WorldWideScience

Sample records for hierarchical cluster analyses

  1. Permutation Tests of Hierarchical Cluster Analyses of Carrion Communities and Their Potential Use in Forensic Entomology.

    Science.gov (United States)

    van der Ham, Joris L

    2016-05-19

    Forensic entomologists can use carrion communities' ecological succession data to estimate the postmortem interval (PMI). Permutation tests of hierarchical cluster analyses of these data provide a conceptual method to estimate part of the PMI, the post-colonization interval (post-CI). This multivariate approach produces a baseline of statistically distinct clusters that reflect changes in the carrion community composition during the decomposition process. Carrion community samples of unknown post-CIs are compared with these baseline clusters to estimate the post-CI. In this short communication, I use data from previously published studies to demonstrate the conceptual feasibility of this multivariate approach. Analyses of these data produce series of significantly distinct clusters, which represent carrion communities during 1- to 20-day periods of the decomposition process. For 33 carrion community samples, collected over an 11-day period, this approach correctly estimated the post-CI within an average range of 3.1 days. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Neutrosophic Hierarchical Clustering Algoritms

    Directory of Open Access Journals (Sweden)

    Rıdvan Şahin

    2014-03-01

    Full Text Available Interval neutrosophic set (INS is a generalization of interval valued intuitionistic fuzzy set (IVIFS, whose the membership and non-membership values of elements consist of fuzzy range, while single valued neutrosophic set (SVNS is regarded as extension of intuitionistic fuzzy set (IFS. In this paper, we extend the hierarchical clustering techniques proposed for IFSs and IVIFSs to SVNSs and INSs respectively. Based on the traditional hierarchical clustering procedure, the single valued neutrosophic aggregation operator, and the basic distance measures between SVNSs, we define a single valued neutrosophic hierarchical clustering algorithm for clustering SVNSs. Then we extend the algorithm to classify an interval neutrosophic data. Finally, we present some numerical examples in order to show the effectiveness and availability of the developed clustering algorithms.

  3. Non-Hierarchical Clustering as a method to analyse an open-ended ...

    African Journals Online (AJOL)

    We show that the use of non-hierarchical analysis allows us to interpret the reasoning of students solving different mathematical problems using Algebra, and to separate them into different groups, that can be recognised and characterised by common traits in their answers, without any prior knowledge on the part of the ...

  4. Non-Hierarchical Clustering as a method to analyse an open-ended ...

    African Journals Online (AJOL)

    Apple

    Keywords: algebraic thinking; cluster analysis; mathematics education; quantitative analysis. Introduction. Extensive ..... C1, C2 and C3 represent the three centroids of the three clusters formed. .... 6ALd. All these strategies are algebraic and 'high- ... 1995), of the didactical aspects related to teaching .... Brazil, 18-23 July.

  5. Statistical Significance for Hierarchical Clustering

    Science.gov (United States)

    Kimes, Patrick K.; Liu, Yufeng; Hayes, D. Neil; Marron, J. S.

    2017-01-01

    Summary Cluster analysis has proved to be an invaluable tool for the exploratory and unsupervised analysis of high dimensional datasets. Among methods for clustering, hierarchical approaches have enjoyed substantial popularity in genomics and other fields for their ability to simultaneously uncover multiple layers of clustering structure. A critical and challenging question in cluster analysis is whether the identified clusters represent important underlying structure or are artifacts of natural sampling variation. Few approaches have been proposed for addressing this problem in the context of hierarchical clustering, for which the problem is further complicated by the natural tree structure of the partition, and the multiplicity of tests required to parse the layers of nested clusters. In this paper, we propose a Monte Carlo based approach for testing statistical significance in hierarchical clustering which addresses these issues. The approach is implemented as a sequential testing procedure guaranteeing control of the family-wise error rate. Theoretical justification is provided for our approach, and its power to detect true clustering structure is illustrated through several simulation studies and applications to two cancer gene expression datasets. PMID:28099990

  6. Assessment of the quality of water by hierarchical cluster and variance analyses of the Koudiat Medouar Watershed, East Algeria

    Science.gov (United States)

    Tiri, Ammar; Lahbari, Noureddine; Boudoukha, Abderrahmane

    2017-12-01

    The assessment of surface water in Koudiat Medouar watershed is very important especially when it comes to pollution of the dam waters by discharges of wastewater from neighboring towns in Oued Timgad, who poured into the basin of the dam, and agricultural lands located along the Oued Reboa. To this end, the multivariable method was used to evaluate the spatial and temporal variation of the water surface quality of the Koudiat Medouar dam, eastern Algeria. The stiff diagram has identified two main hydrochemical facies. The first facies Mg-HCO3 is reflected in the first sampling station (Oued Reboa) and in the second one (Oued Timgad), while the second facies Mg-SO4 is reflected in the third station (Basin Dam). The results obtained by the analysis of variance show that in the three stations all parameters are significant, except for Na, K and HCO3 in the first station (Oued Reboa) and the EC in the second station (Oued Timgad) and at the end NO3 and pH in the third station (Basin Dam). Q-mode hierarchical cluster analysis showed that two main groups in each sampling station. The chemistry of major ions (Mg, Ca, HCO3 and SO4) within the three stations results from anthropogenic impacts and water-rock interaction sources.

  7. Convex Clustering: An Attractive Alternative to Hierarchical Clustering

    Science.gov (United States)

    Chen, Gary K.; Chi, Eric C.; Ranola, John Michael O.; Lange, Kenneth

    2015-01-01

    The primary goal in cluster analysis is to discover natural groupings of objects. The field of cluster analysis is crowded with diverse methods that make special assumptions about data and address different scientific aims. Despite its shortcomings in accuracy, hierarchical clustering is the dominant clustering method in bioinformatics. Biologists find the trees constructed by hierarchical clustering visually appealing and in tune with their evolutionary perspective. Hierarchical clustering operates on multiple scales simultaneously. This is essential, for instance, in transcriptome data, where one may be interested in making qualitative inferences about how lower-order relationships like gene modules lead to higher-order relationships like pathways or biological processes. The recently developed method of convex clustering preserves the visual appeal of hierarchical clustering while ameliorating its propensity to make false inferences in the presence of outliers and noise. The solution paths generated by convex clustering reveal relationships between clusters that are hidden by static methods such as k-means clustering. The current paper derives and tests a novel proximal distance algorithm for minimizing the objective function of convex clustering. The algorithm separates parameters, accommodates missing data, and supports prior information on relationships. Our program CONVEXCLUSTER incorporating the algorithm is implemented on ATI and nVidia graphics processing units (GPUs) for maximal speed. Several biological examples illustrate the strengths of convex clustering and the ability of the proximal distance algorithm to handle high-dimensional problems. CONVEXCLUSTER can be freely downloaded from the UCLA Human Genetics web site at http://www.genetics.ucla.edu/software/ PMID:25965340

  8. Hierarchical Control for Multiple DC Microgrids Clusters

    DEFF Research Database (Denmark)

    Shafiee, Qobad; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2014-01-01

    This paper presents a distributed hierarchical control framework to ensure reliable operation of dc Microgrid (MG) clusters. In this hierarchy, primary control is used to regulate the common bus voltage inside each MG locally. An adaptive droop method is proposed for this level which determines...

  9. Robust Pseudo-Hierarchical Support Vector Clustering

    DEFF Research Database (Denmark)

    Hansen, Michael Sass; Sjöstrand, Karl; Olafsdóttir, Hildur

    2007-01-01

    Support vector clustering (SVC) has proven an efficient algorithm for clustering of noisy and high-dimensional data sets, with applications within many fields of research. An inherent problem, however, has been setting the parameters of the SVC algorithm. Using the recent emergence of a method...... for calculating the entire regularization path of the support vector domain description, we propose a fast method for robust pseudo-hierarchical support vector clustering (HSVC). The method is demonstrated to work well on generated data, as well as for detecting ischemic segments from multidimensional myocardial...

  10. A rapid ATR-FTIR spectroscopic method for detection of sibutramine adulteration in tea and coffee based on hierarchical cluster and principal component analyses.

    Science.gov (United States)

    Cebi, Nur; Yilmaz, Mustafa Tahsin; Sagdic, Osman

    2017-08-15

    Sibutramine may be illicitly included in herbal slimming foods and supplements marketed as "100% natural" to enhance weight loss. Considering public health and legal regulations, there is an urgent need for effective, rapid and reliable techniques to detect sibutramine in dietetic herbal foods, teas and dietary supplements. This research comprehensively explored, for the first time, detection of sibutramine in green tea, green coffee and mixed herbal tea using ATR-FTIR spectroscopic technique combined with chemometrics. Hierarchical cluster analysis and PCA principle component analysis techniques were employed in spectral range (2746-2656cm -1 ) for classification and discrimination through Euclidian distance and Ward's algorithm. Unadulterated and adulterated samples were classified and discriminated with respect to their sibutramine contents with perfect accuracy without any false prediction. The results suggest that existence of the active substance could be successfully determined at the levels in the range of 0.375-12mg in totally 1.75g of green tea, green coffee and mixed herbal tea by using FTIR-ATR technique combined with chemometrics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Hierarchical video summarization based on context clustering

    Science.gov (United States)

    Tseng, Belle L.; Smith, John R.

    2003-11-01

    A personalized video summary is dynamically generated in our video personalization and summarization system based on user preference and usage environment. The three-tier personalization system adopts the server-middleware-client architecture in order to maintain, select, adapt, and deliver rich media content to the user. The server stores the content sources along with their corresponding MPEG-7 metadata descriptions. In this paper, the metadata includes visual semantic annotations and automatic speech transcriptions. Our personalization and summarization engine in the middleware selects the optimal set of desired video segments by matching shot annotations and sentence transcripts with user preferences. Besides finding the desired contents, the objective is to present a coherent summary. There are diverse methods for creating summaries, and we focus on the challenges of generating a hierarchical video summary based on context information. In our summarization algorithm, three inputs are used to generate the hierarchical video summary output. These inputs are (1) MPEG-7 metadata descriptions of the contents in the server, (2) user preference and usage environment declarations from the user client, and (3) context information including MPEG-7 controlled term list and classification scheme. In a video sequence, descriptions and relevance scores are assigned to each shot. Based on these shot descriptions, context clustering is performed to collect consecutively similar shots to correspond to hierarchical scene representations. The context clustering is based on the available context information, and may be derived from domain knowledge or rules engines. Finally, the selection of structured video segments to generate the hierarchical summary efficiently balances between scene representation and shot selection.

  12. Constructing storyboards based on hierarchical clustering analysis

    Science.gov (United States)

    Hasebe, Satoshi; Sami, Mustafa M.; Muramatsu, Shogo; Kikuchi, Hisakazu

    2005-07-01

    There are growing needs for quick preview of video contents for the purpose of improving accessibility of video archives as well as reducing network traffics. In this paper, a storyboard that contains a user-specified number of keyframes is produced from a given video sequence. It is based on hierarchical cluster analysis of feature vectors that are derived from wavelet coefficients of video frames. Consistent use of extracted feature vectors is the key to avoid a repetition of computationally-intensive parsing of the same video sequence. Experimental results suggest that a significant reduction in computational time is gained by this strategy.

  13. Technique for fast and efficient hierarchical clustering

    Science.gov (United States)

    Stork, Christopher

    2013-10-08

    A fast and efficient technique for hierarchical clustering of samples in a dataset includes compressing the dataset to reduce a number of variables within each of the samples of the dataset. A nearest neighbor matrix is generated to identify nearest neighbor pairs between the samples based on differences between the variables of the samples. The samples are arranged into a hierarchy that groups the samples based on the nearest neighbor matrix. The hierarchy is rendered to a display to graphically illustrate similarities or differences between the samples.

  14. Hierarchical Aligned Cluster Analysis for Temporal Clustering of Human Motion.

    Science.gov (United States)

    Zhou, Feng; De la Torre, Fernando; Hodgins, Jessica K

    2013-03-01

    Temporal segmentation of human motion into plausible motion primitives is central to understanding and building computational models of human motion. Several issues contribute to the challenge of discovering motion primitives: the exponential nature of all possible movement combinations, the variability in the temporal scale of human actions, and the complexity of representing articulated motion. We pose the problem of learning motion primitives as one of temporal clustering, and derive an unsupervised hierarchical bottom-up framework called hierarchical aligned cluster analysis (HACA). HACA finds a partition of a given multidimensional time series into m disjoint segments such that each segment belongs to one of k clusters. HACA combines kernel k-means with the generalized dynamic time alignment kernel to cluster time series data. Moreover, it provides a natural framework to find a low-dimensional embedding for time series. HACA is efficiently optimized with a coordinate descent strategy and dynamic programming. Experimental results on motion capture and video data demonstrate the effectiveness of HACA for segmenting complex motions and as a visualization tool. We also compare the performance of HACA to state-of-the-art algorithms for temporal clustering on data of a honey bee dance. The HACA code is available online.

  15. Star Cluster Structure from Hierarchical Star Formation

    Science.gov (United States)

    Grudic, Michael; Hopkins, Philip; Murray, Norman; Lamberts, Astrid; Guszejnov, David; Schmitz, Denise; Boylan-Kolchin, Michael

    2018-01-01

    Young massive star clusters (YMCs) spanning 104-108 M⊙ in mass generally have similar radial surface density profiles, with an outer power-law index typically between -2 and -3. This similarity suggests that they are shaped by scale-free physics at formation. Recent multi-physics MHD simulations of YMC formation have also produced populations of YMCs with this type of surface density profile, allowing us to narrow down the physics necessary to form a YMC with properties as observed. We show that the shallow density profiles of YMCs are a natural result of phase-space mixing that occurs as they assemble from the clumpy, hierarchically-clustered configuration imprinted by the star formation process. We develop physical intuition for this process via analytic arguments and collisionless N-body experiments, elucidating the connection between star formation physics and star cluster structure. This has implications for the early-time structure and evolution of proto-globular clusters, and prospects for simulating their formation in the FIRE cosmological zoom-in simulations.

  16. A Hierarchical Clustering Methodology for the Estimation of Toxicity

    Science.gov (United States)

    A Quantitative Structure Activity Relationship (QSAR) methodology based on hierarchical clustering was developed to predict toxicological endpoints. This methodology utilizes Ward's method to divide a training set into a series of structurally similar clusters. The structural sim...

  17. Inferring hierarchical clustering structures by deterministic annealing

    International Nuclear Information System (INIS)

    Hofmann, T.; Buhmann, J.M.

    1996-01-01

    The unsupervised detection of hierarchical structures is a major topic in unsupervised learning and one of the key questions in data analysis and representation. We propose a novel algorithm for the problem of learning decision trees for data clustering and related problems. In contrast to many other methods based on successive tree growing and pruning, we propose an objective function for tree evaluation and we derive a non-greedy technique for tree growing. Applying the principles of maximum entropy and minimum cross entropy, a deterministic annealing algorithm is derived in a meanfield approximation. This technique allows us to canonically superimpose tree structures and to fit parameters to averaged or open-quote fuzzified close-quote trees

  18. Cluster Based Hierarchical Routing Protocol for Wireless Sensor Network

    OpenAIRE

    Rashed, Md. Golam; Kabir, M. Hasnat; Rahim, Muhammad Sajjadur; Ullah, Shaikh Enayet

    2012-01-01

    The efficient use of energy source in a sensor node is most desirable criteria for prolong the life time of wireless sensor network. In this paper, we propose a two layer hierarchical routing protocol called Cluster Based Hierarchical Routing Protocol (CBHRP). We introduce a new concept called head-set, consists of one active cluster head and some other associate cluster heads within a cluster. The head-set members are responsible for control and management of the network. Results show that t...

  19. Hierarchical clustering using correlation metric and spatial continuity constraint

    Science.gov (United States)

    Stork, Christopher L.; Brewer, Luke N.

    2012-10-02

    Large data sets are analyzed by hierarchical clustering using correlation as a similarity measure. This provides results that are superior to those obtained using a Euclidean distance similarity measure. A spatial continuity constraint may be applied in hierarchical clustering analysis of images.

  20. Clinical fracture risk evaluated by hierarchical agglomerative clustering

    DEFF Research Database (Denmark)

    Kruse, C; Eiken, P; Vestergaard, P

    2017-01-01

    reimbursement, primary healthcare sector use and comorbidity of female subjects were combined. Standardized variable means, Euclidean distances and Ward's D2 method of hierarchical agglomerative clustering (HAC), were used to form the clustering object. K number of clusters was selected with the lowest cluster...

  1. Prediction of Solvent Physical Properties using the Hierarchical Clustering Method

    Science.gov (United States)

    Recently a QSAR (Quantitative Structure Activity Relationship) method, the hierarchical clustering method, was developed to estimate acute toxicity values for large, diverse datasets. This methodology has now been applied to the estimate solvent physical properties including sur...

  2. The Hierarchical Clustering of Tax Burden in the EU27

    Directory of Open Access Journals (Sweden)

    Simkova Nikola

    2015-09-01

    Full Text Available The issue of taxation has become more important due to a significant share of the government revenue. There are several ways of expressing the tax burden of countries. This paper describes the traditional approach as a share of tax revenue to GDP which is applied to the total taxation and the capital taxation as a part of tax systems affecting investment decisions. The implicit tax rate on capital created by Eurostat also offers a possible explanation of the tax burden on capital, so its components are analysed in detail. This study uses one of the econometric methods called the hierarchical clustering. The data on which the clustering is based comprises countries in the EU27 for the period of 1995 – 2012. The aim of this paper is to reveal clusters of countries in the EU27 with similar tax burden or tax changes. The findings suggest that mainly newly acceding countries (2004 and 2007 are in a group of countries with a low tax burden which tried to encourage investors by favourable tax rates. On the other hand, there are mostly countries from the original EU15. Some clusters may be explained by similar historical development, geographic and demographic characteristics.

  3. Hierarchical modeling of cluster size in wildlife surveys

    Science.gov (United States)

    Royle, J. Andrew

    2008-01-01

    Clusters or groups of individuals are the fundamental unit of observation in many wildlife sampling problems, including aerial surveys of waterfowl, marine mammals, and ungulates. Explicit accounting of cluster size in models for estimating abundance is necessary because detection of individuals within clusters is not independent and detectability of clusters is likely to increase with cluster size. This induces a cluster size bias in which the average cluster size in the sample is larger than in the population at large. Thus, failure to account for the relationship between delectability and cluster size will tend to yield a positive bias in estimates of abundance or density. I describe a hierarchical modeling framework for accounting for cluster-size bias in animal sampling. The hierarchical model consists of models for the observation process conditional on the cluster size distribution and the cluster size distribution conditional on the total number of clusters. Optionally, a spatial model can be specified that describes variation in the total number of clusters per sample unit. Parameter estimation, model selection, and criticism may be carried out using conventional likelihood-based methods. An extension of the model is described for the situation where measurable covariates at the level of the sample unit are available. Several candidate models within the proposed class are evaluated for aerial survey data on mallard ducks (Anas platyrhynchos).

  4. Hierarchical clusters of phytoplankton variables in dammed water bodies

    Science.gov (United States)

    Silva, Eliana Costa e.; Lopes, Isabel Cristina; Correia, Aldina; Gonçalves, A. Manuela

    2017-06-01

    In this paper a dataset containing biological variables of the water column of several Portuguese reservoirs is analyzed. Hierarchical cluster analysis is used to obtain clusters of phytoplankton variables of the phylum Cyanophyta, with the objective of validating the classification of Portuguese reservoirs previewly presented in [1] which were divided into three clusters: (1) Interior Tagus and Aguieira; (2) Douro; and (3) Other rivers. Now three new clusters of Cyanophyta variables were found. Kruskal-Wallis and Mann-Whitney tests are used to compare the now obtained Cyanophyta clusters and the previous Reservoirs clusters, in order to validate the classification of the water quality of reservoirs. The amount of Cyanophyta algae present in the reservoirs from the three clusters is significantly different, which validates the previous classification.

  5. A Novel Divisive Hierarchical Clustering Algorithm for Geospatial Analysis

    Directory of Open Access Journals (Sweden)

    Shaoning Li

    2017-01-01

    Full Text Available In the fields of geographic information systems (GIS and remote sensing (RS, the clustering algorithm has been widely used for image segmentation, pattern recognition, and cartographic generalization. Although clustering analysis plays a key role in geospatial modelling, traditional clustering methods are limited due to computational complexity, noise resistant ability and robustness. Furthermore, traditional methods are more focused on the adjacent spatial context, which makes it hard for the clustering methods to be applied to multi-density discrete objects. In this paper, a new method, cell-dividing hierarchical clustering (CDHC, is proposed based on convex hull retraction. The main steps are as follows. First, a convex hull structure is constructed to describe the global spatial context of geospatial objects. Then, the retracting structure of each borderline is established in sequence by setting the initial parameter. The objects are split into two clusters (i.e., “sub-clusters” if the retracting structure intersects with the borderlines. Finally, clusters are repeatedly split and the initial parameter is updated until the terminate condition is satisfied. The experimental results show that CDHC separates the multi-density objects from noise sufficiently and also reduces complexity compared to the traditional agglomerative hierarchical clustering algorithm.

  6. Improved Gravitation Field Algorithm and Its Application in Hierarchical Clustering

    Science.gov (United States)

    Zheng, Ming; Sun, Ying; Liu, Gui-xia; Zhou, You; Zhou, Chun-guang

    2012-01-01

    Background Gravitation field algorithm (GFA) is a new optimization algorithm which is based on an imitation of natural phenomena. GFA can do well both for searching global minimum and multi-minima in computational biology. But GFA needs to be improved for increasing efficiency, and modified for applying to some discrete data problems in system biology. Method An improved GFA called IGFA was proposed in this paper. Two parts were improved in IGFA. The first one is the rule of random division, which is a reasonable strategy and makes running time shorter. The other one is rotation factor, which can improve the accuracy of IGFA. And to apply IGFA to the hierarchical clustering, the initial part and the movement operator were modified. Results Two kinds of experiments were used to test IGFA. And IGFA was applied to hierarchical clustering. The global minimum experiment was used with IGFA, GFA, GA (genetic algorithm) and SA (simulated annealing). Multi-minima experiment was used with IGFA and GFA. The two experiments results were compared with each other and proved the efficiency of IGFA. IGFA is better than GFA both in accuracy and running time. For the hierarchical clustering, IGFA is used to optimize the smallest distance of genes pairs, and the results were compared with GA and SA, singular-linkage clustering, UPGMA. The efficiency of IGFA is proved. PMID:23173043

  7. D Nearest Neighbour Search Using a Clustered Hierarchical Tree Structure

    Science.gov (United States)

    Suhaibah, A.; Uznir, U.; Anton, F.; Mioc, D.; Rahman, A. A.

    2016-06-01

    Locating and analysing the location of new stores or outlets is one of the common issues facing retailers and franchisers. This is due to assure that new opening stores are at their strategic location to attract the highest possible number of customers. Spatial information is used to manage, maintain and analyse these store locations. However, since the business of franchising and chain stores in urban areas runs within high rise multi-level buildings, a three-dimensional (3D) method is prominently required in order to locate and identify the surrounding information such as at which level of the franchise unit will be located or is the franchise unit located is at the best level for visibility purposes. One of the common used analyses used for retrieving the surrounding information is Nearest Neighbour (NN) analysis. It uses a point location and identifies the surrounding neighbours. However, with the immense number of urban datasets, the retrieval and analysis of nearest neighbour information and their efficiency will become more complex and crucial. In this paper, we present a technique to retrieve nearest neighbour information in 3D space using a clustered hierarchical tree structure. Based on our findings, the proposed approach substantially showed an improvement of response time analysis compared to existing approaches of spatial access methods in databases. The query performance was tested using a dataset consisting of 500,000 point locations building and franchising unit. The results are presented in this paper. Another advantage of this structure is that it also offers a minimal overlap and coverage among nodes which can reduce repetitive data entry.

  8. Unsupervised active learning based on hierarchical graph-theoretic clustering.

    Science.gov (United States)

    Hu, Weiming; Hu, Wei; Xie, Nianhua; Maybank, Steve

    2009-10-01

    Most existing active learning approaches are supervised. Supervised active learning has the following problems: inefficiency in dealing with the semantic gap between the distribution of samples in the feature space and their labels, lack of ability in selecting new samples that belong to new categories that have not yet appeared in the training samples, and lack of adaptability to changes in the semantic interpretation of sample categories. To tackle these problems, we propose an unsupervised active learning framework based on hierarchical graph-theoretic clustering. In the framework, two promising graph-theoretic clustering algorithms, namely, dominant-set clustering and spectral clustering, are combined in a hierarchical fashion. Our framework has some advantages, such as ease of implementation, flexibility in architecture, and adaptability to changes in the labeling. Evaluations on data sets for network intrusion detection, image classification, and video classification have demonstrated that our active learning framework can effectively reduce the workload of manual classification while maintaining a high accuracy of automatic classification. It is shown that, overall, our framework outperforms the support-vector-machine-based supervised active learning, particularly in terms of dealing much more efficiently with new samples whose categories have not yet appeared in the training samples.

  9. The structure of nearby clusters of galaxies Hierarchical clustering and an application to the Leo region

    CERN Document Server

    Materne, J

    1978-01-01

    A new method of classifying groups of galaxies, called hierarchical clustering, is presented as a tool for the investigation of nearby groups of galaxies. The method is free from model assumptions about the groups. The scaling of the different coordinates is necessary, and the level from which one accepts the groups as real has to be determined. Hierarchical clustering is applied to an unbiased sample of galaxies in the Leo region. Five distinct groups result which have reasonable physical properties, such as low crossing times and conservative mass-to-light ratios, and which follow a radial velocity- luminosity relation. Only 4 out of 39 galaxies were adopted as field galaxies. (27 refs).

  10. Clustering-based classification of road traffic accidents using hierarchical clustering and artificial neural networks.

    Science.gov (United States)

    Taamneh, Madhar; Taamneh, Salah; Alkheder, Sharaf

    2017-09-01

    Artificial neural networks (ANNs) have been widely used in predicting the severity of road traffic crashes. All available information about previously occurred accidents is typically used for building a single prediction model (i.e., classifier). Too little attention has been paid to the differences between these accidents, leading, in most cases, to build less accurate predictors. Hierarchical clustering is a well-known clustering method that seeks to group data by creating a hierarchy of clusters. Using hierarchical clustering and ANNs, a clustering-based classification approach for predicting the injury severity of road traffic accidents was proposed. About 6000 road accidents occurred over a six-year period from 2008 to 2013 in Abu Dhabi were used throughout this study. In order to reduce the amount of variation in data, hierarchical clustering was applied on the data set to organize it into six different forms, each with different number of clusters (i.e., clusters from 1 to 6). Two ANN models were subsequently built for each cluster of accidents in each generated form. The first model was built and validated using all accidents (training set), whereas only 66% of the accidents were used to build the second model, and the remaining 34% were used to test it (percentage split). Finally, the weighted average accuracy was computed for each type of models in each from of data. The results show that when testing the models using the training set, clustering prior to classification achieves (11%-16%) more accuracy than without using clustering, while the percentage split achieves (2%-5%) more accuracy. The results also suggest that partitioning the accidents into six clusters achieves the best accuracy if both types of models are taken into account.

  11. Communication Base Station Log Analysis Based on Hierarchical Clustering

    Directory of Open Access Journals (Sweden)

    Zhang Shao-Hua

    2017-01-01

    Full Text Available Communication base stations generate massive data every day, these base station logs play an important value in mining of the business circles. This paper use data mining technology and hierarchical clustering algorithm to group the scope of business circle for the base station by recording the data of these base stations.Through analyzing the data of different business circle based on feature extraction and comparing different business circle category characteristics, which can choose a suitable area for operators of commercial marketing.

  12. Assessment of surface water quality using hierarchical cluster analysis

    Directory of Open Access Journals (Sweden)

    Dheeraj Kumar Dabgerwal

    2016-02-01

    Full Text Available This study was carried out to assess the physicochemical quality river Varuna inVaranasi,India. Water samples were collected from 10 sites during January-June 2015. Pearson correlation analysis was used to assess the direction and strength of relationship between physicochemical parameters. Hierarchical Cluster analysis was also performed to determine the sources of pollution in the river Varuna. The result showed quite high value of DO, Nitrate, BOD, COD and Total Alkalinity, above the BIS permissible limit. The results of correlation analysis identified key water parameters as pH, electrical conductivity, total alkalinity and nitrate, which influence the concentration of other water parameters. Cluster analysis identified three major clusters of sampling sites out of total 10 sites, according to the similarity in water quality. This study illustrated the usefulness of correlation and cluster analysis for getting better information about the river water quality.International Journal of Environment Vol. 5 (1 2016,  pp: 32-44

  13. Prioritizing the risk of plant pests by clustering methods; self-organising maps, k-means and hierarchical clustering

    Directory of Open Access Journals (Sweden)

    Susan Worner

    2013-09-01

    Full Text Available For greater preparedness, pest risk assessors are required to prioritise long lists of pest species with potential to establish and cause significant impact in an endangered area. Such prioritization is often qualitative, subjective, and sometimes biased, relying mostly on expert and stakeholder consultation. In recent years, cluster based analyses have been used to investigate regional pest species assemblages or pest profiles to indicate the risk of new organism establishment. Such an approach is based on the premise that the co-occurrence of well-known global invasive pest species in a region is not random, and that the pest species profile or assemblage integrates complex functional relationships that are difficult to tease apart. In other words, the assemblage can help identify and prioritise species that pose a threat in a target region. A computational intelligence method called a Kohonen self-organizing map (SOM, a type of artificial neural network, was the first clustering method applied to analyse assemblages of invasive pests. The SOM is a well known dimension reduction and visualization method especially useful for high dimensional data that more conventional clustering methods may not analyse suitably. Like all clustering algorithms, the SOM can give details of clusters that identify regions with similar pest assemblages, possible donor and recipient regions. More important, however SOM connection weights that result from the analysis can be used to rank the strength of association of each species within each regional assemblage. Species with high weights that are not already established in the target region are identified as high risk. However, the SOM analysis is only the first step in a process to assess risk to be used alongside or incorporated within other measures. Here we illustrate the application of SOM analyses in a range of contexts in invasive species risk assessment, and discuss other clustering methods such as k

  14. The reflection of hierarchical cluster analysis of co-occurrence matrices in SPSS

    NARCIS (Netherlands)

    Zhou, Q.; Leng, F.; Leydesdorff, L.

    2015-01-01

    Purpose: To discuss the problems arising from hierarchical cluster analysis of co-occurrence matrices in SPSS, and the corresponding solutions. Design/methodology/approach: We design different methods of using the SPSS hierarchical clustering module for co-occurrence matrices in order to compare

  15. Determination of genetic structure of germplasm collections: are traditional hierarchical clustering methods appropriate for molecular marker data?

    NARCIS (Netherlands)

    Odong, T.L.; Heerwaarden, van J.; Jansen, J.; Hintum, van T.J.L.; Eeuwijk, van F.A.

    2011-01-01

    Despite the availability of newer approaches, traditional hierarchical clustering remains very popular in genetic diversity studies in plants. However, little is known about its suitability for molecular marker data. We studied the performance of traditional hierarchical clustering techniques using

  16. Merging K-means with hierarchical clustering for identifying general-shaped groups.

    Science.gov (United States)

    Peterson, Anna D; Ghosh, Arka P; Maitra, Ranjan

    2018-01-01

    Clustering partitions a dataset such that observations placed together in a group are similar but different from those in other groups. Hierarchical and K -means clustering are two approaches but have different strengths and weaknesses. For instance, hierarchical clustering identifies groups in a tree-like structure but suffers from computational complexity in large datasets while K -means clustering is efficient but designed to identify homogeneous spherically-shaped clusters. We present a hybrid non-parametric clustering approach that amalgamates the two methods to identify general-shaped clusters and that can be applied to larger datasets. Specifically, we first partition the dataset into spherical groups using K -means. We next merge these groups using hierarchical methods with a data-driven distance measure as a stopping criterion. Our proposal has the potential to reveal groups with general shapes and structure in a dataset. We demonstrate good performance on several simulated and real datasets.

  17. Hierarchical clustering into groups of human brain regions according to elemental composition

    International Nuclear Information System (INIS)

    Stedman, J.D.; Spyrou, N.M.

    1998-01-01

    Thirteen brain regions were dissected from both hemispheres of fifteen 'normal' ageing subjects (8 females, 7 males) of mean age 79±7 years. Elemental compositions were determined by simultaneous application of particle induced X-ray emission (PIXE) and Rutherford backscattering (RBS) analyses using a 2 MeV, 4 nA proton beam scanned over 4 mm 2 of the sample surface. Elemental concentrations were found to be dependent upon the brain region and hemisphere studied. Hierarchical cluster analysis was applied to group the brain regions according to the sample concentrations of eight elements. The resulting dendrogram is presented and its clusters related to the sample compositions of grey and white matter. (author)

  18. The Hierarchical Spectral Merger Algorithm: A New Time Series Clustering Procedure

    KAUST Repository

    Euá n, Carolina; Ombao, Hernando; Ortega, Joaquí n

    2018-01-01

    We present a new method for time series clustering which we call the Hierarchical Spectral Merger (HSM) method. This procedure is based on the spectral theory of time series and identifies series that share similar oscillations or waveforms

  19. Analysis of genetic association using hierarchical clustering and cluster validation indices.

    Science.gov (United States)

    Pagnuco, Inti A; Pastore, Juan I; Abras, Guillermo; Brun, Marcel; Ballarin, Virginia L

    2017-10-01

    It is usually assumed that co-expressed genes suggest co-regulation in the underlying regulatory network. Determining sets of co-expressed genes is an important task, based on some criteria of similarity. This task is usually performed by clustering algorithms, where the genes are clustered into meaningful groups based on their expression values in a set of experiment. In this work, we propose a method to find sets of co-expressed genes, based on cluster validation indices as a measure of similarity for individual gene groups, and a combination of variants of hierarchical clustering to generate the candidate groups. We evaluated its ability to retrieve significant sets on simulated correlated and real genomics data, where the performance is measured based on its detection ability of co-regulated sets against a full search. Additionally, we analyzed the quality of the best ranked groups using an online bioinformatics tool that provides network information for the selected genes. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Evaluation of hierarchical agglomerative cluster analysis methods for discrimination of primary biological aerosol

    Directory of Open Access Journals (Sweden)

    I. Crawford

    2015-11-01

    Full Text Available In this paper we present improved methods for discriminating and quantifying primary biological aerosol particles (PBAPs by applying hierarchical agglomerative cluster analysis to multi-parameter ultraviolet-light-induced fluorescence (UV-LIF spectrometer data. The methods employed in this study can be applied to data sets in excess of 1 × 106 points on a desktop computer, allowing for each fluorescent particle in a data set to be explicitly clustered. This reduces the potential for misattribution found in subsampling and comparative attribution methods used in previous approaches, improving our capacity to discriminate and quantify PBAP meta-classes. We evaluate the performance of several hierarchical agglomerative cluster analysis linkages and data normalisation methods using laboratory samples of known particle types and an ambient data set. Fluorescent and non-fluorescent polystyrene latex spheres were sampled with a Wideband Integrated Bioaerosol Spectrometer (WIBS-4 where the optical size, asymmetry factor and fluorescent measurements were used as inputs to the analysis package. It was found that the Ward linkage with z-score or range normalisation performed best, correctly attributing 98 and 98.1 % of the data points respectively. The best-performing methods were applied to the BEACHON-RoMBAS (Bio–hydro–atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen–Rocky Mountain Biogenic Aerosol Study ambient data set, where it was found that the z-score and range normalisation methods yield similar results, with each method producing clusters representative of fungal spores and bacterial aerosol, consistent with previous results. The z-score result was compared to clusters generated with previous approaches (WIBS AnalysiS Program, WASP where we observe that the subsampling and comparative attribution method employed by WASP results in the overestimation of the fungal spore concentration by a factor of 1.5 and the

  1. ESPRIT-Tree: hierarchical clustering analysis of millions of 16S rRNA pyrosequences in quasilinear computational time.

    Science.gov (United States)

    Cai, Yunpeng; Sun, Yijun

    2011-08-01

    Taxonomy-independent analysis plays an essential role in microbial community analysis. Hierarchical clustering is one of the most widely employed approaches to finding operational taxonomic units, the basis for many downstream analyses. Most existing algorithms have quadratic space and computational complexities, and thus can be used only for small or medium-scale problems. We propose a new online learning-based algorithm that simultaneously addresses the space and computational issues of prior work. The basic idea is to partition a sequence space into a set of subspaces using a partition tree constructed using a pseudometric, then recursively refine a clustering structure in these subspaces. The technique relies on new methods for fast closest-pair searching and efficient dynamic insertion and deletion of tree nodes. To avoid exhaustive computation of pairwise distances between clusters, we represent each cluster of sequences as a probabilistic sequence, and define a set of operations to align these probabilistic sequences and compute genetic distances between them. We present analyses of space and computational complexity, and demonstrate the effectiveness of our new algorithm using a human gut microbiota data set with over one million sequences. The new algorithm exhibits a quasilinear time and space complexity comparable to greedy heuristic clustering algorithms, while achieving a similar accuracy to the standard hierarchical clustering algorithm.

  2. Multi-documents summarization based on clustering of learning object using hierarchical clustering

    Science.gov (United States)

    Mustamiin, M.; Budi, I.; Santoso, H. B.

    2018-03-01

    The Open Educational Resources (OER) is a portal of teaching, learning and research resources that is available in public domain and freely accessible. Learning contents or Learning Objects (LO) are granular and can be reused for constructing new learning materials. LO ontology-based searching techniques can be used to search for LO in the Indonesia OER. In this research, LO from search results are used as an ingredient to create new learning materials according to the topic searched by users. Summarizing-based grouping of LO use Hierarchical Agglomerative Clustering (HAC) with the dependency context to the user’s query which has an average value F-Measure of 0.487, while summarizing by K-Means F-Measure only has an average value of 0.336.

  3. The Hierarchical Distribution of the Young Stellar Clusters in Six Local Star-forming Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Grasha, K.; Calzetti, D. [Astronomy Department, University of Massachusetts, Amherst, MA 01003 (United States); Adamo, A.; Messa, M. [Dept. of Astronomy, The Oskar Klein Centre, Stockholm University, Stockholm (Sweden); Kim, H. [Gemini Observatory, La Serena (Chile); Elmegreen, B. G. [IBM Research Division, T.J. Watson Research Center, Yorktown Hts., NY (United States); Gouliermis, D. A. [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Dale, D. A. [Dept. of Physics and Astronomy, University of Wyoming, Laramie, WY (United States); Fumagalli, M. [Institute for Computational Cosmology and Centre for Extragalactic Astronomy, Durham University, Durham (United Kingdom); Grebel, E. K.; Shabani, F. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120 Heidelberg (Germany); Johnson, K. E. [Dept. of Astronomy, University of Virginia, Charlottesville, VA (United States); Kahre, L. [Dept. of Astronomy, New Mexico State University, Las Cruces, NM (United States); Kennicutt, R. C. [Institute of Astronomy, University of Cambridge, Cambridge (United Kingdom); Pellerin, A. [Dept. of Physics and Astronomy, State University of New York at Geneseo, Geneseo NY (United States); Ryon, J. E.; Ubeda, L. [Space Telescope Science Institute, Baltimore, MD (United States); Smith, L. J. [European Space Agency/Space Telescope Science Institute, Baltimore, MD (United States); Thilker, D., E-mail: kgrasha@astro.umass.edu [Dept. of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD (United States)

    2017-05-10

    We present a study of the hierarchical clustering of the young stellar clusters in six local (3–15 Mpc) star-forming galaxies using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury Program LEGUS (Legacy ExtraGalactic UV Survey). We identified 3685 likely clusters and associations, each visually classified by their morphology, and we use the angular two-point correlation function to study the clustering of these stellar systems. We find that the spatial distribution of the young clusters and associations are clustered with respect to each other, forming large, unbound hierarchical star-forming complexes that are in general very young. The strength of the clustering decreases with increasing age of the star clusters and stellar associations, becoming more homogeneously distributed after ∼40–60 Myr and on scales larger than a few hundred parsecs. In all galaxies, the associations exhibit a global behavior that is distinct and more strongly correlated from compact clusters. Thus, populations of clusters are more evolved than associations in terms of their spatial distribution, traveling significantly from their birth site within a few tens of Myr, whereas associations show evidence of disruption occurring very quickly after their formation. The clustering of the stellar systems resembles that of a turbulent interstellar medium that drives the star formation process, correlating the components in unbound star-forming complexes in a hierarchical manner, dispersing shortly after formation, suggestive of a single, continuous mode of star formation across all galaxies.

  4. The Hierarchical Distribution of the Young Stellar Clusters in Six Local Star-forming Galaxies

    Science.gov (United States)

    Grasha, K.; Calzetti, D.; Adamo, A.; Kim, H.; Elmegreen, B. G.; Gouliermis, D. A.; Dale, D. A.; Fumagalli, M.; Grebel, E. K.; Johnson, K. E.; Kahre, L.; Kennicutt, R. C.; Messa, M.; Pellerin, A.; Ryon, J. E.; Smith, L. J.; Shabani, F.; Thilker, D.; Ubeda, L.

    2017-05-01

    We present a study of the hierarchical clustering of the young stellar clusters in six local (3-15 Mpc) star-forming galaxies using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury Program LEGUS (Legacy ExtraGalactic UV Survey). We identified 3685 likely clusters and associations, each visually classified by their morphology, and we use the angular two-point correlation function to study the clustering of these stellar systems. We find that the spatial distribution of the young clusters and associations are clustered with respect to each other, forming large, unbound hierarchical star-forming complexes that are in general very young. The strength of the clustering decreases with increasing age of the star clusters and stellar associations, becoming more homogeneously distributed after ˜40-60 Myr and on scales larger than a few hundred parsecs. In all galaxies, the associations exhibit a global behavior that is distinct and more strongly correlated from compact clusters. Thus, populations of clusters are more evolved than associations in terms of their spatial distribution, traveling significantly from their birth site within a few tens of Myr, whereas associations show evidence of disruption occurring very quickly after their formation. The clustering of the stellar systems resembles that of a turbulent interstellar medium that drives the star formation process, correlating the components in unbound star-forming complexes in a hierarchical manner, dispersing shortly after formation, suggestive of a single, continuous mode of star formation across all galaxies.

  5. The Hierarchical Distribution of the Young Stellar Clusters in Six Local Star-forming Galaxies

    International Nuclear Information System (INIS)

    Grasha, K.; Calzetti, D.; Adamo, A.; Messa, M.; Kim, H.; Elmegreen, B. G.; Gouliermis, D. A.; Dale, D. A.; Fumagalli, M.; Grebel, E. K.; Shabani, F.; Johnson, K. E.; Kahre, L.; Kennicutt, R. C.; Pellerin, A.; Ryon, J. E.; Ubeda, L.; Smith, L. J.; Thilker, D.

    2017-01-01

    We present a study of the hierarchical clustering of the young stellar clusters in six local (3–15 Mpc) star-forming galaxies using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury Program LEGUS (Legacy ExtraGalactic UV Survey). We identified 3685 likely clusters and associations, each visually classified by their morphology, and we use the angular two-point correlation function to study the clustering of these stellar systems. We find that the spatial distribution of the young clusters and associations are clustered with respect to each other, forming large, unbound hierarchical star-forming complexes that are in general very young. The strength of the clustering decreases with increasing age of the star clusters and stellar associations, becoming more homogeneously distributed after ∼40–60 Myr and on scales larger than a few hundred parsecs. In all galaxies, the associations exhibit a global behavior that is distinct and more strongly correlated from compact clusters. Thus, populations of clusters are more evolved than associations in terms of their spatial distribution, traveling significantly from their birth site within a few tens of Myr, whereas associations show evidence of disruption occurring very quickly after their formation. The clustering of the stellar systems resembles that of a turbulent interstellar medium that drives the star formation process, correlating the components in unbound star-forming complexes in a hierarchical manner, dispersing shortly after formation, suggestive of a single, continuous mode of star formation across all galaxies.

  6. Evaluation of Hierarchical Clustering Algorithms for Document Datasets

    National Research Council Canada - National Science Library

    Zhao, Ying; Karypis, George

    2002-01-01

    Fast and high-quality document clustering algorithms play an important role in providing intuitive navigation and browsing mechanisms by organizing large amounts of information into a small number of meaningful clusters...

  7. Similarity maps and hierarchical clustering for annotating FT-IR spectral images.

    Science.gov (United States)

    Zhong, Qiaoyong; Yang, Chen; Großerüschkamp, Frederik; Kallenbach-Thieltges, Angela; Serocka, Peter; Gerwert, Klaus; Mosig, Axel

    2013-11-20

    Unsupervised segmentation of multi-spectral images plays an important role in annotating infrared microscopic images and is an essential step in label-free spectral histopathology. In this context, diverse clustering approaches have been utilized and evaluated in order to achieve segmentations of Fourier Transform Infrared (FT-IR) microscopic images that agree with histopathological characterization. We introduce so-called interactive similarity maps as an alternative annotation strategy for annotating infrared microscopic images. We demonstrate that segmentations obtained from interactive similarity maps lead to similarly accurate segmentations as segmentations obtained from conventionally used hierarchical clustering approaches. In order to perform this comparison on quantitative grounds, we provide a scheme that allows to identify non-horizontal cuts in dendrograms. This yields a validation scheme for hierarchical clustering approaches commonly used in infrared microscopy. We demonstrate that interactive similarity maps may identify more accurate segmentations than hierarchical clustering based approaches, and thus are a viable and due to their interactive nature attractive alternative to hierarchical clustering. Our validation scheme furthermore shows that performance of hierarchical two-means is comparable to the traditionally used Ward's clustering. As the former is much more efficient in time and memory, our results suggest another less resource demanding alternative for annotating large spectral images.

  8. The identification of credit card encoders by hierarchical cluster analysis of the jitters of magnetic stripes.

    Science.gov (United States)

    Leung, S C; Fung, W K; Wong, K H

    1999-01-01

    The relative bit density variation graphs of 207 specimen credit cards processed by 12 encoding machines were examined first visually, and then classified by means of hierarchical cluster analysis. Twenty-nine credit cards being treated as 'questioned' samples were tested by way of cluster analysis against 'controls' derived from known encoders. It was found that hierarchical cluster analysis provided a high accuracy of identification with all 29 'questioned' samples classified correctly. On the other hand, although visual comparison of jitter graphs was less discriminating, it was nevertheless capable of giving a reasonably accurate result.

  9. Hierarchical Control for Multiple DC-Microgrids Clusters

    DEFF Research Database (Denmark)

    Shafiee, Qobad; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2014-01-01

    DC microgrids (MGs) have gained research interest during the recent years because of many potential advantages as compared to the ac system. To ensure reliable operation of a low-voltage dc MG as well as its intelligent operation with the other DC MGs, a hierarchical control is proposed in this p......DC microgrids (MGs) have gained research interest during the recent years because of many potential advantages as compared to the ac system. To ensure reliable operation of a low-voltage dc MG as well as its intelligent operation with the other DC MGs, a hierarchical control is proposed...

  10. Energy Efficient Hierarchical Clustering Approaches in Wireless Sensor Networks: A Survey

    Directory of Open Access Journals (Sweden)

    Bilal Jan

    2017-01-01

    Full Text Available Wireless sensor networks (WSN are one of the significant technologies due to their diverse applications such as health care monitoring, smart phones, military, disaster management, and other surveillance systems. Sensor nodes are usually deployed in large number that work independently in unattended harsh environments. Due to constraint resources, typically the scarce battery power, these wireless nodes are grouped into clusters for energy efficient communication. In clustering hierarchical schemes have achieved great interest for minimizing energy consumption. Hierarchical schemes are generally categorized as cluster-based and grid-based approaches. In cluster-based approaches, nodes are grouped into clusters, where a resourceful sensor node is nominated as a cluster head (CH while in grid-based approach the network is divided into confined virtual grids usually performed by the base station. This paper highlights and discusses the design challenges for cluster-based schemes, the important cluster formation parameters, and classification of hierarchical clustering protocols. Moreover, existing cluster-based and grid-based techniques are evaluated by considering certain parameters to help users in selecting appropriate technique. Furthermore, a detailed summary of these protocols is presented with their advantages, disadvantages, and applicability in particular cases.

  11. Hierarchical cluster analysis of progression patterns in open-angle glaucoma patients with medical treatment.

    Science.gov (United States)

    Bae, Hyoung Won; Rho, Seungsoo; Lee, Hye Sun; Lee, Naeun; Hong, Samin; Seong, Gong Je; Sung, Kyung Rim; Kim, Chan Yun

    2014-04-29

    To classify medically treated open-angle glaucoma (OAG) by the pattern of progression using hierarchical cluster analysis, and to determine OAG progression characteristics by comparing clusters. Ninety-five eyes of 95 OAG patients who received medical treatment, and who had undergone visual field (VF) testing at least once per year for 5 or more years. OAG was classified into subgroups using hierarchical cluster analysis based on the following five variables: baseline mean deviation (MD), baseline visual field index (VFI), MD slope, VFI slope, and Glaucoma Progression Analysis (GPA) printout. After that, other parameters were compared between clusters. Two clusters were made after a hierarchical cluster analysis. Cluster 1 showed -4.06 ± 2.43 dB baseline MD, 92.58% ± 6.27% baseline VFI, -0.28 ± 0.38 dB per year MD slope, -0.52% ± 0.81% per year VFI slope, and all "no progression" cases in GPA printout, whereas cluster 2 showed -8.68 ± 3.81 baseline MD, 77.54 ± 12.98 baseline VFI, -0.72 ± 0.55 MD slope, -2.22 ± 1.89 VFI slope, and seven "possible" and four "likely" progression cases in GPA printout. There were no significant differences in age, sex, mean IOP, central corneal thickness, and axial length between clusters. However, cluster 2 included more high-tension glaucoma patients and used a greater number of antiglaucoma eye drops significantly compared with cluster 1. Hierarchical cluster analysis of progression patterns divided OAG into slow and fast progression groups, evidenced by assessing the parameters of glaucomatous progression in VF testing. In the fast progression group, the prevalence of high-tension glaucoma was greater and the number of antiglaucoma medications administered was increased versus the slow progression group. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  12. The use of hierarchical clustering for the design of optimized monitoring networks

    Science.gov (United States)

    Soares, Joana; Makar, Paul Andrew; Aklilu, Yayne; Akingunola, Ayodeji

    2018-05-01

    Associativity analysis is a powerful tool to deal with large-scale datasets by clustering the data on the basis of (dis)similarity and can be used to assess the efficacy and design of air quality monitoring networks. We describe here our use of Kolmogorov-Zurbenko filtering and hierarchical clustering of NO2 and SO2 passive and continuous monitoring data to analyse and optimize air quality networks for these species in the province of Alberta, Canada. The methodology applied in this study assesses dissimilarity between monitoring station time series based on two metrics: 1 - R, R being the Pearson correlation coefficient, and the Euclidean distance; we find that both should be used in evaluating monitoring site similarity. We have combined the analytic power of hierarchical clustering with the spatial information provided by deterministic air quality model results, using the gridded time series of model output as potential station locations, as a proxy for assessing monitoring network design and for network optimization. We demonstrate that clustering results depend on the air contaminant analysed, reflecting the difference in the respective emission sources of SO2 and NO2 in the region under study. Our work shows that much of the signal identifying the sources of NO2 and SO2 emissions resides in shorter timescales (hourly to daily) due to short-term variation of concentrations and that longer-term averages in data collection may lose the information needed to identify local sources. However, the methodology identifies stations mainly influenced by seasonality, if larger timescales (weekly to monthly) are considered. We have performed the first dissimilarity analysis based on gridded air quality model output and have shown that the methodology is capable of generating maps of subregions within which a single station will represent the entire subregion, to a given level of dissimilarity. We have also shown that our approach is capable of identifying different

  13. Hierarchical Bayesian nonparametric mixture models for clustering with variable relevance determination.

    Science.gov (United States)

    Yau, Christopher; Holmes, Chris

    2011-07-01

    We propose a hierarchical Bayesian nonparametric mixture model for clustering when some of the covariates are assumed to be of varying relevance to the clustering problem. This can be thought of as an issue in variable selection for unsupervised learning. We demonstrate that by defining a hierarchical population based nonparametric prior on the cluster locations scaled by the inverse covariance matrices of the likelihood we arrive at a 'sparsity prior' representation which admits a conditionally conjugate prior. This allows us to perform full Gibbs sampling to obtain posterior distributions over parameters of interest including an explicit measure of each covariate's relevance and a distribution over the number of potential clusters present in the data. This also allows for individual cluster specific variable selection. We demonstrate improved inference on a number of canonical problems.

  14. Hierarchical clustering of HPV genotype patterns in the ASCUS-LSIL triage study

    Science.gov (United States)

    Wentzensen, Nicolas; Wilson, Lauren E.; Wheeler, Cosette M.; Carreon, Joseph D.; Gravitt, Patti E.; Schiffman, Mark; Castle, Philip E.

    2010-01-01

    Anogenital cancers are associated with about 13 carcinogenic HPV types in a broader group that cause cervical intraepithelial neoplasia (CIN). Multiple concurrent cervical HPV infections are common which complicate the attribution of HPV types to different grades of CIN. Here we report the analysis of HPV genotype patterns in the ASCUS-LSIL triage study using unsupervised hierarchical clustering. Women who underwent colposcopy at baseline (n = 2780) were grouped into 20 disease categories based on histology and cytology. Disease groups and HPV genotypes were clustered using complete linkage. Risk of 2-year cumulative CIN3+, viral load, colposcopic impression, and age were compared between disease groups and major clusters. Hierarchical clustering yielded four major disease clusters: Cluster 1 included all CIN3 histology with abnormal cytology; Cluster 2 included CIN3 histology with normal cytology and combinations with either CIN2 or high-grade squamous intraepithelial lesion (HSIL) cytology; Cluster 3 included older women with normal or low grade histology/cytology and low viral load; Cluster 4 included younger women with low grade histology/cytology, multiple infections, and the highest viral load. Three major groups of HPV genotypes were identified: Group 1 included only HPV16; Group 2 included nine carcinogenic types plus non-carcinogenic HPV53 and HPV66; and Group 3 included non-carcinogenic types plus carcinogenic HPV33 and HPV45. Clustering results suggested that colposcopy missed a prevalent precancer in many women with no biopsy/normal histology and HSIL. This result was confirmed by an elevated 2-year risk of CIN3+ in these groups. Our novel approach to study multiple genotype infections in cervical disease using unsupervised hierarchical clustering can address complex genotype distributions on a population level. PMID:20959485

  15. Efficient algorithms for accurate hierarchical clustering of huge datasets: tackling the entire protein space

    OpenAIRE

    Loewenstein, Yaniv; Portugaly, Elon; Fromer, Menachem; Linial, Michal

    2008-01-01

    Motivation: UPGMA (average linking) is probably the most popular algorithm for hierarchical data clustering, especially in computational biology. However, UPGMA requires the entire dissimilarity matrix in memory. Due to this prohibitive requirement, UPGMA is not scalable to very large datasets. Application: We present a novel class of memory-constrained UPGMA (MC-UPGMA) algorithms. Given any practical memory size constraint, this framework guarantees the correct clustering solution without ex...

  16. Kendall’s tau and agglomerative clustering for structure determination of hierarchical Archimedean copulas

    Directory of Open Access Journals (Sweden)

    Górecki J.

    2017-01-01

    Full Text Available Several successful approaches to structure determination of hierarchical Archimedean copulas (HACs proposed in the literature rely on agglomerative clustering and Kendall’s correlation coefficient. However, there has not been presented any theoretical proof justifying such approaches. This work fills this gap and introduces a theorem showing that, given the matrix of the pairwise Kendall correlation coefficients corresponding to a HAC, its structure can be recovered by an agglomerative clustering technique.

  17. Assessment of genetic divergence in tomato through agglomerative hierarchical clustering and principal component analysis

    International Nuclear Information System (INIS)

    Iqbal, Q.; Saleem, M.Y.; Hameed, A.; Asghar, M.

    2014-01-01

    For the improvement of qualitative and quantitative traits, existence of variability has prime importance in plant breeding. Data on different morphological and reproductive traits of 47 tomato genotypes were analyzed for correlation,agglomerative hierarchical clustering and principal component analysis (PCA) to select genotypes and traits for future breeding program. Correlation analysis revealed significant positive association between yield and yield components like fruit diameter, single fruit weight and number of fruits plant-1. Principal component (PC) analysis depicted first three PCs with Eigen-value higher than 1 contributing 81.72% of total variability for different traits. The PC-I showed positive factor loadings for all the traits except number of fruits plant-1. The contribution of single fruit weight and fruit diameter was highest in PC-1. Cluster analysis grouped all genotypes into five divergent clusters. The genotypes in cluster-II and cluster-V exhibited uniform maturity and higher yield. The D2 statistics confirmed highest distance between cluster- III and cluster-V while maximum similarity was observed in cluster-II and cluster-III. It is therefore suggested that crosses between genotypes of cluster-II and cluster-V with those of cluster-I and cluster-III may exhibit heterosis in F1 for hybrid breeding and for selection of superior genotypes in succeeding generations for cross breeding programme. (author)

  18. Hierarchical clustering analysis of blood plasma lipidomics profiles from mono- and dizygotic twin families

    NARCIS (Netherlands)

    Draisma, H.H.; Reijmers, T.H.; Meulman, J.J.; Greef, J. van der; Hankemeier, T.; Boomsma, D.I.

    2013-01-01

    Twin and family studies are typically used to elucidate the relative contribution of genetic and environmental variation to phenotypic variation. Here, we apply a quantitative genetic method based on hierarchical clustering, to blood plasma lipidomics data obtained in a healthy cohort consisting of

  19. Prediction of in vitro and in vivo oestrogen receptor activity using hierarchical clustering

    Science.gov (United States)

    In this study, hierarchical clustering classification models were developed to predict in vitro and in vivo oestrogen receptor (ER) activity. Classification models were developed for binding, agonist, and antagonist in vitro ER activity and for mouse in vivo uterotrophic ER bindi...

  20. Radiobiological analyse based on cell cluster models

    International Nuclear Information System (INIS)

    Lin Hui; Jing Jia; Meng Damin; Xu Yuanying; Xu Liangfeng

    2010-01-01

    The influence of cell cluster dimension on EUD and TCP for targeted radionuclide therapy was studied using the radiobiological method. The radiobiological features of tumor with activity-lack in core were evaluated and analyzed by associating EUD, TCP and SF.The results show that EUD will increase with the increase of tumor dimension under the activity homogeneous distribution. If the extra-cellular activity was taken into consideration, the EUD will increase 47%. Under the activity-lack in tumor center and the requirement of TCP=0.90, the α cross-fire influence of 211 At could make up the maximum(48 μm)3 activity-lack for Nucleus source, but(72 μm)3 for Cytoplasm, Cell Surface, Cell and Voxel sources. In clinic,the physician could prefer the suggested dose of Cell Surface source in case of the future of local tumor control for under-dose. Generally TCP could well exhibit the effect difference between under-dose and due-dose, but not between due-dose and over-dose, which makes TCP more suitable for the therapy plan choice. EUD could well exhibit the difference between different models and activity distributions,which makes it more suitable for the research work. When the user uses EUD to study the influence of activity inhomogeneous distribution, one should keep the consistency of the configuration and volume of the former and the latter models. (authors)

  1. Which, When, and How: Hierarchical Clustering with Human–Machine Cooperation

    Directory of Open Access Journals (Sweden)

    Huanyang Zheng

    2016-12-01

    Full Text Available Human–Machine Cooperations (HMCs can balance the advantages and disadvantages of human computation (accurate but costly and machine computation (cheap but inaccurate. This paper studies HMCs in agglomerative hierarchical clusterings, where the machine can ask the human some questions. The human will return the answers to the machine, and the machine will use these answers to correct errors in its current clustering results. We are interested in the machine’s strategy on handling the question operations, in terms of three problems: (1 Which question should the machine ask? (2 When should the machine ask the question (early or late? (3 How does the machine adjust the clustering result, if the machine’s mistake is found by the human? Based on the insights of these problems, an efficient algorithm is proposed with five implementation variations. Experiments on image clusterings show that the proposed algorithm can improve the clustering accuracy with few question operations.

  2. Dynamics of the baryonic component in hierarchical clustering universes

    Science.gov (United States)

    Navarro, Julio

    1993-01-01

    I present self-consistent 3-D simulations of the formation of virialized systems containing both gas and dark matter in a flat universe. A fully Lagrangian code based on the Smoothed Particle Hydrodynamics technique and a tree data structure has been used to evolve regions of comoving radius 2-3 Mpc. Tidal effects are included by coarse-sampling the density of the outer regions up to a radius approx. 20 Mpc. Initial conditions are set at high redshift (z greater than 7) using a standard Cold Dark Matter perturbation spectrum and a baryon mass fraction of 10 percent (omega(sub b) = 0.1). Simulations in which the gas evolves either adiabatically or radiates energy at a rate determined locally by its cooling function were performed. This allows us to investigate with the same set of simulations the importance of radiative losses in the formation of galaxies and the equilibrium structure of virialized systems where cooling is very inefficient. In the absence of radiative losses, the simulations can be rescaled to the density and radius typical of galaxy clusters. A summary of the main results is presented.

  3. Visualizing Confidence in Cluster-Based Ensemble Weather Forecast Analyses.

    Science.gov (United States)

    Kumpf, Alexander; Tost, Bianca; Baumgart, Marlene; Riemer, Michael; Westermann, Rudiger; Rautenhaus, Marc

    2018-01-01

    In meteorology, cluster analysis is frequently used to determine representative trends in ensemble weather predictions in a selected spatio-temporal region, e.g., to reduce a set of ensemble members to simplify and improve their analysis. Identified clusters (i.e., groups of similar members), however, can be very sensitive to small changes of the selected region, so that clustering results can be misleading and bias subsequent analyses. In this article, we - a team of visualization scientists and meteorologists-deliver visual analytics solutions to analyze the sensitivity of clustering results with respect to changes of a selected region. We propose an interactive visual interface that enables simultaneous visualization of a) the variation in composition of identified clusters (i.e., their robustness), b) the variability in cluster membership for individual ensemble members, and c) the uncertainty in the spatial locations of identified trends. We demonstrate that our solution shows meteorologists how representative a clustering result is, and with respect to which changes in the selected region it becomes unstable. Furthermore, our solution helps to identify those ensemble members which stably belong to a given cluster and can thus be considered similar. In a real-world application case we show how our approach is used to analyze the clustering behavior of different regions in a forecast of "Tropical Cyclone Karl", guiding the user towards the cluster robustness information required for subsequent ensemble analysis.

  4. 3D NEAREST NEIGHBOUR SEARCH USING A CLUSTERED HIERARCHICAL TREE STRUCTURE

    Directory of Open Access Journals (Sweden)

    A. Suhaibah

    2016-06-01

    Full Text Available Locating and analysing the location of new stores or outlets is one of the common issues facing retailers and franchisers. This is due to assure that new opening stores are at their strategic location to attract the highest possible number of customers. Spatial information is used to manage, maintain and analyse these store locations. However, since the business of franchising and chain stores in urban areas runs within high rise multi-level buildings, a three-dimensional (3D method is prominently required in order to locate and identify the surrounding information such as at which level of the franchise unit will be located or is the franchise unit located is at the best level for visibility purposes. One of the common used analyses used for retrieving the surrounding information is Nearest Neighbour (NN analysis. It uses a point location and identifies the surrounding neighbours. However, with the immense number of urban datasets, the retrieval and analysis of nearest neighbour information and their efficiency will become more complex and crucial. In this paper, we present a technique to retrieve nearest neighbour information in 3D space using a clustered hierarchical tree structure. Based on our findings, the proposed approach substantially showed an improvement of response time analysis compared to existing approaches of spatial access methods in databases. The query performance was tested using a dataset consisting of 500,000 point locations building and franchising unit. The results are presented in this paper. Another advantage of this structure is that it also offers a minimal overlap and coverage among nodes which can reduce repetitive data entry.

  5. Analysis of precipitation data in Bangladesh through hierarchical clustering and multidimensional scaling

    Science.gov (United States)

    Rahman, Md. Habibur; Matin, M. A.; Salma, Umma

    2017-12-01

    The precipitation patterns of seventeen locations in Bangladesh from 1961 to 2014 were studied using a cluster analysis and metric multidimensional scaling. In doing so, the current research applies four major hierarchical clustering methods to precipitation in conjunction with different dissimilarity measures and metric multidimensional scaling. A variety of clustering algorithms were used to provide multiple clustering dendrograms for a mixture of distance measures. The dendrogram of pre-monsoon rainfall for the seventeen locations formed five clusters. The pre-monsoon precipitation data for the areas of Srimangal and Sylhet were located in two clusters across the combination of five dissimilarity measures and four hierarchical clustering algorithms. The single linkage algorithm with Euclidian and Manhattan distances, the average linkage algorithm with the Minkowski distance, and Ward's linkage algorithm provided similar results with regard to monsoon precipitation. The results of the post-monsoon and winter precipitation data are shown in different types of dendrograms with disparate combinations of sub-clusters. The schematic geometrical representations of the precipitation data using metric multidimensional scaling showed that the post-monsoon rainfall of Cox's Bazar was located far from those of the other locations. The results of a box-and-whisker plot, different clustering techniques, and metric multidimensional scaling indicated that the precipitation behaviour of Srimangal and Sylhet during the pre-monsoon season, Cox's Bazar and Sylhet during the monsoon season, Maijdi Court and Cox's Bazar during the post-monsoon season, and Cox's Bazar and Khulna during the winter differed from those at other locations in Bangladesh.

  6. On the Disruption of Star Clusters in a Hierarchical Interstellar Medium

    Science.gov (United States)

    Elmegreen, Bruce G.; Hunter, Deidre A.

    2010-03-01

    The distribution of the number of clusters as a function of mass M and age T suggests that clusters get eroded or dispersed in a regular way over time, such that the cluster number decreases inversely as an approximate power law with T within each fixed interval of M. This power law is inconsistent with standard dispersal mechanisms such as cluster evaporation and cloud collisions. In the conventional interpretation, it requires the unlikely situation where diverse mechanisms stitch together over time in a way that is independent of environment or M. Here, we consider another model in which the large-scale distribution of gas in each star-forming region plays an important role. We note that star clusters form with positional and temporal correlations in giant cloud complexes, and suggest that these complexes dominate the tidal force and collisional influence on a cluster during its first several hundred million years. Because the cloud complex density decreases regularly with position from the cluster birth site, the harassment and collision rates between the cluster and the cloud pieces decrease regularly with age as the cluster drifts. This decrease is typically a power law of the form required to explain the mass-age distribution. We reproduce this distribution for a variety of cases, including rapid disruption, slow erosion, combinations of these two, cluster-cloud collisions, cluster disruption by hierarchical disassembly, and partial cluster disruption. We also consider apparent cluster mass loss by fading below the surface brightness limit of a survey. In all cases, the observed log M-log T diagram can be reproduced under reasonable assumptions.

  7. ON THE DISRUPTION OF STAR CLUSTERS IN A HIERARCHICAL INTERSTELLAR MEDIUM

    International Nuclear Information System (INIS)

    Elmegreen, Bruce G.; Hunter, Deidre A.

    2010-01-01

    The distribution of the number of clusters as a function of mass M and age T suggests that clusters get eroded or dispersed in a regular way over time, such that the cluster number decreases inversely as an approximate power law with T within each fixed interval of M. This power law is inconsistent with standard dispersal mechanisms such as cluster evaporation and cloud collisions. In the conventional interpretation, it requires the unlikely situation where diverse mechanisms stitch together over time in a way that is independent of environment or M. Here, we consider another model in which the large-scale distribution of gas in each star-forming region plays an important role. We note that star clusters form with positional and temporal correlations in giant cloud complexes, and suggest that these complexes dominate the tidal force and collisional influence on a cluster during its first several hundred million years. Because the cloud complex density decreases regularly with position from the cluster birth site, the harassment and collision rates between the cluster and the cloud pieces decrease regularly with age as the cluster drifts. This decrease is typically a power law of the form required to explain the mass-age distribution. We reproduce this distribution for a variety of cases, including rapid disruption, slow erosion, combinations of these two, cluster-cloud collisions, cluster disruption by hierarchical disassembly, and partial cluster disruption. We also consider apparent cluster mass loss by fading below the surface brightness limit of a survey. In all cases, the observed log M-log T diagram can be reproduced under reasonable assumptions.

  8. Hierarchical and Non-Hierarchical Linear and Non-Linear Clustering Methods to “Shakespeare Authorship Question”

    Directory of Open Access Journals (Sweden)

    Refat Aljumily

    2015-09-01

    Full Text Available A few literary scholars have long claimed that Shakespeare did not write some of his best plays (history plays and tragedies and proposed at one time or another various suspect authorship candidates. Most modern-day scholars of Shakespeare have rejected this claim, arguing that strong evidence that Shakespeare wrote the plays and poems being his name appears on them as the author. This has caused and led to an ongoing scholarly academic debate for quite some long time. Stylometry is a fast-growing field often used to attribute authorship to anonymous or disputed texts. Stylometric attempts to resolve this literary puzzle have raised interesting questions over the past few years. The following paper contributes to “the Shakespeare authorship question” by using a mathematically-based methodology to examine the hypothesis that Shakespeare wrote all the disputed plays traditionally attributed to him. More specifically, the mathematically based methodology used here is based on Mean Proximity, as a linear hierarchical clustering method, and on Principal Components Analysis, as a non-hierarchical linear clustering method. It is also based, for the first time in the domain, on Self-Organizing Map U-Matrix and Voronoi Map, as non-linear clustering methods to cover the possibility that our data contains significant non-linearities. Vector Space Model (VSM is used to convert texts into vectors in a high dimensional space. The aim of which is to compare the degrees of similarity within and between limited samples of text (the disputed plays. The various works and plays assumed to have been written by Shakespeare and possible authors notably, Sir Francis Bacon, Christopher Marlowe, John Fletcher, and Thomas Kyd, where “similarity” is defined in terms of correlation/distance coefficient measure based on the frequency of usage profiles of function words, word bi-grams, and character triple-grams. The claim that Shakespeare authored all the disputed

  9. The Hierarchical Spectral Merger Algorithm: A New Time Series Clustering Procedure

    KAUST Repository

    Euán, Carolina

    2018-04-12

    We present a new method for time series clustering which we call the Hierarchical Spectral Merger (HSM) method. This procedure is based on the spectral theory of time series and identifies series that share similar oscillations or waveforms. The extent of similarity between a pair of time series is measured using the total variation distance between their estimated spectral densities. At each step of the algorithm, every time two clusters merge, a new spectral density is estimated using the whole information present in both clusters, which is representative of all the series in the new cluster. The method is implemented in an R package HSMClust. We present two applications of the HSM method, one to data coming from wave-height measurements in oceanography and the other to electroencefalogram (EEG) data.

  10. An Energy Efficient Cooperative Hierarchical MIMO Clustering Scheme for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sungyoung Lee

    2011-12-01

    Full Text Available In this work, we present an energy efficient hierarchical cooperative clustering scheme for wireless sensor networks. Communication cost is a crucial factor in depleting the energy of sensor nodes. In the proposed scheme, nodes cooperate to form clusters at each level of network hierarchy ensuring maximal coverage and minimal energy expenditure with relatively uniform distribution of load within the network. Performance is enhanced by cooperative multiple-input multiple-output (MIMO communication ensuring energy efficiency for WSN deployments over large geographical areas. We test our scheme using TOSSIM and compare the proposed scheme with cooperative multiple-input multiple-output (CMIMO clustering scheme and traditional multihop Single-Input-Single-Output (SISO routing approach. Performance is evaluated on the basis of number of clusters, number of hops, energy consumption and network lifetime. Experimental results show significant energy conservation and increase in network lifetime as compared to existing schemes.

  11. Hierarchical Adaptive Means (HAM) clustering for hardware-efficient, unsupervised and real-time spike sorting.

    Science.gov (United States)

    Paraskevopoulou, Sivylla E; Wu, Di; Eftekhar, Amir; Constandinou, Timothy G

    2014-09-30

    This work presents a novel unsupervised algorithm for real-time adaptive clustering of neural spike data (spike sorting). The proposed Hierarchical Adaptive Means (HAM) clustering method combines centroid-based clustering with hierarchical cluster connectivity to classify incoming spikes using groups of clusters. It is described how the proposed method can adaptively track the incoming spike data without requiring any past history, iteration or training and autonomously determines the number of spike classes. Its performance (classification accuracy) has been tested using multiple datasets (both simulated and recorded) achieving a near-identical accuracy compared to k-means (using 10-iterations and provided with the number of spike classes). Also, its robustness in applying to different feature extraction methods has been demonstrated by achieving classification accuracies above 80% across multiple datasets. Last but crucially, its low complexity, that has been quantified through both memory and computation requirements makes this method hugely attractive for future hardware implementation. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Novel density-based and hierarchical density-based clustering algorithms for uncertain data.

    Science.gov (United States)

    Zhang, Xianchao; Liu, Han; Zhang, Xiaotong

    2017-09-01

    Uncertain data has posed a great challenge to traditional clustering algorithms. Recently, several algorithms have been proposed for clustering uncertain data, and among them density-based techniques seem promising for handling data uncertainty. However, some issues like losing uncertain information, high time complexity and nonadaptive threshold have not been addressed well in the previous density-based algorithm FDBSCAN and hierarchical density-based algorithm FOPTICS. In this paper, we firstly propose a novel density-based algorithm PDBSCAN, which improves the previous FDBSCAN from the following aspects: (1) it employs a more accurate method to compute the probability that the distance between two uncertain objects is less than or equal to a boundary value, instead of the sampling-based method in FDBSCAN; (2) it introduces new definitions of probability neighborhood, support degree, core object probability, direct reachability probability, thus reducing the complexity and solving the issue of nonadaptive threshold (for core object judgement) in FDBSCAN. Then, we modify the algorithm PDBSCAN to an improved version (PDBSCANi), by using a better cluster assignment strategy to ensure that every object will be assigned to the most appropriate cluster, thus solving the issue of nonadaptive threshold (for direct density reachability judgement) in FDBSCAN. Furthermore, as PDBSCAN and PDBSCANi have difficulties for clustering uncertain data with non-uniform cluster density, we propose a novel hierarchical density-based algorithm POPTICS by extending the definitions of PDBSCAN, adding new definitions of fuzzy core distance and fuzzy reachability distance, and employing a new clustering framework. POPTICS can reveal the cluster structures of the datasets with different local densities in different regions better than PDBSCAN and PDBSCANi, and it addresses the issues in FOPTICS. Experimental results demonstrate the superiority of our proposed algorithms over the existing

  13. Hierarchical cluster analysis of technical replicates to identify interferents in untargeted mass spectrometry metabolomics.

    Science.gov (United States)

    Caesar, Lindsay K; Kvalheim, Olav M; Cech, Nadja B

    2018-08-27

    Mass spectral data sets often contain experimental artefacts, and data filtering prior to statistical analysis is crucial to extract reliable information. This is particularly true in untargeted metabolomics analyses, where the analyte(s) of interest are not known a priori. It is often assumed that chemical interferents (i.e. solvent contaminants such as plasticizers) are consistent across samples, and can be removed by background subtraction from blank injections. On the contrary, it is shown here that chemical contaminants may vary in abundance across each injection, potentially leading to their misidentification as relevant sample components. With this metabolomics study, we demonstrate the effectiveness of hierarchical cluster analysis (HCA) of replicate injections (technical replicates) as a methodology to identify chemical interferents and reduce their contaminating contribution to metabolomics models. Pools of metabolites with varying complexity were prepared from the botanical Angelica keiskei Koidzumi and spiked with known metabolites. Each set of pools was analyzed in triplicate and at multiple concentrations using ultraperformance liquid chromatography coupled to mass spectrometry (UPLC-MS). Before filtering, HCA failed to cluster replicates in the data sets. To identify contaminant peaks, we developed a filtering process that evaluated the relative peak area variance of each variable within triplicate injections. These interferent peaks were found across all samples, but did not show consistent peak area from injection to injection, even when evaluating the same chemical sample. This filtering process identified 128 ions that appear to originate from the UPLC-MS system. Data sets collected for a high number of pools with comparatively simple chemical composition were highly influenced by these chemical interferents, as were samples that were analyzed at a low concentration. When chemical interferent masses were removed, technical replicates clustered in

  14. A comparison of hierarchical cluster analysis and league table rankings as methods for analysis and presentation of district health system performance data in Uganda.

    Science.gov (United States)

    Tashobya, Christine K; Dubourg, Dominique; Ssengooba, Freddie; Speybroeck, Niko; Macq, Jean; Criel, Bart

    2016-03-01

    In 2003, the Uganda Ministry of Health introduced the district league table for district health system performance assessment. The league table presents district performance against a number of input, process and output indicators and a composite index to rank districts. This study explores the use of hierarchical cluster analysis for analysing and presenting district health systems performance data and compares this approach with the use of the league table in Uganda. Ministry of Health and district plans and reports, and published documents were used to provide information on the development and utilization of the Uganda district league table. Quantitative data were accessed from the Ministry of Health databases. Statistical analysis using SPSS version 20 and hierarchical cluster analysis, utilizing Wards' method was used. The hierarchical cluster analysis was conducted on the basis of seven clusters determined for each year from 2003 to 2010, ranging from a cluster of good through moderate-to-poor performers. The characteristics and membership of clusters varied from year to year and were determined by the identity and magnitude of performance of the individual variables. Criticisms of the league table include: perceived unfairness, as it did not take into consideration district peculiarities; and being oversummarized and not adequately informative. Clustering organizes the many data points into clusters of similar entities according to an agreed set of indicators and can provide the beginning point for identifying factors behind the observed performance of districts. Although league table ranking emphasize summation and external control, clustering has the potential to encourage a formative, learning approach. More research is required to shed more light on factors behind observed performance of the different clusters. Other countries especially low-income countries that share many similarities with Uganda can learn from these experiences. © The Author 2015

  15. Evolutionary-Hierarchical Bases of the Formation of Cluster Model of Innovation Economic Development

    Directory of Open Access Journals (Sweden)

    Yuliya Vladimirovna Dubrovskaya

    2016-10-01

    Full Text Available The functioning of a modern economic system is based on the interaction of objects of different hierarchical levels. Thus, the problem of the study of innovation processes taking into account the mutual influence of the activities of these economic actors becomes important. The paper dwells evolutionary basis for the formation of models of innovation development on the basis of micro and macroeconomic analysis. Most of the concepts recognized that despite a big number of diverse models, the coordination of the relations between economic agents is of crucial importance for the successful innovation development. According to the results of the evolutionary-hierarchical analysis, the authors reveal key phases of the development of forms of business cooperation, science and government in the domestic economy. It has become the starting point of the conception of the characteristics of the interaction in the cluster models of innovation development of the economy. Considerable expectancies on improvement of the national innovative system are connected with the development of cluster and network structures. The main objective of government authorities is the formation of mechanisms and institutions that will foster cooperation between members of the clusters. The article explains that the clusters cannot become the factors in the growth of the national economy, not being an effective tool for interaction between the actors of the regional innovative systems.

  16. Hierarchical Bayesian modelling of gene expression time series across irregularly sampled replicates and clusters.

    Science.gov (United States)

    Hensman, James; Lawrence, Neil D; Rattray, Magnus

    2013-08-20

    Time course data from microarrays and high-throughput sequencing experiments require simple, computationally efficient and powerful statistical models to extract meaningful biological signal, and for tasks such as data fusion and clustering. Existing methodologies fail to capture either the temporal or replicated nature of the experiments, and often impose constraints on the data collection process, such as regularly spaced samples, or similar sampling schema across replications. We propose hierarchical Gaussian processes as a general model of gene expression time-series, with application to a variety of problems. In particular, we illustrate the method's capacity for missing data imputation, data fusion and clustering.The method can impute data which is missing both systematically and at random: in a hold-out test on real data, performance is significantly better than commonly used imputation methods. The method's ability to model inter- and intra-cluster variance leads to more biologically meaningful clusters. The approach removes the necessity for evenly spaced samples, an advantage illustrated on a developmental Drosophila dataset with irregular replications. The hierarchical Gaussian process model provides an excellent statistical basis for several gene-expression time-series tasks. It has only a few additional parameters over a regular GP, has negligible additional complexity, is easily implemented and can be integrated into several existing algorithms. Our experiments were implemented in python, and are available from the authors' website: http://staffwww.dcs.shef.ac.uk/people/J.Hensman/.

  17. Hierarchical Star Formation in Turbulent Media: Evidence from Young Star Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Grasha, K.; Calzetti, D. [Astronomy Department, University of Massachusetts, Amherst, MA 01003 (United States); Elmegreen, B. G. [IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY (United States); Adamo, A.; Messa, M. [Department of Astronomy, The Oskar Klein Centre, Stockholm University, Stockholm (Sweden); Aloisi, A.; Bright, S. N.; Lee, J. C.; Ryon, J. E.; Ubeda, L. [Space Telescope Science Institute, Baltimore, MD (United States); Cook, D. O. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA (United States); Dale, D. A. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY (United States); Fumagalli, M. [Institute for Computational Cosmology and Centre for Extragalactic Astronomy, Department of Physics, Durham University, Durham (United Kingdom); Gallagher III, J. S. [Department of Astronomy, University of Wisconsin–Madison, Madison, WI (United States); Gouliermis, D. A. [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Grebel, E. K. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120, Heidelberg (Germany); Kahre, L. [Department of Astronomy, New Mexico State University, Las Cruces, NM (United States); Kim, H. [Gemini Observatory, La Serena (Chile); Krumholz, M. R., E-mail: kgrasha@astro.umass.edu [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia)

    2017-06-10

    We present an analysis of the positions and ages of young star clusters in eight local galaxies to investigate the connection between the age difference and separation of cluster pairs. We find that star clusters do not form uniformly but instead are distributed so that the age difference increases with the cluster pair separation to the 0.25–0.6 power, and that the maximum size over which star formation is physically correlated ranges from ∼200 pc to ∼1 kpc. The observed trends between age difference and separation suggest that cluster formation is hierarchical both in space and time: clusters that are close to each other are more similar in age than clusters born further apart. The temporal correlations between stellar aggregates have slopes that are consistent with predictions of turbulence acting as the primary driver of star formation. The velocity associated with the maximum size is proportional to the galaxy’s shear, suggesting that the galactic environment influences the maximum size of the star-forming structures.

  18. Hierarchical Clustering of Large Databases and Classification of Antibiotics at High Noise Levels

    Directory of Open Access Journals (Sweden)

    Alexander V. Yarkov

    2008-12-01

    Full Text Available A new algorithm for divisive hierarchical clustering of chemical compounds based on 2D structural fragments is suggested. The algorithm is deterministic, and given a random ordering of the input, will always give the same clustering and can process a database up to 2 million records on a standard PC. The algorithm was used for classification of 1,183 antibiotics mixed with 999,994 random chemical structures. Similarity threshold, at which best separation of active and non active compounds took place, was estimated as 0.6. 85.7% of the antibiotics were successfully classified at this threshold with 0.4% of inaccurate compounds. A .sdf file was created with the probe molecules for clustering of external databases.

  19. A supplier selection using a hybrid grey based hierarchical clustering and artificial bee colony

    Directory of Open Access Journals (Sweden)

    Farshad Faezy Razi

    2014-06-01

    Full Text Available Selection of one or a combination of the most suitable potential providers and outsourcing problem is the most important strategies in logistics and supply chain management. In this paper, selection of an optimal combination of suppliers in inventory and supply chain management are studied and analyzed via multiple attribute decision making approach, data mining and evolutionary optimization algorithms. For supplier selection in supply chain, hierarchical clustering according to the studied indexes first clusters suppliers. Then, according to its cluster, each supplier is evaluated through Grey Relational Analysis. Then the combination of suppliers’ Pareto optimal rank and costs are obtained using Artificial Bee Colony meta-heuristic algorithm. A case study is conducted for a better description of a new algorithm to select a multiple source of suppliers.

  20. A hierarchical cluster analysis of normal-tension glaucoma using spectral-domain optical coherence tomography parameters.

    Science.gov (United States)

    Bae, Hyoung Won; Ji, Yongwoo; Lee, Hye Sun; Lee, Naeun; Hong, Samin; Seong, Gong Je; Sung, Kyung Rim; Kim, Chan Yun

    2015-01-01

    Normal-tension glaucoma (NTG) is a heterogenous disease, and there is still controversy about subclassifications of this disorder. On the basis of spectral-domain optical coherence tomography (SD-OCT), we subdivided NTG with hierarchical cluster analysis using optic nerve head (ONH) parameters and retinal nerve fiber layer (RNFL) thicknesses. A total of 200 eyes of 200 NTG patients between March 2011 and June 2012 underwent SD-OCT scans to measure ONH parameters and RNFL thicknesses. We classified NTG into homogenous subgroups based on these variables using a hierarchical cluster analysis, and compared clusters to evaluate diverse NTG characteristics. Three clusters were found after hierarchical cluster analysis. Cluster 1 (62 eyes) had the thickest RNFL and widest rim area, and showed early glaucoma features. Cluster 2 (60 eyes) was characterized by the largest cup/disc ratio and cup volume, and showed advanced glaucomatous damage. Cluster 3 (78 eyes) had small disc areas in SD-OCT and were comprised of patients with significantly younger age, longer axial length, and greater myopia than the other 2 groups. A hierarchical cluster analysis of SD-OCT scans divided NTG patients into 3 groups based upon ONH parameters and RNFL thicknesses. It is anticipated that the small disc area group comprised of younger and more myopic patients may show unique features unlike the other 2 groups.

  1. Water quality assessment with hierarchical cluster analysis based on Mahalanobis distance.

    Science.gov (United States)

    Du, Xiangjun; Shao, Fengjing; Wu, Shunyao; Zhang, Hanlin; Xu, Si

    2017-07-01

    Water quality assessment is crucial for assessment of marine eutrophication, prediction of harmful algal blooms, and environment protection. Previous studies have developed many numeric modeling methods and data driven approaches for water quality assessment. The cluster analysis, an approach widely used for grouping data, has also been employed. However, there are complex correlations between water quality variables, which play important roles in water quality assessment but have always been overlooked. In this paper, we analyze correlations between water quality variables and propose an alternative method for water quality assessment with hierarchical cluster analysis based on Mahalanobis distance. Further, we cluster water quality data collected form coastal water of Bohai Sea and North Yellow Sea of China, and apply clustering results to evaluate its water quality. To evaluate the validity, we also cluster the water quality data with cluster analysis based on Euclidean distance, which are widely adopted by previous studies. The results show that our method is more suitable for water quality assessment with many correlated water quality variables. To our knowledge, it is the first attempt to apply Mahalanobis distance for coastal water quality assessment.

  2. The efficiency of average linkage hierarchical clustering algorithm associated multi-scale bootstrap resampling in identifying homogeneous precipitation catchments

    Science.gov (United States)

    Chuan, Zun Liang; Ismail, Noriszura; Shinyie, Wendy Ling; Lit Ken, Tan; Fam, Soo-Fen; Senawi, Azlyna; Yusoff, Wan Nur Syahidah Wan

    2018-04-01

    Due to the limited of historical precipitation records, agglomerative hierarchical clustering algorithms widely used to extrapolate information from gauged to ungauged precipitation catchments in yielding a more reliable projection of extreme hydro-meteorological events such as extreme precipitation events. However, identifying the optimum number of homogeneous precipitation catchments accurately based on the dendrogram resulted using agglomerative hierarchical algorithms are very subjective. The main objective of this study is to propose an efficient regionalized algorithm to identify the homogeneous precipitation catchments for non-stationary precipitation time series. The homogeneous precipitation catchments are identified using average linkage hierarchical clustering algorithm associated multi-scale bootstrap resampling, while uncentered correlation coefficient as the similarity measure. The regionalized homogeneous precipitation is consolidated using K-sample Anderson Darling non-parametric test. The analysis result shows the proposed regionalized algorithm performed more better compared to the proposed agglomerative hierarchical clustering algorithm in previous studies.

  3. Radar Emission Sources Identification Based on Hierarchical Agglomerative Clustering for Large Data Sets

    Directory of Open Access Journals (Sweden)

    Janusz Dudczyk

    2016-01-01

    Full Text Available More advanced recognition methods, which may recognize particular copies of radars of the same type, are called identification. The identification process of radar devices is a more specialized task which requires methods based on the analysis of distinctive features. These features are distinguished from the signals coming from the identified devices. Such a process is called Specific Emitter Identification (SEI. The identification of radar emission sources with the use of classic techniques based on the statistical analysis of basic measurable parameters of a signal such as Radio Frequency, Amplitude, Pulse Width, or Pulse Repetition Interval is not sufficient for SEI problems. This paper presents the method of hierarchical data clustering which is used in the process of radar identification. The Hierarchical Agglomerative Clustering Algorithm (HACA based on Generalized Agglomerative Scheme (GAS implemented and used in the research method is parameterized; therefore, it is possible to compare the results. The results of clustering are presented in dendrograms in this paper. The received results of grouping and identification based on HACA are compared with other SEI methods in order to assess the degree of their usefulness and effectiveness for systems of ESM/ELINT class.

  4. Intensity-based hierarchical clustering in CT-scans: application to interactive segmentation in cardiology

    Science.gov (United States)

    Hadida, Jonathan; Desrosiers, Christian; Duong, Luc

    2011-03-01

    The segmentation of anatomical structures in Computed Tomography Angiography (CTA) is a pre-operative task useful in image guided surgery. Even though very robust and precise methods have been developed to help achieving a reliable segmentation (level sets, active contours, etc), it remains very time consuming both in terms of manual interactions and in terms of computation time. The goal of this study is to present a fast method to find coarse anatomical structures in CTA with few parameters, based on hierarchical clustering. The algorithm is organized as follows: first, a fast non-parametric histogram clustering method is proposed to compute a piecewise constant mask. A second step then indexes all the space-connected regions in the piecewise constant mask. Finally, a hierarchical clustering is achieved to build a graph representing the connections between the various regions in the piecewise constant mask. This step builds up a structural knowledge about the image. Several interactive features for segmentation are presented, for instance association or disassociation of anatomical structures. A comparison with the Mean-Shift algorithm is presented.

  5. A hierarchical clustering scheme approach to assessment of IP-network traffic using detrended fluctuation analysis

    Science.gov (United States)

    Takuma, Takehisa; Masugi, Masao

    2009-03-01

    This paper presents an approach to the assessment of IP-network traffic in terms of the time variation of self-similarity. To get a comprehensive view in analyzing the degree of long-range dependence (LRD) of IP-network traffic, we use a hierarchical clustering scheme, which provides a way to classify high-dimensional data with a tree-like structure. Also, in the LRD-based analysis, we employ detrended fluctuation analysis (DFA), which is applicable to the analysis of long-range power-law correlations or LRD in non-stationary time-series signals. Based on sequential measurements of IP-network traffic at two locations, this paper derives corresponding values for the LRD-related parameter α that reflects the degree of LRD of measured data. In performing the hierarchical clustering scheme, we use three parameters: the α value, average throughput, and the proportion of network traffic that exceeds 80% of network bandwidth for each measured data set. We visually confirm that the traffic data can be classified in accordance with the network traffic properties, resulting in that the combined depiction of the LRD and other factors can give us an effective assessment of network conditions at different times.

  6. Stuttering, induced fluency, and natural fluency: a hierarchical series of activation likelihood estimation meta-analyses.

    Science.gov (United States)

    Budde, Kristin S; Barron, Daniel S; Fox, Peter T

    2014-12-01

    Developmental stuttering is a speech disorder most likely due to a heritable form of developmental dysmyelination impairing the function of the speech-motor system. Speech-induced brain-activation patterns in persons who stutter (PWS) are anomalous in various ways; the consistency of these aberrant patterns is a matter of ongoing debate. Here, we present a hierarchical series of coordinate-based meta-analyses addressing this issue. Two tiers of meta-analyses were performed on a 17-paper dataset (202 PWS; 167 fluent controls). Four large-scale (top-tier) meta-analyses were performed, two for each subject group (PWS and controls). These analyses robustly confirmed the regional effects previously postulated as "neural signatures of stuttering" (Brown, Ingham, Ingham, Laird, & Fox, 2005) and extended this designation to additional regions. Two smaller-scale (lower-tier) meta-analyses refined the interpretation of the large-scale analyses: (1) a between-group contrast targeting differences between PWS and controls (stuttering trait); and (2) a within-group contrast (PWS only) of stuttering with induced fluency (stuttering state). Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Efficient algorithms for accurate hierarchical clustering of huge datasets: tackling the entire protein space.

    Science.gov (United States)

    Loewenstein, Yaniv; Portugaly, Elon; Fromer, Menachem; Linial, Michal

    2008-07-01

    UPGMA (average linking) is probably the most popular algorithm for hierarchical data clustering, especially in computational biology. However, UPGMA requires the entire dissimilarity matrix in memory. Due to this prohibitive requirement, UPGMA is not scalable to very large datasets. We present a novel class of memory-constrained UPGMA (MC-UPGMA) algorithms. Given any practical memory size constraint, this framework guarantees the correct clustering solution without explicitly requiring all dissimilarities in memory. The algorithms are general and are applicable to any dataset. We present a data-dependent characterization of hardness and clustering efficiency. The presented concepts are applicable to any agglomerative clustering formulation. We apply our algorithm to the entire collection of protein sequences, to automatically build a comprehensive evolutionary-driven hierarchy of proteins from sequence alone. The newly created tree captures protein families better than state-of-the-art large-scale methods such as CluSTr, ProtoNet4 or single-linkage clustering. We demonstrate that leveraging the entire mass embodied in all sequence similarities allows to significantly improve on current protein family clusterings which are unable to directly tackle the sheer mass of this data. Furthermore, we argue that non-metric constraints are an inherent complexity of the sequence space and should not be overlooked. The robustness of UPGMA allows significant improvement, especially for multidomain proteins, and for large or divergent families. A comprehensive tree built from all UniProt sequence similarities, together with navigation and classification tools will be made available as part of the ProtoNet service. A C++ implementation of the algorithm is available on request.

  8. Using hierarchical clustering methods to classify motor activities of COPD patients from wearable sensor data

    Directory of Open Access Journals (Sweden)

    Reilly John J

    2005-06-01

    Full Text Available Abstract Background Advances in miniature sensor technology have led to the development of wearable systems that allow one to monitor motor activities in the field. A variety of classifiers have been proposed in the past, but little has been done toward developing systematic approaches to assess the feasibility of discriminating the motor tasks of interest and to guide the choice of the classifier architecture. Methods A technique is introduced to address this problem according to a hierarchical framework and its use is demonstrated for the application of detecting motor activities in patients with chronic obstructive pulmonary disease (COPD undergoing pulmonary rehabilitation. Accelerometers were used to collect data for 10 different classes of activity. Features were extracted to capture essential properties of the data set and reduce the dimensionality of the problem at hand. Cluster measures were utilized to find natural groupings in the data set and then construct a hierarchy of the relationships between clusters to guide the process of merging clusters that are too similar to distinguish reliably. It provides a means to assess whether the benefits of merging for performance of a classifier outweigh the loss of resolution incurred through merging. Results Analysis of the COPD data set demonstrated that motor tasks related to ambulation can be reliably discriminated from tasks performed in a seated position with the legs in motion or stationary using two features derived from one accelerometer. Classifying motor tasks within the category of activities related to ambulation requires more advanced techniques. While in certain cases all the tasks could be accurately classified, in others merging clusters associated with different motor tasks was necessary. When merging clusters, it was found that the proposed method could lead to more than 12% improvement in classifier accuracy while retaining resolution of 4 tasks. Conclusion Hierarchical

  9. DATA CLASSIFICATION WITH NEURAL CLASSIFIER USING RADIAL BASIS FUNCTION WITH DATA REDUCTION USING HIERARCHICAL CLUSTERING

    Directory of Open Access Journals (Sweden)

    M. Safish Mary

    2012-04-01

    Full Text Available Classification of large amount of data is a time consuming process but crucial for analysis and decision making. Radial Basis Function networks are widely used for classification and regression analysis. In this paper, we have studied the performance of RBF neural networks to classify the sales of cars based on the demand, using kernel density estimation algorithm which produces classification accuracy comparable to data classification accuracy provided by support vector machines. In this paper, we have proposed a new instance based data selection method where redundant instances are removed with help of a threshold thus improving the time complexity with improved classification accuracy. The instance based selection of the data set will help reduce the number of clusters formed thereby reduces the number of centers considered for building the RBF network. Further the efficiency of the training is improved by applying a hierarchical clustering technique to reduce the number of clusters formed at every step. The paper explains the algorithm used for classification and for conditioning the data. It also explains the complexities involved in classification of sales data for analysis and decision-making.

  10. Spectroscopic Analyses of Neutron Capture Elements in Open Clusters

    Science.gov (United States)

    O'Connell, Julia E.

    The evolution of elements as a function or age throughout the Milky Way disk provides strong constraints for galaxy evolution models, and on star formation epochs. In an effort to provide such constraints, we conducted an investigation into r- and s-process elemental abundances for a large sample of open clusters as part of an optical follow-up to the SDSS-III/APOGEE-1 near infrared survey. To obtain data for neutron capture abundance analysis, we conducted a long-term observing campaign spanning three years (2013-2016) using the McDonald Observatory Otto Struve 2.1-meter telescope and Sandiford Cass Echelle Spectrograph (SES, R(lambda/Deltalambda) ˜60,000). The SES provides a wavelength range of ˜1400 A, making it uniquely suited to investigate a number of other important chemical abundances as well as the neutron capture elements. For this study, we derive abundances for 18 elements covering four nucleosynthetic families- light, iron-peak, neutron capture and alpha-elements- for ˜30 open clusters within 6 kpc of the Sun with ages ranging from ˜80 Myr to ˜10 Gyr. Both equivalent width (EW) measurements and spectral synthesis methods were employed to derive abundances for all elements. Initial estimates for model stellar atmospheres- effective temperature and surface gravity- were provided by the APOGEE data set, and then re-derived for our optical spectra by removing abundance trends as a function of excitation potential and reduced width log(EW/lambda). With the exception of Ba II and Zr I, abundance analyses for all neutron capture elements were performed by generating synthetic spectra from the new stellar parameters. In order to remove molecular contamination, or blending from nearby atomic features, the synthetic spectra were modeled by a best-fit Gaussian to the observed data. Nd II shows a slight enhancement in all cluster stars, while other neutron capture elements follow solar abundance trends. Ba II shows a large cluster-to-cluster abundance spread

  11. Clustering, Hierarchical Organization, and the Topography of Abstract and Concrete Nouns

    Directory of Open Access Journals (Sweden)

    Joshua eTroche

    2014-04-01

    Full Text Available The empirical study of language has historically relied heavily upon concrete word stimuli. By definition, concrete words evoke salient perceptual associations that fit well within feature-based, sensorimotor models of word meaning. In contrast, many theorists argue that abstract words are disembodied in that their meaning is mediated through language. We investigated word meaning as distributed in multidimensional space using hierarchical cluster analysis. Participants (N=365 rated target words (n=400 English nouns across 12 cognitive dimensions (e.g., polarity, ease of teaching, emotional valence. Factor reduction revealed three latent factors, corresponding roughly to perceptual salience, affective association, and magnitude. We plotted the original 400 words for the three latent factors. Abstract and concrete words showed overlap in their topography but also differentiated themselves in semantic space. This topographic approach to word meaning offers a unique perspective to word concreteness.

  12. Clustering, hierarchical organization, and the topography of abstract and concrete nouns.

    Science.gov (United States)

    Troche, Joshua; Crutch, Sebastian; Reilly, Jamie

    2014-01-01

    The empirical study of language has historically relied heavily upon concrete word stimuli. By definition, concrete words evoke salient perceptual associations that fit well within feature-based, sensorimotor models of word meaning. In contrast, many theorists argue that abstract words are "disembodied" in that their meaning is mediated through language. We investigated word meaning as distributed in multidimensional space using hierarchical cluster analysis. Participants (N = 365) rated target words (n = 400 English nouns) across 12 cognitive dimensions (e.g., polarity, ease of teaching, emotional valence). Factor reduction revealed three latent factors, corresponding roughly to perceptual salience, affective association, and magnitude. We plotted the original 400 words for the three latent factors. Abstract and concrete words showed overlap in their topography but also differentiated themselves in semantic space. This topographic approach to word meaning offers a unique perspective to word concreteness.

  13. Hierarchical Controlled Remote State Preparation by Using a Four-Qubit Cluster State

    Science.gov (United States)

    Ma, Peng-Cheng; Chen, Gui-Bin; Li, Xiao-Wei; Zhan, You-Bang

    2018-06-01

    We propose a scheme for hierarchical controlled remote preparation of an arbitrary single-qubit state via a four-qubit cluster state as the quantum channel. In this scheme, a sender wishes to help three agents to remotely prepare a quantum state, respectively. The three agents are divided into two grades, that is, an agent is in the upper grade and other two agents are in the lower grade. In this process of remote state preparation, the agent of the upper grade only needs the assistance of any one of the other two agents for recovering the sender's original state, while an agent of the lower grade needs the collaboration of all the other two agents. In other words, the agents of two grades have different authorities to reconstruct sender's original state.

  14. Hierarchical Controlled Remote State Preparation by Using a Four-Qubit Cluster State

    Science.gov (United States)

    Ma, Peng-Cheng; Chen, Gui-Bin; Li, Xiao-Wei; Zhan, You-Bang

    2018-02-01

    We propose a scheme for hierarchical controlled remote preparation of an arbitrary single-qubit state via a four-qubit cluster state as the quantum channel. In this scheme, a sender wishes to help three agents to remotely prepare a quantum state, respectively. The three agents are divided into two grades, that is, an agent is in the upper grade and other two agents are in the lower grade. In this process of remote state preparation, the agent of the upper grade only needs the assistance of any one of the other two agents for recovering the sender's original state, while an agent of the lower grade needs the collaboration of all the other two agents. In other words, the agents of two grades have different authorities to reconstruct sender's original state.

  15. Biomolecule-Assisted Hydrothermal Synthesis and Self-Assembly of Bi2Te3 Nanostring-Cluster Hierarchical Structure

    DEFF Research Database (Denmark)

    Mi, Jianli; Lock, Nina; Sun, Ting

    2010-01-01

    A simple biomolecule-assisted hydrothermal approach has been developed for the fabrication of Bi2Te3 thermoelectric nanomaterials. The product has a nanostring-cluster hierarchical structure which is composed of ordered and aligned platelet-like crystals. The platelets are100 nm in diameter...

  16. An improved Pearson's correlation proximity-based hierarchical clustering for mining biological association between genes.

    Science.gov (United States)

    Booma, P M; Prabhakaran, S; Dhanalakshmi, R

    2014-01-01

    Microarray gene expression datasets has concerned great awareness among molecular biologist, statisticians, and computer scientists. Data mining that extracts the hidden and usual information from datasets fails to identify the most significant biological associations between genes. A search made with heuristic for standard biological process measures only the gene expression level, threshold, and response time. Heuristic search identifies and mines the best biological solution, but the association process was not efficiently addressed. To monitor higher rate of expression levels between genes, a hierarchical clustering model was proposed, where the biological association between genes is measured simultaneously using proximity measure of improved Pearson's correlation (PCPHC). Additionally, the Seed Augment algorithm adopts average linkage methods on rows and columns in order to expand a seed PCPHC model into a maximal global PCPHC (GL-PCPHC) model and to identify association between the clusters. Moreover, a GL-PCPHC applies pattern growing method to mine the PCPHC patterns. Compared to existing gene expression analysis, the PCPHC model achieves better performance. Experimental evaluations are conducted for GL-PCPHC model with standard benchmark gene expression datasets extracted from UCI repository and GenBank database in terms of execution time, size of pattern, significance level, biological association efficiency, and pattern quality.

  17. A study of hierarchical clustering of galaxies in an expanding universe

    Science.gov (United States)

    Porter, D. H.

    The nonlinear hierarchical clustering of galaxies in an Einstein-deSitter (Omega = 1), initially white noise mass fluctuations (n = 0) model universe is investigated and shown to be in contradiction with previous results. The model is done in terms of an 11,000-body numerical simulation. The independent statics of 0.72 million particles are used to simulte the boundary conditions. A new method for integrating the Newtonian N-body gravity equations, which has controllable accuracy, incorporates a recursive center of mass reduction, and regularizes two body encounters is used to do the simulation. The coordinate system used here is well suited for the investigation of galaxy clustering, incorporating the independent positions and velocities of an arbitrary number of particles into a logarithmic hierarchy of center of mass nodes. The boundary for the simulation is created by using this hierarchy to map the independent statics of 0.72 million particles into just 4,000 particles. This method for simulating the boundary conditions also has controllable accuracy.

  18. A data-driven approach to estimating the number of clusters in hierarchical clustering [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Antoine E. Zambelli

    2016-12-01

    Full Text Available DNA microarray and gene expression problems often require a researcher to perform clustering on their data in a bid to better understand its structure. In cases where the number of clusters is not known, one can resort to hierarchical clustering methods. However, there currently exist very few automated algorithms for determining the true number of clusters in the data. We propose two new methods (mode and maximum difference for estimating the number of clusters in a hierarchical clustering framework to create a fully automated process with no human intervention. These methods are compared to the established elbow and gap statistic algorithms using simulated datasets and the Biobase Gene ExpressionSet. We also explore a data mixing procedure inspired by cross validation techniques. We find that the overall performance of the maximum difference method is comparable or greater to that of the gap statistic in multi-cluster scenarios, and achieves that performance at a fraction of the computational cost. This method also responds well to our mixing procedure, which opens the door to future research. We conclude that both the mode and maximum difference methods warrant further study related to their mixing and cross-validation potential. We particularly recommend the use of the maximum difference method in multi-cluster scenarios given its accuracy and execution times, and present it as an alternative to existing algorithms.

  19. Symptom Clusters in People Living with HIV Attending Five Palliative Care Facilities in Two Sub-Saharan African Countries: A Hierarchical Cluster Analysis.

    Science.gov (United States)

    Moens, Katrien; Siegert, Richard J; Taylor, Steve; Namisango, Eve; Harding, Richard

    2015-01-01

    Symptom research across conditions has historically focused on single symptoms, and the burden of multiple symptoms and their interactions has been relatively neglected especially in people living with HIV. Symptom cluster studies are required to set priorities in treatment planning, and to lessen the total symptom burden. This study aimed to identify and compare symptom clusters among people living with HIV attending five palliative care facilities in two sub-Saharan African countries. Data from cross-sectional self-report of seven-day symptom prevalence on the 32-item Memorial Symptom Assessment Scale-Short Form were used. A hierarchical cluster analysis was conducted using Ward's method applying squared Euclidean Distance as the similarity measure to determine the clusters. Contingency tables, X2 tests and ANOVA were used to compare the clusters by patient specific characteristics and distress scores. Among the sample (N=217) the mean age was 36.5 (SD 9.0), 73.2% were female, and 49.1% were on antiretroviral therapy (ART). The cluster analysis produced five symptom clusters identified as: 1) dermatological; 2) generalised anxiety and elimination; 3) social and image; 4) persistently present; and 5) a gastrointestinal-related symptom cluster. The patients in the first three symptom clusters reported the highest physical and psychological distress scores. Patient characteristics varied significantly across the five clusters by functional status (worst functional physical status in cluster one, ppeople living with HIV with longitudinally collected symptom data to test cluster stability and identify common symptom trajectories is recommended.

  20. Multichannel biomedical time series clustering via hierarchical probabilistic latent semantic analysis.

    Science.gov (United States)

    Wang, Jin; Sun, Xiangping; Nahavandi, Saeid; Kouzani, Abbas; Wu, Yuchuan; She, Mary

    2014-11-01

    Biomedical time series clustering that automatically groups a collection of time series according to their internal similarity is of importance for medical record management and inspection such as bio-signals archiving and retrieval. In this paper, a novel framework that automatically groups a set of unlabelled multichannel biomedical time series according to their internal structural similarity is proposed. Specifically, we treat a multichannel biomedical time series as a document and extract local segments from the time series as words. We extend a topic model, i.e., the Hierarchical probabilistic Latent Semantic Analysis (H-pLSA), which was originally developed for visual motion analysis to cluster a set of unlabelled multichannel time series. The H-pLSA models each channel of the multichannel time series using a local pLSA in the first layer. The topics learned in the local pLSA are then fed to a global pLSA in the second layer to discover the categories of multichannel time series. Experiments on a dataset extracted from multichannel Electrocardiography (ECG) signals demonstrate that the proposed method performs better than previous state-of-the-art approaches and is relatively robust to the variations of parameters including length of local segments and dictionary size. Although the experimental evaluation used the multichannel ECG signals in a biometric scenario, the proposed algorithm is a universal framework for multichannel biomedical time series clustering according to their structural similarity, which has many applications in biomedical time series management. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Hierarchical clustering of breast cancer methylomes revealed differentially methylated and expressed breast cancer genes.

    Directory of Open Access Journals (Sweden)

    I-Hsuan Lin

    Full Text Available Oncogenic transformation of normal cells often involves epigenetic alterations, including histone modification and DNA methylation. We conducted whole-genome bisulfite sequencing to determine the DNA methylomes of normal breast, fibroadenoma, invasive ductal carcinomas and MCF7. The emergence, disappearance, expansion and contraction of kilobase-sized hypomethylated regions (HMRs and the hypomethylation of the megabase-sized partially methylated domains (PMDs are the major forms of methylation changes observed in breast tumor samples. Hierarchical clustering of HMR revealed tumor-specific hypermethylated clusters and differential methylated enhancers specific to normal or breast cancer cell lines. Joint analysis of gene expression and DNA methylation data of normal breast and breast cancer cells identified differentially methylated and expressed genes associated with breast and/or ovarian cancers in cancer-specific HMR clusters. Furthermore, aberrant patterns of X-chromosome inactivation (XCI was found in breast cancer cell lines as well as breast tumor samples in the TCGA BRCA (breast invasive carcinoma dataset. They were characterized with differentially hypermethylated XIST promoter, reduced expression of XIST, and over-expression of hypomethylated X-linked genes. High expressions of these genes were significantly associated with lower survival rates in breast cancer patients. Comprehensive analysis of the normal and breast tumor methylomes suggests selective targeting of DNA methylation changes during breast cancer progression. The weak causal relationship between DNA methylation and gene expression observed in this study is evident of more complex role of DNA methylation in the regulation of gene expression in human epigenetics that deserves further investigation.

  2. Hierarchical Cluster Analysis of Semicircular Canal and Otolith Deficits in Bilateral Vestibulopathy

    Directory of Open Access Journals (Sweden)

    Alexander A. Tarnutzer

    2018-04-01

    Full Text Available BackgroundGait imbalance and oscillopsia are frequent complaints of bilateral vestibular loss (BLV. Video-head-impulse testing (vHIT of all six semicircular canals (SCCs has demonstrated varying involvement of the different canals. Sparing of anterior-canal function has been linked to aminoglycoside-related vestibulopathy and Menière’s disease. We hypothesized that utricular and saccular impairment [assessed by vestibular-evoked myogenic potentials (VEMPs] may be disease-specific also, possibly facilitating the differential diagnosis.MethodsWe searched our vHIT database (n = 3,271 for patients with bilaterally impaired SCC function who also received ocular VEMPs (oVEMPs and cervical VEMPs (cVEMPs and identified 101 patients. oVEMP/cVEMP latencies above the 95th percentile and peak-to-peak amplitudes below the 5th percentile of normal were considered abnormal. Frequency of impairment of vestibular end organs (horizontal/anterior/posterior SCC, utriculus/sacculus was analyzed with hierarchical cluster analysis and correlated with the underlying etiology.ResultsRates of utricular and saccular loss of function were similar (87.1 vs. 78.2%, p = 0.136, Fisher’s exact test. oVEMP abnormalities were found more frequent in aminoglycoside-related bilateral vestibular loss (BVL compared with Menière’s disease (91.7 vs. 54.6%, p = 0.039. Hierarchical cluster analysis indicated distinct patterns of vestibular end-organ impairment, showing that the results for the same end-organs on both sides are more similar than to other end-organs. Relative sparing of anterior-canal function was reflected in late merging with the other end-organs, emphasizing their distinct state. An anatomically corresponding pattern of SCC/otolith hypofunction was present in 60.4% (oVEMPs vs. horizontal SCCs, 34.7% (oVEMPs vs. anterior SCCs, and 48.5% (cVEMPs vs. posterior SCCs of cases. Average (±1 SD number of damaged sensors was 6.8 ± 2.2 out of 10

  3. CHIMERA: Top-down model for hierarchical, overlapping and directed cluster structures in directed and weighted complex networks

    Science.gov (United States)

    Franke, R.

    2016-11-01

    In many networks discovered in biology, medicine, neuroscience and other disciplines special properties like a certain degree distribution and hierarchical cluster structure (also called communities) can be observed as general organizing principles. Detecting the cluster structure of an unknown network promises to identify functional subdivisions, hierarchy and interactions on a mesoscale. It is not trivial choosing an appropriate detection algorithm because there are multiple network, cluster and algorithmic properties to be considered. Edges can be weighted and/or directed, clusters overlap or build a hierarchy in several ways. Algorithms differ not only in runtime, memory requirements but also in allowed network and cluster properties. They are based on a specific definition of what a cluster is, too. On the one hand, a comprehensive network creation model is needed to build a large variety of benchmark networks with different reasonable structures to compare algorithms. On the other hand, if a cluster structure is already known, it is desirable to separate effects of this structure from other network properties. This can be done with null model networks that mimic an observed cluster structure to improve statistics on other network features. A third important application is the general study of properties in networks with different cluster structures, possibly evolving over time. Currently there are good benchmark and creation models available. But what is left is a precise sandbox model to build hierarchical, overlapping and directed clusters for undirected or directed, binary or weighted complex random networks on basis of a sophisticated blueprint. This gap shall be closed by the model CHIMERA (Cluster Hierarchy Interconnection Model for Evaluation, Research and Analysis) which will be introduced and described here for the first time.

  4. Using hierarchical clustering of secreted protein families to classify and rank candidate effectors of rust fungi.

    Directory of Open Access Journals (Sweden)

    Diane G O Saunders

    Full Text Available Rust fungi are obligate biotrophic pathogens that cause considerable damage on crop plants. Puccinia graminis f. sp. tritici, the causal agent of wheat stem rust, and Melampsora larici-populina, the poplar leaf rust pathogen, have strong deleterious impacts on wheat and poplar wood production, respectively. Filamentous pathogens such as rust fungi secrete molecules called disease effectors that act as modulators of host cell physiology and can suppress or trigger host immunity. Current knowledge on effectors from other filamentous plant pathogens can be exploited for the characterisation of effectors in the genome of recently sequenced rust fungi. We designed a comprehensive in silico analysis pipeline to identify the putative effector repertoire from the genome of two plant pathogenic rust fungi. The pipeline is based on the observation that known effector proteins from filamentous pathogens have at least one of the following properties: (i contain a secretion signal, (ii are encoded by in planta induced genes, (iii have similarity to haustorial proteins, (iv are small and cysteine rich, (v contain a known effector motif or a nuclear localization signal, (vi are encoded by genes with long intergenic regions, (vii contain internal repeats, and (viii do not contain PFAM domains, except those associated with pathogenicity. We used Markov clustering and hierarchical clustering to classify protein families of rust pathogens and rank them according to their likelihood of being effectors. Using this approach, we identified eight families of candidate effectors that we consider of high value for functional characterization. This study revealed a diverse set of candidate effectors, including families of haustorial expressed secreted proteins and small cysteine-rich proteins. This comprehensive classification of candidate effectors from these devastating rust pathogens is an initial step towards probing plant germplasm for novel resistance components.

  5. Application of hierarchical clustering method to classify of space-time rainfall patterns

    Science.gov (United States)

    Yu, Hwa-Lung; Chang, Tu-Je

    2010-05-01

    Understanding the local precipitation patterns is essential to the water resources management and flooding mitigation. The precipitation patterns can vary in space and time depending upon the factors from different spatial scales such as local topological changes and macroscopic atmospheric circulation. The spatiotemporal variation of precipitation in Taiwan is significant due to its complex terrain and its location at west pacific and subtropical area, where is the boundary between the pacific ocean and Asia continent with the complex interactions among the climatic processes. This study characterizes local-scale precipitation patterns by classifying the historical space-time precipitation records. We applied the hierarchical ascending clustering method to analyze the precipitation records from 1960 to 2008 at the six rainfall stations located in Lan-yang catchment at the northeast of the island. Our results identify the four primary space-time precipitation types which may result from distinct driving forces from the changes of atmospheric variables and topology at different space-time scales. This study also presents an important application of the statistical downscaling to combine large-scale upper-air circulation with local space-time precipitation patterns.

  6. Using Hierarchical Time Series Clustering Algorithm and Wavelet Classifier for Biometric Voice Classification

    Directory of Open Access Journals (Sweden)

    Simon Fong

    2012-01-01

    Full Text Available Voice biometrics has a long history in biosecurity applications such as verification and identification based on characteristics of the human voice. The other application called voice classification which has its important role in grouping unlabelled voice samples, however, has not been widely studied in research. Lately voice classification is found useful in phone monitoring, classifying speakers’ gender, ethnicity and emotion states, and so forth. In this paper, a collection of computational algorithms are proposed to support voice classification; the algorithms are a combination of hierarchical clustering, dynamic time wrap transform, discrete wavelet transform, and decision tree. The proposed algorithms are relatively more transparent and interpretable than the existing ones, though many techniques such as Artificial Neural Networks, Support Vector Machine, and Hidden Markov Model (which inherently function like a black box have been applied for voice verification and voice identification. Two datasets, one that is generated synthetically and the other one empirically collected from past voice recognition experiment, are used to verify and demonstrate the effectiveness of our proposed voice classification algorithm.

  7. MAP-Based Underdetermined Blind Source Separation of Convolutive Mixtures by Hierarchical Clustering and -Norm Minimization

    Directory of Open Access Journals (Sweden)

    Kellermann Walter

    2007-01-01

    Full Text Available We address the problem of underdetermined BSS. While most previous approaches are designed for instantaneous mixtures, we propose a time-frequency-domain algorithm for convolutive mixtures. We adopt a two-step method based on a general maximum a posteriori (MAP approach. In the first step, we estimate the mixing matrix based on hierarchical clustering, assuming that the source signals are sufficiently sparse. The algorithm works directly on the complex-valued data in the time-frequency domain and shows better convergence than algorithms based on self-organizing maps. The assumption of Laplacian priors for the source signals in the second step leads to an algorithm for estimating the source signals. It involves the -norm minimization of complex numbers because of the use of the time-frequency-domain approach. We compare a combinatorial approach initially designed for real numbers with a second-order cone programming (SOCP approach designed for complex numbers. We found that although the former approach is not theoretically justified for complex numbers, its results are comparable to, or even better than, the SOCP solution. The advantage is a lower computational cost for problems with low input/output dimensions.

  8. BULGELESS GIANT GALAXIES CHALLENGE OUR PICTURE OF GALAXY FORMATION BY HIERARCHICAL CLUSTERING ,

    International Nuclear Information System (INIS)

    Kormendy, John; Cornell, Mark E.; Drory, Niv; Bender, Ralf

    2010-01-01

    To better understand the prevalence of bulgeless galaxies in the nearby field, we dissect giant Sc-Scd galaxies with Hubble Space Telescope (HST) photometry and Hobby-Eberly Telescope (HET) spectroscopy. We use the HET High Resolution Spectrograph (resolution R ≡ λ/FWHM ≅ 15, 000) to measure stellar velocity dispersions in the nuclear star clusters and (pseudo)bulges of the pure-disk galaxies M 33, M 101, NGC 3338, NGC 3810, NGC 6503, and NGC 6946. The dispersions range from 20 ± 1 km s -1 in the nucleus of M 33 to 78 ± 2 km s -1 in the pseudobulge of NGC 3338. We use HST archive images to measure the brightness profiles of the nuclei and (pseudo)bulges in M 101, NGC 6503, and NGC 6946 and hence to estimate their masses. The results imply small mass-to-light ratios consistent with young stellar populations. These observations lead to two conclusions. (1) Upper limits on the masses of any supermassive black holes are M . ∼ 6 M sun in M 101 and M . ∼ 6 M sun in NGC 6503. (2) We show that the above galaxies contain only tiny pseudobulges that make up ∼ circ > 150 km s -1 , including M 101, NGC 6946, IC 342, and our Galaxy, show no evidence for a classical bulge. Four may contain small classical bulges that contribute 5%-12% of the light of the galaxy. Only four of the 19 giant galaxies are ellipticals or have classical bulges that contribute ∼1/3 of the galaxy light. We conclude that pure-disk galaxies are far from rare. It is hard to understand how bulgeless galaxies could form as the quiescent tail of a distribution of merger histories. Recognition of pseudobulges makes the biggest problem with cold dark matter galaxy formation more acute: How can hierarchical clustering make so many giant, pure-disk galaxies with no evidence for merger-built bulges? Finally, we emphasize that this problem is a strong function of environment: the Virgo cluster is not a puzzle, because more than 2/3 of its stellar mass is in merger remnants.

  9. Characterizing the course of back pain after osteoporotic vertebral fracture: a hierarchical cluster analysis of a prospective cohort study.

    Science.gov (United States)

    Toyoda, Hiromitsu; Takahashi, Shinji; Hoshino, Masatoshi; Takayama, Kazushi; Iseki, Kazumichi; Sasaoka, Ryuichi; Tsujio, Tadao; Yasuda, Hiroyuki; Sasaki, Takeharu; Kanematsu, Fumiaki; Kono, Hiroshi; Nakamura, Hiroaki

    2017-09-23

    This study demonstrated four distinct patterns in the course of back pain after osteoporotic vertebral fracture (OVF). Greater angular instability in the first 6 months after the baseline was one factor affecting back pain after OVF. Understanding the natural course of symptomatic acute OVF is important in deciding the optimal treatment strategy. We used latent class analysis to classify the course of back pain after OVF and identify the risk factors associated with persistent pain. This multicenter cohort study included 218 consecutive patients with ≤ 2-week-old OVFs who were enrolled at 11 institutions. Dynamic x-rays and back pain assessment with a visual analog scale (VAS) were obtained at enrollment and at 1-, 3-, and 6-month follow-ups. The VAS scores were used to characterize patient groups, using hierarchical cluster analysis. VAS for 128 patients was used for hierarchical cluster analysis. Analysis yielded four clusters representing different patterns of back pain progression. Cluster 1 patients (50.8%) had stable, mild pain. Cluster 2 patients (21.1%) started with moderate pain and progressed quickly to very low pain. Patients in cluster 3 (10.9%) had moderate pain that initially improved but worsened after 3 months. Cluster 4 patients (17.2%) had persistent severe pain. Patients in cluster 4 showed significant high baseline pain intensity, higher degree of angular instability, and higher number of previous OVFs, and tended to lack regular exercise. In contrast, patients in cluster 2 had significantly lower baseline VAS and less angular instability. We identified four distinct groups of OVF patients with different patterns of back pain progression. Understanding the course of back pain after OVF may help in its management and contribute to future treatment trials.

  10. Clustering and Bayesian hierarchical modeling for the definition of informative prior distributions in hydrogeology

    Science.gov (United States)

    Cucchi, K.; Kawa, N.; Hesse, F.; Rubin, Y.

    2017-12-01

    In order to reduce uncertainty in the prediction of subsurface flow and transport processes, practitioners should use all data available. However, classic inverse modeling frameworks typically only make use of information contained in in-situ field measurements to provide estimates of hydrogeological parameters. Such hydrogeological information about an aquifer is difficult and costly to acquire. In this data-scarce context, the transfer of ex-situ information coming from previously investigated sites can be critical for improving predictions by better constraining the estimation procedure. Bayesian inverse modeling provides a coherent framework to represent such ex-situ information by virtue of the prior distribution and combine them with in-situ information from the target site. In this study, we present an innovative data-driven approach for defining such informative priors for hydrogeological parameters at the target site. Our approach consists in two steps, both relying on statistical and machine learning methods. The first step is data selection; it consists in selecting sites similar to the target site. We use clustering methods for selecting similar sites based on observable hydrogeological features. The second step is data assimilation; it consists in assimilating data from the selected similar sites into the informative prior. We use a Bayesian hierarchical model to account for inter-site variability and to allow for the assimilation of multiple types of site-specific data. We present the application and validation of the presented methods on an established database of hydrogeological parameters. Data and methods are implemented in the form of an open-source R-package and therefore facilitate easy use by other practitioners.

  11. A Resting-State Brain Functional Network Study in MDD Based on Minimum Spanning Tree Analysis and the Hierarchical Clustering

    Directory of Open Access Journals (Sweden)

    Xiaowei Li

    2017-01-01

    Full Text Available A large number of studies demonstrated that major depressive disorder (MDD is characterized by the alterations in brain functional connections which is also identifiable during the brain’s “resting-state.” But, in the present study, the approach of constructing functional connectivity is often biased by the choice of the threshold. Besides, more attention was paid to the number and length of links in brain networks, and the clustering partitioning of nodes was unclear. Therefore, minimum spanning tree (MST analysis and the hierarchical clustering were first used for the depression disease in this study. Resting-state electroencephalogram (EEG sources were assessed from 15 healthy and 23 major depressive subjects. Then the coherence, MST, and the hierarchical clustering were obtained. In the theta band, coherence analysis showed that the EEG coherence of the MDD patients was significantly higher than that of the healthy controls especially in the left temporal region. The MST results indicated the higher leaf fraction in the depressed group. Compared with the normal group, the major depressive patients lost clustering in frontal regions. Our findings suggested that there was a stronger brain interaction in the MDD group and a left-right functional imbalance in the frontal regions for MDD controls.

  12. The ergot alkaloid gene cluster: Functional analyses and evolutionary aspects

    Czech Academy of Sciences Publication Activity Database

    Lorenz, N.; Haarmann, T.; Pažoutová, Sylvie; Jung, M.; Tudzynski, P.

    2009-01-01

    Roč. 70, 15-16 (2009), s. 1822-1832 ISSN 0031-9422 Institutional research plan: CEZ:AV0Z50200510 Keywords : Claviceps purpurea * Ergot fungus * Ergot alkaloid gene cluster Subject RIV: EE - Microbiology, Virology Impact factor: 3.104, year: 2009

  13. An Algorithm for Inspecting Self Check-in Airline Luggage Based on Hierarchical Clustering and Cube-fitting

    Directory of Open Access Journals (Sweden)

    Gao Qingji

    2014-04-01

    Full Text Available Airport passengers are required to put only one baggage each time in the check-in self-service so that the baggage can be detected and identified successfully. In order to automatically get the number of baggage that had been put on the conveyor belt, dual laser rangefinders are used to scan the outer contour of luggage in this paper. The algorithm based on hierarchical clustering and cube-fitting is proposed to inspect the number and dimension of airline luggage. Firstly, the point cloud is projected to vertical direction. By the analysis of one-dimensional clustering, the number and height of luggage will be quickly computed. Secondly, the method of nearest hierarchical clustering is applied to divide the point cloud if the above cannot be distinguished. It can preferably solve the difficult issue like crossing or overlapping pieces of baggage. Finally, the point cloud is projected to the horizontal plane. By rotating point cloud based on the centre, its minimum bounding rectangle (MBR is obtained. The length and width of luggage are got form MBR. Many experiments in different cases have been done to verify the effectiveness of the algorithm.

  14. K-means clustering for optimal partitioning and dynamic load balancing of parallel hierarchical N-body simulations

    International Nuclear Information System (INIS)

    Marzouk, Youssef M.; Ghoniem, Ahmed F.

    2005-01-01

    A number of complex physical problems can be approached through N-body simulation, from fluid flow at high Reynolds number to gravitational astrophysics and molecular dynamics. In all these applications, direct summation is prohibitively expensive for large N and thus hierarchical methods are employed for fast summation. This work introduces new algorithms, based on k-means clustering, for partitioning parallel hierarchical N-body interactions. We demonstrate that the number of particle-cluster interactions and the order at which they are performed are directly affected by partition geometry. Weighted k-means partitions minimize the sum of clusters' second moments and create well-localized domains, and thus reduce the computational cost of N-body approximations by enabling the use of lower-order approximations and fewer cells. We also introduce compatible techniques for dynamic load balancing, including adaptive scaling of cluster volumes and adaptive redistribution of cluster centroids. We demonstrate the performance of these algorithms by constructing a parallel treecode for vortex particle simulations, based on the serial variable-order Cartesian code developed by Lindsay and Krasny [Journal of Computational Physics 172 (2) (2001) 879-907]. The method is applied to vortex simulations of a transverse jet. Results show outstanding parallel efficiencies even at high concurrencies, with velocity evaluation errors maintained at or below their serial values; on a realistic distribution of 1.2 million vortex particles, we observe a parallel efficiency of 98% on 1024 processors. Excellent load balance is achieved even in the face of several obstacles, such as an irregular, time-evolving particle distribution containing a range of length scales and the continual introduction of new vortex particles throughout the domain. Moreover, results suggest that k-means yields a more efficient partition of the domain than a global oct-tree

  15. Manual hierarchical clustering of regional geochemical data using a Bayesian finite mixture model

    International Nuclear Information System (INIS)

    Ellefsen, Karl J.; Smith, David B.

    2016-01-01

    Interpretation of regional scale, multivariate geochemical data is aided by a statistical technique called “clustering.” We investigate a particular clustering procedure by applying it to geochemical data collected in the State of Colorado, United States of America. The clustering procedure partitions the field samples for the entire survey area into two clusters. The field samples in each cluster are partitioned again to create two subclusters, and so on. This manual procedure generates a hierarchy of clusters, and the different levels of the hierarchy show geochemical and geological processes occurring at different spatial scales. Although there are many different clustering methods, we use Bayesian finite mixture modeling with two probability distributions, which yields two clusters. The model parameters are estimated with Hamiltonian Monte Carlo sampling of the posterior probability density function, which usually has multiple modes. Each mode has its own set of model parameters; each set is checked to ensure that it is consistent both with the data and with independent geologic knowledge. The set of model parameters that is most consistent with the independent geologic knowledge is selected for detailed interpretation and partitioning of the field samples. - Highlights: • We evaluate a clustering procedure by applying it to geochemical data. • The procedure generates a hierarchy of clusters. • Different levels of the hierarchy show geochemical processes at different spatial scales. • The clustering method is Bayesian finite mixture modeling. • Model parameters are estimated with Hamiltonian Monte Carlo sampling.

  16. SDN‐Based Hierarchical Agglomerative Clustering Algorithm for Interference Mitigation in Ultra‐Dense Small Cell Networks

    Directory of Open Access Journals (Sweden)

    Guang Yang

    2018-04-01

    Full Text Available Ultra‐dense small cell networks (UD‐SCNs have been identified as a promising scheme for next‐generation wireless networks capable of meeting the ever‐increasing demand for higher transmission rates and better quality of service. However, UD‐SCNs will inevitably suffer from severe interference among the small cell base stations, which will lower their spectral efficiency. In this paper, we propose a software‐defined networking (SDN‐based hierarchical agglomerative clustering (SDN‐HAC framework, which leverages SDN to centrally control all sub‐channels in the network, and decides on cluster merging using a similarity criterion based on a suitability function. We evaluate the proposed algorithm through simulation. The obtained results show that the proposed algorithm performs well and improves system payoff by 18.19% and 436.34% when compared with the traditional network architecture algorithms and non‐cooperative scenarios, respectively.

  17. Investigating the effects of climate variations on bacillary dysentery incidence in northeast China using ridge regression and hierarchical cluster analysis

    Directory of Open Access Journals (Sweden)

    Guo Junqiao

    2008-09-01

    Full Text Available Abstract Background The effects of climate variations on bacillary dysentery incidence have gained more recent concern. However, the multi-collinearity among meteorological factors affects the accuracy of correlation with bacillary dysentery incidence. Methods As a remedy, a modified method to combine ridge regression and hierarchical cluster analysis was proposed for investigating the effects of climate variations on bacillary dysentery incidence in northeast China. Results All weather indicators, temperatures, precipitation, evaporation and relative humidity have shown positive correlation with the monthly incidence of bacillary dysentery, while air pressure had a negative correlation with the incidence. Ridge regression and hierarchical cluster analysis showed that during 1987–1996, relative humidity, temperatures and air pressure affected the transmission of the bacillary dysentery. During this period, all meteorological factors were divided into three categories. Relative humidity and precipitation belonged to one class, temperature indexes and evaporation belonged to another class, and air pressure was the third class. Conclusion Meteorological factors have affected the transmission of bacillary dysentery in northeast China. Bacillary dysentery prevention and control would benefit from by giving more consideration to local climate variations.

  18. Implementation of hierarchical clustering using k-mer sparse matrix to analyze MERS-CoV genetic relationship

    Science.gov (United States)

    Bustamam, A.; Ulul, E. D.; Hura, H. F. A.; Siswantining, T.

    2017-07-01

    Hierarchical clustering is one of effective methods in creating a phylogenetic tree based on the distance matrix between DNA (deoxyribonucleic acid) sequences. One of the well-known methods to calculate the distance matrix is k-mer method. Generally, k-mer is more efficient than some distance matrix calculation techniques. The steps of k-mer method are started from creating k-mer sparse matrix, and followed by creating k-mer singular value vectors. The last step is computing the distance amongst vectors. In this paper, we analyze the sequences of MERS-CoV (Middle East Respiratory Syndrome - Coronavirus) DNA by implementing hierarchical clustering using k-mer sparse matrix in order to perform the phylogenetic analysis. Our results show that the ancestor of our MERS-CoV is coming from Egypt. Moreover, we found that the MERS-CoV infection that occurs in one country may not necessarily come from the same country of origin. This suggests that the process of MERS-CoV mutation might not only be influenced by geographical factor.

  19. A Negative Selection Algorithm Based on Hierarchical Clustering of Self Set and its Application in Anomaly Detection

    Directory of Open Access Journals (Sweden)

    Wen Chen

    2011-08-01

    Full Text Available A negative selection algorithm based on the hierarchical clustering of self set HC-RNSA is introduced in this paper. Several strategies are applied to improve the algorithm performance. First, the self data set is replaced by the self cluster centers to compare with the detector candidates in each cluster level. As the number of self clusters is much less than the self set size, the detector generation efficiency is improved. Second, during the detector generation process, the detector candidates are restricted to the lower coverage space to reduce detector redundancy. In the article, the problem that the distances between antigens coverage to a constant value in the high dimensional space is analyzed, accordingly the Principle Component Analysis (PCA method is used to reduce the data dimension, and the fractional distance function is employed to enhance the distinctiveness between the self and non-self antigens. The detector generation procedure is terminated when the expected non-self coverage is reached. The theory analysis and experimental results demonstrate that the detection rate of HC-RNSA is higher than that of the traditional negative selection algorithms while the false alarm rate and time cost are reduced.

  20. The Chinese Family Assessment Instrument (C-FAI): Hierarchical Confirmatory Factor Analyses and Factorial Invariance

    Science.gov (United States)

    Shek, Daniel T. L.; Ma, Cecilia M. S.

    2010-01-01

    Objective: This paper examines the dimensionality and factorial invariance of the Chinese Family Assessment Instrument (C-FAI) using multigroup confirmatory factor analyses (MCFAs). Method: A total of 3,649 students responded to the C-FAI in a community survey. Results: Results showed that there are five dimensions of the C-FAI (communication,…

  1. Genome-wide decoding of hierarchical modular structure of transcriptional regulation by cis-element and expression clustering.

    Science.gov (United States)

    Leyfer, Dmitriy; Weng, Zhiping

    2005-09-01

    A holistic approach to the study of cellular processes is identifying both gene-expression changes and regulatory elements promoting such changes. Cellular regulatory processes can be viewed as transcriptional modules (TMs), groups of coexpressed genes regulated by groups of transcription factors (TFs). We set out to devise a method that would identify TMs while avoiding arbitrary thresholds on TM sizes and number. Assuming that gene expression is determined by TFs that bind to the gene's promoter, clustering of genes based on TF binding sites (cis-elements) should create gene groups similar to those obtained by gene expression clustering. Intersections between the expression and cis-element-based gene clusters reveal TMs. Statistical significance assigned to each TM allows identification of regulatory units of any size. Our method correctly identifies the number and sizes of TMs on simulated datasets. We demonstrate that yeast experimental TMs are biologically relevant by comparing them with MIPS and GO categories. Our modules are in statistically significant agreement with TMs from other research groups. This work suggests that there is no preferential division of biological processes into regulatory units; each degree of partitioning exhibits a slice of biological network revealing hierarchical modular organization of transcriptional regulation.

  2. NOVEL CONTEXT-AWARE CLUSTERING WITH HIERARCHICAL ADDRESSING (CCHA) FOR THE INTERNET OF THINGS (IoT)

    DEFF Research Database (Denmark)

    Mahalle, Parikshit N.; Prasad, Neeli R.; Prasad, Ramjee

    2013-01-01

    As computing technology becomes more tightly coupled into dynamic and mobile world of the Internet of Things (IoT), security mechanism becomes more stringent, less flexible and intrusive. Scalability issue in the IoT makes Identity Management (IdM) of ubiquitous things more challenging. Forming ad......-hoc network, interaction between these nomadic devices to provide seamless service extend the need of new identi-ties to the things, addressing and IdM in the IoT. New identities and identifier format to alleviate the perfor-mance issue is introduced in this paper. This paper pre-sents novel Context......-aware Clustering with Hierarchical Addressing (CCHA) scheme for the things with new identifier format. Simulation results shows that CCHA achieves better performance with less energy expendi-ture, less end-to-end delay and more throughput. Results also show that CCHA significantly reduces the failure probability...

  3. Enhancement of Adaptive Cluster Hierarchical Routing Protocol using Distance and Energy for Wireless Sensor Networks

    International Nuclear Information System (INIS)

    Nawar, N.M.; Soliman, S.E.; Kelash, H.M.; Ayad, N.M.

    2014-01-01

    The application of wireless networking is widely used in nuclear applications. This includes reactor control and fire dedication system. This paper is devoted to the application of this concept in the intrusion system of the Radioisotope Production Facility (RPF) of the Egyptian Atomic Energy Authority. This includes the tracking, monitoring and control components of this system. The design and implementation of wireless sensor networks has become a hot area of research due to the extensive use of sensor networks to enable applications that connect the physical world to the virtual world [1-2]. The original LEACH is named a communication protocol (clustering-based); the extended LEACH’s stochastic cluster head selection algorithm by a deterministic component. Depending on the network configuration an increase of network lifetime can be accomplished [3]. The proposed routing mechanisms after enhancement divide the nodes into clusters. A cluster head performs its task which is considerably more energy-intensive than the rest of the nodes inside sensor network. So, nodes rotate tasks at different rounds between a cluster head and other sensors throughout the lifetime of the network to balance the energy dissipation [4-5].The performance improvement when using routing protocol after enhancement of the algorithm which takes into consideration the distance and the remaining energy for choosing the cluster head by obtains from the advertise message. Network Simulator (Ns2 simulator) is used to prove that LEACH after enhancement performs better than the original LEACH protocol in terms of Average Energy, Network Life Time, Delay, Throughput and Overhead.

  4. Kendall’s tau and agglomerative clustering for structure determination of hierarchical Archimedean copulas

    Czech Academy of Sciences Publication Activity Database

    Górecki, J.; Hofert, M.; Holeňa, Martin

    2017-01-01

    Roč. 5, č. 1 (2017), s. 75-87 ISSN 2300-2298 R&D Projects: GA ČR GA17-01251S Institutional support: RVO:67985807 Keywords : structure determination * agglomerative clustering * Kendall’s tau * Archimedean copula Subject RIV: IN - Informatics, Computer Science OBOR OECD: Statistics and probability

  5. Hierarchical and Complex System Entropy Clustering Analysis Based Validation for Traditional Chinese Medicine Syndrome Patterns of Chronic Atrophic Gastritis.

    Science.gov (United States)

    Zhang, Yin; Liu, Yue; Li, Yannan; Zhao, Xia; Zhuo, Lin; Zhou, Ajian; Zhang, Li; Su, Zeqi; Chen, Cen; Du, Shiyu; Liu, Daming; Ding, Xia

    2018-03-22

    Chronic atrophic gastritis (CAG) is the precancerous stage of gastric carcinoma. Traditional Chinese Medicine (TCM) has been widely used in treating CAG. This study aimed to reveal core pathogenesis of CAG by validating the TCM syndrome patterns and provide evidence for optimization of treatment strategies. This is a cross-sectional study conducted in 4 hospitals in China. Hierarchical clustering analysis (HCA) and complex system entropy clustering analysis (CSECA) were performed, respectively, to achieve syndrome pattern validation. Based on HCA, 15 common factors were assigned to 6 syndrome patterns: liver depression and spleen deficiency and blood stasis in the stomach collateral, internal harassment of phlegm-heat and blood stasis in the stomach collateral, phlegm-turbidity internal obstruction, spleen yang deficiency, internal harassment of phlegm-heat and spleen deficiency, and spleen qi deficiency. By CSECA, 22 common factors were assigned to 7 syndrome patterns: qi deficiency, qi stagnation, blood stasis, phlegm turbidity, heat, yang deficiency, and yin deficiency. Combination of qi deficiency, qi stagnation, blood stasis, phlegm turbidity, heat, yang deficiency, and yin deficiency may play a crucial role in CAG pathogenesis. In accord with this, treatment strategies by TCM herbal prescriptions should be targeted to regulating qi, activating blood, resolving turbidity, clearing heat, removing toxin, nourishing yin, and warming yang. Further explorations are needed to verify and expand the current conclusions.

  6. Efficient visible light photocatalytic NO{sub x} removal with cationic Ag clusters-grafted (BiO){sub 2}CO{sub 3} hierarchical superstructures

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xin [Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environment and Resources, Engineering Research Center for Waste Oil Recovery Technology and Equipment of Ministry of Education, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 40067 (China); Zhang, Wendong [Department of Scientific Research Management, Chongqing Normal University, Chongqing 401331 (China); Deng, Hua [State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Ni, Zilin [Department of Scientific Research Management, Chongqing Normal University, Chongqing 401331 (China); Dong, Fan, E-mail: dfctbu@126.com [Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environment and Resources, Engineering Research Center for Waste Oil Recovery Technology and Equipment of Ministry of Education, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 40067 (China); Zhang, Yuxin, E-mail: zhangyuxin@cqu.edu.cn [College of Materials Science and Engineering, National Key Laboratory of Fundamental Science of Micro/Nano-Devices and System Technology, Chongqing University, Chongqing 400044 (China)

    2017-01-15

    Graphical abstract: The cationic Ag clusters-grafted (BiO){sub 2}CO{sub 3} hierarchical superstructures exhibits highly enhanced visible light photocatalytic air purification through an interfacial charge transfer process induced by Ag clusters. - Highlights: • Microstructural optimization and surface cluster-grafting were firstly combined. • Cationic Ag clusters were grafted on the surface of (BiO){sub 2}CO{sub 3} superstructures. • The Ag clusters-grafted BHS displayed enhanced visible light photocatalysis. • Direct interfacial charge transfer (IFCT) from BHS to Ag clusters was proposed. • The charge transfer process and the dominant reactive species were revealed. - Abstract: A facile method was developed to graft cationic Ag clusters on (BiO){sub 2}CO{sub 3} hierarchical superstructures (BHS) surface to improve their visible light activity. Significantly, the resultant Ag clusters-grafted BHS displayed a highly enhanced visible light photocatalytic performance for NOx removal due to the direct interfacial charge transfer (IFCT) from BHS to Ag clusters. The chemical and coordination state of the cationic Ag clusters was determined with the extended X-ray absorption fine structure (EXAFS) and a theoretical structure model was proposed for this unique Ag clusters. The charge transfer process and the dominant reactive species (·OH) were revealed on the basis of electron spin resonance (ESR) trapping. A new photocatalysis mechanism of Ag clusters-grafted BHS under visible light involving IFCT process was uncovered. In addition, the cationic Ag clusters-grafted BHS also demonstrated high photochemical and structural stability under repeated photocatalysis runs. The perspective of enhancing photocatalysis through combination of microstructural optimization and IFCT could provide a new avenue for the developing efficient visible light photocatalysts.

  7. The association between content of the elements S, Cl, K, Fe, Cu, Zn and Br in normal and cirrhotic liver tissue from Danes and Greenlandic Inuit examined by dual hierarchical clustering analysis.

    Science.gov (United States)

    Laursen, Jens; Milman, Nils; Pind, Niels; Pedersen, Henrik; Mulvad, Gert

    2014-01-01

    Meta-analysis of previous studies evaluating associations between content of elements sulphur (S), chlorine (Cl), potassium (K), iron (Fe), copper (Cu), zinc (Zn) and bromine (Br) in normal and cirrhotic autopsy liver tissue samples. Normal liver samples from 45 Greenlandic Inuit, median age 60 years and from 71 Danes, median age 61 years. Cirrhotic liver samples from 27 Danes, median age 71 years. Element content was measured using X-ray fluorescence spectrometry. Dual hierarchical clustering analysis, creating a dual dendrogram, one clustering element contents according to calculated similarities, one clustering elements according to correlation coefficients between the element contents, both using Euclidian distance and Ward Procedure. One dendrogram separated subjects in 7 clusters showing no differences in ethnicity, gender or age. The analysis discriminated between elements in normal and cirrhotic livers. The other dendrogram clustered elements in four clusters: sulphur and chlorine; copper and bromine; potassium and zinc; iron. There were significant correlations between the elements in normal liver samples: S was associated with Cl, K, Br and Zn; Cl with S and Br; K with S, Br and Zn; Cu with Br. Zn with S and K. Br with S, Cl, K and Cu. Fe did not show significant associations with any other element. In contrast to simple statistical methods, which analyses content of elements separately one by one, dual hierarchical clustering analysis incorporates all elements at the same time and can be used to examine the linkage and interplay between multiple elements in tissue samples. Copyright © 2013 Elsevier GmbH. All rights reserved.

  8. Hierarchical modularization of biochemical pathways using fuzzy-c means clustering.

    Science.gov (United States)

    de Luis Balaguer, Maria A; Williams, Cranos M

    2014-08-01

    Biological systems that are representative of regulatory, metabolic, or signaling pathways can be highly complex. Mathematical models that describe such systems inherit this complexity. As a result, these models can often fail to provide a path toward the intuitive comprehension of these systems. More coarse information that allows a perceptive insight of the system is sometimes needed in combination with the model to understand control hierarchies or lower level functional relationships. In this paper, we present a method to identify relationships between components of dynamic models of biochemical pathways that reside in different functional groups. We find primary relationships and secondary relationships. The secondary relationships reveal connections that are present in the system, which current techniques that only identify primary relationships are unable to show. We also identify how relationships between components dynamically change over time. This results in a method that provides the hierarchy of the relationships among components, which can help us to understand the low level functional structure of the system and to elucidate potential hierarchical control. As a proof of concept, we apply the algorithm to the epidermal growth factor signal transduction pathway, and to the C3 photosynthesis pathway. We identify primary relationships among components that are in agreement with previous computational decomposition studies, and identify secondary relationships that uncover connections among components that current computational approaches were unable to reveal.

  9. Self-similar hierarchical energetics in the ICM of massive galaxy clusters

    Science.gov (United States)

    Miniati, Francesco; Beresnyak, Andrey

    Massive galaxy clusters (GC) are filled with a hot, turbulent and magnetised intra-cluster medium (ICM). They are still forming under the action of gravitational instability, which drives supersonic mass accretion flows. These partially dissipate into heat through a complex network of large scale shocks, and partly excite giant turbulent eddies and cascade. Turbulence dissipation not only contributes to heating of the ICM but also amplifies magnetic energy by way of dynamo action. The pattern of gravitational energy turning into kinetic, thermal, turbulent and magnetic is a fundamental feature of GC hydrodynamics but quantitative modelling has remained a challenge. In this contribution we present results from a recent high resolution, fully cosmological numerical simulation of a massive Coma-like galaxy cluster in which the time dependent turbulent motions of the ICM are resolved (Miniati 2014) and their statistical properties are quantified for the first time (Miniati 2015, Beresnyak & Miniati 2015). We combine these results with independent state-of-the art numerical simulations of MHD turbulence (Beresnyak 2012), which shows that in the nonlinear regime of turbulent dynamo (for magnetic Prandtl numbers>~ 1) the growth rate of the magnetic energy corresponds to a fraction CE ~= 4 - 5 × 10-2 of the turbulent dissipation rate. We thus determine without adjustable parameters the thermal, turbulent and magnetic history of giant GC (Miniati & Beresnyak 2015). We find that the energy components of the ICM are ordered according to a permanent hierarchy, in which the sonic Mach number at the turbulent injection scale is of order unity, the beta of the plasma of order forty and the ratio of turbulent injection scale to Alfvén scale is of order one hundred. These dimensionless numbers remain virtually unaltered throughout the cluster's history, despite evolution of each individual component and the drive towards equipartition of the turbulent dynamo, thus revealing a new

  10. 3D Nearest Neighbour Search Using a Clustered Hierarchical Tree Structure

    DEFF Research Database (Denmark)

    Suhaibah, A.; Uznir, U.; Antón Castro, Francesc/François

    2016-01-01

    Locating and analysing the location of new stores or outlets is one of the common issues facing retailers and franchisers. This is due to assure that new opening stores are at their strategic location to attract the highest possible number of customers. Spatial information is used to manage......, maintain and analyse these store locations. However, since the business of franchising and chain stores in urban areas runs within high rise multi-level buildings, a three-dimensional (3D) method is prominently required in order to locate and identify the surrounding information such as at which level...... of the franchise unit will be located or is the franchise unit located is at the best level for visibility purposes. One of the common used analyses used for retrieving the surrounding information is Nearest Neighbour (NN) analysis. It uses a point location and identifies the surrounding neighbours. However...

  11. Validity studies among hierarchical methods of cluster analysis using cophenetic correlation coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Priscilla R.; Munita, Casimiro S.; Lapolli, André L., E-mail: prii.ramos@gmail.com, E-mail: camunita@ipen.br, E-mail: alapolli@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    The literature presents many methods for partitioning of data base, and is difficult choose which is the most suitable, since the various combinations of methods based on different measures of dissimilarity can lead to different patterns of grouping and false interpretations. Nevertheless, little effort has been expended in evaluating these methods empirically using an archaeological data base. In this way, the objective of this work is make a comparative study of the different cluster analysis methods and identify which is the most appropriate. For this, the study was carried out using a data base of the Archaeometric Studies Group from IPEN-CNEN/SP, in which 45 samples of ceramic fragments from three archaeological sites were analyzed by instrumental neutron activation analysis (INAA) which were determinate the mass fraction of 13 elements (As, Ce, Cr, Eu, Fe, Hf, La, Na, Nd, Sc, Sm, Th, U). The methods used for this study were: single linkage, complete linkage, average linkage, centroid and Ward. The validation was done using the cophenetic correlation coefficient and comparing these values the average linkage method obtained better results. A script of the statistical program R with some functions was created to obtain the cophenetic correlation. By means of these values was possible to choose the most appropriate method to be used in the data base. (author)

  12. Validity studies among hierarchical methods of cluster analysis using cophenetic correlation coefficient

    International Nuclear Information System (INIS)

    Carvalho, Priscilla R.; Munita, Casimiro S.; Lapolli, André L.

    2017-01-01

    The literature presents many methods for partitioning of data base, and is difficult choose which is the most suitable, since the various combinations of methods based on different measures of dissimilarity can lead to different patterns of grouping and false interpretations. Nevertheless, little effort has been expended in evaluating these methods empirically using an archaeological data base. In this way, the objective of this work is make a comparative study of the different cluster analysis methods and identify which is the most appropriate. For this, the study was carried out using a data base of the Archaeometric Studies Group from IPEN-CNEN/SP, in which 45 samples of ceramic fragments from three archaeological sites were analyzed by instrumental neutron activation analysis (INAA) which were determinate the mass fraction of 13 elements (As, Ce, Cr, Eu, Fe, Hf, La, Na, Nd, Sc, Sm, Th, U). The methods used for this study were: single linkage, complete linkage, average linkage, centroid and Ward. The validation was done using the cophenetic correlation coefficient and comparing these values the average linkage method obtained better results. A script of the statistical program R with some functions was created to obtain the cophenetic correlation. By means of these values was possible to choose the most appropriate method to be used in the data base. (author)

  13. HIERARCHICAL FRAGMENTATION AND JET-LIKE OUTFLOWS IN IRDC G28.34+0.06: A GROWING MASSIVE PROTOSTAR CLUSTER

    International Nuclear Information System (INIS)

    Wang Ke; Wu Yuefang; Zhang Huawei; Zhang Qizhou

    2011-01-01

    We present Submillimeter Array (SMA) λ = 0.88 mm observations of an infrared dark cloud G28.34+0.06. Located in the quiescent southern part of the G28.34 cloud, the region of interest is a massive (>10 3 M sun ) molecular clump P1 with a luminosity of ∼10 3 L sun , where our previous SMA observations at 1.3 mm have revealed a string of five dust cores of 22-64 M sun along the 1 pc IR-dark filament. The cores are well aligned at a position angle (P.A.) of 48 deg. and regularly spaced at an average projected separation of 0.16 pc. The new high-resolution, high-sensitivity 0.88 mm image further resolves the five cores into 10 compact condensations of 1.4-10.6 M sun , with sizes of a few thousand AU. The spatial structure at clump (∼1 pc) and core (∼0.1 pc) scales indicates a hierarchical fragmentation. While the clump fragmentation is consistent with a cylindrical collapse, the observed fragment masses are much larger than the expected thermal Jeans masses. All the cores are driving CO (3-2) outflows up to 38 km s -1 , the majority of which are bipolar, jet-like outflows. The moderate luminosity of the P1 clump sets a limit on the mass of protostars of 3-7 M sun . Because of the large reservoir of dense molecular gas in the immediate medium and ongoing accretion as evident by the jet-like outflows, we speculate that P1 will grow and eventually form a massive star cluster. This study provides a first glimpse of massive, clustered star formation that currently undergoes through an intermediate-mass stage.

  14. Hierarchical cluster analysis and chemical characterisation of Myrtus communis L. essential oil from Yemen region and its antimicrobial, antioxidant and anti-colorectal adenocarcinoma properties.

    Science.gov (United States)

    Anwar, Sirajudheen; Crouch, Rebecca A; Awadh Ali, Nasser A; Al-Fatimi, Mohamed A; Setzer, William N; Wessjohann, Ludger

    2017-09-01

    The hydrodistilled essential oil obtained from the dried leaves of Myrtus communis, collected in Yemen, was analysed by GC-MS. Forty-one compounds were identified, representing 96.3% of the total oil. The major constituents of essential oil were oxygenated monoterpenoids (87.1%), linalool (29.1%), 1,8-cineole (18.4%), α-terpineol (10.8%), geraniol (7.3%) and linalyl acetate (7.4%). The essential oil was assessed for its antimicrobial activity using a disc diffusion assay and resulted in moderate to potent antibacterial and antifungal activities targeting mainly Bacillus subtilis, Staphylococcus aureus and Candida albicans. The oil moderately reduced the diphenylpicrylhydrazyl radical (IC 50  = 4.2 μL/mL or 4.1 mg/mL). In vitro cytotoxicity evaluation against HT29 (human colonic adenocarcinoma cells) showed that the essential oil exhibited a moderate antitumor effect with IC 50 of 110 ± 4 μg/mL. Hierarchical cluster analysis of M. communis has been carried out based on the chemical compositions of 99 samples reported in the literature, including Yemeni sample.

  15. Typing of unknown microorganisms based on quantitative analysis of fatty acids by mass spectrometry and hierarchical clustering

    Energy Technology Data Exchange (ETDEWEB)

    Li Tingting; Dai Ling; Li Lun; Hu Xuejiao; Dong Linjie; Li Jianjian; Salim, Sule Khalfan; Fu Jieying [Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079 (China); Zhong Hongying, E-mail: hyzhong@mail.ccnu.edu.cn [Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079 (China)

    2011-01-17

    Rapid identification of unknown microorganisms of clinical and agricultural importance is not only critical for accurate diagnosis of infections but also essential for appropriate and prompt treatment. We describe here a rapid method for microorganisms typing based on quantitative analysis of fatty acids by iFAT approach (Isotope-coded Fatty Acid Transmethylation). In this work, lyophilized cell lysates were directly mixed with 0.5 M NaOH solution in d3-methanol and n-hexane. After 1 min of ultrasonication, the top n-hexane layer was combined with a mixture of standard d0-methanol derived fatty acid methylesters with known concentration. Measurement of intensity ratios of d3/d0 labeled fragment ion and molecular ion pairs at the corresponding target fatty acids provides a quantitative basis for hierarchical clustering. In the resultant dendrogram, the Euclidean distance between unknown species and known species quantitatively reveals their differences or shared similarities in fatty acid related pathways. It is of particular interest to apply this method for typing fungal species because fungi has distinguished lipid biosynthetic pathways that have been targeted for lots of drugs or fungicides compared with bacteria and animals. The proposed method has no dependence on the availability of genome or proteome databases. Therefore, it is can be applicable for a broad range of unknown microorganisms or mutant species.

  16. Peringkasan Tweet Berdasarkan Trending Topic Twitter Dengan Pembobotan TF-IDF dan Single Linkage AngglomerativeHierarchical Clustering

    Directory of Open Access Journals (Sweden)

    Annisa Annisa

    2016-10-01

    Full Text Available Trending topic is a feature provided by twitter that informs something widely discussed by users in a particular time. The form of a trending topic is a hashtag and can be selected by clicking. However, the number of tweets for each trending topics can be very large, so it will be difficult if we want to know all the contents. So, in order to make easy when reading the topic, a small number of tweets can be selected as the main idea of the topic. In this study, we applied the Agglomerative Single Linkage Hierarchical Clustering by calculating the TF-IDF value for each word in advance. We used 100 trending topics, where each topic consists of 50 tweets in Indonesian. For testing, we provided 30 trending topics which consist of 2 until 9 sub-topics. The result is that each trending topics can be summarized into shorter text contains 2 until 9 tweets. We were able to summarize 1 trending topics exactly same as the topic summarized by human expert. However, the rest of topics corresponded partially with human expert.

  17. Hierarchical clustering of Alzheimer and 'normal' brains using elemental concentrations and glucose metabolism determined by PIXE, INAA and PET

    International Nuclear Information System (INIS)

    Cutts, D.A.; Spyrou, N.M.

    2001-01-01

    Brain tissue samples, obtained from the Alzheimer Disease Brain Bank, Institute of Psychiatry, London, were taken from both left and right hemispheres of three regions of the cerebrum, namely the frontal, parietal and occipital lobes for both Alzheimer and 'normal' subjects. Trace element concentrations in the frontal lobe were determined for twenty six Alzheimer (15 male, 11 female) and twenty six 'normal' (8 male, 18 female) brain tissue samples. In the parietal lobe ten Alzheimer (2 male, 8 female) and ten 'normal' (8 male, 2 female) samples were taken along with ten Alzheimer (4 male, 6 female) and ten 'normal' (6 male, 4 female) from the occipital lobe. For the frontal lobe trace element concentrations were determined using proton induced X-ray emission (PIXE) analysis while in parietal and occipital regions instrumental neutron activation analysis (INAA) was used. Additionally eighteen Alzheimer (9 male, 9 female) and eighteen age matched 'normal' (8 male, 10 female) living subjects were examined using positron emission tomography (PET) in order to determine regional cerebral metabolic rates of glucose (rCMRGlu). The rCMRGlu of 36 regions of the brain was investigated including frontal, occipital and parietal lobes as in the trace element study. Hierarchical cluster analysis was applied to the trace element and glucose metabolism data to discover which variables in the resulting dendrograms displayed the most significant separation between Alzheimer and 'normal' subjects. (author)

  18. A Linux cluster for between-pulse magnetic equilibrium reconstructions and other processor bound analyses

    International Nuclear Information System (INIS)

    Peng, Q.; Groebner, R. J.; Lao, L. L.; Schachter, J.; Schissel, D. P.; Wade, M. R.

    2001-01-01

    A 12-processor Linux PC cluster has been installed to perform between-pulse magnetic equilibrium reconstructions during tokamak operations using the EFIT code written in FORTRAN. The MPICH package implementing message passing interface is employed by EFIT for data distribution and communication. The new system calculates equilibria eight times faster than the previous system yielding a complete equilibrium time history on a 25 ms time scale 4 min after the pulse ends. A graphical interface is provided for users to control the time resolution and the type of EFITs. The next analysis to benefit from the cluster is CERQUICK written in IDL for ion temperature profile analysis. The plan is to expand the cluster so that a full profile analysis (Te, Ti, ne, Vr, Zeff) can be made available between pulses, which lays the ground work for Kinetic EFIT and/or ONETWO power balance analyses

  19. Hierarchical Network Design

    DEFF Research Database (Denmark)

    Thomadsen, Tommy

    2005-01-01

    Communication networks are immensely important today, since both companies and individuals use numerous services that rely on them. This thesis considers the design of hierarchical (communication) networks. Hierarchical networks consist of layers of networks and are well-suited for coping...... with changing and increasing demands. Two-layer networks consist of one backbone network, which interconnects cluster networks. The clusters consist of nodes and links, which connect the nodes. One node in each cluster is a hub node, and the backbone interconnects the hub nodes of each cluster and thus...... the clusters. The design of hierarchical networks involves clustering of nodes, hub selection, and network design, i.e. selection of links and routing of ows. Hierarchical networks have been in use for decades, but integrated design of these networks has only been considered for very special types of networks...

  20. Hierarchical clustering of gene expression patterns in the Eomes + lineage of excitatory neurons during early neocortical development

    Directory of Open Access Journals (Sweden)

    Cameron David A

    2012-08-01

    Full Text Available Abstract Background Cortical neurons display dynamic patterns of gene expression during the coincident processes of differentiation and migration through the developing cerebrum. To identify genes selectively expressed by the Eomes + (Tbr2 lineage of excitatory cortical neurons, GFP-expressing cells from Tg(Eomes::eGFP Gsat embryos were isolated to > 99% purity and profiled. Results We report the identification, validation and spatial grouping of genes selectively expressed within the Eomes + cortical excitatory neuron lineage during early cortical development. In these neurons 475 genes were expressed ≥ 3-fold, and 534 genes ≤ 3-fold, compared to the reference population of neuronal precursors. Of the up-regulated genes, 328 were represented at the Genepaint in situ hybridization database and 317 (97% were validated as having spatial expression patterns consistent with the lineage of differentiating excitatory neurons. A novel approach for quantifying in situ hybridization patterns (QISP across the cerebral wall was developed that allowed the hierarchical clustering of genes into putative co-regulated groups. Forty four candidate genes were identified that show spatial expression with Intermediate Precursor Cells, 49 candidate genes show spatial expression with Multipolar Neurons, while the remaining 224 genes achieved peak expression in the developing cortical plate. Conclusions This analysis of differentiating excitatory neurons revealed the expression patterns of 37 transcription factors, many chemotropic signaling molecules (including the Semaphorin, Netrin and Slit signaling pathways, and unexpected evidence for non-canonical neurotransmitter signaling and changes in mechanisms of glucose metabolism. Over half of the 317 identified genes are associated with neuronal disease making these findings a valuable resource for studies of neurological development and disease.

  1. STATUS OF THE LINUX PC CLUSTER FOR BETWEEN-PULSE DATA ANALYSES AT DIII-D

    International Nuclear Information System (INIS)

    PENG, Q; GROEBNER, R.J; LAO, L.L; SCHACHTER, J.; SCHISSEL, D.P; WADE, M.R.

    2001-08-01

    OAK-B135 Some analyses that survey experimental data are carried out at a sparse sample rate between pulses during tokamak operation and/or completed as a batch job overnight because the complete analysis on a single fast workstation cannot fit in the narrow time window between two pulses. Scientists therefore miss the opportunity to use these results to guide experiments quickly. With a dedicated Beowulf type cluster at a cost less than that of a workstation, these analyses can be accomplished between pulses and the analyzed data made available for the research team during the tokamak operation. A Linux PC cluster comprises of 12 processors was installed at DIII-D National Fusion Facility in CY00 and expanded to 24 processors in CY01 to automatically perform between-pulse magnetic equilibrium reconstructions using the EFIT code written in Fortran, CER analyses using CERQUICK code written in IDL and full profile fitting analyses (n e , T e , T i , V r , Z eff ) using IDL code ZIPFIT. This paper reports the current status of the system and discusses some problems and concerns raised during the implementation and expansion of the system

  2. Comparison of multianalyte proficiency test results by sum of ranking differences, principal component analysis, and hierarchical cluster analysis.

    Science.gov (United States)

    Škrbić, Biljana; Héberger, Károly; Durišić-Mladenović, Nataša

    2013-10-01

    Sum of ranking differences (SRD) was applied for comparing multianalyte results obtained by several analytical methods used in one or in different laboratories, i.e., for ranking the overall performances of the methods (or laboratories) in simultaneous determination of the same set of analytes. The data sets for testing of the SRD applicability contained the results reported during one of the proficiency tests (PTs) organized by EU Reference Laboratory for Polycyclic Aromatic Hydrocarbons (EU-RL-PAH). In this way, the SRD was also tested as a discriminant method alternative to existing average performance scores used to compare mutlianalyte PT results. SRD should be used along with the z scores--the most commonly used PT performance statistics. SRD was further developed to handle the same rankings (ties) among laboratories. Two benchmark concentration series were selected as reference: (a) the assigned PAH concentrations (determined precisely beforehand by the EU-RL-PAH) and (b) the averages of all individual PAH concentrations determined by each laboratory. Ranking relative to the assigned values and also to the average (or median) values pointed to the laboratories with the most extreme results, as well as revealed groups of laboratories with similar overall performances. SRD reveals differences between methods or laboratories even if classical test(s) cannot. The ranking was validated using comparison of ranks by random numbers (a randomization test) and using seven folds cross-validation, which highlighted the similarities among the (methods used in) laboratories. Principal component analysis and hierarchical cluster analysis justified the findings based on SRD ranking/grouping. If the PAH-concentrations are row-scaled, (i.e., z scores are analyzed as input for ranking) SRD can still be used for checking the normality of errors. Moreover, cross-validation of SRD on z scores groups the laboratories similarly. The SRD technique is general in nature, i.e., it can

  3. A Performance-Prediction Model for PIC Applications on Clusters of Symmetric MultiProcessors: Validation with Hierarchical HPF+OpenMP Implementation

    Directory of Open Access Journals (Sweden)

    Sergio Briguglio

    2003-01-01

    Full Text Available A performance-prediction model is presented, which describes different hierarchical workload decomposition strategies for particle in cell (PIC codes on Clusters of Symmetric MultiProcessors. The devised workload decomposition is hierarchically structured: a higher-level decomposition among the computational nodes, and a lower-level one among the processors of each computational node. Several decomposition strategies are evaluated by means of the prediction model, with respect to the memory occupancy, the parallelization efficiency and the required programming effort. Such strategies have been implemented by integrating the high-level languages High Performance Fortran (at the inter-node stage and OpenMP (at the intra-node one. The details of these implementations are presented, and the experimental values of parallelization efficiency are compared with the predicted results.

  4. A new application of hierarchical cluster analysis to investigate organic peaks in bulk mass spectra obtained with an Aerodyne Aerosol Mass Spectrometer

    Science.gov (United States)

    Middlebrook, A. M.; Marcolli, C.; Canagaratna, M. R.; Worsnop, D. R.; Bahreini, R.; de Gouw, J. A.; Warneke, C.; Goldan, P. D.; Kuster, W. C.; Williams, E. J.; Lerner, B. M.; Roberts, J. M.; Meagher, J. F.; Fehsenfeld, F. C.; Marchewka, M. L.; Bertman, S. B.

    2006-12-01

    We applied hierarchical cluster analysis to an Aerodyne aerosol mass spectrometer (AMS) bulk mass spectral dataset collected aboard the NOAA research vessel Ronald H. Brown during the 2002 New England Air Quality Study off the east coast of the United States. Emphasizing the organic peaks, the cluster analysis yielded a series of categories that are distinguishable with respect to their mass spectra and their occurrence as a function of time. The differences between the categories mainly arise from relative intensity changes rather than from the presence or absence of specific peaks. The most frequent category exhibits a strong signal at m/z 44 and represents oxidized organic matter probably originating from both anthropogenic as well as biogenic sources. On the basis of spectral and trace gas correlations, the second most common category with strong signals at m/z 29, 43, and 44 contains contributions from isoprene oxidation products. The third through the fifth most common categories have peak patterns characteristic of monoterpene oxidation products and were most frequently observed when air masses from monoterpene rich regions were sampled. Taken together, the second through the fifth most common categories represent on average 17% of the total organic mass that stems likely from biogenic sources during the ship's cruise. These numbers have to be viewed as lower limits since the most common category was attributed to anthropogenic sources for this calculation. The cluster analysis was also very effective in identifying a few contaminated mass spectra that were not removed during pre-processing. This study demonstrates that hierarchical clustering is a useful tool to analyze the complex patterns of the organic peaks in bulk aerosol mass spectra from a field study.

  5. "Analyzing the Longitudinal K-12 Grading Histories of Entire Cohorts of Students: Grades, Data Driven Decision Making, Dropping out and Hierarchical Cluster Analysis"

    Directory of Open Access Journals (Sweden)

    Alex J. Bowers

    2010-05-01

    Full Text Available School personnel currently lack an effective method to pattern and visually interpret disaggregated achievement data collected on students as a means to help inform decision making. This study, through the examination of longitudinal K-12 teacher assigned grading histories for entire cohorts of students from a school district (n=188, demonstrates a novel application of hierarchical cluster analysis and pattern visualization in which all data points collected on every student in a cohort can be patterned, visualized and interpreted to aid in data driven decision making by teachers and administrators. Additionally, as a proof-of-concept study, overall schooling outcomes, such as student dropout or taking a college entrance exam, are identified from the data patterns and compared to past methods of dropout identification as one example of the usefulness of the method. Hierarchical cluster analysis correctly identified over 80% of the students who dropped out using the entire student grade history patterns from either K-12 or K-8.

  6. Chemical Fingerprint and Quantitative Analysis for the Quality Evaluation of Platycladi cacumen by Ultra-performance Liquid Chromatography Coupled with Hierarchical Cluster Analysis.

    Science.gov (United States)

    Shan, Mingqiu; Li, Sam Fong Yau; Yu, Sheng; Qian, Yan; Guo, Shuchen; Zhang, Li; Ding, Anwei

    2018-01-01

    Platycladi cacumen (dried twigs and leaves of Platycladus orientalis (L.) Franco) is a frequently utilized Chinese medicinal herb. To evaluate the quality of the phytomedcine, an ultra-performance liquid chromatographic method with diode array detection was established for chemical fingerprinting and quantitative analysis. In this study, 27 batches of P. cacumen from different regions were collected for analysis. A chemical fingerprint with 20 common peaks was obtained using Similarity Evaluation System for Chromatographic Fingerprint of Traditional Chinese Medicine (Version 2004A). Among these 20 components, seven flavonoids (myricitrin, isoquercitrin, quercitrin, afzelin, cupressuflavone, amentoflavone and hinokiflavone) were identified and determined simultaneously. In the method validation, the seven analytes showed good regressions (R ≥ 0.9995) within linear ranges and good recoveries from 96.4% to 103.3%. Furthermore, with the contents of these seven flavonoids, hierarchical clustering analysis was applied to distinguish the 27 batches into five groups. The chemometric results showed that these groups were almost consistent with geographical positions and climatic conditions of the production regions. Integrating fingerprint analysis, simultaneous determination and hierarchical clustering analysis, the established method is rapid, sensitive, accurate and readily applicable, and also provides a significant foundation for quality control of P. cacumen efficiently. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Ultrathin mesoporous Co_3O_4 nanosheets-constructed hierarchical clusters as high rate capability and long life anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wu, Shengming; Xia, Tian; Wang, Jingping; Lu, Feifei; Xu, Chunbo; Zhang, Xianfa; Huo, Lihua; Zhao, Hui

    2017-01-01

    Graphical abstract: Ultrathin mesoporous Co_3O_4 nanosheets-constructed hierarchical clusters (UMCN-HCs) have been successfully synthesized via a facile hydrothermal method followed by a subsequent thermolysis treatment. When tested as anode materials for LIBs, UMCN-HCs achieve high reversible capacity, good long cycling life, and rate capability. - Highlights: • UMCN-HCs show high capacity, excellent stability, and good rate capability. • UMCN-HCs retain a capacity of 1067 mAh g"−"1 after 100 cycles at 100 mA g"−"1. • UMCN-HCs deliver a capacity of 507 mAh g"−"1 after 500 cycles at 2 A g"−"1. - Abstract: Herein, Ultrathin mesoporous Co_3O_4 nanosheets-constructed hierarchical clusters (UMCN-HCs) have been successfully synthesized via a facile hydrothermal method followed by a subsequent thermolysis treatment at 600 °C in air. The products consist of cluster-like Co_3O_4 microarchitectures, which are assembled by numerous ultrathin mesoporous Co_3O_4 nanosheets. When tested as anode materials for lithium-ion batteries, UMCN-HCs deliver a high reversible capacity of 1067 mAh g"−"1 at a current density of 100 mA g"−"1 after 100 cycles. Even at 2 A g"−"1, a stable capacity as high as 507 mAh g"−"1 can be achieved after 500 cycles. The high reversible capacity, excellent cycling stability, and good rate capability of UMCN-HCs may be attributed to their mesoporous sheet-like nanostructure. The sheet-layered structure of UMCN-HCs may buffer the volume change during the lithiation-delithiation process, and the mesoporous characteristic make lithium-ion transfer more easily at the interface between the active electrode and the electrolyte.

  8. Analyses on the formation of atmospheric particles and stabilized sulphuric acid clusters

    Energy Technology Data Exchange (ETDEWEB)

    Paasonen, P.

    2012-11-01

    Aerosol particles have various effects on our life. They affect the visibility and have diverse health effects, but are also applied in various applications, from drug inhalators to pesticides. Additionally, aerosol particles have manifold effects on the Earths' radiation budget and thus on the climate. The strength of the aerosol climate effect is one of the factors causing major uncertainties in the global climate models predicting the future climate change. Aerosol particles are emitted to atmosphere from various anthropogenic and biogenic sources, but they are also formed from precursor vapours in many parts of the world in a process called atmospheric new particle formation (NPF). The uncertainties in aerosol climate effect are partly due to the current lack of knowledge of the mechanisms governing the atmospheric NPF. It is known that gas phase sulphuric acid most certainly plays an important role in atmospheric NPF. However, also other vapours are needed in NPF, but the exact roles or even identities of these vapours are currently not exactly known. In this thesis I present some of the recent advancements in understanding of the atmospheric NPF in terms of the roles of the participating vapours and the meteorological conditions. Since direct measurements of new particle formation rate in the initial size scale of the formed particles (below 2 nm) are so far infrequent in both spatial and temporal scales, indirect methods are needed. The work presented on the following pages approaches the NPF from two directions: by analysing the observed formation rates of particles after they have grown to sizes measurable with widely applied instruments (2 nm or larger), and by measuring and modelling the initial sulphuric acid cluster formation. The obtained results can be summarized as follows. (1) The observed atmospheric new particle formation rates are typically connected with sulphuric acid concentration to the power close to two. (2) Also other compounds, most

  9. INFRARED HIGH-RESOLUTION INTEGRATED LIGHT SPECTRAL ANALYSES OF M31 GLOBULAR CLUSTERS FROM APOGEE

    Energy Technology Data Exchange (ETDEWEB)

    Sakari, Charli M. [Department of Astronomy, University of Washington, Seattle WA 98195-1580 (United States); Shetrone, Matthew D. [McDonald Observatory, University of Texas at Austin, HC75 Box 1337-MCD, Fort Davis, TX 79734 (United States); Schiavon, Ricardo P. [Gemini Observatory, 670 N. A’Ohoku Place, Hilo, HI 96720 (United States); Bizyaev, Dmitry; Pan, Kaike [Apache Point Observatory and New Mexico State University, P.O. Box 59, Sunspot, NM, 88349-0059 (United States); Prieto, Carlos Allende; García-Hernández, Domingo Aníbal [Instituto de Astrofísica de Canarias (IAC), Va Lactea s/n, E-38205 La Laguna, Tenerife (Spain); Beers, Timothy C. [Department of Physics and JINA Center for the Evolution of the Elements, University of Notre Dame, Notre Dame, IN 46556 (United States); Caldwell, Nelson [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Lucatello, Sara [INAF Osservatorio Astronomico di Padova, Vicolo dellOsservatorio 5, I-35122 Padova (Italy); Majewski, Steven; O’Connell, Robert W. [Dept. of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Strader, Jay, E-mail: sakaricm@u.washington.edu [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)

    2016-10-01

    Chemical abundances are presented for 25 M31 globular clusters (GCs), based on moderately high resolution ( R = 22,500) H -band integrated light (IL) spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE). Infrared (IR) spectra offer lines from new elements, lines of different strengths, and lines at higher excitation potentials compared to the optical. Integrated abundances of C, N, and O are derived from CO, CN, and OH molecular features, while Fe, Na, Mg, Al, Si, K, Ca, and Ti abundances are derived from atomic features. These abundances are compared to previous results from the optical, demonstrating the validity and value of IR IL analyses. The CNO abundances are consistent with typical tip of the red giant branch stellar abundances but are systematically offset from optical Lick index abundances. With a few exceptions, the other abundances agree between the optical and the IR within the 1 σ uncertainties. The first integrated K abundances are also presented and demonstrate that K tracks the α elements. The combination of IR and optical abundances allows better determinations of GC properties and enables probes of the multiple populations in extragalactic GCs. In particular, the integrated effects of the Na/O anticorrelation can be directly examined for the first time.

  10. Deletion and Gene Expression Analyses Define the Paxilline Biosynthetic Gene Cluster in Penicillium paxilli

    Directory of Open Access Journals (Sweden)

    Emily J. Parker

    2013-08-01

    Full Text Available The indole-diterpene paxilline is an abundant secondary metabolite synthesized by Penicillium paxilli. In total, 21 genes have been identified at the PAX locus of which six have been previously confirmed to have a functional role in paxilline biosynthesis. A combination of bioinformatics, gene expression and targeted gene replacement analyses were used to define the boundaries of the PAX gene cluster. Targeted gene replacement identified seven genes, paxG, paxA, paxM, paxB, paxC, paxP and paxQ that were all required for paxilline production, with one additional gene, paxD, required for regular prenylation of the indole ring post paxilline synthesis. The two putative transcription factors, PP104 and PP105, were not co-regulated with the pax genes and based on targeted gene replacement, including the double knockout, did not have a role in paxilline production. The relationship of indole dimethylallyl transferases involved in prenylation of indole-diterpenes such as paxilline or lolitrem B, can be found as two disparate clades, not supported by prenylation type (e.g., regular or reverse. This paper provides insight into the P. paxilli indole-diterpene locus and reviews the recent advances identified in paxilline biosynthesis.

  11. Assessment of Heavy Metal Pollution in Macrophytes, Water and Sediment of a Tropical Wetland System Using Hierarchical Cluster Analysis Technique

    OpenAIRE

    , N. Kumar J.I.; , M. Das; , R. Mukherji; , R.N. Kumar

    2011-01-01

    Heavy metal pollution in aquatic ecosystems is becoming a global phenomenon because these metals are indestructible and most of them have toxic effects on living organisms. Most of the fresh water bodies all over the world are getting contaminated thus declining their suitability. Therefore, monitoring and assessment of such freshwater systems has become an environmental concern. This study aims to elucidate the useful role of the cluster analysis to assess the relationship and interdependenc...

  12. Investigating the provenance of iron artifacts of the Royal Iron Factory of Sao Joao de Ipanema by hierarchical cluster analysis of EDS microanalyses of slag inclusions

    Energy Technology Data Exchange (ETDEWEB)

    Mamani-Calcina, Elmer Antonio; Landgraf, Fernando Jose Gomes; Azevedo, Cesar Roberto de Farias, E-mail: c.azevedo@usp.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Escola Politecnica. Departmento de Engenharia Metalurgica e de Materiais

    2017-01-15

    Microstructural characterization techniques, including EDX (Energy Dispersive X-ray Analysis) microanalyses, were used to investigate the slag inclusions in the microstructure of ferrous artifacts of the Royal Iron Factory of Sao Joao de Ipanema (first steel plant of Brazil, XIX century), the D. Pedro II Bridge (located in Bahia, assembled in XIX century and produced in Scotland) and the archaeological sites of Sao Miguel de Missoes (Rio Grande do Sul, Brazil, production site of iron artifacts, the XVIII century) and Afonso Sardinha (Sao Paulo, Brazil production site of iron artifacts, XVI century). The microanalyses results of the main micro constituents of the microstructure of the slag inclusions were investigated by hierarchical cluster analysis and the dendrogram with the microanalyses results of the wüstite phase (using as critical variables the contents of MnO, MgO, Al{sub 2}O{sub 3}, V{sub 2}O{sub 5} and TiO{sub 2}) allowed the identification of four clusters, which successfully represented the samples of the four investigated sites (Ipanema, Sardinha, Missoes and Bahia). Finally, the comparatively low volumetric fraction of slag inclusions in the samples of Ipanema (∼1%) suggested the existence of technological expertise at the iron making processing in the Royal Iron Factory of Sao Joao de Ipanema. (author)

  13. Critérios de formação de carteiras de ativos por meio de Hierarchical Clusters

    Directory of Open Access Journals (Sweden)

    Pierre Lucena

    2010-04-01

    Full Text Available Este artigo tem como objetivo principal apresentar e testar uma ferramenta de estatística multivariada em modelos financeiros. Essa metodologia, conhecida como análise de clusters, separa as observações em grupos com suas determinadas características, em contraste com a metodologia tradicional, que é somente a ordem com os quantis. Foi aplicada essa ferramenta em 213 ações negociadas na Bolsa de São Paulo (Bovespa, separando os grupos por tamanho e book-tomarket. Depois, as novas carteiras foram aplicadas no modelo de Fama e French (1996, comparando os resultados numa formação de carteira para quantil e análise de cluster. Foram encontrados melhores resultados na segunda metodologia. Os autores concluem que a análise de cluster pode ser mais adequada porque tende a formar grupos mais homogeneizados, sendo sua aplicação útil para a formação de carteiras e para a teoria financeira.

  14. Hydrothermal synthesis and photoluminescent properties of hierarchical GdPO4·H2O:Ln3+ (Ln3+ = Eu3+, Ce3+, Tb3+) flower-like clusters

    Science.gov (United States)

    Amurisana, Bao.; Zhiqiang, Song.; Haschaolu, O.; Yi, Chen; Tegus, O.

    2018-02-01

    3D hierarchical GdPO4·H2O:Ln3+ (Ln3+ = Eu3+, Ce3+, Tb3+) flower clusters were successfully prepared on glass slide substrate by a simple, economical hydrothermal process with the assistance of disodium ethylenediaminetetraacetic acid (Na2H2L, where L4- = (CH2COO)2N(CH2)2N(CH2COO)24-). In this process, Na2H2L was used as both a chelating agent and a structure-director. The hierarchical flower clusters have an average diameter of 7-12 μm and are composed of well-aligned microrods. The influence of the molar ratio of Na2H2L/Gd3+ and reaction time on the morphology was systematically studied. A possible crystal growth and formation mechanism of hierarchical flower clusters is proposed based on the evolution of morphology as a function of reaction time. The self-assembled GdPO4·H2O:Ln3+ superstructures exhibit strong orange-red (Eu3+, 5D0 → 7F1), green (Tb3+, 5D4 → 7F5) and near ultraviolet emissions (Ce3+, 5d → 7F5/2) under ultraviolet excitation, respectively. This study may provide a new channel for building hierarchically superstructued oxide micro/nanomaterials with optical and new properties.

  15. Structure and Sequence Analyses of Clustered Protocadherins Reveal Antiparallel Interactions that Mediate Homophilic Specificity.

    Science.gov (United States)

    Nicoludis, John M; Lau, Sze-Yi; Schärfe, Charlotta P I; Marks, Debora S; Weihofen, Wilhelm A; Gaudet, Rachelle

    2015-11-03

    Clustered protocadherin (Pcdh) proteins mediate dendritic self-avoidance in neurons via specific homophilic interactions in their extracellular cadherin (EC) domains. We determined crystal structures of EC1-EC3, containing the homophilic specificity-determining region, of two mouse clustered Pcdh isoforms (PcdhγA1 and PcdhγC3) to investigate the nature of the homophilic interaction. Within the crystal lattices, we observe antiparallel interfaces consistent with a role in trans cell-cell contact. Antiparallel dimerization is supported by evolutionary correlations. Two interfaces, located primarily on EC2-EC3, involve distinctive clustered Pcdh structure and sequence motifs, lack predicted glycosylation sites, and contain residues highly conserved in orthologs but not paralogs, pointing toward their biological significance as homophilic interaction interfaces. These two interfaces are similar yet distinct, reflecting a possible difference in interaction architecture between clustered Pcdh subfamilies. These structures initiate a molecular understanding of clustered Pcdh assemblies that are required to produce functional neuronal networks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Group analyses of connectivity-based cortical parcellation using repeated k-means clustering.

    Science.gov (United States)

    Nanetti, Luca; Cerliani, Leonardo; Gazzola, Valeria; Renken, Remco; Keysers, Christian

    2009-10-01

    K-means clustering has become a popular tool for connectivity-based cortical segmentation using Diffusion Weighted Imaging (DWI) data. A sometimes ignored issue is, however, that the output of the algorithm depends on the initial placement of starting points, and that different sets of starting points therefore could lead to different solutions. In this study we explore this issue. We apply k-means clustering a thousand times to the same DWI dataset collected in 10 individuals to segment two brain regions: the SMA-preSMA on the medial wall, and the insula. At the level of single subjects, we found that in both brain regions, repeatedly applying k-means indeed often leads to a variety of rather different cortical based parcellations. By assessing the similarity and frequency of these different solutions, we show that approximately 256 k-means repetitions are needed to accurately estimate the distribution of possible solutions. Using nonparametric group statistics, we then propose a method to employ the variability of clustering solutions to assess the reliability with which certain voxels can be attributed to a particular cluster. In addition, we show that the proportion of voxels that can be attributed significantly to either cluster in the SMA and preSMA is relatively higher than in the insula and discuss how this difference may relate to differences in the anatomy of these regions.

  17. Hierarchical cluster-based partial least squares regression (HC-PLSR) is an efficient tool for metamodelling of nonlinear dynamic models.

    Science.gov (United States)

    Tøndel, Kristin; Indahl, Ulf G; Gjuvsland, Arne B; Vik, Jon Olav; Hunter, Peter; Omholt, Stig W; Martens, Harald

    2011-06-01

    Deterministic dynamic models of complex biological systems contain a large number of parameters and state variables, related through nonlinear differential equations with various types of feedback. A metamodel of such a dynamic model is a statistical approximation model that maps variation in parameters and initial conditions (inputs) to variation in features of the trajectories of the state variables (outputs) throughout the entire biologically relevant input space. A sufficiently accurate mapping can be exploited both instrumentally and epistemically. Multivariate regression methodology is a commonly used approach for emulating dynamic models. However, when the input-output relations are highly nonlinear or non-monotone, a standard linear regression approach is prone to give suboptimal results. We therefore hypothesised that a more accurate mapping can be obtained by locally linear or locally polynomial regression. We present here a new method for local regression modelling, Hierarchical Cluster-based PLS regression (HC-PLSR), where fuzzy C-means clustering is used to separate the data set into parts according to the structure of the response surface. We compare the metamodelling performance of HC-PLSR with polynomial partial least squares regression (PLSR) and ordinary least squares (OLS) regression on various systems: six different gene regulatory network models with various types of feedback, a deterministic mathematical model of the mammalian circadian clock and a model of the mouse ventricular myocyte function. Our results indicate that multivariate regression is well suited for emulating dynamic models in systems biology. The hierarchical approach turned out to be superior to both polynomial PLSR and OLS regression in all three test cases. The advantage, in terms of explained variance and prediction accuracy, was largest in systems with highly nonlinear functional relationships and in systems with positive feedback loops. HC-PLSR is a promising approach for

  18. Hierarchical Cluster-based Partial Least Squares Regression (HC-PLSR is an efficient tool for metamodelling of nonlinear dynamic models

    Directory of Open Access Journals (Sweden)

    Omholt Stig W

    2011-06-01

    Full Text Available Abstract Background Deterministic dynamic models of complex biological systems contain a large number of parameters and state variables, related through nonlinear differential equations with various types of feedback. A metamodel of such a dynamic model is a statistical approximation model that maps variation in parameters and initial conditions (inputs to variation in features of the trajectories of the state variables (outputs throughout the entire biologically relevant input space. A sufficiently accurate mapping can be exploited both instrumentally and epistemically. Multivariate regression methodology is a commonly used approach for emulating dynamic models. However, when the input-output relations are highly nonlinear or non-monotone, a standard linear regression approach is prone to give suboptimal results. We therefore hypothesised that a more accurate mapping can be obtained by locally linear or locally polynomial regression. We present here a new method for local regression modelling, Hierarchical Cluster-based PLS regression (HC-PLSR, where fuzzy C-means clustering is used to separate the data set into parts according to the structure of the response surface. We compare the metamodelling performance of HC-PLSR with polynomial partial least squares regression (PLSR and ordinary least squares (OLS regression on various systems: six different gene regulatory network models with various types of feedback, a deterministic mathematical model of the mammalian circadian clock and a model of the mouse ventricular myocyte function. Results Our results indicate that multivariate regression is well suited for emulating dynamic models in systems biology. The hierarchical approach turned out to be superior to both polynomial PLSR and OLS regression in all three test cases. The advantage, in terms of explained variance and prediction accuracy, was largest in systems with highly nonlinear functional relationships and in systems with positive feedback

  19. Photometric analyses of abundances in dwarf spheroidal galaxies and globular clusters

    International Nuclear Information System (INIS)

    Light, R.M.

    1988-01-01

    This study investigated the abundance characteristics of several dwarf spheroidal galaxies. The chemical properties of stars in these galaxies are tracers of the origin and evolution of their stellar populations, and thus can provide constraints on the theories of their formation. To derive this abundance information, photometric observations of stars in a sample of globular clusters, covering a large range in metallicity, were analyzed. Parameters describing the position of the red giant branch were found to correlate very well with cluster metallicity over a large range in abundance. These measurements, made in the Thuan-Gunn photometry system, provide ranking schemes which are, with accurate photometry, more sensitive to changes in metallicity than similar broadband BV parameters. The relations were used to derive an improved estimate of the metallicity of cluster NGC 5053. These metallicity relations were used to analyze the Thuan-Gunn system photometry produced for the Sculptor, Ursa Minor, and Carina galaxies. The excellent agreement between their metallicities and those from other previous studies indicates that globular cluster red giant branch parameters are very useful in ranking dwarf spheroidal populations by metallicity. Together with other galaxian data, strong correlations can be seen between the mean metallicities and dispersions in metallicity and the luminosities of the dwarf spheroidal galaxies. These trends also seem to apply to members of the dwarf elliptical class of galaxies. The ramifications that these correlations and the existence of a metallicity gradient in Sculptor have on the formation of the dwarf spheroidals are discussed

  20. Group analyses of connectivity-based cortical parcellation using repeated k-means clustering

    NARCIS (Netherlands)

    Nanetti, Luca; Cerliani, Leonardo; Gazzola, Valeria; Renken, Remco; Keysers, Christian

    2009-01-01

    K-means clustering has become a popular tool for connectivity-based cortical segmentation using Diffusion Weighted Imaging (DWI) data. A sometimes ignored issue is, however, that the output of the algorithm depends on the initial placement of starting points, and that different sets of starting

  1. Analyses of Crime Patterns in NIBRS Data Based on a Novel Graph Theory Clustering Method: Virginia as a Case Study

    Directory of Open Access Journals (Sweden)

    Peixin Zhao

    2014-01-01

    Full Text Available This paper suggests a novel clustering method for analyzing the National Incident-Based Reporting System (NIBRS data, which include the determination of correlation of different crime types, the development of a likelihood index for crimes to occur in a jurisdiction, and the clustering of jurisdictions based on crime type. The method was tested by using the 2005 assault data from 121 jurisdictions in Virginia as a test case. The analyses of these data show that some different crime types are correlated and some different crime parameters are correlated with different crime types. The analyses also show that certain jurisdictions within Virginia share certain crime patterns. This information assists with constructing a pattern for a specific crime type and can be used to determine whether a jurisdiction may be more likely to see this type of crime occur in their area.

  2. Anti-inflammatory and anti-angiogenic activities in vitro of eight diterpenes from Daphne genkwa based on hierarchical cluster and principal component analysis.

    Science.gov (United States)

    Wang, Ling; Lan, Xin-Yi; Ji, Jun; Zhang, Chun-Feng; Li, Fei; Wang, Chong-Zhi; Yuan, Chun-Su

    2018-06-01

    Rheumatoid arthritis (RA) is one of the most prevalent chronic inflammatory and angiogenic diseases. The aim of this study was to evaluate the anti-inflammatory and anti-angiogenic activities in vitro of eight diterpenoids isolated from Daphne genkwa. LC-MS was used to identify diterpenes isolated from D. genkwa. The anti-inflammatory and anti-angiogenic activities of eight diterpenoids were evaluated on LPS-induced macrophage RAW264.7 cells and TNF-α-stimulated human umbilical vein endothelial cells (HUVECs) using hierarchical cluster analysis (HCA) and principal component analysis (PCA). The eight diterpenes isolated from D. genkwa were identified as yuanhuaphnin, isoyuanhuacine, 12-O-(2'E,4'E-decadienoyl)-4-hydroxyphorbol-13-acetyl, yuanhuagine, isoyuanhuadine, yuanhuadine, yuanhuaoate C and yuanhuacine. All the eight diterpenes significantly down-regulated the excessive secretion of TNF-α, IL-6, IL-1β and NO in LPS-induced RAW264.7 macrophages. However, only 12-O-(2'E,4'E-decadienoyl)-4-hydroxyphorbol-13-acetyl markedly reduced production of VEGF, MMP-3, ICAM and VCAM in TNF-α-stimulated HUVECs. HCA obtained 4 clusters, containing 12-O-(2'E,4'E-decadienoyl)-4-hydroxyphorbol-13-acetyl, isoyuanhuacine, isoyuanhuadine and five other compounds. PCA showed that the ranking of diterpenes sorted by efficacy from highest to lowest was 12-O-(2'E,4'E-decadienoyl)-4-hydroxyphorbol-13-acetyl, yuanhuaphnin, isoyuanhuacine, yuanhuacine, yuanhuaoate C, yuanhuagine, isoyuanhuadine, yuanhuadine. In conclusion, eight diterpenes isolated from D. genkwa showed different levels of activity in LPS-induced RAW264.7 cells and TNF-α-stimulated HUVECs. The comprehensive evaluation of activity by HCA and PCA indicated that of the eight diterpenes, 12-O-(2'E,4'E-decadienoyl)-4-hydroxyphorbol-13-acetyl was the best, and can be developed as a new drug for RA therapy.

  3. Simultaneous determination of 19 flavonoids in commercial trollflowers by using high-performance liquid chromatography and classification of samples by hierarchical clustering analysis.

    Science.gov (United States)

    Song, Zhiling; Hashi, Yuki; Sun, Hongyang; Liang, Yi; Lan, Yuexiang; Wang, Hong; Chen, Shizhong

    2013-12-01

    The flowers of Trollius species, named Jin Lianhua in Chinese, are widely used traditional Chinese herbs with vital biological activity that has been used for several decades in China to treat upper respiratory infections, pharyngitis, tonsillitis, and bronchitis. We developed a rapid and reliable method for simultaneous quantitative analysis of 19 flavonoids in trollflowers by using high-performance liquid chromatography (HPLC). Chromatography was performed on Inertsil ODS-3 C18 column, with gradient elution methanol-acetonitrile-water with 0.02% (v/v) formic acid. Content determination was used to evaluate the quality of commercial trollflowers from different regions in China, while three Trollius species (Trollius chinensis Bunge, Trollius ledebouri Reichb, Trollius buddae Schipcz) were explicitly distinguished by using hierarchical clustering analysis. The linearity, precision, accuracy, limit of detection, and limit of quantification were validated for the quantification method, which proved sensitive, accurate and reproducible indicating that the proposed approach was applicable for the routine analysis and quality control of trollflowers. © 2013.

  4. Geographical Characterization of Tunisian Olive Tree Leaves (cv. Chemlali) Using HPLC-ESI-TOF and IT/MS Fingerprinting with Hierarchical Cluster Analysis

    Science.gov (United States)

    Arráez Román, David; Gómez Caravaca, Ana María; Zarrouk, Mokhtar

    2018-01-01

    The olive plant has been extensively studied for its nutritional value, whereas its leaves have been specifically recognized as a processing by-product. Leaves are considered by-products of olive farming, representing a significant material arriving to the olive mill. They have been considered for centuries as an important herbal remedy in Mediterranean countries. Their beneficial properties are generally attributed to the presence of a range of phytochemicals such as secoiridoids, triterpenes, lignans, and flavonoids. With the aim to study the impact of geographical location on the phenolic compounds, Olea europaea leaves were handpicked from the Tunisian cultivar “Chemlali” from nine regions in the north, center, and south of Tunisia. The ground leaves were then extracted with methanol : water 80% (v/v) and analyzed by using high-performance liquid chromatography coupled to electrospray time of flight and ion trap mass spectrometry analyzers. A total of 38 compounds could be identified. Their contents showed significant variation among samples from different regions. Hierarchical cluster analysis was applied to highlight similarities in the phytochemical composition observed between the samples of different regions. PMID:29725553

  5. Micromechanics of hierarchical materials

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon, Jr.

    2012-01-01

    A short overview of micromechanical models of hierarchical materials (hybrid composites, biomaterials, fractal materials, etc.) is given. Several examples of the modeling of strength and damage in hierarchical materials are summarized, among them, 3D FE model of hybrid composites...... with nanoengineered matrix, fiber bundle model of UD composites with hierarchically clustered fibers and 3D multilevel model of wood considered as a gradient, cellular material with layered composite cell walls. The main areas of research in micromechanics of hierarchical materials are identified, among them......, the investigations of the effects of load redistribution between reinforcing elements at different scale levels, of the possibilities to control different material properties and to ensure synergy of strengthening effects at different scale levels and using the nanoreinforcement effects. The main future directions...

  6. Weighted Clustering

    DEFF Research Database (Denmark)

    Ackerman, Margareta; Ben-David, Shai; Branzei, Simina

    2012-01-01

    We investigate a natural generalization of the classical clustering problem, considering clustering tasks in which different instances may have different weights.We conduct the first extensive theoretical analysis on the influence of weighted data on standard clustering algorithms in both...... the partitional and hierarchical settings, characterizing the conditions under which algorithms react to weights. Extending a recent framework for clustering algorithm selection, we propose intuitive properties that would allow users to choose between clustering algorithms in the weighted setting and classify...

  7. Whisper, a resonance sounder and wave analyser: Performances and perspectives for the Cluster mission

    DEFF Research Database (Denmark)

    Decreau, P.M.E.; Fergeau, P.; KrannoselsKikh, V.

    1997-01-01

    The WHISPER sounder on the Cluster spacecraft is primarily designed to provide an absolute measurement of the total plasma density within the range 0.2-80 cm(-3). This is achieved by means of a resonance sounding technique which has already proved successful in the regions to be explored. The wav...... in the electron foreshock and solar wind, to investigations about small-scale structures via density and high-frequency emission signatures, and to the analysis of the non-thermal continuum in the magnetosphere....

  8. Imaging of lipids in atherosclerotic lesion in aorta from ApoE/LDLR-/- mice by FT-IR spectroscopy and Hierarchical Cluster Analysis.

    Science.gov (United States)

    P Wrobel, Tomasz; Mateuszuk, Lukasz; Chlopicki, Stefan; Malek, Kamilla; Baranska, Malgorzata

    2011-12-21

    Spectroscopy-based approaches can provide an insight into the biochemical composition of a tissue sample. In the present work Fourier transform infrared (FT-IR) spectroscopy was used to develop a reliable methodology to study the content of free fatty acids, triglycerides, cholesteryl esters as well as cholesterol in aorta from mice with atherosclerosis (ApoE/LDLR(-/-) mice). In particular, distribution and concentration of palmitic, oleic and linoleic acid derivatives were analyzed. Spectral analysis of pure compounds allowed for clear discrimination between free fatty acids and other similar moieties based on the carbonyl band position (1699-1710 cm(-1) range). In order to distinguish cholesteryl esters from triglycerides a ratio of carbonyl band to signal at 1010 cm(-1) was used. Imaging of lipids in atherosclerotic aortic lesions in ApoE/LDLR(-/-) mice was followed by Hierarchical Cluster Analysis (HCA). The aorta from C57Bl/6J control mice (fed with chow diet) was used for comparison. The measurements were completed with an FT-IR spectrometer equipped with a 128 × 128 FPA detector. In cross-section of aorta from ApoE/LDLR(-/-) mice a region of atherosclerotic plaque was clearly identified by HCA, which was later divided into 2 sub-regions, one characterized by the higher content of cholesterol, while the other by higher contents of cholesteryl esters. HCA of tissues deposited on normal microscopic glass, hence limited to the 2200-3800 cm(-1) spectral range, also identified a region of atherosclerotic plaque. Importantly, this region correlates with the area stained by standard histological staining for atherosclerotic plaque (Oil Red O). In conclusion, the use of FT-IR and HCA may provide a novel tool for qualitative and quantitative analysis of contents and distribution of lipids in atherosclerotic plaque.

  9. Prediction of the fate of Hg and other contaminants in soil around a former chlor-alkali plant using Fuzzy Hierarchical Cross-Clustering approach.

    Science.gov (United States)

    Frenţiu, Tiberiu; Ponta, Michaela; Sârbu, Costel

    2015-11-01

    An associative simultaneous fuzzy divisive hierarchical algorithm was used to predict the fate of Hg and other contaminants in soil around a former chlor-alkali plant. The algorithm was applied on several natural and anthropogenic characteristics of soil including water leachable, mobile, semi-mobile, non-mobile fractions and total Hg, Al, Ba, Ca, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Sr, Zn, water leachable fraction of Cl(-), NO3(-) and SO4(2)(-), pH and total organic carbon. The cross-classification algorithm provided a divisive fuzzy partition of the soil samples and associated characteristics. Soils outside the perimeter of the former chlor-alkali plant were clustered based on the natural characteristics and total Hg. In contaminated zones Hg speciation becomes relevant and the assessment of species distribution is necessary. The descending order of concentration of Hg species in the test site was semi-mobile>mobile>non-mobile>water-leachable. Physico-chemical features responsible for similarities or differences between uncontaminated soil samples or contaminated with Hg, Cu, Zn, Ba and NO3(-) were also highlighted. Other characteristics of the contaminated soil were found to be Ca, sulfate, Na and chloride, some of which with influence on Hg fate. The presence of Ca and sulfate in soil induced a higher water leachability of Hg, while Cu had an opposite effect by forming amalgam. The used algorithm provided an in-deep understanding of processes involving Hg species and allowed to make prediction of the fate of Hg and contaminants linked to chlor-alkali-industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Cluster analyses of 20th century growth patterns in high elevation Great Basin bristlecone pine in the Snake Mountain Range, Nevada, USA

    Science.gov (United States)

    Tran, T. J.; Bruening, J. M.; Bunn, A. G.; Salzer, M. W.; Weiss, S. B.

    2015-12-01

    Great Basin bristlecone pine (Pinus longaeva) is a useful climate proxy because of the species' long lifespan (up to 5000 years) and the climatic sensitivity of its annually-resolved rings. Past studies have shown that growth of individual trees can be limited by temperature, soil moisture, or a combination of the two depending on biophysical setting at the scale of tens of meters. We extend recent research suggesting that trees vary in their growth response depending on their position on the landscape to analyze how growth patterns vary over time. We used hierarchical cluster analysis to examine the growth of 52 bristlecone pine trees near the treeline of Mount Washington, Nevada, USA. We classified growth of individual trees over the instrumental climate record into one of two possible scenarios: trees belonging to a temperature-sensitive cluster and trees belonging to a precipitation-sensitive cluster. The number of trees in the precipitation-sensitive cluster outnumbered the number of trees in the temperature-sensitive cluster, with trees in colder locations belonging to the temperature-sensitive cluster. When we separated the temporal range into two sections (1895-1949 and 1950-2002) spanning the length of the instrumental climate record, we found that most of the 52 trees remained loyal to their cluster membership (e.g., trees in the temperature-sensitive cluster in 1895-1949 were also in the temperature sensitive cluster in 1950-2002), though not without exception. Of those trees that do not remain consistent in cluster membership, the majority changed from temperature-sensitive to precipitation-sensitive as time progressed. This could signal a switch from temperature limitation to water limitation with warming climate. We speculate that topographic complexity in high mountain environments like Mount Washington might allow for climate refugia where growth response could remain constant over the Holocene.

  11. Analysing the spatial patterns of livestock anthrax in Kazakhstan in relation to environmental factors: a comparison of local (Gi* and morphology cluster statistics

    Directory of Open Access Journals (Sweden)

    Ian T. Kracalik

    2012-11-01

    Full Text Available We compared a local clustering and a cluster morphology statistic using anthrax outbreaks in large (cattle and small (sheep and goats domestic ruminants across Kazakhstan. The Getis-Ord (Gi* statistic and a multidirectional optimal ecotope algorithm (AMOEBA were compared using 1st, 2nd and 3rd order Rook contiguity matrices. Multivariate statistical tests were used to evaluate the environmental signatures between clusters and non-clusters from the AMOEBA and Gi* tests. A logistic regression was used to define a risk surface for anthrax outbreaks and to compare agreement between clustering methodologies. Tests revealed differences in the spatial distribution of clusters as well as the total number of clusters in large ruminants for AMOEBA (n = 149 and for small ruminants (n = 9. In contrast, Gi* revealed fewer large ruminant clusters (n = 122 and more small ruminant clusters (n = 61. Significant environmental differences were found between groups using the Kruskall-Wallis and Mann- Whitney U tests. Logistic regression was used to model the presence/absence of anthrax outbreaks and define a risk surface for large ruminants to compare with cluster analyses. The model predicted 32.2% of the landscape as high risk. Approximately 75% of AMOEBA clusters corresponded to predicted high risk, compared with ~64% of Gi* clusters. In general, AMOEBA predicted more irregularly shaped clusters of outbreaks in both livestock groups, while Gi* tended to predict larger, circular clusters. Here we provide an evaluation of both tests and a discussion of the use of each to detect environmental conditions associated with anthrax outbreak clusters in domestic livestock. These findings illustrate important differences in spatial statistical methods for defining local clusters and highlight the importance of selecting appropriate levels of data aggregation.

  12. clusters

    Indian Academy of Sciences (India)

    2017-09-27

    Sep 27, 2017 ... Author for correspondence (zh4403701@126.com). MS received 15 ... lic clusters using density functional theory (DFT)-GGA of the DMOL3 package. ... In the process of geometric optimization, con- vergence thresholds ..... and Postgraduate Research & Practice Innovation Program of. Jiangsu Province ...

  13. clusters

    Indian Academy of Sciences (India)

    environmental as well as technical problems during fuel gas utilization. ... adsorption on some alloys of Pd, namely PdAu, PdAg ... ried out on small neutral and charged Au24,26,27, Cu,28 ... study of Zanti et al.29 on Pdn (n = 1–9) clusters.

  14. Time clustered sampling can inflate the inferred substitution rate in foot-and-mouth disease virus analyses

    DEFF Research Database (Denmark)

    Pedersen, Casper-Emil Tingskov; Frandsen, Peter; Wekesa, Sabenzia N.

    2015-01-01

    abundance of sequence data sampled under widely different schemes, an effort to keep results consistent and comparable is needed. This study emphasizes commonly disregarded problems in the inference of evolutionary rates in viral sequence data when sampling is unevenly distributed on a temporal scale...... through a study of the foot-and-mouth (FMD) disease virus serotypes SAT 1 and SAT 2. Our study shows that clustered temporal sampling in phylogenetic analyses of FMD viruses will strongly bias the inferences of substitution rates and tMRCA because the inferred rates in such data sets reflect a rate closer...... to the mutation rate rather than the substitution rate. Estimating evolutionary parameters from viral sequences should be performed with due consideration of the differences in short-term and longer-term evolutionary processes occurring within sets of temporally sampled viruses, and studies should carefully...

  15. Avoiding Boundary Estimates in Hierarchical Linear Models through Weakly Informative Priors

    Science.gov (United States)

    Chung, Yeojin; Rabe-Hesketh, Sophia; Gelman, Andrew; Dorie, Vincent; Liu, Jinchen

    2012-01-01

    Hierarchical or multilevel linear models are widely used for longitudinal or cross-sectional data on students nested in classes and schools, and are particularly important for estimating treatment effects in cluster-randomized trials, multi-site trials, and meta-analyses. The models can allow for variation in treatment effects, as well as…

  16. Clustering analysis

    International Nuclear Information System (INIS)

    Romli

    1997-01-01

    Cluster analysis is the name of group of multivariate techniques whose principal purpose is to distinguish similar entities from the characteristics they process.To study this analysis, there are several algorithms that can be used. Therefore, this topic focuses to discuss the algorithms, such as, similarity measures, and hierarchical clustering which includes single linkage, complete linkage and average linkage method. also, non-hierarchical clustering method, which is popular name K -mean method ' will be discussed. Finally, this paper will be described the advantages and disadvantages of every methods

  17. Cluster Physics with Merging Galaxy Clusters

    Directory of Open Access Journals (Sweden)

    Sandor M. Molnar

    2016-02-01

    Full Text Available Collisions between galaxy clusters provide a unique opportunity to study matter in a parameter space which cannot be explored in our laboratories on Earth. In the standard LCDM model, where the total density is dominated by the cosmological constant ($Lambda$ and the matter density by cold dark matter (CDM, structure formation is hierarchical, and clusters grow mostly by merging.Mergers of two massive clusters are the most energetic events in the universe after the Big Bang,hence they provide a unique laboratory to study cluster physics.The two main mass components in clusters behave differently during collisions:the dark matter is nearly collisionless, responding only to gravity, while the gas is subject to pressure forces and dissipation, and shocks and turbulenceare developed during collisions. In the present contribution we review the different methods used to derive the physical properties of merging clusters. Different physical processes leave their signatures on different wavelengths, thusour review is based on a multifrequency analysis. In principle, the best way to analyze multifrequency observations of merging clustersis to model them using N-body/HYDRO numerical simulations. We discuss the results of such detailed analyses.New high spatial and spectral resolution ground and space based telescopeswill come online in the near future. Motivated by these new opportunities,we briefly discuss methods which will be feasible in the near future in studying merging clusters.

  18. Clustering structures of large proteins using multifractal analyses based on a 6-letter model and hydrophobicity scale of amino acids

    International Nuclear Information System (INIS)

    Yang Jianyi; Yu Zuguo; Anh, Vo

    2009-01-01

    The Schneider and Wrede hydrophobicity scale of amino acids and the 6-letter model of protein are proposed to study the relationship between the primary structure and the secondary structural classification of proteins. Two kinds of multifractal analyses are performed on the two measures obtained from these two kinds of data on large proteins. Nine parameters from the multifractal analyses are considered to construct the parameter spaces. Each protein is represented by one point in these spaces. A procedure is proposed to separate large proteins in the α, β, α + β and α/β structural classes in these parameter spaces. Fisher's linear discriminant algorithm is used to assess our clustering accuracy on the 49 selected large proteins. Numerical results indicate that the discriminant accuracies are satisfactory. In particular, they reach 100.00% and 84.21% in separating the α proteins from the {β, α + β, α/β} proteins in a parameter space; 92.86% and 86.96% in separating the β proteins from the {α + β, α/β} proteins in another parameter space; 91.67% and 83.33% in separating the α/β proteins from the α + β proteins in the last parameter space.

  19. Tune Your Brown Clustering, Please

    DEFF Research Database (Denmark)

    Derczynski, Leon; Chester, Sean; Bøgh, Kenneth Sejdenfaden

    2015-01-01

    Brown clustering, an unsupervised hierarchical clustering technique based on ngram mutual information, has proven useful in many NLP applications. However, most uses of Brown clustering employ the same default configuration; the appropriateness of this configuration has gone predominantly...

  20. Hierarchical video summarization

    Science.gov (United States)

    Ratakonda, Krishna; Sezan, M. Ibrahim; Crinon, Regis J.

    1998-12-01

    We address the problem of key-frame summarization of vide in the absence of any a priori information about its content. This is a common problem that is encountered in home videos. We propose a hierarchical key-frame summarization algorithm where a coarse-to-fine key-frame summary is generated. A hierarchical key-frame summary facilitates multi-level browsing where the user can quickly discover the content of the video by accessing its coarsest but most compact summary and then view a desired segment of the video with increasingly more detail. At the finest level, the summary is generated on the basis of color features of video frames, using an extension of a recently proposed key-frame extraction algorithm. The finest level key-frames are recursively clustered using a novel pairwise K-means clustering approach with temporal consecutiveness constraint. We also address summarization of MPEG-2 compressed video without fully decoding the bitstream. We also propose efficient mechanisms that facilitate decoding the video when the hierarchical summary is utilized in browsing and playback of video segments starting at selected key-frames.

  1. Properties of ammonium ion-water clusters: analyses of structure evolution, noncovalent interactions, and temperature and humidity effects.

    Science.gov (United States)

    Pei, Shi-Tu; Jiang, Shuai; Liu, Yi-Rong; Huang, Teng; Xu, Kang-Ming; Wen, Hui; Zhu, Yu-Peng; Huang, Wei

    2015-03-26

    Although ammonium ion-water clusters are abundant in the biosphere, some information regarding these clusters, such as their growth route, the influence of temperature and humidity, and the concentrations of various hydrated clusters, is lacking. In this study, theoretical calculations are performed on ammonium ion-water clusters. These theoretical calculations are focused on determining the following characteristics: (1) the pattern of cluster growth; (2) the percentages of clusters of the same size at different temperatures and humidities; (3) the distributions of different isomers for the same size clusters at different temperatures; (4) the relative strengths of the noncovalent interactions for clusters of different sizes. The results suggest that the dipole moment may be very significant for the ammonium ion-water system, and some new stable isomers were found. The nucleation of ammonium ions and water molecules is favorable at low temperatures; thus, the clusters observed at high altitudes might not be present at low altitudes. High humidity can contribute to the formation of large ammonium ion-water clusters, whereas the formation of small clusters may be favorable under low-humidity conditions. The potential energy surfaces (PES) of these different sized clusters are complicated and differ according to the distribution of isomers at different temperatures. Some similar structures are observed between NH4(+)(H2O)n and M(H2O)n (where M represents an alkali metal ion or water molecule); when n = 8, the clusters begin to form the closed-cage geometry. As the cluster size increases, these interactions become progressively weaker. The successive binding energy at the DF-MP2-F12/VDZ-F12 level is better than that at the PW91PW91/6-311++G(3df, 3pd) level and is consistent with the experimentally determined values.

  2. Are clusters of dietary patterns and cluster membership stable over time? Results of a longitudinal cluster analysis study.

    Science.gov (United States)

    Walthouwer, Michel Jean Louis; Oenema, Anke; Soetens, Katja; Lechner, Lilian; de Vries, Hein

    2014-11-01

    Developing nutrition education interventions based on clusters of dietary patterns can only be done adequately when it is clear if distinctive clusters of dietary patterns can be derived and reproduced over time, if cluster membership is stable, and if it is predictable which type of people belong to a certain cluster. Hence, this study aimed to: (1) identify clusters of dietary patterns among Dutch adults, (2) test the reproducibility of these clusters and stability of cluster membership over time, and (3) identify sociodemographic predictors of cluster membership and cluster transition. This study had a longitudinal design with online measurements at baseline (N=483) and 6 months follow-up (N=379). Dietary intake was assessed with a validated food frequency questionnaire. A hierarchical cluster analysis was performed, followed by a K-means cluster analysis. Multinomial logistic regression analyses were conducted to identify the sociodemographic predictors of cluster membership and cluster transition. At baseline and follow-up, a comparable three-cluster solution was derived, distinguishing a healthy, moderately healthy, and unhealthy dietary pattern. Male and lower educated participants were significantly more likely to have a less healthy dietary pattern. Further, 251 (66.2%) participants remained in the same cluster, 45 (11.9%) participants changed to an unhealthier cluster, and 83 (21.9%) participants shifted to a healthier cluster. Men and people living alone were significantly more likely to shift toward a less healthy dietary pattern. Distinctive clusters of dietary patterns can be derived. Yet, cluster membership is unstable and only few sociodemographic factors were associated with cluster membership and cluster transition. These findings imply that clusters based on dietary intake may not be suitable as a basis for nutrition education interventions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Time Clustered Sampling Can Inflate the Inferred Substitution Rate in Foot-And-Mouth Disease Virus Analyses.

    Science.gov (United States)

    Pedersen, Casper-Emil T; Frandsen, Peter; Wekesa, Sabenzia N; Heller, Rasmus; Sangula, Abraham K; Wadsworth, Jemma; Knowles, Nick J; Muwanika, Vincent B; Siegismund, Hans R

    2015-01-01

    With the emergence of analytical software for the inference of viral evolution, a number of studies have focused on estimating important parameters such as the substitution rate and the time to the most recent common ancestor (tMRCA) for rapidly evolving viruses. Coupled with an increasing abundance of sequence data sampled under widely different schemes, an effort to keep results consistent and comparable is needed. This study emphasizes commonly disregarded problems in the inference of evolutionary rates in viral sequence data when sampling is unevenly distributed on a temporal scale through a study of the foot-and-mouth (FMD) disease virus serotypes SAT 1 and SAT 2. Our study shows that clustered temporal sampling in phylogenetic analyses of FMD viruses will strongly bias the inferences of substitution rates and tMRCA because the inferred rates in such data sets reflect a rate closer to the mutation rate rather than the substitution rate. Estimating evolutionary parameters from viral sequences should be performed with due consideration of the differences in short-term and longer-term evolutionary processes occurring within sets of temporally sampled viruses, and studies should carefully consider how samples are combined.

  4. The Case for a Hierarchical Cosmology

    Science.gov (United States)

    Vaucouleurs, G. de

    1970-01-01

    The development of modern theoretical cosmology is presented and some questionable assumptions of orthodox cosmology are pointed out. Suggests that recent observations indicate that hierarchical clustering is a basic factor in cosmology. The implications of hierarchical models of the universe are considered. Bibliography. (LC)

  5. Discovering hierarchical structure in normal relational data

    DEFF Research Database (Denmark)

    Schmidt, Mikkel Nørgaard; Herlau, Tue; Mørup, Morten

    2014-01-01

    -parametric generative model for hierarchical clustering of similarity based on multifurcating Gibbs fragmentation trees. This allows us to infer and display the posterior distribution of hierarchical structures that comply with the data. We demonstrate the utility of our method on synthetic data and data of functional...

  6. Modular networks with hierarchical organization

    Indian Academy of Sciences (India)

    Several networks occurring in real life have modular structures that are arranged in a hierarchical fashion. In this paper, we have proposed a model for such networks, using a stochastic generation method. Using this model we show that, the scaling relation between the clustering and degree of the nodes is not a necessary ...

  7. Delineation of Stenotrophomonas maltophilia isolates from cystic fibrosis patients by fatty acid methyl ester profiles and matrix-assisted laser desorption/ionization time-of-flight mass spectra using hierarchical cluster analysis and principal component analysis.

    Science.gov (United States)

    Vidigal, Pedrina Gonçalves; Mosel, Frank; Koehling, Hedda Luise; Mueller, Karl Dieter; Buer, Jan; Rath, Peter Michael; Steinmann, Joerg

    2014-12-01

    Stenotrophomonas maltophilia is an opportunist multidrug-resistant pathogen that causes a wide range of nosocomial infections. Various cystic fibrosis (CF) centres have reported an increasing prevalence of S. maltophilia colonization/infection among patients with this disease. The purpose of this study was to assess specific fingerprints of S. maltophilia isolates from CF patients (n = 71) by investigating fatty acid methyl esters (FAMEs) through gas chromatography (GC) and highly abundant proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), and to compare them with isolates obtained from intensive care unit (ICU) patients (n = 20) and the environment (n = 11). Principal component analysis (PCA) of GC-FAME patterns did not reveal a clustering corresponding to distinct CF, ICU or environmental types. Based on the peak area index, it was observed that S. maltophilia isolates from CF patients produced significantly higher amounts of fatty acids in comparison with ICU patients and the environmental isolates. Hierarchical cluster analysis (HCA) based on the MALDI-TOF MS peak profiles of S. maltophilia revealed the presence of five large clusters, suggesting a high phenotypic diversity. Although HCA of MALDI-TOF mass spectra did not result in distinct clusters predominantly composed of CF isolates, PCA revealed the presence of a distinct cluster composed of S. maltophilia isolates from CF patients. Our data suggest that S. maltophilia colonizing CF patients tend to modify not only their fatty acid patterns but also their protein patterns as a response to adaptation in the unfavourable environment of the CF lung. © 2014 The Authors.

  8. Cluster evolution

    International Nuclear Information System (INIS)

    Schaeffer, R.

    1987-01-01

    The galaxy and cluster luminosity functions are constructed from a model of the mass distribution based on hierarchical clustering at an epoch where the matter distribution is non-linear. These luminosity functions are seen to reproduce the present distribution of objects as can be inferred from the observations. They can be used to deduce the redshift dependence of the cluster distribution and to extrapolate the observations towards the past. The predicted evolution of the cluster distribution is quite strong, although somewhat less rapid than predicted by the linear theory

  9. A new approach to hierarchical data analysis: Targeted maximum likelihood estimation for the causal effect of a cluster-level exposure.

    Science.gov (United States)

    Balzer, Laura B; Zheng, Wenjing; van der Laan, Mark J; Petersen, Maya L

    2018-01-01

    We often seek to estimate the impact of an exposure naturally occurring or randomly assigned at the cluster-level. For example, the literature on neighborhood determinants of health continues to grow. Likewise, community randomized trials are applied to learn about real-world implementation, sustainability, and population effects of interventions with proven individual-level efficacy. In these settings, individual-level outcomes are correlated due to shared cluster-level factors, including the exposure, as well as social or biological interactions between individuals. To flexibly and efficiently estimate the effect of a cluster-level exposure, we present two targeted maximum likelihood estimators (TMLEs). The first TMLE is developed under a non-parametric causal model, which allows for arbitrary interactions between individuals within a cluster. These interactions include direct transmission of the outcome (i.e. contagion) and influence of one individual's covariates on another's outcome (i.e. covariate interference). The second TMLE is developed under a causal sub-model assuming the cluster-level and individual-specific covariates are sufficient to control for confounding. Simulations compare the alternative estimators and illustrate the potential gains from pairing individual-level risk factors and outcomes during estimation, while avoiding unwarranted assumptions. Our results suggest that estimation under the sub-model can result in bias and misleading inference in an observational setting. Incorporating working assumptions during estimation is more robust than assuming they hold in the underlying causal model. We illustrate our approach with an application to HIV prevention and treatment.

  10. Hierarchical Cluster Analysis of Three-Dimensional Reconstructions of Unbiased Sampled Microglia Shows not Continuous Morphological Changes from Stage 1 to 2 after Multiple Dengue Infections in Callithrix penicillata

    Science.gov (United States)

    Diniz, Daniel G.; Silva, Geane O.; Naves, Thaís B.; Fernandes, Taiany N.; Araújo, Sanderson C.; Diniz, José A. P.; de Farias, Luis H. S.; Sosthenes, Marcia C. K.; Diniz, Cristovam G.; Anthony, Daniel C.; da Costa Vasconcelos, Pedro F.; Picanço Diniz, Cristovam W.

    2016-01-01

    It is known that microglial morphology and function are related, but few studies have explored the subtleties of microglial morphological changes in response to specific pathogens. In the present report we quantitated microglia morphological changes in a monkey model of dengue disease with virus CNS invasion. To mimic multiple infections that usually occur in endemic areas, where higher dengue infection incidence and abundant mosquito vectors carrying different serotypes coexist, subjects received once a week subcutaneous injections of DENV3 (genotype III)-infected culture supernatant followed 24 h later by an injection of anti-DENV2 antibody. Control animals received either weekly anti-DENV2 antibodies, or no injections. Brain sections were immunolabeled for DENV3 antigens and IBA-1. Random and systematic microglial samples were taken from the polymorphic layer of dentate gyrus for 3-D reconstructions, where we found intense immunostaining for TNFα and DENV3 virus antigens. We submitted all bi- or multimodal morphological parameters of microglia to hierarchical cluster analysis and found two major morphological phenotypes designated types I and II. Compared to type I (stage 1), type II microglia were more complex; displaying higher number of nodes, processes and trees and larger surface area and volumes (stage 2). Type II microglia were found only in infected monkeys, whereas type I microglia was found in both control and infected subjects. Hierarchical cluster analysis of morphological parameters of 3-D reconstructions of random and systematic selected samples in control and ADE dengue infected monkeys suggests that microglia morphological changes from stage 1 to stage 2 may not be continuous. PMID:27047345

  11. Performance quantification of clustering algorithms for false positive removal in fMRI by ROC curves

    Directory of Open Access Journals (Sweden)

    André Salles Cunha Peres

    Full Text Available Abstract Introduction Functional magnetic resonance imaging (fMRI is a non-invasive technique that allows the detection of specific cerebral functions in humans based on hemodynamic changes. The contrast changes are about 5%, making visual inspection impossible. Thus, statistic strategies are applied to infer which brain region is engaged in a task. However, the traditional methods like general linear model and cross-correlation utilize voxel-wise calculation, introducing a lot of false-positive data. So, in this work we tested post-processing cluster algorithms to diminish the false-positives. Methods In this study, three clustering algorithms (the hierarchical cluster, k-means and self-organizing maps were tested and compared for false-positive removal in the post-processing of cross-correlation analyses. Results Our results showed that the hierarchical cluster presented the best performance to remove the false positives in fMRI, being 2.3 times more accurate than k-means, and 1.9 times more accurate than self-organizing maps. Conclusion The hierarchical cluster presented the best performance in false-positive removal because it uses the inconsistency coefficient threshold, while k-means and self-organizing maps utilize a priori cluster number (centroids and neurons number; thus, the hierarchical cluster avoids clustering scattered voxels, as the inconsistency coefficient threshold allows only the voxels to be clustered that are at a minimum distance to some cluster.

  12. Mouse Nkrp1-Clr gene cluster sequence and expression analyses reveal conservation of tissue-specific MHC-independent immunosurveillance.

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    Full Text Available The Nkrp1 (Klrb1-Clr (Clec2 genes encode a receptor-ligand system utilized by NK cells as an MHC-independent immunosurveillance strategy for innate immune responses. The related Ly49 family of MHC-I receptors displays extreme allelic polymorphism and haplotype plasticity. In contrast, previous BAC-mapping and aCGH studies in the mouse suggest the neighboring and related Nkrp1-Clr cluster is evolutionarily stable. To definitively compare the relative evolutionary rate of Nkrp1-Clr vs. Ly49 gene clusters, the Nkrp1-Clr gene clusters from two Ly49 haplotype-disparate inbred mouse strains, BALB/c and 129S6, were sequenced. Both Nkrp1-Clr gene cluster sequences are highly similar to the C57BL/6 reference sequence, displaying the same gene numbers and order, complete pseudogenes, and gene fragments. The Nkrp1-Clr clusters contain a strikingly dissimilar proportion of repetitive elements compared to the Ly49 clusters, suggesting that certain elements may be partly responsible for the highly disparate Ly49 vs. Nkrp1 evolutionary rate. Focused allelic polymorphisms were found within the Nkrp1b/d (Klrb1b, Nkrp1c (Klrb1c, and Clr-c (Clec2f genes, suggestive of possible immune selection. Cell-type specific transcription of Nkrp1-Clr genes in a large panel of tissues/organs was determined. Clr-b (Clec2d and Clr-g (Clec2i showed wide expression, while other Clr genes showed more tissue-specific expression patterns. In situ hybridization revealed specific expression of various members of the Clr family in leukocytes/hematopoietic cells of immune organs, various tissue-restricted epithelial cells (including intestinal, kidney tubular, lung, and corneal progenitor epithelial cells, as well as myocytes. In summary, the Nkrp1-Clr gene cluster appears to evolve more slowly relative to the related Ly49 cluster, and likely regulates innate immunosurveillance in a tissue-specific manner.

  13. Ultrathin mesoporous Co{sub 3}O{sub 4} nanosheets-constructed hierarchical clusters as high rate capability and long life anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Shengming [Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education, School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, Heilongjiang, Harbin 150080 (China); Xia, Tian, E-mail: xiatian@hlju.edu.cn [Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education, School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, Heilongjiang, Harbin 150080 (China); Wang, Jingping [Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Heilongjiang, Harbin 150001 (China); Lu, Feifei [Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education, School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, Heilongjiang, Harbin 150080 (China); Xu, Chunbo [Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Heilongjiang, Harbin 150001 (China); Zhang, Xianfa; Huo, Lihua [Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education, School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, Heilongjiang, Harbin 150080 (China); Zhao, Hui, E-mail: zhaohui98@yahoo.com [Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education, School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, Heilongjiang, Harbin 150080 (China)

    2017-06-01

    Graphical abstract: Ultrathin mesoporous Co{sub 3}O{sub 4} nanosheets-constructed hierarchical clusters (UMCN-HCs) have been successfully synthesized via a facile hydrothermal method followed by a subsequent thermolysis treatment. When tested as anode materials for LIBs, UMCN-HCs achieve high reversible capacity, good long cycling life, and rate capability. - Highlights: • UMCN-HCs show high capacity, excellent stability, and good rate capability. • UMCN-HCs retain a capacity of 1067 mAh g{sup −1} after 100 cycles at 100 mA g{sup −1}. • UMCN-HCs deliver a capacity of 507 mAh g{sup −1} after 500 cycles at 2 A g{sup −1}. - Abstract: Herein, Ultrathin mesoporous Co{sub 3}O{sub 4} nanosheets-constructed hierarchical clusters (UMCN-HCs) have been successfully synthesized via a facile hydrothermal method followed by a subsequent thermolysis treatment at 600 °C in air. The products consist of cluster-like Co{sub 3}O{sub 4} microarchitectures, which are assembled by numerous ultrathin mesoporous Co{sub 3}O{sub 4} nanosheets. When tested as anode materials for lithium-ion batteries, UMCN-HCs deliver a high reversible capacity of 1067 mAh g{sup −1} at a current density of 100 mA g{sup −1} after 100 cycles. Even at 2 A g{sup −1}, a stable capacity as high as 507 mAh g{sup −1} can be achieved after 500 cycles. The high reversible capacity, excellent cycling stability, and good rate capability of UMCN-HCs may be attributed to their mesoporous sheet-like nanostructure. The sheet-layered structure of UMCN-HCs may buffer the volume change during the lithiation-delithiation process, and the mesoporous characteristic make lithium-ion transfer more easily at the interface between the active electrode and the electrolyte.

  14. Micro-Raman and SEM-EDS analyses to evaluate the nature of salt clusters present in secondary marine aerosol.

    Science.gov (United States)

    Morillas, Héctor; Marcaida, Iker; García-Florentino, Cristina; Maguregui, Maite; Arana, Gorka; Madariaga, Juan Manuel

    2018-02-15

    Marine aerosol is a complex inorganic and organic chemistry system which contains several salts, mainly forming different type of salt clusters. Different meteorological parameters have a key role in the formation of these aggregates. The relative humidity (%RH), temperature, CO, SO 2 and NO x levels and even the O 3 levels can promote different chemical reactions giving rise to salt clusters with different morphology and sizes. Sulfates, nitrates and chlorides and even mixed chlorosulfates or nitrosulfates are the final compounds which can be found in environments with a direct influence of marine aerosol. In order to collect and analyze these types of compounds, the use of adequate samplers is crucial. In this work, salt clusters were collected thanks to the use of a self-made passive sampler (SMPS) installed in a 20th century historic building (Punta Begoña Galleries, Getxo, Basque Country, Spain) which is surrounded by a beach and a sportive port. These salt clusters were finally analyzed directly by micro-Raman spectroscopy and Scanning Electron microscopy coupled to Energy Dispersive X-ray spectrometry (SEM-EDS). Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Cluster analysis for applications

    CERN Document Server

    Anderberg, Michael R

    1973-01-01

    Cluster Analysis for Applications deals with methods and various applications of cluster analysis. Topics covered range from variables and scales to measures of association among variables and among data units. Conceptual problems in cluster analysis are discussed, along with hierarchical and non-hierarchical clustering methods. The necessary elements of data analysis, statistics, cluster analysis, and computer implementation are integrated vertically to cover the complete path from raw data to a finished analysis.Comprised of 10 chapters, this book begins with an introduction to the subject o

  16. Functional annotation of hierarchical modularity.

    Directory of Open Access Journals (Sweden)

    Kanchana Padmanabhan

    Full Text Available In biological networks of molecular interactions in a cell, network motifs that are biologically relevant are also functionally coherent, or form functional modules. These functionally coherent modules combine in a hierarchical manner into larger, less cohesive subsystems, thus revealing one of the essential design principles of system-level cellular organization and function-hierarchical modularity. Arguably, hierarchical modularity has not been explicitly taken into consideration by most, if not all, functional annotation systems. As a result, the existing methods would often fail to assign a statistically significant functional coherence score to biologically relevant molecular machines. We developed a methodology for hierarchical functional annotation. Given the hierarchical taxonomy of functional concepts (e.g., Gene Ontology and the association of individual genes or proteins with these concepts (e.g., GO terms, our method will assign a Hierarchical Modularity Score (HMS to each node in the hierarchy of functional modules; the HMS score and its p-value measure functional coherence of each module in the hierarchy. While existing methods annotate each module with a set of "enriched" functional terms in a bag of genes, our complementary method provides the hierarchical functional annotation of the modules and their hierarchically organized components. A hierarchical organization of functional modules often comes as a bi-product of cluster analysis of gene expression data or protein interaction data. Otherwise, our method will automatically build such a hierarchy by directly incorporating the functional taxonomy information into the hierarchy search process and by allowing multi-functional genes to be part of more than one component in the hierarchy. In addition, its underlying HMS scoring metric ensures that functional specificity of the terms across different levels of the hierarchical taxonomy is properly treated. We have evaluated our

  17. Defining reference sequences for Nocardia species by similarity and clustering analyses of 16S rRNA gene sequence data.

    Directory of Open Access Journals (Sweden)

    Manal Helal

    Full Text Available BACKGROUND: The intra- and inter-species genetic diversity of bacteria and the absence of 'reference', or the most representative, sequences of individual species present a significant challenge for sequence-based identification. The aims of this study were to determine the utility, and compare the performance of several clustering and classification algorithms to identify the species of 364 sequences of 16S rRNA gene with a defined species in GenBank, and 110 sequences of 16S rRNA gene with no defined species, all within the genus Nocardia. METHODS: A total of 364 16S rRNA gene sequences of Nocardia species were studied. In addition, 110 16S rRNA gene sequences assigned only to the Nocardia genus level at the time of submission to GenBank were used for machine learning classification experiments. Different clustering algorithms were compared with a novel algorithm or the linear mapping (LM of the distance matrix. Principal Components Analysis was used for the dimensionality reduction and visualization. RESULTS: The LM algorithm achieved the highest performance and classified the set of 364 16S rRNA sequences into 80 clusters, the majority of which (83.52% corresponded with the original species. The most representative 16S rRNA sequences for individual Nocardia species have been identified as 'centroids' in respective clusters from which the distances to all other sequences were minimized; 110 16S rRNA gene sequences with identifications recorded only at the genus level were classified using machine learning methods. Simple kNN machine learning demonstrated the highest performance and classified Nocardia species sequences with an accuracy of 92.7% and a mean frequency of 0.578. CONCLUSION: The identification of centroids of 16S rRNA gene sequence clusters using novel distance matrix clustering enables the identification of the most representative sequences for each individual species of Nocardia and allows the quantitation of inter- and intra

  18. Mechanistic study on lowering the sensitivity of positive atmospheric pressure photoionization mass spectrometric analyses: size-dependent reactivity of solvent clusters.

    Science.gov (United States)

    Ahmed, Arif; Choi, Cheol Ho; Kim, Sunghwan

    2015-11-15

    Understanding the mechanism of atmospheric pressure photoionization (APPI) is important for studies employing APPI liquid chromatography/mass spectrometry (LC/MS). In this study, the APPI mechanism for polyaromatic hydrocarbon (PAH) compounds dissolved in toluene and methanol or water mixture was investigated by use of MS analysis and quantum mechanical simulation. In particular, four different mechanisms that could contribute to the signal reduction were considered based on a combination of MS data and quantum mechanical calculations. The APPI mechanism is clarified by combining MS data and density functional theory (DFT) calculations. To obtain MS data, a positive-mode (+) APPI Q Exactive Orbitrap mass spectrometer was used to analyze each solution. DFT calculations were performed using the general atomic and molecular electronic structure system (GAMESS). The experimental results indicated that methanol significantly reduced the signal in (+) APPI, but no significative signal reduction was observed when water was used as a co-solvent with toluene. The signal reduction is more significant especially for molecular ions than for protonated ions. Therefore, important information about the mechanism of methanol-induced signal reduction in (+) APPI-MS can be gained due its negative impact on APPI efficiency. The size-dependent reactivity of methanol clusters ((CH3 OH)n , n = 1-8) is an important factor in determining the sensitivity of (+) APPI-MS analyses. Clusters can compete with toluene radical ions for electrons. The reactivity increases as the sizes of the methanol clusters increase and this effect can be caused by the size-dependent ionization energy of the solvent clusters. The resulting increase in cluster reactivity explains the flow rate and temperature-dependent signal reduction observed in the analytes. Based on the results presented here, minimizing the sizes of methanol clusters can improve the sensitivity of LC/(+)-APPI-MS. Copyright © 2015 John

  19. Quantitative Analysis and Comparison of Four Major Flavonol Glycosides in the Leaves of Toona sinensis (A. Juss.) Roemer (Chinese Toon) from Various Origins by High-Performance Liquid Chromatography-Diode Array Detector and Hierarchical Clustering Analysis

    Science.gov (United States)

    Sun, Xiaoxiang; Zhang, Liting; Cao, Yaqi; Gu, Qinying; Yang, Huan; Tam, James P.

    2016-01-01

    Background: Toona sinensis (A. Juss.) Roemer is an endemic species of Toona genus native to Asian area. Its dried leaves are applied in the treatment of many diseases; however, few investigations have been reported for the quantitative analysis and comparison of major bioactive flavonol glycosides in the leaves harvested from various origins. Objective: To quantitatively analyze four major flavonol glycosides including rutinoside, quercetin-3-O-β-D-glucoside, quercetin-3-O-α-L-rhamnoside, and kaempferol-3-O-α-L-rhamnoside in the leaves from different production sites and classify them according to the content of these glycosides. Materials and Methods: A high-performance liquid chromatography-diode array detector (HPLC-DAD) method for their simultaneous determination was developed and validated for linearity, precision, accuracy, stability, and repeatability. Moreover, the method established was then employed to explore the difference in the content of these four glycosides in raw materials. Finally, a hierarchical clustering analysis was performed to classify 11 voucher specimens. Results: The separation was performed on a Waters XBridge Shield RP18 column (150 mm × 4.6 mm, 3.5 μm) kept at 35°C, and acetonitrile and H2O containing 0.30% trifluoroacetic acid as mobile phase was driven at 1.0 mL/min during the analysis. Ten microliters of solution were injected and 254 nm was selected to monitor the separation. A strong linear relationship between the peak area and concentration of four analytes was observed. And, the method was also validated to be repeatable, stable, precise, and accurate. Conclusion: An efficient and reliable HPLC-DAD method was established and applied in the assays for the samples from 11 origins successfully. Moreover, the content of those flavonol glycosides varied much among different batches, and the flavonoids could be considered as biomarkers to control the quality of Chinese Toon. SUMMARY Four major flavonol glycosides in the leaves

  20. Localization Microscopy Analyses of MRE11 Clusters in 3D-Conserved Cell Nuclei of Different Cell Lines

    Directory of Open Access Journals (Sweden)

    Marion Eryilmaz

    2018-01-01

    Full Text Available In radiation biophysics, it is a subject of nowadays research to investigate DNA strand break repair in detail after damage induction by ionizing radiation. It is a subject of debate as to what makes up the cell’s decision to use a certain repair pathway and how the repair machinery recruited in repair foci is spatially and temporarily organized. Single-molecule localization microscopy (SMLM allows super-resolution analysis by precise localization of single fluorescent molecule tags, resulting in nuclear structure analysis with a spatial resolution in the 10 nm regime. Here, we used SMLM to study MRE11 foci. MRE11 is one of three proteins involved in the MRN-complex (MRE11-RAD50-NBS1 complex, a prominent DNA strand resection and broken end bridging component involved in homologous recombination repair (HRR and alternative non-homologous end joining (a-NHEJ. We analyzed the spatial arrangements of antibody-labelled MRE11 proteins in the nuclei of a breast cancer and a skin fibroblast cell line along a time-course of repair (up to 48 h after irradiation with a dose of 2 Gy. Different kinetics for cluster formation and relaxation were determined. Changes in the internal nano-scaled structure of the clusters were quantified and compared between the two cell types. The results indicate a cell type-dependent DNA damage response concerning MRE11 recruitment and cluster formation. The MRE11 data were compared to H2AX phosphorylation detected by γH2AX molecule distribution. These data suggested modulations of MRE11 signal frequencies that were not directly correlated to DNA damage induction. The application of SMLM in radiation biophysics offers new possibilities to investigate spatial foci organization after DNA damaging and during subsequent repair.

  1. Localization Microscopy Analyses of MRE11 Clusters in 3D-Conserved Cell Nuclei of Different Cell Lines.

    Science.gov (United States)

    Eryilmaz, Marion; Schmitt, Eberhard; Krufczik, Matthias; Theda, Franziska; Lee, Jin-Ho; Cremer, Christoph; Bestvater, Felix; Schaufler, Wladimir; Hausmann, Michael; Hildenbrand, Georg

    2018-01-22

    In radiation biophysics, it is a subject of nowadays research to investigate DNA strand break repair in detail after damage induction by ionizing radiation. It is a subject of debate as to what makes up the cell's decision to use a certain repair pathway and how the repair machinery recruited in repair foci is spatially and temporarily organized. Single-molecule localization microscopy (SMLM) allows super-resolution analysis by precise localization of single fluorescent molecule tags, resulting in nuclear structure analysis with a spatial resolution in the 10 nm regime. Here, we used SMLM to study MRE11 foci. MRE11 is one of three proteins involved in the MRN-complex (MRE11-RAD50-NBS1 complex), a prominent DNA strand resection and broken end bridging component involved in homologous recombination repair (HRR) and alternative non-homologous end joining (a-NHEJ). We analyzed the spatial arrangements of antibody-labelled MRE11 proteins in the nuclei of a breast cancer and a skin fibroblast cell line along a time-course of repair (up to 48 h) after irradiation with a dose of 2 Gy. Different kinetics for cluster formation and relaxation were determined. Changes in the internal nano-scaled structure of the clusters were quantified and compared between the two cell types. The results indicate a cell type-dependent DNA damage response concerning MRE11 recruitment and cluster formation. The MRE11 data were compared to H2AX phosphorylation detected by γH2AX molecule distribution. These data suggested modulations of MRE11 signal frequencies that were not directly correlated to DNA damage induction. The application of SMLM in radiation biophysics offers new possibilities to investigate spatial foci organization after DNA damaging and during subsequent repair.

  2. CLASH-VLT: constraints on f (R) gravity models with galaxy clusters using lensing and kinematic analyses

    Energy Technology Data Exchange (ETDEWEB)

    Pizzuti, L.; Sartoris, B.; Borgani, S.; Girardi, M., E-mail: pizzuti@oats.inaf.it, E-mail: sartoris@oats.inaf.it, E-mail: borgani@oats.inaf.it, E-mail: girardi@oats.inaf.it [Dipartimento di Fisica, Sezione di Astronomia, Università di Trieste, Via Tiepolo 11, I-34143 Trieste (Italy); and others

    2017-07-01

    We perform a maximum likelihood kinematic analysis of the two dynamically relaxed galaxy clusters MACS J1206.2-0847 at z =0.44 and RXC J2248.7-4431 at z =0.35 to determine the total mass profile in modified gravity models, using a modified version of the MAMPOSSt code of Mamon, Biviano and Bou and apos;e. Our work is based on the kinematic and lensing mass profiles derived using the data from the Cluster Lensing And Supernova survey with Hubble (hereafter CLASH) and the spectroscopic follow-up with the Very Large Telescope (hereafter CLASH-VLT). We assume a spherical Navarro-Frenk-White (NFW hereafter) profile in order to obtain a constraint on the fifth force interaction range λ for models in which the dependence of this parameter on the environment is negligible at the scale considered (i.e. λ= const ) and fixing the fifth force strength to the value predicted in f (R) gravity. We then use information from lensing analysis to put a prior on the other NFW free parameters. In the case of MACSJ 1206 the joint kinematic+lensing analysis leads to an upper limit on the effective interaction range λ≤1.61 mpc at Δχ{sup 2}=2.71 on the marginalized distribution. For RXJ 2248 instead a possible tension with the ΛCDM model appears when adding lensing information, with a lower limit λ≥0.14 mpc at Δχ{sup 2}=2.71. This is consequence of the slight difference between the lensing and kinematic data, appearing in GR for this cluster, that could in principle be explained in terms of modifications of gravity. We discuss the impact of systematics and the limits of our analysis as well as future improvements of the results obtained. This work has interesting implications in view of upcoming and future large imaging and spectroscopic surveys, that will deliver lensing and kinematic mass reconstruction for a large number of galaxy clusters.

  3. Complexity of major UK companies between 2006 and 2010: Hierarchical structure method approach

    Science.gov (United States)

    Ulusoy, Tolga; Keskin, Mustafa; Shirvani, Ayoub; Deviren, Bayram; Kantar, Ersin; Çaǧrı Dönmez, Cem

    2012-11-01

    This study reports on topology of the top 40 UK companies that have been analysed for predictive verification of markets for the period 2006-2010, applying the concept of minimal spanning tree and hierarchical tree (HT) analysis. Construction of the minimal spanning tree (MST) and the hierarchical tree (HT) is confined to a brief description of the methodology and a definition of the correlation function between a pair of companies based on the London Stock Exchange (LSE) index in order to quantify synchronization between the companies. A derivation of hierarchical organization and the construction of minimal-spanning and hierarchical trees for the 2006-2008 and 2008-2010 periods have been used and the results validate the predictive verification of applied semantics. The trees are known as useful tools to perceive and detect the global structure, taxonomy and hierarchy in financial data. From these trees, two different clusters of companies in 2006 were detected. They also show three clusters in 2008 and two between 2008 and 2010, according to their proximity. The clusters match each other as regards their common production activities or their strong interrelationship. The key companies are generally given by major economic activities as expected. This work gives a comparative approach between MST and HT methods from statistical physics and information theory with analysis of financial markets that may give new valuable and useful information of the financial market dynamics.

  4. Cluster-cluster clustering

    International Nuclear Information System (INIS)

    Barnes, J.; Dekel, A.; Efstathiou, G.; Frenk, C.S.; Yale Univ., New Haven, CT; California Univ., Santa Barbara; Cambridge Univ., England; Sussex Univ., Brighton, England)

    1985-01-01

    The cluster correlation function xi sub c(r) is compared with the particle correlation function, xi(r) in cosmological N-body simulations with a wide range of initial conditions. The experiments include scale-free initial conditions, pancake models with a coherence length in the initial density field, and hybrid models. Three N-body techniques and two cluster-finding algorithms are used. In scale-free models with white noise initial conditions, xi sub c and xi are essentially identical. In scale-free models with more power on large scales, it is found that the amplitude of xi sub c increases with cluster richness; in this case the clusters give a biased estimate of the particle correlations. In the pancake and hybrid models (with n = 0 or 1), xi sub c is steeper than xi, but the cluster correlation length exceeds that of the points by less than a factor of 2, independent of cluster richness. Thus the high amplitude of xi sub c found in studies of rich clusters of galaxies is inconsistent with white noise and pancake models and may indicate a primordial fluctuation spectrum with substantial power on large scales. 30 references

  5. High-throughput screening of monoclonal antibodies against plant cell wall glycans by hierarchical clustering of their carbohydrate microarray binding profiles

    DEFF Research Database (Denmark)

    Moller, Isabel Eva; Marcus, Susan E.; Haeger, Ash

    2008-01-01

    Antibody-producing hybridoma cell lines were created following immunisation with a crude extract of cell wall polymers from the plant Arabidopsis thaliana. In order to rapidly screen the specificities of individual monoclonal antibodies (mAbs), their binding to microarrays containing 50 cell wall...... investigated using subsequent immunochemical and biochemical analyses and two novel mAbs are described in detail. mAb LM13 binds to an arabinanase-sensitive pectic epitope and mAb LM14, binds to an epitope occurring on arabinogalactan-proteins. Both mAbs display novel patterns of recognition of cell walls...

  6. Clustering Dycom

    KAUST Repository

    Minku, Leandro L.

    2017-10-06

    Background: Software Effort Estimation (SEE) can be formulated as an online learning problem, where new projects are completed over time and may become available for training. In this scenario, a Cross-Company (CC) SEE approach called Dycom can drastically reduce the number of Within-Company (WC) projects needed for training, saving the high cost of collecting such training projects. However, Dycom relies on splitting CC projects into different subsets in order to create its CC models. Such splitting can have a significant impact on Dycom\\'s predictive performance. Aims: This paper investigates whether clustering methods can be used to help finding good CC splits for Dycom. Method: Dycom is extended to use clustering methods for creating the CC subsets. Three different clustering methods are investigated, namely Hierarchical Clustering, K-Means, and Expectation-Maximisation. Clustering Dycom is compared against the original Dycom with CC subsets of different sizes, based on four SEE databases. A baseline WC model is also included in the analysis. Results: Clustering Dycom with K-Means can potentially help to split the CC projects, managing to achieve similar or better predictive performance than Dycom. However, K-Means still requires the number of CC subsets to be pre-defined, and a poor choice can negatively affect predictive performance. EM enables Dycom to automatically set the number of CC subsets while still maintaining or improving predictive performance with respect to the baseline WC model. Clustering Dycom with Hierarchical Clustering did not offer significant advantage in terms of predictive performance. Conclusion: Clustering methods can be an effective way to automatically generate Dycom\\'s CC subsets.

  7. Hierarchical ordering with partial pairwise hierarchical relationships on the macaque brain data sets.

    Directory of Open Access Journals (Sweden)

    Woosang Lim

    Full Text Available Hierarchical organizations of information processing in the brain networks have been known to exist and widely studied. To find proper hierarchical structures in the macaque brain, the traditional methods need the entire pairwise hierarchical relationships between cortical areas. In this paper, we present a new method that discovers hierarchical structures of macaque brain networks by using partial information of pairwise hierarchical relationships. Our method uses a graph-based manifold learning to exploit inherent relationship, and computes pseudo distances of hierarchical levels for every pair of cortical areas. Then, we compute hierarchy levels of all cortical areas by minimizing the sum of squared hierarchical distance errors with the hierarchical information of few cortical areas. We evaluate our method on the macaque brain data sets whose true hierarchical levels are known as the FV91 model. The experimental results show that hierarchy levels computed by our method are similar to the FV91 model, and its errors are much smaller than the errors of hierarchical clustering approaches.

  8. Interpretation of data on the aggregate composition of typical chernozems under different land use by cluster and principal component analyses

    Science.gov (United States)

    Kholodov, V. A.; Yaroslavtseva, N. V.; Lazarev, V. I.; Frid, A. S.

    2016-09-01

    Cluster analysis and principal component analysis (PCA) have been used for the interpretation of dry sieving data. Chernozems from the treatments of long-term field experiments with different land-use patterns— annually mowed steppe, continuous potato culture, permanent black fallow, and untilled fallow since 1998 after permanent black fallow—have been used. Analysis of dry sieving data by PCA has shown that the treatments of untilled fallow after black fallow and annually mowed steppe differ most in the series considered; the content of dry aggregates of 10-7 mm makes the largest contribution to the distribution of objects along the first principal component. This fraction has been sieved in water and analyzed by PCA. In contrast to dry sieving data, the wet sieving data showed the closest mathematical distance between the treatment of untilled fallow after black fallow and the undisturbed treatment of annually mowed steppe, while the untilled fallow after black fallow and the permanent black fallow were the most distant treatments. Thus, it may be suggested that the water stability of structure is first restored after the removal of destructive anthropogenic load. However, the restoration of the distribution of structural separates to the parameters characteristic of native soils is a significantly longer process.

  9. Population structure of Atlantic Mackerel inferred from RAD-seq derived SNP markers: effects of sequence clustering parameters and hierarchical SNP selection

    KAUST Repository

    Rodríguez-Ezpeleta, Naiara

    2016-03-03

    Restriction-site associated DNA sequencing (RAD-seq) and related methods are revolutionizing the field of population genomics in non-model organisms as they allow generating an unprecedented number of single nucleotide polymorphisms (SNPs) even when no genomic information is available. Yet, RAD-seq data analyses rely on assumptions on nature and number of nucleotide variants present in a single locus, the choice of which may lead to an under- or overestimated number of SNPs and/or to incorrectly called genotypes. Using the Atlantic mackerel (Scomber scombrus L.) and a close relative, the Atlantic chub mackerel (Scomber colias), as case study, here we explore the sensitivity of population structure inferences to two crucial aspects in RAD-seq data analysis: the maximum number of mismatches allowed to merge reads into a locus and the relatedness of the individuals used for genotype calling and SNP selection. Our study resolves the population structure of the Atlantic mackerel, but, most importantly, provides insights into the effects of alternative RAD-seq data analysis strategies on population structure inferences that are directly applicable to other species.

  10. On hierarchical solutions to the BBGKY hierarchy

    Science.gov (United States)

    Hamilton, A. J. S.

    1988-01-01

    It is thought that the gravitational clustering of galaxies in the universe may approach a scale-invariant, hierarchical form in the small separation, large-clustering regime. Past attempts to solve the Born-Bogoliubov-Green-Kirkwood-Yvon (BBGKY) hierarchy in this regime have assumed a certain separable hierarchical form for the higher order correlation functions of galaxies in phase space. It is shown here that such separable solutions to the BBGKY equations must satisfy the condition that the clustered component of the solution has cluster-cluster correlations equal to galaxy-galaxy correlations to all orders. The solutions also admit the presence of an arbitrary unclustered component, which plays no dyamical role in the large-clustering regime. These results are a particular property of the specific separable model assumed for the correlation functions in phase space, not an intrinsic property of spatially hierarchical solutions to the BBGKY hierarchy. The observed distribution of galaxies does not satisfy the required conditions. The disagreement between theory and observation may be traced, at least in part, to initial conditions which, if Gaussian, already have cluster correlations greater than galaxy correlations.

  11. Using Cluster Analysis to Compartmentalize a Large Managed Wetland Based on Physical, Biological, and Climatic Geospatial Attributes.

    Science.gov (United States)

    Hahus, Ian; Migliaccio, Kati; Douglas-Mankin, Kyle; Klarenberg, Geraldine; Muñoz-Carpena, Rafael

    2018-04-27

    Hierarchical and partitional cluster analyses were used to compartmentalize Water Conservation Area 1, a managed wetland within the Arthur R. Marshall Loxahatchee National Wildlife Refuge in southeast Florida, USA, based on physical, biological, and climatic geospatial attributes. Single, complete, average, and Ward's linkages were tested during the hierarchical cluster analyses, with average linkage providing the best results. In general, the partitional method, partitioning around medoids, found clusters that were more evenly sized and more spatially aggregated than those resulting from the hierarchical analyses. However, hierarchical analysis appeared to be better suited to identify outlier regions that were significantly different from other areas. The clusters identified by geospatial attributes were similar to clusters developed for the interior marsh in a separate study using water quality attributes, suggesting that similar factors have influenced variations in both the set of physical, biological, and climatic attributes selected in this study and water quality parameters. However, geospatial data allowed further subdivision of several interior marsh clusters identified from the water quality data, potentially indicating zones with important differences in function. Identification of these zones can be useful to managers and modelers by informing the distribution of monitoring equipment and personnel as well as delineating regions that may respond similarly to future changes in management or climate.

  12. Data Clustering

    Science.gov (United States)

    Wagstaff, Kiri L.

    2012-03-01

    clustering, in which some partial information about item assignments or other components of the resulting output are already known and must be accommodated by the solution. Some algorithms seek a partition of the data set into distinct clusters, while others build a hierarchy of nested clusters that can capture taxonomic relationships. Some produce a single optimal solution, while others construct a probabilistic model of cluster membership. More formally, clustering algorithms operate on a data set X composed of items represented by one or more features (dimensions). These could include physical location, such as right ascension and declination, as well as other properties such as brightness, color, temporal change, size, texture, and so on. Let D be the number of dimensions used to represent each item, xi ∈ RD. The clustering goal is to produce an organization P of the items in X that optimizes an objective function f : P -> R, which quantifies the quality of solution P. Often f is defined so as to maximize similarity within a cluster and minimize similarity between clusters. To that end, many algorithms make use of a measure d : X x X -> R of the distance between two items. A partitioning algorithm produces a set of clusters P = {c1, . . . , ck} such that the clusters are nonoverlapping (c_i intersected with c_j = empty set, i != j) subsets of the data set (Union_i c_i=X). Hierarchical algorithms produce a series of partitions P = {p1, . . . , pn }. For a complete hierarchy, the number of partitions n’= n, the number of items in the data set; the top partition is a single cluster containing all items, and the bottom partition contains n clusters, each containing a single item. For model-based clustering, each cluster c_j is represented by a model m_j , such as the cluster center or a Gaussian distribution. The wide array of available clustering algorithms may seem bewildering, and covering all of them is beyond the scope of this chapter. Choosing among them for a

  13. A Clustering Routing Protocol for Mobile Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Jinke Huang

    2016-01-01

    Full Text Available The dynamic topology of a mobile ad hoc network poses a real challenge in the design of hierarchical routing protocol, which combines proactive with reactive routing protocols and takes advantages of both. And as an essential technique of hierarchical routing protocol, clustering of nodes provides an efficient method of establishing a hierarchical structure in mobile ad hoc networks. In this paper, we designed a novel clustering algorithm and a corresponding hierarchical routing protocol for large-scale mobile ad hoc networks. Each cluster is composed of a cluster head, several cluster gateway nodes, several cluster guest nodes, and other cluster members. The proposed routing protocol uses proactive protocol between nodes within individual clusters and reactive protocol between clusters. Simulation results show that the proposed clustering algorithm and hierarchical routing protocol provide superior performance with several advantages over existing clustering algorithm and routing protocol, respectively.

  14. Parameterization and Observability Analysis of Scalable Battery Clusters for Onboard Thermal Management Paramétrage et analyse d’observabilité de clusters de batteries de taille variable pour une gestion thermique embarquée

    Directory of Open Access Journals (Sweden)

    Lin Xinfan

    2013-03-01

    paramétrage en ligne et un observateur adaptatif sont conçus pour une batterie cylindrique. Le modèle thermique à une seule cellule est ensuite agrandi afin de créer un modèle de cluster de batteries dans le but d’étudier le schéma de température du cluster. Les interconnexions thermiques modélisées entre les cellules incluent la conduction de chaleur de cellule à cellule et la convection au flux du liquide de refroidissement environnant. Une analyse d’observabilité est effectuée sur le cluster avant la conception, pour le pack, d’un observateur en boucle fermée. Sur la base de l’analyse, les lignes directrices permettant la détermination du nombre minimal de sondes requises et leurs positionnements exacts sont déduites permettant d’assurer l’observabilité de tous les états thermiques.

  15. Brightest Cluster Galaxies in REXCESS Clusters

    Science.gov (United States)

    Haarsma, Deborah B.; Leisman, L.; Bruch, S.; Donahue, M.

    2009-01-01

    Most galaxy clusters contain a Brightest Cluster Galaxy (BCG) which is larger than the other cluster ellipticals and has a more extended profile. In the hierarchical model, the BCG forms through many galaxy mergers in the crowded center of the cluster, and thus its properties give insight into the assembly of the cluster as a whole. In this project, we are working with the Representative XMM-Newton Cluster Structure Survey (REXCESS) team (Boehringer et al 2007) to study BCGs in 33 X-ray luminous galaxy clusters, 0.055 < z < 0.183. We are imaging the BCGs in R band at the Southern Observatory for Astrophysical Research (SOAR) in Chile. In this poster, we discuss our methods and give preliminary measurements of the BCG magnitudes, morphology, and stellar mass. We compare these BCG properties with the properties of their host clusters, particularly of the X-ray emitting gas.

  16. Hierarchical Sets: Analyzing Pangenome Structure through Scalable Set Visualizations

    DEFF Research Database (Denmark)

    Pedersen, Thomas Lin

    2017-01-01

    of hierarchical sets by applying it to a pangenome based on 113 Escherichia and Shigella genomes and find it provides a powerful addition to pangenome analysis. The described clustering algorithm and visualizations are implemented in the hierarchicalSets R package available from CRAN (https...

  17. Application of cluster and discriminant analyses to diagnose lithological heterogeneity of the parent material according to its particle-size distribution

    Science.gov (United States)

    Giniyatullin, K. G.; Valeeva, A. A.; Smirnova, E. V.

    2017-08-01

    Particle-size distribution in soddy-podzolic and light gray forest soils of the Botanical Garden of Kazan Federal University has been studied. The cluster analysis of data on the samples from genetic soil horizons attests to the lithological heterogeneity of the profiles of all the studied soils. It is probable that they are developed from the two-layered sediments with the upper colluvial layer underlain by the alluvial layer. According to the discriminant analysis, the major contribution to the discrimination of colluvial and alluvial layers is that of the fraction >0.25 mm. The results of canonical analysis show that there is only one significant discriminant function that separates alluvial and colluvial sediments on the investigated territory. The discriminant function correlates with the contents of fractions 0.05-0.01, 0.25-0.05, and >0.25 mm. Classification functions making it possible to distinguish between alluvial and colluvial sediments have been calculated. Statistical assessment of particle-size distribution data obtained for the plow horizons on ten plowed fields within the garden indicates that this horizon is formed from colluvial sediments. We conclude that the contents of separate fractions and their ratios cannot be used as a universal criterion of the lithological heterogeneity. However, adequate combination of the cluster and discriminant analyses makes it possible to give a comprehensive assessment of the lithology of soil samples from data on the contents of sand and silt fractions, which considerably increases the information value and reliability of the results.

  18. Automated tetraploid genotype calling by hierarchical clustering

    Science.gov (United States)

    SNP arrays are transforming breeding and genetics research for autotetraploids. To fully utilize these arrays, however, the relationship between signal intensity and allele dosage must be inferred independently for each marker. We developed an improved computational method to automate this process, ...

  19. A quantitative method to analyse an open answer questionnaire: A case study about the Boltzmann Factor

    International Nuclear Information System (INIS)

    Battaglia, Onofrio Rosario; Di Paola, Benedetto

    2015-01-01

    This paper describes a quantitative method to analyse an openended questionnaire. Student responses to a specially designed written questionnaire are quantitatively analysed by not hierarchical clustering called k-means method. Through this we can characterise behaviour students with respect their expertise to formulate explanations for phenomena or processes and/or use a given model in the different context. The physics topic is about the Boltzmann Factor, which allows the students to have a unifying view of different phenomena in different contexts.

  20. Relationship between damage clustering and mortality in systemic lupus erythematosus in early and late stages of the disease: cluster analyses in a large cohort from the Spanish Society of Rheumatology Lupus Registry.

    Science.gov (United States)

    Pego-Reigosa, José María; Lois-Iglesias, Ana; Rúa-Figueroa, Íñigo; Galindo, María; Calvo-Alén, Jaime; de Uña-Álvarez, Jacobo; Balboa-Barreiro, Vanessa; Ibáñez Ruan, Jesús; Olivé, Alejandro; Rodríguez-Gómez, Manuel; Fernández Nebro, Antonio; Andrés, Mariano; Erausquin, Celia; Tomero, Eva; Horcada Rubio, Loreto; Uriarte Isacelaya, Esther; Freire, Mercedes; Montilla, Carlos; Sánchez-Atrio, Ana I; Santos-Soler, Gregorio; Zea, Antonio; Díez, Elvira; Narváez, Javier; Blanco-Alonso, Ricardo; Silva-Fernández, Lucía; Ruiz-Lucea, María Esther; Fernández-Castro, Mónica; Hernández-Beriain, José Ángel; Gantes-Mora, Marian; Hernández-Cruz, Blanca; Pérez-Venegas, José; Pecondón-Español, Ángela; Marras Fernández-Cid, Carlos; Ibáñez-Barcelo, Mónica; Bonilla, Gema; Torrente-Segarra, Vicenç; Castellví, Iván; Alegre, Juan José; Calvet, Joan; Marenco de la Fuente, José Luis; Raya, Enrique; Vázquez-Rodríguez, Tomás Ramón; Quevedo-Vila, Víctor; Muñoz-Fernández, Santiago; Otón, Teresa; Rahman, Anisur; López-Longo, Francisco Javier

    2016-07-01

    To identify patterns (clusters) of damage manifestations within a large cohort of SLE patients and evaluate the potential association of these clusters with a higher risk of mortality. This is a multicentre, descriptive, cross-sectional study of a cohort of 3656 SLE patients from the Spanish Society of Rheumatology Lupus Registry. Organ damage was ascertained using the Systemic Lupus International Collaborating Clinics Damage Index. Using cluster analysis, groups of patients with similar patterns of damage manifestations were identified. Then, overall clusters were compared as well as the subgroup of patients within every cluster with disease duration shorter than 5 years. Three damage clusters were identified. Cluster 1 (80.6% of patients) presented a lower amount of individuals with damage (23.2 vs 100% in clusters 2 and 3, P Cluster 2 (11.4% of patients) was characterized by musculoskeletal damage in all patients. Cluster 3 (8.0% of patients) was the only group with cardiovascular damage, and this was present in all patients. The overall mortality rate of patients in clusters 2 and 3 was higher than that in cluster 1 (P clusters. Both in early and late stages of the disease, there was a significant association of these clusters with an increased risk of mortality. Physicians should pay special attention to the early prevention of damage in these two systems. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Hierarchical MAS based control strategy for microgrid

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Z.; Li, T.; Huang, M.; Shi, J.; Yang, J.; Yu, J. [School of Information Science and Engineering, Yunnan University, Kunming 650091 (China); Xiao, Z. [School of Electrical and Electronic Engineering, Nanyang Technological University, Western Catchment Area, 639798 (Singapore); Wu, W. [Communication Branch of Yunnan Power Grid Corporation, Kunming, Yunnan 650217 (China)

    2010-09-15

    Microgrids have become a hot topic driven by the dual pressures of environmental protection concerns and the energy crisis. In this paper, a challenge for the distributed control of a modern electric grid incorporating clusters of residential microgrids is elaborated and a hierarchical multi-agent system (MAS) is proposed as a solution. The issues of how to realize the hierarchical MAS and how to improve coordination and control strategies are discussed. Based on MATLAB and ZEUS platforms, bilateral switching between grid-connected mode and island mode is performed under control of the proposed MAS to enhance and support its effectiveness. (authors)

  2. Intracluster age gradients in numerous young stellar clusters

    Science.gov (United States)

    Getman, K. V.; Feigelson, E. D.; Kuhn, M. A.; Bate, M. R.; Broos, P. S.; Garmire, G. P.

    2018-05-01

    The pace and pattern of star formation leading to rich young stellar clusters is quite uncertain. In this context, we analyse the spatial distribution of ages within 19 young (median t ≲ 3 Myr on the Siess et al. time-scale), morphologically simple, isolated, and relatively rich stellar clusters. Our analysis is based on young stellar object (YSO) samples from the Massive Young Star-Forming Complex Study in Infrared and X-ray and Star Formation in Nearby Clouds surveys, and a new estimator of pre-main sequence (PMS) stellar ages, AgeJX, derived from X-ray and near-infrared photometric data. Median cluster ages are computed within four annular subregions of the clusters. We confirm and extend the earlier result of Getman et al. (2014): 80 per cent of the clusters show age trends where stars in cluster cores are younger than in outer regions. Our cluster stacking analyses establish the existence of an age gradient to high statistical significance in several ways. Time-scales vary with the choice of PMS evolutionary model; the inferred median age gradient across the studied clusters ranges from 0.75 to 1.5 Myr pc-1. The empirical finding reported in the present study - late or continuing formation of stars in the cores of star clusters with older stars dispersed in the outer regions - has a strong foundation with other observational studies and with the astrophysical models like the global hierarchical collapse model of Vázquez-Semadeni et al.

  3. The association between content of the elements S, Cl, K, Fe, Cu, Zn and Br in normal and cirrhotic liver tissue from Danes and Greenlandic Inuit examined by dual hierarchical clustering analysis

    DEFF Research Database (Denmark)

    Laursen, Jens; Milman, Nils; Pind, Niels

    2014-01-01

    contents according to calculated similarities, one clustering elements according to correlation coefficients between the element contents, both using Euclidian distance and Ward Procedure. RESULTS: One dendrogram separated subjects in 7 clusters showing no differences in ethnicity, gender or age...

  4. Analysis hierarchical model for discrete event systems

    Science.gov (United States)

    Ciortea, E. M.

    2015-11-01

    The This paper presents the hierarchical model based on discrete event network for robotic systems. Based on the hierarchical approach, Petri network is analysed as a network of the highest conceptual level and the lowest level of local control. For modelling and control of complex robotic systems using extended Petri nets. Such a system is structured, controlled and analysed in this paper by using Visual Object Net ++ package that is relatively simple and easy to use, and the results are shown as representations easy to interpret. The hierarchical structure of the robotic system is implemented on computers analysed using specialized programs. Implementation of hierarchical model discrete event systems, as a real-time operating system on a computer network connected via a serial bus is possible, where each computer is dedicated to local and Petri model of a subsystem global robotic system. Since Petri models are simplified to apply general computers, analysis, modelling, complex manufacturing systems control can be achieved using Petri nets. Discrete event systems is a pragmatic tool for modelling industrial systems. For system modelling using Petri nets because we have our system where discrete event. To highlight the auxiliary time Petri model using transport stream divided into hierarchical levels and sections are analysed successively. Proposed robotic system simulation using timed Petri, offers the opportunity to view the robotic time. Application of goods or robotic and transmission times obtained by measuring spot is obtained graphics showing the average time for transport activity, using the parameters sets of finished products. individually.

  5. [Cluster analysis in biomedical researches].

    Science.gov (United States)

    Akopov, A S; Moskovtsev, A A; Dolenko, S A; Savina, G D

    2013-01-01

    Cluster analysis is one of the most popular methods for the analysis of multi-parameter data. The cluster analysis reveals the internal structure of the data, group the separate observations on the degree of their similarity. The review provides a definition of the basic concepts of cluster analysis, and discusses the most popular clustering algorithms: k-means, hierarchical algorithms, Kohonen networks algorithms. Examples are the use of these algorithms in biomedical research.

  6. Hierarchical silica particles by dynamic multicomponent assembly

    DEFF Research Database (Denmark)

    Wu, Z. W.; Hu, Q. Y.; Pang, J. B.

    2005-01-01

    Abstract: Aerosol-assisted assembly of mesoporous silica particles with hierarchically controllable pore structure has been prepared using cetyltrimethylammonium bromide (CTAB) and poly(propylene oxide) (PPO, H[OCH(CH3)CH2],OH) as co-templates. Addition of the hydrophobic PPO significantly...... influences the delicate hydrophilic-hydrophobic balance in the well-studied CTAB-silicate co-assembling system, resulting in various mesostructures (such as hexagonal, lamellar, and hierarchical structure). The co-assembly of CTAB, silicate clusters, and a low-molecular-weight PPO (average M-n 425) results...... in a uniform lamellar structure, while the use of a high-molecular-weight PPO (average M-n 2000), which is more hydrophobic, leads to the formation of hierarchical pore structure that contains meso-meso or meso-macro pore structure. The role of PPO additives on the mesostructure evolution in the CTAB...

  7. Crystallographic and mutational analyses of cystathionine β-synthase in the H2 S-synthetic gene cluster in Lactobacillus plantarum.

    Science.gov (United States)

    Matoba, Yasuyuki; Yoshida, Tomoki; Izuhara-Kihara, Hisae; Noda, Masafumi; Sugiyama, Masanori

    2017-04-01

    Cystathionine β-synthase (CBS) catalyzes the formation of l-cystathionine from l-serine and l-homocysteine. The resulting l-cystathionine is decomposed into l-cysteine, ammonia, and α-ketobutylic acid by cystathionine γ-lyase (CGL). This reverse transsulfuration pathway, which is catalyzed by both enzymes, mainly occurs in eukaryotic cells. The eukaryotic CBS and CGL have recently been recognized as major physiological enzymes for the generation of hydrogen sulfide (H 2 S). In some bacteria, including the plant-derived lactic acid bacterium Lactobacillus plantarum, the CBS- and CGL-encoding genes form a cluster in their genomes. Inactivation of these enzymes has been reported to suppress H 2 S production in bacteria; interestingly, it has been shown that H 2 S suppression increases their susceptibility to various antibiotics. In the present study, we characterized the enzymatic properties of the L. plantarum CBS, whose amino acid sequence displays a similarity with those of O-acetyl-l-serine sulfhydrylase (OASS) that catalyzes the generation of l-cysteine from O-acetyl-l-serine (l-OAS) and H 2 S. The L. plantarum CBS shows l-OAS- and l-cysteine-dependent CBS activities together with OASS activity. Especially, it catalyzes the formation of H 2 S in the presence of l-cysteine and l-homocysteine, together with the formation of l-cystathionine. The high affinity toward l-cysteine as a first substrate and tendency to use l-homocysteine as a second substrate might be associated with its enzymatic ability to generate H 2 S. Crystallographic and mutational analyses of CBS indicate that the Ala70 and Glu223 residues at the substrate binding pocket are important for the H 2 S-generating activity. © 2017 The Protein Society.

  8. Investigation of major international and Turkish companies via hierarchical methods and bootstrap approach

    Science.gov (United States)

    Kantar, E.; Deviren, B.; Keskin, M.

    2011-11-01

    We present a study, within the scope of econophysics, of the hierarchical structure of 98 among the largest international companies including 18 among the largest Turkish companies, namely Banks, Automobile, Software-hardware, Telecommunication Services, Energy and the Oil-Gas sectors, viewed as a network of interacting companies. We analyze the daily time series data of the Boerse-Frankfurt and Istanbul Stock Exchange. We examine the topological properties among the companies over the period 2006-2010 by using the concept of hierarchical structure methods (the minimal spanning tree (MST) and the hierarchical tree (HT)). The period is divided into three subperiods, namely 2006-2007, 2008 which was the year of global economic crisis, and 2009-2010, in order to test various time-windows and observe temporal evolution. We carry out bootstrap analyses to associate the value of statistical reliability to the links of the MSTs and HTs. We also use average linkage clustering analysis (ALCA) in order to better observe the cluster structure. From these studies, we find that the interactions among the Banks/Energy sectors and the other sectors were reduced after the global economic crisis; hence the effects of the Banks and Energy sectors on the correlations of all companies were decreased. Telecommunication Services were also greatly affected by the crisis. We also observed that the Automobile and Banks sectors, including Turkish companies as well as some companies from the USA, Japan and Germany were strongly correlated with each other in all periods.

  9. A hybrid clustering approach to recognition of protein families in 114 microbial genomes

    Directory of Open Access Journals (Sweden)

    Gogarten J Peter

    2004-04-01

    Full Text Available Abstract Background Grouping proteins into sequence-based clusters is a fundamental step in many bioinformatic analyses (e.g., homology-based prediction of structure or function. Standard clustering methods such as single-linkage clustering capture a history of cluster topologies as a function of threshold, but in practice their usefulness is limited because unrelated sequences join clusters before biologically meaningful families are fully constituted, e.g. as the result of matches to so-called promiscuous domains. Use of the Markov Cluster algorithm avoids this non-specificity, but does not preserve topological or threshold information about protein families. Results We describe a hybrid approach to sequence-based clustering of proteins that combines the advantages of standard and Markov clustering. We have implemented this hybrid approach over a relational database environment, and describe its application to clustering a large subset of PDB, and to 328577 proteins from 114 fully sequenced microbial genomes. To demonstrate utility with difficult problems, we show that hybrid clustering allows us to constitute the paralogous family of ATP synthase F1 rotary motor subunits into a single, biologically interpretable hierarchical grouping that was not accessible using either single-linkage or Markov clustering alone. We describe validation of this method by hybrid clustering of PDB and mapping SCOP families and domains onto the resulting clusters. Conclusion Hybrid (Markov followed by single-linkage clustering combines the advantages of the Markov Cluster algorithm (avoidance of non-specific clusters resulting from matches to promiscuous domains and single-linkage clustering (preservation of topological information as a function of threshold. Within the individual Markov clusters, single-linkage clustering is a more-precise instrument, discerning sub-clusters of biological relevance. Our hybrid approach thus provides a computationally efficient

  10. Catalysis with hierarchical zeolites

    DEFF Research Database (Denmark)

    Holm, Martin Spangsberg; Taarning, Esben; Egeblad, Kresten

    2011-01-01

    Hierarchical (or mesoporous) zeolites have attracted significant attention during the first decade of the 21st century, and so far this interest continues to increase. There have already been several reviews giving detailed accounts of the developments emphasizing different aspects of this research...... topic. Until now, the main reason for developing hierarchical zeolites has been to achieve heterogeneous catalysts with improved performance but this particular facet has not yet been reviewed in detail. Thus, the present paper summaries and categorizes the catalytic studies utilizing hierarchical...... zeolites that have been reported hitherto. Prototypical examples from some of the different categories of catalytic reactions that have been studied using hierarchical zeolite catalysts are highlighted. This clearly illustrates the different ways that improved performance can be achieved with this family...

  11. Programming with Hierarchical Maps

    DEFF Research Database (Denmark)

    Ørbæk, Peter

    This report desribes the hierarchical maps used as a central data structure in the Corundum framework. We describe its most prominent features, ague for its usefulness and briefly describe some of the software prototypes implemented using the technology....

  12. Introduction into Hierarchical Matrices

    KAUST Repository

    Litvinenko, Alexander

    2013-12-05

    Hierarchical matrices allow us to reduce computational storage and cost from cubic to almost linear. This technique can be applied for solving PDEs, integral equations, matrix equations and approximation of large covariance and precision matrices.

  13. Introduction into Hierarchical Matrices

    KAUST Repository

    Litvinenko, Alexander

    2013-01-01

    Hierarchical matrices allow us to reduce computational storage and cost from cubic to almost linear. This technique can be applied for solving PDEs, integral equations, matrix equations and approximation of large covariance and precision matrices.

  14. Cognitive Clusters in Specific Learning Disorder.

    Science.gov (United States)

    Poletti, Michele; Carretta, Elisa; Bonvicini, Laura; Giorgi-Rossi, Paolo

    The heterogeneity among children with learning disabilities still represents a barrier and a challenge in their conceptualization. Although a dimensional approach has been gaining support, the categorical approach is still the most adopted, as in the recent fifth edition of the Diagnostic and Statistical Manual of Mental Disorders. The introduction of the single overarching diagnostic category of specific learning disorder (SLD) could underemphasize interindividual clinical differences regarding intracategory cognitive functioning and learning proficiency, according to current models of multiple cognitive deficits at the basis of neurodevelopmental disorders. The characterization of specific cognitive profiles associated with an already manifest SLD could help identify possible early cognitive markers of SLD risk and distinct trajectories of atypical cognitive development leading to SLD. In this perspective, we applied a cluster analysis to identify groups of children with a Diagnostic and Statistical Manual-based diagnosis of SLD with similar cognitive profiles and to describe the association between clusters and SLD subtypes. A sample of 205 children with a diagnosis of SLD were enrolled. Cluster analyses (agglomerative hierarchical and nonhierarchical iterative clustering technique) were used successively on 10 core subtests of the Wechsler Intelligence Scale for Children-Fourth Edition. The 4-cluster solution was adopted, and external validation found differences in terms of SLD subtype frequencies and learning proficiency among clusters. Clinical implications of these findings are discussed, tracing directions for further studies.

  15. What Makes Clusters Decline?

    DEFF Research Database (Denmark)

    Østergaard, Christian Richter; Park, Eun Kyung

    2015-01-01

    Most studies on regional clusters focus on identifying factors and processes that make clusters grow. However, sometimes technologies and market conditions suddenly shift, and clusters decline. This paper analyses the process of decline of the wireless communication cluster in Denmark. The longit...... but being quick to withdraw in times of crisis....

  16. Clustering of resting state networks.

    Directory of Open Access Journals (Sweden)

    Megan H Lee

    Full Text Available The goal of the study was to demonstrate a hierarchical structure of resting state activity in the healthy brain using a data-driven clustering algorithm.The fuzzy-c-means clustering algorithm was applied to resting state fMRI data in cortical and subcortical gray matter from two groups acquired separately, one of 17 healthy individuals and the second of 21 healthy individuals. Different numbers of clusters and different starting conditions were used. A cluster dispersion measure determined the optimal numbers of clusters. An inner product metric provided a measure of similarity between different clusters. The two cluster result found the task-negative and task-positive systems. The cluster dispersion measure was minimized with seven and eleven clusters. Each of the clusters in the seven and eleven cluster result was associated with either the task-negative or task-positive system. Applying the algorithm to find seven clusters recovered previously described resting state networks, including the default mode network, frontoparietal control network, ventral and dorsal attention networks, somatomotor, visual, and language networks. The language and ventral attention networks had significant subcortical involvement. This parcellation was consistently found in a large majority of algorithm runs under different conditions and was robust to different methods of initialization.The clustering of resting state activity using different optimal numbers of clusters identified resting state networks comparable to previously obtained results. This work reinforces the observation that resting state networks are hierarchically organized.

  17. Parallel hierarchical radiosity rendering

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Michael [Iowa State Univ., Ames, IA (United States)

    1993-07-01

    In this dissertation, the step-by-step development of a scalable parallel hierarchical radiosity renderer is documented. First, a new look is taken at the traditional radiosity equation, and a new form is presented in which the matrix of linear system coefficients is transformed into a symmetric matrix, thereby simplifying the problem and enabling a new solution technique to be applied. Next, the state-of-the-art hierarchical radiosity methods are examined for their suitability to parallel implementation, and scalability. Significant enhancements are also discovered which both improve their theoretical foundations and improve the images they generate. The resultant hierarchical radiosity algorithm is then examined for sources of parallelism, and for an architectural mapping. Several architectural mappings are discussed. A few key algorithmic changes are suggested during the process of making the algorithm parallel. Next, the performance, efficiency, and scalability of the algorithm are analyzed. The dissertation closes with a discussion of several ideas which have the potential to further enhance the hierarchical radiosity method, or provide an entirely new forum for the application of hierarchical methods.

  18. Examination of Clustering in Eutectic Microstrcture

    Directory of Open Access Journals (Sweden)

    Bortnyik K.

    2017-06-01

    Full Text Available The eutectic microstructures are complex microstructures and a hard work to describe it with few numbers. The eutectics builds up eutectic cells. In the cells the phases are clustered. With the development of big databases the data mining also develops, and produces a lot of method to handling the large datasets, and earns information from the sets. One typical method is the clustering, which finds the groups in the datasets. In this article a partitioning and a hierarchical clustering is applied to eutectic structures to find the clusters. In the case of AlMn alloy the K-means algorithm work well, and find the eutectic cells. In the case of ductile cast iron the hierarchical clustering works better. With the combination of the partitioning and hierarchical clustering with the image transformation, an effective method is developed for clustering the objects in the microstructures.

  19. Canonical PSO Based K-Means Clustering Approach for Real Datasets.

    Science.gov (United States)

    Dey, Lopamudra; Chakraborty, Sanjay

    2014-01-01

    "Clustering" the significance and application of this technique is spread over various fields. Clustering is an unsupervised process in data mining, that is why the proper evaluation of the results and measuring the compactness and separability of the clusters are important issues. The procedure of evaluating the results of a clustering algorithm is known as cluster validity measure. Different types of indexes are used to solve different types of problems and indices selection depends on the kind of available data. This paper first proposes Canonical PSO based K-means clustering algorithm and also analyses some important clustering indices (intercluster, intracluster) and then evaluates the effects of those indices on real-time air pollution database, wholesale customer, wine, and vehicle datasets using typical K-means, Canonical PSO based K-means, simple PSO based K-means, DBSCAN, and Hierarchical clustering algorithms. This paper also describes the nature of the clusters and finally compares the performances of these clustering algorithms according to the validity assessment. It also defines which algorithm will be more desirable among all these algorithms to make proper compact clusters on this particular real life datasets. It actually deals with the behaviour of these clustering algorithms with respect to validation indexes and represents their results of evaluation in terms of mathematical and graphical forms.

  20. A MULTIVARIATE APPROACH TO ANALYSE NATIVE FOREST TREE SPECIE SEEDS

    Directory of Open Access Journals (Sweden)

    Alessandro Dal Col Lúcio

    2006-03-01

    Full Text Available This work grouped, by species, the most similar seed tree, using the variables observed in exotic forest species of theBrazilian flora of seeds collected in the Forest Research and Soil Conservation Center of Santa Maria, Rio Grande do Sul, analyzedfrom January, 1997, to march, 2003. For the cluster analysis, all the species that possessed four or more analyses per lot wereanalyzed by the hierarchical Clustering method, of the standardized Euclidian medium distance, being also a principal componentanalysis technique for reducing the number of variables. The species Callistemon speciosus, Cassia fistula, Eucalyptus grandis,Eucalyptus robusta, Eucalyptus saligna, Eucalyptus tereticornis, Delonix regia, Jacaranda mimosaefolia e Pinus elliottii presentedmore than four analyses per lot, in which the third and fourth main components explained 80% of the total variation. The clusteranalysis was efficient in the separation of the groups of all tested species, as well as the method of the main components.

  1. Hierarchical control of electron-transfer

    DEFF Research Database (Denmark)

    Westerhoff, Hans V.; Jensen, Peter Ruhdal; Egger, Louis

    1997-01-01

    In this chapter the role of electron transfer in determining the behaviour of the ATP synthesising enzyme in E. coli is analysed. It is concluded that the latter enzyme lacks control because of special properties of the electron transfer components. These properties range from absence of a strong...... back pressure by the protonmotive force on the rate of electron transfer to hierarchical regulation of the expression of the gens that encode the electron transfer proteins as a response to changes in the bioenergetic properties of the cell.The discussion uses Hierarchical Control Analysis...

  2. New developments in the simultaneous measurement system of wide-angle and small-angle x-ray scatterings and vibrational spectra for the static and dynamic analyses of the hierarchical structures of polymer solids

    International Nuclear Information System (INIS)

    Tashiro, Kohji; Yamamoto, Hiroko; Yoshioka, Taiyo; Ninh, Tran Hai; Shimada, Shigeru; Nakatani, Takeshi; Iwamoto, Hiroyuki; Ohta, Noboru; Masunaga, Hiroyasu

    2012-01-01

    A simultaneous measurement system of wide-angle X-ray diffraction (WAXD), small-angle X-ray scattering (SAXS) and Raman or transmission-type infrared spectroscopy was developed by us. Its purposes is to clarify the static and dynamic structural changes of polymer materials subjected to the various external condition changes. Some examples described here include the study of the stretch-induced reorientation phenomenon of a-axially-oriented polyethylene, the study of structural change in photo-induced solid-state polymerization reaction of muconic acid ester monomer crystal, the study of the two-stage high-temperature phase transitions of aliphatic nylons, the study of stress-induced crystalline phase transition of an oriented poly(tetramethylene terephthalate) sample and its relation to the higher-order structural change, and the study of structural regularization process of poly(L-lactic acid) in the isothermal crystallization of the meso phase. These case studies in the clarification of hierarchical structural changes of polymer materials have proven that the simultaneous measurement systems can be useful to examine the structural changes in polymer systems. (author)

  3. Comparative Genomic Analyses of Multiple Pseudomonas Strains Infecting Corylus avellana Trees Reveal the Occurrence of Two Genetic Clusters with Both Common and Distinctive Virulence and Fitness Traits

    Science.gov (United States)

    Marcelletti, Simone; Scortichini, Marco

    2015-01-01

    The European hazelnut (Corylus avellana) is threatened in Europe by several pseudomonads which cause symptoms ranging from twig dieback to tree death. A comparison of the draft genomes of nine Pseudomonas strains isolated from symptomatic C. avellana trees was performed to identify common and distinctive genomic traits. The thorough assessment of genetic relationships among the strains revealed two clearly distinct clusters: P. avellanae and P. syringae. The latter including the pathovars avellanae, coryli and syringae. Between these two clusters, no recombination event was found. A genomic island of approximately 20 kb, containing the hrp/hrc type III secretion system gene cluster, was found to be present without any genomic difference in all nine pseudomonads. The type III secretion system effector repertoires were remarkably different in the two groups, with P. avellanae showing a higher number of effectors. Homologue genes of the antimetabolite mangotoxin and ice nucleation activity clusters were found solely in all P. syringae pathovar strains, whereas the siderophore yersiniabactin was only present in P. avellanae. All nine strains have genes coding for pectic enzymes and sucrose metabolism. By contrast, they do not have genes coding for indolacetic acid and anti-insect toxin. Collectively, this study reveals that genomically different Pseudomonas can converge on the same host plant by suppressing the host defence mechanisms with the use of different virulence weapons. The integration into their genomes of a horizontally acquired genomic island could play a fundamental role in their evolution, perhaps giving them the ability to exploit new ecological niches. PMID:26147218

  4. An evaluation of centrality measures used in cluster analysis

    Science.gov (United States)

    Engström, Christopher; Silvestrov, Sergei

    2014-12-01

    Clustering of data into groups of similar objects plays an important part when analysing many types of data, especially when the datasets are large as they often are in for example bioinformatics, social networks and computational linguistics. Many clustering algorithms such as K-means and some types of hierarchical clustering need a number of centroids representing the 'center' of the clusters. The choice of centroids for the initial clusters often plays an important role in the quality of the clusters. Since a data point with a high centrality supposedly lies close to the 'center' of some cluster, this can be used to assign centroids rather than through some other method such as picking them at random. Some work have been done to evaluate the use of centrality measures such as degree, betweenness and eigenvector centrality in clustering algorithms. The aim of this article is to compare and evaluate the usefulness of a number of common centrality measures such as the above mentioned and others such as PageRank and related measures.

  5. Coherence-based Time Series Clustering for Brain Connectivity Visualization

    KAUST Repository

    Euan, Carolina

    2017-11-19

    We develop the hierarchical cluster coherence (HCC) method for brain signals, a procedure for characterizing connectivity in a network by clustering nodes or groups of channels that display high level of coordination as measured by

  6. Coherence-based Time Series Clustering for Brain Connectivity Visualization

    KAUST Repository

    Euan, Carolina; Sun, Ying; Ombao, Hernando

    2017-01-01

    We develop the hierarchical cluster coherence (HCC) method for brain signals, a procedure for characterizing connectivity in a network by clustering nodes or groups of channels that display high level of coordination as measured by

  7. Hierarchical capillary adhesion of microcantilevers or hairs

    International Nuclear Information System (INIS)

    Liu Jianlin; Feng Xiqiao; Xia Re; Zhao Hongping

    2007-01-01

    As a result of capillary forces, animal hairs, carbon nanotubes or nanowires of a periodically or randomly distributed array often assemble into hierarchical structures. In this paper, the energy method is adopted to analyse the capillary adhesion of microsized hairs, which are modelled as clamped microcantilevers wetted by liquids. The critical conditions for capillary adhesion of two hairs, three hairs or two bundles of hairs are derived in terms of Young's contact angle, elastic modulus and geometric sizes of the beams. Then, the hierarchical capillary adhesion of hairs is addressed. It is found that for multiple hairs or microcantilevers, the system tends to take a hierarchical structure as a result of the minimization of the total potential energy of the system. The level number of structural hierarchy increases with the increase in the number of hairs if they are sufficiently long. Additionally, we performed experiments to verify our theoretical solutions for the adhesion of microbeams

  8. Hierarchical Traces for Reduced NSM Memory Requirements

    Science.gov (United States)

    Dahl, Torbjørn S.

    This paper presents work on using hierarchical long term memory to reduce the memory requirements of nearest sequence memory (NSM) learning, a previously published, instance-based reinforcement learning algorithm. A hierarchical memory representation reduces the memory requirements by allowing traces to share common sub-sequences. We present moderated mechanisms for estimating discounted future rewards and for dealing with hidden state using hierarchical memory. We also present an experimental analysis of how the sub-sequence length affects the memory compression achieved and show that the reduced memory requirements do not effect the speed of learning. Finally, we analyse and discuss the persistence of the sub-sequences independent of specific trace instances.

  9. Challenges in microarray class discovery: a comprehensive examination of normalization, gene selection and clustering

    Directory of Open Access Journals (Sweden)

    Landfors Mattias

    2010-10-01

    Full Text Available Abstract Background Cluster analysis, and in particular hierarchical clustering, is widely used to extract information from gene expression data. The aim is to discover new classes, or sub-classes, of either individuals or genes. Performing a cluster analysis commonly involve decisions on how to; handle missing values, standardize the data and select genes. In addition, pre-processing, involving various types of filtration and normalization procedures, can have an effect on the ability to discover biologically relevant classes. Here we consider cluster analysis in a broad sense and perform a comprehensive evaluation that covers several aspects of cluster analyses, including normalization. Result We evaluated 2780 cluster analysis methods on seven publicly available 2-channel microarray data sets with common reference designs. Each cluster analysis method differed in data normalization (5 normalizations were considered, missing value imputation (2, standardization of data (2, gene selection (19 or clustering method (11. The cluster analyses are evaluated using known classes, such as cancer types, and the adjusted Rand index. The performances of the different analyses vary between the data sets and it is difficult to give general recommendations. However, normalization, gene selection and clustering method are all variables that have a significant impact on the performance. In particular, gene selection is important and it is generally necessary to include a relatively large number of genes in order to get good performance. Selecting genes with high standard deviation or using principal component analysis are shown to be the preferred gene selection methods. Hierarchical clustering using Ward's method, k-means clustering and Mclust are the clustering methods considered in this paper that achieves the highest adjusted Rand. Normalization can have a significant positive impact on the ability to cluster individuals, and there are indications that

  10. Challenges in microarray class discovery: a comprehensive examination of normalization, gene selection and clustering

    Science.gov (United States)

    2010-01-01

    Background Cluster analysis, and in particular hierarchical clustering, is widely used to extract information from gene expression data. The aim is to discover new classes, or sub-classes, of either individuals or genes. Performing a cluster analysis commonly involve decisions on how to; handle missing values, standardize the data and select genes. In addition, pre-processing, involving various types of filtration and normalization procedures, can have an effect on the ability to discover biologically relevant classes. Here we consider cluster analysis in a broad sense and perform a comprehensive evaluation that covers several aspects of cluster analyses, including normalization. Result We evaluated 2780 cluster analysis methods on seven publicly available 2-channel microarray data sets with common reference designs. Each cluster analysis method differed in data normalization (5 normalizations were considered), missing value imputation (2), standardization of data (2), gene selection (19) or clustering method (11). The cluster analyses are evaluated using known classes, such as cancer types, and the adjusted Rand index. The performances of the different analyses vary between the data sets and it is difficult to give general recommendations. However, normalization, gene selection and clustering method are all variables that have a significant impact on the performance. In particular, gene selection is important and it is generally necessary to include a relatively large number of genes in order to get good performance. Selecting genes with high standard deviation or using principal component analysis are shown to be the preferred gene selection methods. Hierarchical clustering using Ward's method, k-means clustering and Mclust are the clustering methods considered in this paper that achieves the highest adjusted Rand. Normalization can have a significant positive impact on the ability to cluster individuals, and there are indications that background correction is

  11. Hierarchical wave functions revisited

    International Nuclear Information System (INIS)

    Li Dingping.

    1997-11-01

    We study the hierarchical wave functions on a sphere and on a torus. We simplify some wave functions on a sphere or a torus using the analytic properties of wave functions. The open question, the construction of the wave function for quasi electron excitation on a torus, is also solved in this paper. (author)

  12. Hierarchical Porous Structures

    Energy Technology Data Exchange (ETDEWEB)

    Grote, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-07

    Materials Design is often at the forefront of technological innovation. While there has always been a push to generate increasingly low density materials, such as aero or hydrogels, more recently the idea of bicontinuous structures has gone more into play. This review will cover some of the methods and applications for generating both porous, and hierarchically porous structures.

  13. The Hierarchical Perspective

    Directory of Open Access Journals (Sweden)

    Daniel Sofron

    2015-05-01

    Full Text Available This paper is focused on the hierarchical perspective, one of the methods for representing space that was used before the discovery of the Renaissance linear perspective. The hierarchical perspective has a more or less pronounced scientific character and its study offers us a clear image of the way the representatives of the cultures that developed it used to perceive the sensitive reality. This type of perspective is an original method of representing three-dimensional space on a flat surface, which characterises the art of Ancient Egypt and much of the art of the Middle Ages, being identified in the Eastern European Byzantine art, as well as in the Western European Pre-Romanesque and Romanesque art. At the same time, the hierarchical perspective is also present in naive painting and infantile drawing. Reminiscences of this method can be recognised also in the works of some precursors of the Italian Renaissance. The hierarchical perspective can be viewed as a subjective ranking criterion, according to which the elements are visually represented by taking into account their relevance within the image while perception is ignored. This paper aims to show how the main objective of the artists of those times was not to faithfully represent the objective reality, but rather to emphasize the essence of the world and its perennial aspects. This may represent a possible explanation for the refusal of perspective in the Egyptian, Romanesque and Byzantine painting, characterised by a marked two-dimensionality.

  14. CBHRP: A Cluster Based Routing Protocol for Wireless Sensor Network

    OpenAIRE

    Rashed, M. G.; Kabir, M. Hasnat; Rahim, M. Sajjadur; Ullah, Sk. Enayet

    2012-01-01

    A new two layer hierarchical routing protocol called Cluster Based Hierarchical Routing Protocol (CBHRP) is proposed in this paper. It is an extension of LEACH routing protocol. We introduce cluster head-set idea for cluster-based routing where several clusters are formed with the deployed sensors to collect information from target field. On rotation basis, a head-set member receives data from the neighbor nodes and transmits the aggregated results to the distance base station. This protocol ...

  15. Clustering of near clusters versus cluster compactness

    International Nuclear Information System (INIS)

    Yu Gao; Yipeng Jing

    1989-01-01

    The clustering properties of near Zwicky clusters are studied by using the two-point angular correlation function. The angular correlation functions for compact and medium compact clusters, for open clusters, and for all near Zwicky clusters are estimated. The results show much stronger clustering for compact and medium compact clusters than for open clusters, and that open clusters have nearly the same clustering strength as galaxies. A detailed study of the compactness-dependence of correlation function strength is worth investigating. (author)

  16. De Novo Assembly and Genome Analyses of the Marine-Derived Scopulariopsis brevicaulis Strain LF580 Unravels Life-Style Traits and Anticancerous Scopularide Biosynthetic Gene Cluster.

    Science.gov (United States)

    Kumar, Abhishek; Henrissat, Bernard; Arvas, Mikko; Syed, Muhammad Fahad; Thieme, Nils; Benz, J Philipp; Sørensen, Jens Laurids; Record, Eric; Pöggeler, Stefanie; Kempken, Frank

    2015-01-01

    The marine-derived Scopulariopsis brevicaulis strain LF580 produces scopularides A and B, which have anticancerous properties. We carried out genome sequencing using three next-generation DNA sequencing methods. De novo hybrid assembly yielded 621 scaffolds with a total size of 32.2 Mb and 16298 putative gene models. We identified a large non-ribosomal peptide synthetase gene (nrps1) and supporting pks2 gene in the same biosynthetic gene cluster. This cluster and the genes within the cluster are functionally active as confirmed by RNA-Seq. Characterization of carbohydrate-active enzymes and major facilitator superfamily (MFS)-type transporters lead to postulate S. brevicaulis originated from a soil fungus, which came into contact with the marine sponge Tethya aurantium. This marine sponge seems to provide shelter to this fungus and micro-environment suitable for its survival in the ocean. This study also builds the platform for further investigations of the role of life-style and secondary metabolites from S. brevicaulis.

  17. Hierarchical structure in the distribution of galaxies

    International Nuclear Information System (INIS)

    Schulman, L.S.; Seiden, P.E.; Technion - Israel Institute of Technology, Haifa; IBM Thomas J. Watson Research Center, Yorktown Heights, NY)

    1986-01-01

    The distribution of galaxies has a hierarchical structure with power-law correlations. This is usually thought to arise from gravity alone acting on an originally uniform distributioon. If, however, the original process of galaxy formation occurs through the stimulated birth of one galaxy due to a nearby recently formed galaxy, and if this process occurs near its percolation threshold, then a hierarchical structure with power-law correlations arises at the time of galaxy formation. If subsequent gravitational evolution within an expanding cosmology is such as to retain power-law correlations, the initial r exp -1 dropoff can steepen to the observed r exp -1.8. The distribution of galaxies obtained by this process produces clustering and voids, as observed. 23 references

  18. Open source clustering software.

    Science.gov (United States)

    de Hoon, M J L; Imoto, S; Nolan, J; Miyano, S

    2004-06-12

    We have implemented k-means clustering, hierarchical clustering and self-organizing maps in a single multipurpose open-source library of C routines, callable from other C and C++ programs. Using this library, we have created an improved version of Michael Eisen's well-known Cluster program for Windows, Mac OS X and Linux/Unix. In addition, we generated a Python and a Perl interface to the C Clustering Library, thereby combining the flexibility of a scripting language with the speed of C. The C Clustering Library and the corresponding Python C extension module Pycluster were released under the Python License, while the Perl module Algorithm::Cluster was released under the Artistic License. The GUI code Cluster 3.0 for Windows, Macintosh and Linux/Unix, as well as the corresponding command-line program, were released under the same license as the original Cluster code. The complete source code is available at http://bonsai.ims.u-tokyo.ac.jp/mdehoon/software/cluster. Alternatively, Algorithm::Cluster can be downloaded from CPAN, while Pycluster is also available as part of the Biopython distribution.

  19. Hierarchical Neural Regression Models for Customer Churn Prediction

    Directory of Open Access Journals (Sweden)

    Golshan Mohammadi

    2013-01-01

    Full Text Available As customers are the main assets of each industry, customer churn prediction is becoming a major task for companies to remain in competition with competitors. In the literature, the better applicability and efficiency of hierarchical data mining techniques has been reported. This paper considers three hierarchical models by combining four different data mining techniques for churn prediction, which are backpropagation artificial neural networks (ANN, self-organizing maps (SOM, alpha-cut fuzzy c-means (α-FCM, and Cox proportional hazards regression model. The hierarchical models are ANN + ANN + Cox, SOM + ANN + Cox, and α-FCM + ANN + Cox. In particular, the first component of the models aims to cluster data in two churner and nonchurner groups and also filter out unrepresentative data or outliers. Then, the clustered data as the outputs are used to assign customers to churner and nonchurner groups by the second technique. Finally, the correctly classified data are used to create Cox proportional hazards model. To evaluate the performance of the hierarchical models, an Iranian mobile dataset is considered. The experimental results show that the hierarchical models outperform the single Cox regression baseline model in terms of prediction accuracy, Types I and II errors, RMSE, and MAD metrics. In addition, the α-FCM + ANN + Cox model significantly performs better than the two other hierarchical models.

  20. Fast gene ontology based clustering for microarray experiments.

    Science.gov (United States)

    Ovaska, Kristian; Laakso, Marko; Hautaniemi, Sampsa

    2008-11-21

    Analysis of a microarray experiment often results in a list of hundreds of disease-associated genes. In order to suggest common biological processes and functions for these genes, Gene Ontology annotations with statistical testing are widely used. However, these analyses can produce a very large number of significantly altered biological processes. Thus, it is often challenging to interpret GO results and identify novel testable biological hypotheses. We present fast software for advanced gene annotation using semantic similarity for Gene Ontology terms combined with clustering and heat map visualisation. The methodology allows rapid identification of genes sharing the same Gene Ontology cluster. Our R based semantic similarity open-source package has a speed advantage of over 2000-fold compared to existing implementations. From the resulting hierarchical clustering dendrogram genes sharing a GO term can be identified, and their differences in the gene expression patterns can be seen from the heat map. These methods facilitate advanced annotation of genes resulting from data analysis.

  1. A Simple Hierarchical Pooling Data Structure for Loop Closure

    Science.gov (United States)

    2016-10-16

    performance empirically on the KITTI [9], Oxford [6] and TUM RGB- D [29] datasets, as well as demonstrate extensions to general image retrieval on the...of a BoW where each word is an element of a dictionary of descriptors obtained off-line by hierarchical k-means clustering, with each word weighted by...to the inverse docu- ment frequency. This standard pipeline, with different clustering procedures to generate the dictionary and different features

  2. Multicollinearity in hierarchical linear models.

    Science.gov (United States)

    Yu, Han; Jiang, Shanhe; Land, Kenneth C

    2015-09-01

    This study investigates an ill-posed problem (multicollinearity) in Hierarchical Linear Models from both the data and the model perspectives. We propose an intuitive, effective approach to diagnosing the presence of multicollinearity and its remedies in this class of models. A simulation study demonstrates the impacts of multicollinearity on coefficient estimates, associated standard errors, and variance components at various levels of multicollinearity for finite sample sizes typical in social science studies. We further investigate the role multicollinearity plays at each level for estimation of coefficient parameters in terms of shrinkage. Based on these analyses, we recommend a top-down method for assessing multicollinearity in HLMs that first examines the contextual predictors (Level-2 in a two-level model) and then the individual predictors (Level-1) and uses the results for data collection, research problem redefinition, model re-specification, variable selection and estimation of a final model. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. ‘Feeling of despair’ as the leading cluster theme of conceptual descriptive analyses in participatory assessment: Russia Oxfam GB case study

    Directory of Open Access Journals (Sweden)

    Venera Zakirova

    2016-12-01

    Full Text Available This article provides a case study on participatory assessment based on experience gained from an EU–Oxfam GB project entitled “Empowering Municipalities to Effectively Address Poverty” conducted in five small towns in Russia. Participatory assessment through focus group discussions (FGDs was the main approach used in the implementation of the project. A participatory assessment was performed through 25 FGDs in five remote areas in central Russia. More than 200 participants representing people living in poverty, such as single mothers, people with disabilities, families with many children, families with disabled children, and pensioners, voluntarily participated in the meetings. Most of the participants were women (75% aged between 25 and 70 years. We consider that the participants’ representation is relevant in accordance with the official poverty studies. Through identification of patterns of recurrent ideas and opinions, a qualitative method helps us understand social phenomena from the views of and on the basis of the opinions of the participants. The FGDs’ narratives underwent pattern analysis, resulting in the framing of the cluster themes and narrative conceptualization. Cluster analysis of the FGDs’ narratives led to the framing of 10 cluster themes of importance, followed by conceptual descriptions and related narratives. The conceptual description of the leading theme, feeling of despair (theme 1, was described by respondents’ expressions/narratives, such as “Nobody needs us and there is no future for us and our children in this town,” the narrative idea that crosscuts the subsequent themes. The following nine themes are of equal importance, are interlinked, and for the major part constitute the leading theme, feeling of despair (theme 1: state social and family support (theme 2; health care (theme 3; who are those living in poverty? (theme 4; housing (theme 5; living costs (theme 6; employment (theme 7; children

  4. Similarity, Clustering, and Scaling Analyses for the Foreign Exchange Market ---Comprehensive Analysis on States of Market Participants with High-Frequency Financial Data---

    Science.gov (United States)

    Sato, A.; Sakai, H.; Nishimura, M.; Holyst, J. A.

    This article proposes mathematical methods to quantify states of marketparticipants in the foreign exchange market (FX market) and conduct comprehensive analysis on behavior of market participants by means of high-frequency financial data. Based on econophysics tools and perspectives we study similarity measures for both rate movements and quotation activities among various currency pairs. We perform also clustering analysis on market states for observation days, and find scaling relationship between mean values of quotation activities and their standard deviations. Using these mathematical methods we can visualize states of the FX market comprehensively. Finally we conclude that states of market participants temporally vary due to both external and internal factors.

  5. Hierarchical species distribution models

    Science.gov (United States)

    Hefley, Trevor J.; Hooten, Mevin B.

    2016-01-01

    Determining the distribution pattern of a species is important to increase scientific knowledge, inform management decisions, and conserve biodiversity. To infer spatial and temporal patterns, species distribution models have been developed for use with many sampling designs and types of data. Recently, it has been shown that count, presence-absence, and presence-only data can be conceptualized as arising from a point process distribution. Therefore, it is important to understand properties of the point process distribution. We examine how the hierarchical species distribution modeling framework has been used to incorporate a wide array of regression and theory-based components while accounting for the data collection process and making use of auxiliary information. The hierarchical modeling framework allows us to demonstrate how several commonly used species distribution models can be derived from the point process distribution, highlight areas of potential overlap between different models, and suggest areas where further research is needed.

  6. Bayesian nonparametric hierarchical modeling.

    Science.gov (United States)

    Dunson, David B

    2009-04-01

    In biomedical research, hierarchical models are very widely used to accommodate dependence in multivariate and longitudinal data and for borrowing of information across data from different sources. A primary concern in hierarchical modeling is sensitivity to parametric assumptions, such as linearity and normality of the random effects. Parametric assumptions on latent variable distributions can be challenging to check and are typically unwarranted, given available prior knowledge. This article reviews some recent developments in Bayesian nonparametric methods motivated by complex, multivariate and functional data collected in biomedical studies. The author provides a brief review of flexible parametric approaches relying on finite mixtures and latent class modeling. Dirichlet process mixture models are motivated by the need to generalize these approaches to avoid assuming a fixed finite number of classes. Focusing on an epidemiology application, the author illustrates the practical utility and potential of nonparametric Bayes methods.

  7. Hierarchically Structured Electrospun Fibers

    Science.gov (United States)

    2013-01-07

    in the natural lotus and silver ragwort leaves. Figure 4. Examples of electrospun bio-mimics of natural hierarchical structures. (A) Lotus leaf...B) pillared poly(methyl methacrylate) (PMMA) electrospun fiber mimic; (C) silver ragwort leaf; (D) electrospun fiber mimic made from nylon 6 and...domains containing the protein in the surrounding EVA fibers [115]. A wide variety of core-shell fibers have been generated, including PCL/ gelatin

  8. Hierarchically Structured Electrospun Fibers

    Directory of Open Access Journals (Sweden)

    Nicole E. Zander

    2013-01-01

    Full Text Available Traditional electrospun nanofibers have a myriad of applications ranging from scaffolds for tissue engineering to components of biosensors and energy harvesting devices. The generally smooth one-dimensional structure of the fibers has stood as a limitation to several interesting novel applications. Control of fiber diameter, porosity and collector geometry will be briefly discussed, as will more traditional methods for controlling fiber morphology and fiber mat architecture. The remainder of the review will focus on new techniques to prepare hierarchically structured fibers. Fibers with hierarchical primary structures—including helical, buckled, and beads-on-a-string fibers, as well as fibers with secondary structures, such as nanopores, nanopillars, nanorods, and internally structured fibers and their applications—will be discussed. These new materials with helical/buckled morphology are expected to possess unique optical and mechanical properties with possible applications for negative refractive index materials, highly stretchable/high-tensile-strength materials, and components in microelectromechanical devices. Core-shell type fibers enable a much wider variety of materials to be electrospun and are expected to be widely applied in the sensing, drug delivery/controlled release fields, and in the encapsulation of live cells for biological applications. Materials with a hierarchical secondary structure are expected to provide new superhydrophobic and self-cleaning materials.

  9. Cluster Decline and Resilience

    DEFF Research Database (Denmark)

    Østergaard, Christian Richter; Park, Eun Kyung

    Most studies on regional clusters focus on identifying factors and processes that make clusters grow. However, sometimes technologies and market conditions suddenly shift, and clusters decline. This paper analyses the process of decline of the wireless communication cluster in Denmark, 1963......-2011. Our longitudinal study reveals that technological lock-in and exit of key firms have contributed to impairment of the cluster’s resilience in adapting to disruptions. Entrepreneurship has a positive effect on cluster resilience, while multinational companies have contradicting effects by bringing...... in new resources to the cluster but being quick to withdraw in times of crisis....

  10. Parkinson's Disease Subtypes Identified from Cluster Analysis of Motor and Non-motor Symptoms.

    Science.gov (United States)

    Mu, Jesse; Chaudhuri, Kallol R; Bielza, Concha; de Pedro-Cuesta, Jesus; Larrañaga, Pedro; Martinez-Martin, Pablo

    2017-01-01

    Parkinson's disease is now considered a complex, multi-peptide, central, and peripheral nervous system disorder with considerable clinical heterogeneity. Non-motor symptoms play a key role in the trajectory of Parkinson's disease, from prodromal premotor to end stages. To understand the clinical heterogeneity of Parkinson's disease, this study used cluster analysis to search for subtypes from a large, multi-center, international, and well-characterized cohort of Parkinson's disease patients across all motor stages, using a combination of cardinal motor features (bradykinesia, rigidity, tremor, axial signs) and, for the first time, specific validated rater-based non-motor symptom scales. Two independent international cohort studies were used: (a) the validation study of the Non-Motor Symptoms Scale ( n = 411) and (b) baseline data from the global Non-Motor International Longitudinal Study ( n = 540). k -means cluster analyses were performed on the non-motor and motor domains (domains clustering) and the 30 individual non-motor symptoms alone (symptoms clustering), and hierarchical agglomerative clustering was performed to group symptoms together. Four clusters are identified from the domains clustering supporting previous studies: mild, non-motor dominant, motor-dominant, and severe. In addition, six new smaller clusters are identified from the symptoms clustering, each characterized by clinically-relevant non-motor symptoms. The clusters identified in this study present statistical confirmation of the increasingly important role of non-motor symptoms (NMS) in Parkinson's disease heterogeneity and take steps toward subtype-specific treatment packages.

  11. Statistical measures of galaxy clustering

    International Nuclear Information System (INIS)

    Porter, D.H.

    1988-01-01

    Consideration is given to the large-scale distribution of galaxies and ways in which this distribution may be statistically measured. Galaxy clustering is hierarchical in nature, so that the positions of clusters of galaxies are themselves spatially clustered. A simple identification of groups of galaxies would be an inadequate description of the true richness of galaxy clustering. Current observations of the large-scale structure of the universe and modern theories of cosmology may be studied with a statistical description of the spatial and velocity distributions of galaxies. 8 refs

  12. Hierarchical temporal structure in music, speech and animal vocalizations: jazz is like a conversation, humpbacks sing like hermit thrushes.

    Science.gov (United States)

    Kello, Christopher T; Bella, Simone Dalla; Médé, Butovens; Balasubramaniam, Ramesh

    2017-10-01

    Humans talk, sing and play music. Some species of birds and whales sing long and complex songs. All these behaviours and sounds exhibit hierarchical structure-syllables and notes are positioned within words and musical phrases, words and motives in sentences and musical phrases, and so on. We developed a new method to measure and compare hierarchical temporal structures in speech, song and music. The method identifies temporal events as peaks in the sound amplitude envelope, and quantifies event clustering across a range of timescales using Allan factor (AF) variance. AF variances were analysed and compared for over 200 different recordings from more than 16 different categories of signals, including recordings of speech in different contexts and languages, musical compositions and performances from different genres. Non-human vocalizations from two bird species and two types of marine mammals were also analysed for comparison. The resulting patterns of AF variance across timescales were distinct to each of four natural categories of complex sound: speech, popular music, classical music and complex animal vocalizations. Comparisons within and across categories indicated that nested clustering in longer timescales was more prominent when prosodic variation was greater, and when sounds came from interactions among individuals, including interactions between speakers, musicians, and even killer whales. Nested clustering also was more prominent for music compared with speech, and reflected beat structure for popular music and self-similarity across timescales for classical music. In summary, hierarchical temporal structures reflect the behavioural and social processes underlying complex vocalizations and musical performances. © 2017 The Author(s).

  13. Tractography segmentation using a hierarchical Dirichlet processes mixture model.

    Science.gov (United States)

    Wang, Xiaogang; Grimson, W Eric L; Westin, Carl-Fredrik

    2011-01-01

    In this paper, we propose a new nonparametric Bayesian framework to cluster white matter fiber tracts into bundles using a hierarchical Dirichlet processes mixture (HDPM) model. The number of clusters is automatically learned driven by data with a Dirichlet process (DP) prior instead of being manually specified. After the models of bundles have been learned from training data without supervision, they can be used as priors to cluster/classify fibers of new subjects for comparison across subjects. When clustering fibers of new subjects, new clusters can be created for structures not observed in the training data. Our approach does not require computing pairwise distances between fibers and can cluster a huge set of fibers across multiple subjects. We present results on several data sets, the largest of which has more than 120,000 fibers. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. clusterMaker: a multi-algorithm clustering plugin for Cytoscape

    Directory of Open Access Journals (Sweden)

    Morris John H

    2011-11-01

    Full Text Available Abstract Background In the post-genomic era, the rapid increase in high-throughput data calls for computational tools capable of integrating data of diverse types and facilitating recognition of biologically meaningful patterns within them. For example, protein-protein interaction data sets have been clustered to identify stable complexes, but scientists lack easily accessible tools to facilitate combined analyses of multiple data sets from different types of experiments. Here we present clusterMaker, a Cytoscape plugin that implements several clustering algorithms and provides network, dendrogram, and heat map views of the results. The Cytoscape network is linked to all of the other views, so that a selection in one is immediately reflected in the others. clusterMaker is the first Cytoscape plugin to implement such a wide variety of clustering algorithms and visualizations, including the only implementations of hierarchical clustering, dendrogram plus heat map visualization (tree view, k-means, k-medoid, SCPS, AutoSOME, and native (Java MCL. Results Results are presented in the form of three scenarios of use: analysis of protein expression data using a recently published mouse interactome and a mouse microarray data set of nearly one hundred diverse cell/tissue types; the identification of protein complexes in the yeast Saccharomyces cerevisiae; and the cluster analysis of the vicinal oxygen chelate (VOC enzyme superfamily. For scenario one, we explore functionally enriched mouse interactomes specific to particular cellular phenotypes and apply fuzzy clustering. For scenario two, we explore the prefoldin complex in detail using both physical and genetic interaction clusters. For scenario three, we explore the possible annotation of a protein as a methylmalonyl-CoA epimerase within the VOC superfamily. Cytoscape session files for all three scenarios are provided in the Additional Files section. Conclusions The Cytoscape plugin cluster

  15. Semi-supervised consensus clustering for gene expression data analysis

    OpenAIRE

    Wang, Yunli; Pan, Youlian

    2014-01-01

    Background Simple clustering methods such as hierarchical clustering and k-means are widely used for gene expression data analysis; but they are unable to deal with noise and high dimensionality associated with the microarray gene expression data. Consensus clustering appears to improve the robustness and quality of clustering results. Incorporating prior knowledge in clustering process (semi-supervised clustering) has been shown to improve the consistency between the data partitioning and do...

  16. Context updates are hierarchical

    Directory of Open Access Journals (Sweden)

    Anton Karl Ingason

    2016-10-01

    Full Text Available This squib studies the order in which elements are added to the shared context of interlocutors in a conversation. It focuses on context updates within one hierarchical structure and argues that structurally higher elements are entered into the context before lower elements, even if the structurally higher elements are pronounced after the lower elements. The crucial data are drawn from a comparison of relative clauses in two head-initial languages, English and Icelandic, and two head-final languages, Korean and Japanese. The findings have consequences for any theory of a dynamic semantics.

  17. Dhurrin metabolism in the developing grain of Sorghum bicolor (L.) Moench investigated by metabolite profiling and novel clustering analyses of time-resolved transcriptomic data

    DEFF Research Database (Denmark)

    Nielsen, Lasse Janniche; Stuart, Peter; Pičmanová, Martina

    2016-01-01

    Background: The important cereal crop Sorghum bicolor (L.) Moench biosynthesize and accumulate the defensive compound dhurrin during development. Previous work has suggested multiple roles for the compound including a function as nitrogen storage/buffer. Crucial for this function is the endogenous...... turnover of dhurrin for which putative pathways have been suggested but not confirmed. Results: In this study, the biosynthesis and endogenous turnover of dhurrin in the developing sorghum grain was studied by metabolite profiling and time-resolved transcriptome analyses. Dhurrin was found to accumulate...... analyses coupled with metabolite profiling, identified gene candidates involved in proanthocyanidin biosynthesis in sorghum. Conclusions: The results presented in this article reveal the existence of two endogenous dhurrin turnover pathways in sorghum, identify genes putatively involved...

  18. IDENTIFICAÇÃO DE CLUSTERS INTERNACIONAIS COM BASE NAS DIMENSÕES CULTURAIS DE HOFSTEDE. / Identification of international clusters based on the hofstede’s cultural dimensions

    Directory of Open Access Journals (Sweden)

    Valderí de Castro Alcântara1

    2012-08-01

    Full Text Available Haja vista que a cultura de um país influencia a cultura organizacional das empresas nele presente e ainda é fator determinante no processo de internacionalização, torna-se relevante compreender e mensurar as características culturais de cada país. Os estudos de Hofstede (1984 apresentam uma metodologia útil para comparação entre culturas. Tal metodologia leva em consideração as características deuma cultura que possibilita diferenciar um país de outro. Dessa forma, é possível observar que determinados países compartilham certos traços culturais e, assim, é possível agrupá-los segundo critérios pré-estabelecidos. O presente trabalho objetiva utilizar-se de procedimentos estatísticos multivariados Clusters Analyses, K-Means Cluster Analysis e Análise Discriminante para determinar e validar agrupamentos de países, com base nas dimensões culturais de Hofstede (Distance Index, Individualism, Masculinity e Uncertainty Avoidance Index. Os resultados determinaram quatro clusters: Cluster 1 - países com cultura masculina e individualista; Cluster 2 - cultura coletivista e aversa à incerteza; Cluster 3 - cultura feminina e com baixa distância hierárquica; e Cluster 4 - cultura com elevada distância hierárquica e propensão à incerteza./ Considering that the culture of a country influences the organizational culture of this company and it is still a determining factor in the internationalization process becomes important to understand and measure the cultural characteristics of each country. The studies of Hofstede (1984 present a useful methodology for comparing cultures, this methodology takes into account the characteristics of a culturethat allows to differentiate one from another country. Thus one can observe that certain countries share certain cultural traits and so it is possible grouping them according to predetermined criteria. The present work aims to utilize multivariate statistical procedures Cluster Analyses

  19. Detecting Hierarchical Structure in Networks

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard

    2012-01-01

    Many real-world networks exhibit hierarchical organization. Previous models of hierarchies within relational data has focused on binary trees; however, for many networks it is unknown whether there is hierarchical structure, and if there is, a binary tree might not account well for it. We propose...... a generative Bayesian model that is able to infer whether hierarchies are present or not from a hypothesis space encompassing all types of hierarchical tree structures. For efficient inference we propose a collapsed Gibbs sampling procedure that jointly infers a partition and its hierarchical structure....... On synthetic and real data we demonstrate that our model can detect hierarchical structure leading to better link-prediction than competing models. Our model can be used to detect if a network exhibits hierarchical structure, thereby leading to a better comprehension and statistical account the network....

  20. Hierarchical quark mass matrices

    International Nuclear Information System (INIS)

    Rasin, A.

    1998-02-01

    I define a set of conditions that the most general hierarchical Yukawa mass matrices have to satisfy so that the leading rotations in the diagonalization matrix are a pair of (2,3) and (1,2) rotations. In addition to Fritzsch structures, examples of such hierarchical structures include also matrices with (1,3) elements of the same order or even much larger than the (1,2) elements. Such matrices can be obtained in the framework of a flavor theory. To leading order, the values of the angle in the (2,3) plane (s 23 ) and the angle in the (1,2) plane (s 12 ) do not depend on the order in which they are taken when diagonalizing. We find that any of the Cabbibo-Kobayashi-Maskawa matrix parametrizations that consist of at least one (1,2) and one (2,3) rotation may be suitable. In the particular case when the s 13 diagonalization angles are sufficiently small compared to the product s 12 s 23 , two special CKM parametrizations emerge: the R 12 R 23 R 12 parametrization follows with s 23 taken before the s 12 rotation, and vice versa for the R 23 R 12 R 23 parametrization. (author)

  1. Hierarchical partial order ranking

    International Nuclear Information System (INIS)

    Carlsen, Lars

    2008-01-01

    Assessing the potential impact on environmental and human health from the production and use of chemicals or from polluted sites involves a multi-criteria evaluation scheme. A priori several parameters are to address, e.g., production tonnage, specific release scenarios, geographical and site-specific factors in addition to various substance dependent parameters. Further socio-economic factors may be taken into consideration. The number of parameters to be included may well appear to be prohibitive for developing a sensible model. The study introduces hierarchical partial order ranking (HPOR) that remedies this problem. By HPOR the original parameters are initially grouped based on their mutual connection and a set of meta-descriptors is derived representing the ranking corresponding to the single groups of descriptors, respectively. A second partial order ranking is carried out based on the meta-descriptors, the final ranking being disclosed though average ranks. An illustrative example on the prioritisation of polluted sites is given. - Hierarchical partial order ranking of polluted sites has been developed for prioritization based on a large number of parameters

  2. Nested and Hierarchical Archimax copulas

    KAUST Repository

    Hofert, Marius; Huser, Raphaë l; Prasad, Avinash

    2017-01-01

    The class of Archimax copulas is generalized to nested and hierarchical Archimax copulas in several ways. First, nested extreme-value copulas or nested stable tail dependence functions are introduced to construct nested Archimax copulas based on a single frailty variable. Second, a hierarchical construction of d-norm generators is presented to construct hierarchical stable tail dependence functions and thus hierarchical extreme-value copulas. Moreover, one can, by itself or additionally, introduce nested frailties to extend Archimax copulas to nested Archimax copulas in a similar way as nested Archimedean copulas extend Archimedean copulas. Further results include a general formula for the density of Archimax copulas.

  3. Nested and Hierarchical Archimax copulas

    KAUST Repository

    Hofert, Marius

    2017-07-03

    The class of Archimax copulas is generalized to nested and hierarchical Archimax copulas in several ways. First, nested extreme-value copulas or nested stable tail dependence functions are introduced to construct nested Archimax copulas based on a single frailty variable. Second, a hierarchical construction of d-norm generators is presented to construct hierarchical stable tail dependence functions and thus hierarchical extreme-value copulas. Moreover, one can, by itself or additionally, introduce nested frailties to extend Archimax copulas to nested Archimax copulas in a similar way as nested Archimedean copulas extend Archimedean copulas. Further results include a general formula for the density of Archimax copulas.

  4. Exploitation of Clustering Techniques in Transactional Healthcare Data

    Directory of Open Access Journals (Sweden)

    Naeem Ahmad Mahoto

    2014-03-01

    Full Text Available Healthcare service centres equipped with electronic health systems have improved their resources as well as treatment processes. The dynamic nature of healthcare data of each individual makes it complex and difficult for physicians to manually mediate them; therefore, automatic techniques are essential to manage the quality and standardization of treatment procedures. Exploratory data analysis, patternanalysis and grouping of data is managed using clustering techniques, which work as an unsupervised classification. A number of healthcare applications are developed that use several data mining techniques for classification, clustering and extracting useful information from healthcare data. The challenging issue in this domain is to select adequate data mining algorithm for optimal results. This paper exploits three different clustering algorithms: DBSCAN (Density-Based Clustering, agglomerative hierarchical and k-means in real transactional healthcare data of diabetic patients (taken as case study to analyse their performance in large and dispersed healthcare data. The best solution of cluster sets among the exploited algorithms is evaluated using clustering quality indexes and is selected to identify the possible subgroups of patients having similar treatment patterns

  5. Formation of stable products from cluster-cluster collisions

    International Nuclear Information System (INIS)

    Alamanova, Denitsa; Grigoryan, Valeri G; Springborg, Michael

    2007-01-01

    The formation of stable products from copper cluster-cluster collisions is investigated by using classical molecular-dynamics simulations in combination with an embedded-atom potential. The dependence of the product clusters on impact energy, relative orientation of the clusters, and size of the clusters is studied. The structures and total energies of the product clusters are analysed and compared with those of the colliding clusters before impact. These results, together with the internal temperature, are used in obtaining an increased understanding of cluster fusion processes

  6. Chimera states in networks of logistic maps with hierarchical connectivities

    Science.gov (United States)

    zur Bonsen, Alexander; Omelchenko, Iryna; Zakharova, Anna; Schöll, Eckehard

    2018-04-01

    Chimera states are complex spatiotemporal patterns consisting of coexisting domains of coherence and incoherence. We study networks of nonlocally coupled logistic maps and analyze systematically how the dilution of the network links influences the appearance of chimera patterns. The network connectivities are constructed using an iterative Cantor algorithm to generate fractal (hierarchical) connectivities. Increasing the hierarchical level of iteration, we compare the resulting spatiotemporal patterns. We demonstrate that a high clustering coefficient and symmetry of the base pattern promotes chimera states, and asymmetric connectivities result in complex nested chimera patterns.

  7. Transmutations across hierarchical levels

    International Nuclear Information System (INIS)

    O'Neill, R.V.

    1977-01-01

    The development of large-scale ecological models depends implicitly on a concept known as hierarchy theory which views biological systems in a series of hierarchical levels (i.e., organism, population, trophic level, ecosystem). The theory states that an explanation of a biological phenomenon is provided when it is shown to be the consequence of the activities of the system's components, which are themselves systems in the next lower level of the hierarchy. Thus, the behavior of a population is explained by the behavior of the organisms in the population. The initial step in any modeling project is, therefore, to identify the system components and the interactions between them. A series of examples of transmutations in aquatic and terrestrial ecosystems are presented to show how and why changes occur. The types of changes are summarized and possible implications of transmutation for hierarchy theory, for the modeler, and for the ecological theoretician are discussed

  8. Trees and Hierarchical Structures

    CERN Document Server

    Haeseler, Arndt

    1990-01-01

    The "raison d'etre" of hierarchical dustering theory stems from one basic phe­ nomenon: This is the notorious non-transitivity of similarity relations. In spite of the fact that very often two objects may be quite similar to a third without being that similar to each other, one still wants to dassify objects according to their similarity. This should be achieved by grouping them into a hierarchy of non-overlapping dusters such that any two objects in ~ne duster appear to be more related to each other than they are to objects outside this duster. In everyday life, as well as in essentially every field of scientific investigation, there is an urge to reduce complexity by recognizing and establishing reasonable das­ sification schemes. Unfortunately, this is counterbalanced by the experience of seemingly unavoidable deadlocks caused by the existence of sequences of objects, each comparatively similar to the next, but the last rather different from the first.

  9. Optimisation by hierarchical search

    Science.gov (United States)

    Zintchenko, Ilia; Hastings, Matthew; Troyer, Matthias

    2015-03-01

    Finding optimal values for a set of variables relative to a cost function gives rise to some of the hardest problems in physics, computer science and applied mathematics. Although often very simple in their formulation, these problems have a complex cost function landscape which prevents currently known algorithms from efficiently finding the global optimum. Countless techniques have been proposed to partially circumvent this problem, but an efficient method is yet to be found. We present a heuristic, general purpose approach to potentially improve the performance of conventional algorithms or special purpose hardware devices by optimising groups of variables in a hierarchical way. We apply this approach to problems in combinatorial optimisation, machine learning and other fields.

  10. How hierarchical is language use?

    Science.gov (United States)

    Frank, Stefan L.; Bod, Rens; Christiansen, Morten H.

    2012-01-01

    It is generally assumed that hierarchical phrase structure plays a central role in human language. However, considerations of simplicity and evolutionary continuity suggest that hierarchical structure should not be invoked too hastily. Indeed, recent neurophysiological, behavioural and computational studies show that sequential sentence structure has considerable explanatory power and that hierarchical processing is often not involved. In this paper, we review evidence from the recent literature supporting the hypothesis that sequential structure may be fundamental to the comprehension, production and acquisition of human language. Moreover, we provide a preliminary sketch outlining a non-hierarchical model of language use and discuss its implications and testable predictions. If linguistic phenomena can be explained by sequential rather than hierarchical structure, this will have considerable impact in a wide range of fields, such as linguistics, ethology, cognitive neuroscience, psychology and computer science. PMID:22977157

  11. Quantum annealing for combinatorial clustering

    Science.gov (United States)

    Kumar, Vaibhaw; Bass, Gideon; Tomlin, Casey; Dulny, Joseph

    2018-02-01

    Clustering is a powerful machine learning technique that groups "similar" data points based on their characteristics. Many clustering algorithms work by approximating the minimization of an objective function, namely the sum of within-the-cluster distances between points. The straightforward approach involves examining all the possible assignments of points to each of the clusters. This approach guarantees the solution will be a global minimum; however, the number of possible assignments scales quickly with the number of data points and becomes computationally intractable even for very small datasets. In order to circumvent this issue, cost function minima are found using popular local search-based heuristic approaches such as k-means and hierarchical clustering. Due to their greedy nature, such techniques do not guarantee that a global minimum will be found and can lead to sub-optimal clustering assignments. Other classes of global search-based techniques, such as simulated annealing, tabu search, and genetic algorithms, may offer better quality results but can be too time-consuming to implement. In this work, we describe how quantum annealing can be used to carry out clustering. We map the clustering objective to a quadratic binary optimization problem and discuss two clustering algorithms which are then implemented on commercially available quantum annealing hardware, as well as on a purely classical solver "qbsolv." The first algorithm assigns N data points to K clusters, and the second one can be used to perform binary clustering in a hierarchical manner. We present our results in the form of benchmarks against well-known k-means clustering and discuss the advantages and disadvantages of the proposed techniques.

  12. A Novel Cluster Head Selection Algorithm Based on Fuzzy Clustering and Particle Swarm Optimization.

    Science.gov (United States)

    Ni, Qingjian; Pan, Qianqian; Du, Huimin; Cao, Cen; Zhai, Yuqing

    2017-01-01

    An important objective of wireless sensor network is to prolong the network life cycle, and topology control is of great significance for extending the network life cycle. Based on previous work, for cluster head selection in hierarchical topology control, we propose a solution based on fuzzy clustering preprocessing and particle swarm optimization. More specifically, first, fuzzy clustering algorithm is used to initial clustering for sensor nodes according to geographical locations, where a sensor node belongs to a cluster with a determined probability, and the number of initial clusters is analyzed and discussed. Furthermore, the fitness function is designed considering both the energy consumption and distance factors of wireless sensor network. Finally, the cluster head nodes in hierarchical topology are determined based on the improved particle swarm optimization. Experimental results show that, compared with traditional methods, the proposed method achieved the purpose of reducing the mortality rate of nodes and extending the network life cycle.

  13. Clustering User Behavior in Scientific Collections

    OpenAIRE

    Blixhavn, Øystein Hoel

    2014-01-01

    This master thesis looks at how clustering techniques can be appliedto a collection of scientific documents. Approximately one year of serverlogs from the CERN Document Server (CDS) are analyzed and preprocessed.Based on the findings of this analysis, and a review of thecurrent state of the art, three different clustering methods are selectedfor further work: Simple k-Means, Hierarchical Agglomerative Clustering(HAC) and Graph Partitioning. In addition, a custom, agglomerativeclustering algor...

  14. Modulated modularity clustering as an exploratory tool for functional genomic inference.

    Directory of Open Access Journals (Sweden)

    Eric A Stone

    2009-05-01

    Full Text Available In recent years, the advent of high-throughput assays, coupled with their diminishing cost, has facilitated a systems approach to biology. As a consequence, massive amounts of data are currently being generated, requiring efficient methodology aimed at the reduction of scale. Whole-genome transcriptional profiling is a standard component of systems-level analyses, and to reduce scale and improve inference clustering genes is common. Since clustering is often the first step toward generating hypotheses, cluster quality is critical. Conversely, because the validation of cluster-driven hypotheses is indirect, it is critical that quality clusters not be obtained by subjective means. In this paper, we present a new objective-based clustering method and demonstrate that it yields high-quality results. Our method, modulated modularity clustering (MMC, seeks community structure in graphical data. MMC modulates the connection strengths of edges in a weighted graph to maximize an objective function (called modularity that quantifies community structure. The result of this maximization is a clustering through which tightly-connected groups of vertices emerge. Our application is to systems genetics, and we quantitatively compare MMC both to the hierarchical clustering method most commonly employed and to three popular spectral clustering approaches. We further validate MMC through analyses of human and Drosophila melanogaster expression data, demonstrating that the clusters we obtain are biologically meaningful. We show MMC to be effective and suitable to applications of large scale. In light of these features, we advocate MMC as a standard tool for exploration and hypothesis generation.

  15. Hierarchical Discriminant Analysis

    Directory of Open Access Journals (Sweden)

    Di Lu

    2018-01-01

    Full Text Available The Internet of Things (IoT generates lots of high-dimensional sensor intelligent data. The processing of high-dimensional data (e.g., data visualization and data classification is very difficult, so it requires excellent subspace learning algorithms to learn a latent subspace to preserve the intrinsic structure of the high-dimensional data, and abandon the least useful information in the subsequent processing. In this context, many subspace learning algorithms have been presented. However, in the process of transforming the high-dimensional data into the low-dimensional space, the huge difference between the sum of inter-class distance and the sum of intra-class distance for distinct data may cause a bias problem. That means that the impact of intra-class distance is overwhelmed. To address this problem, we propose a novel algorithm called Hierarchical Discriminant Analysis (HDA. It minimizes the sum of intra-class distance first, and then maximizes the sum of inter-class distance. This proposed method balances the bias from the inter-class and that from the intra-class to achieve better performance. Extensive experiments are conducted on several benchmark face datasets. The results reveal that HDA obtains better performance than other dimensionality reduction algorithms.

  16. Hierarchical Linked Views

    Energy Technology Data Exchange (ETDEWEB)

    Erbacher, Robert; Frincke, Deb

    2007-07-02

    Coordinated views have proven critical to the development of effective visualization environments. This results from the fact that a single view or representation of the data cannot show all of the intricacies of a given data set. Additionally, users will often need to correlate more data parameters than can effectively be integrated into a single visual display. Typically, development of multiple-linked views results in an adhoc configuration of views and associated interactions. The hierarchical model we are proposing is geared towards more effective organization of such environments and the views they encompass. At the same time, this model can effectively integrate much of the prior work on interactive and visual frameworks. Additionally, we expand the concept of views to incorporate perceptual views. This is related to the fact that visual displays can have information encoded at various levels of focus. Thus, a global view of the display provides overall trends of the data while focusing in on individual elements provides detailed specifics. By integrating interaction and perception into a single model, we show how one impacts the other. Typically, interaction and perception are considered separately, however, when interaction is being considered at a fundamental level and allowed to direct/modify the visualization directly we must consider them simultaneously and how they impact one another.

  17. A new hierarchical method to find community structure in networks

    Science.gov (United States)

    Saoud, Bilal; Moussaoui, Abdelouahab

    2018-04-01

    Community structure is very important to understand a network which represents a context. Many community detection methods have been proposed like hierarchical methods. In our study, we propose a new hierarchical method for community detection in networks based on genetic algorithm. In this method we use genetic algorithm to split a network into two networks which maximize the modularity. Each new network represents a cluster (community). Then we repeat the splitting process until we get one node at each cluster. We use the modularity function to measure the strength of the community structure found by our method, which gives us an objective metric for choosing the number of communities into which a network should be divided. We demonstrate that our method are highly effective at discovering community structure in both computer-generated and real-world network data.

  18. Direct hierarchical assembly of nanoparticles

    Science.gov (United States)

    Xu, Ting; Zhao, Yue; Thorkelsson, Kari

    2014-07-22

    The present invention provides hierarchical assemblies of a block copolymer, a bifunctional linking compound and a nanoparticle. The block copolymers form one micro-domain and the nanoparticles another micro-domain.

  19. Hierarchical materials: Background and perspectives

    DEFF Research Database (Denmark)

    2016-01-01

    Hierarchical design draws inspiration from analysis of biological materials and has opened new possibilities for enhancing performance and enabling new functionalities and extraordinary properties. With the development of nanotechnology, the necessary technological requirements for the manufactur...

  20. Topology of the correlation networks among major currencies using hierarchical structure methods

    Science.gov (United States)

    Keskin, Mustafa; Deviren, Bayram; Kocakaplan, Yusuf

    2011-02-01

    We studied the topology of correlation networks among 34 major currencies using the concept of a minimal spanning tree and hierarchical tree for the full years of 2007-2008 when major economic turbulence occurred. We used the USD (US Dollar) and the TL (Turkish Lira) as numeraires in which the USD was the major currency and the TL was the minor currency. We derived a hierarchical organization and constructed minimal spanning trees (MSTs) and hierarchical trees (HTs) for the full years of 2007, 2008 and for the 2007-2008 period. We performed a technique to associate a value of reliability to the links of MSTs and HTs by using bootstrap replicas of data. We also used the average linkage cluster analysis for obtaining the hierarchical trees in the case of the TL as the numeraire. These trees are useful tools for understanding and detecting the global structure, taxonomy and hierarchy in financial data. We illustrated how the minimal spanning trees and their related hierarchical trees developed over a period of time. From these trees we identified different clusters of currencies according to their proximity and economic ties. The clustered structure of the currencies and the key currency in each cluster were obtained and we found that the clusters matched nicely with the geographical regions of corresponding countries in the world such as Asia or Europe. As expected the key currencies were generally those showing major economic activity.

  1. Hierarchical architecture of active knits

    International Nuclear Information System (INIS)

    Abel, Julianna; Luntz, Jonathan; Brei, Diann

    2013-01-01

    Nature eloquently utilizes hierarchical structures to form the world around us. Applying the hierarchical architecture paradigm to smart materials can provide a basis for a new genre of actuators which produce complex actuation motions. One promising example of cellular architecture—active knits—provides complex three-dimensional distributed actuation motions with expanded operational performance through a hierarchically organized structure. The hierarchical structure arranges a single fiber of active material, such as shape memory alloys (SMAs), into a cellular network of interlacing adjacent loops according to a knitting grid. This paper defines a four-level hierarchical classification of knit structures: the basic knit loop, knit patterns, grid patterns, and restructured grids. Each level of the hierarchy provides increased architectural complexity, resulting in expanded kinematic actuation motions of active knits. The range of kinematic actuation motions are displayed through experimental examples of different SMA active knits. The results from this paper illustrate and classify the ways in which each level of the hierarchical knit architecture leverages the performance of the base smart material to generate unique actuation motions, providing necessary insight to best exploit this new actuation paradigm. (paper)

  2. Leadership styles across hierarchical levels in nursing departments.

    Science.gov (United States)

    Stordeur, S; Vandenberghe, C; D'hoore, W

    2000-01-01

    Some researchers have reported on the cascading effect of transformational leadership across hierarchical levels. One study examined this effect in nursing, but it was limited to a single hospital. To examine the cascading effect of leadership styles across hierarchical levels in a sample of nursing departments and to investigate the effect of hierarchical level on the relationships between leadership styles and various work outcomes. Based on a sample of eight hospitals, the cascading effect was tested using correlation analysis. The main sources of variation among leadership scores were determined with analyses of variance (ANOVA), and the interaction effect of hierarchical level and leadership styles on criterion variables was tested with moderated regression analysis. No support was found for a cascading effect of leadership across hierarchical levels. Rather, the variation of leadership scores was explained primarily by the organizational context. Transformational leadership had a stronger impact on criterion variables than transactional leadership. Interaction effects between leadership styles and hierarchical level were observed only for perceived unit effectiveness. The hospital's structure and culture are major determinants of leadership styles.

  3. Hierarchical surfaces for enhanced self-cleaning applications

    Science.gov (United States)

    Fernández, Ariadna; Francone, Achille; Thamdrup, Lasse H.; Johansson, Alicia; Bilenberg, Brian; Nielsen, Theodor; Guttmann, Markus; Sotomayor Torres, Clivia M.; Kehagias, Nikolaos

    2017-04-01

    In this study we present a flexible and adaptable fabrication method to create complex hierarchical structures over inherently hydrophobic resist materials. We have tested these surfaces for their superhydrophobic behaviour and successfully verified their self-cleaning properties. The followed approach allow us to design and produce superhydrophobic surfaces in a reproducible manner. We have analysed different combination of hierarchical micro-nanostructures for their application to self-cleaning surfaces. A static contact angle value of 170° with a hysteresis of 4° was achieved without the need of any additional chemical treatment on the fabricated hierarchical structures. Dynamic effects were analysed on these surfaces, obtaining a remarkable self-cleaning effect as well as a good robustness over impacting droplets.

  4. Hierarchical surfaces for enhanced self-cleaning applications

    International Nuclear Information System (INIS)

    Fernández, Ariadna; Francone, Achille; Sotomayor Torres, Clivia M; Kehagias, Nikolaos; Thamdrup, Lasse H; Johansson, Alicia; Bilenberg, Brian; Nielsen, Theodor; Guttmann, Markus

    2017-01-01

    In this study we present a flexible and adaptable fabrication method to create complex hierarchical structures over inherently hydrophobic resist materials. We have tested these surfaces for their superhydrophobic behaviour and successfully verified their self-cleaning properties. The followed approach allow us to design and produce superhydrophobic surfaces in a reproducible manner. We have analysed different combination of hierarchical micro-nanostructures for their application to self-cleaning surfaces. A static contact angle value of 170° with a hysteresis of 4° was achieved without the need of any additional chemical treatment on the fabricated hierarchical structures. Dynamic effects were analysed on these surfaces, obtaining a remarkable self-cleaning effect as well as a good robustness over impacting droplets. (paper)

  5. Cluster headache

    Science.gov (United States)

    Histamine headache; Headache - histamine; Migrainous neuralgia; Headache - cluster; Horton's headache; Vascular headache - cluster ... Doctors do not know exactly what causes cluster headaches. They ... (chemical in the body released during an allergic response) or ...

  6. Robustness of Multiple Clustering Algorithms on Hyperspectral Images

    National Research Council Canada - National Science Library

    Williams, Jason P

    2007-01-01

    .... Various clustering algorithms were employed, including a hierarchical method, ISODATA, K-means, and X-means, and were used on a simple two dimensional dataset in order to discover potential problems with the algorithms...

  7. Factors influencing the quality of life of haemodialysis patients according to symptom cluster.

    Science.gov (United States)

    Shim, Hye Yeung; Cho, Mi-Kyoung

    2018-05-01

    To identify the characteristics in each symptom cluster and factors influencing the quality of life of haemodialysis patients in Korea according to cluster. Despite developments in renal replacement therapy, haemodialysis still restricts the activities of daily living due to pain and impairs physical functioning induced by the disease and its complications. Descriptive survey. Two hundred and thirty dialysis patients aged >18 years. They completed self-administered questionnaires of Dialysis Symptom Index and Kidney Disease Quality of Life instrument-Short Form 1.3. To determine the optimal number of clusters, the collected data were analysed using polytomous variable latent class analysis in R software (poLCA) to estimate the latent class models and the latent class regression models for polytomous outcome variables. Differences in characteristics, symptoms and QOL according to the symptom cluster of haemodialysis patients were analysed using the independent t test and chi-square test. The factors influencing the QOL according to symptom cluster were identified using hierarchical multiple regression analysis. Physical and emotional symptoms were significantly more severe, and the QOL was significantly worse in Cluster 1 than in Cluster 2. The factors influencing the QOL were spouse, job, insurance type and physical and emotional symptoms in Cluster 1, with these variables having an explanatory power of 60.9%. Physical and emotional symptoms were the only influencing factors in Cluster 2, and they had an explanatory power of 37.4%. Mitigating the symptoms experienced by haemodialysis patients and improving their QOL require educational and therapeutic symptom management interventions that are tailored according to the characteristics and symptoms in each cluster. The findings of this study are expected to lead to practical guidelines for addressing the symptoms experienced by haemodialysis patients, and they provide basic information for developing nursing

  8. CytoCluster: A Cytoscape Plugin for Cluster Analysis and Visualization of Biological Networks.

    Science.gov (United States)

    Li, Min; Li, Dongyan; Tang, Yu; Wu, Fangxiang; Wang, Jianxin

    2017-08-31

    Nowadays, cluster analysis of biological networks has become one of the most important approaches to identifying functional modules as well as predicting protein complexes and network biomarkers. Furthermore, the visualization of clustering results is crucial to display the structure of biological networks. Here we present CytoCluster, a cytoscape plugin integrating six clustering algorithms, HC-PIN (Hierarchical Clustering algorithm in Protein Interaction Networks), OH-PIN (identifying Overlapping and Hierarchical modules in Protein Interaction Networks), IPCA (Identifying Protein Complex Algorithm), ClusterONE (Clustering with Overlapping Neighborhood Expansion), DCU (Detecting Complexes based on Uncertain graph model), IPC-MCE (Identifying Protein Complexes based on Maximal Complex Extension), and BinGO (the Biological networks Gene Ontology) function. Users can select different clustering algorithms according to their requirements. The main function of these six clustering algorithms is to detect protein complexes or functional modules. In addition, BinGO is used to determine which Gene Ontology (GO) categories are statistically overrepresented in a set of genes or a subgraph of a biological network. CytoCluster can be easily expanded, so that more clustering algorithms and functions can be added to this plugin. Since it was created in July 2013, CytoCluster has been downloaded more than 9700 times in the Cytoscape App store and has already been applied to the analysis of different biological networks. CytoCluster is available from http://apps.cytoscape.org/apps/cytocluster.

  9. Scale of association: hierarchical linear models and the measurement of ecological systems

    Science.gov (United States)

    Sean M. McMahon; Jeffrey M. Diez

    2007-01-01

    A fundamental challenge to understanding patterns in ecological systems lies in employing methods that can analyse, test and draw inference from measured associations between variables across scales. Hierarchical linear models (HLM) use advanced estimation algorithms to measure regression relationships and variance-covariance parameters in hierarchically structured...

  10. Magnetic ordering of CoCl2-GIC, a spin ceramic: hierarchical successive transitions and the intermediate glassy phase

    International Nuclear Information System (INIS)

    Suzuki, Masatsugu; Suzuki, Itsuko S; Matsuura, Motohiro

    2007-01-01

    Stage-2 CoCl 2 -graphite intercalation compound (GIC) is a spin ceramic which shows hierarchical successive transitions at T cu (= 8.9 K) and T cl (= 7.0 K) from the paramagnetic phase into an intra-cluster (two-dimensional ferromagnetic) order with inter-cluster disorder and then to an inter-cluster (three-dimensional antiferromagnetic like) order over the whole system. The nature of the inter-cluster disorder was suggested to be of spin glass by nonlinear magnetic response analyses around T cu and by studies on dynamical aspects of ordering between T cu and T cl . Here, we present a further extensive examination of a series of time dependence of zero-field cooled magnetization M ZFC after the ageing protocol below T cu . The time dependence of the relaxation rates S ZFC (t) = (1/H) dM ZFC (t)/dlnt dramatically changes from the curves of simple spin glass ageing effect below T cl to those of two peaks above T cl . The characteristic relaxation behaviour apparently indicates that there coexist two different kinds of glassy correlated region below T cu

  11. Hierarchical sets: analyzing pangenome structure through scalable set visualizations

    Science.gov (United States)

    2017-01-01

    Abstract Motivation: The increase in available microbial genome sequences has resulted in an increase in the size of the pangenomes being analyzed. Current pangenome visualizations are not intended for the pangenome sizes possible today and new approaches are necessary in order to convert the increase in available information to increase in knowledge. As the pangenome data structure is essentially a collection of sets we explore the potential for scalable set visualization as a tool for pangenome analysis. Results: We present a new hierarchical clustering algorithm based on set arithmetics that optimizes the intersection sizes along the branches. The intersection and union sizes along the hierarchy are visualized using a composite dendrogram and icicle plot, which, in pangenome context, shows the evolution of pangenome and core size along the evolutionary hierarchy. Outlying elements, i.e. elements whose presence pattern do not correspond with the hierarchy, can be visualized using hierarchical edge bundles. When applied to pangenome data this plot shows putative horizontal gene transfers between the genomes and can highlight relationships between genomes that is not represented by the hierarchy. We illustrate the utility of hierarchical sets by applying it to a pangenome based on 113 Escherichia and Shigella genomes and find it provides a powerful addition to pangenome analysis. Availability and Implementation: The described clustering algorithm and visualizations are implemented in the hierarchicalSets R package available from CRAN (https://cran.r-project.org/web/packages/hierarchicalSets) Contact: thomasp85@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28130242

  12. A hierarchical spatial framework for forest landscape planning.

    Science.gov (United States)

    Pete Bettinger; Marie Lennette; K. Norman Johnson; Thomas A. Spies

    2005-01-01

    A hierarchical spatial framework for large-scale, long-term forest landscape planning is presented along with example policy analyses for a 560,000 ha area of the Oregon Coast Range. The modeling framework suggests utilizing the detail provided by satellite imagery to track forest vegetation condition and for representation of fine-scale features, such as riparian...

  13. A HIERARCHICAL SET OF MODELS FOR SPECIES RESPONSE ANALYSIS

    NARCIS (Netherlands)

    HUISMAN, J; OLFF, H; FRESCO, LFM

    Variation in the abundance of species in space and/or time can be caused by a wide range of underlying processes. Before such causes can be analysed we need simple mathematical models which can describe the observed response patterns. For this purpose a hierarchical set of models is presented. These

  14. A hierarchical set of models for species response analysis

    NARCIS (Netherlands)

    Huisman, J.; Olff, H.; Fresco, L.F.M.

    1993-01-01

    Variation in the abundance of species in space and/or time can be caused by a wide range of underlying processes. Before such causes can be analysed we need simple mathematical models which can describe the observed response patterns. For this purpose a hierarchical set of models is presented. These

  15. Energy Aware Clustering Algorithms for Wireless Sensor Networks

    Science.gov (United States)

    Rakhshan, Noushin; Rafsanjani, Marjan Kuchaki; Liu, Chenglian

    2011-09-01

    The sensor nodes deployed in wireless sensor networks (WSNs) are extremely power constrained, so maximizing the lifetime of the entire networks is mainly considered in the design. In wireless sensor networks, hierarchical network structures have the advantage of providing scalable and energy efficient solutions. In this paper, we investigate different clustering algorithms for WSNs and also compare these clustering algorithms based on metrics such as clustering distribution, cluster's load balancing, Cluster Head's (CH) selection strategy, CH's role rotation, node mobility, clusters overlapping, intra-cluster communications, reliability, security and location awareness.

  16. Parallel hierarchical global illumination

    Energy Technology Data Exchange (ETDEWEB)

    Snell, Quinn O. [Iowa State Univ., Ames, IA (United States)

    1997-10-08

    Solving the global illumination problem is equivalent to determining the intensity of every wavelength of light in all directions at every point in a given scene. The complexity of the problem has led researchers to use approximation methods for solving the problem on serial computers. Rather than using an approximation method, such as backward ray tracing or radiosity, the authors have chosen to solve the Rendering Equation by direct simulation of light transport from the light sources. This paper presents an algorithm that solves the Rendering Equation to any desired accuracy, and can be run in parallel on distributed memory or shared memory computer systems with excellent scaling properties. It appears superior in both speed and physical correctness to recent published methods involving bidirectional ray tracing or hybrid treatments of diffuse and specular surfaces. Like progressive radiosity methods, it dynamically refines the geometry decomposition where required, but does so without the excessive storage requirements for ray histories. The algorithm, called Photon, produces a scene which converges to the global illumination solution. This amounts to a huge task for a 1997-vintage serial computer, but using the power of a parallel supercomputer significantly reduces the time required to generate a solution. Currently, Photon can be run on most parallel environments from a shared memory multiprocessor to a parallel supercomputer, as well as on clusters of heterogeneous workstations.

  17. Hierarchical clustering of RGB surface water images based on MIA ...

    African Journals Online (AJOL)

    2009-11-25

    Nov 25, 2009 ... similar water-related images within a testing database of 126 RGB images. .... consequently treated by SVD-based PCA and the PCA outputs partitioned into .... green. Other colours, mostly brown and grey, dominate in.

  18. The Case for A Hierarchal System Model for Linux Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Seager, M; Gorda, B

    2009-06-05

    The computer industry today is no longer driven, as it was in the 40s, 50s and 60s, by High-performance computing requirements. Rather, HPC systems, especially Leadership class systems, sit on top of a pyramid investment mode. Figure 1 shows a representative pyramid investment model for systems hardware. At the base of the pyramid is the huge investment (order 10s of Billions of US Dollars per year) in semiconductor fabrication and process technologies. These costs, which are approximately doubling with every generation, are funded from investments multiple markets: enterprise, desktops, games, embedded and specialized devices. Over and above these base technology investments are investments for critical technology elements such as microprocessor, chipsets and memory ASIC components. Investments for these components are spread across the same markets as the base semiconductor processes investments. These second tier investments are approximately half the size of the lower level of the pyramid. The next technology investment layer up, tier 3, is more focused on scalable computing systems such as those needed for HPC and other markets. These tier 3 technology elements include networking (SAN, WAN and LAN), interconnects and large scalable SMP designs. Above these is tier 4 are relatively small investments necessary to build very large, scalable systems high-end or Leadership class systems. Primary among these are the specialized network designs of vertically integrated systems, etc.

  19. Generating Clustered Journal Maps : An Automated System for Hierarchical Classification

    NARCIS (Netherlands)

    Leydesdorff, L.; Bornmann, L.; Wagner, C.S.

    2017-01-01

    Journal maps and classifications for 11,359 journals listed in the combined Journal Citation Reports 2015 of the Science and Social Sciences Citation Indexes are provided at https://leydesdorff.github.io/journals/ and http://www.leydesdorff.net/jcr15. A routine using VOSviewer for integrating the

  20. Clusters of Galaxies

    Science.gov (United States)

    Huchtmeier, W. K.; Richter, O. G.; Materne, J.

    1981-09-01

    The large-scale structure of the universe is dominated by clustering. Most galaxies seem to be members of pairs, groups, clusters, and superclusters. To that degree we are able to recognize a hierarchical structure of the universe. Our local group of galaxies (LG) is centred on two large spiral galaxies: the Andromeda nebula and our own galaxy. Three sr:naller galaxies - like M 33 - and at least 23 dwarf galaxies (KraanKorteweg and Tammann, 1979, Astronomische Nachrichten, 300, 181) can be found in the evironment of these two large galaxies. Neighbouring groups have comparable sizes (about 1 Mpc in extent) and comparable numbers of bright members. Small dwarf galaxies cannot at present be observed at great distances.

  1. A Genetic Algorithm That Exchanges Neighboring Centers for Fuzzy c-Means Clustering

    Science.gov (United States)

    Chahine, Firas Safwan

    2012-01-01

    Clustering algorithms are widely used in pattern recognition and data mining applications. Due to their computational efficiency, partitional clustering algorithms are better suited for applications with large datasets than hierarchical clustering algorithms. K-means is among the most popular partitional clustering algorithm, but has a major…

  2. Deliberate change without hierarchical influence?

    DEFF Research Database (Denmark)

    Nørskov, Sladjana; Kesting, Peter; Ulhøi, John Parm

    2017-01-01

    reveals that deliberate change is indeed achievable in a non-hierarchical collaborative OSS community context. However, it presupposes the presence and active involvement of informal change agents. The paper identifies and specifies four key drivers for change agents’ influence. Originality....../value The findings contribute to organisational analysis by providing a deeper understanding of the importance of leadership in making deliberate change possible in non-hierarchical settings. It points to the importance of “change-by-conviction”, essentially based on voluntary behaviour. This can open the door...

  3. Architectures à clusters dans les phases intermétalliques du gallium. Élaboration, caractérisation structurale, analyse de la liaison et propriétés.

    OpenAIRE

    Tillard , Monique

    1993-01-01

    Gallium phases with electropositive elements are at interface between semiconductors and metals, the Ga-richest are characterised by macroanionic tridimensional frameworks built with clusters. The originality of these phases is due to the presence of locally delocalised electrons at clusters. Nevertheless these clusters display well defined electron numbers in adequacy with their geometries. This work reports the new phase diagrams of binary systems of gallium and alkali metals.Crystal struct...

  4. Conceptual hierarchical modeling to describe wetland plant community organization

    Science.gov (United States)

    Little, A.M.; Guntenspergen, G.R.; Allen, T.F.H.

    2010-01-01

    Using multivariate analysis, we created a hierarchical modeling process that describes how differently-scaled environmental factors interact to affect wetland-scale plant community organization in a system of small, isolated wetlands on Mount Desert Island, Maine. We followed the procedure: 1) delineate wetland groups using cluster analysis, 2) identify differently scaled environmental gradients using non-metric multidimensional scaling, 3) order gradient hierarchical levels according to spatiotem-poral scale of fluctuation, and 4) assemble hierarchical model using group relationships with ordination axes and post-hoc tests of environmental differences. Using this process, we determined 1) large wetland size and poor surface water chemistry led to the development of shrub fen wetland vegetation, 2) Sphagnum and water chemistry differences affected fen vs. marsh / sedge meadows status within small wetlands, and 3) small-scale hydrologic differences explained transitions between forested vs. non-forested and marsh vs. sedge meadow vegetation. This hierarchical modeling process can help explain how upper level contextual processes constrain biotic community response to lower-level environmental changes. It creates models with more nuanced spatiotemporal complexity than classification and regression tree procedures. Using this process, wetland scientists will be able to generate more generalizable theories of plant community organization, and useful management models. ?? Society of Wetland Scientists 2009.

  5. Ways of looking ahead: hierarchical planning in language production.

    Science.gov (United States)

    Lee, Eun-Kyung; Brown-Schmidt, Sarah; Watson, Duane G

    2013-12-01

    It is generally assumed that language production proceeds incrementally, with chunks of linguistic structure planned ahead of speech. Extensive research has examined the scope of language production and suggests that the size of planned chunks varies across contexts (Ferreira & Swets, 2002; Wagner & Jescheniak, 2010). By contrast, relatively little is known about the structure of advance planning, specifically whether planning proceeds incrementally according to the surface structure of the utterance, or whether speakers plan according to the hierarchical relationships between utterance elements. In two experiments, we examine the structure and scope of lexical planning in language production using a picture description task. Analyses of speech onset times and word durations show that speakers engage in hierarchical planning such that structurally dependent lexical items are planned together and that hierarchical planning occurs for both direct and indirect dependencies. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Cluster management.

    Science.gov (United States)

    Katz, R

    1992-11-01

    Cluster management is a management model that fosters decentralization of management, develops leadership potential of staff, and creates ownership of unit-based goals. Unlike shared governance models, there is no formal structure created by committees and it is less threatening for managers. There are two parts to the cluster management model. One is the formation of cluster groups, consisting of all staff and facilitated by a cluster leader. The cluster groups function for communication and problem-solving. The second part of the cluster management model is the creation of task forces. These task forces are designed to work on short-term goals, usually in response to solving one of the unit's goals. Sometimes the task forces are used for quality improvement or system problems. Clusters are groups of not more than five or six staff members, facilitated by a cluster leader. A cluster is made up of individuals who work the same shift. For example, people with job titles who work days would be in a cluster. There would be registered nurses, licensed practical nurses, nursing assistants, and unit clerks in the cluster. The cluster leader is chosen by the manager based on certain criteria and is trained for this specialized role. The concept of cluster management, criteria for choosing leaders, training for leaders, using cluster groups to solve quality improvement issues, and the learning process necessary for manager support are described.

  7. Competitive cluster growth in complex networks.

    Science.gov (United States)

    Moreira, André A; Paula, Demétrius R; Costa Filho, Raimundo N; Andrade, José S

    2006-06-01

    In this work we propose an idealized model for competitive cluster growth in complex networks. Each cluster can be thought of as a fraction of a community that shares some common opinion. Our results show that the cluster size distribution depends on the particular choice for the topology of the network of contacts among the agents. As an application, we show that the cluster size distributions obtained when the growth process is performed on hierarchical networks, e.g., the Apollonian network, have a scaling form similar to what has been observed for the distribution of a number of votes in an electoral process. We suggest that this similarity may be due to the fact that social networks involved in the electoral process may also possess an underlining hierarchical structure.

  8. Hierarchical Microaggressions in Higher Education

    Science.gov (United States)

    Young, Kathryn; Anderson, Myron; Stewart, Saran

    2015-01-01

    Although there has been substantial research examining the effects of microaggressions in the public sphere, there has been little research that examines microaggressions in the workplace. This study explores the types of microaggressions that affect employees at universities. We coin the term "hierarchical microaggression" to represent…

  9. Hierarchically structured, nitrogen-doped carbon membranes

    KAUST Repository

    Wang, Hong; Wu, Tao

    2017-01-01

    The present invention is a structure, method of making and method of use for a novel macroscopic hierarchically structured, nitrogen-doped, nano-porous carbon membrane (HNDCMs) with asymmetric and hierarchical pore architecture that can be produced

  10. Psychosocial Clusters and their Associations with Well-Being and Health: An Empirical Strategy for Identifying Psychosocial Predictors Most Relevant to Racially/Ethnically Diverse Women’s Health

    Science.gov (United States)

    Jabson, Jennifer M.; Bowen, Deborah; Weinberg, Janice; Kroenke, Candyce; Luo, Juhua; Messina, Catherine; Shumaker, Sally; Tindle, Hilary A.

    2016-01-01

    BACKGROUND Strategies for identifying the most relevant psychosocial predictors in studies of racial/ethnic minority women’s health are limited because they largely exclude cultural influences and they assume that psychosocial predictors are independent. This paper proposes and tests an empirical solution. METHODS Hierarchical cluster analysis, conducted with data from 140,652 Women’s Health Initiative participants, identified clusters among individual psychosocial predictors. Multivariable analyses tested associations between clusters and health outcomes. RESULTS A Social Cluster and a Stress Cluster were identified. The Social Cluster was positively associated with well-being and inversely associated with chronic disease index, and the Stress Cluster was inversely associated with well-being and positively associated with chronic disease index. As hypothesized, the magnitude of association between clusters and outcomes differed by race/ethnicity. CONCLUSIONS By identifying psychosocial clusters and their associations with health, we have taken an important step toward understanding how individual psychosocial predictors interrelate and how empirically formed Stress and Social clusters relate to health outcomes. This study has also demonstrated important insight about differences in associations between these psychosocial clusters and health among racial/ethnic minorities. These differences could signal the best pathways for intervention modification and tailoring. PMID:27279761

  11. Isotopic clusters

    International Nuclear Information System (INIS)

    Geraedts, J.M.P.

    1983-01-01

    Spectra of isotopically mixed clusters (dimers of SF 6 ) are calculated as well as transition frequencies. The result leads to speculations about the suitability of the laser-cluster fragmentation process for isotope separation. (Auth.)

  12. Cluster Headache

    Science.gov (United States)

    ... a role. Unlike migraine and tension headache, cluster headache generally isn't associated with triggers, such as foods, hormonal changes or stress. Once a cluster period begins, however, drinking alcohol ...

  13. Cluster Headache

    OpenAIRE

    Pearce, Iris

    1985-01-01

    Cluster headache is the most severe primary headache with recurrent pain attacks described as worse than giving birth. The aim of this paper was to make an overview of current knowledge on cluster headache with a focus on pathophysiology and treatment. This paper presents hypotheses of cluster headache pathophysiology, current treatment options and possible future therapy approaches. For years, the hypothalamus was regarded as the key structure in cluster headache, but is now thought to be pa...

  14. Categorias Cluster

    OpenAIRE

    Queiroz, Dayane Andrade

    2015-01-01

    Neste trabalho apresentamos as categorias cluster, que foram introduzidas por Aslak Bakke Buan, Robert Marsh, Markus Reineke, Idun Reiten e Gordana Todorov, com o objetivo de categoriíicar as algebras cluster criadas em 2002 por Sergey Fomin e Andrei Zelevinsky. Os autores acima, em [4], mostraram que existe uma estreita relação entre algebras cluster e categorias cluster para quivers cujo grafo subjacente é um diagrama de Dynkin. Para isto desenvolveram uma teoria tilting na estrutura triang...

  15. Meaningful Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Calapristi, Augustin J.; Crow, Vernon L.; Hetzler, Elizabeth G.; Turner, Alan E.

    2004-05-26

    We present an approach to the disambiguation of cluster labels that capitalizes on the notion of semantic similarity to assign WordNet senses to cluster labels. The approach provides interesting insights on how document clustering can provide the basis for developing a novel approach to word sense disambiguation.

  16. Horticultural cluster

    OpenAIRE

    SHERSTIUK S.V.; POSYLAYEVA K.I.

    2013-01-01

    In the article there are the theoretical and methodological approaches to the nature and existence of the cluster. The cluster differences from other kinds of cooperative and integration associations. Was develop by scientific-practical recommendations for forming a competitive horticultur cluster.

  17. Cities and regions in Britain through hierarchical percolation

    Science.gov (United States)

    Arcaute, Elsa; Molinero, Carlos; Hatna, Erez; Murcio, Roberto; Vargas-Ruiz, Camilo; Masucci, A. Paolo; Batty, Michael

    2016-04-01

    Urban systems present hierarchical structures at many different scales. These are observed as administrative regional delimitations which are the outcome of complex geographical, political and historical processes which leave almost indelible footprints on infrastructure such as the street network. In this work, we uncover a set of hierarchies in Britain at different scales using percolation theory on the street network and on its intersections which are the primary points of interaction and urban agglomeration. At the larger scales, the observed hierarchical structures can be interpreted as regional fractures of Britain, observed in various forms, from natural boundaries, such as National Parks, to regional divisions based on social class and wealth such as the well-known North-South divide. At smaller scales, cities are generated through recursive percolations on each of the emerging regional clusters. We examine the evolution of the morphology of the system as a whole, by measuring the fractal dimension of the clusters at each distance threshold in the percolation. We observe that this reaches a maximum plateau at a specific distance. The clusters defined at this distance threshold are in excellent correspondence with the boundaries of cities recovered from satellite images, and from previous methods using population density.

  18. A Comparison of Two Approaches to Beta-Flexible Clustering.

    Science.gov (United States)

    Belbin, Lee; And Others

    1992-01-01

    A method for hierarchical agglomerative polythetic (multivariate) clustering, based on unweighted pair group using arithmetic averages (UPGMA) is compared with the original beta-flexible technique, a weighted average method. Reasons the flexible UPGMA strategy is recommended are discussed, focusing on the ability to recover cluster structure over…

  19. Cluster Matters

    DEFF Research Database (Denmark)

    Gulati, Mukesh; Lund-Thomsen, Peter; Suresh, Sangeetha

    2018-01-01

    sell their products successfully in international markets, but there is also an increasingly large consumer base within India. Indeed, Indian industrial clusters have contributed to a substantial part of this growth process, and there are several hundred registered clusters within the country...... of this handbook, which focuses on the role of CSR in MSMEs. Hence we contribute to the literature on CSR in industrial clusters and specifically CSR in Indian industrial clusters by investigating the drivers of CSR in India’s industrial clusters....

  20. Automatic Hierarchical Color Image Classification

    Directory of Open Access Journals (Sweden)

    Jing Huang

    2003-02-01

    Full Text Available Organizing images into semantic categories can be extremely useful for content-based image retrieval and image annotation. Grouping images into semantic classes is a difficult problem, however. Image classification attempts to solve this hard problem by using low-level image features. In this paper, we propose a method for hierarchical classification of images via supervised learning. This scheme relies on using a good low-level feature and subsequently performing feature-space reconfiguration using singular value decomposition to reduce noise and dimensionality. We use the training data to obtain a hierarchical classification tree that can be used to categorize new images. Our experimental results suggest that this scheme not only performs better than standard nearest-neighbor techniques, but also has both storage and computational advantages.

  1. Hierarchical matrices algorithms and analysis

    CERN Document Server

    Hackbusch, Wolfgang

    2015-01-01

    This self-contained monograph presents matrix algorithms and their analysis. The new technique enables not only the solution of linear systems but also the approximation of matrix functions, e.g., the matrix exponential. Other applications include the solution of matrix equations, e.g., the Lyapunov or Riccati equation. The required mathematical background can be found in the appendix. The numerical treatment of fully populated large-scale matrices is usually rather costly. However, the technique of hierarchical matrices makes it possible to store matrices and to perform matrix operations approximately with almost linear cost and a controllable degree of approximation error. For important classes of matrices, the computational cost increases only logarithmically with the approximation error. The operations provided include the matrix inversion and LU decomposition. Since large-scale linear algebra problems are standard in scientific computing, the subject of hierarchical matrices is of interest to scientists ...

  2. Hierarchical Semantic Model of Geovideo

    Directory of Open Access Journals (Sweden)

    XIE Xiao

    2015-05-01

    Full Text Available The public security incidents were getting increasingly challenging with regard to their new features, including multi-scale mobility, multistage dynamic evolution, as well as spatiotemporal concurrency and uncertainty in the complex urban environment. However, the existing video models, which were used/designed for independent archive or local analysis of surveillance video, have seriously inhibited emergency response to the urgent requirements.Aiming at the explicit representation of change mechanism in video, the paper proposed a novel hierarchical geovideo semantic model using UML. This model was characterized by the hierarchical representation of both data structure and semantics based on the change-oriented three domains (feature domain, process domain and event domain instead of overall semantic description of video streaming; combining both geographical semantics and video content semantics, in support of global semantic association between multiple geovideo data. The public security incidents by video surveillance are inspected as an example to illustrate the validity of this model.

  3. Parallel Implementation of the Recursive Approximation of an Unsupervised Hierarchical Segmentation Algorithm. Chapter 5

    Science.gov (United States)

    Tilton, James C.; Plaza, Antonio J. (Editor); Chang, Chein-I. (Editor)

    2008-01-01

    The hierarchical image segmentation algorithm (referred to as HSEG) is a hybrid of hierarchical step-wise optimization (HSWO) and constrained spectral clustering that produces a hierarchical set of image segmentations. HSWO is an iterative approach to region grooving segmentation in which the optimal image segmentation is found at N(sub R) regions, given a segmentation at N(sub R+1) regions. HSEG's addition of constrained spectral clustering makes it a computationally intensive algorithm, for all but, the smallest of images. To counteract this, a computationally efficient recursive approximation of HSEG (called RHSEG) has been devised. Further improvements in processing speed are obtained through a parallel implementation of RHSEG. This chapter describes this parallel implementation and demonstrates its computational efficiency on a Landsat Thematic Mapper test scene.

  4. Hybrid and hierarchical composite materials

    CERN Document Server

    Kim, Chang-Soo; Sano, Tomoko

    2015-01-01

    This book addresses a broad spectrum of areas in both hybrid materials and hierarchical composites, including recent development of processing technologies, structural designs, modern computer simulation techniques, and the relationships between the processing-structure-property-performance. Each topic is introduced at length with numerous  and detailed examples and over 150 illustrations.   In addition, the authors present a method of categorizing these materials, so that representative examples of all material classes are discussed.

  5. Hierarchical analysis of urban space

    OpenAIRE

    Kataeva, Y.

    2014-01-01

    Multi-level structure of urban space, multitude of subjects of its transformation, which follow asymmetric interests, multilevel system of institutions which regulate interaction in the "population business government -public organizations" system, determine the use of hierarchic approach to the analysis of urban space. The article observes theoretical justification of using this approach to study correlations and peculiarities of interaction in urban space as in an intricately organized syst...

  6. Hierarchical Spatial Concept Formation Based on Multimodal Information for Human Support Robots.

    Science.gov (United States)

    Hagiwara, Yoshinobu; Inoue, Masakazu; Kobayashi, Hiroyoshi; Taniguchi, Tadahiro

    2018-01-01

    In this paper, we propose a hierarchical spatial concept formation method based on the Bayesian generative model with multimodal information e.g., vision, position and word information. Since humans have the ability to select an appropriate level of abstraction according to the situation and describe their position linguistically, e.g., "I am in my home" and "I am in front of the table," a hierarchical structure of spatial concepts is necessary in order for human support robots to communicate smoothly with users. The proposed method enables a robot to form hierarchical spatial concepts by categorizing multimodal information using hierarchical multimodal latent Dirichlet allocation (hMLDA). Object recognition results using convolutional neural network (CNN), hierarchical k-means clustering result of self-position estimated by Monte Carlo localization (MCL), and a set of location names are used, respectively, as features in vision, position, and word information. Experiments in forming hierarchical spatial concepts and evaluating how the proposed method can predict unobserved location names and position categories are performed using a robot in the real world. Results verify that, relative to comparable baseline methods, the proposed method enables a robot to predict location names and position categories closer to predictions made by humans. As an application example of the proposed method in a home environment, a demonstration in which a human support robot moves to an instructed place based on human speech instructions is achieved based on the formed hierarchical spatial concept.

  7. Hierarchical Spatial Concept Formation Based on Multimodal Information for Human Support Robots

    Directory of Open Access Journals (Sweden)

    Yoshinobu Hagiwara

    2018-03-01

    Full Text Available In this paper, we propose a hierarchical spatial concept formation method based on the Bayesian generative model with multimodal information e.g., vision, position and word information. Since humans have the ability to select an appropriate level of abstraction according to the situation and describe their position linguistically, e.g., “I am in my home” and “I am in front of the table,” a hierarchical structure of spatial concepts is necessary in order for human support robots to communicate smoothly with users. The proposed method enables a robot to form hierarchical spatial concepts by categorizing multimodal information using hierarchical multimodal latent Dirichlet allocation (hMLDA. Object recognition results using convolutional neural network (CNN, hierarchical k-means clustering result of self-position estimated by Monte Carlo localization (MCL, and a set of location names are used, respectively, as features in vision, position, and word information. Experiments in forming hierarchical spatial concepts and evaluating how the proposed method can predict unobserved location names and position categories are performed using a robot in the real world. Results verify that, relative to comparable baseline methods, the proposed method enables a robot to predict location names and position categories closer to predictions made by humans. As an application example of the proposed method in a home environment, a demonstration in which a human support robot moves to an instructed place based on human speech instructions is achieved based on the formed hierarchical spatial concept.

  8. The Hierarchical Trend Model for property valuation and local price indices

    NARCIS (Netherlands)

    Francke, M.K.; Vos, G.A.

    2002-01-01

    This paper presents a hierarchical trend model (HTM) for selling prices of houses, addressing three main problems: the spatial and temporal dependence of selling prices and the dependency of price index changes on housing quality. In this model the general price trend, cluster-level price trends,

  9. Intraclass Correlation Coefficients in Hierarchical Designs: Evaluation Using Latent Variable Modeling

    Science.gov (United States)

    Raykov, Tenko

    2011-01-01

    Interval estimation of intraclass correlation coefficients in hierarchical designs is discussed within a latent variable modeling framework. A method accomplishing this aim is outlined, which is applicable in two-level studies where participants (or generally lower-order units) are clustered within higher-order units. The procedure can also be…

  10. Data clustering theory, algorithms, and applications

    CERN Document Server

    Gan, Guojun; Wu, Jianhong

    2007-01-01

    Cluster analysis is an unsupervised process that divides a set of objects into homogeneous groups. This book starts with basic information on cluster analysis, including the classification of data and the corresponding similarity measures, followed by the presentation of over 50 clustering algorithms in groups according to some specific baseline methodologies such as hierarchical, center-based, and search-based methods. As a result, readers and users can easily identify an appropriate algorithm for their applications and compare novel ideas with existing results. The book also provides examples of clustering applications to illustrate the advantages and shortcomings of different clustering architectures and algorithms. Application areas include pattern recognition, artificial intelligence, information technology, image processing, biology, psychology, and marketing. Readers also learn how to perform cluster analysis with the C/C++ and MATLAB® programming languages.

  11. Clusters and Groups of Galaxies : International Meeting

    CERN Document Server

    Giuricin, G; Mezzetti, M

    1984-01-01

    The large-scale structure of the Universe and systems Clusters, and Groups of galaxies are topics like Superclusters, They fully justify the meeting on "Clusters of great interest. and Groups of Galaxies". The topics covered included the spatial distribution and the clustering of galaxies; the properties of Superclusters, Clusters and Groups of galaxies; radio and X-ray observations; the problem of unseen matter; theories concerning hierarchical clustering, pancakes, cluster and galaxy formation and evolution. The meeting was held at the International Center for Theoretical Physics in Trieste (Italy) from September 13 to September 16, 1983. It was attended by about 150 participants from 22 nations who presented 67 invited lectures (il) and contributed papers (cp), and 45 poster papers (pp). The Scientific Organizing Committee consisted of F. Bertola, P. Biermann, A. Cavaliere, N. Dallaporta, D. Gerba1, M. Hack, J . V . Peach, D. Sciama (Chairman), G. Setti, M. Tarenghi. We are particularly indebted to D. Scia...

  12. Hierarchical analysis of dependency in metabolic networks.

    Science.gov (United States)

    Gagneur, Julien; Jackson, David B; Casari, Georg

    2003-05-22

    Elucidation of metabolic networks for an increasing number of organisms reveals that even small networks can contain thousands of reactions and chemical species. The intimate connectivity between components complicates their decomposition into biologically meaningful sub-networks. Moreover, traditional higher-order representations of metabolic networks as metabolic pathways, suffers from the lack of rigorous definition, yielding pathways of disparate content and size. We introduce a hierarchical representation that emphasizes the gross organization of metabolic networks in largely independent pathways and sub-systems at several levels of independence. The approach highlights the coupling of different pathways and the shared compounds responsible for those couplings. By assessing our results on Escherichia coli (E.coli metabolic reactions, Genetic Circuits Research Group, University of California, San Diego, http://gcrg.ucsd.edu/organisms/ecoli.html, 'model v 1.01. reactions') against accepted biochemical annotations, we provide the first systematic synopsis of an organism's metabolism. Comparison with operons of E.coli shows that low-level clusters are reflected in genome organization and gene regulation. Source code, data sets and supplementary information are available at http://www.mas.ecp.fr/labo/equipe/gagneur/hierarchy/hierarchy.html

  13. The hierarchical brain network for face recognition.

    Science.gov (United States)

    Zhen, Zonglei; Fang, Huizhen; Liu, Jia

    2013-01-01

    Numerous functional magnetic resonance imaging (fMRI) studies have identified multiple cortical regions that are involved in face processing in the human brain. However, few studies have characterized the face-processing network as a functioning whole. In this study, we used fMRI to identify face-selective regions in the entire brain and then explore the hierarchical structure of the face-processing network by analyzing functional connectivity among these regions. We identified twenty-five regions mainly in the occipital, temporal and frontal cortex that showed a reliable response selective to faces (versus objects) across participants and across scan sessions. Furthermore, these regions were clustered into three relatively independent sub-networks in a face-recognition task on the basis of the strength of functional connectivity among them. The functionality of the sub-networks likely corresponds to the recognition of individual identity, retrieval of semantic knowledge and representation of emotional information. Interestingly, when the task was switched to object recognition from face recognition, the functional connectivity between the inferior occipital gyrus and the rest of the face-selective regions were significantly reduced, suggesting that this region may serve as an entry node in the face-processing network. In sum, our study provides empirical evidence for cognitive and neural models of face recognition and helps elucidate the neural mechanisms underlying face recognition at the network level.

  14. Robust multi-scale clustering of large DNA microarray datasets with the consensus algorithm

    DEFF Research Database (Denmark)

    Grotkjær, Thomas; Winther, Ole; Regenberg, Birgitte

    2006-01-01

    Motivation: Hierarchical and relocation clustering (e.g. K-means and self-organizing maps) have been successful tools in the display and analysis of whole genome DNA microarray expression data. However, the results of hierarchical clustering are sensitive to outliers, and most relocation methods...... analysis by collecting re-occurring clustering patterns in a co-occurrence matrix. The results show that consensus clustering obtained from clustering multiple times with Variational Bayes Mixtures of Gaussians or K-means significantly reduces the classification error rate for a simulated dataset...

  15. Fast Gene Ontology based clustering for microarray experiments

    Directory of Open Access Journals (Sweden)

    Ovaska Kristian

    2008-11-01

    Full Text Available Abstract Background Analysis of a microarray experiment often results in a list of hundreds of disease-associated genes. In order to suggest common biological processes and functions for these genes, Gene Ontology annotations with statistical testing are widely used. However, these analyses can produce a very large number of significantly altered biological processes. Thus, it is often challenging to interpret GO results and identify novel testable biological hypotheses. Results We present fast software for advanced gene annotation using semantic similarity for Gene Ontology terms combined with clustering and heat map visualisation. The methodology allows rapid identification of genes sharing the same Gene Ontology cluster. Conclusion Our R based semantic similarity open-source package has a speed advantage of over 2000-fold compared to existing implementations. From the resulting hierarchical clustering dendrogram genes sharing a GO term can be identified, and their differences in the gene expression patterns can be seen from the heat map. These methods facilitate advanced annotation of genes resulting from data analysis.

  16. Localizing age-related individual differences in a hierarchical structure

    OpenAIRE

    Salthouse, Timothy A.

    2004-01-01

    Data from 33 separate studies were combined to create an aggregate data set consisting of 16 cognitive variables and 6832 different individuals who ranged between 18 and 95 years of age. Analyses were conducted to determine where in a hierarchical structure of cognitive abilities individual differences associated with age, gender, education, and self-reported health could be localized. The results indicated that each type of individual difference characteristic exhibited a d...

  17. 75 FR 53667 - Space Coast Regional Innovation Cluster Competition

    Science.gov (United States)

    2010-09-01

    ... Coast Regional Innovation Cluster Competition AGENCY: Economic Development Administration (EDA... upcoming availability of funding for the Space Coast Regional Innovation Cluster (RIC) Competition under... economic development initiatives aligned with regional cluster and competitiveness analyses to sustain the...

  18. Hierarchical functional modularity in the resting-state human brain.

    Science.gov (United States)

    Ferrarini, Luca; Veer, Ilya M; Baerends, Evelinda; van Tol, Marie-José; Renken, Remco J; van der Wee, Nic J A; Veltman, Dirk J; Aleman, André; Zitman, Frans G; Penninx, Brenda W J H; van Buchem, Mark A; Reiber, Johan H C; Rombouts, Serge A R B; Milles, Julien

    2009-07-01

    Functional magnetic resonance imaging (fMRI) studies have shown that anatomically distinct brain regions are functionally connected during the resting state. Basic topological properties in the brain functional connectivity (BFC) map have highlighted the BFC's small-world topology. Modularity, a more advanced topological property, has been hypothesized to be evolutionary advantageous, contributing to adaptive aspects of anatomical and functional brain connectivity. However, current definitions of modularity for complex networks focus on nonoverlapping clusters, and are seriously limited by disregarding inclusive relationships. Therefore, BFC's modularity has been mainly qualitatively investigated. Here, we introduce a new definition of modularity, based on a recently improved clustering measurement, which overcomes limitations of previous definitions, and apply it to the study of BFC in resting state fMRI of 53 healthy subjects. Results show hierarchical functional modularity in the brain. Copyright 2009 Wiley-Liss, Inc

  19. Hierarchal scalar and vector tetrahedra

    International Nuclear Information System (INIS)

    Webb, J.P.; Forghani, B.

    1993-01-01

    A new set of scalar and vector tetrahedral finite elements are presented. The elements are hierarchal, allowing mixing of polynomial orders; scalar orders up to 3 and vector orders up to 2 are defined. The vector elements impose tangential continuity on the field but not normal continuity, making them suitable for representing the vector electric or magnetic field. Further, the scalar and vector elements are such that they can easily be used in the same mesh, a requirement of many quasi-static formulations. Results are presented for two 50 Hz problems: the Bath Cube, and TEAM Problem 7

  20. Wetting and Dewetting Transitions on Submerged Superhydrophobic Surfaces with Hierarchical Structures.

    Science.gov (United States)

    Wu, Huaping; Yang, Zhe; Cao, Binbin; Zhang, Zheng; Zhu, Kai; Wu, Bingbing; Jiang, Shaofei; Chai, Guozhong

    2017-01-10

    The wetting transition on submersed superhydrophobic surfaces with hierarchical structures and the influence of trapped air on superhydrophobic stability are predicted based on the thermodynamics and mechanical analyses. The dewetting transition on the hierarchically structured surfaces is investigated, and two necessary thermodynamic conditions and a mechanical balance condition for dewetting transition are proposed. The corresponding thermodynamic phase diagram of reversible transition and the critical reversed pressure well explain the experimental results reported previously. Our theory provides a useful guideline for precise controlling of breaking down and recovering of superhydrophobicity by designing superhydrophobic surfaces with hierarchical structures under water.

  1. On the hierarchical lattices approximation of Bravais lattices: Specific heat and correlation length

    International Nuclear Information System (INIS)

    Tsallis, C.

    1984-01-01

    Certain types of real-space renormalization groups (which essentially approximate Bravais lattices through hierarchical ones) do not preserve standard thermodynamic convexity properties. It is pointed out that this serious defect is not intrinsic to any real-space renormalization. It can be avoided if form-invariance (under uniform translation of the energy scale) of the equation connecting the Bravais lattice (which is intended to study) to the hierarchical one (which approximates it) is demanded. In addition to that expressions for the critical exponentes ν and α corresponding to hierarchical lattices are analysed; these are consistent with Melrose recent analysis of the fractal intrinsic dimensionality. (Author) [pt

  2. The relationship between DSM-5 PTSD symptom clusters and alcohol misuse among military veterans.

    Science.gov (United States)

    Walton, Jessica L; Raines, Amanda M; Cuccurullo, Lisa-Ann J; Vidaurri, Desirae N; Villarosa-Hurlocker, Margo C; Franklin, C L

    2018-01-01

    Prior research has revealed a strong relationship between Posttraumatic Stress Disorder (PTSD) and alcohol misuse. However, previous attempts to understand nuanced associations between PTSD symptom clusters and alcohol misuse within military veteran samples have produced mixed results. In an attempt to better understand the associations between PTSD and alcohol misuse, the current study examined the unique relationships between the newly classified Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) PTSD symptom clusters and alcohol misuse in an outpatient sample of military veterans seeking treatment for PTSD and Substance Use Disorders. Veterans (N = 100) were administered a brief battery of self-report questionnaires prior to receiving psychological services to aid in diagnostic assessment and treatment planning. Hierarchical regression analyses revealed that PTSD intrusions (cluster B), negative alterations in cognition and mood (cluster D), and arousal/reactivity (cluster E) symptoms were associated with alcohol misuse. The positive association between alcohol misuse and PTSD symptom severity is consistent with a broader body of literature demonstrating the co-occurrence of these disorders, particularly in military samples. Increased alcohol consumption may interfere with current front-line treatments for PTSD, which encourages patients to experience a full range of emotions. As such, future research should explore the impact of substance use on the effectiveness of trauma focused treatments in the alleviation of DSM-5 PTSD symptoms. (Am J Addict 2018;27:23-28). © 2017 American Academy of Addiction Psychiatry.

  3. Loops in hierarchical channel networks

    Science.gov (United States)

    Katifori, Eleni; Magnasco, Marcelo

    2012-02-01

    Nature provides us with many examples of planar distribution and structural networks having dense sets of closed loops. An archetype of this form of network organization is the vasculature of dicotyledonous leaves, which showcases a hierarchically-nested architecture. Although a number of methods have been proposed to measure aspects of the structure of such networks, a robust metric to quantify their hierarchical organization is still lacking. We present an algorithmic framework that allows mapping loopy networks to binary trees, preserving in the connectivity of the trees the architecture of the original graph. We apply this framework to investigate computer generated and natural graphs extracted from digitized images of dicotyledonous leaves and animal vasculature. We calculate various metrics on the corresponding trees and discuss the relationship of these quantities to the architectural organization of the original graphs. This algorithmic framework decouples the geometric information from the metric topology (connectivity and edge weight) and it ultimately allows us to perform a quantitative statistical comparison between predictions of theoretical models and naturally occurring loopy graphs.

  4. Hierarchically nested river landform sequences

    Science.gov (United States)

    Pasternack, G. B.; Weber, M. D.; Brown, R. A.; Baig, D.

    2017-12-01

    River corridors exhibit landforms nested within landforms repeatedly down spatial scales. In this study we developed, tested, and implemented a new way to create river classifications by mapping domains of fluvial processes with respect to the hierarchical organization of topographic complexity that drives fluvial dynamism. We tested this approach on flow convergence routing, a morphodynamic mechanism with different states depending on the structure of nondimensional topographic variability. Five nondimensional landform types with unique functionality (nozzle, wide bar, normal channel, constricted pool, and oversized) represent this process at any flow. When this typology is nested at base flow, bankfull, and floodprone scales it creates a system with up to 125 functional types. This shows how a single mechanism produces complex dynamism via nesting. Given the classification, we answered nine specific scientific questions to investigate the abundance, sequencing, and hierarchical nesting of these new landform types using a 35-km gravel/cobble river segment of the Yuba River in California. The nested structure of flow convergence routing landforms found in this study revealed that bankfull landforms are nested within specific floodprone valley landform types, and these types control bankfull morphodynamics during moderate to large floods. As a result, this study calls into question the prevailing theory that the bankfull channel of a gravel/cobble river is controlled by in-channel, bankfull, and/or small flood flows. Such flows are too small to initiate widespread sediment transport in a gravel/cobble river with topographic complexity.

  5. Stability of glassy hierarchical networks

    Science.gov (United States)

    Zamani, M.; Camargo-Forero, L.; Vicsek, T.

    2018-02-01

    The structure of interactions in most animal and human societies can be best represented by complex hierarchical networks. In order to maintain close-to-optimal function both stability and adaptability are necessary. Here we investigate the stability of hierarchical networks that emerge from the simulations of an organization type with an efficiency function reminiscent of the Hamiltonian of spin glasses. Using this quantitative approach we find a number of expected (from everyday observations) and highly non-trivial results for the obtained locally optimal networks, including, for example: (i) stability increases with growing efficiency and level of hierarchy; (ii) the same perturbation results in a larger change for more efficient states; (iii) networks with a lower level of hierarchy become more efficient after perturbation; (iv) due to the huge number of possible optimal states only a small fraction of them exhibit resilience and, finally, (v) ‘attacks’ targeting the nodes selectively (regarding their position in the hierarchy) can result in paradoxical outcomes.

  6. Hierarchical modeling of active materials

    International Nuclear Information System (INIS)

    Taya, Minoru

    2003-01-01

    Intelligent (or smart) materials are increasingly becoming key materials for use in actuators and sensors. If an intelligent material is used as a sensor, it can be embedded in a variety of structure functioning as a health monitoring system to make their life longer with high reliability. If an intelligent material is used as an active material in an actuator, it plays a key role of making dynamic movement of the actuator under a set of stimuli. This talk intends to cover two different active materials in actuators, (1) piezoelectric laminate with FGM microstructure, (2) ferromagnetic shape memory alloy (FSMA). The advantage of using the FGM piezo laminate is to enhance its fatigue life while maintaining large bending displacement, while that of use in FSMA is its fast actuation while providing a large force and stroke capability. Use of hierarchical modeling of the above active materials is a key design step in optimizing its microstructure for enhancement of their performance. I will discuss briefly hierarchical modeling of the above two active materials. For FGM piezo laminate, we will use both micromechanical model and laminate theory, while for FSMA, the modeling interfacing nano-structure, microstructure and macro-behavior is discussed. (author)

  7. Hierarchical organisation of causal graphs

    International Nuclear Information System (INIS)

    Dziopa, P.

    1993-01-01

    This paper deals with the design of a supervision system using a hierarchy of models formed by graphs, in which the variables are the nodes and the causal relations between the variables of the arcs. To obtain a representation of the variables evolutions which contains only the relevant features of their real evolutions, the causal relations are completed with qualitative transfer functions (QTFs) which produce roughly the behaviour of the classical transfer functions. Major improvements have been made in the building of the hierarchical organization. First, the basic variables of the uppermost level and the causal relations between them are chosen. The next graph is built by adding intermediary variables to the upper graph. When the undermost graph has been built, the transfer functions parameters corresponding to its causal relations are identified. The second task consists in the upwelling of the information from the undermost graph to the uppermost one. A fusion procedure of the causal relations has been designed to compute the QFTs relevant for each level. This procedure aims to reduce the number of parameters needed to represent an evolution at a high level of abstraction. These techniques have been applied to the hierarchical modelling of nuclear process. (authors). 8 refs., 12 figs

  8. Cosmic clustering

    Energy Technology Data Exchange (ETDEWEB)

    Anninos, Dionysios [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94305 (United States); Denef, Frederik [Institute for Theoretical Physics, University of Leuven,Leuven 3000 (Belgium); Center for the Fundamental Laws of Nature, Harvard University,Cambridge, MA 02138 (United States)

    2016-06-30

    We show that the late time Hartle-Hawking wave function for a free massless scalar in a fixed de Sitter background encodes a sharp ultrametric structure for the standard Euclidean distance on the space of field configurations. This implies a hierarchical, tree-like organization of the state space, reflecting its genesis as a branched diffusion process. An equivalent mathematical structure organizes the state space of the Sherrington-Kirkpatrick model of a spin glass.

  9. Legacy ExtraGalactic UV Survey with The Hubble Space Telescope: Stellar Cluster Catalogs and First Insights Into Cluster Formation and Evolution in NGC 628

    Science.gov (United States)

    Adamo, A.; Ryon, J. E.; Messa, M.; Kim, H.; Grasha, K.; Cook, D. O.; Calzetti, D.; Lee, J. C.; Whitmore, B. C.; Elmegreen, B. G.; Ubeda, L.; Smith, L. J.; Bright, S. N.; Runnholm, A.; Andrews, J. E.; Fumagalli, M.; Gouliermis, D. A.; Kahre, L.; Nair, P.; Thilker, D.; Walterbos, R.; Wofford, A.; Aloisi, A.; Ashworth, G.; Brown, T. M.; Chandar, R.; Christian, C.; Cignoni, M.; Clayton, G. C.; Dale, D. A.; de Mink, S. E.; Dobbs, C.; Elmegreen, D. M.; Evans, A. S.; Gallagher, J. S., III; Grebel, E. K.; Herrero, A.; Hunter, D. A.; Johnson, K. E.; Kennicutt, R. C.; Krumholz, M. R.; Lennon, D.; Levay, K.; Martin, C.; Nota, A.; Östlin, G.; Pellerin, A.; Prieto, J.; Regan, M. W.; Sabbi, E.; Sacchi, E.; Schaerer, D.; Schiminovich, D.; Shabani, F.; Tosi, M.; Van Dyk, S. D.; Zackrisson, E.

    2017-06-01

    We report the large effort that is producing comprehensive high-level young star cluster (YSC) catalogs for a significant fraction of galaxies observed with the Legacy ExtraGalactic UV Survey (LEGUS) Hubble treasury program. We present the methodology developed to extract cluster positions, verify their genuine nature, produce multiband photometry (from NUV to NIR), and derive their physical properties via spectral energy distribution fitting analyses. We use the nearby spiral galaxy NGC 628 as a test case for demonstrating the impact that LEGUS will have on our understanding of the formation and evolution of YSCs and compact stellar associations within their host galaxy. Our analysis of the cluster luminosity function from the UV to the NIR finds a steepening at the bright end and at all wavelengths suggesting a dearth of luminous clusters. The cluster mass function of NGC 628 is consistent with a power-law distribution of slopes ˜ -2 and a truncation of a few times 105 {M}⊙ . After their formation, YSCs and compact associations follow different evolutionary paths. YSCs survive for a longer time frame, confirming their being potentially bound systems. Associations disappear on timescales comparable to hierarchically organized star-forming regions, suggesting that they are expanding systems. We find mass-independent cluster disruption in the inner region of NGC 628, while in the outer part of the galaxy there is little or no disruption. We observe faster disruption rates for low mass (≤104 {M}⊙ ) clusters, suggesting that a mass-dependent component is necessary to fully describe the YSC disruption process in NGC 628. Based on observations obtained with the NASA/ESA Hubble Space Telescope, at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  10. Worldwide clustering of the corruption perception

    Science.gov (United States)

    Paulus, Michal; Kristoufek, Ladislav

    2015-06-01

    We inspect a possible clustering structure of the corruption perception among 134 countries. Using the average linkage clustering, we uncover a well-defined hierarchy in the relationships among countries. Four main clusters are identified and they suggest that countries worldwide can be quite well separated according to their perception of corruption. Moreover, we find a strong connection between corruption levels and a stage of development inside the clusters. The ranking of countries according to their corruption perfectly copies the ranking according to the economic performance measured by the gross domestic product per capita of the member states. To the best of our knowledge, this study is the first one to present an application of hierarchical and clustering methods to the specific case of corruption.

  11. BioCluster: Tool for Identification and Clustering of Enterobacteriaceae Based on Biochemical Data

    Directory of Open Access Journals (Sweden)

    Ahmed Abdullah

    2015-06-01

    Full Text Available Presumptive identification of different Enterobacteriaceae species is routinely achieved based on biochemical properties. Traditional practice includes manual comparison of each biochemical property of the unknown sample with known reference samples and inference of its identity based on the maximum similarity pattern with the known samples. This process is labor-intensive, time-consuming, error-prone, and subjective. Therefore, automation of sorting and similarity in calculation would be advantageous. Here we present a MATLAB-based graphical user interface (GUI tool named BioCluster. This tool was designed for automated clustering and identification of Enterobacteriaceae based on biochemical test results. In this tool, we used two types of algorithms, i.e., traditional hierarchical clustering (HC and the Improved Hierarchical Clustering (IHC, a modified algorithm that was developed specifically for the clustering and identification of Enterobacteriaceae species. IHC takes into account the variability in result of 1–47 biochemical tests within this Enterobacteriaceae family. This tool also provides different options to optimize the clustering in a user-friendly way. Using computer-generated synthetic data and some real data, we have demonstrated that BioCluster has high accuracy in clustering and identifying enterobacterial species based on biochemical test data. This tool can be freely downloaded at http://microbialgen.du.ac.bd/biocluster/.

  12. Superhydrophobic polytetrafluoroethylene thin films with hierarchical roughness deposited using a single step vapor phase technique

    International Nuclear Information System (INIS)

    Gupta, Sushant; Arjunan, Arul Chakkaravarthi; Deshpande, Sameer; Seal, Sudipta; Singh, Deepika; Singh, Rajiv K.

    2009-01-01

    Superhydrophobic polytetrafluoroethylene films with hierarchical surface roughness were deposited using pulse electron deposition technique. We were able to modulate roughness of the deposited films by controlling the beam energy and hence the electron penetration depth. The films deposited at higher beam energy showed contact angle as high as 166 o . The scanning electron and atomic force microscope studies revealed clustered growth and two level sub-micron asperities on films deposited at higher energies. Such dual-scale hierarchical roughness and heterogeneities at the water-surface interface was attributed to the observed contact angle and thus its superhydrophobic nature.

  13. Superhydrophobic polytetrafluoroethylene thin films with hierarchical roughness deposited using a single step vapor phase technique

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Sushant, E-mail: sushant3@ufl.ed [Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 (United States); Arjunan, Arul Chakkaravarthi [Sinmat Incorporated, 2153 SE Hawthorne Road, 129, Gainesville, Florida 32641 (United States); Deshpande, Sameer; Seal, Sudipta [Advanced Material Processing and Analysis Center, University of Central Florida, Orlando, Florida 32816 (United States); Singh, Deepika [Sinmat Incorporated, 2153 SE Hawthorne Road, 129, Gainesville, Florida 32641 (United States); Singh, Rajiv K. [Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 (United States)

    2009-06-30

    Superhydrophobic polytetrafluoroethylene films with hierarchical surface roughness were deposited using pulse electron deposition technique. We were able to modulate roughness of the deposited films by controlling the beam energy and hence the electron penetration depth. The films deposited at higher beam energy showed contact angle as high as 166{sup o}. The scanning electron and atomic force microscope studies revealed clustered growth and two level sub-micron asperities on films deposited at higher energies. Such dual-scale hierarchical roughness and heterogeneities at the water-surface interface was attributed to the observed contact angle and thus its superhydrophobic nature.

  14. Macroeconomic Dimensions in the Clusterization Processes: Lithuanian Biomass Cluster Case

    Directory of Open Access Journals (Sweden)

    Navickas Valentinas

    2017-03-01

    Full Text Available The Future production systems’ increasing significance will impose work, which maintains not a competitive, but a collaboration basis, with concentrated resources and expertise, which can help to reach the general purpose. One form of collaboration among medium-size business organizations is work in clusters. Clusterization as a phenomenon has been known from quite a long time, but it offers simple benefits to researches at micro and medium levels. The clusterization process evaluation in macroeconomic dimensions has been comparatively little investigated. Thereby, in this article, the clusterization processes is analysed by concentrating our attention on macroeconomic factor researches. The authors analyse clusterization’s influence on country’s macroeconomic growth; they apply a structure research methodology for clusterization’s macroeconomic influence evaluation and propose that clusterization processes benefit macroeconomic analysis. The theoretical model of clusterization processes was validated by referring to a biomass cluster case. Because biomass cluster case is a new phenomenon, currently there are no other scientific approaches to them. The authors’ accomplished researches show that clusterization allows the achievement of a large positive slip in macroeconomics, which proves to lead to a high value added to creation, a faster country economic growth, and social situation amelioration.

  15. Cluster analysis

    CERN Document Server

    Everitt, Brian S; Leese, Morven; Stahl, Daniel

    2011-01-01

    Cluster analysis comprises a range of methods for classifying multivariate data into subgroups. By organizing multivariate data into such subgroups, clustering can help reveal the characteristics of any structure or patterns present. These techniques have proven useful in a wide range of areas such as medicine, psychology, market research and bioinformatics.This fifth edition of the highly successful Cluster Analysis includes coverage of the latest developments in the field and a new chapter dealing with finite mixture models for structured data.Real life examples are used throughout to demons

  16. Cluster editing

    DEFF Research Database (Denmark)

    Böcker, S.; Baumbach, Jan

    2013-01-01

    . The problem has been the inspiration for numerous algorithms in bioinformatics, aiming at clustering entities such as genes, proteins, phenotypes, or patients. In this paper, we review exact and heuristic methods that have been proposed for the Cluster Editing problem, and also applications......The Cluster Editing problem asks to transform a graph into a disjoint union of cliques using a minimum number of edge modifications. Although the problem has been proven NP-complete several times, it has nevertheless attracted much research both from the theoretical and the applied side...

  17. Integrative cluster analysis in bioinformatics

    CERN Document Server

    Abu-Jamous, Basel; Nandi, Asoke K

    2015-01-01

    Clustering techniques are increasingly being put to use in the analysis of high-throughput biological datasets. Novel computational techniques to analyse high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. This book details the complete pathway of cluster analysis, from the basics of molecular biology to the generation of biological knowledge. The book also presents the latest clustering methods and clustering validation, thereby offering the reader a comprehensive review o

  18. TWO-STAGE CHARACTER CLASSIFICATION : A COMBINED APPROACH OF CLUSTERING AND SUPPORT VECTOR CLASSIFIERS

    NARCIS (Netherlands)

    Vuurpijl, L.; Schomaker, L.

    2000-01-01

    This paper describes a two-stage classification method for (1) classification of isolated characters and (2) verification of the classification result. Character prototypes are generated using hierarchical clustering. For those prototypes known to sometimes produce wrong classification results, a

  19. Interactive visual exploration and refinement of cluster assignments.

    Science.gov (United States)

    Kern, Michael; Lex, Alexander; Gehlenborg, Nils; Johnson, Chris R

    2017-09-12

    With ever-increasing amounts of data produced in biology research, scientists are in need of efficient data analysis methods. Cluster analysis, combined with visualization of the results, is one such method that can be used to make sense of large data volumes. At the same time, cluster analysis is known to be imperfect and depends on the choice of algorithms, parameters, and distance measures. Most clustering algorithms don't properly account for ambiguity in the source data, as records are often assigned to discrete clusters, even if an assignment is unclear. While there are metrics and visualization techniques that allow analysts to compare clusterings or to judge cluster quality, there is no comprehensive method that allows analysts to evaluate, compare, and refine cluster assignments based on the source data, derived scores, and contextual data. In this paper, we introduce a method that explicitly visualizes the quality of cluster assignments, allows comparisons of clustering results and enables analysts to manually curate and refine cluster assignments. Our methods are applicable to matrix data clustered with partitional, hierarchical, and fuzzy clustering algorithms. Furthermore, we enable analysts to explore clustering results in context of other data, for example, to observe whether a clustering of genomic data results in a meaningful differentiation in phenotypes. Our methods are integrated into Caleydo StratomeX, a popular, web-based, disease subtype analysis tool. We show in a usage scenario that our approach can reveal ambiguities in cluster assignments and produce improved clusterings that better differentiate genotypes and phenotypes.

  20. Clustering in the stellar abundance space

    Science.gov (United States)

    Boesso, R.; Rocha-Pinto, H. J.

    2018-03-01

    We have studied the chemical enrichment history of the interstellar medium through an analysis of the n-dimensional stellar abundance space. This work is a non-parametric analysis of the stellar chemical abundance space. The main goal is to study the stars from their organization within this abundance space. Within this space, we seek to find clusters (in a statistical sense), that is, stars likely to share similar chemo-evolutionary history, using two methods: the hierarchical clustering and the principal component analysis. We analysed some selected abundance surveys available in the literature. For each sample, we labelled the group of stars according to its average abundance curve. In all samples, we identify the existence of a main enrichment pattern of the stars, which we call chemical enrichment flow. This flow is set by the structured and well-defined mean rate at which the abundances of the interstellar medium increase, resulting from the mixture of the material ejected from the stars and stellar mass-loss and interstellar medium gas. One of the main results of our analysis is the identification of subgroups of stars with peculiar chemistry. These stars are situated in regions outside of the enrichment flow in the abundance space. These peculiar stars show a mismatch in the enrichment rate of a few elements, such as Mg, Si, Sc and V, when compared to the mean enrichment rate of the other elements of the same stars. We believe that the existence of these groups of stars with peculiar chemistry may be related to the accretion of planetary material on to stellar surfaces or may be due to production of the same chemical element by different nucleosynthetic sites.

  1. Distributed hierarchical radiation monitoring system

    International Nuclear Information System (INIS)

    Barak, D.

    1985-01-01

    A solution to the problem of monitoring the radiation levels in and around a nuclear facility is presented in this paper. This is a private case of a large scale general purpose data acqisition system with high reliability, availability and short maintenance time. The physical layout of the detectors in the plant, and the strict control demands dictated a distributed and hierarchical system. The system is comprised of three levels, each level contains modules. Level one contains the Control modules which collects data from groups of detectors and executes emergency local control tasks. In level two are the Group controllers which concentrate data from the Control modules, and enable local display and communication. The system computer is in level three, enabling the plant operator to receive information from the detectors and execute control tasks. The described system was built and is operating successfully for about two years. (author)

  2. Hierarchical Control for Smart Grids

    DEFF Research Database (Denmark)

    Trangbæk, K; Bendtsen, Jan Dimon; Stoustrup, Jakob

    2011-01-01

    of autonomous consumers. The control system is tasked with balancing electric power production and consumption within the smart grid, and makes active use of the flexibility of a large number of power producing and/or power consuming units. The objective is to accommodate the load variation on the grid, arising......This paper deals with hierarchical model predictive control (MPC) of smart grid systems. The design consists of a high level MPC controller, a second level of so-called aggregators, which reduces the computational and communication-related load on the high-level control, and a lower level...... on one hand from varying consumption, and on the other hand by natural variations in power production e.g. from wind turbines. The high-level MPC problem is solved using quadratic optimisation, while the aggregator level can either involve quadratic optimisation or simple sorting-based min-max solutions...

  3. Silver Films with Hierarchical Chirality.

    Science.gov (United States)

    Ma, Liguo; Cao, Yuanyuan; Duan, Yingying; Han, Lu; Che, Shunai

    2017-07-17

    Physical fabrication of chiral metallic films usually results in singular or large-sized chirality, restricting the optical asymmetric responses to long electromagnetic wavelengths. The chiral molecule-induced formation of silver films prepared chemically on a copper substrate through a redox reaction is presented. Three levels of chirality were identified: primary twisted nanoflakes with atomic crystal lattices, secondary helical stacking of these nanoflakes to form nanoplates, and tertiary micrometer-sized circinates consisting of chiral arranged nanoplates. The chiral Ag films exhibited multiple plasmonic absorption- and scattering-based optical activities at UV/Vis wavelengths based on their hierarchical chirality. The Ag films showed chiral selectivity for amino acids in catalytic electrochemical reactions, which originated from their primary atomic crystal lattices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Hierarchical coarse-graining transform.

    Science.gov (United States)

    Pancaldi, Vera; King, Peter R; Christensen, Kim

    2009-03-01

    We present a hierarchical transform that can be applied to Laplace-like differential equations such as Darcy's equation for single-phase flow in a porous medium. A finite-difference discretization scheme is used to set the equation in the form of an eigenvalue problem. Within the formalism suggested, the pressure field is decomposed into an average value and fluctuations of different kinds and at different scales. The application of the transform to the equation allows us to calculate the unknown pressure with a varying level of detail. A procedure is suggested to localize important features in the pressure field based only on the fine-scale permeability, and hence we develop a form of adaptive coarse graining. The formalism and method are described and demonstrated using two synthetic toy problems.

  5. Occupational Clusters.

    Science.gov (United States)

    Pottawattamie County School System, Council Bluffs, IA.

    The 15 occupational clusters (transportation, fine arts and humanities, communications and media, personal service occupations, construction, hospitality and recreation, health occupations, marine science occupations, consumer and homemaking-related occupations, agribusiness and natural resources, environment, public service, business and office…

  6. Fuzzy Clustering

    DEFF Research Database (Denmark)

    Berks, G.; Keyserlingk, Diedrich Graf von; Jantzen, Jan

    2000-01-01

    A symptom is a condition indicating the presence of a disease, especially, when regarded as an aid in diagnosis.Symptoms are the smallest units indicating the existence of a disease. A syndrome on the other hand is an aggregate, set or cluster of concurrent symptoms which together indicate...... and clustering are the basic concerns in medicine. Classification depends on definitions of the classes and their required degree of participant of the elements in the cases' symptoms. In medicine imprecise conditions are the rule and therefore fuzzy methods are much more suitable than crisp ones. Fuzzy c......-mean clustering is an easy and well improved tool, which has been applied in many medical fields. We used c-mean fuzzy clustering after feature extraction from an aphasia database. Factor analysis was applied on a correlation matrix of 26 symptoms of language disorders and led to five factors. The factors...

  7. Cluster generator

    Science.gov (United States)

    Donchev, Todor I [Urbana, IL; Petrov, Ivan G [Champaign, IL

    2011-05-31

    Described herein is an apparatus and a method for producing atom clusters based on a gas discharge within a hollow cathode. The hollow cathode includes one or more walls. The one or more walls define a sputtering chamber within the hollow cathode and include a material to be sputtered. A hollow anode is positioned at an end of the sputtering chamber, and atom clusters are formed when a gas discharge is generated between the hollow anode and the hollow cathode.

  8. Cluster Bulleticity

    OpenAIRE

    Massey, Richard; Kitching, Thomas; Nagai, Daisuke

    2010-01-01

    The unique properties of dark matter are revealed during collisions between clusters of galaxies, such as the bullet cluster (1E 0657−56) and baby bullet (MACS J0025−12). These systems provide evidence for an additional, invisible mass in the separation between the distributions of their total mass, measured via gravitational lensing, and their ordinary ‘baryonic’ matter, measured via its X-ray emission. Unfortunately, the information available from these systems is limited by their rarity. C...

  9. Cluster headache

    OpenAIRE

    Leroux, Elizabeth; Ducros, Anne

    2008-01-01

    Abstract Cluster headache (CH) is a primary headache disease characterized by recurrent short-lasting attacks (15 to 180 minutes) of excruciating unilateral periorbital pain accompanied by ipsilateral autonomic signs (lacrimation, nasal congestion, ptosis, miosis, lid edema, redness of the eye). It affects young adults, predominantly males. Prevalence is estimated at 0.5–1.0/1,000. CH has a circannual and circadian periodicity, attacks being clustered (hence the name) in bouts that can occur ...

  10. Adaptive hierarchical multi-agent organizations

    NARCIS (Netherlands)

    Ghijsen, M.; Jansweijer, W.N.H.; Wielinga, B.J.; Babuška, R.; Groen, F.C.A.

    2010-01-01

    In this chapter, we discuss the design of adaptive hierarchical organizations for multi-agent systems (MAS). Hierarchical organizations have a number of advantages such as their ability to handle complex problems and their scalability to large organizations. By introducing adaptivity in the

  11. Biased trapping issue on weighted hierarchical networks

    Indian Academy of Sciences (India)

    archical networks which are based on the classic scale-free hierarchical networks. ... Weighted hierarchical networks; weight-dependent walks; mean first passage ..... The weighted networks can mimic some real-world natural and social systems to ... the Priority Academic Program Development of Jiangsu Higher Education ...

  12. Hierarchically Nanostructured Materials for Sustainable Environmental Applications

    Directory of Open Access Journals (Sweden)

    Zheng eRen

    2013-11-01

    Full Text Available This article presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions and multiple functionalities towards water remediation, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology.

  13. Hierarchical Rhetorical Sentence Categorization for Scientific Papers

    Science.gov (United States)

    Rachman, G. H.; Khodra, M. L.; Widyantoro, D. H.

    2018-03-01

    Important information in scientific papers can be composed of rhetorical sentences that is structured from certain categories. To get this information, text categorization should be conducted. Actually, some works in this task have been completed by employing word frequency, semantic similarity words, hierarchical classification, and the others. Therefore, this paper aims to present the rhetorical sentence categorization from scientific paper by employing TF-IDF and Word2Vec to capture word frequency and semantic similarity words and employing hierarchical classification. Every experiment is tested in two classifiers, namely Naïve Bayes and SVM Linear. This paper shows that hierarchical classifier is better than flat classifier employing either TF-IDF or Word2Vec, although it increases only almost 2% from 27.82% when using flat classifier until 29.61% when using hierarchical classifier. It shows also different learning model for child-category can be built by hierarchical classifier.

  14. Processing of hierarchical syntactic structure in music.

    Science.gov (United States)

    Koelsch, Stefan; Rohrmeier, Martin; Torrecuso, Renzo; Jentschke, Sebastian

    2013-09-17

    Hierarchical structure with nested nonlocal dependencies is a key feature of human language and can be identified theoretically in most pieces of tonal music. However, previous studies have argued against the perception of such structures in music. Here, we show processing of nonlocal dependencies in music. We presented chorales by J. S. Bach and modified versions in which the hierarchical structure was rendered irregular whereas the local structure was kept intact. Brain electric responses differed between regular and irregular hierarchical structures, in both musicians and nonmusicians. This finding indicates that, when listening to music, humans apply cognitive processes that are capable of dealing with long-distance dependencies resulting from hierarchically organized syntactic structures. Our results reveal that a brain mechanism fundamental for syntactic processing is engaged during the perception of music, indicating that processing of hierarchical structure with nested nonlocal dependencies is not just a key component of human language, but a multidomain capacity of human cognition.

  15. Dynamic Hierarchical Energy-Efficient Method Based on Combinatorial Optimization for Wireless Sensor Networks.

    Science.gov (United States)

    Chang, Yuchao; Tang, Hongying; Cheng, Yongbo; Zhao, Qin; Yuan, Baoqing Li andXiaobing

    2017-07-19

    Routing protocols based on topology control are significantly important for improving network longevity in wireless sensor networks (WSNs). Traditionally, some WSN routing protocols distribute uneven network traffic load to sensor nodes, which is not optimal for improving network longevity. Differently to conventional WSN routing protocols, we propose a dynamic hierarchical protocol based on combinatorial optimization (DHCO) to balance energy consumption of sensor nodes and to improve WSN longevity. For each sensor node, the DHCO algorithm obtains the optimal route by establishing a feasible routing set instead of selecting the cluster head or the next hop node. The process of obtaining the optimal route can be formulated as a combinatorial optimization problem. Specifically, the DHCO algorithm is carried out by the following procedures. It employs a hierarchy-based connection mechanism to construct a hierarchical network structure in which each sensor node is assigned to a special hierarchical subset; it utilizes the combinatorial optimization theory to establish the feasible routing set for each sensor node, and takes advantage of the maximum-minimum criterion to obtain their optimal routes to the base station. Various results of simulation experiments show effectiveness and superiority of the DHCO algorithm in comparison with state-of-the-art WSN routing algorithms, including low-energy adaptive clustering hierarchy (LEACH), hybrid energy-efficient distributed clustering (HEED), genetic protocol-based self-organizing network clustering (GASONeC), and double cost function-based routing (DCFR) algorithms.

  16. A Multidimensional and Multimembership Clustering Method for Social Networks and Its Application in Customer Relationship Management

    Directory of Open Access Journals (Sweden)

    Peixin Zhao

    2013-01-01

    Full Text Available Community detection in social networks plays an important role in cluster analysis. Many traditional techniques for one-dimensional problems have been proven inadequate for high-dimensional or mixed type datasets due to the data sparseness and attribute redundancy. In this paper we propose a graph-based clustering method for multidimensional datasets. This novel method has two distinguished features: nonbinary hierarchical tree and the multi-membership clusters. The nonbinary hierarchical tree clearly highlights meaningful clusters, while the multimembership feature may provide more useful service strategies. Experimental results on the customer relationship management confirm the effectiveness of the new method.

  17. Hierarchical nonlinear dynamics of human attention.

    Science.gov (United States)

    Rabinovich, Mikhail I; Tristan, Irma; Varona, Pablo

    2015-08-01

    Attention is the process of focusing mental resources on a specific cognitive/behavioral task. Such brain dynamics involves different partially overlapping brain functional networks whose interconnections change in time according to the performance stage, and can be stimulus-driven or induced by an intrinsically generated goal. The corresponding activity can be described by different families of spatiotemporal discrete patterns or sequential dynamic modes. Since mental resources are finite, attention modalities compete with each other at all levels of the hierarchy, from perception to decision making and behavior. Cognitive activity is a dynamical process and attention possesses some universal dynamical characteristics. Thus, it is time to apply nonlinear dynamical theory for the description and prediction of hierarchical attentional tasks. Such theory has to include the analyses of attentional control stability, the time cost of attention switching, the finite capacity of informational resources in the brain, and the normal and pathological bifurcations of attention sequential dynamics. In this paper we have integrated today's knowledge, models and results in these directions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Hierarchical drivers of reef-fish metacommunity structure.

    Science.gov (United States)

    MacNeil, M Aaron; Graham, Nicholas A J; Polunin, Nicholas V C; Kulbicki, Michel; Galzin, René; Harmelin-Vivien, Mireille; Rushton, Steven P

    2009-01-01

    multiple spatial scales; and (3) inter-atoll connectedness was poorly correlated with the nonrandom clustering of reef-fish species. These results demonstrate the importance of modeling hierarchical data and processes in understanding reef-fish metacommunity structure.

  19. Co-clustering models, algorithms and applications

    CERN Document Server

    Govaert, Gérard

    2013-01-01

    Cluster or co-cluster analyses are important tools in a variety of scientific areas. The introduction of this book presents a state of the art of already well-established, as well as more recent methods of co-clustering. The authors mainly deal with the two-mode partitioning under different approaches, but pay particular attention to a probabilistic approach. Chapter 1 concerns clustering in general and the model-based clustering in particular. The authors briefly review the classical clustering methods and focus on the mixture model. They present and discuss the use of different mixture

  20. Hierarchical Image Segmentation of Remotely Sensed Data using Massively Parallel GNU-LINUX Software

    Science.gov (United States)

    Tilton, James C.

    2003-01-01

    A hierarchical set of image segmentations is a set of several image segmentations of the same image at different levels of detail in which the segmentations at coarser levels of detail can be produced from simple merges of regions at finer levels of detail. In [1], Tilton, et a1 describes an approach for producing hierarchical segmentations (called HSEG) and gave a progress report on exploiting these hierarchical segmentations for image information mining. The HSEG algorithm is a hybrid of region growing and constrained spectral clustering that produces a hierarchical set of image segmentations based on detected convergence points. In the main, HSEG employs the hierarchical stepwise optimization (HSWO) approach to region growing, which was described as early as 1989 by Beaulieu and Goldberg. The HSWO approach seeks to produce segmentations that are more optimized than those produced by more classic approaches to region growing (e.g. Horowitz and T. Pavlidis, [3]). In addition, HSEG optionally interjects between HSWO region growing iterations, merges between spatially non-adjacent regions (i.e., spectrally based merging or clustering) constrained by a threshold derived from the previous HSWO region growing iteration. While the addition of constrained spectral clustering improves the utility of the segmentation results, especially for larger images, it also significantly increases HSEG s computational requirements. To counteract this, a computationally efficient recursive, divide-and-conquer, implementation of HSEG (RHSEG) was devised, which includes special code to avoid processing artifacts caused by RHSEG s recursive subdivision of the image data. The recursive nature of RHSEG makes for a straightforward parallel implementation. This paper describes the HSEG algorithm, its recursive formulation (referred to as RHSEG), and the implementation of RHSEG using massively parallel GNU-LINUX software. Results with Landsat TM data are included comparing RHSEG with classic

  1. Clustering for data mining a data recovery approach

    CERN Document Server

    Mirkin, Boris

    2005-01-01

    Often considered more as an art than a science, the field of clustering has been dominated by learning through examples and by techniques chosen almost through trial-and-error. Even the most popular clustering methods--K-Means for partitioning the data set and Ward's method for hierarchical clustering--have lacked the theoretical attention that would establish a firm relationship between the two methods and relevant interpretation aids.Rather than the traditional set of ad hoc techniques, Clustering for Data Mining: A Data Recovery Approach presents a theory that not only closes gaps in K-Mean

  2. Carbon nuclear magnetic resonance spectroscopic fingerprinting of commercial gasoline: pattern-recognition analyses for screening quality control purposes.

    Science.gov (United States)

    Flumignan, Danilo Luiz; Boralle, Nivaldo; Oliveira, José Eduardo de

    2010-06-30

    In this work, the combination of carbon nuclear magnetic resonance ((13)C NMR) fingerprinting with pattern-recognition analyses provides an original and alternative approach to screening commercial gasoline quality. Soft Independent Modelling of Class Analogy (SIMCA) was performed on spectroscopic fingerprints to classify representative commercial gasoline samples, which were selected by Hierarchical Cluster Analyses (HCA) over several months in retails services of gas stations, into previously quality-defined classes. Following optimized (13)C NMR-SIMCA algorithm, sensitivity values were obtained in the training set (99.0%), with leave-one-out cross-validation, and external prediction set (92.0%). Governmental laboratories could employ this method as a rapid screening analysis to discourage adulteration practices. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Classification using Hierarchical Naive Bayes models

    DEFF Research Database (Denmark)

    Langseth, Helge; Dyhre Nielsen, Thomas

    2006-01-01

    Classification problems have a long history in the machine learning literature. One of the simplest, and yet most consistently well-performing set of classifiers is the Naïve Bayes models. However, an inherent problem with these classifiers is the assumption that all attributes used to describe......, termed Hierarchical Naïve Bayes models. Hierarchical Naïve Bayes models extend the modeling flexibility of Naïve Bayes models by introducing latent variables to relax some of the independence statements in these models. We propose a simple algorithm for learning Hierarchical Naïve Bayes models...

  4. Hierarchical analysis of acceptable use policies

    Directory of Open Access Journals (Sweden)

    P. A. Laughton

    2008-01-01

    Full Text Available Acceptable use policies (AUPs are vital tools for organizations to protect themselves and their employees from misuse of computer facilities provided. A well structured, thorough AUP is essential for any organization. It is impossible for an effective AUP to deal with every clause and remain readable. For this reason, some sections of an AUP carry more weight than others, denoting importance. The methodology used to develop the hierarchical analysis is a literature review, where various sources were consulted. This hierarchical approach to AUP analysis attempts to highlight important sections and clauses dealt with in an AUP. The emphasis of the hierarchal analysis is to prioritize the objectives of an AUP.

  5. Hierarchical modeling and analysis for spatial data

    CERN Document Server

    Banerjee, Sudipto; Gelfand, Alan E

    2003-01-01

    Among the many uses of hierarchical modeling, their application to the statistical analysis of spatial and spatio-temporal data from areas such as epidemiology And environmental science has proven particularly fruitful. Yet to date, the few books that address the subject have been either too narrowly focused on specific aspects of spatial analysis, or written at a level often inaccessible to those lacking a strong background in mathematical statistics.Hierarchical Modeling and Analysis for Spatial Data is the first accessible, self-contained treatment of hierarchical methods, modeling, and dat

  6. Hierarchically structured, nitrogen-doped carbon membranes

    KAUST Repository

    Wang, Hong

    2017-08-03

    The present invention is a structure, method of making and method of use for a novel macroscopic hierarchically structured, nitrogen-doped, nano-porous carbon membrane (HNDCMs) with asymmetric and hierarchical pore architecture that can be produced on a large-scale approach. The unique HNDCM holds great promise as components in separation and advanced carbon devices because they could offer unconventional fluidic transport phenomena on the nanoscale. Overall, the invention set forth herein covers a hierarchically structured, nitrogen-doped carbon membranes and methods of making and using such a membranes.

  7. Hierarchical prediction errors in midbrain and septum during social learning.

    Science.gov (United States)

    Diaconescu, Andreea O; Mathys, Christoph; Weber, Lilian A E; Kasper, Lars; Mauer, Jan; Stephan, Klaas E

    2017-04-01

    Social learning is fundamental to human interactions, yet its computational and physiological mechanisms are not well understood. One prominent open question concerns the role of neuromodulatory transmitters. We combined fMRI, computational modelling and genetics to address this question in two separate samples (N = 35, N = 47). Participants played a game requiring inference on an adviser's intentions whose motivation to help or mislead changed over time. Our analyses suggest that hierarchically structured belief updates about current advice validity and the adviser's trustworthiness, respectively, depend on different neuromodulatory systems. Low-level prediction errors (PEs) about advice accuracy not only activated regions known to support 'theory of mind', but also the dopaminergic midbrain. Furthermore, PE responses in ventral striatum were influenced by the Met/Val polymorphism of the Catechol-O-Methyltransferase (COMT) gene. By contrast, high-level PEs ('expected uncertainty') about the adviser's fidelity activated the cholinergic septum. These findings, replicated in both samples, have important implications: They suggest that social learning rests on hierarchically related PEs encoded by midbrain and septum activity, respectively, in the same manner as other forms of learning under volatility. Furthermore, these hierarchical PEs may be broadcast by dopaminergic and cholinergic projections to induce plasticity specifically in cortical areas known to represent beliefs about others. © The Author (2017). Published by Oxford University Press.

  8. Cluster analysis of spontaneous preterm birth phenotypes identifies potential associations among preterm birth mechanisms.

    Science.gov (United States)

    Esplin, M Sean; Manuck, Tracy A; Varner, Michael W; Christensen, Bryce; Biggio, Joseph; Bukowski, Radek; Parry, Samuel; Zhang, Heping; Huang, Hao; Andrews, William; Saade, George; Sadovsky, Yoel; Reddy, Uma M; Ilekis, John

    2015-09-01

    We sought to use an innovative tool that is based on common biologic pathways to identify specific phenotypes among women with spontaneous preterm birth (SPTB) to enhance investigators' ability to identify and to highlight common mechanisms and underlying genetic factors that are responsible for SPTB. We performed a secondary analysis of a prospective case-control multicenter study of SPTB. All cases delivered a preterm singleton at SPTB ≤34.0 weeks' gestation. Each woman was assessed for the presence of underlying SPTB causes. A hierarchic cluster analysis was used to identify groups of women with homogeneous phenotypic profiles. One of the phenotypic clusters was selected for candidate gene association analysis with the use of VEGAS software. One thousand twenty-eight women with SPTB were assigned phenotypes. Hierarchic clustering of the phenotypes revealed 5 major clusters. Cluster 1 (n = 445) was characterized by maternal stress; cluster 2 (n = 294) was characterized by premature membrane rupture; cluster 3 (n = 120) was characterized by familial factors, and cluster 4 (n = 63) was characterized by maternal comorbidities. Cluster 5 (n = 106) was multifactorial and characterized by infection (INF), decidual hemorrhage (DH), and placental dysfunction (PD). These 3 phenotypes were correlated highly by χ(2) analysis (PD and DH, P cluster 3 of SPTB. We identified 5 major clusters of SPTB based on a phenotype tool and hierarch clustering. There was significant correlation between several of the phenotypes. The INS gene was associated with familial factors that were underlying SPTB. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Definition of run-off-road crash clusters-For safety benefit estimation and driver assistance development.

    Science.gov (United States)

    Nilsson, Daniel; Lindman, Magdalena; Victor, Trent; Dozza, Marco

    2018-04-01

    Single-vehicle run-off-road crashes are a major traffic safety concern, as they are associated with a high proportion of fatal outcomes. In addressing run-off-road crashes, the development and evaluation of advanced driver assistance systems requires test scenarios that are representative of the variability found in real-world crashes. We apply hierarchical agglomerative cluster analysis to define similarities in a set of crash data variables, these clusters can then be used as the basis in test scenario development. Out of 13 clusters, nine test scenarios are derived, corresponding to crashes characterised by: drivers drifting off the road in daytime and night-time, high speed departures, high-angle departures on narrow roads, highways, snowy roads, loss-of-control on wet roadways, sharp curves, and high speeds on roads with severe road surface conditions. In addition, each cluster was analysed with respect to crash variables related to the crash cause and reason for the unintended lane departure. The study shows that cluster analysis of representative data provides a statistically based method to identify relevant properties for run-off-road test scenarios. This was done to support development of vehicle-based run-off-road countermeasures and driver behaviour models used in virtual testing. Future studies should use driver behaviour from naturalistic driving data to further define how test-scenarios and behavioural causation mechanisms should be included. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Clustering Dycom

    KAUST Repository

    Minku, Leandro L.; Hou, Siqing

    2017-01-01

    baseline WC model is also included in the analysis. Results: Clustering Dycom with K-Means can potentially help to split the CC projects, managing to achieve similar or better predictive performance than Dycom. However, K-Means still requires the number

  11. Hierarchical structure of the European countries based on debts as a percentage of GDP during the 2000-2011 period

    Science.gov (United States)

    Kantar, Ersin; Deviren, Bayram; Keskin, Mustafa

    2014-11-01

    We investigate hierarchical structures of the European countries by using debt as a percentage of Gross Domestic Product (GDP) of the countries as they change over a certain period of time. We obtain the topological properties among the countries based on debt as a percentage of GDP of European countries over the period 2000-2011 by using the concept of hierarchical structure methods (minimal spanning tree, (MST) and hierarchical tree, (HT)). This period is also divided into two sub-periods related to 2004 enlargement of the European Union, namely 2000-2004 and 2005-2011, in order to test various time-window and observe the temporal evolution. The bootstrap techniques is applied to see a value of statistical reliability of the links of the MSTs and HTs. The clustering linkage procedure is also used to observe the cluster structure more clearly. From the structural topologies of these trees, we identify different clusters of countries according to their level of debts. Our results show that by the debt crisis, the less and most affected Eurozone’s economies are formed as a cluster with each other in the MSTs and hierarchical trees.

  12. New Heterogeneous Clustering Protocol for Prolonging Wireless Sensor Networks Lifetime

    Directory of Open Access Journals (Sweden)

    Md. Golam Rashed

    2014-06-01

    Full Text Available Clustering in wireless sensor networks is one of the crucial methods for increasing of network lifetime. The network characteristics of existing classical clustering protocols for wireless sensor network are homogeneous. Clustering protocols fail to maintain the stability of the system, especially when nodes are heterogeneous. We have seen that the behavior of Heterogeneous-Hierarchical Energy Aware Routing Protocol (H-HEARP becomes very unstable once the first node dies, especially in the presence of node heterogeneity. In this paper we assume a new clustering protocol whose network characteristics is heterogeneous for prolonging of network lifetime. The computer simulation results demonstrate that the proposed clustering algorithm outperforms than other clustering algorithms in terms of the time interval before the death of the first node (we refer to as stability period. The simulation results also show the high performance of the proposed clustering algorithm for higher values of extra energy brought by more powerful nodes.

  13. ProtoBee: Hierarchical classification and annotation of the honey bee proteome

    OpenAIRE

    Kaplan, Noam; Linial, Michal

    2006-01-01

    The recently sequenced genome of the honey bee (Apis mellifera) has produced 10,157 predicted protein sequences, calling for a computational effort to extract biological insights from them. We have applied an unsupervised hierarchical protein-clustering method, which was previously used in the ProtoNet system, to nearly 200,000 proteins consisting of the predicted honey bee proteins, the SWISS-PROT protein database, and the complete set of proteins of the mouse (Mus musculus) and the fruit fl...

  14. Dynamic Hierarchical Sleep Scheduling for Wireless Ad-Hoc Sensor Networks

    OpenAIRE

    Chih-Yu Wen; Ying-Chih Chen

    2009-01-01

    This paper presents two scheduling management schemes for wireless sensor networks, which manage the sensors by utilizing the hierarchical network structure and allocate network resources efficiently. A local criterion is used to simultaneously establish the sensing coverage and connectivity such that dynamic cluster-based sleep scheduling can be achieved. The proposed schemes are simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show t...

  15. Zeolitic materials with hierarchical porous structures.

    Science.gov (United States)

    Lopez-Orozco, Sofia; Inayat, Amer; Schwab, Andreas; Selvam, Thangaraj; Schwieger, Wilhelm

    2011-06-17

    During the past several years, different kinds of hierarchical structured zeolitic materials have been synthesized due to their highly attractive properties, such as superior mass/heat transfer characteristics, lower restriction of the diffusion of reactants in the mesopores, and low pressure drop. Our contribution provides general information regarding types and preparation methods of hierarchical zeolitic materials and their relative advantages and disadvantages. Thereafter, recent advances in the preparation and characterization of hierarchical zeolitic structures within the crystallites by post-synthetic treatment methods, such as dealumination or desilication; and structured devices by in situ and ex situ zeolite coatings on open-cellular ceramic foams as (non-reactive as well as reactive) supports are highlighted. Specific advantages of using hierarchical zeolitic catalysts/structures in selected catalytic reactions, such as benzene to phenol (BTOP) and methanol to olefins (MTO) are presented. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. HIERARCHICAL ORGANIZATION OF INFORMATION, IN RELATIONAL DATABASES

    Directory of Open Access Journals (Sweden)

    Demian Horia

    2008-05-01

    Full Text Available In this paper I will present different types of representation, of hierarchical information inside a relational database. I also will compare them to find the best organization for specific scenarios.

  17. Hierarchical DSE for multi-ASIP platforms

    DEFF Research Database (Denmark)

    Micconi, Laura; Corvino, Rosilde; Gangadharan, Deepak

    2013-01-01

    This work proposes a hierarchical Design Space Exploration (DSE) for the design of multi-processor platforms targeted to specific applications with strict timing and area constraints. In particular, it considers platforms integrating multiple Application Specific Instruction Set Processors (ASIPs...

  18. Packaging glass with hierarchically nanostructured surface

    KAUST Repository

    He, Jr-Hau

    2017-08-03

    An optical device includes an active region and packaging glass located on top of the active region. A top surface of the packaging glass includes hierarchical nanostructures comprised of honeycombed nanowalls (HNWs) and nanorod (NR) structures extending from the HNWs.

  19. Packaging glass with hierarchically nanostructured surface

    KAUST Repository

    He, Jr-Hau; Fu, Hui-Chun

    2017-01-01

    An optical device includes an active region and packaging glass located on top of the active region. A top surface of the packaging glass includes hierarchical nanostructures comprised of honeycombed nanowalls (HNWs) and nanorod (NR) structures

  20. Hierarchical Cu precipitation in lamellated steel after multistage heat treatment

    Science.gov (United States)

    Liu, Qingdong; Gu, Jianfeng

    2017-09-01

    The hierarchical distribution of Cu-rich precipitates (CRPs) and related partitioning and segregation behaviours of solute atoms were investigated in a 1.54 Cu-3.51 Ni (wt.%) low-carbon high-strength low-alloy (HSLA) steel after multistage heat treatment by using the combination of electron backscatter diffraction (EBSD), transmission electron microscopy (TEM) and atom probe tomography (APT). Intercritical tempering at 725 °C of as-quenched lathlike martensitic structure leads to the coprecipitation of CRPs at the periphery of a carbide precipitate which is possibly in its paraequilibrium state due to distinct solute segregation at the interface. The alloyed carbide and CRPs provide constituent elements for each other and make the coprecipitation thermodynamically favourable. Meanwhile, austenite reversion occurs to form fresh secondary martensite (FSM) zone where is rich in Cu and pertinent Ni and Mn atoms, which gives rise to a different distributional morphology of CRPs with large size and high density. In addition, conventional tempering at 500 °C leads to the formation of nanoscale Cu-rich clusters in α-Fe matrix. As a consequence, three populations of CRPs are hierarchically formed around carbide precipitate, at FSM zone and in α-Fe matrix. The formation of different precipitated features can be turned by controlling diffusion pathways of related solute atoms and further to tailor mechanical properties via proper multistage heat treatments.

  1. Patterns of comorbidity in community-dwelling older people hospitalised for fall-related injury: A cluster analysis

    Directory of Open Access Journals (Sweden)

    Finch Caroline F

    2011-08-01

    Full Text Available Abstract Background Community-dwelling older people aged 65+ years sustain falls frequently; these can result in physical injuries necessitating medical attention including emergency department care and hospitalisation. Certain health conditions and impairments have been shown to contribute independently to the risk of falling or experiencing a fall injury, suggesting that individuals with these conditions or impairments should be the focus of falls prevention. Since older people commonly have multiple conditions/impairments, knowledge about which conditions/impairments coexist in at-risk individuals would be valuable in the implementation of a targeted prevention approach. The objective of this study was therefore to examine the prevalence and patterns of comorbidity in this population group. Methods We analysed hospitalisation data from Victoria, Australia's second most populous state, to estimate the prevalence of comorbidity in patients hospitalised at least once between 2005-6 and 2007-8 for treatment of acute fall-related injuries. In patients with two or more comorbid conditions (multicomorbidity we used an agglomerative hierarchical clustering method to cluster comorbidity variables and identify constellations of conditions. Results More than one in four patients had at least one comorbid condition and among patients with comorbidity one in three had multicomorbidity (range 2-7. The prevalence of comorbidity varied by gender, age group, ethnicity and injury type; it was also associated with a significant increase in the average cumulative length of stay per patient. The cluster analysis identified five distinct, biologically plausible clusters of comorbidity: cardiopulmonary/metabolic, neurological, sensory, stroke and cancer. The cardiopulmonary/metabolic cluster was the largest cluster among the clusters identified. Conclusions The consequences of comorbidity clustering in terms of falls and/or injury outcomes of hospitalised patients

  2. Heuristics for Hierarchical Partitioning with Application to Model Checking

    DEFF Research Database (Denmark)

    Möller, Michael Oliver; Alur, Rajeev

    2001-01-01

    Given a collection of connected components, it is often desired to cluster together parts of strong correspondence, yielding a hierarchical structure. We address the automation of this process and apply heuristics to battle the combinatorial and computational complexity. We define a cost function...... that captures the quality of a structure relative to the connections and favors shallow structures with a low degree of branching. Finding a structure with minimal cost is NP-complete. We present a greedy polynomial-time algorithm that approximates good solutions incrementally by local evaluation of a heuristic...... function. We argue for a heuristic function based on four criteria: the number of enclosed connections, the number of components, the number of touched connections and the depth of the structure. We report on an application in the context of formal verification, where our algorithm serves as a preprocessor...

  3. Complex networks as an emerging property of hierarchical preferential attachment

    Science.gov (United States)

    Hébert-Dufresne, Laurent; Laurence, Edward; Allard, Antoine; Young, Jean-Gabriel; Dubé, Louis J.

    2015-12-01

    Real complex systems are not rigidly structured; no clear rules or blueprints exist for their construction. Yet, amidst their apparent randomness, complex structural properties universally emerge. We propose that an important class of complex systems can be modeled as an organization of many embedded levels (potentially infinite in number), all of them following the same universal growth principle known as preferential attachment. We give examples of such hierarchy in real systems, for instance, in the pyramid of production entities of the film industry. More importantly, we show how real complex networks can be interpreted as a projection of our model, from which their scale independence, their clustering, their hierarchy, their fractality, and their navigability naturally emerge. Our results suggest that complex networks, viewed as growing systems, can be quite simple, and that the apparent complexity of their structure is largely a reflection of their unobserved hierarchical nature.

  4. A generic algorithm for constructing hierarchical representations of geometric objects

    International Nuclear Information System (INIS)

    Xavier, P.G.

    1995-01-01

    For a number of years, robotics researchers have exploited hierarchical representations of geometrical objects and scenes in motion-planning, collision-avoidance, and simulation. However, few general techniques exist for automatically constructing them. We present a generic, bottom-up algorithm that uses a heuristic clustering technique to produced balanced, coherent hierarchies. Its worst-case running time is O(N 2 logN), but for non-pathological cases it is O(NlogN), where N is the number of input primitives. We have completed a preliminary C++ implementation for input collections of 3D convex polygons and 3D convex polyhedra and conducted simple experiments with scenes of up to 12,000 polygons, which take only a few minutes to process. We present examples using spheres and convex hulls as hierarchy primitives

  5. Hierarchical organization versus self-organization

    OpenAIRE

    Busseniers, Evo

    2014-01-01

    In this paper we try to define the difference between hierarchical organization and self-organization. Organization is defined as a structure with a function. So we can define the difference between hierarchical organization and self-organization both on the structure as on the function. In the next two chapters these two definitions are given. For the structure we will use some existing definitions in graph theory, for the function we will use existing theory on (self-)organization. In the t...

  6. Hierarchical decision making for flood risk reduction

    DEFF Research Database (Denmark)

    Custer, Rocco; Nishijima, Kazuyoshi

    2013-01-01

    . In current practice, structures are often optimized individually without considering benefits of having a hierarchy of protection structures. It is here argued, that the joint consideration of hierarchically integrated protection structures is beneficial. A hierarchical decision model is utilized to analyze...... and compare the benefit of large upstream protection structures and local downstream protection structures in regard to epistemic uncertainty parameters. Results suggest that epistemic uncertainty influences the outcome of the decision model and that, depending on the magnitude of epistemic uncertainty...

  7. Filaments and clusters of galaxies

    International Nuclear Information System (INIS)

    Soltan, A.

    1987-01-01

    A statistical test to investigate filaments of galaxies is performed. Only particular form of filaments is considered, viz. filaments connecting Abell clusters of galaxies. Relative position of triplets ''cluster - field object - cluster'' is analysed. Though neither cluster sample nor field object sample are homogeneous and complete only peculiar form of selection effects could affect the present statistics. Comparison of observational data with simulations shows that less than 15 per cent of all field galaxies is concentrated in filaments connecting rich clusters. Most of the field objects used in the analysis are not normal galaxies and it is possible that this conclusion is not in conflict with apparent filaments seen in the Lick counts and in some nearby 3D maps of the galaxy distribution. 26 refs., 2 figs. (author)

  8. Hierarchical Nanoceramics for Industrial Process Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ruud, James, A.; Brosnan, Kristen, H.; Striker, Todd; Ramaswamy, Vidya; Aceto, Steven, C.; Gao, Yan; Willson, Patrick, D.; Manoharan, Mohan; Armstrong, Eric, N., Wachsman, Eric, D.; Kao, Chi-Chang

    2011-07-15

    This project developed a robust, tunable, hierarchical nanoceramics materials platform for industrial process sensors in harsh-environments. Control of material structure at multiple length scales from nano to macro increased the sensing response of the materials to combustion gases. These materials operated at relatively high temperatures, enabling detection close to the source of combustion. It is anticipated that these materials can form the basis for a new class of sensors enabling widespread use of efficient combustion processes with closed loop feedback control in the energy-intensive industries. The first phase of the project focused on materials selection and process development, leading to hierarchical nanoceramics that were evaluated for sensing performance. The second phase focused on optimizing the materials processes and microstructures, followed by validation of performance of a prototype sensor in a laboratory combustion environment. The objectives of this project were achieved by: (1) synthesizing and optimizing hierarchical nanostructures; (2) synthesizing and optimizing sensing nanomaterials; (3) integrating sensing functionality into hierarchical nanostructures; (4) demonstrating material performance in a sensing element; and (5) validating material performance in a simulated service environment. The project developed hierarchical nanoceramic electrodes for mixed potential zirconia gas sensors with increased surface area and demonstrated tailored electrocatalytic activity operable at high temperatures enabling detection of products of combustion such as NOx close to the source of combustion. Methods were developed for synthesis of hierarchical nanostructures with high, stable surface area, integrated catalytic functionality within the structures for gas sensing, and demonstrated materials performance in harsh lab and combustion gas environments.

  9. Evaluating Hierarchical Structure in Music Annotations.

    Science.gov (United States)

    McFee, Brian; Nieto, Oriol; Farbood, Morwaread M; Bello, Juan Pablo

    2017-01-01

    Music exhibits structure at multiple scales, ranging from motifs to large-scale functional components. When inferring the structure of a piece, different listeners may attend to different temporal scales, which can result in disagreements when they describe the same piece. In the field of music informatics research (MIR), it is common to use corpora annotated with structural boundaries at different levels. By quantifying disagreements between multiple annotators, previous research has yielded several insights relevant to the study of music cognition. First, annotators tend to agree when structural boundaries are ambiguous. Second, this ambiguity seems to depend on musical features, time scale, and genre. Furthermore, it is possible to tune current annotation evaluation metrics to better align with these perceptual differences. However, previous work has not directly analyzed the effects of hierarchical structure because the existing methods for comparing structural annotations are designed for "flat" descriptions, and do not readily generalize to hierarchical annotations. In this paper, we extend and generalize previous work on the evaluation of hierarchical descriptions of musical structure. We derive an evaluation metric which can compare hierarchical annotations holistically across multiple levels. sing this metric, we investigate inter-annotator agreement on the multilevel annotations of two different music corpora, investigate the influence of acoustic properties on hierarchical annotations, and evaluate existing hierarchical segmentation algorithms against the distribution of inter-annotator agreement.

  10. Evaluating Hierarchical Structure in Music Annotations

    Directory of Open Access Journals (Sweden)

    Brian McFee

    2017-08-01

    Full Text Available Music exhibits structure at multiple scales, ranging from motifs to large-scale functional components. When inferring the structure of a piece, different listeners may attend to different temporal scales, which can result in disagreements when they describe the same piece. In the field of music informatics research (MIR, it is common to use corpora annotated with structural boundaries at different levels. By quantifying disagreements between multiple annotators, previous research has yielded several insights relevant to the study of music cognition. First, annotators tend to agree when structural boundaries are ambiguous. Second, this ambiguity seems to depend on musical features, time scale, and genre. Furthermore, it is possible to tune current annotation evaluation metrics to better align with these perceptual differences. However, previous work has not directly analyzed the effects of hierarchical structure because the existing methods for comparing structural annotations are designed for “flat” descriptions, and do not readily generalize to hierarchical annotations. In this paper, we extend and generalize previous work on the evaluation of hierarchical descriptions of musical structure. We derive an evaluation metric which can compare hierarchical annotations holistically across multiple levels. sing this metric, we investigate inter-annotator agreement on the multilevel annotations of two different music corpora, investigate the influence of acoustic properties on hierarchical annotations, and evaluate existing hierarchical segmentation algorithms against the distribution of inter-annotator agreement.

  11. Hierarchical screening for multiple mental disorders.

    Science.gov (United States)

    Batterham, Philip J; Calear, Alison L; Sunderland, Matthew; Carragher, Natacha; Christensen, Helen; Mackinnon, Andrew J

    2013-10-01

    There is a need for brief, accurate screening when assessing multiple mental disorders. Two-stage hierarchical screening, consisting of brief pre-screening followed by a battery of disorder-specific scales for those who meet diagnostic criteria, may increase the efficiency of screening without sacrificing precision. This study tested whether more efficient screening could be gained using two-stage hierarchical screening than by administering multiple separate tests. Two Australian adult samples (N=1990) with high rates of psychopathology were recruited using Facebook advertising to examine four methods of hierarchical screening for four mental disorders: major depressive disorder, generalised anxiety disorder, panic disorder and social phobia. Using K6 scores to determine whether full screening was required did not increase screening efficiency. However, pre-screening based on two decision tree approaches or item gating led to considerable reductions in the mean number of items presented per disorder screened, with estimated item reductions of up to 54%. The sensitivity of these hierarchical methods approached 100% relative to the full screening battery. Further testing of the hierarchical screening approach based on clinical criteria and in other samples is warranted. The results demonstrate that a two-phase hierarchical approach to screening multiple mental disorders leads to considerable increases efficiency gains without reducing accuracy. Screening programs should take advantage of prescreeners based on gating items or decision trees to reduce the burden on respondents. © 2013 Elsevier B.V. All rights reserved.

  12. Supersymmetry for nuclear cluster systems

    International Nuclear Information System (INIS)

    Levai, G.; Cseh, J.; Van Isacker, P.

    2001-01-01

    A supersymmetry scheme is proposed for nuclear cluster systems. The bosonic sector of the superalgebra describes the relative motion of the clusters, while its fermionic sector is associated with their internal structure. An example of core+α configurations is discussed in which the core is a p-shell nucleus and the underlying superalgebra is U(4/12). The α-cluster states of the nuclei 20 Ne and 19 F are analysed and correlations between their spectra, electric quadrupole transitions, and one-nucleon transfer reactions are interpreted in terms of U(4/12) supersymmetry. (author)

  13. tclust: An R Package for a Trimming Approach to Cluster Analysis

    Directory of Open Access Journals (Sweden)

    2012-04-01

    Full Text Available Outlying data can heavily influence standard clustering methods. At the same time, clustering principles can be useful when robustifying statistical procedures. These two reasons motivate the development of feasible robust model-based clustering approaches. With this in mind, an R package for performing non-hierarchical robust clustering, called tclust, is presented here. Instead of trying to “fit” noisy data, a proportion α of the most outlying observations is trimmed. The tclust package efficiently handles different cluster scatter constraints. Graphical exploratory tools are also provided to help the user make sensible choices for the trimming proportion as well as the number of clusters to search for.

  14. Cluster forcing

    DEFF Research Database (Denmark)

    Christensen, Thomas Budde

    The cluster theory attributed to Michael Porter has significantly influenced industrial policies in countries across Europe and North America since the beginning of the 1990s. Institutions such as the EU, OECD and the World Bank and governments in countries such as the UK, France, The Netherlands...... or management. Both the Accelerate Wales and the Accelerate Cluster programmes target this issue by trying to establish networks between companies that can be used to supply knowledge from research institutions to manufacturing companies. The paper concludes that public sector interventions can make...... businesses. The universities were not considered by the participating companies to be important parts of the local business environment and inputs from universities did not appear to be an important source to access knowledge about new product development or new techniques in production, distribution...

  15. Regional Innovation Clusters

    Data.gov (United States)

    Small Business Administration — The Regional Innovation Clusters serve a diverse group of sectors and geographies. Three of the initial pilot clusters, termed Advanced Defense Technology clusters,...

  16. Cluster analysis

    OpenAIRE

    Mucha, Hans-Joachim; Sofyan, Hizir

    2000-01-01

    As an explorative technique, duster analysis provides a description or a reduction in the dimension of the data. It classifies a set of observations into two or more mutually exclusive unknown groups based on combinations of many variables. Its aim is to construct groups in such a way that the profiles of objects in the same groups are relatively homogenous whereas the profiles of objects in different groups are relatively heterogeneous. Clustering is distinct from classification techniques, ...

  17. A Cluster Analysis of Personality Style in Adults with ADHD

    Science.gov (United States)

    Robin, Arthur L.; Tzelepis, Angela; Bedway, Marquita

    2008-01-01

    Objective: The purpose of this study was to use hierarchical linear cluster analysis to examine the normative personality styles of adults with ADHD. Method: A total of 311 adults with ADHD completed the Millon Index of Personality Styles, which consists of 24 scales assessing motivating aims, cognitive modes, and interpersonal behaviors. Results:…

  18. Applications of Cluster Analysis to the Creation of Perfectionism Profiles: A Comparison of two Clustering Approaches

    Directory of Open Access Journals (Sweden)

    Jocelyn H Bolin

    2014-04-01

    Full Text Available Although traditional clustering methods (e.g., K-means have been shown to be useful in the social sciences it is often difficult for such methods to handle situations where clusters in the population overlap or are ambiguous. Fuzzy clustering, a method already recognized in many disciplines, provides a more flexible alternative to these traditional clustering methods. Fuzzy clustering differs from other traditional clustering methods in that it allows for a case to belong to multiple clusters simultaneously. Unfortunately, fuzzy clustering techniques remain relatively unused in the social and behavioral sciences. The purpose of this paper is to introduce fuzzy clustering to these audiences who are currently relatively unfamiliar with the technique. In order to demonstrate the advantages associated with this method, cluster solutions of a common perfectionism measure were created using both fuzzy clustering and K-means clustering, and the results compared. Results of these analyses reveal that different cluster solutions are found by the two methods, and the similarity between the different clustering solutions depends on the amount of cluster overlap allowed for in fuzzy clustering.

  19. Applications of cluster analysis to the creation of perfectionism profiles: a comparison of two clustering approaches.

    Science.gov (United States)

    Bolin, Jocelyn H; Edwards, Julianne M; Finch, W Holmes; Cassady, Jerrell C

    2014-01-01

    Although traditional clustering methods (e.g., K-means) have been shown to be useful in the social sciences it is often difficult for such methods to handle situations where clusters in the population overlap or are ambiguous. Fuzzy clustering, a method already recognized in many disciplines, provides a more flexible alternative to these traditional clustering methods. Fuzzy clustering differs from other traditional clustering methods in that it allows for a case to belong to multiple clusters simultaneously. Unfortunately, fuzzy clustering techniques remain relatively unused in the social and behavioral sciences. The purpose of this paper is to introduce fuzzy clustering to these audiences who are currently relatively unfamiliar with the technique. In order to demonstrate the advantages associated with this method, cluster solutions of a common perfectionism measure were created using both fuzzy clustering and K-means clustering, and the results compared. Results of these analyses reveal that different cluster solutions are found by the two methods, and the similarity between the different clustering solutions depends on the amount of cluster overlap allowed for in fuzzy clustering.

  20. Relation between financial market structure and the real economy: comparison between clustering methods.

    Science.gov (United States)

    Musmeci, Nicoló; Aste, Tomaso; Di Matteo, T

    2015-01-01

    We quantify the amount of information filtered by different hierarchical clustering methods on correlations between stock returns comparing the clustering structure with the underlying industrial activity classification. We apply, for the first time to financial data, a novel hierarchical clustering approach, the Directed Bubble Hierarchical Tree and we compare it with other methods including the Linkage and k-medoids. By taking the industrial sector classification of stocks as a benchmark partition, we evaluate how the different methods retrieve this classification. The results show that the Directed Bubble Hierarchical Tree can outperform other methods, being able to retrieve more information with fewer clusters. Moreover,we show that the economic information is hidden at different levels of the hierarchical structures depending on the clustering method. The dynamical analysis on a rolling window also reveals that the different methods show different degrees of sensitivity to events affecting financial markets, like crises. These results can be of interest for all the applications of clustering methods to portfolio optimization and risk hedging [corrected].

  1. Relation between financial market structure and the real economy: comparison between clustering methods.

    Directory of Open Access Journals (Sweden)

    Nicoló Musmeci

    Full Text Available We quantify the amount of information filtered by different hierarchical clustering methods on correlations between stock returns comparing the clustering structure with the underlying industrial activity classification. We apply, for the first time to financial data, a novel hierarchical clustering approach, the Directed Bubble Hierarchical Tree and we compare it with other methods including the Linkage and k-medoids. By taking the industrial sector classification of stocks as a benchmark partition, we evaluate how the different methods retrieve this classification. The results show that the Directed Bubble Hierarchical Tree can outperform other methods, being able to retrieve more information with fewer clusters. Moreover,we show that the economic information is hidden at different levels of the hierarchical structures depending on the clustering method. The dynamical analysis on a rolling window also reveals that the different methods show different degrees of sensitivity to events affecting financial markets, like crises. These results can be of interest for all the applications of clustering methods to portfolio optimization and risk hedging [corrected].

  2. Rearrangement of cluster structure during fission processes

    DEFF Research Database (Denmark)

    Lyalin, Andrey G.; Obolensky, Oleg I.; Solov'yov, Andrey V.

    2004-01-01

    Results of molecular dynamics simulations of fission reactions $Na_10^2+ -->Na_7^++ Na_3^+ and Na_18^2+--> 2Na_9^+ are presented. The dependence of the fission barriers on the isomer structure of the parent cluster is analysed. It is demonstrated that the energy necessary for removing homothetic...... groups of atoms from the parent cluster is largely independent of the isomer form of the parent cluster. The importance of rearrangement of the cluster structure during the fission process is elucidated. This rearrangement may include transition to another isomer state of the parent cluster before actual...

  3. Hierarchical Bayesian modeling of the space - time diffusion patterns of cholera epidemic in Kumasi, Ghana

    NARCIS (Netherlands)

    Osei, Frank B.; Osei, F.B.; Duker, Alfred A.; Stein, A.

    2011-01-01

    This study analyses the joint effects of the two transmission routes of cholera on the space-time diffusion dynamics. Statistical models are developed and presented to investigate the transmission network routes of cholera diffusion. A hierarchical Bayesian modelling approach is employed for a joint

  4. Cluster Oriented Spatio Temporal Multidimensional Data Visualization of Earthquakes in Indonesia

    Directory of Open Access Journals (Sweden)

    Mohammad Nur Shodiq

    2016-03-01

    Full Text Available Spatio temporal data clustering is challenge task. The result of clustering data are utilized to investigate the seismic parameters. Seismic parameters are used to describe the characteristics of earthquake behavior. One of the effective technique to study multidimensional spatio temporal data is visualization. But, visualization of multidimensional data is complicated problem. Because, this analysis consists of observed data cluster and seismic parameters. In this paper, we propose a visualization system, called as IES (Indonesia Earthquake System, for cluster analysis, spatio temporal analysis, and visualize the multidimensional data of seismic parameters. We analyze the cluster analysis by using automatic clustering, that consists of get optimal number of cluster and Hierarchical K-means clustering. We explore the visual cluster and multidimensional data in low dimensional space visualization. We made experiment with observed data, that consists of seismic data around Indonesian archipelago during 2004 to 2014. Keywords: Clustering, visualization, multidimensional data, seismic parameters.

  5. Study on distributed re-clustering algorithm for moblie wireless sensor networks

    Directory of Open Access Journals (Sweden)

    XU Chaojie

    2016-04-01

    Full Text Available In mobile wireless sensor networks,node mobility influences the topology of the hierarchically clustered network,thus affects packet delivery ratio and energy consumption of communications in clusters.To reduce the influence of node mobility,a distributed re-clustering algorithm is proposed in this paper.In this algorithm,basing on the clustered network,nodes estimate their current locations with particle algorithm and predict the most possible locations of next time basing on the mobility model.Each boundary node of a cluster periodically estimates the need for re-clustering and re-cluster itself to the optimal cluster through communicating with the cluster headers when needed.The simulation results indicate that,with small re-clustering periods,the proposed algorithm can be effective to keep appropriate communication distance and outperforms existing schemes on packet delivery ratio and energy consumption.

  6. Self-assembled biomimetic superhydrophobic hierarchical arrays.

    Science.gov (United States)

    Yang, Hongta; Dou, Xuan; Fang, Yin; Jiang, Peng

    2013-09-01

    Here, we report a simple and inexpensive bottom-up technology for fabricating superhydrophobic coatings with hierarchical micro-/nano-structures, which are inspired by the binary periodic structure found on the superhydrophobic compound eyes of some insects (e.g., mosquitoes and moths). Binary colloidal arrays consisting of exemplary large (4 and 30 μm) and small (300 nm) silica spheres are first assembled by a scalable Langmuir-Blodgett (LB) technology in a layer-by-layer manner. After surface modification with fluorosilanes, the self-assembled hierarchical particle arrays become superhydrophobic with an apparent water contact angle (CA) larger than 150°. The throughput of the resulting superhydrophobic coatings with hierarchical structures can be significantly improved by templating the binary periodic structures of the LB-assembled colloidal arrays into UV-curable fluoropolymers by a soft lithography approach. Superhydrophobic perfluoroether acrylate hierarchical arrays with large CAs and small CA hysteresis can be faithfully replicated onto various substrates. Both experiments and theoretical calculations based on the Cassie's dewetting model demonstrate the importance of the hierarchical structure in achieving the final superhydrophobic surface states. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Electricity Consumption Clustering Using Smart Meter Data

    Directory of Open Access Journals (Sweden)

    Alexander Tureczek

    2018-04-01

    Full Text Available Electricity smart meter consumption data is enabling utilities to analyze consumption information at unprecedented granularity. Much focus has been directed towards consumption clustering for diversifying tariffs; through modern clustering methods, cluster analyses have been performed. However, the clusters developed exhibit a large variation with resulting shadow clusters, making it impossible to truly identify the individual clusters. Using clearly defined dwelling types, this paper will present methods to improve clustering by harvesting inherent structure from the smart meter data. This paper clusters domestic electricity consumption using smart meter data from the Danish city of Esbjerg. Methods from time series analysis and wavelets are applied to enable the K-Means clustering method to account for autocorrelation in data and thereby improve the clustering performance. The results show the importance of data knowledge and we identify sub-clusters of consumption within the dwelling types and enable K-Means to produce satisfactory clustering by accounting for a temporal component. Furthermore our study shows that careful preprocessing of the data to account for intrinsic structure enables better clustering performance by the K-Means method.

  8. K-nearest uphill clustering in the protein structure space

    KAUST Repository

    Cui, Xuefeng

    2016-08-26

    The protein structure classification problem, which is to assign a protein structure to a cluster of similar proteins, is one of the most fundamental problems in the construction and application of the protein structure space. Early manually curated protein structure classifications (e.g., SCOP and CATH) are very successful, but recently suffer the slow updating problem because of the increased throughput of newly solved protein structures. Thus, fully automatic methods to cluster proteins in the protein structure space have been designed and developed. In this study, we observed that the SCOP superfamilies are highly consistent with clustering trees representing hierarchical clustering procedures, but the tree cutting is very challenging and becomes the bottleneck of clustering accuracy. To overcome this challenge, we proposed a novel density-based K-nearest uphill clustering method that effectively eliminates noisy pairwise protein structure similarities and identifies density peaks as cluster centers. Specifically, the density peaks are identified based on K-nearest uphills (i.e., proteins with higher densities) and K-nearest neighbors. To our knowledge, this is the first attempt to apply and develop density-based clustering methods in the protein structure space. Our results show that our density-based clustering method outperforms the state-of-the-art clustering methods previously applied to the problem. Moreover, we observed that computational methods and human experts could produce highly similar clusters at high precision values, while computational methods also suggest to split some large superfamilies into smaller clusters. © 2016 Elsevier B.V.

  9. UQlust: combining profile hashing with linear-time ranking for efficient clustering and analysis of big macromolecular data.

    Science.gov (United States)

    Adamczak, Rafal; Meller, Jarek

    2016-12-28

    Advances in computing have enabled current protein and RNA structure prediction and molecular simulation methods to dramatically increase their sampling of conformational spaces. The quickly growing number of experimentally resolved structures, and databases such as the Protein Data Bank, also implies large scale structural similarity analyses to retrieve and classify macromolecular data. Consequently, the computational cost of structure comparison and clustering for large sets of macromolecular structures has become a bottleneck that necessitates further algorithmic improvements and development of efficient software solutions. uQlust is a versatile and easy-to-use tool for ultrafast ranking and clustering of macromolecular structures. uQlust makes use of structural profiles of proteins and nucleic acids, while combining a linear-time algorithm for implicit comparison of all pairs of models with profile hashing to enable efficient clustering of large data sets with a low memory footprint. In addition to ranking and clustering of large sets of models of the same protein or RNA molecule, uQlust can also be used in conjunction with fragment-based profiles in order to cluster structures of arbitrary length. For example, hierarchical clustering of the entire PDB using profile hashing can be performed on a typical laptop, thus opening an avenue for structural explorations previously limited to dedicated resources. The uQlust package is freely available under the GNU General Public License at https://github.com/uQlust . uQlust represents a drastic reduction in the computational complexity and memory requirements with respect to existing clustering and model quality assessment methods for macromolecular structure analysis, while yielding results on par with traditional approaches for both proteins and RNAs.

  10. bcl::Cluster : A method for clustering biological molecules coupled with visualization in the Pymol Molecular Graphics System.

    Science.gov (United States)

    Alexander, Nathan; Woetzel, Nils; Meiler, Jens

    2011-02-01

    Clustering algorithms are used as data analysis tools in a wide variety of applications in Biology. Clustering has become especially important in protein structure prediction and virtual high throughput screening methods. In protein structure prediction, clustering is used to structure the conformational space of thousands of protein models. In virtual high throughput screening, databases with millions of drug-like molecules are organized by structural similarity, e.g. common scaffolds. The tree-like dendrogram structure obtained from hierarchical clustering can provide a qualitative overview of the results, which is important for focusing detailed analysis. However, in practice it is difficult to relate specific components of the dendrogram directly back to the objects of which it is comprised and to display all desired information within the two dimensions of the dendrogram. The current work presents a hierarchical agglomerative clustering method termed bcl::Cluster. bcl::Cluster utilizes the Pymol Molecular Graphics System to graphically depict dendrograms in three dimensions. This allows simultaneous display of relevant biological molecules as well as additional information about the clusters and the members comprising them.

  11. Static and dynamic friction of hierarchical surfaces.

    Science.gov (United States)

    Costagliola, Gianluca; Bosia, Federico; Pugno, Nicola M

    2016-12-01

    Hierarchical structures are very common in nature, but only recently have they been systematically studied in materials science, in order to understand the specific effects they can have on the mechanical properties of various systems. Structural hierarchy provides a way to tune and optimize macroscopic mechanical properties starting from simple base constituents and new materials are nowadays designed exploiting this possibility. This can be true also in the field of tribology. In this paper we study the effect of hierarchical patterned surfaces on the static and dynamic friction coefficients of an elastic material. Our results are obtained by means of numerical simulations using a one-dimensional spring-block model, which has previously been used to investigate various aspects of friction. Despite the simplicity of the model, we highlight some possible mechanisms that explain how hierarchical structures can significantly modify the friction coefficients of a material, providing a means to achieve tunability.

  12. Learning with hierarchical-deep models.

    Science.gov (United States)

    Salakhutdinov, Ruslan; Tenenbaum, Joshua B; Torralba, Antonio

    2013-08-01

    We introduce HD (or “Hierarchical-Deep”) models, a new compositional learning architecture that integrates deep learning models with structured hierarchical Bayesian (HB) models. Specifically, we show how we can learn a hierarchical Dirichlet process (HDP) prior over the activities of the top-level features in a deep Boltzmann machine (DBM). This compound HDP-DBM model learns to learn novel concepts from very few training example by learning low-level generic features, high-level features that capture correlations among low-level features, and a category hierarchy for sharing priors over the high-level features that are typical of different kinds of concepts. We present efficient learning and inference algorithms for the HDP-DBM model and show that it is able to learn new concepts from very few examples on CIFAR-100 object recognition, handwritten character recognition, and human motion capture datasets.

  13. Deep hierarchical attention network for video description

    Science.gov (United States)

    Li, Shuohao; Tang, Min; Zhang, Jun

    2018-03-01

    Pairing video to natural language description remains a challenge in computer vision and machine translation. Inspired by image description, which uses an encoder-decoder model for reducing visual scene into a single sentence, we propose a deep hierarchical attention network for video description. The proposed model uses convolutional neural network (CNN) and bidirectional LSTM network as encoders while a hierarchical attention network is used as the decoder. Compared to encoder-decoder models used in video description, the bidirectional LSTM network can capture the temporal structure among video frames. Moreover, the hierarchical attention network has an advantage over single-layer attention network on global context modeling. To make a fair comparison with other methods, we evaluate the proposed architecture with different types of CNN structures and decoders. Experimental results on the standard datasets show that our model has a more superior performance than the state-of-the-art techniques.

  14. On Utmost Multiplicity of Hierarchical Stellar Systems

    Directory of Open Access Journals (Sweden)

    Gebrehiwot Y. M.

    2016-12-01

    Full Text Available According to theoretical considerations, multiplicity of hierarchical stellar systems can reach, depending on masses and orbital parameters, several hundred, while observational data confirm the existence of at most septuple (seven-component systems. In this study, we cross-match the stellar systems of very high multiplicity (six and more components in modern catalogues of visual double and multiple stars to find among them the candidates to hierarchical systems. After cross-matching the catalogues of closer binaries (eclipsing, spectroscopic, etc., some of their components were found to be binary/multiple themselves, what increases the system's degree of multiplicity. Optical pairs, known from literature or filtered by the authors, were flagged and excluded from the statistics. We compiled a list of hierarchical systems with potentially very high multiplicity that contains ten objects. Their multiplicity does not exceed 12, and we discuss a number of ways to explain the lack of extremely high multiplicity systems.

  15. Hierarchical Micro-Nano Coatings by Painting

    Science.gov (United States)

    Kirveslahti, Anna; Korhonen, Tuulia; Suvanto, Mika; Pakkanen, Tapani A.

    2016-03-01

    In this paper, the wettability properties of coatings with hierarchical surface structures and low surface energy were studied. Hierarchically structured coatings were produced by using hydrophobic fumed silica nanoparticles and polytetrafluoroethylene (PTFE) microparticles as additives in polyester (PES) and polyvinyldifluoride (PVDF). These particles created hierarchical micro-nano structures on the paint surfaces and lowered or supported the already low surface energy of the paint. Two standard application techniques for paint application were employed and the presented coatings are suitable for mass production and use in large surface areas. By regulating the particle concentrations, it was possible to modify wettability properties gradually. Highly hydrophobic surfaces were achieved with the highest contact angle of 165∘. Dynamic contact angle measurements were carried out for a set of selected samples and low hysteresis was obtained. Produced coatings possessed long lasting durability in the air and in underwater conditions.

  16. Bias correction in the hierarchical likelihood approach to the analysis of multivariate survival data.

    Science.gov (United States)

    Jeon, Jihyoun; Hsu, Li; Gorfine, Malka

    2012-07-01

    Frailty models are useful for measuring unobserved heterogeneity in risk of failures across clusters, providing cluster-specific risk prediction. In a frailty model, the latent frailties shared by members within a cluster are assumed to act multiplicatively on the hazard function. In order to obtain parameter and frailty variate estimates, we consider the hierarchical likelihood (H-likelihood) approach (Ha, Lee and Song, 2001. Hierarchical-likelihood approach for frailty models. Biometrika 88, 233-243) in which the latent frailties are treated as "parameters" and estimated jointly with other parameters of interest. We find that the H-likelihood estimators perform well when the censoring rate is low, however, they are substantially biased when the censoring rate is moderate to high. In this paper, we propose a simple and easy-to-implement bias correction method for the H-likelihood estimators under a shared frailty model. We also extend the method to a multivariate frailty model, which incorporates complex dependence structure within clusters. We conduct an extensive simulation study and show that the proposed approach performs very well for censoring rates as high as 80%. We also illustrate the method with a breast cancer data set. Since the H-likelihood is the same as the penalized likelihood function, the proposed bias correction method is also applicable to the penalized likelihood estimators.

  17. Dietary habits and physical activity patterns among Slovenian elderly: cross-sectional survey with cluster analysis

    Directory of Open Access Journals (Sweden)

    Joca Zurc

    2015-03-01

    Full Text Available Introduction: Physical activity and a healthy diet are significant predictors of healthy ageing—they help the elderly maintain their physical and mental health, and prevent chronic diseases. Methods: The data for the empirical quantitative survey were collected on the sample of 218 elderly community-dwelling participants (aged 65 years or more, using a structured questionnaire for self-reporting. Data analyses were proceed with the bivariate statistics, and multivariate hierarchical cluster analysis. Results: Most respondents reported good dietary habits (83.1% and a satisfactory physical activity level (60.5%. On average, the elderly eat 3-4 meals per day (59.8% and engage in physical activity at least three times a week (58.6%, with interventions lasting 15 minutes or more (84.4 % and non-organized activity prevailing (96.2%. Ward’s method yielded three clusters with homogenous dietary and physical activity patterns: ‘Health Conscious’ (30.8%, ‘At Risk’ (42.7% and ‘Special Requirements’ (26.5%. Significant differences were identified between clusters and educational level (p = 0.001. Discussion and conclusions: In the future, special attention should be placed on the elderly group with a lower educational level and special dietary and physical activity requirements. Additional studies on representative samples are required for a comprehensive investigation into the lifestyle behaviours of elderly individuals.

  18. Short-Term Wind Power Forecasting Based on Clustering Pre-Calculated CFD Method

    Directory of Open Access Journals (Sweden)

    Yimei Wang

    2018-04-01

    Full Text Available To meet the increasing wind power forecasting (WPF demands of newly built wind farms without historical data, physical WPF methods are widely used. The computational fluid dynamics (CFD pre-calculated flow fields (CPFF-based WPF is a promising physical approach, which can balance well the competing demands of computational efficiency and accuracy. To enhance its adaptability for wind farms in complex terrain, a WPF method combining wind turbine clustering with CPFF is first proposed where the wind turbines in the wind farm are clustered and a forecasting is undertaken for each cluster. K-means, hierarchical agglomerative and spectral analysis methods are used to establish the wind turbine clustering models. The Silhouette Coefficient, Calinski-Harabaz index and within-between index are proposed as criteria to evaluate the effectiveness of the established clustering models. Based on different clustering methods and schemes, various clustering databases are built for clustering pre-calculated CFD (CPCC-based short-term WPF. For the wind farm case studied, clustering evaluation criteria show that hierarchical agglomerative clustering has reasonable results, spectral clustering is better and K-means gives the best performance. The WPF results produced by different clustering databases also prove the effectiveness of the three evaluation criteria in turn. The newly developed CPCC model has a much higher WPF accuracy than the CPFF model without using clustering techniques, both on temporal and spatial scales. The research provides supports for both the development and improvement of short-term physical WPF systems.

  19. Uncertainty and Sensitivity Analyses Plan

    International Nuclear Information System (INIS)

    Simpson, J.C.; Ramsdell, J.V. Jr.

    1993-04-01

    Hanford Environmental Dose Reconstruction (HEDR) Project staff are developing mathematical models to be used to estimate the radiation dose that individuals may have received as a result of emissions since 1944 from the US Department of Energy's (DOE) Hanford Site near Richland, Washington. An uncertainty and sensitivity analyses plan is essential to understand and interpret the predictions from these mathematical models. This is especially true in the case of the HEDR models where the values of many parameters are unknown. This plan gives a thorough documentation of the uncertainty and hierarchical sensitivity analysis methods recommended for use on all HEDR mathematical models. The documentation includes both technical definitions and examples. In addition, an extensive demonstration of the uncertainty and sensitivity analysis process is provided using actual results from the Hanford Environmental Dose Reconstruction Integrated Codes (HEDRIC). This demonstration shows how the approaches used in the recommended plan can be adapted for all dose predictions in the HEDR Project

  20. Analyzing security protocols in hierarchical networks

    DEFF Research Database (Denmark)

    Zhang, Ye; Nielson, Hanne Riis

    2006-01-01

    Validating security protocols is a well-known hard problem even in a simple setting of a single global network. But a real network often consists of, besides the public-accessed part, several sub-networks and thereby forms a hierarchical structure. In this paper we first present a process calculus...... capturing the characteristics of hierarchical networks and describe the behavior of protocols on such networks. We then develop a static analysis to automate the validation. Finally we demonstrate how the technique can benefit the protocol development and the design of network systems by presenting a series...

  1. Multiparty hierarchical quantum-information splitting

    International Nuclear Information System (INIS)

    Wang Xinwen; Zhang Dengyu; Tang Shiqing; Xie Lijun

    2011-01-01

    We propose a scheme for multiparty hierarchical quantum-information splitting (QIS) with a multipartite entangled state, where a boss distributes a secret quantum state to two grades of agents asymmetrically. The agents who belong to different grades have different authorities for recovering the boss's secret. Except for the boss's Bell-state measurement, no nonlocal operation is involved. The presented scheme is also shown to be secure against eavesdropping. Such a hierarchical QIS is expected to find useful applications in the field of modern multipartite quantum cryptography.

  2. Hierarchical Analysis of the Omega Ontology

    Energy Technology Data Exchange (ETDEWEB)

    Joslyn, Cliff A.; Paulson, Patrick R.

    2009-12-01

    Initial delivery for mathematical analysis of the Omega Ontology. We provide an analysis of the hierarchical structure of a version of the Omega Ontology currently in use within the US Government. After providing an initial statistical analysis of the distribution of all link types in the ontology, we then provide a detailed order theoretical analysis of each of the four main hierarchical links present. This order theoretical analysis includes the distribution of components and their properties, their parent/child and multiple inheritance structure, and the distribution of their vertical ranks.

  3. Nuclear clustering - a cluster core model study

    International Nuclear Information System (INIS)

    Paul Selvi, G.; Nandhini, N.; Balasubramaniam, M.

    2015-01-01

    Nuclear clustering, similar to other clustering phenomenon in nature is a much warranted study, since it would help us in understanding the nature of binding of the nucleons inside the nucleus, closed shell behaviour when the system is highly deformed, dynamics and structure at extremes. Several models account for the clustering phenomenon of nuclei. We present in this work, a cluster core model study of nuclear clustering in light mass nuclei

  4. ESPRIT-Forest: Parallel clustering of massive amplicon sequence data in subquadratic time.

    Science.gov (United States)

    Cai, Yunpeng; Zheng, Wei; Yao, Jin; Yang, Yujie; Mai, Volker; Mao, Qi; Sun, Yijun

    2017-04-01

    The rapid development of sequencing technology has led to an explosive accumulation of genomic sequence data. Clustering is often the first step to perform in sequence analysis, and hierarchical clustering is one of the most commonly used approaches for this purpose. However, it is currently computationally expensive to perform hierarchical clustering of extremely large sequence datasets due to its quadratic time and space complexities. In this paper we developed a new algorithm called ESPRIT-Forest for parallel hierarchical clustering of sequences. The algorithm achieves subquadratic time and space complexity and maintains a high clustering accuracy comparable to the standard method. The basic idea is to organize sequences into a pseudo-metric based partitioning tree for sub-linear time searching of nearest neighbors, and then use a new multiple-pair merging criterion to construct clusters in parallel using multiple threads. The new algorithm was tested on the human microbiome project (HMP) dataset, currently one of the largest published microbial 16S rRNA sequence dataset. Our experiment demonstrated that with the power of parallel computing it is now compu- tationally feasible to perform hierarchical clustering analysis of tens of millions of sequences. The software is available at http://www.acsu.buffalo.edu/∼yijunsun/lab/ESPRIT-Forest.html.

  5. Multilevel compression of random walks on networks reveals hierarchical organization in large integrated systems.

    Directory of Open Access Journals (Sweden)

    Martin Rosvall

    Full Text Available To comprehend the hierarchical organization of large integrated systems, we introduce the hierarchical map equation, which reveals multilevel structures in networks. In this information-theoretic approach, we exploit the duality between compression and pattern detection; by compressing a description of a random walker as a proxy for real flow on a network, we find regularities in the network that induce this system-wide flow. Finding the shortest multilevel description of the random walker therefore gives us the best hierarchical clustering of the network--the optimal number of levels and modular partition at each level--with respect to the dynamics on the network. With a novel search algorithm, we extract and illustrate the rich multilevel organization of several large social and biological networks. For example, from the global air traffic network we uncover countries and continents, and from the pattern of scientific communication we reveal more than 100 scientific fields organized in four major disciplines: life sciences, physical sciences, ecology and earth sciences, and social sciences. In general, we find shallow hierarchical structures in globally interconnected systems, such as neural networks, and rich multilevel organizations in systems with highly separated regions, such as road networks.

  6. Ethical implications of excessive cluster sizes in cluster randomised trials.

    Science.gov (United States)

    Hemming, Karla; Taljaard, Monica; Forbes, Gordon; Eldridge, Sandra M; Weijer, Charles

    2018-02-20

    The cluster randomised trial (CRT) is commonly used in healthcare research. It is the gold-standard study design for evaluating healthcare policy interventions. A key characteristic of this design is that as more participants are included, in a fixed number of clusters, the increase in achievable power will level off. CRTs with cluster sizes that exceed the point of levelling-off will have excessive numbers of participants, even if they do not achieve nominal levels of power. Excessively large cluster sizes may have ethical implications due to exposing trial participants unnecessarily to the burdens of both participating in the trial and the potential risks of harm associated with the intervention. We explore these issues through the use of two case studies. Where data are routinely collected, available at minimum cost and the intervention poses low risk, the ethical implications of excessively large cluster sizes are likely to be low (case study 1). However, to maximise the social benefit of the study, identification of excessive cluster sizes can allow for prespecified and fully powered secondary analyses. In the second case study, while there is no burden through trial participation (because the outcome data are routinely collected and non-identifiable), the intervention might be considered to pose some indirect risk to patients and risks to the healthcare workers. In this case study it is therefore important that the inclusion of excessively large cluster sizes is justifiable on other grounds (perhaps to show sustainability). In any randomised controlled trial, including evaluations of health policy interventions, it is important to minimise the burdens and risks to participants. Funders, researchers and research ethics committees should be aware of the ethical issues of excessively large cluster sizes in cluster trials. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is

  7. Evaluation of chemical changes during Myrciaria cauliflora (jabuticaba fruit) fermentation by {sup 1}H NMR spectroscopy and chemometric analyses

    Energy Technology Data Exchange (ETDEWEB)

    Fortes, Gilmara A.C.; Naves, Sara S.; Ferri, Pedro H.; Santos, Suzana C., E-mail: suzana.quimica.ufg@hotmail.com [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Inst. de Quimica. Lab. de Bioatividade Molecular

    2012-10-15

    Organic acids, sugars, alcohols, phenolic compounds, color properties, pH and titratable acidity were monitored during the commercial fermentation of jabuticaba (Myrciaria cauliflora) by {sup 1}H nuclear magnetic resonance (NMR) spectroscopy, spectrophotometric assays and standard methods of analysis. Data collected was analyzed by principal component (PCA), hierarchical cluster (HCA) and canonical correlation (CCA) analyses. Two sample groups were distinguished and the variables responsible for separation were sugars, anthocyanins, alcohols, hue and acetic and succinic acids. The canonical correlation analysis confirmed the influence of alcohols (ethanol, methanol and glycerol), organic acids (citric, succinic and acetic acids), pH and titratable acidity on the extraction and stability of anthocyanins and co pigments. As a result, color properties were also affected by phenolic variation throughout the fermentative process. (author)

  8. A local adaptive algorithm for emerging scale-free hierarchical networks

    International Nuclear Information System (INIS)

    Gomez Portillo, I J; Gleiser, P M

    2010-01-01

    In this work we study a growing network model with chaotic dynamical units that evolves using a local adaptive rewiring algorithm. Using numerical simulations we show that the model allows for the emergence of hierarchical networks. First, we show that the networks that emerge with the algorithm present a wide degree distribution that can be fitted by a power law function, and thus are scale-free networks. Using the LaNet-vi visualization tool we present a graphical representation that reveals a central core formed only by hubs, and also show the presence of a preferential attachment mechanism. In order to present a quantitative analysis of the hierarchical structure we analyze the clustering coefficient. In particular, we show that as the network grows the clustering becomes independent of system size, and also presents a power law decay as a function of the degree. Finally, we compare our results with a similar version of the model that has continuous non-linear phase oscillators as dynamical units. The results show that local interactions play a fundamental role in the emergence of hierarchical networks.

  9. iHAT: interactive Hierarchical Aggregation Table for Genetic Association Data

    Directory of Open Access Journals (Sweden)

    Heinrich Julian

    2012-05-01

    Full Text Available Abstract In the search for single-nucleotide polymorphisms which influence the observable phenotype, genome wide association studies have become an important technique for the identification of associations between genotype and phenotype of a diverse set of sequence-based data. We present a methodology for the visual assessment of single-nucleotide polymorphisms using interactive hierarchical aggregation techniques combined with methods known from traditional sequence browsers and cluster heatmaps. Our tool, the interactive Hierarchical Aggregation Table (iHAT, facilitates the visualization of multiple sequence alignments, associated metadata, and hierarchical clusterings. Different color maps and aggregation strategies as well as filtering options support the user in finding correlations between sequences and metadata. Similar to other visualizations such as parallel coordinates or heatmaps, iHAT relies on the human pattern-recognition ability for spotting patterns that might indicate correlation or anticorrelation. We demonstrate iHAT using artificial and real-world datasets for DNA and protein association studies as well as expression Quantitative Trait Locus data.

  10. Programming Hierarchical Self-Assembly of Patchy Particles into Colloidal Crystals via Colloidal Molecules.

    Science.gov (United States)

    Morphew, Daniel; Shaw, James; Avins, Christopher; Chakrabarti, Dwaipayan

    2018-03-27

    Colloidal self-assembly is a promising bottom-up route to a wide variety of three-dimensional structures, from clusters to crystals. Programming hierarchical self-assembly of colloidal building blocks, which can give rise to structures ordered at multiple levels to rival biological complexity, poses a multiscale design problem. Here we explore a generic design principle that exploits a hierarchy of interaction strengths and employ this design principle in computer simulations to demonstrate the hierarchical self-assembly of triblock patchy colloidal particles into two distinct colloidal crystals. We obtain cubic diamond and body-centered cubic crystals via distinct clusters of uniform size and shape, namely, tetrahedra and octahedra, respectively. Such a conceptual design framework has the potential to reliably encode hierarchical self-assembly of colloidal particles into a high level of sophistication. Moreover, the design framework underpins a bottom-up route to cubic diamond colloidal crystals, which have remained elusive despite being much sought after for their attractive photonic applications.

  11. The Business Cluster's Distribution e-Channels

    OpenAIRE

    Milan Davidovic

    2011-01-01

    The business cluster cooperative potential and business capability improvement are dependent on e-business implementation and business model change dynamics in cluster and his members based in new and existing distribution channels, customer relationships management and supplychain integration. In this work analyse cluster’s e-business models, e-commerce forms and distribution e-channels for three business cases: when cluster members are oriented on own business, on cooperative’s project or c...

  12. A generalized linear factor model approach to the hierarchical framework for responses and response times.

    Science.gov (United States)

    Molenaar, Dylan; Tuerlinckx, Francis; van der Maas, Han L J

    2015-05-01

    We show how the hierarchical model for responses and response times as developed by van der Linden (2007), Fox, Klein Entink, and van der Linden (2007), Klein Entink, Fox, and van der Linden (2009), and Glas and van der Linden (2010) can be simplified to a generalized linear factor model with only the mild restriction that there is no hierarchical model at the item side. This result is valuable as it enables all well-developed modelling tools and extensions that come with these methods. We show that the restriction we impose on the hierarchical model does not influence parameter recovery under realistic circumstances. In addition, we present two illustrative real data analyses to demonstrate the practical benefits of our approach. © 2014 The British Psychological Society.

  13. Changing cluster composition in cluster randomised controlled trials: design and analysis considerations

    Science.gov (United States)

    2014-01-01

    Background There are many methodological challenges in the conduct and analysis of cluster randomised controlled trials, but one that has received little attention is that of post-randomisation changes to cluster composition. To illustrate this, we focus on the issue of cluster merging, considering the impact on the design, analysis and interpretation of trial outcomes. Methods We explored the effects of merging clusters on study power using standard methods of power calculation. We assessed the potential impacts on study findings of both homogeneous cluster merges (involving clusters randomised to the same arm of a trial) and heterogeneous merges (involving clusters randomised to different arms of a trial) by simulation. To determine the impact on bias and precision of treatment effect estimates, we applied standard methods of analysis to different populations under analysis. Results Cluster merging produced a systematic reduction in study power. This effect depended on the number of merges and was most pronounced when variability in cluster size was at its greatest. Simulations demonstrate that the impact on analysis was minimal when cluster merges were homogeneous, with impact on study power being balanced by a change in observed intracluster correlation coefficient (ICC). We found a decrease in study power when cluster merges were heterogeneous, and the estimate of treatment effect was attenuated. Conclusions Examples of cluster merges found in previously published reports of cluster randomised trials were typically homogeneous rather than heterogeneous. Simulations demonstrated that trial findings in such cases would be unbiased. However, simulations also showed that any heterogeneous cluster merges would introduce bias that would be hard to quantify, as well as having negative impacts on the precision of estimates obtained. Further methodological development is warranted to better determine how to analyse such trials appropriately. Interim recommendations

  14. Runtime Concepts of Hierarchical Software Components

    Czech Academy of Sciences Publication Activity Database

    Bureš, Tomáš; Hnětynka, P.; Plášil, František

    2007-01-01

    Roč. 8, special (2007), s. 454-463 ISSN 1525-9293 R&D Projects: GA AV ČR 1ET400300504 Institutional research plan: CEZ:AV0Z10300504 Keywords : component-based development * hierarchical components * connectors * controlers * runtime environment Subject RIV: JC - Computer Hardware ; Software

  15. Hierarchical Broadcasting in the Future Mobile Internet

    NARCIS (Netherlands)

    Hesselman, C.E.W.; Eertink, E.H.; Fernandez, Milagros; Crnkovic, Ivica; Fohler, Gerhard; Griwodz, Carsten; Plagemann, Thomas; Gruenbacher, Paul

    2002-01-01

    We describe an architecture for the hierarchical distribution of multimedia broadcasts in the future mobile Internet. The architecture supports network as well as application-layer mobility solutions, and uses stream control functions that are influenced by available network resources, user-defined

  16. Hierarchical regression analysis in structural Equation Modeling

    NARCIS (Netherlands)

    de Jong, P.F.

    1999-01-01

    In a hierarchical or fixed-order regression analysis, the independent variables are entered into the regression equation in a prespecified order. Such an analysis is often performed when the extra amount of variance accounted for in a dependent variable by a specific independent variable is the main

  17. Modular networks with hierarchical organization: The dynamical ...

    Indian Academy of Sciences (India)

    Most of the complex systems seen in real life also have associated dynamics [10], and the ... another example, this time a hierarchical structure, viz., the Cayley tree with b ..... natural constraints operating on networks in real life, such as the ...

  18. A hierarchical model for ordinal matrix factorization

    DEFF Research Database (Denmark)

    Paquet, Ulrich; Thomson, Blaise; Winther, Ole

    2012-01-01

    This paper proposes a hierarchical probabilistic model for ordinal matrix factorization. Unlike previous approaches, we model the ordinal nature of the data and take a principled approach to incorporating priors for the hidden variables. Two algorithms are presented for inference, one based...

  19. Ultrafast Hierarchical OTDM/WDM Network

    Directory of Open Access Journals (Sweden)

    Hideyuki Sotobayashi

    2003-12-01

    Full Text Available Ultrafast hierarchical OTDM/WDM network is proposed for the future core-network. We review its enabling technologies: C- and L-wavelength-band generation, OTDM-WDM mutual multiplexing format conversions, and ultrafast OTDM wavelengthband conversions.

  20. Hierarchical machining materials and their performance

    DEFF Research Database (Denmark)

    Sidorenko, Daria; Loginov, Pavel; Levashov, Evgeny

    2016-01-01

    as nanoparticles in the binder, or polycrystalline, aggregate-like reinforcements, also at several scale levels). Such materials can ensure better productivity, efficiency, and lower costs of drilling, cutting, grinding, and other technological processes. This article reviews the main groups of hierarchical...

  1. A hierarchical classification scheme of psoriasis images

    DEFF Research Database (Denmark)

    Maletti, Gabriela Mariel; Ersbøll, Bjarne Kjær

    2003-01-01

    A two-stage hierarchical classification scheme of psoriasis lesion images is proposed. These images are basically composed of three classes: normal skin, lesion and background. The scheme combines conventional tools to separate the skin from the background in the first stage, and the lesion from...

  2. Hierarchical pre-segmentation without prior knowledge

    NARCIS (Netherlands)

    Kuijper, A.; Florack, L.M.J.

    2001-01-01

    A new method to pre-segment images by means of a hierarchical description is proposed. This description is obtained from an investigation of the deep structure of a scale space image – the input image and the Gaussian filtered ones simultaneously. We concentrate on scale space critical points –

  3. Hierarchical spatial organization of geographical networks

    International Nuclear Information System (INIS)

    Travencolo, Bruno A N; Costa, Luciano da F

    2008-01-01

    In this work, we propose a hierarchical extension of the polygonality index as the means to characterize geographical planar networks. By considering successive neighborhoods around each node, it is possible to obtain more complete information about the spatial order of the network at progressive spatial scales. The potential of the methodology is illustrated with respect to synthetic and real geographical networks

  4. Hierarchical Context Modeling for Video Event Recognition.

    Science.gov (United States)

    Wang, Xiaoyang; Ji, Qiang

    2016-10-11

    Current video event recognition research remains largely target-centered. For real-world surveillance videos, targetcentered event recognition faces great challenges due to large intra-class target variation, limited image resolution, and poor detection and tracking results. To mitigate these challenges, we introduced a context-augmented video event recognition approach. Specifically, we explicitly capture different types of contexts from three levels including image level, semantic level, and prior level. At the image level, we introduce two types of contextual features including the appearance context features and interaction context features to capture the appearance of context objects and their interactions with the target objects. At the semantic level, we propose a deep model based on deep Boltzmann machine to learn event object representations and their interactions. At the prior level, we utilize two types of prior-level contexts including scene priming and dynamic cueing. Finally, we introduce a hierarchical context model that systematically integrates the contextual information at different levels. Through the hierarchical context model, contexts at different levels jointly contribute to the event recognition. We evaluate the hierarchical context model for event recognition on benchmark surveillance video datasets. Results show that incorporating contexts in each level can improve event recognition performance, and jointly integrating three levels of contexts through our hierarchical model achieves the best performance.

  5. Hierarchical production planning for consumer goods

    NARCIS (Netherlands)

    Kok, de A.G.

    1990-01-01

    Abstract In this paper the mathematical logic behind a hierarchical planning procedure is discussed. The planning procedure is used to derive production volumes of consumer products. The essence of the planning procedure is that first a commitment is made concerning the production volume for a

  6. Hierarchical Bayesian Models of Subtask Learning

    Science.gov (United States)

    Anglim, Jeromy; Wynton, Sarah K. A.

    2015-01-01

    The current study used Bayesian hierarchical methods to challenge and extend previous work on subtask learning consistency. A general model of individual-level subtask learning was proposed focusing on power and exponential functions with constraints to test for inconsistency. To study subtask learning, we developed a novel computer-based booking…

  7. Analysis of the Spatial Variation of Network-Constrained Phenomena Represented by a Link Attribute Using a Hierarchical Bayesian Model

    Directory of Open Access Journals (Sweden)

    Zhensheng Wang

    2017-02-01

    Full Text Available The spatial variation of geographical phenomena is a classical problem in spatial data analysis and can provide insight into underlying processes. Traditional exploratory methods mostly depend on the planar distance assumption, but many spatial phenomena are constrained to a subset of Euclidean space. In this study, we apply a method based on a hierarchical Bayesian model to analyse the spatial variation of network-constrained phenomena represented by a link attribute in conjunction with two experiments based on a simplified hypothetical network and a complex road network in Shenzhen that includes 4212 urban facility points of interest (POIs for leisure activities. Then, the methods named local indicators of network-constrained clusters (LINCS are applied to explore local spatial patterns in the given network space. The proposed method is designed for phenomena that are represented by attribute values of network links and is capable of removing part of random variability resulting from small-sample estimation. The effects of spatial dependence and the base distribution are also considered in the proposed method, which could be applied in the fields of urban planning and safety research.

  8. Gene cluster statistics with gene families.

    Science.gov (United States)

    Raghupathy, Narayanan; Durand, Dannie

    2009-05-01

    Identifying genomic regions that descended from a common ancestor is important for understanding the function and evolution of genomes. In distantly related genomes, clusters of homologous gene pairs are evidence of candidate homologous regions. Demonstrating the statistical significance of such "gene clusters" is an essential component of comparative genomic analyses. However, currently there are no practical statistical tests for gene clusters that model the influence of the number of homologs in each gene family on cluster significance. In this work, we demonstrate empirically that failure to incorporate gene family size in gene cluster statistics results in overestimation of significance, leading to incorrect conclusions. We further present novel analytical methods for estimating gene cluster significance that take gene family size into account. Our methods do not require complete genome data and are suitable for testing individual clusters found in local regions, such as contigs in an unfinished assembly. We consider pairs of regions drawn from the same genome (paralogous clusters), as well as regions drawn from two different genomes (orthologous clusters). Determining cluster significance under general models of gene family size is computationally intractable. By assuming that all gene families are of equal size, we obtain analytical expressions that allow fast approximation of cluster probabilities. We evaluate the accuracy of this approximation by comparing the resulting gene cluster probabilities with cluster probabilities obtained by simulating a realistic, power-law distributed model of gene family size, with parameters inferred from genomic data. Surprisingly, despite the simplicity of the underlying assumption, our method accurately approximates the true cluster probabilities. It slightly overestimates these probabilities, yielding a conservative test. We present additional simulation results indicating the best choice of parameter values for data

  9. Cluster analysis of obesity and asthma phenotypes.

    Directory of Open Access Journals (Sweden)

    E Rand Sutherland

    Full Text Available Asthma is a heterogeneous disease with variability among patients in characteristics such as lung function, symptoms and control, body weight, markers of inflammation, and responsiveness to glucocorticoids (GC. Cluster analysis of well-characterized cohorts can advance understanding of disease subgroups in asthma and point to unsuspected disease mechanisms. We utilized an hypothesis-free cluster analytical approach to define the contribution of obesity and related variables to asthma phenotype.In a cohort of clinical trial participants (n = 250, minimum-variance hierarchical clustering was used to identify clinical and inflammatory biomarkers important in determining disease cluster membership in mild and moderate persistent asthmatics. In a subset of participants, GC sensitivity was assessed via expression of GC receptor alpha (GCRα and induction of MAP kinase phosphatase-1 (MKP-1 expression by dexamethasone. Four asthma clusters were identified, with body mass index (BMI, kg/m(2 and severity of asthma symptoms (AEQ score the most significant determinants of cluster membership (F = 57.1, p<0.0001 and F = 44.8, p<0.0001, respectively. Two clusters were composed of predominantly obese individuals; these two obese asthma clusters differed from one another with regard to age of asthma onset, measures of asthma symptoms (AEQ and control (ACQ, exhaled nitric oxide concentration (F(ENO and airway hyperresponsiveness (methacholine PC(20 but were similar with regard to measures of lung function (FEV(1 (% and FEV(1/FVC, airway eosinophilia, IgE, leptin, adiponectin and C-reactive protein (hsCRP. Members of obese clusters demonstrated evidence of reduced expression of GCRα, a finding which was correlated with a reduced induction of MKP-1 expression by dexamethasoneObesity is an important determinant of asthma phenotype in adults. There is heterogeneity in expression of clinical and inflammatory biomarkers of asthma across obese individuals

  10. Global Crop Monitoring: A Satellite-Based Hierarchical Approach

    Directory of Open Access Journals (Sweden)

    Bingfang Wu

    2015-04-01

    Full Text Available Taking advantage of multiple new remote sensing data sources, especially from Chinese satellites, the CropWatch system has expanded the scope of its international analyses through the development of new indicators and an upgraded operational methodology. The approach adopts a hierarchical system covering four spatial levels of detail: global, regional, national (thirty-one key countries including China and “sub-countries” (for the nine largest countries. The thirty-one countries encompass more that 80% of both production and exports of maize, rice, soybean and wheat. The methodology resorts to climatic and remote sensing indicators at different scales. The global patterns of crop environmental growing conditions are first analyzed with indicators for rainfall, temperature, photosynthetically active radiation (PAR as well as potential biomass. At the regional scale, the indicators pay more attention to crops and include Vegetation Health Index (VHI, Vegetation Condition Index (VCI, Cropped Arable Land Fraction (CALF as well as Cropping Intensity (CI. Together, they characterize crop situation, farming intensity and stress. CropWatch carries out detailed crop condition analyses at the national scale with a comprehensive array of variables and indicators. The Normalized Difference Vegetation Index (NDVI, cropped areas and crop conditions are integrated to derive food production estimates. For the nine largest countries, CropWatch zooms into the sub-national units to acquire detailed information on crop condition and production by including new indicators (e.g., Crop type proportion. Based on trend analysis, CropWatch also issues crop production supply outlooks, covering both long-term variations and short-term dynamic changes in key food exporters and importers. The hierarchical approach adopted by CropWatch is the basis of the analyses of climatic and crop conditions assessments published in the quarterly “CropWatch bulletin” which

  11. A roadmap of clustering algorithms: finding a match for a biomedical application.

    Science.gov (United States)

    Andreopoulos, Bill; An, Aijun; Wang, Xiaogang; Schroeder, Michael

    2009-05-01

    Clustering is ubiquitously applied in bioinformatics with hierarchical clustering and k-means partitioning being the most popular methods. Numerous improvements of these two clustering methods have been introduced, as well as completely different approaches such as grid-based, density-based and model-based clustering. For improved bioinformatics analysis of data, it is important to match clusterings to the requirements of a biomedical application. In this article, we present a set of desirable clustering features that are used as evaluation criteria for clustering algorithms. We review 40 different clustering algorithms of all approaches and datatypes. We compare algorithms on the basis of desirable clustering features, and outline algorithms' benefits and drawbacks as a basis for matching them to biomedical applications.

  12. Hierarchical modularity in human brain functional networks

    Directory of Open Access Journals (Sweden)

    David Meunier

    2009-10-01

    Full Text Available The idea that complex systems have a hierarchical modular organization originates in the early 1960s and has recently attracted fresh support from quantitative studies of large scale, real-life networks. Here we investigate the hierarchical modular (or “modules-within-modules” decomposition of human brain functional networks, measured using functional magnetic resonance imaging (fMRI in 18 healthy volunteers under no-task or resting conditions. We used a customized template to extract networks with more than 1800 regional nodes, and we applied a fast algorithm to identify nested modular structure at several hierarchical levels. We used mutual information, 0 < I < 1, to estimate the similarity of community structure of networks in different subjects, and to identify the individual network that is most representative of the group. Results show that human brain functional networks have a hierarchical modular organization with a fair degree of similarity between subjects, I=0.63. The largest 5 modules at the highest level of the hierarchy were medial occipital, lateral occipital, central, parieto-frontal and fronto-temporal systems; occipital modules demonstrated less sub-modular organization than modules comprising regions of multimodal association cortex. Connector nodes and hubs, with a key role in inter-modular connectivity, were also concentrated in association cortical areas. We conclude that methods are available for hierarchical modular decomposition of large numbers of high resolution brain functional networks using computationally expedient algorithms. This could enable future investigations of Simon's original hypothesis that hierarchy or near-decomposability of physical symbol systems is a critical design feature for their fast adaptivity to changing environmental conditions.

  13. Cluster headache

    Directory of Open Access Journals (Sweden)

    Ducros Anne

    2008-07-01

    Full Text Available Abstract Cluster headache (CH is a primary headache disease characterized by recurrent short-lasting attacks (15 to 180 minutes of excruciating unilateral periorbital pain accompanied by ipsilateral autonomic signs (lacrimation, nasal congestion, ptosis, miosis, lid edema, redness of the eye. It affects young adults, predominantly males. Prevalence is estimated at 0.5–1.0/1,000. CH has a circannual and circadian periodicity, attacks being clustered (hence the name in bouts that can occur during specific months of the year. Alcohol is the only dietary trigger of CH, strong odors (mainly solvents and cigarette smoke and napping may also trigger CH attacks. During bouts, attacks may happen at precise hours, especially during the night. During the attacks, patients tend to be restless. CH may be episodic or chronic, depending on the presence of remission periods. CH is associated with trigeminovascular activation and neuroendocrine and vegetative disturbances, however, the precise cautive mechanisms remain unknown. Involvement of the hypothalamus (a structure regulating endocrine function and sleep-wake rhythms has been confirmed, explaining, at least in part, the cyclic aspects of CH. The disease is familial in about 10% of cases. Genetic factors play a role in CH susceptibility, and a causative role has been suggested for the hypocretin receptor gene. Diagnosis is clinical. Differential diagnoses include other primary headache diseases such as migraine, paroxysmal hemicrania and SUNCT syndrome. At present, there is no curative treatment. There are efficient treatments to shorten the painful attacks (acute treatments and to reduce the number of daily attacks (prophylactic treatments. Acute treatment is based on subcutaneous administration of sumatriptan and high-flow oxygen. Verapamil, lithium, methysergide, prednisone, greater occipital nerve blocks and topiramate may be used for prophylaxis. In refractory cases, deep-brain stimulation of the

  14. Hierarchical subtask discovery with non-negative matrix factorization

    CSIR Research Space (South Africa)

    Earle, AC

    2018-04-01

    Full Text Available Hierarchical reinforcement learning methods offer a powerful means of planning flexible behavior in complicated domains. However, learning an appropriate hierarchical decomposition of a domain into subtasks remains a substantial challenge. We...

  15. Hierarchical subtask discovery with non-negative matrix factorization

    CSIR Research Space (South Africa)

    Earle, AC

    2017-08-01

    Full Text Available Hierarchical reinforcement learning methods offer a powerful means of planning flexible behavior in complicated domains. However, learning an appropriate hierarchical decomposition of a domain into subtasks remains a substantial challenge. We...

  16. Virtual timers in hierarchical real-time systems

    NARCIS (Netherlands)

    Heuvel, van den M.M.H.P.; Holenderski, M.J.; Cools, W.A.; Bril, R.J.; Lukkien, J.J.; Zhu, D.

    2009-01-01

    Hierarchical scheduling frameworks (HSFs) provide means for composing complex real-time systems from welldefined subsystems. This paper describes an approach to provide hierarchically scheduled real-time applications with virtual event timers, motivated by the need for integrating priority

  17. Assessment of groundwater and soil quality degradation using multivariate and geostatistical analyses, Dakhla Oasis, Egypt

    Science.gov (United States)

    Masoud, Alaa A.; El-Horiny, Mohamed M.; Atwia, Mohamed G.; Gemail, Khaled S.; Koike, Katsuaki

    2018-06-01

    Salinization of groundwater and soil resources has long been a serious environmental hazard in arid regions. This study was conducted to investigate and document the factors controlling such salinization and their inter-relationships in the Dakhla Oasis (Egypt). To accomplish this, 60 groundwater samples and 31 soil samples were collected in February 2014. Factor analysis (FA) and hierarchical cluster analysis (HCA) were integrated with geostatistical analyses to characterize the chemical properties of groundwater and soil and their spatial patterns, identify the factors controlling the pattern variability, and clarify the salinization mechanism. Groundwater quality standards revealed emergence of salinization (av. 885.8 mg/L) and extreme occurrences of Fe2+ (av. 17.22 mg/L) and Mn2+ (av. 2.38 mg/L). Soils were highly salt-affected (av. 15.2 dS m-1) and slightly alkaline (av. pH = 7.7). Evaporation and ion-exchange processes governed the evolution of two main water types: Na-Cl (52%) and Ca-Mg-Cl (47%), respectively. Salinization leads the chemical variability of both resources. Distinctive patterns of slight salinization marked the northern part and intense salinization marked the middle and southern parts. Congruence in the resources clusters confirmed common geology, soil types, and urban and agricultural practices. Minimizing the environmental and socioeconomic impacts of the resources salinization urges the need for better understanding of the hydrochemical characteristics and prediction of quality changes.

  18. Hierarchically Nanoporous Bioactive Glasses for High Efficiency Immobilization of Enzymes

    DEFF Research Database (Denmark)

    He, W.; Min, D.D.; Zhang, X.D.

    2014-01-01

    Bioactive glasses with hierarchical nanoporosity and structures have been heavily involved in immobilization of enzymes. Because of meticulous design and ingenious hierarchical nanostructuration of porosities from yeast cell biotemplates, hierarchically nanostructured porous bioactive glasses can...... and products of catalytic reactions can freely diffuse through open mesopores (2–40 nm). The formation mechanism of hierarchically structured porous bioactive glasses, the immobilization mechanism of enzyme and the catalysis mechanism of immobilized enzyme are then discussed. The novel nanostructure...

  19. Properties of an ionised-cluster beam from a vaporised-cluster ion source

    International Nuclear Information System (INIS)

    Takagi, T.; Yamada, I.; Sasaki, A.

    1978-01-01

    A new type of ion source vaporised-metal cluster ion source, has been developed for deposition and epitaxy. A cluster consisting of 10 2 to 10 3 atoms coupled loosely together is formed by adiabatic expansion ejecting the vapour of materials into a high-vacuum region through the nozzle of a heated crucible. The clusters are ionised by electron bombardment and accelerated with neutral clusters toward a substrate. In this paper, mechanisms of cluster formation experimental results of the cluster size (atoms/cluster) and its distribution, and characteristics of the cluster ion beams are reported. The size is calculated from the kinetic equation E = (1/2)mNVsub(ej) 2 , where E is the cluster beam energy, Vsub(ej) is the ejection velocity, m is the mass of atom and N is the cluster size. The energy and the velocity of the cluster are measured by an electrostatic 127 0 energy analyser and a rotating disc system, respectively. The cluster size obtained for Ag is about 5 x 10 2 to 2 x 10 3 atoms. The retarding potential method is used to confirm the results for Ag. The same dependence on cluster size for metals such as Ag, Cu and Pb has been obtained in previous experiments. In the cluster state the cluster ion beam is easily produced by electron bombardment. About 50% of ionised clusters are obtained under typical operation conditions, because of the large ionisation cross sections of the clusters. To obtain a uniform spatial distribution, the ionising electrode system is also discussed. The new techniques are termed ionised-cluster beam deposition (ICBD) and epitaxy (ICBE). (author)

  20. Observations and Modeling of Merging Galaxy Clusters

    Science.gov (United States)

    Golovich, Nathan Ryan

    Context: Galaxy clusters grow hierarchically with continuous accretion bookended by major merging events that release immense gravitational potential energy (as much as ˜1065 erg). This energy creates an environment for rich astrophysics. Precise measurements of the dark matter halo, intracluster medium, and galaxy population have resulted in a number of important results including dark matter constraints and explanations of the generation of cosmic rays. However, since the timescale of major mergers (˜several Gyr) relegates observations of individual systems to mere snapshots, these results are difficult to understand under a consistent dynamical framework. While computationally expensive simulations are vital in this regard, the vastness of parameter space has necessitated simulations of idealized mergers that are unlikely to capture the full richness. Merger speeds, geometries, and timescales each have a profound consequential effect, but even these simple dynamical properties of the mergers are often poorly understood. A method to identify and constrain the best systems for probing the rich astrophysics of merging clusters is needed. Such a method could then be utilized to prioritize observational follow up and best inform proper exploration of dynamical phase space. Task: In order to identify and model a large number of systems, in this dissertation, we compile an ensemble of major mergers each containing radio relics. We then complete a pan-chromatic study of these 29 systems including wide field optical photometry, targeted optical spectroscopy of member galaxies, radio, and X-ray observations. We use the optical observations to model the galaxy substructure and estimate line of sight motion. In conjunction with the radio and X-ray data, these substructure models helped elucidate the most likely merger scenario for each system and further constrain the dynamical properties of each system. We demonstrate the power of this technique through detailed analyses