photosynthetically active radiation (PAR as well as potential biomass. At the regional scale, the indicators pay more attention to crops and include Vegetation Health Index (VHI, Vegetation Condition Index (VCI, Cropped Arable Land Fraction (CALF as well as Cropping Intensity (CI. Together, they characterize crop situation, farming intensity and stress. CropWatch carries out detailed crop condition analyses at the national scale with a comprehensive array of variables and indicators. The Normalized Difference Vegetation Index (NDVI, cropped areas and crop conditions are integrated to derive food production estimates. For the nine largest countries, CropWatch zooms into the sub-national units to acquire detailed information on crop condition and production by including new indicators (e.g., Crop type proportion. Based on trend analysis, CropWatch also issues crop production supply outlooks, covering both long-term variations and short-term dynamic changes in key food exporters and importers. The hierarchical approach adopted by CropWatch is the basis of the analyses of climatic and crop conditions assessments published in the quarterly “CropWatch bulletin” which

  6. Host Event Based Network Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan Chugg

    2013-01-01

    The purpose of INL’s research on this project is to demonstrate the feasibility of a host event based network monitoring tool and the effects on host performance. Current host based network monitoring tools work on polling which can miss activity if it occurs between polls. Instead of polling, a tool could be developed that makes use of event APIs in the operating system to receive asynchronous notifications of network activity. Analysis and logging of these events will allow the tool to construct the complete real-time and historical network configuration of the host while the tool is running. This research focused on three major operating systems commonly used by SCADA systems: Linux, WindowsXP, and Windows7. Windows 7 offers two paths that have minimal impact on the system and should be seriously considered. First is the new Windows Event Logging API, and, second, Windows 7 offers the ALE API within WFP. Any future work should focus on these methods.

  7. Robust, Efficient Depth Reconstruction With Hierarchical Confidence-Based Matching.

    Science.gov (United States)

    Sun, Li; Chen, Ke; Song, Mingli; Tao, Dacheng; Chen, Gang; Chen, Chun

    2017-07-01

    In recent years, taking photos and capturing videos with mobile devices have become increasingly popular. Emerging applications based on the depth reconstruction technique have been developed, such as Google lens blur. However, depth reconstruction is difficult due to occlusions, non-diffuse surfaces, repetitive patterns, and textureless surfaces, and it has become more difficult due to the unstable image quality and uncontrolled scene condition in the mobile setting. In this paper, we present a novel hierarchical framework with multi-view confidence-based matching for robust, efficient depth reconstruction in uncontrolled scenes. Particularly, the proposed framework combines local cost aggregation with global cost optimization in a complementary manner that increases efficiency and accuracy. A depth map is efficiently obtained in a coarse-to-fine manner by using an image pyramid. Moreover, confidence maps are computed to robustly fuse multi-view matching cues, and to constrain the stereo matching on a finer scale. The proposed framework has been evaluated with challenging indoor and outdoor scenes, and has achieved robust and efficient depth reconstruction.

  8. Hierarchical activated mesoporous phenolic-resin-based carbons for supercapacitors.

    Science.gov (United States)

    Wang, Zhao; Zhou, Min; Chen, Hao; Jiang, Jingui; Guan, Shiyou

    2014-10-01

    A series of hierarchical activated mesoporous carbons (AMCs) were prepared by the activation of highly ordered, body-centered cubic mesoporous phenolic-resin-based carbon with KOH. The effect of the KOH/carbon-weight ratio on the textural properties and capacitive performance of the AMCs was investigated in detail. An AMC prepared with a KOH/carbon-weight ratio of 6:1 possessed the largest specific surface area (1118 m(2) g(-1)), with retention of the ordered mesoporous structure, and exhibited the highest specific capacitance of 260 F g(-1) at a current density of 0.1 A g(-1) in 1 M H2 SO4 aqueous electrolyte. This material also showed excellent rate capability (163 F g(-1) retained at 20 A g(-1)) and good long-term electrochemical stability. This superior capacitive performance could be attributed to a large specific surface area and an optimized micro-mesopore structure, which not only increased the effective specific surface area for charge storage but also provided a favorable pathway for efficient ion transport. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Iris Image Classification Based on Hierarchical Visual Codebook.

    Science.gov (United States)

    Zhenan Sun; Hui Zhang; Tieniu Tan; Jianyu Wang

    2014-06-01

    Iris recognition as a reliable method for personal identification has been well-studied with the objective to assign the class label of each iris image to a unique subject. In contrast, iris image classification aims to classify an iris image to an application specific category, e.g., iris liveness detection (classification of genuine and fake iris images), race classification (e.g., classification of iris images of Asian and non-Asian subjects), coarse-to-fine iris identification (classification of all iris images in the central database into multiple categories). This paper proposes a general framework for iris image classification based on texture analysis. A novel texture pattern representation method called Hierarchical Visual Codebook (HVC) is proposed to encode the texture primitives of iris images. The proposed HVC method is an integration of two existing Bag-of-Words models, namely Vocabulary Tree (VT), and Locality-constrained Linear Coding (LLC). The HVC adopts a coarse-to-fine visual coding strategy and takes advantages of both VT and LLC for accurate and sparse representation of iris texture. Extensive experimental results demonstrate that the proposed iris image classification method achieves state-of-the-art performance for iris liveness detection, race classification, and coarse-to-fine iris identification. A comprehensive fake iris image database simulating four types of iris spoof attacks is developed as the benchmark for research of iris liveness detection.

  10. Hierarchical Agent-Based Integrated Modelling Approach for Microgrids with Adoption of EVs and HRES

    Directory of Open Access Journals (Sweden)

    Peng Han

    2014-01-01

    Full Text Available The large adoption of electric vehicles (EVs, hybrid renewable energy systems (HRESs, and the increasing of the loads shall bring significant challenges to the microgrid. The methodology to model microgrid with high EVs and HRESs penetrations is the key to EVs adoption assessment and optimized HRESs deployment. However, considering the complex interactions of the microgrid containing massive EVs and HRESs, any previous single modelling approaches are insufficient. Therefore in this paper, the methodology named Hierarchical Agent-based Integrated Modelling Approach (HAIMA is proposed. With the effective integration of the agent-based modelling with other advanced modelling approaches, the proposed approach theoretically contributes to a new microgrid model hierarchically constituted by microgrid management layer, component layer, and event layer. Then the HAIMA further links the key parameters and interconnects them to achieve the interactions of the whole model. Furthermore, HAIMA practically contributes to a comprehensive microgrid operation system, through which the assessment of the proposed model and the impact of the EVs adoption are achieved. Simulations show that the proposed HAIMA methodology will be beneficial for the microgrid study and EV’s operation assessment and shall be further utilized for the energy management, electricity consumption prediction, the EV scheduling control, and HRES deployment optimization.

  11. Hierarchical Scheduling Framework Based on Compositional Analysis Using Uppaal

    DEFF Research Database (Denmark)

    Boudjadar, Jalil; David, Alexandre; Kim, Jin Hyun

    2014-01-01

    This paper introduces a reconfigurable compositional scheduling framework, in which the hierarchical structure, the scheduling policies, the concrete task behavior and the shared resources can all be reconfigured. The behavior of each periodic preemptive task is given as a list of timed actions, ...

  12. Online credit card fraud prediction based on hierarchical temporal ...

    African Journals Online (AJOL)

    This understanding gave birth to the Hierarchical Temporal Memory (HTM) which holds a lot of promises in the area of time-series prediction and anomaly detection problems. This paper demonstrates the behaviour of an HTM model with respect to its learning and prediction of online credit card fraud. The model was ...

  13. Class hierarchical test case generation algorithm based on expanded EMDPN model

    Institute of Scientific and Technical Information of China (English)

    LI Jun-yi; GONG Hong-fang; HU Ji-ping; ZOU Bei-ji; SUN Jia-guang

    2006-01-01

    A new model of event and message driven Petri network(EMDPN) based on the characteristic of class interaction for messages passing between two objects was extended. Using EMDPN interaction graph, a class hierarchical test-case generation algorithm with cooperated paths (copaths) was proposed, which can be used to solve the problems resulting from the class inheritance mechanism encountered in object-oriented software testing such as oracle, message transfer errors, and unreachable statement. Finally, the testing sufficiency was analyzed with the ordered sequence testing criterion(OSC). The results indicate that the test cases stemmed from newly proposed automatic algorithm of copaths generation satisfies synchronization message sequences testing criteria, therefore the proposed new algorithm of copaths generation has a good coverage rate.

  14. Priority-Based Hierarchical Operational Management for Multiagent-Based Microgrids

    Directory of Open Access Journals (Sweden)

    Takumi Kato

    2014-03-01

    Full Text Available Electricity consumption in the world is constantly increasing, making our lives become more and more dependent on electricity. There are several new paradigms proposed in the field of power grids. In Japan, especially after the Great East Japan Earthquake in March 2011, the new power grid paradigms are expected to be more resilient to survive several difficulties during disasters. In this paper, we focus on microgrids and propose priority-based hierarchical operational management for multiagent-based microgrids. The proposed management is a new multiagent-based load shedding scheme and multiagent-based hierarchical architecture to realize such resilient microgrids. We developed a prototype system and performed an evaluation of the proposed management using the developed system. The result of the evaluation shows the effectiveness of our proposal in power shortage situations, such as disasters.

  15. Hierarchical Spatial Concept Formation Based on Multimodal Information for Human Support Robots.

    Science.gov (United States)

    Hagiwara, Yoshinobu; Inoue, Masakazu; Kobayashi, Hiroyoshi; Taniguchi, Tadahiro

    2018-01-01

    In this paper, we propose a hierarchical spatial concept formation method based on the Bayesian generative model with multimodal information e.g., vision, position and word information. Since humans have the ability to select an appropriate level of abstraction according to the situation and describe their position linguistically, e.g., "I am in my home" and "I am in front of the table," a hierarchical structure of spatial concepts is necessary in order for human support robots to communicate smoothly with users. The proposed method enables a robot to form hierarchical spatial concepts by categorizing multimodal information using hierarchical multimodal latent Dirichlet allocation (hMLDA). Object recognition results using convolutional neural network (CNN), hierarchical k-means clustering result of self-position estimated by Monte Carlo localization (MCL), and a set of location names are used, respectively, as features in vision, position, and word information. Experiments in forming hierarchical spatial concepts and evaluating how the proposed method can predict unobserved location names and position categories are performed using a robot in the real world. Results verify that, relative to comparable baseline methods, the proposed method enables a robot to predict location names and position categories closer to predictions made by humans. As an application example of the proposed method in a home environment, a demonstration in which a human support robot moves to an instructed place based on human speech instructions is achieved based on the formed hierarchical spatial concept.

  16. Hierarchical Spatial Concept Formation Based on Multimodal Information for Human Support Robots

    Directory of Open Access Journals (Sweden)

    Yoshinobu Hagiwara

    2018-03-01

    Full Text Available In this paper, we propose a hierarchical spatial concept formation method based on the Bayesian generative model with multimodal information e.g., vision, position and word information. Since humans have the ability to select an appropriate level of abstraction according to the situation and describe their position linguistically, e.g., “I am in my home” and “I am in front of the table,” a hierarchical structure of spatial concepts is necessary in order for human support robots to communicate smoothly with users. The proposed method enables a robot to form hierarchical spatial concepts by categorizing multimodal information using hierarchical multimodal latent Dirichlet allocation (hMLDA. Object recognition results using convolutional neural network (CNN, hierarchical k-means clustering result of self-position estimated by Monte Carlo localization (MCL, and a set of location names are used, respectively, as features in vision, position, and word information. Experiments in forming hierarchical spatial concepts and evaluating how the proposed method can predict unobserved location names and position categories are performed using a robot in the real world. Results verify that, relative to comparable baseline methods, the proposed method enables a robot to predict location names and position categories closer to predictions made by humans. As an application example of the proposed method in a home environment, a demonstration in which a human support robot moves to an instructed place based on human speech instructions is achieved based on the formed hierarchical spatial concept.

  17. MAS Based Event-Triggered Hybrid Control for Smart Microgrids

    DEFF Research Database (Denmark)

    Dou, Chunxia; Liu, Bin; Guerrero, Josep M.

    2013-01-01

    This paper is focused on an advanced control for autonomous microgrids. In order to improve the performance regarding security and stability, a hierarchical decentralized coordinated control scheme is proposed based on multi-agents structure. Moreover, corresponding to the multi-mode and the hybrid...... haracteristics of microgrids, an event-triggered hybrid control, including three kinds of switching controls, is designed to intelligently reconstruct operation mode when the security stability assessment indexes or the constraint conditions are violated. The validity of proposed control scheme is demonstrated...

  18. Superhydrophobic SERS substrates based on silicon hierarchical nanostructures

    Science.gov (United States)

    Chen, Xuexian; Wen, Jinxiu; Zhou, Jianhua; Zheng, Zebo; An, Di; Wang, Hao; Xie, Weiguang; Zhan, Runze; Xu, Ningsheng; Chen, Jun; She, Juncong; Chen, Huanjun; Deng, Shaozhi

    2018-02-01

    Silicon nanostructures have been cultivated as promising surface enhanced Raman scattering (SERS) substrates in terms of their low-loss optical resonance modes, facile functionalization, and compatibility with today’s state-of-the-art CMOS techniques. However, unlike their plasmonic counterparts, the electromagnetic field enhancements induced by silicon nanostructures are relatively small, which restrict their SERS sensing limit to around 10-7 M. To tackle this problem, we propose here a strategy for improving the SERS performance of silicon nanostructures by constructing silicon hierarchical nanostructures with a superhydrophobic surface. The hierarchical nanostructures are binary structures consisted of silicon nanowires (NWs) grown on micropyramids (MPs). After being modified with perfluorooctyltriethoxysilane (PFOT), the nanostructure surface shows a stable superhydrophobicity with a high contact angle of ˜160°. The substrate can allow for concentrating diluted analyte solutions into a specific area during the evaporation of the liquid droplet, whereby the analytes are aggregated into a small volume and can be easily detected by the silicon nanostructure SERS substrate. The analyte molecules (methylene blue: MB) enriched from an aqueous solution lower than 10-8 M can be readily detected. Such a detection limit is ˜100-fold lower than the conventional SERS substrates made of silicon nanostructures. Additionally, the detection limit can be further improved by functionalizing gold nanoparticles onto silicon hierarchical nanostructures, whereby the superhydrophobic characteristics and plasmonic field enhancements can be combined synergistically to give a detection limit down to ˜10-11 M. A gold nanoparticle-functionalized superhydrophobic substrate was employed to detect the spiked melamine in liquid milk. The results showed that the detection limit can be as low as 10-5 M, highlighting the potential of the proposed superhydrophobic SERS substrate in

  19. High-performance supercapacitors based on hierarchically porous graphite particles

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zheng; Wen, Jing; Yan, Chunzhu; Rice, Lynn; Sohn, Hiesang; Lu, Yunfeng [Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095 (United States); Shen, Meiqing [School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 (China); Cai, Mei [General Motor R and D Center, Warren, MI 48090 (United States); Dunn, Bruce [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States)

    2011-07-15

    Hierarchically porous graphite particles are synthesized using a continuous, scalable aerosol approach. The unique porous graphite architecture provides the particles with high surface area, fast ion transportation, and good electronic conductivity, which endows the resulting supercapacitors with high energy and power densities. This work provides a new material platform for high-performance supercapacitors with high packing density, and is adaptable to battery electrodes, fuel-cell catalyst supports, and other applications. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. One wouldn't expect an expert bowler to hit only two pins: Hierarchical predictive processing of agent-caused events.

    Science.gov (United States)

    Heil, Lieke; Kwisthout, Johan; van Pelt, Stan; van Rooij, Iris; Bekkering, Harold

    2018-01-01

    Evidence is accumulating that our brains process incoming information using top-down predictions. If lower level representations are correctly predicted by higher level representations, this enhances processing. However, if they are incorrectly predicted, additional processing is required at higher levels to "explain away" prediction errors. Here, we explored the potential nature of the models generating such predictions. More specifically, we investigated whether a predictive processing model with a hierarchical structure and causal relations between its levels is able to account for the processing of agent-caused events. In Experiment 1, participants watched animated movies of "experienced" and "novice" bowlers. The results are in line with the idea that prediction errors at a lower level of the hierarchy (i.e., the outcome of how many pins fell down) slow down reporting of information at a higher level (i.e., which agent was throwing the ball). Experiments 2 and 3 suggest that this effect is specific to situations in which the predictor is causally related to the outcome. Overall, the study supports the idea that a hierarchical predictive processing model can account for the processing of observed action outcomes and that the predictions involved are specific to cases where action outcomes can be predicted based on causal knowledge.

  1. Inheritance rules for Hierarchical Metadata Based on ISO 19115

    Science.gov (United States)

    Zabala, A.; Masó, J.; Pons, X.

    2012-04-01

    Mainly, ISO19115 has been used to describe metadata for datasets and services. Furthermore, ISO19115 standard (as well as the new draft ISO19115-1) includes a conceptual model that allows to describe metadata at different levels of granularity structured in hierarchical levels, both in aggregated resources such as particularly series, datasets, and also in more disaggregated resources such as types of entities (feature type), types of attributes (attribute type), entities (feature instances) and attributes (attribute instances). In theory, to apply a complete metadata structure to all hierarchical levels of metadata, from the whole series to an individual feature attributes, is possible, but to store all metadata at all levels is completely impractical. An inheritance mechanism is needed to store each metadata and quality information at the optimum hierarchical level and to allow an ease and efficient documentation of metadata in both an Earth observation scenario such as a multi-satellite mission multiband imagery, as well as in a complex vector topographical map that includes several feature types separated in layers (e.g. administrative limits, contour lines, edification polygons, road lines, etc). Moreover, and due to the traditional split of maps in tiles due to map handling at detailed scales or due to the satellite characteristics, each of the previous thematic layers (e.g. 1:5000 roads for a country) or band (Landsat-5 TM cover of the Earth) are tiled on several parts (sheets or scenes respectively). According to hierarchy in ISO 19115, the definition of general metadata can be supplemented by spatially specific metadata that, when required, either inherits or overrides the general case (G.1.3). Annex H of this standard states that only metadata exceptions are defined at lower levels, so it is not necessary to generate the full registry of metadata for each level but to link particular values to the general value that they inherit. Conceptually the metadata

  2. Structural Group-based Auditing of Missing Hierarchical Relationships in UMLS

    Science.gov (United States)

    Chen, Yan; Gu, Huanying(Helen); Perl, Yehoshua; Geller, James

    2009-01-01

    The Metathesaurus of the UMLS was created by integrating various source terminologies. The inter-concept relationships were either integrated into the UMLS from the source terminologies or specially generated. Due to the extensive size and inherent complexity of the Metathesaurus, the accidental omission of some hierarchical relationships was inevitable. We present a recursive procedure which allows a human expert, with the support of an algorithm, to locate missing hierarchical relationships. The procedure starts with a group of concepts with exactly the same (correct) semantic type assignments. It then partitions the concepts, based on child-of hierarchical relationships, into smaller, singly rooted, hierarchically connected subgroups. The auditor only needs to focus on the subgroups with very few concepts and their concepts with semantic type reassignments. The procedure was evaluated by comparing it with a comprehensive manual audit and it exhibits a perfect error recall. PMID:18824248

  3. Hierarchical mutational events compensate for glutamate auxotrophy of a Bacillus subtilis gltC mutant.

    Science.gov (United States)

    Dormeyer, Miriam; Lübke, Anastasia L; Müller, Peter; Lentes, Sabine; Reuß, Daniel R; Thürmer, Andrea; Stülke, Jörg; Daniel, Rolf; Brantl, Sabine; Commichau, Fabian M

    2017-06-01

    Glutamate is the major donor of nitrogen for anabolic reactions. The Gram-positive soil bacterium Bacillus subtilis either utilizes exogenously provided glutamate or synthesizes it using the gltAB-encoded glutamate synthase (GOGAT). In the absence of glutamate, the transcription factor GltC activates expression of the GOGAT genes for glutamate production. Consequently, a gltC mutant strain is auxotrophic for glutamate. Using a genetic selection and screening system, we could isolate and differentiate between gltC suppressor mutants in one step. All mutants had acquired the ability to synthesize glutamate, independent of GltC. We identified (i) gain-of-function mutations in the gltR gene, encoding the transcription factor GltR, (ii) mutations in the promoter of the gltAB operon and (iii) massive amplification of the genomic locus containing the gltAB operon. The mutants belonging to the first two classes constitutively expressed the gltAB genes and produced sufficient glutamate for growth. By contrast, mutants that belong to the third class appeared most frequently and solved glutamate limitation by increasing the copy number of the poorly expressed gltAB genes. Thus, glutamate auxotrophy of a B. subtilis gltC mutant can be relieved in multiple ways. Moreover, recombination-dependent amplification of the gltAB genes is the predominant mutational event indicating a hierarchy of mutations. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Hierarchical fiber-optic-based sensing system: impact damage monitoring of large-scale CFRP structures

    International Nuclear Information System (INIS)

    Minakuchi, Shu; Banshoya, Hidehiko; Takeda, Nobuo; Tsukamoto, Haruka

    2011-01-01

    This study proposes a novel fiber-optic-based hierarchical sensing concept for monitoring randomly induced damage in large-scale composite structures. In a hierarchical system, several kinds of specialized devices are hierarchically combined to form a sensing network. Specifically, numerous three-dimensionally structured sensor devices are distributed throughout the whole structural area and connected with an optical fiber network through transducing mechanisms. The distributed devices detect damage, and the fiber-optic network gathers the damage signals and transmits the information to a measuring instrument. This study began by discussing the basic concept of a hierarchical sensing system through comparison with existing fiber-optic-based systems, and an impact damage detection system was then proposed to validate the new concept. The sensor devices were developed based on comparative vacuum monitoring (CVM), and Brillouin-based distributed strain measurement was utilized to identify damaged areas. Verification tests were conducted step-by-step, beginning with a basic test using a single sensor unit, and, finally, the proposed monitoring system was successfully verified using a carbon fiber reinforced plastic (CFRP) fuselage demonstrator. It was clearly confirmed that the hierarchical system has better repairability, higher robustness, and a wider monitorable area compared to existing systems

  5. Influence of unexpected events on driving behaviour at different hierarchical levels: a driving simulator experiment

    NARCIS (Netherlands)

    Schaap, T.W.; Horst, A.R.A. van der; Arem, B. van

    2008-01-01

    Computer based simulation models of human driving behaviour can be used effectively to model driving and behavioural adaptation to Intelligent Transport System (ITS). This can be a useful step in human centered design of ITS. To construct a comprehensive model of driving behaviour, the interaction

  6. Influence of unexpected events on driving behaviour at different hierarchical levels: A driving simulator experiment

    NARCIS (Netherlands)

    Schaap, Nina; van der Horst, A.R.A.; van Arem, Bart; Brusque, Corinne

    2008-01-01

    Computer based simulation models of human driving behaviour can be used effectively to model driving behaviour and behavioural adaptation to Intelligent Transport System (ITS). This can be a useful step in human centered design of ITS. To construct a comprehensive model of driving behaviour, the

  7. Flexible Transparent Supercapacitors Based on Hierarchical Nanocomposite Films.

    Science.gov (United States)

    Chen, Fanhong; Wan, Pengbo; Xu, Haijun; Sun, Xiaoming

    2017-05-31

    Flexible transparent electronic devices have recently gained immense popularity in smart wearable electronics and touch screen devices, which accelerates the development of the portable power sources with reliable flexibility, robust transparency and integration to couple these electronic devices. For potentially coupled as energy storage modules in various flexible, transparent and portable electronics, the flexible transparent supercapacitors are developed and assembled from hierarchical nanocomposite films of reduced graphene oxide (rGO) and aligned polyaniline (PANI) nanoarrays upon their synergistic advantages. The nanocomposite films are fabricated from in situ PANI nanoarrays preparation in a blended solution of aniline monomers and rGO onto the flexible, transparent, and stably conducting film (FTCF) substrate, which is obtained by coating silver nanowires (Ag NWs) layer with Meyer rod and then coating of rGO layer on polyethylene terephthalate (PET) substrate. Optimization of the transparency, the specific capacitance, and the flexibility resulted in the obtained all-solid state nanocomposite supercapacitors exhibiting enhanced capacitance performance, good cycling stability, excellent flexibility, and superior transparency. It provides promising application prospects for exploiting flexible, low-cost, transparent, and high-performance energy storage devices to be coupled into various flexible, transparent, and wearable electronic devices.

  8. Problems in event based engine control

    DEFF Research Database (Denmark)

    Hendricks, Elbert; Jensen, Michael; Chevalier, Alain Marie Roger

    1994-01-01

    Physically a four cycle spark ignition engine operates on the basis of four engine processes or events: intake, compression, ignition (or expansion) and exhaust. These events each occupy approximately 180° of crank angle. In conventional engine controllers, it is an accepted practice to sample...... the engine variables synchronously with these events (or submultiples of them). Such engine controllers are often called event-based systems. Unfortunately the main system noise (or disturbance) is also synchronous with the engine events: the engine pumping fluctuations. Since many electronic engine...... problems on accurate air/fuel ratio control of a spark ignition (SI) engine....

  9. Hierarchical Controlled Grid-Connected Microgrid based on a Novel Autonomous Current Sharing Controller

    DEFF Research Database (Denmark)

    Guan, Yajuan; Quintero, Juan Carlos Vasquez; Guerrero, Josep M.

    2015-01-01

    In this paper, a hierarchical control system based on a novel autonomous current sharing controller for grid-connected microgrids (MGs) is presented. A three-level hierarchical control system is implemented to guarantee the power sharing performance among voltage controlled parallel inverters......, while providing the required active and reactive power to the utility grid. A communication link is used to transmit the control signal from the tertiary and secondary control levels to the primary control. Simulation results from a MG based on two grid-connected parallel inverters are shown in order...

  10. A reward optimization method based on action subrewards in hierarchical reinforcement learning.

    Science.gov (United States)

    Fu, Yuchen; Liu, Quan; Ling, Xionghong; Cui, Zhiming

    2014-01-01

    Reinforcement learning (RL) is one kind of interactive learning methods. Its main characteristics are "trial and error" and "related reward." A hierarchical reinforcement learning method based on action subrewards is proposed to solve the problem of "curse of dimensionality," which means that the states space will grow exponentially in the number of features and low convergence speed. The method can reduce state spaces greatly and choose actions with favorable purpose and efficiency so as to optimize reward function and enhance convergence speed. Apply it to the online learning in Tetris game, and the experiment result shows that the convergence speed of this algorithm can be enhanced evidently based on the new method which combines hierarchical reinforcement learning algorithm and action subrewards. The "curse of dimensionality" problem is also solved to a certain extent with hierarchical method. All the performance with different parameters is compared and analyzed as well.

  11. A Weibull-based compositional approach for hierarchical dynamic fault trees

    International Nuclear Information System (INIS)

    Chiacchio, F.; Cacioppo, M.; D'Urso, D.; Manno, G.; Trapani, N.; Compagno, L.

    2013-01-01

    The solution of a dynamic fault tree (DFT) for the reliability assessment can be achieved using a wide variety of techniques. These techniques have a strong theoretical foundation as both the analytical and the simulation methods have been extensively developed. Nevertheless, they all present the same limits that appear with the increasing of the size of the fault trees (i.e., state space explosion, time-consuming simulations), compromising the resolution. We have tested the feasibility of a composition algorithm based on a Weibull distribution, addressed to the resolution of a general class of dynamic fault trees characterized by non-repairable basic events and generally distributed failure times. The proposed composition algorithm is used to generalize the traditional hierarchical technique that, as previous literature have extensively confirmed, is able to reduce the computational effort of a large DFT through the modularization of independent parts of the tree. The results of this study are achieved both through simulation and analytical techniques, thus confirming the capability to solve a quite general class of dynamic fault trees and overcome the limits of traditional techniques.

  12. Hierarchical control of a photovoltaic/battery based DC microgrid including electric vehicle wireless charging station

    DEFF Research Database (Denmark)

    Xiao, Zhao xia; Fan, Haodong; Guerrero, Josep M.

    2017-01-01

    In this paper, the hierarchical control strategy of a photovoltaic/battery based dc microgrid is presented for electric vehicle (EV) wireless charging. Considering irradiance variations, battery charging/discharging requirements, wireless power transmission characteristics, and onboard battery...... coils, receiving coils and compensation capacitors, the wireless power transmission system is designed to be resonant when it is operating at the rated power, with the aim to achieve the optimum transmission system efficiency. Simulation and experimental results of the hierarchical control...... charging power change and other factors, the possible operation states are obtained. A hierarchical control strategy is established, which includes central and local controllers. The central controller is responsible for the selection and transfer of operation states and the management of the local...

  13. Novel density-based and hierarchical density-based clustering algorithms for uncertain data.

    Science.gov (United States)

    Zhang, Xianchao; Liu, Han; Zhang, Xiaotong

    2017-09-01

    Uncertain data has posed a great challenge to traditional clustering algorithms. Recently, several algorithms have been proposed for clustering uncertain data, and among them density-based techniques seem promising for handling data uncertainty. However, some issues like losing uncertain information, high time complexity and nonadaptive threshold have not been addressed well in the previous density-based algorithm FDBSCAN and hierarchical density-based algorithm FOPTICS. In this paper, we firstly propose a novel density-based algorithm PDBSCAN, which improves the previous FDBSCAN from the following aspects: (1) it employs a more accurate method to compute the probability that the distance between two uncertain objects is less than or equal to a boundary value, instead of the sampling-based method in FDBSCAN; (2) it introduces new definitions of probability neighborhood, support degree, core object probability, direct reachability probability, thus reducing the complexity and solving the issue of nonadaptive threshold (for core object judgement) in FDBSCAN. Then, we modify the algorithm PDBSCAN to an improved version (PDBSCANi), by using a better cluster assignment strategy to ensure that every object will be assigned to the most appropriate cluster, thus solving the issue of nonadaptive threshold (for direct density reachability judgement) in FDBSCAN. Furthermore, as PDBSCAN and PDBSCANi have difficulties for clustering uncertain data with non-uniform cluster density, we propose a novel hierarchical density-based algorithm POPTICS by extending the definitions of PDBSCAN, adding new definitions of fuzzy core distance and fuzzy reachability distance, and employing a new clustering framework. POPTICS can reveal the cluster structures of the datasets with different local densities in different regions better than PDBSCAN and PDBSCANi, and it addresses the issues in FOPTICS. Experimental results demonstrate the superiority of our proposed algorithms over the existing

  14. The Impact of Standards-Based Reform: Applying Brantlinger's Critique of "Hierarchical Ideologies"

    Science.gov (United States)

    Bacon, Jessica; Ferri, Beth

    2013-01-01

    Brantlinger's [2004b. "Ideologies Discerned, Values Determined: Getting past the Hierarchies of Special Education." In "Ideology and the Politics of (in)Exclusion," edited by L. Ware, 11-31. New York: Peter Lang Publishing] critique of hierarchical ideologies lays bare the logics embedded in standards-based reform. Drawing on…

  15. An enhanced hierarchical control strategy for the Internet of Things-based home scale microgrid

    DEFF Research Database (Denmark)

    Guan, Yajuan; Quintero, Juan Carlos Vasquez; Guerrero, Josep M.

    2017-01-01

    As the intelligent control and detection technology improving, more and more smart devices/sensors can be used to increase the living standard. In order to integrate the Internet of Things (IoT) with microgrid (MG), an enhanced hierarchical control strategy for IoT-based home scale MG is proposed...

  16. Hierarchical clustering of RGB surface water images based on MIA ...

    African Journals Online (AJOL)

    2009-11-25

    Nov 25, 2009 ... similar water-related images within a testing database of 126 RGB images. .... consequently treated by SVD-based PCA and the PCA outputs partitioned into .... green. Other colours, mostly brown and grey, dominate in.

  17. Simulating individual-based models of epidemics in hierarchical networks

    NARCIS (Netherlands)

    Quax, R.; Bader, D.A.; Sloot, P.M.A.

    2009-01-01

    Current mathematical modeling methods for the spreading of infectious diseases are too simplified and do not scale well. We present the Simulator of Epidemic Evolution in Complex Networks (SEECN), an efficient simulator of detailed individual-based models by parameterizing separate dynamics

  18. Dynamic Hierarchical Energy-Efficient Method Based on Combinatorial Optimization for Wireless Sensor Networks.

    Science.gov (United States)

    Chang, Yuchao; Tang, Hongying; Cheng, Yongbo; Zhao, Qin; Yuan, Baoqing Li andXiaobing

    2017-07-19

    Routing protocols based on topology control are significantly important for improving network longevity in wireless sensor networks (WSNs). Traditionally, some WSN routing protocols distribute uneven network traffic load to sensor nodes, which is not optimal for improving network longevity. Differently to conventional WSN routing protocols, we propose a dynamic hierarchical protocol based on combinatorial optimization (DHCO) to balance energy consumption of sensor nodes and to improve WSN longevity. For each sensor node, the DHCO algorithm obtains the optimal route by establishing a feasible routing set instead of selecting the cluster head or the next hop node. The process of obtaining the optimal route can be formulated as a combinatorial optimization problem. Specifically, the DHCO algorithm is carried out by the following procedures. It employs a hierarchy-based connection mechanism to construct a hierarchical network structure in which each sensor node is assigned to a special hierarchical subset; it utilizes the combinatorial optimization theory to establish the feasible routing set for each sensor node, and takes advantage of the maximum-minimum criterion to obtain their optimal routes to the base station. Various results of simulation experiments show effectiveness and superiority of the DHCO algorithm in comparison with state-of-the-art WSN routing algorithms, including low-energy adaptive clustering hierarchy (LEACH), hybrid energy-efficient distributed clustering (HEED), genetic protocol-based self-organizing network clustering (GASONeC), and double cost function-based routing (DCFR) algorithms.

  19. Insights from event-related potentials into the temporal and hierarchical organization of the ventral and dorsal streams of the visual system in selective attention.

    Science.gov (United States)

    Martín-Loeches, M; Hinojosa, J A; Rubia, F J

    1999-11-01

    The temporal and hierarchical relationships between the dorsal and the ventral streams in selective attention are known only in relation to the use of spatial location as the attentional cue mediated by the dorsal stream. To improve this state of affairs, event-related brain potentials were recorded while subjects attended simultaneously to motion direction (mediated by the dorsal stream) and to a property mediated by the ventral stream (color or shape). At about the same time, a selection positivity (SP) started for attention mediated by both streams. However, the SP for color and shape peaked about 60 ms later than motion SP. Subsequently, a selection negativity (SN) followed by a late positive component (LPC) were found simultaneously for attention mediated by both streams. A hierarchical relationship between the two streams was not observed, but neither SN nor LPC for one property was completely insensitive to the values of the other property.

  20. Spatio-Temporal Story Mapping Animation Based On Structured Causal Relationships Of Historical Events

    Science.gov (United States)

    Inoue, Y.; Tsuruoka, K.; Arikawa, M.

    2014-04-01

    In this paper, we proposed a user interface that displays visual animations on geographic maps and timelines for depicting historical stories by representing causal relationships among events for time series. We have been developing an experimental software system for the spatial-temporal visualization of historical stories for tablet computers. Our proposed system makes people effectively learn historical stories using visual animations based on hierarchical structures of different scale timelines and maps.

  1. A Direct Elliptic Solver Based on Hierarchically Low-Rank Schur Complements

    KAUST Repository

    Chávez, Gustavo

    2017-03-17

    A parallel fast direct solver for rank-compressible block tridiagonal linear systems is presented. Algorithmic synergies between Cyclic Reduction and Hierarchical matrix arithmetic operations result in a solver with O(Nlog2N) arithmetic complexity and O(NlogN) memory footprint. We provide a baseline for performance and applicability by comparing with well-known implementations of the $$\\\\mathcal{H}$$ -LU factorization and algebraic multigrid within a shared-memory parallel environment that leverages the concurrency features of the method. Numerical experiments reveal that this method is comparable with other fast direct solvers based on Hierarchical Matrices such as $$\\\\mathcal{H}$$ -LU and that it can tackle problems where algebraic multigrid fails to converge.

  2. Titanium-Phosphonate-Based Metal-Organic Frameworks with Hierarchical Porosity for Enhanced Photocatalytic Hydrogen Evolution

    KAUST Repository

    Li, Hui

    2018-02-01

    Photocatalytic hydrogen production is crucial for solar-to-chemical conversion process, wherein high-efficiency photocatalysts lie in the heart of this area. Herein a new photocatalyst of hierarchically mesoporous titanium-phosphonate-based metal-organic frameworks, featuring well-structured spheres, periodic mesostructure and large secondary mesoporosity, are rationally designed with the complex of polyelectrolyte and cathodic surfactant serving as the template. The well-structured hierarchical porosity and homogeneously incorporated phosphonate groups can favor the mass transfer and strong optical absorption during the photocatalytic reactions. Correspondingly, the titanium phosphonates exhibit significantly improved photocatalytic hydrogen evolution rate along with impressive stability. This work can provide more insights into designing advanced photocatalysts for energy conversion and render a tunable platform in photoelectrochemical field.

  3. A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates

    Science.gov (United States)

    Huang, Weizhang; Kamenski, Lennard; Lang, Jens

    2010-03-01

    A new anisotropic mesh adaptation strategy for finite element solution of elliptic differential equations is presented. It generates anisotropic adaptive meshes as quasi-uniform ones in some metric space, with the metric tensor being computed based on hierarchical a posteriori error estimates. A global hierarchical error estimate is employed in this study to obtain reliable directional information of the solution. Instead of solving the global error problem exactly, which is costly in general, we solve it iteratively using the symmetric Gauß-Seidel method. Numerical results show that a few GS iterations are sufficient for obtaining a reasonably good approximation to the error for use in anisotropic mesh adaptation. The new method is compared with several strategies using local error estimators or recovered Hessians. Numerical results are presented for a selection of test examples and a mathematical model for heat conduction in a thermal battery with large orthotropic jumps in the material coefficients.

  4. Titanium-Phosphonate-Based Metal-Organic Frameworks with Hierarchical Porosity for Enhanced Photocatalytic Hydrogen Evolution

    KAUST Repository

    Li, Hui; Sun, Ying; Yuan, Zhong-Yong; Zhu, Yun-Pei; Ma, Tianyi

    2018-01-01

    Photocatalytic hydrogen production is crucial for solar-to-chemical conversion process, wherein high-efficiency photocatalysts lie in the heart of this area. Herein a new photocatalyst of hierarchically mesoporous titanium-phosphonate-based metal-organic frameworks, featuring well-structured spheres, periodic mesostructure and large secondary mesoporosity, are rationally designed with the complex of polyelectrolyte and cathodic surfactant serving as the template. The well-structured hierarchical porosity and homogeneously incorporated phosphonate groups can favor the mass transfer and strong optical absorption during the photocatalytic reactions. Correspondingly, the titanium phosphonates exhibit significantly improved photocatalytic hydrogen evolution rate along with impressive stability. This work can provide more insights into designing advanced photocatalysts for energy conversion and render a tunable platform in photoelectrochemical field.

  5. Hierarchical layered and semantic-based image segmentation using ergodicity map

    Science.gov (United States)

    Yadegar, Jacob; Liu, Xiaoqing

    2010-04-01

    Image segmentation plays a foundational role in image understanding and computer vision. Although great strides have been made and progress achieved on automatic/semi-automatic image segmentation algorithms, designing a generic, robust, and efficient image segmentation algorithm is still challenging. Human vision is still far superior compared to computer vision, especially in interpreting semantic meanings/objects in images. We present a hierarchical/layered semantic image segmentation algorithm that can automatically and efficiently segment images into hierarchical layered/multi-scaled semantic regions/objects with contextual topological relationships. The proposed algorithm bridges the gap between high-level semantics and low-level visual features/cues (such as color, intensity, edge, etc.) through utilizing a layered/hierarchical ergodicity map, where ergodicity is computed based on a space filling fractal concept and used as a region dissimilarity measurement. The algorithm applies a highly scalable, efficient, and adaptive Peano- Cesaro triangulation/tiling technique to decompose the given image into a set of similar/homogenous regions based on low-level visual cues in a top-down manner. The layered/hierarchical ergodicity map is built through a bottom-up region dissimilarity analysis. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level of detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanisms for contextual topological object/region relationship generation. Experiments have been conducted within the maritime image environment where the segmented layered semantic objects include the basic level objects (i.e. sky/land/water) and deeper level objects in the sky/land/water surfaces. Experimental results demonstrate the proposed algorithm has the capability to robustly and efficiently segment images into layered semantic objects

  6. A hierarchical lattice spring model to simulate the mechanics of 2-D materials-based composites

    Directory of Open Access Journals (Sweden)

    Lucas eBrely

    2015-07-01

    Full Text Available In the field of engineering materials, strength and toughness are typically two mutually exclusive properties. Structural biological materials such as bone, tendon or dentin have resolved this conflict and show unprecedented damage tolerance, toughness and strength levels. The common feature of these materials is their hierarchical heterogeneous structure, which contributes to increased energy dissipation before failure occurring at different scale levels. These structural properties are the key to exceptional bioinspired material mechanical properties, in particular for nanocomposites. Here, we develop a numerical model in order to simulate the mechanisms involved in damage progression and energy dissipation at different size scales in nano- and macro-composites, which depend both on the heterogeneity of the material and on the type of hierarchical structure. Both these aspects have been incorporated into a 2-dimensional model based on a Lattice Spring Model, accounting for geometrical nonlinearities and including statistically-based fracture phenomena. The model has been validated by comparing numerical results to continuum and fracture mechanics results as well as finite elements simulations, and then employed to study how structural aspects impact on hierarchical composite material properties. Results obtained with the numerical code highlight the dependence of stress distributions on matrix properties and reinforcement dispersion, geometry and properties, and how failure of sacrificial elements is directly involved in the damage tolerance of the material. Thanks to the rapidly developing field of nanocomposite manufacture, it is already possible to artificially create materials with multi-scale hierarchical reinforcements. The developed code could be a valuable support in the design and optimization of these advanced materials, drawing inspiration and going beyond biological materials with exceptional mechanical properties.

  7. Does history of childhood maltreatment make a difference in prison? A hierarchical approach on early family events and personality traits.

    Science.gov (United States)

    Sergentanis, Theodoros N; Sakelliadis, Emmanouil I; Vlachodimitropoulos, Dimitrios; Goutas, Nikolaos; Sergentanis, Ioannis N; Spiliopoulou, Chara A; Papadodima, StavroulaA

    2014-12-30

    This study attempts to assess childhood maltreatment in prison through a hierarchical approach. The hierarchical approach principally aims to disentangle the independent effects of childhood maltreatment upon psychiatric morbidity/personality traits, if any, from the burden that the adverse family conditions have already imposed to the mental health of the maltreated individual-prisoner. To this direction, a conceptual framework with five hierarchical levels was constructed, namely: immutable demographic factors; family conditions; childhood maltreatment (physical abuse, neglect and sexual abuse); personality traits, habits and psychiatric morbidity; prison-related variables. A self-administered, anonymous set (battery) of questionnaires was administered to 173 male prisoners in the Chalkida prison, Greece; 26% of prisoners disclosed childhood maltreatment. Psychiatric condition in the family, parental alcoholism and parental divorce correlated with childhood maltreatment. After adjustment for immutable demographic factors and family conditions, childhood maltreatment was associated with aggression (both in terms of Lifetime History of Aggression and Buss–Perry Aggression Questionnaire scores), illicit substance use, personal history of psychiatric condition, current smoking, impulsivity and alcohol abuse. In conclusion, childhood maltreatment represents a pivotal, determining factor in the life course of male prisoners. Delinquents seem to suffer from long-term consequences of childhood maltreatment in terms of numerous mental health aspects.

  8. Classifying dysmorphic syndromes by using artificial neural network based hierarchical decision tree.

    Science.gov (United States)

    Özdemir, Merve Erkınay; Telatar, Ziya; Eroğul, Osman; Tunca, Yusuf

    2018-05-01

    Dysmorphic syndromes have different facial malformations. These malformations are significant to an early diagnosis of dysmorphic syndromes and contain distinctive information for face recognition. In this study we define the certain features of each syndrome by considering facial malformations and classify Fragile X, Hurler, Prader Willi, Down, Wolf Hirschhorn syndromes and healthy groups automatically. The reference points are marked on the face images and ratios between the points' distances are taken into consideration as features. We suggest a neural network based hierarchical decision tree structure in order to classify the syndrome types. We also implement k-nearest neighbor (k-NN) and artificial neural network (ANN) classifiers to compare classification accuracy with our hierarchical decision tree. The classification accuracy is 50, 73 and 86.7% with k-NN, ANN and hierarchical decision tree methods, respectively. Then, the same images are shown to a clinical expert who achieve a recognition rate of 46.7%. We develop an efficient system to recognize different syndrome types automatically in a simple, non-invasive imaging data, which is independent from the patient's age, sex and race at high accuracy. The promising results indicate that our method can be used for pre-diagnosis of the dysmorphic syndromes by clinical experts.

  9. Superhydrophobic surface based on a coral-like hierarchical structure of ZnO.

    Directory of Open Access Journals (Sweden)

    Jun Wu

    2010-12-01

    Full Text Available Fabrication of superhydrophobic surfaces has attracted much interest in the past decade. The fabrication methods that have been studied are chemical vapour deposition, the sol-gel method, etching technique, electrochemical deposition, the layer-by-layer deposition, and so on. Simple and inexpensive methods for manufacturing environmentally stable superhydrophobic surfaces have also been proposed lately. However, work referring to the influence of special structures on the wettability, such as hierarchical ZnO nanostructures, is rare.This study presents a simple and reproducible method to fabricate a superhydrophobic surface with micro-scale roughness based on zinc oxide (ZnO hierarchical structure, which is grown by the hydrothermal method with an alkaline aqueous solution. Coral-like structures of ZnO were fabricated on a glass substrate with a micro-scale roughness, while the antennas of the coral formed the nano-scale roughness. The fresh ZnO films exhibited excellent superhydrophilicity (the apparent contact angle for water droplet was about 0°, while the ability to be wet could be changed to superhydrophobicity after spin-coating Teflon (the apparent contact angle greater than 168°. The procedure reported here can be applied to substrates consisting of other materials and having various shapes.The new process is convenient and environmentally friendly compared to conventional methods. Furthermore, the hierarchical structure generates the extraordinary solid/gas/liquid three-phase contact interface, which is the essential characteristic for a superhydrophobic surface.

  10. Aerial surveillance based on hierarchical object classification for ground target detection

    Science.gov (United States)

    Vázquez-Cervantes, Alberto; García-Huerta, Juan-Manuel; Hernández-Díaz, Teresa; Soto-Cajiga, J. A.; Jiménez-Hernández, Hugo

    2015-03-01

    Unmanned aerial vehicles have turned important in surveillance application due to the flexibility and ability to inspect and displace in different regions of interest. The instrumentation and autonomy of these vehicles have been increased; i.e. the camera sensor is now integrated. Mounted cameras allow flexibility to monitor several regions of interest, displacing and changing the camera view. A well common task performed by this kind of vehicles correspond to object localization and tracking. This work presents a hierarchical novel algorithm to detect and locate objects. The algorithm is based on a detection-by-example approach; this is, the target evidence is provided at the beginning of the vehicle's route. Afterwards, the vehicle inspects the scenario, detecting all similar objects through UTM-GPS coordinate references. Detection process consists on a sampling information process of the target object. Sampling process encode in a hierarchical tree with different sampling's densities. Coding space correspond to a huge binary space dimension. Properties such as independence and associative operators are defined in this space to construct a relation between the target object and a set of selected features. Different densities of sampling are used to discriminate from general to particular features that correspond to the target. The hierarchy is used as a way to adapt the complexity of the algorithm due to optimized battery duty cycle of the aerial device. Finally, this approach is tested in several outdoors scenarios, proving that the hierarchical algorithm works efficiently under several conditions.

  11. Beyond Creation of Mesoporosity: The Advantages of Polymer-Based Dual-Function Templates for Fabricating Hierarchical Zeolites

    KAUST Repository

    Tian, Qiwei; Liu, Zhaohui; Zhu, Yihan; Dong, Xinglong; Saih, Youssef; Basset, Jean-Marie; Sun, Miao; Xu, Wei; Zhu, Liangkui; Zhang, Daliang; Huang, Jianfeng; Meng, Xiangju; Xiao, Feng-Shou; Han, Yu

    2016-01-01

    Direct synthesis of hierarchical zeolites currently relies on the use of surfactant-based templates to produce mesoporosity by the random stacking of 2D zeolite sheets or the agglomeration of tiny zeolite grains. The benefits of using nonsurfactant

  12. Hierarchical graph-based segmentation for extracting road networks from high-resolution satellite images

    Science.gov (United States)

    Alshehhi, Rasha; Marpu, Prashanth Reddy

    2017-04-01

    Extraction of road networks in urban areas from remotely sensed imagery plays an important role in many urban applications (e.g. road navigation, geometric correction of urban remote sensing images, updating geographic information systems, etc.). It is normally difficult to accurately differentiate road from its background due to the complex geometry of the buildings and the acquisition geometry of the sensor. In this paper, we present a new method for extracting roads from high-resolution imagery based on hierarchical graph-based image segmentation. The proposed method consists of: 1. Extracting features (e.g., using Gabor and morphological filtering) to enhance the contrast between road and non-road pixels, 2. Graph-based segmentation consisting of (i) Constructing a graph representation of the image based on initial segmentation and (ii) Hierarchical merging and splitting of image segments based on color and shape features, and 3. Post-processing to remove irregularities in the extracted road segments. Experiments are conducted on three challenging datasets of high-resolution images to demonstrate the proposed method and compare with other similar approaches. The results demonstrate the validity and superior performance of the proposed method for road extraction in urban areas.

  13. Radar Emission Sources Identification Based on Hierarchical Agglomerative Clustering for Large Data Sets

    Directory of Open Access Journals (Sweden)

    Janusz Dudczyk

    2016-01-01

    Full Text Available More advanced recognition methods, which may recognize particular copies of radars of the same type, are called identification. The identification process of radar devices is a more specialized task which requires methods based on the analysis of distinctive features. These features are distinguished from the signals coming from the identified devices. Such a process is called Specific Emitter Identification (SEI. The identification of radar emission sources with the use of classic techniques based on the statistical analysis of basic measurable parameters of a signal such as Radio Frequency, Amplitude, Pulse Width, or Pulse Repetition Interval is not sufficient for SEI problems. This paper presents the method of hierarchical data clustering which is used in the process of radar identification. The Hierarchical Agglomerative Clustering Algorithm (HACA based on Generalized Agglomerative Scheme (GAS implemented and used in the research method is parameterized; therefore, it is possible to compare the results. The results of clustering are presented in dendrograms in this paper. The received results of grouping and identification based on HACA are compared with other SEI methods in order to assess the degree of their usefulness and effectiveness for systems of ESM/ELINT class.

  14. Real-Time Pricing-Based Scheduling Strategy in Smart Grids: A Hierarchical Game Approach

    Directory of Open Access Journals (Sweden)

    Jie Yang

    2014-01-01

    Full Text Available This paper proposes a scheduling strategy based on real-time pricing in smart grids. A hierarchical game is employed to analyze the decision-making process of generators and consumers. We prove the existence and uniqueness of Nash equilibrium and utilize a backward induction method to obtain the generation and consumption strategies. Then, we propose two dynamic algorithms for the generators and consumers to search for the equilibrium in a distributed fashion. Simulation results demonstrate that the proposed scheduling strategy can match supply with demand and shift load away from peak time.

  15. Hierarchical composites: Analysis of damage evolution based on fiber bundle model

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon

    2011-01-01

    A computational model of multiscale composites is developed on the basis of the fiber bundle model with the hierarchical load sharing rule, and employed to study the effect of the microstructures of hierarchical composites on their damage resistance. Two types of hierarchical materials were consi...

  16. Accurate detection of hierarchical communities in complex networks based on nonlinear dynamical evolution

    Science.gov (United States)

    Zhuo, Zhao; Cai, Shi-Min; Tang, Ming; Lai, Ying-Cheng

    2018-04-01

    One of the most challenging problems in network science is to accurately detect communities at distinct hierarchical scales. Most existing methods are based on structural analysis and manipulation, which are NP-hard. We articulate an alternative, dynamical evolution-based approach to the problem. The basic principle is to computationally implement a nonlinear dynamical process on all nodes in the network with a general coupling scheme, creating a networked dynamical system. Under a proper system setting and with an adjustable control parameter, the community structure of the network would "come out" or emerge naturally from the dynamical evolution of the system. As the control parameter is systematically varied, the community hierarchies at different scales can be revealed. As a concrete example of this general principle, we exploit clustered synchronization as a dynamical mechanism through which the hierarchical community structure can be uncovered. In particular, for quite arbitrary choices of the nonlinear nodal dynamics and coupling scheme, decreasing the coupling parameter from the global synchronization regime, in which the dynamical states of all nodes are perfectly synchronized, can lead to a weaker type of synchronization organized as clusters. We demonstrate the existence of optimal choices of the coupling parameter for which the synchronization clusters encode accurate information about the hierarchical community structure of the network. We test and validate our method using a standard class of benchmark modular networks with two distinct hierarchies of communities and a number of empirical networks arising from the real world. Our method is computationally extremely efficient, eliminating completely the NP-hard difficulty associated with previous methods. The basic principle of exploiting dynamical evolution to uncover hidden community organizations at different scales represents a "game-change" type of approach to addressing the problem of community

  17. Hierarchical porous photoanode based on acid boric catalyzed sol for dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Maleki, Khatereh [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box: 14395-553, Tehran (Iran, Islamic Republic of); Abdizadeh, Hossein [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box: 14395-553, Tehran (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, University of Tehran, Tehran (Iran, Islamic Republic of); Golobostanfard, Mohammad Reza, E-mail: Mohammadreza.Golbostanfard@gmail.com [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box: 14395-553, Tehran (Iran, Islamic Republic of); Adelfar, Razieh [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box: 14395-553, Tehran (Iran, Islamic Republic of)

    2017-02-01

    Highlights: • Acid boric can thoroughly leads to the hierarchical porous titania structure. • Boron is introduced into titania lattice which causes slight blueshift of bandgap. • The optimized sol parameters are H{sub 3}BO{sub 3}/TTiP = 0.45, DI/TTiP = 4.5, and 0.17 M. • Optimized paste parameters is not changed compared to conventional pastes. • The DSSC based on H{sub 3}BO{sub 3} catalyzed sol shows promising efficiency of 2.91%. - Abstract: The hierarchical porous photoanode of the dye sensitized solar cell (DSSC) is synthesized through non-aqueous sol-gel method based on H{sub 3}BO{sub 3} as an acid catalyst and the efficiencies of the fabricated DSSC based on these photoanodes are compared. The sol parameters of 0.17 M, water mole ratio of 4.5, acid mole ratio of 0.45, and solvent type of ethanol are introduced as optimum parameters for photoanode formation without any detectable cracks. The optimized hierarchical photoanode mainly contains anatase phase with slight shift toward higher angles, confirming the doping of boron into titania structure. Moreover, the porous structure involves two ranges of average pore sizes of 20 and 635 nm. The diffuse reflectance spectroscopy (DRS) shows the proper scattering and blueshift in band gap. The paste parameters of solid:liquid, TiO{sub 2}:ethyl cellulose, and terpineol:ethanol equal to 11:89, 3.5:7.5, and 25:64, respectively, are assigned as optimized parameters for this novel paste. The photovoltaic properties of short circuit current density, open circuit voltage, fill factor, and efficiency of 5.89 mA/cm{sup 2}, 703 mV, 0.7, and 2.91% are obtained for the optimized sample, respectively. The relatively higher short circuit current of the main sample compared to other samples is mainly due to higher dye adsorption in this sample corresponding to its higher surface area and presumably higher charge transfer confirmed by low R{sub S} and R{sub ct} in electrochemical impedance spectroscopy data. Boric acid as

  18. A test sheet generating algorithm based on intelligent genetic algorithm and hierarchical planning

    Science.gov (United States)

    Gu, Peipei; Niu, Zhendong; Chen, Xuting; Chen, Wei

    2013-03-01

    In recent years, computer-based testing has become an effective method to evaluate students' overall learning progress so that appropriate guiding strategies can be recommended. Research has been done to develop intelligent test assembling systems which can automatically generate test sheets based on given parameters of test items. A good multisubject test sheet depends on not only the quality of the test items but also the construction of the sheet. Effective and efficient construction of test sheets according to multiple subjects and criteria is a challenging problem. In this paper, a multi-subject test sheet generation problem is formulated and a test sheet generating approach based on intelligent genetic algorithm and hierarchical planning (GAHP) is proposed to tackle this problem. The proposed approach utilizes hierarchical planning to simplify the multi-subject testing problem and adopts genetic algorithm to process the layered criteria, enabling the construction of good test sheets according to multiple test item requirements. Experiments are conducted and the results show that the proposed approach is capable of effectively generating multi-subject test sheets that meet specified requirements and achieve good performance.

  19. A Comprehensive Survey on Hierarchical-Based Routing Protocols for Mobile Wireless Sensor Networks: Review, Taxonomy, and Future Directions

    Directory of Open Access Journals (Sweden)

    Nabil Sabor

    2017-01-01

    Full Text Available Introducing mobility to Wireless Sensor Networks (WSNs puts new challenges particularly in designing of routing protocols. Mobility can be applied to the sensor nodes and/or the sink node in the network. Many routing protocols have been developed to support the mobility of WSNs. These protocols are divided depending on the routing structure into hierarchical-based, flat-based, and location-based routing protocols. However, the hierarchical-based routing protocols outperform the other routing types in saving energy, scalability, and extending lifetime of Mobile WSNs (MWSNs. Selecting an appropriate hierarchical routing protocol for specific applications is an important and difficult task. Therefore, this paper focuses on reviewing some of the recently hierarchical-based routing protocols that are developed in the last five years for MWSNs. This survey divides the hierarchical-based routing protocols into two broad groups, namely, classical-based and optimized-based routing protocols. Also, we present a detailed classification of the reviewed protocols according to the routing approach, control manner, mobile element, mobility pattern, network architecture, clustering attributes, protocol operation, path establishment, communication paradigm, energy model, protocol objectives, and applications. Moreover, a comparison between the reviewed protocols is investigated in this survey depending on delay, network size, energy-efficiency, and scalability while mentioning the advantages and drawbacks of each protocol. Finally, we summarize and conclude the paper with future directions.

  20. Enhanced fuzzy-connective-based hierarchical aggregation network using particle swarm optimization

    Science.gov (United States)

    Wang, Fang-Fang; Su, Chao-Ton

    2014-11-01

    The fuzzy-connective-based aggregation network is similar to the human decision-making process. It is capable of aggregating and propagating degrees of satisfaction of a set of criteria in a hierarchical manner. Its interpreting ability and transparency make it especially desirable. To enhance its effectiveness and further applicability, a learning approach is successfully developed based on particle swarm optimization to determine the weights and parameters of the connectives in the network. By experimenting on eight datasets with different characteristics and conducting further statistical tests, it has been found to outperform the gradient- and genetic algorithm-based learning approaches proposed in the literature; furthermore, it is capable of generating more accurate estimates. The present approach retains the original benefits of fuzzy-connective-based aggregation networks and is widely applicable. The characteristics of the learning approaches are also discussed and summarized, providing better understanding of the similarities and differences among these three approaches.

  1. Clustering-based classification of road traffic accidents using hierarchical clustering and artificial neural networks.

    Science.gov (United States)

    Taamneh, Madhar; Taamneh, Salah; Alkheder, Sharaf

    2017-09-01

    Artificial neural networks (ANNs) have been widely used in predicting the severity of road traffic crashes. All available information about previously occurred accidents is typically used for building a single prediction model (i.e., classifier). Too little attention has been paid to the differences between these accidents, leading, in most cases, to build less accurate predictors. Hierarchical clustering is a well-known clustering method that seeks to group data by creating a hierarchy of clusters. Using hierarchical clustering and ANNs, a clustering-based classification approach for predicting the injury severity of road traffic accidents was proposed. About 6000 road accidents occurred over a six-year period from 2008 to 2013 in Abu Dhabi were used throughout this study. In order to reduce the amount of variation in data, hierarchical clustering was applied on the data set to organize it into six different forms, each with different number of clusters (i.e., clusters from 1 to 6). Two ANN models were subsequently built for each cluster of accidents in each generated form. The first model was built and validated using all accidents (training set), whereas only 66% of the accidents were used to build the second model, and the remaining 34% were used to test it (percentage split). Finally, the weighted average accuracy was computed for each type of models in each from of data. The results show that when testing the models using the training set, clustering prior to classification achieves (11%-16%) more accuracy than without using clustering, while the percentage split achieves (2%-5%) more accuracy. The results also suggest that partitioning the accidents into six clusters achieves the best accuracy if both types of models are taken into account.

  2. Flexible supercapacitors with high areal capacitance based on hierarchical carbon tubular nanostructures

    Science.gov (United States)

    Zhang, Haitao; Su, Hai; Zhang, Lei; Zhang, Binbin; Chun, Fengjun; Chu, Xiang; He, Weidong; Yang, Weiqing

    2016-11-01

    Hierarchical structure design can greatly enhance the unique properties of primary material(s) but suffers from complicated preparation process and difficult self-assembly of materials with different dimensionalities. Here we report on the growth of single carbon tubular nanostructures with hierarchical structure (hCTNs) through a simple method based on direct conversion of carbon dioxide. Resorting to in-situ transformation and self-assembly of carbon micro/nano-structures, the obtained hCTNs are blood-like multichannel hierarchy composed of one large channel across the hCTNs and plenty of small branches connected to each other. Due to the unique pore structure and high surface area, these hCTN-based flexible supercapacitors possess the highest areal capacitance of ∼320 mF cm-2, as well as good rate-capability and excellent cycling stability (95% retention after 2500 cycles). It was established that this method can control the morphology, size, and density of hCTNs and effectively construct hCTNs well anchored to the various substrates. Our work unambiguously demonstrated the potential of hCTNs for large flexible supercapacitors and integrated energy management electronics.

  3. PSA-based evaluation and rating of operational events

    International Nuclear Information System (INIS)

    Gomez Cobo, A.

    1997-01-01

    The presentation discusses the PSA-based evaluation and rating of operational events, including the following: historical background, procedures for event evaluation using PSA, use of PSA for event rating, current activities

  4. Multi person detection and tracking based on hierarchical level-set method

    Science.gov (United States)

    Khraief, Chadia; Benzarti, Faouzi; Amiri, Hamid

    2018-04-01

    In this paper, we propose an efficient unsupervised method for mutli-person tracking based on hierarchical level-set approach. The proposed method uses both edge and region information in order to effectively detect objects. The persons are tracked on each frame of the sequence by minimizing an energy functional that combines color, texture and shape information. These features are enrolled in covariance matrix as region descriptor. The present method is fully automated without the need to manually specify the initial contour of Level-set. It is based on combined person detection and background subtraction methods. The edge-based is employed to maintain a stable evolution, guide the segmentation towards apparent boundaries and inhibit regions fusion. The computational cost of level-set is reduced by using narrow band technique. Many experimental results are performed on challenging video sequences and show the effectiveness of the proposed method.

  5. Investigation on Reliability and Scalability of an FBG-Based Hierarchical AOFSN

    Directory of Open Access Journals (Sweden)

    Li-Mei Peng

    2010-03-01

    Full Text Available The reliability and scalability of large-scale based optical fiber sensor networks (AOFSN are considered in this paper. The AOFSN network consists of three-level hierarchical sensor network architectures. The first two levels consist of active interrogation and remote nodes (RNs and the third level, called the sensor subnet (SSN, consists of passive Fiber Bragg Gratings (FBGs and a few switches. The switch architectures in the RN and various SSNs to improve the reliability and scalability of AOFSN are studied. Two SSNs with a regular topology are proposed to support simple routing and scalability in AOFSN: square-based sensor cells (SSC and pentagon-based sensor cells (PSC. The reliability and scalability are evaluated in terms of the available sensing coverage in the case of one or multiple link failures.

  6. Managing the systems approach to training using a flexible Hierarchical data base

    International Nuclear Information System (INIS)

    Housman, E.; Bush, E.R.

    1993-01-01

    Task analysis/curriculum design for a nuclear power station results in a massive amount of data, which must be sequenced and ordered to create an effective program design. This is an almost impossible task without the use of computerized data base. Beginning in 1989, San Onofre nuclear generating station (SONGS) undertook a task analysis/program design project to verify the structure and sequence (design) of all accredited training program. A flex hierarchical data-base management system was designed to store and manage the data collected during the project. For the Operations Training Programm alone ∼8000 tasks, 90,000 knowledges and abilities, and 10,000 learning objectives were entered into this data base

  7. Applying macromolecular crowding to 3D bioprinting: fabrication of 3D hierarchical porous collagen-based hydrogel constructs.

    Science.gov (United States)

    Ng, Wei Long; Goh, Min Hao; Yeong, Wai Yee; Naing, May Win

    2018-02-27

    Native tissues and/or organs possess complex hierarchical porous structures that confer highly-specific cellular functions. Despite advances in fabrication processes, it is still very challenging to emulate the hierarchical porous collagen architecture found in most native tissues. Hence, the ability to recreate such hierarchical porous structures would result in biomimetic tissue-engineered constructs. Here, a single-step drop-on-demand (DOD) bioprinting strategy is proposed to fabricate hierarchical porous collagen-based hydrogels. Printable macromolecule-based bio-inks (polyvinylpyrrolidone, PVP) have been developed and printed in a DOD manner to manipulate the porosity within the multi-layered collagen-based hydrogels by altering the collagen fibrillogenesis process. The experimental results have indicated that hierarchical porous collagen structures could be achieved by controlling the number of macromolecule-based bio-ink droplets printed on each printed collagen layer. This facile single-step bioprinting process could be useful for the structural design of collagen-based hydrogels for various tissue engineering applications.

  8. Event-triggered hybrid control based on multi-Agent systems for Microgrids

    DEFF Research Database (Denmark)

    Dou, Chun-xia; Liu, Bin; Guerrero, Josep M.

    2014-01-01

    This paper is focused on a multi-agent system based event-triggered hybrid control for intelligently restructuring the operating mode of an microgrid (MG) to ensure the energy supply with high security, stability and cost effectiveness. Due to the microgrid is composed of different types...... of distributed energy resources, thus it is typical hybrid dynamic network. Considering the complex hybrid behaviors, a hierarchical decentralized coordinated control scheme is firstly constructed based on multi-agent sys-tem, then, the hybrid model of the microgrid is built by using differential hybrid Petri...

  9. Intensity-based hierarchical clustering in CT-scans: application to interactive segmentation in cardiology

    Science.gov (United States)

    Hadida, Jonathan; Desrosiers, Christian; Duong, Luc

    2011-03-01

    The segmentation of anatomical structures in Computed Tomography Angiography (CTA) is a pre-operative task useful in image guided surgery. Even though very robust and precise methods have been developed to help achieving a reliable segmentation (level sets, active contours, etc), it remains very time consuming both in terms of manual interactions and in terms of computation time. The goal of this study is to present a fast method to find coarse anatomical structures in CTA with few parameters, based on hierarchical clustering. The algorithm is organized as follows: first, a fast non-parametric histogram clustering method is proposed to compute a piecewise constant mask. A second step then indexes all the space-connected regions in the piecewise constant mask. Finally, a hierarchical clustering is achieved to build a graph representing the connections between the various regions in the piecewise constant mask. This step builds up a structural knowledge about the image. Several interactive features for segmentation are presented, for instance association or disassociation of anatomical structures. A comparison with the Mean-Shift algorithm is presented.

  10. An adaptive map-matching algorithm based on hierarchical fuzzy system from vehicular GPS data.

    Directory of Open Access Journals (Sweden)

    Jinjun Tang

    Full Text Available An improved hierarchical fuzzy inference method based on C-measure map-matching algorithm is proposed in this paper, in which the C-measure represents the certainty or probability of the vehicle traveling on the actual road. A strategy is firstly introduced to use historical positioning information to employ curve-curve matching between vehicle trajectories and shapes of candidate roads. It improves matching performance by overcoming the disadvantage of traditional map-matching algorithm only considering current information. An average historical distance is used to measure similarity between vehicle trajectories and road shape. The input of system includes three variables: distance between position point and candidate roads, angle between driving heading and road direction, and average distance. As the number of fuzzy rules will increase exponentially when adding average distance as a variable, a hierarchical fuzzy inference system is then applied to reduce fuzzy rules and improve the calculation efficiency. Additionally, a learning process is updated to support the algorithm. Finally, a case study contains four different routes in Beijing city is used to validate the effectiveness and superiority of the proposed method.

  11. Evolutionary-Hierarchical Bases of the Formation of Cluster Model of Innovation Economic Development

    Directory of Open Access Journals (Sweden)

    Yuliya Vladimirovna Dubrovskaya

    2016-10-01

    Full Text Available The functioning of a modern economic system is based on the interaction of objects of different hierarchical levels. Thus, the problem of the study of innovation processes taking into account the mutual influence of the activities of these economic actors becomes important. The paper dwells evolutionary basis for the formation of models of innovation development on the basis of micro and macroeconomic analysis. Most of the concepts recognized that despite a big number of diverse models, the coordination of the relations between economic agents is of crucial importance for the successful innovation development. According to the results of the evolutionary-hierarchical analysis, the authors reveal key phases of the development of forms of business cooperation, science and government in the domestic economy. It has become the starting point of the conception of the characteristics of the interaction in the cluster models of innovation development of the economy. Considerable expectancies on improvement of the national innovative system are connected with the development of cluster and network structures. The main objective of government authorities is the formation of mechanisms and institutions that will foster cooperation between members of the clusters. The article explains that the clusters cannot become the factors in the growth of the national economy, not being an effective tool for interaction between the actors of the regional innovative systems.

  12. Fabrication of semi-transparent superoleophobic thin film from fabrics and nanoparticle-based hierarchical structure

    Directory of Open Access Journals (Sweden)

    Nishizawa S.

    2013-08-01

    Full Text Available Superoleophobic thin films have many potential applications including fluid transfer, fluid power systems, stain resistant and antifouling materials, and microfluidics among others. Transparency is also desired with superhydrophobicity for their numerous applications; however transparency and oleophobicity are almost incompatible relationship with each other in the point of surface structure. Because oleophobicity required rougher structure at nano-micro scale than hydrophobicity, and these rough structure brings light scattering. So far, there is very few report of the compatible of transparency and superoleophobicity. In this report, we proposed the see-through type fabrics using the nanoparticle-based hierarchical structure thin film for improving both of oleophobicity and transparency. The vacant space between fibrils of fabrics has two important roles: the one is to through the light, another one is to introduce air layer to realize Cassie state of liquid droplet on thin film. To realize the low surface energy and nanoscale rough structure surface on fibrils, we used the spray method with perfluoroalkyl methacrylic copolymer (PMC, silica nano particles and volatile solvent. From the SEM image, the hierarchical structures of nanoparticle were formed uniformly on the fabrics. The transparency of thin film obtained was approximately 61% and the change of transparency between pre-coated fabrics and coated was 11%. From investigation of the surface wettability, the contact angles of oils (rapeseed oil and hexadecane and water droplet on the fabricated film were over 150 degree.

  13. Gating mechanisms of mechanosensitive channels of large conductance, I: a continuum mechanics-based hierarchical framework.

    Science.gov (United States)

    Chen, Xi; Cui, Qiang; Tang, Yuye; Yoo, Jejoong; Yethiraj, Arun

    2008-07-01

    A hierarchical simulation framework that integrates information from molecular dynamics (MD) simulations into a continuum model is established to study the mechanical response of mechanosensitive channel of large-conductance (MscL) using the finite element method (FEM). The proposed MD-decorated FEM (MDeFEM) approach is used to explore the detailed gating mechanisms of the MscL in Escherichia coli embedded in a palmitoyloleoylphosphatidylethanolamine lipid bilayer. In Part I of this study, the framework of MDeFEM is established. The transmembrane and cytoplasmic helices are taken to be elastic rods, the loops are modeled as springs, and the lipid bilayer is approximated by a three-layer sheet. The mechanical properties of the continuum components, as well as their interactions, are derived from molecular simulations based on atomic force fields. In addition, analytical closed-form continuum model and elastic network model are established to complement the MDeFEM approach and to capture the most essential features of gating. In Part II of this study, the detailed gating mechanisms of E. coli-MscL under various types of loading are presented and compared with experiments, structural model, and all-atom simulations, as well as the analytical models established in Part I. It is envisioned that such a hierarchical multiscale framework will find great value in the study of a variety of biological processes involving complex mechanical deformations such as muscle contraction and mechanotransduction.

  14. Hierarchical Control Strategy for Active Hydropneumatic Suspension Vehicles Based on Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Jinzhi Feng

    2015-02-01

    Full Text Available A new hierarchical control strategy for active hydropneumatic suspension systems is proposed. This strategy considers the dynamic characteristics of the actuator. The top hierarchy controller uses a combined control scheme: a genetic algorithm- (GA- based self-tuning proportional-integral-derivative controller and a fuzzy logic controller. For practical implementations of the proposed control scheme, a GA-based self-learning process is initiated only when the defined performance index of vehicle dynamics exceeds a certain debounce time threshold. The designed control algorithm is implemented on a virtual prototype and cosimulations are performed with different road disturbance inputs. Cosimulation results show that the active hydropneumatic suspension system designed in this study significantly improves riding comfort characteristics of vehicles. The robustness and adaptability of the proposed controller are also examined when the control system is subjected to extremely rough road conditions.

  15. Strengthen Cloud Computing Security with Federal Identity Management Using Hierarchical Identity-Based Cryptography

    Science.gov (United States)

    Yan, Liang; Rong, Chunming; Zhao, Gansen

    More and more companies begin to provide different kinds of cloud computing services for Internet users at the same time these services also bring some security problems. Currently the majority of cloud computing systems provide digital identity for users to access their services, this will bring some inconvenience for a hybrid cloud that includes multiple private clouds and/or public clouds. Today most cloud computing system use asymmetric and traditional public key cryptography to provide data security and mutual authentication. Identity-based cryptography has some attraction characteristics that seem to fit well the requirements of cloud computing. In this paper, by adopting federated identity management together with hierarchical identity-based cryptography (HIBC), not only the key distribution but also the mutual authentication can be simplified in the cloud.

  16. Hierarchical graphical-based human pose estimation via local multi-resolution convolutional neural network

    Science.gov (United States)

    Zhu, Aichun; Wang, Tian; Snoussi, Hichem

    2018-03-01

    This paper addresses the problems of the graphical-based human pose estimation in still images, including the diversity of appearances and confounding background clutter. We present a new architecture for estimating human pose using a Convolutional Neural Network (CNN). Firstly, a Relative Mixture Deformable Model (RMDM) is defined by each pair of connected parts to compute the relative spatial information in the graphical model. Secondly, a Local Multi-Resolution Convolutional Neural Network (LMR-CNN) is proposed to train and learn the multi-scale representation of each body parts by combining different levels of part context. Thirdly, a LMR-CNN based hierarchical model is defined to explore the context information of limb parts. Finally, the experimental results demonstrate the effectiveness of the proposed deep learning approach for human pose estimation.

  17. Hierarchical graphical-based human pose estimation via local multi-resolution convolutional neural network

    Directory of Open Access Journals (Sweden)

    Aichun Zhu

    2018-03-01

    Full Text Available This paper addresses the problems of the graphical-based human pose estimation in still images, including the diversity of appearances and confounding background clutter. We present a new architecture for estimating human pose using a Convolutional Neural Network (CNN. Firstly, a Relative Mixture Deformable Model (RMDM is defined by each pair of connected parts to compute the relative spatial information in the graphical model. Secondly, a Local Multi-Resolution Convolutional Neural Network (LMR-CNN is proposed to train and learn the multi-scale representation of each body parts by combining different levels of part context. Thirdly, a LMR-CNN based hierarchical model is defined to explore the context information of limb parts. Finally, the experimental results demonstrate the effectiveness of the proposed deep learning approach for human pose estimation.

  18. Multi-documents summarization based on clustering of learning object using hierarchical clustering

    Science.gov (United States)

    Mustamiin, M.; Budi, I.; Santoso, H. B.

    2018-03-01

    The Open Educational Resources (OER) is a portal of teaching, learning and research resources that is available in public domain and freely accessible. Learning contents or Learning Objects (LO) are granular and can be reused for constructing new learning materials. LO ontology-based searching techniques can be used to search for LO in the Indonesia OER. In this research, LO from search results are used as an ingredient to create new learning materials according to the topic searched by users. Summarizing-based grouping of LO use Hierarchical Agglomerative Clustering (HAC) with the dependency context to the user’s query which has an average value F-Measure of 0.487, while summarizing by K-Means F-Measure only has an average value of 0.336.

  19. DD4Hep based event reconstruction

    CERN Document Server

    AUTHOR|(SzGeCERN)683529; Frank, Markus; Gaede, Frank-Dieter; Hynds, Daniel; Lu, Shaojun; Nikiforou, Nikiforos; Petric, Marko; Simoniello, Rosa; Voutsinas, Georgios Gerasimos

    The DD4HEP detector description toolkit offers a flexible and easy-to-use solution for the consistent and complete description of particle physics detectors in a single system. The sub-component DDREC provides a dedicated interface to the detector geometry as needed for event reconstruction. With DDREC there is no need to define an additional, separate reconstruction geometry as is often done in HEP, but one can transparently extend the existing detailed simulation model to be also used for the reconstruction. Based on the extension mechanism of DD4HEP, DDREC allows one to attach user defined data structures to detector elements at all levels of the geometry hierarchy. These data structures define a high level view onto the detectors describing their physical properties, such as measurement layers, point resolutions, and cell sizes. For the purpose of charged particle track reconstruction, dedicated surface objects can be attached to every volume in the detector geometry. These surfaces provide the measuremen...

  20. An Integrated Risk Index Model Based on Hierarchical Fuzzy Logic for Underground Risk Assessment

    Directory of Open Access Journals (Sweden)

    Muhammad Fayaz

    2017-10-01

    Full Text Available Available space in congested cities is getting scarce due to growing urbanization in the recent past. The utilization of underground space is considered as a solution to the limited space in smart cities. The numbers of underground facilities are growing day by day in the developing world. Typical underground facilities include the transit subway, parking lots, electric lines, water supply and sewer lines. The likelihood of the occurrence of accidents due to underground facilities is a random phenomenon. To avoid any accidental loss, a risk assessment method is required to conduct the continuous risk assessment and report any abnormality before it happens. In this paper, we have proposed a hierarchical fuzzy inference based model for under-ground risk assessment. The proposed hierarchical fuzzy inference architecture reduces the total number of rules from the rule base. Rule reduction is important because the curse of dimensionality damages the transparency and interpretation as it is very tough to understand and justify hundreds or thousands of fuzzy rules. The computation time also increases as rules increase. The proposed model takes 175 rules having eight input parameters to compute the risk index, and the conventional fuzzy logic requires 390,625 rules, having the same number of input parameters to compute risk index. Hence, the proposed model significantly reduces the curse of dimensionality. Rule design for fuzzy logic is also a tedious task. In this paper, we have also introduced new rule schemes, namely maximum rule-based and average rule-based; both schemes can be used interchangeably according to the logic needed for rule design. The experimental results show that the proposed method is a virtuous choice for risk index calculation where the numbers of variables are greater.

  1. Immunophenotype Discovery, Hierarchical Organization, and Template-based Classification of Flow Cytometry Samples

    Directory of Open Access Journals (Sweden)

    Ariful Azad

    2016-08-01

    Full Text Available We describe algorithms for discovering immunophenotypes from large collections of flow cytometry (FC samples, and using them to organize the samples into a hierarchy based on phenotypic similarity. The hierarchical organization is helpful for effective and robust cytometry data mining, including the creation of collections of cell populations characteristic of different classes of samples, robust classification, and anomaly detection. We summarize a set of samples belonging to a biological class or category with a statistically derived template for the class. Whereas individual samples are represented in terms of their cell populations (clusters, a template consists of generic meta-populations (a group of homogeneous cell populations obtained from the samples in a class that describe key phenotypes shared among all those samples. We organize an FC data collection in a hierarchical data structure that supports the identification of immunophenotypes relevant to clinical diagnosis. A robust template-based classification scheme is also developed, but our primary focus is in the discovery of phenotypic signatures and inter-sample relationships in an FC data collection. This collective analysis approach is more efficient and robust since templates describe phenotypic signatures common to cell populations in several samples, while ignoring noise and small sample-specific variations.We have applied the template-base scheme to analyze several data setsincluding one representing a healthy immune system, and one of Acute Myeloid Leukemia (AMLsamples. The last task is challenging due to the phenotypic heterogeneity of the severalsubtypes of AML. However, we identified thirteen immunophenotypes corresponding to subtypes of AML, and were able to distinguish Acute Promyelocytic Leukemia from other subtypes of AML.

  2. Parallel content-based sub-image retrieval using hierarchical searching.

    Science.gov (United States)

    Yang, Lin; Qi, Xin; Xing, Fuyong; Kurc, Tahsin; Saltz, Joel; Foran, David J

    2014-04-01

    The capacity to systematically search through large image collections and ensembles and detect regions exhibiting similar morphological characteristics is central to pathology diagnosis. Unfortunately, the primary methods used to search digitized, whole-slide histopathology specimens are slow and prone to inter- and intra-observer variability. The central objective of this research was to design, develop, and evaluate a content-based image retrieval system to assist doctors for quick and reliable content-based comparative search of similar prostate image patches. Given a representative image patch (sub-image), the algorithm will return a ranked ensemble of image patches throughout the entire whole-slide histology section which exhibits the most similar morphologic characteristics. This is accomplished by first performing hierarchical searching based on a newly developed hierarchical annular histogram (HAH). The set of candidates is then further refined in the second stage of processing by computing a color histogram from eight equally divided segments within each square annular bin defined in the original HAH. A demand-driven master-worker parallelization approach is employed to speed up the searching procedure. Using this strategy, the query patch is broadcasted to all worker processes. Each worker process is dynamically assigned an image by the master process to search for and return a ranked list of similar patches in the image. The algorithm was tested using digitized hematoxylin and eosin (H&E) stained prostate cancer specimens. We have achieved an excellent image retrieval performance. The recall rate within the first 40 rank retrieved image patches is ∼90%. Both the testing data and source code can be downloaded from http://pleiad.umdnj.edu/CBII/Bioinformatics/.

  3. An impurity solver for nonequilibrium dynamical mean field theory based on hierarchical quantum master equations

    Energy Technology Data Exchange (ETDEWEB)

    Haertle, Rainer [Institut fuer Theoretische Physik, Georg-August-Universitaet Goettingen, Goettingen (Germany); Millis, Andrew J. [Department of Physics, Columbia University, New York (United States)

    2016-07-01

    We present a new impurity solver for real-time and nonequilibrium dynamical mean field theory applications, based on the recently developed hierarchical quantum master equation approach. Our method employs a hybridization expansion of the time evolution operator, including an advanced, systematic truncation scheme. Convergence to exact results for not too low temperatures has been demonstrated by a direct comparison to quantum Monte Carlo simulations. The approach is time-local, which gives us access to slow dynamics such as, e.g., in the presence of magnetic fields or exchange interactions and to nonequilibrium steady states. Here, we present first results of this new scheme for the description of strongly correlated materials in the framework of dynamical mean field theory, including benchmark and new results for the Hubbard and periodic Anderson model.

  4. Hierarchical oxide-based composite nanostructures for energy, environmental, and sensing applications

    Science.gov (United States)

    Gao, Pu-Xian; Shimpi, Paresh; Cai, Wenjie; Gao, Haiyong; Jian, Dunliang; Wrobel, Gregory

    2011-02-01

    Self-assembled composite nanostructures integrate various basic nano-elements such as nanoparticles, nanofilms and nanowires toward realizing multifunctional characteristics, which promises an important route with potentially high reward for the fast evolving nanoscience and nanotechnology. A broad array of hierarchical metal oxide based nanostructures have been designed and fabricated in our research group, involving semiconductor metal oxides, ternary functional oxides such as perovskites and spinels and quaternary dielectric hydroxyl metal oxides with diverse applications in efficient energy harvesting/saving/utilization, environmental protection/control, chemical sensing and thus impacting major grand challenges in the area of materials and nanotechnology. Two of our latest research activities have been highlighted specifically in semiconductor oxide alloy nanowires and metal oxide/perovskite composite nanowires, which could impact the application sectors in ultraviolet/blue lighting, visible solar absorption, vehicle and industry emission control, chemical sensing and control for vehicle combustors and power plants.

  5. Photo-driven autonomous hydrogen generation system based on hierarchically shelled ZnO nanostructures

    International Nuclear Information System (INIS)

    Kim, Heejin; Yong, Kijung

    2013-01-01

    A quantum dot semiconductor sensitized hierarchically shelled one-dimensional ZnO nanostructure has been applied as a quasi-artificial leaf for hydrogen generation. The optimized ZnO nanostructure consists of one dimensional nanowire as a core and two-dimensional nanosheet on the nanowire surface. Furthermore, the quantum dot semiconductors deposited on the ZnO nanostructures provide visible light harvesting properties. To realize the artificial leaf, we applied the ZnO based nanostructure as a photoelectrode with non-wired Z-scheme system. The demonstrated un-assisted photoelectrochemical system showed the hydrogen generation properties under 1 sun condition irradiation. In addition, the quantum dot modified photoelectrode showed 2 mA/cm 2 current density at the un-assisted condition

  6. Active Power Quality Improvement Strategy for Grid-connected Microgrid Based on Hierarchical Control

    DEFF Research Database (Denmark)

    Wei, Feng; Sun, Kai; Guan, Yajuan

    2018-01-01

    proposes an active, unbalanced, and harmonic GCC suppression strategy based on hierarchical theory. The voltage error between the bus of the DCGC-MG and the grid’s PCC was transformed to the dq frame. On the basis of the grid, an additional compensator, which consists of multiple resonant voltage......When connected to a distorted grid utility, droop-controlled grid-connected microgrids (DCGC-MG) exhibit low equivalent impedance. The harmonic and unbalanced voltage at the point of common coupling (PCC) deteriorates the power quality of the grid-connected current (GCC) of DCGC-MG. This work...... regulators, was then added to the original secondary control to generate the negative fundamental and unbalanced harmonic voltage reference. Proportional integral and multiple resonant controllers were adopted as voltage controller at the original primary level to improve the voltage tracking performance...

  7. An approach based on Hierarchical Bayesian Graphical Models for measurement interpretation under uncertainty

    Science.gov (United States)

    Skataric, Maja; Bose, Sandip; Zeroug, Smaine; Tilke, Peter

    2017-02-01

    It is not uncommon in the field of non-destructive evaluation that multiple measurements encompassing a variety of modalities are available for analysis and interpretation for determining the underlying states of nature of the materials or parts being tested. Despite and sometimes due to the richness of data, significant challenges arise in the interpretation manifested as ambiguities and inconsistencies due to various uncertain factors in the physical properties (inputs), environment, measurement device properties, human errors, and the measurement data (outputs). Most of these uncertainties cannot be described by any rigorous mathematical means, and modeling of all possibilities is usually infeasible for many real time applications. In this work, we will discuss an approach based on Hierarchical Bayesian Graphical Models (HBGM) for the improved interpretation of complex (multi-dimensional) problems with parametric uncertainties that lack usable physical models. In this setting, the input space of the physical properties is specified through prior distributions based on domain knowledge and expertise, which are represented as Gaussian mixtures to model the various possible scenarios of interest for non-destructive testing applications. Forward models are then used offline to generate the expected distribution of the proposed measurements which are used to train a hierarchical Bayesian network. In Bayesian analysis, all model parameters are treated as random variables, and inference of the parameters is made on the basis of posterior distribution given the observed data. Learned parameters of the posterior distribution obtained after the training can therefore be used to build an efficient classifier for differentiating new observed data in real time on the basis of pre-trained models. We will illustrate the implementation of the HBGM approach to ultrasonic measurements used for cement evaluation of cased wells in the oil industry.

  8. The Optimal Confidence Intervals for Agricultural Products’ Price Forecasts Based on Hierarchical Historical Errors

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2016-12-01

    Full Text Available With the levels of confidence and system complexity, interval forecasts and entropy analysis can deliver more information than point forecasts. In this paper, we take receivers’ demands as our starting point, use the trade-off model between accuracy and informativeness as the criterion to construct the optimal confidence interval, derive the theoretical formula of the optimal confidence interval and propose a practical and efficient algorithm based on entropy theory and complexity theory. In order to improve the estimation precision of the error distribution, the point prediction errors are STRATIFIED according to prices and the complexity of the system; the corresponding prediction error samples are obtained by the prices stratification; and the error distributions are estimated by the kernel function method and the stability of the system. In a stable and orderly environment for price forecasting, we obtain point prediction error samples by the weighted local region and RBF (Radial basis function neural network methods, forecast the intervals of the soybean meal and non-GMO (Genetically Modified Organism soybean continuous futures closing prices and implement unconditional coverage, independence and conditional coverage tests for the simulation results. The empirical results are compared from various interval evaluation indicators, different levels of noise, several target confidence levels and different point prediction methods. The analysis shows that the optimal interval construction method is better than the equal probability method and the shortest interval method and has good anti-noise ability with the reduction of system entropy; the hierarchical estimation error method can obtain higher accuracy and better interval estimation than the non-hierarchical method in a stable system.

  9. Nanocomposites based on hierarchical porous carbon fiber@vanadium nitride nanoparticles as supercapacitor electrodes.

    Science.gov (United States)

    Ran, Fen; Wu, Yage; Jiang, Minghuan; Tan, Yongtao; Liu, Ying; Kong, Lingbin; Kang, Long; Chen, Shaowei

    2018-03-28

    In this study, a hybrid electrode material for supercapacitors based on hierarchical porous carbon fiber@vanadium nitride nanoparticles is fabricated using the method of phase-separation mediated by the PAA-b-PAN-b-PAA tri-block copolymer. In the phase-separation procedure, the ionic block copolymer self-assembled on the surface of carbon nanofibers, and is used to adsorb NH 4 VO 3 . Thermal treatment at controlled temperatures under an NH 3  : N 2 atmosphere led to the formation of vanadium nitride nanoparticles that are distributed uniformly on the nanofiber surface. By changing the PAN to PAA-b-PAN-b-PAA ratio in the casting solution, a maximum specific capacitance of 240.5 F g -1 is achieved at the current density of 0.5 A g -1 with good rate capability at a capacitance retention of 72.1% at 5.0 A g -1 in an aqueous electrolyte of 6 mol L -1 KOH within the potential range of -1.10 to 0 V (rN/A = 1.5/1.0). Moreover, an asymmetric supercapacitor is assembled by using the hierarchical porous carbon fiber@vanadium nitride as the negative electrode and Ni(OH) 2 as the positive electrode. Remarkably, at the power density of 400 W kg -1 , the supercapacitor device delivers a better energy density of 39.3 W h kg -1 . It also shows excellent electrochemical stability, and thus might be used as a promising energy-storage device.

  10. How does aging affect recognition-based inference? A hierarchical Bayesian modeling approach.

    Science.gov (United States)

    Horn, Sebastian S; Pachur, Thorsten; Mata, Rui

    2015-01-01

    The recognition heuristic (RH) is a simple strategy for probabilistic inference according to which recognized objects are judged to score higher on a criterion than unrecognized objects. In this article, a hierarchical Bayesian extension of the multinomial r-model is applied to measure use of the RH on the individual participant level and to re-evaluate differences between younger and older adults' strategy reliance across environments. Further, it is explored how individual r-model parameters relate to alternative measures of the use of recognition and other knowledge, such as adherence rates and indices from signal-detection theory (SDT). Both younger and older adults used the RH substantially more often in an environment with high than low recognition validity, reflecting adaptivity in strategy use across environments. In extension of previous analyses (based on adherence rates), hierarchical modeling revealed that in an environment with low recognition validity, (a) older adults had a stronger tendency than younger adults to rely on the RH and (b) variability in RH use between individuals was larger than in an environment with high recognition validity; variability did not differ between age groups. Further, the r-model parameters correlated moderately with an SDT measure expressing how well people can discriminate cases where the RH leads to a correct vs. incorrect inference; this suggests that the r-model and the SDT measures may offer complementary insights into the use of recognition in decision making. In conclusion, younger and older adults are largely adaptive in their application of the RH, but cognitive aging may be associated with an increased tendency to rely on this strategy. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Hierarchical Co-based Porous Layered Double Hydroxide Arrays Derived via Alkali Etching for High-performance Supercapacitors

    Science.gov (United States)

    Abushrenta, Nasser; Wu, Xiaochao; Wang, Junnan; Liu, Junfeng; Sun, Xiaoming

    2015-08-01

    Hierarchical nanoarchitecture and porous structure can both provide advantages for improving the electrochemical performance in energy storage electrodes. Here we report a novel strategy to synthesize new electrode materials, hierarchical Co-based porous layered double hydroxide (PLDH) arrays derived via alkali etching from Co(OH)2@CoAl LDH nanoarrays. This structure not only has the benefits of hierarchical nanoarrays including short ion diffusion path and good charge transport, but also possesses a large contact surface area owing to its porous structure which lead to a high specific capacitance (23.75 F cm-2 or 1734 F g-1 at 5 mA cm-2) and excellent cycling performance (over 85% after 5000 cycles). The enhanced electrode material is a promising candidate for supercapacitors in future application.

  12. Rule-Based Event Processing and Reaction Rules

    Science.gov (United States)

    Paschke, Adrian; Kozlenkov, Alexander

    Reaction rules and event processing technologies play a key role in making business and IT / Internet infrastructures more agile and active. While event processing is concerned with detecting events from large event clouds or streams in almost real-time, reaction rules are concerned with the invocation of actions in response to events and actionable situations. They state the conditions under which actions must be taken. In the last decades various reaction rule and event processing approaches have been developed, which for the most part have been advanced separately. In this paper we survey reaction rule approaches and rule-based event processing systems and languages.

  13. Trends and characteristics observed in nuclear events based on international nuclear event scale reports

    International Nuclear Information System (INIS)

    Watanabe, Norio

    2001-01-01

    The International Nuclear Event Scale (INES) is jointly operated by the IAEA and the OECD-NEA as a means designed for providing prompt, clear and consistent information related to nuclear events, that occurred at nuclear facilities, and facilitating communication between the nuclear community, the media and the public. Nuclear events are reported to the INES with the Scale', a consistent safety significance indicator, which runs from level 0, for events with no safety significance, to level 7 for a major accident with widespread health and environmental effects. Since the operation of INES was initiated in 1990, approximately 500 events have been reported and disseminated. The present paper discusses the trends observed in nuclear events, such as overall trends of the reported events and characteristics of safety significant events with level 2 or higher, based on the INES reports. (author)

  14. DEVS representation of dynamical systems - Event-based intelligent control. [Discrete Event System Specification

    Science.gov (United States)

    Zeigler, Bernard P.

    1989-01-01

    It is shown how systems can be advantageously represented as discrete-event models by using DEVS (discrete-event system specification), a set-theoretic formalism. Such DEVS models provide a basis for the design of event-based logic control. In this control paradigm, the controller expects to receive confirming sensor responses to its control commands within definite time windows determined by its DEVS model of the system under control. The event-based contral paradigm is applied in advanced robotic and intelligent automation, showing how classical process control can be readily interfaced with rule-based symbolic reasoning systems.

  15. MAP-Based Underdetermined Blind Source Separation of Convolutive Mixtures by Hierarchical Clustering and -Norm Minimization

    Directory of Open Access Journals (Sweden)

    Kellermann Walter

    2007-01-01

    Full Text Available We address the problem of underdetermined BSS. While most previous approaches are designed for instantaneous mixtures, we propose a time-frequency-domain algorithm for convolutive mixtures. We adopt a two-step method based on a general maximum a posteriori (MAP approach. In the first step, we estimate the mixing matrix based on hierarchical clustering, assuming that the source signals are sufficiently sparse. The algorithm works directly on the complex-valued data in the time-frequency domain and shows better convergence than algorithms based on self-organizing maps. The assumption of Laplacian priors for the source signals in the second step leads to an algorithm for estimating the source signals. It involves the -norm minimization of complex numbers because of the use of the time-frequency-domain approach. We compare a combinatorial approach initially designed for real numbers with a second-order cone programming (SOCP approach designed for complex numbers. We found that although the former approach is not theoretically justified for complex numbers, its results are comparable to, or even better than, the SOCP solution. The advantage is a lower computational cost for problems with low input/output dimensions.

  16. Enhanced Two-Stage Hierarchical Control for a Dual Mode WECS-Based Microgrid

    Directory of Open Access Journals (Sweden)

    Rasool M. Imran

    2018-05-01

    Full Text Available Along with the great benefits of utilizing renewable energy (e.g., wind energy in the power system, there are also some issues, such as increasing the uncertainty and reducing the system inertia. Communication-based centralized control has started to play a significant role in reacting to the aforementioned issues, especially for relatively small systems, such as microgrids. In this context, in this paper, an enhanced communication-based hierarchical control for a dual mode wind energy conversion system-based microgrid is modeled and investigated. The primary stage utilized the P-V/Q-f droop method, which is the preferred droop method to be used in microgrids when the line impedance is mainly resistive. The secondary stage relied on an enhanced methodology for compensating the deviations of voltage and frequency and improving the performance of the microgrid during small and large signal disturbances. Moreover, as this microgrid operates in a dual mode, the mode transition cases from grid-tied mode to autonomous mode and vice versa have been addressed. Thereafter, an improved control scheme for the unplanned outage transition and a modified control scheme for the pre-synchronization and reconnection transition were proposed. Finally, the proposed work was evaluated by the simulation results in MATLAB environment.

  17. Morphology-controlled hydrothermal synthesis of MnCO3 hierarchical superstructures with Schiff base as stabilizer

    International Nuclear Information System (INIS)

    Hu, He; Xu, Jie-yan; Yang, Hong; Liang, Jie; Yang, Shiping; Wu, Huixia

    2011-01-01

    Graphical abstract: MnCO3 microcrystals with hierarchical superstructures were synthesized by using the CO2 in atmosphere as carbonate ions source and Schiff base as shape guiding-agent in water/ethanol system under hydrothermal condition. Highlights: → The most interesting in this work is the use of the greenhouse gases CO 2 in atmosphere as carbonate ions source to precipitate with Mn 2+ for producing MnCO 3 crystals. → This work is the first report related to the small organic molecule Schiff base as shape guiding-agent to produce different MnCO 3 hierarchical superstructures. → We are controllable synthesis of the MnCO 3 hierarchical superstructures such as chrysanthemum, straw-bundle, dumbbell and sphere-like microcrystals. → The as-prepared MnCO 3 could be used precursor to fabricate the Mn 2 O 3 hierarchical superstructures after thermal decomposition at high temperature. -- Abstract: MnCO 3 with hierarchical superstructures such as chrysanthemum, straw-bundle, dumbbell and sphere-like were synthesized in water/ethanol system under environment-friendly hydrothermal condition. In the synthesis process, the CO 2 in atmosphere was used as the source of carbonate ions and Schiff base was used as shape guiding-agent. The different superstructures of MnCO 3 could be obtained by controlling the hydrothermal temperature, the molar ratio of manganous ions to the Schiff base, or the volume ratio of water to ethanol. A tentative growth mechanism for the generation of MnCO 3 superstructures was proposed based on the rod-dumbbell-sphere model. Furthermore, the MnCO 3 as precursor could be further successfully transferred to Mn 2 O 3 microstructure after heating in the atmosphere at 500 o C, and the morphology of the Mn 2 O 3 was directly determined by that of the MnCO 3 precursor.

  18. An event-based model for contracts

    Directory of Open Access Journals (Sweden)

    Tiziana Cimoli

    2013-02-01

    Full Text Available We introduce a basic model for contracts. Our model extends event structures with a new relation, which faithfully captures the circular dependencies among contract clauses. We establish whether an agreement exists which respects all the contracts at hand (i.e. all the dependencies can be resolved, and we detect the obligations of each participant. The main technical contribution is a correspondence between our model and a fragment of the contract logic PCL. More precisely, we show that the reachable events are exactly those which correspond to provable atoms in the logic. Despite of this strong correspondence, our model improves previous work on PCL by exhibiting a finer-grained notion of culpability, which takes into account the legitimate orderings of events.

  19. A hierarchical detection method in external communication for self-driving vehicles based on TDMA

    Science.gov (United States)

    Al-ani, Muzhir Shaban; McDonald-Maier, Klaus

    2018-01-01

    Security is considered a major challenge for self-driving and semi self-driving vehicles. These vehicles depend heavily on communications to predict and sense their external environment used in their motion. They use a type of ad hoc network termed Vehicular ad hoc networks (VANETs). Unfortunately, VANETs are potentially exposed to many attacks on network and application level. This paper, proposes a new intrusion detection system to protect the communication system of self-driving cars; utilising a combination of hierarchical models based on clusters and log parameters. This security system is designed to detect Sybil and Wormhole attacks in highway usage scenarios. It is based on clusters, utilising Time Division Multiple Access (TDMA) to overcome some of the obstacles of VANETs such as high density, high mobility and bandwidth limitations in exchanging messages. This makes the security system more efficient, accurate and capable of real time detection and quick in identification of malicious behaviour in VANETs. In this scheme, each vehicle log calculates and stores different parameter values after receiving the cooperative awareness messages from nearby vehicles. The vehicles exchange their log data and determine the difference between the parameters, which is utilised to detect Sybil attacks and Wormhole attacks. In order to realize efficient and effective intrusion detection system, we use the well-known network simulator (ns-2) to verify the performance of the security system. Simulation results indicate that the security system can achieve high detection rates and effectively detect anomalies with low rate of false alarms. PMID:29315302

  20. Feature-Based Visual Short-Term Memory Is Widely Distributed and Hierarchically Organized.

    Science.gov (United States)

    Dotson, Nicholas M; Hoffman, Steven J; Goodell, Baldwin; Gray, Charles M

    2018-06-15

    Feature-based visual short-term memory is known to engage both sensory and association cortices. However, the extent of the participating circuit and the neural mechanisms underlying memory maintenance is still a matter of vigorous debate. To address these questions, we recorded neuronal activity from 42 cortical areas in monkeys performing a feature-based visual short-term memory task and an interleaved fixation task. We find that task-dependent differences in firing rates are widely distributed throughout the cortex, while stimulus-specific changes in firing rates are more restricted and hierarchically organized. We also show that microsaccades during the memory delay encode the stimuli held in memory and that units modulated by microsaccades are more likely to exhibit stimulus specificity, suggesting that eye movements contribute to visual short-term memory processes. These results support a framework in which most cortical areas, within a modality, contribute to mnemonic representations at timescales that increase along the cortical hierarchy. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. An Integrated Model Based on a Hierarchical Indices System for Monitoring and Evaluating Urban Sustainability

    Directory of Open Access Journals (Sweden)

    Xulin Guo

    2013-02-01

    Full Text Available Over 50% of world’s population presently resides in cities, and this number is expected to rise to ~70% by 2050. Increasing urbanization problems including population growth, urban sprawl, land use change, unemployment, and environmental degradation, have markedly impacted urban residents’ Quality of Life (QOL. Therefore, urban sustainability and its measurement have gained increasing attention from administrators, urban planners, and scientific communities throughout the world with respect to improving urban development and human well-being. The widely accepted definition of urban sustainability emphasizes the balancing development of three primary domains (urban economy, society, and environment. This article attempts to improve the aforementioned definition of urban sustainability by incorporating a human well-being dimension. Major problems identified in existing urban sustainability indicator (USI models include a weak integration of potential indicators, poor measurement and quantification, and insufficient spatial-temporal analysis. To tackle these challenges an integrated USI model based on a hierarchical indices system was established for monitoring and evaluating urban sustainability. This model can be performed by quantifying indicators using both traditional statistical approaches and advanced geomatic techniques based on satellite imagery and census data, which aims to provide a theoretical basis for a comprehensive assessment of urban sustainability from a spatial-temporal perspective.

  2. A hierarchical detection method in external communication for self-driving vehicles based on TDMA.

    Science.gov (United States)

    Alheeti, Khattab M Ali; Al-Ani, Muzhir Shaban; McDonald-Maier, Klaus

    2018-01-01

    Security is considered a major challenge for self-driving and semi self-driving vehicles. These vehicles depend heavily on communications to predict and sense their external environment used in their motion. They use a type of ad hoc network termed Vehicular ad hoc networks (VANETs). Unfortunately, VANETs are potentially exposed to many attacks on network and application level. This paper, proposes a new intrusion detection system to protect the communication system of self-driving cars; utilising a combination of hierarchical models based on clusters and log parameters. This security system is designed to detect Sybil and Wormhole attacks in highway usage scenarios. It is based on clusters, utilising Time Division Multiple Access (TDMA) to overcome some of the obstacles of VANETs such as high density, high mobility and bandwidth limitations in exchanging messages. This makes the security system more efficient, accurate and capable of real time detection and quick in identification of malicious behaviour in VANETs. In this scheme, each vehicle log calculates and stores different parameter values after receiving the cooperative awareness messages from nearby vehicles. The vehicles exchange their log data and determine the difference between the parameters, which is utilised to detect Sybil attacks and Wormhole attacks. In order to realize efficient and effective intrusion detection system, we use the well-known network simulator (ns-2) to verify the performance of the security system. Simulation results indicate that the security system can achieve high detection rates and effectively detect anomalies with low rate of false alarms.

  3. Extrusion-Based 3D Printing of Hierarchically Porous Advanced Battery Electrodes.

    Science.gov (United States)

    Lacey, Steven D; Kirsch, Dylan J; Li, Yiju; Morgenstern, Joseph T; Zarket, Brady C; Yao, Yonggang; Dai, Jiaqi; Garcia, Laurence Q; Liu, Boyang; Gao, Tingting; Xu, Shaomao; Raghavan, Srinivasa R; Connell, John W; Lin, Yi; Hu, Liangbing

    2018-03-01

    A highly porous 2D nanomaterial, holey graphene oxide (hGO), is synthesized directly from holey graphene powder and employed to create an aqueous 3D printable ink without the use of additives or binders. Stable dispersions of hydrophilic hGO sheets in water (≈100 mg mL -1 ) can be readily achieved. The shear-thinning behavior of the aqueous hGO ink enables extrusion-based printing of fine filaments into complex 3D architectures, such as stacked mesh structures, on arbitrary substrates. The freestanding 3D printed hGO meshes exhibit trimodal porosity: nanoscale (4-25 nm through-holes on hGO sheets), microscale (tens of micrometer-sized pores introduced by lyophilization), and macroscale (benefit of (nano)porosity and structurally conscious designs, the additive-free architectures are demonstrated as the first 3D printed lithium-oxygen (Li-O 2 ) cathodes and characterized alongside 3D printed GO-based materials without nanoporosity as well as nanoporous 2D vacuum filtrated films. The results indicate the synergistic effect between 2D nanomaterials, hierarchical porosity, and overall structural design, as well as the promise of a freeform generation of high-energy-density battery systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Hierarchical HMM based learning of navigation primitives for cooperative robotic endovascular catheterization.

    Science.gov (United States)

    Rafii-Tari, Hedyeh; Liu, Jindong; Payne, Christopher J; Bicknell, Colin; Yang, Guang-Zhong

    2014-01-01

    Despite increased use of remote-controlled steerable catheter navigation systems for endovascular intervention, most current designs are based on master configurations which tend to alter natural operator tool interactions. This introduces problems to both ergonomics and shared human-robot control. This paper proposes a novel cooperative robotic catheterization system based on learning-from-demonstration. By encoding the higher-level structure of a catheterization task as a sequence of primitive motions, we demonstrate how to achieve prospective learning for complex tasks whilst incorporating subject-specific variations. A hierarchical Hidden Markov Model is used to model each movement primitive as well as their sequential relationship. This model is applied to generation of motion sequences, recognition of operator input, and prediction of future movements for the robot. The framework is validated by comparing catheter tip motions against the manual approach, showing significant improvements in the quality of catheterization. The results motivate the design of collaborative robotic systems that are intuitive to use, while reducing the cognitive workload of the operator.

  5. Humic acids-based hierarchical porous carbons as high-rate performance electrodes for symmetric supercapacitors.

    Science.gov (United States)

    Qiao, Zhi-jun; Chen, Ming-ming; Wang, Cheng-yang; Yuan, Yun-cai

    2014-07-01

    Two kinds of hierarchical porous carbons (HPCs) with specific surface areas of 2000 m(2)g(-1) were synthesized using leonardite humic acids (LHA) or biotechnology humic acids (BHA) precursors via a KOH activation process. Humic acids have a high content of oxygen-containing groups which enabled them to dissolve in aqueous KOH and facilitated the homogeneous KOH activation. The LHA-based HPC is made up of abundant micro-, meso-, and macropores and in 6M KOH it has a specific capacitance of 178 F g(-1) at 100 Ag(-1) and its capacitance retention on going from 0.05 to 100 A g(-1) is 64%. In contrast, the BHA-based HPC exhibits a lower capacitance retention of 54% and a specific capacitance of 157 F g(-1) at 100 A g(-1) which is due to the excessive micropores in the BHA-HPC. Moreover, LHA-HPC is produced in a higher yield than BHA-HPC (51 vs. 17 wt%). Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Trimethylamine Sensors Based on Au-Modified Hierarchical Porous Single-Crystalline ZnO Nanosheets

    Directory of Open Access Journals (Sweden)

    Fanli Meng

    2017-06-01

    Full Text Available It is of great significance for dynamic monitoring of foods in storage or during the transportation process through on-line detecting trimethylamine (TMA. Here, TMA were sensitively detected by Au-modified hierarchical porous single-crystalline ZnO nanosheets (HPSCZNs-based sensors. The HPSCZNs were synthesized through a one-pot wet-chemical method followed by an annealing treatment. Polyethyleneimine (PEI was used to modify the surface of the HPSCZNs, and then the PEI-modified samples were mixed with Au nanoparticles (NPs sol solution. Electrostatic interactions drive Au nanoparticles loading onto the surface of the HPSCZNs. The Au-modified HPSCZNs were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM and energy dispersive spectrum (EDS, respectively. The results show that Au-modified HPSCZNs-based sensors exhibit a high response to TMA. The linear range is from 10 to 300 ppb; while the detection limit is 10 ppb, which is the lowest value to our knowledge.

  7. Trimethylamine Sensors Based on Au-Modified Hierarchical Porous Single-Crystalline ZnO Nanosheets.

    Science.gov (United States)

    Meng, Fanli; Zheng, Hanxiong; Sun, Yufeng; Li, Minqiang; Liu, Jinhuai

    2017-06-22

    It is of great significance for dynamic monitoring of foods in storage or during the transportation process through on-line detecting trimethylamine (TMA). Here, TMA were sensitively detected by Au-modified hierarchical porous single-crystalline ZnO nanosheets (HPSCZNs)-based sensors. The HPSCZNs were synthesized through a one-pot wet-chemical method followed by an annealing treatment. Polyethyleneimine (PEI) was used to modify the surface of the HPSCZNs, and then the PEI-modified samples were mixed with Au nanoparticles (NPs) sol solution. Electrostatic interactions drive Au nanoparticles loading onto the surface of the HPSCZNs. The Au-modified HPSCZNs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectrum (EDS), respectively. The results show that Au-modified HPSCZNs-based sensors exhibit a high response to TMA. The linear range is from 10 to 300 ppb; while the detection limit is 10 ppb, which is the lowest value to our knowledge.

  8. A hierarchical model for structure learning based on the physiological characteristics of neurons

    Institute of Scientific and Technical Information of China (English)

    WEI Hui

    2007-01-01

    Almost all applications of Artificial Neural Networks (ANNs) depend mainly on their memory ability.The characteristics of typical ANN models are fixed connections,with evolved weights,globalized representations,and globalized optimizations,all based on a mathematical approach.This makes those models to be deficient in robustness,efficiency of learning,capacity,anti-jamming between training sets,and correlativity of samples,etc.In this paper,we attempt to address these problems by adopting the characteristics of biological neurons in morphology and signal processing.A hierarchical neural network was designed and realized to implement structure learning and representations based on connected structures.The basic characteristics of this model are localized and random connections,field limitations of neuron fan-in and fan-out,dynamic behavior of neurons,and samples represented through different sub-circuits of neurons specialized into different response patterns.At the end of this paper,some important aspects of error correction,capacity,learning efficiency,and soundness of structural representation are analyzed theoretically.This paper has demonstrated the feasibility and advantages of structure learning and representation.This model can serve as a fundamental element of cognitive systems such as perception and associative memory.Key-words structure learning,representation,associative memory,computational neuroscience

  9. Dynamic and quantitative method of analyzing service consistency evolution based on extended hierarchical finite state automata.

    Science.gov (United States)

    Fan, Linjun; Tang, Jun; Ling, Yunxiang; Li, Benxian

    2014-01-01

    This paper is concerned with the dynamic evolution analysis and quantitative measurement of primary factors that cause service inconsistency in service-oriented distributed simulation applications (SODSA). Traditional methods are mostly qualitative and empirical, and they do not consider the dynamic disturbances among factors in service's evolution behaviors such as producing, publishing, calling, and maintenance. Moreover, SODSA are rapidly evolving in terms of large-scale, reusable, compositional, pervasive, and flexible features, which presents difficulties in the usage of traditional analysis methods. To resolve these problems, a novel dynamic evolution model extended hierarchical service-finite state automata (EHS-FSA) is constructed based on finite state automata (FSA), which formally depict overall changing processes of service consistency states. And also the service consistency evolution algorithms (SCEAs) based on EHS-FSA are developed to quantitatively assess these impact factors. Experimental results show that the bad reusability (17.93% on average) is the biggest influential factor, the noncomposition of atomic services (13.12%) is the second biggest one, and the service version's confusion (1.2%) is the smallest one. Compared with previous qualitative analysis, SCEAs present good effectiveness and feasibility. This research can guide the engineers of service consistency technologies toward obtaining a higher level of consistency in SODSA.

  10. Hierarchical prediction of industrial water demand based on refined Laspeyres decomposition analysis.

    Science.gov (United States)

    Shang, Yizi; Lu, Shibao; Gong, Jiaguo; Shang, Ling; Li, Xiaofei; Wei, Yongping; Shi, Hongwang

    2017-12-01

    A recent study decomposed the changes in industrial water use into three hierarchies (output, technology, and structure) using a refined Laspeyres decomposition model, and found monotonous and exclusive trends in the output and technology hierarchies. Based on that research, this study proposes a hierarchical prediction approach to forecast future industrial water demand. Three water demand scenarios (high, medium, and low) were then established based on potential future industrial structural adjustments, and used to predict water demand for the structural hierarchy. The predictive results of this approach were compared with results from a grey prediction model (GPM (1, 1)). The comparison shows that the results of the two approaches were basically identical, differing by less than 10%. Taking Tianjin, China, as a case, and using data from 2003-2012, this study predicts that industrial water demand will continuously increase, reaching 580 million m 3 , 776.4 million m 3 , and approximately 1.09 billion m 3 by the years 2015, 2020 and 2025 respectively. It is concluded that Tianjin will soon face another water crisis if no immediate measures are taken. This study recommends that Tianjin adjust its industrial structure with water savings as the main objective, and actively seek new sources of water to increase its supply.

  11. Dynamic and Quantitative Method of Analyzing Service Consistency Evolution Based on Extended Hierarchical Finite State Automata

    Directory of Open Access Journals (Sweden)

    Linjun Fan

    2014-01-01

    Full Text Available This paper is concerned with the dynamic evolution analysis and quantitative measurement of primary factors that cause service inconsistency in service-oriented distributed simulation applications (SODSA. Traditional methods are mostly qualitative and empirical, and they do not consider the dynamic disturbances among factors in service’s evolution behaviors such as producing, publishing, calling, and maintenance. Moreover, SODSA are rapidly evolving in terms of large-scale, reusable, compositional, pervasive, and flexible features, which presents difficulties in the usage of traditional analysis methods. To resolve these problems, a novel dynamic evolution model extended hierarchical service-finite state automata (EHS-FSA is constructed based on finite state automata (FSA, which formally depict overall changing processes of service consistency states. And also the service consistency evolution algorithms (SCEAs based on EHS-FSA are developed to quantitatively assess these impact factors. Experimental results show that the bad reusability (17.93% on average is the biggest influential factor, the noncomposition of atomic services (13.12% is the second biggest one, and the service version’s confusion (1.2% is the smallest one. Compared with previous qualitative analysis, SCEAs present good effectiveness and feasibility. This research can guide the engineers of service consistency technologies toward obtaining a higher level of consistency in SODSA.

  12. Water quality assessment with hierarchical cluster analysis based on Mahalanobis distance.

    Science.gov (United States)

    Du, Xiangjun; Shao, Fengjing; Wu, Shunyao; Zhang, Hanlin; Xu, Si

    2017-07-01

    Water quality assessment is crucial for assessment of marine eutrophication, prediction of harmful algal blooms, and environment protection. Previous studies have developed many numeric modeling methods and data driven approaches for water quality assessment. The cluster analysis, an approach widely used for grouping data, has also been employed. However, there are complex correlations between water quality variables, which play important roles in water quality assessment but have always been overlooked. In this paper, we analyze correlations between water quality variables and propose an alternative method for water quality assessment with hierarchical cluster analysis based on Mahalanobis distance. Further, we cluster water quality data collected form coastal water of Bohai Sea and North Yellow Sea of China, and apply clustering results to evaluate its water quality. To evaluate the validity, we also cluster the water quality data with cluster analysis based on Euclidean distance, which are widely adopted by previous studies. The results show that our method is more suitable for water quality assessment with many correlated water quality variables. To our knowledge, it is the first attempt to apply Mahalanobis distance for coastal water quality assessment.

  13. A Hierarchical Method for Transient Stability Prediction of Power Systems Using the Confidence of a SVM-Based Ensemble Classifier

    Directory of Open Access Journals (Sweden)

    Yanzhen Zhou

    2016-09-01

    Full Text Available Machine learning techniques have been widely used in transient stability prediction of power systems. When using the post-fault dynamic responses, it is difficult to draw a definite conclusion about how long the duration of response data used should be in order to balance the accuracy and speed. Besides, previous studies have the problem of lacking consideration for the confidence level. To solve these problems, a hierarchical method for transient stability prediction based on the confidence of ensemble classifier using multiple support vector machines (SVMs is proposed. Firstly, multiple datasets are generated by bootstrap sampling, then features are randomly picked up to compress the datasets. Secondly, the confidence indices are defined and multiple SVMs are built based on these generated datasets. By synthesizing the probabilistic outputs of multiple SVMs, the prediction results and confidence of the ensemble classifier will be obtained. Finally, different ensemble classifiers with different response times are built to construct different layers of the proposed hierarchical scheme. The simulation results show that the proposed hierarchical method can balance the accuracy and rapidity of the transient stability prediction. Moreover, the hierarchical method can reduce the misjudgments of unstable instances and cooperate with the time domain simulation to insure the security and stability of power systems.

  14. Synchronization of Hierarchical Time-Varying Neural Networks Based on Asynchronous and Intermittent Sampled-Data Control.

    Science.gov (United States)

    Xiong, Wenjun; Patel, Ragini; Cao, Jinde; Zheng, Wei Xing

    In this brief, our purpose is to apply asynchronous and intermittent sampled-data control methods to achieve the synchronization of hierarchical time-varying neural networks. The asynchronous and intermittent sampled-data controllers are proposed for two reasons: 1) the controllers may not transmit the control information simultaneously and 2) the controllers cannot always exist at any time . The synchronization is then discussed for a kind of hierarchical time-varying neural networks based on the asynchronous and intermittent sampled-data controllers. Finally, the simulation results are given to illustrate the usefulness of the developed criteria.In this brief, our purpose is to apply asynchronous and intermittent sampled-data control methods to achieve the synchronization of hierarchical time-varying neural networks. The asynchronous and intermittent sampled-data controllers are proposed for two reasons: 1) the controllers may not transmit the control information simultaneously and 2) the controllers cannot always exist at any time . The synchronization is then discussed for a kind of hierarchical time-varying neural networks based on the asynchronous and intermittent sampled-data controllers. Finally, the simulation results are given to illustrate the usefulness of the developed criteria.

  15. Beyond Creation of Mesoporosity: The Advantages of Polymer-Based Dual-Function Templates for Fabricating Hierarchical Zeolites

    KAUST Repository

    Tian, Qiwei

    2016-02-05

    Direct synthesis of hierarchical zeolites currently relies on the use of surfactant-based templates to produce mesoporosity by the random stacking of 2D zeolite sheets or the agglomeration of tiny zeolite grains. The benefits of using nonsurfactant polymers as dual-function templates in the fabrication of hierarchical zeolites are demonstrated. First, the minimal intermolecular interactions of nonsurfactant polymers impose little interference on the crystallization of zeolites, favoring the formation of 3D continuous zeolite frameworks with a long-range order. Second, the mutual interpenetration of the polymer and the zeolite networks renders disordered but highly interconnected mesopores in zeolite crystals. These two factors allow for the synthesis of single-crystalline, mesoporous zeolites of varied compositions and framework types. A representative example, hierarchial aluminosilicate (meso-ZSM-5), has been carefully characterized. It has a unique branched fibrous structure, and far outperforms bulk aluminosilicate (ZSM-5) as a catalyst in two model reactions: conversion of methanol to aromatics and catalytic cracking of canola oil. Third, extra functional groups in the polymer template can be utilized to incorporate desired functionalities into hierarchical zeolites. Last and most importantly, polymer-based templates permit heterogeneous nucleation and growth of mesoporous zeolites on existing surfaces, forming a continuous zeolitic layer. In a proof-of-concept experiment, unprecedented core-shell-structured hierarchical zeolites are synthesized by coating mesoporous zeolites on the surfaces of bulk zeolites. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Hierarchical Semantic Model of Geovideo

    Directory of Open Access Journals (Sweden)

    XIE Xiao

    2015-05-01

    Full Text Available The public security incidents were getting increasingly challenging with regard to their new features, including multi-scale mobility, multistage dynamic evolution, as well as spatiotemporal concurrency and uncertainty in the complex urban environment. However, the existing video models, which were used/designed for independent archive or local analysis of surveillance video, have seriously inhibited emergency response to the urgent requirements.Aiming at the explicit representation of change mechanism in video, the paper proposed a novel hierarchical geovideo semantic model using UML. This model was characterized by the hierarchical representation of both data structure and semantics based on the change-oriented three domains (feature domain, process domain and event domain instead of overall semantic description of video streaming; combining both geographical semantics and video content semantics, in support of global semantic association between multiple geovideo data. The public security incidents by video surveillance are inspected as an example to illustrate the validity of this model.

  17. Improvements to the hierarchically structured ZnO nanosphere based dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yongzhe; Wu Lihui; Liu Yanping; Xie Erqing, E-mail: zhangyzh04@126.co, E-mail: xieeq@lzu.edu.c [School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China)

    2009-04-21

    Hierarchically structured ZnO nanospheres are synthesized by a wet-chemical method and ZnO sphere-consisting films are applied to dye-sensitized solar cells (DSSCs). It is found that the overall light-to-electricity conversion efficiency ({eta}) is significantly enhanced from 0.474% to 1.03% due to light scattering compared with the ZnO nanoparticle-based DSSC. However, the fill factor (FF) and open-circuit voltage (V{sub oc}) decrease obviously. After annealing the films in an oxygen environment and placing a ZnO blocking layer on the fluorine-doped SnO{sub 2} (FTO) conducting substrate, the FF and V{sub oc} are greatly improved and {eta} increases from 1.03% to 1.59% and 2.25%, respectively. According to the results of x-ray diffraction and photoluminescence, the significant improvements in the cell performances might be due to the suppression of the recombination and the decrease in the resistances existing in the cell.

  18. Hierarchical patch-based co-registration of differently stained histopathology slides

    Science.gov (United States)

    Yigitsoy, Mehmet; Schmidt, Günter

    2017-03-01

    Over the past decades, digital pathology has emerged as an alternative way of looking at the tissue at subcellular level. It enables multiplexed analysis of different cell types at micron level. Information about cell types can be extracted by staining sections of a tissue block using different markers. However, robust fusion of structural and functional information from different stains is necessary for reproducible multiplexed analysis. Such a fusion can be obtained via image co-registration by establishing spatial correspondences between tissue sections. Spatial correspondences can then be used to transfer various statistics about cell types between sections. However, the multi-modal nature of images and sparse distribution of interesting cell types pose several challenges for the registration of differently stained tissue sections. In this work, we propose a co-registration framework that efficiently addresses such challenges. We present a hierarchical patch-based registration of intensity normalized tissue sections. Preliminary experiments demonstrate the potential of the proposed technique for the fusion of multi-modal information from differently stained digital histopathology sections.

  19. Lamellar Microdomains of Block-Copolymer-Based Ionic Supramolecules Exhibiting a Hierarchical Self-Assembly

    DEFF Research Database (Denmark)

    Ayoubi, Mehran Asad; Almdal, Kristoffer; Zhu, Kaizheng

    2014-01-01

    (Cn; n = 8, 12, and 16) trimethylammonium counterions (i.e., side chains) at various ion (pair) fractions X [i.e., counterion/side-chain grafting density; X = number of alkyl counterions (i.e., side chains) per acidic group of the parent PMAA block] these L-b-AC ionic supramolecules exhibit...... a spherical-in-lamellar hierarchical self-assembly. For these systems, (1) the effective Flory-Huggins interaction parameter between L- and AC-blocks chi'(Cn/x) was extracted, and (2) analysis of the lamellar microdomains showed that when there is an increase in X, alkyl counterion (i.e., side chain) length l......Based on a parent diblock copolymer of poly(styrene)-b-poly(methacrylic acid), PS-b-PMAA, linear-b-amphiphilic comb (L-b-AC) ionic supramolecules [Soft Matter 2013, 9, 1540-1555] are synthesized in which the poly(methacrylate) backbone of the ionic supramolecular AC-block is neutralized by alkyl...

  20. Predicting protein subcellular locations using hierarchical ensemble of Bayesian classifiers based on Markov chains

    Directory of Open Access Journals (Sweden)

    Eils Roland

    2006-06-01

    Full Text Available Abstract Background The subcellular location of a protein is closely related to its function. It would be worthwhile to develop a method to predict the subcellular location for a given protein when only the amino acid sequence of the protein is known. Although many efforts have been made to predict subcellular location from sequence information only, there is the need for further research to improve the accuracy of prediction. Results A novel method called HensBC is introduced to predict protein subcellular location. HensBC is a recursive algorithm which constructs a hierarchical ensemble of classifiers. The classifiers used are Bayesian classifiers based on Markov chain models. We tested our method on six various datasets; among them are Gram-negative bacteria dataset, data for discriminating outer membrane proteins and apoptosis proteins dataset. We observed that our method can predict the subcellular location with high accuracy. Another advantage of the proposed method is that it can improve the accuracy of the prediction of some classes with few sequences in training and is therefore useful for datasets with imbalanced distribution of classes. Conclusion This study introduces an algorithm which uses only the primary sequence of a protein to predict its subcellular location. The proposed recursive scheme represents an interesting methodology for learning and combining classifiers. The method is computationally efficient and competitive with the previously reported approaches in terms of prediction accuracies as empirical results indicate. The code for the software is available upon request.

  1. A Hierarchical Auction-Based Mechanism for Real-Time Resource Allocation in Cloud Robotic Systems.

    Science.gov (United States)

    Wang, Lujia; Liu, Ming; Meng, Max Q-H

    2017-02-01

    Cloud computing enables users to share computing resources on-demand. The cloud computing framework cannot be directly mapped to cloud robotic systems with ad hoc networks since cloud robotic systems have additional constraints such as limited bandwidth and dynamic structure. However, most multirobotic applications with cooperative control adopt this decentralized approach to avoid a single point of failure. Robots need to continuously update intensive data to execute tasks in a coordinated manner, which implies real-time requirements. Thus, a resource allocation strategy is required, especially in such resource-constrained environments. This paper proposes a hierarchical auction-based mechanism, namely link quality matrix (LQM) auction, which is suitable for ad hoc networks by introducing a link quality indicator. The proposed algorithm produces a fast and robust method that is accurate and scalable. It reduces both global communication and unnecessary repeated computation. The proposed method is designed for firm real-time resource retrieval for physical multirobot systems. A joint surveillance scenario empirically validates the proposed mechanism by assessing several practical metrics. The results show that the proposed LQM auction outperforms state-of-the-art algorithms for resource allocation.

  2. Automatic Curve Fitting Based on Radial Basis Functions and a Hierarchical Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    G. Trejo-Caballero

    2015-01-01

    Full Text Available Curve fitting is a very challenging problem that arises in a wide variety of scientific and engineering applications. Given a set of data points, possibly noisy, the goal is to build a compact representation of the curve that corresponds to the best estimate of the unknown underlying relationship between two variables. Despite the large number of methods available to tackle this problem, it remains challenging and elusive. In this paper, a new method to tackle such problem using strictly a linear combination of radial basis functions (RBFs is proposed. To be more specific, we divide the parameter search space into linear and nonlinear parameter subspaces. We use a hierarchical genetic algorithm (HGA to minimize a model selection criterion, which allows us to automatically and simultaneously determine the nonlinear parameters and then, by the least-squares method through Singular Value Decomposition method, to compute the linear parameters. The method is fully automatic and does not require subjective parameters, for example, smooth factor or centre locations, to perform the solution. In order to validate the efficacy of our approach, we perform an experimental study with several tests on benchmarks smooth functions. A comparative analysis with two successful methods based on RBF networks has been included.

  3. An Efficient Secure Scheme Based on Hierarchical Topology in the Smart Home Environment

    Directory of Open Access Journals (Sweden)

    Mansik Kim

    2017-08-01

    Full Text Available As the Internet of Things (IoT has developed, the emerging sensor network (ESN that integrates emerging technologies, such as autonomous driving, cyber-physical systems, mobile nodes, and existing sensor networks has been in the limelight. Smart homes have been researched and developed by various companies and organizations. Emerging sensor networks have some issues of providing secure service according to a new environment, such as a smart home, and the problems of low power and low-computing capacity for the sensor that previous sensor networks were equipped with. This study classifies various sensors used in smart homes into three classes and contains the hierarchical topology for efficient communication. In addition, a scheme for establishing secure communication among sensors based on physical unclonable functions (PUFs that cannot be physically cloned is suggested in regard to the sensor’s low performance. In addition, we analyzed this scheme by conducting security and performance evaluations proving to constitute secure channels while consuming fewer resources. We believe that our scheme can provide secure communication by using fewer resources in a smart home environment in the future.

  4. Hierarchical Conformational Analysis of Native Lysozyme Based on Sub-Millisecond Molecular Dynamics Simulations.

    Directory of Open Access Journals (Sweden)

    Kai Wang

    Full Text Available Hierarchical organization of free energy landscape (FEL for native globular proteins has been widely accepted by the biophysics community. However, FEL of native proteins is usually projected onto one or a few dimensions. Here we generated collectively 0.2 milli-second molecular dynamics simulation trajectories in explicit solvent for hen egg white lysozyme (HEWL, and carried out detailed conformational analysis based on backbone torsional degrees of freedom (DOF. Our results demonstrated that at micro-second and coarser temporal resolutions, FEL of HEWL exhibits hub-like topology with crystal structures occupying the dominant structural ensemble that serves as the hub of conformational transitions. However, at 100 ns and finer temporal resolutions, conformational substates of HEWL exhibit network-like topology, crystal structures are associated with kinetic traps that are important but not dominant ensembles. Backbone torsional state transitions on time scales ranging from nanoseconds to beyond microseconds were found to be associated with various types of molecular interactions. Even at nanoseconds temporal resolution, the number of conformational substates that are of statistical significance is quite limited. These observations suggest that detailed analysis of conformational substates at multiple temporal resolutions is both important and feasible. Transition state ensembles among various conformational substates at microsecond temporal resolution were observed to be considerably disordered. Life times of these transition state ensembles are found to be nearly independent of the time scales of the participating torsional DOFs.

  5. Forecasting building energy consumption with hybrid genetic algorithm-hierarchical adaptive network-based fuzzy inference system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kangji [Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027 (China); School of Electricity Information Engineering, Jiangsu University, Zhenjiang 212013 (China); Su, Hongye [Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027 (China)

    2010-11-15

    There are several ways to forecast building energy consumption, varying from simple regression to models based on physical principles. In this paper, a new method, namely, the hybrid genetic algorithm-hierarchical adaptive network-based fuzzy inference system (GA-HANFIS) model is developed. In this model, hierarchical structure decreases the rule base dimension. Both clustering and rule base parameters are optimized by GAs and neural networks (NNs). The model is applied to predict a hotel's daily air conditioning consumption for a period over 3 months. The results obtained by the proposed model are presented and compared with regular method of NNs, which indicates that GA-HANFIS model possesses better performance than NNs in terms of their forecasting accuracy. (author)

  6. Hierarchical structure of the European countries based on debts as a percentage of GDP during the 2000-2011 period

    Science.gov (United States)

    Kantar, Ersin; Deviren, Bayram; Keskin, Mustafa

    2014-11-01

    We investigate hierarchical structures of the European countries by using debt as a percentage of Gross Domestic Product (GDP) of the countries as they change over a certain period of time. We obtain the topological properties among the countries based on debt as a percentage of GDP of European countries over the period 2000-2011 by using the concept of hierarchical structure methods (minimal spanning tree, (MST) and hierarchical tree, (HT)). This period is also divided into two sub-periods related to 2004 enlargement of the European Union, namely 2000-2004 and 2005-2011, in order to test various time-window and observe the temporal evolution. The bootstrap techniques is applied to see a value of statistical reliability of the links of the MSTs and HTs. The clustering linkage procedure is also used to observe the cluster structure more clearly. From the structural topologies of these trees, we identify different clusters of countries according to their level of debts. Our results show that by the debt crisis, the less and most affected Eurozone’s economies are formed as a cluster with each other in the MSTs and hierarchical trees.

  7. Identifying Hierarchical and Overlapping Protein Complexes Based on Essential Protein-Protein Interactions and “Seed-Expanding” Method

    Directory of Open Access Journals (Sweden)

    Jun Ren

    2014-01-01

    Full Text Available Many evidences have demonstrated that protein complexes are overlapping and hierarchically organized in PPI networks. Meanwhile, the large size of PPI network wants complex detection methods have low time complexity. Up to now, few methods can identify overlapping and hierarchical protein complexes in a PPI network quickly. In this paper, a novel method, called MCSE, is proposed based on λ-module and “seed-expanding.” First, it chooses seeds as essential PPIs or edges with high edge clustering values. Then, it identifies protein complexes by expanding each seed to a λ-module. MCSE is suitable for large PPI networks because of its low time complexity. MCSE can identify overlapping protein complexes naturally because a protein can be visited by different seeds. MCSE uses the parameter λ_th to control the range of seed expanding and can detect a hierarchical organization of protein complexes by tuning the value of λ_th. Experimental results of S. cerevisiae show that this hierarchical organization is similar to that of known complexes in MIPS database. The experimental results also show that MCSE outperforms other previous competing algorithms, such as CPM, CMC, Core-Attachment, Dpclus, HC-PIN, MCL, and NFC, in terms of the functional enrichment and matching with known protein complexes.

  8. Influence of geometry on mechanical properties of bio-inspired silica-based hierarchical materials

    International Nuclear Information System (INIS)

    Dimas, Leon S; Buehler, Markus J

    2012-01-01

    Diatoms, bone, nacre and deep-sea sponges are mineralized natural structures found abundantly in nature. They exhibit mechanical properties on par with advanced engineering materials, yet their fundamental building blocks are brittle and weak. An intriguing characteristic of these structures is their heterogeneous distribution of mechanical properties. Specifically, diatoms exhibit nanoscale porosity in specific geometrical configurations to create regions with distinct stress strain responses, notably based on a single and simple building block, silica. The study reported here, using models derived from first principles based full atomistic studies with the ReaxFF reactive force field, focuses on the mechanics and deformation mechanisms of silica-based nanocomposites inspired by mineralized structures. We examine single edged notched tensile specimens and analyze stress and strain fields under varied sample size in order to gain fundamental insights into the deformation mechanisms of structures with distinct ordered arrangements of soft and stiff phases. We find that hierarchical arrangements of silica nanostructures markedly change the stress and strain transfer in the samples. The combined action of strain transfer in the deformable phase, and stress transfer in the strong phase, acts synergistically to reduce the intensity of stress concentrations around a crack tip, and renders the resulting composites less sensitive to the presence of flaws, for certain geometrical configurations it even leads to stable crack propagation. A systematic study allows us to identify composite structures with superior fracture mechanical properties relative to their constituents, akin to many natural biomineralized materials that turn the weaknesses of building blocks into a strength of the overall system. (paper)

  9. A Medical Cloud-Based Platform for Respiration Rate Measurement and Hierarchical Classification of Breath Disorders

    Directory of Open Access Journals (Sweden)

    Atena Roshan Fekr

    2014-06-01

    Full Text Available The measurement of human respiratory signals is crucial in cyberbiological systems. A disordered breathing pattern can be the first symptom of different physiological, mechanical, or psychological dysfunctions. Therefore, a real-time monitoring of the respiration patterns, as well as respiration rate is a critical need in medical applications. There are several methods for respiration rate measurement. However, despite their accuracy, these methods are expensive and could not be integrated in a body sensor network. In this work, we present a real-time cloud-based platform for both monitoring the respiration rate and breath pattern classification, remotely. The proposed system is designed particularly for patients with breathing problems (e.g., respiratory complications after surgery or sleep disorders. Our system includes calibrated accelerometer sensor, Bluetooth Low Energy (BLE and cloud-computing model. We also suggest a procedure to improve the accuracy of respiration rate for patients at rest positions. The overall error in the respiration rate calculation is obtained 0.53% considering SPR-BTA spirometer as the reference. Five types of respiration disorders, Bradapnea, Tachypnea, Cheyn-stokes, Kaussmal, and Biot’s breathing are classified based on hierarchical Support Vector Machine (SVM with seven different features. We have evaluated the performance of the proposed classification while it is individualized to every subject (case 1 as well as considering all subjects (case 2. Since the selection of kernel function is a key factor to decide SVM’s performance, in this paper three different kernel functions are evaluated. The experiments are conducted with 11 subjects and the average accuracy of 94.52% for case 1 and the accuracy of 81.29% for case 2 are achieved based on Radial Basis Function (RBF. Finally, a performance evaluation has been done for normal and impaired subjects considering sensitivity, specificity and G-mean parameters

  10. Hierarchical Role Ontology-based Assessment of Trainee’s Conceptual Knowledge

    Directory of Open Access Journals (Sweden)

    V. V. Belous

    2014-01-01

    Full Text Available We believe that this knowledge base of training system structure is based on the subject semantic network (SSN containing concepts of subject domain and relations between them. The SSN is represented as a direct graph, with tops corresponding to concepts, and arcs corresponding to relations. We consider a technique for trainee’s conceptual knowledge assessment using the cognitive maps of trainees (CMT, each of which formalizes his ideas of some SSN fragment and theoretically coincides with this fragment. Assessment of trainee’s achievement of this SSN fragment comes to comparison of SSN subgraph, corresponding to this fragment, with the direct graph, which is defined by the corresponding CMT.A number of important subject domains possess the property that concepts in them have the attribute called ‘role’, and roles of concepts can be linearly sorted. The direct graph SSN, corresponding to such ontology can be presented in a tiered form.The work concerns the assessment of trainee’s conceptual knowledge in the subject domains of this class. The work represents the SSN and CMT models used, describes the offered methods to create CMT, as well metrics for trainee’s achievement of the conceptual knowledge based on his CMT.The main results of work are the following: the model of the semantic network corresponding to hierarchical role ontology, and also a model of a trainee’s cognitive map of are offered, methods for creating the trainee’s cognitive maps are developed, metrics of trainee’s achievement of conceptual knowledge are suggested.

  11. Hierarchical and successive approximate registration of the non-rigid medical image based on thin-plate splines

    Science.gov (United States)

    Hu, Jinyan; Li, Li; Yang, Yunfeng

    2017-06-01

    The hierarchical and successive approximate registration method of non-rigid medical image based on the thin-plate splines is proposed in the paper. There are two major novelties in the proposed method. First, the hierarchical registration based on Wavelet transform is used. The approximate image of Wavelet transform is selected as the registered object. Second, the successive approximation registration method is used to accomplish the non-rigid medical images registration, i.e. the local regions of the couple images are registered roughly based on the thin-plate splines, then, the current rough registration result is selected as the object to be registered in the following registration procedure. Experiments show that the proposed method is effective in the registration process of the non-rigid medical images.

  12. Accurate crop classification using hierarchical genetic fuzzy rule-based systems

    Science.gov (United States)

    Topaloglou, Charalampos A.; Mylonas, Stelios K.; Stavrakoudis, Dimitris G.; Mastorocostas, Paris A.; Theocharis, John B.

    2014-10-01

    This paper investigates the effectiveness of an advanced classification system for accurate crop classification using very high resolution (VHR) satellite imagery. Specifically, a recently proposed genetic fuzzy rule-based classification system (GFRBCS) is employed, namely, the Hierarchical Rule-based Linguistic Classifier (HiRLiC). HiRLiC's model comprises a small set of simple IF-THEN fuzzy rules, easily interpretable by humans. One of its most important attributes is that its learning algorithm requires minimum user interaction, since the most important learning parameters affecting the classification accuracy are determined by the learning algorithm automatically. HiRLiC is applied in a challenging crop classification task, using a SPOT5 satellite image over an intensively cultivated area in a lake-wetland ecosystem in northern Greece. A rich set of higher-order spectral and textural features is derived from the initial bands of the (pan-sharpened) image, resulting in an input space comprising 119 features. The experimental analysis proves that HiRLiC compares favorably to other interpretable classifiers of the literature, both in terms of structural complexity and classification accuracy. Its testing accuracy was very close to that obtained by complex state-of-the-art classification systems, such as the support vector machines (SVM) and random forest (RF) classifiers. Nevertheless, visual inspection of the derived classification maps shows that HiRLiC is characterized by higher generalization properties, providing more homogeneous classifications that the competitors. Moreover, the runtime requirements for producing the thematic map was orders of magnitude lower than the respective for the competitors.

  13. Optimizing an estuarine water quality monitoring program through an entropy-based hierarchical spatiotemporal Bayesian framework

    Science.gov (United States)

    Alameddine, Ibrahim; Karmakar, Subhankar; Qian, Song S.; Paerl, Hans W.; Reckhow, Kenneth H.

    2013-10-01

    The total maximum daily load program aims to monitor more than 40,000 standard violations in around 20,000 impaired water bodies across the United States. Given resource limitations, future monitoring efforts have to be hedged against the uncertainties in the monitored system, while taking into account existing knowledge. In that respect, we have developed a hierarchical spatiotemporal Bayesian model that can be used to optimize an existing monitoring network by retaining stations that provide the maximum amount of information, while identifying locations that would benefit from the addition of new stations. The model assumes the water quality parameters are adequately described by a joint matrix normal distribution. The adopted approach allows for a reduction in redundancies, while emphasizing information richness rather than data richness. The developed approach incorporates the concept of entropy to account for the associated uncertainties. Three different entropy-based criteria are adopted: total system entropy, chlorophyll-a standard violation entropy, and dissolved oxygen standard violation entropy. A multiple attribute decision making framework is adopted to integrate the competing design criteria and to generate a single optimal design. The approach is implemented on the water quality monitoring system of the Neuse River Estuary in North Carolina, USA. The model results indicate that the high priority monitoring areas identified by the total system entropy and the dissolved oxygen violation entropy criteria are largely coincident. The monitoring design based on the chlorophyll-a standard violation entropy proved to be less informative, given the low probabilities of violating the water quality standard in the estuary.

  14. Value-based decision making via sequential sampling with hierarchical competition and attentional modulation.

    Science.gov (United States)

    Colas, Jaron T

    2017-01-01

    In principle, formal dynamical models of decision making hold the potential to represent fundamental computations underpinning value-based (i.e., preferential) decisions in addition to perceptual decisions. Sequential-sampling models such as the race model and the drift-diffusion model that are grounded in simplicity, analytical tractability, and optimality remain popular, but some of their more recent counterparts have instead been designed with an aim for more feasibility as architectures to be implemented by actual neural systems. Connectionist models are proposed herein at an intermediate level of analysis that bridges mental phenomena and underlying neurophysiological mechanisms. Several such models drawing elements from the established race, drift-diffusion, feedforward-inhibition, divisive-normalization, and competing-accumulator models were tested with respect to fitting empirical data from human participants making choices between foods on the basis of hedonic value rather than a traditional perceptual attribute. Even when considering performance at emulating behavior alone, more neurally plausible models were set apart from more normative race or drift-diffusion models both quantitatively and qualitatively despite remaining parsimonious. To best capture the paradigm, a novel six-parameter computational model was formulated with features including hierarchical levels of competition via mutual inhibition as well as a static approximation of attentional modulation, which promotes "winner-take-all" processing. Moreover, a meta-analysis encompassing several related experiments validated the robustness of model-predicted trends in humans' value-based choices and concomitant reaction times. These findings have yet further implications for analysis of neurophysiological data in accordance with computational modeling, which is also discussed in this new light.

  15. Value-based decision making via sequential sampling with hierarchical competition and attentional modulation.

    Directory of Open Access Journals (Sweden)

    Jaron T Colas

    Full Text Available In principle, formal dynamical models of decision making hold the potential to represent fundamental computations underpinning value-based (i.e., preferential decisions in addition to perceptual decisions. Sequential-sampling models such as the race model and the drift-diffusion model that are grounded in simplicity, analytical tractability, and optimality remain popular, but some of their more recent counterparts have instead been designed with an aim for more feasibility as architectures to be implemented by actual neural systems. Connectionist models are proposed herein at an intermediate level of analysis that bridges mental phenomena and underlying neurophysiological mechanisms. Several such models drawing elements from the established race, drift-diffusion, feedforward-inhibition, divisive-normalization, and competing-accumulator models were tested with respect to fitting empirical data from human participants making choices between foods on the basis of hedonic value rather than a traditional perceptual attribute. Even when considering performance at emulating behavior alone, more neurally plausible models were set apart from more normative race or drift-diffusion models both quantitatively and qualitatively despite remaining parsimonious. To best capture the paradigm, a novel six-parameter computational model was formulated with features including hierarchical levels of competition via mutual inhibition as well as a static approximation of attentional modulation, which promotes "winner-take-all" processing. Moreover, a meta-analysis encompassing several related experiments validated the robustness of model-predicted trends in humans' value-based choices and concomitant reaction times. These findings have yet further implications for analysis of neurophysiological data in accordance with computational modeling, which is also discussed in this new light.

  16. Value-based decision making via sequential sampling with hierarchical competition and attentional modulation

    Science.gov (United States)

    2017-01-01

    In principle, formal dynamical models of decision making hold the potential to represent fundamental computations underpinning value-based (i.e., preferential) decisions in addition to perceptual decisions. Sequential-sampling models such as the race model and the drift-diffusion model that are grounded in simplicity, analytical tractability, and optimality remain popular, but some of their more recent counterparts have instead been designed with an aim for more feasibility as architectures to be implemented by actual neural systems. Connectionist models are proposed herein at an intermediate level of analysis that bridges mental phenomena and underlying neurophysiological mechanisms. Several such models drawing elements from the established race, drift-diffusion, feedforward-inhibition, divisive-normalization, and competing-accumulator models were tested with respect to fitting empirical data from human participants making choices between foods on the basis of hedonic value rather than a traditional perceptual attribute. Even when considering performance at emulating behavior alone, more neurally plausible models were set apart from more normative race or drift-diffusion models both quantitatively and qualitatively despite remaining parsimonious. To best capture the paradigm, a novel six-parameter computational model was formulated with features including hierarchical levels of competition via mutual inhibition as well as a static approximation of attentional modulation, which promotes “winner-take-all” processing. Moreover, a meta-analysis encompassing several related experiments validated the robustness of model-predicted trends in humans’ value-based choices and concomitant reaction times. These findings have yet further implications for analysis of neurophysiological data in accordance with computational modeling, which is also discussed in this new light. PMID:29077746

  17. Fabrication of semi-transparent super-hydrophobic surface based on silica hierarchical structures

    KAUST Repository

    Chen, Ping-Hei

    2011-01-01

    This study successfully develops a versatile method of producing superhydrophobic surfaces with micro/nano-silica hierarchical structures on glass surfaces. Optically transparent super hydrophobic silica thin films were prepared by spin-coating silica particles suspended in a precursor solution of silane, ethanol, and H2O with molar ratio of 1:4:4. The resulting super hydrophobic films were characterized by scanning electron microscopy (SEM), optical transmission, and contact angle measurements. The glass substrates in this study were modified with different particles: micro-silica particles, nano-silica particles, and hierarchical structures. This study includes SEM micrographs of the modified glass surfaces with hierarchical structures at different magnifications. © 2011 The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg.

  18. Distributed Smart Decision-Making for a Multimicrogrid System Based on a Hierarchical Interactive Architecture

    DEFF Research Database (Denmark)

    Marzband, Mousa; Parhizi, Narges; Savaghebi, Mehdi

    2016-01-01

    In this paper, a comprehensive real-time interactive EMS framework for the utility and multiple electrically-coupled MGs is proposed. A hierarchical bi-level control scheme-BLCS with primary and secondary level controllers is applied in this regard. The proposed hierarchical architecture consists...... are treated as uncertainties in the proposed structure. In order to handle the uncertainties, Taguchi0s orthogonal array testing-TOAT approach is utilized. Then, the shortage or surplus of the MGs power should be submitted to a central EMS-CEMS in the secondary-level. In order to validate the proposed control...

  19. Research on Crowdsourcing Emergency Information Extraction of Based on Events' Frame

    Science.gov (United States)

    Yang, Bo; Wang, Jizhou; Ma, Weijun; Mao, Xi

    2018-01-01

    At present, the common information extraction method cannot extract the structured emergency event information accurately; the general information retrieval tool cannot completely identify the emergency geographic information; these ways also do not have an accurate assessment of these results of distilling. So, this paper proposes an emergency information collection technology based on event framework. This technique is to solve the problem of emergency information picking. It mainly includes emergency information extraction model (EIEM), complete address recognition method (CARM) and the accuracy evaluation model of emergency information (AEMEI). EIEM can be structured to extract emergency information and complements the lack of network data acquisition in emergency mapping. CARM uses a hierarchical model and the shortest path algorithm and allows the toponomy pieces to be joined as a full address. AEMEI analyzes the results of the emergency event and summarizes the advantages and disadvantages of the event framework. Experiments show that event frame technology can solve the problem of emergency information drawing and provides reference cases for other applications. When the emergency disaster is about to occur, the relevant departments query emergency's data that has occurred in the past. They can make arrangements ahead of schedule which defense and reducing disaster. The technology decreases the number of casualties and property damage in the country and world. This is of great significance to the state and society.

  20. LiDAR based prediction of forest biomass using hierarchical models with spatially varying coefficients

    Science.gov (United States)

    Babcock, Chad; Finley, Andrew O.; Bradford, John B.; Kolka, Randall K.; Birdsey, Richard A.; Ryan, Michael G.

    2015-01-01

    Many studies and production inventory systems have shown the utility of coupling covariates derived from Light Detection and Ranging (LiDAR) data with forest variables measured on georeferenced inventory plots through regression models. The objective of this study was to propose and assess the use of a Bayesian hierarchical modeling framework that accommodates both residual spatial dependence and non-stationarity of model covariates through the introduction of spatial random effects. We explored this objective using four forest inventory datasets that are part of the North American Carbon Program, each comprising point-referenced measures of above-ground forest biomass and discrete LiDAR. For each dataset, we considered at least five regression model specifications of varying complexity. Models were assessed based on goodness of fit criteria and predictive performance using a 10-fold cross-validation procedure. Results showed that the addition of spatial random effects to the regression model intercept improved fit and predictive performance in the presence of substantial residual spatial dependence. Additionally, in some cases, allowing either some or all regression slope parameters to vary spatially, via the addition of spatial random effects, further improved model fit and predictive performance. In other instances, models showed improved fit but decreased predictive performance—indicating over-fitting and underscoring the need for cross-validation to assess predictive ability. The proposed Bayesian modeling framework provided access to pixel-level posterior predictive distributions that were useful for uncertainty mapping, diagnosing spatial extrapolation issues, revealing missing model covariates, and discovering locally significant parameters.

  1. Multimodal Hierarchical Dirichlet Process-Based Active Perception by a Robot

    Directory of Open Access Journals (Sweden)

    Tadahiro Taniguchi

    2018-05-01

    Full Text Available In this paper, we propose an active perception method for recognizing object categories based on the multimodal hierarchical Dirichlet process (MHDP. The MHDP enables a robot to form object categories using multimodal information, e.g., visual, auditory, and haptic information, which can be observed by performing actions on an object. However, performing many actions on a target object requires a long time. In a real-time scenario, i.e., when the time is limited, the robot has to determine the set of actions that is most effective for recognizing a target object. We propose an active perception for MHDP method that uses the information gain (IG maximization criterion and lazy greedy algorithm. We show that the IG maximization criterion is optimal in the sense that the criterion is equivalent to a minimization of the expected Kullback–Leibler divergence between a final recognition state and the recognition state after the next set of actions. However, a straightforward calculation of IG is practically impossible. Therefore, we derive a Monte Carlo approximation method for IG by making use of a property of the MHDP. We also show that the IG has submodular and non-decreasing properties as a set function because of the structure of the graphical model of the MHDP. Therefore, the IG maximization problem is reduced to a submodular maximization problem. This means that greedy and lazy greedy algorithms are effective and have a theoretical justification for their performance. We conducted an experiment using an upper-torso humanoid robot and a second one using synthetic data. The experimental results show that the method enables the robot to select a set of actions that allow it to recognize target objects quickly and accurately. The numerical experiment using the synthetic data shows that the proposed method can work appropriately even when the number of actions is large and a set of target objects involves objects categorized into multiple classes

  2. Page Layout Analysis of the Document Image Based on the Region Classification in a Decision Hierarchical Structure

    Directory of Open Access Journals (Sweden)

    Hossein Pourghassem

    2010-10-01

    Full Text Available The conversion of document image to its electronic version is a very important problem in the saving, searching and retrieval application in the official automation system. For this purpose, analysis of the document image is necessary. In this paper, a hierarchical classification structure based on a two-stage segmentation algorithm is proposed. In this structure, image is segmented using the proposed two-stage segmentation algorithm. Then, the type of the image regions such as document and non-document image is determined using multiple classifiers in the hierarchical classification structure. The proposed segmentation algorithm uses two algorithms based on wavelet transform and thresholding. Texture features such as correlation, homogeneity and entropy that extracted from co-occurrenc matrix and also two new features based on wavelet transform are used to classifiy and lable the regions of the image. The hierarchical classifier is consisted of two Multilayer Perceptron (MLP classifiers and a Support Vector Machine (SVM classifier. The proposed algorithm is evaluated on a database consisting of document and non-document images that provides from Internet. The experimental results show the efficiency of the proposed approach in the region segmentation and classification. The proposed algorithm provides accuracy rate of 97.5% on classification of the regions.

  3. Ensemble-based hierarchical multi-objective production optimization of smart wells

    NARCIS (Netherlands)

    Fonseca, R.M.; Leeuwenburgh, O.; Hof, P.M.J. Van den; Jansen, J.D.

    2014-01-01

    In an earlier study, two hierarchical multiobjective methods were suggested to include short-term targets in life-cycle production optimization. However, this earlier study has two limitations: (1) the adjoint formulation is used to obtain gradient information, requiring simulator source code access

  4. Ensemble-based hierarchical multi-objective production optimization of smart wells

    NARCIS (Netherlands)

    Fonseca, R.M.; Leeuwenburgh, O.; Van den Hof, P.M.J.; Jansen, J.D.

    2014-01-01

    In an earlier study two hierarchical multi-objective methods were suggested to include short-term targets in life-cycle production optimization. However this earlier study has two limitations: 1) the adjoint formulation is used to obtain gradient information, requiring simulator source code access

  5. LiDAR based prediction of forest biomass using hierarchical models with spatially varying coefficients

    Science.gov (United States)

    Chad Babcock; Andrew O. Finley; John B. Bradford; Randy Kolka; Richard Birdsey; Michael G. Ryan

    2015-01-01

    Many studies and production inventory systems have shown the utility of coupling covariates derived from Light Detection and Ranging (LiDAR) data with forest variables measured on georeferenced inventory plots through regression models. The objective of this study was to propose and assess the use of a Bayesian hierarchical modeling framework that accommodates both...

  6. A Hierarchical Linear Model for Estimating Gender-Based Earnings Differentials.

    Science.gov (United States)

    Haberfield, Yitchak; Semyonov, Moshe; Addi, Audrey

    1998-01-01

    Estimates of gender earnings inequality in data from 116,431 Jewish workers were compared using a hierarchical linear model (HLM) and ordinary least squares model. The HLM allows estimation of the extent to which earnings inequality depends on occupational characteristics. (SK)

  7. An event-based account of conformity.

    Science.gov (United States)

    Kim, Diana; Hommel, Bernhard

    2015-04-01

    People often change their behavior and beliefs when confronted with deviating behavior and beliefs of others, but the mechanisms underlying such phenomena of conformity are not well understood. Here we suggest that people cognitively represent their own actions and others' actions in comparable ways (theory of event coding), so that they may fail to distinguish these two categories of actions. If so, other people's actions that have no social meaning should induce conformity effects, especially if those actions are similar to one's own actions. We found that female participants adjusted their manual judgments of the beauty of female faces in the direction consistent with distracting information without any social meaning (numbers falling within the range of the judgment scale) and that this effect was enhanced when the distracting information was presented in movies showing the actual manual decision-making acts. These results confirm that similarity between an observed action and one's own action matters. We also found that the magnitude of the standard conformity effect was statistically equivalent to the movie-induced effect. © The Author(s) 2015.

  8. Hierarchical multiple binary image encryption based on a chaos and phase retrieval algorithm in the Fresnel domain

    International Nuclear Information System (INIS)

    Wang, Zhipeng; Hou, Chenxia; Lv, Xiaodong; Wang, Hongjuan; Gong, Qiong; Qin, Yi

    2016-01-01

    Based on the chaos and phase retrieval algorithm, a hierarchical multiple binary image encryption is proposed. In the encryption process, each plaintext is encrypted into a diffraction intensity pattern by two chaos-generated random phase masks (RPMs). Thereafter, the captured diffraction intensity patterns are partially selected by different binary masks and then combined together to form a single intensity pattern. The combined intensity pattern is saved as ciphertext. For decryption, an iterative phase retrieval algorithm is performed, in which a support constraint in the output plane and a median filtering operation are utilized to achieve a rapid convergence rate without a stagnation problem. The proposed scheme has a simple optical setup and large encryption capacity. In particular, it is well suited for constructing a hierarchical security system. The security and robustness of the proposal are also investigated. (letter)

  9. Parallel-hierarchical processing and classification of laser beam profile images based on the GPU-oriented architecture

    Science.gov (United States)

    Yarovyi, Andrii A.; Timchenko, Leonid I.; Kozhemiako, Volodymyr P.; Kokriatskaia, Nataliya I.; Hamdi, Rami R.; Savchuk, Tamara O.; Kulyk, Oleksandr O.; Surtel, Wojciech; Amirgaliyev, Yedilkhan; Kashaganova, Gulzhan

    2017-08-01

    The paper deals with a problem of insufficient productivity of existing computer means for large image processing, which do not meet modern requirements posed by resource-intensive computing tasks of laser beam profiling. The research concentrated on one of the profiling problems, namely, real-time processing of spot images of the laser beam profile. Development of a theory of parallel-hierarchic transformation allowed to produce models for high-performance parallel-hierarchical processes, as well as algorithms and software for their implementation based on the GPU-oriented architecture using GPGPU technologies. The analyzed performance of suggested computerized tools for processing and classification of laser beam profile images allows to perform real-time processing of dynamic images of various sizes.

  10. Event-based Simulation Model for Quantum Optics Experiments

    NARCIS (Netherlands)

    De Raedt, H.; Michielsen, K.; Jaeger, G; Khrennikov, A; Schlosshauer, M; Weihs, G

    2011-01-01

    We present a corpuscular simulation model of optical phenomena that does not require the knowledge of the solution of a wave equation of the whole system and reproduces the results of Maxwell's theory by generating detection events one-by-one. The event-based corpuscular model gives a unified

  11. Event-Based Corpuscular Model for Quantum Optics Experiments

    NARCIS (Netherlands)

    Michielsen, K.; Jin, F.; Raedt, H. De

    A corpuscular simulation model of optical phenomena that does not require the knowledge of the solution of a wave equation of the whole system and reproduces the results of Maxwell's theory by generating detection events one-by-one is presented. The event-based corpuscular model is shown to give a

  12. Hierarchical model-based predictive control of a power plant portfolio

    DEFF Research Database (Denmark)

    Edlund, Kristian; Bendtsen, Jan Dimon; Jørgensen, John Bagterp

    2011-01-01

    One of the main difficulties in large-scale implementation of renewable energy in existing power systems is that the production from renewable sources is difficult to predict and control. For this reason, fast and efficient control of controllable power producing units – so-called “portfolio...... design for power system portfolio control, which aims specifically at meeting these demands.The design involves a two-layer hierarchical structure with clearly defined interfaces that facilitate an object-oriented implementation approach. The same hierarchical structure is reflected in the underlying...... optimisation problem, which is solved using Dantzig–Wolfe decomposition. This decomposition yields improved computational efficiency and better scalability compared to centralised methods.The proposed control scheme is compared to an existing, state-of-the-art portfolio control system (operated by DONG Energy...

  13. Hierarchical Satellite-based Approach to Global Monitoring of Crop Condition and Food Production

    Science.gov (United States)

    Zheng, Y.; Wu, B.; Gommes, R.; Zhang, M.; Zhang, N.; Zeng, H.; Zou, W.; Yan, N.

    2014-12-01

    The assessment of global food security goes beyond the mere estimate of crop production: It needs to take into account the spatial and temporal patterns of food availability, as well as physical and economic access. Accurate and timely information is essential to both food producers and consumers. Taking advantage of multiple new remote sensing data sources, especially from Chinese satellites, such as FY-2/3A, HJ-1 CCD, CropWatch has expanded the scope of its international analyses through the development of new indicators and an upgraded operational methodology. The new monitoring approach adopts a hierarchical system covering four spatial levels of detail: global (sixty-five Monitoring and Reporting Units, MRU), seven major production zones (MPZ), thirty-one key countries (including China) and "sub- countries." The thirty-one countries encompass more that 80% of both global exports and production of four major crops (maize, rice, soybean and wheat). The methodology resorts to climatic and remote sensing indicators at different scales, using the integrated information to assess global, regional, and national (as well as sub-national) crop environmental condition, crop condition, drought, production, and agricultural trends. The climatic indicators for rainfall, temperature, photosynthetically active radiation (PAR) as well as potential biomass are first analysed at global scale to describe overall crop growing conditions. At MPZ scale, the key indicators pay more attention to crops and include Vegetation health index (VHI), Vegetation condition index (VCI), Cropped arable land fraction (CALF) as well as Cropping intensity (CI). Together, they characterise agricultural patterns, farming intensity and stress. CropWatch carries out detailed crop condition analyses for thirty one individual countries at the national scale with a comprehensive array of variables and indicators. The Normalized difference vegetation index (NDVI), cropped areas and crop condition are

  14. A robust H∞ control-based hierarchical mode transition control system for plug-in hybrid electric vehicle

    Science.gov (United States)

    Yang, Chao; Jiao, Xiaohong; Li, Liang; Zhang, Yuanbo; Chen, Zheng

    2018-01-01

    To realize a fast and smooth operating mode transition process from electric driving mode to engine-on driving mode, this paper presents a novel robust hierarchical mode transition control method for a plug-in hybrid electric bus (PHEB) with pre-transmission parallel hybrid powertrain. Firstly, the mode transition process is divided into five stages to clearly describe the powertrain dynamics. Based on the dynamics models of powertrain and clutch actuating mechanism, a hierarchical control structure including two robust H∞ controllers in both upper layer and lower layer is proposed. In upper layer, the demand clutch torque can be calculated by a robust H∞controller considering the clutch engaging time and the vehicle jerk. While in lower layer a robust tracking controller with L2-gain is designed to perform the accurate position tracking control, especially when the parameters uncertainties and external disturbance occur in the clutch actuating mechanism. Simulation and hardware-in-the-loop (HIL) test are carried out in a traditional driving condition of PHEB. Results show that the proposed hierarchical control approach can obtain the good control performance: mode transition time is greatly reduced with the acceptable jerk. Meanwhile, the designed control system shows the obvious robustness with the uncertain parameters and disturbance. Therefore, the proposed approach may offer a theoretical reference for the actual vehicle controller.

  15. Hierarchical Formation of Fibrillar and Lamellar Self-Assemblies from Guanosine-Based Motifs

    Directory of Open Access Journals (Sweden)

    Paolo Neviani

    2010-01-01

    Full Text Available Here we investigate the supramolecular polymerizations of two lipophilic guanosine derivatives in chloroform by light scattering technique and TEM experiments. The obtained data reveal the presence of several levels of organization due to the hierarchical self-assembly of the guanosine units in ribbons that in turn aggregate in fibrillar or lamellar soft structures. The elucidation of these structures furnishes an explanation to the physical behaviour of guanosine units which display organogelator properties.

  16. IBES: A Tool for Creating Instructions Based on Event Segmentation

    Directory of Open Access Journals (Sweden)

    Katharina eMura

    2013-12-01

    Full Text Available Receiving informative, well-structured, and well-designed instructions supports performance and memory in assembly tasks. We describe IBES, a tool with which users can quickly and easily create multimedia, step-by-step instructions by segmenting a video of a task into segments. In a validation study we demonstrate that the step-by-step structure of the visual instructions created by the tool corresponds to the natural event boundaries, which are assessed by event segmentation and are known to play an important role in memory processes. In one part of the study, twenty participants created instructions based on videos of two different scenarios by using the proposed tool. In the other part of the study, ten and twelve participants respectively segmented videos of the same scenarios yielding event boundaries for coarse and fine events. We found that the visual steps chosen by the participants for creating the instruction manual had corresponding events in the event segmentation. The number of instructional steps was a compromise between the number of fine and coarse events. Our interpretation of results is that the tool picks up on natural human event perception processes of segmenting an ongoing activity into events and enables the convenient transfer into meaningful multimedia instructions for assembly tasks. We discuss the practical application of IBES, for example, creating manuals for differing expertise levels, and give suggestions for research on user-oriented instructional design based on this tool.

  17. IBES: a tool for creating instructions based on event segmentation.

    Science.gov (United States)

    Mura, Katharina; Petersen, Nils; Huff, Markus; Ghose, Tandra

    2013-12-26

    Receiving informative, well-structured, and well-designed instructions supports performance and memory in assembly tasks. We describe IBES, a tool with which users can quickly and easily create multimedia, step-by-step instructions by segmenting a video of a task into segments. In a validation study we demonstrate that the step-by-step structure of the visual instructions created by the tool corresponds to the natural event boundaries, which are assessed by event segmentation and are known to play an important role in memory processes. In one part of the study, 20 participants created instructions based on videos of two different scenarios by using the proposed tool. In the other part of the study, 10 and 12 participants respectively segmented videos of the same scenarios yielding event boundaries for coarse and fine events. We found that the visual steps chosen by the participants for creating the instruction manual had corresponding events in the event segmentation. The number of instructional steps was a compromise between the number of fine and coarse events. Our interpretation of results is that the tool picks up on natural human event perception processes of segmenting an ongoing activity into events and enables the convenient transfer into meaningful multimedia instructions for assembly tasks. We discuss the practical application of IBES, for example, creating manuals for differing expertise levels, and give suggestions for research on user-oriented instructional design based on this tool.

  18. Hierarchical CaCO3 chromatography: a stationary phase based on biominerals.

    Science.gov (United States)

    Sato, Kosuke; Oaki, Yuya; Takahashi, Daisuke; Toshima, Kazunobu; Imai, Hiroaki

    2015-03-23

    In biomineralization, acidic macromolecules play important roles for the growth control of crystals through a specific interaction. Inspired by this interaction, we report on an application of the hierarchical structures in CaCO3 biominerals to a stationary phase of chromatography. The separation and purification of acidic small organic molecules are achieved by thin-layer chromatography and flash chromatography using the powder of biominerals as the stationary phase. The unit nanocrystals and their oriented assembly, the hierarchical structure, are suitable for the adsorption site of the target organic molecules and the flow path of the elution solvents, respectively. The separation mode is ascribed to the specific adsorption of the acidic molecules on the crystal face and the coordination of the functional groups to the calcium ions. The results imply that a new family of stationary phase of chromatography can be developed by the fine tuning of hierarchical structures in CaCO3 materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Power quality events recognition using a SVM-based method

    Energy Technology Data Exchange (ETDEWEB)

    Cerqueira, Augusto Santiago; Ferreira, Danton Diego; Ribeiro, Moises Vidal; Duque, Carlos Augusto [Department of Electrical Circuits, Federal University of Juiz de Fora, Campus Universitario, 36036 900, Juiz de Fora MG (Brazil)

    2008-09-15

    In this paper, a novel SVM-based method for power quality event classification is proposed. A simple approach for feature extraction is introduced, based on the subtraction of the fundamental component from the acquired voltage signal. The resulting signal is presented to a support vector machine for event classification. Results from simulation are presented and compared with two other methods, the OTFR and the LCEC. The proposed method shown an improved performance followed by a reasonable computational cost. (author)

  20. Human based roots of failures in nuclear events investigations

    Energy Technology Data Exchange (ETDEWEB)

    Ziedelis, Stanislovas; Noel, Marc; Strucic, Miodrag [Commission of the European Communities, Petten (Netherlands). European Clearinghouse on Operational Experience Feedback for Nuclear Power Plants

    2012-10-15

    This paper aims for improvement of quality of the event investigations in the nuclear industry through analysis of the existing practices, identifying and removing the existing Human and Organizational Factors (HOF) and management related barriers. It presents the essential results of several studies performed by the European Clearinghouse on Operational Experience. Outcomes of studies are based on survey of currently existing event investigation practices typical for nuclear industry of 12 European countries, as well as on insights from analysis of numerous event investigation reports. System of operational experience feedback from information based on event investigation results is not enough effective to prevent and even to decrease frequency of recurring events due to existing methodological, HOF-related and/or knowledge management related constraints. Besides that, several latent root causes of unsuccessful event investigation are related to weaknesses in safety culture of personnel and managers. These weaknesses include focus on costs or schedule, political manipulation, arrogance, ignorance, entitlement and/or autocracy. Upgrades in safety culture of organization's personnel and its senior management especially seem to be an effective way to improvement. Increasing of competencies, capabilities and level of independency of event investigation teams, elaboration of comprehensive software, ensuring of positive approach, adequate support and impartiality of management could also facilitate for improvement of quality of the event investigations. (orig.)

  1. Human based roots of failures in nuclear events investigations

    International Nuclear Information System (INIS)

    Ziedelis, Stanislovas; Noel, Marc; Strucic, Miodrag

    2012-01-01

    This paper aims for improvement of quality of the event investigations in the nuclear industry through analysis of the existing practices, identifying and removing the existing Human and Organizational Factors (HOF) and management related barriers. It presents the essential results of several studies performed by the European Clearinghouse on Operational Experience. Outcomes of studies are based on survey of currently existing event investigation practices typical for nuclear industry of 12 European countries, as well as on insights from analysis of numerous event investigation reports. System of operational experience feedback from information based on event investigation results is not enough effective to prevent and even to decrease frequency of recurring events due to existing methodological, HOF-related and/or knowledge management related constraints. Besides that, several latent root causes of unsuccessful event investigation are related to weaknesses in safety culture of personnel and managers. These weaknesses include focus on costs or schedule, political manipulation, arrogance, ignorance, entitlement and/or autocracy. Upgrades in safety culture of organization's personnel and its senior management especially seem to be an effective way to improvement. Increasing of competencies, capabilities and level of independency of event investigation teams, elaboration of comprehensive software, ensuring of positive approach, adequate support and impartiality of management could also facilitate for improvement of quality of the event investigations. (orig.)

  2. Spatiotemporal Features for Asynchronous Event-based Data

    Directory of Open Access Journals (Sweden)

    Xavier eLagorce

    2015-02-01

    Full Text Available Bio-inspired asynchronous event-based vision sensors are currently introducing a paradigm shift in visual information processing. These new sensors rely on a stimulus-driven principle of light acquisition similar to biological retinas. They are event-driven and fully asynchronous, thereby reducing redundancy and encoding exact times of input signal changes, leading to a very precise temporal resolution. Approaches for higher-level computer vision often rely on the realiable detection of features in visual frames, but similar definitions of features for the novel dynamic and event-based visual input representation of silicon retinas have so far been lacking. This article addresses the problem of learning and recognizing features for event-based vision sensors, which capture properties of truly spatiotemporal volumes of sparse visual event information. A novel computational architecture for learning and encoding spatiotemporal features is introduced based on a set of predictive recurrent reservoir networks, competing via winner-take-all selection. Features are learned in an unsupervised manner from real-world input recorded with event-based vision sensors. It is shown that the networks in the architecture learn distinct and task-specific dynamic visual features, and can predict their trajectories over time.

  3. Auditing SNOMED CT hierarchical relations based on lexical features of concepts in non-lattice subgraphs.

    Science.gov (United States)

    Cui, Licong; Bodenreider, Olivier; Shi, Jay; Zhang, Guo-Qiang

    2018-02-01

    We introduce a structural-lexical approach for auditing SNOMED CT using a combination of non-lattice subgraphs of the underlying hierarchical relations and enriched lexical attributes of fully specified concept names. Our goal is to develop a scalable and effective approach that automatically identifies missing hierarchical IS-A relations. Our approach involves 3 stages. In stage 1, all non-lattice subgraphs of SNOMED CT's IS-A hierarchical relations are extracted. In stage 2, lexical attributes of fully-specified concept names in such non-lattice subgraphs are extracted. For each concept in a non-lattice subgraph, we enrich its set of attributes with attributes from its ancestor concepts within the non-lattice subgraph. In stage 3, subset inclusion relations between the lexical attribute sets of each pair of concepts in each non-lattice subgraph are compared to existing IS-A relations in SNOMED CT. For concept pairs within each non-lattice subgraph, if a subset relation is identified but an IS-A relation is not present in SNOMED CT IS-A transitive closure, then a missing IS-A relation is reported. The September 2017 release of SNOMED CT (US edition) was used in this investigation. A total of 14,380 non-lattice subgraphs were extracted, from which we suggested a total of 41,357 missing IS-A relations. For evaluation purposes, 200 non-lattice subgraphs were randomly selected from 996 smaller subgraphs (of size 4, 5, or 6) within the "Clinical Finding" and "Procedure" sub-hierarchies. Two domain experts confirmed 185 (among 223) suggested missing IS-A relations, a precision of 82.96%. Our results demonstrate that analyzing the lexical features of concepts in non-lattice subgraphs is an effective approach for auditing SNOMED CT. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Preparation and surface modification of hierarchical nanosheets-based ZnO microstructures for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Yongming; Lin, Yu, E-mail: linyuyrr@163.com; Lin, Yibing; Yang, Jiyuan

    2014-02-15

    This paper reports a simple one-step hydrothermal route for the preparation of hierarchical nanosheets-based ZnO microstructures and their application to dye-sensitized solar cells. The morphologies of the products were controlled by the dosage of the reactants. Their physical characteristics were detected by X-ray diffraction, a field-emission scanning electron microscope and a surface analyzer. It is proved that the sample of ZnO microspheres with larger surface area and stronger light-trapping capacity since the superiority of their entirely spherical structures exhibits better photoelectrochemical properties than the mixtures of ZnO microspheres and ZnO microflowers. A dye-sensitized solar cell assembled by the ZnO microspheres as photoanode shows an energy conversion efficiency of 2.94% after surface modification by tetrabutyl titanate solution at 90 {sup °}C. This result is over 1.6 times higher than the non-modified cell fabricated by the ZnO microspheres on the basis of the external improvement and the stability enhancement for the dye-sensitized ZnO photoanode. - Graphical abstract: Influences on energy conversion efficiency of the dye-sensitized solar cells assembled by decorating hierarchical nanosheets-based ZnO microstructures with tetrabutyl titanate solution at different temperatures. Display Omitted - Highlights: • Hierarchical nanosheets-based ZnO microstructures were controllably synthesized. • The ZnO microspheres show good optical and electrochemical properties. • The ZnO microspheres were modified by C{sub 16}H{sub 36}O{sub 4}Ti solution. • Remarkable increase of conversion efficiency is observed after surface modification.

  5. Hierarchical Downlink Resource Management Framework for OFDMA based WiMAX Systems

    DEFF Research Database (Denmark)

    Wang, Hua; Iversen, Villy Bæk

    2008-01-01

    IEEE 802.16, known as WiMAX, has received much attention for its capability to support multiple types of applications with diverse QoS requirements. Beyond what the standard has defined, radio resource management (RRM) still remains an open issue. In this paper, we propose a hierarchical downlink...... belonging to different service classes with the objective of increasing the spectral efficiency while satisfying the diverse QoS requirements in each service class. CAC highlights how to limit the number of ongoing connections preventing the system capacity from being overused. Through system...

  6. Static Analysis for Event-Based XML Processing

    DEFF Research Database (Denmark)

    Møller, Anders

    2008-01-01

    Event-based processing of XML data - as exemplified by the popular SAX framework - is a powerful alternative to using W3C's DOM or similar tree-based APIs. The event-based approach is a streaming fashion with minimal memory consumption. This paper discusses challenges for creating program analyses...... for SAX applications. In particular, we consider the problem of statically guaranteeing the a given SAX program always produces only well-formed and valid XML output. We propose an analysis technique based on ecisting anglyses of Servlets, string operations, and XML graphs....

  7. Ontology-based prediction of surgical events in laparoscopic surgery

    Science.gov (United States)

    Katić, Darko; Wekerle, Anna-Laura; Gärtner, Fabian; Kenngott, Hannes; Müller-Stich, Beat Peter; Dillmann, Rüdiger; Speidel, Stefanie

    2013-03-01

    Context-aware technologies have great potential to help surgeons during laparoscopic interventions. Their underlying idea is to create systems which can adapt their assistance functions automatically to the situation in the OR, thus relieving surgeons from the burden of managing computer assisted surgery devices manually. To this purpose, a certain kind of understanding of the current situation in the OR is essential. Beyond that, anticipatory knowledge of incoming events is beneficial, e.g. for early warnings of imminent risk situations. To achieve the goal of predicting surgical events based on previously observed ones, we developed a language to describe surgeries and surgical events using Description Logics and integrated it with methods from computational linguistics. Using n-Grams to compute probabilities of followup events, we are able to make sensible predictions of upcoming events in real-time. The system was evaluated on professionally recorded and labeled surgeries and showed an average prediction rate of 80%.

  8. Robust and scalable hierarchical matrix-based fast direct solver and preconditioner for the numerical solution of elliptic partial differential equations

    KAUST Repository

    Chavez Chavez, Gustavo Ivan

    2017-01-01

    Numerical experiments corroborate the robustness, accuracy, and complexity claims and provide a baseline of the performance and memory footprint by comparisons with competing approaches such as the multigrid solver hypre, and the STRUMPACK implementation of the multifrontal factorization with hierarchically semi-separable matrices. The companion implementation can utilize many thousands of cores of Shaheen, KAUST's Haswell-based Cray XC-40 supercomputer, and compares favorably with other implementations of hierarchical solvers in terms of time-to-solution and memory consumption.

  9. An Isogeometric Design-through-analysis Methodology based on Adaptive Hierarchical Refinement of NURBS, Immersed Boundary Methods, and T-spline CAD Surfaces

    Science.gov (United States)

    2012-01-22

    Bungartz HJ, Rank E, Niggl A, Romberg R. Extending the p-Version of Finite Elements by an Octree-Based Hierarchy. In: Widlund OB, Keyes DE (eds...generalization to higher dimensions. We test hierarchical refinement of NURBS for some elementary fluid and structural analysis problems in two and three...with straightforward implementation in tree data structures and simple generalization to higher dimensions. We test hierarchical refinement of NURBS

  10. Cellular Decomposition Based Hybrid-Hierarchical Control Systems with Applications to Flight Management Systems

    Science.gov (United States)

    Caines, P. E.

    1999-01-01

    The work in this research project has been focused on the construction of a hierarchical hybrid control theory which is applicable to flight management systems. The motivation and underlying philosophical position for this work has been that the scale, inherent complexity and the large number of agents (aircraft) involved in an air traffic system imply that a hierarchical modelling and control methodology is required for its management and real time control. In the current work the complex discrete or continuous state space of a system with a small number of agents is aggregated in such a way that discrete (finite state machine or supervisory automaton) controlled dynamics are abstracted from the system's behaviour. High level control may then be either directly applied at this abstracted level, or, if this is in itself of significant complexity, further layers of abstractions may be created to produce a system with an acceptable degree of complexity at each level. By the nature of this construction, high level commands are necessarily realizable at lower levels in the system.

  11. Hierarchical remote data possession checking method based on massive cloud files

    Directory of Open Access Journals (Sweden)

    Ma Haifeng

    2017-06-01

    Full Text Available Cloud storage service enables users to migrate their data and applications to the cloud, which saves the local data maintenance and brings great convenience to the users. But in cloud storage, the storage servers may not be fully trustworthy. How to verify the integrity of cloud data with lower overhead for users has become an increasingly concerned problem. Many remote data integrity protection methods have been proposed, but these methods authenticated cloud files one by one when verifying multiple files. Therefore, the computation and communication overhead are still high. Aiming at this problem, a hierarchical remote data possession checking (hierarchical-remote data possession checking (H-RDPC method is proposed, which can provide efficient and secure remote data integrity protection and can support dynamic data operations. This paper gives the algorithm descriptions, security, and false negative rate analysis of H-RDPC. The security analysis and experimental performance evaluation results show that the proposed H-RDPC is efficient and reliable in verifying massive cloud files, and it has 32–81% improvement in performance compared with RDPC.

  12. A Flexible High-Performance Photoimaging Device Based on Bioinspired Hierarchical Multiple-Patterned Plasmonic Nanostructures.

    Science.gov (United States)

    Lee, Yoon Ho; Lee, Tae Kyung; Kim, Hongki; Song, Inho; Lee, Jiwon; Kang, Saewon; Ko, Hyunhyub; Kwak, Sang Kyu; Oh, Joon Hak

    2018-03-01

    In insect eyes, ommatidia with hierarchical structured cornea play a critical role in amplifying and transferring visual signals to the brain through optic nerves, enabling the perception of various visual signals. Here, inspired by the structure and functions of insect ommatidia, a flexible photoimaging device is reported that can simultaneously detect and record incoming photonic signals by vertically stacking an organic photodiode and resistive memory device. A single-layered, hierarchical multiple-patterned back reflector that can exhibit various plasmonic effects is incorporated into the organic photodiode. The multiple-patterned flexible organic photodiodes exhibit greatly enhanced photoresponsivity due to the increased light absorption in comparison with the flat systems. Moreover, the flexible photoimaging device shows a well-resolved spatiotemporal mapping of optical signals with excellent operational and mechanical stabilities at low driving voltages below half of the flat systems. Theoretical calculation and scanning near-field optical microscopy analyses clearly reveal that multiple-patterned electrodes have much stronger surface plasmon coupling than flat and single-patterned systems. The developed methodology provides a versatile and effective route for realizing high-performance optoelectronic and photonic systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Process-based modelling of tree and stand growth: towards a hierarchical treatment of multiscale processes

    International Nuclear Information System (INIS)

    Makela, A.

    2003-01-01

    A generally accepted method has not emerged for managing the different temporal and spatial scales in a forest ecosystem. This paper reviews a hierarchical-modular modelling tradition, with the main focus on individual tree growth throughout the rotation. At this scale, model performance requires (i) realistic long-term dynamic properties, (ii) realistic responses of growth and mortality of competing individuals, and (iii) realistic responses to ecophysio-logical inputs. Model development and validation are illustrated through allocation patterns, height growth, and size-related feedbacks. Empirical work to test the approach is reviewed. In this approach, finer scale effects are embedded in parameters calculated using more detailed, interacting modules. This is exemplified by (i) the within-year effect of weather on annual photosynthesis, (ii) the effects of fast soil processes on carbon allocation and photosynthesis, and (iii) the utilization of detailed stem structure to predict wood quality. Prevailing management paradigms are reflected in growth modelling. A shift of emphasis has occurred from productivity in homogeneous canopies towards, e.g., wood quality versus total yield, spatially more explicit models, and growth decline in old-growth forests. The new problems emphasize the hierarchy of the system and interscale interactions, suggesting that the hierarchical-modular approach could prove constructive. (author)

  14. SMR-Based Adaptive Mobility Management Scheme in Hierarchical SIP Networks

    Directory of Open Access Journals (Sweden)

    KwangHee Choi

    2014-10-01

    Full Text Available In hierarchical SIP networks, paging is performed to reduce location update signaling cost for mobility management. However, the cost efficiency largely depends on each mobile node’s session-to-mobility-ratio (SMR, which is defined as a ratio of the session arrival rate to the movement rate. In this paper, we propose the adaptive mobility management scheme that can determine the policy regarding to each mobile node’s SMR. Each mobile node determines whether the paging is applied or not after comparing its SMR with the threshold. In other words, the paging is applied to a mobile node when a mobile node’s SMR is less than the threshold. Therefore, the proposed scheme provides a way to minimize signaling costs according to each mobile node’s SMR. We find out the optimal threshold through performance analysis, and show that the proposed scheme can reduce signaling cost than the existing SIP and paging schemes in hierarchical SIP networks.

  15. Multi Agent System Based Wide Area Protection against Cascading Events

    DEFF Research Database (Denmark)

    Liu, Zhou; Chen, Zhe; Liu, Leo

    2012-01-01

    In this paper, a multi-agent system based wide area protection scheme is proposed in order to prevent long term voltage instability induced cascading events. The distributed relays and controllers work as a device agent which not only executes the normal function automatically but also can...... the effectiveness of proposed protection strategy. The simulation results indicate that the proposed multi agent control system can effectively coordinate the distributed relays and controllers to prevent the long term voltage instability induced cascading events....

  16. Preventing Medication Error Based on Knowledge Management Against Adverse Event

    OpenAIRE

    Hastuti, Apriyani Puji; Nursalam, Nursalam; Triharini, Mira

    2017-01-01

    Introductions: Medication error is one of many types of errors that could decrease the quality and safety of healthcare. Increasing number of adverse events (AE) reflects the number of medication errors. This study aimed to develop a model of medication error prevention based on knowledge management. This model is expected to improve knowledge and skill of nurses to prevent medication error which is characterized by the decrease of adverse events (AE). Methods: This study consisted of two sta...

  17. A ROOT based event display software for JUNO

    Science.gov (United States)

    You, Z.; Li, K.; Zhang, Y.; Zhu, J.; Lin, T.; Li, W.

    2018-02-01

    An event display software SERENA has been designed for the Jiangmen Underground Neutrino Observatory (JUNO). The software has been developed in the JUNO offline software system and is based on the ROOT display package EVE. It provides an essential tool to display detector and event data for better understanding of the processes in the detectors. The software has been widely used in JUNO detector optimization, simulation, reconstruction and physics study.

  18. Abstracting event-based control models for high autonomy systems

    Science.gov (United States)

    Luh, Cheng-Jye; Zeigler, Bernard P.

    1993-01-01

    A high autonomy system needs many models on which to base control, management, design, and other interventions. These models differ in level of abstraction and in formalism. Concepts and tools are needed to organize the models into a coherent whole. The paper deals with the abstraction processes for systematic derivation of related models for use in event-based control. The multifaceted modeling methodology is briefly reviewed. The morphism concepts needed for application to model abstraction are described. A theory for supporting the construction of DEVS models needed for event-based control is then presented. An implemented morphism on the basis of this theory is also described.

  19. Development of knowledge-based operator support system for steam generator water leak events in FBR plants

    International Nuclear Information System (INIS)

    Arikawa, Hiroshi; Ida, Toshio; Matsumoto, Hiroyuki; Kishida, Masako

    1991-01-01

    A knowledge engineering approach to operation support system would be useful in maintaining safe and steady operation in nuclear plants. This paper describes a knowledge-based operation support system which assists the operators during steam generator water leak events in FBR plants. We have developed a real-time expert system. The expert system adopts hierarchical knowledge representation corresponding to the 'plant abnormality model'. A technique of signal validation which uses knowledge of symptom propagation are applied to diagnosis. In order to verify the knowledge base concerning steam generator water leak events in FBR plants, a simulator is linked to the expert system. It is revealed that diagnosis based on 'plant abnormality model' and signal validation using knowledge of symptom propagation could work successfully. Also, it is suggested that the expert system could be useful in supporting FBR plants operations. (author)

  20. Master–Slave Based Hierarchical Control for a Small Power DC-Distributed Microgrid System with a Storage Device

    Directory of Open Access Journals (Sweden)

    Seung-Woon Lee

    2016-10-01

    Full Text Available In this paper, we analyze one of the main drawbacks of droop control-based DC microgrid systems, and propose a novel control method to overcome this problem. Typically, DC microgrid systems use droop control techniques to enable communication independency and expandability. However, as these advantages are based on bus quality and regulation abandonment, droop-based schemes have limitations in terms of high bus impedance and bus regulation. This paper proposes a novel master–slave based hierarchical control technique for a DC distribution system, in which a DC bus signaling method is used to overcome the communication dependency and the expandability limitations of conventional master–slave control methods. The concept and design considerations of the proposed control method are presented, and a 1 kW simulation under a Powersim (PSIM environment and hardware prototype—built to verify the system—is described.

  1. Using ontological inference and hierarchical matchmaking to overcome semantic heterogeneity in remote sensing-based biodiversity monitoring

    Science.gov (United States)

    Nieland, Simon; Kleinschmit, Birgit; Förster, Michael

    2015-05-01

    Ontology-based applications hold promise in improving spatial data interoperability. In this work we use remote sensing-based biodiversity information and apply semantic formalisation and ontological inference to show improvements in data interoperability/comparability. The proposed methodology includes an observation-based, "bottom-up" engineering approach for remote sensing applications and gives a practical example of semantic mediation of geospatial products. We apply the methodology to three different nomenclatures used for remote sensing-based classification of two heathland nature conservation areas in Belgium and Germany. We analysed sensor nomenclatures with respect to their semantic formalisation and their bio-geographical differences. The results indicate that a hierarchical and transparent nomenclature is far more important for transferability than the sensor or study area. The inclusion of additional information, not necessarily belonging to a vegetation class description, is a key factor for the future success of using semantics for interoperability in remote sensing.

  2. Nested and Hierarchical Archimax copulas

    KAUST Repository

    Hofert, Marius; Huser, Raphaë l; Prasad, Avinash

    2017-01-01

    The class of Archimax copulas is generalized to nested and hierarchical Archimax copulas in several ways. First, nested extreme-value copulas or nested stable tail dependence functions are introduced to construct nested Archimax copulas based on a single frailty variable. Second, a hierarchical construction of d-norm generators is presented to construct hierarchical stable tail dependence functions and thus hierarchical extreme-value copulas. Moreover, one can, by itself or additionally, introduce nested frailties to extend Archimax copulas to nested Archimax copulas in a similar way as nested Archimedean copulas extend Archimedean copulas. Further results include a general formula for the density of Archimax copulas.

  3. Nested and Hierarchical Archimax copulas

    KAUST Repository

    Hofert, Marius

    2017-07-03

    The class of Archimax copulas is generalized to nested and hierarchical Archimax copulas in several ways. First, nested extreme-value copulas or nested stable tail dependence functions are introduced to construct nested Archimax copulas based on a single frailty variable. Second, a hierarchical construction of d-norm generators is presented to construct hierarchical stable tail dependence functions and thus hierarchical extreme-value copulas. Moreover, one can, by itself or additionally, introduce nested frailties to extend Archimax copulas to nested Archimax copulas in a similar way as nested Archimedean copulas extend Archimedean copulas. Further results include a general formula for the density of Archimax copulas.

  4. Event-based Sensing for Space Situational Awareness

    Science.gov (United States)

    Cohen, G.; Afshar, S.; van Schaik, A.; Wabnitz, A.; Bessell, T.; Rutten, M.; Morreale, B.

    A revolutionary type of imaging device, known as a silicon retina or event-based sensor, has recently been developed and is gaining in popularity in the field of artificial vision systems. These devices are inspired by a biological retina and operate in a significantly different way to traditional CCD-based imaging sensors. While a CCD produces frames of pixel intensities, an event-based sensor produces a continuous stream of events, each of which is generated when a pixel detects a change in log light intensity. These pixels operate asynchronously and independently, producing an event-based output with high temporal resolution. There are also no fixed exposure times, allowing these devices to offer a very high dynamic range independently for each pixel. Additionally, these devices offer high-speed, low power operation and a sparse spatiotemporal output. As a consequence, the data from these sensors must be interpreted in a significantly different way to traditional imaging sensors and this paper explores the advantages this technology provides for space imaging. The applicability and capabilities of event-based sensors for SSA applications are demonstrated through telescope field trials. Trial results have confirmed that the devices are capable of observing resident space objects from LEO through to GEO orbital regimes. Significantly, observations of RSOs were made during both day-time and nighttime (terminator) conditions without modification to the camera or optics. The event based sensor’s ability to image stars and satellites during day-time hours offers a dramatic capability increase for terrestrial optical sensors. This paper shows the field testing and validation of two different architectures of event-based imaging sensors. An eventbased sensor’s asynchronous output has an intrinsically low data-rate. In addition to low-bandwidth communications requirements, the low weight, low-power and high-speed make them ideally suitable to meeting the demanding

  5. In-situ Fabrication of a Freestanding Acrylate-based Hierarchical Electrolyte for Lithium-sulfur Batteries

    International Nuclear Information System (INIS)

    Liu, M.; Jiang, H.R.; Ren, Y.X.; Zhou, D.; Kang, F.Y.; Zhao, T.S.

    2016-01-01

    Graphical abstract: We present a freestanding acrylate-based hierarchical electrolyte. This quasi-solid electrolyte is assembled by in-situ gelation of a pentaerythritol tetraacrylate (PETEA)-based gel polymer electrolyte (GPE) into a polymethyl methacrylate (PMMA)-based electrospun network. The prepared polymer battery renders a suppressed shuttle effect and much enhanced cycle life. - Highlights: • A freestanding Acrylate-based Hierarchical Electrolyte was in-situ crafted. • The high conductivity is due to strong uptake ability and elimination of separator. • The polymer battery renders a superior high rate capability and excellent retention. • First-principle calculations prove anchoring ability of ester functional groups. • Cell modeling shows geometric design effectively suppresses polysulfide flux. - Abstract: A number of methods have been attempted to suppress the shuttle effect in lithium-sulfur (Li-S) batteries to improve battery performance. Conventional methods, however, reduce the ionic conductivity, sacrifice the overall energy density and increase the cost of production. Here, we report a facile synthesis of an acrylate-based hierarchical electrolyte (AHE). This quasi-solid electrolyte is assembled by in-situ gelation of a pentaerythritol tetraacrylate (PETEA)-based gel polymer electrolyte (GPE) into a polymethyl methacrylate (PMMA)-based electrospun network. The structural similarity and synergetic compatibility between the electrospun network and GPE provide the AHE an ester-rich robust structure with a high ionic conductivity of 1.02 × 10 −3 S cm −1 due to the strong uptake ability and the elimination of commercial separator. The S/AHE/Li polymer battery also renders a high rate capability of 645 mAh g −1 at 3C, while maintaining excellent retention at both high and low current densities (80.3% after 500 cycles at 0.3C and 91.9% after 500 cycles at 3C). First-principle calculations reveal that the reduced shuttle effect can be

  6. Biochar-based carbons with hierarchical micro-meso-macro porosity for high rate and long cycle life supercapacitors

    Science.gov (United States)

    Qiu, Zhipeng; Wang, Yesheng; Bi, Xu; Zhou, Tong; Zhou, Jin; Zhao, Jinping; Miao, Zhichao; Yi, Weiming; Fu, Peng; Zhuo, Shuping

    2018-02-01

    The development of supercapacitors with high energy density and power density is an important research topic despite many challenging issues exist. In this work, porous carbon material was prepared from corn straw biochar and used as the active electrode material for electric double-layer capacitors (EDLCs). During the KOH activation process, the ratio of KOH/biochar significantly affects the microstructure of the resultant carbon, which further influences the capacitive performance. The optimized carbon material possesses typical hierarchical porosity composed of multi-leveled pores with high surface area and pore volume up to 2790.4 m2 g-1 and 2.04 cm3 g-1, respectively. Such hierarchical micro-meso-macro porosity significantly improved the rate performance of the biochar-based carbons. The achieved maximum specific capacitance was 327 F g-1 and maintained a high value of 205 F g-1 at a ultrahigh current density of 100 A g-1. Meanwhile, the prepared EDLCs present excellent cycle stability in alkaline electrolytes for 120 000 cycles at 5 A g-1. Moreover, the biochar-based carbon could work at a high voltage of 1.6 V in neutral Na2SO4, and exhibit a high specific capacitance of 227 F g-1, thus giving an outstanding energy density of 20.2 Wh kg-1.

  7. A multi-mode operation control strategy for flexible microgrid based on sliding-mode direct voltage and hierarchical controls.

    Science.gov (United States)

    Zhang, Qinjin; Liu, Yancheng; Zhao, Youtao; Wang, Ning

    2016-03-01

    Multi-mode operation and transient stability are two problems that significantly affect flexible microgrid (MG). This paper proposes a multi-mode operation control strategy for flexible MG based on a three-layer hierarchical structure. The proposed structure is composed of autonomous, cooperative, and scheduling controllers. Autonomous controller is utilized to control the performance of the single micro-source inverter. An adaptive sliding-mode direct voltage loop and an improved droop power loop based on virtual negative impedance are presented respectively to enhance the system disturbance-rejection performance and the power sharing accuracy. Cooperative controller, which is composed of secondary voltage/frequency control and phase synchronization control, is designed to eliminate the voltage/frequency deviations produced by the autonomous controller and prepare for grid connection. Scheduling controller manages the power flow between the MG and the grid. The MG with the improved hierarchical control scheme can achieve seamless transitions from islanded to grid-connected mode and have a good transient performance. In addition the presented work can also optimize the power quality issues and improve the load power sharing accuracy between parallel VSIs. Finally, the transient performance and effectiveness of the proposed control scheme are evaluated by theoretical analysis and simulation results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Improving satellite-based PM2.5 estimates in China using Gaussian processes modeling in a Bayesian hierarchical setting.

    Science.gov (United States)

    Yu, Wenxi; Liu, Yang; Ma, Zongwei; Bi, Jun

    2017-08-01

    Using satellite-based aerosol optical depth (AOD) measurements and statistical models to estimate ground-level PM 2.5 is a promising way to fill the areas that are not covered by ground PM 2.5 monitors. The statistical models used in previous studies are primarily Linear Mixed Effects (LME) and Geographically Weighted Regression (GWR) models. In this study, we developed a new regression model between PM 2.5 and AOD using Gaussian processes in a Bayesian hierarchical setting. Gaussian processes model the stochastic nature of the spatial random effects, where the mean surface and the covariance function is specified. The spatial stochastic process is incorporated under the Bayesian hierarchical framework to explain the variation of PM 2.5 concentrations together with other factors, such as AOD, spatial and non-spatial random effects. We evaluate the results of our model and compare them with those of other, conventional statistical models (GWR and LME) by within-sample model fitting and out-of-sample validation (cross validation, CV). The results show that our model possesses a CV result (R 2  = 0.81) that reflects higher accuracy than that of GWR and LME (0.74 and 0.48, respectively). Our results indicate that Gaussian process models have the potential to improve the accuracy of satellite-based PM 2.5 estimates.

  9. An Algorithm for Inspecting Self Check-in Airline Luggage Based on Hierarchical Clustering and Cube-fitting

    Directory of Open Access Journals (Sweden)

    Gao Qingji

    2014-04-01

    Full Text Available Airport passengers are required to put only one baggage each time in the check-in self-service so that the baggage can be detected and identified successfully. In order to automatically get the number of baggage that had been put on the conveyor belt, dual laser rangefinders are used to scan the outer contour of luggage in this paper. The algorithm based on hierarchical clustering and cube-fitting is proposed to inspect the number and dimension of airline luggage. Firstly, the point cloud is projected to vertical direction. By the analysis of one-dimensional clustering, the number and height of luggage will be quickly computed. Secondly, the method of nearest hierarchical clustering is applied to divide the point cloud if the above cannot be distinguished. It can preferably solve the difficult issue like crossing or overlapping pieces of baggage. Finally, the point cloud is projected to the horizontal plane. By rotating point cloud based on the centre, its minimum bounding rectangle (MBR is obtained. The length and width of luggage are got form MBR. Many experiments in different cases have been done to verify the effectiveness of the algorithm.

  10. Discrete and Continuous Optimization Based on Hierarchical Artificial Bee Colony Optimizer

    Directory of Open Access Journals (Sweden)

    Lianbo Ma

    2014-01-01

    Full Text Available This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization (HABC, to tackle complex high-dimensional problems. In the proposed multilevel model, the higher-level species can be aggregated by the subpopulations from lower level. In the bottom level, each subpopulation employing the canonical ABC method searches the part-dimensional optimum in parallel, which can be constructed into a complete solution for the upper level. At the same time, the comprehensive learning method with crossover and mutation operator is applied to enhance the global search ability between species. Experiments are conducted on a set of 20 continuous and discrete benchmark problems. The experimental results demonstrate remarkable performance of the HABC algorithm when compared with other six evolutionary algorithms.

  11. A supplier selection using a hybrid grey based hierarchical clustering and artificial bee colony

    Directory of Open Access Journals (Sweden)

    Farshad Faezy Razi

    2014-06-01

    Full Text Available Selection of one or a combination of the most suitable potential providers and outsourcing problem is the most important strategies in logistics and supply chain management. In this paper, selection of an optimal combination of suppliers in inventory and supply chain management are studied and analyzed via multiple attribute decision making approach, data mining and evolutionary optimization algorithms. For supplier selection in supply chain, hierarchical clustering according to the studied indexes first clusters suppliers. Then, according to its cluster, each supplier is evaluated through Grey Relational Analysis. Then the combination of suppliers’ Pareto optimal rank and costs are obtained using Artificial Bee Colony meta-heuristic algorithm. A case study is conducted for a better description of a new algorithm to select a multiple source of suppliers.

  12. Hierarchical modeling of heat transfer in silicon-based electronic devices

    Science.gov (United States)

    Goicochea Pineda, Javier V.

    In this work a methodology for the hierarchical modeling of heat transfer in silicon-based electronic devices is presented. The methodology includes three steps to integrate the different scales involved in the thermal analysis of these devices. The steps correspond to: (i) the estimation of input parameters and thermal properties required to solve the Boltzmann transport equation (BTE) for phonons by means of molecular dynamics (MD) simulations, (ii) the quantum correction of some of the properties estimated with MD to make them suitable for BTE and (iii) the numerical solution of the BTE using the lattice Boltzmann method (LBM) under the single mode relaxation time approximation subject to different initial and boundary conditions, including non-linear dispersion relations and different polarizations in the [100] direction. Each step of the methodology is validated with numerical, analytical or experimental reported data. In the first step of the methodology, properties such as, phonon relaxation times, dispersion relations, group and phase velocities and specific heat are obtained with MD at of 300 and 1000 K (i.e. molecular temperatures). The estimation of the properties considers the anhamonic nature of the potential energy function, including the thermal expansion of the crystal. Both effects are found to modify the dispersion relations with temperature. The behavior of the phonon relaxation times for each mode (i.e. longitudinal and transverse, acoustic and optical phonons) is identified using power functions. The exponents of the acoustic modes are agree with those predicted theoretically perturbation theory at high temperatures, while those for the optical modes are higher. All properties estimated with MD are validated with values for the thermal conductivity obtained from the Green-Kubo method. It is found that the relative contribution of acoustic modes to the overall thermal conductivity is approximately 90% at both temperatures. In the second step

  13. An Oracle-based Event Index for ATLAS

    CERN Document Server

    Gallas, Elizabeth; The ATLAS collaboration; Petrova, Petya Tsvetanova; Baranowski, Zbigniew; Canali, Luca; Formica, Andrea; Dumitru, Andrei

    2016-01-01

    The ATLAS EventIndex System has amassed a set of key quantities for a large number of ATLAS events into a Hadoop based infrastructure for the purpose of providing the experiment with a number of event-wise services. Collecting this data in one place provides the opportunity to investigate various storage formats and technologies and assess which best serve the various use cases as well as consider what other benefits alternative storage systems provide. In this presentation we describe how the data are imported into an Oracle RDBMS, the services we have built based on this architecture, and our experience with it. We've indexed about 15 billion real data events and about 25 billion simulated events thus far and have designed the system to accommodate future data which has expected rates of 5 and 20 billion events per year for real data and simulation, respectively. We have found this system offers outstanding performance for some fundamental use cases. In addition, profiting from the co-location of this data ...

  14. CMS DAQ Event Builder Based on Gigabit Ethernet

    CERN Document Server

    Bauer, G; Branson, J; Brett, A; Cano, E; Carboni, A; Ciganek, M; Cittolin, S; Erhan, S; Gigi, D; Glege, F; Gómez-Reino, Robert; Gulmini, M; Gutiérrez-Mlot, E; Gutleber, J; Jacobs, C; Kim, J C; Klute, M; Lipeles, E; Lopez-Perez, Juan Antonio; Maron, G; Meijers, F; Meschi, E; Moser, R; Murray, S; Oh, A; Orsini, L; Paus, C; Petrucci, A; Pieri, M; Pollet, L; Rácz, A; Sakulin, H; Sani, M; Schieferdecker, P; Schwick, C; Sumorok, K; Suzuki, I; Tsirigkas, D; Varela, J

    2007-01-01

    The CMS Data Acquisition System is designed to build and filter events originating from 476 detector data sources at a maximum trigger rate of 100 KHz. Different architectures and switch technologies have been evaluated to accomplish this purpose. Events will be built in two stages: the first stage will be a set of event builders called FED Builders. These will be based on Myrinet technology and will pre-assemble groups of about 8 data sources. The second stage will be a set of event builders called Readout Builders. These will perform the building of full events. A single Readout Builder will build events from 72 sources of 16 KB fragments at a rate of 12.5 KHz. In this paper we present the design of a Readout Builder based on TCP/IP over Gigabit Ethernet and the optimization that was required to achieve the design throughput. This optimization includes architecture of the Readout Builder, the setup of TCP/IP, and hardware selection.

  15. OBEST: The Object-Based Event Scenario Tree Methodology

    International Nuclear Information System (INIS)

    WYSS, GREGORY D.; DURAN, FELICIA A.

    2001-01-01

    Event tree analysis and Monte Carlo-based discrete event simulation have been used in risk assessment studies for many years. This report details how features of these two methods can be combined with concepts from object-oriented analysis to develop a new risk assessment methodology with some of the best features of each. The resultant Object-Based Event Scenarios Tree (OBEST) methodology enables an analyst to rapidly construct realistic models for scenarios for which an a priori discovery of event ordering is either cumbersome or impossible (especially those that exhibit inconsistent or variable event ordering, which are difficult to represent in an event tree analysis). Each scenario produced by OBEST is automatically associated with a likelihood estimate because probabilistic branching is integral to the object model definition. The OBEST method uses a recursive algorithm to solve the object model and identify all possible scenarios and their associated probabilities. Since scenario likelihoods are developed directly by the solution algorithm, they need not be computed by statistical inference based on Monte Carlo observations (as required by some discrete event simulation methods). Thus, OBEST is not only much more computationally efficient than these simulation methods, but it also discovers scenarios that have extremely low probabilities as a natural analytical result--scenarios that would likely be missed by a Monte Carlo-based method. This report documents the OBEST methodology, the demonstration software that implements it, and provides example OBEST models for several different application domains, including interactions among failing interdependent infrastructure systems, circuit analysis for fire risk evaluation in nuclear power plants, and aviation safety studies

  16. SDN‐Based Hierarchical Agglomerative Clustering Algorithm for Interference Mitigation in Ultra‐Dense Small Cell Networks

    Directory of Open Access Journals (Sweden)

    Guang Yang

    2018-04-01

    Full Text Available Ultra‐dense small cell networks (UD‐SCNs have been identified as a promising scheme for next‐generation wireless networks capable of meeting the ever‐increasing demand for higher transmission rates and better quality of service. However, UD‐SCNs will inevitably suffer from severe interference among the small cell base stations, which will lower their spectral efficiency. In this paper, we propose a software‐defined networking (SDN‐based hierarchical agglomerative clustering (SDN‐HAC framework, which leverages SDN to centrally control all sub‐channels in the network, and decides on cluster merging using a similarity criterion based on a suitability function. We evaluate the proposed algorithm through simulation. The obtained results show that the proposed algorithm performs well and improves system payoff by 18.19% and 436.34% when compared with the traditional network architecture algorithms and non‐cooperative scenarios, respectively.

  17. Bidirectional QoS support for novelty detection applications based on hierarchical wireless sensor network model

    Science.gov (United States)

    Edwards, Mark; Hu, Fei; Kumar, Sunil

    2004-10-01

    The research on the Novelty Detection System (NDS) (called as VENUS) at the authors' universities has generated exciting results. For example, we can detect an abnormal behavior (such as cars thefts from the parking lot) from a series of video frames based on the cognitively motivated theory of habituation. In this paper, we would like to describe the implementation strategies of lower layer protocols for using large-scale Wireless Sensor Networks (WSN) to NDS with Quality-of-Service (QoS) support. Wireless data collection framework, consisting of small and low-power sensor nodes, provides an alternative mechanism to observe the physical world, by using various types of sensing capabilities that include images (and even videos using Panoptos), sound and basic physical measurements such as temperature. We do not want to lose any 'data query command' packets (in the downstream direction: sink-to-sensors) or have any bit-errors in them since they are so important to the whole sensor network. In the upstream direction (sensors-to-sink), we may tolerate the loss of some sensing data packets. But the 'interested' sensing flow should be assigned a higher priority in terms of multi-hop path choice, network bandwidth allocation, and sensing data packet generation frequency (we hope to generate more sensing data packet for that novel event in the specified network area). The focus of this paper is to investigate MAC-level Quality of Service (QoS) issue in Wireless Sensor Networks (WSN) for Novelty Detection applications. Although QoS has been widely studied in other types of networks including wired Internet, general ad hoc networks and mobile cellular networks, we argue that QoS in WSN has its own characteristics. In wired Internet, the main QoS parameters include delay, jitter and bandwidth. In mobile cellular networks, two most common QoS metrics are: handoff call dropping probability and new call blocking probability. Since the main task of WSN is to detect and report

  18. Neutrosophic Hierarchical Clustering Algoritms

    Directory of Open Access Journals (Sweden)

    Rıdvan Şahin

    2014-03-01

    Full Text Available Interval neutrosophic set (INS is a generalization of interval valued intuitionistic fuzzy set (IVIFS, whose the membership and non-membership values of elements consist of fuzzy range, while single valued neutrosophic set (SVNS is regarded as extension of intuitionistic fuzzy set (IFS. In this paper, we extend the hierarchical clustering techniques proposed for IFSs and IVIFSs to SVNSs and INSs respectively. Based on the traditional hierarchical clustering procedure, the single valued neutrosophic aggregation operator, and the basic distance measures between SVNSs, we define a single valued neutrosophic hierarchical clustering algorithm for clustering SVNSs. Then we extend the algorithm to classify an interval neutrosophic data. Finally, we present some numerical examples in order to show the effectiveness and availability of the developed clustering algorithms.

  19. Clinical, laboratory, and demographic determinants of hospitalization due to dengue in 7613 patients: A retrospective study based on hierarchical models.

    Science.gov (United States)

    da Silva, Natal Santos; Undurraga, Eduardo A; da Silva Ferreira, Elis Regina; Estofolete, Cássia Fernanda; Nogueira, Maurício Lacerda

    2018-01-01

    In Brazil, the incidence of hospitalization due to dengue, as an indicator of severity, has drastically increased since 1998. The objective of our study was to identify risk factors associated with subsequent hospitalization related to dengue. We analyzed 7613 dengue confirmed via serology (ELISA), non-structural protein 1, or polymerase chain reaction amplification. We used a hierarchical framework to generate a multivariate logistic regression based on a variety of risk variables. This was followed by multiple statistical analyses to assess hierarchical model accuracy, variance, goodness of fit, and whether or not this model reliably represented the population. The final model, which included age, sex, ethnicity, previous dengue infection, hemorrhagic manifestations, plasma leakage, and organ failure, showed that all measured parameters, with the exception of previous dengue, were statistically significant. The presence of organ failure was associated with the highest risk of subsequent dengue hospitalization (OR=5·75; CI=3·53-9·37). Therefore, plasma leakage and organ failure were the main indicators of hospitalization due to dengue, although other variables of minor importance should also be considered to refer dengue patients to hospital treatment, which may lead to a reduction in avoidable deaths as well as costs related to dengue. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The role of the hierarchical theory in explaining the capital structure of the firms based on enterprise life cycle model

    Directory of Open Access Journals (Sweden)

    Jamal Bahiri Saleth

    2016-01-01

    Full Text Available Capital structure is a controversial issue in the field of corporate finance. There are several studies to find a way to determine the optimal capital structure to minimize the cost of capital and maximize the corporate value. In fact, capital structure is a combination of firms’ liabilities and capital to meet long term assets. This paper investigates the role of the hierarchical theory in explaining the capital structure of the firms based on enterprise life cycle model on selected firms listed on Tehran Stock Exchange (TSE using three methods of net equities, net liabilities and retained earnings. The study uses Park and Chen’s (2006 method [Park, Y., & Chen, K. H. (2006. The effect of accounting conservatism and life-cycle stages on firm valuation. Journal of Applied Business Research (JABR, 22(3, 75-92.] to categorize the life cycle of 81 randomly selected firms from TSE over the period 2007-2012. The results indicate that the hierarchical theory represents the growing firms better than the matured firms do. The results also show that firms were more willing to reduce their dividend per share for financing their projects.

  1. Negative Sequence Droop Method based Hierarchical Control for Low Voltage Ride-Through in Grid-Interactive Microgrids

    DEFF Research Database (Denmark)

    Zhao, Xin; Firoozabadi, Mehdi Savaghebi; Quintero, Juan Carlos Vasquez

    2015-01-01

    . In this paper, a voltage support strategy based on negative sequence droop control, which regulate the positive/negative sequence active and reactive power flow by means of sending proper voltage reference to the inner control loop, is proposed for the grid connected MGs to ride through voltage sags under...... complex line impedance conditions. In this case, the MGs should inject a certain amount of positive and negative sequence power to the grid so that the voltage quality at load side can be maintained at a satisfied level. A two layer hierarchical control strategy is proposed in this paper. The primary...... control loop consists of voltage and current inner loops, conventional droop control and virtual impedance loop while the secondary control loop is based on positive/negative sequence droop control which can achieve power injection under voltage sags. Experimental results with asymmetrical voltage sags...

  2. An Oracle-based event index for ATLAS

    Science.gov (United States)

    Gallas, E. J.; Dimitrov, G.; Vasileva, P.; Baranowski, Z.; Canali, L.; Dumitru, A.; Formica, A.; ATLAS Collaboration

    2017-10-01

    The ATLAS Eventlndex System has amassed a set of key quantities for a large number of ATLAS events into a Hadoop based infrastructure for the purpose of providing the experiment with a number of event-wise services. Collecting this data in one place provides the opportunity to investigate various storage formats and technologies and assess which best serve the various use cases as well as consider what other benefits alternative storage systems provide. In this presentation we describe how the data are imported into an Oracle RDBMS (relational database management system), the services we have built based on this architecture, and our experience with it. We’ve indexed about 26 billion real data events thus far and have designed the system to accommodate future data which has expected rates of 5 and 20 billion events per year. We have found this system offers outstanding performance for some fundamental use cases. In addition, profiting from the co-location of this data with other complementary metadata in ATLAS, the system has been easily extended to perform essential assessments of data integrity and completeness and to identify event duplication, including at what step in processing the duplication occurred.

  3. Rocchio-based relevance feedback in video event retrieval

    NARCIS (Netherlands)

    Pingen, G.L.J.; de Boer, M.H.T.; Aly, Robin; Amsaleg, Laurent; Guðmundsson, Gylfi Þór; Gurrin, Cathal; Jónsson, Björn Þór; Satoh, Shin’ichi

    This paper investigates methods for user and pseudo relevance feedback in video event retrieval. Existing feedback methods achieve strong performance but adjust the ranking based on few individual examples. We propose a relevance feedback algorithm (ARF) derived from the Rocchio method, which is a

  4. Simulation of quantum computation : A deterministic event-based approach

    NARCIS (Netherlands)

    Michielsen, K; De Raedt, K; De Raedt, H

    We demonstrate that locally connected networks of machines that have primitive learning capabilities can be used to perform a deterministic, event-based simulation of quantum computation. We present simulation results for basic quantum operations such as the Hadamard and the controlled-NOT gate, and

  5. Simulation of Quantum Computation : A Deterministic Event-Based Approach

    NARCIS (Netherlands)

    Michielsen, K.; Raedt, K. De; Raedt, H. De

    2005-01-01

    We demonstrate that locally connected networks of machines that have primitive learning capabilities can be used to perform a deterministic, event-based simulation of quantum computation. We present simulation results for basic quantum operations such as the Hadamard and the controlled-NOT gate, and

  6. An XML-Based Protocol for Distributed Event Services

    Science.gov (United States)

    Smith, Warren; Gunter, Dan; Quesnel, Darcy; Biegel, Bryan (Technical Monitor)

    2001-01-01

    This viewgraph presentation provides information on the application of an XML (extensible mark-up language)-based protocol to the developing field of distributed processing by way of a computational grid which resembles an electric power grid. XML tags would be used to transmit events between the participants of a transaction, namely, the consumer and the producer of the grid scheme.

  7. Event-based historical value-at-risk

    NARCIS (Netherlands)

    Hogenboom, F.P.; Winter, Michael; Hogenboom, A.C.; Jansen, Milan; Frasincar, F.; Kaymak, U.

    2012-01-01

    Value-at-Risk (VaR) is an important tool to assess portfolio risk. When calculating VaR based on historical stock return data, we hypothesize that this historical data is sensitive to outliers caused by news events in the sampled period. In this paper, we research whether the VaR accuracy can be

  8. Soft computing based on hierarchical evaluation approach and criteria interdependencies for energy decision-making problems: A case study

    International Nuclear Information System (INIS)

    Gitinavard, Hossein; Mousavi, S. Meysam; Vahdani, Behnam

    2017-01-01

    In numerous real-world energy decision problems, decision makers often encounter complex environments, in which existent imprecise data and uncertain information lead us to make an appropriate decision. In this paper, a new soft computing group decision-making approach is introduced based on novel compromise ranking method and interval-valued hesitant fuzzy sets (IVHFSs) for energy decision-making problems under multiple criteria. In the proposed approach, the assessment information is provided by energy experts or decision makers based on interval-valued hesitant fuzzy elements under incomplete criteria weights. In this respect, a new ranking index is presented respecting to interval-valued hesitant fuzzy Hamming distance measure to prioritize energy candidates, and criteria weights are computed based on an extended maximizing deviation method by considering the preferences experts' judgments about the relative importance of each criterion. Also, a decision making trial and evaluation laboratory (DEMATEL) method is extended under an IVHF-environment to compute the interdependencies between and within the selected criteria in the hierarchical structure. Accordingly, to demonstrate the applicability of the presented approach a case study and a practical example are provided regarding to hierarchical structure and criteria interdependencies relations for renewable energy and energy policy selection problems. Hence, the obtained computational results are compared with a fuzzy decision-making method from the recent literature based on some comparison parameters to show the advantages and constraints of the proposed approach. Finally, a sensitivity analysis is prepared to indicate effects of different criteria weights on ranking results to present the robustness or sensitiveness of the proposed soft computing approach versus the relative importance of criteria. - Highlights: • Introducing a novel interval-valued hesitant fuzzy compromise ranking method. • Presenting

  9. Effect of aqueous electrolytes on the electrochemical behaviors of supercapacitors based on hierarchically porous carbons

    Science.gov (United States)

    Zhang, Xiaoyan; Wang, Xianyou; Jiang, Lanlan; Wu, Hao; Wu, Chun; Su, Jingcang

    2012-10-01

    Hierarchically porous carbons (HPCs) have been prepared by sol-gel self-assembly technology with nickel oxide and surfactant as the dual template. The porous carbons are further activated by nitric acid. The electrochemical behaviors of supercapacitors using HPCs as electrode material in different aqueous electrolytes, e.g., (NH4)2SO4, Na2SO4, H2SO4 and KOH are studied by cyclic voltametry, galvanostatic charge/discharge, cyclic life, leakage current, self-discharge and electrochemical impedance spectroscopy. The results demonstrate that the supercapacitors in various electrolytes perform definitely capacitive behaviors; especially in 6 M KOH electrolyte the supercapacitor represents the best electrochemical performance, the shortest relaxation time, and nearly ideal polarisability. The energy density of 8.42 Wh kg-1 and power density of 17.22 kW kg-1 are obtained at the operated voltage window of 1.0 V. Especially, the energy density of 11.54 Wh kg-1 and power density of 10.58 kW kg-1 can be achieved when the voltage is up to 1.2 V.

  10. HPEPDOCK: a web server for blind peptide-protein docking based on a hierarchical algorithm.

    Science.gov (United States)

    Zhou, Pei; Jin, Bowen; Li, Hao; Huang, Sheng-You

    2018-05-09

    Protein-peptide interactions are crucial in many cellular functions. Therefore, determining the structure of protein-peptide complexes is important for understanding the molecular mechanism of related biological processes and developing peptide drugs. HPEPDOCK is a novel web server for blind protein-peptide docking through a hierarchical algorithm. Instead of running lengthy simulations to refine peptide conformations, HPEPDOCK considers the peptide flexibility through an ensemble of peptide conformations generated by our MODPEP program. For blind global peptide docking, HPEPDOCK obtained a success rate of 33.3% in binding mode prediction on a benchmark of 57 unbound cases when the top 10 models were considered, compared to 21.1% for pepATTRACT server. HPEPDOCK also performed well in docking against homology models and obtained a success rate of 29.8% within top 10 predictions. For local peptide docking, HPEPDOCK achieved a high success rate of 72.6% on a benchmark of 62 unbound cases within top 10 predictions, compared to 45.2% for HADDOCK peptide protocol. Our HPEPDOCK server is computationally efficient and consumed an average of 29.8 mins for a global peptide docking job and 14.2 mins for a local peptide docking job. The HPEPDOCK web server is available at http://huanglab.phys.hust.edu.cn/hpepdock/.

  11. Non-Markovian reduced dynamics based upon a hierarchical effective-mode representation

    Energy Technology Data Exchange (ETDEWEB)

    Burghardt, Irene [Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt (Germany); Martinazzo, Rocco [Dipartimento di Chimica, Universita degli Studi di Milano, v. Golgi 19, 20133 Milano (Italy); Hughes, Keith H. [School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom)

    2012-10-14

    A reduced dynamics representation is introduced which is tailored to a hierarchical, Mori-chain type representation of a bath of harmonic oscillators which are linearly coupled to a subsystem. We consider a spin-boson system where a single effective mode is constructed so as to absorb all system-environment interactions, while the residual bath modes are coupled bilinearly to the primary mode and among each other. Using a cumulant expansion of the memory kernel, correlation functions for the primary mode are obtained, which can be suitably approximated by truncated chains representing the primary-residual mode interactions. A series of reduced-dimensional bath correlation functions is thus obtained, which can be expressed as Fourier-Laplace transforms of spectral densities that are given in truncated continued-fraction form. For a master equation which is second order in the system-bath coupling, the memory kernel is re-expressed in terms of local-in-time equations involving auxiliary densities and auxiliary operators.

  12. An improved Pearson's correlation proximity-based hierarchical clustering for mining biological association between genes.

    Science.gov (United States)

    Booma, P M; Prabhakaran, S; Dhanalakshmi, R

    2014-01-01

    Microarray gene expression datasets has concerned great awareness among molecular biologist, statisticians, and computer scientists. Data mining that extracts the hidden and usual information from datasets fails to identify the most significant biological associations between genes. A search made with heuristic for standard biological process measures only the gene expression level, threshold, and response time. Heuristic search identifies and mines the best biological solution, but the association process was not efficiently addressed. To monitor higher rate of expression levels between genes, a hierarchical clustering model was proposed, where the biological association between genes is measured simultaneously using proximity measure of improved Pearson's correlation (PCPHC). Additionally, the Seed Augment algorithm adopts average linkage methods on rows and columns in order to expand a seed PCPHC model into a maximal global PCPHC (GL-PCPHC) model and to identify association between the clusters. Moreover, a GL-PCPHC applies pattern growing method to mine the PCPHC patterns. Compared to existing gene expression analysis, the PCPHC model achieves better performance. Experimental evaluations are conducted for GL-PCPHC model with standard benchmark gene expression datasets extracted from UCI repository and GenBank database in terms of execution time, size of pattern, significance level, biological association efficiency, and pattern quality.

  13. Events

    Directory of Open Access Journals (Sweden)

    Igor V. Karyakin

    2016-02-01

    Full Text Available The 9th ARRCN Symposium 2015 was held during 21st–25th October 2015 at the Novotel Hotel, Chumphon, Thailand, one of the most favored travel destinations in Asia. The 10th ARRCN Symposium 2017 will be held during October 2017 in the Davao, Philippines. International Symposium on the Montagu's Harrier (Circus pygargus «The Montagu's Harrier in Europe. Status. Threats. Protection», organized by the environmental organization «Landesbund für Vogelschutz in Bayern e.V.» (LBV was held on November 20-22, 2015 in Germany. The location of this event was the city of Wurzburg in Bavaria.

  14. Event Recognition Based on Deep Learning in Chinese Texts.

    Directory of Open Access Journals (Sweden)

    Yajun Zhang

    Full Text Available Event recognition is the most fundamental and critical task in event-based natural language processing systems. Existing event recognition methods based on rules and shallow neural networks have certain limitations. For example, extracting features using methods based on rules is difficult; methods based on shallow neural networks converge too quickly to a local minimum, resulting in low recognition precision. To address these problems, we propose the Chinese emergency event recognition model based on deep learning (CEERM. Firstly, we use a word segmentation system to segment sentences. According to event elements labeled in the CEC 2.0 corpus, we classify words into five categories: trigger words, participants, objects, time and location. Each word is vectorized according to the following six feature layers: part of speech, dependency grammar, length, location, distance between trigger word and core word and trigger word frequency. We obtain deep semantic features of words by training a feature vector set using a deep belief network (DBN, then analyze those features in order to identify trigger words by means of a back propagation neural network. Extensive testing shows that the CEERM achieves excellent recognition performance, with a maximum F-measure value of 85.17%. Moreover, we propose the dynamic-supervised DBN, which adds supervised fine-tuning to a restricted Boltzmann machine layer by monitoring its training performance. Test analysis reveals that the new DBN improves recognition performance and effectively controls the training time. Although the F-measure increases to 88.11%, the training time increases by only 25.35%.

  15. Event Recognition Based on Deep Learning in Chinese Texts.

    Science.gov (United States)

    Zhang, Yajun; Liu, Zongtian; Zhou, Wen

    2016-01-01

    Event recognition is the most fundamental and critical task in event-based natural language processing systems. Existing event recognition methods based on rules and shallow neural networks have certain limitations. For example, extracting features using methods based on rules is difficult; methods based on shallow neural networks converge too quickly to a local minimum, resulting in low recognition precision. To address these problems, we propose the Chinese emergency event recognition model based on deep learning (CEERM). Firstly, we use a word segmentation system to segment sentences. According to event elements labeled in the CEC 2.0 corpus, we classify words into five categories: trigger words, participants, objects, time and location. Each word is vectorized according to the following six feature layers: part of speech, dependency grammar, length, location, distance between trigger word and core word and trigger word frequency. We obtain deep semantic features of words by training a feature vector set using a deep belief network (DBN), then analyze those features in order to identify trigger words by means of a back propagation neural network. Extensive testing shows that the CEERM achieves excellent recognition performance, with a maximum F-measure value of 85.17%. Moreover, we propose the dynamic-supervised DBN, which adds supervised fine-tuning to a restricted Boltzmann machine layer by monitoring its training performance. Test analysis reveals that the new DBN improves recognition performance and effectively controls the training time. Although the F-measure increases to 88.11%, the training time increases by only 25.35%.

  16. Event-Based Stabilization over Networks with Transmission Delays

    Directory of Open Access Journals (Sweden)

    Xiangyu Meng

    2012-01-01

    Full Text Available This paper investigates asymptotic stabilization for linear systems over networks based on event-driven communication. A new communication logic is proposed to reduce the feedback effort, which has some advantages over traditional ones with continuous feedback. Considering the effect of time-varying transmission delays, the criteria for the design of both the feedback gain and the event-triggering mechanism are derived to guarantee the stability and performance requirements. Finally, the proposed techniques are illustrated by an inverted pendulum system and a numerical example.

  17. Event-Based control of depth of hypnosis in anesthesia.

    Science.gov (United States)

    Merigo, Luca; Beschi, Manuel; Padula, Fabrizio; Latronico, Nicola; Paltenghi, Massimiliano; Visioli, Antonio

    2017-08-01

    In this paper, we propose the use of an event-based control strategy for the closed-loop control of the depth of hypnosis in anesthesia by using propofol administration and the bispectral index as a controlled variable. A new event generator with high noise-filtering properties is employed in addition to a PIDPlus controller. The tuning of the parameters is performed off-line by using genetic algorithms by considering a given data set of patients. The effectiveness and robustness of the method is verified in simulation by implementing a Monte Carlo method to address the intra-patient and inter-patient variability. A comparison with a standard PID control structure shows that the event-based control system achieves a reduction of the total variation of the manipulated variable of 93% in the induction phase and of 95% in the maintenance phase. The use of event based automatic control in anesthesia yields a fast induction phase with bounded overshoot and an acceptable disturbance rejection. A comparison with a standard PID control structure shows that the technique effectively mimics the behavior of the anesthesiologist by providing a significant decrement of the total variation of the manipulated variable. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Event- and interval-based measurement of stuttering: a review.

    Science.gov (United States)

    Valente, Ana Rita S; Jesus, Luis M T; Hall, Andreia; Leahy, Margaret

    2015-01-01

    Event- and interval-based measurements are two different ways of computing frequency of stuttering. Interval-based methodology emerged as an alternative measure to overcome problems associated with reproducibility in the event-based methodology. No review has been made to study the effect of methodological factors in interval-based absolute reliability data or to compute the agreement between the two methodologies in terms of inter-judge, intra-judge and accuracy (i.e., correspondence between raters' scores and an established criterion). To provide a review related to reproducibility of event-based and time-interval measurement, and to verify the effect of methodological factors (training, experience, interval duration, sample presentation order and judgment conditions) on agreement of time-interval measurement; in addition, to determine if it is possible to quantify the agreement between the two methodologies The first two authors searched for articles on ERIC, MEDLINE, PubMed, B-on, CENTRAL and Dissertation Abstracts during January-February 2013 and retrieved 495 articles. Forty-eight articles were selected for review. Content tables were constructed with the main findings. Articles related to event-based measurements revealed values of inter- and intra-judge greater than 0.70 and agreement percentages beyond 80%. The articles related to time-interval measures revealed that, in general, judges with more experience with stuttering presented significantly higher levels of intra- and inter-judge agreement. Inter- and intra-judge values were beyond the references for high reproducibility values for both methodologies. Accuracy (regarding the closeness of raters' judgements with an established criterion), intra- and inter-judge agreement were higher for trained groups when compared with non-trained groups. Sample presentation order and audio/video conditions did not result in differences in inter- or intra-judge results. A duration of 5 s for an interval appears to be

  19. Event-based state estimation a stochastic perspective

    CERN Document Server

    Shi, Dawei; Chen, Tongwen

    2016-01-01

    This book explores event-based estimation problems. It shows how several stochastic approaches are developed to maintain estimation performance when sensors perform their updates at slower rates only when needed. The self-contained presentation makes this book suitable for readers with no more than a basic knowledge of probability analysis, matrix algebra and linear systems. The introduction and literature review provide information, while the main content deals with estimation problems from four distinct angles in a stochastic setting, using numerous illustrative examples and comparisons. The text elucidates both theoretical developments and their applications, and is rounded out by a review of open problems. This book is a valuable resource for researchers and students who wish to expand their knowledge and work in the area of event-triggered systems. At the same time, engineers and practitioners in industrial process control will benefit from the event-triggering technique that reduces communication costs ...

  20. Event-based cluster synchronization of coupled genetic regulatory networks

    Science.gov (United States)

    Yue, Dandan; Guan, Zhi-Hong; Li, Tao; Liao, Rui-Quan; Liu, Feng; Lai, Qiang

    2017-09-01

    In this paper, the cluster synchronization of coupled genetic regulatory networks with a directed topology is studied by using the event-based strategy and pinning control. An event-triggered condition with a threshold consisting of the neighbors' discrete states at their own event time instants and a state-independent exponential decay function is proposed. The intra-cluster states information and extra-cluster states information are involved in the threshold in different ways. By using the Lyapunov function approach and the theories of matrices and inequalities, we establish the cluster synchronization criterion. It is shown that both the avoidance of continuous transmission of information and the exclusion of the Zeno behavior are ensured under the presented triggering condition. Explicit conditions on the parameters in the threshold are obtained for synchronization. The stability criterion of a single GRN is also given under the reduced triggering condition. Numerical examples are provided to validate the theoretical results.

  1. System risk evolution analysis and risk critical event identification based on event sequence diagram

    International Nuclear Information System (INIS)

    Luo, Pengcheng; Hu, Yang

    2013-01-01

    During system operation, the environmental, operational and usage conditions are time-varying, which causes the fluctuations of the system state variables (SSVs). These fluctuations change the accidents’ probabilities and then result in the system risk evolution (SRE). This inherent relation makes it feasible to realize risk control by monitoring the SSVs in real time, herein, the quantitative analysis of SRE is essential. Besides, some events in the process of SRE are critical to system risk, because they act like the “demarcative points” of safety and accident, and this characteristic makes each of them a key point of risk control. Therefore, analysis of SRE and identification of risk critical events (RCEs) are remarkably meaningful to ensure the system to operate safely. In this context, an event sequence diagram (ESD) based method of SRE analysis and the related Monte Carlo solution are presented; RCE and risk sensitive variable (RSV) are defined, and the corresponding identification methods are also proposed. Finally, the proposed approaches are exemplified with an accident scenario of an aircraft getting into the icing region

  2. Event-Based User Classification in Weibo Media

    Directory of Open Access Journals (Sweden)

    Liang Guo

    2014-01-01

    Full Text Available Weibo media, known as the real-time microblogging services, has attracted massive attention and support from social network users. Weibo platform offers an opportunity for people to access information and changes the way people acquire and disseminate information significantly. Meanwhile, it enables people to respond to the social events in a more convenient way. Much of the information in Weibo media is related to some events. Users who post different contents, and exert different behavior or attitude may lead to different contribution to the specific event. Therefore, classifying the large amount of uncategorized social circles generated in Weibo media automatically from the perspective of events has been a promising task. Under this circumstance, in order to effectively organize and manage the huge amounts of users, thereby further managing their contents, we address the task of user classification in a more granular, event-based approach in this paper. By analyzing real data collected from Sina Weibo, we investigate the Weibo properties and utilize both content information and social network information to classify the numerous users into four primary groups: celebrities, organizations/media accounts, grassroots stars, and ordinary individuals. The experiments results show that our method identifies the user categories accurately.

  3. Event-based user classification in Weibo media.

    Science.gov (United States)

    Guo, Liang; Wang, Wendong; Cheng, Shiduan; Que, Xirong

    2014-01-01

    Weibo media, known as the real-time microblogging services, has attracted massive attention and support from social network users. Weibo platform offers an opportunity for people to access information and changes the way people acquire and disseminate information significantly. Meanwhile, it enables people to respond to the social events in a more convenient way. Much of the information in Weibo media is related to some events. Users who post different contents, and exert different behavior or attitude may lead to different contribution to the specific event. Therefore, classifying the large amount of uncategorized social circles generated in Weibo media automatically from the perspective of events has been a promising task. Under this circumstance, in order to effectively organize and manage the huge amounts of users, thereby further managing their contents, we address the task of user classification in a more granular, event-based approach in this paper. By analyzing real data collected from Sina Weibo, we investigate the Weibo properties and utilize both content information and social network information to classify the numerous users into four primary groups: celebrities, organizations/media accounts, grassroots stars, and ordinary individuals. The experiments results show that our method identifies the user categories accurately.

  4. DYNAMIC AUTHORIZATION BASED ON THE HISTORY OF EVENTS

    Directory of Open Access Journals (Sweden)

    Maxim V. Baklanovsky

    2016-11-01

    Full Text Available The new paradigm in the field of access control systems with fuzzy authorization is proposed. Let there is a set of objects in a single data transmissionnetwork. The goal is to develop dynamic authorization protocol based on correctness of presentation of events (news occurred earlier in the network. We propose mathematical method that keeps compactly the history of events, neglects more distant and least-significant events, composes and verifies authorization data. The history of events is represented as vectors of numbers. Each vector is multiplied by several stochastic vectors. The result is known that if vectors of events are sparse, then by solving the problem of -optimization they can be restored with high accuracy. Results of experiments for vectors restoring have shown that the greater the number of stochastic vectors is, the better accuracy of restored vectors is observed. It has been established that the largest absolute components are restored earlier. Access control system with the proposed dynamic authorization method enables to compute fuzzy confidence coefficients in networks with frequently changing set of participants, mesh-networks, multi-agent systems.

  5. Virtual timers in hierarchical real-time systems

    NARCIS (Netherlands)

    Heuvel, van den M.M.H.P.; Holenderski, M.J.; Cools, W.A.; Bril, R.J.; Lukkien, J.J.; Zhu, D.

    2009-01-01

    Hierarchical scheduling frameworks (HSFs) provide means for composing complex real-time systems from welldefined subsystems. This paper describes an approach to provide hierarchically scheduled real-time applications with virtual event timers, motivated by the need for integrating priority

  6. Evaluation of B2C website based on the usability factors by using fuzzy AHP & hierarchical fuzzy TOPSIS

    Science.gov (United States)

    Masudin, I.; Saputro, T. E.

    2016-02-01

    In today's technology, electronic trading transaction via internet has been utilized properly with rapid growth. This paper intends to evaluate related to B2C e-commerce website in order to find out the one which meets the usability factors better than another. The influential factors to B2C e-commerce website are determined for two big retailer websites. The factors are investigated based on the consideration of several studies and conformed to the website characteristics. The evaluation is conducted by using different methods namely fuzzy AHP and hierarchical fuzzy TOPSIS so that the final evaluation can be compared. Fuzzy triangular number is adopted to deal with imprecise judgment under fuzzy environment.

  7. A Comprehensive Decision-Making Approach Based on Hierarchical Attribute Model for Information Fusion Algorithms’ Performance Evaluation

    Directory of Open Access Journals (Sweden)

    Lianhui Li

    2014-01-01

    Full Text Available Aiming at the problem of fusion algorithm performance evaluation in multiradar information fusion system, firstly the hierarchical attribute model of track relevance performance evaluation model is established based on the structural model and functional model and quantization methods of evaluation indicators are given; secondly a combination weighting method is proposed to determine the weights of evaluation indicators, in which the objective and subjective weights are separately determined by criteria importance through intercriteria correlation (CRITIC and trapezoidal fuzzy scale analytic hierarchy process (AHP, and then experience factor is introduced to obtain the combination weight; at last the improved technique for order preference by similarity to ideal solution (TOPSIS replacing Euclidean distance with Kullback-Leibler divergence (KLD is used to sort the weighted indicator value of the evaluation object. An example is given to illustrate the correctness and feasibility of the proposed method.

  8. An Oracle-based event index for ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00083337; The ATLAS collaboration; Dimitrov, Gancho

    2017-01-01

    The ATLAS Eventlndex System has amassed a set of key quantities for a large number of ATLAS events into a Hadoop based infrastructure for the purpose of providing the experiment with a number of event-wise services. Collecting this data in one place provides the opportunity to investigate various storage formats and technologies and assess which best serve the various use cases as well as consider what other benefits alternative storage systems provide. In this presentation we describe how the data are imported into an Oracle RDBMS (relational database management system), the services we have built based on this architecture, and our experience with it. We’ve indexed about 26 billion real data events thus far and have designed the system to accommodate future data which has expected rates of 5 and 20 billion events per year. We have found this system offers outstanding performance for some fundamental use cases. In addition, profiting from the co-location of this data with other complementary metadata in AT...

  9. Poisson-event-based analysis of cell proliferation.

    Science.gov (United States)

    Summers, Huw D; Wills, John W; Brown, M Rowan; Rees, Paul

    2015-05-01

    A protocol for the assessment of cell proliferation dynamics is presented. This is based on the measurement of cell division events and their subsequent analysis using Poisson probability statistics. Detailed analysis of proliferation dynamics in heterogeneous populations requires single cell resolution within a time series analysis and so is technically demanding to implement. Here, we show that by focusing on the events during which cells undergo division rather than directly on the cells themselves a simplified image acquisition and analysis protocol can be followed, which maintains single cell resolution and reports on the key metrics of cell proliferation. The technique is demonstrated using a microscope with 1.3 μm spatial resolution to track mitotic events within A549 and BEAS-2B cell lines, over a period of up to 48 h. Automated image processing of the bright field images using standard algorithms within the ImageJ software toolkit yielded 87% accurate recording of the manually identified, temporal, and spatial positions of the mitotic event series. Analysis of the statistics of the interevent times (i.e., times between observed mitoses in a field of view) showed that cell division conformed to a nonhomogeneous Poisson process in which the rate of occurrence of mitotic events, λ exponentially increased over time and provided values of the mean inter mitotic time of 21.1 ± 1.2 hours for the A549 cells and 25.0 ± 1.1 h for the BEAS-2B cells. Comparison of the mitotic event series for the BEAS-2B cell line to that predicted by random Poisson statistics indicated that temporal synchronisation of the cell division process was occurring within 70% of the population and that this could be increased to 85% through serum starvation of the cell culture. © 2015 International Society for Advancement of Cytometry.

  10. Intelligent Transportation Control based on Proactive Complex Event Processing

    OpenAIRE

    Wang Yongheng; Geng Shaofeng; Li Qian

    2016-01-01

    Complex Event Processing (CEP) has become the key part of Internet of Things (IoT). Proactive CEP can predict future system states and execute some actions to avoid unwanted states which brings new hope to intelligent transportation control. In this paper, we propose a proactive CEP architecture and method for intelligent transportation control. Based on basic CEP technology and predictive analytic technology, a networked distributed Markov decision processes model with predicting states is p...

  11. Deep learning based beat event detection in action movie franchises

    Science.gov (United States)

    Ejaz, N.; Khan, U. A.; Martínez-del-Amor, M. A.; Sparenberg, H.

    2018-04-01

    Automatic understanding and interpretation of movies can be used in a variety of ways to semantically manage the massive volumes of movies data. "Action Movie Franchises" dataset is a collection of twenty Hollywood action movies from five famous franchises with ground truth annotations at shot and beat level of each movie. In this dataset, the annotations are provided for eleven semantic beat categories. In this work, we propose a deep learning based method to classify shots and beat-events on this dataset. The training dataset for each of the eleven beat categories is developed and then a Convolution Neural Network is trained. After finding the shot boundaries, key frames are extracted for each shot and then three classification labels are assigned to each key frame. The classification labels for each of the key frames in a particular shot are then used to assign a unique label to each shot. A simple sliding window based method is then used to group adjacent shots having the same label in order to find a particular beat event. The results of beat event classification are presented based on criteria of precision, recall, and F-measure. The results are compared with the existing technique and significant improvements are recorded.

  12. Track-based event recognition in a realistic crowded environment

    Science.gov (United States)

    van Huis, Jasper R.; Bouma, Henri; Baan, Jan; Burghouts, Gertjan J.; Eendebak, Pieter T.; den Hollander, Richard J. M.; Dijk, Judith; van Rest, Jeroen H.

    2014-10-01

    Automatic detection of abnormal behavior in CCTV cameras is important to improve the security in crowded environments, such as shopping malls, airports and railway stations. This behavior can be characterized at different time scales, e.g., by small-scale subtle and obvious actions or by large-scale walking patterns and interactions between people. For example, pickpocketing can be recognized by the actual snatch (small scale), when he follows the victim, or when he interacts with an accomplice before and after the incident (longer time scale). This paper focusses on event recognition by detecting large-scale track-based patterns. Our event recognition method consists of several steps: pedestrian detection, object tracking, track-based feature computation and rule-based event classification. In the experiment, we focused on single track actions (walk, run, loiter, stop, turn) and track interactions (pass, meet, merge, split). The experiment includes a controlled setup, where 10 actors perform these actions. The method is also applied to all tracks that are generated in a crowded shopping mall in a selected time frame. The results show that most of the actions can be detected reliably (on average 90%) at a low false positive rate (1.1%), and that the interactions obtain lower detection rates (70% at 0.3% FP). This method may become one of the components that assists operators to find threatening behavior and enrich the selection of videos that are to be observed.

  13. FIREDATA, Nuclear Power Plant Fire Event Data Base

    International Nuclear Information System (INIS)

    Wheelis, W.T.

    2001-01-01

    1 - Description of program or function: FIREDATA contains raw fire event data from 1965 through June 1985. These data were obtained from a number of reference sources including the American Nuclear Insurers, Licensee Event Reports, Nuclear Power Experience, Electric Power Research Institute Fire Loss Data and then collated into one database developed in the personal computer database management system, dBASE III. FIREDATA is menu-driven and asks interactive questions of the user that allow searching of the database for various aspects of a fire such as: location, mode of plant operation at the time of the fire, means of detection and suppression, dollar loss, etc. Other features include the capability of searching for single or multiple criteria (using Boolean 'and' or 'or' logical operations), user-defined keyword searches of fire event descriptions, summary displays of fire event data by plant name of calendar date, and options for calculating the years of operating experience for all commercial nuclear power plants from any user-specified date and the ability to display general plant information. 2 - Method of solution: The six database files used to store nuclear power plant fire event information, FIRE, DESC, SUM, OPEXPER, OPEXBWR, and EXPERPWR, are accessed by software to display information meeting user-specified criteria or to perform numerical calculations (e.g., to determine the operating experience of a nuclear plant). FIRE contains specific searchable data relating to each of 354 fire events. A keyword concept is used to search each of the 31 separate entries or fields. DESC contains written descriptions of each of the fire events. SUM holds basic plant information for all plants proposed, under construction, in operation, or decommissioned. This includes the initial criticality and commercial operation dates, the physical location of the plant, and its operating capacity. OPEXPER contains date information and data on how various plant locations are

  14. Kinetically Controlled Synthesis of Pt-Based One-Dimensional Hierarchically Porous Nanostructures with Large Mesopores as Highly Efficient ORR Catalysts.

    Science.gov (United States)

    Fu, Shaofang; Zhu, Chengzhou; Song, Junhua; Engelhard, Mark H; Xia, Haibing; Du, Dan; Lin, Yuehe

    2016-12-28

    Rational design and construction of Pt-based porous nanostructures with large mesopores have triggered significant considerations because of their high surface area and more efficient mass transport. Hydrochloric acid-induced kinetically controlled reduction of metal precursors in the presence of soft template F-127 and hard template tellurium nanowires has been successfully demonstrated to construct one-dimensional hierarchical porous PtCu alloy nanostructures with large mesopores. Moreover, the electrochemical experiments demonstrated that the PtCu hierarchically porous nanostructures synthesized under optimized conditions exhibit enhanced electrocatalytic performance for oxygen reduction reaction in acid media.

  15. Immobilization of Bacillus subtilis lipase on a Cu-BTC based hierarchically porous metal-organic framework material: a biocatalyst for esterification.

    Science.gov (United States)

    Cao, Yu; Wu, Zhuofu; Wang, Tao; Xiao, Yu; Huo, Qisheng; Liu, Yunling

    2016-04-28

    Bacillus subtilis lipase (BSL2) has been successfully immobilized into a Cu-BTC based hierarchically porous metal-organic framework material for the first time. The Cu-BTC hierarchically porous MOF material with large mesopore apertures is prepared conveniently by using a template-free strategy under mild conditions. The immobilized BSL2 presents high enzymatic activity and perfect reusability during the esterification reaction. After 10 cycles, the immobilized BSL2 still exhibits 90.7% of its initial enzymatic activity and 99.6% of its initial conversion.

  16. Kinetically Controlled Synthesis of Pt-Based One-Dimensional Hierarchically Porous Nanostructures with Large Mesopores as Highly Efficient ORR Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Shaofang; Zhu, Chengzhou; Song, Junhua; Engelhard, Mark H.; Xia, Haibing; Du, Dan; Lin, Yuehe

    2016-12-28

    Rational design and construction of Pt-based porous nanostructures with large mesopores have triggered significant considerations because of their high surface area and more efficient mass transport. Hydrochloric acid-induced kinetic reduction of metal precursors in the presence of soft template F-127 and hard template tellurium nanowires has been successfully demonstrated to construct one-dimensional hierarchical porous PtCu alloy nanostructures with large mesopores. Moreover, the electrochemical experiments demonstrated that the resultant PtCu hierarchically porous nanostructures with optimized composition exhibit enhanced electrocatalytic performance for oxygen reduction reaction.

  17. Address-event-based platform for bioinspired spiking systems

    Science.gov (United States)

    Jiménez-Fernández, A.; Luján, C. D.; Linares-Barranco, A.; Gómez-Rodríguez, F.; Rivas, M.; Jiménez, G.; Civit, A.

    2007-05-01

    Address Event Representation (AER) is an emergent neuromorphic interchip communication protocol that allows a real-time virtual massive connectivity between huge number neurons, located on different chips. By exploiting high speed digital communication circuits (with nano-seconds timings), synaptic neural connections can be time multiplexed, while neural activity signals (with mili-seconds timings) are sampled at low frequencies. Also, neurons generate "events" according to their activity levels. More active neurons generate more events per unit time, and access the interchip communication channel more frequently, while neurons with low activity consume less communication bandwidth. When building multi-chip muti-layered AER systems, it is absolutely necessary to have a computer interface that allows (a) reading AER interchip traffic into the computer and visualizing it on the screen, and (b) converting conventional frame-based video stream in the computer into AER and injecting it at some point of the AER structure. This is necessary for test and debugging of complex AER systems. In the other hand, the use of a commercial personal computer implies to depend on software tools and operating systems that can make the system slower and un-robust. This paper addresses the problem of communicating several AER based chips to compose a powerful processing system. The problem was discussed in the Neuromorphic Engineering Workshop of 2006. The platform is based basically on an embedded computer, a powerful FPGA and serial links, to make the system faster and be stand alone (independent from a PC). A new platform is presented that allow to connect up to eight AER based chips to a Spartan 3 4000 FPGA. The FPGA is responsible of the network communication based in Address-Event and, at the same time, to map and transform the address space of the traffic to implement a pre-processing. A MMU microprocessor (Intel XScale 400MHz Gumstix Connex computer) is also connected to the FPGA

  18. Hierarchical distance-based fuzzy approach to evaluate urban water supply systems in a semi-arid region.

    Science.gov (United States)

    Yekta, Tahereh Sadeghi; Khazaei, Mohammad; Nabizadeh, Ramin; Mahvi, Amir Hossein; Nasseri, Simin; Yari, Ahmad Reza

    2015-01-01

    Hierarchical distance-based fuzzy multi-criteria group decision making was served as a tool to evaluate the drinking water supply systems of Qom, a semi-arid city located in central part of Iran. A list of aspects consisting of 6 criteria and 35 sub-criteria were evaluated based on a linguistic term set by five decision-makers. Four water supply alternatives including "Public desalinated distribution system", "PET Bottled Drinking Water", "Private desalinated water suppliers" and "Household desalinated water units" were assessed based on criteria and sub-criteria. Data were aggregated and normalized to apply Performance Ratings of Alternatives. Also, the Performance Ratings of Alternatives were aggregated again to achieve the Aggregate Performance Ratings. The weighted distances from ideal solution and anti-ideal solution were calculated after secondary normalization. The proximity of each alternative to the ideal solution was determined as the final step. The alternatives were ranked based on the magnitude of ideal solutions. Results showed that "Public desalinated distribution system" was the most appropriate alternative to supply the drinking needs of Qom population. Also, "PET Bottled Drinking Water" was the second acceptable option. A novel classification of alternatives to satisfy the drinking water requirements was proposed which is applicable for the other cities located in semi-arid regions of Iran. The health issues were considered as independent criterion, distinct from the environmental issues. The constraints of high-tech alternatives were also considered regarding to the level of dependency on overseas.

  19. Short-Period Surface Wave Based Seismic Event Relocation

    Science.gov (United States)

    White-Gaynor, A.; Cleveland, M.; Nyblade, A.; Kintner, J. A.; Homman, K.; Ammon, C. J.

    2017-12-01

    Accurate and precise seismic event locations are essential for a broad range of geophysical investigations. Superior location accuracy generally requires calibration with ground truth information, but superb relative location precision is often achievable independently. In explosion seismology, low-yield explosion monitoring relies on near-source observations, which results in a limited number of observations that challenges our ability to estimate any locations. Incorporating more distant observations means relying on data with lower signal-to-noise ratios. For small, shallow events, the short-period (roughly 1/2 to 8 s period) fundamental-mode and higher-mode Rayleigh waves (including Rg) are often the most stable and visible portion of the waveform at local distances. Cleveland and Ammon [2013] have shown that teleseismic surface waves are valuable observations for constructing precise, relative event relocations. We extend the teleseismic surface wave relocation method, and apply them to near-source distances using Rg observations from the Bighorn Arche Seismic Experiment (BASE) and the Earth Scope USArray Transportable Array (TA) seismic stations. Specifically, we present relocation results using short-period fundamental- and higher-mode Rayleigh waves (Rg) in a double-difference relative event relocation for 45 delay-fired mine blasts and 21 borehole chemical explosions. Our preliminary efforts are to explore the sensitivity of the short-period surface waves to local geologic structure, source depth, explosion magnitude (yield), and explosion characteristics (single-shot vs. distributed source, etc.). Our results show that Rg and the first few higher-mode Rayleigh wave observations can be used to constrain the relative locations of shallow low-yield events.

  20. Inference of hierarchical regulatory network of estrogen-dependent breast cancer through ChIP-based data

    Directory of Open Access Journals (Sweden)

    Parvin Jeffrey

    2010-12-01

    Full Text Available Abstract Background Global profiling of in vivo protein-DNA interactions using ChIP-based technologies has evolved rapidly in recent years. Although many genome-wide studies have identified thousands of ERα binding sites and have revealed the associated transcription factor (TF partners, such as AP1, FOXA1 and CEBP, little is known about ERα associated hierarchical transcriptional regulatory networks. Results In this study, we applied computational approaches to analyze three public available ChIP-based datasets: ChIP-seq, ChIP-PET and ChIP-chip, and to investigate the hierarchical regulatory network for ERα and ERα partner TFs regulation in estrogen-dependent breast cancer MCF7 cells. 16 common TFs and two common new TF partners (RORA and PITX2 were found among ChIP-seq, ChIP-chip and ChIP-PET datasets. The regulatory networks were constructed by scanning the ChIP-peak region with TF specific position weight matrix (PWM. A permutation test was performed to test the reliability of each connection of the network. We then used DREM software to perform gene ontology function analysis on the common genes. We found that FOS, PITX2, RORA and FOXA1 were involved in the up-regulated genes. We also conducted the ERα and Pol-II ChIP-seq experiments in tamoxifen resistance MCF7 cells (denoted as MCF7-T in this study and compared the difference between MCF7 and MCF7-T cells. The result showed very little overlap between these two cells in terms of targeted genes (21.2% of common genes and targeted TFs (25% of common TFs. The significant dissimilarity may indicate totally different transcriptional regulatory mechanisms between these two cancer cells. Conclusions Our study uncovers new estrogen-mediated regulatory networks by mining three ChIP-based data in MCF7 cells and ChIP-seq data in MCF7-T cells. We compared the different ChIP-based technologies as well as different breast cancer cells. Our computational analytical approach may guide biologists to

  1. Temporal and Location Based RFID Event Data Management and Processing

    Science.gov (United States)

    Wang, Fusheng; Liu, Peiya

    Advance of sensor and RFID technology provides significant new power for humans to sense, understand and manage the world. RFID provides fast data collection with precise identification of objects with unique IDs without line of sight, thus it can be used for identifying, locating, tracking and monitoring physical objects. Despite these benefits, RFID poses many challenges for data processing and management. RFID data are temporal and history oriented, multi-dimensional, and carrying implicit semantics. Moreover, RFID applications are heterogeneous. RFID data management or data warehouse systems need to support generic and expressive data modeling for tracking and monitoring physical objects, and provide automated data interpretation and processing. We develop a powerful temporal and location oriented data model for modeling and queryingRFID data, and a declarative event and rule based framework for automated complex RFID event processing. The approach is general and can be easily adapted for different RFID-enabled applications, thus significantly reduces the cost of RFID data integration.

  2. Distributed and hierarchical object-based image analysis for damage assessment: a case study of 2008 Wenchuan earthquake, China

    Directory of Open Access Journals (Sweden)

    Jing Sun

    2016-11-01

    Full Text Available Object-based image analysis (OBIA is an emerging technique for analyzing remote sensing image based on object properties including spectral, geometry, contextual and texture information. To reduce the computational cost of this comprehensive OBIA and make it more feasible in disaster responses, we developed a unique approach – distributed and hierarchical OBIA approach for damage assessment. This study demonstrated a completed classification of YingXiu town, heavily devastated by the 2008 Wenchuan earthquake using Quickbrid imagery. Two distinctive areas, mountainous areas and urban, were analyzed separately. This approach does not require substantial processing power and large amounts of available memory because image of a large disaster-affected area was split in smaller pieces. Two or more computers could be used in parallel to process and analyze these sub-images based on different requirements. The approach can be applicable in other cases whereas the established set of rules can be adopted in similar study areas. More experiments will be carried out in future studies to prove its feasibility.

  3. A novel vehicle dynamics stability control algorithm based on the hierarchical strategy with constrain of nonlinear tyre forces

    Science.gov (United States)

    Li, Liang; Jia, Gang; Chen, Jie; Zhu, Hongjun; Cao, Dongpu; Song, Jian

    2015-08-01

    Direct yaw moment control (DYC), which differentially brakes the wheels to produce a yaw moment for the vehicle stability in a steering process, is an important part of electric stability control system. In this field, most control methods utilise the active brake pressure with a feedback controller to adjust the braked wheel. However, the method might lead to a control delay or overshoot because of the lack of a quantitative project relationship between target values from the upper stability controller to the lower pressure controller. Meanwhile, the stability controller usually ignores the implementing ability of the tyre forces, which might be restrained by the combined-slip dynamics of the tyre. Therefore, a novel control algorithm of DYC based on the hierarchical control strategy is brought forward in this paper. As for the upper controller, a correctional linear quadratic regulator, which not only contains feedback control but also contains feed forward control, is introduced to deduce the object of the stability yaw moment in order to guarantee the yaw rate and side-slip angle stability. As for the medium and lower controller, the quantitative relationship between the vehicle stability object and the target tyre forces of controlled wheels is proposed to achieve smooth control performance based on a combined-slip tyre model. The simulations with the hardware-in-the-loop platform validate that the proposed algorithm can improve the stability of the vehicle effectively.

  4. A framework for hierarchical and recursive monitoring of service based systems

    NARCIS (Netherlands)

    Comuzzi, M.; Spanoudakis, G.

    2009-01-01

    Runtime monitoring of Service Based Systems (SBSs) usually relies on information derived from I/O messages exchanged within business processes implementing services. When service provisioning is regulated by complex Service Level Agreements (SLAs) between service requesters, (composed) services, and

  5. Estimating the impact of extreme events on crude oil price. An EMD-based event analysis method

    International Nuclear Information System (INIS)

    Zhang, Xun; Wang, Shouyang; Yu, Lean; Lai, Kin Keung

    2009-01-01

    The impact of extreme events on crude oil markets is of great importance in crude oil price analysis due to the fact that those events generally exert strong impact on crude oil markets. For better estimation of the impact of events on crude oil price volatility, this study attempts to use an EMD-based event analysis approach for this task. In the proposed method, the time series to be analyzed is first decomposed into several intrinsic modes with different time scales from fine-to-coarse and an average trend. The decomposed modes respectively capture the fluctuations caused by the extreme event or other factors during the analyzed period. It is found that the total impact of an extreme event is included in only one or several dominant modes, but the secondary modes provide valuable information on subsequent factors. For overlapping events with influences lasting for different periods, their impacts are separated and located in different modes. For illustration and verification purposes, two extreme events, the Persian Gulf War in 1991 and the Iraq War in 2003, are analyzed step by step. The empirical results reveal that the EMD-based event analysis method provides a feasible solution to estimating the impact of extreme events on crude oil prices variation. (author)

  6. Estimating the impact of extreme events on crude oil price. An EMD-based event analysis method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xun; Wang, Shouyang [Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China); School of Mathematical Sciences, Graduate University of Chinese Academy of Sciences, Beijing 100190 (China); Yu, Lean [Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China); Lai, Kin Keung [Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon (China)

    2009-09-15

    The impact of extreme events on crude oil markets is of great importance in crude oil price analysis due to the fact that those events generally exert strong impact on crude oil markets. For better estimation of the impact of events on crude oil price volatility, this study attempts to use an EMD-based event analysis approach for this task. In the proposed method, the time series to be analyzed is first decomposed into several intrinsic modes with different time scales from fine-to-coarse and an average trend. The decomposed modes respectively capture the fluctuations caused by the extreme event or other factors during the analyzed period. It is found that the total impact of an extreme event is included in only one or several dominant modes, but the secondary modes provide valuable information on subsequent factors. For overlapping events with influences lasting for different periods, their impacts are separated and located in different modes. For illustration and verification purposes, two extreme events, the Persian Gulf War in 1991 and the Iraq War in 2003, are analyzed step by step. The empirical results reveal that the EMD-based event analysis method provides a feasible solution to estimating the impact of extreme events on crude oil prices variation. (author)

  7. A Bayesian Model for Event-based Trust

    DEFF Research Database (Denmark)

    Nielsen, Mogens; Krukow, Karl; Sassone, Vladimiro

    2007-01-01

    The application scenarios envisioned for ‘global ubiquitous computing’ have unique requirements that are often incompatible with traditional security paradigms. One alternative currently being investigated is to support security decision-making by explicit representation of principals' trusting...... of the systems from the computational trust literature; the comparison is derived formally, rather than obtained via experimental simulation as traditionally done. With this foundation in place, we formalise a general notion of information about past behaviour, based on event structures. This yields a flexible...

  8. Intelligent Transportation Control based on Proactive Complex Event Processing

    Directory of Open Access Journals (Sweden)

    Wang Yongheng

    2016-01-01

    Full Text Available Complex Event Processing (CEP has become the key part of Internet of Things (IoT. Proactive CEP can predict future system states and execute some actions to avoid unwanted states which brings new hope to intelligent transportation control. In this paper, we propose a proactive CEP architecture and method for intelligent transportation control. Based on basic CEP technology and predictive analytic technology, a networked distributed Markov decision processes model with predicting states is proposed as sequential decision model. A Q-learning method is proposed for this model. The experimental evaluations show that this method works well when used to control congestion in in intelligent transportation systems.

  9. Hierarchical species distribution models

    Science.gov (United States)

    Hefley, Trevor J.; Hooten, Mevin B.

    2016-01-01

    Determining the distribution pattern of a species is important to increase scientific knowledge, inform management decisions, and conserve biodiversity. To infer spatial and temporal patterns, species distribution models have been developed for use with many sampling designs and types of data. Recently, it has been shown that count, presence-absence, and presence-only data can be conceptualized as arising from a point process distribution. Therefore, it is important to understand properties of the point process distribution. We examine how the hierarchical species distribution modeling framework has been used to incorporate a wide array of regression and theory-based components while accounting for the data collection process and making use of auxiliary information. The hierarchical modeling framework allows us to demonstrate how several commonly used species distribution models can be derived from the point process distribution, highlight areas of potential overlap between different models, and suggest areas where further research is needed.

  10. Hierarchical online appearance-based tracking for 3D head pose, eyebrows, lips, eyelids, and irises

    NARCIS (Netherlands)

    Orozco, Javier; Rudovic, Ognjen; Gonzalez Garcia, Jordi; Pantic, Maja

    In this paper, we propose an On-line Appearance-Based Tracker (OABT) for simultaneous tracking of 3D head pose, lips, eyebrows, eyelids and irises in monocular video sequences. In contrast to previously proposed tracking approaches, which deal with face and gaze tracking separately, our OABT can

  11. Game Immersion Experience: Its Hierarchical Structure and Impact on Game-Based Science Learning

    Science.gov (United States)

    Cheng, M.-T.; She, H.-C.; Annetta, L. A.

    2015-01-01

    Many studies have shown the positive impact of serious educational games (SEGs) on learning outcomes. However, there still exists insufficient research that delves into the impact of immersive experience in the process of gaming on SEG-based science learning. The dual purpose of this study was to further explore this impact. One purpose was to…

  12. Analysis of manufacturing based on object oriented discrete event simulation

    Directory of Open Access Journals (Sweden)

    Eirik Borgen

    1990-01-01

    Full Text Available This paper describes SIMMEK, a computer-based tool for performing analysis of manufacturing systems, developed at the Production Engineering Laboratory, NTH-SINTEF. Its main use will be in analysis of job shop type of manufacturing. But certain facilities make it suitable for FMS as well as a production line manufacturing. This type of simulation is very useful in analysis of any types of changes that occur in a manufacturing system. These changes may be investments in new machines or equipment, a change in layout, a change in product mix, use of late shifts, etc. The effects these changes have on for instance the throughput, the amount of VIP, the costs or the net profit, can be analysed. And this can be done before the changes are made, and without disturbing the real system. Simulation takes into consideration, unlike other tools for analysis of manufacturing systems, uncertainty in arrival rates, process and operation times, and machine availability. It also shows the interaction effects a job which is late in one machine, has on the remaining machines in its route through the layout. It is these effects that cause every production plan not to be fulfilled completely. SIMMEK is based on discrete event simulation, and the modeling environment is object oriented. The object oriented models are transformed by an object linker into data structures executable by the simulation kernel. The processes of the entity objects, i.e. the products, are broken down to events and put into an event list. The user friendly graphical modeling environment makes it possible for end users to build models in a quick and reliable way, using terms from manufacturing. Various tests and a check of model logic are helpful functions when testing validity of the models. Integration with software packages, with business graphics and statistical functions, is convenient in the result presentation phase.

  13. Event-based soil loss models for construction sites

    Science.gov (United States)

    Trenouth, William R.; Gharabaghi, Bahram

    2015-05-01

    The elevated rates of soil erosion stemming from land clearing and grading activities during urban development, can result in excessive amounts of eroded sediments entering waterways and causing harm to the biota living therein. However, construction site event-based soil loss simulations - required for reliable design of erosion and sediment controls - are one of the most uncertain types of hydrologic models. This study presents models with improved degree of accuracy to advance the design of erosion and sediment controls for construction sites. The new models are developed using multiple linear regression (MLR) on event-based permutations of the Universal Soil Loss Equation (USLE) and artificial neural networks (ANN). These models were developed using surface runoff monitoring datasets obtained from three sites - Greensborough, Cookstown, and Alcona - in Ontario and datasets mined from the literature for three additional sites - Treynor, Iowa, Coshocton, Ohio and Cordoba, Spain. The predictive MLR and ANN models can serve as both diagnostic and design tools for the effective sizing of erosion and sediment controls on active construction sites, and can be used for dynamic scenario forecasting when considering rapidly changing land use conditions during various phases of construction.

  14. Enabling Sustainability: Hierarchical Need-Based Framework for Promoting Sustainable Data Infrastructure in Developing Countries

    OpenAIRE

    Yawson, David O.; Armah, Frederick A.; Pappoe, Alex N. M.

    2009-01-01

    The paper presents thoughts on Sustainable Data Infrastructure (SDI) development, and its user requirements bases. It brings Maslow's motivational theory to the fore, and proposes it as a rationalization mechanism for entities (mostly governmental) that aim at realizing SDI. Maslow's theory, though well-known, is somewhat new in geospatial circles; this is where the novelty of the paper resides. SDI has been shown to enable and aid development in diverse ways. However, stimulating developing ...

  15. Water Extraction in High Resolution Remote Sensing Image Based on Hierarchical Spectrum and Shape Features

    International Nuclear Information System (INIS)

    Li, Bangyu; Zhang, Hui; Xu, Fanjiang

    2014-01-01

    This paper addresses the problem of water extraction from high resolution remote sensing images (including R, G, B, and NIR channels), which draws considerable attention in recent years. Previous work on water extraction mainly faced two difficulties. 1) It is difficult to obtain accurate position of water boundary because of using low resolution images. 2) Like all other image based object classification problems, the phenomena of ''different objects same image'' or ''different images same object'' affects the water extraction. Shadow of elevated objects (e.g. buildings, bridges, towers and trees) scattered in the remote sensing image is a typical noise objects for water extraction. In many cases, it is difficult to discriminate between water and shadow in a remote sensing image, especially in the urban region. We propose a water extraction method with two hierarchies: the statistical feature of spectral characteristic based on image segmentation and the shape feature based on shadow removing. In the first hierarchy, the Statistical Region Merging (SRM) algorithm is adopted for image segmentation. The SRM includes two key steps: one is sorting adjacent regions according to a pre-ascertained sort function, and the other one is merging adjacent regions based on a pre-ascertained merging predicate. The sort step is done one time during the whole processing without considering changes caused by merging which may cause imprecise results. Therefore, we modify the SRM with dynamic sort processing, which conducts sorting step repetitively when there is large adjacent region changes after doing merging. To achieve robust segmentation, we apply the merging region with six features (four remote sensing image bands, Normalized Difference Water Index (NDWI), and Normalized Saturation-value Difference Index (NSVDI)). All these features contribute to segment image into region of object. NDWI and NSVDI are discriminate between water and

  16. Hierarchical and Complex System Entropy Clustering Analysis Based Validation for Traditional Chinese Medicine Syndrome Patterns of Chronic Atrophic Gastritis.

    Science.gov (United States)

    Zhang, Yin; Liu, Yue; Li, Yannan; Zhao, Xia; Zhuo, Lin; Zhou, Ajian; Zhang, Li; Su, Zeqi; Chen, Cen; Du, Shiyu; Liu, Daming; Ding, Xia

    2018-03-22

    Chronic atrophic gastritis (CAG) is the precancerous stage of gastric carcinoma. Traditional Chinese Medicine (TCM) has been widely used in treating CAG. This study aimed to reveal core pathogenesis of CAG by validating the TCM syndrome patterns and provide evidence for optimization of treatment strategies. This is a cross-sectional study conducted in 4 hospitals in China. Hierarchical clustering analysis (HCA) and complex system entropy clustering analysis (CSECA) were performed, respectively, to achieve syndrome pattern validation. Based on HCA, 15 common factors were assigned to 6 syndrome patterns: liver depression and spleen deficiency and blood stasis in the stomach collateral, internal harassment of phlegm-heat and blood stasis in the stomach collateral, phlegm-turbidity internal obstruction, spleen yang deficiency, internal harassment of phlegm-heat and spleen deficiency, and spleen qi deficiency. By CSECA, 22 common factors were assigned to 7 syndrome patterns: qi deficiency, qi stagnation, blood stasis, phlegm turbidity, heat, yang deficiency, and yin deficiency. Combination of qi deficiency, qi stagnation, blood stasis, phlegm turbidity, heat, yang deficiency, and yin deficiency may play a crucial role in CAG pathogenesis. In accord with this, treatment strategies by TCM herbal prescriptions should be targeted to regulating qi, activating blood, resolving turbidity, clearing heat, removing toxin, nourishing yin, and warming yang. Further explorations are needed to verify and expand the current conclusions.

  17. A Hierarchical Reliability Control Method for a Space Manipulator Based on the Strategy of Autonomous Decision-Making

    Directory of Open Access Journals (Sweden)

    Xin Gao

    2016-01-01

    Full Text Available In order to maintain and enhance the operational reliability of a robotic manipulator deployed in space, an operational reliability system control method is presented in this paper. First, a method to divide factors affecting the operational reliability is proposed, which divides the operational reliability factors into task-related factors and cost-related factors. Then the models describing the relationships between the two kinds of factors and control variables are established. Based on this, a multivariable and multiconstraint optimization model is constructed. Second, a hierarchical system control model which incorporates the operational reliability factors is constructed. The control process of the space manipulator is divided into three layers: task planning, path planning, and motion control. Operational reliability related performance parameters are measured and used as the system’s feedback. Taking the factors affecting the operational reliability into consideration, the system can autonomously decide which control layer of the system should be optimized and how to optimize it using a control level adjustment decision module. The operational reliability factors affect these three control levels in the form of control variable constraints. Simulation results demonstrate that the proposed method can achieve a greater probability of meeting the task accuracy requirements, while extending the expected lifetime of the space manipulator.

  18. Superior supercapacitors based on nitrogen and sulfur co-doped hierarchical porous carbon: Excellent rate capability and cycle stability

    Science.gov (United States)

    Zhang, Deyi; Han, Mei; Wang, Bing; Li, Yubing; Lei, Longyan; Wang, Kunjie; Wang, Yi; Zhang, Liang; Feng, Huixia

    2017-08-01

    Vastly improving the charge storage capability of supercapacitors without sacrificing their high power density and cycle performance would bring bright application prospect. Herein, we report a nitrogen and sulfur co-doped hierarchical porous carbon (NSHPC) with very superior capacitance performance fabricated by KOH activation of nitrogen and sulfur co-doped ordered mesoporous carbon (NSOMC). A high electrochemical double-layer (EDL) capacitance of 351 F g-1 was observed for the reported NSHPC electrodes, and the capacitance remains at 288 F g-1 even under a large current density of 20 A g-1. Besides the high specific capacitance and outstanding rate capability, symmetrical supercapacitor cell based on the NSHPC electrodes also exhibits an excellent cycling performance with 95.61% capacitance retention after 5000 times charge/discharge cycles. The large surface area caused by KOH activation (2056 m2 g-1) and high utilized surface area owing to the ideal micro/mesopores ratio (2.88), large micropores diameter (1.38 nm) and short opened micropores structure as well as the enhanced surface wettability induced by N and S heteroatoms doping and improved conductivity induced by KOH activation was found to be responsible for the very superior capacitance performance.

  19. Load balancing prediction method of cloud storage based on analytic hierarchy process and hybrid hierarchical genetic algorithm.

    Science.gov (United States)

    Zhou, Xiuze; Lin, Fan; Yang, Lvqing; Nie, Jing; Tan, Qian; Zeng, Wenhua; Zhang, Nian

    2016-01-01

    With the continuous expansion of the cloud computing platform scale and rapid growth of users and applications, how to efficiently use system resources to improve the overall performance of cloud computing has become a crucial issue. To address this issue, this paper proposes a method that uses an analytic hierarchy process group decision (AHPGD) to evaluate the load state of server nodes. Training was carried out by using a hybrid hierarchical genetic algorithm (HHGA) for optimizing a radial basis function neural network (RBFNN). The AHPGD makes the aggregative indicator of virtual machines in cloud, and become input parameters of predicted RBFNN. Also, this paper proposes a new dynamic load balancing scheduling algorithm combined with a weighted round-robin algorithm, which uses the predictive periodical load value of nodes based on AHPPGD and RBFNN optimized by HHGA, then calculates the corresponding weight values of nodes and makes constant updates. Meanwhile, it keeps the advantages and avoids the shortcomings of static weighted round-robin algorithm.

  20. A Negative Selection Algorithm Based on Hierarchical Clustering of Self Set and its Application in Anomaly Detection

    Directory of Open Access Journals (Sweden)

    Wen Chen

    2011-08-01

    Full Text Available A negative selection algorithm based on the hierarchical clustering of self set HC-RNSA is introduced in this paper. Several strategies are applied to improve the algorithm performance. First, the self data set is replaced by the self cluster centers to compare with the detector candidates in each cluster level. As the number of self clusters is much less than the self set size, the detector generation efficiency is improved. Second, during the detector generation process, the detector candidates are restricted to the lower coverage space to reduce detector redundancy. In the article, the problem that the distances between antigens coverage to a constant value in the high dimensional space is analyzed, accordingly the Principle Component Analysis (PCA method is used to reduce the data dimension, and the fractional distance function is employed to enhance the distinctiveness between the self and non-self antigens. The detector generation procedure is terminated when the expected non-self coverage is reached. The theory analysis and experimental results demonstrate that the detection rate of HC-RNSA is higher than that of the traditional negative selection algorithms while the false alarm rate and time cost are reduced.

  1. Student conceptions about the DNA structure within a hierarchical organizational level: Improvement by experiment- and computer-based outreach learning.

    Science.gov (United States)

    Langheinrich, Jessica; Bogner, Franz X

    2015-01-01

    As non-scientific conceptions interfere with learning processes, teachers need both, to know about them and to address them in their classrooms. For our study, based on 182 eleventh graders, we analyzed the level of conceptual understanding by implementing the "draw and write" technique during a computer-supported gene technology module. To give participants the hierarchical organizational level which they have to draw, was a specific feature of our study. We introduced two objective category systems for analyzing drawings and inscriptions. Our results indicated a long- as well as a short-term increase in the level of conceptual understanding and in the number of drawn elements and their grades concerning the DNA structure. Consequently, we regard the "draw and write" technique as a tool for a teacher to get to know students' alternative conceptions. Furthermore, our study points the modification potential of hands-on and computer-supported learning modules. © 2015 The International Union of Biochemistry and Molecular Biology.

  2. Typing of unknown microorganisms based on quantitative analysis of fatty acids by mass spectrometry and hierarchical clustering

    Energy Technology Data Exchange (ETDEWEB)

    Li Tingting; Dai Ling; Li Lun; Hu Xuejiao; Dong Linjie; Li Jianjian; Salim, Sule Khalfan; Fu Jieying [Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079 (China); Zhong Hongying, E-mail: hyzhong@mail.ccnu.edu.cn [Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079 (China)

    2011-01-17

    Rapid identification of unknown microorganisms of clinical and agricultural importance is not only critical for accurate diagnosis of infections but also essential for appropriate and prompt treatment. We describe here a rapid method for microorganisms typing based on quantitative analysis of fatty acids by iFAT approach (Isotope-coded Fatty Acid Transmethylation). In this work, lyophilized cell lysates were directly mixed with 0.5 M NaOH solution in d3-methanol and n-hexane. After 1 min of ultrasonication, the top n-hexane layer was combined with a mixture of standard d0-methanol derived fatty acid methylesters with known concentration. Measurement of intensity ratios of d3/d0 labeled fragment ion and molecular ion pairs at the corresponding target fatty acids provides a quantitative basis for hierarchical clustering. In the resultant dendrogram, the Euclidean distance between unknown species and known species quantitatively reveals their differences or shared similarities in fatty acid related pathways. It is of particular interest to apply this method for typing fungal species because fungi has distinguished lipid biosynthetic pathways that have been targeted for lots of drugs or fungicides compared with bacteria and animals. The proposed method has no dependence on the availability of genome or proteome databases. Therefore, it is can be applicable for a broad range of unknown microorganisms or mutant species.

  3. Single event upset threshold estimation based on local laser irradiation

    International Nuclear Information System (INIS)

    Chumakov, A.I.; Egorov, A.N.; Mavritsky, O.B.; Yanenko, A.V.

    1999-01-01

    An approach for estimation of ion-induced SEU threshold based on local laser irradiation is presented. Comparative experiment and software simulation research were performed at various pulse duration and spot size. Correlation of single event threshold LET to upset threshold laser energy under local irradiation was found. The computer analysis of local laser irradiation of IC structures was developed for SEU threshold LET estimation. The correlation of local laser threshold energy with SEU threshold LET was shown. Two estimation techniques were suggested. The first one is based on the determination of local laser threshold dose taking into account the relation of sensitive area to local irradiated area. The second technique uses the photocurrent peak value instead of this relation. The agreement between the predicted and experimental results demonstrates the applicability of this approach. (authors)

  4. MotionExplorer: exploratory search in human motion capture data based on hierarchical aggregation.

    Science.gov (United States)

    Bernard, Jürgen; Wilhelm, Nils; Krüger, Björn; May, Thorsten; Schreck, Tobias; Kohlhammer, Jörn

    2013-12-01

    We present MotionExplorer, an exploratory search and analysis system for sequences of human motion in large motion capture data collections. This special type of multivariate time series data is relevant in many research fields including medicine, sports and animation. Key tasks in working with motion data include analysis of motion states and transitions, and synthesis of motion vectors by interpolation and combination. In the practice of research and application of human motion data, challenges exist in providing visual summaries and drill-down functionality for handling large motion data collections. We find that this domain can benefit from appropriate visual retrieval and analysis support to handle these tasks in presence of large motion data. To address this need, we developed MotionExplorer together with domain experts as an exploratory search system based on interactive aggregation and visualization of motion states as a basis for data navigation, exploration, and search. Based on an overview-first type visualization, users are able to search for interesting sub-sequences of motion based on a query-by-example metaphor, and explore search results by details on demand. We developed MotionExplorer in close collaboration with the targeted users who are researchers working on human motion synthesis and analysis, including a summative field study. Additionally, we conducted a laboratory design study to substantially improve MotionExplorer towards an intuitive, usable and robust design. MotionExplorer enables the search in human motion capture data with only a few mouse clicks. The researchers unanimously confirm that the system can efficiently support their work.

  5. Anisotropic mesh adaptation for solution of finite element problems using hierarchical edge-based error estimates

    Energy Technology Data Exchange (ETDEWEB)

    Lipnikov, Konstantin [Los Alamos National Laboratory; Agouzal, Abdellatif [UNIV DE LYON; Vassilevski, Yuri [Los Alamos National Laboratory

    2009-01-01

    We present a new technology for generating meshes minimizing the interpolation and discretization errors or their gradients. The key element of this methodology is construction of a space metric from edge-based error estimates. For a mesh with N{sub h} triangles, the error is proportional to N{sub h}{sup -1} and the gradient of error is proportional to N{sub h}{sup -1/2} which are optimal asymptotics. The methodology is verified with numerical experiments.

  6. Modeling of frequency agile devices: development of PKI neuromodeling library based on hierarchical network structure

    Science.gov (United States)

    Sanchez, P.; Hinojosa, J.; Ruiz, R.

    2005-06-01

    Recently, neuromodeling methods of microwave devices have been developed. These methods are suitable for the model generation of novel devices. They allow fast and accurate simulations and optimizations. However, the development of libraries makes these methods to be a formidable task, since they require massive input-output data provided by an electromagnetic simulator or measurements and repeated artificial neural network (ANN) training. This paper presents a strategy reducing the cost of library development with the advantages of the neuromodeling methods: high accuracy, large range of geometrical and material parameters and reduced CPU time. The library models are developed from a set of base prior knowledge input (PKI) models, which take into account the characteristics common to all the models in the library, and high-level ANNs which give the library model outputs from base PKI models. This technique is illustrated for a microwave multiconductor tunable phase shifter using anisotropic substrates. Closed-form relationships have been developed and are presented in this paper. The results show good agreement with the expected ones.

  7. Modeling and Sensitivity Study of Consensus Algorithm-Based Distributed Hierarchical Control for DC Microgrids

    DEFF Research Database (Denmark)

    Meng, Lexuan; Dragicevic, Tomislav; Roldan Perez, Javier

    2016-01-01

    Distributed control methods based on consensus algorithms have become popular in recent years for microgrid (MG) systems. These kinds of algorithms can be applied to share information in order to coordinate multiple distributed generators within a MG. However, stability analysis becomes a challen......Distributed control methods based on consensus algorithms have become popular in recent years for microgrid (MG) systems. These kinds of algorithms can be applied to share information in order to coordinate multiple distributed generators within a MG. However, stability analysis becomes...... in the communication network, continuous-time methods can be inaccurate for this kind of dynamic study. Therefore, this paper aims at modeling a complete DC MG using a discrete-time approach in order to perform a sensitivity analysis taking into account the effects of the consensus algorithm. To this end......, a generalized modeling method is proposed and the influence of key control parameters, the communication topology and the communication speed are studied in detail. The theoretical results obtained with the proposed model are verified by comparing them with the results obtained with a detailed switching...

  8. A repeatedly refuelable mediated biofuel cell based on a hierarchical porous carbon electrode

    Science.gov (United States)

    Fujita, Shuji; Yamanoi, Shun; Murata, Kenichi; Mita, Hiroki; Samukawa, Tsunetoshi; Nakagawa, Takaaki; Sakai, Hideki; Tokita, Yuichi

    2014-05-01

    Biofuel cells that generate electricity from renewable fuels, such as carbohydrates, must be reusable through repeated refuelling, should these devices be used in consumer electronics. We demonstrate the stable generation of electricity from a glucose-powered mediated biofuel cell through multiple refuelling cycles. This refuelability is achieved by immobilizing nicotinamide adenine dinucleotide (NAD), an electron-transfer mediator, and redox enzymes in high concentrations on porous carbon particles constituting an anode while maintaining their electrochemical and enzymatic activities after the immobilization. This bioanode can be refuelled continuously for more than 60 cycles at 1.5 mA cm-2 without significant potential drop. Cells assembled with these bioanodes and bilirubin-oxidase-based biocathodes can be repeatedly used to power a portable music player at 1 mW cm-3 through 10 refuelling cycles. This study suggests that the refuelability within consumer electronics should facilitate the development of long and repeated use of the mediated biofuel cells as well as of NAD-based biosensors, bioreactors, and clinical applications.

  9. Preparation and Electrocapacitive Properties of Hierarchical Porous Carbons Based on Loofah Sponge

    Directory of Open Access Journals (Sweden)

    Zichao Li

    2016-11-01

    Full Text Available Four porous carbon samples denoted as LSC-1, LSC-2, LCS-3, and LSC-4 were prepared by carbonization of loofah sponge pretreated by ZnCl2 activation, immersion in N,N-dimethylformamide (DMF, DMF-assisted solvothermal and melamine-assisted hydrothermal processes, and the specific surface areas were 1007, 799, 773, and 538 m2·g−1 with mainly micropores, respectively. Electrocapacitive properties of four porous carbon-based electrodes were investigated with cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy in symmetric supercapacitors. All the cyclic voltammetries of four types of supercapacitors showed a rectangular shape, even under a high scan rate of 500 mV·s−1. The capacitances of LSC-1, LSC-2, LSC-3, and LSC-4 were 107.4, 92.5, 60.3, and 82.3 F·g−1 at the current density of 0.1 A·g−1, respectively, and LSC-1 displayed the excellent capacitance retention of about 81.3% with a current density up to 5 A·g−1. All supercapacitors showed excellent electrochemical stability, and the LSC-1-based supercapacitor showed a cycle stability with 92.6% capacitance retention after 5000 cycles at 1 A·g−1. The structure–property relationship of LSC samples is discussed and analyzed on the basis of the experimental data.

  10. Electrophysiological correlates of strategic monitoring in event-based and time-based prospective memory.

    Directory of Open Access Journals (Sweden)

    Giorgia Cona

    Full Text Available Prospective memory (PM is the ability to remember to accomplish an action when a particular event occurs (i.e., event-based PM, or at a specific time (i.e., time-based PM while performing an ongoing activity. Strategic Monitoring is one of the basic cognitive functions supporting PM tasks, and involves two mechanisms: a retrieval mode, which consists of maintaining active the intention in memory; and target checking, engaged for verifying the presence of the PM cue in the environment. The present study is aimed at providing the first evidence of event-related potentials (ERPs associated with time-based PM, and at examining differences and commonalities in the ERPs related to Strategic Monitoring mechanisms between event- and time-based PM tasks.The addition of an event-based or a time-based PM task to an ongoing activity led to a similar sustained positive modulation of the ERPs in the ongoing trials, mainly expressed over prefrontal and frontal regions. This modulation might index the retrieval mode mechanism, similarly engaged in the two PM tasks. On the other hand, two further ERP modulations were shown specifically in an event-based PM task. An increased positivity was shown at 400-600 ms post-stimulus over occipital and parietal regions, and might be related to target checking. Moreover, an early modulation at 130-180 ms post-stimulus seems to reflect the recruitment of attentional resources for being ready to respond to the event-based PM cue. This latter modulation suggests the existence of a third mechanism specific for the event-based PM; that is, the "readiness mode".

  11. Hierarchical Assembly of Multifunctional Oxide-based Composite Nanostructures for Energy and Environmental Applications

    Directory of Open Access Journals (Sweden)

    Hui-Jan Lin

    2012-06-01

    Full Text Available Composite nanoarchitectures represent a class of nanostructured entities that integrates various dissimilar nanoscale building blocks including nanoparticles, nanowires, and nanofilms toward realizing multifunctional characteristics. A broad array of composite nanoarchitectures can be designed and fabricated, involving generic materials such as metal, ceramics, and polymers in nanoscale form. In this review, we will highlight the latest progress on composite nanostructures in our research group, particularly on various metal oxides including binary semiconductors, ABO3-type perovskites, A2BO4 spinels and quaternary dielectric hydroxyl metal oxides (AB(OH6 with diverse application potential. Through a generic template strategy in conjunction with various synthetic approaches—such as hydrothermal decomposition, colloidal deposition, physical sputtering, thermal decomposition and thermal oxidation, semiconductor oxide alloy nanowires, metal oxide/perovskite (spinel composite nanowires, stannate based nanocompostes, as well as semiconductor heterojunction—arrays and networks have been self-assembled in large scale and are being developed as promising classes of composite nanoarchitectures, which may open a new array of advanced nanotechnologies in solid state lighting, solar absorption, photocatalysis and battery, auto-emission control, and chemical sensing.

  12. Attention-spreading based on hierarchical spatial representations for connected objects.

    Science.gov (United States)

    Kasai, Tetsuko

    2010-01-01

    Attention selects objects or groups as the most fundamental unit, and this may be achieved through a process in which attention automatically spreads throughout their entire region. Previously, we found that a lateralized potential relative to an attended hemifield at occipito-temporal electrode sites reflects attention-spreading in response to connected bilateral stimuli [Kasai, T., & Kondo, M. Electrophysiological correlates of attention-spreading in visual grouping. NeuroReport, 18, 93-98, 2007]. The present study examined the nature of object representations by manipulating the extent of grouping through connectedness, while controlling the symmetrical structure of bilateral stimuli. The electrophysiological results of two experiments consistently indicated that attention was guided twice in association with perceptual grouping in the early phase (N1, 150-200 msec poststimulus) and with the unity of an object in the later phase (N2pc, 310/330-390 msec). This suggests that there are two processes in object-based spatial selection, and these are discussed with regard to their cognitive mechanisms and object representations.

  13. Monte-Carlo-based uncertainty propagation with hierarchical models—a case study in dynamic torque

    Science.gov (United States)

    Klaus, Leonard; Eichstädt, Sascha

    2018-04-01

    For a dynamic calibration, a torque transducer is described by a mechanical model, and the corresponding model parameters are to be identified from measurement data. A measuring device for the primary calibration of dynamic torque, and a corresponding model-based calibration approach, have recently been developed at PTB. The complete mechanical model of the calibration set-up is very complex, and involves several calibration steps—making a straightforward implementation of a Monte Carlo uncertainty evaluation tedious. With this in mind, we here propose to separate the complete model into sub-models, with each sub-model being treated with individual experiments and analysis. The uncertainty evaluation for the overall model then has to combine the information from the sub-models in line with Supplement 2 of the Guide to the Expression of Uncertainty in Measurement. In this contribution, we demonstrate how to carry this out using the Monte Carlo method. The uncertainty evaluation involves various input quantities of different origin and the solution of a numerical optimisation problem.

  14. Enabling Sustainability: Hierarchical Need-Based Framework for Promoting Sustainable Data Infrastructure in Developing Countries

    Directory of Open Access Journals (Sweden)

    David O. Yawson

    2009-11-01

    Full Text Available The paper presents thoughts on Sustainable Data Infrastructure (SDI development, and its user requirements bases. It brings Maslow's motivational theory to the fore, and proposes it as a rationalization mechanism for entities (mostly governmental that aim at realizing SDI. Maslow's theory, though well-known, is somewhat new in geospatial circles; this is where the novelty of the paper resides. SDI has been shown to enable and aid development in diverse ways. However, stimulating developing countries to appreciate the utility of SDI, implement, and use SDI in achieving sustainable development has proven to be an imposing challenge. One of the key reasons for this could be the absence of a widely accepted psychological theory to drive needs assessment and intervention design for the purpose of SDI development. As a result, it is reasonable to explore Maslow’s theory of human motivation as a psychological theory for promoting SDI in developing countries. In this article, we review and adapt Maslow’s hierarchy of needs as a framework for the assessment of the needs of developing nations. The paper concludes with the implications of this framework for policy with the view to stimulating the implementation of SDI in developing nations.

  15. QoSS Hierarchical NoC-Based Architecture for MPSoC Dynamic Protection

    Directory of Open Access Journals (Sweden)

    Johanna Sepulveda

    2012-01-01

    Full Text Available As electronic systems are pervading our lives, MPSoC (multiprocessor system-on-chip security is becoming an important requirement. MPSoCs are able to support multiple applications on the same chip. The challenge is to provide MPSoC security that makes possible a trustworthy system that meets the performance and security requirements of all the applications. The network-on-chip (NoC can be used to efficiently incorporate security. Our work proposes the implementation of QoSS (quality of security service to overcome present MPSoC vulnerabilities. QoSS is a novel concept for data protection that introduces security as a dimension of QoS. QoSS takes advantage of the NoC wide system visibility and critical role in enabling system operation, exploiting the NoC components to detect and prevent a wide range of attacks. In this paper, we present the implementation of a layered dynamic security NoC architecture that integrates agile and dynamic security firewalls in order to detect attacks based on different security rules. We evaluate the effectiveness of our approach over several MPSoCs scenarios and estimate their impact on the overall performance. We show that our architecture can perform a fast detection of a wide range of attacks and a fast configuration of different security policies for several MPSoC applications.

  16. Metabolonote: A wiki-based database for managing hierarchical metadata of metabolome analyses

    Directory of Open Access Journals (Sweden)

    Takeshi eAra

    2015-04-01

    Full Text Available Metabolomics—technology for comprehensive detection of small molecules in an organism—lags behind the other omics in terms of publication and dissemination of experimental data. Among the reasons for this are difficulty precisely recording information about complicated analytical experiments (metadata, existence of various databases with their own metadata descriptions, and low reusability of the published data, resulting in submitters (the researchers who generate the data being insufficiently motivated. To tackle these issues, we developed Metabolonote, a Semantic MediaWiki-based database designed specifically for managing metabolomic metadata. We also defined a metadata and data description format, called TogoMD, with an ID system that is required for unique access to each level of the tree-structured metadata such as study purpose, sample, analytical method, and data analysis. Separation of the management of metadata from that of data and permission to attach related information to the metadata provide advantages for submitters, readers, and database developers. The metadata are enriched with information such as links to comparable data, thereby functioning as a hub of related data resources. They also enhance not only readers' understanding and use of data, but also submitters' motivation to publish the data. The metadata are computationally shared among other systems via APIs, which facilitates the construction of novel databases by database developers. A permission system that allows publication of immature metadata and feedback from readers also helps submitters to improve their metadata. Hence, this aspect of Metabolonote, as a metadata preparation tool, is complementary to high-quality and persistent data repositories such as MetaboLights. A total of 808 metadata for analyzed data obtained from 35 biological species are published currently. Metabolonote and related tools are available free of cost at http://metabolonote.kazusa.or.jp/.

  17. VLSI-based video event triggering for image data compression

    Science.gov (United States)

    Williams, Glenn L.

    1994-02-01

    Long-duration, on-orbit microgravity experiments require a combination of high resolution and high frame rate video data acquisition. The digitized high-rate video stream presents a difficult data storage problem. Data produced at rates of several hundred million bytes per second may require a total mission video data storage requirement exceeding one terabyte. A NASA-designed, VLSI-based, highly parallel digital state machine generates a digital trigger signal at the onset of a video event. High capacity random access memory storage coupled with newly available fuzzy logic devices permits the monitoring of a video image stream for long term (DC-like) or short term (AC-like) changes caused by spatial translation, dilation, appearance, disappearance, or color change in a video object. Pre-trigger and post-trigger storage techniques are then adaptable to archiving only the significant video images.

  18. A hierarchical procedure for calculation of risk importance measures

    International Nuclear Information System (INIS)

    Poern, K.; Dinsmore, S.C.

    1987-01-01

    Starting with a general importance definition based on conditional probabilities, a hierarchical process for calculating risk importance measures from a PSA's numerical results is developed. By the appropriate choice of events in the general definition, measures such as the risk achievement worth and the risk reduction worth can be calculated without requantifying the PSA's models. Required approximations are clearly defined and the subsequent constraints on the applicability of the process discussed. (orig.)

  19. Event-based proactive interference in rhesus monkeys.

    Science.gov (United States)

    Devkar, Deepna T; Wright, Anthony A

    2016-10-01

    Three rhesus monkeys (Macaca mulatta) were tested in a same/different memory task for proactive interference (PI) from prior trials. PI occurs when a previous sample stimulus appears as a test stimulus on a later trial, does not match the current sample stimulus, and the wrong response "same" is made. Trial-unique pictures (scenes, objects, animals, etc.) were used on most trials, except on trials where the test stimulus matched potentially interfering sample stimulus from a prior trial (1, 2, 4, 8, or 16 trials prior). Greater interference occurred when fewer trials separated interference and test. PI functions showed a continuum of interference. Delays between sample and test stimuli and intertrial intervals were manipulated to test how PI might vary as a function of elapsed time. Contrary to a similar study with pigeons, these time manipulations had no discernable effect on the monkey's PI, as shown by compete overlap of PI functions with no statistical differences or interactions. These results suggested that interference was strictly based upon the number of intervening events (trials with other pictures) without regard to elapsed time. The monkeys' apparent event-based interference was further supported by retesting with a novel set of 1,024 pictures. PI from novel pictures 1 or 2 trials prior was greater than from familiar pictures, a familiar set of 1,024 pictures. Moreover, when potentially interfering novel stimuli were 16 trials prior, performance accuracy was actually greater than accuracy on baseline trials (no interference), suggesting that remembering stimuli from 16 trials prior was a cue that this stimulus was not the sample stimulus on the current trial-a somewhat surprising conclusion particularly given monkeys.

  20. Hierarchical architecture of active knits

    International Nuclear Information System (INIS)

    Abel, Julianna; Luntz, Jonathan; Brei, Diann

    2013-01-01

    Nature eloquently utilizes hierarchical structures to form the world around us. Applying the hierarchical architecture paradigm to smart materials can provide a basis for a new genre of actuators which produce complex actuation motions. One promising example of cellular architecture—active knits—provides complex three-dimensional distributed actuation motions with expanded operational performance through a hierarchically organized structure. The hierarchical structure arranges a single fiber of active material, such as shape memory alloys (SMAs), into a cellular network of interlacing adjacent loops according to a knitting grid. This paper defines a four-level hierarchical classification of knit structures: the basic knit loop, knit patterns, grid patterns, and restructured grids. Each level of the hierarchy provides increased architectural complexity, resulting in expanded kinematic actuation motions of active knits. The range of kinematic actuation motions are displayed through experimental examples of different SMA active knits. The results from this paper illustrate and classify the ways in which each level of the hierarchical knit architecture leverages the performance of the base smart material to generate unique actuation motions, providing necessary insight to best exploit this new actuation paradigm. (paper)

  1. Ontology-Based Vaccine Adverse Event Representation and Analysis.

    Science.gov (United States)

    Xie, Jiangan; He, Yongqun

    2017-01-01

    Vaccine is the one of the greatest inventions of modern medicine that has contributed most to the relief of human misery and the exciting increase in life expectancy. In 1796, an English country physician, Edward Jenner, discovered that inoculating mankind with cowpox can protect them from smallpox (Riedel S, Edward Jenner and the history of smallpox and vaccination. Proceedings (Baylor University. Medical Center) 18(1):21, 2005). Based on the vaccination worldwide, we finally succeeded in the eradication of smallpox in 1977 (Henderson, Vaccine 29:D7-D9, 2011). Other disabling and lethal diseases, like poliomyelitis and measles, are targeted for eradication (Bonanni, Vaccine 17:S120-S125, 1999).Although vaccine development and administration are tremendously successful and cost-effective practices to human health, no vaccine is 100% safe for everyone because each person reacts to vaccinations differently given different genetic background and health conditions. Although all licensed vaccines are generally safe for the majority of people, vaccinees may still suffer adverse events (AEs) in reaction to various vaccines, some of which can be serious or even fatal (Haber et al., Drug Saf 32(4):309-323, 2009). Hence, the double-edged sword of vaccination remains a concern.To support integrative AE data collection and analysis, it is critical to adopt an AE normalization strategy. In the past decades, different controlled terminologies, including the Medical Dictionary for Regulatory Activities (MedDRA) (Brown EG, Wood L, Wood S, et al., Drug Saf 20(2):109-117, 1999), the Common Terminology Criteria for Adverse Events (CTCAE) (NCI, The Common Terminology Criteria for Adverse Events (CTCAE). Available from: http://evs.nci.nih.gov/ftp1/CTCAE/About.html . Access on 7 Oct 2015), and the World Health Organization (WHO) Adverse Reactions Terminology (WHO-ART) (WHO, The WHO Adverse Reaction Terminology - WHO-ART. Available from: https://www.umc-products.com/graphics/28010.pdf

  2. Hierarchical Velocity Control Based on Differential Flatness for a DC/DC Buck Converter-DC Motor System

    Directory of Open Access Journals (Sweden)

    R. Silva-Ortigoza

    2014-01-01

    Full Text Available This paper presents a hierarchical controller that carries out the angular velocity trajectory tracking task for a DC motor driven by a DC/DC Buck converter. The high level control is related to the DC motor and the low level control is dedicated to the DC/DC Buck converter; both controls are designed via differential flatness. The high level control provides a desired voltage profile for the DC motor to achieve the tracking of a desired angular velocity trajectory. Then, a low level control is designed to ensure that the output voltage of the DC/DC Buck converter tracks the voltage profile imposed by the high level control. In order to experimentally verify the hierarchical controller performance, a DS1104 electronic board from dSPACE and Matlab-Simulink are used. The switched implementation of the hierarchical average controller is accomplished by means of pulse width modulation. Experimental results of the hierarchical controller for the velocity trajectory tracking task show good performance and robustness against the uncertainties associated with different system parameters.

  3. Event Completion: Event Based Inferences Distort Memory in a Matter of Seconds

    Science.gov (United States)

    Strickland, Brent; Keil, Frank

    2011-01-01

    We present novel evidence that implicit causal inferences distort memory for events only seconds after viewing. Adults watched videos of someone launching (or throwing) an object. However, the videos omitted the moment of contact (or release). Subjects falsely reported seeing the moment of contact when it was implied by subsequent footage but did…

  4. Enhanced Deployment Strategy for Role-based Hierarchical Application Agents in Wireless Sensor Networks with Established Clusterheads

    Science.gov (United States)

    Gendreau, Audrey

    Efficient self-organizing virtual clusterheads that supervise data collection based on their wireless connectivity, risk, and overhead costs, are an important element of Wireless Sensor Networks (WSNs). This function is especially critical during deployment when system resources are allocated to a subsequent application. In the presented research, a model used to deploy intrusion detection capability on a Local Area Network (LAN), in the literature, was extended to develop a role-based hierarchical agent deployment algorithm for a WSN. The resulting model took into consideration the monitoring capability, risk, deployment distribution cost, and monitoring cost associated with each node. Changing the original LAN methodology approach to model a cluster-based sensor network depended on the ability to duplicate a specific parameter that represented the monitoring capability. Furthermore, other parameters derived from a LAN can elevate costs and risk of deployment, as well as jeopardize the success of an application on a WSN. A key component of the approach presented in this research was to reduce the costs when established clusterheads in the network were found to be capable of hosting additional detection agents. In addition, another cost savings component of the study addressed the reduction of vulnerabilities associated with deployment of agents to high volume nodes. The effectiveness of the presented method was validated by comparing it against a type of a power-based scheme that used each node's remaining energy as the deployment value. While available energy is directly related to the model used in the presented method, the study deliberately sought out nodes that were identified with having superior monitoring capability, cost less to create and sustain, and are at low-risk of an attack. This work investigated improving the efficiency of an intrusion detection system (IDS) by using the proposed model to deploy monitoring agents after a temperature sensing

  5. A process-oriented event-based programming language

    DEFF Research Database (Denmark)

    Hildebrandt, Thomas; Zanitti, Francesco

    2012-01-01

    Vi præsenterer den første version af PEPL, et deklarativt Proces-orienteret, Event-baseret Programmeringssprog baseret på den fornyligt introducerede Dynamic Condition Response (DCR) Graphs model. DCR Graphs tillader specifikation, distribuerede udførsel og verifikation af pervasive event...

  6. SPEED : a semantics-based pipeline for economic event detection

    NARCIS (Netherlands)

    Hogenboom, F.P.; Hogenboom, A.C.; Frasincar, F.; Kaymak, U.; Meer, van der O.; Schouten, K.; Vandic, D.; Parsons, J.; Motoshi, S.; Shoval, P.; Woo, C.; Wand, Y.

    2010-01-01

    Nowadays, emerging news on economic events such as acquisitions has a substantial impact on the financial markets. Therefore, it is important to be able to automatically and accurately identify events in news items in a timely manner. For this, one has to be able to process a large amount of

  7. Semantics-based information extraction for detecting economic events

    NARCIS (Netherlands)

    A.C. Hogenboom (Alexander); F. Frasincar (Flavius); K. Schouten (Kim); O. van der Meer

    2013-01-01

    textabstractAs today's financial markets are sensitive to breaking news on economic events, accurate and timely automatic identification of events in news items is crucial. Unstructured news items originating from many heterogeneous sources have to be mined in order to extract knowledge useful for

  8. Logical Discrete Event Systems in a trace theory based setting

    NARCIS (Netherlands)

    Smedinga, R.

    1993-01-01

    Discrete event systems can be modelled using a triple consisting of some alphabet (representing the events that might occur), and two trace sets (sets of possible strings) denoting the possible behaviour and the completed tasks of the system. Using this definition we are able to formulate and solve

  9. High-energy supercapacitors based on hierarchical porous carbon with an ultrahigh ion-accessible surface area in ionic liquid electrolytes

    Science.gov (United States)

    Zhong, Hui; Xu, Fei; Li, Zenghui; Fu, Ruowen; Wu, Dingcai

    2013-05-01

    A very important yet really challenging issue to address is how to greatly increase the energy density of supercapacitors to approach or even exceed those of batteries without sacrificing the power density. Herein we report the fabrication of a new class of ultrahigh surface area hierarchical porous carbon (UHSA-HPC) based on the pore formation and widening of polystyrene-derived HPC by KOH activation, and highlight its superior ability for energy storage in supercapacitors with ionic liquid (IL) as electrolyte. The UHSA-HPC with a surface area of more than 3000 m2 g-1 shows an extremely high energy density, i.e., 118 W h kg-1 at a power density of 100 W kg-1. This is ascribed to its unique hierarchical nanonetwork structure with a large number of small-sized nanopores for IL storage and an ideal meso-/macroporous network for IL transfer.A very important yet really challenging issue to address is how to greatly increase the energy density of supercapacitors to approach or even exceed those of batteries without sacrificing the power density. Herein we report the fabrication of a new class of ultrahigh surface area hierarchical porous carbon (UHSA-HPC) based on the pore formation and widening of polystyrene-derived HPC by KOH activation, and highlight its superior ability for energy storage in supercapacitors with ionic liquid (IL) as electrolyte. The UHSA-HPC with a surface area of more than 3000 m2 g-1 shows an extremely high energy density, i.e., 118 W h kg-1 at a power density of 100 W kg-1. This is ascribed to its unique hierarchical nanonetwork structure with a large number of small-sized nanopores for IL storage and an ideal meso-/macroporous network for IL transfer. Electronic supplementary information (ESI) available: Sample preparation, material characterization, electrochemical characterization and specific mass capacitance and energy density. See DOI: 10.1039/c3nr00738c

  10. Top-down feedback in an HMAX-like cortical model of object perception based on hierarchical Bayesian networks and belief propagation.

    Directory of Open Access Journals (Sweden)

    Salvador Dura-Bernal

    Full Text Available Hierarchical generative models, such as Bayesian networks, and belief propagation have been shown to provide a theoretical framework that can account for perceptual processes, including feedforward recognition and feedback modulation. The framework explains both psychophysical and physiological experimental data and maps well onto the hierarchical distributed cortical anatomy. However, the complexity required to model cortical processes makes inference, even using approximate methods, very computationally expensive. Thus, existing object perception models based on this approach are typically limited to tree-structured networks with no loops, use small toy examples or fail to account for certain perceptual aspects such as invariance to transformations or feedback reconstruction. In this study we develop a Bayesian network with an architecture similar to that of HMAX, a biologically-inspired hierarchical model of object recognition, and use loopy belief propagation to approximate the model operations (selectivity and invariance. Crucially, the resulting Bayesian network extends the functionality of HMAX by including top-down recursive feedback. Thus, the proposed model not only achieves successful feedforward recognition invariant to noise, occlusions, and changes in position and size, but is also able to reproduce modulatory effects such as illusory contour completion and attention. Our novel and rigorous methodology covers key aspects such as learning using a layerwise greedy algorithm, combining feedback information from multiple parents and reducing the number of operations required. Overall, this work extends an established model of object recognition to include high-level feedback modulation, based on state-of-the-art probabilistic approaches. The methodology employed, consistent with evidence from the visual cortex, can be potentially generalized to build models of hierarchical perceptual organization that include top-down and bottom

  11. Hierarchical partial order ranking

    International Nuclear Information System (INIS)

    Carlsen, Lars

    2008-01-01

    Assessing the potential impact on environmental and human health from the production and use of chemicals or from polluted sites involves a multi-criteria evaluation scheme. A priori several parameters are to address, e.g., production tonnage, specific release scenarios, geographical and site-specific factors in addition to various substance dependent parameters. Further socio-economic factors may be taken into consideration. The number of parameters to be included may well appear to be prohibitive for developing a sensible model. The study introduces hierarchical partial order ranking (HPOR) that remedies this problem. By HPOR the original parameters are initially grouped based on their mutual connection and a set of meta-descriptors is derived representing the ranking corresponding to the single groups of descriptors, respectively. A second partial order ranking is carried out based on the meta-descriptors, the final ranking being disclosed though average ranks. An illustrative example on the prioritisation of polluted sites is given. - Hierarchical partial order ranking of polluted sites has been developed for prioritization based on a large number of parameters

  12. A model-based approach to operational event groups ranking

    Energy Technology Data Exchange (ETDEWEB)

    Simic, Zdenko [European Commission Joint Research Centre, Petten (Netherlands). Inst. for Energy and Transport; Maqua, Michael [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Koeln (Germany); Wattrelos, Didier [Institut de Radioprotection et de Surete Nucleaire (IRSN), Fontenay-aux-Roses (France)

    2014-04-15

    The operational experience (OE) feedback provides improvements in all industrial activities. Identification of the most important and valuable groups of events within accumulated experience is important in order to focus on a detailed investigation of events. The paper describes the new ranking method and compares it with three others. Methods have been described and applied to OE events utilised by nuclear power plants in France and Germany for twenty years. The results show that different ranking methods only roughly agree on which of the event groups are the most important ones. In the new ranking method the analytical hierarchy process is applied in order to assure consistent and comprehensive weighting determination for ranking indexes. The proposed method allows a transparent and flexible event groups ranking and identification of the most important OE for further more detailed investigation in order to complete the feedback. (orig.)

  13. Prediction problem for target events based on the inter-event waiting time

    Science.gov (United States)

    Shapoval, A.

    2010-11-01

    In this paper we address the problem of forecasting the target events of a time series given the distribution ξ of time gaps between target events. Strong earthquakes and stock market crashes are the two types of such events that we are focusing on. In the series of earthquakes, as McCann et al. show [W.R. Mc Cann, S.P. Nishenko, L.R. Sykes, J. Krause, Seismic gaps and plate tectonics: seismic potential for major boundaries, Pure and Applied Geophysics 117 (1979) 1082-1147], there are well-defined gaps (called seismic gaps) between strong earthquakes. On the other hand, usually there are no regular gaps in the series of stock market crashes [M. Raberto, E. Scalas, F. Mainardi, Waiting-times and returns in high-frequency financial data: an empirical study, Physica A 314 (2002) 749-755]. For the case of seismic gaps, we analytically derive an upper bound of prediction efficiency given the coefficient of variation of the distribution ξ. For the case of stock market crashes, we develop an algorithm that predicts the next crash within a certain time interval after the previous one. We show that this algorithm outperforms random prediction. The efficiency of our algorithm sets up a lower bound of efficiency for effective prediction of stock market crashes.

  14. The efficiency of average linkage hierarchical clustering algorithm associated multi-scale bootstrap resampling in identifying homogeneous precipitation catchments

    Science.gov (United States)

    Chuan, Zun Liang; Ismail, Noriszura; Shinyie, Wendy Ling; Lit Ken, Tan; Fam, Soo-Fen; Senawi, Azlyna; Yusoff, Wan Nur Syahidah Wan

    2018-04-01

    Due to the limited of historical precipitation records, agglomerative hierarchical clustering algorithms widely used to extrapolate information from gauged to ungauged precipitation catchments in yielding a more reliable projection of extreme hydro-meteorological events such as extreme precipitation events. However, identifying the optimum number of homogeneous precipitation catchments accurately based on the dendrogram resulted using agglomerative hierarchical algorithms are very subjective. The main objective of this study is to propose an efficient regionalized algorithm to identify the homogeneous precipitation catchments for non-stationary precipitation time series. The homogeneous precipitation catchments are identified using average linkage hierarchical clustering algorithm associated multi-scale bootstrap resampling, while uncentered correlation coefficient as the similarity measure. The regionalized homogeneous precipitation is consolidated using K-sample Anderson Darling non-parametric test. The analysis result shows the proposed regionalized algorithm performed more better compared to the proposed agglomerative hierarchical clustering algorithm in previous studies.

  15. Hierarchical surface patterning of Ni- and Be-free Ti- and Zr-based bulk metallic glasses by thermoplastic net-shaping

    Energy Technology Data Exchange (ETDEWEB)

    Sarac, Baran, E-mail: b.sarac@ifw-dresden.de [IFW Dresden, Institute for Complex Materials, Helmholtzstrasse 20, D-01069 Dresden (Germany); Erich Schmid Institute of Materials Science, Austrian Academy of Sciences (ÖAW), Jahnstrasse 12, A-8700 Leoben (Austria); Bera, Supriya [IFW Dresden, Institute for Complex Materials, Helmholtzstrasse 20, D-01069 Dresden (Germany); Balakin, Sascha [IFW Dresden, Institute for Complex Materials, Helmholtzstrasse 20, D-01069 Dresden (Germany); ETH Zurich, Department of Materials, Metal physics und Technology, Vladimir-Prelog-Weg 4, HCI J 492, 8093 Zürich (Switzerland); Stoica, Mihai [IFW Dresden, Institute for Complex Materials, Helmholtzstrasse 20, D-01069 Dresden (Germany); Politehnica University of Timisoara, P-ta Victoriei 2, RO-300006 Timisoara (Romania); Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Winterbergstrasse 28, 01277, Dresden (Germany); Calin, Mariana, E-mail: m.calin@ifw-dresden.de [IFW Dresden, Institute for Complex Materials, Helmholtzstrasse 20, D-01069 Dresden (Germany); Eckert, Jürgen [Erich Schmid Institute of Materials Science, Austrian Academy of Sciences (ÖAW), Jahnstrasse 12, A-8700 Leoben (Austria); Department Materials Physics, Montanuniversität Leoben, Jahnstrasse 12, A-8700 Leoben (Austria)

    2017-04-01

    In order to establish a strong cell-material interaction, the surface topography of the implant material plays an important role. This contribution aims to analyze the formation kinetics of nickel and beryllium-free Ti- and Zr-based Bulk Metallic Glasses (BMGs) with potential biomedical applications. The surface patterning of the BMGs is achieved by thermoplastic net-shaping (TPN) into anisotropically etched cavities of silicon chips. The forming kinetics of the BMG alloys is assessed by thermal and mechanical measurements to determine the most suitable processing temperature and time, and load applied. Array of pyramidal micropatterns with a tip resolution down to 50 nm is achievable for the Zr-BMG, where the generated hierarchical features are crucial for surface functionalization, acting as topographic cues for cell attachment. The unique processability and intrinsic properties of this new class of amorphous alloys make them competitive with the conventional biomaterials. - Highlights: • Micro to nano-scale hierarchical surface patterns achieved by TPN of BMGs • Ni- and Be-free Zr-/Ti-BMGs with different GFA compared in terms of flow kinetics • Correlation between filling depths of Zr- and Ti-BMGs best described by formability • Multi-scale hierarchical patterning envisaged to facilitate BMG-cell interaction.

  16. Evolution of Hierarchical Structure and Spatial Pattern of Coastal Cities in China – Based on the Data of Distribution of Marine-Related Enterprises

    Directory of Open Access Journals (Sweden)

    Wang Lili

    2017-11-01

    Full Text Available In this paper, a comprehensive research of the evolution of the hierarchical structure and spatial pattern of coastal cities in China was conducted based on the data of distribution of the headquarters and subsidiaries of marine-related enterprises in 1995, 2005 and 2015 using the city network research method proposed by Taylor. The results of the empirical research showed: China’s coastal city network had an obvious hierarchical characteristics of “national coastal cityregional coastal city-sub-regional coastal city-local coastal city”, in the 20 years of development process, the hierarchies of coastal cities in China showed a hierarchical progressive evolution; in past 20 years, the spatial pattern and network structure of coastal cities in China tended to be complete, and the city network was more uniform, forming a “three tiers and three urban agglomerations” network structure; the strength of connection among the cities was obviously strengthened, and the efficiency of urban spatial connection was improved overall.

  17. Multifunctional substrate of Al alloy based on general hierarchical micro/nanostructures: superamphiphobicity and enhanced corrosion resistance

    OpenAIRE

    Li, Xuewu; Shi, Tian; Liu, Cong; Zhang, Qiaoxin; Huang, Xingjiu

    2016-01-01

    Aluminum alloys are vulnerable to penetrating and peeling failures in seawater and preparing a barrier coating to isolate the substrate from corrosive medium is an effective anticorrosion method. Inspired by the lotus leaves effect, a wetting alloy surface with enhanced anticorrosion behavior has been prepared via etch, deposition, and low-surface-energy modification. Results indicate that excellent superamphiphobicity has been achieved after the modification of the constructed hierarchical l...

  18. Diet Activity Characteristic of Large-scale Sports Events Based on HACCP Management Model

    OpenAIRE

    Xiao-Feng Su; Li Guo; Li-Hua Gao; Chang-Zhuan Shao

    2015-01-01

    The study proposed major sports events dietary management based on "HACCP" management model. According to the characteristic of major sports events catering activities. Major sports events are not just showcase level of competitive sports activities which have become comprehensive special events including social, political, economic, cultural and other factors, complex. Sporting events conferred reach more diverse goals and objectives of economic, political, cultural, technological and other ...

  19. A Bayesian Hierarchical Model for Glacial Dynamics Based on the Shallow Ice Approximation and its Evaluation Using Analytical Solutions

    Science.gov (United States)

    Gopalan, Giri; Hrafnkelsson, Birgir; Aðalgeirsdóttir, Guðfinna; Jarosch, Alexander H.; Pálsson, Finnur

    2018-03-01

    Bayesian hierarchical modeling can assist the study of glacial dynamics and ice flow properties. This approach will allow glaciologists to make fully probabilistic predictions for the thickness of a glacier at unobserved spatio-temporal coordinates, and it will also allow for the derivation of posterior probability distributions for key physical parameters such as ice viscosity and basal sliding. The goal of this paper is to develop a proof of concept for a Bayesian hierarchical model constructed, which uses exact analytical solutions for the shallow ice approximation (SIA) introduced by Bueler et al. (2005). A suite of test simulations utilizing these exact solutions suggests that this approach is able to adequately model numerical errors and produce useful physical parameter posterior distributions and predictions. A byproduct of the development of the Bayesian hierarchical model is the derivation of a novel finite difference method for solving the SIA partial differential equation (PDE). An additional novelty of this work is the correction of numerical errors induced through a numerical solution using a statistical model. This error correcting process models numerical errors that accumulate forward in time and spatial variation of numerical errors between the dome, interior, and margin of a glacier.

  20. Two-step growth mechanism of supported Co3O4-based sea-urchin like hierarchical nanostructures

    Science.gov (United States)

    Maurizio, Chiara; Edla, Raju; Michieli, Niccolo'; Orlandi, Michele; Trapananti, Angela; Mattei, Giovanni; Miotello, Antonio

    2018-05-01

    Supported 3D hierarchical nanostructures of transition metal oxides exhibit enhanced photocatalytic performances and long-term stability under working conditions. The growth mechanisms crucially determine their intimate structure, that is a key element to optimize their properties. We report on the formation mechanism of supported Co3O4 hierarchical sea urchin-like nanostructured catalyst, starting from Co-O-B layers deposited by Pulsed Laser Deposition (PLD). The particles deposited on the layer surface, that constitute the seeds for the urchin formation, have been investigated after separation from the underneath deposited layer, by X-ray diffraction, X-ray absorption spectroscopy and scanning electron microscopy. The comparison with PLD deposited layers without O and/or B indicates a crucial role of B for the urchin formation that (i) limits Co oxidation during the deposition process and (ii) induces a chemical reduction of Co, especially in the particle core, in the first step of air annealing (2 h, 500 °C). After 2 h heating Co oxidation proceeds and Co atoms outdiffuse from the Co fcc particle core likely through fast diffusion channel present in the shell and form Co3O4 nano-needles. The growth of nano-needles from the layer beneath the particles is prevented by a faster Co oxidation and a minimum fraction of metallic Co. This investigation shows how diffusion mechanisms and chemical effects can be effectively coupled to obtain hierarchical structures of transition metal oxides.

  1. Autocorrel I: A Neural Network Based Network Event Correlation Approach

    National Research Council Canada - National Science Library

    Japkowicz, Nathalie; Smith, Reuben

    2005-01-01

    .... We use the autoassociator to build prototype software to cluster network alerts generated by a Snort intrusion detection system, and discuss how the results are significant, and how they can be applied to other types of network events.

  2. Balboa: A Framework for Event-Based Process Data Analysis

    National Research Council Canada - National Science Library

    Cook, Jonathan E; Wolf, Alexander L

    1998-01-01

    .... We have built Balboa as a bridge between the data collection and the analysis tools, facilitating the gathering and management of event data, and simplifying the construction of tools to analyze the data...

  3. Integrated analyzing method for the progress event based on subjects and predicates in events

    International Nuclear Information System (INIS)

    Minowa, Hirotsugu; Munesawa, Yoshiomi

    2014-01-01

    It is expected to make use of the knowledge that was extracted by analyzing the mistakes of the past to prevent recurrence of accidents. Currently main analytic style is an analytic style that experts decipher deeply the accident cases, but cross-analysis has come to an end with extracting the common factors in the accident cases. We propose an integrated analyzing method for progress events to analyze among accidents in this study. Our method realized the integration of many accident cases by the integration connecting the common keyword called as 'Subject' or 'Predicate' that are extracted from each progress event in accident cases or near-miss cases. Our method can analyze and visualize the partial risk identification and the frequency to cause accidents and the risk assessment from the data integrated accident cases. The result of applying our method to PEC-SAFER accident cases identified 8 hazardous factors which can be caused from tank again, and visualized the high frequent factors that the first factor was damage of tank 26% and the second factor was the corrosion 21%, and visualized the high risks that the first risk was the damage 3.3 x 10 -2 [risk rank / year] and the second risk was the destroy 2.5 x 10 -2 [risk rank / year]. (author)

  4. Event-based text mining for biology and functional genomics

    Science.gov (United States)

    Thompson, Paul; Nawaz, Raheel; McNaught, John; Kell, Douglas B.

    2015-01-01

    The assessment of genome function requires a mapping between genome-derived entities and biochemical reactions, and the biomedical literature represents a rich source of information about reactions between biological components. However, the increasingly rapid growth in the volume of literature provides both a challenge and an opportunity for researchers to isolate information about reactions of interest in a timely and efficient manner. In response, recent text mining research in the biology domain has been largely focused on the identification and extraction of ‘events’, i.e. categorised, structured representations of relationships between biochemical entities, from the literature. Functional genomics analyses necessarily encompass events as so defined. Automatic event extraction systems facilitate the development of sophisticated semantic search applications, allowing researchers to formulate structured queries over extracted events, so as to specify the exact types of reactions to be retrieved. This article provides an overview of recent research into event extraction. We cover annotated corpora on which systems are trained, systems that achieve state-of-the-art performance and details of the community shared tasks that have been instrumental in increasing the quality, coverage and scalability of recent systems. Finally, several concrete applications of event extraction are covered, together with emerging directions of research. PMID:24907365

  5. Deliberate change without hierarchical influence?

    DEFF Research Database (Denmark)

    Nørskov, Sladjana; Kesting, Peter; Ulhøi, John Parm

    2017-01-01

    reveals that deliberate change is indeed achievable in a non-hierarchical collaborative OSS community context. However, it presupposes the presence and active involvement of informal change agents. The paper identifies and specifies four key drivers for change agents’ influence. Originality....../value The findings contribute to organisational analysis by providing a deeper understanding of the importance of leadership in making deliberate change possible in non-hierarchical settings. It points to the importance of “change-by-conviction”, essentially based on voluntary behaviour. This can open the door...

  6. Discovering hierarchical structure in normal relational data

    DEFF Research Database (Denmark)

    Schmidt, Mikkel Nørgaard; Herlau, Tue; Mørup, Morten

    2014-01-01

    -parametric generative model for hierarchical clustering of similarity based on multifurcating Gibbs fragmentation trees. This allows us to infer and display the posterior distribution of hierarchical structures that comply with the data. We demonstrate the utility of our method on synthetic data and data of functional...

  7. Biased trapping issue on weighted hierarchical networks

    Indian Academy of Sciences (India)

    archical networks which are based on the classic scale-free hierarchical networks. ... Weighted hierarchical networks; weight-dependent walks; mean first passage ..... The weighted networks can mimic some real-world natural and social systems to ... the Priority Academic Program Development of Jiangsu Higher Education ...

  8. Smart microgrid hierarchical frequency control ancillary service provision based on virtual inertia concept: An integrated demand response and droop controlled distributed generation framework

    International Nuclear Information System (INIS)

    Rezaei, Navid; Kalantar, Mohsen

    2015-01-01

    Highlights: • Detailed formulation of the microgrid static and dynamic securities based on droop control and virtual inertia concepts. • Constructing a novel objective function using frequency excursion and rate of change of frequency profiles. • Ensuring the microgrid security subject to the microgrid economic and environmental policies. • Coordinated management of demand response and droop controlled distributed generation resources. • Precise scheduling of day-ahead hierarchical frequency control ancillary services using a scenario based stochastic programming. - Abstract: Low inertia stack, high penetration levels of renewable energy source and great ratio of power deviations in a small power delivery system put microgrid frequency at risk of instability. On the basis of the close coupling between the microgrid frequency and system security requirements, procurement of adequate ancillary services from cost-effective and environmental friendly resources is a great challenge requests an efficient energy management system. Motivated by this need, this paper presents a novel energy management system that is aimed to coordinately manage the demand response and distributed generation resources. The proposed approach is carried out by constructing a hierarchical frequency control structure in which the frequency dependent control functions of the microgrid components are modeled comprehensively. On the basis of the derived modeling, both the static and dynamic frequency securities of an islanded microgrid are provided in primary and secondary control levels. Besides, to cope with the low inertia stack of islanded microgrids, novel virtual inertia concept is devised based on the precise modeling of droop controlled distributed generation resources. The proposed approach is applied to typical test microgrid. Energy and hierarchical reserve resource are scheduled precisely using a scenario-based stochastic programming methodology. Moreover, analyzing the

  9. Micro- and nanophase separations in hierarchical self-assembly of strongly amphiphilic block copolymer-based ionic supramolecules

    DEFF Research Database (Denmark)

    Ayoubi, Mehran Asad; Zhu, Kaizheng; Nyström, Bo

    2013-01-01

    block), a class of ionic supramolecules are successfully synthesized whose molecular architecture consists of a poly(styrene) PS block (Linear block) covalently connected to a strongly amphiphilic comb-like block (AmphComb block), i.e. Linear-b-AmphComb. In the melt state, these ionic supramolecules can.......20 (SLL/C and SBCC/C) and ∼0.28 (C/L). Finally, the specific influences of the strongly amphiphilic nature of the AmphComb blocks on the observed morphological and hierarchical behaviours of our system are discussed. For reference, stoichiometric strongly amphiphilic comb-like (AmphComb) ionic...

  10. Characterising Event-Based DOM Inputs to an Urban Watershed

    Science.gov (United States)

    Croghan, D.; Bradley, C.; Hannah, D. M.; Van Loon, A.; Sadler, J. P.

    2017-12-01

    Dissolved Organic Matter (DOM) composition in urban streams is dominated by terrestrial inputs after rainfall events. Urban streams have particularly strong terrestrial-riverine connections due to direct input from terrestrial drainage systems. Event driven DOM inputs can have substantial adverse effects on water quality. Despite this, DOM from important catchment sources such as road drains and Combined Sewage Overflows (CSO's) remains poorly characterised within urban watersheds. We studied DOM sources within an urbanised, headwater watershed in Birmingham, UK. Samples from terrestrial sources (roads, roofs and a CSO), were collected manually after the onset of rainfall events of varying magnitude, and again within 24-hrs of the event ending. Terrestrial samples were analysed for fluorescence, absorbance and Dissolved Organic Carbon (DOC) concentration. Fluorescence and absorbance indices were calculated, and Parallel Factor Analysis (PARAFAC) was undertaken to aid sample characterization. Substantial differences in fluorescence, absorbance, and DOC were observed between source types. PARAFAC-derived components linked to organic pollutants were generally highest within road derived samples, whilst humic-like components tended to be highest within roof samples. Samples taken from the CSO generally contained low fluorescence, however this likely represents a dilution effect. Variation within source groups was particularly high, and local land use seemed to be the driving factor for road and roof drain DOM character and DOC quantity. Furthermore, high variation in fluorescence, absorbance and DOC was apparent between all sources depending on event type. Drier antecedent conditions in particular were linked to greater presence of terrestrially-derived components and higher DOC content. Our study indicates that high variations in DOM character occur between source types, and over small spatial scales. Road drains located on main roads appear to contain the poorest

  11. Event Management for Teacher-Coaches: Risk and Supervision Considerations for School-Based Sports

    Science.gov (United States)

    Paiement, Craig A.; Payment, Matthew P.

    2011-01-01

    A professional sports event requires considerable planning in which years are devoted to the success of that single activity. School-based sports events do not have that luxury, because high schools across the country host athletic events nearly every day. It is not uncommon during the fall sports season for a combination of boys' and girls'…

  12. A Resting-State Brain Functional Network Study in MDD Based on Minimum Spanning Tree Analysis and the Hierarchical Clustering

    Directory of Open Access Journals (Sweden)

    Xiaowei Li

    2017-01-01

    Full Text Available A large number of studies demonstrated that major depressive disorder (MDD is characterized by the alterations in brain functional connections which is also identifiable during the brain’s “resting-state.” But, in the present study, the approach of constructing functional connectivity is often biased by the choice of the threshold. Besides, more attention was paid to the number and length of links in brain networks, and the clustering partitioning of nodes was unclear. Therefore, minimum spanning tree (MST analysis and the hierarchical clustering were first used for the depression disease in this study. Resting-state electroencephalogram (EEG sources were assessed from 15 healthy and 23 major depressive subjects. Then the coherence, MST, and the hierarchical clustering were obtained. In the theta band, coherence analysis showed that the EEG coherence of the MDD patients was significantly higher than that of the healthy controls especially in the left temporal region. The MST results indicated the higher leaf fraction in the depressed group. Compared with the normal group, the major depressive patients lost clustering in frontal regions. Our findings suggested that there was a stronger brain interaction in the MDD group and a left-right functional imbalance in the frontal regions for MDD controls.

  13. Hierarchically Three-Dimensional Nanofiber Based Textile with High Conductivity and Biocompatibility As a Microbial Fuel Cell Anode.

    Science.gov (United States)

    Tao, Yifei; Liu, Qiongzhen; Chen, Jiahui; Wang, Bo; Wang, Yuedan; Liu, Ke; Li, Mufang; Jiang, Haiqing; Lu, Zhentan; Wang, Dong

    2016-07-19

    Microbial fuel cells (MFCs) encompass complex bioelectrocatalytic reactions that converting chemical energy of organic compounds to electrical energy. Improving the anode configuration is thought to be a critical step for enhancing MFCs performance. In present study, a hierarchically structured textile polypyrrole/poly(vinyl alcohol-co-polyethylene) nanofibers/poly(ethylene terephthalate) (referred to PPy/NFs/PET) is shown to be excellent anode for MFCs. This hierarchical PPy/NFs/PET anode affords an open porous and three-dimensional interconnecting conductive scaffold with larger surface roughness, facilitating microbial colonization and electron transfer from exoelectrogens to the anode. The mediator-less MFC equipped with PPy/NFs/PET anode achieves a remarkable maximum power density of 2420 mW m(-2) with Escherichia coli as the microbial catalyst at the current density of 5500 mA m(-2), which is approximately 17 times higher compared to a reference anode PPy/PET (144 mW m(-2)). Considering the low cost, low weight, facile fabrication, and good winding, this PPy/NFs/PET textile anode promises a great potential for high-performance and cost-effective MFCs in a large scale.

  14. Credit networks and systemic risk of Chinese local financing platforms: Too central or too big to fail?. -based on different credit correlations using hierarchical methods

    Science.gov (United States)

    He, Fang; Chen, Xi

    2016-11-01

    The accelerating accumulation and risk concentration of Chinese local financing platforms debts have attracted wide attention throughout the world. Due to the network of financial exposures among institutions, the failure of several platforms or regions of systemic importance will probably trigger systemic risk and destabilize the financial system. However, the complex network of credit relationships in Chinese local financing platforms at the state level remains unknown. To fill this gap, we presented the first complex networks and hierarchical cluster analysis of the credit market of Chinese local financing platforms using the ;bottom up; method from firm-level data. Based on balance-sheet channel, we analyzed the topology and taxonomy by applying the analysis paradigm of subdominant ultra-metric space to an empirical data in 2013. It is remarked that we chose to extract the network of co-financed financing platforms in order to evaluate the effect of risk contagion from platforms to bank system. We used the new credit similarity measure by combining the factor of connectivity and size, to extract minimal spanning trees (MSTs) and hierarchical trees (HTs). We found that: (1) the degree distributions of credit correlation backbone structure of Chinese local financing platforms are fat tailed, and the structure is unstable with respect to targeted failures; (2) the backbone is highly hierarchical, and largely explained by the geographic region; (3) the credit correlation backbone structure based on connectivity and size is significantly heterogeneous; (4) key platforms and regions of systemic importance, and contagion path of systemic risk are obtained, which are contributed to preventing systemic risk and regional risk of Chinese local financing platforms and preserving financial stability under the framework of macro prudential supervision. Our approach of credit similarity measure provides a means of recognizing ;systemically important; institutions and regions

  15. Web-based online system for recording and examing of events in power plants

    International Nuclear Information System (INIS)

    Seyd Farshi, S.; Dehghani, M.

    2004-01-01

    Occurrence of events in power plants could results in serious drawbacks in generation of power. This suggests high degree of importance for online recording and examing of events. In this paper an online web-based system is introduced, which records and examines events in power plants. Throughout the paper, procedures for design and implementation of this system, its features and results gained are explained. this system provides predefined level of online access to all data of events for all its users in power plants, dispatching, regional utilities and top-level managers. By implementation of electric power industry intranet, an expandable modular system to be used in different sectors of industry is offered. Web-based online recording and examing system for events offers the following advantages: - Online recording of events in power plants. - Examing of events in regional utilities. - Access to event' data. - Preparing managerial reports

  16. Model Based Verification of Cyber Range Event Environments

    Science.gov (United States)

    2015-11-13

    that may include users, applications, operating systems, servers, hosts, routers, switches, control planes , and instrumentation planes , many of...which lack models for their configuration. Our main contributions in this paper are the following. First, we have developed a configuration ontology...configuration errors in environment designs for several cyber range events. The rest of the paper is organized as follows. Section 2 provides an overview of

  17. Hierarchical ordering with partial pairwise hierarchical relationships on the macaque brain data sets.

    Directory of Open Access Journals (Sweden)

    Woosang Lim

    Full Text Available Hierarchical organizations of information processing in the brain networks have been known to exist and widely studied. To find proper hierarchical structures in the macaque brain, the traditional methods need the entire pairwise hierarchical relationships between cortical areas. In this paper, we present a new method that discovers hierarchical structures of macaque brain networks by using partial information of pairwise hierarchical relationships. Our method uses a graph-based manifold learning to exploit inherent relationship, and computes pseudo distances of hierarchical levels for every pair of cortical areas. Then, we compute hierarchy levels of all cortical areas by minimizing the sum of squared hierarchical distance errors with the hierarchical information of few cortical areas. We evaluate our method on the macaque brain data sets whose true hierarchical levels are known as the FV91 model. The experimental results show that hierarchy levels computed by our method are similar to the FV91 model, and its errors are much smaller than the errors of hierarchical clustering approaches.

  18. Fault trees based on past accidents. Factorial analysis of events

    International Nuclear Information System (INIS)

    Vaillant, M.

    1977-01-01

    The method of the fault tree is already useful in the qualitative step before any reliability calculation. The construction of the tree becomes even simpler when we just want to describe how the events happened. Differently from screenplays that introduce several possibilities by means of the conjunction OR, you only have here the conjunction AND, which will not be written at all. This method is presented by INRS (1) for the study of industrial injuries; it may also be applied to material damages. (orig.) [de

  19. Robust and scalable hierarchical matrix-based fast direct solver and preconditioner for the numerical solution of elliptic partial differential equations

    KAUST Repository

    Chavez, Gustavo Ivan

    2017-07-10

    This dissertation introduces a novel fast direct solver and preconditioner for the solution of block tridiagonal linear systems that arise from the discretization of elliptic partial differential equations on a Cartesian product mesh, such as the variable-coefficient Poisson equation, the convection-diffusion equation, and the wave Helmholtz equation in heterogeneous media. The algorithm extends the traditional cyclic reduction method with hierarchical matrix techniques. The resulting method exposes substantial concurrency, and its arithmetic operations and memory consumption grow only log-linearly with problem size, assuming bounded rank of off-diagonal matrix blocks, even for problems with arbitrary coefficient structure. The method can be used as a standalone direct solver with tunable accuracy, or as a black-box preconditioner in conjunction with Krylov methods. The challenges that distinguish this work from other thrusts in this active field are the hybrid distributed-shared parallelism that can demonstrate the algorithm at large-scale, full three-dimensionality, and the three stressors of the current state-of-the-art multigrid technology: high wavenumber Helmholtz (indefiniteness), high Reynolds convection (nonsymmetry), and high contrast diffusion (inhomogeneity). Numerical experiments corroborate the robustness, accuracy, and complexity claims and provide a baseline of the performance and memory footprint by comparisons with competing approaches such as the multigrid solver hypre, and the STRUMPACK implementation of the multifrontal factorization with hierarchically semi-separable matrices. The companion implementation can utilize many thousands of cores of Shaheen, KAUST\\'s Haswell-based Cray XC-40 supercomputer, and compares favorably with other implementations of hierarchical solvers in terms of time-to-solution and memory consumption.

  20. A systematic investigation of SO2 removal dynamics by coal-based activated cokes: The synergic enhancement effect of hierarchical pore configuration and gas components

    Science.gov (United States)

    Sun, Fei; Gao, Jihui; Liu, Xin; Tang, Xiaofan; Wu, Shaohua

    2015-12-01

    For the aim to break through the long-term roadblock to porous carbon based SO2 removal technology, typical coal-based activated cokes differing in terms of surface area, pore configuration and surface functional properties, were employed to investigate the SO2 removal dynamics. Among the employed activated cokes, the one with a hierarchically porous structure greatly enhanced the SO2 removal dynamics under the simulated flue gas compositions. More detailedly, SO2 separate adsorption property under normal temperature and pressure evidenced that monolayer SO2 molecules anchoring on micropore surface is the main adsorption pattern. The catalytic oxidation of SO2 follows the Eley-Rideal mechanism by which SO2 was firstly oxidized by molecular oxygen into SO3 which could depart partially to release the active sites for further adsorption. For the role of hierarchical pore configuration, it was proposed that micropores serve as gas adsorption and reaction accommodation, meso-/macropores act as byproduct H2SO4 transport and buffing reservoirs, which may in turn gives rise to the recovery of active sites in micropores and guarantees the continuous proceeding of sulfur-containing species transformation in the micropores. The present results suggest that pore configuration or interconnecting pattern, but not mere surface area or pore volume, should be favourably considered for optimizing heterogeneous gas-solid adsorption and reaction.

  1. A method for identifying hierarchical sub-networks / modules and weighting network links based on their similarity in sub-network / module affiliation

    Directory of Open Access Journals (Sweden)

    WenJun Zhang

    2016-06-01

    Full Text Available Some networks, including biological networks, consist of hierarchical sub-networks / modules. Based on my previous study, in present study a method for both identifying hierarchical sub-networks / modules and weighting network links is proposed. It is based on the cluster analysis in which between-node similarity in sets of adjacency nodes is used. Two matrices, linkWeightMat and linkClusterIDs, are achieved by using the algorithm. Two links with both the same weight in linkWeightMat and the same cluster ID in linkClusterIDs belong to the same sub-network / module. Two links with the same weight in linkWeightMat but different cluster IDs in linkClusterIDs belong to two sub-networks / modules at the same hirarchical level. However, a link with an unique cluster ID in linkClusterIDs does not belong to any sub-networks / modules. A sub-network / module of the greater weight is the more connected sub-network / modules. Matlab codes of the algorithm are presented.

  2. Detailed Sponge City Planning Based on Hierarchical Fuzzy Decision-Making: A Case Study on Yangchen Lake

    Directory of Open Access Journals (Sweden)

    Junyu Zhang

    2017-11-01

    Full Text Available We proposed a Hierarchical Fuzzy Inference System (HFIS framework to offer better decision supports with fewer user-defined data (uncertainty. The framework consists two parts: a fuzzified Geographic Information System (GIS and a HFIS system. The former provides comprehensive information on the criterion unit and the latter helps in making more robust decisions. The HFIS and the traditional Multi-Criteria Decision Making (MCDM method were applied to a case study and compared. The fuzzified GIS maps maintained a majority of the dominant characteristics of the criterion unit but also revealed some non-significant information according to the surrounding environment. The urban planning map generated by the two methods shares similar strategy choices (6% difference, while the spatial distribution of strategies shares 69.7% in common. The HFIS required fewer subjective decisions than the MCDM (34 user-defined decision rules vs. 141 manual evaluations.

  3. Hierarchical energy management system for stand-alone hybrid system based on generation costs and cascade control

    International Nuclear Information System (INIS)

    Torreglosa, J.P.; García, P.; Fernández, L.M.; Jurado, F.

    2014-01-01

    Highlights: • We present an energy management system for a stand-alone WT/PV/hydrogen/battery hybrid system. • Hierarchical control composed by master and slave control strategies. • Control assures reliable electricity support for stand-alone applications subject to technical and economic criteria. - Abstract: This paper presents an energy management system (EMS) for stand-alone hybrid systems composed by photovoltaic (PV) solar panels and a wind turbine (WT) as primary energy sources and two energy storage systems, which are a hydrogen system and a battery. The hydrogen system is composed of fuel cell (FC), electrolyzer and hydrogen storage tank. The EMS is a hierarchical control composed by a master control strategy and a slave control strategy. On the one hand, the master control generates the reference powers to meet several premises (such as to satisfy the load power demand, and to maintain the hydrogen tank level and the state of charge (SOC) of the battery between their target margins), taking also into account economic aspects to discriminate between using the battery or hydrogen system. On the other hand, the slave control modifies the reference powers generated by the master control according to the energy sources dynamic limitations, and maintains the DC bus voltage at its reference value. The models, implemented in MATLAB-Simulink environment, have been developed from commercially available components. To check the viability of the proposed EMS, two kinds of simulations were carried out: (1) A long-term simulation of 25 years (expected lifetime of the system) with a sample time of one hour to validate the master control of the EMS; and (2) A short-term simulation with sudden net power variations to validate the slave control of the EMS

  4. StoRMon: an event log analyzer for Grid Storage Element based on StoRM

    International Nuclear Information System (INIS)

    Zappi, Riccardo; Dal Pra, Stefano; Dibenedetto, Michele; Ronchieri, Elisabetta

    2011-01-01

    Managing a collaborative production Grid infrastructure requires to identify and handle every issue, which might arise, in a timely manner. Currently, the most complex problem of the data Grid infrastructure relates to the data management because of its distributed nature. To ensure that problems are quickly addressed and solved, each site should contribute to the solution providing any useful information about services that run in its administrative domain. Often Grid sites' administrators to be effective must collect, organize and examine the scattered logs events that are produced from every service and component of the Storage Element. This paper focuses on the problem of gathering the events logs on a Grid Storage Element and describes the design of a new service, called StoRMon. StoRMon will be able to collect, archive, analyze and report on events logs produced by each service of Storage Element during the execution of its tasks. The data and the processed information will be available to the site administrators by using a single contact-point to easily identify security incidents, fraudulent activity, and the operational issues mainly. The new service is applied to a Grid Storage Element characterized by StoRM, GridFTP and YAMSS, and collects the usage data of StoRM, transferring and hierarchical storage services.

  5. Fire!: An Event-Based Science Module. Teacher's Guide. Chemistry and Fire Ecology Module.

    Science.gov (United States)

    Wright, Russell G.

    This book is designed for middle school earth science or physical science teachers to help their students learn scientific literacy through event-based science. Unlike traditional curricula, the event- based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork,…

  6. Volcano!: An Event-Based Science Module. Student Edition. Geology Module.

    Science.gov (United States)

    Wright, Russell G.

    This book is designed for middle school students to learn scientific literacy through event-based science. Unlike traditional curricula, the event-based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork, independent research, hands-on investigations, and…

  7. Volcano!: An Event-Based Science Module. Teacher's Guide. Geology Module.

    Science.gov (United States)

    Wright, Russell G.

    This book is designed for middle school earth science teachers to help their students learn scientific literacy through event-based science. Unlike traditional curricula, the event-based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork, independent research,…

  8. Event-building and PC farm based level-3 trigger at the CDF experiment

    CERN Document Server

    Anikeev, K; Furic, I K; Holmgren, D; Korn, A J; Kravchenko, I V; Mulhearn, M; Ngan, P; Paus, C; Rakitine, A; Rechenmacher, R; Shah, T; Sphicas, Paris; Sumorok, K; Tether, S; Tseng, J

    2000-01-01

    In the technical design report the event building process at Fermilab's CDF experiment is required to function at an event rate of 300 events/sec. The events are expected to have an average size of 150 kBytes (kB) and are assembled from fragments of 16 readout locations. The fragment size from the different locations varies between 12 kB and 16 kB. Once the events are assembled they are fed into the Level-3 trigger which is based on processors running programs to filter events using the full event information. Computing power on the order of a second on a Pentium II processor is required per event. The architecture design is driven by the cost and is therefore based on commodity components: VME processor modules running VxWorks for the readout, an ATM switch for the event building, and Pentium PCs running Linux as an operation system for the Level-3 event processing. Pentium PCs are also used to receive events from the ATM switch and further distribute them to the processing nodes over multiple 100 Mbps Ether...

  9. Long-Life Lithium-Sulfur Battery Derived from Nori-Based Nitrogen and Oxygen Dual-Doped 3D Hierarchical Biochar.

    Science.gov (United States)

    Wu, Xian; Fan, Lishuang; Wang, Maoxu; Cheng, Junhan; Wu, Hexian; Guan, Bin; Zhang, Naiqing; Sun, Kening

    2017-06-07

    Due to restrictions on the low conductivity of sulfur and soluble polysulfides during discharge, lithium sulfur batteries are unsuitable for further large scale applications. The current carbon based cathodes suffer from poor cycle stability and high cost. Recently, heteroatom doped carbons have been considered as a settlement to enhance the performance of lithium sulfur batteries. With this strategy, we report the low cost activated nori based N,O-doped 3D hierarchical carbon material (ANC) as a sulfur host. The N,O dual-doped ANC reveals an elevated electrochemical performance, which exhibits not only a good rate performance over 5 C, but also a high sulfur content of 81.2%. Further importantly, the ANC represents an excellent cycling stability, the cathode reserves a capacity of 618 mAh/g at 2 C after 1000 cycles, which shows a 0.022% capacity decay per cycle.

  10. Wafer-Scale Hierarchical Nanopillar Arrays Based on Au Masks and Reactive Ion Etching for Effective 3D SERS Substrate

    Directory of Open Access Journals (Sweden)

    Dandan Men

    2018-02-01

    Full Text Available Two-dimensional (2D periodic micro/nanostructured arrays as SERS substrates have attracted intense attention due to their excellent uniformity and good stability. In this work, periodic hierarchical SiO2 nanopillar arrays decorated with Ag nanoparticles (NPs with clean surface were prepared on a wafer-scale using monolayer Au NP arrays as masks, followed by reactive ion etching (RIE, depositing Ag layer and annealing. For the prepared SiO2 nanopillar arrays decorated with Ag NPs, the size of Ag NPs was tuned from ca. 24 to 126 nanometers by controlling the deposition thickness of Ag film. Importantly, the SiO2 nanopillar arrays decorated with Ag NPs could be used as highly sensitive SERS substrate for the detection of 4-aminothiophenol (4-ATP and rhodamine 6G (R6G due to the high loading of Ag NPs and a very uniform morphology. With a deposition thickness of Ag layer of 30 nm, the SiO2 nanopillar arrays decorated with Ag NPs exhibited the best sensitive SERS activity. The excellent SERS performance of this substrate is mainly attributed to high-density “hotspots” derived from nanogaps between Ag NPs. Furthermore, this strategy might be extended to synthesize other nanostructured arrays with a large area, which are difficult to be prepared only via conventional wet-chemical or physical methods.

  11. Wafer-Scale Hierarchical Nanopillar Arrays Based on Au Masks and Reactive Ion Etching for Effective 3D SERS Substrate.

    Science.gov (United States)

    Men, Dandan; Wu, Yingyi; Wang, Chu; Xiang, Junhuai; Yang, Ganlan; Wan, Changjun; Zhang, Honghua

    2018-02-04

    Two-dimensional (2D) periodic micro/nanostructured arrays as SERS substrates have attracted intense attention due to their excellent uniformity and good stability. In this work, periodic hierarchical SiO₂ nanopillar arrays decorated with Ag nanoparticles (NPs) with clean surface were prepared on a wafer-scale using monolayer Au NP arrays as masks, followed by reactive ion etching (RIE), depositing Ag layer and annealing. For the prepared SiO₂ nanopillar arrays decorated with Ag NPs, the size of Ag NPs was tuned from ca. 24 to 126 nanometers by controlling the deposition thickness of Ag film. Importantly, the SiO₂ nanopillar arrays decorated with Ag NPs could be used as highly sensitive SERS substrate for the detection of 4-aminothiophenol (4-ATP) and rhodamine 6G (R6G) due to the high loading of Ag NPs and a very uniform morphology. With a deposition thickness of Ag layer of 30 nm, the SiO₂ nanopillar arrays decorated with Ag NPs exhibited the best sensitive SERS activity. The excellent SERS performance of this substrate is mainly attributed to high-density "hotspots" derived from nanogaps between Ag NPs. Furthermore, this strategy might be extended to synthesize other nanostructured arrays with a large area, which are difficult to be prepared only via conventional wet-chemical or physical methods.

  12. Hierarchical Bayesian analysis of outcome- and process-based social preferences and beliefs in Dictator Games and sequential Prisoner's Dilemmas.

    Science.gov (United States)

    Aksoy, Ozan; Weesie, Jeroen

    2014-05-01

    In this paper, using a within-subjects design, we estimate the utility weights that subjects attach to the outcome of their interaction partners in four decision situations: (1) binary Dictator Games (DG), second player's role in the sequential Prisoner's Dilemma (PD) after the first player (2) cooperated and (3) defected, and (4) first player's role in the sequential Prisoner's Dilemma game. We find that the average weights in these four decision situations have the following order: (1)>(2)>(4)>(3). Moreover, the average weight is positive in (1) but negative in (2), (3), and (4). Our findings indicate the existence of strong negative and small positive reciprocity for the average subject, but there is also high interpersonal variation in the weights in these four nodes. We conclude that the PD frame makes subjects more competitive than the DG frame. Using hierarchical Bayesian modeling, we simultaneously analyze beliefs of subjects about others' utility weights in the same four decision situations. We compare several alternative theoretical models on beliefs, e.g., rational beliefs (Bayesian-Nash equilibrium) and a consensus model. Our results on beliefs strongly support the consensus effect and refute rational beliefs: there is a strong relationship between own preferences and beliefs and this relationship is relatively stable across the four decision situations. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Multifunctional substrate of Al alloy based on general hierarchical micro/nanostructures: superamphiphobicity and enhanced corrosion resistance

    Science.gov (United States)

    Li, Xuewu; Shi, Tian; Liu, Cong; Zhang, Qiaoxin; Huang, Xingjiu

    2016-10-01

    Aluminum alloys are vulnerable to penetrating and peeling failures in seawater and preparing a barrier coating to isolate the substrate from corrosive medium is an effective anticorrosion method. Inspired by the lotus leaves effect, a wetting alloy surface with enhanced anticorrosion behavior has been prepared via etch, deposition, and low-surface-energy modification. Results indicate that excellent superamphiphobicity has been achieved after the modification of the constructed hierarchical labyrinth-like microstructures and dendritic nanostructures. The as-prepared surface is also found with good chemical stability and mechanical durability. Furthermore, superior anticorrosion behaviors of the resultant samples in seawater are investigated by electrochemical measurements. Due to trapped air in micro/nanostructures, the newly presented solid-air-liquid contacting interface can help to resist the seawater penetration by greatly reducing the interface interaction between corrosive ions and the superamphiphobic surface. Finally, an optimized two-layer perceptron artificial neural network is set up to model and predict the cause-and-effect relationship between preparation conditions and the anticorrosion parameters. This work provides a great potential to extend the applications of aluminum alloys especially in marine engineering fields.

  14. Knowledge based query expansion in complex multimedia event detection

    NARCIS (Netherlands)

    Boer, M. de; Schutte, K.; Kraaij, W.

    2016-01-01

    A common approach in content based video information retrieval is to perform automatic shot annotation with semantic labels using pre-trained classifiers. The visual vocabulary of state-of-the-art automatic annotation systems is limited to a few thousand concepts, which creates a semantic gap

  15. Knowledge based query expansion in complex multimedia event detection

    NARCIS (Netherlands)

    Boer, M.H.T. de; Schutte, K.; Kraaij, W.

    2015-01-01

    A common approach in content based video information retrieval is to perform automatic shot annotation with semantic labels using pre-trained classifiers. The visual vocabulary of state-of-the-art automatic annotation systems is limited to a few thousand concepts, which creates a semantic gap

  16. Catalysis with hierarchical zeolites

    DEFF Research Database (Denmark)

    Holm, Martin Spangsberg; Taarning, Esben; Egeblad, Kresten

    2011-01-01

    Hierarchical (or mesoporous) zeolites have attracted significant attention during the first decade of the 21st century, and so far this interest continues to increase. There have already been several reviews giving detailed accounts of the developments emphasizing different aspects of this research...... topic. Until now, the main reason for developing hierarchical zeolites has been to achieve heterogeneous catalysts with improved performance but this particular facet has not yet been reviewed in detail. Thus, the present paper summaries and categorizes the catalytic studies utilizing hierarchical...... zeolites that have been reported hitherto. Prototypical examples from some of the different categories of catalytic reactions that have been studied using hierarchical zeolite catalysts are highlighted. This clearly illustrates the different ways that improved performance can be achieved with this family...

  17. Hierarchical Network Design

    DEFF Research Database (Denmark)

    Thomadsen, Tommy

    2005-01-01

    Communication networks are immensely important today, since both companies and individuals use numerous services that rely on them. This thesis considers the design of hierarchical (communication) networks. Hierarchical networks consist of layers of networks and are well-suited for coping...... with changing and increasing demands. Two-layer networks consist of one backbone network, which interconnects cluster networks. The clusters consist of nodes and links, which connect the nodes. One node in each cluster is a hub node, and the backbone interconnects the hub nodes of each cluster and thus...... the clusters. The design of hierarchical networks involves clustering of nodes, hub selection, and network design, i.e. selection of links and routing of ows. Hierarchical networks have been in use for decades, but integrated design of these networks has only been considered for very special types of networks...

  18. Micromechanics of hierarchical materials

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon, Jr.

    2012-01-01

    A short overview of micromechanical models of hierarchical materials (hybrid composites, biomaterials, fractal materials, etc.) is given. Several examples of the modeling of strength and damage in hierarchical materials are summarized, among them, 3D FE model of hybrid composites...... with nanoengineered matrix, fiber bundle model of UD composites with hierarchically clustered fibers and 3D multilevel model of wood considered as a gradient, cellular material with layered composite cell walls. The main areas of research in micromechanics of hierarchical materials are identified, among them......, the investigations of the effects of load redistribution between reinforcing elements at different scale levels, of the possibilities to control different material properties and to ensure synergy of strengthening effects at different scale levels and using the nanoreinforcement effects. The main future directions...

  19. Programming with Hierarchical Maps

    DEFF Research Database (Denmark)

    Ørbæk, Peter

    This report desribes the hierarchical maps used as a central data structure in the Corundum framework. We describe its most prominent features, ague for its usefulness and briefly describe some of the software prototypes implemented using the technology....

  20. Introduction into Hierarchical Matrices

    KAUST Repository

    Litvinenko, Alexander

    2013-12-05

    Hierarchical matrices allow us to reduce computational storage and cost from cubic to almost linear. This technique can be applied for solving PDEs, integral equations, matrix equations and approximation of large covariance and precision matrices.

  1. Introduction into Hierarchical Matrices

    KAUST Repository

    Litvinenko, Alexander

    2013-01-01

    Hierarchical matrices allow us to reduce computational storage and cost from cubic to almost linear. This technique can be applied for solving PDEs, integral equations, matrix equations and approximation of large covariance and precision matrices.

  2. Tag and Neighbor based Recommender systems for Medical events

    DEFF Research Database (Denmark)

    Bayyapu, Karunakar Reddy; Dolog, Peter

    2010-01-01

    This paper presents an extension of a multifactor recommendation approach based on user tagging with term neighbours. Neighbours of words in tag vectors and documents provide for hitting larger set of documents and not only those matching with direct tag vectors or content of the documents. Tag...... in the situations where the quality of tags is lower. We discuss the approach on the examples from the existing Medworm system to indicate the usefulness of the approach....

  3. GPS-based PWV for precipitation forecasting and its application to a typhoon event

    Science.gov (United States)

    Zhao, Qingzhi; Yao, Yibin; Yao, Wanqiang

    2018-01-01

    The temporal variability of precipitable water vapour (PWV) derived from Global Navigation Satellite System (GNSS) observations can be used to forecast precipitation events. A number of case studies of precipitation events have been analysed in Zhejiang Province, and a forecasting method for precipitation events was proposed. The PWV time series retrieved from the Global Positioning System (GPS) observations was processed by using a least-squares fitting method, so as to obtain the line tendency of ascents and descents over PWV. The increment of PWV for a short time (two to six hours) and PWV slope for a longer time (a few hours to more than ten hours) during the PWV ascending period are considered as predictive factors with which to forecast the precipitation event. The numerical results show that about 80%-90% of precipitation events and more than 90% of heavy rain events can be forecasted two to six hours in advance of the precipitation event based on the proposed method. 5-minute PWV data derived from GPS observations based on real-time precise point positioning (RT-PPP) were used for the typhoon event that passed over Zhejiang Province between 10 and 12 July, 2015. A good result was acquired using the proposed method and about 74% of precipitation events were predicted at some ten to thirty minutes earlier than their onset with a false alarm rate of 18%. This study shows that the GPS-based PWV was promising for short-term and now-casting precipitation forecasting.

  4. Photovoltaic and Impedance Properties of Hierarchical TiO2 Nanowire Based Quantum Dot Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Amanullah Fatehmulla

    2015-01-01

    Full Text Available Growth and characterization of TiO2 nanowire (NW assemblies on FTO glass using a typical hydrothermal synthesis have been reported. CdS quantum dots (QDs have been deposited on TiO2 nanowires by successive ion layer adsorption and reaction (SILAR method. FESEM image exhibits the flower-like hierarchical TiO2 bunch of nanowires. HRTEM image confirms the size of CdS QDs between 5 and 6 nm. XRD and absorption studies revealed proper growth of CdS quantum dots on TiO2 nanowires. At AM 1.5 illumination intensity, the solar cell, with the configuration FTO/TiO2-NW/CdS-QDs/Pt-FTO, displays a short circuit current (Jsc of 1.295 mA and an open circuit voltage (Voc of 0.38 V. The Voc and Jsc showed linear behavior at higher illumination intensities. The peak in power-voltage characteristics at various illuminations showed a shift towards higher Voc values. Capacitance-voltage (C-V, conductance-voltage (G-V, and series resistance-voltage (Rs-V measurements of the cell in the frequency ranging from 5 kHz to 5 MHz showed decreasing trend of capacitance with increase of frequency whereas increase in conductance and decrease in resistance have been noticed with increase of frequency. All the results including the individual behavior of the plots of capacitance, conductance, and series resistance as a function of bias voltage have been discussed.

  5. Discrete Event System Based Pyroprocessing Modeling and Simulation: Oxide Reduction

    International Nuclear Information System (INIS)

    Lee, H. J.; Ko, W. I.; Choi, S. Y.; Kim, S. K.; Hur, J. M.; Choi, E. Y.; Im, H. S.; Park, K. I.; Kim, I. T.

    2014-01-01

    Dynamic changes according to the batch operation cannot be predicted in an equilibrium material flow. This study began to build a dynamic material balance model based on the previously developed pyroprocessing flowsheet. As a mid- and long-term research, an integrated pyroprocessing simulator is being developed at the Korea Atomic Energy Research Institute (KAERI) to cope with a review on the technical feasibility, safeguards assessment, conceptual design of facility, and economic feasibility evaluation. The most fundamental thing in such a simulator development is to establish the dynamic material flow framework. This study focused on the operation modeling of pyroprocessing to implement a dynamic material flow. As a case study, oxide reduction was investigated in terms of a dynamic material flow. DES based modeling was applied to build a pyroprocessing operation model. A dynamic material flow as the basic framework for an integrated pyroprocessing was successfully implemented through ExtendSim's internal database and item blocks. Complex operation logic behavior was verified, for example, an oxide reduction process in terms of dynamic material flow. Compared to the equilibrium material flow, a model-based dynamic material flow provides such detailed information that a careful analysis of every batch is necessary to confirm the dynamic material balance results. With the default scenario of oxide reduction, the batch mass balance was verified in comparison with a one-year equilibrium mass balance. This study is still under progress with a mid-and long-term goal, the development of a multi-purpose pyroprocessing simulator that is able to cope with safeguards assessment, economic feasibility, technical evaluation, conceptual design, and support of licensing for a future pyroprocessing facility

  6. Cognitive load and task condition in event- and time-based prospective memory: an experimental investigation.

    Science.gov (United States)

    Khan, Azizuddin; Sharma, Narendra K; Dixit, Shikha

    2008-09-01

    Prospective memory is memory for the realization of delayed intention. Researchers distinguish 2 kinds of prospective memory: event- and time-based (G. O. Einstein & M. A. McDaniel, 1990). Taking that distinction into account, the present authors explored participants' comparative performance under event- and time-based tasks. In an experimental study of 80 participants, the authors investigated the roles of cognitive load and task condition in prospective memory. Cognitive load (low vs. high) and task condition (event- vs. time-based task) were the independent variables. Accuracy in prospective memory was the dependent variable. Results showed significant differential effects under event- and time-based tasks. However, the effect of cognitive load was more detrimental in time-based prospective memory. Results also revealed that time monitoring is critical in successful performance of time estimation and so in time-based prospective memory. Similarly, participants' better performance on the event-based prospective memory task showed that they acted on the basis of environment cues. Event-based prospective memory was environmentally cued; time-based prospective memory required self-initiation.

  7. Automatic Hierarchical Color Image Classification

    Directory of Open Access Journals (Sweden)

    Jing Huang

    2003-02-01

    Full Text Available Organizing images into semantic categories can be extremely useful for content-based image retrieval and image annotation. Grouping images into semantic classes is a difficult problem, however. Image classification attempts to solve this hard problem by using low-level image features. In this paper, we propose a method for hierarchical classification of images via supervised learning. This scheme relies on using a good low-level feature and subsequently performing feature-space reconfiguration using singular value decomposition to reduce noise and dimensionality. We use the training data to obtain a hierarchical classification tree that can be used to categorize new images. Our experimental results suggest that this scheme not only performs better than standard nearest-neighbor techniques, but also has both storage and computational advantages.

  8. Assessing uncertainty in extreme events: Applications to risk-based decision making in interdependent infrastructure sectors

    International Nuclear Information System (INIS)

    Barker, Kash; Haimes, Yacov Y.

    2009-01-01

    Risk-based decision making often relies upon expert probability assessments, particularly in the consequences of disruptive events and when such events are extreme or catastrophic in nature. Naturally, such expert-elicited probability distributions can be fraught with errors, as they describe events which occur very infrequently and for which only sparse data exist. This paper presents a quantitative framework, the extreme event uncertainty sensitivity impact method (EE-USIM), for measuring the sensitivity of extreme event consequences to uncertainties in the parameters of the underlying probability distribution. The EE-USIM is demonstrated with the Inoperability input-output model (IIM), a model with which to evaluate the propagation of inoperability throughout an interdependent set of economic and infrastructure sectors. The EE-USIM also makes use of a two-sided power distribution function generated by expert elicitation of extreme event consequences

  9. Design a Learning-Oriented Fall Event Reporting System Based on Kirkpatrick Model.

    Science.gov (United States)

    Zhou, Sicheng; Kang, Hong; Gong, Yang

    2017-01-01

    Patient fall has been a severe problem in healthcare facilities around the world due to its prevalence and cost. Routine fall prevention training programs are not as effective as expected. Using event reporting systems is the trend for reducing patient safety events such as falls, although some limitations of the systems exist at current stage. We summarized these limitations through literature review, and developed an improved web-based fall event reporting system. The Kirkpatrick model, widely used in the business area for training program evaluation, has been integrated during the design of our system. Different from traditional event reporting systems that only collect and store the reports, our system automatically annotates and analyzes the reported events, and provides users with timely knowledge support specific to the reported event. The paper illustrates the design of our system and how its features are intended to reduce patient falls by learning from previous errors.

  10. The analysis of the initiating events in thorium-based molten salt reactor

    International Nuclear Information System (INIS)

    Zuo Jiaxu; Song Wei; Jing Jianping; Zhang Chunming

    2014-01-01

    The initiation events analysis and evaluation were the beginning of nuclear safety analysis and probabilistic safety analysis, and it was the key points of the nuclear safety analysis. Currently, the initiation events analysis method and experiences both focused on water reactor, but no methods and theories for thorium-based molten salt reactor (TMSR). With TMSR's research and development in China, the initiation events analysis and evaluation was increasingly important. The research could be developed from the PWR analysis theories and methods. Based on the TMSR's design, the theories and methods of its initiation events analysis could be researched and developed. The initiation events lists and analysis methods of the two or three generation PWR, high-temperature gascooled reactor and sodium-cooled fast reactor were summarized. Based on the TMSR's design, its initiation events would be discussed and developed by the logical analysis. The analysis of TMSR's initiation events was preliminary studied and described. The research was important to clarify the events analysis rules, and useful to TMSR's designs and nuclear safety analysis. (authors)

  11. A scheme for PET data normalization in event-based motion correction

    International Nuclear Information System (INIS)

    Zhou, Victor W; Kyme, Andre Z; Fulton, Roger; Meikle, Steven R

    2009-01-01

    Line of response (LOR) rebinning is an event-based motion-correction technique for positron emission tomography (PET) imaging that has been shown to compensate effectively for rigid motion. It involves the spatial transformation of LORs to compensate for motion during the scan, as measured by a motion tracking system. Each motion-corrected event is then recorded in the sinogram bin corresponding to the transformed LOR. It has been shown previously that the corrected event must be normalized using a normalization factor derived from the original LOR, that is, based on the pair of detectors involved in the original coincidence event. In general, due to data compression strategies (mashing), sinogram bins record events detected on multiple LORs. The number of LORs associated with a sinogram bin determines the relative contribution of each LOR. This paper provides a thorough treatment of event-based normalization during motion correction of PET data using LOR rebinning. We demonstrate theoretically and experimentally that normalization of the corrected event during LOR rebinning should account for the number of LORs contributing to the sinogram bin into which the motion-corrected event is binned. Failure to account for this factor may cause artifactual slice-to-slice count variations in the transverse slices and visible horizontal stripe artifacts in the coronal and sagittal slices of the reconstructed images. The theory and implementation of normalization in conjunction with the LOR rebinning technique is described in detail, and experimental verification of the proposed normalization method in phantom studies is presented.

  12. Hierarchical screening for multiple mental disorders.

    Science.gov (United States)

    Batterham, Philip J; Calear, Alison L; Sunderland, Matthew; Carragher, Natacha; Christensen, Helen; Mackinnon, Andrew J

    2013-10-01

    There is a need for brief, accurate screening when assessing multiple mental disorders. Two-stage hierarchical screening, consisting of brief pre-screening followed by a battery of disorder-specific scales for those who meet diagnostic criteria, may increase the efficiency of screening without sacrificing precision. This study tested whether more efficient screening could be gained using two-stage hierarchical screening than by administering multiple separate tests. Two Australian adult samples (N=1990) with high rates of psychopathology were recruited using Facebook advertising to examine four methods of hierarchical screening for four mental disorders: major depressive disorder, generalised anxiety disorder, panic disorder and social phobia. Using K6 scores to determine whether full screening was required did not increase screening efficiency. However, pre-screening based on two decision tree approaches or item gating led to considerable reductions in the mean number of items presented per disorder screened, with estimated item reductions of up to 54%. The sensitivity of these hierarchical methods approached 100% relative to the full screening battery. Further testing of the hierarchical screening approach based on clinical criteria and in other samples is warranted. The results demonstrate that a two-phase hierarchical approach to screening multiple mental disorders leads to considerable increases efficiency gains without reducing accuracy. Screening programs should take advantage of prescreeners based on gating items or decision trees to reduce the burden on respondents. © 2013 Elsevier B.V. All rights reserved.

  13. THE EFFECT OF DEVOTEE-BASED BRAND EQUITY ON RELIGIOUS EVENTS

    Directory of Open Access Journals (Sweden)

    MUHAMMAD JAWAD IQBAL

    2016-04-01

    Full Text Available The objective of this research is to apply DBBE model to discover the constructs to measure the religious event as a business brand on the bases of devotees’ perception. SEM technique was applied to measure the hypothesized model of which CFA put to analyze the model and a theoretical model was made to measure the model fit. Sample size was of 500. The base of brand loyalty was affected directly by image and quality. This information might be beneficial to event management and sponsors in making brand and operating visitors’ destinations. More importantly, the brand of these religious events in Pakistan can be built as a strong tourism product.

  14. Parallel hierarchical radiosity rendering

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Michael [Iowa State Univ., Ames, IA (United States)

    1993-07-01

    In this dissertation, the step-by-step development of a scalable parallel hierarchical radiosity renderer is documented. First, a new look is taken at the traditional radiosity equation, and a new form is presented in which the matrix of linear system coefficients is transformed into a symmetric matrix, thereby simplifying the problem and enabling a new solution technique to be applied. Next, the state-of-the-art hierarchical radiosity methods are examined for their suitability to parallel implementation, and scalability. Significant enhancements are also discovered which both improve their theoretical foundations and improve the images they generate. The resultant hierarchical radiosity algorithm is then examined for sources of parallelism, and for an architectural mapping. Several architectural mappings are discussed. A few key algorithmic changes are suggested during the process of making the algorithm parallel. Next, the performance, efficiency, and scalability of the algorithm are analyzed. The dissertation closes with a discussion of several ideas which have the potential to further enhance the hierarchical radiosity method, or provide an entirely new forum for the application of hierarchical methods.

  15. WILBER and PyWEED: Event-based Seismic Data Request Tools

    Science.gov (United States)

    Falco, N.; Clark, A.; Trabant, C. M.

    2017-12-01

    WILBER and PyWEED are two user-friendly tools for requesting event-oriented seismic data. Both tools provide interactive maps and other controls for browsing and filtering event and station catalogs, and downloading data for selected event/station combinations, where the data window for each event/station pair may be defined relative to the arrival time of seismic waves from the event to that particular station. Both tools allow data to be previewed visually, and can download data in standard miniSEED, SAC, and other formats, complete with relevant metadata for performing instrument correction. WILBER is a web application requiring only a modern web browser. Once the user has selected an event, WILBER identifies all data available for that time period, and allows the user to select stations based on criteria such as the station's distance and orientation relative to the event. When the user has finalized their request, the data is collected and packaged on the IRIS server, and when it is ready the user is sent a link to download. PyWEED is a downloadable, cross-platform (Macintosh / Windows / Linux) application written in Python. PyWEED allows a user to select multiple events and stations, and will download data for each event/station combination selected. PyWEED is built around the ObsPy seismic toolkit, and allows direct interaction and control of the application through a Python interactive console.

  16. Statistical Significance for Hierarchical Clustering

    Science.gov (United States)

    Kimes, Patrick K.; Liu, Yufeng; Hayes, D. Neil; Marron, J. S.

    2017-01-01

    Summary Cluster analysis has proved to be an invaluable tool for the exploratory and unsupervised analysis of high dimensional datasets. Among methods for clustering, hierarchical approaches have enjoyed substantial popularity in genomics and other fields for their ability to simultaneously uncover multiple layers of clustering structure. A critical and challenging question in cluster analysis is whether the identified clusters represent important underlying structure or are artifacts of natural sampling variation. Few approaches have been proposed for addressing this problem in the context of hierarchical clustering, for which the problem is further complicated by the natural tree structure of the partition, and the multiplicity of tests required to parse the layers of nested clusters. In this paper, we propose a Monte Carlo based approach for testing statistical significance in hierarchical clustering which addresses these issues. The approach is implemented as a sequential testing procedure guaranteeing control of the family-wise error rate. Theoretical justification is provided for our approach, and its power to detect true clustering structure is illustrated through several simulation studies and applications to two cancer gene expression datasets. PMID:28099990

  17. A semi-supervised learning framework for biomedical event extraction based on hidden topics.

    Science.gov (United States)

    Zhou, Deyu; Zhong, Dayou

    2015-05-01

    Scientists have devoted decades of efforts to understanding the interaction between proteins or RNA production. The information might empower the current knowledge on drug reactions or the development of certain diseases. Nevertheless, due to the lack of explicit structure, literature in life science, one of the most important sources of this information, prevents computer-based systems from accessing. Therefore, biomedical event extraction, automatically acquiring knowledge of molecular events in research articles, has attracted community-wide efforts recently. Most approaches are based on statistical models, requiring large-scale annotated corpora to precisely estimate models' parameters. However, it is usually difficult to obtain in practice. Therefore, employing un-annotated data based on semi-supervised learning for biomedical event extraction is a feasible solution and attracts more interests. In this paper, a semi-supervised learning framework based on hidden topics for biomedical event extraction is presented. In this framework, sentences in the un-annotated corpus are elaborately and automatically assigned with event annotations based on their distances to these sentences in the annotated corpus. More specifically, not only the structures of the sentences, but also the hidden topics embedded in the sentences are used for describing the distance. The sentences and newly assigned event annotations, together with the annotated corpus, are employed for training. Experiments were conducted on the multi-level event extraction corpus, a golden standard corpus. Experimental results show that more than 2.2% improvement on F-score on biomedical event extraction is achieved by the proposed framework when compared to the state-of-the-art approach. The results suggest that by incorporating un-annotated data, the proposed framework indeed improves the performance of the state-of-the-art event extraction system and the similarity between sentences might be precisely

  18. Central FPGA-based Destination and Load Control in the LHCb MHz Event Readout

    CERN Document Server

    Jacobsson, Richard

    2012-01-01

    The readout strategy of the LHCb experiment [1] is based on complete event readout at 1 MHz [2]. Over 300 sub-detector readout boards transmit event fragments at 1 MHz over a commercial 70 Gigabyte/s switching network to a distributed event building and trigger processing farm with 1470 individual multi-core computer nodes [3]. In the original specifications, the readout was based on a pure push protocol. This paper describes the proposal, implementation, and experience of a powerful non-conventional mixture of a push and a pull protocol, akin to credit-based flow control. A high-speed FPGA-based central master module controls the event fragment packing in the readout boards, the assignment of the farm node destination for each event, and controls the farm load based on an asynchronous pull mechanism from each farm node. This dynamic readout scheme relies on generic event requests and the concept of node credit allowing load balancing and trigger rate regulation as a function of the global farm load. It also ...

  19. Central FPGA-based destination and load control in the LHCb MHz event readout

    Science.gov (United States)

    Jacobsson, R.

    2012-10-01

    The readout strategy of the LHCb experiment is based on complete event readout at 1 MHz. A set of 320 sub-detector readout boards transmit event fragments at total rate of 24.6 MHz at a bandwidth usage of up to 70 GB/s over a commercial switching network based on Gigabit Ethernet to a distributed event building and high-level trigger processing farm with 1470 individual multi-core computer nodes. In the original specifications, the readout was based on a pure push protocol. This paper describes the proposal, implementation, and experience of a non-conventional mixture of a push and a pull protocol, akin to credit-based flow control. An FPGA-based central master module, partly operating at the LHC bunch clock frequency of 40.08 MHz and partly at a double clock speed, is in charge of the entire trigger and readout control from the front-end electronics up to the high-level trigger farm. One FPGA is dedicated to controlling the event fragment packing in the readout boards, the assignment of the farm node destination for each event, and controls the farm load based on an asynchronous pull mechanism from each farm node. This dynamic readout scheme relies on generic event requests and the concept of node credit allowing load control and trigger rate regulation as a function of the global farm load. It also allows the vital task of fast central monitoring and automatic recovery in-flight of failing nodes while maintaining dead-time and event loss at a minimum. This paper demonstrates the strength and suitability of implementing this real-time task for a very large distributed system in an FPGA where no random delays are introduced, and where extreme reliability and accurate event accounting are fundamental requirements. It was in use during the entire commissioning phase of LHCb and has been in faultless operation during the first two years of physics luminosity data taking.

  20. Central FPGA-based destination and load control in the LHCb MHz event readout

    International Nuclear Information System (INIS)

    Jacobsson, R.

    2012-01-01

    The readout strategy of the LHCb experiment is based on complete event readout at 1 MHz. A set of 320 sub-detector readout boards transmit event fragments at total rate of 24.6 MHz at a bandwidth usage of up to 70 GB/s over a commercial switching network based on Gigabit Ethernet to a distributed event building and high-level trigger processing farm with 1470 individual multi-core computer nodes. In the original specifications, the readout was based on a pure push protocol. This paper describes the proposal, implementation, and experience of a non-conventional mixture of a push and a pull protocol, akin to credit-based flow control. An FPGA-based central master module, partly operating at the LHC bunch clock frequency of 40.08 MHz and partly at a double clock speed, is in charge of the entire trigger and readout control from the front-end electronics up to the high-level trigger farm. One FPGA is dedicated to controlling the event fragment packing in the readout boards, the assignment of the farm node destination for each event, and controls the farm load based on an asynchronous pull mechanism from each farm node. This dynamic readout scheme relies on generic event requests and the concept of node credit allowing load control and trigger rate regulation as a function of the global farm load. It also allows the vital task of fast central monitoring and automatic recovery in-flight of failing nodes while maintaining dead-time and event loss at a minimum. This paper demonstrates the strength and suitability of implementing this real-time task for a very large distributed system in an FPGA where no random delays are introduced, and where extreme reliability and accurate event accounting are fundamental requirements. It was in use during the entire commissioning phase of LHCb and has been in faultless operation during the first two years of physics luminosity data taking.

  1. Hierarchical nanosheet-based Ni3S2 microspheres grown on Ni foam for high-performance all-solid-state asymmetric supercapacitors

    Science.gov (United States)

    Li, Gaofeng; Cong, Yuan; Zhang, Chuanxiang; Tao, Haijun; Sun, Yueming; Wang, Yuqiao

    2017-10-01

    The hierarchical nanosheet-based Ni3S2 microspheres directly grew on Ni foam using a two-step hydrothermal method. The microsphere with a diameter of ˜1 microns and a rough surface was well connected to each other without any binders to provide a larger specific surface area, shorter ion/electron diffusion paths, richer electroactive sites as a supercapacitor electrode. As a three-electrode supercapacitor, it delivers a high specific capacity of 981.8 F g-1 at 2 A g-1, an excellent rate capability of 436.4 F g-1 at 12 A g-1, and a good cycling stability of 950.9 F g-1 with 96.9% retention after 1000 cycles at 2 A g-1. Furthermore, an asymmetric supercapacitor based on Ni3S2-microsphere as a positive electrode and active carbon as a negative electrode shows a high energy density of 29.4 Wh kg-1 at 324.5 W kg-1 and a high power density of 3197.6 W kg-1 at 15.1 Wh kg-1. This work demonstrates that nanosheet-based Ni3S2 microspheres coated Ni foam can be an effective electrode for a real supercapacitor.

  2. An Event-Based Approach to Distributed Diagnosis of Continuous Systems

    Science.gov (United States)

    Daigle, Matthew; Roychoudhurry, Indranil; Biswas, Gautam; Koutsoukos, Xenofon

    2010-01-01

    Distributed fault diagnosis solutions are becoming necessary due to the complexity of modern engineering systems, and the advent of smart sensors and computing elements. This paper presents a novel event-based approach for distributed diagnosis of abrupt parametric faults in continuous systems, based on a qualitative abstraction of measurement deviations from the nominal behavior. We systematically derive dynamic fault signatures expressed as event-based fault models. We develop a distributed diagnoser design algorithm that uses these models for designing local event-based diagnosers based on global diagnosability analysis. The local diagnosers each generate globally correct diagnosis results locally, without a centralized coordinator, and by communicating a minimal number of measurements between themselves. The proposed approach is applied to a multi-tank system, and results demonstrate a marked improvement in scalability compared to a centralized approach.

  3. Trust Index Based Fault Tolerant Multiple Event Localization Algorithm for WSNs

    Science.gov (United States)

    Xu, Xianghua; Gao, Xueyong; Wan, Jian; Xiong, Naixue

    2011-01-01

    This paper investigates the use of wireless sensor networks for multiple event source localization using binary information from the sensor nodes. The events could continually emit signals whose strength is attenuated inversely proportional to the distance from the source. In this context, faults occur due to various reasons and are manifested when a node reports a wrong decision. In order to reduce the impact of node faults on the accuracy of multiple event localization, we introduce a trust index model to evaluate the fidelity of information which the nodes report and use in the event detection process, and propose the Trust Index based Subtract on Negative Add on Positive (TISNAP) localization algorithm, which reduces the impact of faulty nodes on the event localization by decreasing their trust index, to improve the accuracy of event localization and performance of fault tolerance for multiple event source localization. The algorithm includes three phases: first, the sink identifies the cluster nodes to determine the number of events occurred in the entire region by analyzing the binary data reported by all nodes; then, it constructs the likelihood matrix related to the cluster nodes and estimates the location of all events according to the alarmed status and trust index of the nodes around the cluster nodes. Finally, the sink updates the trust index of all nodes according to the fidelity of their information in the previous reporting cycle. The algorithm improves the accuracy of localization and performance of fault tolerance in multiple event source localization. The experiment results show that when the probability of node fault is close to 50%, the algorithm can still accurately determine the number of the events and have better accuracy of localization compared with other algorithms. PMID:22163972

  4. Trust Index Based Fault Tolerant Multiple Event Localization Algorithm for WSNs

    Directory of Open Access Journals (Sweden)

    Jian Wan

    2011-06-01

    Full Text Available This paper investigates the use of wireless sensor networks for multiple event source localization using binary information from the sensor nodes. The events could continually emit signals whose strength is attenuated inversely proportional to the distance from the source. In this context, faults occur due to various reasons and are manifested when a node reports a wrong decision. In order to reduce the impact of node faults on the accuracy of multiple event localization, we introduce a trust index model to evaluate the fidelity of information which the nodes report and use in the event detection process, and propose the Trust Index based Subtract on Negative Add on Positive (TISNAP localization algorithm, which reduces the impact of faulty nodes on the event localization by decreasing their trust index, to improve the accuracy of event localization and performance of fault tolerance for multiple event source localization. The algorithm includes three phases: first, the sink identifies the cluster nodes to determine the number of events occurred in the entire region by analyzing the binary data reported by all nodes; then, it constructs the likelihood matrix related to the cluster nodes and estimates the location of all events according to the alarmed status and trust index of the nodes around the cluster nodes. Finally, the sink updates the trust index of all nodes according to the fidelity of their information in the previous reporting cycle. The algorithm improves the accuracy of localization and performance of fault tolerance in multiple event source localization. The experiment results show that when the probability of node fault is close to 50%, the algorithm can still accurately determine the number of the events and have better accuracy of localization compared with other algorithms.

  5. Noether's Theorem and its Inverse of Birkhoffian System in Event Space Based on Herglotz Variational Problem

    Science.gov (United States)

    Tian, X.; Zhang, Y.

    2018-03-01

    Herglotz variational principle, in which the functional is defined by a differential equation, generalizes the classical ones defining the functional by an integral. The principle gives a variational principle description of nonconservative systems even when the Lagrangian is independent of time. This paper focuses on studying the Noether's theorem and its inverse of a Birkhoffian system in event space based on the Herglotz variational problem. Firstly, according to the Herglotz variational principle of a Birkhoffian system, the principle of a Birkhoffian system in event space is established. Secondly, its parametric equations and two basic formulae for the variation of Pfaff-Herglotz action of a Birkhoffian system in event space are obtained. Furthermore, the definition and criteria of Noether symmetry of the Birkhoffian system in event space based on the Herglotz variational problem are given. Then, according to the relationship between the Noether symmetry and conserved quantity, the Noether's theorem is derived. Under classical conditions, Noether's theorem of a Birkhoffian system in event space based on the Herglotz variational problem reduces to the classical ones. In addition, Noether's inverse theorem of the Birkhoffian system in event space based on the Herglotz variational problem is also obtained. In the end of the paper, an example is given to illustrate the application of the results.

  6. Tracing the Spatial-Temporal Evolution of Events Based on Social Media Data

    Directory of Open Access Journals (Sweden)

    Xiaolu Zhou

    2017-03-01

    Full Text Available Social media data provide a great opportunity to investigate event flow in cities. Despite the advantages of social media data in these investigations, the data heterogeneity and big data size pose challenges to researchers seeking to identify useful information about events from the raw data. In addition, few studies have used social media posts to capture how events develop in space and time. This paper demonstrates an efficient approach based on machine learning and geovisualization to identify events and trace the development of these events in real-time. We conducted an empirical study to delineate the temporal and spatial evolution of a natural event (heavy precipitation and a social event (Pope Francis’ visit to the US in the New York City—Washington, DC regions. By investigating multiple features of Twitter data (message, author, time, and geographic location information, this paper demonstrates how voluntary local knowledge from tweets can be used to depict city dynamics, discover spatiotemporal characteristics of events, and convey real-time information.

  7. Abnormal Event Detection in Wireless Sensor Networks Based on Multiattribute Correlation

    Directory of Open Access Journals (Sweden)

    Mengdi Wang

    2017-01-01

    Full Text Available Abnormal event detection is one of the vital tasks in wireless sensor networks. However, the faults of nodes and the poor deployment environment have brought great challenges to abnormal event detection. In a typical event detection technique, spatiotemporal correlations are collected to detect an event, which is susceptible to noises and errors. To improve the quality of detection results, we propose a novel approach for abnormal event detection in wireless sensor networks. This approach considers not only spatiotemporal correlations but also the correlations among observed attributes. A dependency model of observed attributes is constructed based on Bayesian network. In this model, the dependency structure of observed attributes is obtained by structure learning, and the conditional probability table of each node is calculated by parameter learning. We propose a new concept named attribute correlation confidence to evaluate the fitting degree between the sensor reading and the abnormal event pattern. On the basis of time correlation detection and space correlation detection, the abnormal events are identified. Experimental results show that the proposed algorithm can reduce the impact of interference factors and the rate of the false alarm effectively; it can also improve the accuracy of event detection.

  8. Improving the extraction of complex regulatory events from scientific text by using ontology-based inference.

    Science.gov (United States)

    Kim, Jung-Jae; Rebholz-Schuhmann, Dietrich

    2011-10-06

    The extraction of complex events from biomedical text is a challenging task and requires in-depth semantic analysis. Previous approaches associate lexical and syntactic resources with ontologies for the semantic analysis, but fall short in testing the benefits from the use of domain knowledge. We developed a system that deduces implicit events from explicitly expressed events by using inference rules that encode domain knowledge. We evaluated the system with the inference module on three tasks: First, when tested against a corpus with manually annotated events, the inference module of our system contributes 53.2% of correct extractions, but does not cause any incorrect results. Second, the system overall reproduces 33.1% of the transcription regulatory events contained in RegulonDB (up to 85.0% precision) and the inference module is required for 93.8% of the reproduced events. Third, we applied the system with minimum adaptations to the identification of cell activity regulation events, confirming that the inference improves the performance of the system also on this task. Our research shows that the inference based on domain knowledge plays a significant role in extracting complex events from text. This approach has great potential in recognizing the complex concepts of such biomedical ontologies as Gene Ontology in the literature.

  9. Evaluation of extreme temperature events in northern Spain based on process control charts

    Science.gov (United States)

    Villeta, M.; Valencia, J. L.; Saá, A.; Tarquis, A. M.

    2018-02-01

    Extreme climate events have recently attracted the attention of a growing number of researchers because these events impose a large cost on agriculture and associated insurance planning. This study focuses on extreme temperature events and proposes a new method for their evaluation based on statistical process control tools, which are unusual in climate studies. A series of minimum and maximum daily temperatures for 12 geographical areas of a Spanish region between 1931 and 2009 were evaluated by applying statistical process control charts to statistically test whether evidence existed for an increase or a decrease of extreme temperature events. Specification limits were determined for each geographical area and used to define four types of extreme anomalies: lower and upper extremes for the minimum and maximum anomalies. A new binomial Markov extended process that considers the autocorrelation between extreme temperature events was generated for each geographical area and extreme anomaly type to establish the attribute control charts for the annual fraction of extreme days and to monitor the occurrence of annual extreme days. This method was used to assess the significance of changes and trends of extreme temperature events in the analysed region. The results demonstrate the effectiveness of an attribute control chart for evaluating extreme temperature events. For example, the evaluation of extreme maximum temperature events using the proposed statistical process control charts was consistent with the evidence of an increase in maximum temperatures during the last decades of the last century.

  10. Improving the extraction of complex regulatory events from scientific text by using ontology-based inference

    Directory of Open Access Journals (Sweden)

    Kim Jung-jae

    2011-10-01

    Full Text Available Abstract Background The extraction of complex events from biomedical text is a challenging task and requires in-depth semantic analysis. Previous approaches associate lexical and syntactic resources with ontologies for the semantic analysis, but fall short in testing the benefits from the use of domain knowledge. Results We developed a system that deduces implicit events from explicitly expressed events by using inference rules that encode domain knowledge. We evaluated the system with the inference module on three tasks: First, when tested against a corpus with manually annotated events, the inference module of our system contributes 53.2% of correct extractions, but does not cause any incorrect results. Second, the system overall reproduces 33.1% of the transcription regulatory events contained in RegulonDB (up to 85.0% precision and the inference module is required for 93.8% of the reproduced events. Third, we applied the system with minimum adaptations to the identification of cell activity regulation events, confirming that the inference improves the performance of the system also on this task. Conclusions Our research shows that the inference based on domain knowledge plays a significant role in extracting complex events from text. This approach has great potential in recognizing the complex concepts of such biomedical ontologies as Gene Ontology in the literature.

  11. Fluence-based and microdosimetric event-based methods for radiation protection in space

    International Nuclear Information System (INIS)

    Curtis, S.B.

    2002-01-01

    The National Council on Radiation Protection and Measurements (NCRP) has recently published a report (Report no.137) that discusses various aspects of the concepts used in radiation protection and the difficulties in measuring the radiation environment in spacecraft for the estimation of radiation risk to space travelers. Two novel dosimetric methodologies, fluence-based and microdosimetric event-based methods, are discussed and evaluated, along with the more conventional quality factor/linear energy transfer (LET) method. It was concluded that for the present, any reason to switch to a new methodology is not compelling. It is suggested that because of certain drawbacks in the presently-used conventional method, these alternative methodologies should be kept in mind. As new data become available and dosimetric techniques become more refined, the question should be revisited and that in the future, significant improvement might be realized. In addition, such concepts as equivalent dose and organ dose equivalent are discussed and various problems regarding the measurement/estimation of these quantities are presented. (author)

  12. Event-based motion correction for PET transmission measurements with a rotating point source

    International Nuclear Information System (INIS)

    Zhou, Victor W; Kyme, Andre Z; Meikle, Steven R; Fulton, Roger

    2011-01-01

    Accurate attenuation correction is important for quantitative positron emission tomography (PET) studies. When performing transmission measurements using an external rotating radioactive source, object motion during the transmission scan can distort the attenuation correction factors computed as the ratio of the blank to transmission counts, and cause errors and artefacts in reconstructed PET images. In this paper we report a compensation method for rigid body motion during PET transmission measurements, in which list mode transmission data are motion corrected event-by-event, based on known motion, to ensure that all events which traverse the same path through the object are recorded on a common line of response (LOR). As a result, the motion-corrected transmission LOR may record a combination of events originally detected on different LORs. To ensure that the corresponding blank LOR records events from the same combination of contributing LORs, the list mode blank data are spatially transformed event-by-event based on the same motion information. The number of counts recorded on the resulting blank LOR is then equivalent to the number of counts that would have been recorded on the corresponding motion-corrected transmission LOR in the absence of any attenuating object. The proposed method has been verified in phantom studies with both stepwise movements and continuous motion. We found that attenuation maps derived from motion-corrected transmission and blank data agree well with those of the stationary phantom and are significantly better than uncorrected attenuation data.

  13. A robust neural network-based approach for microseismic event detection

    KAUST Repository

    Akram, Jubran

    2017-08-17

    We present an artificial neural network based approach for robust event detection from low S/N waveforms. We use a feed-forward network with a single hidden layer that is tuned on a training dataset and later applied on the entire example dataset for event detection. The input features used include the average of absolute amplitudes, variance, energy-ratio and polarization rectilinearity. These features are calculated in a moving-window of same length for the entire waveform. The output is set as a user-specified relative probability curve, which provides a robust way of distinguishing between weak and strong events. An optimal network is selected by studying the weight-based saliency and effect of number of neurons on the predicted results. Using synthetic data examples, we demonstrate that this approach is effective in detecting weaker events and reduces the number of false positives.

  14. A facile approach for the synthesis of monolithic hierarchical porous carbons – high performance materials for amine based CO2 capture and supercapacitor electrode

    KAUST Repository

    Estevez, Luis; Dua, Rubal; Bhandari, Nidhi; Ramanujapuram, Anirudh; Wang, Peng; Giannelis, Emmanuel P.

    2013-01-01

    An ice templating coupled with hard templating and physical activation approach is reported for the synthesis of hierarchically porous carbon monoliths with tunable porosities across all three length scales (macro- meso- and micro), with ultrahigh

  15. Hierarchical wave functions revisited

    International Nuclear Information System (INIS)

    Li Dingping.

    1997-11-01

    We study the hierarchical wave functions on a sphere and on a torus. We simplify some wave functions on a sphere or a torus using the analytic properties of wave functions. The open question, the construction of the wave function for quasi electron excitation on a torus, is also solved in this paper. (author)

  16. Hierarchical Porous Structures

    Energy Technology Data Exchange (ETDEWEB)

    Grote, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-07

    Materials Design is often at the forefront of technological innovation. While there has always been a push to generate increasingly low density materials, such as aero or hydrogels, more recently the idea of bicontinuous structures has gone more into play. This review will cover some of the methods and applications for generating both porous, and hierarchically porous structures.

  17. The Hierarchical Perspective

    Directory of Open Access Journals (Sweden)

    Daniel Sofron

    2015-05-01

    Full Text Available This paper is focused on the hierarchical perspective, one of the methods for representing space that was used before the discovery of the Renaissance linear perspective. The hierarchical perspective has a more or less pronounced scientific character and its study offers us a clear image of the way the representatives of the cultures that developed it used to perceive the sensitive reality. This type of perspective is an original method of representing three-dimensional space on a flat surface, which characterises the art of Ancient Egypt and much of the art of the Middle Ages, being identified in the Eastern European Byzantine art, as well as in the Western European Pre-Romanesque and Romanesque art. At the same time, the hierarchical perspective is also present in naive painting and infantile drawing. Reminiscences of this method can be recognised also in the works of some precursors of the Italian Renaissance. The hierarchical perspective can be viewed as a subjective ranking criterion, according to which the elements are visually represented by taking into account their relevance within the image while perception is ignored. This paper aims to show how the main objective of the artists of those times was not to faithfully represent the objective reality, but rather to emphasize the essence of the world and its perennial aspects. This may represent a possible explanation for the refusal of perspective in the Egyptian, Romanesque and Byzantine painting, characterised by a marked two-dimensionality.

  18. Assessment of initial soil moisture conditions for event-based rainfall-runoff modelling

    OpenAIRE

    Tramblay, Yves; Bouvier, Christophe; Martin, C.; Didon-Lescot, J. F.; Todorovik, D.; Domergue, J. M.

    2010-01-01

    Flash floods are the most destructive natural hazards that occur in the Mediterranean region. Rainfall-runoff models can be very useful for flash flood forecasting and prediction. Event-based models are very popular for operational purposes, but there is a need to reduce the uncertainties related to the initial moisture conditions estimation prior to a flood event. This paper aims to compare several soil moisture indicators: local Time Domain Reflectometry (TDR) measurements of soil moisture,...

  19. Safety based on organisational learning (SOL) - Conceptual approach and verification of a method for event analysis

    International Nuclear Information System (INIS)

    Miller, R.; Wilpert, B.; Fahlbruch, B.

    1999-01-01

    This paper discusses a method for analysing safety-relevant events in NPP which is known as 'SOL', safety based on organisational learning. After discussion of the specific organisational and psychological problems examined in the event analysis, the analytic process using the SOL approach is explained as well as the required general setting. The SOL approach has been tested both with scientific experiments and from the practical perspective, by operators of NPPs and experts from other branches of industry. (orig./CB) [de

  20. Rates for parallax-shifted microlensing events from ground-based observations of the galactic bulge

    International Nuclear Information System (INIS)

    Buchalter, A.; Kamionkowski, M.

    1997-01-01

    The parallax effect in ground-based microlensing (ML) observations consists of a distortion to the standard ML light curve arising from the Earth's orbital motion. This can be used to partially remove the degeneracy among the system parameters in the event timescale, t 0 . In most cases, the resolution in current ML surveys is not accurate enough to observe this effect, but parallax could conceivably be detected with frequent follow-up observations of ML events in progress, providing the photometric errors are small enough. We calculate the expected fraction of ML events where the shape distortions will be observable by such follow-up observations, adopting Galactic models for the lens and source distributions that are consistent with observed microlensing timescale distributions. We study the dependence of the rates for parallax-shifted events on the frequency of follow-up observations and on the precision of the photometry. For example, we find that for hourly observations with typical photometric errors of 0.01 mag, 6% of events where the lens is in the bulge, and 31% of events where the lens is in the disk (or ∼10% of events overall), will give rise to a measurable parallax shift at the 95% confidence level. These fractions may be increased by improved photometric accuracy and increased sampling frequency. While long-duration events are favored, the surveys would be effective in picking out such distortions in events with timescales as low as t 0 ∼20 days. We study the dependence of these fractions on the assumed disk mass function and find that a higher parallax incidence is favored by mass functions with higher mean masses. Parallax measurements yield the reduced transverse speed, v, which gives both the relative transverse speed and lens mass as a function of distance. We give examples of the accuracies with which v may be measured in typical parallax events. (Abstract Truncated)

  1. Full-waveform detection of non-impulsive seismic events based on time-reversal methods

    Science.gov (United States)

    Solano, Ericka Alinne; Hjörleifsdóttir, Vala; Liu, Qinya

    2017-12-01

    We present a full-waveform detection method for non-impulsive seismic events, based on time-reversal principles. We use the strain Green's tensor as a matched filter, correlating it with continuous observed seismograms, to detect non-impulsive seismic events. We show that this is mathematically equivalent to an adjoint method for detecting earthquakes. We define the detection function, a scalar valued function, which depends on the stacked correlations for a group of stations. Event detections are given by the times at which the amplitude of the detection function exceeds a given value relative to the noise level. The method can make use of the whole seismic waveform or any combination of time-windows with different filters. It is expected to have an advantage compared to traditional detection methods for events that do not produce energetic and impulsive P waves, for example glacial events, landslides, volcanic events and transform-fault earthquakes for events which velocity structure along the path is relatively well known. Furthermore, the method has advantages over empirical Greens functions template matching methods, as it does not depend on records from previously detected events, and therefore is not limited to events occurring in similar regions and with similar focal mechanisms as these events. The method is not specific to any particular way of calculating the synthetic seismograms, and therefore complicated structural models can be used. This is particularly beneficial for intermediate size events that are registered on regional networks, for which the effect of lateral structure on the waveforms can be significant. To demonstrate the feasibility of the method, we apply it to two different areas located along the mid-oceanic ridge system west of Mexico where non-impulsive events have been reported. The first study area is between Clipperton and Siqueiros transform faults (9°N), during the time of two earthquake swarms, occurring in March 2012 and May

  2. Managing wildfire events: risk-based decision making among a group of federal fire managers

    Science.gov (United States)

    Robyn S. Wilson; Patricia L. Winter; Lynn A. Maguire; Timothy. Ascher

    2011-01-01

    Managing wildfire events to achieve multiple management objectives involves a high degree of decision complexity and uncertainty, increasing the likelihood that decisions will be informed by experience-based heuristics triggered by available cues at the time of the decision. The research reported here tests the prevalence of three risk-based biases among 206...

  3. Supervision in the PC based prototype for the ATLAS event filter

    CERN Document Server

    Bee, C P; Etienne, F; Fede, E; Meessen, C; Nacasch, R; Qian, Z; Touchard, F

    1999-01-01

    A prototype of the ATLAS event filter based on commodity PCs linked by a Fast Ethernet switch has been developed in Marseille. The present contribution focus on the supervision aspects of the prototype based on Java and Java mobile agents technology. (5 refs).

  4. A Multi-layer, Hierarchical Information Management System for the Smart Grid

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Ning; Du, Pengwei; Paulson, Patrick R.; Greitzer, Frank L.; Guo, Xinxin; Hadley, Mark D.

    2011-10-10

    This paper presents the modeling approach, methodologies, and initial results of setting up a multi-layer, hierarchical information management system (IMS) for the smart grid. The IMS allows its users to analyze the data collected by multiple control and communication networks to characterize the states of the smart grid. Abnormal, corrupted, or erroneous measurement data and outliers are detected and analyzed to identify whether they are caused by random equipment failures, unintentional human errors, or deliberate tempering attempts. Data collected from different information networks are crosschecked for data integrity based on redundancy, dependency, correlation, or cross-correlations, which reveal the interdependency between data sets. A hierarchically structured reasoning mechanism is used to rank possible causes of an event to aid the system operators to proactively respond or provide mitigation recommendations to remove or neutralize the threats. The model provides satisfactory performance on identifying the cause of an event and significantly reduces the need of processing myriads of data collected.

  5. Enhanced Deployment Strategy for Role-Based Hierarchical Application Agents in Wireless Sensor Networks with Established Clusterheads

    Science.gov (United States)

    Gendreau, Audrey

    2014-01-01

    Efficient self-organizing virtual clusterheads that supervise data collection based on their wireless connectivity, risk, and overhead costs, are an important element of Wireless Sensor Networks (WSNs). This function is especially critical during deployment when system resources are allocated to a subsequent application. In the presented research,…

  6. Hierarchical cluster-based partial least squares regression (HC-PLSR) is an efficient tool for metamodelling of nonlinear dynamic models.

    Science.gov (United States)

    Tøndel, Kristin; Indahl, Ulf G; Gjuvsland, Arne B; Vik, Jon Olav; Hunter, Peter; Omholt, Stig W; Martens, Harald

    2011-06-01

    Deterministic dynamic models of complex biological systems contain a large number of parameters and state variables, related through nonlinear differential equations with various types of feedback. A metamodel of such a dynamic model is a statistical approximation model that maps variation in parameters and initial conditions (inputs) to variation in features of the trajectories of the state variables (outputs) throughout the entire biologically relevant input space. A sufficiently accurate mapping can be exploited both instrumentally and epistemically. Multivariate regression methodology is a commonly used approach for emulating dynamic models. However, when the input-output relations are highly nonlinear or non-monotone, a standard linear regression approach is prone to give suboptimal results. We therefore hypothesised that a more accurate mapping can be obtained by locally linear or locally polynomial regression. We present here a new method for local regression modelling, Hierarchical Cluster-based PLS regression (HC-PLSR), where fuzzy C-means clustering is used to separate the data set into parts according to the structure of the response surface. We compare the metamodelling performance of HC-PLSR with polynomial partial least squares regression (PLSR) and ordinary least squares (OLS) regression on various systems: six different gene regulatory network models with various types of feedback, a deterministic mathematical model of the mammalian circadian clock and a model of the mouse ventricular myocyte function. Our results indicate that multivariate regression is well suited for emulating dynamic models in systems biology. The hierarchical approach turned out to be superior to both polynomial PLSR and OLS regression in all three test cases. The advantage, in terms of explained variance and prediction accuracy, was largest in systems with highly nonlinear functional relationships and in systems with positive feedback loops. HC-PLSR is a promising approach for

  7. Hierarchical Cluster-based Partial Least Squares Regression (HC-PLSR is an efficient tool for metamodelling of nonlinear dynamic models

    Directory of Open Access Journals (Sweden)

    Omholt Stig W

    2011-06-01

    Full Text Available Abstract Background Deterministic dynamic models of complex biological systems contain a large number of parameters and state variables, related through nonlinear differential equations with various types of feedback. A metamodel of such a dynamic model is a statistical approximation model that maps variation in parameters and initial conditions (inputs to variation in features of the trajectories of the state variables (outputs throughout the entire biologically relevant input space. A sufficiently accurate mapping can be exploited both instrumentally and epistemically. Multivariate regression methodology is a commonly used approach for emulating dynamic models. However, when the input-output relations are highly nonlinear or non-monotone, a standard linear regression approach is prone to give suboptimal results. We therefore hypothesised that a more accurate mapping can be obtained by locally linear or locally polynomial regression. We present here a new method for local regression modelling, Hierarchical Cluster-based PLS regression (HC-PLSR, where fuzzy C-means clustering is used to separate the data set into parts according to the structure of the response surface. We compare the metamodelling performance of HC-PLSR with polynomial partial least squares regression (PLSR and ordinary least squares (OLS regression on various systems: six different gene regulatory network models with various types of feedback, a deterministic mathematical model of the mammalian circadian clock and a model of the mouse ventricular myocyte function. Results Our results indicate that multivariate regression is well suited for emulating dynamic models in systems biology. The hierarchical approach turned out to be superior to both polynomial PLSR and OLS regression in all three test cases. The advantage, in terms of explained variance and prediction accuracy, was largest in systems with highly nonlinear functional relationships and in systems with positive feedback

  8. Neural correlates of attentional and mnemonic processing in event-based prospective memory

    Directory of Open Access Journals (Sweden)

    Justin B Knight

    2010-02-01

    Full Text Available Prospective memory, or memory for realizing delayed intentions, was examined with an event-based paradigm while simultaneously measuring neural activity with high-density EEG recordings. Specifically, the neural substrates of monitoring for an event-based cue were examined, as well as those perhaps associated with the cognitive processes supporting detection of cues and fulfillment of intentions. Participants engaged in a baseline lexical decision task (LDT, followed by a LDT with an embedded prospective memory (PM component. Event-based cues were constituted by color and lexicality (red words. Behavioral data provided evidence that monitoring, or preparatory attentional processes, were used to detect cues. Analysis of the event-related potentials (ERP revealed visual attentional modulations at 140 and 220 ms post-stimulus associated with preparatory attentional processes. In addition, ERP components at 220, 350, and 400 ms post-stimulus were enhanced for intention-related items. Our results suggest preparatory attention may operate by selectively modulating processing of features related to a previously formed event-based intention, as well as provide further evidence for the proposal that dissociable component processes support the fulfillment of delayed intentions.

  9. Neural correlates of attentional and mnemonic processing in event-based prospective memory.

    Science.gov (United States)

    Knight, Justin B; Ethridge, Lauren E; Marsh, Richard L; Clementz, Brett A

    2010-01-01

    Prospective memory (PM), or memory for realizing delayed intentions, was examined with an event-based paradigm while simultaneously measuring neural activity with high-density EEG recordings. Specifically, the neural substrates of monitoring for an event-based cue were examined, as well as those perhaps associated with the cognitive processes supporting detection of cues and fulfillment of intentions. Participants engaged in a baseline lexical decision task (LDT), followed by a LDT with an embedded PM component. Event-based cues were constituted by color and lexicality (red words). Behavioral data provided evidence that monitoring, or preparatory attentional processes, were used to detect cues. Analysis of the event-related potentials (ERP) revealed visual attentional modulations at 140 and 220 ms post-stimulus associated with preparatory attentional processes. In addition, ERP components at 220, 350, and 400 ms post-stimulus were enhanced for intention-related items. Our results suggest preparatory attention may operate by selectively modulating processing of features related to a previously formed event-based intention, as well as provide further evidence for the proposal that dissociable component processes support the fulfillment of delayed intentions.

  10. Event-based scenario manager for multibody dynamics simulation of heavy load lifting operations in shipyards

    Directory of Open Access Journals (Sweden)

    Sol Ha

    2016-01-01

    Full Text Available This paper suggests an event-based scenario manager capable of creating and editing a scenario for shipbuilding process simulation based on multibody dynamics. To configure various situation in shipyards and easily connect with multibody dynamics, the proposed method has two main concepts: an Actor and an Action List. The Actor represents the anatomic unit of action in the multibody dynamics and can be connected to a specific component of the dynamics kernel such as the body and joint. The user can make a scenario up by combining the actors. The Action List contains information for arranging and executing the actors. Since the shipbuilding process is a kind of event-based sequence, all simulation models were configured using Discrete EVent System Specification (DEVS formalism. The proposed method was applied to simulations of various operations in shipyards such as lifting and erection of a block and heavy load lifting operation using multiple cranes.

  11. Limits on the efficiency of event-based algorithms for Monte Carlo neutron transport

    Directory of Open Access Journals (Sweden)

    Paul K. Romano

    2017-09-01

    Full Text Available The traditional form of parallelism in Monte Carlo particle transport simulations, wherein each individual particle history is considered a unit of work, does not lend itself well to data-level parallelism. Event-based algorithms, which were originally used for simulations on vector processors, may offer a path toward better utilizing data-level parallelism in modern computer architectures. In this study, a simple model is developed for estimating the efficiency of the event-based particle transport algorithm under two sets of assumptions. Data collected from simulations of four reactor problems using OpenMC was then used in conjunction with the models to calculate the speedup due to vectorization as a function of the size of the particle bank and the vector width. When each event type is assumed to have constant execution time, the achievable speedup is directly related to the particle bank size. We observed that the bank size generally needs to be at least 20 times greater than vector size to achieve vector efficiency greater than 90%. When the execution times for events are allowed to vary, the vector speedup is also limited by differences in the execution time for events being carried out in a single event-iteration.

  12. Suitability Evaluation of Specific Shallow Geothermal Technologies Using a GIS-Based Multi Criteria Decision Analysis Implementing the Analytic Hierarchic Process

    Directory of Open Access Journals (Sweden)

    Francesco Tinti

    2018-02-01

    Full Text Available The exploitation potential of shallow geothermal energy is usually defined in terms of site-specific ground thermal characteristics. While true, this assumption limits the complexity of the analysis, since feasibility studies involve many other components that must be taken into account when calculating the effective market viability of a geothermal technology or the economic value of a shallow geothermal project. In addition, the results of a feasibility study are not simply the sum of the various factors since some components may be conflicting while others will be of a qualitative nature only. Different approaches are therefore needed to evaluate the suitability of an area for shallow geothermal installation. This paper introduces a new GIS platform-based multicriteria decision analysis method aimed at comparing as many different shallow geothermal relevant factors as possible. Using the Analytic Hierarchic Process Tool, a geolocalized Suitability Index was obtained for a specific technological case: the integrated technologies developed within the GEOTeCH Project. A suitability map for the technologies in question was drawn up for Europe.

  13. Low energy isomers of (H2O)25 from a hierarchical method based on Monte Carlo temperature basin paving and molecular tailoring approaches benchmarked by MP2 calculations

    International Nuclear Information System (INIS)

    Sahu, Nityananda; Gadre, Shridhar R.; Rakshit, Avijit; Bandyopadhyay, Pradipta; Miliordos, Evangelos; Xantheas, Sotiris S.

    2014-01-01

    We report new global minimum candidate structures for the (H 2 O) 25 cluster that are lower in energy than the ones reported previously and correspond to hydrogen bonded networks with 42 hydrogen bonds and an interior, fully coordinated water molecule. These were obtained as a result of a hierarchical approach based on initial Monte Carlo Temperature Basin Paving sampling of the cluster's Potential Energy Surface with the Effective Fragment Potential, subsequent geometry optimization using the Molecular Tailoring Approach with the fragments treated at the second order Møller-Plesset (MP2) perturbation (MTA-MP2) and final refinement of the entire cluster at the MP2 level of theory. The MTA-MP2 optimized cluster geometries, constructed from the fragments, were found to be within 2 O) 25 cluster. In addition, the grafting of the MTA-MP2 energies yields electronic energies that are within <0.3 kcal/mol from the MP2 energies of the entire cluster while preserving their energy rank order. Finally, the MTA-MP2 approach was found to reproduce the MP2 harmonic vibrational frequencies, constructed from the fragments, quite accurately when compared to the MP2 ones of the entire cluster in both the HOH bending and the OH stretching regions of the spectra

  14. Risk-based ranking of dominant contributors to maritime pollution events

    International Nuclear Information System (INIS)

    Wheeler, T.A.

    1993-01-01

    This report describes a conceptual approach for identifying dominant contributors to risk from maritime shipping of hazardous materials. Maritime transportation accidents are relatively common occurrences compared to more frequently analyzed contributors to public risk. Yet research on maritime safety and pollution incidents has not been guided by a systematic, risk-based approach. Maritime shipping accidents can be analyzed using event trees to group the accidents into 'bins,' or groups, of similar characteristics such as type of cargo, location of accident (e.g., harbor, inland waterway), type of accident (e.g., fire, collision, grounding), and size of release. The importance of specific types of events to each accident bin can be quantified. Then the overall importance of accident events to risk can be estimated by weighting the events' individual bin importance measures by the risk associated with each accident bin. 4 refs., 3 figs., 6 tabs

  15. Adaptive Event-Triggered Control Based on Heuristic Dynamic Programming for Nonlinear Discrete-Time Systems.

    Science.gov (United States)

    Dong, Lu; Zhong, Xiangnan; Sun, Changyin; He, Haibo

    2017-07-01

    This paper presents the design of a novel adaptive event-triggered control method based on the heuristic dynamic programming (HDP) technique for nonlinear discrete-time systems with unknown system dynamics. In the proposed method, the control law is only updated when the event-triggered condition is violated. Compared with the periodic updates in the traditional adaptive dynamic programming (ADP) control, the proposed method can reduce the computation and transmission cost. An actor-critic framework is used to learn the optimal event-triggered control law and the value function. Furthermore, a model network is designed to estimate the system state vector. The main contribution of this paper is to design a new trigger threshold for discrete-time systems. A detailed Lyapunov stability analysis shows that our proposed event-triggered controller can asymptotically stabilize the discrete-time systems. Finally, we test our method on two different discrete-time systems, and the simulation results are included.

  16. Hierarchical Object-Based Mapping of Riverscape Units and in-Stream Mesohabitats Using LiDAR and VHR Imagery

    Directory of Open Access Journals (Sweden)

    Luca Demarchi

    2016-01-01

    Full Text Available In this paper, we present a new, semi-automated methodology for mapping hydromorphological indicators of rivers at a regional scale using multisource remote sensing (RS data. This novel approach is based on the integration of spectral and topographic information within a multilevel, geographic, object-based image analysis (GEOBIA. Different segmentation levels were generated based on the two sources of Remote Sensing (RS data, namely very-high spatial resolution, near-infrared imagery (VHR and high-resolution LiDAR topography. At each level, different input object features were tested with Machine Learning classifiers for mapping riverscape units and in-stream mesohabitats. The GEOBIA approach proved to be a powerful tool for analyzing the river system at different levels of detail and for coupling spectral and topographic datasets, allowing for the delineation of the natural fluvial corridor with its primary riverscape units (e.g., water channel, unvegetated sediment bars, riparian densely-vegetated units, etc. and in-stream mesohabitats with a high level of accuracy, respectively of K = 0.91 and K = 0.83. This method is flexible and can be adapted to different sources of data, with the potential to be implemented at regional scales in the future. The analyzed dataset, composed of VHR imagery and LiDAR data, is nowadays increasingly available at larger scales, notably through European Member States. At the same time, this methodology provides a tool for monitoring and characterizing the hydromorphological status of river systems continuously along the entire channel network and coherently through time, opening novel and significant perspectives to river science and management, notably for planning and targeting actions.

  17. Improving the Critic Learning for Event-Based Nonlinear $H_{\\infty }$ Control Design.

    Science.gov (United States)

    Wang, Ding; He, Haibo; Liu, Derong

    2017-10-01

    In this paper, we aim at improving the critic learning criterion to cope with the event-based nonlinear H ∞ state feedback control design. First of all, the H ∞ control problem is regarded as a two-player zero-sum game and the adaptive critic mechanism is used to achieve the minimax optimization under event-based environment. Then, based on an improved updating rule, the event-based optimal control law and the time-based worst-case disturbance law are obtained approximately by training a single critic neural network. The initial stabilizing control is no longer required during the implementation process of the new algorithm. Next, the closed-loop system is formulated as an impulsive model and its stability issue is handled by incorporating the improved learning criterion. The infamous Zeno behavior of the present event-based design is also avoided through theoretical analysis on the lower bound of the minimal intersample time. Finally, the applications to an aircraft dynamics and a robot arm plant are carried out to verify the efficient performance of the present novel design method.

  18. Integral-based event triggering controller design for stochastic LTI systems via convex optimisation

    Science.gov (United States)

    Mousavi, S. H.; Marquez, H. J.

    2016-07-01

    The presence of measurement noise in the event-based systems can lower system efficiency both in terms of data exchange rate and performance. In this paper, an integral-based event triggering control system is proposed for LTI systems with stochastic measurement noise. We show that the new mechanism is robust against noise and effectively reduces the flow of communication between plant and controller, and also improves output performance. Using a Lyapunov approach, stability in the mean square sense is proved. A simulated example illustrates the properties of our approach.

  19. Hierarchical energy and frequency security pricing in a smart microgrid: An equilibrium-inspired epsilon constraint based multi-objective decision making approach

    International Nuclear Information System (INIS)

    Rezaei, Navid; Kalantar, Mohsen

    2015-01-01

    Highlights: • Proposing a multi-objective security pricing mechanism for islanded microgrids. • Generating Pareto points using epsilon constraint methodology. • Best compromise solution using a novel decision making approach. • An equilibrium-inspired technique is used as an efficient decision making method. • Stochastic management of hierarchical reserves in a droop controlled microgrid. - Abstract: The present paper formulates a frequency security constrained energy management system for an islanded microgrid. Static and dynamic securities of the microgrids have been modeled in depth based on droop control paradigm. The derived frequency dependent modeling is incorporated into a multi-objective energy management system. Microgrid central controller is in charge to determine optimal prices of energy and frequency security such that technical, economic and environmental targets are satisfied simultaneously. The associated prices are extracted based on calculating related Lagrange multipliers corresponding to providing the microgrid hourly energy and reserve requirements. Besides, to generate optimal Pareto solutions of the proposed multi-objective framework augmented epsilon constraint method is applied. Moreover, a novel methodology on the basis of Nash equilibrium strategy is devised and employed to select the best compromise solution from the generated Pareto front. Comprehensive analysis tool is implemented in a typical test microgrid and executed over a 24 h scheduling time horizon. The energy, primary and secondary frequency control reserves have been scheduled appropriately in three different case-studies which are defined based on the microgrid various operational policies. The optimization results verify that the operational policies adopted by means of the microgrid central controller have direct impacts on determined energy and security prices. The illustrative implementations can give the microgrid central controller an insight view to provide

  20. Limits on the Efficiency of Event-Based Algorithms for Monte Carlo Neutron Transport

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Paul K.; Siegel, Andrew R.

    2017-04-16

    The traditional form of parallelism in Monte Carlo particle transport simulations, wherein each individual particle history is considered a unit of work, does not lend itself well to data-level parallelism. Event-based algorithms, which were originally used for simulations on vector processors, may offer a path toward better utilizing data-level parallelism in modern computer architectures. In this study, a simple model is developed for estimating the efficiency of the event-based particle transport algorithm under two sets of assumptions. Data collected from simulations of four reactor problems using OpenMC was then used in conjunction with the models to calculate the speedup due to vectorization as a function of two parameters: the size of the particle bank and the vector width. When each event type is assumed to have constant execution time, the achievable speedup is directly related to the particle bank size. We observed that the bank size generally needs to be at least 20 times greater than vector size in order to achieve vector efficiency greater than 90%. When the execution times for events are allowed to vary, however, the vector speedup is also limited by differences in execution time for events being carried out in a single event-iteration. For some problems, this implies that vector effciencies over 50% may not be attainable. While there are many factors impacting performance of an event-based algorithm that are not captured by our model, it nevertheless provides insights into factors that may be limiting in a real implementation.

  1. Bayesian nonparametric hierarchical modeling.

    Science.gov (United States)

    Dunson, David B

    2009-04-01

    In biomedical research, hierarchical models are very widely used to accommodate dependence in multivariate and longitudinal data and for borrowing of information across data from different sources. A primary concern in hierarchical modeling is sensitivity to parametric assumptions, such as linearity and normality of the random effects. Parametric assumptions on latent variable distributions can be challenging to check and are typically unwarranted, given available prior knowledge. This article reviews some recent developments in Bayesian nonparametric methods motivated by complex, multivariate and functional data collected in biomedical studies. The author provides a brief review of flexible parametric approaches relying on finite mixtures and latent class modeling. Dirichlet process mixture models are motivated by the need to generalize these approaches to avoid assuming a fixed finite number of classes. Focusing on an epidemiology application, the author illustrates the practical utility and potential of nonparametric Bayes methods.

  2. Hierarchically Structured Electrospun Fibers

    Science.gov (United States)

    2013-01-07

    in the natural lotus and silver ragwort leaves. Figure 4. Examples of electrospun bio-mimics of natural hierarchical structures. (A) Lotus leaf...B) pillared poly(methyl methacrylate) (PMMA) electrospun fiber mimic; (C) silver ragwort leaf; (D) electrospun fiber mimic made from nylon 6 and...domains containing the protein in the surrounding EVA fibers [115]. A wide variety of core-shell fibers have been generated, including PCL/ gelatin

  3. Acetone sensors based on microsheet-assembled hierarchical Fe2O3 with different Fe3+ concentrations

    Science.gov (United States)

    Wang, Han; Yan, Lei; Li, Shuo; Li, Yu; Liu, Li; Du, Liting; Duan, Haojie; Cheng, Yali

    2018-02-01

    Several different morphologies of microsheet-assembled Fe2O3 have been fabricated by hydrothermal method using diverse concentrations of Fe3+ precursor solutions (0.025, 0.020, 0.015, 0.010 mol/L Fe3+). The as-synthesized materials have been characterized by scanning electron microscope (SEM), X-ray powder diffraction (XRD), and energy-dispersive X-ray spectrometry (EDS). The SEM images reflect that the morphologies of as-synthesized materials are affected by the concentrations of Fe3+ in precursor solutions. The less concentration of Fe3+, the more porous of Fe2O3 microflowers, and thinner of slices distributed on the surface. Furthermore, gas sensors based on these Fe2O3 microflowers manufactured and tested to various common gases. The optimum response value to 100 ppm acetone is 52 at the working temperature of 220 °C. Meanwhile, the Fe2O3 microflower sensors possess ultrafast response-recovery speed, which are 8 and 19 s, respectively. The possible sensing mechanism was mainly attributed to the high surface area, three-dimensional porous structure.

  4. Hierarchical video summarization

    Science.gov (United States)

    Ratakonda, Krishna; Sezan, M. Ibrahim; Crinon, Regis J.

    1998-12-01

    We address the problem of key-frame summarization of vide in the absence of any a priori information about its content. This is a common problem that is encountered in home videos. We propose a hierarchical key-frame summarization algorithm where a coarse-to-fine key-frame summary is generated. A hierarchical key-frame summary facilitates multi-level browsing where the user can quickly discover the content of the video by accessing its coarsest but most compact summary and then view a desired segment of the video with increasingly more detail. At the finest level, the summary is generated on the basis of color features of video frames, using an extension of a recently proposed key-frame extraction algorithm. The finest level key-frames are recursively clustered using a novel pairwise K-means clustering approach with temporal consecutiveness constraint. We also address summarization of MPEG-2 compressed video without fully decoding the bitstream. We also propose efficient mechanisms that facilitate decoding the video when the hierarchical summary is utilized in browsing and playback of video segments starting at selected key-frames.

  5. Hierarchically Structured Electrospun Fibers

    Directory of Open Access Journals (Sweden)

    Nicole E. Zander

    2013-01-01

    Full Text Available Traditional electrospun nanofibers have a myriad of applications ranging from scaffolds for tissue engineering to components of biosensors and energy harvesting devices. The generally smooth one-dimensional structure of the fibers has stood as a limitation to several interesting novel applications. Control of fiber diameter, porosity and collector geometry will be briefly discussed, as will more traditional methods for controlling fiber morphology and fiber mat architecture. The remainder of the review will focus on new techniques to prepare hierarchically structured fibers. Fibers with hierarchical primary structures—including helical, buckled, and beads-on-a-string fibers, as well as fibers with secondary structures, such as nanopores, nanopillars, nanorods, and internally structured fibers and their applications—will be discussed. These new materials with helical/buckled morphology are expected to possess unique optical and mechanical properties with possible applications for negative refractive index materials, highly stretchable/high-tensile-strength materials, and components in microelectromechanical devices. Core-shell type fibers enable a much wider variety of materials to be electrospun and are expected to be widely applied in the sensing, drug delivery/controlled release fields, and in the encapsulation of live cells for biological applications. Materials with a hierarchical secondary structure are expected to provide new superhydrophobic and self-cleaning materials.

  6. Measurement of the underlying event using track-based event shapes in Z→l{sup +}l{sup -} events with ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Holger

    2014-09-11

    This thesis describes a measurement of hadron-collider event shapes in proton-proton collisions at a centre of momentum energy of 7 TeV at the Large Hadron Collider (LHC) at CERN (Conseil Europeenne pour la Recherche Nucleaire) located near Geneva (Switzerland). The analysed data (integrated luminosity: 1.1 fb{sup -1}) was recorded in 2011 with the ATLAS-experiment. Events where a Z-boson was produced in the hard sub-process which subsequently decays into an electron-positron or muon-antimuon pair were selected for this analysis. The observables are calculated using all reconstructed tracks of charged particles within the acceptance of the inner detector of ATLAS except those of the leptons of the Z-decay. Thus, this is the first measurement of its kind. The observables were corrected for background processes using data-driven methods. For the correction of so-called ''pile-up'' (multiple overlapping proton-proton collisions) a novel technique was developed and successfully applied. The data was further unfolded to correct for remaining detector effects. The obtained distributions are especially sensitive to the so-called ''Underlying Event'' and can be compared with predictions of Monte-Carlo event-generators directly, i.e. without the necessity of running time-consuming simulations of the ATLAS-detector. Finally, it was tried to improve the predictions of the event generators Pythia8 and Sherpa by finding an optimised setting of relevant model parameters in a technique called ''Tuning''. It became apparent, however, that the underlying Sjoestrand-Zijl model is unable to give a good description of the measured event-shape distributions.

  7. Life review based on remembering specific positive events in active aging.

    Science.gov (United States)

    Latorre, José M; Serrano, Juan P; Ricarte, Jorge; Bonete, Beatriz; Ros, Laura; Sitges, Esther

    2015-02-01

    The aim of this study is to evaluate the effectiveness of life review (LR) based on specific positive events in non-depressed older adults taking part in an active aging program. Fifty-five older adults were randomly assigned to an experimental group or an active control (AC) group. A six-session individual training of LR based on specific positive events was carried out with the experimental group. The AC group undertook a "media workshop" of six sessions focused on learning journalistic techniques. Pre-test and post-test measures included life satisfaction, depressive symptoms, experiencing the environment as rewarding, and autobiographical memory (AM) scales. LR intervention decreased depressive symptomatology, improved life satisfaction, and increased specific memories. The findings suggest that practice in AM for specific events is an effective component of LR that could be a useful tool in enhancing emotional well-being in active aging programs, thus reducing depressive symptoms. © The Author(s) 2014.

  8. Declarative event based models of concurrency and refinement in psi-calculi

    DEFF Research Database (Denmark)

    Normann, Håkon; Johansen, Christian; Hildebrandt, Thomas

    2015-01-01

    Psi-calculi constitute a parametric framework for nominal process calculi, where constraint based process calculi and process calculi for mobility can be defined as instances. We apply here the framework of psi-calculi to provide a foundation for the exploration of declarative event-based process...... calculi with support for run-time refinement. We first provide a representation of the model of finite prime event structures as an instance of psi-calculi and prove that the representation respects the semantics up to concurrency diamonds and action refinement. We then proceed to give a psi......-calculi representation of Dynamic Condition Response Graphs, which conservatively extends prime event structures to allow finite representations of (omega) regular finite (and infinite) behaviours and have been shown to support run-time adaptation and refinement. We end by outlining the final aim of this research, which...

  9. Multitask Learning-Based Security Event Forecast Methods for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Hui He

    2016-01-01

    Full Text Available Wireless sensor networks have strong dynamics and uncertainty, including network topological changes, node disappearance or addition, and facing various threats. First, to strengthen the detection adaptability of wireless sensor networks to various security attacks, a region similarity multitask-based security event forecast method for wireless sensor networks is proposed. This method performs topology partitioning on a large-scale sensor network and calculates the similarity degree among regional subnetworks. The trend of unknown network security events can be predicted through multitask learning of the occurrence and transmission characteristics of known network security events. Second, in case of lacking regional data, the quantitative trend of unknown regional network security events can be calculated. This study introduces a sensor network security event forecast method named Prediction Network Security Incomplete Unmarked Data (PNSIUD method to forecast missing attack data in the target region according to the known partial data in similar regions. Experimental results indicate that for an unknown security event forecast the forecast accuracy and effects of the similarity forecast algorithm are better than those of single-task learning method. At the same time, the forecast accuracy of the PNSIUD method is better than that of the traditional support vector machine method.

  10. Automated reasoning with dynamic event trees: a real-time, knowledge-based decision aide

    International Nuclear Information System (INIS)

    Touchton, R.A.; Gunter, A.D.; Subramanyan, N.

    1988-01-01

    The models and data contained in a probabilistic risk assessment (PRA) Event Sequence Analysis represent a wealth of information that can be used for dynamic calculation of event sequence likelihood. In this paper we report a new and unique computerization methodology which utilizes these data. This sub-system (referred to as PREDICTOR) has been developed and tested as part of a larger system. PREDICTOR performs a real-time (re)calculation of the estimated likelihood of core-melt as a function of plant status. This methodology uses object-oriented programming techniques from the artificial intelligence discipline that enable one to codify event tree and fault tree logic models and associated probabilities developed in a PRA study. Existence of off-normal conditions is reported to PREDICTOR, which then updates the relevant failure probabilities throughout the event tree and fault tree models by dynamically replacing the off-the-shelf (or prior) probabilities with new probabilities based on the current situation. The new event probabilities are immediately propagated through the models (using 'demons') and an updated core-melt probability is calculated. Along the way, the dominant non-success path of each event tree is determined and highlighted. (author)

  11. Studies on switch-based event building systems in RD13

    International Nuclear Information System (INIS)

    Bee, C.P.; Eshghi, S.; Jones, R.

    1996-01-01

    One of the goals of the RD13 project at CERN is to investigate the feasibility of parallel event building system for detectors at the LHC. Studies were performed by building a prototype based on the HiPPI standard and by modeling this prototype and extended architectures with MODSIM II. The prototype used commercially available VME-HiPPI interfaces and a HiPPI switch together with a modular software. The setup was tested successfully as a parallel event building system in different configurations and with different data flow control schemes. The simulation program was used with realistic parameters from the prototype measurements to simulate large-scale event building systems. This includes simulations of a realistic setup of the ATLAS event building system. The influence of different parameters and scaling behavior were investigated. The influence of realistic event size distributions was checked with data from off-line simulations. Different control schemes for destination assignment and traffic shaping were investigated as well as a two-stage event building system. (author)

  12. A browser-based event display for the CMS experiment at the LHC

    International Nuclear Information System (INIS)

    Hategan, M; McCauley, T; Nguyen, P

    2012-01-01

    The line between native and web applications is becoming increasingly blurred as modern web browsers are becoming powerful platforms on which applications can be run. Such applications are trivial to install and are readily extensible and easy to use. In an educational setting, web applications permit a way to deploy deploy tools in a highly-restrictive computing environment. The I2U2 collaboration has developed a browser-based event display for viewing events in data collected and released to the public by the CMS experiment at the LHC. The application itself reads a JSON event format and uses the JavaScript 3D rendering engine pre3d. The only requirement is a modern browser using HTML5 canvas. The event display has been used by thousands of high school students in the context of programs organized by I2U2, QuarkNet, and IPPOG. This browser-based approach to display of events can have broader usage and impact for experts and public alike.

  13. Event-based plausibility immediately influences on-line language comprehension.

    Science.gov (United States)

    Matsuki, Kazunaga; Chow, Tracy; Hare, Mary; Elman, Jeffrey L; Scheepers, Christoph; McRae, Ken

    2011-07-01

    In some theories of sentence comprehension, linguistically relevant lexical knowledge, such as selectional restrictions, is privileged in terms of the time-course of its access and influence. We examined whether event knowledge computed by combining multiple concepts can rapidly influence language understanding even in the absence of selectional restriction violations. Specifically, we investigated whether instruments can combine with actions to influence comprehension of ensuing patients of (as in Rayner, Warren, Juhuasz, & Liversedge, 2004; Warren & McConnell, 2007). Instrument-verb-patient triplets were created in a norming study designed to tap directly into event knowledge. In self-paced reading (Experiment 1), participants were faster to read patient nouns, such as hair, when they were typical of the instrument-action pair (Donna used the shampoo to wash vs. the hose to wash). Experiment 2 showed that these results were not due to direct instrument-patient relations. Experiment 3 replicated Experiment 1 using eyetracking, with effects of event typicality observed in first fixation and gaze durations on the patient noun. This research demonstrates that conceptual event-based expectations are computed and used rapidly and dynamically during on-line language comprehension. We discuss relationships among plausibility and predictability, as well as their implications. We conclude that selectional restrictions may be best considered as event-based conceptual knowledge rather than lexical-grammatical knowledge.

  14. Application and Use of PSA-based Event Analysis in Belgium

    International Nuclear Information System (INIS)

    Hulsmans, M.; De Gelder, P.

    2003-01-01

    The paper describes the experiences of the Belgian nuclear regulatory body AVN with the application and the use of the PSAEA guidelines (PSA-based Event Analysis). In 2000, risk-based precursor analysis has increasingly become a part of the AVN process of feedback of operating experience, and constitutes in fact the first PSA application for the Belgian plants. The PSAEA guidelines were established by a consultant in the framework of an international project. In a first stage, AVN applied the PSAEA guidelines to two test cases in order to explore the feasibility and the interest of this type of probabilistic precursor analysis. These pilot studies demonstrated the applicability of the PSAEA method in general, and its applicability to the computer models of the Belgian state-of-the- art PSAs in particular. They revealed insights regarding the event analysis methodology, the resulting event severity and the PSA model itself. The consideration of relevant what-if questions allowed to identify - and in some cases also to quantify - several potential safety issues for improvement. The internal evaluation of PSAEA was positive and AVN decided to routinely perform several PSAEA studies per year. During 2000, PSAEA has increasingly become a part of the AVN process of feedback of operating experience. The objectives of the AVN precursor program have been clearly stated. A first pragmatic set of screening rules for operational events has been drawn up and applied. Six more operational events have been analysed in detail (initiating events as well as condition events) and resulted in a wide spectrum of event severity. In addition to the particular conclusions for each event, relevant insights have been gained regarding for instance event modelling and the interpretation of results. Particular attention has been devoted to the form of the analysis report. After an initial presentation of some key concepts, the particular context of this program and of AVN's objectives, the

  15. Location aware event driven multipath routing in Wireless Sensor Networks: Agent based approach

    Directory of Open Access Journals (Sweden)

    A.V. Sutagundar

    2013-03-01

    Full Text Available Wireless Sensor Networks (WSNs demand reliable and energy efficient paths for critical information delivery to sink node from an event occurrence node. Multipath routing facilitates reliable data delivery in case of critical information. This paper proposes an event triggered multipath routing in WSNs by employing a set of static and mobile agents. Every sensor node is assumed to know the location information of the sink node and itself. The proposed scheme works as follows: (1 Event node computes the arbitrary midpoint between an event node and the sink node by using location information. (2 Event node establishes a shortest path from itself to the sink node through the reference axis by using a mobile agent with the help of location information; the mobile agent collects the connectivity information and other parameters of all the nodes on the way and provides the information to the sink node. (3 Event node finds the arbitrary location of the special (middle intermediate nodes (above/below reference axis by using the midpoint location information given in step 1. (4 Mobile agent clones from the event node and the clones carry the event type and discover the path passing through special intermediate nodes; the path above/below reference axis looks like an arc. While migrating from one sensor node to another along the traversed path, each mobile agent gathers the node information (such as node id, location information, residual energy, available bandwidth, and neighbors connectivity and delivers to the sink node. (5 The sink node constructs a partial topology, connecting event and sink node by using the connectivity information delivered by the mobile agents. Using the partial topology information, sink node finds the multipath and path weight factor by using link efficiency, energy ratio, and hop distance. (6 The sink node selects the number of paths among the available paths based upon the criticalness of an event, and (7 if the event is non

  16. Event-based computer simulation model of aspect-type experiments strictly satisfying Einstein's locality conditions

    NARCIS (Netherlands)

    De Raedt, Hans; De Raedt, Koen; Michielsen, Kristel; Keimpema, Koenraad; Miyashita, Seiji

    2007-01-01

    Inspired by Einstein-Podolsky-Rosen-Bohtn experiments with photons, we construct an event-based simulation model in which every essential element in the ideal experiment has a counterpart. The model satisfies Einstein's criterion of local causality and does not rely on concepts of quantum and

  17. Lyapunov design of event-based controllers for the rendez-vous of coupled systems

    NARCIS (Netherlands)

    De Persis, Claudio; Postoyan, Romain

    2014-01-01

    The objective is to present a new type of triggering conditions together with new proof concepts for the event-based coordination of multi-agents. As a first step, we focus on the rendez-vous of two identical systems modeled as double integrators with additional damping in the velocity dynamics. The

  18. Multi-agent system-based event-triggered hybrid control scheme for energy internet

    DEFF Research Database (Denmark)

    Dou, Chunxia; Yue, Dong; Han, Qing Long

    2017-01-01

    This paper is concerned with an event-triggered hybrid control for the energy Internet based on a multi-agent system approach with which renewable energy resources can be fully utilized to meet load demand with high security and well dynamical quality. In the design of control, a multi-agent system...

  19. A robust neural network-based approach for microseismic event detection

    KAUST Repository

    Akram, Jubran; Ovcharenko, Oleg; Peter, Daniel

    2017-01-01

    We present an artificial neural network based approach for robust event detection from low S/N waveforms. We use a feed-forward network with a single hidden layer that is tuned on a training dataset and later applied on the entire example dataset

  20. Mind the gap: modelling event-based and millennial-scale landscape dynamics

    NARCIS (Netherlands)

    Baartman, J.E.M.

    2012-01-01

    This research looks at landscape dynamics – erosion and deposition – from two different perspectives: long-term landscape evolution over millennial timescales on the one hand and short-term event-based erosion and deposition at the other hand. For the first, landscape evolution models (LEMs) are

  1. Component-Based Data-Driven Predictive Maintenance to Reduce Unscheduled Maintenance Events

    NARCIS (Netherlands)

    Verhagen, W.J.C.; Curran, R.; de Boer, L.W.M.; Chen, C.H.; Trappey, A.C.; Peruzzini, M.; Stjepandić, J.; Wognum, N.

    2017-01-01

    Costs associated with unscheduled and preventive maintenance can contribute significantly to an airline's expenditure. Reliability analysis can help to identify and plan for maintenance events. Reliability analysis in industry is often limited to statistically based

  2. Automatic detection of esophageal pressure events. Is there an alternative to rule-based criteria?

    DEFF Research Database (Denmark)

    Kruse-Andersen, S; Rütz, K; Kolberg, Jens Godsk

    1995-01-01

    of relevant pressure peaks at the various recording levels. Until now, this selection has been performed entirely by rule-based systems, requiring each pressure deflection to fit within predefined rigid numerical limits in order to be detected. However, due to great variations in the shapes of the pressure...... curves generated by muscular contractions, rule-based criteria do not always select the pressure events most relevant for further analysis. We have therefore been searching for a new concept for automatic event recognition. The present study describes a new system, based on the method of neurocomputing.......79-0.99 and accuracies of 0.89-0.98, depending on the recording level within the esophageal lumen. The neural networks often recognized peaks that clearly represented true contractions but that had been rejected by a rule-based system. We conclude that neural networks have potentials for automatic detections...

  3. Self-assembled biomimetic superhydrophobic hierarchical arrays.

    Science.gov (United States)

    Yang, Hongta; Dou, Xuan; Fang, Yin; Jiang, Peng

    2013-09-01

    Here, we report a simple and inexpensive bottom-up technology for fabricating superhydrophobic coatings with hierarchical micro-/nano-structures, which are inspired by the binary periodic structure found on the superhydrophobic compound eyes of some insects (e.g., mosquitoes and moths). Binary colloidal arrays consisting of exemplary large (4 and 30 μm) and small (300 nm) silica spheres are first assembled by a scalable Langmuir-Blodgett (LB) technology in a layer-by-layer manner. After surface modification with fluorosilanes, the self-assembled hierarchical particle arrays become superhydrophobic with an apparent water contact angle (CA) larger than 150°. The throughput of the resulting superhydrophobic coatings with hierarchical structures can be significantly improved by templating the binary periodic structures of the LB-assembled colloidal arrays into UV-curable fluoropolymers by a soft lithography approach. Superhydrophobic perfluoroether acrylate hierarchical arrays with large CAs and small CA hysteresis can be faithfully replicated onto various substrates. Both experiments and theoretical calculations based on the Cassie's dewetting model demonstrate the importance of the hierarchical structure in achieving the final superhydrophobic surface states. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. The role of musical training in emergent and event-based timing

    Directory of Open Access Journals (Sweden)

    Lawrence eBaer

    2013-05-01

    Full Text Available Musical performance is thought to rely predominantly on event-based timing involving a clock-like neural process and an explicit internal representation of the time interval. Some aspects of musical performance may rely on emergent timing, which is established through the optimization of movement kinematics, and can be maintained without reference to any explicit representation of the time interval. We predicted that musical training would have its largest effect on event-based timing, supporting the dissociability of these timing processes and the dominance of event-based timing in musical performance. We compared 22 musicians and 17 non-musicians on the prototypical event-based timing task of finger tapping and on the typically emergently timed task of circle drawing. For each task, participants first responded in synchrony with a metronome (Paced and then responded at the same rate without the metronome (Unpaced. Analyses of the Unpaced phase revealed that non-musicians were more variable in their inter-response intervals for finger tapping compared to circle drawing. Musicians did not differ between the two tasks. Between groups, non-musicians were more variable than musicians for tapping but not for drawing. We were able to show that the differences were due to less timer variability in musicians on the tapping task. Correlational analyses of movement jerk and inter-response interval variability revealed a negative association for tapping and a positive association for drawing in non-musicians only. These results suggest that musical training affects temporal variability in tapping but not drawing. Additionally, musicians and non-musicians may be employing different movement strategies to maintain accurate timing in the two tasks. These findings add to our understanding of how musical training affects timing and support the dissociability of event-based and emergent timing modes.

  5. Making Sense of Collective Events: The Co-creation of a Research-based Dance

    OpenAIRE

    Katherine M. Boydell

    2011-01-01

    A symbolic interaction (Blumer, 1969; Mead, 1934; Prus, 1996; Prus & Grills, 2003) approach was taken to study the collective event (Prus, 1997) of creating a research-based dance on pathways to care in first episode psychosis. Viewing the co-creation of a research-based dance as collective activity attends to the processual aspects of an individual's experiences. It allowed the authors to study the process of the creation of the dance and its capacity to convert abstract research into concre...

  6. Neural bases of event knowledge and syntax integration in comprehension of complex sentences.

    Science.gov (United States)

    Malaia, Evie; Newman, Sharlene

    2015-01-01

    Comprehension of complex sentences is necessarily supported by both syntactic and semantic knowledge, but what linguistic factors trigger a readers' reliance on a specific system? This functional neuroimaging study orthogonally manipulated argument plausibility and verb event type to investigate cortical bases of the semantic effect on argument comprehension during reading. The data suggest that telic verbs facilitate online processing by means of consolidating the event schemas in episodic memory and by easing the computation of syntactico-thematic hierarchies in the left inferior frontal gyrus. The results demonstrate that syntax-semantics integration relies on trade-offs among a distributed network of regions for maximum comprehension efficiency.

  7. Declarative Event-Based Workflow as Distributed Dynamic Condition Response Graphs

    DEFF Research Database (Denmark)

    Hildebrandt, Thomas; Mukkamala, Raghava Rao

    2010-01-01

    We present Dynamic Condition Response Graphs (DCR Graphs) as a declarative, event-based process model inspired by the workflow language employed by our industrial partner and conservatively generalizing prime event structures. A dynamic condition response graph is a directed graph with nodes repr...... exemplify the use of distributed DCR Graphs on a simple workflow taken from a field study at a Danish hospital, pointing out their flexibility compared to imperative workflow models. Finally we provide a mapping from DCR Graphs to Buchi-automata....

  8. Hierarchically nested river landform sequences

    Science.gov (United States)

    Pasternack, G. B.; Weber, M. D.; Brown, R. A.; Baig, D.

    2017-12-01

    River corridors exhibit landforms nested within landforms repeatedly down spatial scales. In this study we developed, tested, and implemented a new way to create river classifications by mapping domains of fluvial processes with respect to the hierarchical organization of topographic complexity that drives fluvial dynamism. We tested this approach on flow convergence routing, a morphodynamic mechanism with different states depending on the structure of nondimensional topographic variability. Five nondimensional landform types with unique functionality (nozzle, wide bar, normal channel, constricted pool, and oversized) represent this process at any flow. When this typology is nested at base flow, bankfull, and floodprone scales it creates a system with up to 125 functional types. This shows how a single mechanism produces complex dynamism via nesting. Given the classification, we answered nine specific scientific questions to investigate the abundance, sequencing, and hierarchical nesting of these new landform types using a 35-km gravel/cobble river segment of the Yuba River in California. The nested structure of flow convergence routing landforms found in this study revealed that bankfull landforms are nested within specific floodprone valley landform types, and these types control bankfull morphodynamics during moderate to large floods. As a result, this study calls into question the prevailing theory that the bankfull channel of a gravel/cobble river is controlled by in-channel, bankfull, and/or small flood flows. Such flows are too small to initiate widespread sediment transport in a gravel/cobble river with topographic complexity.

  9. Static and dynamic friction of hierarchical surfaces.

    Science.gov (United States)

    Costagliola, Gianluca; Bosia, Federico; Pugno, Nicola M

    2016-12-01

    Hierarchical structures are very common in nature, but only recently have they been systematically studied in materials science, in order to understand the specific effects they can have on the mechanical properties of various systems. Structural hierarchy provides a way to tune and optimize macroscopic mechanical properties starting from simple base constituents and new materials are nowadays designed exploiting this possibility. This can be true also in the field of tribology. In this paper we study the effect of hierarchical patterned surfaces on the static and dynamic friction coefficients of an elastic material. Our results are obtained by means of numerical simulations using a one-dimensional spring-block model, which has previously been used to investigate various aspects of friction. Despite the simplicity of the model, we highlight some possible mechanisms that explain how hierarchical structures can significantly modify the friction coefficients of a material, providing a means to achieve tunability.

  10. Hierarchical Traces for Reduced NSM Memory Requirements

    Science.gov (United States)

    Dahl, Torbjørn S.

    This paper presents work on using hierarchical long term memory to reduce the memory requirements of nearest sequence memory (NSM) learning, a previously published, instance-based reinforcement learning algorithm. A hierarchical memory representation reduces the memory requirements by allowing traces to share common sub-sequences. We present moderated mechanisms for estimating discounted future rewards and for dealing with hidden state using hierarchical memory. We also present an experimental analysis of how the sub-sequence length affects the memory compression achieved and show that the reduced memory requirements do not effect the speed of learning. Finally, we analyse and discuss the persistence of the sub-sequences independent of specific trace instances.

  11. Issues in Informal Education: Event-Based Science Communication Involving Planetaria and the Internet

    Science.gov (United States)

    Adams, Mitzi L.; Gallagher, D. L.; Whitt, A.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    For the last several years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of Internet-based science communication. The program includes extended stories about NASA science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. The focus of sharing real-time science related events has been to involve and excite students and the public about science. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases broadcasts accommodate active feedback and questions from Internet participants. Panel participation will be used to communicate the problems and lessons learned from these activities over the last three years.

  12. Modeling Documents with Event Model

    Directory of Open Access Journals (Sweden)

    Longhui Wang

    2015-08-01

    Full Text Available Currently deep learning has made great breakthroughs in visual and speech processing, mainly because it draws lessons from the hierarchical mode that brain deals with images and speech. In the field of NLP, a topic model is one of the important ways for modeling documents. Topic models are built on a generative model that clearly does not match the way humans write. In this paper, we propose Event Model, which is unsupervised and based on the language processing mechanism of neurolinguistics, to model documents. In Event Model, documents are descriptions of concrete or abstract events seen, heard, or sensed by people and words are objects in the events. Event Model has two stages: word learning and dimensionality reduction. Word learning is to learn semantics of words based on deep learning. Dimensionality reduction is the process that representing a document as a low dimensional vector by a linear mode that is completely different from topic models. Event Model achieves state-of-the-art results on document retrieval tasks.

  13. Hierarchical Sets: Analyzing Pangenome Structure through Scalable Set Visualizations

    DEFF Research Database (Denmark)

    Pedersen, Thomas Lin

    2017-01-01

    of hierarchical sets by applying it to a pangenome based on 113 Escherichia and Shigella genomes and find it provides a powerful addition to pangenome analysis. The described clustering algorithm and visualizations are implemented in the hierarchicalSets R package available from CRAN (https...

  14. Lessons Learned from Real-Time, Event-Based Internet Science Communications

    Science.gov (United States)

    Phillips, T.; Myszka, E.; Gallagher, D. L.; Adams, M. L.; Koczor, R. J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    For the last several years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of Internet-based science communication. The Directorate's Science Roundtable includes active researchers, NASA public relations, educators, and administrators. The Science@NASA award-winning family of Web sites features science, mathematics, and space news. The program includes extended stories about NASA science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. The focus of sharing science activities in real-time has been to involve and excite students and the public about science. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases, broadcasts accommodate active feedback and questions from Internet participants. Through these projects a pattern has emerged in the level of interest or popularity with the public. The pattern differentiates projects that include science from those that do not, All real-time, event-based Internet activities have captured public interest at a level not achieved through science stories or educator resource material exclusively. The worst event-based activity attracted more interest than the best written science story. One truly rewarding lesson learned through these projects is that the public recognizes the importance and excitement of being part of scientific discovery. Flying a camera to 100,000 feet altitude isn't as interesting to the public as searching for viable life-forms at these oxygen-poor altitudes. The details of these real-time, event-based projects and lessons learned will be discussed.

  15. Event-based rainfall-runoff modelling of the Kelantan River Basin

    Science.gov (United States)

    Basarudin, Z.; Adnan, N. A.; Latif, A. R. A.; Tahir, W.; Syafiqah, N.

    2014-02-01

    Flood is one of the most common natural disasters in Malaysia. According to hydrologists there are many causes that contribute to flood events. The two most dominant factors are the meteorology factor (i.e climate change) and change in land use. These two factors contributed to floods in recent decade especially in the monsoonal catchment such as Malaysia. This paper intends to quantify the influence of rainfall during extreme rainfall events on the hydrological model in the Kelantan River catchment. Therefore, two dynamic inputs were used in the study: rainfall and river discharge. The extreme flood events in 2008 and 2004 were compared based on rainfall data for both years. The events were modeled via a semi-distributed HEC-HMS hydrological model. Land use change was not incorporated in the study because the study only tries to quantify rainfall changes during these two events to simulate the discharge and runoff value. Therefore, the land use data representing the year 2004 were used as inputs in the 2008 runoff model. The study managed to demonstrate that rainfall change has a significant impact to determine the peak discharge and runoff depth for the study area.

  16. Event-based rainfall-runoff modelling of the Kelantan River Basin

    International Nuclear Information System (INIS)

    Basarudin, Z; Adnan, N A; Latif, A R A; Syafiqah, N; Tahir, W

    2014-01-01

    Flood is one of the most common natural disasters in Malaysia. According to hydrologists there are many causes that contribute to flood events. The two most dominant factors are the meteorology factor (i.e climate change) and change in land use. These two factors contributed to floods in recent decade especially in the monsoonal catchment such as Malaysia. This paper intends to quantify the influence of rainfall during extreme rainfall events on the hydrological model in the Kelantan River catchment. Therefore, two dynamic inputs were used in the study: rainfall and river discharge. The extreme flood events in 2008 and 2004 were compared based on rainfall data for both years. The events were modeled via a semi-distributed HEC-HMS hydrological model. Land use change was not incorporated in the study because the study only tries to quantify rainfall changes during these two events to simulate the discharge and runoff value. Therefore, the land use data representing the year 2004 were used as inputs in the 2008 runoff model. The study managed to demonstrate that rainfall change has a significant impact to determine the peak discharge and runoff depth for the study area

  17. Silver Films with Hierarchical Chirality.

    Science.gov (United States)

    Ma, Liguo; Cao, Yuanyuan; Duan, Yingying; Han, Lu; Che, Shunai

    2017-07-17

    Physical fabrication of chiral metallic films usually results in singular or large-sized chirality, restricting the optical asymmetric responses to long electromagnetic wavelengths. The chiral molecule-induced formation of silver films prepared chemically on a copper substrate through a redox reaction is presented. Three levels of chirality were identified: primary twisted nanoflakes with atomic crystal lattices, secondary helical stacking of these nanoflakes to form nanoplates, and tertiary micrometer-sized circinates consisting of chiral arranged nanoplates. The chiral Ag films exhibited multiple plasmonic absorption- and scattering-based optical activities at UV/Vis wavelengths based on their hierarchical chirality. The Ag films showed chiral selectivity for amino acids in catalytic electrochemical reactions, which originated from their primary atomic crystal lattices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A facile approach for the synthesis of monolithic hierarchical porous carbons – high performance materials for amine based CO2 capture and supercapacitor electrode

    KAUST Repository

    Estevez, Luis

    2013-05-03

    An ice templating coupled with hard templating and physical activation approach is reported for the synthesis of hierarchically porous carbon monoliths with tunable porosities across all three length scales (macro- meso- and micro), with ultrahigh specific pore volumes [similar]11.4 cm3 g−1. The materials function well as amine impregnated supports for CO2 capture and as supercapacitor electrodes.

  19. Fabrication of long-term stable superoleophobic surface based on copper oxide/cobalt oxide with micro-nanoscale hierarchical roughness

    Science.gov (United States)

    Barthwal, Sumit; Lim, Si-Hyung

    2015-02-01

    We have demonstrated a simple and cost-effective technique for the large-area fabrication of a superoleophobic surface using copper as a substrate. The whole process included three simple steps: First, the copper substrate was oxidized under hot alkaline conditions to fabricate flower-like copper oxide microspheres by heating at a particular temperature for an interval of time. Second, the copper-oxide-covered copper substrate was further heated in a solution of cobalt nitrate and ammonium nitrate in the presence of an ammonia solution to fabricate cobalt oxide nanostructures. We applied this second step to increase the surface roughness because it is an important criterion for improved superoleophobicity. Finally, to reduce the surface energy of the fabricated structures, the surfaces were chemically modified with perfluorooctyltrichlorosilane. Contact-angle measurements indicate that the micro-nano binary (MNB) hierarchical structures fabricated on the copper substrate became super-repellent toward a broad range of liquids with surface tension in the range of 21.5-72 mN/m. In an attempt to significantly improve the superoleophobic property of the surface, we also examined and compared the role of nanostructures in MNB hierarchical structures with only micro-fabricated surfaces. The fabricated MNB hierarchical structures also displays thermal stability and excellent long-term stability after exposure in air for more than 9 months. Our method might provide a general route toward the preparation of novel hierarchical films on metal substrates for various industrial applications.

  20. Co3O4 based non-enzymatic glucose sensor with high sensitivity and reliable stability derived from hollow hierarchical architecture

    Science.gov (United States)

    Tian, Liangliang; He, Gege; Cai, Yanhua; Wu, Shenping; Su, Yongyao; Yan, Hengqing; Yang, Cong; Chen, Yanling; Li, Lu

    2018-02-01

    Inspired by kinetics, the design of hollow hierarchical electrocatalysts through large-scale integration of building blocks is recognized as an effective approach to the achievement of superior electrocatalytic performance. In this work, a hollow, hierarchical Co3O4 architecture (Co3O4 HHA) was constructed using a coordinated etching and precipitation (CEP) method followed by calcination. The resulting Co3O4 HHA electrode exhibited excellent electrocatalytic activity in terms of high sensitivity (839.3 μA mM-1 cm-2) and reliable stability in glucose detection. The high sensitivity could be attributed to the large specific surface area (SSA), ample unimpeded penetration diffusion paths and high electron transfer rate originating from the unique two-dimensional (2D) sheet-like character and hollow porous architecture. The hollow hierarchical structure also affords sufficient interspace for accommodation of volume change and structural strain, resulting in enhanced stability. The results indicate that Co3O4 HHA could have potential for application in the design of non-enzymatic glucose sensors, and that the construction of hollow hierarchical architecture provides an efficient way to design highly active, stable electrocatalysts.

  1. Context updates are hierarchical

    Directory of Open Access Journals (Sweden)

    Anton Karl Ingason

    2016-10-01

    Full Text Available This squib studies the order in which elements are added to the shared context of interlocutors in a conversation. It focuses on context updates within one hierarchical structure and argues that structurally higher elements are entered into the context before lower elements, even if the structurally higher elements are pronounced after the lower elements. The crucial data are drawn from a comparison of relative clauses in two head-initial languages, English and Icelandic, and two head-final languages, Korean and Japanese. The findings have consequences for any theory of a dynamic semantics.

  2. Runtime Concepts of Hierarchical Software Components

    Czech Academy of Sciences Publication Activity Database

    Bureš, Tomáš; Hnětynka, P.; Plášil, František

    2007-01-01

    Roč. 8, special (2007), s. 454-463 ISSN 1525-9293 R&D Projects: GA AV ČR 1ET400300504 Institutional research plan: CEZ:AV0Z10300504 Keywords : component-based development * hierarchical components * connectors * controlers * runtime environment Subject RIV: JC - Computer Hardware ; Software

  3. A hierarchical model for ordinal matrix factorization

    DEFF Research Database (Denmark)

    Paquet, Ulrich; Thomson, Blaise; Winther, Ole

    2012-01-01

    This paper proposes a hierarchical probabilistic model for ordinal matrix factorization. Unlike previous approaches, we model the ordinal nature of the data and take a principled approach to incorporating priors for the hidden variables. Two algorithms are presented for inference, one based...

  4. Hierarchical Bayesian Models of Subtask Learning

    Science.gov (United States)

    Anglim, Jeromy; Wynton, Sarah K. A.

    2015-01-01

    The current study used Bayesian hierarchical methods to challenge and extend previous work on subtask learning consistency. A general model of individual-level subtask learning was proposed focusing on power and exponential functions with constraints to test for inconsistency. To study subtask learning, we developed a novel computer-based booking…

  5. Adverse Event extraction from Structured Product Labels using the Event-based Text-mining of Health Electronic Records (ETHER)system.

    Science.gov (United States)

    Pandey, Abhishek; Kreimeyer, Kory; Foster, Matthew; Botsis, Taxiarchis; Dang, Oanh; Ly, Thomas; Wang, Wei; Forshee, Richard

    2018-01-01

    Structured Product Labels follow an XML-based document markup standard approved by the Health Level Seven organization and adopted by the US Food and Drug Administration as a mechanism for exchanging medical products information. Their current organization makes their secondary use rather challenging. We used the Side Effect Resource database and DailyMed to generate a comparison dataset of 1159 Structured Product Labels. We processed the Adverse Reaction section of these Structured Product Labels with the Event-based Text-mining of Health Electronic Records system and evaluated its ability to extract and encode Adverse Event terms to Medical Dictionary for Regulatory Activities Preferred Terms. A small sample of 100 labels was then selected for further analysis. Of the 100 labels, Event-based Text-mining of Health Electronic Records achieved a precision and recall of 81 percent and 92 percent, respectively. This study demonstrated Event-based Text-mining of Health Electronic Record's ability to extract and encode Adverse Event terms from Structured Product Labels which may potentially support multiple pharmacoepidemiological tasks.

  6. Exceptionally stable and hierarchically porous self-standing zeolite monolith based on a solution-mediated and solid-state transformation synergistic mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Do, Manh Huy [Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, Zhejiang (China); College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang (China); Institute of Chemical Technology, Vietnamese Academy of Science and Technology, 01 Mac Dinh Chi, District 1, Ho Chi Minh (Viet Nam); Cheng, Dang-guo, E-mail: dgcheng@zju.edu.cn [College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang (China); Chen, Fengqiu [Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, Zhejiang (China); College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang (China); Zhan, Xiaoli [College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang (China)

    2015-11-15

    Although many strategies exist for fabricating hierarchical zeolite monolith, it is still challenging to synthesize pure hierarchical zeolite monolith with intracrystalline meso-/macropores and stability suitable for industrial application in a general and efficient process. Here we describe a simple quasi-solid gel crystallization route to prepare hierarchical self-standing ZSM-5 zeolite monolith via the use of Na{sup +} and OH{sup −} as counterions to modify the breaking and remaking of T–O–T (T = Si or Al) bonds. X-ray diffraction (XRD), scanning electron microcopy (SEM), transmission electron microscopy (TEM), laser scan confocal microscopy (LSCM), N{sub 2} adsorption–desorption, mercury porosimetry, solid-state nuclear magnetic resonance (NMR), and compression mechanical testing were applied to elucidate the structure and mechanical stability of the obtained monolith. The self-standing monolith is composed of self-interconnected meso-/macroporous MFI crystals with tunable intracrystalline meso-/macropores and possesses an unusually mechanical stability with a crushing strength of 5.01 MPa. Combined with controllable structure of the defect-free membrane layer on the monolith top, the self-standing zeolite monolith should widen their potential applications. - Highlights: • Hierarchical self-standing MFI zeolite monoliths were synthesized via a facile method. • Na{sup +} and OH{sup −} are used as counterions for breaking and remaking of T–O–T (T = Si or Al) bonds. • Hierarchical self-standing MFI zeolite monoliths result from zeolite crystal intergrowth. • Self-standing zeolite monolith has an excellent mechanical stability with tunable intracrystalline meso-/macropores.

  7. Detecting Hierarchical Structure in Networks

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard

    2012-01-01

    Many real-world networks exhibit hierarchical organization. Previous models of hierarchies within relational data has focused on binary trees; however, for many networks it is unknown whether there is hierarchical structure, and if there is, a binary tree might not account well for it. We propose...... a generative Bayesian model that is able to infer whether hierarchies are present or not from a hypothesis space encompassing all types of hierarchical tree structures. For efficient inference we propose a collapsed Gibbs sampling procedure that jointly infers a partition and its hierarchical structure....... On synthetic and real data we demonstrate that our model can detect hierarchical structure leading to better link-prediction than competing models. Our model can be used to detect if a network exhibits hierarchical structure, thereby leading to a better comprehension and statistical account the network....

  8. Hierarchical quark mass matrices

    International Nuclear Information System (INIS)

    Rasin, A.

    1998-02-01

    I define a set of conditions that the most general hierarchical Yukawa mass matrices have to satisfy so that the leading rotations in the diagonalization matrix are a pair of (2,3) and (1,2) rotations. In addition to Fritzsch structures, examples of such hierarchical structures include also matrices with (1,3) elements of the same order or even much larger than the (1,2) elements. Such matrices can be obtained in the framework of a flavor theory. To leading order, the values of the angle in the (2,3) plane (s 23 ) and the angle in the (1,2) plane (s 12 ) do not depend on the order in which they are taken when diagonalizing. We find that any of the Cabbibo-Kobayashi-Maskawa matrix parametrizations that consist of at least one (1,2) and one (2,3) rotation may be suitable. In the particular case when the s 13 diagonalization angles are sufficiently small compared to the product s 12 s 23 , two special CKM parametrizations emerge: the R 12 R 23 R 12 parametrization follows with s 23 taken before the s 12 rotation, and vice versa for the R 23 R 12 R 23 parametrization. (author)

  9. A hierarchical classification approach for recognition of low-density (LDPE) and high-density polyethylene (HDPE) in mixed plastic waste based on short-wave infrared (SWIR) hyperspectral imaging

    Science.gov (United States)

    Bonifazi, Giuseppe; Capobianco, Giuseppe; Serranti, Silvia

    2018-06-01

    The aim of this work was to recognize different polymer flakes from mixed plastic waste through an innovative hierarchical classification strategy based on hyperspectral imaging, with particular reference to low density polyethylene (LDPE) and high-density polyethylene (HDPE). A plastic waste composition assessment, including also LDPE and HDPE identification, may help to define optimal recycling strategies for product quality control. Correct handling of plastic waste is essential for its further "sustainable" recovery, maximizing the sorting performance in particular for plastics with similar characteristics as LDPE and HDPE. Five different plastic waste samples were chosen for the investigation: polypropylene (PP), LDPE, HDPE, polystyrene (PS) and polyvinyl chloride (PVC). A calibration dataset was realized utilizing the corresponding virgin polymers. Hyperspectral imaging in the short-wave infrared range (1000-2500 nm) was thus applied to evaluate the different plastic spectral attributes finalized to perform their recognition/classification. After exploring polymer spectral differences by principal component analysis (PCA), a hierarchical partial least squares discriminant analysis (PLS-DA) model was built allowing the five different polymers to be recognized. The proposed methodology, based on hierarchical classification, is very powerful and fast, allowing to recognize the five different polymers in a single step.

  10. Discrete event model-based simulation for train movement on a single-line railway

    International Nuclear Information System (INIS)

    Xu Xiao-Ming; Li Ke-Ping; Yang Li-Xing

    2014-01-01

    The aim of this paper is to present a discrete event model-based approach to simulate train movement with the considered energy-saving factor. We conduct extensive case studies to show the dynamic characteristics of the traffic flow and demonstrate the effectiveness of the proposed approach. The simulation results indicate that the proposed discrete event model-based simulation approach is suitable for characterizing the movements of a group of trains on a single railway line with less iterations and CPU time. Additionally, some other qualitative and quantitative characteristics are investigated. In particular, because of the cumulative influence from the previous trains, the following trains should be accelerated or braked frequently to control the headway distance, leading to more energy consumption. (general)

  11. LCP method for a planar passive dynamic walker based on an event-driven scheme

    Science.gov (United States)

    Zheng, Xu-Dong; Wang, Qi

    2018-06-01

    The main purpose of this paper is to present a linear complementarity problem (LCP) method for a planar passive dynamic walker with round feet based on an event-driven scheme. The passive dynamic walker is treated as a planar multi-rigid-body system. The dynamic equations of the passive dynamic walker are obtained by using Lagrange's equations of the second kind. The normal forces and frictional forces acting on the feet of the passive walker are described based on a modified Hertz contact model and Coulomb's law of dry friction. The state transition problem of stick-slip between feet and floor is formulated as an LCP, which is solved with an event-driven scheme. Finally, to validate the methodology, four gaits of the walker are simulated: the stance leg neither slips nor bounces; the stance leg slips without bouncing; the stance leg bounces without slipping; the walker stands after walking several steps.

  12. Pull-Based Distributed Event-Triggered Consensus for Multiagent Systems With Directed Topologies.

    Science.gov (United States)

    Yi, Xinlei; Lu, Wenlian; Chen, Tianping

    2017-01-01

    This paper mainly investigates consensus problem with a pull-based event-triggered feedback control. For each agent, the diffusion coupling feedbacks are based on the states of its in-neighbors at its latest triggering time, and the next triggering time of this agent is determined by its in-neighbors' information. The general directed topologies, including irreducible and reducible cases, are investigated. The scenario of distributed continuous communication is considered first. It is proved that if the network topology has a spanning tree, then the event-triggered coupling algorithm can realize the consensus for the multiagent system. Then, the results are extended to discontinuous communication, i.e., self-triggered control, where each agent computes its next triggering time in advance without having to observe the system's states continuously. The effectiveness of the theoretical results is illustrated by a numerical example finally.

  13. Event Based Simulator for Parallel Computing over the Wide Area Network for Real Time Visualization

    Science.gov (United States)

    Sundararajan, Elankovan; Harwood, Aaron; Kotagiri, Ramamohanarao; Satria Prabuwono, Anton

    As the computational requirement of applications in computational science continues to grow tremendously, the use of computational resources distributed across the Wide Area Network (WAN) becomes advantageous. However, not all applications can be executed over the WAN due to communication overhead that can drastically slowdown the computation. In this paper, we introduce an event based simulator to investigate the performance of parallel algorithms executed over the WAN. The event based simulator known as SIMPAR (SIMulator for PARallel computation), simulates the actual computations and communications involved in parallel computation over the WAN using time stamps. Visualization of real time applications require steady stream of processed data flow for visualization purposes. Hence, SIMPAR may prove to be a valuable tool to investigate types of applications and computing resource requirements to provide uninterrupted flow of processed data for real time visualization purposes. The results obtained from the simulation show concurrence with the expected performance using the L-BSP model.

  14. Individual differences in event-based prospective memory: Evidence for multiple processes supporting cue detection.

    Science.gov (United States)

    Brewer, Gene A; Knight, Justin B; Marsh, Richard L; Unsworth, Nash

    2010-04-01

    The multiprocess view proposes that different processes can be used to detect event-based prospective memory cues, depending in part on the specificity of the cue. According to this theory, attentional processes are not necessary to detect focal cues, whereas detection of nonfocal cues requires some form of controlled attention. This notion was tested using a design in which we compared performance on a focal and on a nonfocal prospective memory task by participants with high or low working memory capacity. An interaction was found, such that participants with high and low working memory performed equally well on the focal task, whereas the participants with high working memory performed significantly better on the nonfocal task than did their counterparts with low working memory. Thus, controlled attention was only necessary for detecting event-based prospective memory cues in the nonfocal task. These results have implications for theories of prospective memory, the processes necessary for cue detection, and the successful fulfillment of intentions.

  15. Event-Based Control Strategy for Mobile Robots in Wireless Environments.

    Science.gov (United States)

    Socas, Rafael; Dormido, Sebastián; Dormido, Raquel; Fabregas, Ernesto

    2015-12-02

    In this paper, a new event-based control strategy for mobile robots is presented. It has been designed to work in wireless environments where a centralized controller has to interchange information with the robots over an RF (radio frequency) interface. The event-based architectures have been developed for differential wheeled robots, although they can be applied to other kinds of robots in a simple way. The solution has been checked over classical navigation algorithms, like wall following and obstacle avoidance, using scenarios with a unique or multiple robots. A comparison between the proposed architectures and the classical discrete-time strategy is also carried out. The experimental results shows that the proposed solution has a higher efficiency in communication resource usage than the classical discrete-time strategy with the same accuracy.

  16. Nest-crowdcontrol: Advanced video-based crowd monitoring for large public events

    OpenAIRE

    Monari, Eduardo; Fischer, Yvonne; Anneken, Mathias

    2015-01-01

    Current video surveillance systems still lack of intelligent video and data analysis modules for supporting situation awareness of decision makers. Especially in mass gatherings like large public events, the decision maker would benefit from different views of the area, especially from crowd density estimations. This article describes a multi-camera system called NEST and its application for crowd density analysis. First, the overall system design is presented. Based on this, the crowd densit...

  17. Network based on statistical multiplexing for event selection and event builder systems in high energy physics experiments

    International Nuclear Information System (INIS)

    Calvet, D.

    2000-03-01

    Systems for on-line event selection in future high energy physics experiments will use advanced distributed computing techniques and will need high speed networks. After a brief description of projects at the Large Hadron Collider, the architectures initially proposed for the Trigger and Data AcQuisition (TD/DAQ) systems of ATLAS and CMS experiments are presented and analyzed. A new architecture for the ATLAS T/DAQ is introduced. Candidate network technologies for this system are described. This thesis focuses on ATM. A variety of network structures and topologies suited to partial and full event building are investigated. The need for efficient networking is shown. Optimization techniques for high speed messaging and their implementation on ATM components are described. Small scale demonstrator systems consisting of up to 48 computers (∼1:20 of the final level 2 trigger) connected via ATM are described. Performance results are presented. Extrapolation of measurements and evaluation of needs lead to a proposal of implementation for the main network of the ATLAS T/DAQ system. (author)

  18. An Event-Based Approach to Design a Teamwork Training Scenario and Assessment Tool in Surgery.

    Science.gov (United States)

    Nguyen, Ngan; Watson, William D; Dominguez, Edward

    2016-01-01

    Simulation is a technique recommended for teaching and measuring teamwork, but few published methodologies are available on how best to design simulation for teamwork training in surgery and health care in general. The purpose of this article is to describe a general methodology, called event-based approach to training (EBAT), to guide the design of simulation for teamwork training and discuss its application to surgery. The EBAT methodology draws on the science of training by systematically introducing training exercise events that are linked to training requirements (i.e., competencies being trained and learning objectives) and performance assessment. The EBAT process involves: Of the 4 teamwork competencies endorsed by the Agency for Healthcare Research Quality and Department of Defense, "communication" was chosen to be the focus of our training efforts. A total of 5 learning objectives were defined based on 5 validated teamwork and communication techniques. Diagnostic laparoscopy was chosen as the clinical context to frame the training scenario, and 29 KSAs were defined based on review of published literature on patient safety and input from subject matter experts. Critical events included those that correspond to a specific phase in the normal flow of a surgical procedure as well as clinical events that may occur when performing the operation. Similar to the targeted KSAs, targeted responses to the critical events were developed based on existing literature and gathering input from content experts. Finally, a 29-item EBAT-derived checklist was created to assess communication performance. Like any instructional tool, simulation is only effective if it is designed and implemented appropriately. It is recognized that the effectiveness of simulation depends on whether (1) it is built upon a theoretical framework, (2) it uses preplanned structured exercises or events to allow learners the opportunity to exhibit the targeted KSAs, (3) it assesses performance, and (4

  19. Multicollinearity in hierarchical linear models.

    Science.gov (United States)

    Yu, Han; Jiang, Shanhe; Land, Kenneth C

    2015-09-01

    This study investigates an ill-posed problem (multicollinearity) in Hierarchical Linear Models from both the data and the model perspectives. We propose an intuitive, effective approach to diagnosing the presence of multicollinearity and its remedies in this class of models. A simulation study demonstrates the impacts of multicollinearity on coefficient estimates, associated standard errors, and variance components at various levels of multicollinearity for finite sample sizes typical in social science studies. We further investigate the role multicollinearity plays at each level for estimation of coefficient parameters in terms of shrinkage. Based on these analyses, we recommend a top-down method for assessing multicollinearity in HLMs that first examines the contextual predictors (Level-2 in a two-level model) and then the individual predictors (Level-1) and uses the results for data collection, research problem redefinition, model re-specification, variable selection and estimation of a final model. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Hierarchical Control for Smart Grids

    DEFF Research Database (Denmark)

    Trangbæk, K; Bendtsen, Jan Dimon; Stoustrup, Jakob

    2011-01-01

    of autonomous consumers. The control system is tasked with balancing electric power production and consumption within the smart grid, and makes active use of the flexibility of a large number of power producing and/or power consuming units. The objective is to accommodate the load variation on the grid, arising......This paper deals with hierarchical model predictive control (MPC) of smart grid systems. The design consists of a high level MPC controller, a second level of so-called aggregators, which reduces the computational and communication-related load on the high-level control, and a lower level...... on one hand from varying consumption, and on the other hand by natural variations in power production e.g. from wind turbines. The high-level MPC problem is solved using quadratic optimisation, while the aggregator level can either involve quadratic optimisation or simple sorting-based min-max solutions...