WorldWideScience

Sample records for hierarchical chain model

  1. Trans-dimensional matched-field geoacoustic inversion with hierarchical error models and interacting Markov chains.

    Science.gov (United States)

    Dettmer, Jan; Dosso, Stan E

    2012-10-01

    This paper develops a trans-dimensional approach to matched-field geoacoustic inversion, including interacting Markov chains to improve efficiency and an autoregressive model to account for correlated errors. The trans-dimensional approach and hierarchical seabed model allows inversion without assuming any particular parametrization by relaxing model specification to a range of plausible seabed models (e.g., in this case, the number of sediment layers is an unknown parameter). Data errors are addressed by sampling statistical error-distribution parameters, including correlated errors (covariance), by applying a hierarchical autoregressive error model. The well-known difficulty of low acceptance rates for trans-dimensional jumps is addressed with interacting Markov chains, resulting in a substantial increase in efficiency. The trans-dimensional seabed model and the hierarchical error model relax the degree of prior assumptions required in the inversion, resulting in substantially improved (more realistic) uncertainty estimates and a more automated algorithm. In particular, the approach gives seabed parameter uncertainty estimates that account for uncertainty due to prior model choice (layering and data error statistics). The approach is applied to data measured on a vertical array in the Mediterranean Sea.

  2. Resilient model approximation for Markov jump time-delay systems via reduced model with hierarchical Markov chains

    Science.gov (United States)

    Zhu, Yanzheng; Zhang, Lixian; Sreeram, Victor; Shammakh, Wafa; Ahmad, Bashir

    2016-10-01

    In this paper, the resilient model approximation problem for a class of discrete-time Markov jump time-delay systems with input sector-bounded nonlinearities is investigated. A linearised reduced-order model is determined with mode changes subject to domination by a hierarchical Markov chain containing two different nonhomogeneous Markov chains. Hence, the reduced-order model obtained not only reflects the dependence of the original systems but also model external influence that is related to the mode changes of the original system. Sufficient conditions formulated in terms of bilinear matrix inequalities for the existence of such models are established, such that the resulting error system is stochastically stable and has a guaranteed l2-l∞ error performance. A linear matrix inequalities optimisation coupled with line search is exploited to solve for the corresponding reduced-order systems. The potential and effectiveness of the developed theoretical results are demonstrated via a numerical example.

  3. Of bugs and birds: Markov Chain Monte Carlo for hierarchical modeling in wildlife research

    Science.gov (United States)

    Link, W.A.; Cam, E.; Nichols, J.D.; Cooch, E.G.

    2002-01-01

    Markov chain Monte Carlo (MCMC) is a statistical innovation that allows researchers to fit far more complex models to data than is feasible using conventional methods. Despite its widespread use in a variety of scientific fields, MCMC appears to be underutilized in wildlife applications. This may be due to a misconception that MCMC requires the adoption of a subjective Bayesian analysis, or perhaps simply to its lack of familiarity among wildlife researchers. We introduce the basic ideas of MCMC and software BUGS (Bayesian inference using Gibbs sampling), stressing that a simple and satisfactory intuition for MCMC does not require extraordinary mathematical sophistication. We illustrate the use of MCMC with an analysis of the association between latent factors governing individual heterogeneity in breeding and survival rates of kittiwakes (Rissa tridactyla). We conclude with a discussion of the importance of individual heterogeneity for understanding population dynamics and designing management plans.

  4. Hierarchical topic modeling with nested hierarchical Dirichlet process

    Institute of Scientific and Technical Information of China (English)

    Yi-qun DING; Shan-ping LI; Zhen ZHANG; Bin SHEN

    2009-01-01

    This paper deals with the statistical modeling of latent topic hierarchies in text corpora. The height of the topic tree is assumed as fixed, while the number of topics on each level as unknown a priori and to be inferred from data. Taking a nonparametric Bayesian approach to this problem, we propose a new probabilistic generative model based on the nested hierarchical Dirichlet process (nHDP) and present a Markov chain Monte Carlo sampling algorithm for the inference of the topic tree structure as welt as the word distribution of each topic and topic distribution of each document. Our theoretical analysis and experiment results show that this model can produce a more compact hierarchical topic structure and captures more free-grained topic relationships compared to the hierarchical latent Dirichlet allocation model.

  5. Collaborative Hierarchical Sparse Modeling

    CERN Document Server

    Sprechmann, Pablo; Sapiro, Guillermo; Eldar, Yonina C

    2010-01-01

    Sparse modeling is a powerful framework for data analysis and processing. Traditionally, encoding in this framework is done by solving an l_1-regularized linear regression problem, usually called Lasso. In this work we first combine the sparsity-inducing property of the Lasso model, at the individual feature level, with the block-sparsity property of the group Lasso model, where sparse groups of features are jointly encoded, obtaining a sparsity pattern hierarchically structured. This results in the hierarchical Lasso, which shows important practical modeling advantages. We then extend this approach to the collaborative case, where a set of simultaneously coded signals share the same sparsity pattern at the higher (group) level but not necessarily at the lower one. Signals then share the same active groups, or classes, but not necessarily the same active set. This is very well suited for applications such as source separation. An efficient optimization procedure, which guarantees convergence to the global opt...

  6. Modeling hierarchical structures - Hierarchical Linear Modeling using MPlus

    CERN Document Server

    Jelonek, M

    2006-01-01

    The aim of this paper is to present the technique (and its linkage with physics) of overcoming problems connected to modeling social structures, which are typically hierarchical. Hierarchical Linear Models provide a conceptual and statistical mechanism for drawing conclusions regarding the influence of phenomena at different levels of analysis. In the social sciences it is used to analyze many problems such as educational, organizational or market dilemma. This paper introduces the logic of modeling hierarchical linear equations and estimation based on MPlus software. I present my own model to illustrate the impact of different factors on school acceptation level.

  7. Modeling hierarchical structures - Hierarchical Linear Modeling using MPlus

    OpenAIRE

    Jelonek, Magdalena

    2006-01-01

    The aim of this paper is to present the technique (and its linkage with physics) of overcoming problems connected to modeling social structures, which are typically hierarchical. Hierarchical Linear Models provide a conceptual and statistical mechanism for drawing conclusions regarding the influence of phenomena at different levels of analysis. In the social sciences it is used to analyze many problems such as educational, organizational or market dilemma. This paper introduces the logic of m...

  8. Nonlinear calibration transfer based on hierarchical Bayesian models and Lagrange Multipliers: Error bounds of estimates via Monte Carlo - Markov Chain sampling.

    Science.gov (United States)

    Seichter, Felicia; Vogt, Josef; Radermacher, Peter; Mizaikoff, Boris

    2017-01-25

    The calibration of analytical systems is time-consuming and the effort for daily calibration routines should therefore be minimized, while maintaining the analytical accuracy and precision. The 'calibration transfer' approach proposes to combine calibration data already recorded with actual calibrations measurements. However, this strategy was developed for the multivariate, linear analysis of spectroscopic data, and thus, cannot be applied to sensors with a single response channel and/or a non-linear relationship between signal and desired analytical concentration. To fill this gap for a non-linear calibration equation, we assume that the coefficients for the equation, collected over several calibration runs, are normally distributed. Considering that coefficients of an actual calibration are a sample of this distribution, only a few standards are needed for a complete calibration data set. The resulting calibration transfer approach is demonstrated for a fluorescence oxygen sensor and implemented as a hierarchical Bayesian model, combined with a Lagrange Multipliers technique and Monte-Carlo Markov-Chain sampling. The latter provides realistic estimates for coefficients and prediction together with accurate error bounds by simulating known measurement errors and system fluctuations. Performance criteria for validation and optimal selection of a reduced set of calibration samples were developed and lead to a setup which maintains the analytical performance of a full calibration. Strategies for a rapid determination of problems occurring in a daily calibration routine, are proposed, thereby opening the possibility of correcting the problem just in time.

  9. Hierarchical Bass model

    Science.gov (United States)

    Tashiro, Tohru

    2014-03-01

    We propose a new model about diffusion of a product which includes a memory of how many adopters or advertisements a non-adopter met, where (non-)adopters mean people (not) possessing the product. This effect is lacking in the Bass model. As an application, we utilize the model to fit the iPod sales data, and so the better agreement is obtained than the Bass model.

  10. Hierarchical Bass model

    CERN Document Server

    Tashiro, Tohru

    2013-01-01

    We propose a new model about diffusion of a product which includes a memory of how many adopters or advertisements a non-adopter met, where (non-)adopters mean people (not) possessing the product. This effect is lacking in the Bass model. As an application, we utilize the model to fit the iPod sales data, and so the better agreement is obtained than the Bass model.

  11. Hierarchical Cont-Bouchaud model

    CERN Document Server

    Paluch, Robert; Holyst, Janusz A

    2015-01-01

    We extend the well-known Cont-Bouchaud model to include a hierarchical topology of agent's interactions. The influence of hierarchy on system dynamics is investigated by two models. The first one is based on a multi-level, nested Erdos-Renyi random graph and individual decisions by agents according to Potts dynamics. This approach does not lead to a broad return distribution outside a parameter regime close to the original Cont-Bouchaud model. In the second model we introduce a limited hierarchical Erdos-Renyi graph, where merging of clusters at a level h+1 involves only clusters that have merged at the previous level h and we use the original Cont-Bouchaud agent dynamics on resulting clusters. The second model leads to a heavy-tail distribution of cluster sizes and relative price changes in a wide range of connection densities, not only close to the percolation threshold.

  12. Hierarchical model of matching

    Science.gov (United States)

    Pedrycz, Witold; Roventa, Eugene

    1992-01-01

    The issue of matching two fuzzy sets becomes an essential design aspect of many algorithms including fuzzy controllers, pattern classifiers, knowledge-based systems, etc. This paper introduces a new model of matching. Its principal features involve the following: (1) matching carried out with respect to the grades of membership of fuzzy sets as well as some functionals defined on them (like energy, entropy,transom); (2) concepts of hierarchies in the matching model leading to a straightforward distinction between 'local' and 'global' levels of matching; and (3) a distributed character of the model realized as a logic-based neural network.

  13. Hierarchical Planning Methodology for a Supply Chain Management

    Directory of Open Access Journals (Sweden)

    Virna ORTIZ-ARAYA

    2012-01-01

    Full Text Available Hierarchical production planning is a widely utilized methodology for real world capacitated production planning systems with the aim of establishing different decision–making levels of the planning issues on the time horizon considered. This paper presents a hierarchical approach proposed to a company that produces reusable shopping bags in Chile and Perú, to determine the optimal allocation of resources at the tactical level as well as over the most immediate planning horizon to meet customer demands for the next weeks. Starting from an aggregated production planning model, the aggregated decisions are disaggregated into refined decisions in two levels, using a couple of optimization models that impose appropriate constraints to keep coherence of the plan on the production system. The main features of the hierarchical solution approach are presented.

  14. Multicollinearity in hierarchical linear models.

    Science.gov (United States)

    Yu, Han; Jiang, Shanhe; Land, Kenneth C

    2015-09-01

    This study investigates an ill-posed problem (multicollinearity) in Hierarchical Linear Models from both the data and the model perspectives. We propose an intuitive, effective approach to diagnosing the presence of multicollinearity and its remedies in this class of models. A simulation study demonstrates the impacts of multicollinearity on coefficient estimates, associated standard errors, and variance components at various levels of multicollinearity for finite sample sizes typical in social science studies. We further investigate the role multicollinearity plays at each level for estimation of coefficient parameters in terms of shrinkage. Based on these analyses, we recommend a top-down method for assessing multicollinearity in HLMs that first examines the contextual predictors (Level-2 in a two-level model) and then the individual predictors (Level-1) and uses the results for data collection, research problem redefinition, model re-specification, variable selection and estimation of a final model.

  15. What are hierarchical models and how do we analyze them?

    Science.gov (United States)

    Royle, Andy

    2016-01-01

    In this chapter we provide a basic definition of hierarchical models and introduce the two canonical hierarchical models in this book: site occupancy and N-mixture models. The former is a hierarchical extension of logistic regression and the latter is a hierarchical extension of Poisson regression. We introduce basic concepts of probability modeling and statistical inference including likelihood and Bayesian perspectives. We go through the mechanics of maximizing the likelihood and characterizing the posterior distribution by Markov chain Monte Carlo (MCMC) methods. We give a general perspective on topics such as model selection and assessment of model fit, although we demonstrate these topics in practice in later chapters (especially Chapters 5, 6, 7, and 10 Chapter 5 Chapter 6 Chapter 7 Chapter 10)

  16. Logistic chain modelling

    NARCIS (Netherlands)

    Slats, P.A.; Bhola, B.; Evers, J.J.M.; Dijkhuizen, G.

    1995-01-01

    Logistic chain modelling is very important in improving the overall performance of the total logistic chain. Logistic models provide support for a large range of applications, such as analysing bottlenecks, improving customer service, configuring new logistic chains and adapting existing chains to n

  17. Hierarchical modelling for the environmental sciences statistical methods and applications

    CERN Document Server

    Clark, James S

    2006-01-01

    New statistical tools are changing the way in which scientists analyze and interpret data and models. Hierarchical Bayes and Markov Chain Monte Carlo methods for analysis provide a consistent framework for inference and prediction where information is heterogeneous and uncertain, processes are complicated, and responses depend on scale. Nowhere are these methods more promising than in the environmental sciences.

  18. A Model of Hierarchical Key Assignment Scheme

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhigang; ZHAO Jing; XU Maozhi

    2006-01-01

    A model of the hierarchical key assignment scheme is approached in this paper, which can be used with any cryptography algorithm. Besides, the optimal dynamic control property of a hierarchical key assignment scheme will be defined in this paper. Also, our scheme model will meet this property.

  19. HIERARCHICAL OPTIMIZATION MODEL ON GEONETWORK

    Directory of Open Access Journals (Sweden)

    Z. Zha

    2012-07-01

    Full Text Available In existing construction experience of Spatial Data Infrastructure (SDI, GeoNetwork, as the geographical information integrated solution, is an effective way of building SDI. During GeoNetwork serving as an internet application, several shortcomings are exposed. The first one is that the time consuming of data loading has been considerately increasing with the growth of metadata count. Consequently, the efficiency of query and search service becomes lower. Another problem is that stability and robustness are both ruined since huge amount of metadata. The final flaw is that the requirements of multi-user concurrent accessing based on massive data are not effectively satisfied on the internet. A novel approach, Hierarchical Optimization Model (HOM, is presented to solve the incapability of GeoNetwork working with massive data in this paper. HOM optimizes the GeoNetwork from these aspects: internal procedure, external deployment strategies, etc. This model builds an efficient index for accessing huge metadata and supporting concurrent processes. In this way, the services based on GeoNetwork can maintain stable while running massive metadata. As an experiment, we deployed more than 30 GeoNetwork nodes, and harvest nearly 1.1 million metadata. From the contrast between the HOM-improved software and the original one, the model makes indexing and retrieval processes more quickly and keeps the speed stable on metadata amount increasing. It also shows stable on multi-user concurrent accessing to system services, the experiment achieved good results and proved that our optimization model is efficient and reliable.

  20. Hierarchical modeling and analysis for spatial data

    CERN Document Server

    Banerjee, Sudipto; Gelfand, Alan E

    2003-01-01

    Among the many uses of hierarchical modeling, their application to the statistical analysis of spatial and spatio-temporal data from areas such as epidemiology And environmental science has proven particularly fruitful. Yet to date, the few books that address the subject have been either too narrowly focused on specific aspects of spatial analysis, or written at a level often inaccessible to those lacking a strong background in mathematical statistics.Hierarchical Modeling and Analysis for Spatial Data is the first accessible, self-contained treatment of hierarchical methods, modeling, and dat

  1. Hierarchical modelling of small area and hospital variation in short-term prognosis after acute myocardial infarction. A longitudinal study of 35- to 74-year-old men in Denmark between 1978 and 1997

    DEFF Research Database (Denmark)

    Rasmussen, Søren

    2004-01-01

    acute myocardial infarction; covariance pattern; deviance information criterion; hierarchical modelling; Markov chain Monte Carlo methods; spatial models......acute myocardial infarction; covariance pattern; deviance information criterion; hierarchical modelling; Markov chain Monte Carlo methods; spatial models...

  2. A Model for Slicing JAVA Programs Hierarchically

    Institute of Scientific and Technical Information of China (English)

    Bi-Xin Li; Xiao-Cong Fan; Jun Pang; Jian-Jun Zhao

    2004-01-01

    Program slicing can be effectively used to debug, test, analyze, understand and maintain objectoriented software. In this paper, a new slicing model is proposed to slice Java programs based on their inherent hierarchical feature. The main idea of hierarchical slicing is to slice programs in a stepwise way, from package level, to class level, method level, and finally up to statement level. The stepwise slicing algorithm and the related graph reachability algorithms are presented, the architecture of the Java program Analyzing Tool (JATO) based on hierarchical slicing model is provided, the applications and a small case study are also discussed.

  3. When to Use Hierarchical Linear Modeling

    National Research Council Canada - National Science Library

    Veronika Huta

    2014-01-01

    Previous publications on hierarchical linear modeling (HLM) have provided guidance on how to perform the analysis, yet there is relatively little information on two questions that arise even before analysis...

  4. An introduction to hierarchical linear modeling

    National Research Council Canada - National Science Library

    Woltman, Heather; Feldstain, Andrea; MacKay, J. Christine; Rocchi, Meredith

    2012-01-01

    This tutorial aims to introduce Hierarchical Linear Modeling (HLM). A simple explanation of HLM is provided that describes when to use this statistical technique and identifies key factors to consider before conducting this analysis...

  5. Conservation Laws in the Hierarchical Model

    NARCIS (Netherlands)

    Beijeren, H. van; Gallavotti, G.; Knops, H.

    1974-01-01

    An exposition of the renormalization-group equations for the hierarchical model is given. Attention is drawn to some properties of the spin distribution functions which are conserved under the action of the renormalization group.

  6. Classification using Hierarchical Naive Bayes models

    DEFF Research Database (Denmark)

    Langseth, Helge; Dyhre Nielsen, Thomas

    2006-01-01

    Classification problems have a long history in the machine learning literature. One of the simplest, and yet most consistently well-performing set of classifiers is the Naïve Bayes models. However, an inherent problem with these classifiers is the assumption that all attributes used to describe...... an instance are conditionally independent given the class of that instance. When this assumption is violated (which is often the case in practice) it can reduce classification accuracy due to “information double-counting” and interaction omission. In this paper we focus on a relatively new set of models......, termed Hierarchical Naïve Bayes models. Hierarchical Naïve Bayes models extend the modeling flexibility of Naïve Bayes models by introducing latent variables to relax some of the independence statements in these models. We propose a simple algorithm for learning Hierarchical Naïve Bayes models...

  7. Analysis hierarchical model for discrete event systems

    Science.gov (United States)

    Ciortea, E. M.

    2015-11-01

    The This paper presents the hierarchical model based on discrete event network for robotic systems. Based on the hierarchical approach, Petri network is analysed as a network of the highest conceptual level and the lowest level of local control. For modelling and control of complex robotic systems using extended Petri nets. Such a system is structured, controlled and analysed in this paper by using Visual Object Net ++ package that is relatively simple and easy to use, and the results are shown as representations easy to interpret. The hierarchical structure of the robotic system is implemented on computers analysed using specialized programs. Implementation of hierarchical model discrete event systems, as a real-time operating system on a computer network connected via a serial bus is possible, where each computer is dedicated to local and Petri model of a subsystem global robotic system. Since Petri models are simplified to apply general computers, analysis, modelling, complex manufacturing systems control can be achieved using Petri nets. Discrete event systems is a pragmatic tool for modelling industrial systems. For system modelling using Petri nets because we have our system where discrete event. To highlight the auxiliary time Petri model using transport stream divided into hierarchical levels and sections are analysed successively. Proposed robotic system simulation using timed Petri, offers the opportunity to view the robotic time. Application of goods or robotic and transmission times obtained by measuring spot is obtained graphics showing the average time for transport activity, using the parameters sets of finished products. individually.

  8. Hierarchical Planning Methodology for a Supply Chain Management

    National Research Council Canada - National Science Library

    Virna Ortiz-Araya; Víctor M Albornoz

    2012-01-01

      Hierarchical production planning is a widely utilized methodology for real world capacitated production planning systems with the aim of establishing different decision-making levels of the planning...

  9. Semiparametric Quantile Modelling of Hierarchical Data

    Institute of Scientific and Technical Information of China (English)

    Mao Zai TIAN; Man Lai TANG; Ping Shing CHAN

    2009-01-01

    The classic hierarchical linear model formulation provides a considerable flexibility for modelling the random effects structure and a powerful tool for analyzing nested data that arise in various areas such as biology, economics and education. However, it assumes the within-group errors to be independently and identically distributed (i.i.d.) and models at all levels to be linear. Most importantly, traditional hierarchical models (just like other ordinary mean regression methods) cannot characterize the entire conditional distribution of a dependent variable given a set of covariates and fail to yield robust estimators. In this article, we relax the aforementioned and normality assumptions, and develop a so-called Hierarchical Semiparametric Quantile Regression Models in which the within-group errors could be heteroscedastic and models at some levels are allowed to be nonparametric. We present the ideas with a 2-level model. The level-l model is specified as a nonparametric model whereas level-2 model is set as a parametric model. Under the proposed semiparametric setting the vector of partial derivatives of the nonparametric function in level-1 becomes the response variable vector in level 2. The proposed method allows us to model the fixed effects in the innermost level (i.e., level 2) as a function of the covariates instead of a constant effect. We outline some mild regularity conditions required for convergence and asymptotic normality for our estimators. We illustrate our methodology with a real hierarchical data set from a laboratory study and some simulation studies.

  10. A Hierarchical Model Architecture for Enterprise Integration in Chemical Industries

    Institute of Scientific and Technical Information of China (English)

    华贲; 周章玉; 成思危

    2001-01-01

    Towards integration of supply chain, manufacturing/production and investment decision making, this paper presents a hierarchical model architecture which contains six sub-models covering the areas of manufacturing control, production operation, design and revamp, production management, supply chain and investment decision making. Six types of flow, material, energy, information, humanware, partsware and capital are ciasified. These flows connect enterprise components/subsystems to formulate system topology and logical structure. Enterprise components/subsystems are abstracted to generic elementary and composite classes. Finally, the model architecture is applied to a management system of an integrated suply chain, and suggestion are made on the usage of the model architecture and further development of the model as well as imvlementation issues.

  11. Hierarchical linear regression models for conditional quantiles

    Institute of Scientific and Technical Information of China (English)

    TIAN Maozai; CHEN Gemai

    2006-01-01

    The quantile regression has several useful features and therefore is gradually developing into a comprehensive approach to the statistical analysis of linear and nonlinear response models,but it cannot deal effectively with the data with a hierarchical structure.In practice,the existence of such data hierarchies is neither accidental nor ignorable,it is a common phenomenon.To ignore this hierarchical data structure risks overlooking the importance of group effects,and may also render many of the traditional statistical analysis techniques used for studying data relationships invalid.On the other hand,the hierarchical models take a hierarchical data structure into account and have also many applications in statistics,ranging from overdispersion to constructing min-max estimators.However,the hierarchical models are virtually the mean regression,therefore,they cannot be used to characterize the entire conditional distribution of a dependent variable given high-dimensional covariates.Furthermore,the estimated coefficient vector (marginal effects)is sensitive to an outlier observation on the dependent variable.In this article,a new approach,which is based on the Gauss-Seidel iteration and taking a full advantage of the quantile regression and hierarchical models,is developed.On the theoretical front,we also consider the asymptotic properties of the new method,obtaining the simple conditions for an n1/2-convergence and an asymptotic normality.We also illustrate the use of the technique with the real educational data which is hierarchical and how the results can be explained.

  12. Hierarchical models and chaotic spin glasses

    Science.gov (United States)

    Berker, A. Nihat; McKay, Susan R.

    1984-09-01

    Renormalization-group studies in position space have led to the discovery of hierarchical models which are exactly solvable, exhibiting nonclassical critical behavior at finite temperature. Position-space renormalization-group approximations that had been widely and successfully used are in fact alternatively applicable as exact solutions of hierarchical models, this realizability guaranteeing important physical requirements. For example, a hierarchized version of the Sierpiriski gasket is presented, corresponding to a renormalization-group approximation which has quantitatively yielded the multicritical phase diagrams of submonolayers on graphite. Hierarchical models are now being studied directly as a testing ground for new concepts. For example, with the introduction of frustration, chaotic renormalization-group trajectories were obtained for the first time. Thus, strong and weak correlations are randomly intermingled at successive length scales, and a new microscopic picture and mechanism for a spin glass emerges. An upper critical dimension occurs via a boundary crisis mechanism in cluster-hierarchical variants developed to have well-behaved susceptibilities.

  13. Hierarchic Models of Turbulence, Superfluidity and Superconductivity

    CERN Document Server

    Kaivarainen, A

    2000-01-01

    New models of Turbulence, Superfluidity and Superconductivity, based on new Hierarchic theory, general for liquids and solids (physics/0102086), have been proposed. CONTENTS: 1 Turbulence. General description; 2 Mesoscopic mechanism of turbulence; 3 Superfluidity. General description; 4 Mesoscopic scenario of fluidity; 5 Superfluidity as a hierarchic self-organization process; 6 Superfluidity in 3He; 7 Superconductivity: General properties of metals and semiconductors; Plasma oscillations; Cyclotron resonance; Electroconductivity; 8. Microscopic theory of superconductivity (BCS); 9. Mesoscopic scenario of superconductivity: Interpretation of experimental data in the framework of mesoscopic model of superconductivity.

  14. Strategic games on a hierarchical network model

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Among complex network models, the hierarchical network model is the one most close to such real networks as world trade web, metabolic network, WWW, actor network, and so on. It has not only the property of power-law degree distribution, but growth based on growth and preferential attachment, showing the scale-free degree distribution property. In this paper, we study the evolution of cooperation on a hierarchical network model, adopting the prisoner's dilemma (PD) game and snowdrift game (SG) as metaphors of the interplay between connected nodes. BA model provides a unifying framework for the emergence of cooperation. But interestingly, we found that on hierarchical model, there is no sign of cooperation for PD game, while the frequency of cooperation decreases as the common benefit decreases for SG. By comparing the scaling clustering coefficient properties of the hierarchical network model with that of BA model, we found that the former amplifies the effect of hubs. Considering different performances of PD game and SG on complex network, we also found that common benefit leads to cooperation in the evolution. Thus our study may shed light on the emergence of cooperation in both natural and social environments.

  15. Hierarchical Context Modeling for Video Event Recognition.

    Science.gov (United States)

    Wang, Xiaoyang; Ji, Qiang

    2016-10-11

    Current video event recognition research remains largely target-centered. For real-world surveillance videos, targetcentered event recognition faces great challenges due to large intra-class target variation, limited image resolution, and poor detection and tracking results. To mitigate these challenges, we introduced a context-augmented video event recognition approach. Specifically, we explicitly capture different types of contexts from three levels including image level, semantic level, and prior level. At the image level, we introduce two types of contextual features including the appearance context features and interaction context features to capture the appearance of context objects and their interactions with the target objects. At the semantic level, we propose a deep model based on deep Boltzmann machine to learn event object representations and their interactions. At the prior level, we utilize two types of prior-level contexts including scene priming and dynamic cueing. Finally, we introduce a hierarchical context model that systematically integrates the contextual information at different levels. Through the hierarchical context model, contexts at different levels jointly contribute to the event recognition. We evaluate the hierarchical context model for event recognition on benchmark surveillance video datasets. Results show that incorporating contexts in each level can improve event recognition performance, and jointly integrating three levels of contexts through our hierarchical model achieves the best performance.

  16. Supply Chain as Complex Adaptive System and Its Modeling

    Institute of Scientific and Technical Information of China (English)

    MingmingWang

    2004-01-01

    Supply chain is a complex, hierarchical, integrated, open and dynamic network.Every node in the network is an independent business unit that unites other organizations to develop its value, the competition and cooperation between these units are basic impetus of the development and evolution of the supply chain system. The characteristics of supply chain as a complex adaptive system and its modeling are discussed in this paper, and use an example demonstrating the feasibility of CAS modeling in supply chain management study.

  17. Managing Clustered Data Using Hierarchical Linear Modeling

    Science.gov (United States)

    Warne, Russell T.; Li, Yan; McKyer, E. Lisako J.; Condie, Rachel; Diep, Cassandra S.; Murano, Peter S.

    2012-01-01

    Researchers in nutrition research often use cluster or multistage sampling to gather participants for their studies. These sampling methods often produce violations of the assumption of data independence that most traditional statistics share. Hierarchical linear modeling is a statistical method that can overcome violations of the independence…

  18. Managing Clustered Data Using Hierarchical Linear Modeling

    Science.gov (United States)

    Warne, Russell T.; Li, Yan; McKyer, E. Lisako J.; Condie, Rachel; Diep, Cassandra S.; Murano, Peter S.

    2012-01-01

    Researchers in nutrition research often use cluster or multistage sampling to gather participants for their studies. These sampling methods often produce violations of the assumption of data independence that most traditional statistics share. Hierarchical linear modeling is a statistical method that can overcome violations of the independence…

  19. A Hierarchical Framework for Visualising and Simulating Supply Chains in Virtual Environments

    Institute of Scientific and Technical Information of China (English)

    Hai-Yan Zhang; Zheng-Xu Zhao

    2005-01-01

    This paper presents research into applying virtual environment (VE) technology to supply chain management (SCM). Our research work has employed virtual manufacturing environments to represent supply chain nodes to simulate processes and activities in supply chain management. This will enable those who are involved in these processes and activities to gain an intuitive understanding of them, so as to design robust supply chains and make correct decisions at the right time.A framework system and its hierarchical structure for visualising and simulating supply chains in virtual environments are reported and detailed in this paper.

  20. The Infinite Hierarchical Factor Regression Model

    CERN Document Server

    Rai, Piyush

    2009-01-01

    We propose a nonparametric Bayesian factor regression model that accounts for uncertainty in the number of factors, and the relationship between factors. To accomplish this, we propose a sparse variant of the Indian Buffet Process and couple this with a hierarchical model over factors, based on Kingman's coalescent. We apply this model to two problems (factor analysis and factor regression) in gene-expression data analysis.

  1. Hierarchical models in the brain.

    Directory of Open Access Journals (Sweden)

    Karl Friston

    2008-11-01

    Full Text Available This paper describes a general model that subsumes many parametric models for continuous data. The model comprises hidden layers of state-space or dynamic causal models, arranged so that the output of one provides input to another. The ensuing hierarchy furnishes a model for many types of data, of arbitrary complexity. Special cases range from the general linear model for static data to generalised convolution models, with system noise, for nonlinear time-series analysis. Crucially, all of these models can be inverted using exactly the same scheme, namely, dynamic expectation maximization. This means that a single model and optimisation scheme can be used to invert a wide range of models. We present the model and a brief review of its inversion to disclose the relationships among, apparently, diverse generative models of empirical data. We then show that this inversion can be formulated as a simple neural network and may provide a useful metaphor for inference and learning in the brain.

  2. Hierarchical Heteroclinics in Dynamical Model of Cognitive Processes: Chunking

    Science.gov (United States)

    Afraimovich, Valentin S.; Young, Todd R.; Rabinovich, Mikhail I.

    Combining the results of brain imaging and nonlinear dynamics provides a new hierarchical vision of brain network functionality that is helpful in understanding the relationship of the network to different mental tasks. Using these ideas it is possible to build adequate models for the description and prediction of different cognitive activities in which the number of variables is usually small enough for analysis. The dynamical images of different mental processes depend on their temporal organization and, as a rule, cannot be just simple attractors since cognition is characterized by transient dynamics. The mathematical image for a robust transient is a stable heteroclinic channel consisting of a chain of saddles connected by unstable separatrices. We focus here on hierarchical chunking dynamics that can represent several cognitive activities. Chunking is the dynamical phenomenon that means dividing a long information chain into shorter items. Chunking is known to be important in many processes of perception, learning, memory and cognition. We prove that in the phase space of the model that describes chunking there exists a new mathematical object — heteroclinic sequence of heteroclinic cycles — using the technique of slow-fast approximations. This new object serves as a skeleton of motions reflecting sequential features of hierarchical chunking dynamics and is an adequate image of the chunking processing.

  3. Hierarchical model of vulnerabilities for emotional disorders.

    Science.gov (United States)

    Norton, Peter J; Mehta, Paras D

    2007-01-01

    Clark and Watson's (1991) tripartite model of anxiety and depression has had a dramatic impact on our understanding of the dispositional variables underlying emotional disorders. More recently, calls have been made to examine not simply the influence of negative affectivity (NA) but also mediating factors that might better explain how NA influences anxious and depressive syndromes (e.g. Taylor, 1998; Watson, 2005). Extending preliminary projects, this study evaluated two hierarchical models of NA, mediating factors of anxiety sensitivity and intolerance of uncertainty, and specific emotional manifestations. Data provided a very good fit to a model elaborated from preliminary studies, lending further support to hierarchical models of emotional vulnerabilities. Implications for classification and diagnosis are discussed.

  4. Bayesian hierarchical modeling of drug stability data.

    Science.gov (United States)

    Chen, Jie; Zhong, Jinglin; Nie, Lei

    2008-06-15

    Stability data are commonly analyzed using linear fixed or random effect model. The linear fixed effect model does not take into account the batch-to-batch variation, whereas the random effect model may suffer from the unreliable shelf-life estimates due to small sample size. Moreover, both methods do not utilize any prior information that might have been available. In this article, we propose a Bayesian hierarchical approach to modeling drug stability data. Under this hierarchical structure, we first use Bayes factor to test the poolability of batches. Given the decision on poolability of batches, we then estimate the shelf-life that applies to all batches. The approach is illustrated with two example data sets and its performance is compared in simulation studies with that of the commonly used frequentist methods. (c) 2008 John Wiley & Sons, Ltd.

  5. Hierarchical Climate Modeling for Cosmoclimatology

    Science.gov (United States)

    Ohfuchi, Wataru

    2010-05-01

    It has been reported that there are correlations among solar activity, amount of galactic cosmic ray, amount of low clouds and surface air temperature (Svensmark and Friis-Chistensen, 1997). These correlations seem to exist for current climate change, Little Ice Age, and geological time scale climate changes. Some hypothetic mechanisms have been argued for the correlations but it still needs quantitative studies to understand the mechanism. In order to decrease uncertainties, only first principles or laws very close to first principles should be used. Our group at Japan Agency for Marine-Earth Science and Technology has started modeling effort to tackle this problem. We are constructing models from galactic cosmic ray inducing ionization, to aerosol formation, to cloud formation, to global climate. In this talk, we introduce our modeling activities. For aerosol formation, we use molecular dynamics. For cloud formation, we use a new cloud microphysics model called "super droplet method". We also try to couple a nonhydrostatic atmospheric regional cloud resolving model and a hydrostatic atmospheric general circulation model.

  6. Hierarchical Boltzmann simulations and model error estimation

    Science.gov (United States)

    Torrilhon, Manuel; Sarna, Neeraj

    2017-08-01

    A hierarchical simulation approach for Boltzmann's equation should provide a single numerical framework in which a coarse representation can be used to compute gas flows as accurately and efficiently as in computational fluid dynamics, but a subsequent refinement allows to successively improve the result to the complete Boltzmann result. We use Hermite discretization, or moment equations, for the steady linearized Boltzmann equation for a proof-of-concept of such a framework. All representations of the hierarchy are rotationally invariant and the numerical method is formulated on fully unstructured triangular and quadrilateral meshes using a implicit discontinuous Galerkin formulation. We demonstrate the performance of the numerical method on model problems which in particular highlights the relevance of stability of boundary conditions on curved domains. The hierarchical nature of the method allows also to provide model error estimates by comparing subsequent representations. We present various model errors for a flow through a curved channel with obstacles.

  7. Bayesian structural equation modeling method for hierarchical model validation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Xiaomo [Department of Civil and Environmental Engineering, Vanderbilt University, Box 1831-B, Nashville, TN 37235 (United States)], E-mail: xiaomo.jiang@vanderbilt.edu; Mahadevan, Sankaran [Department of Civil and Environmental Engineering, Vanderbilt University, Box 1831-B, Nashville, TN 37235 (United States)], E-mail: sankaran.mahadevan@vanderbilt.edu

    2009-04-15

    A building block approach to model validation may proceed through various levels, such as material to component to subsystem to system, comparing model predictions with experimental observations at each level. Usually, experimental data becomes scarce as one proceeds from lower to higher levels. This paper presents a structural equation modeling approach to make use of the lower-level data for higher-level model validation under uncertainty, integrating several components: lower-level data, higher-level data, computational model, and latent variables. The method proposed in this paper uses latent variables to model two sets of relationships, namely, the computational model to system-level data, and lower-level data to system-level data. A Bayesian network with Markov chain Monte Carlo simulation is applied to represent the two relationships and to estimate the influencing factors between them. Bayesian hypothesis testing is employed to quantify the confidence in the predictive model at the system level, and the role of lower-level data in the model validation assessment at the system level. The proposed methodology is implemented for hierarchical assessment of three validation problems, using discrete observations and time-series data.

  8. Supply chain reliability modelling

    Directory of Open Access Journals (Sweden)

    Eugen Zaitsev

    2012-03-01

    Full Text Available Background: Today it is virtually impossible to operate alone on the international level in the logistics business. This promotes the establishment and development of new integrated business entities - logistic operators. However, such cooperation within a supply chain creates also many problems related to the supply chain reliability as well as the optimization of the supplies planning. The aim of this paper was to develop and formulate the mathematical model and algorithms to find the optimum plan of supplies by using economic criterion and the model for the probability evaluating of non-failure operation of supply chain. Methods: The mathematical model and algorithms to find the optimum plan of supplies were developed and formulated by using economic criterion and the model for the probability evaluating of non-failure operation of supply chain. Results and conclusions: The problem of ensuring failure-free performance of goods supply channel analyzed in the paper is characteristic of distributed network systems that make active use of business process outsourcing technologies. The complex planning problem occurring in such systems that requires taking into account the consumer's requirements for failure-free performance in terms of supply volumes and correctness can be reduced to a relatively simple linear programming problem through logical analysis of the structures. The sequence of the operations, which should be taken into account during the process of the supply planning with the supplier's functional reliability, was presented.

  9. Modelling the coal chain

    Energy Technology Data Exchange (ETDEWEB)

    Gertenbach, J.-D.; Varendorff, R. von [Knowledge Based Engineering, Sandton (South Africa)

    1999-03-01

    Managing the supply chain in an integrated coal operation involves many operation and control options often too complex for the human mind to comprehend and react to. By integrating all the knowledge of a supply chain into an expert system, both off-line and on-line real time decisions are possible. Knowledge Based Engineering based in South Africa, has gained valuable experience in modelling such mining operations. The article discusses the methodologies that the company has implemented. KBE uses Gensym`s G2 Real Time Expert System as the foundation of the system and the knowledge base is developed modularly.

  10. Hierarchical mixture models for assessing fingerprint individuality

    OpenAIRE

    Dass, Sarat C.; Li, Mingfei

    2009-01-01

    The study of fingerprint individuality aims to determine to what extent a fingerprint uniquely identifies an individual. Recent court cases have highlighted the need for measures of fingerprint individuality when a person is identified based on fingerprint evidence. The main challenge in studies of fingerprint individuality is to adequately capture the variability of fingerprint features in a population. In this paper hierarchical mixture models are introduced to infer the extent of individua...

  11. Semantic Image Segmentation with Contextual Hierarchical Models.

    Science.gov (United States)

    Seyedhosseini, Mojtaba; Tasdizen, Tolga

    2016-05-01

    Semantic segmentation is the problem of assigning an object label to each pixel. It unifies the image segmentation and object recognition problems. The importance of using contextual information in semantic segmentation frameworks has been widely realized in the field. We propose a contextual framework, called contextual hierarchical model (CHM), which learns contextual information in a hierarchical framework for semantic segmentation. At each level of the hierarchy, a classifier is trained based on downsampled input images and outputs of previous levels. Our model then incorporates the resulting multi-resolution contextual information into a classifier to segment the input image at original resolution. This training strategy allows for optimization of a joint posterior probability at multiple resolutions through the hierarchy. Contextual hierarchical model is purely based on the input image patches and does not make use of any fragments or shape examples. Hence, it is applicable to a variety of problems such as object segmentation and edge detection. We demonstrate that CHM performs at par with state-of-the-art on Stanford background and Weizmann horse datasets. It also outperforms state-of-the-art edge detection methods on NYU depth dataset and achieves state-of-the-art on Berkeley segmentation dataset (BSDS 500).

  12. Hierarchical models and the analysis of bird survey information

    Science.gov (United States)

    Sauer, J.R.; Link, W.A.

    2003-01-01

    Management of birds often requires analysis of collections of estimates. We describe a hierarchical modeling approach to the analysis of these data, in which parameters associated with the individual species estimates are treated as random variables, and probability statements are made about the species parameters conditioned on the data. A Markov-Chain Monte Carlo (MCMC) procedure is used to fit the hierarchical model. This approach is computer intensive, and is based upon simulation. MCMC allows for estimation both of parameters and of derived statistics. To illustrate the application of this method, we use the case in which we are interested in attributes of a collection of estimates of population change. Using data for 28 species of grassland-breeding birds from the North American Breeding Bird Survey, we estimate the number of species with increasing populations, provide precision-adjusted rankings of species trends, and describe a measure of population stability as the probability that the trend for a species is within a certain interval. Hierarchical models can be applied to a variety of bird survey applications, and we are investigating their use in estimation of population change from survey data.

  13. Magnetic susceptibilities of cluster-hierarchical models

    Science.gov (United States)

    McKay, Susan R.; Berker, A. Nihat

    1984-02-01

    The exact magnetic susceptibilities of hierarchical models are calculated near and away from criticality, in both the ordered and disordered phases. The mechanism and phenomenology are discussed for models with susceptibilities that are physically sensible, e.g., nondivergent away from criticality. Such models are found based upon the Niemeijer-van Leeuwen cluster renormalization. A recursion-matrix method is presented for the renormalization-group evaluation of response functions. Diagonalization of this matrix at fixed points provides simple criteria for well-behaved densities and response functions.

  14. Three Layer Hierarchical Model for Chord

    Directory of Open Access Journals (Sweden)

    Waqas A. Imtiaz

    2012-12-01

    Full Text Available Increasing popularity of decentralized Peer-to-Peer (P2P architecture emphasizes on the need to come across an overlay structure that can provide efficient content discovery mechanism, accommodate high churn rate and adapt to failures in the presence of heterogeneity among the peers. Traditional p2p systems incorporate distributed client-server communication, which finds the peer efficiently that store a desires data item, with minimum delay and reduced overhead. However traditional models are not able to solve the problems relating scalability and high churn rates. Hierarchical model were introduced to provide better fault isolation, effective bandwidth utilization, a superior adaptation to the underlying physical network and a reduction of the lookup path length as additional advantages. It is more efficient and easier to manage than traditional p2p networks. This paper discusses a further step in p2p hierarchy via 3-layers hierarchical model with distributed database architecture in different layer, each of which is connected through its root. The peers are divided into three categories according to their physical stability and strength. They are Ultra Super-peer, Super-peer and Ordinary Peer and we assign these peers to first, second and third level of hierarchy respectively. Peers in a group in lower layer have their own local database which hold as associated super-peer in middle layer and access the database among the peers through user queries. In our 3-layer hierarchical model for DHT algorithms, we used an advanced Chord algorithm with optimized finger table which can remove the redundant entry in the finger table in upper layer that influences the system to reduce the lookup latency. Our research work finally resulted that our model really provides faster search since the network lookup latency is decreased by reducing the number of hops. The peers in such network then can contribute with improve functionality and can perform well in

  15. An introduction to hierarchical linear modeling

    Directory of Open Access Journals (Sweden)

    Heather Woltman

    2012-02-01

    Full Text Available This tutorial aims to introduce Hierarchical Linear Modeling (HLM. A simple explanation of HLM is provided that describes when to use this statistical technique and identifies key factors to consider before conducting this analysis. The first section of the tutorial defines HLM, clarifies its purpose, and states its advantages. The second section explains the mathematical theory, equations, and conditions underlying HLM. HLM hypothesis testing is performed in the third section. Finally, the fourth section provides a practical example of running HLM, with which readers can follow along. Throughout this tutorial, emphasis is placed on providing a straightforward overview of the basic principles of HLM.

  16. Universality: Accurate Checks in Dyson's Hierarchical Model

    Science.gov (United States)

    Godina, J. J.; Meurice, Y.; Oktay, M. B.

    2003-06-01

    In this talk we present high-accuracy calculations of the susceptibility near βc for Dyson's hierarchical model in D = 3. Using linear fitting, we estimate the leading (γ) and subleading (Δ) exponents. Independent estimates are obtained by calculating the first two eigenvalues of the linearized renormalization group transformation. We found γ = 1.29914073 ± 10 -8 and, Δ = 0.4259469 ± 10-7 independently of the choice of local integration measure (Ising or Landau-Ginzburg). After a suitable rescaling, the approximate fixed points for a large class of local measure coincide accurately with a fixed point constructed by Koch and Wittwer.

  17. A Hierarchical Bayesian Model for Crowd Emotions

    Science.gov (United States)

    Urizar, Oscar J.; Baig, Mirza S.; Barakova, Emilia I.; Regazzoni, Carlo S.; Marcenaro, Lucio; Rauterberg, Matthias

    2016-01-01

    Estimation of emotions is an essential aspect in developing intelligent systems intended for crowded environments. However, emotion estimation in crowds remains a challenging problem due to the complexity in which human emotions are manifested and the capability of a system to perceive them in such conditions. This paper proposes a hierarchical Bayesian model to learn in unsupervised manner the behavior of individuals and of the crowd as a single entity, and explore the relation between behavior and emotions to infer emotional states. Information about the motion patterns of individuals are described using a self-organizing map, and a hierarchical Bayesian network builds probabilistic models to identify behaviors and infer the emotional state of individuals and the crowd. This model is trained and tested using data produced from simulated scenarios that resemble real-life environments. The conducted experiments tested the efficiency of our method to learn, detect and associate behaviors with emotional states yielding accuracy levels of 74% for individuals and 81% for the crowd, similar in performance with existing methods for pedestrian behavior detection but with novel concepts regarding the analysis of crowds. PMID:27458366

  18. When to Use Hierarchical Linear Modeling

    Directory of Open Access Journals (Sweden)

    Veronika Huta

    2014-04-01

    Full Text Available Previous publications on hierarchical linear modeling (HLM have provided guidance on how to perform the analysis, yet there is relatively little information on two questions that arise even before analysis: Does HLM apply to one’s data and research question? And if it does apply, how does one choose between HLM and other methods sometimes used in these circumstances, including multiple regression, repeated-measures or mixed ANOVA, and structural equation modeling or path analysis? The purpose of this tutorial is to briefly introduce HLM and then to review some of the considerations that are helpful in answering these questions, including the nature of the data, the model to be tested, and the information desired on the output. Some examples of how the same analysis could be performed in HLM, repeated-measures or mixed ANOVA, and structural equation modeling or path analysis are also provided. .

  19. Hierarchical Bayesian spatial models for multispecies conservation planning and monitoring.

    Science.gov (United States)

    Carroll, Carlos; Johnson, Devin S; Dunk, Jeffrey R; Zielinski, William J

    2010-12-01

    Biologists who develop and apply habitat models are often familiar with the statistical challenges posed by their data's spatial structure but are unsure of whether the use of complex spatial models will increase the utility of model results in planning. We compared the relative performance of nonspatial and hierarchical Bayesian spatial models for three vertebrate and invertebrate taxa of conservation concern (Church's sideband snails [Monadenia churchi], red tree voles [Arborimus longicaudus], and Pacific fishers [Martes pennanti pacifica]) that provide examples of a range of distributional extents and dispersal abilities. We used presence-absence data derived from regional monitoring programs to develop models with both landscape and site-level environmental covariates. We used Markov chain Monte Carlo algorithms and a conditional autoregressive or intrinsic conditional autoregressive model framework to fit spatial models. The fit of Bayesian spatial models was between 35 and 55% better than the fit of nonspatial analogue models. Bayesian spatial models outperformed analogous models developed with maximum entropy (Maxent) methods. Although the best spatial and nonspatial models included similar environmental variables, spatial models provided estimates of residual spatial effects that suggested how ecological processes might structure distribution patterns. Spatial models built from presence-absence data improved fit most for localized endemic species with ranges constrained by poorly known biogeographic factors and for widely distributed species suspected to be strongly affected by unmeasured environmental variables or population processes. By treating spatial effects as a variable of interest rather than a nuisance, hierarchical Bayesian spatial models, especially when they are based on a common broad-scale spatial lattice (here the national Forest Inventory and Analysis grid of 24 km(2) hexagons), can increase the relevance of habitat models to multispecies

  20. Chain modeling for life cycle systems engineering

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, J.J. [Sandia National Lab., Albuquerque, NM (United States); Shapiro, V. [Univ. of Wisconsin, Madison, WI (United States). Spatial Automation Lab.

    1997-12-01

    Throughout Sandia`s history, products have been represented by drawings. Solid modeling systems have recently replaced drawings as the preferred means for representing product geometry. These systems are used for product visualization, engineering analysis and manufacturing planning. Unfortunately, solid modeling technology is inadequate for life cycle systems engineering, which requires maintenance of technical history, efficient management of geometric and non-geometric data, and explicit representation of engineering and manufacturing characteristics. Such information is not part of the mathematical foundation of solid modeling. The current state-of-the-art in life cycle engineering is comprised of painstakingly created special purpose tools, which often are incompatible. New research on {open_quotes}chain modeling{close_quotes} provides a method of chaining the functionality of a part to the geometric representation. Chain modeling extends classical solid modeling to include physical, manufacturing, and procedural information required for life cycle engineering. In addition, chain modeling promises to provide the missing theoretical basis for Sandia`s parent/child product realization paradigm. In chain modeling, artifacts and systems are characterized in terms of their combinatorial properties: cell complexes, chains, and their operators. This approach is firmly rooted in algebraic topology and is a natural extension of current technology. The potential benefits of this approach include explicit hierarchical and combinatorial representation of physics, geometry, functionality, test, and legacy data in a common computational framework that supports a rational decision process and partial design automation. Chain modeling will have a significant impact on design preservation, system identification, parameterization, system reliability, and design simplification.

  1. A hierarchical model of temporal perception.

    Science.gov (United States)

    Pöppel, E

    1997-05-01

    Temporal perception comprises subjective phenomena such as simultaneity, successiveness, temporal order, subjective present, temporal continuity and subjective duration. These elementary temporal experiences are hierarchically related to each other. Functional system states with a duration of 30 ms are implemented by neuronal oscillations and they provide a mechanism to define successiveness. These system states are also responsible for the identification of basic events. For a sequential representation of several events time tags are allocated, resulting in an ordinal representation of such events. A mechanism of temporal integration binds successive events into perceptual units of 3 s duration. Such temporal integration, which is automatic and presemantic, is also operative in movement control and other cognitive activities. Because of the omnipresence of this integration mechanism it is used for a pragmatic definition of the subjective present. Temporal continuity is the result of a semantic connection between successive integration intervals. Subjective duration is known to depend on mental load and attentional demand, high load resulting in long time estimates. In the hierarchical model proposed, system states of 30 ms and integration intervals of 3 s, together with a memory store, provide an explanatory neuro-cognitive machinery for differential subjective duration.

  2. Antiferromagnetic Ising Model in Hierarchical Networks

    Science.gov (United States)

    Cheng, Xiang; Boettcher, Stefan

    2015-03-01

    The Ising antiferromagnet is a convenient model of glassy dynamics. It can introduce geometric frustrations and may give rise to a spin glass phase and glassy relaxation at low temperatures [ 1 ] . We apply the antiferromagnetic Ising model to 3 hierarchical networks which share features of both small world networks and regular lattices. Their recursive and fixed structures make them suitable for exact renormalization group analysis as well as numerical simulations. We first explore the dynamical behaviors using simulated annealing and discover an extremely slow relaxation at low temperatures. Then we employ the Wang-Landau algorithm to investigate the energy landscape and the corresponding equilibrium behaviors for different system sizes. Besides the Monte Carlo methods, renormalization group [ 2 ] is used to study the equilibrium properties in the thermodynamic limit and to compare with the results from simulated annealing and Wang-Landau sampling. Supported through NSF Grant DMR-1207431.

  3. Predicting protein subcellular locations using hierarchical ensemble of Bayesian classifiers based on Markov chains

    Directory of Open Access Journals (Sweden)

    Eils Roland

    2006-06-01

    Full Text Available Abstract Background The subcellular location of a protein is closely related to its function. It would be worthwhile to develop a method to predict the subcellular location for a given protein when only the amino acid sequence of the protein is known. Although many efforts have been made to predict subcellular location from sequence information only, there is the need for further research to improve the accuracy of prediction. Results A novel method called HensBC is introduced to predict protein subcellular location. HensBC is a recursive algorithm which constructs a hierarchical ensemble of classifiers. The classifiers used are Bayesian classifiers based on Markov chain models. We tested our method on six various datasets; among them are Gram-negative bacteria dataset, data for discriminating outer membrane proteins and apoptosis proteins dataset. We observed that our method can predict the subcellular location with high accuracy. Another advantage of the proposed method is that it can improve the accuracy of the prediction of some classes with few sequences in training and is therefore useful for datasets with imbalanced distribution of classes. Conclusion This study introduces an algorithm which uses only the primary sequence of a protein to predict its subcellular location. The proposed recursive scheme represents an interesting methodology for learning and combining classifiers. The method is computationally efficient and competitive with the previously reported approaches in terms of prediction accuracies as empirical results indicate. The code for the software is available upon request.

  4. Bayesian hierarchical modelling of weak lensing - the golden goal

    CERN Document Server

    Heavens, Alan; Jaffe, Andrew; Hoffmann, Till; Kiessling, Alina; Wandelt, Benjamin

    2016-01-01

    To accomplish correct Bayesian inference from weak lensing shear data requires a complete statistical description of the data. The natural framework to do this is a Bayesian Hierarchical Model, which divides the chain of reasoning into component steps. Starting with a catalogue of shear estimates in tomographic bins, we build a model that allows us to sample simultaneously from the the underlying tomographic shear fields and the relevant power spectra (E-mode, B-mode, and E-B, for auto- and cross-power spectra). The procedure deals easily with masked data and intrinsic alignments. Using Gibbs sampling and messenger fields, we show with simulated data that the large (over 67000-)dimensional parameter space can be efficiently sampled and the full joint posterior probability density function for the parameters can feasibly be obtained. The method correctly recovers the underlying shear fields and all of the power spectra, including at levels well below the shot noise.

  5. Hierarchical Data Structures, Institutional Research, and Multilevel Modeling

    Science.gov (United States)

    O'Connell, Ann A.; Reed, Sandra J.

    2012-01-01

    Multilevel modeling (MLM), also referred to as hierarchical linear modeling (HLM) or mixed models, provides a powerful analytical framework through which to study colleges and universities and their impact on students. Due to the natural hierarchical structure of data obtained from students or faculty in colleges and universities, MLM offers many…

  6. Academic Education Chain Operation Model

    NARCIS (Netherlands)

    Ruskov, Petko; Ruskov, Andrey

    2007-01-01

    This paper presents an approach for modelling the educational processes as a value added chain. It is an attempt to use a business approach to interpret and compile existing business and educational processes towards reference models and suggest an Academic Education Chain Operation Model. The model

  7. Entrepreneurial intention modeling using hierarchical multiple regression

    Directory of Open Access Journals (Sweden)

    Marina Jeger

    2014-12-01

    Full Text Available The goal of this study is to identify the contribution of effectuation dimensions to the predictive power of the entrepreneurial intention model over and above that which can be accounted for by other predictors selected and confirmed in previous studies. As is often the case in social and behavioral studies, some variables are likely to be highly correlated with each other. Therefore, the relative amount of variance in the criterion variable explained by each of the predictors depends on several factors such as the order of variable entry and sample specifics. The results show the modest predictive power of two dimensions of effectuation prior to the introduction of the theory of planned behavior elements. The article highlights the main advantages of applying hierarchical regression in social sciences as well as in the specific context of entrepreneurial intention formation, and addresses some of the potential pitfalls that this type of analysis entails.

  8. Novel Mesoporous Silica Materials with Hierarchically Ordered Nanochannel: Synthesis with the Assistance of Straight-Chain Alkanes and Application

    Directory of Open Access Journals (Sweden)

    Haidong Zhang

    2016-01-01

    Full Text Available The straight-chain alkane-assisted synthesis of hierarchical mesoporous silica materials (MSM results in variable mesostructures and morphologies due to remarkably different self-assembly routes of template agent from those without the assistance of straight-chain alkanes. The textural properties, particularly pore size, channel structure, morphology, and hierarchical structure of those MSM make them demonstrate peculiar effects in the immobilization of homogeneous catalysts.

  9. Coarse-Graining Parameterization and Multiscale Simulation of Hierarchical Systems. Part I: Theory and Model Formulation

    Science.gov (United States)

    2010-01-01

    can also refer to hierarchical parameterization transcending any scale, such as mesoscopic to continuum levels. Such a multiscale modeling paradigm ...particularly suited for systems defined by long-chain polymers with relatively short persistence lengths, or systems that are entropically driven...mechanics. Thus, we introduce a universal framework through a finer-trains-coarser multiscale paradigm , which effectively defines coarse- grain

  10. Hierarchical spatiotemporal matrix models for characterizing invasions.

    Science.gov (United States)

    Hooten, Mevin B; Wikle, Christopher K; Dorazio, Robert M; Royle, J Andrew

    2007-06-01

    The growth and dispersal of biotic organisms is an important subject in ecology. Ecologists are able to accurately describe survival and fecundity in plant and animal populations and have developed quantitative approaches to study the dynamics of dispersal and population size. Of particular interest are the dynamics of invasive species. Such nonindigenous animals and plants can levy significant impacts on native biotic communities. Effective models for relative abundance have been developed; however, a better understanding of the dynamics of actual population size (as opposed to relative abundance) in an invasion would be beneficial to all branches of ecology. In this article, we adopt a hierarchical Bayesian framework for modeling the invasion of such species while addressing the discrete nature of the data and uncertainty associated with the probability of detection. The nonlinear dynamics between discrete time points are intuitively modeled through an embedded deterministic population model with density-dependent growth and dispersal components. Additionally, we illustrate the importance of accommodating spatially varying dispersal rates. The method is applied to the specific case of the Eurasian Collared-Dove, an invasive species at mid-invasion in the United States at the time of this writing.

  11. Random walk hierarchy measure: What is more hierarchical, a chain, a tree or a star?

    CERN Document Server

    Czégel, Dániel

    2015-01-01

    Signs of hierarchy are prevalent in a wide range of systems in nature and society. One of the key problems is quantifying the importance of hierarchical organisation in the structure of the network representing the interactions or connections between the fundamental units of the studied system. Although a number of notable methods are already available, their vast majority is treating all directed acyclic graphs as already maximally hierarchical. Here we propose a hierarchy measure based on random walks on the network. The novelty of our approach is that directed trees corresponding to multi level pyramidal structures obtain higher hierarchy scores compared to directed chains and directed stars. Furthermore, in the thermodynamic limit the hierarchy measure of regular trees is converging to a well defined limit depending only on the branching number. When applied to real networks, our method is computationally very effective, as the result can be evaluated with arbitrary precision by subsequent multiplications...

  12. Constructive Epistemic Modeling: A Hierarchical Bayesian Model Averaging Method

    Science.gov (United States)

    Tsai, F. T. C.; Elshall, A. S.

    2014-12-01

    Constructive epistemic modeling is the idea that our understanding of a natural system through a scientific model is a mental construct that continually develops through learning about and from the model. Using the hierarchical Bayesian model averaging (HBMA) method [1], this study shows that segregating different uncertain model components through a BMA tree of posterior model probabilities, model prediction, within-model variance, between-model variance and total model variance serves as a learning tool [2]. First, the BMA tree of posterior model probabilities permits the comparative evaluation of the candidate propositions of each uncertain model component. Second, systemic model dissection is imperative for understanding the individual contribution of each uncertain model component to the model prediction and variance. Third, the hierarchical representation of the between-model variance facilitates the prioritization of the contribution of each uncertain model component to the overall model uncertainty. We illustrate these concepts using the groundwater modeling of a siliciclastic aquifer-fault system. The sources of uncertainty considered are from geological architecture, formation dip, boundary conditions and model parameters. The study shows that the HBMA analysis helps in advancing knowledge about the model rather than forcing the model to fit a particularly understanding or merely averaging several candidate models. [1] Tsai, F. T.-C., and A. S. Elshall (2013), Hierarchical Bayesian model averaging for hydrostratigraphic modeling: Uncertainty segregation and comparative evaluation. Water Resources Research, 49, 5520-5536, doi:10.1002/wrcr.20428. [2] Elshall, A.S., and F. T.-C. Tsai (2014). Constructive epistemic modeling of groundwater flow with geological architecture and boundary condition uncertainty under Bayesian paradigm, Journal of Hydrology, 517, 105-119, doi: 10.1016/j.jhydrol.2014.05.027.

  13. Classifying hospitals as mortality outliers: logistic versus hierarchical logistic models.

    Science.gov (United States)

    Alexandrescu, Roxana; Bottle, Alex; Jarman, Brian; Aylin, Paul

    2014-05-01

    The use of hierarchical logistic regression for provider profiling has been recommended due to the clustering of patients within hospitals, but has some associated difficulties. We assess changes in hospital outlier status based on standard logistic versus hierarchical logistic modelling of mortality. The study population consisted of all patients admitted to acute, non-specialist hospitals in England between 2007 and 2011 with a primary diagnosis of acute myocardial infarction, acute cerebrovascular disease or fracture of neck of femur or a primary procedure of coronary artery bypass graft or repair of abdominal aortic aneurysm. We compared standardised mortality ratios (SMRs) from non-hierarchical models with SMRs from hierarchical models, without and with shrinkage estimates of the predicted probabilities (Model 1 and Model 2). The SMRs from standard logistic and hierarchical models were highly statistically significantly correlated (r > 0.91, p = 0.01). More outliers were recorded in the standard logistic regression than hierarchical modelling only when using shrinkage estimates (Model 2): 21 hospitals (out of a cumulative number of 565 pairs of hospitals under study) changed from a low outlier and 8 hospitals changed from a high outlier based on the logistic regression to a not-an-outlier based on shrinkage estimates. Both standard logistic and hierarchical modelling have identified nearly the same hospitals as mortality outliers. The choice of methodological approach should, however, also consider whether the modelling aim is judgment or improvement, as shrinkage may be more appropriate for the former than the latter.

  14. Higher-Order Item Response Models for Hierarchical Latent Traits

    Science.gov (United States)

    Huang, Hung-Yu; Wang, Wen-Chung; Chen, Po-Hsi; Su, Chi-Ming

    2013-01-01

    Many latent traits in the human sciences have a hierarchical structure. This study aimed to develop a new class of higher order item response theory models for hierarchical latent traits that are flexible in accommodating both dichotomous and polytomous items, to estimate both item and person parameters jointly, to allow users to specify…

  15. On the renormalization group transformation for scalar hierarchical models

    Energy Technology Data Exchange (ETDEWEB)

    Koch, H. (Texas Univ., Austin (USA). Dept. of Mathematics); Wittwer, P. (Geneva Univ. (Switzerland). Dept. de Physique Theorique)

    1991-06-01

    We give a new proof for the existence of a non-Gaussian hierarchical renormalization group fixed point, using what could be called a beta-function for this problem. We also discuss the asymptotic behavior of this fixed point, and the connection between the hierarchical models of Dyson and Gallavotti. (orig.).

  16. Hierarchical Geometric Constraint Model for Parametric Feature Based Modeling

    Institute of Scientific and Technical Information of China (English)

    高曙明; 彭群生

    1997-01-01

    A new geometric constraint model is described,which is hierarchical and suitable for parametric feature based modeling.In this model,different levels of geometric information are repesented to support various stages of a design process.An efficient approach to parametric feature based modeling is also presented,adopting the high level geometric constraint model.The low level geometric model such as B-reps can be derived automatically from the hig level geometric constraint model,enabling designers to perform their task of detailed design.

  17. Model Checking Interactive Markov Chains

    NARCIS (Netherlands)

    Neuhausser, M.; Zhang, Lijun; Esparza, J.; Majumdar, R.

    2010-01-01

    Hermanns has introduced interactive Markov chains (IMCs) which arise as an orthogonal extension of labelled transition systems and continuous-time Markov chains (CTMCs). IMCs enjoy nice compositional aggregation properties which help to minimize the state space incrementally. However, the model chec

  18. Hierarchical Neural Regression Models for Customer Churn Prediction

    Directory of Open Access Journals (Sweden)

    Golshan Mohammadi

    2013-01-01

    Full Text Available As customers are the main assets of each industry, customer churn prediction is becoming a major task for companies to remain in competition with competitors. In the literature, the better applicability and efficiency of hierarchical data mining techniques has been reported. This paper considers three hierarchical models by combining four different data mining techniques for churn prediction, which are backpropagation artificial neural networks (ANN, self-organizing maps (SOM, alpha-cut fuzzy c-means (α-FCM, and Cox proportional hazards regression model. The hierarchical models are ANN + ANN + Cox, SOM + ANN + Cox, and α-FCM + ANN + Cox. In particular, the first component of the models aims to cluster data in two churner and nonchurner groups and also filter out unrepresentative data or outliers. Then, the clustered data as the outputs are used to assign customers to churner and nonchurner groups by the second technique. Finally, the correctly classified data are used to create Cox proportional hazards model. To evaluate the performance of the hierarchical models, an Iranian mobile dataset is considered. The experimental results show that the hierarchical models outperform the single Cox regression baseline model in terms of prediction accuracy, Types I and II errors, RMSE, and MAD metrics. In addition, the α-FCM + ANN + Cox model significantly performs better than the two other hierarchical models.

  19. Study of chaos based on a hierarchical model

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Masatoshi; Itoh, Sanae-I. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    2001-12-01

    Study of chaos based on a hierarchical model is briefly reviewed. Here we categorize hierarchical model equations, i.e., (1) a model with a few degrees of freedom, e.g., the Lorenz model, (2) a model with intermediate degrees of freedom like a shell model, and (3) a model with many degrees of freedom such as a Navier-Stokes equation. We discuss the nature of chaos and turbulence described by these models via Lyapunov exponents. The interpretation of results observed in fundamental plasma experiments is also shown based on a shell model. (author)

  20. An Unsupervised Model for Exploring Hierarchical Semantics from Social Annotations

    Science.gov (United States)

    Zhou, Mianwei; Bao, Shenghua; Wu, Xian; Yu, Yong

    This paper deals with the problem of exploring hierarchical semantics from social annotations. Recently, social annotation services have become more and more popular in Semantic Web. It allows users to arbitrarily annotate web resources, thus, largely lowers the barrier to cooperation. Furthermore, through providing abundant meta-data resources, social annotation might become a key to the development of Semantic Web. However, on the other hand, social annotation has its own apparent limitations, for instance, 1) ambiguity and synonym phenomena and 2) lack of hierarchical information. In this paper, we propose an unsupervised model to automatically derive hierarchical semantics from social annotations. Using a social bookmark service Del.icio.us as example, we demonstrate that the derived hierarchical semantics has the ability to compensate those shortcomings. We further apply our model on another data set from Flickr to testify our model's applicability on different environments. The experimental results demonstrate our model's efficiency.

  1. Modeling the deformation behavior of nanocrystalline alloy with hierarchical microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongxi; Zhou, Jianqiu, E-mail: zhouj@njtech.edu.cn [Nanjing Tech University, Department of Mechanical Engineering (China); Zhao, Yonghao, E-mail: yhzhao@njust.edu.cn [Nanjing University of Science and Technology, Nanostructural Materials Research Center, School of Materials Science and Engineering (China)

    2016-02-15

    A mechanism-based plasticity model based on dislocation theory is developed to describe the mechanical behavior of the hierarchical nanocrystalline alloys. The stress–strain relationship is derived by invoking the impeding effect of the intra-granular solute clusters and the inter-granular nanostructures on the dislocation movements along the sliding path. We found that the interaction between dislocations and the hierarchical microstructures contributes to the strain hardening property and greatly influence the ductility of nanocrystalline metals. The analysis indicates that the proposed model can successfully describe the enhanced strength of the nanocrystalline hierarchical alloy. Moreover, the strain hardening rate is sensitive to the volume fraction of the hierarchical microstructures. The present model provides a new perspective to design the microstructures for optimizing the mechanical properties in nanostructural metals.

  2. Fuzzy hierarchical model for risk assessment principles, concepts, and practical applications

    CERN Document Server

    Chan, Hing Kai

    2013-01-01

    Risk management is often complicated by situational uncertainties and the subjective preferences of decision makers. Fuzzy Hierarchical Model for Risk Assessment introduces a fuzzy-based hierarchical approach to solve risk management problems considering both qualitative and quantitative criteria to tackle imprecise information.   This approach is illustrated through number of case studies using examples from the food, fashion and electronics sectors to cover a range of applications including supply chain management, green product design and green initiatives. These practical examples explore how this method can be adapted and fine tuned to fit other industries as well.   Supported by an extensive literature review, Fuzzy Hierarchical Model for Risk Assessment  comprehensively introduces a new method for project managers across all industries as well as researchers in risk management.

  3. Road network safety evaluation using Bayesian hierarchical joint model.

    Science.gov (United States)

    Wang, Jie; Huang, Helai

    2016-05-01

    Safety and efficiency are commonly regarded as two significant performance indicators of transportation systems. In practice, road network planning has focused on road capacity and transport efficiency whereas the safety level of a road network has received little attention in the planning stage. This study develops a Bayesian hierarchical joint model for road network safety evaluation to help planners take traffic safety into account when planning a road network. The proposed model establishes relationships between road network risk and micro-level variables related to road entities and traffic volume, as well as socioeconomic, trip generation and network density variables at macro level which are generally used for long term transportation plans. In addition, network spatial correlation between intersections and their connected road segments is also considered in the model. A road network is elaborately selected in order to compare the proposed hierarchical joint model with a previous joint model and a negative binomial model. According to the results of the model comparison, the hierarchical joint model outperforms the joint model and negative binomial model in terms of the goodness-of-fit and predictive performance, which indicates the reasonableness of considering the hierarchical data structure in crash prediction and analysis. Moreover, both random effects at the TAZ level and the spatial correlation between intersections and their adjacent segments are found to be significant, supporting the employment of the hierarchical joint model as an alternative in road-network-level safety modeling as well.

  4. Random walk hierarchy measure: What is more hierarchical, a chain, a tree or a star?

    Science.gov (United States)

    Czégel, Dániel; Palla, Gergely

    2015-01-01

    Signs of hierarchy are prevalent in a wide range of systems in nature and society. One of the key problems is quantifying the importance of hierarchical organisation in the structure of the network representing the interactions or connections between the fundamental units of the studied system. Although a number of notable methods are already available, their vast majority is treating all directed acyclic graphs as already maximally hierarchical. Here we propose a hierarchy measure based on random walks on the network. The novelty of our approach is that directed trees corresponding to multi level pyramidal structures obtain higher hierarchy scores compared to directed chains and directed stars. Furthermore, in the thermodynamic limit the hierarchy measure of regular trees is converging to a well defined limit depending only on the branching number. When applied to real networks, our method is computationally very effective, as the result can be evaluated with arbitrary precision by subsequent multiplications of the transition matrix describing the random walk process. In addition, the tests on real world networks provided very intuitive results, e.g., the trophic levels obtained from our approach on a food web were highly consistent with former results from ecology. PMID:26657012

  5. Random walk hierarchy measure: What is more hierarchical, a chain, a tree or a star?

    Science.gov (United States)

    Czégel, Dániel; Palla, Gergely

    2015-12-10

    Signs of hierarchy are prevalent in a wide range of systems in nature and society. One of the key problems is quantifying the importance of hierarchical organisation in the structure of the network representing the interactions or connections between the fundamental units of the studied system. Although a number of notable methods are already available, their vast majority is treating all directed acyclic graphs as already maximally hierarchical. Here we propose a hierarchy measure based on random walks on the network. The novelty of our approach is that directed trees corresponding to multi level pyramidal structures obtain higher hierarchy scores compared to directed chains and directed stars. Furthermore, in the thermodynamic limit the hierarchy measure of regular trees is converging to a well defined limit depending only on the branching number. When applied to real networks, our method is computationally very effective, as the result can be evaluated with arbitrary precision by subsequent multiplications of the transition matrix describing the random walk process. In addition, the tests on real world networks provided very intuitive results, e.g., the trophic levels obtained from our approach on a food web were highly consistent with former results from ecology.

  6. Modeling Bivariate Longitudinal Hormone Profiles by Hierarchical State Space Models.

    Science.gov (United States)

    Liu, Ziyue; Cappola, Anne R; Crofford, Leslie J; Guo, Wensheng

    2014-01-01

    The hypothalamic-pituitary-adrenal (HPA) axis is crucial in coping with stress and maintaining homeostasis. Hormones produced by the HPA axis exhibit both complex univariate longitudinal profiles and complex relationships among different hormones. Consequently, modeling these multivariate longitudinal hormone profiles is a challenging task. In this paper, we propose a bivariate hierarchical state space model, in which each hormone profile is modeled by a hierarchical state space model, with both population-average and subject-specific components. The bivariate model is constructed by concatenating the univariate models based on the hypothesized relationship. Because of the flexible framework of state space form, the resultant models not only can handle complex individual profiles, but also can incorporate complex relationships between two hormones, including both concurrent and feedback relationship. Estimation and inference are based on marginal likelihood and posterior means and variances. Computationally efficient Kalman filtering and smoothing algorithms are used for implementation. Application of the proposed method to a study of chronic fatigue syndrome and fibromyalgia reveals that the relationships between adrenocorticotropic hormone and cortisol in the patient group are weaker than in healthy controls.

  7. The Role of Prototype Learning in Hierarchical Models of Vision

    Science.gov (United States)

    Thomure, Michael David

    2014-01-01

    I conduct a study of learning in HMAX-like models, which are hierarchical models of visual processing in biological vision systems. Such models compute a new representation for an image based on the similarity of image sub-parts to a number of specific patterns, called prototypes. Despite being a central piece of the overall model, the issue of…

  8. Free-Energy Bounds for Hierarchical Spin Models

    Science.gov (United States)

    Castellana, Michele; Barra, Adriano; Guerra, Francesco

    2014-04-01

    In this paper we study two non-mean-field (NMF) spin models built on a hierarchical lattice: the hierarchical Edward-Anderson model (HEA) of a spin glass, and Dyson's hierarchical model (DHM) of a ferromagnet. For the HEA, we prove the existence of the thermodynamic limit of the free energy and the replica-symmetry-breaking (RSB) free-energy bounds previously derived for the Sherrington-Kirkpatrick model of a spin glass. These RSB mean-field bounds are exact only if the order-parameter fluctuations (OPF) vanish: given that such fluctuations are not negligible in NMF models, we develop a novel strategy to tackle part of OPF in hierarchical models. The method is based on absorbing part of OPF of a block of spins into an effective Hamiltonian of the underlying spin blocks. We illustrate this method for DHM and show that, compared to the mean-field bound for the free energy, it provides a tighter NMF bound, with a critical temperature closer to the exact one. To extend this method to the HEA model, a suitable generalization of Griffith's correlation inequalities for Ising ferromagnets is needed: since correlation inequalities for spin glasses are still an open topic, we leave the extension of this method to hierarchical spin glasses as a future perspective.

  9. MODELING SUPPLY CHAIN PERFORMANCE VARIABLES

    Directory of Open Access Journals (Sweden)

    Ashish Agarwal

    2005-01-01

    Full Text Available In order to understand the dynamic behavior of the variables that can play a major role in the performance improvement in a supply chain, a System Dynamics-based model is proposed. The model provides an effective framework for analyzing different variables affecting supply chain performance. Among different variables, a causal relationship among different variables has been identified. Variables emanating from performance measures such as gaps in customer satisfaction, cost minimization, lead-time reduction, service level improvement and quality improvement have been identified as goal-seeking loops. The proposed System Dynamics-based model analyzes the affect of dynamic behavior of variables for a period of 10 years on performance of case supply chain in auto business.

  10. A hierarchical linear model for tree height prediction.

    Science.gov (United States)

    Vicente J. Monleon

    2003-01-01

    Measuring tree height is a time-consuming process. Often, tree diameter is measured and height is estimated from a published regression model. Trees used to develop these models are clustered into stands, but this structure is ignored and independence is assumed. In this study, hierarchical linear models that account explicitly for the clustered structure of the data...

  11. Modelling hierarchical and modular complex networks: division and independence

    Science.gov (United States)

    Kim, D.-H.; Rodgers, G. J.; Kahng, B.; Kim, D.

    2005-06-01

    We introduce a growing network model which generates both modular and hierarchical structure in a self-organized way. To this end, we modify the Barabási-Albert model into the one evolving under the principles of division and independence as well as growth and preferential attachment (PA). A newly added vertex chooses one of the modules composed of existing vertices, and attaches edges to vertices belonging to that module following the PA rule. When the module size reaches a proper size, the module is divided into two, and a new module is created. The karate club network studied by Zachary is a simple version of the current model. We find that the model can reproduce both modular and hierarchical properties, characterized by the hierarchical clustering function of a vertex with degree k, C(k), being in good agreement with empirical measurements for real-world networks.

  12. Bayesian latent variable models for hierarchical clustered count outcomes with repeated measures in microbiome studies.

    Science.gov (United States)

    Xu, Lizhen; Paterson, Andrew D; Xu, Wei

    2017-04-01

    Motivated by the multivariate nature of microbiome data with hierarchical taxonomic clusters, counts that are often skewed and zero inflated, and repeated measures, we propose a Bayesian latent variable methodology to jointly model multiple operational taxonomic units within a single taxonomic cluster. This novel method can incorporate both negative binomial and zero-inflated negative binomial responses, and can account for serial and familial correlations. We develop a Markov chain Monte Carlo algorithm that is built on a data augmentation scheme using Pólya-Gamma random variables. Hierarchical centering and parameter expansion techniques are also used to improve the convergence of the Markov chain. We evaluate the performance of our proposed method through extensive simulations. We also apply our method to a human microbiome study.

  13. Multiple comparisons in genetic association studies: a hierarchical modeling approach.

    Science.gov (United States)

    Yi, Nengjun; Xu, Shizhong; Lou, Xiang-Yang; Mallick, Himel

    2014-02-01

    Multiple comparisons or multiple testing has been viewed as a thorny issue in genetic association studies aiming to detect disease-associated genetic variants from a large number of genotyped variants. We alleviate the problem of multiple comparisons by proposing a hierarchical modeling approach that is fundamentally different from the existing methods. The proposed hierarchical models simultaneously fit as many variables as possible and shrink unimportant effects towards zero. Thus, the hierarchical models yield more efficient estimates of parameters than the traditional methods that analyze genetic variants separately, and also coherently address the multiple comparisons problem due to largely reducing the effective number of genetic effects and the number of statistically "significant" effects. We develop a method for computing the effective number of genetic effects in hierarchical generalized linear models, and propose a new adjustment for multiple comparisons, the hierarchical Bonferroni correction, based on the effective number of genetic effects. Our approach not only increases the power to detect disease-associated variants but also controls the Type I error. We illustrate and evaluate our method with real and simulated data sets from genetic association studies. The method has been implemented in our freely available R package BhGLM (http://www.ssg.uab.edu/bhglm/).

  14. Modeling local item dependence with the hierarchical generalized linear model.

    Science.gov (United States)

    Jiao, Hong; Wang, Shudong; Kamata, Akihito

    2005-01-01

    Local item dependence (LID) can emerge when the test items are nested within common stimuli or item groups. This study proposes a three-level hierarchical generalized linear model (HGLM) to model LID when LID is due to such contextual effects. The proposed three-level HGLM was examined by analyzing simulated data sets and was compared with the Rasch-equivalent two-level HGLM that ignores such a nested structure of test items. The results demonstrated that the proposed model could capture LID and estimate its magnitude. Also, the two-level HGLM resulted in larger mean absolute differences between the true and the estimated item difficulties than those from the proposed three-level HGLM. Furthermore, it was demonstrated that the proposed three-level HGLM estimated the ability distribution variance unaffected by the LID magnitude, while the two-level HGLM with no LID consideration increasingly underestimated the ability variance as the LID magnitude increased.

  15. The Revised Hierarchical Model: A critical review and assessment

    NARCIS (Netherlands)

    Kroll, J.F.; Hell, J.G. van; Tokowicz, N.; Green, D.W.

    2010-01-01

    Brysbaert and Duyck (this issue) suggest that it is time to abandon the Revised Hierarchical Model (Kroll and Stewart, 1994) in favor of connectionist models such as BIA+ (Dijkstra and Van Heuven, 2002) that more accurately account for the recent evidence on non-selective access in bilingual word re

  16. Reseach of Supply Chain Modeling Technology

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The supply chain modeling technology is research. Firstly, the concept of supply chain and supply chain management is introduced. Secondly, enterprise-modeling methods, such as CIM-OSA, GIM-GRAI, PERA and ARIS, are analyzed and compared. The supply chain modeling technology is studied. Then the ARIS-based supply chain modeling method is proposed and the supply chain operation reference model is set up. Finally, the applications of ARIS-based supply chain modeling method in Shanghai Turbine Generator Co. Ltd. (STGC) is described in detail.

  17. Hierarchical Policy Model for Managing Heterogeneous Security Systems

    Science.gov (United States)

    Lee, Dong-Young; Kim, Minsoo

    2007-12-01

    The integrated security management becomes increasingly complex as security manager must take heterogeneous security systems, different networking technologies, and distributed applications into consideration. The task of managing these security systems and applications depends on various systems and vender specific issues. In this paper, we present a hierarchical policy model which are derived from the conceptual policy, and specify means to enforce this behavior. The hierarchical policy model consist of five levels which are conceptual policy level, goal-oriented policy level, target policy level, process policy level and low-level policy.

  18. Quick Web Services Lookup Model Based on Hierarchical Registration

    Institute of Scientific and Technical Information of China (English)

    谢山; 朱国进; 陈家训

    2003-01-01

    Quick Web Services Lookup (Q-WSL) is a new model to registration and lookup of complex services in the Internet. The model is designed to quickly find complex Web services by using hierarchical registration method. The basic concepts of Web services system are introduced and presented, and then the method of hierarchical registration of services is described. In particular, service query document description and service lookup procedure are concentrated, and it addresses how to lookup these services which are registered in the Web services system. Furthermore, an example design and an evaluation of its performance are presented.Specifically, it shows that the using of attributionbased service query document design and contentbased hierarchical registration in Q-WSL allows service requesters to discover needed services more flexibly and rapidly. It is confirmed that Q-WSL is very suitable for Web services system.

  19. An accessible method for implementing hierarchical models with spatio-temporal abundance data

    Science.gov (United States)

    Ross, Beth E.; Hooten, Melvin B.; Koons, David N.

    2012-01-01

    A common goal in ecology and wildlife management is to determine the causes of variation in population dynamics over long periods of time and across large spatial scales. Many assumptions must nevertheless be overcome to make appropriate inference about spatio-temporal variation in population dynamics, such as autocorrelation among data points, excess zeros, and observation error in count data. To address these issues, many scientists and statisticians have recommended the use of Bayesian hierarchical models. Unfortunately, hierarchical statistical models remain somewhat difficult to use because of the necessary quantitative background needed to implement them, or because of the computational demands of using Markov Chain Monte Carlo algorithms to estimate parameters. Fortunately, new tools have recently been developed that make it more feasible for wildlife biologists to fit sophisticated hierarchical Bayesian models (i.e., Integrated Nested Laplace Approximation, ‘INLA’). We present a case study using two important game species in North America, the lesser and greater scaup, to demonstrate how INLA can be used to estimate the parameters in a hierarchical model that decouples observation error from process variation, and accounts for unknown sources of excess zeros as well as spatial and temporal dependence in the data. Ultimately, our goal was to make unbiased inference about spatial variation in population trends over time.

  20. Multi-Organ Contribution to the Metabolic Plasma Profile Using Hierarchical Modelling.

    Directory of Open Access Journals (Sweden)

    Frida Torell

    Full Text Available Hierarchical modelling was applied in order to identify the organs that contribute to the levels of metabolites in plasma. Plasma and organ samples from gut, kidney, liver, muscle and pancreas were obtained from mice. The samples were analysed using gas chromatography time-of-flight mass spectrometry (GC TOF-MS at the Swedish Metabolomics centre, Umeå University, Sweden. The multivariate analysis was performed by means of principal component analysis (PCA and orthogonal projections to latent structures (OPLS. The main goal of this study was to investigate how each organ contributes to the metabolic plasma profile. This was performed using hierarchical modelling. Each organ was found to have a unique metabolic profile. The hierarchical modelling showed that the gut, kidney and liver demonstrated the greatest contribution to the metabolic pattern of plasma. For example, we found that metabolites were absorbed in the gut and transported to the plasma. The kidneys excrete branched chain amino acids (BCAAs and fatty acids are transported in the plasma to the muscles and liver. Lactic acid was also found to be transported from the pancreas to plasma. The results indicated that hierarchical modelling can be utilized to identify the organ contribution of unknown metabolites to the metabolic profile of plasma.

  1. MULTILEVEL RECURRENT MODEL FOR HIERARCHICAL CONTROL OF COMPLEX REGIONAL SECURITY

    Directory of Open Access Journals (Sweden)

    Andrey V. Masloboev

    2014-11-01

    Full Text Available Subject of research. The research goal and scope are development of methods and software for mathematical and computer modeling of the regional security information support systems as multilevel hierarchical systems. Such systems are characterized by loosely formalization, multiple-aspect of descendent system processes and their interconnectivity, high level dynamics and uncertainty. The research methodology is based on functional-target approach and principles of multilevel hierarchical system theory. The work considers analysis and structural-algorithmic synthesis problem-solving of the multilevel computer-aided systems intended for management and decision-making information support in the field of regional security. Main results. A hierarchical control multilevel model of regional socio-economic system complex security has been developed. The model is based on functional-target approach and provides both formal statement and solving, and practical implementation of the automated information system structure and control algorithms synthesis problems of regional security management optimal in terms of specified criteria. An approach for intralevel and interlevel coordination problem-solving in the multilevel hierarchical systems has been proposed on the basis of model application. The coordination is provided at the expense of interconnection requirements satisfaction between the functioning quality indexes (objective functions, which are optimized by the different elements of multilevel systems. That gives the possibility for sufficient coherence reaching of the local decisions, being made on the different control levels, under decentralized decision-making and external environment high dynamics. Recurrent model application provides security control mathematical models formation of regional socioeconomic systems, functioning under uncertainty. Practical relevance. The model implementation makes it possible to automate synthesis realization of

  2. Dynamic modeling of presence of occupants using inhomogeneous Markov chains

    DEFF Research Database (Denmark)

    Andersen, Philip Hvidthøft Delff; Iversen, Anne; Madsen, Henrik

    2014-01-01

    on inhomogeneous Markov chains with where the transition probabilities are estimated using generalized linear models with polynomials, B-splines, and a filter of passed observations as inputs. For treating the dispersion of the data series, a hierarchical model structure is used where one model is for low presence......Occupancy modeling is a necessary step towards reliable simulation of energy consumption in buildings. This paper outlines a method for fitting recordings of presence of occupants and simulation of single-person to multiple-persons office environments. The method includes modeling of dependence...

  3. Hierarchical Non-Emitting Markov Models

    CERN Document Server

    Ristad, E S; Ristad, Eric Sven; Thomas, Robert G.

    1998-01-01

    We describe a simple variant of the interpolated Markov model with non-emitting state transitions and prove that it is strictly more powerful than any Markov model. More importantly, the non-emitting model outperforms the classic interpolated model on the natural language texts under a wide range of experimental conditions, with only a modest increase in computational requirements. The non-emitting model is also much less prone to overfitting. Keywords: Markov model, interpolated Markov model, hidden Markov model, mixture modeling, non-emitting state transitions, state-conditional interpolation, statistical language model, discrete time series, Brown corpus, Wall Street Journal.

  4. Conceptual hierarchical modeling to describe wetland plant community organization

    Science.gov (United States)

    Little, A.M.; Guntenspergen, G.R.; Allen, T.F.H.

    2010-01-01

    Using multivariate analysis, we created a hierarchical modeling process that describes how differently-scaled environmental factors interact to affect wetland-scale plant community organization in a system of small, isolated wetlands on Mount Desert Island, Maine. We followed the procedure: 1) delineate wetland groups using cluster analysis, 2) identify differently scaled environmental gradients using non-metric multidimensional scaling, 3) order gradient hierarchical levels according to spatiotem-poral scale of fluctuation, and 4) assemble hierarchical model using group relationships with ordination axes and post-hoc tests of environmental differences. Using this process, we determined 1) large wetland size and poor surface water chemistry led to the development of shrub fen wetland vegetation, 2) Sphagnum and water chemistry differences affected fen vs. marsh / sedge meadows status within small wetlands, and 3) small-scale hydrologic differences explained transitions between forested vs. non-forested and marsh vs. sedge meadow vegetation. This hierarchical modeling process can help explain how upper level contextual processes constrain biotic community response to lower-level environmental changes. It creates models with more nuanced spatiotemporal complexity than classification and regression tree procedures. Using this process, wetland scientists will be able to generate more generalizable theories of plant community organization, and useful management models. ?? Society of Wetland Scientists 2009.

  5. Use of a Bayesian hierarchical model to study the allometric scaling of the fetoplacental weight ratio

    Directory of Open Access Journals (Sweden)

    Fidel Ernesto Castro Morales

    2016-03-01

    Full Text Available Abstract Objectives: to propose the use of a Bayesian hierarchical model to study the allometric scaling of the fetoplacental weight ratio, including possible confounders. Methods: data from 26 singleton pregnancies with gestational age at birth between 37 and 42 weeks were analyzed. The placentas were collected immediately after delivery and stored under refrigeration until the time of analysis, which occurred within up to 12 hours. Maternal data were collected from medical records. A Bayesian hierarchical model was proposed and Markov chain Monte Carlo simulation methods were used to obtain samples from distribution a posteriori. Results: the model developed showed a reasonable fit, even allowing for the incorporation of variables and a priori information on the parameters used. Conclusions: new variables can be added to the modelfrom the available code, allowing many possibilities for data analysis and indicating the potential for use in research on the subject.

  6. Update Legal Documents Using Hierarchical Ranking Models and Word Clustering

    OpenAIRE

    Pham, Minh Quang Nhat; Nguyen, Minh Le; Shimazu, Akira

    2010-01-01

    Our research addresses the task of updating legal documents when newinformation emerges. In this paper, we employ a hierarchical ranking model tothe task of updating legal documents. Word clustering features are incorporatedto the ranking models to exploit semantic relations between words. Experimentalresults on legal data built from the United States Code show that the hierarchicalranking model with word clustering outperforms baseline methods using VectorSpace Model, and word cluster-based ...

  7. On the construction of hierarchic models

    NARCIS (Netherlands)

    Out, D.-J.; Rikxoort, van R.P.; Bakker, R.R.

    1994-01-01

    One of the main problems in the field of model-based diagnosis of technical systems today is finding the most useful model or models of the system being diagnosed. Often, a model showing the physical components and the connections between them is all that is available. As systems grow larger and lar

  8. Modeling urban air pollution with optimized hierarchical fuzzy inference system.

    Science.gov (United States)

    Tashayo, Behnam; Alimohammadi, Abbas

    2016-10-01

    Environmental exposure assessments (EEA) and epidemiological studies require urban air pollution models with appropriate spatial and temporal resolutions. Uncertain available data and inflexible models can limit air pollution modeling techniques, particularly in under developing countries. This paper develops a hierarchical fuzzy inference system (HFIS) to model air pollution under different land use, transportation, and meteorological conditions. To improve performance, the system treats the issue as a large-scale and high-dimensional problem and develops the proposed model using a three-step approach. In the first step, a geospatial information system (GIS) and probabilistic methods are used to preprocess the data. In the second step, a hierarchical structure is generated based on the problem. In the third step, the accuracy and complexity of the model are simultaneously optimized with a multiple objective particle swarm optimization (MOPSO) algorithm. We examine the capabilities of the proposed model for predicting daily and annual mean PM2.5 and NO2 and compare the accuracy of the results with representative models from existing literature. The benefits provided by the model features, including probabilistic preprocessing, multi-objective optimization, and hierarchical structure, are precisely evaluated by comparing five different consecutive models in terms of accuracy and complexity criteria. Fivefold cross validation is used to assess the performance of the generated models. The respective average RMSEs and coefficients of determination (R (2)) for the test datasets using proposed model are as follows: daily PM2.5 = (8.13, 0.78), annual mean PM2.5 = (4.96, 0.80), daily NO2 = (5.63, 0.79), and annual mean NO2 = (2.89, 0.83). The obtained results demonstrate that the developed hierarchical fuzzy inference system can be utilized for modeling air pollution in EEA and epidemiological studies.

  9. ECoS, a framework for modelling hierarchical spatial systems.

    Science.gov (United States)

    Harris, John R W; Gorley, Ray N

    2003-10-01

    A general framework for modelling hierarchical spatial systems has been developed and implemented as the ECoS3 software package. The structure of this framework is described, and illustrated with representative examples. It allows the set-up and integration of sets of advection-diffusion equations representing multiple constituents interacting in a spatial context. Multiple spaces can be defined, with zero, one or two-dimensions and can be nested, and linked through constituent transfers. Model structure is generally object-oriented and hierarchical, reflecting the natural relations within its real-world analogue. Velocities, dispersions and inter-constituent transfers, together with additional functions, are defined as properties of constituents to which they apply. The resulting modular structure of ECoS models facilitates cut and paste model development, and template model components have been developed for the assembly of a range of estuarine water quality models. Published examples of applications to the geochemical dynamics of estuaries are listed.

  10. Inference in HIV dynamics models via hierarchical likelihood

    OpenAIRE

    2010-01-01

    HIV dynamical models are often based on non-linear systems of ordinary differential equations (ODE), which do not have analytical solution. Introducing random effects in such models leads to very challenging non-linear mixed-effects models. To avoid the numerical computation of multiple integrals involved in the likelihood, we propose a hierarchical likelihood (h-likelihood) approach, treated in the spirit of a penalized likelihood. We give the asymptotic distribution of the maximum h-likelih...

  11. Fusing heterogeneous data for the calibration of molecular dynamics force fields using hierarchical Bayesian models.

    Science.gov (United States)

    Wu, Stephen; Angelikopoulos, Panagiotis; Tauriello, Gerardo; Papadimitriou, Costas; Koumoutsakos, Petros

    2016-12-28

    We propose a hierarchical Bayesian framework to systematically integrate heterogeneous data for the calibration of force fields in Molecular Dynamics (MD) simulations. Our approach enables the fusion of diverse experimental data sets of the physico-chemical properties of a system at different thermodynamic conditions. We demonstrate the value of this framework for the robust calibration of MD force-fields for water using experimental data of its diffusivity, radial distribution function, and density. In order to address the high computational cost associated with the hierarchical Bayesian models, we develop a novel surrogate model based on the empirical interpolation method. Further computational savings are achieved by implementing a highly parallel transitional Markov chain Monte Carlo technique. The present method bypasses possible subjective weightings of the experimental data in identifying MD force-field parameters.

  12. Bayesian Hierarchical Random Intercept Model Based on Three Parameter Gamma Distribution

    Science.gov (United States)

    Wirawati, Ika; Iriawan, Nur; Irhamah

    2017-06-01

    Hierarchical data structures are common throughout many areas of research. Beforehand, the existence of this type of data was less noticed in the analysis. The appropriate statistical analysis to handle this type of data is the hierarchical linear model (HLM). This article will focus only on random intercept model (RIM), as a subclass of HLM. This model assumes that the intercept of models in the lowest level are varied among those models, and their slopes are fixed. The differences of intercepts were suspected affected by some variables in the upper level. These intercepts, therefore, are regressed against those upper level variables as predictors. The purpose of this paper would demonstrate a proven work of the proposed two level RIM of the modeling on per capita household expenditure in Maluku Utara, which has five characteristics in the first level and three characteristics of districts/cities in the second level. The per capita household expenditure data in the first level were captured by the three parameters Gamma distribution. The model, therefore, would be more complex due to interaction of many parameters for representing the hierarchical structure and distribution pattern of the data. To simplify the estimation processes of parameters, the computational Bayesian method couple with Markov Chain Monte Carlo (MCMC) algorithm and its Gibbs Sampling are employed.

  13. Modeling diurnal hormone profiles by hierarchical state space models.

    Science.gov (United States)

    Liu, Ziyue; Guo, Wensheng

    2015-10-30

    Adrenocorticotropic hormone (ACTH) diurnal patterns contain both smooth circadian rhythms and pulsatile activities. How to evaluate and compare them between different groups is a challenging statistical task. In particular, we are interested in testing (1) whether the smooth ACTH circadian rhythms in chronic fatigue syndrome and fibromyalgia patients differ from those in healthy controls and (2) whether the patterns of pulsatile activities are different. In this paper, a hierarchical state space model is proposed to extract these signals from noisy observations. The smooth circadian rhythms shared by a group of subjects are modeled by periodic smoothing splines. The subject level pulsatile activities are modeled by autoregressive processes. A functional random effect is adopted at the pair level to account for the matched pair design. Parameters are estimated by maximizing the marginal likelihood. Signals are extracted as posterior means. Computationally efficient Kalman filter algorithms are adopted for implementation. Application of the proposed model reveals that the smooth circadian rhythms are similar in the two groups but the pulsatile activities in patients are weaker than those in the healthy controls. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Learning curve estimation in medical devices and procedures: hierarchical modeling.

    Science.gov (United States)

    Govindarajulu, Usha S; Stillo, Marco; Goldfarb, David; Matheny, Michael E; Resnic, Frederic S

    2017-07-30

    In the use of medical device procedures, learning effects have been shown to be a critical component of medical device safety surveillance. To support their estimation of these effects, we evaluated multiple methods for modeling these rates within a complex simulated dataset representing patients treated by physicians clustered within institutions. We employed unique modeling for the learning curves to incorporate the learning hierarchy between institution and physicians and then modeled them within established methods that work with hierarchical data such as generalized estimating equations (GEE) and generalized linear mixed effect models. We found that both methods performed well, but that the GEE may have some advantages over the generalized linear mixed effect models for ease of modeling and a substantially lower rate of model convergence failures. We then focused more on using GEE and performed a separate simulation to vary the shape of the learning curve as well as employed various smoothing methods to the plots. We concluded that while both hierarchical methods can be used with our mathematical modeling of the learning curve, the GEE tended to perform better across multiple simulated scenarios in order to accurately model the learning effect as a function of physician and hospital hierarchical data in the use of a novel medical device. We found that the choice of shape used to produce the 'learning-free' dataset would be dataset specific, while the choice of smoothing method was negligibly different from one another. This was an important application to understand how best to fit this unique learning curve function for hierarchical physician and hospital data. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Hierarchical Item Response Models for Cognitive Diagnosis

    Science.gov (United States)

    Hansen, Mark Patrick

    2013-01-01

    Cognitive diagnosis models (see, e.g., Rupp, Templin, & Henson, 2010) have received increasing attention within educational and psychological measurement. The popularity of these models may be largely due to their perceived ability to provide useful information concerning both examinees (classifying them according to their attribute profiles)…

  16. Hierarchical model-based interferometric synthetic aperture radar image registration

    Science.gov (United States)

    Wang, Yang; Huang, Haifeng; Dong, Zhen; Wu, Manqing

    2014-01-01

    With the rapid development of spaceborne interferometric synthetic aperture radar technology, classical image registration methods are incompetent for high-efficiency and high-accuracy masses of real data processing. Based on this fact, we propose a new method. This method consists of two steps: coarse registration that is realized by cross-correlation algorithm and fine registration that is realized by hierarchical model-based algorithm. Hierarchical model-based algorithm is a high-efficiency optimization algorithm. The key features of this algorithm are a global model that constrains the overall structure of the motion estimated, a local model that is used in the estimation process, and a coarse-to-fine refinement strategy. Experimental results from different kinds of simulated and real data have confirmed that the proposed method is very fast and has high accuracy. Comparing with a conventional cross-correlation method, the proposed method provides markedly improved performance.

  17. Concept Association and Hierarchical Hamming Clustering Model in Text Classification

    Institute of Scientific and Technical Information of China (English)

    Su Gui-yang; Li Jian-hua; Ma Ying-hua; Li Sheng-hong; Yin Zhong-hang

    2004-01-01

    We propose two models in this paper. The concept of association model is put forward to obtain the co-occurrence relationships among keywords in the documents and the hierarchical Hamming clustering model is used to reduce the dimensionality of the category feature vector space which can solve the problem of the extremely high dimensionality of the documents' feature space. The results of experiment indicate that it can obtain the co-occurrence relations among keywords in the documents which promote the recall of classification system effectively. The hierarchical Hamming clustering model can reduce the dimensionality of the category feature vector efficiently, the size of the vector space is only about 10% of the primary dimensionality.

  18. Dissecting magnetar variability with Bayesian hierarchical models

    CERN Document Server

    Huppenkothen, D; Hogg, D W; Murray, I; Frean, M; Elenbaas, C; Watts, A L; Levin, Y; van der Horst, A J; Kouveliotou, C

    2015-01-01

    Neutron stars are a prime laboratory for testing physical processes under conditions of strong gravity, high density, and extreme magnetic fields. Among the zoo of neutron star phenomena, magnetars stand out for their bursting behaviour, ranging from extremely bright, rare giant flares to numerous, less energetic recurrent bursts. The exact trigger and emission mechanisms for these bursts are not known; favoured models involve either a crust fracture and subsequent energy release into the magnetosphere, or explosive reconnection of magnetic field lines. In the absence of a predictive model, understanding the physical processes responsible for magnetar burst variability is difficult. Here, we develop an empirical model that decomposes magnetar bursts into a superposition of small spike-like features with a simple functional form, where the number of model components is itself part of the inference problem. The cascades of spikes that we model might be formed by avalanches of reconnection, or crust rupture afte...

  19. The fishing industry - toward supply chain modelling

    DEFF Research Database (Denmark)

    Jensen, Toke Koldborg; Nielsen, Jette; Larsen, Erling P.

    Mathematical models for simulating and optimizing supply chain aspects such as distribution planning and optimal use of raw materials are widely used. However, modelling based on a holistic chain view is less studied, and food-related aspects such as quality and shelf life issues enforce additional...... requirements onto the chains. In this paper, we consider the supply chain structure of the Danish fishing industry and illustrate the potential of using mathematical models to identify quality and value-adding activities. This is a first step toward innovative supply chain modelling aimed to identify benefits...... for actors along chains in the fishing industry....

  20. Building hierarchical models of avian distributions for the State of Georgia

    Science.gov (United States)

    Howell, J.E.; Peterson, J.T.; Conroy, M.J.

    2008-01-01

    To predict the distributions of breeding birds in the state of Georgia, USA, we built hierarchical models consisting of 4 levels of nested mapping units of decreasing area: 90,000 ha, 3,600 ha, 144 ha, and 5.76 ha. We used the Partners in Flight database of point counts to generate presence and absence data at locations across the state of Georgia for 9 avian species: Acadian flycatcher (Empidonax virescens), brownheaded nuthatch (Sitta pusilla), Carolina wren (Thryothorus ludovicianus), indigo bunting (Passerina cyanea), northern cardinal (Cardinalis cardinalis), prairie warbler (Dendroica discolor), yellow-billed cuckoo (Coccyxus americanus), white-eyed vireo (Vireo griseus), and wood thrush (Hylocichla mustelina). At each location, we estimated hierarchical-level-specific habitat measurements using the Georgia GAP Analysis18 class land cover and other Geographic Information System sources. We created candidate, species-specific occupancy models based on previously reported relationships, and fit these using Markov chain Monte Carlo procedures implemented in OpenBugs. We then created a confidence model set for each species based on Akaike's Information Criterion. We found hierarchical habitat relationships for all species. Three-fold cross-validation estimates of model accuracy indicated an average overall correct classification rate of 60.5%. Comparisons with existing Georgia GAP Analysis models indicated that our models were more accurate overall. Our results provide guidance to wildlife scientists and managers seeking predict avian occurrence as a function of local and landscape-level habitat attributes.

  1. Hierarchical Bulk Synchronous Parallel Model and Performance Optimization

    Institute of Scientific and Technical Information of China (English)

    HUANG Linpeng; SUNYongqiang; YUAN Wei

    1999-01-01

    Based on the framework of BSP, aHierarchical Bulk Synchronous Parallel (HBSP) performance model isintroduced in this paper to capture the performance optimizationproblem for various stages in parallel program development and toaccurately predict the performance of a parallel program byconsidering factors causing variance at local computation and globalcommunication. The related methodology has been applied to several realapplications and the results show that HBSP is a suitable model foroptimizing parallel programs.

  2. Fractal Derivative Model for Air Permeability in Hierarchic Porous Media

    Directory of Open Access Journals (Sweden)

    Jie Fan

    2012-01-01

    Full Text Available Air permeability in hierarchic porous media does not obey Fick's equation or its modification because fractal objects have well-defined geometric properties, which are discrete and discontinuous. We propose a theoretical model dealing with, for the first time, a seemingly complex air permeability process using fractal derivative method. The fractal derivative model has been successfully applied to explain the novel air permeability phenomenon of cocoon. The theoretical analysis was in agreement with experimental results.

  3. Hybrid modeling and empirical analysis of automobile supply chain network

    Science.gov (United States)

    Sun, Jun-yan; Tang, Jian-ming; Fu, Wei-ping; Wu, Bing-ying

    2017-05-01

    Based on the connection mechanism of nodes which automatically select upstream and downstream agents, a simulation model for dynamic evolutionary process of consumer-driven automobile supply chain is established by integrating ABM and discrete modeling in the GIS-based map. Firstly, the rationality is proved by analyzing the consistency of sales and changes in various agent parameters between the simulation model and a real automobile supply chain. Second, through complex network theory, hierarchical structures of the model and relationships of networks at different levels are analyzed to calculate various characteristic parameters such as mean distance, mean clustering coefficients, and degree distributions. By doing so, it verifies that the model is a typical scale-free network and small-world network. Finally, the motion law of this model is analyzed from the perspective of complex self-adaptive systems. The chaotic state of the simulation system is verified, which suggests that this system has typical nonlinear characteristics. This model not only macroscopically illustrates the dynamic evolution of complex networks of automobile supply chain but also microcosmically reflects the business process of each agent. Moreover, the model construction and simulation of the system by means of combining CAS theory and complex networks supplies a novel method for supply chain analysis, as well as theory bases and experience for supply chain analysis of auto companies.

  4. Supply chain strategies, issues and models

    CERN Document Server

    Ramanathan, Ramakrishnan

    2014-01-01

    In the 21st century, supply chain operations and relationships among supply chain partners have become highly challenging, necessitating new approaches, e.g., the development of new models. Supply Chain Strategies, Issues and Models discusses supply chain issues and models with examples from actual industrial cases. Expert authors with a wide spectrum of knowledge working in various areas of supply chain management from various geographical locations offer refreshing, novel and insightful ideas and address possible solutions using established theories and models. Supply Chain Strategies, Issues and Models features studies that have used mathematical modeling, statistical analyses and also descriptive qualitative studies. The chapters cover many relevant themes related to supply chains and logistics including supply chain complexity, information sharing, quality (six sigma), electronic Kanbans, inventory models, scheduling, purchasing and contracts. To facilitate easy reading, the chapters that deal with suppl...

  5. A hierarchical model for spatial capture-recapture data

    Science.gov (United States)

    Royle, J. Andrew; Young, K.V.

    2008-01-01

    Estimating density is a fundamental objective of many animal population studies. Application of methods for estimating population size from ostensibly closed populations is widespread, but ineffective for estimating absolute density because most populations are subject to short-term movements or so-called temporary emigration. This phenomenon invalidates the resulting estimates because the effective sample area is unknown. A number of methods involving the adjustment of estimates based on heuristic considerations are in widespread use. In this paper, a hierarchical model of spatially indexed capture recapture data is proposed for sampling based on area searches of spatial sample units subject to uniform sampling intensity. The hierarchical model contains explicit models for the distribution of individuals and their movements, in addition to an observation model that is conditional on the location of individuals during sampling. Bayesian analysis of the hierarchical model is achieved by the use of data augmentation, which allows for a straightforward implementation in the freely available software WinBUGS. We present results of a simulation study that was carried out to evaluate the operating characteristics of the Bayesian estimator under variable densities and movement patterns of individuals. An application of the model is presented for survey data on the flat-tailed horned lizard (Phrynosoma mcallii) in Arizona, USA.

  6. A hierarchical model for ordinal matrix factorization

    DEFF Research Database (Denmark)

    Paquet, Ulrich; Thomson, Blaise; Winther, Ole

    2012-01-01

    their ratings for other movies. The Netflix data set is used for evaluation, which consists of around 100 million ratings. Using root mean-squared error (RMSE) as an evaluation metric, results show that the suggested model outperforms alternative factorization techniques. Results also show how Gibbs sampling...

  7. Hierarchical, model-based risk management of critical infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Baiardi, F. [Polo G.Marconi La Spezia, Universita di Pisa, Pisa (Italy); Dipartimento di Informatica, Universita di Pisa, L.go B.Pontecorvo 3 56127, Pisa (Italy)], E-mail: f.baiardi@unipi.it; Telmon, C.; Sgandurra, D. [Dipartimento di Informatica, Universita di Pisa, L.go B.Pontecorvo 3 56127, Pisa (Italy)

    2009-09-15

    Risk management is a process that includes several steps, from vulnerability analysis to the formulation of a risk mitigation plan that selects countermeasures to be adopted. With reference to an information infrastructure, we present a risk management strategy that considers a sequence of hierarchical models, each describing dependencies among infrastructure components. A dependency exists anytime a security-related attribute of a component depends upon the attributes of other components. We discuss how this notion supports the formal definition of risk mitigation plan and the evaluation of the infrastructure robustness. A hierarchical relation exists among models that are analyzed because each model increases the level of details of some components in a previous one. Since components and dependencies are modeled through a hypergraph, to increase the model detail level, some hypergraph nodes are replaced by more and more detailed hypergraphs. We show how critical information for the assessment can be automatically deduced from the hypergraph and define conditions that determine cases where a hierarchical decomposition simplifies the assessment. In these cases, the assessment has to analyze the hypergraph that replaces the component rather than applying again all the analyses to a more detailed, and hence larger, hypergraph. We also show how the proposed framework supports the definition of a risk mitigation plan and discuss some indicators of the overall infrastructure robustness. Lastly, the development of tools to support the assessment is discussed.

  8. Introduction to Hierarchical Bayesian Modeling for Ecological Data

    CERN Document Server

    Parent, Eric

    2012-01-01

    Making statistical modeling and inference more accessible to ecologists and related scientists, Introduction to Hierarchical Bayesian Modeling for Ecological Data gives readers a flexible and effective framework to learn about complex ecological processes from various sources of data. It also helps readers get started on building their own statistical models. The text begins with simple models that progressively become more complex and realistic through explanatory covariates and intermediate hidden states variables. When fitting the models to data, the authors gradually present the concepts a

  9. A Hierarchical Probability Model of Colon Cancer

    CERN Document Server

    Kelly, Michael

    2010-01-01

    We consider a model of fixed size $N = 2^l$ in which there are $l$ generations of daughter cells and a stem cell. In each generation $i$ there are $2^{i-1}$ daughter cells. At each integral time unit the cells split so that the stem cell splits into a stem cell and generation 1 daughter cell and the generation $i$ daughter cells become two cells of generation $i+1$. The last generation is removed from the population. The stem cell gets first and second mutations at rates $u_1$ and $u_2$ and the daughter cells get first and second mutations at rates $v_1$ and $v_2$. We find the distribution for the time it takes to get two mutations as $N$ goes to infinity and the mutation rates go to 0. We also find the distribution for the location of the mutations. Several outcomes are possible depending on how fast the rates go to 0. The model considered has been proposed by Komarova (2007) as a model for colon cancer.

  10. Hierarchical Model Predictive Control for Resource Distribution

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, K; Stoustrup, Jakob

    2010-01-01

    This paper deals with hierarchichal model predictive control (MPC) of distributed systems. A three level hierachical approach is proposed, consisting of a high level MPC controller, a second level of so-called aggregators, controlled by an online MPC-like algorithm, and a lower level of autonomous...... facilitates plug-and-play addition of subsystems without redesign of any controllers. The method is supported by a number of simulations featuring a three-level smart-grid power control system for a small isolated power grid....

  11. Continuum damage modeling and simulation of hierarchical dental enamel

    Science.gov (United States)

    Ma, Songyun; Scheider, Ingo; Bargmann, Swantje

    2016-05-01

    Dental enamel exhibits high fracture toughness and stiffness due to a complex hierarchical and graded microstructure, optimally organized from nano- to macro-scale. In this study, a 3D representative volume element (RVE) model is adopted to study the deformation and damage behavior of the fibrous microstructure. A continuum damage mechanics model coupled to hyperelasticity is developed for modeling the initiation and evolution of damage in the mineral fibers as well as protein matrix. Moreover, debonding of the interface between mineral fiber and protein is captured by employing a cohesive zone model. The dependence of the failure mechanism on the aspect ratio of the mineral fibers is investigated. In addition, the effect of the interface strength on the damage behavior is studied with respect to geometric features of enamel. Further, the effect of an initial flaw on the overall mechanical properties is analyzed to understand the superior damage tolerance of dental enamel. The simulation results are validated by comparison to experimental data from micro-cantilever beam testing at two hierarchical levels. The transition of the failure mechanism at different hierarchical levels is also well reproduced in the simulations.

  12. Bayesian Hierarchical Models to Augment the Mediterranean Forecast System

    Science.gov (United States)

    2016-06-07

    year. Our goal is to develop an ensemble ocean forecast methodology, using Bayesian Hierarchical Modelling (BHM) tools . The ocean ensemble forecast...from above); i.e. we assume Ut ~ Z Λt1/2. WORK COMPLETED The prototype MFS-Wind-BHM was designed and implemented based on stochastic...coding refinements we implemented on the prototype surface wind BHM. A DWF event in February 2005, in the Gulf of Lions, was identified for reforecast

  13. Emergence of a 'visual number sense' in hierarchical generative models.

    Science.gov (United States)

    Stoianov, Ivilin; Zorzi, Marco

    2012-01-08

    Numerosity estimation is phylogenetically ancient and foundational to human mathematical learning, but its computational bases remain controversial. Here we show that visual numerosity emerges as a statistical property of images in 'deep networks' that learn a hierarchical generative model of the sensory input. Emergent numerosity detectors had response profiles resembling those of monkey parietal neurons and supported numerosity estimation with the same behavioral signature shown by humans and animals.

  14. Hierarchical animal movement models for population-level inference

    Science.gov (United States)

    Hooten, Mevin B.; Buderman, Frances E.; Brost, Brian M.; Hanks, Ephraim M.; Ivans, Jacob S.

    2016-01-01

    New methods for modeling animal movement based on telemetry data are developed regularly. With advances in telemetry capabilities, animal movement models are becoming increasingly sophisticated. Despite a need for population-level inference, animal movement models are still predominantly developed for individual-level inference. Most efforts to upscale the inference to the population level are either post hoc or complicated enough that only the developer can implement the model. Hierarchical Bayesian models provide an ideal platform for the development of population-level animal movement models but can be challenging to fit due to computational limitations or extensive tuning required. We propose a two-stage procedure for fitting hierarchical animal movement models to telemetry data. The two-stage approach is statistically rigorous and allows one to fit individual-level movement models separately, then resample them using a secondary MCMC algorithm. The primary advantages of the two-stage approach are that the first stage is easily parallelizable and the second stage is completely unsupervised, allowing for an automated fitting procedure in many cases. We demonstrate the two-stage procedure with two applications of animal movement models. The first application involves a spatial point process approach to modeling telemetry data, and the second involves a more complicated continuous-time discrete-space animal movement model. We fit these models to simulated data and real telemetry data arising from a population of monitored Canada lynx in Colorado, USA.

  15. Coordinated Resource Management Models in Hierarchical Systems

    Directory of Open Access Journals (Sweden)

    Gabsi Mounir

    2013-03-01

    Full Text Available In response to the trend of efficient global economy, constructing a global logistic model has garnered much attention from the industry .Location selection is an important issue for those international companies that are interested in building a global logistics management system. Infrastructure in Developing Countries are based on the use of both classical and modern control technology, for which the most important components are professional levels of structure knowledge, dynamics and management processes, threats and interference and external and internal attacks. The problem of control flows of energy and materials resources in local and regional structures in normal and marginal, emergency operation provoked information attacks or threats on failure flows are further relevant especially when considering the low level of professional ,psychological and cognitive training of operational personnel manager. Logistics Strategies include the business goals requirements, allowable decisions tactics, and vision for designing and operating a logistics system .In this paper described the selection module coordinating flow management strategies based on the use of resources and logistics systems concepts.

  16. A new approach for modeling generalization gradients: A case for Hierarchical Models

    Directory of Open Access Journals (Sweden)

    Koen eVanbrabant

    2015-05-01

    Full Text Available A case is made for the use of hierarchical models in the analysis of generalization gradients. Hierarchical models overcome several restrictions that are imposed by repeated measures analysis-of-variance (rANOVA, the default statistical method in current generalization research. More specifically, hierarchical models allow to include continuous independent variables and overcomes problematic assumptions such as sphericity. We focus on how generalization research can benefit from this added flexibility. In a simulation study we demonstrate the dominance of hierarchical models over rANOVA. In addition, we show the lack of efficiency of the Mauchly's sphericity test in sample sizes typical for generalization research, and confirm how violations of sphericity increase the probability of type I errors. A worked example of a hierarchical model is provided, with a specific emphasis on the interpretation of parameters relevant for generalization research.

  17. A new approach for modeling generalization gradients: a case for hierarchical models.

    Science.gov (United States)

    Vanbrabant, Koen; Boddez, Yannick; Verduyn, Philippe; Mestdagh, Merijn; Hermans, Dirk; Raes, Filip

    2015-01-01

    A case is made for the use of hierarchical models in the analysis of generalization gradients. Hierarchical models overcome several restrictions that are imposed by repeated measures analysis-of-variance (rANOVA), the default statistical method in current generalization research. More specifically, hierarchical models allow to include continuous independent variables and overcomes problematic assumptions such as sphericity. We focus on how generalization research can benefit from this added flexibility. In a simulation study we demonstrate the dominance of hierarchical models over rANOVA. In addition, we show the lack of efficiency of the Mauchly's sphericity test in sample sizes typical for generalization research, and confirm how violations of sphericity increase the probability of type I errors. A worked example of a hierarchical model is provided, with a specific emphasis on the interpretation of parameters relevant for generalization research.

  18. Modeling inter-subject variability in fMRI activation location: A Bayesian hierarchical spatial model

    Science.gov (United States)

    Xu, Lei; Johnson, Timothy D.; Nichols, Thomas E.; Nee, Derek E.

    2010-01-01

    Summary The aim of this work is to develop a spatial model for multi-subject fMRI data. There has been extensive work on univariate modeling of each voxel for single and multi-subject data, some work on spatial modeling of single-subject data, and some recent work on spatial modeling of multi-subject data. However, there has been no work on spatial models that explicitly account for inter-subject variability in activation locations. In this work, we use the idea of activation centers and model the inter-subject variability in activation locations directly. Our model is specified in a Bayesian hierarchical frame work which allows us to draw inferences at all levels: the population level, the individual level and the voxel level. We use Gaussian mixtures for the probability that an individual has a particular activation. This helps answer an important question which is not addressed by any of the previous methods: What proportion of subjects had a significant activity in a given region. Our approach incorporates the unknown number of mixture components into the model as a parameter whose posterior distribution is estimated by reversible jump Markov Chain Monte Carlo. We demonstrate our method with a fMRI study of resolving proactive interference and show dramatically better precision of localization with our method relative to the standard mass-univariate method. Although we are motivated by fMRI data, this model could easily be modified to handle other types of imaging data. PMID:19210732

  19. Model-Based Engineering for Supply Chain Risk Management

    Science.gov (United States)

    2015-09-30

    units in a sourced product and implement practical measures for their management and assurance throughout the acquisition life cycle. Supply Chain ...open source More importantly COTS products are typically integrated up a sourced supply chain , which creates a problem of security assurance and...components from many sources . Problem Statement: The Weakest Link Typically, supply chains are hierarchical, with the primary supplier forming the

  20. Hierarchical modeling of cluster size in wildlife surveys

    Science.gov (United States)

    Royle, J. Andrew

    2008-01-01

    Clusters or groups of individuals are the fundamental unit of observation in many wildlife sampling problems, including aerial surveys of waterfowl, marine mammals, and ungulates. Explicit accounting of cluster size in models for estimating abundance is necessary because detection of individuals within clusters is not independent and detectability of clusters is likely to increase with cluster size. This induces a cluster size bias in which the average cluster size in the sample is larger than in the population at large. Thus, failure to account for the relationship between delectability and cluster size will tend to yield a positive bias in estimates of abundance or density. I describe a hierarchical modeling framework for accounting for cluster-size bias in animal sampling. The hierarchical model consists of models for the observation process conditional on the cluster size distribution and the cluster size distribution conditional on the total number of clusters. Optionally, a spatial model can be specified that describes variation in the total number of clusters per sample unit. Parameter estimation, model selection, and criticism may be carried out using conventional likelihood-based methods. An extension of the model is described for the situation where measurable covariates at the level of the sample unit are available. Several candidate models within the proposed class are evaluated for aerial survey data on mallard ducks (Anas platyrhynchos).

  1. A hierarchical community occurrence model for North Carolina stream fish

    Science.gov (United States)

    Midway, S.R.; Wagner, Tyler; Tracy, B.H.

    2016-01-01

    The southeastern USA is home to one of the richest—and most imperiled and threatened—freshwater fish assemblages in North America. For many of these rare and threatened species, conservation efforts are often limited by a lack of data. Drawing on a unique and extensive data set spanning over 20 years, we modeled occurrence probabilities of 126 stream fish species sampled throughout North Carolina, many of which occur more broadly in the southeastern USA. Specifically, we developed species-specific occurrence probabilities from hierarchical Bayesian multispecies models that were based on common land use and land cover covariates. We also used index of biotic integrity tolerance classifications as a second level in the model hierarchy; we identify this level as informative for our work, but it is flexible for future model applications. Based on the partial-pooling property of the models, we were able to generate occurrence probabilities for many imperiled and data-poor species in addition to highlighting a considerable amount of occurrence heterogeneity that supports species-specific investigations whenever possible. Our results provide critical species-level information on many threatened and imperiled species as well as information that may assist with re-evaluation of existing management strategies, such as the use of surrogate species. Finally, we highlight the use of a relatively simple hierarchical model that can easily be generalized for similar situations in which conventional models fail to provide reliable estimates for data-poor groups.

  2. The fish industry - toward supply chain modelling

    DEFF Research Database (Denmark)

    Jensen, Toke Koldborg; Nielsen, Jette; Larsen, Erling

    2010-01-01

    Mathematical models for simulating and optimizing aspects of supply chains such as distribution, planning, and optimal handling of raw materials are widely used. However, modeling based on a holistic chain view including several or all supply chain agents is less studied, and food-related aspects...... such as quality and shelf-life issues enforce additional requirements onto the chains. In this article, we consider the supply chain structure of the fish industry. We discuss and illustrate the potential of using mathematical models to identify quality and value-adding activities. The article provides a first...... step toward innovative supply chain modeling aimed to identify benefits for all agents along chains in the fish industry....

  3. Analysis of household data on influenza epidemic with Bayesian hierarchical model.

    Science.gov (United States)

    Hsu, C Y; Yen, A M F; Chen, L S; Chen, H H

    2015-03-01

    Data used for modelling the household transmission of infectious diseases, such as influenza, have inherent multilevel structures and correlated property, which make the widely used conventional infectious disease transmission models (including the Greenwood model and the Reed-Frost model) not directly applicable within the context of a household (due to the crowded domestic condition or socioeconomic status of the household). Thus, at the household level, the effects resulting from individual-level factors, such as vaccination, may be confounded or modified in some way. We proposed the Bayesian hierarchical random-effects (random intercepts and random slopes) model under the context of generalised linear model to capture heterogeneity and variation on the individual, generation, and household levels. It was applied to empirical surveillance data on the influenza epidemic in Taiwan. The parameters of interest were estimated by using the Markov chain Monte Carlo method in conjunction with the Bayesian directed acyclic graphical models. Comparisons between models were made using the deviance information criterion. Based on the result of the random-slope Bayesian hierarchical method under the context of the Reed-Frost transmission model, the regression coefficient regarding the protective effect of vaccination varied statistically significantly from household to household. The result of such a heterogeneity was robust to the use of different prior distributions (including non-informative, sceptical, and enthusiastic ones). By integrating out the uncertainty of the parameters of the posterior distribution, the predictive distribution was computed to forecast the number of influenza cases allowing for random-household effect.

  4. Application of Bayesian Hierarchical Prior Modeling to Sparse Channel Estimation

    DEFF Research Database (Denmark)

    Pedersen, Niels Lovmand; Manchón, Carles Navarro; Shutin, Dmitriy

    2012-01-01

    . The estimators result as an application of the variational message-passing algorithm on the factor graph representing the signal model extended with the hierarchical prior models. Numerical results demonstrate the superior performance of our channel estimators as compared to traditional and state......Existing methods for sparse channel estimation typically provide an estimate computed as the solution maximizing an objective function defined as the sum of the log-likelihood function and a penalization term proportional to the l1-norm of the parameter of interest. However, other penalization......-of-the-art sparse methods....

  5. Bayesian hierarchical modeling for detecting safety signals in clinical trials.

    Science.gov (United States)

    Xia, H Amy; Ma, Haijun; Carlin, Bradley P

    2011-09-01

    Detection of safety signals from clinical trial adverse event data is critical in drug development, but carries a challenging statistical multiplicity problem. Bayesian hierarchical mixture modeling is appealing for its ability to borrow strength across subgroups in the data, as well as moderate extreme findings most likely due merely to chance. We implement such a model for subject incidence (Berry and Berry, 2004 ) using a binomial likelihood, and extend it to subject-year adjusted incidence rate estimation under a Poisson likelihood. We use simulation to choose a signal detection threshold, and illustrate some effective graphics for displaying the flagged signals.

  6. An Extended Hierarchical Trusted Model for Wireless Sensor Networks

    Institute of Scientific and Technical Information of China (English)

    DU Ruiying; XU Mingdi; ZHANG Huanguo

    2006-01-01

    Cryptography and authentication are traditional approach for providing network security. However, they are not sufficient for solving the problems which malicious nodes compromise whole wireless sensor network leading to invalid data transmission and wasting resource by using vicious behaviors. This paper puts forward an extended hierarchical trusted architecture for wireless sensor network, and establishes trusted congregations by three-tier framework. The method combines statistics, economics with encrypt mechanism for developing two trusted models which evaluate cluster head nodes and common sensor nodes respectively. The models form logical trusted-link from command node to common sensor nodes and guarantees the network can run in secure and reliable circumstance.

  7. Ensemble renormalization group for the random-field hierarchical model.

    Science.gov (United States)

    Decelle, Aurélien; Parisi, Giorgio; Rocchi, Jacopo

    2014-03-01

    The renormalization group (RG) methods are still far from being completely understood in quenched disordered systems. In order to gain insight into the nature of the phase transition of these systems, it is common to investigate simple models. In this work we study a real-space RG transformation on the Dyson hierarchical lattice with a random field, which leads to a reconstruction of the RG flow and to an evaluation of the critical exponents of the model at T=0. We show that this method gives very accurate estimations of the critical exponents by comparing our results with those obtained by some of us using an independent method.

  8. Do means-end chains exist? Experimental tests of their hierarchicity, automatic spreading activation, directionality, and self-relevance

    DEFF Research Database (Denmark)

    Scholderer, Joachim; Grunert, Klaus G.

    2004-01-01

    Despite its popularity in consumer research, means-end chain (MEC) theory suffers from problems of unconfirmed validity. Theoretically, MECs can be cast as associative networks with a three-layered structure that should exhibit four properties: hierarchicity, automatic spreading activation...... this material, individualized stimulus sets were generated for use in the second session. In the second session, each participant completed a series of single-presentation lexical decision tasks. Analysis of spreading activation processes under different procedural variations showed that MECs are firmly...

  9. Facial animation on an anatomy-based hierarchical face model

    Science.gov (United States)

    Zhang, Yu; Prakash, Edmond C.; Sung, Eric

    2003-04-01

    In this paper we propose a new hierarchical 3D facial model based on anatomical knowledge that provides high fidelity for realistic facial expression animation. Like real human face, the facial model has a hierarchical biomechanical structure, incorporating a physically-based approximation to facial skin tissue, a set of anatomically-motivated facial muscle actuators and underlying skull structure. The deformable skin model has multi-layer structure to approximate different types of soft tissue. It takes into account the nonlinear stress-strain relationship of the skin and the fact that soft tissue is almost incompressible. Different types of muscle models have been developed to simulate distribution of the muscle force on the skin due to muscle contraction. By the presence of the skull model, our facial model takes advantage of both more accurate facial deformation and the consideration of facial anatomy during the interactive definition of facial muscles. Under the muscular force, the deformation of the facial skin is evaluated using numerical integration of the governing dynamic equations. The dynamic facial animation algorithm runs at interactive rate with flexible and realistic facial expressions to be generated.

  10. A Bisimulation-based Hierarchical Framework for Software Development Models

    Directory of Open Access Journals (Sweden)

    Ping Liang

    2013-08-01

    Full Text Available Software development models have been ripen since the emergence of software engineering, like waterfall model, V-model, spiral model, etc. To ensure the successful implementation of those models, various metrics for software products and development process have been developed along, like CMMI, software metrics, and process re-engineering, etc. The quality of software products and processes can be ensured in consistence as much as possible and the abstract integrity of a software product can be achieved. However, in reality, the maintenance of software products is still high and even higher along with software evolution due to the inconsistence occurred by changes and inherent errors of software products. It is better to build up a robust software product that can sustain changes as many as possible. Therefore, this paper proposes a process algebra based hierarchical framework to extract an abstract equivalent of deliverable at the end of phases of a software product from its software development models. The process algebra equivalent of the deliverable is developed hierarchically with the development of the software product, applying bi-simulation to test run the deliverable of phases to guarantee the consistence and integrity of the software development and product in a trivially mathematical way. And an algorithm is also given to carry out the assessment of the phase deliverable in process algebra.  

  11. C-HiLasso: A Collaborative Hierarchical Sparse Modeling Framework

    CERN Document Server

    Sprechmann, Pablo; Sapiro, Guillermo; Eldar, Yonina

    2010-01-01

    Sparse modeling is a powerful framework for data analysis and processing. Traditionally, encoding in this framework is performed by solving an L1-regularized linear regression problem, commonly referred to as Lasso or Basis Pursuit. In this work we combine the sparsity-inducing property of the Lasso model at the individual feature level, with the block-sparsity property of the Group Lasso model, where sparse groups of features are jointly encoded, obtaining a sparsity pattern hierarchically structured. This results in the Hierarchical Lasso (HiLasso), which shows important practical modeling advantages. We then extend this approach to the collaborative case, where a set of simultaneously coded signals share the same sparsity pattern at the higher (group) level, but not necessarily at the lower (inside the group) level, obtaining the collaborative HiLasso model (C-HiLasso). Such signals then share the same active groups, or classes, but not necessarily the same active set. This model is very well suited for ap...

  12. o-HETM: An Online Hierarchical Entity Topic Model for News Streams

    Science.gov (United States)

    2015-05-22

    Cao et al. (Eds.): PAKDD 2015, Part I, LNAI 9077, pp. 696–707, 2015. DOI: 10.1007/978-3-319-18038-0 54 o-HETM: An Online Hierarchical Entity Topic... 2004 ) o-HETM: An Online Hierarchical Entity Topic Model for News Streams 707 6. Mimno, D., Li, W., McCallum, A.: Mixtures of hierarchical topics with

  13. A hierarchical nest survival model integrating incomplete temporally varying covariates

    Science.gov (United States)

    Converse, Sarah J.; Royle, J. Andrew; Adler, Peter H.; Urbanek, Richard P.; Barzan, Jeb A.

    2013-01-01

    Nest success is a critical determinant of the dynamics of avian populations, and nest survival modeling has played a key role in advancing avian ecology and management. Beginning with the development of daily nest survival models, and proceeding through subsequent extensions, the capacity for modeling the effects of hypothesized factors on nest survival has expanded greatly. We extend nest survival models further by introducing an approach to deal with incompletely observed, temporally varying covariates using a hierarchical model. Hierarchical modeling offers a way to separate process and observational components of demographic models to obtain estimates of the parameters of primary interest, and to evaluate structural effects of ecological and management interest. We built a hierarchical model for daily nest survival to analyze nest data from reintroduced whooping cranes (Grus americana) in the Eastern Migratory Population. This reintroduction effort has been beset by poor reproduction, apparently due primarily to nest abandonment by breeding birds. We used the model to assess support for the hypothesis that nest abandonment is caused by harassment from biting insects. We obtained indices of blood-feeding insect populations based on the spatially interpolated counts of insects captured in carbon dioxide traps. However, insect trapping was not conducted daily, and so we had incomplete information on a temporally variable covariate of interest. We therefore supplemented our nest survival model with a parallel model for estimating the values of the missing insect covariates. We used Bayesian model selection to identify the best predictors of daily nest survival. Our results suggest that the black fly Simulium annulus may be negatively affecting nest survival of reintroduced whooping cranes, with decreasing nest survival as abundance of S. annulus increases. The modeling framework we have developed will be applied in the future to a larger data set to evaluate the

  14. Modeling the Competitiveness of Indonesian Palm Oil Industry: A Conceptual Model Using Hierarchical Multi-Level System Approach

    Directory of Open Access Journals (Sweden)

    Roland Y.H. Silitonga

    2013-01-01

    Full Text Available Indonesian Palm Oil Industry has the largest market share in the world, but still faces problems in order to strengthen the level of competitiveness. Those problems are in the industry chains, government regulation and policy as meso environment, and macro economic condition. Therefore these three elements should be considered when analyzing the improvement of competitiveness. Here, the governmental element is hoped to create a conducive environment. This paper presents the industry competitiveness conceptual model, using hierarchical multilevel system approach. The Hierarchical multilevel system approach is used to accommodate the complexity of the industrial relation and the government position as the meso environment. The step to develop the model firstly is to define the relevant system. Secondly, is to formulate the output of the model that is competitiveness in the form of indicator. Then, the relevant system with competitiveness as the output is built into a conceptual model using hierarchical multilevel system. The conceptual model is then discussed to see if it can explain the relevant system, and the potential of it to be developed into mathematical model.

  15. Verifying the Hanging Chain Model

    Science.gov (United States)

    Karls, Michael A.

    2013-01-01

    The wave equation with variable tension is a classic partial differential equation that can be used to describe the horizontal displacements of a vertical hanging chain with one end fixed and the other end free to move. Using a web camera and TRACKER software to record displacement data from a vibrating hanging chain, we verify a modified version…

  16. About wave field modeling in hierarchic medium with fractal inclusions

    Science.gov (United States)

    Hachay, Olga; Khachay, Andrey

    2014-05-01

    The processes of oil gaseous deposits outworking are linked with moving of polyphase multicomponent media, which are characterized by no equilibrium and nonlinear rheological features. The real behavior of layered systems is defined as complicated rheology moving liquids and structural morphology of porous media. It is eargently needed to account those factors for substantial description of the filtration processes. Additionally we must account also the synergetic effects. That allows suggesting new methods of control and managing of complicated natural systems, which can research these effects. Thus our research is directed to the layered system, from which we have to outwork oil and which is a complicated hierarchic dynamical system with fractal inclusions. In that paper we suggest the algorithm of modeling of 2-d seismic field distribution in the heterogeneous medium with hierarchic inclusions. Also we can compare the integral 2-D for seismic field in a frame of local hierarchic heterogeneity with a porous inclusion and pure elastic inclusion for the case when the parameter Lame is equal to zero for the inclusions and the layered structure. For that case we can regard the problem for the latitude and longitudinal waves independently. Here we shall analyze the first case. The received results can be used for choosing criterions of joined seismic methods for high complicated media research.If the boundaries of the inclusion of the k rank are fractals, the surface and contour integrals in the integral equations must be changed to repeated fractional integrals of Riman-Liuvill type .Using the developed earlier 3-d method of induction electromagnetic frequency geometric monitoring we showed the opportunity of defining of physical and structural features of hierarchic oil layer structure and estimating of water saturating by crack inclusions. For visualization we had elaborated some algorithms and programs for constructing cross sections for two hierarchic structural

  17. MODELING A VALUE CHAIN IN PUBLIC SECTOR

    Directory of Open Access Journals (Sweden)

    Daiva Rapcevičienė

    2014-08-01

    Full Text Available Purpose – Over the past three decades comprehensive insights were made in order to design and manage the value chain. A lot of scholars discuss differences between private sector value chain – creation profit for the business and public sector value chain, the approach that public sector creates value through the services that it provides. However, there is a lack of a common understanding of what public sector value chain is in general. This paper reviews the literature on how the private value chain was transformed into public value chain and reviews a determination and architecture of a value chain in public sector which gives a structural approach to greater picture of how all structure works. It reviews an approach that the value chain for the public sector shows how the public sector organizes itself to ensure it is of value to the citizens. Design/methodology/approach – descriptive method, analysis of scientific literature. Findings – The public sector value chain is an adaptation of the private sector value chain. The difference between the two is that the customer is the focus of the public sector context, versus the profit focus in the private sector context. There are significant similarities between the two chain models. Each of the chain models are founded on a series of core components. For the public sector context, the core components are people, service and trust. Research limitations/implications – this paper based on presenting value chain for both private and public sectors and giving deeper knowledge for public sector value chain model. Practical implications – comprehension of general value chain model concept and public sector value chain model helps to see multiple connections throughout the entire process: from the beginning to the end. The paper presents the theoretical framework for further study of the value chain model for waste management creation. Originality/Value – The paper reveals the systematic

  18. Linguistic steganography on Twitter: hierarchical language modeling with manual interaction

    Science.gov (United States)

    Wilson, Alex; Blunsom, Phil; Ker, Andrew D.

    2014-02-01

    This work proposes a natural language stegosystem for Twitter, modifying tweets as they are written to hide 4 bits of payload per tweet, which is a greater payload than previous systems have achieved. The system, CoverTweet, includes novel components, as well as some already developed in the literature. We believe that the task of transforming covers during embedding is equivalent to unilingual machine translation (paraphrasing), and we use this equivalence to de ne a distortion measure based on statistical machine translation methods. The system incorporates this measure of distortion to rank possible tweet paraphrases, using a hierarchical language model; we use human interaction as a second distortion measure to pick the best. The hierarchical language model is designed to model the speci c language of the covers, which in this setting is the language of the Twitter user who is embedding. This is a change from previous work, where general-purpose language models have been used. We evaluate our system by testing the output against human judges, and show that humans are unable to distinguish stego tweets from cover tweets any better than random guessing.

  19. Finite Population Correction for Two-Level Hierarchical Linear Models.

    Science.gov (United States)

    Lai, Mark H C; Kwok, Oi-Man; Hsiao, Yu-Yu; Cao, Qian

    2017-03-16

    The research literature has paid little attention to the issue of finite population at a higher level in hierarchical linear modeling. In this article, we propose a method to obtain finite-population-adjusted standard errors of Level-1 and Level-2 fixed effects in 2-level hierarchical linear models. When the finite population at Level-2 is incorrectly assumed as being infinite, the standard errors of the fixed effects are overestimated, resulting in lower statistical power and wider confidence intervals. The impact of ignoring finite population correction is illustrated by using both a real data example and a simulation study with a random intercept model and a random slope model. Simulation results indicated that the bias in the unadjusted fixed-effect standard errors was substantial when the Level-2 sample size exceeded 10% of the Level-2 population size; the bias increased with a larger intraclass correlation, a larger number of clusters, and a larger average cluster size. We also found that the proposed adjustment produced unbiased standard errors, particularly when the number of clusters was at least 30 and the average cluster size was at least 10. We encourage researchers to consider the characteristics of the target population for their studies and adjust for finite population when appropriate. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  20. A Hierarchical Model for Continuous Gesture Recognition Using Kinect

    DEFF Research Database (Denmark)

    Jensen, Søren Kejser; Moesgaard, Christoffer; Nielsen, Christoffer Samuel

    2013-01-01

    Human gesture recognition is an area, which has been studied thoroughly in recent years,and close to100% recognition rates in restricted environments have been achieved, often either with single separated gestures in the input stream, or with computationally intensive systems. The results...... are unfortunately not as striking, when it comes to a continuous stream of gestures. In this paper we introduce a hierarchical system for gesture recognition for use in a gaming setting, with a continuous stream of data. Layer 1 is based on Nearest Neighbor Search and layer 2 uses Hidden Markov Models. The system...

  1. Dynamical Properties of Potassium Ion Channels with a Hierarchical Model

    Institute of Scientific and Technical Information of China (English)

    ZHAN Yong; AN Hai-Long; YU Hui; ZHANG Su-Hua; HAN Ying-Rong

    2006-01-01

    @@ It is well known that potassium ion channels have higher permeability than K ions, and the permeable rate of a single K ion channel is about 108 ions per second. We develop a hierarchical model of potassium ion channel permeation involving ab initio quantum calculations and Brownian dynamics simulations, which can consistently explain a range of channel dynamics. The results show that the average velocity of K ions, the mean permeable time of K ions and the permeable rate of single channel are about 0.92nm/ns, 4.35ns and 2.30×108 ions/s,respectively.

  2. Hierarchical Stochastic Simulation Algorithm for SBML Models of Genetic Circuits

    Directory of Open Access Journals (Sweden)

    Leandro eWatanabe

    2014-11-01

    Full Text Available This paper describes a hierarchical stochastic simulation algorithm which has been implemented within iBioSim, a tool used to model, analyze, and visualize genetic circuits. Many biological analysis tools flatten out hierarchy before simulation, but there are many disadvantages associated with this approach. First, the memory required to represent the model can quickly expand in the process. Second, the flattening process is computationally expensive. Finally, when modeling a dynamic cellular population within iBioSim, inlining the hierarchy of the model is inefficient since models must grow dynamically over time. This paper discusses a new approach to handle hierarchy on the fly to make the tool faster and more memory-efficient. This approach yields significant performance improvements as compared to the former flat analysis method.

  3. Hierarchical Model for the Evolution of Cloud Complexes

    CERN Document Server

    Sánchez, N; Sanchez, Nestor; Parravano, Antonio

    1999-01-01

    The structure of cloud complexes appears to be well described by a "tree structure" representation when the image is partitioned into "clouds". In this representation, the parent-child relationships are assigned according to containment. Based on this picture, a hierarchical model for the evolution of Cloud Complexes, including star formation, is constructed, that follows the mass evolution of each sub-structure by computing its mass exchange (evaporation or condensation) with its parent and children, which depends on the radiation density at the interphase. For the set of parameters used as a reference model, the system produces IMFs with a maximum at too high mass (~2 M_sun) and the characteristic times for evolution seem too long. We show that these properties can be improved by adjusting model parameters. However, the emphasis here is to illustrate some general properties of this nonlinear model for the star formation process. Notwithstanding the simplifications involved, the model reveals an essential fe...

  4. Hierarchical Bayesian modeling of random and residual variance-covariance matrices in bivariate mixed effects models.

    Science.gov (United States)

    Bello, Nora M; Steibel, Juan P; Tempelman, Robert J

    2010-06-01

    Bivariate mixed effects models are often used to jointly infer upon covariance matrices for both random effects (u) and residuals (e) between two different phenotypes in order to investigate the architecture of their relationship. However, these (co)variances themselves may additionally depend upon covariates as well as additional sets of exchangeable random effects that facilitate borrowing of strength across a large number of clusters. We propose a hierarchical Bayesian extension of the classical bivariate mixed effects model by embedding additional levels of mixed effects modeling of reparameterizations of u-level and e-level (co)variances between two traits. These parameters are based upon a recently popularized square-root-free Cholesky decomposition and are readily interpretable, each conveniently facilitating a generalized linear model characterization. Using Markov Chain Monte Carlo methods, we validate our model based on a simulation study and apply it to a joint analysis of milk yield and calving interval phenotypes in Michigan dairy cows. This analysis indicates that the e-level relationship between the two traits is highly heterogeneous across herds and depends upon systematic herd management factors.

  5. Uncertainty quantification for Markov chain models.

    Science.gov (United States)

    Meidani, Hadi; Ghanem, Roger

    2012-12-01

    Transition probabilities serve to parameterize Markov chains and control their evolution and associated decisions and controls. Uncertainties in these parameters can be associated with inherent fluctuations in the medium through which a chain evolves, or with insufficient data such that the inferential value of the chain is jeopardized. The behavior of Markov chains associated with such uncertainties is described using a probabilistic model for the transition matrices. The principle of maximum entropy is used to characterize the probability measure of the transition rates. The formalism is demonstrated on a Markov chain describing the spread of disease, and a number of quantities of interest, pertaining to different aspects of decision-making, are investigated.

  6. Spatial Bayesian hierarchical modelling of extreme sea states

    Science.gov (United States)

    Clancy, Colm; O'Sullivan, John; Sweeney, Conor; Dias, Frédéric; Parnell, Andrew C.

    2016-11-01

    A Bayesian hierarchical framework is used to model extreme sea states, incorporating a latent spatial process to more effectively capture the spatial variation of the extremes. The model is applied to a 34-year hindcast of significant wave height off the west coast of Ireland. The generalised Pareto distribution is fitted to declustered peaks over a threshold given by the 99.8th percentile of the data. Return levels of significant wave height are computed and compared against those from a model based on the commonly-used maximum likelihood inference method. The Bayesian spatial model produces smoother maps of return levels. Furthermore, this approach greatly reduces the uncertainty in the estimates, thus providing information on extremes which is more useful for practical applications.

  7. Inference in HIV dynamics models via hierarchical likelihood

    CERN Document Server

    Commenges, D; Putter, H; Thiebaut, R

    2010-01-01

    HIV dynamical models are often based on non-linear systems of ordinary differential equations (ODE), which do not have analytical solution. Introducing random effects in such models leads to very challenging non-linear mixed-effects models. To avoid the numerical computation of multiple integrals involved in the likelihood, we propose a hierarchical likelihood (h-likelihood) approach, treated in the spirit of a penalized likelihood. We give the asymptotic distribution of the maximum h-likelihood estimators (MHLE) for fixed effects, a result that may be relevant in a more general setting. The MHLE are slightly biased but the bias can be made negligible by using a parametric bootstrap procedure. We propose an efficient algorithm for maximizing the h-likelihood. A simulation study, based on a classical HIV dynamical model, confirms the good properties of the MHLE. We apply it to the analysis of a clinical trial.

  8. [A medical image semantic modeling based on hierarchical Bayesian networks].

    Science.gov (United States)

    Lin, Chunyi; Ma, Lihong; Yin, Junxun; Chen, Jianyu

    2009-04-01

    A semantic modeling approach for medical image semantic retrieval based on hierarchical Bayesian networks was proposed, in allusion to characters of medical images. It used GMM (Gaussian mixture models) to map low-level image features into object semantics with probabilities, then it captured high-level semantics through fusing these object semantics using a Bayesian network, so that it built a multi-layer medical image semantic model, aiming to enable automatic image annotation and semantic retrieval by using various keywords at different semantic levels. As for the validity of this method, we have built a multi-level semantic model from a small set of astrocytoma MRI (magnetic resonance imaging) samples, in order to extract semantics of astrocytoma in malignant degree. Experiment results show that this is a superior approach.

  9. Item Response Theory Using Hierarchical Generalized Linear Models

    Directory of Open Access Journals (Sweden)

    Hamdollah Ravand

    2015-03-01

    Full Text Available Multilevel models (MLMs are flexible in that they can be employed to obtain item and person parameters, test for differential item functioning (DIF and capture both local item and person dependence. Papers on the MLM analysis of item response data have focused mostly on theoretical issues where applications have been add-ons to simulation studies with a methodological focus. Although the methodological direction was necessary as a first step to show how MLMs can be utilized and extended to model item response data, the emphasis needs to be shifted towards providing evidence on how applications of MLMs in educational testing can provide the benefits that have been promised. The present study uses foreign language reading comprehension data to illustrate application of hierarchical generalized models to estimate person and item parameters, differential item functioning (DIF, and local person dependence in a three-level model.

  10. A Maximum Entropy Estimator for the Aggregate Hierarchical Logit Model

    Directory of Open Access Journals (Sweden)

    Pedro Donoso

    2011-08-01

    Full Text Available A new approach for estimating the aggregate hierarchical logit model is presented. Though usually derived from random utility theory assuming correlated stochastic errors, the model can also be derived as a solution to a maximum entropy problem. Under the latter approach, the Lagrange multipliers of the optimization problem can be understood as parameter estimators of the model. Based on theoretical analysis and Monte Carlo simulations of a transportation demand model, it is demonstrated that the maximum entropy estimators have statistical properties that are superior to classical maximum likelihood estimators, particularly for small or medium-size samples. The simulations also generated reduced bias in the estimates of the subjective value of time and consumer surplus.

  11. A hierarchical model of the evolution of human brain specializations.

    Science.gov (United States)

    Barrett, H Clark

    2012-06-26

    The study of information-processing adaptations in the brain is controversial, in part because of disputes about the form such adaptations might take. Many psychologists assume that adaptations come in two kinds, specialized and general-purpose. Specialized mechanisms are typically thought of as innate, domain-specific, and isolated from other brain systems, whereas generalized mechanisms are developmentally plastic, domain-general, and interactive. However, if brain mechanisms evolve through processes of descent with modification, they are likely to be heterogeneous, rather than coming in just two kinds. They are likely to be hierarchically organized, with some design features widely shared across brain systems and others specific to particular processes. Also, they are likely to be largely developmentally plastic and interactive with other brain systems, rather than canalized and isolated. This article presents a hierarchical model of brain specialization, reviewing evidence for the model from evolutionary developmental biology, genetics, brain mapping, and comparative studies. Implications for the search for uniquely human traits are discussed, along with ways in which conventional views of modularity in psychology may need to be revised.

  12. Study of hierarchical federation architecture using multi-resolution modeling

    Institute of Scientific and Technical Information of China (English)

    HAO Yan-ling; SHEN Dong-hui; QIAN Hua-ming; DENG Ming-hui

    2004-01-01

    This paper aims at finding a solution to the problem aroused in complex system simulation, where a specific functional federation is coupled with other simulation systems. In other words, the communication information within the system may be received by other federates that participated in this united simulation. For the purpose of ensuring simulation system unitary character, a hierarchical federation architecture (HFA) is taken. Also considering the real situation, where federates in a complicated simulation system can be made simpler to an extent, a multi-resolution modeling (MRM) method is imported to implement the design of hierarchical federation. By utilizing the multiple resolution entity (MRE) modeling approach, MRE for federates are designed out. When different level training simulation is required, the appropriate MRE at corresponding layers can be called. The design method realizes the reuse feature of the simulation system and reduces simulation complexity and improves the validity of system Simulation Cost (SC). Taking submarine voyage training simulator (SVTS) for instance, a HFA for submarine is constructed inthis paper, which approves the feasibility of studied approach.

  13. A stochastic model for detecting overlapping and hierarchical community structure.

    Directory of Open Access Journals (Sweden)

    Xiaochun Cao

    Full Text Available Community detection is a fundamental problem in the analysis of complex networks. Recently, many researchers have concentrated on the detection of overlapping communities, where a vertex may belong to more than one community. However, most current methods require the number (or the size of the communities as a priori information, which is usually unavailable in real-world networks. Thus, a practical algorithm should not only find the overlapping community structure, but also automatically determine the number of communities. Furthermore, it is preferable if this method is able to reveal the hierarchical structure of networks as well. In this work, we firstly propose a generative model that employs a nonnegative matrix factorization (NMF formulization with a l(2,1 norm regularization term, balanced by a resolution parameter. The NMF has the nature that provides overlapping community structure by assigning soft membership variables to each vertex; the l(2,1 regularization term is a technique of group sparsity which can automatically determine the number of communities by penalizing too many nonempty communities; and hence the resolution parameter enables us to explore the hierarchical structure of networks. Thereafter, we derive the multiplicative update rule to learn the model parameters, and offer the proof of its correctness. Finally, we test our approach on a variety of synthetic and real-world networks, and compare it with some state-of-the-art algorithms. The results validate the superior performance of our new method.

  14. Responsive supply chain: modeling and simulation

    Directory of Open Access Journals (Sweden)

    Amit Kumar Sinha

    2015-06-01

    Full Text Available Unexpected occurrence like natural calamity, abruptly change in customer demands, upgradation of technologies, necessity of compatible suppliers etc. is the most challenging issues even for efficient global supply chain management. Therefore, modeling of responsive supply chain is an emerging technology for sustaining any firm/industry in future competitive environment. In this paper, an attempt has been made to not only analyze the performance of efficient supply chain management but also how to improve the performance of existing supply chain with the objective of developing a modeling of responsive supply chain management. The complexity of the model is also highlighted with the help of numerical example. This paper also explores the possibility to mathematical modeling of the responsive supply chain which will be an emerging topic for researchers and practitioners. The modeling of responsive supply chain can be employed as a competitive strategy for e-commerce, green supply chain, and compatible supplier selection problem. The another salient feature of this paper is that a distinct comparative literature review of the lean, agile, efficient, and responsive supply chain management has been presented.

  15. The Hierarchical Dirichlet Process Hidden Semi-Markov Model

    CERN Document Server

    Johnson, Matthew J

    2012-01-01

    There is much interest in the Hierarchical Dirichlet Process Hidden Markov Model (HDP-HMM) as a natural Bayesian nonparametric extension of the traditional HMM. However, in many settings the HDP-HMM's strict Markovian constraints are undesirable, particularly if we wish to learn or encode non-geometric state durations. We can extend the HDP-HMM to capture such structure by drawing upon explicit-duration semi- Markovianity, which has been developed in the parametric setting to allow construction of highly interpretable models that admit natural prior information on state durations. In this paper we introduce the explicitduration HDP-HSMM and develop posterior sampling algorithms for efficient inference in both the direct-assignment and weak-limit approximation settings. We demonstrate the utility of the model and our inference methods on synthetic data as well as experiments on a speaker diarization problem and an example of learning the patterns in Morse code.

  16. Learning Hierarchical User Interest Models from Web Pages

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    We propose an algorithm for learning hierarchical user interest models according to the Web pages users have browsed. In this algorithm, the interests of a user are represented into a tree which is called a user interest tree, the content and the structure of which can change simultaneously to adapt to the changes in a user's interests. This expression represents a user's specific and general interests as a continuum. In some sense, specific interests correspond to short-term interests, while general interests correspond to long-term interests. So this representation more really reflects the users' interests. The algorithm can automatically model a user's multiple interest domains, dynamically generate the interest models and prune a user interest tree when the number of the nodes in it exceeds given value. Finally, we show the experiment results in a Chinese Web Site.

  17. Multi-mode clustering model for hierarchical wireless sensor networks

    Science.gov (United States)

    Hu, Xiangdong; Li, Yongfu; Xu, Huifen

    2017-03-01

    The topology management, i.e., clusters maintenance, of wireless sensor networks (WSNs) is still a challenge due to its numerous nodes, diverse application scenarios and limited resources as well as complex dynamics. To address this issue, a multi-mode clustering model (M2 CM) is proposed to maintain the clusters for hierarchical WSNs in this study. In particular, unlike the traditional time-trigger model based on the whole-network and periodic style, the M2 CM is proposed based on the local and event-trigger operations. In addition, an adaptive local maintenance algorithm is designed for the broken clusters in the WSNs using the spatial-temporal demand changes accordingly. Numerical experiments are performed using the NS2 network simulation platform. Results validate the effectiveness of the proposed model with respect to the network maintenance costs, node energy consumption and transmitted data as well as the network lifetime.

  18. A Bayesian Hierarchical Model for Relating Multiple SNPs within Multiple Genes to Disease Risk

    Directory of Open Access Journals (Sweden)

    Lewei Duan

    2013-01-01

    Full Text Available A variety of methods have been proposed for studying the association of multiple genes thought to be involved in a common pathway for a particular disease. Here, we present an extension of a Bayesian hierarchical modeling strategy that allows for multiple SNPs within each gene, with external prior information at either the SNP or gene level. The model involves variable selection at the SNP level through latent indicator variables and Bayesian shrinkage at the gene level towards a prior mean vector and covariance matrix that depend on external information. The entire model is fitted using Markov chain Monte Carlo methods. Simulation studies show that the approach is capable of recovering many of the truly causal SNPs and genes, depending upon their frequency and size of their effects. The method is applied to data on 504 SNPs in 38 candidate genes involved in DNA damage response in the WECARE study of second breast cancers in relation to radiotherapy exposure.

  19. Modeling evolutionary dynamics of epigenetic mutations in hierarchically organized tumors.

    Directory of Open Access Journals (Sweden)

    Andrea Sottoriva

    2011-05-01

    Full Text Available The cancer stem cell (CSC concept is a highly debated topic in cancer research. While experimental evidence in favor of the cancer stem cell theory is apparently abundant, the results are often criticized as being difficult to interpret. An important reason for this is that most experimental data that support this model rely on transplantation studies. In this study we use a novel cellular Potts model to elucidate the dynamics of established malignancies that are driven by a small subset of CSCs. Our results demonstrate that epigenetic mutations that occur during mitosis display highly altered dynamics in CSC-driven malignancies compared to a classical, non-hierarchical model of growth. In particular, the heterogeneity observed in CSC-driven tumors is considerably higher. We speculate that this feature could be used in combination with epigenetic (methylation sequencing studies of human malignancies to prove or refute the CSC hypothesis in established tumors without the need for transplantation. Moreover our tumor growth simulations indicate that CSC-driven tumors display evolutionary features that can be considered beneficial during tumor progression. Besides an increased heterogeneity they also exhibit properties that allow the escape of clones from local fitness peaks. This leads to more aggressive phenotypes in the long run and makes the neoplasm more adaptable to stringent selective forces such as cancer treatment. Indeed when therapy is applied the clone landscape of the regrown tumor is more aggressive with respect to the primary tumor, whereas the classical model demonstrated similar patterns before and after therapy. Understanding these often counter-intuitive fundamental properties of (non-hierarchically organized malignancies is a crucial step in validating the CSC concept as well as providing insight into the therapeutical consequences of this model.

  20. Chain graph models and their causal interpretations

    DEFF Research Database (Denmark)

    Lauritzen, Steffen Lilholt; Richardson, Thomas S.

    2002-01-01

    the equilibrium distributions of dynamic models with feed-back. These dynamic interpretations lead to a simple theory of intervention, extending the theory developed for directed acyclic graphs. Finally, we contrast chain graph models under this interpretation with simultaneous equation models which have......Chain graphs are a natural generalization of directed acyclic graphs and undirected graphs. However, the apparent simplicity of chain graphs belies the subtlety of the conditional independence hypotheses that they represent. There are many simple and apparently plausible, but ultimately fallacious......, interpretations of chain graphs that are often invoked, implicitly or explicitly. These interpretations also lead to flawed methods for applying background knowledge to model selection. We present a valid interpretation by showing how the distribution corresponding to a chain graph may be generated from...

  1. Research and application of hierarchical model for multiple fault diagnosis

    Institute of Scientific and Technical Information of China (English)

    An Ruoming; Jiang Xingwei; Song Zhengji

    2005-01-01

    Computational complexity of complex system multiple fault diagnosis is a puzzle at all times. Based on the well-known Mozetic's approach, a novel hierarchical model-based diagnosis methodology is put forward for improving efficiency of multi-fault recognition and localization. Structural abstraction and weighted fault propagation graphs are combined to build diagnosis model. The graphs have weighted arcs with fault propagation probabilities and propagation strength. For solving the problem of coupled faults, two diagnosis strategies are used: one is the Lagrangian relaxation and the primal heuristic algorithms; another is the method of propagation strength. Finally, an applied example shows the applicability of the approach and experimental results are given to show the superiority of the presented technique.

  2. Hierarchical population model with a carrying capacity distribution

    CERN Document Server

    Indekeu, J O

    2002-01-01

    A time- and space-discrete model for the growth of a rapidly saturating local biological population $N(x,t)$ is derived from a hierarchical random deposition process previously studied in statistical physics. Two biologically relevant parameters, the probabilities of birth, $B$, and of death, $D$, determine the carrying capacity $K$. Due to the randomness the population depends strongly on position, $x$, and there is a distribution of carrying capacities, $\\Pi (K)$. This distribution has self-similar character owing to the imposed hierarchy. The most probable carrying capacity and its probability are studied as a function of $B$ and $D$. The effective growth rate decreases with time, roughly as in a Verhulst process. The model is possibly applicable, for example, to bacteria forming a "towering pillar" biofilm. The bacteria divide on randomly distributed nutrient-rich regions and are exposed to random local bactericidal agent (antibiotic spray). A gradual overall temperature change away from optimal growth co...

  3. Hierarchical decision modeling essays in honor of Dundar F. Kocaoglu

    CERN Document Server

    2016-01-01

    This volume, developed in honor of Dr. Dundar F. Kocaoglu, aims to demonstrate the applications of the Hierarchical Decision Model (HDM) in different sectors and its capacity in decision analysis. It is comprised of essays from noted scholars, academics and researchers of engineering and technology management around the world. This book is organized into four parts: Technology Assessment, Strategic Planning, National Technology Planning and Decision Making Tools. Dr. Dundar F. Kocaoglu is one of the pioneers of multiple decision models using hierarchies, and creator of the HDM in decision analysis. HDM is a mission-oriented method for evaluation and/or selection among alternatives. A wide range of alternatives can be considered, including but not limited to, different technologies, projects, markets, jobs, products, cities to live in, houses to buy, apartments to rent, and schools to attend. Dr. Kocaoglu’s approach has been adopted for decision problems in many industrial sectors, including electronics rese...

  4. A hierarchical model for optimal supplier selection in multiple sourcing contexts

    OpenAIRE

    Dotoli, Mariagrazia; Falagario, Marco

    2011-01-01

    Abstract The paper addresses a crucial objective of the strategic purchasing function in supply chains, i.e., optimal supplier selection. We present a hierarchical extension of the Data Envelopment Analysis (DEA), the most widespread method for supplier rating in the literature, for application in a multiple sourcing strategy context. The proposed hierarchical technique is based on three levels. First, a modified DEA approach is used to evaluate the efficiency of each supplier acco...

  5. Comparing hierarchical models for spatio-temporally misaligned data using the deviance information criterion.

    Science.gov (United States)

    Zhu, L; Carlin, B P

    Bayes and empirical Bayes methods have proven effective in smoothing crude maps of disease risk, eliminating the instability of estimates in low-population areas while maintaining overall geographic trends and patterns. Recent work extends these methods to the analysis of areal data which are spatially misaligned, that is, involving variables (typically counts or rates) which are aggregated over differing sets of regional boundaries. The addition of a temporal aspect complicates matters further, since now the misalignment can arise either within a given time point, or across time points (as when the regional boundaries themselves evolve over time). Hierarchical Bayesian methods (implemented via modern Markov chain Monte Carlo computing methods) enable the fitting of such models, but a formal comparison of their fit is hampered by their large size and often improper prior specifications. In this paper, we accomplish this comparison using the deviance information criterion (DIC), a recently proposed generalization of the Akaike information criterion (AIC) designed for complex hierarchical model settings like ours. We investigate the use of the delta method for obtaining an approximate variance estimate for DIC, in order to attach significance to apparent differences between models. We illustrate our approach using a spatially misaligned data set relating a measure of traffic density to paediatric asthma hospitalizations in San Diego County, California.

  6. Regulator Loss Functions and Hierarchical Modeling for Safety Decision Making.

    Science.gov (United States)

    Hatfield, Laura A; Baugh, Christine M; Azzone, Vanessa; Normand, Sharon-Lise T

    2017-07-01

    Regulators must act to protect the public when evidence indicates safety problems with medical devices. This requires complex tradeoffs among risks and benefits, which conventional safety surveillance methods do not incorporate. To combine explicit regulator loss functions with statistical evidence on medical device safety signals to improve decision making. In the Hospital Cost and Utilization Project National Inpatient Sample, we select pediatric inpatient admissions and identify adverse medical device events (AMDEs). We fit hierarchical Bayesian models to the annual hospital-level AMDE rates, accounting for patient and hospital characteristics. These models produce expected AMDE rates (a safety target), against which we compare the observed rates in a test year to compute a safety signal. We specify a set of loss functions that quantify the costs and benefits of each action as a function of the safety signal. We integrate the loss functions over the posterior distribution of the safety signal to obtain the posterior (Bayes) risk; the preferred action has the smallest Bayes risk. Using simulation and an analysis of AMDE data, we compare our minimum-risk decisions to a conventional Z score approach for classifying safety signals. The 2 rules produced different actions for nearly half of hospitals (45%). In the simulation, decisions that minimize Bayes risk outperform Z score-based decisions, even when the loss functions or hierarchical models are misspecified. Our method is sensitive to the choice of loss functions; eliciting quantitative inputs to the loss functions from regulators is challenging. A decision-theoretic approach to acting on safety signals is potentially promising but requires careful specification of loss functions in consultation with subject matter experts.

  7. Modeling Continuous IED Supply Chains

    Science.gov (United States)

    2014-03-27

    criminals, pirates, drug traffickers and terrorists. Moreover, JIEDDO has pointed out the spread of IED use to places such as Thailand and Norway. U.S... human networks that place IEDs. Dekker categorizes two main human aspects of IED placement. The first is motivation which 8 affects the number of...methods provided in this thesis and apply them to combat other threats. For example, drug trafficking supply chains. IED and drug trafficking supply

  8. Markov chains models, algorithms and applications

    CERN Document Server

    Ching, Wai-Ki; Ng, Michael K; Siu, Tak-Kuen

    2013-01-01

    This new edition of Markov Chains: Models, Algorithms and Applications has been completely reformatted as a text, complete with end-of-chapter exercises, a new focus on management science, new applications of the models, and new examples with applications in financial risk management and modeling of financial data.This book consists of eight chapters.  Chapter 1 gives a brief introduction to the classical theory on both discrete and continuous time Markov chains. The relationship between Markov chains of finite states and matrix theory will also be highlighted. Some classical iterative methods

  9. Note on the equivalence of hierarchical variational models and auxiliary deep generative models

    OpenAIRE

    Brümmer, Niko

    2016-01-01

    This note compares two recently published machine learning methods for constructing flexible, but tractable families of variational hidden-variable posteriors. The first method, called "hierarchical variational models" enriches the inference model with an extra variable, while the other, called "auxiliary deep generative models", enriches the generative model instead. We conclude that the two methods are mathematically equivalent.

  10. Modelling proton transfer in water molecule chains

    CERN Document Server

    Korzhimanov, Artem; Shutova, Tatiana; Samuelsson, Goran

    2011-01-01

    The process of protons transport in molecular water chains is of fundamental interest for many biological systems. Although many features of such systems can be analyzed using large-scale computational modeling, other features are better understood in terms of simplified model problems. Here we have tested, analytically and numerically, a model describing the classical proton hopping process in molecular water chains. In order to capture the main features of the proton hopping process in such molecular chains, we use a simplified model for our analysis. In particular, our discrete model describes a 1D chain of water molecules situated in an external protein channel structure, and each water molecule is allowed to oscillate around its equilibrium point in this system, while the protons are allowed to move along the line of neighboring oxygen atoms. The occurrence and properties of nonlinear solitary transport structures, allowing for much faster proton transport, are discussed, and the possible implications of...

  11. Improve Query Performance On Hierarchical Data. Adjacency List Model Vs. Nested Set Model

    Directory of Open Access Journals (Sweden)

    Cornelia Gyorödi

    2016-04-01

    Full Text Available Hierarchical data are found in a variety of database applications, including content management categories, forums, business organization charts, and product categories. In this paper, we will examine two models deal with hierarchical data in relational databases namely, adjacency list model and nested set model. We analysed these models by executing various operations and queries in a web-application for the management of categories, thus highlighting the results obtained during performance comparison tests. The purpose of this paper is to present the advantages and disadvantages of using an adjacency list model compared to nested set model in a relational database integrated into an application for the management of categories, which needs to manipulate a big amount of hierarchical data.

  12. GSMNet: A Hierarchical Graph Model for Moving Objects in Networks

    Directory of Open Access Journals (Sweden)

    Hengcai Zhang

    2017-03-01

    Full Text Available Existing data models for moving objects in networks are often limited by flexibly controlling the granularity of representing networks and the cost of location updates and do not encompass semantic information, such as traffic states, traffic restrictions and social relationships. In this paper, we aim to fill the gap of traditional network-constrained models and propose a hierarchical graph model called the Geo-Social-Moving model for moving objects in Networks (GSMNet that adopts four graph structures, RouteGraph, SegmentGraph, ObjectGraph and MoveGraph, to represent the underlying networks, trajectories and semantic information in an integrated manner. The bulk of user-defined data types and corresponding operators is proposed to handle moving objects and answer a new class of queries supporting three kinds of conditions: spatial, temporal and semantic information. Then, we develop a prototype system with the native graph database system Neo4Jto implement the proposed GSMNet model. In the experiment, we conduct the performance evaluation using simulated trajectories generated from the BerlinMOD (Berlin Moving Objects Database benchmark and compare with the mature MOD system Secondo. The results of 17 benchmark queries demonstrate that our proposed GSMNet model has strong potential to reduce time-consuming table join operations an d shows remarkable advantages with regard to representing semantic information and controlling the cost of location updates.

  13. A Bayesian hierarchical model for wind gust prediction

    Science.gov (United States)

    Friederichs, Petra; Oesting, Marco; Schlather, Martin

    2014-05-01

    A postprocessing method for ensemble wind gust forecasts given by a mesoscale limited area numerical weather prediction (NWP) model is presented, which is based on extreme value theory. A process layer for the parameters of a generalized extreme value distribution (GEV) is introduced using a Bayesian hierarchical model (BHM). Incorporating the information of the COMSO-DE forecasts, the process parameters model the spatial response surfaces of the GEV parameters as Gaussian random fields. The spatial BHM provides area wide forecasts of wind gusts in terms of a conditional GEV. It models the marginal distribution of the spatial gust process and provides not only forecasts of the conditional GEV at locations without observations, but also uncertainty information about the estimates. A disadvantages of BHM model is that it assumes conditional independent observations. In order to incorporate the dependence between gusts at neighboring locations as well as the spatial random fields of observed and forecasted maximal wind gusts, we propose to model them jointly by a bivariate Brown-Resnick process.

  14. Hierarchical modeling and its numerical implementation for layered thin elastic structures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jin-Rae [Hongik University, Sejong (Korea, Republic of)

    2017-05-15

    Thin elastic structures such as beam- and plate-like structures and laminates are characterized by the small thickness, which lead to classical plate and laminate theories in which the displacement fields through the thickness are assumed linear or higher-order polynomials. These classical theories are either insufficient to represent the complex stress variation through the thickness or may encounter the accuracy-computational cost dilemma. In order to overcome the inherent problem of classical theories, the concept of hierarchical modeling has been emerged. In the hierarchical modeling, the hierarchical models with different model levels are selected and combined within a structure domain, in order to make the modeling error be distributed as uniformly as possible throughout the problem domain. The purpose of current study is to explore the potential of hierarchical modeling for the effective numerical analysis of layered structures such as laminated composite. For this goal, the hierarchical models are constructed and the hierarchical modeling is implemented by selectively adjusting the level of hierarchical models. As well, the major characteristics of hierarchical models are investigated through the numerical experiments.

  15. MODELING SUPPLY CHAIN WITH SIMULATION

    OpenAIRE

    János Benkõ

    2010-01-01

    Supply Chain Management faces a lot of challenging issues involving difficult decisions which can be company-oriented and customer-oriented issues. In this study we deal with customeroriented issues. For example, a customer’s demand may not be fully satisfied from stock on hand and the shortage may be backordered or the sale may be lost. Either way, it is desirable to balance the holding cost which depends on the magnitude of inventory against the cost of not fully satisfying customer demand....

  16. Evolutionary optimization of a hierarchical object recognition model.

    Science.gov (United States)

    Schneider, Georg; Wersing, Heiko; Sendhoff, Bernhard; Körner, Edgar

    2005-06-01

    A major problem in designing artificial neural networks is the proper choice of the network architecture. Especially for vision networks classifying three-dimensional (3-D) objects this problem is very challenging, as these networks are necessarily large and therefore the search space for defining the needed networks is of a very high dimensionality. This strongly increases the chances of obtaining only suboptimal structures from standard optimization algorithms. We tackle this problem in two ways. First, we use biologically inspired hierarchical vision models to narrow the space of possible architectures and to reduce the dimensionality of the search space. Second, we employ evolutionary optimization techniques to determine optimal features and nonlinearities of the visual hierarchy. Here, we especially focus on higher order complex features in higher hierarchical stages. We compare two different approaches to perform an evolutionary optimization of these features. In the first setting, we directly code the features into the genome. In the second setting, in analogy to an ontogenetical development process, we suggest the new method of an indirect coding of the features via an unsupervised learning process, which is embedded into the evolutionary optimization. In both cases the processing nonlinearities are encoded directly into the genome and are thus subject to optimization. The fitness of the individuals for the evolutionary selection process is computed by measuring the network classification performance on a benchmark image database. Here, we use a nearest-neighbor classification approach, based on the hierarchical feature output. We compare the found solutions with respect to their ability to generalize. We differentiate between a first- and a second-order generalization. The first-order generalization denotes how well the vision system, after evolutionary optimization of the features and nonlinearities using a database A, can classify previously unseen test

  17. On the unnecessary ubiquity of hierarchical linear modeling.

    Science.gov (United States)

    McNeish, Daniel; Stapleton, Laura M; Silverman, Rebecca D

    2017-03-01

    In psychology and the behavioral sciences generally, the use of the hierarchical linear model (HLM) and its extensions for discrete outcomes are popular methods for modeling clustered data. HLM and its discrete outcome extensions, however, are certainly not the only methods available to model clustered data. Although other methods exist and are widely implemented in other disciplines, it seems that psychologists have yet to consider these methods in substantive studies. This article compares and contrasts HLM with alternative methods including generalized estimating equations and cluster-robust standard errors. These alternative methods do not model random effects and thus make a smaller number of assumptions and are interpreted identically to single-level methods with the benefit that estimates are adjusted to reflect clustering of observations. Situations where these alternative methods may be advantageous are discussed including research questions where random effects are and are not required, when random effects can change the interpretation of regression coefficients, challenges of modeling with random effects with discrete outcomes, and examples of published psychology articles that use HLM that may have benefitted from using alternative methods. Illustrative examples are provided and discussed to demonstrate the advantages of the alternative methods and also when HLM would be the preferred method. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  18. Hierarchical Model Predictive Control for Plug-and-Play Resource Distribution

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, K; Stoustrup, Jakob

    2012-01-01

    This chapter deals with hierarchical model predictive control (MPC) of distributed systems. A three level hierarchical approach is proposed, consisting of a high level MPC controller, a second level of so-called aggregators, controlled by an online MPC-like algorithm, and a lower level of autonom......This chapter deals with hierarchical model predictive control (MPC) of distributed systems. A three level hierarchical approach is proposed, consisting of a high level MPC controller, a second level of so-called aggregators, controlled by an online MPC-like algorithm, and a lower level...

  19. Modelling green and lean supply chains

    DEFF Research Database (Denmark)

    Govindan, Kannan; Carvalho, Helena; Azevedo, Susana G.

    2017-01-01

    This manuscript proposes a model to support decision making and to help managers identify the best set of green and lean supply chain management practices to improve their eco-efficiency. To attain this objective, a mathematical model based on eco-efficiency concepts is suggested to overcome...... the trade-offs between lean and green practices. To illustrate the model application, a case study from an automotive supply chain is presented. Some management practices that are instituted for green or lean benefits have opposite effects on the environmental and economic performance of companies. One...... of the main findings of our study is that not all companies belonging to the same supply chain can be absolutely lean or green. There should be compromises in the individual companies’ behaviour so the environmental and economic constraints of the supply chain are both satisfied. The proposed model represents...

  20. A Bayesian hierarchical model for accident and injury surveillance.

    Science.gov (United States)

    MacNab, Ying C

    2003-01-01

    This article presents a recent study which applies Bayesian hierarchical methodology to model and analyse accident and injury surveillance data. A hierarchical Poisson random effects spatio-temporal model is introduced and an analysis of inter-regional variations and regional trends in hospitalisations due to motor vehicle accident injuries to boys aged 0-24 in the province of British Columbia, Canada, is presented. The objective of this article is to illustrate how the modelling technique can be implemented as part of an accident and injury surveillance and prevention system where transportation and/or health authorities may routinely examine accidents, injuries, and hospitalisations to target high-risk regions for prevention programs, to evaluate prevention strategies, and to assist in health planning and resource allocation. The innovation of the methodology is its ability to uncover and highlight important underlying structure of the data. Between 1987 and 1996, British Columbia hospital separation registry registered 10,599 motor vehicle traffic injury related hospitalisations among boys aged 0-24 who resided in British Columbia, of which majority (89%) of the injuries occurred to boys aged 15-24. The injuries were aggregated by three age groups (0-4, 5-14, and 15-24), 20 health regions (based of place-of-residence), and 10 calendar years (1987 to 1996) and the corresponding mid-year population estimates were used as 'at risk' population. An empirical Bayes inference technique using penalised quasi-likelihood estimation was implemented to model both rates and counts, with spline smoothing accommodating non-linear temporal effects. The results show that (a) crude rates and ratios at health region level are unstable, (b) the models with spline smoothing enable us to explore possible shapes of injury trends at both the provincial level and the regional level, and (c) the fitted models provide a wealth of information about the patterns (both over space and time

  1. Novel Hierarchical Fall Detection Algorithm Using a Multiphase Fall Model

    Science.gov (United States)

    Hsieh, Chia-Yeh; Liu, Kai-Chun; Huang, Chih-Ning; Chu, Woei-Chyn; Chan, Chia-Tai

    2017-01-01

    Falls are the primary cause of accidents for the elderly in the living environment. Reducing hazards in the living environment and performing exercises for training balance and muscles are the common strategies for fall prevention. However, falls cannot be avoided completely; fall detection provides an alarm that can decrease injuries or death caused by the lack of rescue. The automatic fall detection system has opportunities to provide real-time emergency alarms for improving the safety and quality of home healthcare services. Two common technical challenges are also tackled in order to provide a reliable fall detection algorithm, including variability and ambiguity. We propose a novel hierarchical fall detection algorithm involving threshold-based and knowledge-based approaches to detect a fall event. The threshold-based approach efficiently supports the detection and identification of fall events from continuous sensor data. A multiphase fall model is utilized, including free fall, impact, and rest phases for the knowledge-based approach, which identifies fall events and has the potential to deal with the aforementioned technical challenges of a fall detection system. Seven kinds of falls and seven types of daily activities arranged in an experiment are used to explore the performance of the proposed fall detection algorithm. The overall performances of the sensitivity, specificity, precision, and accuracy using a knowledge-based algorithm are 99.79%, 98.74%, 99.05% and 99.33%, respectively. The results show that the proposed novel hierarchical fall detection algorithm can cope with the variability and ambiguity of the technical challenges and fulfill the reliability, adaptability, and flexibility requirements of an automatic fall detection system with respect to the individual differences. PMID:28208694

  2. Assimilating multi-source uncertainties of a parsimonious conceptual hydrological model using hierarchical Bayesian modeling

    Science.gov (United States)

    Wei Wu; James Clark; James Vose

    2010-01-01

    Hierarchical Bayesian (HB) modeling allows for multiple sources of uncertainty by factoring complex relationships into conditional distributions that can be used to draw inference and make predictions. We applied an HB model to estimate the parameters and state variables of a parsimonious hydrological model – GR4J – by coherently assimilating the uncertainties from the...

  3. A note on adding and deleting edges in hierarchical log-linear models

    DEFF Research Database (Denmark)

    Edwards, David

    2012-01-01

    The operations of edge addition and deletion for hierarchical log-linear models are defined, and polynomial-time algorithms for the operations are given......The operations of edge addition and deletion for hierarchical log-linear models are defined, and polynomial-time algorithms for the operations are given...

  4. Optimum Binary Search Trees on the Hierarchical Memory Model

    CERN Document Server

    Thite, Shripad

    2008-01-01

    The Hierarchical Memory Model (HMM) of computation is similar to the standard Random Access Machine (RAM) model except that the HMM has a non-uniform memory organized in a hierarchy of levels numbered 1 through h. The cost of accessing a memory location increases with the level number, and accesses to memory locations belonging to the same level cost the same. Formally, the cost of a single access to the memory location at address a is given by m(a), where m: N -> N is the memory cost function, and the h distinct values of m model the different levels of the memory hierarchy. We study the problem of constructing and storing a binary search tree (BST) of minimum cost, over a set of keys, with probabilities for successful and unsuccessful searches, on the HMM with an arbitrary number of memory levels, and for the special case h=2. While the problem of constructing optimum binary search trees has been well studied for the standard RAM model, the additional parameter m for the HMM increases the combinatorial comp...

  5. A Biological Hierarchical Model Based Underwater Moving Object Detection

    Directory of Open Access Journals (Sweden)

    Jie Shen

    2014-01-01

    Full Text Available Underwater moving object detection is the key for many underwater computer vision tasks, such as object recognizing, locating, and tracking. Considering the super ability in visual sensing of the underwater habitats, the visual mechanism of aquatic animals is generally regarded as the cue for establishing bionic models which are more adaptive to the underwater environments. However, the low accuracy rate and the absence of the prior knowledge learning limit their adaptation in underwater applications. Aiming to solve the problems originated from the inhomogeneous lumination and the unstable background, the mechanism of the visual information sensing and processing pattern from the eye of frogs are imitated to produce a hierarchical background model for detecting underwater objects. Firstly, the image is segmented into several subblocks. The intensity information is extracted for establishing background model which could roughly identify the object and the background regions. The texture feature of each pixel in the rough object region is further analyzed to generate the object contour precisely. Experimental results demonstrate that the proposed method gives a better performance. Compared to the traditional Gaussian background model, the completeness of the object detection is 97.92% with only 0.94% of the background region that is included in the detection results.

  6. Higher-order models versus direct hierarchical models: g as superordinate or breadth factor?

    Directory of Open Access Journals (Sweden)

    GILLES E. GIGNAC

    2008-03-01

    Full Text Available Intelligence research appears to have overwhelmingly endorsed a superordinate (higher-order model conceptualization of g, in comparison to the relatively less well-known breadth conceptualization of g, as represented by the direct hierarchical model. In this paper, several similarities and distinctions between the indirect and direct hierarchical models are delineated. Based on the re-analysis of five correlation matrices, it was demonstrated via CFA that the conventional conception of g as a higher-order superordinate factor was likely not as plausible as a first-order breadth factor. The results are discussed in light of theoretical advantages of conceptualizing g as a first-order factor. Further, because the associations between group-factors and g are constrained to zero within a direct hierarchical model, previous observations of isomorphic associations between a lower-order group factor and g are questioned.

  7. On the hierarchical optimal control of a chain of distributed systems

    OpenAIRE

    Befekadu, Getachew K.; Pasiliao, Eduardo L.

    2015-01-01

    In this paper, we consider a chain of distributed systems governed by a degenerate parabolic equation, which satisfies a weak H\\"{o}rmander type condition, with a control distributed over an open subdomain. In particular, we consider two objectives that we would like to accomplish. The first one being of a controllability type that consists of guaranteeing the terminal state to reach a target set starting from an initial condition; while the second one is keeping the state trajectory of the o...

  8. Hierarchical modeling and inference in ecology: the analysis of data from populations, metapopulations and communities

    National Research Council Canada - National Science Library

    Royle, J. Andrew; Dorazio, Robert M

    2008-01-01

    "This book describes a general and flexible framework for modeling and inference in ecological systems based on hierarchical modeling in which a strict focus on probability models and parametric inference is adopted...

  9. Security Modeling on the Supply Chain Networks

    Directory of Open Access Journals (Sweden)

    Marn-Ling Shing

    2007-10-01

    Full Text Available In order to keep the price down, a purchaser sends out the request for quotation to a group of suppliers in a supply chain network. The purchaser will then choose a supplier with the best combination of price and quality. A potential supplier will try to collect the related information about other suppliers so he/she can offer the best bid to the purchaser. Therefore, confidentiality becomes an important consideration for the design of a supply chain network. Chen et al. have proposed the application of the Bell-LaPadula model in the design of a secured supply chain network. In the Bell-LaPadula model, a subject can be in one of different security clearances and an object can be in one of various security classifications. All the possible combinations of (Security Clearance, Classification pair in the Bell-LaPadula model can be thought as different states in the Markov Chain model. This paper extends the work done by Chen et al., provides more details on the Markov Chain model and illustrates how to use it to monitor the security state transition in the supply chain network.

  10. A hierarchical network modeling method for railway tunnels safety assessment

    Science.gov (United States)

    Zhou, Jin; Xu, Weixiang; Guo, Xin; Liu, Xumin

    2017-02-01

    Using network theory to model risk-related knowledge on accidents is regarded as potential very helpful in risk management. A large amount of defects detection data for railway tunnels is collected in autumn every year in China. It is extremely important to discover the regularities knowledge in database. In this paper, based on network theories and by using data mining techniques, a new method is proposed for mining risk-related regularities to support risk management in railway tunnel projects. A hierarchical network (HN) model which takes into account the tunnel structures, tunnel defects, potential failures and accidents is established. An improved Apriori algorithm is designed to rapidly and effectively mine correlations between tunnel structures and tunnel defects. Then an algorithm is presented in order to mine the risk-related regularities table (RRT) from the frequent patterns. At last, a safety assessment method is proposed by consideration of actual defects and possible risks of defects gained from the RRT. This method cannot only generate the quantitative risk results but also reveal the key defects and critical risks of defects. This paper is further development on accident causation network modeling methods which can provide guidance for specific maintenance measure.

  11. Production optimisation in the petrochemical industry by hierarchical multivariate modelling

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Magnus; Furusjoe, Erik; Jansson, Aasa

    2004-06-01

    This project demonstrates the advantages of applying hierarchical multivariate modelling in the petrochemical industry in order to increase knowledge of the total process. The models indicate possible ways to optimise the process regarding the use of energy and raw material, which is directly linked to the environmental impact of the process. The refinery of Nynaes Refining AB (Goeteborg, Sweden) has acted as a demonstration site in this project. The models developed for the demonstration site resulted in: Detection of an unknown process disturbance and suggestions of possible causes; Indications on how to increase the yield in combination with energy savings; The possibility to predict product quality from on-line process measurements, making the results available at a higher frequency than customary laboratory analysis; Quantification of the gradually lowered efficiency of heat transfer in the furnace and increased fuel consumption as an effect of soot build-up on the furnace coils; Increased knowledge of the relation between production rate and the efficiency of the heat exchangers. This report is one of two reports from the project. It contains a technical discussion of the result with some degree of detail. A shorter and more easily accessible report is also available, see IVL report B1586-A.

  12. Production optimisation in the petrochemical industry by hierarchical multivariate modelling

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Magnus; Furusjoe, Erik; Jansson, Aasa

    2004-06-01

    This project demonstrates the advantages of applying hierarchical multivariate modelling in the petrochemical industry in order to increase knowledge of the total process. The models indicate possible ways to optimise the process regarding the use of energy and raw material, which is directly linked to the environmental impact of the process. The refinery of Nynaes Refining AB (Goeteborg, Sweden) has acted as a demonstration site in this project. The models developed for the demonstration site resulted in: Detection of an unknown process disturbance and suggestions of possible causes; Indications on how to increase the yield in combination with energy savings; The possibility to predict product quality from on-line process measurements, making the results available at a higher frequency than customary laboratory analysis; Quantification of the gradually lowered efficiency of heat transfer in the furnace and increased fuel consumption as an effect of soot build-up on the furnace coils; Increased knowledge of the relation between production rate and the efficiency of the heat exchangers. This report is one of two reports from the project. It contains a technical discussion of the result with some degree of detail. A shorter and more easily accessible report is also available, see IVL report B1586-A.

  13. Chain binomial models and binomial autoregressive processes.

    Science.gov (United States)

    Weiss, Christian H; Pollett, Philip K

    2012-09-01

    We establish a connection between a class of chain-binomial models of use in ecology and epidemiology and binomial autoregressive (AR) processes. New results are obtained for the latter, including expressions for the lag-conditional distribution and related quantities. We focus on two types of chain-binomial model, extinction-colonization and colonization-extinction models, and present two approaches to parameter estimation. The asymptotic distributions of the resulting estimators are studied, as well as their finite-sample performance, and we give an application to real data. A connection is made with standard AR models, which also has implications for parameter estimation.

  14. Linking landscape characteristics to local grizzly bear abundance using multiple detection methods in a hierarchical model

    Science.gov (United States)

    Graves, T.A.; Kendall, K.C.; Royle, J. Andrew; Stetz, J.B.; Macleod, A.C.

    2011-01-01

    Few studies link habitat to grizzly bear Ursus arctos abundance and these have not accounted for the variation in detection or spatial autocorrelation. We collected and genotyped bear hair in and around Glacier National Park in northwestern Montana during the summer of 2000. We developed a hierarchical Markov chain Monte Carlo model that extends the existing occupancy and count models by accounting for (1) spatially explicit variables that we hypothesized might influence abundance; (2) separate sub-models of detection probability for two distinct sampling methods (hair traps and rub trees) targeting different segments of the population; (3) covariates to explain variation in each sub-model of detection; (4) a conditional autoregressive term to account for spatial autocorrelation; (5) weights to identify most important variables. Road density and per cent mesic habitat best explained variation in female grizzly bear abundance; spatial autocorrelation was not supported. More female bears were predicted in places with lower road density and with more mesic habitat. Detection rates of females increased with rub tree sampling effort. Road density best explained variation in male grizzly bear abundance and spatial autocorrelation was supported. More male bears were predicted in areas of low road density. Detection rates of males increased with rub tree and hair trap sampling effort and decreased over the sampling period. We provide a new method to (1) incorporate multiple detection methods into hierarchical models of abundance; (2) determine whether spatial autocorrelation should be included in final models. Our results suggest that the influence of landscape variables is consistent between habitat selection and abundance in this system. ?? 2011 The Authors. Animal Conservation ?? 2011 The Zoological Society of London.

  15. Loss Function Based Ranking in Two-Stage, Hierarchical Models

    Science.gov (United States)

    Lin, Rongheng; Louis, Thomas A.; Paddock, Susan M.; Ridgeway, Greg

    2009-01-01

    Performance evaluations of health services providers burgeons. Similarly, analyzing spatially related health information, ranking teachers and schools, and identification of differentially expressed genes are increasing in prevalence and importance. Goals include valid and efficient ranking of units for profiling and league tables, identification of excellent and poor performers, the most differentially expressed genes, and determining “exceedances” (how many and which unit-specific true parameters exceed a threshold). These data and inferential goals require a hierarchical, Bayesian model that accounts for nesting relations and identifies both population values and random effects for unit-specific parameters. Furthermore, the Bayesian approach coupled with optimizing a loss function provides a framework for computing non-standard inferences such as ranks and histograms. Estimated ranks that minimize Squared Error Loss (SEL) between the true and estimated ranks have been investigated. The posterior mean ranks minimize SEL and are “general purpose,” relevant to a broad spectrum of ranking goals. However, other loss functions and optimizing ranks that are tuned to application-specific goals require identification and evaluation. For example, when the goal is to identify the relatively good (e.g., in the upper 10%) or relatively poor performers, a loss function that penalizes classification errors produces estimates that minimize the error rate. We construct loss functions that address this and other goals, developing a unified framework that facilitates generating candidate estimates, comparing approaches and producing data analytic performance summaries. We compare performance for a fully parametric, hierarchical model with Gaussian sampling distribution under Gaussian and a mixture of Gaussians prior distributions. We illustrate approaches via analysis of standardized mortality ratio data from the United States Renal Data System. Results show that SEL

  16. The Hierarchical Sparse Selection Model of Visual Crowding

    Directory of Open Access Journals (Sweden)

    Wesley eChaney

    2014-09-01

    Full Text Available Because the environment is cluttered, objects rarely appear in isolation. The visual system must therefore attentionally select behaviorally relevant objects from among many irrelevant ones. A limit on our ability to select individual objects is revealed by the phenomenon of visual crowding: an object seen in the periphery, easily recognized in isolation, can become impossible to identify when surrounded by other, similar objects. The neural basis of crowding is hotly debated: while prevailing theories hold that crowded information is irrecoverable – destroyed due to over-integration in early-stage visual processing – recent evidence demonstrates otherwise. Crowding can occur between high-level, configural object representations, and crowded objects can contribute with high precision to judgments about the gist of a group of objects, even when they are individually unrecognizable. While existing models can account for the basic diagnostic criteria of crowding (e.g. specific critical spacing, spatial anisotropies, and temporal tuning, no present model explains how crowding can operate simultaneously at multiple levels in the visual processing hierarchy, including at the level of whole objects. Here, we present a new model of visual crowding— the hierarchical sparse selection (HSS model, which accounts for object-level crowding, as well as a number of puzzling findings in the recent literature. Counter to existing theories, we posit that crowding occurs not due to degraded visual representations in the brain, but due to impoverished sampling of visual representations for the sake of perception. The HSS model unifies findings from a disparate array of visual crowding studies and makes testable predictions about how information in crowded scenes can be accessed.

  17. The hierarchical sparse selection model of visual crowding.

    Science.gov (United States)

    Chaney, Wesley; Fischer, Jason; Whitney, David

    2014-01-01

    Because the environment is cluttered, objects rarely appear in isolation. The visual system must therefore attentionally select behaviorally relevant objects from among many irrelevant ones. A limit on our ability to select individual objects is revealed by the phenomenon of visual crowding: an object seen in the periphery, easily recognized in isolation, can become impossible to identify when surrounded by other, similar objects. The neural basis of crowding is hotly debated: while prevailing theories hold that crowded information is irrecoverable - destroyed due to over-integration in early stage visual processing - recent evidence demonstrates otherwise. Crowding can occur between high-level, configural object representations, and crowded objects can contribute with high precision to judgments about the "gist" of a group of objects, even when they are individually unrecognizable. While existing models can account for the basic diagnostic criteria of crowding (e.g., specific critical spacing, spatial anisotropies, and temporal tuning), no present model explains how crowding can operate simultaneously at multiple levels in the visual processing hierarchy, including at the level of whole objects. Here, we present a new model of visual crowding-the hierarchical sparse selection (HSS) model, which accounts for object-level crowding, as well as a number of puzzling findings in the recent literature. Counter to existing theories, we posit that crowding occurs not due to degraded visual representations in the brain, but due to impoverished sampling of visual representations for the sake of perception. The HSS model unifies findings from a disparate array of visual crowding studies and makes testable predictions about how information in crowded scenes can be accessed.

  18. Using Bayesian hierarchical parameter estimation to assess the generalizability of cognitive models of choice.

    Science.gov (United States)

    Scheibehenne, Benjamin; Pachur, Thorsten

    2015-04-01

    To be useful, cognitive models with fitted parameters should show generalizability across time and allow accurate predictions of future observations. It has been proposed that hierarchical procedures yield better estimates of model parameters than do nonhierarchical, independent approaches, because the formers' estimates for individuals within a group can mutually inform each other. Here, we examine Bayesian hierarchical approaches to evaluating model generalizability in the context of two prominent models of risky choice-cumulative prospect theory (Tversky & Kahneman, 1992) and the transfer-of-attention-exchange model (Birnbaum & Chavez, 1997). Using empirical data of risky choices collected for each individual at two time points, we compared the use of hierarchical versus independent, nonhierarchical Bayesian estimation techniques to assess two aspects of model generalizability: parameter stability (across time) and predictive accuracy. The relative performance of hierarchical versus independent estimation varied across the different measures of generalizability. The hierarchical approach improved parameter stability (in terms of a lower absolute discrepancy of parameter values across time) and predictive accuracy (in terms of deviance; i.e., likelihood). With respect to test-retest correlations and posterior predictive accuracy, however, the hierarchical approach did not outperform the independent approach. Further analyses suggested that this was due to strong correlations between some parameters within both models. Such intercorrelations make it difficult to identify and interpret single parameters and can induce high degrees of shrinkage in hierarchical models. Similar findings may also occur in the context of other cognitive models of choice.

  19. Scale of association: hierarchical linear models and the measurement of ecological systems

    Science.gov (United States)

    Sean M. McMahon; Jeffrey M. Diez

    2007-01-01

    A fundamental challenge to understanding patterns in ecological systems lies in employing methods that can analyse, test and draw inference from measured associations between variables across scales. Hierarchical linear models (HLM) use advanced estimation algorithms to measure regression relationships and variance-covariance parameters in hierarchically structured...

  20. Quantitative models for sustainable supply chain management

    DEFF Research Database (Denmark)

    Brandenburg, M.; Govindan, Kannan; Sarkis, J.

    2014-01-01

    Sustainability, the consideration of environmental factors and social aspects, in supply chain management (SCM) has become a highly relevant topic for researchers and practitioners. The application of operations research methods and related models, i.e. formal modeling, for closed-loop SCM...... and reverse logistics has been effectively reviewed in previously published research. This situation is in contrast to the understanding and review of mathematical models that focus on environmental or social factors in forward supply chains (SC), which has seen less investigation. To evaluate developments...

  1. Bayesian Hierarchical Modeling for Big Data Fusion in Soil Hydrology

    Science.gov (United States)

    Mohanty, B.; Kathuria, D.; Katzfuss, M.

    2016-12-01

    Soil moisture datasets from remote sensing (RS) platforms (such as SMOS and SMAP) and reanalysis products from land surface models are typically available on a coarse spatial granularity of several square km. Ground based sensors on the other hand provide observations on a finer spatial scale (meter scale or less) but are sparsely available. Soil moisture is affected by high variability due to complex interactions between geologic, topographic, vegetation and atmospheric variables. Hydrologic processes usually occur at a scale of 1 km or less and therefore spatially ubiquitous and temporally periodic soil moisture products at this scale are required to aid local decision makers in agriculture, weather prediction and reservoir operations. Past literature has largely focused on downscaling RS soil moisture for a small extent of a field or a watershed and hence the applicability of such products has been limited. The present study employs a spatial Bayesian Hierarchical Model (BHM) to derive soil moisture products at a spatial scale of 1 km for the state of Oklahoma by fusing point scale Mesonet data and coarse scale RS data for soil moisture and its auxiliary covariates such as precipitation, topography, soil texture and vegetation. It is seen that the BHM model handles change of support problems easily while performing accurate uncertainty quantification arising from measurement errors and imperfect retrieval algorithms. The computational challenge arising due to the large number of measurements is tackled by utilizing basis function approaches and likelihood approximations. The BHM model can be considered as a complex Bayesian extension of traditional geostatistical prediction methods (such as Kriging) for large datasets in the presence of uncertainties.

  2. Loss Performance Modeling for Hierarchical Heterogeneous Wireless Networks With Speed-Sensitive Call Admission Control

    DEFF Research Database (Denmark)

    Huang, Qian; Huang, Yue-Cai; Ko, King-Tim;

    2011-01-01

    dimensioning and planning. This paper investigates the computationally efficient loss performance modeling for multiservice in hierarchical heterogeneous wireless networks. A speed-sensitive call admission control (CAC) scheme is considered in our model to assign overflowed calls to appropriate tiers...

  3. A Multilevel Secure Relation-Hierarchical Data Model for a Secure DBMS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A multilevel secure relation-hierarchical data model formultilevel secure database is extended from the relation-hierarchical data model in single level environment in this paper. Based on the model, an upper-lower layer relational integrity is presented after we analyze and eliminate the covert channels caused by the database integrity. Two SQL statements are extended to process polyinstantiation in the multilevel secure environment. The system based on the multilevel secure relation-hierarchical data model is capable of integratively storing and manipulating complicated objects (e.g., multilevel spatial data) and conventional data (e.g., integer, real number and character string) in multilevel secure database.

  4. Investigating follow-up outcome change using hierarchical linear modeling.

    Science.gov (United States)

    Ogrodniczuk, J S; Piper, W E; Joyce, A S

    2001-03-01

    Individual change in outcome during a one-year follow-up period for 98 patients who received either interpretive or supportive psychotherapy was examined using hierarchical linear modeling (HLM). This followed a previous study that had investigated average (treatment condition) change during follow-up using traditional methods of data analysis (repeated measures ANOVA, chi-square tests). We also investigated whether two patient personality characteristics-quality of object relations (QOR) and psychological mindedness (PM)-predicted individual change. HLM procedures yielded findings that were not detected using traditional methods of data analysis. New findings indicated that the rate of individual change in outcome during follow-up varied significantly among the patients. QOR was directly related to favorable individual change for supportive therapy patients, but not for patients who received interpretive therapy. The findings have implications for determining which patients will show long-term benefit following short-term supportive therapy and how to enhance it. The study also found significant associations between QOR and final outcome level.

  5. Bayesian Hierarchical Scale Mixtures of Log-Normal Models for Inference in Reliability with Stochastic Constraint

    Directory of Open Access Journals (Sweden)

    Hea-Jung Kim

    2017-06-01

    Full Text Available This paper develops Bayesian inference in reliability of a class of scale mixtures of log-normal failure time (SMLNFT models with stochastic (or uncertain constraint in their reliability measures. The class is comprehensive and includes existing failure time (FT models (such as log-normal, log-Cauchy, and log-logistic FT models as well as new models that are robust in terms of heavy-tailed FT observations. Since classical frequency approaches to reliability analysis based on the SMLNFT model with stochastic constraint are intractable, the Bayesian method is pursued utilizing a Markov chain Monte Carlo (MCMC sampling based approach. This paper introduces a two-stage maximum entropy (MaxEnt prior, which elicits a priori uncertain constraint and develops Bayesian hierarchical SMLNFT model by using the prior. The paper also proposes an MCMC method for Bayesian inference in the SMLNFT model reliability and calls attention to properties of the MaxEnt prior that are useful for method development. Finally, two data sets are used to illustrate how the proposed methodology works.

  6. A Bayesian hierarchical modeling approach for analyzing observational data from marine ecological studies.

    Science.gov (United States)

    Qian, Song S; Craig, J Kevin; Baustian, Melissa M; Rabalais, Nancy N

    2009-12-01

    We introduce the Bayesian hierarchical modeling approach for analyzing observational data from marine ecological studies using a data set intended for inference on the effects of bottom-water hypoxia on macrobenthic communities in the northern Gulf of Mexico off the coast of Louisiana, USA. We illustrate (1) the process of developing a model, (2) the use of the hierarchical model results for statistical inference through innovative graphical presentation, and (3) a comparison to the conventional linear modeling approach (ANOVA). Our results indicate that the Bayesian hierarchical approach is better able to detect a "treatment" effect than classical ANOVA while avoiding several arbitrary assumptions necessary for linear models, and is also more easily interpreted when presented graphically. These results suggest that the hierarchical modeling approach is a better alternative than conventional linear models and should be considered for the analysis of observational field data from marine systems.

  7. Estimating the Term Structure With a Semiparametric Bayesian Hierarchical Model: An Application to Corporate Bonds1

    Science.gov (United States)

    Cruz-Marcelo, Alejandro; Ensor, Katherine B.; Rosner, Gary L.

    2011-01-01

    The term structure of interest rates is used to price defaultable bonds and credit derivatives, as well as to infer the quality of bonds for risk management purposes. We introduce a model that jointly estimates term structures by means of a Bayesian hierarchical model with a prior probability model based on Dirichlet process mixtures. The modeling methodology borrows strength across term structures for purposes of estimation. The main advantage of our framework is its ability to produce reliable estimators at the company level even when there are only a few bonds per company. After describing the proposed model, we discuss an empirical application in which the term structure of 197 individual companies is estimated. The sample of 197 consists of 143 companies with only one or two bonds. In-sample and out-of-sample tests are used to quantify the improvement in accuracy that results from approximating the term structure of corporate bonds with estimators by company rather than by credit rating, the latter being a popular choice in the financial literature. A complete description of a Markov chain Monte Carlo (MCMC) scheme for the proposed model is available as Supplementary Material. PMID:21765566

  8. Hierarchical set of models to estimate soil thermal diffusivity

    Science.gov (United States)

    Arkhangelskaya, Tatiana; Lukyashchenko, Ksenia

    2016-04-01

    Soil thermal properties significantly affect the land-atmosphere heat exchange rates. Intra-soil heat fluxes depend both on temperature gradients and soil thermal conductivity. Soil temperature changes due to energy fluxes are determined by soil specific heat. Thermal diffusivity is equal to thermal conductivity divided by volumetric specific heat and reflects both the soil ability to transfer heat and its ability to change temperature when heat is supplied or withdrawn. The higher soil thermal diffusivity is, the thicker is the soil/ground layer in which diurnal and seasonal temperature fluctuations are registered and the smaller are the temperature fluctuations at the soil surface. Thermal diffusivity vs. moisture dependencies for loams, sands and clays of the East European Plain were obtained using the unsteady-state method. Thermal diffusivity of different soils differed greatly, and for a given soil it could vary by 2, 3 or even 5 times depending on soil moisture. The shapes of thermal diffusivity vs. moisture dependencies were different: peak curves were typical for sandy soils and sigmoid curves were typical for loamy and especially for compacted soils. The lowest thermal diffusivities and the smallest range of their variability with soil moisture were obtained for clays with high humus content. Hierarchical set of models will be presented, allowing an estimate of soil thermal diffusivity from available data on soil texture, moisture, bulk density and organic carbon. When developing these models the first step was to parameterize the experimental thermal diffusivity vs. moisture dependencies with a 4-parameter function; the next step was to obtain regression formulas to estimate the function parameters from available data on basic soil properties; the last step was to evaluate the accuracy of suggested models using independent data on soil thermal diffusivity. The simplest models were based on soil bulk density and organic carbon data and provided different

  9. Hierarchical Shrinkage Priors and Model Fitting for High-dimensional Generalized Linear Models

    Science.gov (United States)

    Yi, Nengjun; Ma, Shuangge

    2013-01-01

    Genetic and other scientific studies routinely generate very many predictor variables, which can be naturally grouped, with predictors in the same groups being highly correlated. It is desirable to incorporate the hierarchical structure of the predictor variables into generalized linear models for simultaneous variable selection and coefficient estimation. We propose two prior distributions: hierarchical Cauchy and double-exponential distributions, on coefficients in generalized linear models. The hierarchical priors include both variable-specific and group-specific tuning parameters, thereby not only adopting different shrinkage for different coefficients and different groups but also providing a way to pool the information within groups. We fit generalized linear models with the proposed hierarchical priors by incorporating flexible expectation-maximization (EM) algorithms into the standard iteratively weighted least squares as implemented in the general statistical package R. The methods are illustrated with data from an experiment to identify genetic polymorphisms for survival of mice following infection with Listeria monocytogenes. The performance of the proposed procedures is further assessed via simulation studies. The methods are implemented in a freely available R package BhGLM (http://www.ssg.uab.edu/bhglm/). PMID:23192052

  10. Intelligent multiagent coordination based on reinforcement hierarchical neuro-fuzzy models.

    Science.gov (United States)

    Mendoza, Leonardo Forero; Vellasco, Marley; Figueiredo, Karla

    2014-12-01

    This paper presents the research and development of two hybrid neuro-fuzzy models for the hierarchical coordination of multiple intelligent agents. The main objective of the models is to have multiple agents interact intelligently with each other in complex systems. We developed two new models of coordination for intelligent multiagent systems, which integrates the Reinforcement Learning Hierarchical Neuro-Fuzzy model with two proposed coordination mechanisms: the MultiAgent Reinforcement Learning Hierarchical Neuro-Fuzzy with a market-driven coordination mechanism (MA-RL-HNFP-MD) and the MultiAgent Reinforcement Learning Hierarchical Neuro-Fuzzy with graph coordination (MA-RL-HNFP-CG). In order to evaluate the proposed models and verify the contribution of the proposed coordination mechanisms, two multiagent benchmark applications were developed: the pursuit game and the robot soccer simulation. The results obtained demonstrated that the proposed coordination mechanisms greatly improve the performance of the multiagent system when compared with other strategies.

  11. Logistics Chains in Freight Transport Modelling

    NARCIS (Netherlands)

    Davydenko, I.Y.

    2015-01-01

    The flow of trade is not equal to transport flows, mainly due to the fact that warehouses and distribution facilities are used as intermediary stops on the way from production locations to the points of consumption or further rework of goods. This thesis proposes a logistics chain model, which estim

  12. Logistics Chains in Freight Transport Modelling

    NARCIS (Netherlands)

    Davydenko, I.Y.

    2015-01-01

    The flow of trade is not equal to transport flows, mainly due to the fact that warehouses and distribution facilities are used as intermediary stops on the way from production locations to the points of consumption or further rework of goods. This thesis proposes a logistics chain model, which

  13. Modelling and genetic algorithm based optimisation of inverse supply chain

    Science.gov (United States)

    Bányai, T.

    2009-04-01

    (Recycling of household appliances with emphasis on reuse options). The purpose of this paper is the presentation of a possible method for avoiding the unnecessary environmental risk and landscape use through unprovoked large supply chain of collection systems of recycling processes. In the first part of the paper the author presents the mathematical model of recycling related collection systems (applied especially for wastes of electric and electronic products) and in the second part of the work a genetic algorithm based optimisation method will be demonstrated, by the aid of which it is possible to determine the optimal structure of the inverse supply chain from the point of view economical, ecological and logistic objective functions. The model of the inverse supply chain is based on a multi-level, hierarchical collection system. In case of this static model it is assumed that technical conditions are permanent. The total costs consist of three parts: total infrastructure costs, total material handling costs and environmental risk costs. The infrastructure-related costs are dependent only on the specific fixed costs and the specific unit costs of the operation points (collection, pre-treatment, treatment, recycling and reuse plants). The costs of warehousing and transportation are represented by the material handling related costs. The most important factors determining the level of environmental risk cost are the number of out of time recycled (treated or reused) products, the number of supply chain objects and the length of transportation routes. The objective function is the minimization of the total cost taking into consideration the constraints. However a lot of research work discussed the design of supply chain [8], but most of them concentrate on linear cost functions. In the case of this model non-linear cost functions were used. The non-linear cost functions and the possible high number of objects of the inverse supply chain leaded to the problem of choosing a

  14. Nonresident Undergraduates' Performance in English Writing Classes-Hierarchical Linear Modeling Analysis

    National Research Council Canada - National Science Library

    Allison A Vaughn; Matthew Bergman; Barry Fass-Holmes

    2015-01-01

    ...) in the fall term of the five most recent academic years. Hierarchical linear modeling analyses showed that the predictors with the largest effect sizes were English writing programs and class level...

  15. LIMO EEG: a toolbox for hierarchical LInear MOdeling of ElectroEncephaloGraphic data

    National Research Council Canada - National Science Library

    Pernet, Cyril R; Chauveau, Nicolas; Gaspar, Carl; Rousselet, Guillaume A

    2011-01-01

    ...). LIMO EEG is a Matlab toolbox (EEGLAB compatible) to analyse evoked responses over all space and time dimensions, while accounting for single trial variability using a simple hierarchical linear modelling of the data...

  16. LIMO EEG: A Toolbox for Hierarchical LInear MOdeling of ElectroEncephaloGraphic Data

    National Research Council Canada - National Science Library

    Pernet, Cyril R; Chauveau, Nicolas; Gaspar, Carl; Rousselet, Guillaume A

    2011-01-01

    ...). LIMO EEG is a Matlab toolbox (EEGLAB compatible) to analyse evoked responses over all space and time dimensions, while accounting for single trial variability using a simple hierarchical linear modelling of the data...

  17. Higher Order Hierarchical Legendre Basis Functions for Electromagnetic Modeling

    DEFF Research Database (Denmark)

    Jørgensen, Erik; Volakis, John L.; Meincke, Peter

    2004-01-01

    This paper presents a new hierarchical basis of arbitrary order for integral equations solved with the Method of Moments (MoM). The basis is derived from orthogonal Legendre polynomials which are modified to impose continuity of vector quantities between neighboring elements while maintaining mos...

  18. Higher Order Hierarchical Legendre Basis Functions for Electromagnetic Modeling

    DEFF Research Database (Denmark)

    Jørgensen, Erik; Volakis, John L.; Meincke, Peter

    2004-01-01

    This paper presents a new hierarchical basis of arbitrary order for integral equations solved with the Method of Moments (MoM). The basis is derived from orthogonal Legendre polynomials which are modified to impose continuity of vector quantities between neighboring elements while maintaining mos...

  19. Heuristics for Hierarchical Partitioning with Application to Model Checking

    DEFF Research Database (Denmark)

    Möller, Michael Oliver; Alur, Rajeev

    2001-01-01

    Given a collection of connected components, it is often desired to cluster together parts of strong correspondence, yielding a hierarchical structure. We address the automation of this process and apply heuristics to battle the combinatorial and computational complexity. We define a cost function...

  20. Modeling for Green Supply Chain Evaluation

    Directory of Open Access Journals (Sweden)

    Elham Falatoonitoosi

    2013-01-01

    Full Text Available Green supply chain management (GSCM has become a practical approach to develop environmental performance. Under strict regulations and stakeholder pressures, enterprises need to enhance and improve GSCM practices, which are influenced by both traditional and green factors. This study developed a causal evaluation model to guide selection of qualified suppliers by prioritizing various criteria and mapping causal relationships to find effective criteria to improve green supply chain. The aim of the case study was to model and examine the influential and important main GSCM practices, namely, green logistics, organizational performance, green organizational activities, environmental protection, and green supplier evaluation. In the case study, decision-making trial and evaluation laboratory technique is applied to test the developed model. The result of the case study shows only “green supplier evaluation” and “green organizational activities” criteria of the model are in the cause group and the other criteria are in the effect group.

  1. Validation of a terrestrial food chain model.

    Science.gov (United States)

    Travis, C C; Blaylock, B P

    1992-01-01

    An increasingly important topic in risk assessment is the estimation of human exposure to environmental pollutants through pathways other than inhalation. The Environmental Protection Agency (EPA) has recently developed a computerized methodology (EPA, 1990) to estimate indirect exposure to toxic pollutants from Municipal Waste Combuster emissions. This methodology estimates health risks from exposure to toxic pollutants from the terrestrial food chain (TFC), soil ingestion, drinking water ingestion, fish ingestion, and dermal absorption via soil and water. Of these, one of the most difficult to estimate is exposure through the food chain. This paper estimates the accuracy of the EPA methodology for estimating food chain contamination. To our knowledge, no data exist on measured concentrations of pollutants in food grown around Municipal Waste Incinerators, and few field-scale studies have been performed on the uptake of pollutants in the food chain. Therefore, to evaluate the EPA methodology, we compare actual measurements of background contaminant levels in food with estimates made using EPA's computerized methodology. Background levels of contaminants in air, water, and soil were used as input to the EPA food chain model to predict background levels of contaminants in food. These predicted values were then compared with the measured background contaminant levels. Comparisons were performed for dioxin, pentachlorophenol, polychlorinated biphenyls, benzene, benzo(a)pyrene, mercury, and lead.

  2. Extending the Real-Time Maude Semantics of Ptolemy to Hierarchical DE Models

    CERN Document Server

    Bae, Kyungmin; 10.4204/EPTCS.36.3

    2010-01-01

    This paper extends our Real-Time Maude formalization of the semantics of flat Ptolemy II discrete-event (DE) models to hierarchical models, including modal models. This is a challenging task that requires combining synchronous fixed-point computations with hierarchical structure. The synthesis of a Real-Time Maude verification model from a Ptolemy II DE model, and the formal verification of the synthesized model in Real-Time Maude, have been integrated into Ptolemy II, enabling a model-engineering process that combines the convenience of Ptolemy II DE modeling and simulation with formal verification in Real-Time Maude.

  3. Recognizing Chinese characters in digital ink from non-native language writers using hierarchical models

    Science.gov (United States)

    Bai, Hao; Zhang, Xi-wen

    2017-06-01

    While Chinese is learned as a second language, its characters are taught step by step from their strokes to components, radicals to components, and their complex relations. Chinese Characters in digital ink from non-native language writers are deformed seriously, thus the global recognition approaches are poorer. So a progressive approach from bottom to top is presented based on hierarchical models. Hierarchical information includes strokes and hierarchical components. Each Chinese character is modeled as a hierarchical tree. Strokes in one Chinese characters in digital ink are classified with Hidden Markov Models and concatenated to the stroke symbol sequence. And then the structure of components in one ink character is extracted. According to the extraction result and the stroke symbol sequence, candidate characters are traversed and scored. Finally, the recognition candidate results are listed by descending. The method of this paper is validated by testing 19815 copies of the handwriting Chinese characters written by foreign students.

  4. Hierarchical functional model for automobile development; Jidosha kaihatsu no tame no kaisogata kino model

    Energy Technology Data Exchange (ETDEWEB)

    Sumida, S. [U-shin Ltd., Tokyo (Japan); Nagamatsu, M.; Maruyama, K. [Hokkaido Institute of Technology, Sapporo (Japan); Hiramatsu, S. [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    A new approach on modeling is put forward in order to compose the virtual prototype which is indispensable for fully computer integrated concurrent development of automobile product. A basic concept of the hierarchical functional model is proposed as the concrete form of this new modeling technology. This model is used mainly for explaining and simulating functions and efficiencies of both the parts and the total product of automobile. All engineers who engage themselves in design and development of automobile can collaborate with one another using this model. Some application examples are shown, and usefulness of this model is demonstrated. 5 refs., 5 figs.

  5. MARKOV CHAIN PORTFOLIO LIQUIDITY OPTIMIZATION MODEL

    Directory of Open Access Journals (Sweden)

    Eder Oliveira Abensur

    2014-05-01

    Full Text Available The international financial crisis of September 2008 and May 2010 showed the importance of liquidity as an attribute to be considered in portfolio decisions. This study proposes an optimization model based on available public data, using Markov chain and Genetic Algorithms concepts as it considers the classic duality of risk versus return and incorporating liquidity costs. The work intends to propose a multi-criterion non-linear optimization model using liquidity based on a Markov chain. The non-linear model was tested using Genetic Algorithms with twenty five Brazilian stocks from 2007 to 2009. The results suggest that this is an innovative development methodology and useful for developing an efficient and realistic financial portfolio, as it considers many attributes such as risk, return and liquidity.

  6. Integrating process and ontology to support supply chain modelling

    OpenAIRE

    2011-01-01

    Abstract Many researchers have recognized a lack of common framework to support supply chain modelling and analysis and proposed their solutions accordingly. Majority of the approaches proposed are more concerned with building an object model of a supply chain than identifying processes which realistically describe a supply chain. Though object models provide means or building blocks necessary to model and analyse different elements of a supply chain, an absence of supply chain pro...

  7. Hierarchical model-based predictive control of a power plant portfolio

    DEFF Research Database (Denmark)

    Edlund, Kristian; Bendtsen, Jan Dimon; Jørgensen, John Bagterp

    2011-01-01

    control” – becomes increasingly important as the ratio of renewable energy in a power system grows. As a consequence, tomorrow's “smart grids” require highly flexible and scalable control systems compared to conventional power systems. This paper proposes a hierarchical model-based predictive control...... design for power system portfolio control, which aims specifically at meeting these demands.The design involves a two-layer hierarchical structure with clearly defined interfaces that facilitate an object-oriented implementation approach. The same hierarchical structure is reflected in the underlying...

  8. Hierarchical self-assembly: Self-organized nanostructures in a nematically ordered matrix of self-assembled polymeric chains

    Science.gov (United States)

    Mubeena, Shaikh; Chatterji, Apratim

    2015-03-01

    We report many different nanostructures which are formed when model nanoparticles of different sizes (diameter σn) are allowed to aggregate in a background matrix of semiflexible self-assembled polymeric wormlike micellar chains. The different nanostructures are formed by the dynamical arrest of phase-separating mixtures of micellar monomers and nanoparticles. The different morphologies obtained are the result of an interplay of the available free volume, the elastic energy of deformation of polymers, the density (chemical potential) of the nanoparticles in the polymer matrix, and, of course, the ratio of the size of self-assembling nanoparticles and self-avoidance diameter of polymeric chains. We have used a hybrid semi-grand-canonical Monte Carlo simulation scheme to obtain the (nonequilibrium) phase diagram of the self-assembled nanostructures. We observe rodlike structures of nanoparticles which get self-assembled in the gaps between the nematically ordered chains, as well as percolating gel-like network of conjoined nanotubes. We also find a totally unexpected interlocked crystalline phase of nanoparticles and monomers, in which each crystal plane of nanoparticles is separated by planes of perfectly organized polymer chains. We identified the condition which leads to such interlocked crystal structure. We suggest experimental possibilities of how the results presented in this paper could be used to obtain different nanostructures in the laboratory.

  9. Hierarchical self-assembly: Self-organized nanostructures in a nematically ordered matrix of self-assembled polymeric chains.

    Science.gov (United States)

    Mubeena, Shaikh; Chatterji, Apratim

    2015-03-01

    We report many different nanostructures which are formed when model nanoparticles of different sizes (diameter σn) are allowed to aggregate in a background matrix of semiflexible self-assembled polymeric wormlike micellar chains. The different nanostructures are formed by the dynamical arrest of phase-separating mixtures of micellar monomers and nanoparticles. The different morphologies obtained are the result of an interplay of the available free volume, the elastic energy of deformation of polymers, the density (chemical potential) of the nanoparticles in the polymer matrix, and, of course, the ratio of the size of self-assembling nanoparticles and self-avoidance diameter of polymeric chains. We have used a hybrid semi-grand-canonical Monte Carlo simulation scheme to obtain the (nonequilibrium) phase diagram of the self-assembled nanostructures. We observe rodlike structures of nanoparticles which get self-assembled in the gaps between the nematically ordered chains, as well as percolating gel-like network of conjoined nanotubes. We also find a totally unexpected interlocked crystalline phase of nanoparticles and monomers, in which each crystal plane of nanoparticles is separated by planes of perfectly organized polymer chains. We identified the condition which leads to such interlocked crystal structure. We suggest experimental possibilities of how the results presented in this paper could be used to obtain different nanostructures in the laboratory.

  10. Hierarchical Modelling of Flood Risk for Engineering Decision Analysis

    DEFF Research Database (Denmark)

    Custer, Rocco

    Societies around the world are faced with flood risk, prompting authorities and decision makers to manage risk to protect population and assets. With climate change, urbanisation and population growth, flood risk changes constantly, requiring flood risk management strategies that are flexible...... and robust. Traditional risk management solutions, e.g. dike construction, are not particularly flexible, as they are difficult to adapt to changing risk. Conversely, the recent concept of integrated flood risk management, entailing a combination of several structural and non-structural risk management...... measures, allows identifying flexible and robust flood risk management strategies. Based on it, this thesis investigates hierarchical flood protection systems, which encompass two, or more, hierarchically integrated flood protection structures on different spatial scales (e.g. dikes, local flood barriers...

  11. Modeling place field activity with hierarchical slow feature analysis

    Directory of Open Access Journals (Sweden)

    Fabian eSchoenfeld

    2015-05-01

    Full Text Available In this paper we present six experimental studies from the literature on hippocampal place cells and replicate their main results in a computational framework based on the principle of slowness. Each of the chosen studies first allows rodents to develop stable place field activity and then examines a distinct property of the established spatial encoding, namely adaptation to cue relocation and removal; directional firing activity in the linear track and open field; and results of morphing and stretching the overall environment. To replicate these studies we employ a hierarchical Slow Feature Analysis (SFA network. SFA is an unsupervised learning algorithm extracting slowly varying information from a given stream of data, and hierarchical application of SFA allows for high dimensional input such as visual images to be processed efficiently and in a biologically plausible fashion. Training data for the network is produced in ratlab, a free basic graphics engine designed to quickly set up a wide range of 3D environments mimicking real life experimental studies, simulate a foraging rodent while recording its visual input, and training & sampling a hierarchical SFA network.

  12. New aerial survey and hierarchical model to estimate manatee abundance

    Science.gov (United States)

    Langimm, Cahterine A.; Dorazio, Robert M.; Stith, Bradley M.; Doyle, Terry J.

    2011-01-01

    Monitoring the response of endangered and protected species to hydrological restoration is a major component of the adaptive management framework of the Comprehensive Everglades Restoration Plan. The endangered Florida manatee (Trichechus manatus latirostris) lives at the marine-freshwater interface in southwest Florida and is likely to be affected by hydrologic restoration. To provide managers with prerestoration information on distribution and abundance for postrestoration comparison, we developed and implemented a new aerial survey design and hierarchical statistical model to estimate and map abundance of manatees as a function of patch-specific habitat characteristics, indicative of manatee requirements for offshore forage (seagrass), inland fresh drinking water, and warm-water winter refuge. We estimated the number of groups of manatees from dual-observer counts and estimated the number of individuals within groups by removal sampling. Our model is unique in that we jointly analyzed group and individual counts using assumptions that allow probabilities of group detection to depend on group size. Ours is the first analysis of manatee aerial surveys to model spatial and temporal abundance of manatees in association with habitat type while accounting for imperfect detection. We conducted the study in the Ten Thousand Islands area of southwestern Florida, USA, which was expected to be affected by the Picayune Strand Restoration Project to restore hydrology altered for a failed real-estate development. We conducted 11 surveys in 2006, spanning the cold, dry season and warm, wet season. To examine short-term and seasonal changes in distribution we flew paired surveys 1–2 days apart within a given month during the year. Manatees were sparsely distributed across the landscape in small groups. Probability of detection of a group increased with group size; the magnitude of the relationship between group size and detection probability varied among surveys. Probability

  13. INFOGRAPHIC MODELING OF THE HIERARCHICAL STRUCTURE OF THE MANAGEMENT SYSTEM EXPOSED TO AN INNOVATIVE CONFLICT

    OpenAIRE

    Chulkov Vitaliy Olegovich; Rakhmonov Emomali Karimovich; Kas'yanov Vitaliy Fedorovich; Gusakova Elena Aleksandrovna

    2012-01-01

    This article deals with the infographic modeling of hierarchical management systems exposed to innovative conflicts. The authors analyze the facts that serve as conflict drivers in the construction management environment. The reasons for innovative conflicts include changes in hierarchical structures of management systems, adjustment of workers to new management conditions, changes in the ideology, etc. Conflicts under consideration may involve contradictions between requests placed by custom...

  14. Hierarchical hybrid testability modeling and evaluation method based on information fusion

    Institute of Scientific and Technical Information of China (English)

    Xishan Zhang; Kaoli Huang; Pengcheng Yan; Guangyao Lian

    2015-01-01

    In order to meet the demand of testability analysis and evaluation for complex equipment under a smal sample test in the equipment life cycle, the hierarchical hybrid testability model-ing and evaluation method (HHTME), which combines the testabi-lity structure model (TSM) with the testability Bayesian networks model (TBNM), is presented. Firstly, the testability network topo-logy of complex equipment is built by using the hierarchical hybrid testability modeling method. Secondly, the prior conditional prob-ability distribution between network nodes is determined through expert experience. Then the Bayesian method is used to update the conditional probability distribution, according to history test information, virtual simulation information and similar product in-formation. Final y, the learned hierarchical hybrid testability model (HHTM) is used to estimate the testability of equipment. Compared with the results of other modeling methods, the relative deviation of the HHTM is only 0.52%, and the evaluation result is the most accurate.

  15. Hierarchical spatial capture-recapture models: Modeling population density from stratified populations

    Science.gov (United States)

    Royle, J. Andrew; Converse, Sarah J.

    2014-01-01

    Capture–recapture studies are often conducted on populations that are stratified by space, time or other factors. In this paper, we develop a Bayesian spatial capture–recapture (SCR) modelling framework for stratified populations – when sampling occurs within multiple distinct spatial and temporal strata.We describe a hierarchical model that integrates distinct models for both the spatial encounter history data from capture–recapture sampling, and also for modelling variation in density among strata. We use an implementation of data augmentation to parameterize the model in terms of a latent categorical stratum or group membership variable, which provides a convenient implementation in popular BUGS software packages.We provide an example application to an experimental study involving small-mammal sampling on multiple trapping grids over multiple years, where the main interest is in modelling a treatment effect on population density among the trapping grids.Many capture–recapture studies involve some aspect of spatial or temporal replication that requires some attention to modelling variation among groups or strata. We propose a hierarchical model that allows explicit modelling of group or strata effects. Because the model is formulated for individual encounter histories and is easily implemented in the BUGS language and other free software, it also provides a general framework for modelling individual effects, such as are present in SCR models.

  16. Usability Prediction & Ranking of SDLC Models Using Fuzzy Hierarchical Usability Model

    Science.gov (United States)

    Gupta, Deepak; Ahlawat, Anil K.; Sagar, Kalpna

    2017-06-01

    Evaluation of software quality is an important aspect for controlling and managing the software. By such evaluation, improvements in software process can be made. The software quality is significantly dependent on software usability. Many researchers have proposed numbers of usability models. Each model considers a set of usability factors but do not cover all the usability aspects. Practical implementation of these models is still missing, as there is a lack of precise definition of usability. Also, it is very difficult to integrate these models into current software engineering practices. In order to overcome these challenges, this paper aims to define the term `usability' using the proposed hierarchical usability model with its detailed taxonomy. The taxonomy considers generic evaluation criteria for identifying the quality components, which brings together factors, attributes and characteristics defined in various HCI and software models. For the first time, the usability model is also implemented to predict more accurate usability values. The proposed system is named as fuzzy hierarchical usability model that can be easily integrated into the current software engineering practices. In order to validate the work, a dataset of six software development life cycle models is created and employed. These models are ranked according to their predicted usability values. This research also focuses on the detailed comparison of proposed model with the existing usability models.

  17. Hierarchical diagnostic classification models morphing into unidimensional 'diagnostic' classification models-a commentary.

    Science.gov (United States)

    von Davier, Matthias; Haberman, Shelby J

    2014-04-01

    This commentary addresses the modeling and final analytical path taken, as well as the terminology used, in the paper "Hierarchical diagnostic classification models: a family of models for estimating and testing attribute hierarchies" by Templin and Bradshaw (Psychometrika, doi: 10.1007/s11336-013-9362-0, 2013). It raises several issues concerning use of cognitive diagnostic models that either assume attribute hierarchies or assume a certain form of attribute interactions. The issues raised are illustrated with examples, and references are provided for further examination.

  18. Automatic thoracic anatomy segmentation on CT images using hierarchical fuzzy models and registration

    Science.gov (United States)

    Sun, Kaioqiong; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Torigian, Drew A.

    2014-03-01

    This paper proposes a thoracic anatomy segmentation method based on hierarchical recognition and delineation guided by a built fuzzy model. Labeled binary samples for each organ are registered and aligned into a 3D fuzzy set representing the fuzzy shape model for the organ. The gray intensity distributions of the corresponding regions of the organ in the original image are recorded in the model. The hierarchical relation and mean location relation between different organs are also captured in the model. Following the hierarchical structure and location relation, the fuzzy shape model of different organs is registered to the given target image to achieve object recognition. A fuzzy connected delineation method is then used to obtain the final segmentation result of organs with seed points provided by recognition. The hierarchical structure and location relation integrated in the model provide the initial parameters for registration and make the recognition efficient and robust. The 3D fuzzy model combined with hierarchical affine registration ensures that accurate recognition can be obtained for both non-sparse and sparse organs. The results on real images are presented and shown to be better than a recently reported fuzzy model-based anatomy recognition strategy.

  19. Hierarchical modeling and inference in ecology: The analysis of data from populations, metapopulations and communities

    Science.gov (United States)

    Royle, J. Andrew; Dorazio, Robert M.

    2008-01-01

    A guide to data collection, modeling and inference strategies for biological survey data using Bayesian and classical statistical methods. This book describes a general and flexible framework for modeling and inference in ecological systems based on hierarchical models, with a strict focus on the use of probability models and parametric inference. Hierarchical models represent a paradigm shift in the application of statistics to ecological inference problems because they combine explicit models of ecological system structure or dynamics with models of how ecological systems are observed. The principles of hierarchical modeling are developed and applied to problems in population, metapopulation, community, and metacommunity systems. The book provides the first synthetic treatment of many recent methodological advances in ecological modeling and unifies disparate methods and procedures. The authors apply principles of hierarchical modeling to ecological problems, including * occurrence or occupancy models for estimating species distribution * abundance models based on many sampling protocols, including distance sampling * capture-recapture models with individual effects * spatial capture-recapture models based on camera trapping and related methods * population and metapopulation dynamic models * models of biodiversity, community structure and dynamics.

  20. The application of a hierarchical Bayesian spatiotemporal model for forecasting the SAA trapped particle flux distribution

    Indian Academy of Sciences (India)

    Wayan Suparta; Gusrizal

    2014-08-01

    We implement a hierarchical Bayesian spatiotemporal (HBST) model to forecast the daily trapped particle flux distribution over the South Atlantic Anomaly (SAA) region. The National Oceanic and Atmospheric Administration (NOAA)-15 data from 1–30 March 2008 with particle energies as < 30 keV (mep0e1) and < 300 keV (mep0e3) for electrons and 80–240 keV (mep0p2) and < 6900 keV (mep0p6) for protons were used as the model input to forecast the flux values on 31 March 2008. Data were transformed into logarithmic values and gridded in a 5° × 5° longitude and latitude size to fulfill the modeling precondition. A Monte Carlo Markov chain (MCMC) was then performed to solve the HBST Gaussian Process (GP) model by using the Gibbs sampling method. The result for this model was interpolated by a Kriging technique to achieve the whole distribution figure over the SAA region. Statistical results of the root mean square error (RMSE), mean absolute percentage error (MAPE), and bias (BIAS) showed a good indicator of the HBST method. The statistical validation also indicated the high variability of particle flux values in the SAA core area. The visual validation showed a powerful combination of HBST-GP model with Kriging interpolation technique. The Kriging also produced a good quality of the distribution map of particle flux over the SAA region as indicated by its small variance value. This suggests that the model can be applied in the development of a Low Earth Orbit (LEO)-Equatorial satellite for monitoring trapped particle radiation hazard.

  1. Use of hierarchical models to analyze European trends in congenital anomaly prevalence.

    Science.gov (United States)

    Cavadino, Alana; Prieto-Merino, David; Addor, Marie-Claude; Arriola, Larraitz; Bianchi, Fabrizio; Draper, Elizabeth; Garne, Ester; Greenlees, Ruth; Haeusler, Martin; Khoshnood, Babak; Kurinczuk, Jenny; McDonnell, Bob; Nelen, Vera; O'Mahony, Mary; Randrianaivo, Hanitra; Rankin, Judith; Rissmann, Anke; Tucker, David; Verellen-Dumoulin, Christine; de Walle, Hermien; Wellesley, Diana; Morris, Joan K

    2016-06-01

    Surveillance of congenital anomalies is important to identify potential teratogens. Despite known associations between different anomalies, current surveillance methods examine trends within each subgroup separately. We aimed to evaluate whether hierarchical statistical methods that combine information from several subgroups simultaneously would enhance current surveillance methods using data collected by EUROCAT, a European network of population-based congenital anomaly registries. Ten-year trends (2003 to 2012) in 18 EUROCAT registries over 11 countries were analyzed for the following groups of anomalies: neural tube defects, congenital heart defects, digestive system, and chromosomal anomalies. Hierarchical Poisson regression models that combined related subgroups together according to EUROCAT's hierarchy of subgroup coding were applied. Results from hierarchical models were compared with those from Poisson models that consider each congenital anomaly separately. Hierarchical models gave similar results as those obtained when considering each anomaly subgroup in a separate analysis. Hierarchical models that included only around three subgroups showed poor convergence and were generally found to be over-parameterized. Larger sets of anomaly subgroups were found to be too heterogeneous to group together in this way. There were no substantial differences between independent analyses of each subgroup and hierarchical models when using the EUROCAT anomaly subgroups. Considering each anomaly separately, therefore, remains an appropriate method for the detection of potential changes in prevalence by surveillance systems. Hierarchical models do, however, remain an interesting alternative method of analysis when considering the risks of specific exposures in relation to the prevalence of congenital anomalies, which could be investigated in other studies. Birth Defects Research (Part A) 106:480-10, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. A Bayesian hierarchical diffusion model decomposition of performance in Approach-Avoidance Tasks.

    Science.gov (United States)

    Krypotos, Angelos-Miltiadis; Beckers, Tom; Kindt, Merel; Wagenmakers, Eric-Jan

    2015-01-01

    Common methods for analysing response time (RT) tasks, frequently used across different disciplines of psychology, suffer from a number of limitations such as the failure to directly measure the underlying latent processes of interest and the inability to take into account the uncertainty associated with each individual's point estimate of performance. Here, we discuss a Bayesian hierarchical diffusion model and apply it to RT data. This model allows researchers to decompose performance into meaningful psychological processes and to account optimally for individual differences and commonalities, even with relatively sparse data. We highlight the advantages of the Bayesian hierarchical diffusion model decomposition by applying it to performance on Approach-Avoidance Tasks, widely used in the emotion and psychopathology literature. Model fits for two experimental data-sets demonstrate that the model performs well. The Bayesian hierarchical diffusion model overcomes important limitations of current analysis procedures and provides deeper insight in latent psychological processes of interest.

  3. Maximizing Adaptivity in Hierarchical Topological Models Using Cancellation Trees

    Energy Technology Data Exchange (ETDEWEB)

    Bremer, P; Pascucci, V; Hamann, B

    2008-12-08

    We present a highly adaptive hierarchical representation of the topology of functions defined over two-manifold domains. Guided by the theory of Morse-Smale complexes, we encode dependencies between cancellations of critical points using two independent structures: a traditional mesh hierarchy to store connectivity information and a new structure called cancellation trees to encode the configuration of critical points. Cancellation trees provide a powerful method to increase adaptivity while using a simple, easy-to-implement data structure. The resulting hierarchy is significantly more flexible than the one previously reported. In particular, the resulting hierarchy is guaranteed to be of logarithmic height.

  4. Classification errors in contingency tables analyzed with hierarchical log-linear models. Technical report No. 20

    Energy Technology Data Exchange (ETDEWEB)

    Korn, E L

    1978-08-01

    This thesis is concerned with the effect of classification error on contingency tables being analyzed with hierarchical log-linear models (independence in an I x J table is a particular hierarchical log-linear model). Hierarchical log-linear models provide a concise way of describing independence and partial independences between the different dimensions of a contingency table. The structure of classification errors on contingency tables that will be used throughout is defined. This structure is a generalization of Bross' model, but here attention is paid to the different possible ways a contingency table can be sampled. Hierarchical log-linear models and the effect of misclassification on them are described. Some models, such as independence in an I x J table, are preserved by misclassification, i.e., the presence of classification error will not change the fact that a specific table belongs to that model. Other models are not preserved by misclassification; this implies that the usual tests to see if a sampled table belong to that model will not be of the right significance level. A simple criterion will be given to determine which hierarchical log-linear models are preserved by misclassification. Maximum likelihood theory is used to perform log-linear model analysis in the presence of known misclassification probabilities. It will be shown that the Pitman asymptotic power of tests between different hierarchical log-linear models is reduced because of the misclassification. A general expression will be given for the increase in sample size necessary to compensate for this loss of power and some specific cases will be examined.

  5. Hierarchical Bayesian Model for Simultaneous EEG Source and Forward Model Reconstruction (SOFOMORE)

    DEFF Research Database (Denmark)

    Stahlhut, Carsten; Mørup, Morten; Winther, Ole;

    2009-01-01

    In this paper we propose an approach to handle forward model uncertainty for EEG source reconstruction. A stochastic forward model is motivated by the many uncertain contributions that form the forward propagation model including the tissue conductivity distribution, the cortical surface, and ele......In this paper we propose an approach to handle forward model uncertainty for EEG source reconstruction. A stochastic forward model is motivated by the many uncertain contributions that form the forward propagation model including the tissue conductivity distribution, the cortical surface......, and electrode positions. We first present a hierarchical Bayesian framework for EEG source localization that jointly performs source and forward model reconstruction (SOFOMORE). Secondly, we evaluate the SOFOMORE model by comparison with source reconstruction methods that use fixed forward models. Simulated...... and real EEG data demonstrate that invoking a stochastic forward model leads to improved source estimates....

  6. Multivariate Markov chain modeling for stock markets

    Science.gov (United States)

    Maskawa, Jun-ichi

    2003-06-01

    We study a multivariate Markov chain model as a stochastic model of the price changes of portfolios in the framework of the mean field approximation. The time series of price changes are coded into the sequences of up and down spins according to their signs. We start with the discussion for small portfolios consisting of two stock issues. The generalization of our model to arbitrary size of portfolio is constructed by a recurrence relation. The resultant form of the joint probability of the stationary state coincides with Gibbs measure assigned to each configuration of spin glass model. Through the analysis of actual portfolios, it has been shown that the synchronization of the direction of the price changes is well described by the model.

  7. Regional fuzzy chain model for evapotranspiration estimation

    Science.gov (United States)

    Güçlü, Yavuz Selim; Subyani, Ali M.; Şen, Zekai

    2017-01-01

    Evapotranspiration (ET) is one of the main hydrological cycle components that has extreme importance for water resources management and agriculture especially in arid and semi-arid regions. In this study, regional ET estimation models based on the fuzzy logic (FL) principles are suggested, where the first stage includes the ET calculation via Penman-Monteith equation, which produces reliable results. In the second phase, ET estimations are produced according to the conventional FL inference system model. In this paper, regional fuzzy model (RFM) and regional fuzzy chain model (RFCM) are proposed through the use of adjacent stations' data in order to fill the missing ones. The application of the two models produces reliable and satisfactory results for mountainous and sea region locations in the Kingdom of Saudi Arabia, but comparatively RFCM estimations have more accuracy. In general, the mean absolute percentage error is less than 10%, which is acceptable in practical applications.

  8. Ranking of Business Process Simulation Software Tools with DEX/QQ Hierarchical Decision Model.

    Science.gov (United States)

    Damij, Nadja; Boškoski, Pavle; Bohanec, Marko; Mileva Boshkoska, Biljana

    2016-01-01

    The omnipresent need for optimisation requires constant improvements of companies' business processes (BPs). Minimising the risk of inappropriate BP being implemented is usually performed by simulating the newly developed BP under various initial conditions and "what-if" scenarios. An effectual business process simulations software (BPSS) is a prerequisite for accurate analysis of an BP. Characterisation of an BPSS tool is a challenging task due to the complex selection criteria that includes quality of visual aspects, simulation capabilities, statistical facilities, quality reporting etc. Under such circumstances, making an optimal decision is challenging. Therefore, various decision support models are employed aiding the BPSS tool selection. The currently established decision support models are either proprietary or comprise only a limited subset of criteria, which affects their accuracy. Addressing this issue, this paper proposes a new hierarchical decision support model for ranking of BPSS based on their technical characteristics by employing DEX and qualitative to quantitative (QQ) methodology. Consequently, the decision expert feeds the required information in a systematic and user friendly manner. There are three significant contributions of the proposed approach. Firstly, the proposed hierarchical model is easily extendible for adding new criteria in the hierarchical structure. Secondly, a fully operational decision support system (DSS) tool that implements the proposed hierarchical model is presented. Finally, the effectiveness of the proposed hierarchical model is assessed by comparing the resulting rankings of BPSS with respect to currently available results.

  9. Hierarchical ensemble of background models for PTZ-based video surveillance.

    Science.gov (United States)

    Liu, Ning; Wu, Hefeng; Lin, Liang

    2015-01-01

    In this paper, we study a novel hierarchical background model for intelligent video surveillance with the pan-tilt-zoom (PTZ) camera, and give rise to an integrated system consisting of three key components: background modeling, observed frame registration, and object tracking. First, we build the hierarchical background model by separating the full range of continuous focal lengths of a PTZ camera into several discrete levels and then partitioning the wide scene at each level into many partial fixed scenes. In this way, the wide scenes captured by a PTZ camera through rotation and zoom are represented by a hierarchical collection of partial fixed scenes. A new robust feature is presented for background modeling of each partial scene. Second, we locate the partial scenes corresponding to the observed frame in the hierarchical background model. Frame registration is then achieved by feature descriptor matching via fast approximate nearest neighbor search. Afterwards, foreground objects can be detected using background subtraction. Last, we configure the hierarchical background model into a framework to facilitate existing object tracking algorithms under the PTZ camera. Foreground extraction is used to assist tracking an object of interest. The tracking outputs are fed back to the PTZ controller for adjusting the camera properly so as to maintain the tracked object in the image plane. We apply our system on several challenging scenarios and achieve promising results.

  10. A Hierarchical Linear Model with Factor Analysis Structure at Level 2

    Science.gov (United States)

    Miyazaki, Yasuo; Frank, Kenneth A.

    2006-01-01

    In this article the authors develop a model that employs a factor analysis structure at Level 2 of a two-level hierarchical linear model (HLM). The model (HLM2F) imposes a structure on a deficient rank Level 2 covariance matrix [tau], and facilitates estimation of a relatively large [tau] matrix. Maximum likelihood estimators are derived via the…

  11. Hierarchical modelling of temperature and habitat size effects on population dynamics of North Atlantic cod

    DEFF Research Database (Denmark)

    Mantzouni, Irene; Sørensen, Helle; O'Hara, Robert B.;

    2010-01-01

    and Beverton and Holt stock–recruitment (SR) models were extended by applying hierarchical methods, mixed-effects models, and Bayesian inference to incorporate the influence of these ecosystem factors on model parameters representing cod maximum reproductive rate and carrying capacity. We identified...

  12. A Markov Chain Model for Contagion

    Directory of Open Access Journals (Sweden)

    Angelos Dassios

    2014-11-01

    Full Text Available We introduce a bivariate Markov chain counting process with contagion for modelling the clustering arrival of loss claims with delayed settlement for an insurance company. It is a general continuous-time model framework that also has the potential to be applicable to modelling the clustering arrival of events, such as jumps, bankruptcies, crises and catastrophes in finance, insurance and economics with both internal contagion risk and external common risk. Key distributional properties, such as the moments and probability generating functions, for this process are derived. Some special cases with explicit results and numerical examples and the motivation for further actuarial applications are also discussed. The model can be considered a generalisation of the dynamic contagion process introduced by Dassios and Zhao (2011.

  13. Hydrograph estimation with fuzzy chain model

    Science.gov (United States)

    Güçlü, Yavuz Selim; Şen, Zekai

    2016-07-01

    Hydrograph peak discharge estimation is gaining more significance with unprecedented urbanization developments. Most of the existing models do not yield reliable peak discharge estimations for small basins although they provide acceptable results for medium and large ones. In this study, fuzzy chain model (FCM) is suggested by considering the necessary adjustments based on some measurements over a small basin, Ayamama basin, within Istanbul City, Turkey. FCM is based on Mamdani and the Adaptive Neuro Fuzzy Inference Systems (ANFIS) methodologies, which yield peak discharge estimation. The suggested model is compared with two well-known approaches, namely, Soil Conservation Service (SCS)-Snyder and SCS-Clark methodologies. In all the methods, the hydrographs are obtained through the use of dimensionless unit hydrograph concept. After the necessary modeling, computation, verification and adaptation stages comparatively better hydrographs are obtained by FCM. The mean square error for the FCM is many folds smaller than the other methodologies, which proves outperformance of the suggested methodology.

  14. 化工企业集成的层次模型结构体系%A Hierarchical Model Architecture for Enterprise Integration in Chemical Industries

    Institute of Scientific and Technical Information of China (English)

    华贲; 周章玉; 成思危

    2001-01-01

    Towards integration of supply chain, manufacturing/production and investment decision making, this paper presents a hierarchical model architecture which contains six sub-models covering the areas of manufacturing control, production operation, design and revamp, production management, supply chain and investment decision making. Six types of flow, material, energy, information, humanware, partsware and capital are clasified. These flows connect enterprise components/subsystems to formulate system topology and logical structure. Enterprise components/subsystems are abstracted to generic elementary and composite classes. Finally, the model architecture is applied to a management system of an integrated suply chain, and suggestion are made on the usage of the model architecture and further development of the model as well as implementation issues.``

  15. Hierarchical linear model: thinking outside the traditional repeated-measures analysis-of-variance box.

    Science.gov (United States)

    Lininger, Monica; Spybrook, Jessaca; Cheatham, Christopher C

    2015-04-01

    Longitudinal designs are common in the field of athletic training. For example, in the Journal of Athletic Training from 2005 through 2010, authors of 52 of the 218 original research articles used longitudinal designs. In 50 of the 52 studies, a repeated-measures analysis of variance was used to analyze the data. A possible alternative to this approach is the hierarchical linear model, which has been readily accepted in other medical fields. In this short report, we demonstrate the use of the hierarchical linear model for analyzing data from a longitudinal study in athletic training. We discuss the relevant hypotheses, model assumptions, analysis procedures, and output from the HLM 7.0 software. We also examine the advantages and disadvantages of using the hierarchical linear model with repeated measures and repeated-measures analysis of variance for longitudinal data.

  16. Hierarchical Linear Model: Thinking Outside the Traditional Repeated-Measures Analysis-of-Variance Box

    Science.gov (United States)

    Lininger, Monica; Spybrook, Jessaca; Cheatham, Christopher C.

    2015-01-01

    Longitudinal designs are common in the field of athletic training. For example, in the Journal of Athletic Training from 2005 through 2010, authors of 52 of the 218 original research articles used longitudinal designs. In 50 of the 52 studies, a repeated-measures analysis of variance was used to analyze the data. A possible alternative to this approach is the hierarchical linear model, which has been readily accepted in other medical fields. In this short report, we demonstrate the use of the hierarchical linear model for analyzing data from a longitudinal study in athletic training. We discuss the relevant hypotheses, model assumptions, analysis procedures, and output from the HLM 7.0 software. We also examine the advantages and disadvantages of using the hierarchical linear model with repeated measures and repeated-measures analysis of variance for longitudinal data. PMID:25875072

  17. Robust Real-Time Music Transcription with a Compositional Hierarchical Model

    Science.gov (United States)

    Pesek, Matevž; Leonardis, Aleš; Marolt, Matija

    2017-01-01

    The paper presents a new compositional hierarchical model for robust music transcription. Its main features are unsupervised learning of a hierarchical representation of input data, transparency, which enables insights into the learned representation, as well as robustness and speed which make it suitable for real-world and real-time use. The model consists of multiple layers, each composed of a number of parts. The hierarchical nature of the model corresponds well to hierarchical structures in music. The parts in lower layers correspond to low-level concepts (e.g. tone partials), while the parts in higher layers combine lower-level representations into more complex concepts (tones, chords). The layers are learned in an unsupervised manner from music signals. Parts in each layer are compositions of parts from previous layers based on statistical co-occurrences as the driving force of the learning process. In the paper, we present the model’s structure and compare it to other hierarchical approaches in the field of music information retrieval. We evaluate the model’s performance for the multiple fundamental frequency estimation. Finally, we elaborate on extensions of the model towards other music information retrieval tasks. PMID:28046074

  18. To Aggregate or Not and Potentially Better Questions for Clustered Data: The Need for Hierarchical Linear Modeling in CTE Research

    Science.gov (United States)

    Nimon, Kim

    2012-01-01

    Using state achievement data that are openly accessible, this paper demonstrates the application of hierarchical linear modeling within the context of career technical education research. Three prominent approaches to analyzing clustered data (i.e., modeling aggregated data, modeling disaggregated data, modeling hierarchical data) are discussed…

  19. Hierarchical Linear Models for Energy Prediction using Inertial Sensors: A Comparative Study for Treadmill Walking.

    Science.gov (United States)

    Vathsangam, Harshvardhan; Emken, B Adar; Schroeder, E Todd; Spruijt-Metz, Donna; Sukhatme, Gaurav S

    2013-12-01

    Walking is a commonly available activity to maintain a healthy lifestyle. Accurately tracking and measuring calories expended during walking can improve user feedback and intervention measures. Inertial sensors are a promising measurement tool to achieve this purpose. An important aspect in mapping inertial sensor data to energy expenditure is the question of normalizing across physiological parameters. Common approaches such as weight scaling require validation for each new population. An alternative is to use a hierarchical approach to model subject-specific parameters at one level and cross-subject parameters connected by physiological variables at a higher level. In this paper, we evaluate an inertial sensor-based hierarchical model to measure energy expenditure across a target population. We first determine the optimal movement and physiological features set to represent data. Periodicity based features are more accurate (phierarchical model with a subject-specific regression model and weight exponent scaled models. Subject-specific models perform significantly better (pmodels at all exponent scales whereas the hierarchical model performed worse than both. However, using an informed prior from the hierarchical model produces similar errors to using a subject-specific model with large amounts of training data (phierarchical modeling is a promising technique for generalized prediction energy expenditure prediction across a target population in a clinical setting.

  20. User Demand Aware Grid Scheduling Model with Hierarchical Load Balancing

    Directory of Open Access Journals (Sweden)

    P. Suresh

    2013-01-01

    Full Text Available Grid computing is a collection of computational and data resources, providing the means to support both computational intensive applications and data intensive applications. In order to improve the overall performance and efficient utilization of the resources, an efficient load balanced scheduling algorithm has to be implemented. The scheduling approach also needs to consider user demand to improve user satisfaction. This paper proposes a dynamic hierarchical load balancing approach which considers load of each resource and performs load balancing. It minimizes the response time of the jobs and improves the utilization of the resources in grid environment. By considering the user demand of the jobs, the scheduling algorithm also improves the user satisfaction. The experimental results show the improvement of the proposed load balancing method.

  1. Hierarchical modeling for reliability analysis using Markov models. B.S./M.S. Thesis - MIT

    Science.gov (United States)

    Fagundo, Arturo

    1994-01-01

    Markov models represent an extremely attractive tool for the reliability analysis of many systems. However, Markov model state space grows exponentially with the number of components in a given system. Thus, for very large systems Markov modeling techniques alone become intractable in both memory and CPU time. Often a particular subsystem can be found within some larger system where the dependence of the larger system on the subsystem is of a particularly simple form. This simple dependence can be used to decompose such a system into one or more subsystems. A hierarchical technique is presented which can be used to evaluate these subsystems in such a way that their reliabilities can be combined to obtain the reliability for the full system. This hierarchical approach is unique in that it allows the subsystem model to pass multiple aggregate state information to the higher level model, allowing more general systems to be evaluated. Guidelines are developed to assist in the system decomposition. An appropriate method for determining subsystem reliability is also developed. This method gives rise to some interesting numerical issues. Numerical error due to roundoff and integration are discussed at length. Once a decomposition is chosen, the remaining analysis is straightforward but tedious. However, an approach is developed for simplifying the recombination of subsystem reliabilities. Finally, a real world system is used to illustrate the use of this technique in a more practical context.

  2. Hierarchical Bayesian modeling of the space - time diffusion patterns of cholera epidemic in Kumasi, Ghana

    NARCIS (Netherlands)

    Osei, Frank B.; Osei, F.B.; Duker, Alfred A.; Stein, A.

    2011-01-01

    This study analyses the joint effects of the two transmission routes of cholera on the space-time diffusion dynamics. Statistical models are developed and presented to investigate the transmission network routes of cholera diffusion. A hierarchical Bayesian modelling approach is employed for a joint

  3. Measuring Service Quality in Higher Education: Development of a Hierarchical Model (HESQUAL)

    Science.gov (United States)

    Teeroovengadum, Viraiyan; Kamalanabhan, T. J.; Seebaluck, Ashley Keshwar

    2016-01-01

    Purpose: This paper aims to develop and empirically test a hierarchical model for measuring service quality in higher education. Design/methodology/approach: The first phase of the study consisted of qualitative research methods and a comprehensive literature review, which allowed the development of a conceptual model comprising 53 service quality…

  4. Augmenting Visual Analysis in Single-Case Research with Hierarchical Linear Modeling

    Science.gov (United States)

    Davis, Dawn H.; Gagne, Phill; Fredrick, Laura D.; Alberto, Paul A.; Waugh, Rebecca E.; Haardorfer, Regine

    2013-01-01

    The purpose of this article is to demonstrate how hierarchical linear modeling (HLM) can be used to enhance visual analysis of single-case research (SCR) designs. First, the authors demonstrated the use of growth modeling via HLM to augment visual analysis of a sophisticated single-case study. Data were used from a delayed multiple baseline…

  5. Hierarchical Linear Modeling with Maximum Likelihood, Restricted Maximum Likelihood, and Fully Bayesian Estimation

    Science.gov (United States)

    Boedeker, Peter

    2017-01-01

    Hierarchical linear modeling (HLM) is a useful tool when analyzing data collected from groups. There are many decisions to be made when constructing and estimating a model in HLM including which estimation technique to use. Three of the estimation techniques available when analyzing data with HLM are maximum likelihood, restricted maximum…

  6. Missing Data Treatments at the Second Level of Hierarchical Linear Models

    Science.gov (United States)

    St. Clair, Suzanne W.

    2011-01-01

    The current study evaluated the performance of traditional versus modern MDTs in the estimation of fixed-effects and variance components for data missing at the second level of an hierarchical linear model (HLM) model across 24 different study conditions. Variables manipulated in the analysis included, (a) number of Level-2 variables with missing…

  7. Hierarchical Bayesian modeling of the space-time diffusion patterns of cholera epidemic in Kumasi, Ghana

    NARCIS (Netherlands)

    Osei, Frank B.; Duker, Alfred A.; Stein, Alfred

    2011-01-01

    This study analyses the joint effects of the two transmission routes of cholera on the space-time diffusion dynamics. Statistical models are developed and presented to investigate the transmission network routes of cholera diffusion. A hierarchical Bayesian modelling approach is employed for a joint

  8. The Hierarchical Trend Model for property valuation and local price indices

    NARCIS (Netherlands)

    M.K. Francke; G.A. Vos

    2002-01-01

    This paper presents a hierarchical trend model (HTM) for selling prices of houses, addressing three main problems: the spatial and temporal dependence of selling prices and the dependency of price index changes on housing quality. In this model the general price trend, cluster-level price trends, an

  9. Measuring Service Quality in Higher Education: Development of a Hierarchical Model (HESQUAL)

    Science.gov (United States)

    Teeroovengadum, Viraiyan; Kamalanabhan, T. J.; Seebaluck, Ashley Keshwar

    2016-01-01

    Purpose: This paper aims to develop and empirically test a hierarchical model for measuring service quality in higher education. Design/methodology/approach: The first phase of the study consisted of qualitative research methods and a comprehensive literature review, which allowed the development of a conceptual model comprising 53 service quality…

  10. Developing Model for Supply Chain Management - the Case of Croatia

    Directory of Open Access Journals (Sweden)

    E. Jurun

    2004-01-01

    Full Text Available This paper describes a model of supply chain management (SCM. It explains overall supply chain issues, strategic importance of SCM, supply chain strategies and an example of mathematical formulation. A supply chain is a global network of organizations that cooperate to improve the flows of material and information between suppliers and customers at the lowest cost and the highest speed. The objective of a supply chain is customer satisfaction. At the strategic level, a supply chain can be considered as being composed of five activities: buy, make, move, store and sell. Each activity is a module. The set of modules, along with its links, constitutes a model of the supply chain. Our paper presents some insights into the supply chain strategies of companies in Croatia. The major goal of this paper is to show a model for supply chain management in mathematical terms, with an example of mathematical formulation.

  11. Hierarchical Linear Modeling for Analysis of Ecological Momentary Assessment Data in Physical Medicine and Rehabilitation Research.

    Science.gov (United States)

    Terhorst, Lauren; Beck, Kelly Battle; McKeon, Ashlee B; Graham, Kristin M; Ye, Feifei; Shiffman, Saul

    2017-08-01

    Ecological momentary assessment (EMA) methods collect real-time data in real-world environments, which allow physical medicine and rehabilitation researchers to examine objective outcome data and reduces bias from retrospective recall. The statistical analysis of EMA data is directly related to the research question and the temporal design of the study. Hierarchical linear modeling, which accounts for multiple observations from the same participant, is a particularly useful approach to analyzing EMA data. The objective of this paper was to introduce the process of conducting hierarchical linear modeling analyses with EMA data. This is accomplished using exemplars from recent physical medicine and rehabilitation literature.

  12. A VENSIM BASED ANALYSIS FOR SUPPLY CHAIN MODEL

    Directory of Open Access Journals (Sweden)

    Mohammad SHAMSUDDOHA

    2014-01-01

    Full Text Available The emphasis on supply chain has increased in recent years among academic and industry circles. In this paper, a supply chain model will be developed based on a case study of the poultry industry under the Vensim environment. System dynamics, supply chain, design science and case method under positivist and quantitative paradigm will be studied to develop a simulation model. The objectives of this paper are to review literature, develop a Vensim based simulation supply chain model, and examine the model qualitatively and quantitatively. The model will be also briefly discussed in relation of among forward, reverse and mainstream supply chain of the case.

  13. Quantifying and reducing uncertainties in estimated soil CO2 fluxes with hierarchical data-model integration

    Science.gov (United States)

    Ogle, Kiona; Ryan, Edmund; Dijkstra, Feike A.; Pendall, Elise

    2016-12-01

    Nonsteady state chambers are often employed to measure soil CO2 fluxes. CO2 concentrations (C) in the headspace are sampled at different times (t), and fluxes (f) are calculated from regressions of C versus t based on a limited number of observations. Variability in the data can lead to poor fits and unreliable f estimates; groups with too few observations or poor fits are often discarded, resulting in "missing" f values. We solve these problems by fitting linear (steady state) and nonlinear (nonsteady state, diffusion based) models of C versus t, within a hierarchical Bayesian framework. Data are from the Prairie Heating and CO2 Enrichment study that manipulated atmospheric CO2, temperature, soil moisture, and vegetation. CO2 was collected from static chambers biweekly during five growing seasons, resulting in >12,000 samples and >3100 groups and associated fluxes. We compare f estimates based on nonhierarchical and hierarchical Bayesian (B versus HB) versions of the linear and diffusion-based (L versus D) models, resulting in four different models (BL, BD, HBL, and HBD). Three models fit the data exceptionally well (R2 ≥ 0.98), but the BD model was inferior (R2 = 0.87). The nonhierarchical models (BL and BD) produced highly uncertain f estimates (wide 95% credible intervals), whereas the hierarchical models (HBL and HBD) produced very precise estimates. Of the hierarchical versions, the linear model (HBL) underestimated f by 33% relative to the nonsteady state model (HBD). The hierarchical models offer improvements upon traditional nonhierarchical approaches to estimating f, and we provide example code for the models.

  14. Do means-end chains exist? Experimental tests of their hierarchicity, automatic spreading activation, directionality, and self-relevance

    DEFF Research Database (Denmark)

    Scholderer, Joachim; Grunert, Klaus G.

    2005-01-01

    Despite its popularity in consumer research, means-end chain theory suffers from problems of unconfirmed validity: the nomological status of its central construct, the means-end chain, is still unknown. The aim of the research reported here was threefold: (a)to reformulate means-end chain theory ...

  15. Population-reaction model and microbial experimental ecosystems for understanding hierarchical dynamics of ecosystems.

    Science.gov (United States)

    Hosoda, Kazufumi; Tsuda, Soichiro; Kadowaki, Kohmei; Nakamura, Yutaka; Nakano, Tadashi; Ishii, Kojiro

    2016-02-01

    Understanding ecosystem dynamics is crucial as contemporary human societies face ecosystem degradation. One of the challenges that needs to be recognized is the complex hierarchical dynamics. Conventional dynamic models in ecology often represent only the population level and have yet to include the dynamics of the sub-organism level, which makes an ecosystem a complex adaptive system that shows characteristic behaviors such as resilience and regime shifts. The neglect of the sub-organism level in the conventional dynamic models would be because integrating multiple hierarchical levels makes the models unnecessarily complex unless supporting experimental data are present. Now that large amounts of molecular and ecological data are increasingly accessible in microbial experimental ecosystems, it is worthwhile to tackle the questions of their complex hierarchical dynamics. Here, we propose an approach that combines microbial experimental ecosystems and a hierarchical dynamic model named population-reaction model. We present a simple microbial experimental ecosystem as an example and show how the system can be analyzed by a population-reaction model. We also show that population-reaction models can be applied to various ecological concepts, such as predator-prey interactions, climate change, evolution, and stability of diversity. Our approach will reveal a path to the general understanding of various ecosystems and organisms. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  16. A Privacy Data-Oriented Hierarchical MapReduce Programming Model

    Directory of Open Access Journals (Sweden)

    Haiwen Han

    2013-08-01

    Full Text Available To realize privacy data protection efficiently in hybrid cloud service, a hierarchical control architecture based multi-cluster MapReduce programming model (the Hierarchical MapReduce Model,HMR is presented. Under this hierarchical control architecture,  data isolation and placement among private cloud and public clouds according to the data privacy characteristic is implemented by the control center in private cloud.  And then, to perform the corresponding distributed parallel computation correctly under the multi-clusters mode that is different to the conventional single-cluster mode, the Map-Reduce-GlobalReduce three stage scheduling process is designed. Limiting the computation about privacy data in private cloud while outsourcing the computation about non-privacy data to public clouds as much as possible, HMR reaches the performance of both security and low cost.  

  17. Sensor Network Data Fault Detection using Hierarchical Bayesian Space-Time Modeling

    OpenAIRE

    Ni, Kevin; Pottie, G J

    2009-01-01

    We present a new application of hierarchical Bayesian space-time (HBST) modeling: data fault detection in sensor networks primarily used in environmental monitoring situations. To show the effectiveness of HBST modeling, we develop a rudimentary tagging system to mark data that does not fit with given models. Using this, we compare HBST modeling against first order linear autoregressive (AR) modeling, which is a commonly used alternative due to its simplicity. We show that while HBST is mo...

  18. Globally COnstrained Local Function Approximation via Hierarchical Modelling, a Framework for System Modelling under Partial Information

    DEFF Research Database (Denmark)

    Øjelund, Henrik; Sadegh, Payman

    2000-01-01

    , constraints are introduced to ensure the conformity of the estimates to a gien global structure. Hierarchical models are then utilized as a tool to ccomodate global model uncertainties via parametric variabilities within the structure. The global parameters and their associated uncertainties are estimated...... simultaneously with the (local estimates of) function values. The approach is applied to modelling of a linear time variant dynamic system under prior linear time invariant structure where local regression fails as a result of high dimensionality.......Local function approximations concern fitting low order models to weighted data in neighbourhoods of the points where the approximations are desired. Despite their generality and convenience of use, local models typically suffer, among others, from difficulties arising in physical interpretation...

  19. A Supply Chain Model at the Strategic Level

    OpenAIRE

    Chauhan, Satyaveer Singh; Proth, Jean-Marie

    2001-01-01

    In this paper, we introduce the notion of strategic model of supply chain. At the strategic level, a supply chain is always composed of five basic activities, denoted by Buy, Make, Move, Store and Sell. We present a specific model and show how to optimize the related supply chain from a strategic point of view

  20. Polymerization as a Model Chain Reaction

    Science.gov (United States)

    Morton, Maurice

    1973-01-01

    Describes the features of the free radical, anionic, and cationic mechanisms of chain addition polymerization. Indicates that the nature of chain reactions can be best taught through the study of macromolecules. (CC)

  1. INFOGRAPHIC MODELING OF THE HIERARCHICAL STRUCTURE OF THE MANAGEMENT SYSTEM EXPOSED TO AN INNOVATIVE CONFLICT

    Directory of Open Access Journals (Sweden)

    Chulkov Vitaliy Olegovich

    2012-12-01

    Full Text Available This article deals with the infographic modeling of hierarchical management systems exposed to innovative conflicts. The authors analyze the facts that serve as conflict drivers in the construction management environment. The reasons for innovative conflicts include changes in hierarchical structures of management systems, adjustment of workers to new management conditions, changes in the ideology, etc. Conflicts under consideration may involve contradictions between requests placed by customers and the legislation, any risks that may originate from the above contradiction, conflicts arising from any failure to comply with any accepted standards of conduct, etc. One of the main objectives of the theory of hierarchical structures is to develop a model capable of projecting potential innovative conflicts. Models described in the paper reflect dynamic changes in patterns of external impacts within the conflict area. The simplest model element is a monad, or an indivisible set of characteristics of participants at the pre-set level. Interaction between two monads forms a diad. Modeling of situations that involve a different number of monads, diads, resources and impacts can improve methods used to control and manage hierarchical structures in the construction industry. However, in the absence of any mathematical models employed to simulate conflict-related events, processes and situations, any research into, projection and management of interpersonal and group-to-group conflicts are to be performed in the legal environment

  2. The Advancement Value Chain: An Exploratory Model

    Science.gov (United States)

    Leonard, Edward F., III

    2005-01-01

    Since the introduction of the value chain concept in 1985, several varying, yet virtually similar, value chains have been developed for the business enterprise. Shifting to higher education, can a value chain be found that links together the various activities of advancement so that an institution's leaders can actually look at the philanthropic…

  3. The Advancement Value Chain: An Exploratory Model

    Science.gov (United States)

    Leonard, Edward F., III

    2005-01-01

    Since the introduction of the value chain concept in 1985, several varying, yet virtually similar, value chains have been developed for the business enterprise. Shifting to higher education, can a value chain be found that links together the various activities of advancement so that an institution's leaders can actually look at the philanthropic…

  4. Performance Modeling of Communication Networks with Markov Chains

    CERN Document Server

    Mo, Jeonghoon

    2010-01-01

    This book is an introduction to Markov chain modeling with applications to communication networks. It begins with a general introduction to performance modeling in Chapter 1 where we introduce different performance models. We then introduce basic ideas of Markov chain modeling: Markov property, discrete time Markov chain (DTMe and continuous time Markov chain (CTMe. We also discuss how to find the steady state distributions from these Markov chains and how they can be used to compute the system performance metric. The solution methodologies include a balance equation technique, limiting probab

  5. The composite supply chain efficiency model: A case study of the Sishen-Saldanha supply chain

    Directory of Open Access Journals (Sweden)

    Leila L. Goedhals-Gerber

    2016-01-01

    Full Text Available As South Africa strives to be a major force in global markets, it is essential that South African supply chains achieve and maintain a competitive advantage. One approach to achieving this is to ensure that South African supply chains maximise their levels of efficiency. Consequently, the efficiency levels of South Africa’s supply chains must be evaluated. The objective of this article is to propose a model that can assist South African industries in becoming internationally competitive by providing them with a tool for evaluating their levels of efficiency both as individual firms and as a component in an overall supply chain. The Composite Supply Chain Efficiency Model (CSCEM was developed to measure supply chain efficiency across supply chains using variables identified as problem areas experienced by South African supply chains. The CSCEM is tested in this article using the Sishen-Saldanda iron ore supply chain as a case study. The results indicate that all three links or nodes along the Sishen-Saldanha iron ore supply chain performed well. The average efficiency of the rail leg was 97.34%, while the average efficiency of the mine and the port were 97% and 95.44%, respectively. The results also show that the CSCEM can be used by South African firms to measure their levels of supply chain efficiency. This article concludes with the benefits of the CSCEM.

  6. HIERARCHICAL METHODOLOGY FOR MODELING HYDROGEN STORAGE SYSTEMS PART II: DETAILED MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, B; Donald L. Anton, D

    2008-12-22

    There is significant interest in hydrogen storage systems that employ a media which either adsorbs, absorbs or reacts with hydrogen in a nearly reversible manner. In any media based storage system the rate of hydrogen uptake and the system capacity is governed by a number of complex, coupled physical processes. To design and evaluate such storage systems, a comprehensive methodology was developed, consisting of a hierarchical sequence of models that range from scoping calculations to numerical models that couple reaction kinetics with heat and mass transfer for both the hydrogen charging and discharging phases. The scoping models were presented in Part I [1] of this two part series of papers. This paper describes a detailed numerical model that integrates the phenomena occurring when hydrogen is charged and discharged. A specific application of the methodology is made to a system using NaAlH{sub 4} as the storage media.

  7. Toward a Hierarchical Bayesian Framework for Modelling the Effect of Regional Diversity on Household Expenditure

    Directory of Open Access Journals (Sweden)

    Brodjol Sutijo Supri Ulama

    2012-01-01

    Full Text Available Problem statement: Household expenditure analysis was highly demanding for government in order to formulate its policy. Since household data was viewed as hierarchical structure with household nested in its regional residence which varies inter region, the contextual welfare analysis was needed. This study proposed to develop a hierarchical model for estimating household expenditure in an attempt to measure the effect of regional diversity by taking into account district characteristics and household attributes using a Bayesian approach. Approach: Due to the variation of household expenditure data which was captured by the three parameters of Log-Normal (LN3 distribution, the model was developed based on LN3 distribution. Data used in this study was household expenditure data in Central Java, Indonesia. Since, data were unbalanced and hierarchical models using a classical approach work well for balanced data, thus the estimation process was done by using Bayesian method with MCMC and Gibbs sampling. Results: The hierarchical Bayesian model based on LN3 distribution could be implemented to explain the variation of household expenditure using district characteristics and household attributes. Conclusion: The model shows that districts characteristics which include demographic and economic conditions of districts and the availability of public facilities which are strongly associated with a dimension of human development index, i.e., economic, education and health, do affect to household expenditure through its household attributes."

  8. Application of hierarchical genetic models to Raven and WAIS subtests: a Dutch twin study.

    Science.gov (United States)

    Rijsdijk, Frühling V; Vernon, P A; Boomsma, Dorret I

    2002-05-01

    Hierarchical models of intelligence are highly informative and widely accepted. Application of these models to twin data, however, is sparse. This paper addresses the question of how a genetic hierarchical model fits the Wechsler Adult Intelligence Scale (WAIS) subtests and the Raven Standard Progressive test score, collected in 194 18-year-old Dutch twin pairs. We investigated whether first-order group factors possess genetic and environmental variance independent of the higher-order general factor and whether the hierarchical structure is significant for all sources of variance. A hierarchical model with the 3 Cohen group-factors (verbal comprehension, perceptual organisation and freedom-from-distractibility) and a higher-order g factor showed the best fit to the phenotypic data and to additive genetic influences (A), whereas the unique environmental source of variance (E) could be modeled by a single general factor and specifics. There was no evidence for common environmental influences. The covariation among the WAIS group factors and the covariation between the group factors and the Raven is predominantly influenced by a second-order genetic factor and strongly support the notion of a biological basis of g.

  9. A Hierarchical Bayesian Model to Predict Self-Thinning Line for Chinese Fir in Southern China.

    Directory of Open Access Journals (Sweden)

    Xiongqing Zhang

    Full Text Available Self-thinning is a dynamic equilibrium between forest growth and mortality at full site occupancy. Parameters of the self-thinning lines are often confounded by differences across various stand and site conditions. For overcoming the problem of hierarchical and repeated measures, we used hierarchical Bayesian method to estimate the self-thinning line. The results showed that the self-thinning line for Chinese fir (Cunninghamia lanceolata (Lamb.Hook. plantations was not sensitive to the initial planting density. The uncertainty of model predictions was mostly due to within-subject variability. The simulation precision of hierarchical Bayesian method was better than that of stochastic frontier function (SFF. Hierarchical Bayesian method provided a reasonable explanation of the impact of other variables (site quality, soil type, aspect, etc. on self-thinning line, which gave us the posterior distribution of parameters of self-thinning line. The research of self-thinning relationship could be benefit from the use of hierarchical Bayesian method.

  10. Understanding data supply chains by using the Supply-Chain Operations Reference (SCOR) model

    CSIR Research Space (South Africa)

    Schmitz, Peter MU

    2007-09-01

    Full Text Available processes. This paper looks into the spatial data supply chain of ESI-GIS unit of Eskom and the use of an adapted SCOR model (GISDataSCOR) to model and analyse the supply chain. Spatial data needs to be sourced from various sources (SOURCE), which...

  11. Thermal chain model of electro- and magnetorheology

    Energy Technology Data Exchange (ETDEWEB)

    MARTIN,JAMES E.

    2000-04-06

    Steady shear 3-D simulations of electro- and magnetorheology in a uniaxial field are presented. These large scale simulations are three dimensional, and include the effect of Brownian motion. In the absence of thermal fluctuations, the expected shear thinning viscosity is observed in steady shear, and a striped phase is seen to rapidly form in a uniaxial field, with a shear slip zone in each sheet. However, as the influence of Brownian motion increases, the fluid stress decreases, especially at lower Mason numbers, and the striped phase eventually disappears, even when the fluid stress is still high. To account for the uniaxial steady shear data the author proposes a microscopic chain model of the role played by thermal fluctuations on the rheology of ER and MR fluids that delineates the regimes where an applied field can impact the fluid viscosity, and gives an analytical prediction for the thermal effect.

  12. Stochastic Simulation of a Full-Chain Reptation Model with Constraint Release, Chain-Length Fluctuations and Chain Stretching

    DEFF Research Database (Denmark)

    Neergaard, Jesper; Schieber, Jay D.

    1999-01-01

    A self-consistent reptation model that includes chain stretching, chain-length fluctuations, segment connectivity and constraint release is used to predict transient and steady flows. Quantitative comparisons are made with entangledsolution data. The model is able to capture quantitatively all fe...... for differentmolecular weight, the transient and steady-state behavior of the extinction angle, and the stress relaxation in cessation of steady shear flow....

  13. Meta-Analysis in Higher Education: An Illustrative Example Using Hierarchical Linear Modeling

    Science.gov (United States)

    Denson, Nida; Seltzer, Michael H.

    2011-01-01

    The purpose of this article is to provide higher education researchers with an illustrative example of meta-analysis utilizing hierarchical linear modeling (HLM). This article demonstrates the step-by-step process of meta-analysis using a recently-published study examining the effects of curricular and co-curricular diversity activities on racial…

  14. The Hierarchical Factor Model of ADHD: Invariant across Age and National Groupings?

    Science.gov (United States)

    Toplak, Maggie E.; Sorge, Geoff B.; Flora, David B.; Chen, Wai; Banaschewski, Tobias; Buitelaar, Jan; Ebstein, Richard; Eisenberg, Jacques; Franke, Barbara; Gill, Michael; Miranda, Ana; Oades, Robert D.; Roeyers, Herbert; Rothenberger, Aribert; Sergeant, Joseph; Sonuga-Barke, Edmund; Steinhausen, Hans-Christoph; Thompson, Margaret; Tannock, Rosemary; Asherson, Philip; Faraone, Stephen V.

    2012-01-01

    Objective: To examine the factor structure of attention-deficit/hyperactivity disorder (ADHD) in a clinical sample of 1,373 children and adolescents with ADHD and their 1,772 unselected siblings recruited from different countries across a large age range. Hierarchical and correlated factor analytic models were compared separately in the ADHD and…

  15. Intraclass Correlation Coefficients in Hierarchical Designs: Evaluation Using Latent Variable Modeling

    Science.gov (United States)

    Raykov, Tenko

    2011-01-01

    Interval estimation of intraclass correlation coefficients in hierarchical designs is discussed within a latent variable modeling framework. A method accomplishing this aim is outlined, which is applicable in two-level studies where participants (or generally lower-order units) are clustered within higher-order units. The procedure can also be…

  16. Predicting Examination Performance Using an Expanded Integrated Hierarchical Model of Test Emotions and Achievement Goals

    Science.gov (United States)

    Putwain, Dave; Deveney, Carolyn

    2009-01-01

    The aim of this study was to examine an expanded integrative hierarchical model of test emotions and achievement goal orientations in predicting the examination performance of undergraduate students. Achievement goals were theorised as mediating the relationship between test emotions and performance. 120 undergraduate students completed…

  17. Enriching the Hierarchical Model of Achievement Motivation: Autonomous and Controlling Reasons Underlying Achievement Goals

    Science.gov (United States)

    Michou, Aikaterini; Vansteenkiste, Maarten; Mouratidis, Athanasios; Lens, Willy

    2014-01-01

    Background: The hierarchical model of achievement motivation presumes that achievement goals channel the achievement motives of need for achievement and fear of failure towards motivational outcomes. Yet, less is known whether autonomous and controlling reasons underlying the pursuit of achievement goals can serve as additional pathways between…

  18. Examining Factors Affecting Science Achievement of Hong Kong in PISA 2006 Using Hierarchical Linear Modeling

    Science.gov (United States)

    Lam, Terence Yuk Ping; Lau, Kwok Chi

    2014-01-01

    This study uses hierarchical linear modeling to examine the influence of a range of factors on the science performances of Hong Kong students in PISA 2006. Hong Kong has been consistently ranked highly in international science assessments, such as Programme for International Student Assessment and Trends in International Mathematics and Science…

  19. Meta-Analysis in Higher Education: An Illustrative Example Using Hierarchical Linear Modeling

    Science.gov (United States)

    Denson, Nida; Seltzer, Michael H.

    2011-01-01

    The purpose of this article is to provide higher education researchers with an illustrative example of meta-analysis utilizing hierarchical linear modeling (HLM). This article demonstrates the step-by-step process of meta-analysis using a recently-published study examining the effects of curricular and co-curricular diversity activities on racial…

  20. Analyzing Multilevel Data: Comparing Findings from Hierarchical Linear Modeling and Ordinary Least Squares Regression

    Science.gov (United States)

    Rocconi, Louis M.

    2013-01-01

    This study examined the differing conclusions one may come to depending upon the type of analysis chosen, hierarchical linear modeling or ordinary least squares (OLS) regression. To illustrate this point, this study examined the influences of seniors' self-reported critical thinking abilities three ways: (1) an OLS regression with the student…

  1. Symptom structure of PTSD: support for a hierarchical model separating core PTSD symptoms from dysphoria

    NARCIS (Netherlands)

    Rademaker, A.R.; Minnen, A. van; Ebberink, F.; Zuiden, M. van; Geuze, E.

    2012-01-01

    Background: As of yet, no collective agreement has been reached regarding the precise factor structure of posttraumatic stress disorder (PTSD). Several alternative factor-models have been proposed in the last decades. Objective: The current study examined the fit of a hierarchical adaptation of the

  2. Hierarchical linear modeling of longitudinal pedigree data for genetic association analysis

    DEFF Research Database (Denmark)

    Tan, Qihua; B Hjelmborg, Jacob V; Thomassen, Mads;

    2014-01-01

    on the mean level of a phenotype, they are not sufficiently straightforward to handle the kinship correlation on the time-dependent trajectories of a phenotype. We introduce a 2-level hierarchical linear model to separately assess the genetic associations with the mean level and the rate of change...

  3. A developmental model of hierarchical stage structure in objective moral judgements

    NARCIS (Netherlands)

    J. Boom; P.C.M. Molenaar

    1989-01-01

    A hierarchical structural model of moral judgment is proposed in which an S is characterized as occupying a particular moral stage. During development, the S's characteristic stage progresses along a latent, ordered dimension in an age-dependent way. Evaluation of prototypic statements representativ

  4. Decomposing Person and Occasion-Specific Effects: An Extension of Latent State-Trait (LSI) Theory to Hierarchical LST Models

    Science.gov (United States)

    Schermelleh-Engel, Karin; Keith, Nina; Moosbrugger, Helfried; Hodapp, Volker

    2004-01-01

    An extension of latent state-trait (LST) theory to hierarchical LST models is presented. In hierarchical LST models, the covariances between 2 or more latent traits are explained by a general 3rd-order factor, and the covariances between latent state residuals pertaining to different traits measured on the same measurement occasion are explained…

  5. Approximate Bayesian Computation by Subset Simulation using hierarchical state-space models

    Science.gov (United States)

    Vakilzadeh, Majid K.; Huang, Yong; Beck, James L.; Abrahamsson, Thomas

    2017-02-01

    A new multi-level Markov Chain Monte Carlo algorithm for Approximate Bayesian Computation, ABC-SubSim, has recently appeared that exploits the Subset Simulation method for efficient rare-event simulation. ABC-SubSim adaptively creates a nested decreasing sequence of data-approximating regions in the output space that correspond to increasingly closer approximations of the observed output vector in this output space. At each level, multiple samples of the model parameter vector are generated by a component-wise Metropolis algorithm so that the predicted output corresponding to each parameter value falls in the current data-approximating region. Theoretically, if continued to the limit, the sequence of data-approximating regions would converge on to the observed output vector and the approximate posterior distributions, which are conditional on the data-approximation region, would become exact, but this is not practically feasible. In this paper we study the performance of the ABC-SubSim algorithm for Bayesian updating of the parameters of dynamical systems using a general hierarchical state-space model. We note that the ABC methodology gives an approximate posterior distribution that actually corresponds to an exact posterior where a uniformly distributed combined measurement and modeling error is added. We also note that ABC algorithms have a problem with learning the uncertain error variances in a stochastic state-space model and so we treat them as nuisance parameters and analytically integrate them out of the posterior distribution. In addition, the statistical efficiency of the original ABC-SubSim algorithm is improved by developing a novel strategy to regulate the proposal variance for the component-wise Metropolis algorithm at each level. We demonstrate that Self-regulated ABC-SubSim is well suited for Bayesian system identification by first applying it successfully to model updating of a two degree-of-freedom linear structure for three cases: globally

  6. UNCERTAINTY SUPPLY CHAIN MODEL AND TRANSPORT IN ITS DEPLOYMENTS

    Directory of Open Access Journals (Sweden)

    Fabiana Lucena Oliveira

    2014-05-01

    Full Text Available This article discusses the Model Uncertainty of Supply Chain, and proposes a matrix with their transportation modes best suited to their chains. From the detailed analysis of the matrix of uncertainty, it is suggested transportation modes best suited to the management of these chains, so that transport is the most appropriate optimization of the gains previously proposed by the original model, particularly when supply chains are distant from suppliers of raw materials and / or supplies.Here we analyze in detail Agile Supply Chains, which is a result of Uncertainty Supply Chain Model, with special attention to Manaus Industrial Center. This research was done at Manaus Industrial Pole, which is a model of industrial agglomerations, based in Manaus, State of Amazonas (Brazil, which contemplates different supply chains and strategies sharing same infrastructure of transport, handling and storage and clearance process and uses inbound for suppliers of raw material.  The state of art contemplates supply chain management, uncertainty supply chain model, agile supply chains, Manaus Industrial Center (MIC and Brazilian legislation, as a business case, and presents concepts and features, of each one. The main goal is to present and discuss how transport is able to support Uncertainty Supply Chain Model, in order to complete management model. The results obtained confirms the hypothesis of integrated logistics processes are able to guarantee attractivity for industrial agglomerations, and open discussions when the suppliers are far from the manufacturer center, in a logistics management.

  7. An Exactly Soluble Hierarchical Clustering Model Inverse Cascades, Self-Similarity, and Scaling

    CERN Document Server

    Gabrielov, A; Turcotte, D L

    1999-01-01

    We show how clustering as a general hierarchical dynamical process proceeds via a sequence of inverse cascades to produce self-similar scaling, as an intermediate asymptotic, which then truncates at the largest spatial scales. We show how this model can provide a general explanation for the behavior of several models that has been described as ``self-organized critical,'' including forest-fire, sandpile, and slider-block models.

  8. The Impact of Neighborhood Characteristics on Housing Prices-An Application of Hierarchical Linear Modeling

    OpenAIRE

    Lee Chun Chang; Hui-Yu Lin

    2012-01-01

    Housing data are of a nested nature as houses are nested in a village, a town, or a county. This study thus applies HLM (hierarchical linear modelling) in an empirical study by adding neighborhood characteristic variables into the model for consideration. Using the housing data of 31 neighborhoods in the Taipei area as analysis samples and three HLM sub-models, this study discusses the impact of neighborhood characteristics on house prices. The empirical results indicate that the impact of va...

  9. A first-order dynamical model of hierarchical triple stars and its application

    CERN Document Server

    Xu, Xingbo; Fu, Yanning

    2015-01-01

    For most hierarchical triple stars, the classical double two-body model of zeroth-order cannot describe the motions of the components under the current observational accuracy. In this paper, Marchal's first-order analytical solution is implemented and a more efficient simplified version is applied to real triple stars. The results show that, for most triple stars, the proposed first-order model is preferable to the zeroth-order model either in fitting observational data or in predicting component positions.

  10. Hierarchical Web Page Classification Based on a Topic Model and Neighboring Pages Integration

    OpenAIRE

    Sriurai, Wongkot; Meesad, Phayung; Haruechaiyasak, Choochart

    2010-01-01

    Most Web page classification models typically apply the bag of words (BOW) model to represent the feature space. The original BOW representation, however, is unable to recognize semantic relationships between terms. One possible solution is to apply the topic model approach based on the Latent Dirichlet Allocation algorithm to cluster the term features into a set of latent topics. Terms assigned into the same topic are semantically related. In this paper, we propose a novel hierarchical class...

  11. Hierarchical multi-scale modeling of texture induced plastic anisotropy in sheet forming

    OpenAIRE

    Gawad, J.; van Bael, Albert; Eyckens, P.; Samaey, G.; Van Houtte, P.; Roose, D.

    2013-01-01

    In this paper we present a Hierarchical Multi-Scale (HMS) model of coupled evolutions of crystallographic texture and plastic anisotropy in plastic forming of polycrystalline metallic alloys. The model exploits the Finite Element formulation to describe the macroscopic deformation of the material. Anisotropy of the plastic properties is derived from a physics-based polycrystalline plasticity micro-scale model by means of virtual experiments. The homogenized micro-scale stress response given b...

  12. Technical Note: Probabilistically constraining proxy age–depth models within a Bayesian hierarchical reconstruction model

    Directory of Open Access Journals (Sweden)

    J. P. Werner

    2015-03-01

    Full Text Available Reconstructions of the late-Holocene climate rely heavily upon proxies that are assumed to be accurately dated by layer counting, such as measurements of tree rings, ice cores, and varved lake sediments. Considerable advances could be achieved if time-uncertain proxies were able to be included within these multiproxy reconstructions, and if time uncertainties were recognized and correctly modeled for proxies commonly treated as free of age model errors. Current approaches for accounting for time uncertainty are generally limited to repeating the reconstruction using each one of an ensemble of age models, thereby inflating the final estimated uncertainty – in effect, each possible age model is given equal weighting. Uncertainties can be reduced by exploiting the inferred space–time covariance structure of the climate to re-weight the possible age models. Here, we demonstrate how Bayesian hierarchical climate reconstruction models can be augmented to account for time-uncertain proxies. Critically, although a priori all age models are given equal probability of being correct, the probabilities associated with the age models are formally updated within the Bayesian framework, thereby reducing uncertainties. Numerical experiments show that updating the age model probabilities decreases uncertainty in the resulting reconstructions, as compared with the current de facto standard of sampling over all age models, provided there is sufficient information from other data sources in the spatial region of the time-uncertain proxy. This approach can readily be generalized to non-layer-counted proxies, such as those derived from marine sediments.

  13. Technical Note: Probabilistically constraining proxy age–depth models within a Bayesian hierarchical reconstruction model

    Directory of Open Access Journals (Sweden)

    J. P. Werner

    2014-12-01

    Full Text Available Reconstructions of late-Holocene climate rely heavily upon proxies that are assumed to be accurately dated by layer counting, such as measurement on tree rings, ice cores, and varved lake sediments. Considerable advances may be achievable if time uncertain proxies could be included within these multiproxy reconstructions, and if time uncertainties were recognized and correctly modeled for proxies commonly treated as free of age model errors. Current approaches to accounting for time uncertainty are generally limited to repeating the reconstruction using each of an ensemble of age models, thereby inflating the final estimated uncertainty – in effect, each possible age model is given equal weighting. Uncertainties can be reduced by exploiting the inferred space–time covariance structure of the climate to re-weight the possible age models. Here we demonstrate how Bayesian Hierarchical climate reconstruction models can be augmented to account for time uncertain proxies. Critically, while a priori all age models are given equal probability of being correct, the probabilities associated with the age models are formally updated within the Bayesian framework, thereby reducing uncertainties. Numerical experiments show that updating the age-model probabilities decreases uncertainty in the climate reconstruction, as compared with the current de-facto standard of sampling over all age models, provided there is sufficient information from other data sources in the region of the time-uncertain proxy. This approach can readily be generalized to non-layer counted proxies, such as those derived from marine sediments.

  14. A Hierarchical Latent Stochastic Differential Equation Model for Affective Dynamics

    Science.gov (United States)

    Oravecz, Zita; Tuerlinckx, Francis; Vandekerckhove, Joachim

    2011-01-01

    In this article a continuous-time stochastic model (the Ornstein-Uhlenbeck process) is presented to model the perpetually altering states of the core affect, which is a 2-dimensional concept underlying all our affective experiences. The process model that we propose can account for the temporal changes in core affect on the latent level. The key…

  15. A tactical supply chain planning model with multiple flexibility options

    DEFF Research Database (Denmark)

    Esmaeilikia, Masoud; Fahimnia, Behnam; Sarkis, Joeseph

    2016-01-01

    Supply chain flexibility is widely recognized as an approach to manage uncertainty. Uncertainty in the supply chain may arise from a number of sources such as demand and supply interruptions and lead time variability. A tactical supply chain planning model with multiple flexibility options...... incorporated in sourcing, manufacturing and logistics functions can be used for the analysis of flexibility adjustment in an existing supply chain. This paper develops such a tactical supply chain planning model incorporating a realistic range of flexibility options. A novel solution method is designed...

  16. Process chain modeling and selection in an additive manufacturing context

    DEFF Research Database (Denmark)

    Thompson, Mary Kathryn; Stolfi, Alessandro; Mischkot, Michael

    2016-01-01

    can compete with traditional process chains for small production runs. Combining both types of technology added cost but no benefit in this case. The new process chain model can be used to explain the results and support process selection, but process chain prototyping is still important for rapidly......This paper introduces a new two-dimensional approach to modeling manufacturing process chains. This approach is used to consider the role of additive manufacturing technologies in process chains for a part with micro scale features and no internal geometry. It is shown that additive manufacturing...

  17. A modeling framework for supply chain simulation

    NARCIS (Netherlands)

    van der Zee, D.J.; van der Vorst, J.G.A.J.

    2002-01-01

    In many industries logistic optimization on a company scale is no longer sufficient to meet the competition. Nowadays, competition takes place between supply chains. Intrinsic to the concept and success of a supply chain is the tuning of the activities of the companies involved. Given the complexity

  18. Towards effective food chains : models and applications

    NARCIS (Netherlands)

    Trienekens, J.H.; Top, J.L.; Vorst, van der J.G.A.J.; Beulens, A.J.M.

    2010-01-01

    Food chain management research can help in the analysis and redesign of value creation and the product flow throughout the chain from primary producer down to the consumer. The aim is to meet consumer and societal requirements effectively at minimal cost. In the Wageningen UR strategic research prog

  19. Chain graph models and their causal interpretations

    DEFF Research Database (Denmark)

    Lauritzen, Steffen Lilholt; Richardson, Thomas S.

    2002-01-01

    Chain graphs are a natural generalization of directed acyclic graphs and undirected graphs. However, the apparent simplicity of chain graphs belies the subtlety of the conditional independence hypotheses that they represent. There are many simple and apparently plausible, but ultimately fallaciou...

  20. A hybrid deterministic-probabilistic approach to model the mechanical response of helically arranged hierarchical strands

    Science.gov (United States)

    Fraldi, M.; Perrella, G.; Ciervo, M.; Bosia, F.; Pugno, N. M.

    2017-09-01

    Very recently, a Weibull-based probabilistic strategy has been successfully applied to bundles of wires to determine their overall stress-strain behaviour, also capturing previously unpredicted nonlinear and post-elastic features of hierarchical strands. This approach is based on the so-called ;Equal Load Sharing (ELS); hypothesis by virtue of which, when a wire breaks, the load acting on the strand is homogeneously redistributed among the surviving wires. Despite the overall effectiveness of the method, some discrepancies between theoretical predictions and in silico Finite Element-based simulations or experimental findings might arise when more complex structures are analysed, e.g. helically arranged bundles. To overcome these limitations, an enhanced hybrid approach is proposed in which the probability of rupture is combined with a deterministic mechanical model of a strand constituted by helically-arranged and hierarchically-organized wires. The analytical model is validated comparing its predictions with both Finite Element simulations and experimental tests. The results show that generalized stress-strain responses - incorporating tension/torsion coupling - are naturally found and, once one or more elements break, the competition between geometry and mechanics of the strand microstructure, i.e. the different cross sections and helical angles of the wires in the different hierarchical levels of the strand, determines the no longer homogeneous stress redistribution among the surviving wires whose fate is hence governed by a ;Hierarchical Load Sharing; criterion.

  1. The Evolution of Galaxy Clustering in Hierarchical Models

    OpenAIRE

    1999-01-01

    The main ingredients of recent semi-analytic models of galaxy formation are summarised. We present predictions for the galaxy clustering properties of a well specified LCDM model whose parameters are constrained by observed local galaxy properties. We present preliminary predictions for evolution of clustering that can be probed with deep pencil beam surveys.

  2. A Hierarchical Multiobjective Routing Model for MPLS Networks with Two Service Classes

    Science.gov (United States)

    Craveirinha, José; Girão-Silva, Rita; Clímaco, João; Martins, Lúcia

    This work presents a model for multiobjective routing in MPLS networks formulated within a hierarchical network-wide optimization framework, with two classes of services, namely QoS and Best Effort (BE) services. The routing model uses alternative routing and hierarchical optimization with two optimization levels, including fairness objectives. Another feature of the model is the use of an approximate stochastic representation of the traffic flows in the network, based on the concept of effective bandwidth. The theoretical foundations of a heuristic strategy for finding “good” compromise solutions to the very complex bi-level routing optimization problem, based on a conjecture concerning the definition of marginal implied costs for QoS flows and BE flows, will be described. The main features of a first version of this heuristic based on a bi-objective shortest path model and some preliminary results for a benchmark network will also be revealed.

  3. Hospital- and patient-related characteristics determining maternity length of stay: a hierarchical linear model approach.

    Science.gov (United States)

    Leung, K M; Elashoff, R M; Rees, K S; Hasan, M M; Legorreta, A P

    1998-03-01

    The purpose of this study was to identify factors related to pregnancy and childbirth that might be predictive of a patient's length of stay after delivery and to model variations in length of stay. California hospital discharge data on maternity patients (n = 499,912) were analyzed. Hierarchical linear modeling was used to adjust for patient case mix and hospital characteristics and to account for the dependence of outcome variables within hospitals. Substantial variation in length of stay among patients was observed. The variation was mainly attributed to delivery type (vaginal or cesarean section), the patient's clinical risk factors, and severity of complications (if any). Furthermore, hospitals differed significantly in maternity lengths of stay even after adjustment for patient case mix. Developing risk-adjusted models for length of stay is a complex process but is essential for understanding variation. The hierarchical linear model approach described here represents a more efficient and appropriate way of studying interhospital variations than the traditional regression approach.

  4. Resource discovery algorithm based on hierarchical model and Conscious search in Grid computing system

    Directory of Open Access Journals (Sweden)

    Nasim Nickbakhsh

    2017-03-01

    Full Text Available The distributed system of Grid subscribes the non-homogenous sources at a vast level in a dynamic manner. The resource discovery manner is very influential on the efficiency and of quality the system functionality. The “Bitmap” model is based on the hierarchical and conscious search model that allows for less traffic and low number of messages in relation to other methods in this respect. This proposed method is based on the hierarchical and conscious search model that enhances the Bitmap method with the objective to reduce traffic, reduce the load of resource management processing, reduce the number of emerged messages due to resource discovery and increase the resource according speed. The proposed method and the Bitmap method are simulated through Arena tool. This proposed model is abbreviated as RNTL.

  5. Hierarchical Network Design

    DEFF Research Database (Denmark)

    Thomadsen, Tommy

    2005-01-01

    of different types of hierarchical networks. This is supplemented by a review of ring network design problems and a presentation of a model allowing for modeling most hierarchical networks. We use methods based on linear programming to design the hierarchical networks. Thus, a brief introduction to the various....... The thesis investigates models for hierarchical network design and methods used to design such networks. In addition, ring network design is considered, since ring networks commonly appear in the design of hierarchical networks. The thesis introduces hierarchical networks, including a classification scheme...... linear programming based methods is included. The thesis is thus suitable as a foundation for study of design of hierarchical networks. The major contribution of the thesis consists of seven papers which are included in the appendix. The papers address hierarchical network design and/or ring network...

  6. A hierarchical model to estimate fish abundance in alpine streams by using removal sampling data from multiple locations.

    Science.gov (United States)

    Laplanche, Christophe

    2010-04-01

    The author compares 12 hierarchical models in the aim of estimating the abundance of fish in alpine streams by using removal sampling data collected at multiple locations. The most expanded model accounts for (i) variability of the abundance among locations, (ii) variability of the catchability among locations, and (iii) residual variability of the catchability among fish. Eleven model reductions are considered depending which variability is included in the model. The more restrictive model considers none of the aforementioned variabilities. Computations of the latter model can be achieved by using the algorithm presented by Carle and Strub (Biometrics 1978, 34, 621-630). Maximum a posteriori and interval estimates of the parameters as well as the Akaike and the Bayesian information criterions of model fit are computed by using samples simulated by a Markov chain Monte Carlo method. The models are compared by using a trout (Salmo trutta fario) parr (0+) removal sampling data set collected at three locations in the Pyrénées mountain range (Haute-Garonne, France) in July 2006. Results suggest that, in this case study, variability of the catchability is not significant, either among fish or locations. Variability of the abundance among locations is significant. 95% interval estimates of the abundances at the three locations are [0.15, 0.24], [0.26, 0.36], and [0.45, 0.58] parrs per m(2). Such differences are likely the consequence of habitat variability.

  7. Bayesian hierarchical joint modeling of repeatedly measured continuous and ordinal markers of disease severity: Application to Ugandan diabetes data.

    Science.gov (United States)

    Buhule, O D; Wahed, A S; Youk, A O

    2017-08-22

    Modeling of correlated biomarkers jointly has been shown to improve the efficiency of parameter estimates, leading to better clinical decisions. In this paper, we employ a joint modeling approach to a unique diabetes dataset, where blood glucose (continuous) and urine glucose (ordinal) measures of disease severity for diabetes are known to be correlated. The postulated joint model assumes that the outcomes are from distributions that are in the exponential family and hence modeled as multivariate generalized linear mixed effects model associated through correlated and/or shared random effects. The Markov chain Monte Carlo Bayesian approach is used to approximate posterior distribution and draw inference on the parameters. This proposed methodology provides a flexible framework to account for the hierarchical structure of the highly unbalanced data as well as the association between the 2 outcomes. The results indicate improved efficiency of parameter estimates when blood glucose and urine glucose are modeled jointly. Moreover, the simulation studies show that estimates obtained from the joint model are consistently less biased and more efficient than those in the separate models. Copyright © 2017 John Wiley & Sons, Ltd.

  8. The high redshift galaxy population in hierarchical galaxy formation models

    CERN Document Server

    Kitzbichler, M G; Kitzbichler, Manfred G.; White, Simon D. M.

    2006-01-01

    We compare observations of the high redshift galaxy population to the predictions of the galaxy formation model of Croton et al. (2006). This model, implemented on the Millennium Simulation of the concordance LCDM cosmogony, introduces "radio mode" feedback from the central galaxies of groups and clusters in order to obtain quantitative agreement with the luminosity, colour, morphology and clustering properties of the low redshift galaxy population. Here we compare the predictions of this same model to the observed counts and redshift distributions of faint galaxies, as well as to their inferred luminosity and mass functions out to redshift 5. With the exception of the mass functions, all these properties are sensitive to modelling of dust obscuration. A simple but plausible treatment gives moderately good agreement with most of the data, although the predicted abundance of relatively massive (~M*) galaxies appears systematically high at high redshift, suggesting that such galaxies assemble earlier in this mo...

  9. Sparse Event Modeling with Hierarchical Bayesian Kernel Methods

    Science.gov (United States)

    2016-01-05

    the kernel function which depends on the application and the model user. This research uses the most popular kernel function, the radial basis...an important role in the nation’s economy. Unfortunately, the system’s reliability is declining due to the aging components of the network [Grier...kernel function. Gaussian Bayesian kernel models became very popular recently and were extended and applied to a number of classification problems. An

  10. Modeling Carbon Chain Anions in L1527

    CERN Document Server

    Harada, Nanase

    2008-01-01

    The low-mass protostellar region L1527 is unusual because it contains observable abundances of unsaturated carbon-chain molecules including CnH radicals, H2Cn carbenes, cyanopolyynes, and the negative ions C4H- and C6H-, all of which are more associated with cold cores than with protostellar regions. Sakai et al. suggested that these molecules are formed in L1527 from the chemical precursor methane, which evaporates from the grains during the heat-up of the region. With the gas-phase osu.03.2008 network extended to include negative ions of the families Cn-, and CnH-, as well as the newly detected C3N-, we modeled the chemistry that occurs following methane evaporation at T~ 25-30 K. We are able to reproduce most of the observed molecular abundances in L1527 at a time of ~5000 yr. At later times, the overall abundance of anions become greater than that of electrons, which has an impact on many organic species and ions. The anion-to-neutral ratio in our calculation is in good agreement with observation for C6H-...

  11. Modelling lean and green supply chain

    OpenAIRE

    Duarte, Susana Carla Vieira Lino Medina

    2013-01-01

    Dissertação para obtenção do Grau de Doutor em Engenharia Industrial The success of an organization depends on the effective control of its supply chain. It is important to recognize new opportunities for organization and its supply chain. In the last few years the approach to lean, agile, resilient and green supply chain paradigms has been addressed in the scientific literature. Research in this field shows that the integration of these concepts revealed some contradictions among so...

  12. Accounting for uncertainty in ecological analysis: the strengths and limitations of hierarchical statistical modeling.

    Science.gov (United States)

    Cressie, Noel; Calder, Catherine A; Clark, James S; Ver Hoef, Jay M; Wikle, Christopher K

    2009-04-01

    Analyses of ecological data should account for the uncertainty in the process(es) that generated the data. However, accounting for these uncertainties is a difficult task, since ecology is known for its complexity. Measurement and/or process errors are often the only sources of uncertainty modeled when addressing complex ecological problems, yet analyses should also account for uncertainty in sampling design, in model specification, in parameters governing the specified model, and in initial and boundary conditions. Only then can we be confident in the scientific inferences and forecasts made from an analysis. Probability and statistics provide a framework that accounts for multiple sources of uncertainty. Given the complexities of ecological studies, the hierarchical statistical model is an invaluable tool. This approach is not new in ecology, and there are many examples (both Bayesian and non-Bayesian) in the literature illustrating the benefits of this approach. In this article, we provide a baseline for concepts, notation, and methods, from which discussion on hierarchical statistical modeling in ecology can proceed. We have also planted some seeds for discussion and tried to show where the practical difficulties lie. Our thesis is that hierarchical statistical modeling is a powerful way of approaching ecological analysis in the presence of inevitable but quantifiable uncertainties, even if practical issues sometimes require pragmatic compromises.

  13. Methodology to develop crash modification functions for road safety treatments with fully specified and hierarchical models.

    Science.gov (United States)

    Chen, Yongsheng; Persaud, Bhagwant

    2014-09-01

    Crash modification factors (CMFs) for road safety treatments are developed as multiplicative factors that are used to reflect the expected changes in safety performance associated with changes in highway design and/or the traffic control features. However, current CMFs have methodological drawbacks. For example, variability with application circumstance is not well understood, and, as important, correlation is not addressed when several CMFs are applied multiplicatively. These issues can be addressed by developing safety performance functions (SPFs) with components of crash modification functions (CM-Functions), an approach that includes all CMF related variables, along with others, while capturing quantitative and other effects of factors and accounting for cross-factor correlations. CM-Functions can capture the safety impact of factors through a continuous and quantitative approach, avoiding the problematic categorical analysis that is often used to capture CMF variability. There are two formulations to develop such SPFs with CM-Function components - fully specified models and hierarchical models. Based on sample datasets from two Canadian cities, both approaches are investigated in this paper. While both model formulations yielded promising results and reasonable CM-Functions, the hierarchical model was found to be more suitable in retaining homogeneity of first-level SPFs, while addressing CM-Functions in sub-level modeling. In addition, hierarchical models better capture the correlations between different impact factors.

  14. Probabilistic Inference: Task Dependency and Individual Differences of Probability Weighting Revealed by Hierarchical Bayesian Modeling.

    Science.gov (United States)

    Boos, Moritz; Seer, Caroline; Lange, Florian; Kopp, Bruno

    2016-01-01

    Cognitive determinants of probabilistic inference were examined using hierarchical Bayesian modeling techniques. A classic urn-ball paradigm served as experimental strategy, involving a factorial two (prior probabilities) by two (likelihoods) design. Five computational models of cognitive processes were compared with the observed behavior. Parameter-free Bayesian posterior probabilities and parameter-free base rate neglect provided inadequate models of probabilistic inference. The introduction of distorted subjective probabilities yielded more robust and generalizable results. A general class of (inverted) S-shaped probability weighting functions had been proposed; however, the possibility of large differences in probability distortions not only across experimental conditions, but also across individuals, seems critical for the model's success. It also seems advantageous to consider individual differences in parameters of probability weighting as being sampled from weakly informative prior distributions of individual parameter values. Thus, the results from hierarchical Bayesian modeling converge with previous results in revealing that probability weighting parameters show considerable task dependency and individual differences. Methodologically, this work exemplifies the usefulness of hierarchical Bayesian modeling techniques for cognitive psychology. Theoretically, human probabilistic inference might be best described as the application of individualized strategic policies for Bayesian belief revision.

  15. Principal-subordinate hierarchical multi-objective programming model of initial water rights allocation

    Directory of Open Access Journals (Sweden)

    Dan WU

    2009-06-01

    Full Text Available The principal-subordinate hierarchical multi-objective programming model of initial water rights allocation was developed based on the principle of coordinated and sustainable development of different regions and water sectors within a basin. With the precondition of strictly controlling maximum emissions rights, initial water rights were allocated between the first and the second levels of the hierarchy in order to promote fair and coordinated development across different regions of the basin and coordinated and efficient water use across different water sectors, realize the maximum comprehensive benefits to the basin, promote the unity of quantity and quality of initial water rights allocation, and eliminate water conflict across different regions and water sectors. According to interactive decision-making theory, a principal-subordinate hierarchical interactive iterative algorithm based on the satisfaction degree was developed and used to solve the initial water rights allocation model. A case study verified the validity of the model.

  16. Principal-subordinate hierarchical multi-objective programming model of initial water rights allocation

    Institute of Scientific and Technical Information of China (English)

    Dan WU; Feng-ping WU; Yan-ping CHEN

    2009-01-01

    The principal-subordinate hierarchical multi-objective programming model of initial water rights allocation was developed based on the principle of coordinated and sustainable development of different regions and water sectors within a basin. With the precondition of strictly controlling maximum emissions rights, initial water rights were allocated between the first and the second levels of the hierarchy in order to promote fair and coordinated development across different regions of the basin and coordinated and efficient water use across different water sectors, realize the maximum comprehensive benefits to the basin, promote the unity of quantity and quality of initial water rights allocation, and eliminate water conflict across different regions and water sectors. According to interactive decision-making theory, a principal-subordinate hierarchical interactive iterative algorithm based on the satisfaction degree was developed and used to solve the initial water rights allocation model. A case study verified the validity of the model.

  17. Adaptive object recognition model using incremental feature representation and hierarchical classification.

    Science.gov (United States)

    Jeong, Sungmoon; Lee, Minho

    2012-01-01

    This paper presents an adaptive object recognition model based on incremental feature representation and a hierarchical feature classifier that offers plasticity to accommodate additional input data and reduces the problem of forgetting previously learned information. The incremental feature representation method applies adaptive prototype generation with a cortex-like mechanism to conventional feature representation to enable an incremental reflection of various object characteristics, such as feature dimensions in the learning process. A feature classifier based on using a hierarchical generative model recognizes various objects with variant feature dimensions during the learning process. Experimental results show that the adaptive object recognition model successfully recognizes single and multiple-object classes with enhanced stability and flexibility.

  18. Design of Experiments for Factor Hierarchization in Complex Structure Modelling

    Directory of Open Access Journals (Sweden)

    C. Kasmi

    2013-07-01

    Full Text Available Modelling the power-grid network is of fundamental interest to analyse the conducted propagation of unintentional and intentional electromagnetic interferences. The propagation is indeed highly influenced by the channel behaviour. In this paper, we investigate the effects of appliances and the position of cables in a low voltage network. First, the power-grid architecture is described. Then, the principle of Experimental Design is recalled. Next, the methodology is applied to power-grid modelling. Finally, we propose an analysis of the statistical moments of the experimental design results. Several outcomes are provided to describe the effects induced by parameter variability on the conducted propagation of spurious compromising emanations.

  19. A hierarchical Bayes error correction model to explain dynamic effects

    NARCIS (Netherlands)

    D. Fok (Dennis); C. Horváth (Csilla); R. Paap (Richard); Ph.H.B.F. Franses (Philip Hans)

    2004-01-01

    textabstractFor promotional planning and market segmentation it is important to understand the short-run and long-run effects of the marketing mix on category and brand sales. In this paper we put forward a sales response model to explain the differences in short-run and long-run effects of promotio

  20. Models to relate species to environment: a hierarchical statistical approac

    NARCIS (Netherlands)

    Jamil, T.

    2012-01-01

    In the last two decades, the interest of community ecologists in trait-based approaches has grown dramatically and these approaches have been increasingly applied to explain and predict response of species to environmental conditions. A variety of modelling techniques are available. The dominant

  1. Models to relate species to environment: a hierarchical statistical approac

    NARCIS (Netherlands)

    Jamil, T.

    2012-01-01

    In the last two decades, the interest of community ecologists in trait-based approaches has grown dramatically and these approaches have been increasingly applied to explain and predict response of species to environmental conditions. A variety of modelling techniques are available. The dominant tec

  2. IT-Supported Modeling, Analysis and Design of Supply Chains

    Science.gov (United States)

    Nienhaus, Jörg; Alard, Robert; Sennheiser, Andreas

    A common language is a prerequisite for analyzing and optimizing supply chains. Based on experiences with three case studies, this paper identifies the aspects of a supply chain that have to be mapped to take informed decisions on its operations. Current, integrated modeling approaches for supply chains, like the SCOR and the GSCM model, will be analyzed and an advanced approach will be defined. The resulting approach takes advantage of IT-support.

  3. Recursive Model System for Trip Generation and Trip Chaining

    OpenAIRE

    Goulias, Konstadinos G.; KITAMURA, Ryuichi

    1991-01-01

    A model system is developed to describe both trip generation and trip chaining in a coherent manner. A recursive structure is adopted to represent the generation of trips for different purposes, and the number of trip chains is expressed as a function of the numbers of trips by purpose. The model system offers theoretically consistent coefficient values and quantifies the relationship between the number of trips and the number of trip chains, and can be used in the conventional forecasting pr...

  4. Probabilistic inference: Task dependency and individual differences of probability weighting revealed by hierarchical Bayesian modelling

    Directory of Open Access Journals (Sweden)

    Moritz eBoos

    2016-05-01

    Full Text Available Cognitive determinants of probabilistic inference were examined using hierarchical Bayesian modelling techniques. A classic urn-ball paradigm served as experimental strategy, involving a factorial two (prior probabilities by two (likelihoods design. Five computational models of cognitive processes were compared with the observed behaviour. Parameter-free Bayesian posterior probabilities and parameter-free base rate neglect provided inadequate models of probabilistic inference. The introduction of distorted subjective probabilities yielded more robust and generalizable results. A general class of (inverted S-shaped probability weighting functions had been proposed; however, the possibility of large differences in probability distortions not only across experimental conditions, but also across individuals, seems critical for the model’s success. It also seems advantageous to consider individual differences in parameters of probability weighting as being sampled from weakly informative prior distributions of individual parameter values. Thus, the results from hierarchical Bayesian modelling converge with previous results in revealing that probability weighting parameters show considerable task dependency and individual differences. Methodologically, this work exemplifies the usefulness of hierarchical Bayesian modelling techniques for cognitive psychology. Theoretically, human probabilistic inference might be best described as the application of individualized strategic policies for Bayesian belief revision.

  5. Hierarchical algorithms of functional modelling for solution of optimal operation problems in electrical power systems

    Energy Technology Data Exchange (ETDEWEB)

    Makeechev, V.A. [Industrial Power Company, Krasnopresnenskaya Naberejnaya 12, 123610 Moscow (Russian Federation); Soukhanov, O.A. [Energy Systems Institute, 1 st Yamskogo Polya Street 15, 125040 Moscow (Russian Federation); Sharov, Y.V. [Moscow Power Engineering Institute, Krasnokazarmennaya Street 14, 111250 Moscow (Russian Federation)

    2008-07-15

    This paper presents foundations of the optimization method intended for solution of power systems operation problems and based on the principles of functional modeling (FM). This paper also presents several types of hierarchical FM algorithms for economic dispatch in these systems derived from this method. According to the FM method a power system is represented by hierarchical model consisting of systems of equations of lower (subsystem) levels and higher level system of connection equations (SCE), in which only boundary variables of subsystems are present. Solution of optimization problem in accordance with the FM method consists of the following operations: (1) solution of optimization problem for each subsystem (values of boundary variables for subsystems should be determined on the higher level of model); (2) calculation of functional characteristic (FC) of each subsystem, pertaining to state of subsystem on current iteration (these two steps are carried out on the lower level of the model); (3) formation and solution of the higher level system of equations (SCE), which gives values of boundary and supplementary boundary variables on current iteration. The key elements in the general structure of the FM method are FCs of subsystems, which represent them on the higher level of the model as ''black boxes''. Important advantage of hierarchical FM algorithms is that results obtained with them on each iteration are identical to those of corresponding basic one level algorithms. (author)

  6. Experiments in Error Propagation within Hierarchal Combat Models

    Science.gov (United States)

    2015-09-01

    and variances of Blue MTTK, Red MTTK, and P[Blue Wins] by Experimental Design are statistically different (Wackerly, Mendenhall III and Schaeffer...2008). Although the data is not normally distributed, the t-test is robust to non-normality (Wackerly, Mendenhall III and Schaeffer 2008). There is...this is handled by transforming the predicted values with a natural logarithm (Wackerly, Mendenhall III and Schaeffer 2008). The model considers

  7. Hierarchical Models for Batteries: Overview with Some Case Studies

    Energy Technology Data Exchange (ETDEWEB)

    Pannala, Sreekanth [ORNL; Mukherjee, Partha P [ORNL; Allu, Srikanth [ORNL; Nanda, Jagjit [ORNL; Martha, Surendra K [ORNL; Dudney, Nancy J [ORNL; Turner, John A [ORNL

    2012-01-01

    Batteries are complex multiscale systems and a hierarchy of models has been employed to study different aspects of batteries at different resolutions. For the electrochemistry and charge transport, the models span from electric circuits, single-particle, pseudo 2D, detailed 3D, and microstructure resolved at the continuum scales and various techniques such as molecular dynamics and density functional theory to resolve the atomistic structure. Similar analogies exist for the thermal, mechanical, and electrical aspects of the batteries. We have been recently working on the development of a unified formulation for the continuum scales across the electrode-electrolyte-electrode system - using a rigorous volume averaging approach typical of multiphase formulation. This formulation accounts for any spatio-temporal variation of the different properties such as electrode/void volume fractions and anisotropic conductivities. In this talk the following will be presented: The background and the hierarchy of models that need to be integrated into a battery modeling framework to carry out predictive simulations, Our recent work on the unified 3D formulation addressing the missing links in the multiscale description of the batteries, Our work on microstructure resolved simulations for diffusion processes, Upscaling of quantities of interest to construct closures for the 3D continuum description, Sample results for a standard Carbon/Spinel cell will be presented and compared to experimental data, Finally, the infrastructure we are building to bring together components with different physics operating at different resolution will be presented. The presentation will also include details about how this generalized approach can be applied to other electrochemical storage systems such as supercapacitors, Li-Air batteries, and Lithium batteries with 3D architectures.

  8. Identifiability of parameters and behaviour of MCMC chains: a case study using the reaction norm model.

    Science.gov (United States)

    Shariati, M M; Korsgaard, I R; Sorensen, D

    2009-04-01

    Markov chain Monte Carlo (MCMC) enables fitting complex hierarchical models that may adequately reflect the process of data generation. Some of these models may contain more parameters than can be uniquely inferred from the distribution of the data, causing non-identifiability. The reaction norm model with unknown covariates (RNUC) is a model in which unknown environmental effects can be inferred jointly with the remaining parameters. The problem of identifiability of parameters at the level of the likelihood and the associated behaviour of MCMC chains were discussed using the RNUC as an example. It was shown theoretically that when environmental effects (covariates) are considered as random effects, estimable functions of the fixed effects, (co)variance components and genetic effects are identifiable as well as the environmental effects. When the environmental effects are treated as fixed and there are other fixed factors in the model, the contrasts involving environmental effects, the variance of environmental sensitivities (genetic slopes) and the residual variance are the only identifiable parameters. These different identifiability scenarios were generated by changing the formulation of the model and the structure of the data and the models were then implemented via MCMC. The output of MCMC sampling schemes was interpreted in the light of the theoretical findings. The erratic behaviour of the MCMC chains was shown to be associated with identifiability problems in the likelihood, despite propriety of posterior distributions, achieved by arbitrarily chosen uniform (bounded) priors. In some cases, very long chains were needed before the pattern of behaviour of the chain may signal the existence of problems. The paper serves as a warning concerning the implementation of complex models where identifiability problems can be difficult to detect a priori. We conclude that it would be good practice to experiment with a proposed model and to understand its features

  9. Macromolecular Chain at a Cellular Surface: a Computer Simulation Model

    Science.gov (United States)

    Xie, Jun; Pandey, Ras

    2001-06-01

    Computer simulations are performed to study conformation and dynamics of relatively large chain macromolecule at the surface of a model cell membrane - a preliminary attempt to ultimately realistic model for protein on a cell membrane. We use a discrete lattice of size Lx × L × L. The chain molecule of length Lc is modelled by consecutive nodes connected by bonds on the trail of a random walk with appropriate constraints such as excluded volume, energy dependent configurational bias, etc. Monte Carlo method is used to move chains via segmental dynamics, i.e., end-move, kink-jump, crank-shaft, reptation, etc. Membrane substrate is designed by an ensemble of short chains on a flat surface. Large chain molecule is then driven toward the membrane by a field. We plan to examine the dynamics of chain macromolecule, spread of its density, and its conformation.

  10. Hierarchical Model Predictive Control for Sustainable Building Automation

    Directory of Open Access Journals (Sweden)

    Barbara Mayer

    2017-02-01

    Full Text Available A hierarchicalmodel predictive controller (HMPC is proposed for flexible and sustainable building automation. The implications of a building automation system for sustainability are defined, and model predictive control is introduced as an ideal tool to cover all requirements. The HMPC is presented as a development suitable for the optimization of modern buildings, as well as retrofitting. The performance and flexibility of the HMPC is demonstrated by simulation studies of a modern office building, and the perfect interaction with future smart grids is shown.

  11. Emotional intelligence is a second-stratum factor of intelligence: evidence from hierarchical and bifactor models.

    Science.gov (United States)

    MacCann, Carolyn; Joseph, Dana L; Newman, Daniel A; Roberts, Richard D

    2014-04-01

    This article examines the status of emotional intelligence (EI) within the structure of human cognitive abilities. To evaluate whether EI is a 2nd-stratum factor of intelligence, data were fit to a series of structural models involving 3 indicators each for fluid intelligence, crystallized intelligence, quantitative reasoning, visual processing, and broad retrieval ability, as well as 2 indicators each for emotion perception, emotion understanding, and emotion management. Unidimensional, multidimensional, hierarchical, and bifactor solutions were estimated in a sample of 688 college and community college students. Results suggest adequate fit for 2 models: (a) an oblique 8-factor model (with 5 traditional cognitive ability factors and 3 EI factors) and (b) a hierarchical solution (with cognitive g at the highest level and EI representing a 2nd-stratum factor that loads onto g at λ = .80). The acceptable relative fit of the hierarchical model confirms the notion that EI is a group factor of cognitive ability, marking the expression of intelligence in the emotion domain. The discussion proposes a possible expansion of Cattell-Horn-Carroll theory to include EI as a 2nd-stratum factor of similar standing to factors such as fluid intelligence and visual processing.

  12. Aging through hierarchical coalescence in the East model

    CERN Document Server

    Faggionato, A; Roberto, C; Toninelli, C

    2010-01-01

    We rigorously analyze the low temperature non-equilibrium dynamics of the East model, a special example of a one dimensional oriented kinetically constrained particle model, when the initial distribution is different from the reversible one and for times much smaller than the global relaxation time. This setting has been intensively studied in the physics literature to analyze the slow dynamics which follows a sudden quench from the liquid to the glass phase. In the limit of zero temperature (i.e. a vanishing density of vacancies) and for initial distributions such that the vacancies form a renewal process we prove that the density of vacancies, the persistence function and the two-time autocorrelation function behave as staircase functions with several plateaux. Furthermore the two-time autocorrelation function displays an aging behavior. We also provide a sharp description of the statistics of the domain length as a function of time, a domain being the interval between two consecutive vacancies. When the in...

  13. Hierarchic stochastic modelling applied to intracellular Ca(2+ signals.

    Directory of Open Access Journals (Sweden)

    Gregor Moenke

    Full Text Available Important biological processes like cell signalling and gene expression have noisy components and are very complex at the same time. Mathematical analysis of such systems has often been limited to the study of isolated subsystems, or approximations are used that are difficult to justify. Here we extend a recently published method (Thurley and Falcke, PNAS 2011 which is formulated in observable system configurations instead of molecular transitions. This reduces the number of system states by several orders of magnitude and avoids fitting of kinetic parameters. The method is applied to Ca(2+ signalling. Ca(2+ is a ubiquitous second messenger transmitting information by stochastic sequences of concentration spikes, which arise by coupling of subcellular Ca(2+ release events (puffs. We derive analytical expressions for a mechanistic Ca(2+ model, based on recent data from live cell imaging, and calculate Ca(2+ spike statistics in dependence on cellular parameters like stimulus strength or number of Ca(2+ channels. The new approach substantiates a generic Ca(2+ model, which is a very convenient way to simulate Ca(2+ spike sequences with correct spiking statistics.

  14. [Determinants of malnutrition in a low-income population: hierarchical analytical model].

    Science.gov (United States)

    Olinto, M T; Victora, C G; Barros, F C; Tomasi, E

    1993-01-01

    To investigate the determinants of malnutrition among low-income children, the effects of socioeconomic, environmental, reproductive, morbidity, child care, birthweight and breastfeeding variables on stunting and wasting were studied. All 354 children below two years of age living in two urban slum areas of Pelotas, southern Brazil, were included. The multivariate analyses took into account the hierarchical structure of the risk factors for each type of deficit. Variables selected as significant on a given level of the model were considered as risk factors, even if their statistical significance was subsequently lost when hierarchically inferior variables were included. The final model for stunting included the variables education and presence of the father, maternal education and employment, birthweight and age. For wasting, the variables selected were the number of household appliances, birth interval, housing conditions, borough, birthweight, age, gender and previous hospitalizations.

  15. Hierarchical statistical shape models of multiobject anatomical structures: application to brain MRI.

    Science.gov (United States)

    Cerrolaza, Juan J; Villanueva, Arantxa; Cabeza, Rafael

    2012-03-01

    The accurate segmentation of subcortical brain structures in magnetic resonance (MR) images is of crucial importance in the interdisciplinary field of medical imaging. Although statistical approaches such as active shape models (ASMs) have proven to be particularly useful in the modeling of multiobject shapes, they are inefficient when facing challenging problems. Based on the wavelet transform, the fully generic multiresolution framework presented in this paper allows us to decompose the interobject relationships into different levels of detail. The aim of this hierarchical decomposition is twofold: to efficiently characterize the relationships between objects and their particular localities. Experiments performed on an eight-object structure defined in axial cross sectional MR brain images show that the new hierarchical segmentation significantly improves the accuracy of the segmentation, and while it exhibits a remarkable robustness with respect to the size of the training set.

  16. Empirical Bayes ranking and selection methods via semiparametric hierarchical mixture models in microarray studies.

    Science.gov (United States)

    Noma, Hisashi; Matsui, Shigeyuki

    2013-05-20

    The main purpose of microarray studies is screening of differentially expressed genes as candidates for further investigation. Because of limited resources in this stage, prioritizing genes are relevant statistical tasks in microarray studies. For effective gene selections, parametric empirical Bayes methods for ranking and selection of genes with largest effect sizes have been proposed (Noma et al., 2010; Biostatistics 11: 281-289). The hierarchical mixture model incorporates the differential and non-differential components and allows information borrowing across differential genes with separation from nuisance, non-differential genes. In this article, we develop empirical Bayes ranking methods via a semiparametric hierarchical mixture model. A nonparametric prior distribution, rather than parametric prior distributions, for effect sizes is specified and estimated using the "smoothing by roughening" approach of Laird and Louis (1991; Computational statistics and data analysis 12: 27-37). We present applications to childhood and infant leukemia clinical studies with microarrays for exploring genes related to prognosis or disease progression.

  17. On hierarchical models for visual recognition and learning of objects, scenes, and activities

    CERN Document Server

    Spehr, Jens

    2015-01-01

    In many computer vision applications, objects have to be learned and recognized in images or image sequences. This book presents new probabilistic hierarchical models that allow an efficient representation of multiple objects of different categories, scales, rotations, and views. The idea is to exploit similarities between objects and object parts in order to share calculations and avoid redundant information. Furthermore inference approaches for fast and robust detection are presented. These new approaches combine the idea of compositional and similarity hierarchies and overcome limitations of previous methods. Besides classical object recognition the book shows the use for detection of human poses in a project for gait analysis. The use of activity detection is presented for the design of environments for ageing, to identify activities and behavior patterns in smart homes. In a presented project for parking spot detection using an intelligent vehicle, the proposed approaches are used to hierarchically model...

  18. Heuristics for Hierarchical Partitioning with Application to Model Checking

    DEFF Research Database (Denmark)

    Möller, Michael Oliver; Alur, Rajeev

    2001-01-01

    for a temporal scaling technique, called “Next” heuristic [2]. The latter is applicable in reachability analysis and is included in a recent version of the Mocha model checking tool. We demonstrate performance and benefits of our method and use an asynchronous parity computer and an opinion poll protocol as case...... that captures the quality of a structure relative to the connections and favors shallow structures with a low degree of branching. Finding a structure with minimal cost is NP-complete. We present a greedy polynomial-time algorithm that approximates good solutions incrementally by local evaluation of a heuristic...... function. We argue for a heuristic function based on four criteria: the number of enclosed connections, the number of components, the number of touched connections and the depth of the structure. We report on an application in the context of formal verification, where our algorithm serves as a preprocessor...

  19. A hierarchical lattice spring model to simulate the mechanics of 2-D materials-based composites

    Directory of Open Access Journals (Sweden)

    Lucas eBrely

    2015-07-01

    Full Text Available In the field of engineering materials, strength and toughness are typically two mutually exclusive properties. Structural biological materials such as bone, tendon or dentin have resolved this conflict and show unprecedented damage tolerance, toughness and strength levels. The common feature of these materials is their hierarchical heterogeneous structure, which contributes to increased energy dissipation before failure occurring at different scale levels. These structural properties are the key to exceptional bioinspired material mechanical properties, in particular for nanocomposites. Here, we develop a numerical model in order to simulate the mechanisms involved in damage progression and energy dissipation at different size scales in nano- and macro-composites, which depend both on the heterogeneity of the material and on the type of hierarchical structure. Both these aspects have been incorporated into a 2-dimensional model based on a Lattice Spring Model, accounting for geometrical nonlinearities and including statistically-based fracture phenomena. The model has been validated by comparing numerical results to continuum and fracture mechanics results as well as finite elements simulations, and then employed to study how structural aspects impact on hierarchical composite material properties. Results obtained with the numerical code highlight the dependence of stress distributions on matrix properties and reinforcement dispersion, geometry and properties, and how failure of sacrificial elements is directly involved in the damage tolerance of the material. Thanks to the rapidly developing field of nanocomposite manufacture, it is already possible to artificially create materials with multi-scale hierarchical reinforcements. The developed code could be a valuable support in the design and optimization of these advanced materials, drawing inspiration and going beyond biological materials with exceptional mechanical properties.

  20. Joint hierarchical models for sparsely sampled high-dimensional LiDAR and forest variables

    OpenAIRE

    Finley, Andrew O.; Banerjee, Sudipto; Zhou, Yuzhen; Cook, Bruce D; Babcock, Chad

    2016-01-01

    Recent advancements in remote sensing technology, specifically Light Detection and Ranging (LiDAR) sensors, provide the data needed to quantify forest characteristics at a fine spatial resolution over large geographic domains. From an inferential standpoint, there is interest in prediction and interpolation of the often sparsely sampled and spatially misaligned LiDAR signals and forest variables. We propose a fully process-based Bayesian hierarchical model for above ground biomass (AGB) and L...

  1. A Hierarchical Slicing Tool Model%一个分层切片工具模型

    Institute of Scientific and Technical Information of China (English)

    谭毅; 朱平; 李必信; 郑国梁

    2001-01-01

    Most of the traditional methods of slicing are based on dependence graph. But constructing dependence graph for object oriented programs directly is very complicated. The design and implementation of a hierarchical slicing tool model are described. By constructing the package level dependence graph, class level dependence graph, method level dependence graph and statement level dependence graph, package level slice, class level slice, method level slice and program slice are obtained step by step.

  2. Thirteen years after. Using hierarchical linear modeling to investigate long-term assessment center validity

    OpenAIRE

    Jansen, P.G.W.

    2003-01-01

    Using hierarchical linear modeling the author investigated temporal trends in the predictive validity of an assessment center for career advancement (measured as salary growth) over a 13-year period, for a sample of 456 academic graduates. Using year of entry and tenure as controls, linear and quadratic properties of individual salary curves could be predicted by the assessment center dimensions. The validity of the (clinical) overall assessment rating for persons with tenure of at least 12 y...

  3. Julia sets and complex singularities in diamond-like hierarchical Potts models

    Institute of Scientific and Technical Information of China (English)

    QIAO; Jianyong

    2005-01-01

    We study the phase transition of the Potts model on diamond-like hierarchical lattices. It is shown that the set of the complex singularities is the Julia set of a rational mapping. An interesting problem is how are these singularities continued to the complex plane. In this paper, by the method of complex dynamics, we give a complete description about the connectivity of the set of the complex singularities.

  4. Hierarchical Linear Modeling to Explore the Influence of Satisfaction with Public Facilities on Housing Prices

    OpenAIRE

    Chung-Chang Lee

    2009-01-01

    This paper uses hierarchical linear modeling (HLM) to explore the influence of satisfaction with public facilities on both individual residential and overall (or regional) levels on housing prices. The empirical results indicate that the average housing prices between local cities and counties exhibit significant variance. At the macro level, the explanatory power of the variable ¡§convenience of life¡¨ on the average housing prices of all counties and cities reaches the 5% significance level...

  5. Constructing low-dimensional stochastic wind models through hierarchical spatial temporal decomposition

    OpenAIRE

    Guo,Qiang; Rajewski, Daniel; Takle, Eugene; Ganapathysubramanian, Baskar

    2016-01-01

    Current wind turbine simulations successfully use turbulence generating tools for modeling behavior. However, they lack the ability to reproduce variabilities in wind dynamics and inherent stochastic structures (like temporal and spatial coherences, sporadic bursts, high shear regions). This necessitates a more realistic parameterization of the wind that encodes location-, topography-, diurnal-, seasonal and stochastic affects. In this work, we develop a hierarchical temporal and spatial deco...

  6. System Dynamics Model for VMI&TPL Integrated Supply Chains

    Directory of Open Access Journals (Sweden)

    Guo Li

    2013-01-01

    Full Text Available This paper establishes VMI-APIOBPCS II model by extending VMI-APIOBPCS model from serial supply chain to distribution supply chain. Then TPL is introduced to this VMI distribution supply chain, and operational framework and process of VMI&TPL integrated supply chain are analyzed deeply. On this basis VMI-APIOBPCS II model is then changed to VMI&TPL-APIOBPCS model and VMI&TPL integrated operation mode is simulated. Finally, compared with VMI-APIOBPCS model, the TPL’s important role of goods consolidation and risk sharing in VMI&TPL integrated supply chain is analyzed in detail from the aspects of bullwhip effect, inventory level, service level, and so on.

  7. A Bayesian Combination Forecasting Model for Retail Supply Chain Coordination

    Directory of Open Access Journals (Sweden)

    W.J. Wang

    2014-04-01

    Full Text Available Retailing plays an important part in modern economic development, and supply chain coordination is the research focus in retail operations management. This paper reviews the collaborative forecasting process within the framework of the collaborative planning, forecasting and replenishment of retail supply chain. A Bayesian combination forecasting model is proposed to integrate multiple forecasting resources and coordinate forecasting processes among partners in the retail supply chain. Based on simulation results for retail sales, the effectiveness of this combination forecasting model is demonstrated for coordinating the collaborative forecasting processes, resulting in an improvement of demand forecasting accuracy in the retail supply chain.

  8. Cluster based hierarchical resource searching model in P2P network

    Institute of Scientific and Technical Information of China (English)

    Yang Ruijuan; Liu Jian; Tian Jingwen

    2007-01-01

    For the problem of large network load generated by the Gnutella resource-searching model in Peer to Peer (P2P) network, a improved model to decrease the network expense is proposed, which establishes a duster in P2P network,auto-organizes logical layers, and applies a hybrid mechanism of directional searching and flooding. The performance analysis and simulation results show that the proposed hierarchical searching model has availably reduced the generated message load and that its searching-response time performance is as fairly good as that of the Gnutella model.

  9. The Case for A Hierarchal System Model for Linux Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Seager, M; Gorda, B

    2009-06-05

    The computer industry today is no longer driven, as it was in the 40s, 50s and 60s, by High-performance computing requirements. Rather, HPC systems, especially Leadership class systems, sit on top of a pyramid investment mode. Figure 1 shows a representative pyramid investment model for systems hardware. At the base of the pyramid is the huge investment (order 10s of Billions of US Dollars per year) in semiconductor fabrication and process technologies. These costs, which are approximately doubling with every generation, are funded from investments multiple markets: enterprise, desktops, games, embedded and specialized devices. Over and above these base technology investments are investments for critical technology elements such as microprocessor, chipsets and memory ASIC components. Investments for these components are spread across the same markets as the base semiconductor processes investments. These second tier investments are approximately half the size of the lower level of the pyramid. The next technology investment layer up, tier 3, is more focused on scalable computing systems such as those needed for HPC and other markets. These tier 3 technology elements include networking (SAN, WAN and LAN), interconnects and large scalable SMP designs. Above these is tier 4 are relatively small investments necessary to build very large, scalable systems high-end or Leadership class systems. Primary among these are the specialized network designs of vertically integrated systems, etc.

  10. An empirical supply chain measurement model for a national egg producer based on the supply chain operations reference model

    Directory of Open Access Journals (Sweden)

    Christian Pretorius

    2013-05-01

    Full Text Available The management of a supply chain is both an offensive and defensive weapon that organisations can use to increase their competitive edge and capture a larger share of the market. In management science and supply chain management, multi-criteria decision making techniques have been used to solve a range of real-world problems. The problem is that many, if not most, companies in South Africa either do not have the required skills to use these decision-making techniques to improve or re-configure their supply chain, or they do not have a complete data set with which to model it effectively. In order to manage supply chains effectively, organisations at the very least need feedback on the performance of their entire supply chain. In this article, generic supply chain performance measures were used and a theoretical or empirical model was developed for the performance measurement of a national egg producer’s supply chain. It focused on a managerial program for the identification and management of their supply chain with recommendations for applying a measurement model. The overall performance of the supply chain as well as the five different performance attributes was presented to management in a dashboard format. This article could be used as a basis for future studies of supply chain performance measurement and the model could be used as a foundation for developing an improved version, not only for the egg industry, but for other industries as well. 

  11. Differentiated digital library evaluation in a hierarchical model stemming from its operational scope and complexity

    Institute of Scientific and Technical Information of China (English)

    WU; Jianhua; WANG; Zhaohui

    2009-01-01

    Digital libraries are complex systems and this brings difficulties for their evaluation.This paper proposes a hierarchical model to solve this problem,and puts the entangled matters into a clear-layered structure.Firstly,digital libraries(DLs thereafter)are classified into 5 groups in ascending gradations,i.e.mini DLs,small DLs,medium DLs,large DLs,and huge DLs by their scope of operation.Then,according to the characteristics of DLs at different operational scope and level of sophistication,they are further grouped into unitary DLs,union DLs and hybrid DLs accordingly.Based on this simulated structure,a hierarchical model for digital library evaluation is introduced,which evaluates DLs differentiatingly within a hierarchical scheme by using varying criteria based on their specific level of operational complexity such as at the micro-level,medium-level,and/or at the macro-level.Based on our careful examination and analysis of the current literature about DL evaluation system,an experiment is conducted by using the DL evaluation model along with its criteria for unitary DLs at micro-level.The main contents resulting from this evaluation experimentation and also those evaluation indicators and relevant issues of major concerns for DLs at medium-level and macro-level are also to be presented at some length.

  12. Development of Hierarchical Bayesian Model Based on Regional Frequency Analysis and Its Application to Estimate Areal Rainfall in South Korea

    Science.gov (United States)

    Kim, J.; Kwon, H. H.

    2014-12-01

    The existing regional frequency analysis has disadvantages in that it is difficult to consider geographical characteristics in estimating areal rainfall. In this regard, This study aims to develop a hierarchical Bayesian model based regional frequency analysis in that spatial patterns of the design rainfall with geographical information are explicitly incorporated. This study assumes that the parameters of Gumbel distribution are a function of geographical characteristics (e.g. altitude, latitude and longitude) within a general linear regression framework. Posterior distributions of the regression parameters are estimated by Bayesian Markov Chain Monte Calro (MCMC) method, and the identified functional relationship is used to spatially interpolate the parameters of the Gumbel distribution by using digital elevation models (DEM) as inputs. The proposed model is applied to derive design rainfalls over the entire Han-river watershed. It was found that the proposed Bayesian regional frequency analysis model showed similar results compared to L-moment based regional frequency analysis. In addition, the model showed an advantage in terms of quantifying uncertainty of the design rainfall and estimating the area rainfall considering geographical information. Acknowledgement: This research was supported by a grant (14AWMP-B079364-01) from Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

  13. A Predictive Model of Fragmentation using Adaptive Mesh Refinement and a Hierarchical Material Model

    Energy Technology Data Exchange (ETDEWEB)

    Koniges, A E; Masters, N D; Fisher, A C; Anderson, R W; Eder, D C; Benson, D; Kaiser, T B; Gunney, B T; Wang, P; Maddox, B R; Hansen, J F; Kalantar, D H; Dixit, P; Jarmakani, H; Meyers, M A

    2009-03-03

    Fragmentation is a fundamental material process that naturally spans spatial scales from microscopic to macroscopic. We developed a mathematical framework using an innovative combination of hierarchical material modeling (HMM) and adaptive mesh refinement (AMR) to connect the continuum to microstructural regimes. This framework has been implemented in a new multi-physics, multi-scale, 3D simulation code, NIF ALE-AMR. New multi-material volume fraction and interface reconstruction algorithms were developed for this new code, which is leading the world effort in hydrodynamic simulations that combine AMR with ALE (Arbitrary Lagrangian-Eulerian) techniques. The interface reconstruction algorithm is also used to produce fragments following material failure. In general, the material strength and failure models have history vector components that must be advected along with other properties of the mesh during remap stage of the ALE hydrodynamics. The fragmentation models are validated against an electromagnetically driven expanding ring experiment and dedicated laser-based fragmentation experiments conducted at the Jupiter Laser Facility. As part of the exit plan, the NIF ALE-AMR code was applied to a number of fragmentation problems of interest to the National Ignition Facility (NIF). One example shows the added benefit of multi-material ALE-AMR that relaxes the requirement that material boundaries must be along mesh boundaries.

  14. Supply chain disruption assessment based on the newsvendor model

    Directory of Open Access Journals (Sweden)

    Yisong Li

    2013-03-01

    Full Text Available Purpose: This paper focuses on supply chain disruption assessment.Design/methodology/approach: Newsvendor ModelFindings: As both cost and income principle will be taken into account in supply chain disruption assessment, we proposed in this paper: (1 the problem of supply chain disruption assessment is the trade-off problem. (2 the generic single period - newsvendor model can be used for capturing the critical point, which in tradition model stands for the demarcation point of profit but in this paper is the least costs considering disruption costs and expected revenues.Research limitations/implications: single period - newsvendor modelPractical implications: we give an example for test the effectiveness of this methodOriginality/value: to research supply chain risk in a new approach, that is: supply chain risk has both cost and profit. So we can assess it with trade-off method

  15. Hierarchical Linear Modeling (HLM): An Introduction to Key Concepts within Cross-Sectional and Growth Modeling Frameworks. Technical Report #1308

    Science.gov (United States)

    Anderson, Daniel

    2012-01-01

    This manuscript provides an overview of hierarchical linear modeling (HLM), as part of a series of papers covering topics relevant to consumers of educational research. HLM is tremendously flexible, allowing researchers to specify relations across multiple "levels" of the educational system (e.g., students, classrooms, schools, etc.).…

  16. Market Competitiveness Evaluation of Mechanical Equipment with a Pairwise Comparisons Hierarchical Model.

    Science.gov (United States)

    Hou, Fujun

    2016-01-01

    This paper provides a description of how market competitiveness evaluations concerning mechanical equipment can be made in the context of multi-criteria decision environments. It is assumed that, when we are evaluating the market competitiveness, there are limited number of candidates with some required qualifications, and the alternatives will be pairwise compared on a ratio scale. The qualifications are depicted as criteria in hierarchical structure. A hierarchical decision model called PCbHDM was used in this study based on an analysis of its desirable traits. Illustration and comparison shows that the PCbHDM provides a convenient and effective tool for evaluating the market competitiveness of mechanical equipment. The researchers and practitioners might use findings of this paper in application of PCbHDM.

  17. Hybrid and hierarchical nanoreinforced polymer composites: Computational modelling of structure–properties relationships

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Dai, Gaoming

    2014-01-01

    Hybrid and hierarchical polymer composites represent a promising group of materials for engineering applications. In this paper, computational studies of the strength and damage resistance of hybrid and hierarchical composites are reviewed. The reserves of the composite improvement are explored...... by using computational micromechanical models. It is shown that while glass/carbon fibers hybrid composites clearly demonstrate higher stiffness and lower weight with increasing the carbon content, they can have lower strength as compared with usual glass fiber polymer composites. Secondary...... nanoreinforcement can drastically increase the fatigue lifetime of composites. Especially, composites with the nanoplatelets localized in the fiber/matrix interface layer (fiber sizing) ensure much higher fatigue lifetime than those with the nanoplatelets in the matrix....

  18. Improving Hierarchical Models Using Historical Data with Applications in High-Throughput Genomics Data Analysis.

    Science.gov (United States)

    Li, Ben; Li, Yunxiao; Qin, Zhaohui S

    2017-06-01

    Modern high-throughput biotechnologies such as microarray and next generation sequencing produce a massive amount of information for each sample assayed. However, in a typical high-throughput experiment, only limited amount of data are observed for each individual feature, thus the classical 'large p, small n' problem. Bayesian hierarchical model, capable of borrowing strength across features within the same dataset, has been recognized as an effective tool in analyzing such data. However, the shrinkage effect, the most prominent feature of hierarchical features, can lead to undesirable over-correction for some features. In this work, we discuss possible causes of the over-correction problem and propose several alternative solutions. Our strategy is rooted in the fact that in the Big Data era, large amount of historical data are available which should be taken advantage of. Our strategy presents a new framework to enhance the Bayesian hierarchical model. Through simulation and real data analysis, we demonstrated superior performance of the proposed strategy. Our new strategy also enables borrowing information across different platforms which could be extremely useful with emergence of new technologies and accumulation of data from different platforms in the Big Data era. Our method has been implemented in R package "adaptiveHM", which is freely available from https://github.com/benliemory/adaptiveHM.

  19. Gas turbine engine prognostics using Bayesian hierarchical models: A variational approach

    Science.gov (United States)

    Zaidan, Martha A.; Mills, Andrew R.; Harrison, Robert F.; Fleming, Peter J.

    2016-03-01

    Prognostics is an emerging requirement of modern health monitoring that aims to increase the fidelity of failure-time predictions by the appropriate use of sensory and reliability information. In the aerospace industry it is a key technology to reduce life-cycle costs, improve reliability and asset availability for a diverse fleet of gas turbine engines. In this work, a Bayesian hierarchical model is selected to utilise fleet data from multiple assets to perform probabilistic estimation of remaining useful life (RUL) for civil aerospace gas turbine engines. The hierarchical formulation allows Bayesian updates of an individual predictive model to be made, based upon data received asynchronously from a fleet of assets with different in-service lives and for the entry of new assets into the fleet. In this paper, variational inference is applied to the hierarchical formulation to overcome the computational and convergence concerns that are raised by the numerical sampling techniques needed for inference in the original formulation. The algorithm is tested on synthetic data, where the quality of approximation is shown to be satisfactory with respect to prediction performance, computational speed, and ease of use. A case study of in-service gas turbine engine data demonstrates the value of integrating fleet data for accurately predicting degradation trajectories of assets.

  20. Hierarchical analytical and simulation modelling of human-machine systems with interference

    Science.gov (United States)

    Braginsky, M. Ya; Tarakanov, D. V.; Tsapko, S. G.; Tsapko, I. V.; Baglaeva, E. A.

    2017-01-01

    The article considers the principles of building the analytical and simulation model of the human operator and the industrial control system hardware and software. E-networks as the extension of Petri nets are used as the mathematical apparatus. This approach allows simulating complex parallel distributed processes in human-machine systems. The structural and hierarchical approach is used as the building method for the mathematical model of the human operator. The upper level of the human operator is represented by the logical dynamic model of decision making based on E-networks. The lower level reflects psychophysiological characteristics of the human-operator.

  1. Critical behavior of Gaussian model on diamond-type hierarchical lattices

    Institute of Scientific and Technical Information of China (English)

    孔祥木; 李崧

    1999-01-01

    It is proposed that the Gaussian type distribution constant bqi in the Gaussian model depends on the coordination number qi of site i, and that the relation bqi/bqj = qi/qj holds among bqi’s. The Gaussian model is then studied on a family of the diamond-type hierarchical (or DH) lattices, by the decimation real-space renormalization group following spin-resealing method. It is found that the magnetic property of the Gaussian model belongs to the same universal class, and that the critical point K* and the critical exponent v are given by K*= bqi/qi and v=1/2, respectively.

  2. Hierarchical Colored Timed Petri Nets for Maintenance Process Modeling of Civil Aircraft

    Institute of Scientific and Technical Information of China (English)

    FU Cheng-cheng; SUN You-chao; LU Zhong

    2008-01-01

    Civil aircraft maintenance process simulation model is an effective method for analyzing the maintainability of a civil aircraft. First, we present the Hierarchical Colored Timed Petri Nets for maintenance process modeling of civil aircraft. Then, we expound a general method of civil aircraft maintenance activities, determine the maintenance level for decomposition, and propose the methods of describing logic of relations between the maintenance activities based on Petri Net. Finally, a time Colored Petri multi-level network modeling and simulation procedures and steps are given with the maintenance example of the landing gear burst tire of a certain type of aircraft. The feasibility of the method is proved by the example.

  3. Model of service-oriented catering supply chain performance evaluation

    Directory of Open Access Journals (Sweden)

    Juanqiong Gou

    2013-03-01

    Full Text Available Purpose: The aim of this paper is constructing a performance evaluation model for service-oriented catering supply chain. Design/methodology/approach: With the research on the current situation of catering industry, this paper summarized the characters of the catering supply chain, and then presents the service-oriented catering supply chain model based on the platform of logistics and information. At last, the fuzzy AHP method is used to evaluate the performance of service-oriented catering supply chain. Findings: With the analysis of the characteristics of catering supply chain, we construct the performance evaluation model in order to guarantee the food safety, logistics efficiency, price stability and so on. Practical implications: In order to evolve an efficient and effective service supply chain, it can not only used to own enterprise improvement, but also can be used for selecting different customers, to choose a different model of development. Originality/value: This paper has a new definition of service-oriented catering supply chain. And it offers a model to evaluate the performance of this catering supply chain.

  4. Hierarchical graphs for better annotations of rule-based models of biochemical systems

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Bin [Los Alamos National Laboratory; Hlavacek, William [Los Alamos National Laboratory

    2009-01-01

    In the graph-based formalism of the BioNetGen language (BNGL), graphs are used to represent molecules, with a colored vertex representing a component of a molecule, a vertex label representing the internal state of a component, and an edge representing a bond between components. Components of a molecule share the same color. Furthermore, graph-rewriting rules are used to represent molecular interactions, with a rule that specifies addition (removal) of an edge representing a class of association (dissociation) reactions and with a rule that specifies a change of vertex label representing a class of reactions that affect the internal state of a molecular component. A set of rules comprises a mathematical/computational model that can be used to determine, through various means, the system-level dynamics of molecular interactions in a biochemical system. Here, for purposes of model annotation, we propose an extension of BNGL that involves the use of hierarchical graphs to represent (1) relationships among components and subcomponents of molecules and (2) relationships among classes of reactions defined by rules. We illustrate how hierarchical graphs can be used to naturally document the structural organization of the functional components and subcomponents of two proteins: the protein tyrosine kinase Lck and the T cell receptor (TCR)/CD3 complex. Likewise, we illustrate how hierarchical graphs can be used to document the similarity of two related rules for kinase-catalyzed phosphorylation of a protein substrate. We also demonstrate how a hierarchical graph representing a protein can be encoded in an XML-based format.

  5. A sow replacement model using Bayesian updating in a three-level hierarchic Markov process. I. Biological model

    DEFF Research Database (Denmark)

    Kristensen, Anders Ringgaard; Søllested, Thomas Algot

    2004-01-01

    that really uses all these methodological improvements. In this paper, the biological model describing the performance and feed intake of sows is presented. In particular, estimation of herd specific parameters is emphasized. The optimization model is described in a subsequent paper......Several replacement models have been presented in literature. In other applicational areas like dairy cow replacement, various methodological improvements like hierarchical Markov processes and Bayesian updating have been implemented, but not in sow models. Furthermore, there are methodological...... improvements like multi-level hierarchical Markov processes with decisions on multiple time scales, efficient methods for parameter estimations at herd level and standard software that has been hardly implemented at all in any replacement model. The aim of this study is to present a sow replacement model...

  6. Hierarchical Modeling and Robust Synthesis for the Preliminary Design of Large Scale Complex Systems

    Science.gov (United States)

    Koch, Patrick N.

    1997-01-01

    Large-scale complex systems are characterized by multiple interacting subsystems and the analysis of multiple disciplines. The design and development of such systems inevitably requires the resolution of multiple conflicting objectives. The size of complex systems, however, prohibits the development of comprehensive system models, and thus these systems must be partitioned into their constituent parts. Because simultaneous solution of individual subsystem models is often not manageable iteration is inevitable and often excessive. In this dissertation these issues are addressed through the development of a method for hierarchical robust preliminary design exploration to facilitate concurrent system and subsystem design exploration, for the concurrent generation of robust system and subsystem specifications for the preliminary design of multi-level, multi-objective, large-scale complex systems. This method is developed through the integration and expansion of current design techniques: Hierarchical partitioning and modeling techniques for partitioning large-scale complex systems into more tractable parts, and allowing integration of subproblems for system synthesis; Statistical experimentation and approximation techniques for increasing both the efficiency and the comprehensiveness of preliminary design exploration; and Noise modeling techniques for implementing robust preliminary design when approximate models are employed. Hierarchical partitioning and modeling techniques including intermediate responses, linking variables, and compatibility constraints are incorporated within a hierarchical compromise decision support problem formulation for synthesizing subproblem solutions for a partitioned system. Experimentation and approximation techniques are employed for concurrent investigations and modeling of partitioned subproblems. A modified composite experiment is introduced for fitting better predictive models across the ranges of the factors, and an approach for

  7. Hierarchical multi-scale approach to validation and uncertainty quantification of hyper-spectral image modeling

    Science.gov (United States)

    Engel, Dave W.; Reichardt, Thomas A.; Kulp, Thomas J.; Graff, David L.; Thompson, Sandra E.

    2016-05-01

    Validating predictive models and quantifying uncertainties inherent in the modeling process is a critical component of the HARD Solids Venture program [1]. Our current research focuses on validating physics-based models predicting the optical properties of solid materials for arbitrary surface morphologies and characterizing the uncertainties in these models. We employ a systematic and hierarchical approach by designing physical experiments and comparing the experimental results with the outputs of computational predictive models. We illustrate this approach through an example comparing a micro-scale forward model to an idealized solid-material system and then propagating the results through a system model to the sensor level. Our efforts should enhance detection reliability of the hyper-spectral imaging technique and the confidence in model utilization and model outputs by users and stakeholders.

  8. Hierarchical Multi-Scale Approach To Validation and Uncertainty Quantification of Hyper-Spectral Image Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Engel, David W.; Reichardt, Thomas A.; Kulp, Thomas J.; Graff, David; Thompson, Sandra E.

    2016-09-17

    Validating predictive models and quantifying uncertainties inherent in the modeling process is a critical component of the HARD Solids Venture program [1]. Our current research focuses on validating physics-based models predicting the optical properties of solid materials for arbitrary surface morphologies and characterizing the uncertainties in these models. We employ a systematic and hierarchical approach by designing physical experiments and comparing the experimental results with the outputs of computational predictive models. We illustrate this approach through an example comparing a micro-scale forward model to an idealized solid-material system and then propagating the results through a system model to the sensor level. Our efforts should enhance detection reliability of the hyper-spectral imaging technique and the confidence in model utilization and model outputs by users and stakeholders.

  9. A Review of the Wood Pellet Value Chain, Modern Value/Supply Chain Management Approaches, and Value/Supply Chain Models

    Directory of Open Access Journals (Sweden)

    Natalie M. Hughes

    2014-01-01

    Full Text Available We reviewed 153 peer-reviewed sources to provide identification of modern supply chain management techniques and exploration of supply chain modeling, to offer decision support to managers. Ultimately, the review is intended to assist member-companies of supply chains, mainly producers, improve their current management approaches, by directing them to studies that may be suitable for direct application to their supply chains and value chains for improved efficiency and profitability. We found that information on supply chain management and modeling techniques in general is available. However, few Canadian-based published studies exist regarding a demand-driven modeling approach to value/supply chain management for wood pellet production. Only three papers were found specifically on wood pellet value chain analysis. We propose that more studies should be carried out on the value chain of wood pellet manufacturing, as well as demand-driven management and modeling approaches with improved demand forecasting methods.

  10. A hierarchical Bayesian model for embedding larval drift and habitat models in integrated life cycles for exploited fish

    OpenAIRE

    2013-01-01

    This paper proposes a hierarchical Bayesian framework for modeling the life cycle of marine exploited fish with a spatial perspective. The application was developed for a nursery-dependent fish species, the common sole (Solea solea), on the Eastern Channel population (Western Europe). The approach combined processes of different natures and various sources of observations within an integrated framework for life-cycle modeling: (1) outputs of an individual-based model for larval drift and surv...

  11. A CONCEPTUAL FRAMEWORK FOR SUSTAINABLE POULTRY SUPPLY CHAIN MODEL

    Directory of Open Access Journals (Sweden)

    Mohammad SHAMSUDDOHA

    2013-12-01

    Full Text Available Now a day, sustainable supply chain is the crucially considerable matter for future focused industries. As a result, attention in supply chain management has increasingly amplified since the 1980s when firms discovered its benefits of mutual relationships within and beyond their own organization. This is why, concern researchers are trying hard to develop new theory or model which might help the corporate sector for achieving sustainability in their supply chains. This kind of reflection can be seen by the number of papers published and in particular by journal since 1980. The objectives of this paper are twofold. First, it offers a literature review on sustainable supply chain management taking papers published in last three decades. Second, it offers a conceptual sustainable supply chain process model in light of triple bottom line theory. The model has been developed by taking in-depth interview of an entrepreneur from a Poultry case industry in Bangladesh.

  12. Hierarchical Agent-Based Integrated Modelling Approach for Microgrids with Adoption of EVs and HRES

    Directory of Open Access Journals (Sweden)

    Peng Han

    2014-01-01

    Full Text Available The large adoption of electric vehicles (EVs, hybrid renewable energy systems (HRESs, and the increasing of the loads shall bring significant challenges to the microgrid. The methodology to model microgrid with high EVs and HRESs penetrations is the key to EVs adoption assessment and optimized HRESs deployment. However, considering the complex interactions of the microgrid containing massive EVs and HRESs, any previous single modelling approaches are insufficient. Therefore in this paper, the methodology named Hierarchical Agent-based Integrated Modelling Approach (HAIMA is proposed. With the effective integration of the agent-based modelling with other advanced modelling approaches, the proposed approach theoretically contributes to a new microgrid model hierarchically constituted by microgrid management layer, component layer, and event layer. Then the HAIMA further links the key parameters and interconnects them to achieve the interactions of the whole model. Furthermore, HAIMA practically contributes to a comprehensive microgrid operation system, through which the assessment of the proposed model and the impact of the EVs adoption are achieved. Simulations show that the proposed HAIMA methodology will be beneficial for the microgrid study and EV’s operation assessment and shall be further utilized for the energy management, electricity consumption prediction, the EV scheduling control, and HRES deployment optimization.

  13. FibreChain: characterization and modeling of thermoplastic composites processing

    NARCIS (Netherlands)

    Rietman, A.D.; Niazi, M.S.; Akkerman, R.; Lomov, S.V.

    2013-01-01

    Thermoplastic composites feature the advantage of melting and shaping. The material properties during processing and the final product properties are to a large extent determined by the thermal history of the material. The approach in the FP7-project FibreChain for process chain modeling of thermopl

  14. Performance evaluation:= (process algebra + model checking) x Markov chains

    NARCIS (Netherlands)

    Hermanns, H.; Katoen, J.P.; Larsen, Kim G.; Nielsen, Mogens

    2001-01-01

    Markov chains are widely used in practice to determine system performance and reliability characteristics. The vast majority of applications considers continuous-time Markov chains (CTMCs). This tutorial paper shows how successful model specification and analysis techniques from concurrency theory c

  15. FibreChain: characterization and modeling of thermoplastic composites processing

    NARCIS (Netherlands)

    Rietman, Bert; Niazi, Muhammad Sohail; Akkerman, Remko; Lomov, S.V.

    2013-01-01

    Thermoplastic composites feature the advantage of melting and shaping. The material properties during processing and the final product properties are to a large extent determined by the thermal history of the material. The approach in the FP7-project FibreChain for process chain modeling of

  16. Sparse time series chain graphical models for reconstructing genetic networks

    NARCIS (Netherlands)

    Abegaz, Fentaw; Wit, Ernst

    2013-01-01

    We propose a sparse high-dimensional time series chain graphical model for reconstructing genetic networks from gene expression data parametrized by a precision matrix and autoregressive coefficient matrix. We consider the time steps as blocks or chains. The proposed approach explores patterns of co

  17. Numerical methods in Markov chain modeling

    Science.gov (United States)

    Philippe, Bernard; Saad, Youcef; Stewart, William J.

    1989-01-01

    Several methods for computing stationary probability distributions of Markov chains are described and compared. The main linear algebra problem consists of computing an eigenvector of a sparse, usually nonsymmetric, matrix associated with a known eigenvalue. It can also be cast as a problem of solving a homogeneous singular linear system. Several methods based on combinations of Krylov subspace techniques are presented. The performance of these methods on some realistic problems are compared.

  18. Event-chain Monte Carlo for classical continuous spin models

    Science.gov (United States)

    Michel, Manon; Mayer, Johannes; Krauth, Werner

    2015-10-01

    We apply the event-chain Monte Carlo algorithm to classical continuum spin models on a lattice and clarify the condition for its validity. In the two-dimensional XY model, it outperforms the local Monte Carlo algorithm by two orders of magnitude, although it remains slower than the Wolff cluster algorithm. In the three-dimensional XY spin glass model at low temperature, the event-chain algorithm is far superior to the other algorithms.

  19. HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python.

    Science.gov (United States)

    Wiecki, Thomas V; Sofer, Imri; Frank, Michael J

    2013-01-01

    The diffusion model is a commonly used tool to infer latent psychological processes underlying decision-making, and to link them to neural mechanisms based on response times. Although efficient open source software has been made available to quantitatively fit the model to data, current estimation methods require an abundance of response time measurements to recover meaningful parameters, and only provide point estimates of each parameter. In contrast, hierarchical Bayesian parameter estimation methods are useful for enhancing statistical power, allowing for simultaneous estimation of individual subject parameters and the group distribution that they are drawn from, while also providing measures of uncertainty in these parameters in the posterior distribution. Here, we present a novel Python-based toolbox called HDDM (hierarchical drift diffusion model), which allows fast and flexible estimation of the the drift-diffusion model and the related linear ballistic accumulator model. HDDM requires fewer data per subject/condition than non-hierarchical methods, allows for full Bayesian data analysis, and can handle outliers in the data. Finally, HDDM supports the estimation of how trial-by-trial measurements (e.g., fMRI) influence decision-making parameters. This paper will first describe the theoretical background of the drift diffusion model and Bayesian inference. We then illustrate usage of the toolbox on a real-world data set from our lab. Finally, parameter recovery studies show that HDDM beats alternative fitting methods like the χ(2)-quantile method as well as maximum likelihood estimation. The software and documentation can be downloaded at: http://ski.clps.brown.edu/hddm_docs/

  20. HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python

    Directory of Open Access Journals (Sweden)

    Thomas V Wiecki

    2013-08-01

    Full Text Available The diffusion model is a commonly used tool to infer latent psychological processes underlying decision making, and to link them to neural mechanisms based on reaction times. Although efficient open source software has been made available to quantitatively fit the model to data, current estimation methods require an abundance of reaction time measurements to recover meaningful parameters, and only provide point estimates of each parameter. In contrast, hierarchical Bayesian parameter estimation methods are useful for enhancing statistical power, allowing for simultaneous estimation of individual subject parameters and the group distribution that they are drawn from, while also providing measures of uncertainty in these parameters in the posterior distribution. Here, we present a novel Python-based toolbox called HDDM (hierarchical drift diffusion model, which allows fast and flexible estimation of the the drift-diffusion model and the related linear ballistic accumulator model. HDDM requires fewer data per subject / condition than non-hierarchical method, allows for full Bayesian data analysis, and can handle outliers in the data. Finally, HDDM supports the estimation of how trial-by-trial measurements (e.g. fMRI influence decision making parameters. This paper will first describe the theoretical background of drift-diffusion model and Bayesian inference. We then illustrate usage of the toolbox on a real-world data set from our lab. Finally, parameter recovery studies show that HDDM beats alternative fitting methods like the chi-quantile method as well as maximum likelihood estimation. The software and documentation can be downloaded at: http://ski.clps.brown.edu/hddm_docs

  1. Anisotropic Heisenberg model on hierarchical lattices with aperiodic interactions: a renormalization-group approach.

    Science.gov (United States)

    Branco, N S; de Sousa, J Ricardo; Ghosh, Angsula

    2008-03-01

    Using a real-space renormalization-group approximation, we study the anisotropic quantum Heisenberg model on hierarchical lattices, with interactions following aperiodic sequences. Three different sequences are considered, with relevant and irrelevant fluctuations, according to the Luck-Harris criterion. The phase diagram is discussed as a function of the anisotropy parameter Delta (such that Delta=0 and 1 correspond to the isotropic Heisenberg and Ising models, respectively). We find three different types of phase diagrams, with general characteristics: the isotropic Heisenberg plane is always an invariant one (as expected by symmetry arguments) and the critical behavior of the anisotropic Heisenberg model is governed by fixed points on the Ising-model plane. Our results for the isotropic Heisenberg model show that the relevance or irrelevance of aperiodic models, when compared to their uniform counterpart, is as predicted by the Harris-Luck criterion. A low-temperature renormalization-group procedure was applied to the classical isotropic Heisenberg model in two-dimensional hierarchical lattices: the relevance criterion is obtained, again in accordance with the Harris-Luck criterion.

  2. Prognostics for Steam Generator Tube Rupture using Markov Chain model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gibeom; Heo, Gyunyoung [Kyung Hee University, Yongin (Korea, Republic of); Kim, Hyeonmin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    This paper will describe the prognostics method for evaluating and forecasting the ageing effect and demonstrate the procedure of prognostics for the Steam Generator Tube Rupture (SGTR) accident. Authors will propose the data-driven method so called MCMC (Markov Chain Monte Carlo) which is preferred to the physical-model method in terms of flexibility and availability. Degradation data is represented as growth of burst probability over time. Markov chain model is performed based on transition probability of state. And the state must be discrete variable. Therefore, burst probability that is continuous variable have to be changed into discrete variable to apply Markov chain model to the degradation data. The Markov chain model which is one of prognostics methods was described and the pilot demonstration for a SGTR accident was performed as a case study. The Markov chain model is strong since it is possible to be performed without physical models as long as enough data are available. However, in the case of the discrete Markov chain used in this study, there must be loss of information while the given data is discretized and assigned to the finite number of states. In this process, original information might not be reflected on prediction sufficiently. This should be noted as the limitation of discrete models. Now we will be studying on other prognostics methods such as GPM (General Path Model) which is also data-driven method as well as the particle filer which belongs to physical-model method and conducting comparison analysis.

  3. A hierarchical model for probabilistic independent component analysis of multi-subject fMRI studies.

    Science.gov (United States)

    Guo, Ying; Tang, Li

    2013-12-01

    An important goal in fMRI studies is to decompose the observed series of brain images to identify and characterize underlying brain functional networks. Independent component analysis (ICA) has been shown to be a powerful computational tool for this purpose. Classic ICA has been successfully applied to single-subject fMRI data. The extension of ICA to group inferences in neuroimaging studies, however, is challenging due to the unavailability of a pre-specified group design matrix. Existing group ICA methods generally concatenate observed fMRI data across subjects on the temporal domain and then decompose multi-subject data in a similar manner to single-subject ICA. The major limitation of existing methods is that they ignore between-subject variability in spatial distributions of brain functional networks in group ICA. In this article, we propose a new hierarchical probabilistic group ICA method to formally model subject-specific effects in both temporal and spatial domains when decomposing multi-subject fMRI data. The proposed method provides model-based estimation of brain functional networks at both the population and subject level. An important advantage of the hierarchical model is that it provides a formal statistical framework to investigate similarities and differences in brain functional networks across subjects, for example, subjects with mental disorders or neurodegenerative diseases such as Parkinson's as compared to normal subjects. We develop an EM algorithm for model estimation where both the E-step and M-step have explicit forms. We compare the performance of the proposed hierarchical model with that of two popular group ICA methods via simulation studies. We illustrate our method with application to an fMRI study of Zen meditation.

  4. Hierarchical modeling for rare event detection and cell subset alignment across flow cytometry samples.

    Directory of Open Access Journals (Sweden)

    Andrew Cron

    Full Text Available Flow cytometry is the prototypical assay for multi-parameter single cell analysis, and is essential in vaccine and biomarker research for the enumeration of antigen-specific lymphocytes that are often found in extremely low frequencies (0.1% or less. Standard analysis of flow cytometry data relies on visual identification of cell subsets by experts, a process that is subjective and often difficult to reproduce. An alternative and more objective approach is the use of statistical models to identify cell subsets of interest in an automated fashion. Two specific challenges for automated analysis are to detect extremely low frequency event subsets without biasing the estimate by pre-processing enrichment, and the ability to align cell subsets across multiple data samples for comparative analysis. In this manuscript, we develop hierarchical modeling extensions to the Dirichlet Process Gaussian Mixture Model (DPGMM approach we have previously described for cell subset identification, and show that the hierarchical DPGMM (HDPGMM naturally generates an aligned data model that captures both commonalities and variations across multiple samples. HDPGMM also increases the sensitivity to extremely low frequency events by sharing information across multiple samples analyzed simultaneously. We validate the accuracy and reproducibility of HDPGMM estimates of antigen-specific T cells on clinically relevant reference peripheral blood mononuclear cell (PBMC samples with known frequencies of antigen-specific T cells. These cell samples take advantage of retrovirally TCR-transduced T cells spiked into autologous PBMC samples to give a defined number of antigen-specific T cells detectable by HLA-peptide multimer binding. We provide open source software that can take advantage of both multiple processors and GPU-acceleration to perform the numerically-demanding computations. We show that hierarchical modeling is a useful probabilistic approach that can provide a

  5. Climate information based streamflow and rainfall forecasts for Huai River Basin using Hierarchical Bayesian Modeling

    Directory of Open Access Journals (Sweden)

    X. Chen

    2013-09-01

    Full Text Available A Hierarchal Bayesian model for forecasting regional summer rainfall and streamflow season-ahead using exogenous climate variables for East Central China is presented. The model provides estimates of the posterior forecasted probability distribution for 12 rainfall and 2 streamflow stations considering parameter uncertainty, and cross-site correlation. The model has a multilevel structure with regression coefficients modeled from a common multivariate normal distribution results in partial-pooling of information across multiple stations and better representation of parameter and posterior distribution uncertainty. Covariance structure of the residuals across stations is explicitly modeled. Model performance is tested under leave-10-out cross-validation. Frequentist and Bayesian performance metrics used include Receiver Operating Characteristic, Reduction of Error, Coefficient of Efficiency, Rank Probability Skill Scores, and coverage by posterior credible intervals. The ability of the model to reliably forecast regional summer rainfall and streamflow season-ahead offers potential for developing adaptive water risk management strategies.

  6. Efficient Actor-Critic Algorithm with Hierarchical Model Learning and Planning

    Science.gov (United States)

    Fu, QiMing

    2016-01-01

    To improve the convergence rate and the sample efficiency, two efficient learning methods AC-HMLP and RAC-HMLP (AC-HMLP with ℓ2-regularization) are proposed by combining actor-critic algorithm with hierarchical model learning and planning. The hierarchical models consisting of the local and the global models, which are learned at the same time during learning of the value function and the policy, are approximated by local linear regression (LLR) and linear function approximation (LFA), respectively. Both the local model and the global model are applied to generate samples for planning; the former is used only if the state-prediction error does not surpass the threshold at each time step, while the latter is utilized at the end of each episode. The purpose of taking both models is to improve the sample efficiency and accelerate the convergence rate of the whole algorithm through fully utilizing the local and global information. Experimentally, AC-HMLP and RAC-HMLP are compared with three representative algorithms on two Reinforcement Learning (RL) benchmark problems. The results demonstrate that they perform best in terms of convergence rate and sample efficiency. PMID:27795704

  7. Multi-scale hierarchical approach for parametric mapping: assessment on multi-compartmental models.

    Science.gov (United States)

    Rizzo, G; Turkheimer, F E; Bertoldo, A

    2013-02-15

    This paper investigates a new hierarchical method to apply basis function to mono- and multi-compartmental models (Hierarchical-Basis Function Method, H-BFM) at a voxel level. This method identifies the parameters of the compartmental model in its nonlinearized version, integrating information derived at the region of interest (ROI) level by segmenting the cerebral volume based on anatomical definition or functional clustering. We present the results obtained by using a two tissue-four rate constant model with two different tracers ([(11)C]FLB457 and [carbonyl-(11)C]WAY100635), one of the most complex models used in receptor studies, especially at the voxel level. H-BFM is robust and its application on both [(11)C]FLB457 and [carbonyl-(11)C]WAY100635 allows accurate and precise parameter estimates, good quality parametric maps and a low percentage of voxels out of physiological bound (approach for PET quantification by using compartmental modeling at the voxel level. In particular, different from other proposed approaches, this method can also be used when the linearization of the model is not appropriate. We expect that applying it to clinical data will generate reliable parametric maps. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Trans-dimensional inversion of microtremor array dispersion data with hierarchical autoregressive error models

    Science.gov (United States)

    Dettmer, Jan; Molnar, Sheri; Steininger, Gavin; Dosso, Stan E.; Cassidy, John F.

    2012-02-01

    This paper applies a general trans-dimensional Bayesian inference methodology and hierarchical autoregressive data-error models to the inversion of microtremor array dispersion data for shear wave velocity (vs) structure. This approach accounts for the limited knowledge of the optimal earth model parametrization (e.g. the number of layers in the vs profile) and of the data-error statistics in the resulting vs parameter uncertainty estimates. The assumed earth model parametrization influences estimates of parameter values and uncertainties due to different parametrizations leading to different ranges of data predictions. The support of the data for a particular model is often non-unique and several parametrizations may be supported. A trans-dimensional formulation accounts for this non-uniqueness by including a model-indexing parameter as an unknown so that groups of models (identified by the indexing parameter) are considered in the results. The earth model is parametrized in terms of a partition model with interfaces given over a depth-range of interest. In this work, the number of interfaces (layers) in the partition model represents the trans-dimensional model indexing. In addition, serial data-error correlations are addressed by augmenting the geophysical forward model with a hierarchical autoregressive error model that can account for a wide range of error processes with a small number of parameters. Hence, the limited knowledge about the true statistical distribution of data errors is also accounted for in the earth model parameter estimates, resulting in more realistic uncertainties and parameter values. Hierarchical autoregressive error models do not rely on point estimates of the model vector to estimate data-error statistics, and have no requirement for computing the inverse or determinant of a data-error covariance matrix. This approach is particularly useful for trans-dimensional inverse problems, as point estimates may not be representative of the

  9. Markov Chain: A Predictive Model for Manpower Planning ...

    African Journals Online (AJOL)

    ADOWIE PERE

    numerous previous studies have applied Markov chain models in describing title or level promotions .... is one of the most crucial, complex and continuing ... computational tools that will enable administrators to ... random variables. ,.... ,.

  10. Stochastic model of milk homogenization process using Markov's chain

    OpenAIRE

    A. A. Khvostov; R. S. Sumina; G. I. Kotov; Ivanov, A. V.

    2016-01-01

    The process of development of a mathematical model of the process of homogenization of dairy products is considered in the work. The theory of Markov's chains was used in the development of the mathematical model, Markov's chain with discrete states and continuous parameter for which the homogenisation pressure is taken, being the basis for the model structure. Machine realization of the model is implemented in the medium of structural modeling MathWorks Simulink™. Identification of the model...

  11. Contextual Hierarchical Part-Driven Conditional Random Field Model for Object Category Detection

    Directory of Open Access Journals (Sweden)

    Lizhen Wu

    2012-01-01

    Full Text Available Even though several promising approaches have been proposed in the literature, generic category-level object detection is still challenging due to high intraclass variability and ambiguity in the appearance among different object instances. From the view of constructing object models, the balance between flexibility and discrimination must be taken into consideration. Motivated by these demands, we propose a novel contextual hierarchical part-driven conditional random field (CRF model, which is based on not only individual object part appearance but also model contextual interactions of the parts simultaneously. By using a latent two-layer hierarchical formulation of labels and a weighted neighborhood structure, the model can effectively encode the dependencies among object parts. Meanwhile, beta-stable local features are introduced as observed data to ensure the discriminative and robustness of part description. The object category detection problem can be solved in a probabilistic framework using a supervised learning method based on maximum a posteriori (MAP estimation. The benefits of the proposed model are demonstrated on the standard dataset and satellite images.

  12. A hierarchical bayesian model to quantify uncertainty of stream water temperature forecasts.

    Directory of Open Access Journals (Sweden)

    Guillaume Bal

    Full Text Available Providing generic and cost effective modelling approaches to reconstruct and forecast freshwater temperature using predictors as air temperature and water discharge is a prerequisite to understanding ecological processes underlying the impact of water temperature and of global warming on continental aquatic ecosystems. Using air temperature as a simple linear predictor of water temperature can lead to significant bias in forecasts as it does not disentangle seasonality and long term trends in the signal. Here, we develop an alternative approach based on hierarchical Bayesian statistical time series modelling of water temperature, air temperature and water discharge using seasonal sinusoidal periodic signals and time varying means and amplitudes. Fitting and forecasting performances of this approach are compared with that of simple linear regression between water and air temperatures using i an emotive simulated example, ii application to three French coastal streams with contrasting bio-geographical conditions and sizes. The time series modelling approach better fit data and does not exhibit forecasting bias in long term trends contrary to the linear regression. This new model also allows for more accurate forecasts of water temperature than linear regression together with a fair assessment of the uncertainty around forecasting. Warming of water temperature forecast by our hierarchical Bayesian model was slower and more uncertain than that expected with the classical regression approach. These new forecasts are in a form that is readily usable in further ecological analyses and will allow weighting of outcomes from different scenarios to manage climate change impacts on freshwater wildlife.

  13. A hierarchical statistical model for estimating population properties of quantitative genes

    Directory of Open Access Journals (Sweden)

    Wu Rongling

    2002-06-01

    Full Text Available Abstract Background Earlier methods for detecting major genes responsible for a quantitative trait rely critically upon a well-structured pedigree in which the segregation pattern of genes exactly follow Mendelian inheritance laws. However, for many outcrossing species, such pedigrees are not available and genes also display population properties. Results In this paper, a hierarchical statistical model is proposed to monitor the existence of a major gene based on its segregation and transmission across two successive generations. The model is implemented with an EM algorithm to provide maximum likelihood estimates for genetic parameters of the major locus. This new method is successfully applied to identify an additive gene having a large effect on stem height growth of aspen trees. The estimates of population genetic parameters for this major gene can be generalized to the original breeding population from which the parents were sampled. A simulation study is presented to evaluate finite sample properties of the model. Conclusions A hierarchical model was derived for detecting major genes affecting a quantitative trait based on progeny tests of outcrossing species. The new model takes into account the population genetic properties of genes and is expected to enhance the accuracy, precision and power of gene detection.

  14. Hierarchical calibration and validation of computational fluid dynamics models for solid sorbent-based carbon capture

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Canhai; Xu, Zhijie; Pan, Wenxiao; Sun, Xin; Storlie, Curtis; Marcy, Peter; Dietiker, Jean-François; Li, Tingwen; Spenik, James

    2016-01-01

    To quantify the predictive confidence of a solid sorbent-based carbon capture design, a hierarchical validation methodology—consisting of basic unit problems with increasing physical complexity coupled with filtered model-based geometric upscaling has been developed and implemented. This paper describes the computational fluid dynamics (CFD) multi-phase reactive flow simulations and the associated data flows among different unit problems performed within the said hierarchical validation approach. The bench-top experiments used in this calibration and validation effort were carefully designed to follow the desired simple-to-complex unit problem hierarchy, with corresponding data acquisition to support model parameters calibrations at each unit problem level. A Bayesian calibration procedure is employed and the posterior model parameter distributions obtained at one unit-problem level are used as prior distributions for the same parameters in the next-tier simulations. Overall, the results have demonstrated that the multiphase reactive flow models within MFIX can be used to capture the bed pressure, temperature, CO2 capture capacity, and kinetics with quantitative accuracy. The CFD modeling methodology and associated uncertainty quantification techniques presented herein offer a solid framework for estimating the predictive confidence in the virtual scale up of a larger carbon capture device.

  15. 大连市寿险原保险保费收入预测实证分析——基于最小二乘法的谱系聚类马氏链模型%Empirical analysis of forecast premium income of Dalian primary life insurance——based on least-squares method 's hierarchical clustering and Markov chain model

    Institute of Scientific and Technical Information of China (English)

    王鑫

    2012-01-01

    针对保费收入预测问题,以最小二乘法拟合为依托,基于谱系聚类分析的方法,运用马氏链模型对2008-2011年大连市人寿保险月度原保险保费收入的数据进行实证模拟仿真,采用定量分析的方法对大连市人寿保险月度原保险保费收入进行定性预测,结果表明该方法在进行定性预测时预测结果比较准确。%In view of problems in insurance premium income prediction,based on Least-squares,hierarchical clustering analysis and Markov chain,an empirical simulation research was made of monthly premium income of Dalian's primary life insurance during 2008-2011.Quantitive analysis was made of the same data for qualitative prediction.The results show that this method is fairly accurate in qualitative prediction.

  16. Modeling sustainability in renewable energy supply chain systems

    Science.gov (United States)

    Xie, Fei

    This dissertation aims at modeling sustainability of renewable fuel supply chain systems against emerging challenges. In particular, the dissertation focuses on the biofuel supply chain system design, and manages to develop advanced modeling framework and corresponding solution methods in tackling challenges in sustaining biofuel supply chain systems. These challenges include: (1) to integrate "environmental thinking" into the long-term biofuel supply chain planning; (2) to adopt multimodal transportation to mitigate seasonality in biofuel supply chain operations; (3) to provide strategies in hedging against uncertainty from conversion technology; and (4) to develop methodologies in long-term sequential planning of the biofuel supply chain under uncertainties. All models are mixed integer programs, which also involves multi-objective programming method and two-stage/multistage stochastic programming methods. In particular for the long-term sequential planning under uncertainties, to reduce the computational challenges due to the exponential expansion of the scenario tree, I also developed efficient ND-Max method which is more efficient than CPLEX and Nested Decomposition method. Through result analysis of four independent studies, it is found that the proposed modeling frameworks can effectively improve the economic performance, enhance environmental benefits and reduce risks due to systems uncertainties for the biofuel supply chain systems.

  17. Hierarchical Network Design

    DEFF Research Database (Denmark)

    Thomadsen, Tommy

    2005-01-01

    Communication networks are immensely important today, since both companies and individuals use numerous services that rely on them. This thesis considers the design of hierarchical (communication) networks. Hierarchical networks consist of layers of networks and are well-suited for coping...... the clusters. The design of hierarchical networks involves clustering of nodes, hub selection, and network design, i.e. selection of links and routing of ows. Hierarchical networks have been in use for decades, but integrated design of these networks has only been considered for very special types of networks....... The thesis investigates models for hierarchical network design and methods used to design such networks. In addition, ring network design is considered, since ring networks commonly appear in the design of hierarchical networks. The thesis introduces hierarchical networks, including a classification scheme...

  18. Stability of ecological industry chain: an entropy model approach.

    Science.gov (United States)

    Wang, Qingsong; Qiu, Shishou; Yuan, Xueliang; Zuo, Jian; Cao, Dayong; Hong, Jinglan; Zhang, Jian; Dong, Yong; Zheng, Ying

    2016-07-01

    A novel methodology is proposed in this study to examine the stability of ecological industry chain network based on entropy theory. This methodology is developed according to the associated dissipative structure characteristics, i.e., complexity, openness, and nonlinear. As defined in the methodology, network organization is the object while the main focus is the identification of core enterprises and core industry chains. It is proposed that the chain network should be established around the core enterprise while supplementation to the core industry chain helps to improve system stability, which is verified quantitatively. Relational entropy model can be used to identify core enterprise and core eco-industry chain. It could determine the core of the network organization and core eco-industry chain through the link form and direction of node enterprises. Similarly, the conductive mechanism of different node enterprises can be examined quantitatively despite the absence of key data. Structural entropy model can be employed to solve the problem of order degree for network organization. Results showed that the stability of the entire system could be enhanced by the supplemented chain around the core enterprise in eco-industry chain network organization. As a result, the sustainability of the entire system could be further improved.

  19. A conceptual model for SMEs mechatronics supply chain.

    OpenAIRE

    Tounsi, Jihène; Boissiere, Julien; Habchi, Georges

    2010-01-01

    17; International audience; Nowadays, in order to meet the demands of the global dynamic market and eliminate its disturbances, the supply chain and its integration across different organizations has become a competitive business advantage along the production processes. In particular, the mechatronic industry is very sensitive to these requirements. Our research deals with modelling the supply chain in order to manage and implement a simulation platform. Basically, we develop a modelling sol...

  20. Fracture Mechanical Markov Chain Crack Growth Model

    DEFF Research Database (Denmark)

    Gansted, L.; Brincker, Rune; Hansen, Lars Pilegaard

    1991-01-01

    On the basis of the B-model developed in [J. L. Bogdanoff and F. Kozin, Probabilistic Models of Cumulative Damage. John Wiley, New York (1985)] a new numerical model incorporating the physical knowledge of fatigue crack propagation is developed. The model is based on the assumption that the crack...

  1. Hybrid Modeling and Simulation of Automotive Supply Chain Network

    Directory of Open Access Journals (Sweden)

    Wen Wang

    2013-07-01

    Full Text Available According to the operation of automotive supply chain and the features of various simulation methods, we create and simulate a automotive supply chain network model with the core enterprise of two vehicle manufacturers, consisting of several parts suppliers, vehicle distributors and logistics service providers. On this basis of a conceptual model including the establishment of enterprise layer, business layer and operation layer, we establish a detailed model of the network system according to the network structure of automotive supply chain, the operation process and the internal business process of core enterprises; then we use System Dynamics (SD, Discrete Event Simulation (DES and Agent Based Modeling (ABM to describe the operating state of each node in the network model. We execute and analyze the simulation model of the whole network system described by Anylogic, using the results of the distributors’ inventory, inventory cost and customer’s satisfaction to prove the effectiveness of the model.

  2. A model of shape memory materials with hierarchical twinning: Statics and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, A.; Bishop, A.R. [Los Alamos National Lab., NM (United States); Shenoy, S.R. [International Center for Theoretical Physics, Trieste (Italy); Wu, Y.; Lookman, T. [Western Ontario Univ., London, Ontario (Canada). Dept. of Applied Mathematics

    1995-07-01

    We consider a model of shape memory material in which hierarchical twinning near the habit plane (austenite-martensite interface) is a new and crucial ingredient. The model includes (1) a triple-well potential ({phi} model) in local shear strain, (2) strain gradient terms up to second order in strain and fourth order in gradient, and (3) all symmetry allowed compositional fluctuation induced strain gradient terms. The last term favors hierarchy which enables communication between macroscopic (cm) and microscopic ({Angstrom}) regions essential for shape memory. Hierarchy also stabilizes between formation (critical pattern of twins). External stress or pressure (pattern) modulates the spacing of domain walls. Therefore the ``pattern`` is encoded in the modulated hierarchical variation of the depth and width of the twins. This hierarchy of length scales provides a hierarchy of time scales and thus the possibility of non-exponential decay. The four processes of the complete shape memory cycle -- write, record, erase and recall -- are explained within this model. Preliminary results based on 2D Langevin dynamics are shown for tweed and hierarchy formation.

  3. Clustering dynamic textures with the hierarchical em algorithm for modeling video.

    Science.gov (United States)

    Mumtaz, Adeel; Coviello, Emanuele; Lanckriet, Gert R G; Chan, Antoni B

    2013-07-01

    Dynamic texture (DT) is a probabilistic generative model, defined over space and time, that represents a video as the output of a linear dynamical system (LDS). The DT model has been applied to a wide variety of computer vision problems, such as motion segmentation, motion classification, and video registration. In this paper, we derive a new algorithm for clustering DT models that is based on the hierarchical EM algorithm. The proposed clustering algorithm is capable of both clustering DTs and learning novel DT cluster centers that are representative of the cluster members in a manner that is consistent with the underlying generative probabilistic model of the DT. We also derive an efficient recursive algorithm for sensitivity analysis of the discrete-time Kalman smoothing filter, which is used as the basis for computing expectations in the E-step of the HEM algorithm. Finally, we demonstrate the efficacy of the clustering algorithm on several applications in motion analysis, including hierarchical motion clustering, semantic motion annotation, and learning bag-of-systems (BoS) codebooks for dynamic texture recognition.

  4. Nonlinear hierarchical multiscale modeling of cortical bone considering its nanoscale microstructure.

    Science.gov (United States)

    Ghanbari, J; Naghdabadi, R

    2009-07-22

    We have used a hierarchical multiscale modeling scheme for the analysis of cortical bone considering it as a nanocomposite. This scheme consists of definition of two boundary value problems, one for macroscale, and another for microscale. The coupling between these scales is done by using the homogenization technique. At every material point in which the constitutive model is needed, a microscale boundary value problem is defined using a macroscopic kinematical quantity and solved. Using the described scheme, we have studied elastic properties of cortical bone considering its nanoscale microstructural constituents with various mineral volume fractions. Since the microstructure of bone consists of mineral platelet with nanometer size embedded in a protein matrix, it is similar to the microstructure of soft matrix nanocomposites reinforced with hard nanostructures. Considering a representative volume element (RVE) of the microstructure of bone as the microscale problem in our hierarchical multiscale modeling scheme, the global behavior of bone is obtained under various macroscopic loading conditions. This scheme may be suitable for modeling arbitrary bone geometries subjected to a variety of loading conditions. Using the presented method, mechanical properties of cortical bone including elastic moduli and Poisson's ratios in two major directions and shear modulus is obtained for different mineral volume fractions.

  5. Hierarchical Bayesian Markov switching models with application to predicting spawning success of shovelnose sturgeon

    Science.gov (United States)

    Holan, S.H.; Davis, G.M.; Wildhaber, M.L.; DeLonay, A.J.; Papoulias, D.M.

    2009-01-01

    The timing of spawning in fish is tightly linked to environmental factors; however, these factors are not very well understood for many species. Specifically, little information is available to guide recruitment efforts for endangered species such as the sturgeon. Therefore, we propose a Bayesian hierarchical model for predicting the success of spawning of the shovelnose sturgeon which uses both biological and behavioural (longitudinal) data. In particular, we use data that were produced from a tracking study that was conducted in the Lower Missouri River. The data that were produced from this study consist of biological variables associated with readiness to spawn along with longitudinal behavioural data collected by using telemetry and archival data storage tags. These high frequency data are complex both biologically and in the underlying behavioural process. To accommodate such complexity we developed a hierarchical linear regression model that uses an eigenvalue predictor, derived from the transition probability matrix of a two-state Markov switching model with generalized auto-regressive conditional heteroscedastic dynamics. Finally, to minimize the computational burden that is associated with estimation of this model, a parallel computing approach is proposed. ?? Journal compilation 2009 Royal Statistical Society.

  6. Hierarchical spatial models for predicting pygmy rabbit distribution and relative abundance

    Science.gov (United States)

    Wilson, T.L.; Odei, J.B.; Hooten, M.B.; Edwards, T.C.

    2010-01-01

    Conservationists routinely use species distribution models to plan conservation, restoration and development actions, while ecologists use them to infer process from pattern. These models tend to work well for common or easily observable species, but are of limited utility for rare and cryptic species. This may be because honest accounting of known observation bias and spatial autocorrelation are rarely included, thereby limiting statistical inference of resulting distribution maps. We specified and implemented a spatially explicit Bayesian hierarchical model for a cryptic mammal species (pygmy rabbit Brachylagus idahoensis). Our approach used two levels of indirect sign that are naturally hierarchical (burrows and faecal pellets) to build a model that allows for inference on regression coefficients as well as spatially explicit model parameters. We also produced maps of rabbit distribution (occupied burrows) and relative abundance (number of burrows expected to be occupied by pygmy rabbits). The model demonstrated statistically rigorous spatial prediction by including spatial autocorrelation and measurement uncertainty. We demonstrated flexibility of our modelling framework by depicting probabilistic distribution predictions using different assumptions of pygmy rabbit habitat requirements. Spatial representations of the variance of posterior predictive distributions were obtained to evaluate heterogeneity in model fit across the spatial domain. Leave-one-out cross-validation was conducted to evaluate the overall model fit. Synthesis and applications. Our method draws on the strengths of previous work, thereby bridging and extending two active areas of ecological research: species distribution models and multi-state occupancy modelling. Our framework can be extended to encompass both larger extents and other species for which direct estimation of abundance is difficult. ?? 2010 The Authors. Journal compilation ?? 2010 British Ecological Society.

  7. A hierarchical Markov decision process modeling feeding and marketing decisions of growing pigs

    DEFF Research Database (Denmark)

    Pourmoayed, Reza; Nielsen, Lars Relund; Kristensen, Anders Ringgaard

    2016-01-01

    Feeding is the most important cost in the production of growing pigs and has a direct impact on the marketing decisions, growth and the final quality of the meat. In this paper, we address the sequential decision problem of when to change the feed-mix within a finisher pig pen and when to pick pigs...... for marketing. We formulate a hierarchical Markov decision process with three levels representing the decision process. The model considers decisions related to feeding and marketing and finds the optimal decision given the current state of the pen. The state of the system is based on information from on...

  8. Hierarchical competition models with the Allee effect II: the case of immigration.

    Science.gov (United States)

    Assas, Laila; Dennis, Brian; Elaydi, Saber; Kwessi, Eddy; Livadiotis, George

    2015-01-01

    This is part II of an earlier paper that dealt with hierarchical models with the Allee effect but with no immigration. In this paper, we greatly simplify the proofs in part I and provide a proof of the global dynamics of the non-hyperbolic cases that were previously conjectured. Then, we show how immigration to one of the species or to both would, drastically, change the dynamics of the system. It is shown that if the level of immigration to one or to both species is above a specified level, then there will be no extinction region where both species go to extinction.

  9. Critical behavior of the Ising model on a hierarchical lattice with aperiodic interactions

    Science.gov (United States)

    Pinho, S. T. R.; Haddad, T. A. S.; Salinas, S. R.

    We write the exact renormalization-group recursion relations for nearest-neighbor ferromagnetic Ising models on Migdal-Kadanoff hierarchical lattices with a distribution of aperiodic exchange interactions according to a class of substitutional sequences. For small geometric fluctuations, the critical behavior is unchanged with respect to the uniform case. For large fluctuations, as in the case of the Rudin-Shapiro sequence, the uniform fixed point in the parameter space cannot be reached from any physical initial conditions. We derive a criterion to check the relevance of the geometric fluctuations.

  10. Assessing the Graphical and Algorithmic Structure of Hierarchical Coloured Petri Net Models

    Directory of Open Access Journals (Sweden)

    George Benwell

    1994-11-01

    Full Text Available Petri nets, as a modelling formalism, are utilised for the analysis of processes, whether for explicit understanding, database design or business process re-engineering. The formalism, however, can be represented on a virtual continuum from highly graphical to largely algorithmic. The use and understanding of the formalism will, in part, therefore depend on the resultant complexity and power of the representation and, on the graphical or algorithmic preference of the user. This paper develops a metric which will indicate the graphical or algorithmic tendency of hierarchical coloured Petri nets.

  11. Triviality of hierarchical O(N) spin model in four dimensions with large N

    CERN Document Server

    Watanabe, H

    2003-01-01

    The renormalization group transformation for the hierarchical O(N) spin model in four dimensions is studied by means of characteristic functions of single-site measures, and convergence of the critical trajectory to the Gaussian fixed point is shown for a sufficiently large N. In the strong coupling regime, the trajectory is controlled by the help of the exactly solved O(\\infty) trajectory, while, in the weak coupling regime, convergence to the Gaussian fixed point is shown by power decay of the effective coupling constant.

  12. Hierarchical nanoreinforced composites for highly reliable large wind turbines: Computational modelling and optimization

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon

    2014-01-01

    , with modified, hybridor nanomodified structures. In this project, we seek to explore the potential of hybrid (carbon/glass),nanoreinforced and hierarchical composites (with secondary CNT, graphene or nanoclay reinforcement) as future materials for highly reliable large wind turbines. Using 3D multiscale...... computational models ofthe composites, we study the effect of hybrid structure and of nanomodifications on the strength, lifetime and service properties of the materials (see Figure 1). As a result, a series of recommendations toward the improvement of composites for structural applications under long term...

  13. Study of the relationship between organizational culture and organizational outcomes using hierarchical linear modeling methodology.

    Science.gov (United States)

    Platonova, Elena A; Hernandez, S Robert; Shewchuk, Richard M; Leddy, Kelly M

    2006-01-01

    This study examines how perceptions of organizational culture influence organizational outcomes, specially, individual employee job satisfaction. The study was conducted in the health care industry in the United States. It examined the data on employee perceptions of job attributes, organizational culture, and job satisfaction, collected by Press Ganey Associates from 88 hospitals across the country in 2002-2003. Hierarchical linear modeling was used to test how organizational culture affects individual employee job satisfaction. Results indicated that some dimensions of organizational culture, specifically, job security and performance recognition, play a role in improving employee job satisfaction.

  14. Neighborhood Predictors of Intimate Partner Violence: A Theory-Informed Analysis Using Hierarchical Linear Modeling.

    Science.gov (United States)

    Voith, Laura A; Brondino, Michael J

    2017-09-01

    Due to high prevalence rates and deleterious effects on individuals, families, and communities, intimate partner violence (IPV) is a significant public health problem. Because IPV occurs in the context of communities and neighborhoods, research must examine the broader environment in addition to individual-level factors to successfully facilitate behavior change. Drawing from the Social Determinants of Health framework and Social Disorganization Theory, neighborhood predictors of IPV were tested using hierarchical linear modeling. Results indicated that concentrated disadvantage and female-to-male partner violence were robust predictors of women's IPV victimization. Implications for theory, practice, and policy, and future research are discussed. © Society for Community Research and Action 2017.

  15. A hierarchical framework for the multiscale modeling of microstructure evolution in heterogeneous materials.

    Energy Technology Data Exchange (ETDEWEB)

    Luscher, Darby J.

    2010-04-01

    All materials are heterogeneous at various scales of observation. The influence of material heterogeneity on nonuniform response and microstructure evolution can have profound impact on continuum thermomechanical response at macroscopic “engineering” scales. In many cases, it is necessary to treat this behavior as a multiscale process thus integrating the physical understanding of material behavior at various physical (length and time) scales in order to more accurately predict the thermomechanical response of materials as their microstructure evolves. The intent of the dissertation is to provide a formal framework for multiscale hierarchical homogenization to be used in developing constitutive models.

  16. Locally self-similar phase diagram of the disordered Potts model on the hierarchical lattice.

    Science.gov (United States)

    Anglès d'Auriac, J-Ch; Iglói, Ferenc

    2013-02-01

    We study the critical behavior of the random q-state Potts model in the large-q limit on the diamond hierarchical lattice with an effective dimensionality d(eff)>2. By varying the temperature and the strength of the frustration the system has a phase transition line between the paramagnetic and the ferromagnetic phases which is controlled by four different fixed points. According to our renormalization group study the phase boundary in the vicinity of the multicritical point is self-similar; it is well represented by a logarithmic spiral. We expect an infinite number of reentrances in the thermodynamic limit; consequently one cannot define standard thermodynamic phases in this region.

  17. Evaluation Model of Design for Operation and Architecture of Hierarchical Virtual Simulation for Flight Vehicle Design

    Institute of Scientific and Technical Information of China (English)

    LIU Hu; TIAN Yongliang; ZHANG Chaoying; YIN Jiao; SUN Yijie

    2012-01-01

    In order to take requirements for commercial operations or military missions into better consideration in new flight vehicle design,a tri-hierarchical task classification model of "design for operation" is proposed,which takes basic man-object interaction task,complex collaborative operation and large-scale joint operation into account.The corresponding general architecture of evaluation criteria is also depicted.Then a virtual simulation-based approach to implement the evaluations at three hierarchy levels is mainly analyzed with a detailed example,which validates the feasibility and effectiveness of evaluation architecture.Finally,extending the virtual simulation architecture from design to operation training is discussed.

  18. [Healthcare value chain: a model for the Brazilian healthcare system].

    Science.gov (United States)

    Pedroso, Marcelo Caldeira; Malik, Ana Maria

    2012-10-01

    This article presents a model of the healthcare value chain which consists of a schematic representation of the Brazilian healthcare system. The proposed model is adapted for the Brazilian reality and has the scope and flexibility for use in academic activities and analysis of the healthcare sector in Brazil. It places emphasis on three components: the main activities of the value chain, grouped in vertical and horizontal links; the mission of each link and the main value chain flows. The proposed model consists of six vertical and three horizontal links, amounting to nine. These are: knowledge development; supply of products and technologies; healthcare services; financial intermediation; healthcare financing; healthcare consumption; regulation; distribution of healthcare products; and complementary and support services. Four flows can be used to analyze the value chain: knowledge and innovation; products and services; financial; and information.

  19. Integrating population dynamics models and distance sampling data: a spatial hierarchical state-space approach.

    Science.gov (United States)

    Nadeem, Khurram; Moore, Jeffrey E; Zhang, Ying; Chipman, Hugh

    2016-07-01

    Stochastic versions of Gompertz, Ricker, and various other dynamics models play a fundamental role in quantifying strength of density dependence and studying long-term dynamics of wildlife populations. These models are frequently estimated using time series of abundance estimates that are inevitably subject to observation error and missing data. This issue can be addressed with a state-space modeling framework that jointly estimates the observed data model and the underlying stochastic population dynamics (SPD) model. In cases where abundance data are from multiple locations with a smaller spatial resolution (e.g., from mark-recapture and distance sampling studies), models are conventionally fitted to spatially pooled estimates of yearly abundances. Here, we demonstrate that a spatial version of SPD models can be directly estimated from short time series of spatially referenced distance sampling data in a unified hierarchical state-space modeling framework that also allows for spatial variance (covariance) in population growth. We also show that a full range of likelihood based inference, including estimability diagnostics and model selection, is feasible in this class of models using a data cloning algorithm. We further show through simulation experiments that the hierarchical state-space framework introduced herein efficiently captures the underlying dynamical parameters and spatial abundance distribution. We apply our methodology by analyzing a time series of line-transect distance sampling data for fin whales (Balaenoptera physalus) off the U.S. west coast. Although there were only seven surveys conducted during the study time frame, 1991-2014, our analysis detected presence of strong density regulation and provided reliable estimates of fin whale densities. In summary, we show that the integrative framework developed herein allows ecologists to better infer key population characteristics such as presence of density regulation and spatial variability in a

  20. Bayesian hierarchical models combining different study types and adjusting for covariate imbalances: a simulation study to assess model performance.

    Directory of Open Access Journals (Sweden)

    C Elizabeth McCarron

    Full Text Available BACKGROUND: Bayesian hierarchical models have been proposed to combine evidence from different types of study designs. However, when combining evidence from randomised and non-randomised controlled studies, imbalances in patient characteristics between study arms may bias the results. The objective of this study was to assess the performance of a proposed Bayesian approach to adjust for imbalances in patient level covariates when combining evidence from both types of study designs. METHODOLOGY/PRINCIPAL FINDINGS: Simulation techniques, in which the truth is known, were used to generate sets of data for randomised and non-randomised studies. Covariate imbalances between study arms were introduced in the non-randomised studies. The performance of the Bayesian hierarchical model adjusted for imbalances was assessed in terms of bias. The data were also modelled using three other Bayesian approaches for synthesising evidence from randomised and non-randomised studies. The simulations considered six scenarios aimed at assessing the sensitivity of the results to changes in the impact of the imbalances and the relative number and size of studies of each type. For all six scenarios considered, the Bayesian hierarchical model adjusted for differences within studies gave results that were unbiased and closest to the true value compared to the other models. CONCLUSIONS/SIGNIFICANCE: Where informed health care decision making requires the synthesis of evidence from randomised and non-randomised study designs, the proposed hierarchical Bayesian method adjusted for differences in patient characteristics between study arms may facilitate the optimal use of all available evidence leading to unbiased results compared to unadjusted analyses.

  1. Friction and adhesion of hierarchical carbon nanotube structures for biomimetic dry adhesives: multiscale modeling.

    Science.gov (United States)

    Hu, Shihao; Jiang, Haodan; Xia, Zhenhai; Gao, Xiaosheng

    2010-09-01

    With unique hierarchical fibrillar structures on their feet, gecko lizards can walk on vertical walls or even ceilings. Recent experiments have shown that strong binding along the shear direction and easy lifting in the normal direction can be achieved by forming unidirectional carbon nanotube array with laterally distributed tips similar to gecko's feet. In this study, a multiscale modeling approach was developed to analyze friction and adhesion behaviors of this hierarchical fibrillar system. Vertically aligned carbon nanotube array with laterally distributed segments at the end was simulated by coarse grained molecular dynamics. The effects of the laterally distributed segments on friction and adhesion strengths were analyzed, and further adopted as cohesive laws used in finite element analysis at device scale. The results show that the laterally distributed segments play an essential role in achieving high force anisotropy between normal and shear directions in the adhesives. Finite element analysis reveals a new friction-enhanced adhesion mechanism of the carbon nanotube array, which also exists in gecko adhesive system. The multiscale modeling provides an approach to bridge the microlevel structures of the carbon nanotube array with its macrolevel adhesive behaviors, and the predictions from this modeling give an insight into the mechanisms of gecko-mimicking dry adhesives.

  2. Quantifying inter- and intra-population niche variability using hierarchical bayesian stable isotope mixing models.

    Science.gov (United States)

    Semmens, Brice X; Ward, Eric J; Moore, Jonathan W; Darimont, Chris T

    2009-07-09

    Variability in resource use defines the width of a trophic niche occupied by a population. Intra-population variability in resource use may occur across hierarchical levels of population structure from individuals to subpopulations. Understanding how levels of population organization contribute to population niche width is critical to ecology and evolution. Here we describe a hierarchical stable isotope mixing model that can simultaneously estimate both the prey composition of a consumer diet and the diet variability among individuals and across levels of population organization. By explicitly estimating variance components for multiple scales, the model can deconstruct the niche width of a consumer population into relevant levels of population structure. We apply this new approach to stable isotope data from a population of gray wolves from coastal British Columbia, and show support for extensive intra-population niche variability among individuals, social groups, and geographically isolated subpopulations. The analytic method we describe improves mixing models by accounting for diet variability, and improves isotope niche width analysis by quantitatively assessing the contribution of levels of organization to the niche width of a population.

  3. Evolutionary-Hierarchical Bases of the Formation of Cluster Model of Innovation Economic Development

    Directory of Open Access Journals (Sweden)

    Yuliya Vladimirovna Dubrovskaya

    2016-10-01

    Full Text Available The functioning of a modern economic system is based on the interaction of objects of different hierarchical levels. Thus, the problem of the study of innovation processes taking into account the mutual influence of the activities of these economic actors becomes important. The paper dwells evolutionary basis for the formation of models of innovation development on the basis of micro and macroeconomic analysis. Most of the concepts recognized that despite a big number of diverse models, the coordination of the relations between economic agents is of crucial importance for the successful innovation development. According to the results of the evolutionary-hierarchical analysis, the authors reveal key phases of the development of forms of business cooperation, science and government in the domestic economy. It has become the starting point of the conception of the characteristics of the interaction in the cluster models of innovation development of the economy. Considerable expectancies on improvement of the national innovative system are connected with the development of cluster and network structures. The main objective of government authorities is the formation of mechanisms and institutions that will foster cooperation between members of the clusters. The article explains that the clusters cannot become the factors in the growth of the national economy, not being an effective tool for interaction between the actors of the regional innovative systems.

  4. Detecting temporal trends in species assemblages with bootstrapping procedures and hierarchical models

    Science.gov (United States)

    Gotelli, Nicholas J.; Dorazio, Robert M.; Ellison, Aaron M.; Grossman, Gary D.

    2010-01-01

    Quantifying patterns of temporal trends in species assemblages is an important analytical challenge in community ecology. We describe methods of analysis that can be applied to a matrix of counts of individuals that is organized by species (rows) and time-ordered sampling periods (columns). We first developed a bootstrapping procedure to test the null hypothesis of random sampling from a stationary species abundance distribution with temporally varying sampling probabilities. This procedure can be modified to account for undetected species. We next developed a hierarchical model to estimate species-specific trends in abundance while accounting for species-specific probabilities of detection. We analysed two long-term datasets on stream fishes and grassland insects to demonstrate these methods. For both assemblages, the bootstrap test indicated that temporal trends in abundance were more heterogeneous than expected under the null model. We used the hierarchical model to estimate trends in abundance and identified sets of species in each assemblage that were steadily increasing, decreasing or remaining constant in abundance over more than a decade of standardized annual surveys. Our methods of analysis are broadly applicable to other ecological datasets, and they represent an advance over most existing procedures, which do not incorporate effects of incomplete sampling and imperfect detection.

  5. A hierarchical probabilistic model for rapid object categorization in natural scenes.

    Directory of Open Access Journals (Sweden)

    Xiaofu He

    Full Text Available Humans can categorize objects in complex natural scenes within 100-150 ms. This amazing ability of rapid categorization has motivated many computational models. Most of these models require extensive training to obtain a decision boundary in a very high dimensional (e.g., ∼6,000 in a leading model feature space and often categorize objects in natural scenes by categorizing the context that co-occurs with objects when objects do not occupy large portions of the scenes. It is thus unclear how humans achieve rapid scene categorization.To address this issue, we developed a hierarchical probabilistic model for rapid object categorization in natural scenes. In this model, a natural object category is represented by a coarse hierarchical probability distribution (PD, which includes PDs of object geometry and spatial configuration of object parts. Object parts are encoded by PDs of a set of natural object structures, each of which is a concatenation of local object features. Rapid categorization is performed as statistical inference. Since the model uses a very small number (∼100 of structures for even complex object categories such as animals and cars, it requires little training and is robust in the presence of large variations within object categories and in their occurrences in natural scenes. Remarkably, we found that the model categorized animals in natural scenes and cars in street scenes with a near human-level performance. We also found that the model located animals and cars in natural scenes, thus overcoming a flaw in many other models which is to categorize objects in natural context by categorizing contextual features. These results suggest that coarse PDs of object categories based on natural object structures and statistical operations on these PDs may underlie the human ability to rapidly categorize scenes.

  6. Building Higher-Order Markov Chain Models with EXCEL

    Science.gov (United States)

    Ching, Wai-Ki; Fung, Eric S.; Ng, Michael K.

    2004-01-01

    Categorical data sequences occur in many applications such as forecasting, data mining and bioinformatics. In this note, we present higher-order Markov chain models for modelling categorical data sequences with an efficient algorithm for solving the model parameters. The algorithm can be implemented easily in a Microsoft EXCEL worksheet. We give a…

  7. Impacts of forest fragmentation on species richness: a hierarchical approach to community modelling

    Science.gov (United States)

    Zipkin, Elise F.; DeWan, Amielle; Royle, J. Andrew

    2009-01-01

    1. Species richness is often used as a tool for prioritizing conservation action. One method for predicting richness and other summaries of community structure is to develop species-specific models of occurrence probability based on habitat or landscape characteristics. However, this approach can be challenging for rare or elusive species for which survey data are often sparse. 2. Recent developments have allowed for improved inference about community structure based on species-specific models of occurrence probability, integrated within a hierarchical modelling framework. This framework offers advantages to inference about species richness over typical approaches by accounting for both species-level effects and the aggregated effects of landscape composition on a community as a whole, thus leading to increased precision in estimates of species richness by improving occupancy estimates for all species, including those that were observed infrequently. 3. We developed a hierarchical model to assess the community response of breeding birds in the Hudson River Valley, New York, to habitat fragmentation and analysed the model using a Bayesian approach. 4. The model was designed to estimate species-specific occurrence and the effects of fragment area and edge (as measured through the perimeter and the perimeter/area ratio, P/A), while accounting for imperfect detection of species. 5. We used the fitted model to make predictions of species richness within forest fragments of variable morphology. The model revealed that species richness of the observed bird community was maximized in small forest fragments with a high P/A. However, the number of forest interior species, a subset of the community with high conservation value, was maximized in large fragments with low P/A. 6. Synthesis and applications. Our results demonstrate the importance of understanding the responses of both individual, and groups of species, to environmental heterogeneity while illustrating the utility

  8. Evaluation of anthelmintic resistance in livestock parasites using observational data and hierarchical models

    DEFF Research Database (Denmark)

    Nielsen, Martin Krarup; Vidyashankar, Anand N.; Hanlon, Bret

    contribute to cause this high variability and these must be taken into account to accurately identify a reduction in anthelmintic efficacy. To address this problem, we developed a hierarchical statistical model for analysis of FECRT data from multiple farms. The model includes animal effect and farm clusters...... to handle FECRT data obtained from other livestock species, drug types, and parasite species........93 %) farms as pyrantel resistant, 5 (7.81 %) as suspect resistant and the remainder of farms (81.25%) as not resistant. In comparison with unadjusted LCLs, the model provided a more stable classification of farms with a 1.1 % 12 false discovery rate. The statistical model presented here can be adapted...

  9. Identifying rock blocks based on hierarchical rock-mass structure model

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Rock-masses are divided into many closed blocks by deterministic and stochastic discontinuities and engineering interfaces in complex rock-mass engineering. Determining the sizes, shapes, and adjacent relations of blocks is important for stability analysis of fractured rock masses. Here we propose an algorithm for identifying spatial blocks based on a hierarchical 3D Rock-mass Structure Model (RSM). First, a model is built composed of deterministic discontinuities, engineering interfaces, and the earth’s surface, and the deterministic blocks surrounded by these interfaces are traced. Then, in each deter-ministic block, a network model of stochastic discontinuities is built and the stochastic blocks are traced. Building a unitary wire frame that connects all interfaces seamlessly is the key for our algorithm to identify the above two kinds of blocks. Using this algorithm, geometric models can be built for block theory, discrete element method, and discontinuous deformation analysis.

  10. A spectral-spatial-dynamic hierarchical Bayesian (SSD-HB) model for estimating soybean yield

    Science.gov (United States)

    Kazama, Yoriko; Kujirai, Toshihiro

    2014-10-01

    A method called a "spectral-spatial-dynamic hierarchical-Bayesian (SSD-HB) model," which can deal with many parameters (such as spectral and weather information all together) by reducing the occurrence of multicollinearity, is proposed. Experiments conducted on soybean yields in Brazil fields with a RapidEye satellite image indicate that the proposed SSD-HB model can predict soybean yield with a higher degree of accuracy than other estimation methods commonly used in remote-sensing applications. In the case of the SSD-HB model, the mean absolute error between estimated yield of the target area and actual yield is 0.28 t/ha, compared to 0.34 t/ha when conventional PLS regression was applied, showing the potential effectiveness of the proposed model.

  11. Modeling Uncertainty of Directed Movement via Markov Chains

    Directory of Open Access Journals (Sweden)

    YIN Zhangcai

    2015-10-01

    Full Text Available Probabilistic time geography (PTG is suggested as an extension of (classical time geography, in order to present the uncertainty of an agent located at the accessible position by probability. This may provide a quantitative basis for most likely finding an agent at a location. In recent years, PTG based on normal distribution or Brown bridge has been proposed, its variance, however, is irrelevant with the agent's speed or divergent with the increase of the speed; so they are difficult to take into account application pertinence and stability. In this paper, a new method is proposed to model PTG based on Markov chain. Firstly, a bidirectional conditions Markov chain is modeled, the limit of which, when the moving speed is large enough, can be regarded as the Brown bridge, thus has the characteristics of digital stability. Then, the directed movement is mapped to Markov chains. The essential part is to build step length, the state space and transfer matrix of Markov chain according to the space and time position of directional movement, movement speed information, to make sure the Markov chain related to the movement speed. Finally, calculating continuously the probability distribution of the directed movement at any time by the Markov chains, it can be get the possibility of an agent located at the accessible position. Experimental results show that, the variance based on Markov chains not only is related to speed, but also is tending towards stability with increasing the agent's maximum speed.

  12. Merging information from multi-model flood projections in a hierarchical Bayesian framework

    Science.gov (United States)

    Le Vine, Nataliya

    2016-04-01

    Multi-model ensembles are becoming widely accepted for flood frequency change analysis. The use of multiple models results in large uncertainty around estimates of flood magnitudes, due to both uncertainty in model selection and natural variability of river flow. The challenge is therefore to extract the most meaningful signal from the multi-model predictions, accounting for both model quality and uncertainties in individual model estimates. The study demonstrates the potential of a recently proposed hierarchical Bayesian approach to combine information from multiple models. The approach facilitates explicit treatment of shared multi-model discrepancy as well as the probabilistic nature of the flood estimates, by treating the available models as a sample from a hypothetical complete (but unobserved) set of models. The advantages of the approach are: 1) to insure an adequate 'baseline' conditions with which to compare future changes; 2) to reduce flood estimate uncertainty; 3) to maximize use of statistical information in circumstances where multiple weak predictions individually lack power, but collectively provide meaningful information; 4) to adjust multi-model consistency criteria when model biases are large; and 5) to explicitly consider the influence of the (model performance) stationarity assumption. Moreover, the analysis indicates that reducing shared model discrepancy is the key to further reduction of uncertainty in the flood frequency analysis. The findings are of value regarding how conclusions about changing exposure to flooding are drawn, and to flood frequency change attribution studies.

  13. Demand Activated Manufacturing Architecture (DAMA) model for supply chain collaboration

    Energy Technology Data Exchange (ETDEWEB)

    CHAPMAN,LEON D.; PETERSEN,MARJORIE B.

    2000-03-13

    The Demand Activated Manufacturing Architecture (DAMA) project during the last five years of work with the U.S. Integrated Textile Complex (retail, apparel, textile, and fiber sectors) has developed an inter-enterprise architecture and collaborative model for supply chains. This model will enable improved collaborative business across any supply chain. The DAMA Model for Supply Chain Collaboration is a high-level model for collaboration to achieve Demand Activated Manufacturing. The five major elements of the architecture to support collaboration are (1) activity or process, (2) information, (3) application, (4) data, and (5) infrastructure. These five elements are tied to the application of the DAMA architecture to three phases of collaboration - prepare, pilot, and scale. There are six collaborative activities that may be employed in this model: (1) Develop Business Planning Agreements, (2) Define Products, (3) Forecast and Plan Capacity Commitments, (4) Schedule Product and Product Delivery, (5) Expedite Production and Delivery Exceptions, and (6) Populate Supply Chain Utility. The Supply Chain Utility is a set of applications implemented to support collaborative product definition, forecast visibility, planning, scheduling, and execution. The DAMA architecture and model will be presented along with the process for implementing this DAMA model.

  14. Trapped ions in optical lattices for probing oscillator chain models

    CERN Document Server

    Pruttivarasin, Thaned; Talukdar, Ishan; Kreuter, Axel; Haeffner, Hartmut

    2011-01-01

    We show that a chain of trapped ions embedded in microtraps generated by an optical lattice can be used to study oscillator models related to dry friction and energy transport. Numerical calculations with realistic experimental parameters demonstrate that both static and dynamic properties of the ion chain change significantly as the optical lattice power is varied. Finally, we lay out an experimental scheme to use the spin degree of freedom to probe the phase space structure and quantum critical behavior of the ion chain.

  15. Hierarchical linear modeling (HLM) of longitudinal brain structural and cognitive changes in alcohol-dependent individuals during sobriety

    DEFF Research Database (Denmark)

    Yeh, P.H.; Gazdzinski, S.; Durazzo, T.C.;

    2007-01-01

    and unique hierarchical linear models allow assessments of the complex relationships among outcome measures of longitudinal data sets. These HLM applications suggest that chronic cigarette smoking modulates the temporal dynamics of brain structural and cognitive changes in alcoholics during prolonged......Background: Hierarchical linear modeling (HLM) can reveal complex relationships between longitudinal outcome measures and their covariates under proper consideration of potentially unequal error variances. We demonstrate the application of FILM to the study of magnetic resonance imaging (MRI...... time points. Using HLM, we modeled volumetric and cognitive outcome measures as a function of cigarette and alcohol use variables. Results: Different hierarchical linear models with unique model structures are presented and discussed. The results show that smaller brain volumes at baseline predict...

  16. Profit Analysis and Supply Chain Planning Model for Closed-Loop Supply Chain in Fashion Industry

    OpenAIRE

    Jisoo Oh; Bongju Jeong

    2014-01-01

    In recent decades, due to market growth and use of synthetic fiber, the fashion industry faces a rapid increase of CO 2 emission throughout the production cycle and raises environmental issues in recovery processing. This study proposes a closed-loop supply chain (CLSC) structure in fashion industry and develops its planning model as multi-objective mixed integer linear programming to find an optimal trade-off between CLSC profit and CO 2 emission. The planning model is associated with the pr...

  17. Mathematical Programming Model of Biodiesel Supply Chain in Colombia

    Directory of Open Access Journals (Sweden)

    Johan Alexander Aranda Pinilla

    2014-06-01

    in order to coordinate a structured way fl ow of resources between the links in the chain starting with “harvesting” going through the middle steps of “extraction” and “conversion” until the fi nal step “mixture “, which are involved in the supply network. The goal of the model is to determine a distribution plan of palm, oil, biodiesel and diesel throughout the chain, along with a production and inventory plan, and a capacity increase plan for biorefi neries in a way that minimizes the total cost of the production chain over a predefi ned planning horizon. The application of the model results in a projection to the year 2043 showing the behavior of the chain, specifi cally soil requirements for such production levels.

  18. MEASURING THE DATA MODEL QUALITY IN THE ESUPPLY CHAINS

    Directory of Open Access Journals (Sweden)

    Zora Arsovski

    2012-03-01

    Full Text Available The implementation of Internet technology in business has enabled the development of e-business supply chains with large-scale information integration among all partners.The development of information systems (IS is based on the established business objectives whose achievement, among other things, directly depends on the quality of development and design of IS. In the process of analysis of the key elements of company operations in the supply chain, process model and corresponding data model are designed which should enable selection of appropriate information system architecture. The quality of the implemented information system, which supports e-supply chain, directly depends on the level of data model quality. One of the serious limitations of the data model is its complexity. With a large number of entities, data model is difficult to analyse, monitor and maintain. The problem gets bigger when looking at an integrated data model at the level of participating partners in the supply chain, where the data model usually consists of hundreds or even thousands of entities.The paper will analyse the key elements affecting the quality of data models and show their interactions and factors of significance. In addition, the paper presents various measures for assessing the quality of the data model on which it is possible to easily locate the problems and focus efforts in specific parts of a complex data model where it is not economically feasible to review every detail of the model.

  19. Hierarchical neural network model of the visual system determining figure/ground relation

    Science.gov (United States)

    Kikuchi, Masayuki

    2017-07-01

    One of the most important functions of the visual perception in the brain is figure/ground interpretation from input images. Figural region in 2D image corresponding to object in 3D space are distinguished from background region extended behind the object. Previously the author proposed a neural network model of figure/ground separation constructed on the standpoint that local geometric features such as curvatures and outer angles at corners are extracted and propagated along input contour in a single layer network (Kikuchi & Akashi, 2001). However, such a processing principle has the defect that signal propagation requires manyiterations despite the fact that actual visual system determines figure/ground relation within the short period (Zhou et al., 2000). In order to attain speed-up for determining figure/ground, this study incorporates hierarchical architecture into the previous model. This study confirmed the effect of the hierarchization as for the computation time by simulation. As the number of layers increased, the required computation time reduced. However, such speed-up effect was saturatedas the layers increased to some extent. This study attempted to explain this saturation effect by the notion of average distance between vertices in the area of complex network, and succeeded to mimic the saturation effect by computer simulation.

  20. Hierarchical Model for the Analysis of Scattering Data of Complex Materials

    Science.gov (United States)

    Oyedele, Akinola; Mcnutt, Nicholas W.; Rios, Orlando; Keffer, David J.

    2016-06-01

    Interpreting the results of scattering data for complex materials with a hierarchical structure in which at least one phase is amorphous presents a significant challenge. Often the interpretation relies on the use of large-scale molecular dynamics (MD) simulations, in which a structure is hypothesized and from which a radial distribution function (RDF) can be extracted and directly compared against an experimental RDF. This computationally intensive approach presents a bottleneck in the efficient characterization of the atomic structure of new materials. Here, we propose and demonstrate an approach for a hierarchical decomposition of the RDF in which MD simulations are replaced by a combination of tractable models and theory at the atomic scale and the mesoscale, which when combined yield the RDF. We apply the procedure to a carbon composite, in which graphitic nanocrystallites are distributed in an amorphous domain. We compare the model with the RDF from both MD simulation and neutron scattering data. This procedure is applicable for understanding the fundamental processing-structure-property relationships in complex magnetic materials.

  1. Efficient hierarchical identity based encryption scheme in the standard model over lattices

    Institute of Scientific and Technical Information of China (English)

    Feng-he WANG; Chun-xiao WANG; Zhen-hua LIU

    2016-01-01

    Using lattice basis delegation in a fi xed dimension, we propose an efficient lattice-based hierarchical identity based encryption (HIBE) scheme in the standard model whose public key size is only (dm2+mn) log q bits and whose message-ciphertext expansion factor is only log q, where d is the maximum hierarchical depth and (n,m,q) are public parameters. In our construction, a novel public key assignment rule is used to averagely assign one random and public matrix to two identity bits, which implies that d random public matrices are enough to build the proposed HIBE scheme in the standard model, compared with the case in which 2d such public matrices are needed in the scheme proposed at Crypto 2010 whose public key size is (2dm2+mn+m) log q. To reduce the message-ciphertext expansion factor of the proposed scheme to log q, the encryption algorithm of this scheme is built based on Gentry’s encryption scheme, by which m2 bits of plaintext are encrypted into m2 log q bits of ciphertext by a one time encryption operation. Hence, the presented scheme has some advantages with respect to not only the public key size but also the message-ciphertext expansion factor. Based on the hardness of the learning with errors problem, we demonstrate that the scheme is secure under selective identity and chosen plaintext attacks.

  2. Application of Bayesian hierarchical models for phase I/II clinical trials in oncology.

    Science.gov (United States)

    Yada, Shinjo; Hamada, Chikuma

    2017-03-01

    Treatment during cancer clinical trials sometimes involves the combination of multiple drugs. In addition, in recent years there has been a trend toward phase I/II trials in which a phase I and a phase II trial are combined into a single trial to accelerate drug development. Methods for the seamless combination of phases I and II parts are currently under investigation. In the phase II part, adaptive randomization on the basis of patient efficacy outcomes allocates more patients to the dose combinations considered to have higher efficacy. Patient toxicity outcomes are used for determining admissibility to each dose combination and are not used for selection of the dose combination itself. In cases where the objective is not to find the optimum dose combination solely for efficacy but regarding both toxicity and efficacy, the need exists to allocate patients to dose combinations with consideration of the balance of existing trade-offs between toxicity and efficacy. We propose a Bayesian hierarchical model and an adaptive randomization with consideration for the relationship with toxicity and efficacy. Using the toxicity and efficacy outcomes of patients, the Bayesian hierarchical model is used to estimate the toxicity probability and efficacy probability in each of the dose combinations. Here, we use Bayesian moving-reference adaptive randomization on the basis of desirability computed from the obtained estimator. Computer simulations suggest that the proposed method will likely recommend a higher percentage of target dose combinations than a previously proposed method.

  3. Hierarchical modeling of genome-wide Short Tandem Repeat (STR) markers infers native American prehistory.

    Science.gov (United States)

    Lewis, Cecil M

    2010-02-01

    This study examines a genome-wide dataset of 678 Short Tandem Repeat loci characterized in 444 individuals representing 29 Native American populations as well as the Tundra Netsi and Yakut populations from Siberia. Using these data, the study tests four current hypotheses regarding the hierarchical distribution of neutral genetic variation in native South American populations: (1) the western region of South America harbors more variation than the eastern region of South America, (2) Central American and western South American populations cluster exclusively, (3) populations speaking the Chibchan-Paezan and Equatorial-Tucanoan language stock emerge as a group within an otherwise South American clade, (4) Chibchan-Paezan populations in Central America emerge together at the tips of the Chibchan-Paezan cluster. This study finds that hierarchical models with the best fit place Central American populations, and populations speaking the Chibchan-Paezan language stock, at a basal position or separated from the South American group, which is more consistent with a serial founder effect into South America than that previously described. Western (Andean) South America is found to harbor similar levels of variation as eastern (Equatorial-Tucanoan and Ge-Pano-Carib) South America, which is inconsistent with an initial west coast migration into South America. Moreover, in all relevant models, the estimates of genetic diversity within geographic regions suggest a major bottleneck or founder effect occurring within the North American subcontinent, before the peopling of Central and South America. 2009 Wiley-Liss, Inc.

  4. Vehicle Detection Based on Visual Saliency and Deep Sparse Convolution Hierarchical Model

    Institute of Scientific and Technical Information of China (English)

    CAI Yingfeng; WANG Hai; CHEN Xiaobo; GAO Li; CHEN Long

    2016-01-01

    Traditional vehicle detection algorithms use traverse search based vehicle candidate generation and hand crafted based classifier training for vehicle candidate verification. These types of methods generally have high processing times and low vehicle detection performance. To address this issue, a visual saliency and deep sparse convolution hierarchical model based vehicle detection algorithm is proposed. A visual saliency calculation is firstly used to generate a small vehicle candidate area. The vehicle candidate sub images are then loaded into a sparse deep convolution hierarchical model with an SVM-based classifier to perform the final detection. The experimental results demonstrate that the proposed method is with 94.81% correct rate and 0.78% false detection rate on the existing datasets and the real road pictures captured by our group, which outperforms the existing state-of-the-art algorithms. More importantly, high discriminative multi-scale features are generated by deep sparse convolution network which has broad application prospects in target recognition in the field of intelligent vehicle.

  5. Vehicle detection based on visual saliency and deep sparse convolution hierarchical model

    Science.gov (United States)

    Cai, Yingfeng; Wang, Hai; Chen, Xiaobo; Gao, Li; Chen, Long

    2016-07-01

    Traditional vehicle detection algorithms use traverse search based vehicle candidate generation and hand crafted based classifier training for vehicle candidate verification. These types of methods generally have high processing times and low vehicle detection performance. To address this issue, a visual saliency and deep sparse convolution hierarchical model based vehicle detection algorithm is proposed. A visual saliency calculation is firstly used to generate a small vehicle candidate area. The vehicle candidate sub images are then loaded into a sparse deep convolution hierarchical model with an SVM-based classifier to perform the final detection. The experimental results demonstrate that the proposed method is with 94.81% correct rate and 0.78% false detection rate on the existing datasets and the real road pictures captured by our group, which outperforms the existing state-of-the-art algorithms. More importantly, high discriminative multi-scale features are generated by deep sparse convolution network which has broad application prospects in target recognition in the field of intelligent vehicle.

  6. An approach based on Hierarchical Bayesian Graphical Models for measurement interpretation under uncertainty

    Science.gov (United States)

    Skataric, Maja; Bose, Sandip; Zeroug, Smaine; Tilke, Peter

    2017-02-01

    It is not uncommon in the field of non-destructive evaluation that multiple measurements encompassing a variety of modalities are available for analysis and interpretation for determining the underlying states of nature of the materials or parts being tested. Despite and sometimes due to the richness of data, significant challenges arise in the interpretation manifested as ambiguities and inconsistencies due to various uncertain factors in the physical properties (inputs), environment, measurement device properties, human errors, and the measurement data (outputs). Most of these uncertainties cannot be described by any rigorous mathematical means, and modeling of all possibilities is usually infeasible for many real time applications. In this work, we will discuss an approach based on Hierarchical Bayesian Graphical Models (HBGM) for the improved interpretation of complex (multi-dimensional) problems with parametric uncertainties that lack usable physical models. In this setting, the input space of the physical properties is specified through prior distributions based on domain knowledge and expertise, which are represented as Gaussian mixtures to model the various possible scenarios of interest for non-destructive testing applications. Forward models are then used offline to generate the expected distribution of the proposed measurements which are used to train a hierarchical Bayesian network. In Bayesian analysis, all model parameters are treated as random variables, and inference of the parameters is made on the basis of posterior distribution given the observed data. Learned parameters of the posterior distribution obtained after the training can therefore be used to build an efficient classifier for differentiating new observed data in real time on the basis of pre-trained models. We will illustrate the implementation of the HBGM approach to ultrasonic measurements used for cement evaluation of cased wells in the oil industry.

  7. Parallel Motion Simulation of Large-Scale Real-Time Crowd in a Hierarchical Environmental Model

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2012-01-01

    Full Text Available This paper presents a parallel real-time crowd simulation method based on a hierarchical environmental model. A dynamical model of the complex environment should be constructed to simulate the state transition and propagation of individual motions. By modeling of a virtual environment where virtual crowds reside, we employ different parallel methods on a topological layer, a path layer and a perceptual layer. We propose a parallel motion path matching method based on the path layer and a parallel crowd simulation method based on the perceptual layer. The large-scale real-time crowd simulation becomes possible with these methods. Numerical experiments are carried out to demonstrate the methods and results.

  8. The influence of personality on nicotine craving: a hierarchical multivariate statistical prediction model.

    Science.gov (United States)

    Reuter, M; Netter, P

    2001-01-01

    The present study proposes a hierarchical multivariate statistical prediction model which enables to determine the most prominent variables (physiological, biochemical and personality factors) related to nicotine craving and dopaminergic activation. Based on animal studies reporting a reduction of the rewarding effects of psychotropic drugs after blockade or destruction of the mesolimbic dopamine (DA) system, changes in nicotine craving after pharmacological manipulation by means of a DA agonist (lisuride 0.2 mg) and a DA antagonist (fluphenazine 2 mg) were assessed in 36 healthy male heavy smokers. The major aim was the development of a multivariate prediction model which is applicable in samples lacking variance homogeneity or the prerequisite of a multivariate normal distribution. The model proposed is a combination of multivariate parametric and nonparametric methods taking advantage of their individual merits. Especially personality variables, such as sensation seeking, impulsivity, and neuroticism showed to be important predictors of craving in this responder approach.

  9. A Bayesian hierarchical model for reconstructing relative sea level: from raw data to rates of change

    Science.gov (United States)

    Cahill, Niamh; Kemp, Andrew C.; Horton, Benjamin P.; Parnell, Andrew C.

    2016-02-01

    We present a Bayesian hierarchical model for reconstructing the continuous and dynamic evolution of relative sea-level (RSL) change with quantified uncertainty. The reconstruction is produced from biological (foraminifera) and geochemical (δ13C) sea-level indicators preserved in dated cores of salt-marsh sediment. Our model is comprised of three modules: (1) a new Bayesian transfer (B-TF) function for the calibration of biological indicators into tidal elevation, which is flexible enough to formally accommodate additional proxies; (2) an existing chronology developed using the Bchron age-depth model, and (3) an existing Errors-In-Variables integrated Gaussian process (EIV-IGP) model for estimating rates of sea-level change. Our approach is illustrated using a case study of Common Era sea-level variability from New Jersey, USA We develop a new B-TF using foraminifera, with and without the additional (δ13C) proxy and compare our results to those from a widely used weighted-averaging transfer function (WA-TF). The formal incorporation of a second proxy into the B-TF model results in smaller vertical uncertainties and improved accuracy for reconstructed RSL. The vertical uncertainty from the multi-proxy B-TF is ˜ 28 % smaller on average compared to the WA-TF. When evaluated against historic tide-gauge measurements, the multi-proxy B-TF most accurately reconstructs the RSL changes observed in the instrumental record (mean square error = 0.003 m2). The Bayesian hierarchical model provides a single, unifying framework for reconstructing and analyzing sea-level change through time. This approach is suitable for reconstructing other paleoenvironmental variables (e.g., temperature) using biological proxies.

  10. A Multiobjective Optimization Model in Automotive Supply Chain Networks

    Directory of Open Access Journals (Sweden)

    Abdolhossein Sadrnia

    2013-01-01

    Full Text Available In the new decade, green investment decisions are attracting more interest in design supply chains due to the hidden economic benefits and environmental legislative barriers. In this paper, a supply chain network design problem with both economic and environmental concerns is presented. Therefore, a multiobjective optimization model that captures the trade-off between the total logistics cost and CO2 emissions is proposed. With regard to the complexity of logistic networks, a new multiobjective swarm intelligence algorithm known as a multiobjective Gravitational search algorithm (MOGSA has been implemented for solving the proposed mathematical model. To evaluate the effectiveness of the model, a comprehensive set of numerical experiments is explained. The results obtained show that the proposed model can be applied as an effective tool in strategic planning for optimizing cost and CO2 emissions in an environmentally friendly automotive supply chain.

  11. Conformational statistics of polymer chain terminally attached to wall (Ⅲ)——NRW model loop chain

    Institute of Scientific and Technical Information of China (English)

    吴大诚; 杜鹏; 康建

    1997-01-01

    When the two end groups of a linear polymer chain are absorbed on a solid surface,the polymer chain forms the "loop" conformation.Investigation has been made on the conformational statistics of a model loop chain by the normal landom walk (NRW) on a lattice confined in the half-infinite space.Based on the conformational distribution function of the NRW model tail chain,it is easy to deduce an analytical formula expressing the conforma-tional number of the model loop chain.It was found that the ratio of the conformational number of the model loop chain to that of the free chain varies with the power function N-2/3 when the chain length N→∞ The same result was obtained by means of the recursion equation.The ratio of the mean square end-to-end distance h2 for the model loop chain to its mean square bond length I2 is 2N/3 Compared with the free chain with the same length N,the mean square end-to-end distance of the model loop chain contracts to a certain extent.The basic relationships deduced were support

  12. Multilevel Hierarchical Modeling of Benthic Macroinvertebrate Responses to Urbanization in Nine Metropolitan Regions across the Conterminous United States

    Science.gov (United States)

    Kashuba, Roxolana; Cha, YoonKyung; Alameddine, Ibrahim; Lee, Boknam; Cuffney, Thomas F.

    2010-01-01

    Multilevel hierarchical modeling methodology has been developed for use in ecological data analysis. The effect of urbanization on stream macroinvertebrate communities was measured across a gradient of basins in each of nine metropolitan regions across the conterminous United States. The hierarchical nature of this dataset was harnessed in a multi-tiered model structure, predicting both invertebrate response at the basin scale and differences in invertebrate response at the region scale. Ordination site scores, total taxa richness, Ephemeroptera, Plecoptera, Trichoptera (EPT) taxa richness, and richness-weighted mean tolerance of organisms at a site were used to describe invertebrate responses. Percentage of urban land cover was used as a basin-level predictor variable. Regional mean precipitation, air temperature, and antecedent agriculture were used as region-level predictor variables. Multilevel hierarchical models were fit to both levels of data simultaneously, borrowing statistical strength from the complete dataset to reduce uncertainty in regional coefficient estimates. Additionally, whereas non-hierarchical regressions were only able to show differing relations between invertebrate responses and urban intensity separately for each region, the multilevel hierarchical regressions were able to explain and quantify those differences within a single model. In this way, this modeling approach directly establishes the importance of antecedent agricultural conditions in masking the response of invertebrates to urbanization in metropolitan regions such as Milwaukee-Green Bay, Wisconsin; Denver, Colorado; and Dallas-Fort Worth, Texas. Also, these models show that regions with high precipitation, such as Atlanta, Georgia; Birmingham, Alabama; and Portland, Oregon, start out with better regional background conditions of invertebrates prior to urbanization but experience faster negative rates of change with urbanization. Ultimately, this urbanization

  13. Applied Bayesian Hierarchical Methods

    CERN Document Server

    Congdon, Peter D

    2010-01-01

    Bayesian methods facilitate the analysis of complex models and data structures. Emphasizing data applications, alternative modeling specifications, and computer implementation, this book provides a practical overview of methods for Bayesian analysis of hierarchical models.

  14. A Hierarchical Approach Embedding Hydrologic and Population Modeling for a West Nile Virus Vector Prediction

    Science.gov (United States)

    Jian, Y.; Silvestri, S.; Marani, M.; Saltarin, A.; Chillemi, G.

    2012-12-01

    We applied a hierarchical state space model to predict the abundance of Cx.pipiens (a West Nile Virus vector) in the Po River Delta Region, Northeastern Italy. The study area has large mosquito abundance, due to a favorable environment and climate as well as dense human population. Mosquito data were collected on a weekly basis at more than 20 sites from May to September in 2010 and 2011. Cx.pipiens was the dominant species in our samples, accounting for about 90% of the more than 300,000 total captures. The hydrological component of the model accounted for evapotranspiration, infiltration and deep percolation to infer, in a 0D context, the local dynamics of soil moisture as a direct exogenous forcing of mosquito dynamics. The population model had a Gompertz structure, which included exogenous meteorological forcings and delayed internal dynamics. The models were coupled within a hierarchical statistical structure to overcome the relatively short length of the samples by exploiting the large number of concurrent observations available. The results indicated that Cx.pipiens abundance had significant density dependence at 1 week lag, which approximately matched its development time from larvae to adult. Among the exogenous controls, temperature, daylight hours, and soil moisture explained most of the dynamics. Longer daylight hours and lower soil moisture values resulted in higher abundance. The negative correlation of soil moisture and mosquito population can be explained with the abundance of water in the region (e.g. due to irrigation) and the preference for eutrophic habitats by Cx.pipien. Variations among sites were explained by land use factors as represented by distance to the nearest rice field and NDVI values: the carrying capacity decreased with increased distance to the nearest rice filed, while the maximum growth rate was positively related with NDVI. The model shows a satisfactory performance in predicting (potentially one week in advance) mosquito

  15. Economic modelling of pork production-marketing chains.

    NARCIS (Netherlands)

    den Ouden, M.

    1996-01-01

    The research described in this thesis was focused on the development of economic simulation and optimization computer models to support decision making with respect to pork production- marketing chains. The models include three production stages: pig farrowing, pig fattening and pig slaughtering inc

  16. Modeling cadmium in the feed chain and cattle organs

    NARCIS (Netherlands)

    Fels-Klerx, van der H.J.; Romkens, P.F.A.M.; Franz, E.; Raamsdonk, van L.W.D.

    2011-01-01

    The objectives of this study were to estimate cadmium contamination levels in different scenarios related to soil characteristics and assumptions regarding cadmium accumulation in the animal tissues, using quantitative supply chain modeling. The model takes into account soil cadmium levels, soil pH,

  17. Modeling cadmium in the feed chain and cattle organs

    NARCIS (Netherlands)

    Fels-Klerx, van der H.J.; Romkens, P.F.A.M.; Franz, E.; Raamsdonk, van L.W.D.

    2011-01-01

    The objectives of this study were to estimate cadmium contamination levels in different scenarios related to soil characteristics and assumptions regarding cadmium accumulation in the animal tissues, using quantitative supply chain modeling. The model takes into account soil cadmium levels, soil pH,

  18. Economic modelling of pork production-marketing chains

    NARCIS (Netherlands)

    Ouden, den M.

    1996-01-01

    The research described in this thesis was focused on the development of economic simulation and optimization computer models to support decision making with respect to pork production- marketing chains. The models include three production stages: pig farrowing, pig fattening and pig slaughtering

  19. Hierarchical Vector Auto-Regressive Models and Their Applications to Multi-subject Effective Connectivity

    Directory of Open Access Journals (Sweden)

    Cristina eGorrostieta

    2013-11-01

    Full Text Available Vector auto-regressive (VAR models typically form the basis for constructing directed graphical models for investigating connectivity in a brain network with brain regions of interest (ROIs as nodes. There are limitations in the standard VAR models. The number of parameters in the VAR model increases quadratically with the number of ROIs and linearly with the order of the model and thus due to the large number of parameters, the model could pose serious estimation problems. Moreover, when applied to imaging data, the standard VAR model does not account for variability in the connectivity structure across all subjects. In this paper, we develop a novel generalization of the VAR model that overcomes these limitations. To deal with the high dimensionality of the parameter space, we propose a Bayesian hierarchical framework for the VAR model that will account for both temporal correlation within a subject and between subject variation. Our approach uses prior distributions that give rise to estimates that correspond to penalized least squares criterion with the elastic net penalty. We apply the proposed model to investigate differences in effective connectivity during a hand grasp experiment between healthy controls and patients with residual motor deficit following a stroke.

  20. Prion Amplification and Hierarchical Bayesian Modeling Refine Detection of Prion Infection

    Science.gov (United States)

    Wyckoff, A. Christy; Galloway, Nathan; Meyerett-Reid, Crystal; Powers, Jenny; Spraker, Terry; Monello, Ryan J.; Pulford, Bruce; Wild, Margaret; Antolin, Michael; Vercauteren, Kurt; Zabel, Mark

    2015-02-01

    Prions are unique infectious agents that replicate without a genome and cause neurodegenerative diseases that include chronic wasting disease (CWD) of cervids. Immunohistochemistry (IHC) is currently considered the gold standard for diagnosis of a prion infection but may be insensitive to early or sub-clinical CWD that are important to understanding CWD transmission and ecology. We assessed the potential of serial protein misfolding cyclic amplification (sPMCA) to improve detection of CWD prior to the onset of clinical signs. We analyzed tissue samples from free-ranging Rocky Mountain elk (Cervus elaphus nelsoni) and used hierarchical Bayesian analysis to estimate the specificity and sensitivity of IHC and sPMCA conditional on simultaneously estimated disease states. Sensitivity estimates were higher for sPMCA (99.51%, credible interval (CI) 97.15-100%) than IHC of obex (brain stem, 76.56%, CI 57.00-91.46%) or retropharyngeal lymph node (90.06%, CI 74.13-98.70%) tissues, or both (98.99%, CI 90.01-100%). Our hierarchical Bayesian model predicts the prevalence of prion infection in this elk population to be 18.90% (CI 15.50-32.72%), compared to previous estimates of 12.90%. Our data reveal a previously unidentified sub-clinical prion-positive portion of the elk population that could represent silent carriers capable of significantly impacting CWD ecology.