WorldWideScience

Sample records for hierarchical bayesian framework

  1. A hierarchical Bayesian framework for force field selection in molecular dynamics simulations.

    Science.gov (United States)

    Wu, S; Angelikopoulos, P; Papadimitriou, C; Moser, R; Koumoutsakos, P

    2016-02-13

    We present a hierarchical Bayesian framework for the selection of force fields in molecular dynamics (MD) simulations. The framework associates the variability of the optimal parameters of the MD potentials under different environmental conditions with the corresponding variability in experimental data. The high computational cost associated with the hierarchical Bayesian framework is reduced by orders of magnitude through a parallelized Transitional Markov Chain Monte Carlo method combined with the Laplace Asymptotic Approximation. The suitability of the hierarchical approach is demonstrated by performing MD simulations with prescribed parameters to obtain data for transport coefficients under different conditions, which are then used to infer and evaluate the parameters of the MD model. We demonstrate the selection of MD models based on experimental data and verify that the hierarchical model can accurately quantify the uncertainty across experiments; improve the posterior probability density function estimation of the parameters, thus, improve predictions on future experiments; identify the most plausible force field to describe the underlying structure of a given dataset. The framework and associated software are applicable to a wide range of nanoscale simulations associated with experimental data with a hierarchical structure.

  2. Learning emergent behaviours for a hierarchical Bayesian framework for active robotic perception.

    Science.gov (United States)

    Ferreira, João Filipe; Tsiourti, Christiana; Dias, Jorge

    2012-08-01

    In this research work, we contribute with a behaviour learning process for a hierarchical Bayesian framework for multimodal active perception, devised to be emergent, scalable and adaptive. This framework is composed by models built upon a common spatial configuration for encoding perception and action that is naturally fitting for the integration of readings from multiple sensors, using a Bayesian approach devised in previous work. The proposed learning process is shown to reproduce goal-dependent human-like active perception behaviours by learning model parameters (referred to as "attentional sets") for different free-viewing and active search tasks. Learning was performed by presenting several 3D audiovisual virtual scenarios using a head-mounted display, while logging the spatial distribution of fixations of the subject (in 2D, on left and right images, and in 3D space), data which are consequently used as the training set for the framework. As a consequence, the hierarchical Bayesian framework adequately implements high-level behaviour resulting from low-level interaction of simpler building blocks by using the attentional sets learned for each task, and is able to change these attentional sets "on the fly," allowing the implementation of goal-dependent behaviours (i.e., top-down influences).

  3. Applied Bayesian Hierarchical Methods

    CERN Document Server

    Congdon, Peter D

    2010-01-01

    Bayesian methods facilitate the analysis of complex models and data structures. Emphasizing data applications, alternative modeling specifications, and computer implementation, this book provides a practical overview of methods for Bayesian analysis of hierarchical models.

  4. Modelling the dynamics of an experimental host-pathogen microcosm within a hierarchical Bayesian framework.

    Directory of Open Access Journals (Sweden)

    David Lunn

    Full Text Available The advantages of Bayesian statistical approaches, such as flexibility and the ability to acknowledge uncertainty in all parameters, have made them the prevailing method for analysing the spread of infectious diseases in human or animal populations. We introduce a Bayesian approach to experimental host-pathogen systems that shares these attractive features. Since uncertainty in all parameters is acknowledged, existing information can be accounted for through prior distributions, rather than through fixing some parameter values. The non-linear dynamics, multi-factorial design, multiple measurements of responses over time and sampling error that are typical features of experimental host-pathogen systems can also be naturally incorporated. We analyse the dynamics of the free-living protozoan Paramecium caudatum and its specialist bacterial parasite Holospora undulata. Our analysis provides strong evidence for a saturable infection function, and we were able to reproduce the two waves of infection apparent in the data by separating the initial inoculum from the parasites released after the first cycle of infection. In addition, the parameter estimates from the hierarchical model can be combined to infer variations in the parasite's basic reproductive ratio across experimental groups, enabling us to make predictions about the effect of resources and host genotype on the ability of the parasite to spread. Even though the high level of variability between replicates limited the resolution of the results, this Bayesian framework has strong potential to be used more widely in experimental ecology.

  5. Toward a Hierarchical Bayesian Framework for Modelling the Effect of Regional Diversity on Household Expenditure

    Directory of Open Access Journals (Sweden)

    Brodjol Sutijo Supri Ulama

    2012-01-01

    Full Text Available Problem statement: Household expenditure analysis was highly demanding for government in order to formulate its policy. Since household data was viewed as hierarchical structure with household nested in its regional residence which varies inter region, the contextual welfare analysis was needed. This study proposed to develop a hierarchical model for estimating household expenditure in an attempt to measure the effect of regional diversity by taking into account district characteristics and household attributes using a Bayesian approach. Approach: Due to the variation of household expenditure data which was captured by the three parameters of Log-Normal (LN3 distribution, the model was developed based on LN3 distribution. Data used in this study was household expenditure data in Central Java, Indonesia. Since, data were unbalanced and hierarchical models using a classical approach work well for balanced data, thus the estimation process was done by using Bayesian method with MCMC and Gibbs sampling. Results: The hierarchical Bayesian model based on LN3 distribution could be implemented to explain the variation of household expenditure using district characteristics and household attributes. Conclusion: The model shows that districts characteristics which include demographic and economic conditions of districts and the availability of public facilities which are strongly associated with a dimension of human development index, i.e., economic, education and health, do affect to household expenditure through its household attributes."

  6. Merging information from multi-model flood projections in a hierarchical Bayesian framework

    Science.gov (United States)

    Le Vine, Nataliya

    2016-04-01

    Multi-model ensembles are becoming widely accepted for flood frequency change analysis. The use of multiple models results in large uncertainty around estimates of flood magnitudes, due to both uncertainty in model selection and natural variability of river flow. The challenge is therefore to extract the most meaningful signal from the multi-model predictions, accounting for both model quality and uncertainties in individual model estimates. The study demonstrates the potential of a recently proposed hierarchical Bayesian approach to combine information from multiple models. The approach facilitates explicit treatment of shared multi-model discrepancy as well as the probabilistic nature of the flood estimates, by treating the available models as a sample from a hypothetical complete (but unobserved) set of models. The advantages of the approach are: 1) to insure an adequate 'baseline' conditions with which to compare future changes; 2) to reduce flood estimate uncertainty; 3) to maximize use of statistical information in circumstances where multiple weak predictions individually lack power, but collectively provide meaningful information; 4) to adjust multi-model consistency criteria when model biases are large; and 5) to explicitly consider the influence of the (model performance) stationarity assumption. Moreover, the analysis indicates that reducing shared model discrepancy is the key to further reduction of uncertainty in the flood frequency analysis. The findings are of value regarding how conclusions about changing exposure to flooding are drawn, and to flood frequency change attribution studies.

  7. Inferring cetacean population densities from the absolute dynamic topography of the ocean in a hierarchical Bayesian framework.

    Directory of Open Access Journals (Sweden)

    Mario A Pardo

    Full Text Available We inferred the population densities of blue whales (Balaenoptera musculus and short-beaked common dolphins (Delphinus delphis in the Northeast Pacific Ocean as functions of the water-column's physical structure by implementing hierarchical models in a Bayesian framework. This approach allowed us to propagate the uncertainty of the field observations into the inference of species-habitat relationships and to generate spatially explicit population density predictions with reduced effects of sampling heterogeneity. Our hypothesis was that the large-scale spatial distributions of these two cetacean species respond primarily to ecological processes resulting from shoaling and outcropping of the pycnocline in regions of wind-forced upwelling and eddy-like circulation. Physically, these processes affect the thermodynamic balance of the water column, decreasing its volume and thus the height of the absolute dynamic topography (ADT. Biologically, they lead to elevated primary productivity and persistent aggregation of low-trophic-level prey. Unlike other remotely sensed variables, ADT provides information about the structure of the entire water column and it is also routinely measured at high spatial-temporal resolution by satellite altimeters with uniform global coverage. Our models provide spatially explicit population density predictions for both species, even in areas where the pycnocline shoals but does not outcrop (e.g. the Costa Rica Dome and the North Equatorial Countercurrent thermocline ridge. Interannual variations in distribution during El Niño anomalies suggest that the population density of both species decreases dramatically in the Equatorial Cold Tongue and the Costa Rica Dome, and that their distributions retract to particular areas that remain productive, such as the more oceanic waters in the central California Current System, the northern Gulf of California, the North Equatorial Countercurrent thermocline ridge, and the more

  8. Inferring cetacean population densities from the absolute dynamic topography of the ocean in a hierarchical Bayesian framework.

    Science.gov (United States)

    Pardo, Mario A; Gerrodette, Tim; Beier, Emilio; Gendron, Diane; Forney, Karin A; Chivers, Susan J; Barlow, Jay; Palacios, Daniel M

    2015-01-01

    We inferred the population densities of blue whales (Balaenoptera musculus) and short-beaked common dolphins (Delphinus delphis) in the Northeast Pacific Ocean as functions of the water-column's physical structure by implementing hierarchical models in a Bayesian framework. This approach allowed us to propagate the uncertainty of the field observations into the inference of species-habitat relationships and to generate spatially explicit population density predictions with reduced effects of sampling heterogeneity. Our hypothesis was that the large-scale spatial distributions of these two cetacean species respond primarily to ecological processes resulting from shoaling and outcropping of the pycnocline in regions of wind-forced upwelling and eddy-like circulation. Physically, these processes affect the thermodynamic balance of the water column, decreasing its volume and thus the height of the absolute dynamic topography (ADT). Biologically, they lead to elevated primary productivity and persistent aggregation of low-trophic-level prey. Unlike other remotely sensed variables, ADT provides information about the structure of the entire water column and it is also routinely measured at high spatial-temporal resolution by satellite altimeters with uniform global coverage. Our models provide spatially explicit population density predictions for both species, even in areas where the pycnocline shoals but does not outcrop (e.g. the Costa Rica Dome and the North Equatorial Countercurrent thermocline ridge). Interannual variations in distribution during El Niño anomalies suggest that the population density of both species decreases dramatically in the Equatorial Cold Tongue and the Costa Rica Dome, and that their distributions retract to particular areas that remain productive, such as the more oceanic waters in the central California Current System, the northern Gulf of California, the North Equatorial Countercurrent thermocline ridge, and the more southern portion of the

  9. Mapping disability-adjusted life years: a Bayesian hierarchical model framework for burden of disease and injury assessment.

    Science.gov (United States)

    MacNab, Ying C

    2007-11-20

    This paper presents a Bayesian disability-adjusted life year (DALY) methodology for spatial and spatiotemporal analyses of disease and/or injury burden. A Bayesian disease mapping model framework, which blends together spatial modelling, shared-component modelling (SCM), temporal modelling, ecological modelling, and non-linear modelling, is developed for small-area DALY estimation and inference. In particular, we develop a model framework that enables SCM as well as multivariate CAR modelling of non-fatal and fatal disease or injury rates and facilitates spline smoothing for non-linear modelling of temporal rate and risk trends. Using British Columbia (Canada) hospital admission-separation data and vital statistics mortality data on non-fatal and fatal road traffic injuries to male population age 20-39 for year 1991-2000 and for 84 local health areas and 16 health service delivery areas, spatial and spatiotemporal estimation and inference on years of life lost due to premature death, years lived with disability, and DALYs are presented. Fully Bayesian estimation and inference, with Markov chain Monte Carlo implementation, are illustrated. We present a methodological framework within which the DALY and the Bayesian disease mapping methodologies interface and intersect. Its development brings the relative importance of premature mortality and disability into the assessment of community health and health needs in order to provide reliable information and evidence for community-based public health surveillance and evaluation, disease and injury prevention, and resource provision.

  10. Hierarchical Bayesian inference in the visual cortex

    Science.gov (United States)

    Lee, Tai Sing; Mumford, David

    2003-07-01

    Traditional views of visual processing suggest that early visual neurons in areas V1 and V2 are static spatiotemporal filters that extract local features from a visual scene. The extracted information is then channeled through a feedforward chain of modules in successively higher visual areas for further analysis. Recent electrophysiological recordings from early visual neurons in awake behaving monkeys reveal that there are many levels of complexity in the information processing of the early visual cortex, as seen in the long-latency responses of its neurons. These new findings suggest that activity in the early visual cortex is tightly coupled and highly interactive with the rest of the visual system. They lead us to propose a new theoretical setting based on the mathematical framework of hierarchical Bayesian inference for reasoning about the visual system. In this framework, the recurrent feedforward/feedback loops in the cortex serve to integrate top-down contextual priors and bottom-up observations so as to implement concurrent probabilistic inference along the visual hierarchy. We suggest that the algorithms of particle filtering and Bayesian-belief propagation might model these interactive cortical computations. We review some recent neurophysiological evidences that support the plausibility of these ideas. 2003 Optical Society of America

  11. Bayesian hierarchical modeling of drug stability data.

    Science.gov (United States)

    Chen, Jie; Zhong, Jinglin; Nie, Lei

    2008-06-15

    Stability data are commonly analyzed using linear fixed or random effect model. The linear fixed effect model does not take into account the batch-to-batch variation, whereas the random effect model may suffer from the unreliable shelf-life estimates due to small sample size. Moreover, both methods do not utilize any prior information that might have been available. In this article, we propose a Bayesian hierarchical approach to modeling drug stability data. Under this hierarchical structure, we first use Bayes factor to test the poolability of batches. Given the decision on poolability of batches, we then estimate the shelf-life that applies to all batches. The approach is illustrated with two example data sets and its performance is compared in simulation studies with that of the commonly used frequentist methods. (c) 2008 John Wiley & Sons, Ltd.

  12. A Hierarchical Bayesian Model for Crowd Emotions

    Science.gov (United States)

    Urizar, Oscar J.; Baig, Mirza S.; Barakova, Emilia I.; Regazzoni, Carlo S.; Marcenaro, Lucio; Rauterberg, Matthias

    2016-01-01

    Estimation of emotions is an essential aspect in developing intelligent systems intended for crowded environments. However, emotion estimation in crowds remains a challenging problem due to the complexity in which human emotions are manifested and the capability of a system to perceive them in such conditions. This paper proposes a hierarchical Bayesian model to learn in unsupervised manner the behavior of individuals and of the crowd as a single entity, and explore the relation between behavior and emotions to infer emotional states. Information about the motion patterns of individuals are described using a self-organizing map, and a hierarchical Bayesian network builds probabilistic models to identify behaviors and infer the emotional state of individuals and the crowd. This model is trained and tested using data produced from simulated scenarios that resemble real-life environments. The conducted experiments tested the efficiency of our method to learn, detect and associate behaviors with emotional states yielding accuracy levels of 74% for individuals and 81% for the crowd, similar in performance with existing methods for pedestrian behavior detection but with novel concepts regarding the analysis of crowds. PMID:27458366

  13. Introduction to Hierarchical Bayesian Modeling for Ecological Data

    CERN Document Server

    Parent, Eric

    2012-01-01

    Making statistical modeling and inference more accessible to ecologists and related scientists, Introduction to Hierarchical Bayesian Modeling for Ecological Data gives readers a flexible and effective framework to learn about complex ecological processes from various sources of data. It also helps readers get started on building their own statistical models. The text begins with simple models that progressively become more complex and realistic through explanatory covariates and intermediate hidden states variables. When fitting the models to data, the authors gradually present the concepts a

  14. Spatial Bayesian hierarchical modelling of extreme sea states

    Science.gov (United States)

    Clancy, Colm; O'Sullivan, John; Sweeney, Conor; Dias, Frédéric; Parnell, Andrew C.

    2016-11-01

    A Bayesian hierarchical framework is used to model extreme sea states, incorporating a latent spatial process to more effectively capture the spatial variation of the extremes. The model is applied to a 34-year hindcast of significant wave height off the west coast of Ireland. The generalised Pareto distribution is fitted to declustered peaks over a threshold given by the 99.8th percentile of the data. Return levels of significant wave height are computed and compared against those from a model based on the commonly-used maximum likelihood inference method. The Bayesian spatial model produces smoother maps of return levels. Furthermore, this approach greatly reduces the uncertainty in the estimates, thus providing information on extremes which is more useful for practical applications.

  15. Bayesian hierarchical modelling of weak lensing - the golden goal

    CERN Document Server

    Heavens, Alan; Jaffe, Andrew; Hoffmann, Till; Kiessling, Alina; Wandelt, Benjamin

    2016-01-01

    To accomplish correct Bayesian inference from weak lensing shear data requires a complete statistical description of the data. The natural framework to do this is a Bayesian Hierarchical Model, which divides the chain of reasoning into component steps. Starting with a catalogue of shear estimates in tomographic bins, we build a model that allows us to sample simultaneously from the the underlying tomographic shear fields and the relevant power spectra (E-mode, B-mode, and E-B, for auto- and cross-power spectra). The procedure deals easily with masked data and intrinsic alignments. Using Gibbs sampling and messenger fields, we show with simulated data that the large (over 67000-)dimensional parameter space can be efficiently sampled and the full joint posterior probability density function for the parameters can feasibly be obtained. The method correctly recovers the underlying shear fields and all of the power spectra, including at levels well below the shot noise.

  16. Bayesian hierarchical grouping: Perceptual grouping as mixture estimation.

    Science.gov (United States)

    Froyen, Vicky; Feldman, Jacob; Singh, Manish

    2015-10-01

    We propose a novel framework for perceptual grouping based on the idea of mixture models, called Bayesian hierarchical grouping (BHG). In BHG, we assume that the configuration of image elements is generated by a mixture of distinct objects, each of which generates image elements according to some generative assumptions. Grouping, in this framework, means estimating the number and the parameters of the mixture components that generated the image, including estimating which image elements are "owned" by which objects. We present a tractable implementation of the framework, based on the hierarchical clustering approach of Heller and Ghahramani (2005). We illustrate it with examples drawn from a number of classical perceptual grouping problems, including dot clustering, contour integration, and part decomposition. Our approach yields an intuitive hierarchical representation of image elements, giving an explicit decomposition of the image into mixture components, along with estimates of the probability of various candidate decompositions. We show that BHG accounts well for a diverse range of empirical data drawn from the literature. Because BHG provides a principled quantification of the plausibility of grouping interpretations over a wide range of grouping problems, we argue that it provides an appealing unifying account of the elusive Gestalt notion of Prägnanz.

  17. Bayesian Mass Estimates of the Milky Way: Including measurement uncertainties with hierarchical Bayes

    CERN Document Server

    Eadie, Gwendolyn; Harris, William

    2016-01-01

    We present a hierarchical Bayesian method for estimating the total mass and mass profile of the Milky Way Galaxy. The new hierarchical Bayesian approach further improves the framework presented by Eadie, Harris, & Widrow (2015) and Eadie & Harris (2016) and builds upon the preliminary reports by Eadie et al (2015a,c). The method uses a distribution function $f(\\mathcal{E},L)$ to model the galaxy and kinematic data from satellite objects such as globular clusters to trace the Galaxy's gravitational potential. A major advantage of the method is that it not only includes complete and incomplete data simultaneously in the analysis, but also incorporates measurement uncertainties in a coherent and meaningful way. We first test the hierarchical Bayesian framework, which includes measurement uncertainties, using the same data and power-law model assumed in Eadie & Harris (2016), and find the results are similar but more strongly constrained. Next, we take advantage of the new statistical framework and in...

  18. A Bayesian framework for active artificial perception.

    Science.gov (United States)

    Ferreira, João Filipe; Lobo, Jorge; Bessière, Pierre; Castelo-Branco, Miguel; Dias, Jorge

    2013-04-01

    In this paper, we present a Bayesian framework for the active multimodal perception of 3-D structure and motion. The design of this framework finds its inspiration in the role of the dorsal perceptual pathway of the human brain. Its composing models build upon a common egocentric spatial configuration that is naturally fitting for the integration of readings from multiple sensors using a Bayesian approach. In the process, we will contribute with efficient and robust probabilistic solutions for cyclopean geometry-based stereovision and auditory perception based only on binaural cues, modeled using a consistent formalization that allows their hierarchical use as building blocks for the multimodal sensor fusion framework. We will explicitly or implicitly address the most important challenges of sensor fusion using this framework, for vision, audition, and vestibular sensing. Moreover, interaction and navigation require maximal awareness of spatial surroundings, which, in turn, is obtained through active attentional and behavioral exploration of the environment. The computational models described in this paper will support the construction of a simultaneously flexible and powerful robotic implementation of multimodal active perception to be used in real-world applications, such as human-machine interaction or mobile robot navigation.

  19. Hierarchical Bayesian spatial models for multispecies conservation planning and monitoring.

    Science.gov (United States)

    Carroll, Carlos; Johnson, Devin S; Dunk, Jeffrey R; Zielinski, William J

    2010-12-01

    Biologists who develop and apply habitat models are often familiar with the statistical challenges posed by their data's spatial structure but are unsure of whether the use of complex spatial models will increase the utility of model results in planning. We compared the relative performance of nonspatial and hierarchical Bayesian spatial models for three vertebrate and invertebrate taxa of conservation concern (Church's sideband snails [Monadenia churchi], red tree voles [Arborimus longicaudus], and Pacific fishers [Martes pennanti pacifica]) that provide examples of a range of distributional extents and dispersal abilities. We used presence-absence data derived from regional monitoring programs to develop models with both landscape and site-level environmental covariates. We used Markov chain Monte Carlo algorithms and a conditional autoregressive or intrinsic conditional autoregressive model framework to fit spatial models. The fit of Bayesian spatial models was between 35 and 55% better than the fit of nonspatial analogue models. Bayesian spatial models outperformed analogous models developed with maximum entropy (Maxent) methods. Although the best spatial and nonspatial models included similar environmental variables, spatial models provided estimates of residual spatial effects that suggested how ecological processes might structure distribution patterns. Spatial models built from presence-absence data improved fit most for localized endemic species with ranges constrained by poorly known biogeographic factors and for widely distributed species suspected to be strongly affected by unmeasured environmental variables or population processes. By treating spatial effects as a variable of interest rather than a nuisance, hierarchical Bayesian spatial models, especially when they are based on a common broad-scale spatial lattice (here the national Forest Inventory and Analysis grid of 24 km(2) hexagons), can increase the relevance of habitat models to multispecies

  20. Inferring on the intentions of others by hierarchical Bayesian learning.

    Directory of Open Access Journals (Sweden)

    Andreea O Diaconescu

    2014-09-01

    Full Text Available Inferring on others' (potentially time-varying intentions is a fundamental problem during many social transactions. To investigate the underlying mechanisms, we applied computational modeling to behavioral data from an economic game in which 16 pairs of volunteers (randomly assigned to "player" or "adviser" roles interacted. The player performed a probabilistic reinforcement learning task, receiving information about a binary lottery from a visual pie chart. The adviser, who received more predictive information, issued an additional recommendation. Critically, the game was structured such that the adviser's incentives to provide helpful or misleading information varied in time. Using a meta-Bayesian modeling framework, we found that the players' behavior was best explained by the deployment of hierarchical learning: they inferred upon the volatility of the advisers' intentions in order to optimize their predictions about the validity of their advice. Beyond learning, volatility estimates also affected the trial-by-trial variability of decisions: participants were more likely to rely on their estimates of advice accuracy for making choices when they believed that the adviser's intentions were presently stable. Finally, our model of the players' inference predicted the players' interpersonal reactivity index (IRI scores, explicit ratings of the advisers' helpfulness and the advisers' self-reports on their chosen strategy. Overall, our results suggest that humans (i employ hierarchical generative models to infer on the changing intentions of others, (ii use volatility estimates to inform decision-making in social interactions, and (iii integrate estimates of advice accuracy with non-social sources of information. The Bayesian framework presented here can quantify individual differences in these mechanisms from simple behavioral readouts and may prove useful in future clinical studies of maladaptive social cognition.

  1. Inferring on the intentions of others by hierarchical Bayesian learning.

    Science.gov (United States)

    Diaconescu, Andreea O; Mathys, Christoph; Weber, Lilian A E; Daunizeau, Jean; Kasper, Lars; Lomakina, Ekaterina I; Fehr, Ernst; Stephan, Klaas E

    2014-09-01

    Inferring on others' (potentially time-varying) intentions is a fundamental problem during many social transactions. To investigate the underlying mechanisms, we applied computational modeling to behavioral data from an economic game in which 16 pairs of volunteers (randomly assigned to "player" or "adviser" roles) interacted. The player performed a probabilistic reinforcement learning task, receiving information about a binary lottery from a visual pie chart. The adviser, who received more predictive information, issued an additional recommendation. Critically, the game was structured such that the adviser's incentives to provide helpful or misleading information varied in time. Using a meta-Bayesian modeling framework, we found that the players' behavior was best explained by the deployment of hierarchical learning: they inferred upon the volatility of the advisers' intentions in order to optimize their predictions about the validity of their advice. Beyond learning, volatility estimates also affected the trial-by-trial variability of decisions: participants were more likely to rely on their estimates of advice accuracy for making choices when they believed that the adviser's intentions were presently stable. Finally, our model of the players' inference predicted the players' interpersonal reactivity index (IRI) scores, explicit ratings of the advisers' helpfulness and the advisers' self-reports on their chosen strategy. Overall, our results suggest that humans (i) employ hierarchical generative models to infer on the changing intentions of others, (ii) use volatility estimates to inform decision-making in social interactions, and (iii) integrate estimates of advice accuracy with non-social sources of information. The Bayesian framework presented here can quantify individual differences in these mechanisms from simple behavioral readouts and may prove useful in future clinical studies of maladaptive social cognition.

  2. Hierarchical Bayesian sparse image reconstruction with application to MRFM

    CERN Document Server

    Dobigeon, Nicolas; Tourneret, Jean-Yves

    2008-01-01

    This paper presents a hierarchical Bayesian model to reconstruct sparse images when the observations are obtained from linear transformations and corrupted by an additive white Gaussian noise. Our hierarchical Bayes model is well suited to such naturally sparse image applications as it seamlessly accounts for properties such as sparsity and positivity of the image via appropriate Bayes priors. We propose a prior that is based on a weighted mixture of a positive exponential distribution and a mass at zero. The prior has hyperparameters that are tuned automatically by marginalization over the hierarchical Bayesian model. To overcome the complexity of the posterior distribution, a Gibbs sampling strategy is proposed. The Gibbs samples can be used to estimate the image to be recovered, e.g. by maximizing the estimated posterior distribution. In our fully Bayesian approach the posteriors of all the parameters are available. Thus our algorithm provides more information than other previously proposed sparse reconstr...

  3. Bayesian Decision Theoretical Framework for Clustering

    Science.gov (United States)

    Chen, Mo

    2011-01-01

    In this thesis, we establish a novel probabilistic framework for the data clustering problem from the perspective of Bayesian decision theory. The Bayesian decision theory view justifies the important questions: what is a cluster and what a clustering algorithm should optimize. We prove that the spectral clustering (to be specific, the…

  4. UNSUPERVISED TRANSIENT LIGHT CURVE ANALYSIS VIA HIERARCHICAL BAYESIAN INFERENCE

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, N. E.; Soderberg, A. M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Betancourt, M., E-mail: nsanders@cfa.harvard.edu [Department of Statistics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2015-02-10

    Historically, light curve studies of supernovae (SNe) and other transient classes have focused on individual objects with copious and high signal-to-noise observations. In the nascent era of wide field transient searches, objects with detailed observations are decreasing as a fraction of the overall known SN population, and this strategy sacrifices the majority of the information contained in the data about the underlying population of transients. A population level modeling approach, simultaneously fitting all available observations of objects in a transient sub-class of interest, fully mines the data to infer the properties of the population and avoids certain systematic biases. We present a novel hierarchical Bayesian statistical model for population level modeling of transient light curves, and discuss its implementation using an efficient Hamiltonian Monte Carlo technique. As a test case, we apply this model to the Type IIP SN sample from the Pan-STARRS1 Medium Deep Survey, consisting of 18,837 photometric observations of 76 SNe, corresponding to a joint posterior distribution with 9176 parameters under our model. Our hierarchical model fits provide improved constraints on light curve parameters relevant to the physical properties of their progenitor stars relative to modeling individual light curves alone. Moreover, we directly evaluate the probability for occurrence rates of unseen light curve characteristics from the model hyperparameters, addressing observational biases in survey methodology. We view this modeling framework as an unsupervised machine learning technique with the ability to maximize scientific returns from data to be collected by future wide field transient searches like LSST.

  5. Fusing heterogeneous data for the calibration of molecular dynamics force fields using hierarchical Bayesian models.

    Science.gov (United States)

    Wu, Stephen; Angelikopoulos, Panagiotis; Tauriello, Gerardo; Papadimitriou, Costas; Koumoutsakos, Petros

    2016-12-28

    We propose a hierarchical Bayesian framework to systematically integrate heterogeneous data for the calibration of force fields in Molecular Dynamics (MD) simulations. Our approach enables the fusion of diverse experimental data sets of the physico-chemical properties of a system at different thermodynamic conditions. We demonstrate the value of this framework for the robust calibration of MD force-fields for water using experimental data of its diffusivity, radial distribution function, and density. In order to address the high computational cost associated with the hierarchical Bayesian models, we develop a novel surrogate model based on the empirical interpolation method. Further computational savings are achieved by implementing a highly parallel transitional Markov chain Monte Carlo technique. The present method bypasses possible subjective weightings of the experimental data in identifying MD force-field parameters.

  6. Attention in a bayesian framework

    DEFF Research Database (Denmark)

    Whiteley, Louise Emma; Sahani, Maneesh

    2012-01-01

    , and include both selective phenomena, where attention is invoked by cues that point to particular stimuli, and integrative phenomena, where attention is invoked dynamically by endogenous processing. However, most previous Bayesian accounts of attention have focused on describing relatively simple experimental......The behavioral phenomena of sensory attention are thought to reflect the allocation of a limited processing resource, but there is little consensus on the nature of the resource or why it should be limited. Here we argue that a fundamental bottleneck emerges naturally within Bayesian models...

  7. A Comparison of Hierarchical and Non-Hierarchical Bayesian Approaches for Fitting Allometric Larch (Larix.spp. Biomass Equations

    Directory of Open Access Journals (Sweden)

    Dongsheng Chen

    2016-01-01

    Full Text Available Accurate biomass estimations are important for assessing and monitoring forest carbon storage. Bayesian theory has been widely applied to tree biomass models. Recently, a hierarchical Bayesian approach has received increasing attention for improving biomass models. In this study, tree biomass data were obtained by sampling 310 trees from 209 permanent sample plots from larch plantations in six regions across China. Non-hierarchical and hierarchical Bayesian approaches were used to model allometric biomass equations. We found that the total, root, stem wood, stem bark, branch and foliage biomass model relationships were statistically significant (p-values < 0.001 for both the non-hierarchical and hierarchical Bayesian approaches, but the hierarchical Bayesian approach increased the goodness-of-fit statistics over the non-hierarchical Bayesian approach. The R2 values of the hierarchical approach were higher than those of the non-hierarchical approach by 0.008, 0.018, 0.020, 0.003, 0.088 and 0.116 for the total tree, root, stem wood, stem bark, branch and foliage models, respectively. The hierarchical Bayesian approach significantly improved the accuracy of the biomass model (except for the stem bark and can reflect regional differences by using random parameters to improve the regional scale model accuracy.

  8. Bayesian Hierarchical Models to Augment the Mediterranean Forecast System

    Science.gov (United States)

    2016-06-07

    year. Our goal is to develop an ensemble ocean forecast methodology, using Bayesian Hierarchical Modelling (BHM) tools . The ocean ensemble forecast...from above); i.e. we assume Ut ~ Z Λt1/2. WORK COMPLETED The prototype MFS-Wind-BHM was designed and implemented based on stochastic...coding refinements we implemented on the prototype surface wind BHM. A DWF event in February 2005, in the Gulf of Lions, was identified for reforecast

  9. Bayesian Mass Estimates of the Milky Way: Including Measurement Uncertainties with Hierarchical Bayes

    Science.gov (United States)

    Eadie, Gwendolyn M.; Springford, Aaron; Harris, William E.

    2017-02-01

    We present a hierarchical Bayesian method for estimating the total mass and mass profile of the Milky Way Galaxy. The new hierarchical Bayesian approach further improves the framework presented by Eadie et al. and Eadie and Harris and builds upon the preliminary reports by Eadie et al. The method uses a distribution function f({ E },L) to model the Galaxy and kinematic data from satellite objects, such as globular clusters (GCs), to trace the Galaxy’s gravitational potential. A major advantage of the method is that it not only includes complete and incomplete data simultaneously in the analysis, but also incorporates measurement uncertainties in a coherent and meaningful way. We first test the hierarchical Bayesian framework, which includes measurement uncertainties, using the same data and power-law model assumed in Eadie and Harris and find the results are similar but more strongly constrained. Next, we take advantage of the new statistical framework and incorporate all possible GC data, finding a cumulative mass profile with Bayesian credible regions. This profile implies a mass within 125 kpc of 4.8× {10}11{M}ȯ with a 95% Bayesian credible region of (4.0{--}5.8)× {10}11{M}ȯ . Our results also provide estimates of the true specific energies of all the GCs. By comparing these estimated energies to the measured energies of GCs with complete velocity measurements, we observe that (the few) remote tracers with complete measurements may play a large role in determining a total mass estimate of the Galaxy. Thus, our study stresses the need for more remote tracers with complete velocity measurements.

  10. Prediction of road accidents: A Bayesian hierarchical approach

    DEFF Research Database (Denmark)

    Deublein, Markus; Schubert, Matthias; Adey, Bryan T.;

    2013-01-01

    In this paper a novel methodology for the prediction of the occurrence of road accidents is presented. The methodology utilizes a combination of three statistical methods: (1) gamma-updating of the occurrence rates of injury accidents and injured road users, (2) hierarchical multivariate Poisson......-lognormal regression analysis taking into account correlations amongst multiple dependent model response variables and effects of discrete accident count data e.g. over-dispersion, and (3) Bayesian inference algorithms, which are applied by means of data mining techniques supported by Bayesian Probabilistic Networks...... in order to represent non-linearity between risk indicating and model response variables, as well as different types of uncertainties which might be present in the development of the specific models.Prior Bayesian Probabilistic Networks are first established by means of multivariate regression analysis...

  11. Road network safety evaluation using Bayesian hierarchical joint model.

    Science.gov (United States)

    Wang, Jie; Huang, Helai

    2016-05-01

    Safety and efficiency are commonly regarded as two significant performance indicators of transportation systems. In practice, road network planning has focused on road capacity and transport efficiency whereas the safety level of a road network has received little attention in the planning stage. This study develops a Bayesian hierarchical joint model for road network safety evaluation to help planners take traffic safety into account when planning a road network. The proposed model establishes relationships between road network risk and micro-level variables related to road entities and traffic volume, as well as socioeconomic, trip generation and network density variables at macro level which are generally used for long term transportation plans. In addition, network spatial correlation between intersections and their connected road segments is also considered in the model. A road network is elaborately selected in order to compare the proposed hierarchical joint model with a previous joint model and a negative binomial model. According to the results of the model comparison, the hierarchical joint model outperforms the joint model and negative binomial model in terms of the goodness-of-fit and predictive performance, which indicates the reasonableness of considering the hierarchical data structure in crash prediction and analysis. Moreover, both random effects at the TAZ level and the spatial correlation between intersections and their adjacent segments are found to be significant, supporting the employment of the hierarchical joint model as an alternative in road-network-level safety modeling as well.

  12. [A medical image semantic modeling based on hierarchical Bayesian networks].

    Science.gov (United States)

    Lin, Chunyi; Ma, Lihong; Yin, Junxun; Chen, Jianyu

    2009-04-01

    A semantic modeling approach for medical image semantic retrieval based on hierarchical Bayesian networks was proposed, in allusion to characters of medical images. It used GMM (Gaussian mixture models) to map low-level image features into object semantics with probabilities, then it captured high-level semantics through fusing these object semantics using a Bayesian network, so that it built a multi-layer medical image semantic model, aiming to enable automatic image annotation and semantic retrieval by using various keywords at different semantic levels. As for the validity of this method, we have built a multi-level semantic model from a small set of astrocytoma MRI (magnetic resonance imaging) samples, in order to extract semantics of astrocytoma in malignant degree. Experiment results show that this is a superior approach.

  13. Constructive Epistemic Modeling: A Hierarchical Bayesian Model Averaging Method

    Science.gov (United States)

    Tsai, F. T. C.; Elshall, A. S.

    2014-12-01

    Constructive epistemic modeling is the idea that our understanding of a natural system through a scientific model is a mental construct that continually develops through learning about and from the model. Using the hierarchical Bayesian model averaging (HBMA) method [1], this study shows that segregating different uncertain model components through a BMA tree of posterior model probabilities, model prediction, within-model variance, between-model variance and total model variance serves as a learning tool [2]. First, the BMA tree of posterior model probabilities permits the comparative evaluation of the candidate propositions of each uncertain model component. Second, systemic model dissection is imperative for understanding the individual contribution of each uncertain model component to the model prediction and variance. Third, the hierarchical representation of the between-model variance facilitates the prioritization of the contribution of each uncertain model component to the overall model uncertainty. We illustrate these concepts using the groundwater modeling of a siliciclastic aquifer-fault system. The sources of uncertainty considered are from geological architecture, formation dip, boundary conditions and model parameters. The study shows that the HBMA analysis helps in advancing knowledge about the model rather than forcing the model to fit a particularly understanding or merely averaging several candidate models. [1] Tsai, F. T.-C., and A. S. Elshall (2013), Hierarchical Bayesian model averaging for hydrostratigraphic modeling: Uncertainty segregation and comparative evaluation. Water Resources Research, 49, 5520-5536, doi:10.1002/wrcr.20428. [2] Elshall, A.S., and F. T.-C. Tsai (2014). Constructive epistemic modeling of groundwater flow with geological architecture and boundary condition uncertainty under Bayesian paradigm, Journal of Hydrology, 517, 105-119, doi: 10.1016/j.jhydrol.2014.05.027.

  14. Bayesian methods for estimating the reliability in complex hierarchical networks (interim report).

    Energy Technology Data Exchange (ETDEWEB)

    Marzouk, Youssef M.; Zurn, Rena M.; Boggs, Paul T.; Diegert, Kathleen V. (Sandia National Laboratories, Albuquerque, NM); Red-Horse, John Robert (Sandia National Laboratories, Albuquerque, NM); Pebay, Philippe Pierre

    2007-05-01

    Current work on the Integrated Stockpile Evaluation (ISE) project is evidence of Sandia's commitment to maintaining the integrity of the nuclear weapons stockpile. In this report, we undertake a key element in that process: development of an analytical framework for determining the reliability of the stockpile in a realistic environment of time-variance, inherent uncertainty, and sparse available information. This framework is probabilistic in nature and is founded on a novel combination of classical and computational Bayesian analysis, Bayesian networks, and polynomial chaos expansions. We note that, while the focus of the effort is stockpile-related, it is applicable to any reasonably-structured hierarchical system, including systems with feedback.

  15. Bayesian hierarchical modeling for detecting safety signals in clinical trials.

    Science.gov (United States)

    Xia, H Amy; Ma, Haijun; Carlin, Bradley P

    2011-09-01

    Detection of safety signals from clinical trial adverse event data is critical in drug development, but carries a challenging statistical multiplicity problem. Bayesian hierarchical mixture modeling is appealing for its ability to borrow strength across subgroups in the data, as well as moderate extreme findings most likely due merely to chance. We implement such a model for subject incidence (Berry and Berry, 2004 ) using a binomial likelihood, and extend it to subject-year adjusted incidence rate estimation under a Poisson likelihood. We use simulation to choose a signal detection threshold, and illustrate some effective graphics for displaying the flagged signals.

  16. Risk Assessment for Mobile Systems Through a Multilayered Hierarchical Bayesian Network.

    Science.gov (United States)

    Li, Shancang; Tryfonas, Theo; Russell, Gordon; Andriotis, Panagiotis

    2016-08-01

    Mobile systems are facing a number of application vulnerabilities that can be combined together and utilized to penetrate systems with devastating impact. When assessing the overall security of a mobile system, it is important to assess the security risks posed by each mobile applications (apps), thus gaining a stronger understanding of any vulnerabilities present. This paper aims at developing a three-layer framework that assesses the potential risks which apps introduce within the Android mobile systems. A Bayesian risk graphical model is proposed to evaluate risk propagation in a layered risk architecture. By integrating static analysis, dynamic analysis, and behavior analysis in a hierarchical framework, the risks and their propagation through each layer are well modeled by the Bayesian risk graph, which can quantitatively analyze risks faced to both apps and mobile systems. The proposed hierarchical Bayesian risk graph model offers a novel way to investigate the security risks in mobile environment and enables users and administrators to evaluate the potential risks. This strategy allows to strengthen both app security as well as the security of the entire system.

  17. A hierarchical Bayesian model for embedding larval drift and habitat models in integrated life cycles for exploited fish

    OpenAIRE

    2013-01-01

    This paper proposes a hierarchical Bayesian framework for modeling the life cycle of marine exploited fish with a spatial perspective. The application was developed for a nursery-dependent fish species, the common sole (Solea solea), on the Eastern Channel population (Western Europe). The approach combined processes of different natures and various sources of observations within an integrated framework for life-cycle modeling: (1) outputs of an individual-based model for larval drift and surv...

  18. Bayesian Uncertainty Quantification for Subsurface Inversion Using a Multiscale Hierarchical Model

    KAUST Repository

    Mondal, Anirban

    2014-07-03

    We consider a Bayesian approach to nonlinear inverse problems in which the unknown quantity is a random field (spatial or temporal). The Bayesian approach contains a natural mechanism for regularization in the form of prior information, can incorporate information from heterogeneous sources and provide a quantitative assessment of uncertainty in the inverse solution. The Bayesian setting casts the inverse solution as a posterior probability distribution over the model parameters. The Karhunen-Loeve expansion is used for dimension reduction of the random field. Furthermore, we use a hierarchical Bayes model to inject multiscale data in the modeling framework. In this Bayesian framework, we show that this inverse problem is well-posed by proving that the posterior measure is Lipschitz continuous with respect to the data in total variation norm. Computational challenges in this construction arise from the need for repeated evaluations of the forward model (e.g., in the context of MCMC) and are compounded by high dimensionality of the posterior. We develop two-stage reversible jump MCMC that has the ability to screen the bad proposals in the first inexpensive stage. Numerical results are presented by analyzing simulated as well as real data from hydrocarbon reservoir. This article has supplementary material available online. © 2014 American Statistical Association and the American Society for Quality.

  19. A Bayesian Framework for Combining Valuation Estimates

    CERN Document Server

    Yee, Kenton K

    2007-01-01

    Obtaining more accurate equity value estimates is the starting point for stock selection, value-based indexing in a noisy market, and beating benchmark indices through tactical style rotation. Unfortunately, discounted cash flow, method of comparables, and fundamental analysis typically yield discrepant valuation estimates. Moreover, the valuation estimates typically disagree with market price. Can one form a superior valuation estimate by averaging over the individual estimates, including market price? This article suggests a Bayesian framework for combining two or more estimates into a superior valuation estimate. The framework justifies the common practice of averaging over several estimates to arrive at a final point estimate.

  20. Unsupervised Transient Light Curve Analysis Via Hierarchical Bayesian Inference

    CERN Document Server

    Sanders, Nathan; Soderberg, Alicia

    2014-01-01

    Historically, light curve studies of supernovae (SNe) and other transient classes have focused on individual objects with copious and high signal-to-noise observations. In the nascent era of wide field transient searches, objects with detailed observations are decreasing as a fraction of the overall known SN population, and this strategy sacrifices the majority of the information contained in the data about the underlying population of transients. A population level modeling approach, simultaneously fitting all available observations of objects in a transient sub-class of interest, fully mines the data to infer the properties of the population and avoids certain systematic biases. We present a novel hierarchical Bayesian statistical model for population level modeling of transient light curves, and discuss its implementation using an efficient Hamiltonian Monte Carlo technique. As a test case, we apply this model to the Type IIP SN sample from the Pan-STARRS1 Medium Deep Survey, consisting of 18,837 photometr...

  1. Bayesian structural equation modeling method for hierarchical model validation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Xiaomo [Department of Civil and Environmental Engineering, Vanderbilt University, Box 1831-B, Nashville, TN 37235 (United States)], E-mail: xiaomo.jiang@vanderbilt.edu; Mahadevan, Sankaran [Department of Civil and Environmental Engineering, Vanderbilt University, Box 1831-B, Nashville, TN 37235 (United States)], E-mail: sankaran.mahadevan@vanderbilt.edu

    2009-04-15

    A building block approach to model validation may proceed through various levels, such as material to component to subsystem to system, comparing model predictions with experimental observations at each level. Usually, experimental data becomes scarce as one proceeds from lower to higher levels. This paper presents a structural equation modeling approach to make use of the lower-level data for higher-level model validation under uncertainty, integrating several components: lower-level data, higher-level data, computational model, and latent variables. The method proposed in this paper uses latent variables to model two sets of relationships, namely, the computational model to system-level data, and lower-level data to system-level data. A Bayesian network with Markov chain Monte Carlo simulation is applied to represent the two relationships and to estimate the influencing factors between them. Bayesian hypothesis testing is employed to quantify the confidence in the predictive model at the system level, and the role of lower-level data in the model validation assessment at the system level. The proposed methodology is implemented for hierarchical assessment of three validation problems, using discrete observations and time-series data.

  2. Prediction of road accidents: A Bayesian hierarchical approach.

    Science.gov (United States)

    Deublein, Markus; Schubert, Matthias; Adey, Bryan T; Köhler, Jochen; Faber, Michael H

    2013-03-01

    In this paper a novel methodology for the prediction of the occurrence of road accidents is presented. The methodology utilizes a combination of three statistical methods: (1) gamma-updating of the occurrence rates of injury accidents and injured road users, (2) hierarchical multivariate Poisson-lognormal regression analysis taking into account correlations amongst multiple dependent model response variables and effects of discrete accident count data e.g. over-dispersion, and (3) Bayesian inference algorithms, which are applied by means of data mining techniques supported by Bayesian Probabilistic Networks in order to represent non-linearity between risk indicating and model response variables, as well as different types of uncertainties which might be present in the development of the specific models. Prior Bayesian Probabilistic Networks are first established by means of multivariate regression analysis of the observed frequencies of the model response variables, e.g. the occurrence of an accident, and observed values of the risk indicating variables, e.g. degree of road curvature. Subsequently, parameter learning is done using updating algorithms, to determine the posterior predictive probability distributions of the model response variables, conditional on the values of the risk indicating variables. The methodology is illustrated through a case study using data of the Austrian rural motorway network. In the case study, on randomly selected road segments the methodology is used to produce a model to predict the expected number of accidents in which an injury has occurred and the expected number of light, severe and fatally injured road users. Additionally, the methodology is used for geo-referenced identification of road sections with increased occurrence probabilities of injury accident events on a road link between two Austrian cities. It is shown that the proposed methodology can be used to develop models to estimate the occurrence of road accidents for any

  3. A Bayesian Hierarchical Modeling Scheme for Estimating Erosion Rates Under Current Climate Conditions

    Science.gov (United States)

    Lowman, L.; Barros, A. P.

    2014-12-01

    Computational modeling of surface erosion processes is inherently difficult because of the four-dimensional nature of the problem and the multiple temporal and spatial scales that govern individual mechanisms. Landscapes are modified via surface and fluvial erosion and exhumation, each of which takes place over a range of time scales. Traditional field measurements of erosion/exhumation rates are scale dependent, often valid for a single point-wise location or averaging over large aerial extents and periods with intense and mild erosion. We present a method of remotely estimating erosion rates using a Bayesian hierarchical model based upon the stream power erosion law (SPEL). A Bayesian approach allows for estimating erosion rates using the deterministic relationship given by the SPEL and data on channel slopes and precipitation at the basin and sub-basin scale. The spatial scale associated with this framework is the elevation class, where each class is characterized by distinct morphologic behavior observed through different modes in the distribution of basin outlet elevations. Interestingly, the distributions of first-order outlets are similar in shape and extent to the distribution of precipitation events (i.e. individual storms) over a 14-year period between 1998-2011. We demonstrate an application of the Bayesian hierarchical modeling framework for five basins and one intermontane basin located in the central Andes between 5S and 20S. Using remotely sensed data of current annual precipitation rates from the Tropical Rainfall Measuring Mission (TRMM) and topography from a high resolution (3 arc-seconds) digital elevation map (DEM), our erosion rate estimates are consistent with decadal-scale estimates based on landslide mapping and sediment flux observations and 1-2 orders of magnitude larger than most millennial and million year timescale estimates from thermochronology and cosmogenic nuclides.

  4. Bayesian Hierarchical Modeling for Big Data Fusion in Soil Hydrology

    Science.gov (United States)

    Mohanty, B.; Kathuria, D.; Katzfuss, M.

    2016-12-01

    Soil moisture datasets from remote sensing (RS) platforms (such as SMOS and SMAP) and reanalysis products from land surface models are typically available on a coarse spatial granularity of several square km. Ground based sensors on the other hand provide observations on a finer spatial scale (meter scale or less) but are sparsely available. Soil moisture is affected by high variability due to complex interactions between geologic, topographic, vegetation and atmospheric variables. Hydrologic processes usually occur at a scale of 1 km or less and therefore spatially ubiquitous and temporally periodic soil moisture products at this scale are required to aid local decision makers in agriculture, weather prediction and reservoir operations. Past literature has largely focused on downscaling RS soil moisture for a small extent of a field or a watershed and hence the applicability of such products has been limited. The present study employs a spatial Bayesian Hierarchical Model (BHM) to derive soil moisture products at a spatial scale of 1 km for the state of Oklahoma by fusing point scale Mesonet data and coarse scale RS data for soil moisture and its auxiliary covariates such as precipitation, topography, soil texture and vegetation. It is seen that the BHM model handles change of support problems easily while performing accurate uncertainty quantification arising from measurement errors and imperfect retrieval algorithms. The computational challenge arising due to the large number of measurements is tackled by utilizing basis function approaches and likelihood approximations. The BHM model can be considered as a complex Bayesian extension of traditional geostatistical prediction methods (such as Kriging) for large datasets in the presence of uncertainties.

  5. Rigorous Approach in Investigation of Seismic Structure and Source Characteristicsin Northeast Asia: Hierarchical and Trans-dimensional Bayesian Inversion

    Science.gov (United States)

    Mustac, M.; Kim, S.; Tkalcic, H.; Rhie, J.; Chen, Y.; Ford, S. R.; Sebastian, N.

    2015-12-01

    Conventional approaches to inverse problems suffer from non-linearity and non-uniqueness in estimations of seismic structures and source properties. Estimated results and associated uncertainties are often biased by applied regularizations and additional constraints, which are commonly introduced to solve such problems. Bayesian methods, however, provide statistically meaningful estimations of models and their uncertainties constrained by data information. In addition, hierarchical and trans-dimensional (trans-D) techniques are inherently implemented in the Bayesian framework to account for involved error statistics and model parameterizations, and, in turn, allow more rigorous estimations of the same. Here, we apply Bayesian methods throughout the entire inference process to estimate seismic structures and source properties in Northeast Asia including east China, the Korean peninsula, and the Japanese islands. Ambient noise analysis is first performed to obtain a base three-dimensional (3-D) heterogeneity model using continuous broadband waveforms from more than 300 stations. As for the tomography of surface wave group and phase velocities in the 5-70 s band, we adopt a hierarchical and trans-D Bayesian inversion method using Voronoi partition. The 3-D heterogeneity model is further improved by joint inversions of teleseismic receiver functions and dispersion data using a newly developed high-efficiency Bayesian technique. The obtained model is subsequently used to prepare 3-D structural Green's functions for the source characterization. A hierarchical Bayesian method for point source inversion using regional complete waveform data is applied to selected events from the region. The seismic structure and source characteristics with rigorously estimated uncertainties from the novel Bayesian methods provide enhanced monitoring and discrimination of seismic events in northeast Asia.

  6. Fluorocarbon adsorption in hierarchical porous frameworks

    Science.gov (United States)

    Motkuri, Radha Kishan; Annapureddy, Harsha V. R.; Vijaykumar, M.; Schaef, H. Todd; Martin, Paul F.; McGrail, B. Peter; Dang, Liem X.; Krishna, Rajamani; Thallapally, Praveen K.

    2014-07-01

    Metal-organic frameworks comprise an important class of solid-state materials and have potential for many emerging applications such as energy storage, separation, catalysis and bio-medical. Here we report the adsorption behaviour of a series of fluorocarbon derivatives on a set of microporous and hierarchical mesoporous frameworks. The microporous frameworks show a saturation uptake capacity for dichlorodifluoromethane of >4 mmol g-1 at a very low relative saturation pressure (P/Po) of 0.02. In contrast, the mesoporous framework shows an exceptionally high uptake capacity reaching >14 mmol g-1 at P/Po of 0.4. Adsorption affinity in terms of mass loading and isosteric heats of adsorption is found to generally correlate with the polarizability and boiling point of the refrigerant, with dichlorodifluoromethane >chlorodifluoromethane >chlorotrifluoromethane >tetrafluoromethane >methane. These results suggest the possibility of exploiting these sorbents for separation of azeotropic mixtures of fluorocarbons and use in eco-friendly fluorocarbon-based adsorption cooling.

  7. Spatial Hierarchical Bayesian Analysis of the Historical Extreme Streamflow

    Science.gov (United States)

    Najafi, M. R.; Moradkhani, H.

    2012-04-01

    Analysis of the climate change impact on extreme hydro-climatic events is crucial for future hydrologic/hydraulic designs and water resources decision making. The purpose of this study is to investigate the changes of the extreme value distribution parameters with respect to time to reflect upon the impact of climate change. We develop a statistical model using the observed streamflow data of the Columbia River Basin in USA to estimate the changes of high flows as a function of time as well as other variables. Generalized Pareto Distribution (GPD) is used to model the upper 95% flows during December through March for 31 gauge stations. In the process layer of the model the covariates including time, latitude, longitude, elevation and basin area are considered to assess the sensitivity of the model to each variable. Markov Chain Monte Carlo (MCMC) method is used to estimate the parameters. The Spatial Hierarchical Bayesian technique models the GPD parameters spatially and borrows strength from other locations by pooling data together, while providing an explicit estimation of the uncertainties in all stages of modeling.

  8. A Bayesian hierarchical model for wind gust prediction

    Science.gov (United States)

    Friederichs, Petra; Oesting, Marco; Schlather, Martin

    2014-05-01

    A postprocessing method for ensemble wind gust forecasts given by a mesoscale limited area numerical weather prediction (NWP) model is presented, which is based on extreme value theory. A process layer for the parameters of a generalized extreme value distribution (GEV) is introduced using a Bayesian hierarchical model (BHM). Incorporating the information of the COMSO-DE forecasts, the process parameters model the spatial response surfaces of the GEV parameters as Gaussian random fields. The spatial BHM provides area wide forecasts of wind gusts in terms of a conditional GEV. It models the marginal distribution of the spatial gust process and provides not only forecasts of the conditional GEV at locations without observations, but also uncertainty information about the estimates. A disadvantages of BHM model is that it assumes conditional independent observations. In order to incorporate the dependence between gusts at neighboring locations as well as the spatial random fields of observed and forecasted maximal wind gusts, we propose to model them jointly by a bivariate Brown-Resnick process.

  9. An agglomerative hierarchical approach to visualization in Bayesian clustering problems.

    Science.gov (United States)

    Dawson, K J; Belkhir, K

    2009-07-01

    Clustering problems (including the clustering of individuals into outcrossing populations, hybrid generations, full-sib families and selfing lines) have recently received much attention in population genetics. In these clustering problems, the parameter of interest is a partition of the set of sampled individuals--the sample partition. In a fully Bayesian approach to clustering problems of this type, our knowledge about the sample partition is represented by a probability distribution on the space of possible sample partitions. As the number of possible partitions grows very rapidly with the sample size, we cannot visualize this probability distribution in its entirety, unless the sample is very small. As a solution to this visualization problem, we recommend using an agglomerative hierarchical clustering algorithm, which we call the exact linkage algorithm. This algorithm is a special case of the maximin clustering algorithm that we introduced previously. The exact linkage algorithm is now implemented in our software package PartitionView. The exact linkage algorithm takes the posterior co-assignment probabilities as input and yields as output a rooted binary tree, or more generally, a forest of such trees. Each node of this forest defines a set of individuals, and the node height is the posterior co-assignment probability of this set. This provides a useful visual representation of the uncertainty associated with the assignment of individuals to categories. It is also a useful starting point for a more detailed exploration of the posterior distribution in terms of the co-assignment probabilities.

  10. A Bayesian hierarchical model for reconstructing relative sea level: from raw data to rates of change

    Science.gov (United States)

    Cahill, Niamh; Kemp, Andrew C.; Horton, Benjamin P.; Parnell, Andrew C.

    2016-02-01

    We present a Bayesian hierarchical model for reconstructing the continuous and dynamic evolution of relative sea-level (RSL) change with quantified uncertainty. The reconstruction is produced from biological (foraminifera) and geochemical (δ13C) sea-level indicators preserved in dated cores of salt-marsh sediment. Our model is comprised of three modules: (1) a new Bayesian transfer (B-TF) function for the calibration of biological indicators into tidal elevation, which is flexible enough to formally accommodate additional proxies; (2) an existing chronology developed using the Bchron age-depth model, and (3) an existing Errors-In-Variables integrated Gaussian process (EIV-IGP) model for estimating rates of sea-level change. Our approach is illustrated using a case study of Common Era sea-level variability from New Jersey, USA We develop a new B-TF using foraminifera, with and without the additional (δ13C) proxy and compare our results to those from a widely used weighted-averaging transfer function (WA-TF). The formal incorporation of a second proxy into the B-TF model results in smaller vertical uncertainties and improved accuracy for reconstructed RSL. The vertical uncertainty from the multi-proxy B-TF is ˜ 28 % smaller on average compared to the WA-TF. When evaluated against historic tide-gauge measurements, the multi-proxy B-TF most accurately reconstructs the RSL changes observed in the instrumental record (mean square error = 0.003 m2). The Bayesian hierarchical model provides a single, unifying framework for reconstructing and analyzing sea-level change through time. This approach is suitable for reconstructing other paleoenvironmental variables (e.g., temperature) using biological proxies.

  11. Fluorocarbon Adsorption in Hierarchical Porous Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Motkuri, Radha K.; Annapureddy, Harsha V.; Vijayakumar, M.; Schaef, Herbert T.; Martin, P F.; McGrail, B. Peter; Dang, Liem X.; Krishna, Rajamani; Thallapally, Praveen K.

    2014-07-09

    The adsorption behavior of a series of fluorocarbon derivatives was examined on a set of microporous metal organic framework (MOF) sorbents and another set of hierarchical mesoporous MOFs. The microporous M-DOBDC (M = Ni, Co) showed a saturation uptake capacity for R12 of over 4 mmol/g at a very low relative saturation pressure (P/Po) of 0.02. In contrast, the mesoporous MOF MIL-101 showed an exceptionally high uptake capacity reaching over 14 mmol/g at P/Po of 0.4. Adsorption affinity in terms of mass loading and isosteric heats of adsorption were found to generally correlate with the polarizability of the refrigerant with R12 > R22 > R13 > R14 > methane. These results suggest the possibility of exploiting MOFs for separation of azeotropic mixtures of fluorocarbons and use in eco-friendly fluorocarbon-based adsorption cooling and refrigeration applications.

  12. A hierarchical Bayesian GEV model for improving local and regional flood quantile estimates

    Science.gov (United States)

    Lima, Carlos H. R.; Lall, Upmanu; Troy, Tara; Devineni, Naresh

    2016-10-01

    We estimate local and regional Generalized Extreme Value (GEV) distribution parameters for flood frequency analysis in a multilevel, hierarchical Bayesian framework, to explicitly model and reduce uncertainties. As prior information for the model, we assume that the GEV location and scale parameters for each site come from independent log-normal distributions, whose mean parameter scales with the drainage area. From empirical and theoretical arguments, the shape parameter for each site is shrunk towards a common mean. Non-informative prior distributions are assumed for the hyperparameters and the MCMC method is used to sample from the joint posterior distribution. The model is tested using annual maximum series from 20 streamflow gauges located in an 83,000 km2 flood prone basin in Southeast Brazil. The results show a significant reduction of uncertainty estimates of flood quantile estimates over the traditional GEV model, particularly for sites with shorter records. For return periods within the range of the data (around 50 years), the Bayesian credible intervals for the flood quantiles tend to be narrower than the classical confidence limits based on the delta method. As the return period increases beyond the range of the data, the confidence limits from the delta method become unreliable and the Bayesian credible intervals provide a way to estimate satisfactory confidence bands for the flood quantiles considering parameter uncertainties and regional information. In order to evaluate the applicability of the proposed hierarchical Bayesian model for regional flood frequency analysis, we estimate flood quantiles for three randomly chosen out-of-sample sites and compare with classical estimates using the index flood method. The posterior distributions of the scaling law coefficients are used to define the predictive distributions of the GEV location and scale parameters for the out-of-sample sites given only their drainage areas and the posterior distribution of the

  13. A Bayesian hierarchical model for accident and injury surveillance.

    Science.gov (United States)

    MacNab, Ying C

    2003-01-01

    This article presents a recent study which applies Bayesian hierarchical methodology to model and analyse accident and injury surveillance data. A hierarchical Poisson random effects spatio-temporal model is introduced and an analysis of inter-regional variations and regional trends in hospitalisations due to motor vehicle accident injuries to boys aged 0-24 in the province of British Columbia, Canada, is presented. The objective of this article is to illustrate how the modelling technique can be implemented as part of an accident and injury surveillance and prevention system where transportation and/or health authorities may routinely examine accidents, injuries, and hospitalisations to target high-risk regions for prevention programs, to evaluate prevention strategies, and to assist in health planning and resource allocation. The innovation of the methodology is its ability to uncover and highlight important underlying structure of the data. Between 1987 and 1996, British Columbia hospital separation registry registered 10,599 motor vehicle traffic injury related hospitalisations among boys aged 0-24 who resided in British Columbia, of which majority (89%) of the injuries occurred to boys aged 15-24. The injuries were aggregated by three age groups (0-4, 5-14, and 15-24), 20 health regions (based of place-of-residence), and 10 calendar years (1987 to 1996) and the corresponding mid-year population estimates were used as 'at risk' population. An empirical Bayes inference technique using penalised quasi-likelihood estimation was implemented to model both rates and counts, with spline smoothing accommodating non-linear temporal effects. The results show that (a) crude rates and ratios at health region level are unstable, (b) the models with spline smoothing enable us to explore possible shapes of injury trends at both the provincial level and the regional level, and (c) the fitted models provide a wealth of information about the patterns (both over space and time

  14. Hierarchical Bayesian Model for Simultaneous EEG Source and Forward Model Reconstruction (SOFOMORE)

    DEFF Research Database (Denmark)

    Stahlhut, Carsten; Mørup, Morten; Winther, Ole;

    2009-01-01

    In this paper we propose an approach to handle forward model uncertainty for EEG source reconstruction. A stochastic forward model is motivated by the many uncertain contributions that form the forward propagation model including the tissue conductivity distribution, the cortical surface, and ele......In this paper we propose an approach to handle forward model uncertainty for EEG source reconstruction. A stochastic forward model is motivated by the many uncertain contributions that form the forward propagation model including the tissue conductivity distribution, the cortical surface......, and electrode positions. We first present a hierarchical Bayesian framework for EEG source localization that jointly performs source and forward model reconstruction (SOFOMORE). Secondly, we evaluate the SOFOMORE model by comparison with source reconstruction methods that use fixed forward models. Simulated...... and real EEG data demonstrate that invoking a stochastic forward model leads to improved source estimates....

  15. Technical Note: Probabilistically constraining proxy age–depth models within a Bayesian hierarchical reconstruction model

    Directory of Open Access Journals (Sweden)

    J. P. Werner

    2015-03-01

    Full Text Available Reconstructions of the late-Holocene climate rely heavily upon proxies that are assumed to be accurately dated by layer counting, such as measurements of tree rings, ice cores, and varved lake sediments. Considerable advances could be achieved if time-uncertain proxies were able to be included within these multiproxy reconstructions, and if time uncertainties were recognized and correctly modeled for proxies commonly treated as free of age model errors. Current approaches for accounting for time uncertainty are generally limited to repeating the reconstruction using each one of an ensemble of age models, thereby inflating the final estimated uncertainty – in effect, each possible age model is given equal weighting. Uncertainties can be reduced by exploiting the inferred space–time covariance structure of the climate to re-weight the possible age models. Here, we demonstrate how Bayesian hierarchical climate reconstruction models can be augmented to account for time-uncertain proxies. Critically, although a priori all age models are given equal probability of being correct, the probabilities associated with the age models are formally updated within the Bayesian framework, thereby reducing uncertainties. Numerical experiments show that updating the age model probabilities decreases uncertainty in the resulting reconstructions, as compared with the current de facto standard of sampling over all age models, provided there is sufficient information from other data sources in the spatial region of the time-uncertain proxy. This approach can readily be generalized to non-layer-counted proxies, such as those derived from marine sediments.

  16. A hierarchical Bayesian approach for reconstructing the initial mass function of single stellar populations

    Science.gov (United States)

    Dries, M.; Trager, S. C.; Koopmans, L. V. E.

    2016-11-01

    Recent studies based on the integrated light of distant galaxies suggest that the initial mass function (IMF) might not be universal. Variations of the IMF with galaxy type and/or formation time may have important consequences for our understanding of galaxy evolution. We have developed a new stellar population synthesis (SPS) code specifically designed to reconstruct the IMF. We implement a novel approach combining regularization with hierarchical Bayesian inference. Within this approach, we use a parametrized IMF prior to regulate a direct inference of the IMF. This direct inference gives more freedom to the IMF and allows the model to deviate from parametrized models when demanded by the data. We use Markov chain Monte Carlo sampling techniques to reconstruct the best parameters for the IMF prior, the age and the metallicity of a single stellar population. We present our code and apply our model to a number of mock single stellar populations with different ages, metallicities and IMFs. When systematic uncertainties are not significant, we are able to reconstruct the input parameters that were used to create the mock populations. Our results show that if systematic uncertainties do play a role, this may introduce a bias on the results. Therefore, it is important to objectively compare different ingredients of SPS models. Through its Bayesian framework, our model is well suited for this.

  17. Hierarchical Bayesian methods for estimation of parameters in a longitudinal HIV dynamic system.

    Science.gov (United States)

    Huang, Yangxin; Liu, Dacheng; Wu, Hulin

    2006-06-01

    HIV dynamics studies have significantly contributed to the understanding of HIV infection and antiviral treatment strategies. But most studies are limited to short-term viral dynamics due to the difficulty of establishing a relationship of antiviral response with multiple treatment factors such as drug exposure and drug susceptibility during long-term treatment. In this article, a mechanism-based dynamic model is proposed for characterizing long-term viral dynamics with antiretroviral therapy, described by a set of nonlinear differential equations without closed-form solutions. In this model we directly incorporate drug concentration, adherence, and drug susceptibility into a function of treatment efficacy, defined as an inhibition rate of virus replication. We investigate a Bayesian approach under the framework of hierarchical Bayesian (mixed-effects) models for estimating unknown dynamic parameters. In particular, interest focuses on estimating individual dynamic parameters. The proposed methods not only help to alleviate the difficulty in parameter identifiability, but also flexibly deal with sparse and unbalanced longitudinal data from individual subjects. For illustration purposes, we present one simulation example to implement the proposed approach and apply the methodology to a data set from an AIDS clinical trial. The basic concept of the longitudinal HIV dynamic systems and the proposed methodologies are generally applicable to any other biomedical dynamic systems.

  18. Technical Note: Probabilistically constraining proxy age–depth models within a Bayesian hierarchical reconstruction model

    Directory of Open Access Journals (Sweden)

    J. P. Werner

    2014-12-01

    Full Text Available Reconstructions of late-Holocene climate rely heavily upon proxies that are assumed to be accurately dated by layer counting, such as measurement on tree rings, ice cores, and varved lake sediments. Considerable advances may be achievable if time uncertain proxies could be included within these multiproxy reconstructions, and if time uncertainties were recognized and correctly modeled for proxies commonly treated as free of age model errors. Current approaches to accounting for time uncertainty are generally limited to repeating the reconstruction using each of an ensemble of age models, thereby inflating the final estimated uncertainty – in effect, each possible age model is given equal weighting. Uncertainties can be reduced by exploiting the inferred space–time covariance structure of the climate to re-weight the possible age models. Here we demonstrate how Bayesian Hierarchical climate reconstruction models can be augmented to account for time uncertain proxies. Critically, while a priori all age models are given equal probability of being correct, the probabilities associated with the age models are formally updated within the Bayesian framework, thereby reducing uncertainties. Numerical experiments show that updating the age-model probabilities decreases uncertainty in the climate reconstruction, as compared with the current de-facto standard of sampling over all age models, provided there is sufficient information from other data sources in the region of the time-uncertain proxy. This approach can readily be generalized to non-layer counted proxies, such as those derived from marine sediments.

  19. A Bayesian hierarchical diffusion model decomposition of performance in Approach-Avoidance Tasks.

    Science.gov (United States)

    Krypotos, Angelos-Miltiadis; Beckers, Tom; Kindt, Merel; Wagenmakers, Eric-Jan

    2015-01-01

    Common methods for analysing response time (RT) tasks, frequently used across different disciplines of psychology, suffer from a number of limitations such as the failure to directly measure the underlying latent processes of interest and the inability to take into account the uncertainty associated with each individual's point estimate of performance. Here, we discuss a Bayesian hierarchical diffusion model and apply it to RT data. This model allows researchers to decompose performance into meaningful psychological processes and to account optimally for individual differences and commonalities, even with relatively sparse data. We highlight the advantages of the Bayesian hierarchical diffusion model decomposition by applying it to performance on Approach-Avoidance Tasks, widely used in the emotion and psychopathology literature. Model fits for two experimental data-sets demonstrate that the model performs well. The Bayesian hierarchical diffusion model overcomes important limitations of current analysis procedures and provides deeper insight in latent psychological processes of interest.

  20. A Bayesian hierarchical nonhomogeneous hidden Markov model for multisite streamflow reconstructions

    Science.gov (United States)

    Bracken, C.; Rajagopalan, B.; Woodhouse, C.

    2016-10-01

    In many complex water supply systems, the next generation of water resources planning models will require simultaneous probabilistic streamflow inputs at multiple locations on an interconnected network. To make use of the valuable multicentury records provided by tree-ring data, reconstruction models must be able to produce appropriate multisite inputs. Existing streamflow reconstruction models typically focus on one site at a time, not addressing intersite dependencies and potentially misrepresenting uncertainty. To this end, we develop a model for multisite streamflow reconstruction with the ability to capture intersite correlations. The proposed model is a hierarchical Bayesian nonhomogeneous hidden Markov model (NHMM). A NHMM is fit to contemporary streamflow at each location using lognormal component distributions. Leading principal components of tree rings are used as covariates to model nonstationary transition probabilities and the parameters of the lognormal component distributions. Spatial dependence between sites is captured with a Gaussian elliptical copula. Parameters of the model are estimated in a fully Bayesian framework, in that marginal posterior distributions of all the parameters are obtained. The model is applied to reconstruct flows at 20 sites in the Upper Colorado River Basin (UCRB) from 1473 to 1906. Many previous reconstructions are available for this basin, making it ideal for testing this new method. The results show some improvements over regression-based methods in terms of validation statistics. Key advantages of the Bayesian NHMM over traditional approaches are a dynamic representation of uncertainty and the ability to make long multisite simulations that capture at-site statistics and spatial correlations between sites.

  1. Poor-data and data-poor species stock assessment using a Bayesian hierarchical approach.

    Science.gov (United States)

    Jiao, Yan; Cortés, Enric; Andrews, Kate; Guo, Feng

    2011-10-01

    Appropriate inference for stocks or species with low-quality data (poor data) or limited data (data poor) is extremely important. Hierarchical Bayesian methods are especially applicable to small-area, small-sample-size estimation problems because they allow poor-data species to borrow strength from species with good-quality data. We used a hammerhead shark complex as an example to investigate the advantages of using hierarchical Bayesian models in assessing the status of poor-data and data-poor exploited species. The hammerhead shark complex (Sphyrna spp.) along the Atlantic and Gulf of Mexico coasts of the United States is composed of three species: the scalloped hammerhead (S. lewini), the great hammerhead (S. mokarran), and the smooth hammerhead (S. zygaena) sharks. The scalloped hammerhead comprises 70-80% of the catch and has catch and relative abundance data of good quality, whereas great and smooth hammerheads have relative abundance indices that are both limited and of low quality presumably because of low stock density and limited sampling. Four hierarchical Bayesian state-space surplus production models were developed to simulate variability in population growth rates, carrying capacity, and catchability of the species. The results from the hierarchical Bayesian models were considerably more robust than those of the nonhierarchical models. The hierarchical Bayesian approach represents an intermediate strategy between traditional models that assume different population parameters for each species and those that assume all species share identical parameters. Use of the hierarchical Bayesian approach is suggested for future hammerhead shark stock assessments and for modeling fish complexes with species-specific data, because the poor-data species can borrow strength from the species with good data, making the estimation more stable and robust.

  2. A Bayesian hierarchical modeling approach for analyzing observational data from marine ecological studies.

    Science.gov (United States)

    Qian, Song S; Craig, J Kevin; Baustian, Melissa M; Rabalais, Nancy N

    2009-12-01

    We introduce the Bayesian hierarchical modeling approach for analyzing observational data from marine ecological studies using a data set intended for inference on the effects of bottom-water hypoxia on macrobenthic communities in the northern Gulf of Mexico off the coast of Louisiana, USA. We illustrate (1) the process of developing a model, (2) the use of the hierarchical model results for statistical inference through innovative graphical presentation, and (3) a comparison to the conventional linear modeling approach (ANOVA). Our results indicate that the Bayesian hierarchical approach is better able to detect a "treatment" effect than classical ANOVA while avoiding several arbitrary assumptions necessary for linear models, and is also more easily interpreted when presented graphically. These results suggest that the hierarchical modeling approach is a better alternative than conventional linear models and should be considered for the analysis of observational field data from marine systems.

  3. A Hierarchical Bayesian Model to Predict Self-Thinning Line for Chinese Fir in Southern China.

    Directory of Open Access Journals (Sweden)

    Xiongqing Zhang

    Full Text Available Self-thinning is a dynamic equilibrium between forest growth and mortality at full site occupancy. Parameters of the self-thinning lines are often confounded by differences across various stand and site conditions. For overcoming the problem of hierarchical and repeated measures, we used hierarchical Bayesian method to estimate the self-thinning line. The results showed that the self-thinning line for Chinese fir (Cunninghamia lanceolata (Lamb.Hook. plantations was not sensitive to the initial planting density. The uncertainty of model predictions was mostly due to within-subject variability. The simulation precision of hierarchical Bayesian method was better than that of stochastic frontier function (SFF. Hierarchical Bayesian method provided a reasonable explanation of the impact of other variables (site quality, soil type, aspect, etc. on self-thinning line, which gave us the posterior distribution of parameters of self-thinning line. The research of self-thinning relationship could be benefit from the use of hierarchical Bayesian method.

  4. Assimilating multi-source uncertainties of a parsimonious conceptual hydrological model using hierarchical Bayesian modeling

    Science.gov (United States)

    Wei Wu; James Clark; James Vose

    2010-01-01

    Hierarchical Bayesian (HB) modeling allows for multiple sources of uncertainty by factoring complex relationships into conditional distributions that can be used to draw inference and make predictions. We applied an HB model to estimate the parameters and state variables of a parsimonious hydrological model – GR4J – by coherently assimilating the uncertainties from the...

  5. Hierarchical Bayesian modeling of the space - time diffusion patterns of cholera epidemic in Kumasi, Ghana

    NARCIS (Netherlands)

    Osei, Frank B.; Osei, F.B.; Duker, Alfred A.; Stein, A.

    2011-01-01

    This study analyses the joint effects of the two transmission routes of cholera on the space-time diffusion dynamics. Statistical models are developed and presented to investigate the transmission network routes of cholera diffusion. A hierarchical Bayesian modelling approach is employed for a joint

  6. A Hierarchical Bayesian M/EEG Imaging Method Correcting for Incomplete Spatio-Temporal Priors

    DEFF Research Database (Denmark)

    Stahlhut, Carsten; Attias, Hagai T.; Sekihara, Kensuke;

    2013-01-01

    In this paper we present a hierarchical Bayesian model, to tackle the highly ill-posed problem that follows with MEG and EEG source imaging. Our model promotes spatiotemporal patterns through the use of both spatial and temporal basis functions. While in contrast to most previous spatio-temporal ...

  7. Hierarchical Bayesian modeling of the space-time diffusion patterns of cholera epidemic in Kumasi, Ghana

    NARCIS (Netherlands)

    Osei, Frank B.; Duker, Alfred A.; Stein, Alfred

    2011-01-01

    This study analyses the joint effects of the two transmission routes of cholera on the space-time diffusion dynamics. Statistical models are developed and presented to investigate the transmission network routes of cholera diffusion. A hierarchical Bayesian modelling approach is employed for a joint

  8. Probabilistic inference: Task dependency and individual differences of probability weighting revealed by hierarchical Bayesian modelling

    Directory of Open Access Journals (Sweden)

    Moritz eBoos

    2016-05-01

    Full Text Available Cognitive determinants of probabilistic inference were examined using hierarchical Bayesian modelling techniques. A classic urn-ball paradigm served as experimental strategy, involving a factorial two (prior probabilities by two (likelihoods design. Five computational models of cognitive processes were compared with the observed behaviour. Parameter-free Bayesian posterior probabilities and parameter-free base rate neglect provided inadequate models of probabilistic inference. The introduction of distorted subjective probabilities yielded more robust and generalizable results. A general class of (inverted S-shaped probability weighting functions had been proposed; however, the possibility of large differences in probability distortions not only across experimental conditions, but also across individuals, seems critical for the model’s success. It also seems advantageous to consider individual differences in parameters of probability weighting as being sampled from weakly informative prior distributions of individual parameter values. Thus, the results from hierarchical Bayesian modelling converge with previous results in revealing that probability weighting parameters show considerable task dependency and individual differences. Methodologically, this work exemplifies the usefulness of hierarchical Bayesian modelling techniques for cognitive psychology. Theoretically, human probabilistic inference might be best described as the application of individualized strategic policies for Bayesian belief revision.

  9. Probabilistic Inference: Task Dependency and Individual Differences of Probability Weighting Revealed by Hierarchical Bayesian Modeling.

    Science.gov (United States)

    Boos, Moritz; Seer, Caroline; Lange, Florian; Kopp, Bruno

    2016-01-01

    Cognitive determinants of probabilistic inference were examined using hierarchical Bayesian modeling techniques. A classic urn-ball paradigm served as experimental strategy, involving a factorial two (prior probabilities) by two (likelihoods) design. Five computational models of cognitive processes were compared with the observed behavior. Parameter-free Bayesian posterior probabilities and parameter-free base rate neglect provided inadequate models of probabilistic inference. The introduction of distorted subjective probabilities yielded more robust and generalizable results. A general class of (inverted) S-shaped probability weighting functions had been proposed; however, the possibility of large differences in probability distortions not only across experimental conditions, but also across individuals, seems critical for the model's success. It also seems advantageous to consider individual differences in parameters of probability weighting as being sampled from weakly informative prior distributions of individual parameter values. Thus, the results from hierarchical Bayesian modeling converge with previous results in revealing that probability weighting parameters show considerable task dependency and individual differences. Methodologically, this work exemplifies the usefulness of hierarchical Bayesian modeling techniques for cognitive psychology. Theoretically, human probabilistic inference might be best described as the application of individualized strategic policies for Bayesian belief revision.

  10. Using Bayesian hierarchical parameter estimation to assess the generalizability of cognitive models of choice.

    Science.gov (United States)

    Scheibehenne, Benjamin; Pachur, Thorsten

    2015-04-01

    To be useful, cognitive models with fitted parameters should show generalizability across time and allow accurate predictions of future observations. It has been proposed that hierarchical procedures yield better estimates of model parameters than do nonhierarchical, independent approaches, because the formers' estimates for individuals within a group can mutually inform each other. Here, we examine Bayesian hierarchical approaches to evaluating model generalizability in the context of two prominent models of risky choice-cumulative prospect theory (Tversky & Kahneman, 1992) and the transfer-of-attention-exchange model (Birnbaum & Chavez, 1997). Using empirical data of risky choices collected for each individual at two time points, we compared the use of hierarchical versus independent, nonhierarchical Bayesian estimation techniques to assess two aspects of model generalizability: parameter stability (across time) and predictive accuracy. The relative performance of hierarchical versus independent estimation varied across the different measures of generalizability. The hierarchical approach improved parameter stability (in terms of a lower absolute discrepancy of parameter values across time) and predictive accuracy (in terms of deviance; i.e., likelihood). With respect to test-retest correlations and posterior predictive accuracy, however, the hierarchical approach did not outperform the independent approach. Further analyses suggested that this was due to strong correlations between some parameters within both models. Such intercorrelations make it difficult to identify and interpret single parameters and can induce high degrees of shrinkage in hierarchical models. Similar findings may also occur in the context of other cognitive models of choice.

  11. A Goal-Directed Bayesian Framework for Categorization

    Science.gov (United States)

    Rigoli, Francesco; Pezzulo, Giovanni; Dolan, Raymond; Friston, Karl

    2017-01-01

    Categorization is a fundamental ability for efficient behavioral control. It allows organisms to remember the correct responses to categorical cues and not for every stimulus encountered (hence eluding computational cost or complexity), and to generalize appropriate responses to novel stimuli dependant on category assignment. Assuming the brain performs Bayesian inference, based on a generative model of the external world and future goals, we propose a computational model of categorization in which important properties emerge. These properties comprise the ability to infer latent causes of sensory experience, a hierarchical organization of latent causes, and an explicit inclusion of context and action representations. Crucially, these aspects derive from considering the environmental statistics that are relevant to achieve goals, and from the fundamental Bayesian principle that any generative model should be preferred over alternative models based on an accuracy-complexity trade-off. Our account is a step toward elucidating computational principles of categorization and its role within the Bayesian brain hypothesis.

  12. Using hierarchical Bayesian methods to examine the tools of decision-making

    Directory of Open Access Journals (Sweden)

    Michael D. Lee

    2011-12-01

    Full Text Available Hierarchical Bayesian methods offer a principled and comprehensive way to relate psychological models to data. Here we use them to model the patterns of information search, stopping and deciding in a simulated binary comparison judgment task. The simulation involves 20 subjects making 100 forced choice comparisons about the relative magnitudes of two objects (which of two German cities has more inhabitants. Two worked-examples show how hierarchical models can be developed to account for and explain the diversity of both search and stopping rules seen across the simulated individuals. We discuss how the results provide insight into current debates in the literature on heuristic decision making and argue that they demonstrate the power and flexibility of hierarchical Bayesian methods in modeling human decision-making.

  13. Application of hierarchical Bayesian unmixing models in river sediment source apportionment

    Science.gov (United States)

    Blake, Will; Smith, Hugh; Navas, Ana; Bodé, Samuel; Goddard, Rupert; Zou Kuzyk, Zou; Lennard, Amy; Lobb, David; Owens, Phil; Palazon, Leticia; Petticrew, Ellen; Gaspar, Leticia; Stock, Brian; Boeckx, Pacsal; Semmens, Brice

    2016-04-01

    Fingerprinting and unmixing concepts are used widely across environmental disciplines for forensic evaluation of pollutant sources. In aquatic and marine systems, this includes tracking the source of organic and inorganic pollutants in water and linking problem sediment to soil erosion and land use sources. It is, however, the particular complexity of ecological systems that has driven creation of the most sophisticated mixing models, primarily to (i) evaluate diet composition in complex ecological food webs, (ii) inform population structure and (iii) explore animal movement. In the context of the new hierarchical Bayesian unmixing model, MIXSIAR, developed to characterise intra-population niche variation in ecological systems, we evaluate the linkage between ecological 'prey' and 'consumer' concepts and river basin sediment 'source' and sediment 'mixtures' to exemplify the value of ecological modelling tools to river basin science. Recent studies have outlined advantages presented by Bayesian unmixing approaches in handling complex source and mixture datasets while dealing appropriately with uncertainty in parameter probability distributions. MixSIAR is unique in that it allows individual fixed and random effects associated with mixture hierarchy, i.e. factors that might exert an influence on model outcome for mixture groups, to be explored within the source-receptor framework. This offers new and powerful ways of interpreting river basin apportionment data. In this contribution, key components of the model are evaluated in the context of common experimental designs for sediment fingerprinting studies namely simple, nested and distributed catchment sampling programmes. Illustrative examples using geochemical and compound specific stable isotope datasets are presented and used to discuss best practice with specific attention to (1) the tracer selection process, (2) incorporation of fixed effects relating to sample timeframe and sediment type in the modelling

  14. Extreme Rainfall Analysis using Bayesian Hierarchical Modeling in the Willamette River Basin, Oregon

    Science.gov (United States)

    Love, C. A.; Skahill, B. E.; AghaKouchak, A.; Karlovits, G. S.; England, J. F.; Duren, A. M.

    2016-12-01

    We present preliminary results of ongoing research directed at evaluating the worth of including various covariate data to support extreme rainfall analysis in the Willamette River basin using Bayesian hierarchical modeling (BHM). We also compare the BHM derived extreme rainfall estimates with their respective counterparts obtained from a traditional regional frequency analysis (RFA) using the same set of rain gage extreme rainfall data. The U.S. Army Corps of Engineers (USACE) Portland District operates thirteen dams in the 11,478 square mile Willamette River basin (WRB) located in northwestern Oregon, a major tributary of the Columbia River whose 187 miles long main stem, the Willamette River, flows northward between the Coastal and Cascade Ranges. The WRB contains approximately two-thirds of Oregon's population and 20 of the 25 most populous cities in the state. Extreme rainfall estimates are required to support risk-informed hydrologic analyses for these projects as part of the USACE Dam Safety Program. We analyze daily annual rainfall maxima data for the WRB utilizing the spatial BHM R package "spatial.gev.bma", which has been shown to be efficient in developing coherent maps of extreme rainfall by return level. Our intent is to profile for the USACE an alternate methodology to a RFA which was developed in 2008 due to the lack of an official NOAA Atlas 14 update for the state of Oregon. Unlike RFA, the advantage of a BHM-based analysis of hydrometeorological extremes is its ability to account for non-stationarity while providing robust estimates of uncertainty. BHM also allows for the inclusion of geographical and climatological factors which we show for the WRB influence regional rainfall extremes. Moreover, the Bayesian framework permits one to combine additional data types into the analysis; for example, information derived via elicitation and causal information expansion data, both being additional opportunities for future related research.

  15. A BAYESIAN HIERARCHICAL SPATIAL MODEL FOR DENTAL CARIES ASSESSMENT USING NON-GAUSSIAN MARKOV RANDOM FIELDS

    Science.gov (United States)

    Jin, Ick Hoon; Yuan, Ying; Bandyopadhyay, Dipankar

    2016-01-01

    Research in dental caries generates data with two levels of hierarchy: that of a tooth overall and that of the different surfaces of the tooth. The outcomes often exhibit spatial referencing among neighboring teeth and surfaces, i.e., the disease status of a tooth or surface might be influenced by the status of a set of proximal teeth/surfaces. Assessments of dental caries (tooth decay) at the tooth level yield binary outcomes indicating the presence/absence of teeth, and trinary outcomes at the surface level indicating healthy, decayed, or filled surfaces. The presence of these mixed discrete responses complicates the data analysis under a unified framework. To mitigate complications, we develop a Bayesian two-level hierarchical model under suitable (spatial) Markov random field assumptions that accommodates the natural hierarchy within the mixed responses. At the first level, we utilize an autologistic model to accommodate the spatial dependence for the tooth-level binary outcomes. For the second level and conditioned on a tooth being non-missing, we utilize a Potts model to accommodate the spatial referencing for the surface-level trinary outcomes. The regression models at both levels were controlled for plausible covariates (risk factors) of caries, and remain connected through shared parameters. To tackle the computational challenges in our Bayesian estimation scheme caused due to the doubly-intractable normalizing constant, we employ a double Metropolis-Hastings sampler. We compare and contrast our model performances to the standard non-spatial (naive) model using a small simulation study, and illustrate via an application to a clinical dataset on dental caries. PMID:27807470

  16. Sparse Event Modeling with Hierarchical Bayesian Kernel Methods

    Science.gov (United States)

    2016-01-05

    the kernel function which depends on the application and the model user. This research uses the most popular kernel function, the radial basis...an important role in the nation’s economy. Unfortunately, the system’s reliability is declining due to the aging components of the network [Grier...kernel function. Gaussian Bayesian kernel models became very popular recently and were extended and applied to a number of classification problems. An

  17. A method of spherical harmonic analysis in the geosciences via hierarchical Bayesian inference

    Science.gov (United States)

    Muir, J. B.; Tkalčić, H.

    2015-11-01

    The problem of decomposing irregular data on the sphere into a set of spherical harmonics is common in many fields of geosciences where it is necessary to build a quantitative understanding of a globally varying field. For example, in global seismology, a compressional or shear wave speed that emerges from tomographic images is used to interpret current state and composition of the mantle, and in geomagnetism, secular variation of magnetic field intensity measured at the surface is studied to better understand the changes in the Earth's core. Optimization methods are widely used for spherical harmonic analysis of irregular data, but they typically do not treat the dependence of the uncertainty estimates on the imposed regularization. This can cause significant difficulties in interpretation, especially when the best-fit model requires more variables as a result of underestimating data noise. Here, with the above limitations in mind, the problem of spherical harmonic expansion of irregular data is treated within the hierarchical Bayesian framework. The hierarchical approach significantly simplifies the problem by removing the need for regularization terms and user-supplied noise estimates. The use of the corrected Akaike Information Criterion for picking the optimal maximum degree of spherical harmonic expansion and the resulting spherical harmonic analyses are first illustrated on a noisy synthetic data set. Subsequently, the method is applied to two global data sets sensitive to the Earth's inner core and lowermost mantle, consisting of PKPab-df and PcP-P differential traveltime residuals relative to a spherically symmetric Earth model. The posterior probability distributions for each spherical harmonic coefficient are calculated via Markov Chain Monte Carlo sampling; the uncertainty obtained for the coefficients thus reflects the noise present in the real data and the imperfections in the spherical harmonic expansion.

  18. MEG source localization of spatially extended generators of epileptic activity: comparing entropic and hierarchical bayesian approaches.

    Directory of Open Access Journals (Sweden)

    Rasheda Arman Chowdhury

    Full Text Available Localizing the generators of epileptic activity in the brain using Electro-EncephaloGraphy (EEG or Magneto-EncephaloGraphy (MEG signals is of particular interest during the pre-surgical investigation of epilepsy. Epileptic discharges can be detectable from background brain activity, provided they are associated with spatially extended generators. Using realistic simulations of epileptic activity, this study evaluates the ability of distributed source localization methods to accurately estimate the location of the generators and their sensitivity to the spatial extent of such generators when using MEG data. Source localization methods based on two types of realistic models have been investigated: (i brain activity may be modeled using cortical parcels and (ii brain activity is assumed to be locally smooth within each parcel. A Data Driven Parcellization (DDP method was used to segment the cortical surface into non-overlapping parcels and diffusion-based spatial priors were used to model local spatial smoothness within parcels. These models were implemented within the Maximum Entropy on the Mean (MEM and the Hierarchical Bayesian (HB source localization frameworks. We proposed new methods in this context and compared them with other standard ones using Monte Carlo simulations of realistic MEG data involving sources of several spatial extents and depths. Detection accuracy of each method was quantified using Receiver Operating Characteristic (ROC analysis and localization error metrics. Our results showed that methods implemented within the MEM framework were sensitive to all spatial extents of the sources ranging from 3 cm(2 to 30 cm(2, whatever were the number and size of the parcels defining the model. To reach a similar level of accuracy within the HB framework, a model using parcels larger than the size of the sources should be considered.

  19. Estimating the Term Structure With a Semiparametric Bayesian Hierarchical Model: An Application to Corporate Bonds1

    Science.gov (United States)

    Cruz-Marcelo, Alejandro; Ensor, Katherine B.; Rosner, Gary L.

    2011-01-01

    The term structure of interest rates is used to price defaultable bonds and credit derivatives, as well as to infer the quality of bonds for risk management purposes. We introduce a model that jointly estimates term structures by means of a Bayesian hierarchical model with a prior probability model based on Dirichlet process mixtures. The modeling methodology borrows strength across term structures for purposes of estimation. The main advantage of our framework is its ability to produce reliable estimators at the company level even when there are only a few bonds per company. After describing the proposed model, we discuss an empirical application in which the term structure of 197 individual companies is estimated. The sample of 197 consists of 143 companies with only one or two bonds. In-sample and out-of-sample tests are used to quantify the improvement in accuracy that results from approximating the term structure of corporate bonds with estimators by company rather than by credit rating, the latter being a popular choice in the financial literature. A complete description of a Markov chain Monte Carlo (MCMC) scheme for the proposed model is available as Supplementary Material. PMID:21765566

  20. Determining the Bayesian optimal sampling strategy in a hierarchical system.

    Energy Technology Data Exchange (ETDEWEB)

    Grace, Matthew D.; Ringland, James T.; Boggs, Paul T.; Pebay, Philippe Pierre

    2010-09-01

    Consider a classic hierarchy tree as a basic model of a 'system-of-systems' network, where each node represents a component system (which may itself consist of a set of sub-systems). For this general composite system, we present a technique for computing the optimal testing strategy, which is based on Bayesian decision analysis. In previous work, we developed a Bayesian approach for computing the distribution of the reliability of a system-of-systems structure that uses test data and prior information. This allows for the determination of both an estimate of the reliability and a quantification of confidence in the estimate. Improving the accuracy of the reliability estimate and increasing the corresponding confidence require the collection of additional data. However, testing all possible sub-systems may not be cost-effective, feasible, or even necessary to achieve an improvement in the reliability estimate. To address this sampling issue, we formulate a Bayesian methodology that systematically determines the optimal sampling strategy under specified constraints and costs that will maximally improve the reliability estimate of the composite system, e.g., by reducing the variance of the reliability distribution. This methodology involves calculating the 'Bayes risk of a decision rule' for each available sampling strategy, where risk quantifies the relative effect that each sampling strategy could have on the reliability estimate. A general numerical algorithm is developed and tested using an example multicomponent system. The results show that the procedure scales linearly with the number of components available for testing.

  1. A parallel framework for Bayesian reinforcement learning

    Science.gov (United States)

    Barrett, Enda; Duggan, Jim; Howley, Enda

    2014-01-01

    Solving a finite Markov decision process using techniques from dynamic programming such as value or policy iteration require a complete model of the environmental dynamics. The distribution of rewards, transition probabilities, states and actions all need to be fully observable, discrete and complete. For many problem domains, a complete model containing a full representation of the environmental dynamics may not be readily available. Bayesian reinforcement learning (RL) is a technique devised to make better use of the information observed through learning than simply computing Q-functions. However, this approach can often require extensive experience in order to build up an accurate representation of the true values. To address this issue, this paper proposes a method for parallelising a Bayesian RL technique aimed at reducing the time it takes to approximate the missing model. We demonstrate the technique on learning next state transition probabilities without prior knowledge. The approach is general enough for approximating any probabilistically driven component of the model. The solution involves multiple learning agents learning in parallel on the same task. Agents share probability density estimates amongst each other in an effort to speed up convergence to the true values.

  2. A Hierarchical Framework for Facial Age Estimation

    Directory of Open Access Journals (Sweden)

    Yuyu Liang

    2014-01-01

    Full Text Available Age estimation is a complex issue of multiclassification or regression. To address the problems of uneven distribution of age database and ignorance of ordinal information, this paper shows a hierarchic age estimation system, comprising age group and specific age estimation. In our system, two novel classifiers, sequence k-nearest neighbor (SKNN and ranking-KNN, are introduced to predict age group and value, respectively. Notably, ranking-KNN utilizes the ordinal information between samples in estimation process rather than regards samples as separate individuals. Tested on FG-NET database, our system achieves 4.97 evaluated by MAE (mean absolute error for age estimation.

  3. A Bayesian Alternative to Mutual Information for the Hierarchical Clustering of Dependent Random Variables.

    Directory of Open Access Journals (Sweden)

    Guillaume Marrelec

    Full Text Available The use of mutual information as a similarity measure in agglomerative hierarchical clustering (AHC raises an important issue: some correction needs to be applied for the dimensionality of variables. In this work, we formulate the decision of merging dependent multivariate normal variables in an AHC procedure as a Bayesian model comparison. We found that the Bayesian formulation naturally shrinks the empirical covariance matrix towards a matrix set a priori (e.g., the identity, provides an automated stopping rule, and corrects for dimensionality using a term that scales up the measure as a function of the dimensionality of the variables. Also, the resulting log Bayes factor is asymptotically proportional to the plug-in estimate of mutual information, with an additive correction for dimensionality in agreement with the Bayesian information criterion. We investigated the behavior of these Bayesian alternatives (in exact and asymptotic forms to mutual information on simulated and real data. An encouraging result was first derived on simulations: the hierarchical clustering based on the log Bayes factor outperformed off-the-shelf clustering techniques as well as raw and normalized mutual information in terms of classification accuracy. On a toy example, we found that the Bayesian approaches led to results that were similar to those of mutual information clustering techniques, with the advantage of an automated thresholding. On real functional magnetic resonance imaging (fMRI datasets measuring brain activity, it identified clusters consistent with the established outcome of standard procedures. On this application, normalized mutual information had a highly atypical behavior, in the sense that it systematically favored very large clusters. These initial experiments suggest that the proposed Bayesian alternatives to mutual information are a useful new tool for hierarchical clustering.

  4. A Bayesian Alternative to Mutual Information for the Hierarchical Clustering of Dependent Random Variables.

    Science.gov (United States)

    Marrelec, Guillaume; Messé, Arnaud; Bellec, Pierre

    2015-01-01

    The use of mutual information as a similarity measure in agglomerative hierarchical clustering (AHC) raises an important issue: some correction needs to be applied for the dimensionality of variables. In this work, we formulate the decision of merging dependent multivariate normal variables in an AHC procedure as a Bayesian model comparison. We found that the Bayesian formulation naturally shrinks the empirical covariance matrix towards a matrix set a priori (e.g., the identity), provides an automated stopping rule, and corrects for dimensionality using a term that scales up the measure as a function of the dimensionality of the variables. Also, the resulting log Bayes factor is asymptotically proportional to the plug-in estimate of mutual information, with an additive correction for dimensionality in agreement with the Bayesian information criterion. We investigated the behavior of these Bayesian alternatives (in exact and asymptotic forms) to mutual information on simulated and real data. An encouraging result was first derived on simulations: the hierarchical clustering based on the log Bayes factor outperformed off-the-shelf clustering techniques as well as raw and normalized mutual information in terms of classification accuracy. On a toy example, we found that the Bayesian approaches led to results that were similar to those of mutual information clustering techniques, with the advantage of an automated thresholding. On real functional magnetic resonance imaging (fMRI) datasets measuring brain activity, it identified clusters consistent with the established outcome of standard procedures. On this application, normalized mutual information had a highly atypical behavior, in the sense that it systematically favored very large clusters. These initial experiments suggest that the proposed Bayesian alternatives to mutual information are a useful new tool for hierarchical clustering.

  5. A Bayesian framework for cosmic string searches in CMB maps

    Science.gov (United States)

    Ciuca, Razvan; Hernández, Oscar F.

    2017-08-01

    There exists various proposals to detect cosmic strings from Cosmic Microwave Background (CMB) or 21 cm temperature maps. Current proposals do not aim to find the location of strings on sky maps, all of these approaches can be thought of as a statistic on a sky map. We propose a Bayesian interpretation of cosmic string detection and within that framework, we derive a connection between estimates of cosmic string locations and cosmic string tension Gμ. We use this Bayesian framework to develop a machine learning framework for detecting strings from sky maps and outline how to implement this framework with neural networks. The neural network we trained was able to detect and locate cosmic strings on noiseless CMB temperature map down to a string tension of Gμ=5 ×10-9 and when analyzing a CMB temperature map that does not contain strings, the neural network gives a 0.95 probability that Gμ<=2.3×10-9.

  6. Application of Bayesian Hierarchical Prior Modeling to Sparse Channel Estimation

    DEFF Research Database (Denmark)

    Pedersen, Niels Lovmand; Manchón, Carles Navarro; Shutin, Dmitriy

    2012-01-01

    . The estimators result as an application of the variational message-passing algorithm on the factor graph representing the signal model extended with the hierarchical prior models. Numerical results demonstrate the superior performance of our channel estimators as compared to traditional and state......Existing methods for sparse channel estimation typically provide an estimate computed as the solution maximizing an objective function defined as the sum of the log-likelihood function and a penalization term proportional to the l1-norm of the parameter of interest. However, other penalization......-of-the-art sparse methods....

  7. A Bayesian Framework for SNP Identification

    Energy Technology Data Exchange (ETDEWEB)

    Webb-Robertson, Bobbie-Jo M.; Havre, Susan L.; Payne, Deborah A.

    2005-07-01

    Current proteomics techniques, such as mass spectrometry, focus on protein identification, usually ignoring most types of modifications beyond post-translational modifications, with the assumption that only a small number of peptides have to be matched to a protein for a positive identification. However, not all proteins are being identified with current techniques and improved methods to locate points of mutation are becoming a necessity. In the case when single-nucleotide polymorphisms (SNPs) are observed, brute force is the most common method to locate them, quickly becoming computationally unattractive as the size of the database associated with the model organism grows. We have developed a Bayesian model for SNPs, BSNP, incorporating evolutionary information at both the nucleotide and amino acid levels. Formulating SNPs as a Bayesian inference problem allows probabilities of interest to be easily obtained, for example the probability of a specific SNP or specific type of mutation over a gene or entire genome. Three SNP databases were observed in the evaluation of the BSNP model; the first SNP database is a disease specific gene in human, hemoglobin, the second is also a disease specific gene in human, p53, and the third is a more general SNP database for multiple genes in mouse. We validate that the BSNP model assigns higher posterior probabilities to the SNPs defined in all three separate databases than can be attributed to chance under specific evolutionary information, for example the amino acid model described by Majewski and Ott in conjunction with either the four-parameter nucleotide model by Bulmer or seven-parameter nucleotide model by Majewski and Ott.

  8. Improving satellite-based PM2.5 estimates in China using Gaussian processes modeling in a Bayesian hierarchical setting.

    Science.gov (United States)

    Yu, Wenxi; Liu, Yang; Ma, Zongwei; Bi, Jun

    2017-08-01

    Using satellite-based aerosol optical depth (AOD) measurements and statistical models to estimate ground-level PM2.5 is a promising way to fill the areas that are not covered by ground PM2.5 monitors. The statistical models used in previous studies are primarily Linear Mixed Effects (LME) and Geographically Weighted Regression (GWR) models. In this study, we developed a new regression model between PM2.5 and AOD using Gaussian processes in a Bayesian hierarchical setting. Gaussian processes model the stochastic nature of the spatial random effects, where the mean surface and the covariance function is specified. The spatial stochastic process is incorporated under the Bayesian hierarchical framework to explain the variation of PM2.5 concentrations together with other factors, such as AOD, spatial and non-spatial random effects. We evaluate the results of our model and compare them with those of other, conventional statistical models (GWR and LME) by within-sample model fitting and out-of-sample validation (cross validation, CV). The results show that our model possesses a CV result (R(2) = 0.81) that reflects higher accuracy than that of GWR and LME (0.74 and 0.48, respectively). Our results indicate that Gaussian process models have the potential to improve the accuracy of satellite-based PM2.5 estimates.

  9. Use of a Bayesian hierarchical model to study the allometric scaling of the fetoplacental weight ratio

    Directory of Open Access Journals (Sweden)

    Fidel Ernesto Castro Morales

    2016-03-01

    Full Text Available Abstract Objectives: to propose the use of a Bayesian hierarchical model to study the allometric scaling of the fetoplacental weight ratio, including possible confounders. Methods: data from 26 singleton pregnancies with gestational age at birth between 37 and 42 weeks were analyzed. The placentas were collected immediately after delivery and stored under refrigeration until the time of analysis, which occurred within up to 12 hours. Maternal data were collected from medical records. A Bayesian hierarchical model was proposed and Markov chain Monte Carlo simulation methods were used to obtain samples from distribution a posteriori. Results: the model developed showed a reasonable fit, even allowing for the incorporation of variables and a priori information on the parameters used. Conclusions: new variables can be added to the modelfrom the available code, allowing many possibilities for data analysis and indicating the potential for use in research on the subject.

  10. Sensor Network Data Fault Detection using Hierarchical Bayesian Space-Time Modeling

    OpenAIRE

    Ni, Kevin; Pottie, G J

    2009-01-01

    We present a new application of hierarchical Bayesian space-time (HBST) modeling: data fault detection in sensor networks primarily used in environmental monitoring situations. To show the effectiveness of HBST modeling, we develop a rudimentary tagging system to mark data that does not fit with given models. Using this, we compare HBST modeling against first order linear autoregressive (AR) modeling, which is a commonly used alternative due to its simplicity. We show that while HBST is mo...

  11. Development of Hierarchical Bayesian Model Based on Regional Frequency Analysis and Its Application to Estimate Areal Rainfall in South Korea

    Science.gov (United States)

    Kim, J.; Kwon, H. H.

    2014-12-01

    The existing regional frequency analysis has disadvantages in that it is difficult to consider geographical characteristics in estimating areal rainfall. In this regard, This study aims to develop a hierarchical Bayesian model based regional frequency analysis in that spatial patterns of the design rainfall with geographical information are explicitly incorporated. This study assumes that the parameters of Gumbel distribution are a function of geographical characteristics (e.g. altitude, latitude and longitude) within a general linear regression framework. Posterior distributions of the regression parameters are estimated by Bayesian Markov Chain Monte Calro (MCMC) method, and the identified functional relationship is used to spatially interpolate the parameters of the Gumbel distribution by using digital elevation models (DEM) as inputs. The proposed model is applied to derive design rainfalls over the entire Han-river watershed. It was found that the proposed Bayesian regional frequency analysis model showed similar results compared to L-moment based regional frequency analysis. In addition, the model showed an advantage in terms of quantifying uncertainty of the design rainfall and estimating the area rainfall considering geographical information. Acknowledgement: This research was supported by a grant (14AWMP-B079364-01) from Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

  12. Evidence for a non-universal Kennicutt-Schmidt relationship using hierarchical Bayesian linear regression

    CERN Document Server

    Shetty, Rahul; Bigiel, Frank

    2012-01-01

    We develop a Bayesian linear regression method which rigorously treats measurement uncertainties, and accounts for hierarchical data structure for investigating the relationship between the star formation rate and gas surface density. The method simultaneously estimates the intercept, slope, and scatter about the regression line of each individual subject (e.g. a galaxy) and the population (e.g. an ensemble of galaxies). Using synthetic datasets, we demonstrate that the Bayesian method accurately recovers the parameters of both the individuals and the population, especially when compared to commonly employed least squares methods, such as the bisector. We apply the Bayesian method to estimate the Kennicutt-Schmidt (KS) parameters of a sample of spiral galaxies compiled by Bigiel et al. (2008). We find significant variation in the KS parameters, indicating that no single KS relationship holds for all galaxies. This suggests that the relationship between molecular gas and star formation differs between galaxies...

  13. Hierarchical Scheduling Framework Based on Compositional Analysis Using Uppaal

    DEFF Research Database (Denmark)

    Boudjadar, Jalil; David, Alexandre; Kim, Jin Hyun

    2014-01-01

    This paper introduces a reconfigurable compositional scheduling framework, in which the hierarchical structure, the scheduling policies, the concrete task behavior and the shared resources can all be reconfigured. The behavior of each periodic preemptive task is given as a list of timed actions, ...

  14. A hierarchical Bayesian model for regionalized seasonal forecasts: Application to low flows in the northeastern United States

    Science.gov (United States)

    Ahn, Kuk-Hyun; Palmer, Richard; Steinschneider, Scott

    2017-01-01

    This study presents a regional, probabilistic framework for seasonal forecasts of extreme low summer flows in the northeastern United States conditioned on antecedent climate and hydrologic conditions. The model is developed to explore three innovations in hierarchical modeling for seasonal forecasting at ungaged sites: (1) predictive climate teleconnections are inferred directly from ocean fields instead of predefined climate indices, (2) a parsimonious modeling structure is introduced to allow climate teleconnections to vary spatially across streamflow gages, and (3) climate teleconnections and antecedent hydrologic conditions are considered jointly for regional forecast development. The proposed model is developed and calibrated in a hierarchical Bayesian framework to pool regional information across sites and enhance regionalization skill. The model is validated in a cross-validation framework along with five simpler nested formulations to test specific hypotheses embedded in the full model structure. Results indicate that each of the three innovations improve out-of-sample summer low-flow forecasts, with the greatest benefits derived from the spatially heterogeneous effect of climate teleconnections. We conclude with a discussion of possible model improvements from a better representation of antecedent hydrologic conditions at ungaged sites.

  15. Hierarchical Bayesian Analysis of Biased Beliefs and Distributional Other-Regarding Preferences

    Directory of Open Access Journals (Sweden)

    Jeroen Weesie

    2013-02-01

    Full Text Available This study investigates the relationship between an actor’s beliefs about others’ other-regarding (social preferences and her own other-regarding preferences, using an “avant-garde” hierarchical Bayesian method. We estimate two distributional other-regarding preference parameters, α and β, of actors using incentivized choice data in binary Dictator Games. Simultaneously, we estimate the distribution of actors’ beliefs about others α and β, conditional on actors’ own α and β, with incentivized belief elicitation. We demonstrate the benefits of the Bayesian method compared to it’s hierarchical frequentist counterparts. Results show a positive association between an actor’s own (α; β and her beliefs about average(α; β in the population. The association between own preferences and the variance in beliefs about others’ preferences in the population, however, is curvilinear for α and insignificant for β. These results are partially consistent with the cone effect [1,2] which is described in detail below. Because in the Bayesian-Nash equilibrium concept, beliefs and own preferences are assumed to be independent, these results cast doubt on the application of the Bayesian-Nash equilibrium concept to experimental data.

  16. Clinical time series prediction: Toward a hierarchical dynamical system framework.

    Science.gov (United States)

    Liu, Zitao; Hauskrecht, Milos

    2015-09-01

    Developing machine learning and data mining algorithms for building temporal models of clinical time series is important for understanding of the patient condition, the dynamics of a disease, effect of various patient management interventions and clinical decision making. In this work, we propose and develop a novel hierarchical framework for modeling clinical time series data of varied length and with irregularly sampled observations. Our hierarchical dynamical system framework for modeling clinical time series combines advantages of the two temporal modeling approaches: the linear dynamical system and the Gaussian process. We model the irregularly sampled clinical time series by using multiple Gaussian process sequences in the lower level of our hierarchical framework and capture the transitions between Gaussian processes by utilizing the linear dynamical system. The experiments are conducted on the complete blood count (CBC) panel data of 1000 post-surgical cardiac patients during their hospitalization. Our framework is evaluated and compared to multiple baseline approaches in terms of the mean absolute prediction error and the absolute percentage error. We tested our framework by first learning the time series model from data for the patients in the training set, and then using it to predict future time series values for the patients in the test set. We show that our model outperforms multiple existing models in terms of its predictive accuracy. Our method achieved a 3.13% average prediction accuracy improvement on ten CBC lab time series when it was compared against the best performing baseline. A 5.25% average accuracy improvement was observed when only short-term predictions were considered. A new hierarchical dynamical system framework that lets us model irregularly sampled time series data is a promising new direction for modeling clinical time series and for improving their predictive performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Clinical time series prediction: towards a hierarchical dynamical system framework

    Science.gov (United States)

    Liu, Zitao; Hauskrecht, Milos

    2014-01-01

    Objective Developing machine learning and data mining algorithms for building temporal models of clinical time series is important for understanding of the patient condition, the dynamics of a disease, effect of various patient management interventions and clinical decision making. In this work, we propose and develop a novel hierarchical framework for modeling clinical time series data of varied length and with irregularly sampled observations. Materials and methods Our hierarchical dynamical system framework for modeling clinical time series combines advantages of the two temporal modeling approaches: the linear dynamical system and the Gaussian process. We model the irregularly sampled clinical time series by using multiple Gaussian process sequences in the lower level of our hierarchical framework and capture the transitions between Gaussian processes by utilizing the linear dynamical system. The experiments are conducted on the complete blood count (CBC) panel data of 1000 post-surgical cardiac patients during their hospitalization. Our framework is evaluated and compared to multiple baseline approaches in terms of the mean absolute prediction error and the absolute percentage error. Results We tested our framework by first learning the time series model from data for the patient in the training set, and then applying the model in order to predict future time series values on the patients in the test set. We show that our model outperforms multiple existing models in terms of its predictive accuracy. Our method achieved a 3.13% average prediction accuracy improvement on ten CBC lab time series when it was compared against the best performing baseline. A 5.25% average accuracy improvement was observed when only short-term predictions were considered. Conclusion A new hierarchical dynamical system framework that lets us model irregularly sampled time series data is a promising new direction for modeling clinical time series and for improving their predictive

  18. Application of Bayesian hierarchical models for phase I/II clinical trials in oncology.

    Science.gov (United States)

    Yada, Shinjo; Hamada, Chikuma

    2017-03-01

    Treatment during cancer clinical trials sometimes involves the combination of multiple drugs. In addition, in recent years there has been a trend toward phase I/II trials in which a phase I and a phase II trial are combined into a single trial to accelerate drug development. Methods for the seamless combination of phases I and II parts are currently under investigation. In the phase II part, adaptive randomization on the basis of patient efficacy outcomes allocates more patients to the dose combinations considered to have higher efficacy. Patient toxicity outcomes are used for determining admissibility to each dose combination and are not used for selection of the dose combination itself. In cases where the objective is not to find the optimum dose combination solely for efficacy but regarding both toxicity and efficacy, the need exists to allocate patients to dose combinations with consideration of the balance of existing trade-offs between toxicity and efficacy. We propose a Bayesian hierarchical model and an adaptive randomization with consideration for the relationship with toxicity and efficacy. Using the toxicity and efficacy outcomes of patients, the Bayesian hierarchical model is used to estimate the toxicity probability and efficacy probability in each of the dose combinations. Here, we use Bayesian moving-reference adaptive randomization on the basis of desirability computed from the obtained estimator. Computer simulations suggest that the proposed method will likely recommend a higher percentage of target dose combinations than a previously proposed method.

  19. Analysis of household data on influenza epidemic with Bayesian hierarchical model.

    Science.gov (United States)

    Hsu, C Y; Yen, A M F; Chen, L S; Chen, H H

    2015-03-01

    Data used for modelling the household transmission of infectious diseases, such as influenza, have inherent multilevel structures and correlated property, which make the widely used conventional infectious disease transmission models (including the Greenwood model and the Reed-Frost model) not directly applicable within the context of a household (due to the crowded domestic condition or socioeconomic status of the household). Thus, at the household level, the effects resulting from individual-level factors, such as vaccination, may be confounded or modified in some way. We proposed the Bayesian hierarchical random-effects (random intercepts and random slopes) model under the context of generalised linear model to capture heterogeneity and variation on the individual, generation, and household levels. It was applied to empirical surveillance data on the influenza epidemic in Taiwan. The parameters of interest were estimated by using the Markov chain Monte Carlo method in conjunction with the Bayesian directed acyclic graphical models. Comparisons between models were made using the deviance information criterion. Based on the result of the random-slope Bayesian hierarchical method under the context of the Reed-Frost transmission model, the regression coefficient regarding the protective effect of vaccination varied statistically significantly from household to household. The result of such a heterogeneity was robust to the use of different prior distributions (including non-informative, sceptical, and enthusiastic ones). By integrating out the uncertainty of the parameters of the posterior distribution, the predictive distribution was computed to forecast the number of influenza cases allowing for random-household effect.

  20. Gas turbine engine prognostics using Bayesian hierarchical models: A variational approach

    Science.gov (United States)

    Zaidan, Martha A.; Mills, Andrew R.; Harrison, Robert F.; Fleming, Peter J.

    2016-03-01

    Prognostics is an emerging requirement of modern health monitoring that aims to increase the fidelity of failure-time predictions by the appropriate use of sensory and reliability information. In the aerospace industry it is a key technology to reduce life-cycle costs, improve reliability and asset availability for a diverse fleet of gas turbine engines. In this work, a Bayesian hierarchical model is selected to utilise fleet data from multiple assets to perform probabilistic estimation of remaining useful life (RUL) for civil aerospace gas turbine engines. The hierarchical formulation allows Bayesian updates of an individual predictive model to be made, based upon data received asynchronously from a fleet of assets with different in-service lives and for the entry of new assets into the fleet. In this paper, variational inference is applied to the hierarchical formulation to overcome the computational and convergence concerns that are raised by the numerical sampling techniques needed for inference in the original formulation. The algorithm is tested on synthetic data, where the quality of approximation is shown to be satisfactory with respect to prediction performance, computational speed, and ease of use. A case study of in-service gas turbine engine data demonstrates the value of integrating fleet data for accurately predicting degradation trajectories of assets.

  1. ECoS, a framework for modelling hierarchical spatial systems.

    Science.gov (United States)

    Harris, John R W; Gorley, Ray N

    2003-10-01

    A general framework for modelling hierarchical spatial systems has been developed and implemented as the ECoS3 software package. The structure of this framework is described, and illustrated with representative examples. It allows the set-up and integration of sets of advection-diffusion equations representing multiple constituents interacting in a spatial context. Multiple spaces can be defined, with zero, one or two-dimensions and can be nested, and linked through constituent transfers. Model structure is generally object-oriented and hierarchical, reflecting the natural relations within its real-world analogue. Velocities, dispersions and inter-constituent transfers, together with additional functions, are defined as properties of constituents to which they apply. The resulting modular structure of ECoS models facilitates cut and paste model development, and template model components have been developed for the assembly of a range of estuarine water quality models. Published examples of applications to the geochemical dynamics of estuaries are listed.

  2. Bayesian Hierarchical Scale Mixtures of Log-Normal Models for Inference in Reliability with Stochastic Constraint

    Directory of Open Access Journals (Sweden)

    Hea-Jung Kim

    2017-06-01

    Full Text Available This paper develops Bayesian inference in reliability of a class of scale mixtures of log-normal failure time (SMLNFT models with stochastic (or uncertain constraint in their reliability measures. The class is comprehensive and includes existing failure time (FT models (such as log-normal, log-Cauchy, and log-logistic FT models as well as new models that are robust in terms of heavy-tailed FT observations. Since classical frequency approaches to reliability analysis based on the SMLNFT model with stochastic constraint are intractable, the Bayesian method is pursued utilizing a Markov chain Monte Carlo (MCMC sampling based approach. This paper introduces a two-stage maximum entropy (MaxEnt prior, which elicits a priori uncertain constraint and develops Bayesian hierarchical SMLNFT model by using the prior. The paper also proposes an MCMC method for Bayesian inference in the SMLNFT model reliability and calls attention to properties of the MaxEnt prior that are useful for method development. Finally, two data sets are used to illustrate how the proposed methodology works.

  3. Investigating different approaches to develop informative priors in hierarchical Bayesian safety performance functions.

    Science.gov (United States)

    Yu, Rongjie; Abdel-Aty, Mohamed

    2013-07-01

    The Bayesian inference method has been frequently adopted to develop safety performance functions. One advantage of the Bayesian inference is that prior information for the independent variables can be included in the inference procedures. However, there are few studies that discussed how to formulate informative priors for the independent variables and evaluated the effects of incorporating informative priors in developing safety performance functions. This paper addresses this deficiency by introducing four approaches of developing informative priors for the independent variables based on historical data and expert experience. Merits of these informative priors have been tested along with two types of Bayesian hierarchical models (Poisson-gamma and Poisson-lognormal models). Deviance information criterion (DIC), R-square values, and coefficients of variance for the estimations were utilized as evaluation measures to select the best model(s). Comparison across the models indicated that the Poisson-gamma model is superior with a better model fit and it is much more robust with the informative priors. Moreover, the two-stage Bayesian updating informative priors provided the best goodness-of-fit and coefficient estimation accuracies. Furthermore, informative priors for the inverse dispersion parameter have also been introduced and tested. Different types of informative priors' effects on the model estimations and goodness-of-fit have been compared and concluded. Finally, based on the results, recommendations for future research topics and study applications have been made.

  4. A Bayesian Hierarchical Model for Relating Multiple SNPs within Multiple Genes to Disease Risk

    Directory of Open Access Journals (Sweden)

    Lewei Duan

    2013-01-01

    Full Text Available A variety of methods have been proposed for studying the association of multiple genes thought to be involved in a common pathway for a particular disease. Here, we present an extension of a Bayesian hierarchical modeling strategy that allows for multiple SNPs within each gene, with external prior information at either the SNP or gene level. The model involves variable selection at the SNP level through latent indicator variables and Bayesian shrinkage at the gene level towards a prior mean vector and covariance matrix that depend on external information. The entire model is fitted using Markov chain Monte Carlo methods. Simulation studies show that the approach is capable of recovering many of the truly causal SNPs and genes, depending upon their frequency and size of their effects. The method is applied to data on 504 SNPs in 38 candidate genes involved in DNA damage response in the WECARE study of second breast cancers in relation to radiotherapy exposure.

  5. Climate information based streamflow and rainfall forecasts for Huai River Basin using Hierarchical Bayesian Modeling

    Directory of Open Access Journals (Sweden)

    X. Chen

    2013-09-01

    Full Text Available A Hierarchal Bayesian model for forecasting regional summer rainfall and streamflow season-ahead using exogenous climate variables for East Central China is presented. The model provides estimates of the posterior forecasted probability distribution for 12 rainfall and 2 streamflow stations considering parameter uncertainty, and cross-site correlation. The model has a multilevel structure with regression coefficients modeled from a common multivariate normal distribution results in partial-pooling of information across multiple stations and better representation of parameter and posterior distribution uncertainty. Covariance structure of the residuals across stations is explicitly modeled. Model performance is tested under leave-10-out cross-validation. Frequentist and Bayesian performance metrics used include Receiver Operating Characteristic, Reduction of Error, Coefficient of Efficiency, Rank Probability Skill Scores, and coverage by posterior credible intervals. The ability of the model to reliably forecast regional summer rainfall and streamflow season-ahead offers potential for developing adaptive water risk management strategies.

  6. Improved Estimates of the Milky Way's Disk Scale Length From Hierarchical Bayesian Techniques

    CERN Document Server

    Licquia, Timothy C

    2016-01-01

    The exponential scale length ($L_d$) of the Milky Way's (MW's) disk is a critical parameter for describing the global physical size of our Galaxy, important both for interpreting other Galactic measurements and helping us to understand how our Galaxy fits into extragalactic contexts. Unfortunately, current estimates span a wide range of values and often are statistically incompatible with one another. Here, we aim to determine an improved, aggregate estimate for $L_d$ by utilizing a hierarchical Bayesian (HB) meta-analysis technique that accounts for the possibility that any one measurement has not properly accounted for all statistical or systematic errors. Within this machinery we explore a variety of ways of modeling the nature of problematic measurements, and then use a Bayesian model averaging technique to derive net posterior distributions that incorporate any model-selection uncertainty. Our meta-analysis combines 29 different (15 visible and 14 infrared) photometric measurements of $L_d$ available in ...

  7. HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python.

    Science.gov (United States)

    Wiecki, Thomas V; Sofer, Imri; Frank, Michael J

    2013-01-01

    The diffusion model is a commonly used tool to infer latent psychological processes underlying decision-making, and to link them to neural mechanisms based on response times. Although efficient open source software has been made available to quantitatively fit the model to data, current estimation methods require an abundance of response time measurements to recover meaningful parameters, and only provide point estimates of each parameter. In contrast, hierarchical Bayesian parameter estimation methods are useful for enhancing statistical power, allowing for simultaneous estimation of individual subject parameters and the group distribution that they are drawn from, while also providing measures of uncertainty in these parameters in the posterior distribution. Here, we present a novel Python-based toolbox called HDDM (hierarchical drift diffusion model), which allows fast and flexible estimation of the the drift-diffusion model and the related linear ballistic accumulator model. HDDM requires fewer data per subject/condition than non-hierarchical methods, allows for full Bayesian data analysis, and can handle outliers in the data. Finally, HDDM supports the estimation of how trial-by-trial measurements (e.g., fMRI) influence decision-making parameters. This paper will first describe the theoretical background of the drift diffusion model and Bayesian inference. We then illustrate usage of the toolbox on a real-world data set from our lab. Finally, parameter recovery studies show that HDDM beats alternative fitting methods like the χ(2)-quantile method as well as maximum likelihood estimation. The software and documentation can be downloaded at: http://ski.clps.brown.edu/hddm_docs/

  8. HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python

    Directory of Open Access Journals (Sweden)

    Thomas V Wiecki

    2013-08-01

    Full Text Available The diffusion model is a commonly used tool to infer latent psychological processes underlying decision making, and to link them to neural mechanisms based on reaction times. Although efficient open source software has been made available to quantitatively fit the model to data, current estimation methods require an abundance of reaction time measurements to recover meaningful parameters, and only provide point estimates of each parameter. In contrast, hierarchical Bayesian parameter estimation methods are useful for enhancing statistical power, allowing for simultaneous estimation of individual subject parameters and the group distribution that they are drawn from, while also providing measures of uncertainty in these parameters in the posterior distribution. Here, we present a novel Python-based toolbox called HDDM (hierarchical drift diffusion model, which allows fast and flexible estimation of the the drift-diffusion model and the related linear ballistic accumulator model. HDDM requires fewer data per subject / condition than non-hierarchical method, allows for full Bayesian data analysis, and can handle outliers in the data. Finally, HDDM supports the estimation of how trial-by-trial measurements (e.g. fMRI influence decision making parameters. This paper will first describe the theoretical background of drift-diffusion model and Bayesian inference. We then illustrate usage of the toolbox on a real-world data set from our lab. Finally, parameter recovery studies show that HDDM beats alternative fitting methods like the chi-quantile method as well as maximum likelihood estimation. The software and documentation can be downloaded at: http://ski.clps.brown.edu/hddm_docs

  9. Hierarchical structure of the Sicilian goats revealed by Bayesian analyses of microsatellite information.

    Science.gov (United States)

    Siwek, M; Finocchiaro, R; Curik, I; Portolano, B

    2011-02-01

    Genetic structure and relationship amongst the main goat populations in Sicily (Girgentana, Derivata di Siria, Maltese and Messinese) were analysed using information from 19 microsatellite markers genotyped on 173 individuals. A posterior Bayesian approach implemented in the program STRUCTURE revealed a hierarchical structure with two clusters at the first level (Girgentana vs. Messinese, Derivata di Siria and Maltese), explaining 4.8% of variation (amovaФ(ST) estimate). Seven clusters nested within these first two clusters (further differentiations of Girgentana, Derivata di Siria and Maltese), explaining 8.5% of variation (amovaФ(SC) estimate). The analyses and methods applied in this study indicate their power to detect subtle population structure.

  10. Bayesian latent variable models for hierarchical clustered count outcomes with repeated measures in microbiome studies.

    Science.gov (United States)

    Xu, Lizhen; Paterson, Andrew D; Xu, Wei

    2017-04-01

    Motivated by the multivariate nature of microbiome data with hierarchical taxonomic clusters, counts that are often skewed and zero inflated, and repeated measures, we propose a Bayesian latent variable methodology to jointly model multiple operational taxonomic units within a single taxonomic cluster. This novel method can incorporate both negative binomial and zero-inflated negative binomial responses, and can account for serial and familial correlations. We develop a Markov chain Monte Carlo algorithm that is built on a data augmentation scheme using Pólya-Gamma random variables. Hierarchical centering and parameter expansion techniques are also used to improve the convergence of the Markov chain. We evaluate the performance of our proposed method through extensive simulations. We also apply our method to a human microbiome study.

  11. Top-down feedback in an HMAX-like cortical model of object perception based on hierarchical Bayesian networks and belief propagation.

    Directory of Open Access Journals (Sweden)

    Salvador Dura-Bernal

    Full Text Available Hierarchical generative models, such as Bayesian networks, and belief propagation have been shown to provide a theoretical framework that can account for perceptual processes, including feedforward recognition and feedback modulation. The framework explains both psychophysical and physiological experimental data and maps well onto the hierarchical distributed cortical anatomy. However, the complexity required to model cortical processes makes inference, even using approximate methods, very computationally expensive. Thus, existing object perception models based on this approach are typically limited to tree-structured networks with no loops, use small toy examples or fail to account for certain perceptual aspects such as invariance to transformations or feedback reconstruction. In this study we develop a Bayesian network with an architecture similar to that of HMAX, a biologically-inspired hierarchical model of object recognition, and use loopy belief propagation to approximate the model operations (selectivity and invariance. Crucially, the resulting Bayesian network extends the functionality of HMAX by including top-down recursive feedback. Thus, the proposed model not only achieves successful feedforward recognition invariant to noise, occlusions, and changes in position and size, but is also able to reproduce modulatory effects such as illusory contour completion and attention. Our novel and rigorous methodology covers key aspects such as learning using a layerwise greedy algorithm, combining feedback information from multiple parents and reducing the number of operations required. Overall, this work extends an established model of object recognition to include high-level feedback modulation, based on state-of-the-art probabilistic approaches. The methodology employed, consistent with evidence from the visual cortex, can be potentially generalized to build models of hierarchical perceptual organization that include top-down and bottom

  12. Prion Amplification and Hierarchical Bayesian Modeling Refine Detection of Prion Infection

    Science.gov (United States)

    Wyckoff, A. Christy; Galloway, Nathan; Meyerett-Reid, Crystal; Powers, Jenny; Spraker, Terry; Monello, Ryan J.; Pulford, Bruce; Wild, Margaret; Antolin, Michael; Vercauteren, Kurt; Zabel, Mark

    2015-02-01

    Prions are unique infectious agents that replicate without a genome and cause neurodegenerative diseases that include chronic wasting disease (CWD) of cervids. Immunohistochemistry (IHC) is currently considered the gold standard for diagnosis of a prion infection but may be insensitive to early or sub-clinical CWD that are important to understanding CWD transmission and ecology. We assessed the potential of serial protein misfolding cyclic amplification (sPMCA) to improve detection of CWD prior to the onset of clinical signs. We analyzed tissue samples from free-ranging Rocky Mountain elk (Cervus elaphus nelsoni) and used hierarchical Bayesian analysis to estimate the specificity and sensitivity of IHC and sPMCA conditional on simultaneously estimated disease states. Sensitivity estimates were higher for sPMCA (99.51%, credible interval (CI) 97.15-100%) than IHC of obex (brain stem, 76.56%, CI 57.00-91.46%) or retropharyngeal lymph node (90.06%, CI 74.13-98.70%) tissues, or both (98.99%, CI 90.01-100%). Our hierarchical Bayesian model predicts the prevalence of prion infection in this elk population to be 18.90% (CI 15.50-32.72%), compared to previous estimates of 12.90%. Our data reveal a previously unidentified sub-clinical prion-positive portion of the elk population that could represent silent carriers capable of significantly impacting CWD ecology.

  13. A hierarchical bayesian model to quantify uncertainty of stream water temperature forecasts.

    Directory of Open Access Journals (Sweden)

    Guillaume Bal

    Full Text Available Providing generic and cost effective modelling approaches to reconstruct and forecast freshwater temperature using predictors as air temperature and water discharge is a prerequisite to understanding ecological processes underlying the impact of water temperature and of global warming on continental aquatic ecosystems. Using air temperature as a simple linear predictor of water temperature can lead to significant bias in forecasts as it does not disentangle seasonality and long term trends in the signal. Here, we develop an alternative approach based on hierarchical Bayesian statistical time series modelling of water temperature, air temperature and water discharge using seasonal sinusoidal periodic signals and time varying means and amplitudes. Fitting and forecasting performances of this approach are compared with that of simple linear regression between water and air temperatures using i an emotive simulated example, ii application to three French coastal streams with contrasting bio-geographical conditions and sizes. The time series modelling approach better fit data and does not exhibit forecasting bias in long term trends contrary to the linear regression. This new model also allows for more accurate forecasts of water temperature than linear regression together with a fair assessment of the uncertainty around forecasting. Warming of water temperature forecast by our hierarchical Bayesian model was slower and more uncertain than that expected with the classical regression approach. These new forecasts are in a form that is readily usable in further ecological analyses and will allow weighting of outcomes from different scenarios to manage climate change impacts on freshwater wildlife.

  14. A hierarchical Bayesian-MAP approach to inverse problems in imaging

    Science.gov (United States)

    Raj, Raghu G.

    2016-07-01

    We present a novel approach to inverse problems in imaging based on a hierarchical Bayesian-MAP (HB-MAP) formulation. In this paper we specifically focus on the difficult and basic inverse problem of multi-sensor (tomographic) imaging wherein the source object of interest is viewed from multiple directions by independent sensors. Given the measurements recorded by these sensors, the problem is to reconstruct the image (of the object) with a high degree of fidelity. We employ a probabilistic graphical modeling extension of the compound Gaussian distribution as a global image prior into a hierarchical Bayesian inference procedure. Since the prior employed by our HB-MAP algorithm is general enough to subsume a wide class of priors including those typically employed in compressive sensing (CS) algorithms, HB-MAP algorithm offers a vehicle to extend the capabilities of current CS algorithms to include truly global priors. After rigorously deriving the regression algorithm for solving our inverse problem from first principles, we demonstrate the performance of the HB-MAP algorithm on Monte Carlo trials and on real empirical data (natural scenes). In all cases we find that our algorithm outperforms previous approaches in the literature including filtered back-projection and a variety of state-of-the-art CS algorithms. We conclude with directions of future research emanating from this work.

  15. Super-Resolution Using Hidden Markov Model and Bayesian Detection Estimation Framework

    Directory of Open Access Journals (Sweden)

    Humblot Fabrice

    2006-01-01

    Full Text Available This paper presents a new method for super-resolution (SR reconstruction of a high-resolution (HR image from several low-resolution (LR images. The HR image is assumed to be composed of homogeneous regions. Thus, the a priori distribution of the pixels is modeled by a finite mixture model (FMM and a Potts Markov model (PMM for the labels. The whole a priori model is then a hierarchical Markov model. The LR images are assumed to be obtained from the HR image by lowpass filtering, arbitrarily translation, decimation, and finally corruption by a random noise. The problem is then put in a Bayesian detection and estimation framework, and appropriate algorithms are developed based on Markov chain Monte Carlo (MCMC Gibbs sampling. At the end, we have not only an estimate of the HR image but also an estimate of the classification labels which leads to a segmentation result.

  16. A Bayesian Hierarchical Model for Reconstructing Sea Levels: From Raw Data to Rates of Change

    CERN Document Server

    Cahill, Niamh; Horton, Benjamin P; Parnell, Andrew C

    2015-01-01

    We present a holistic Bayesian hierarchical model for reconstructing the continuous and dynamic evolution of relative sea-level (RSL) change with fully quantified uncertainty. The reconstruction is produced from biological (foraminifera) and geochemical ({\\delta}13C) sea-level indicators preserved in dated cores of salt-marsh sediment. Our model is comprised of three modules: (1) A Bayesian transfer function for the calibration of foraminifera into tidal elevation, which is flexible enough to formally accommodate additional proxies (in this case bulk-sediment {\\delta}13C values); (2) A chronology developed from an existing Bchron age-depth model, and (3) An existing errors-in-variables integrated Gaussian process (EIV-IGP) model for estimating rates of sea-level change. We illustrate our approach using a case study of Common Era sea-level variability from New Jersey, U.S.A. We develop a new Bayesian transfer function (B-TF), with and without the {\\delta}13C proxy and compare our results to those from a widely...

  17. Modeling hypoxia in the Chesapeake Bay: Ensemble estimation using a Bayesian hierarchical model

    Science.gov (United States)

    Stow, Craig A.; Scavia, Donald

    2009-02-01

    Quantifying parameter and prediction uncertainty in a rigorous framework can be an important component of model skill assessment. Generally, models with lower uncertainty will be more useful for prediction and inference than models with higher uncertainty. Ensemble estimation, an idea with deep roots in the Bayesian literature, can be useful to reduce model uncertainty. It is based on the idea that simultaneously estimating common or similar parameters among models can result in more precise estimates. We demonstrate this approach using the Streeter-Phelps dissolved oxygen sag model fit to 29 years of data from Chesapeake Bay. Chesapeake Bay has a long history of bottom water hypoxia and several models are being used to assist management decision-making in this system. The Bayesian framework is particularly useful in a decision context because it can combine both expert-judgment and rigorous parameter estimation to yield model forecasts and a probabilistic estimate of the forecast uncertainty.

  18. Probabilistic daily ILI syndromic surveillance with a spatio-temporal Bayesian hierarchical model.

    Directory of Open Access Journals (Sweden)

    Ta-Chien Chan

    Full Text Available BACKGROUND: For daily syndromic surveillance to be effective, an efficient and sensible algorithm would be expected to detect aberrations in influenza illness, and alert public health workers prior to any impending epidemic. This detection or alert surely contains uncertainty, and thus should be evaluated with a proper probabilistic measure. However, traditional monitoring mechanisms simply provide a binary alert, failing to adequately address this uncertainty. METHODS AND FINDINGS: Based on the Bayesian posterior probability of influenza-like illness (ILI visits, the intensity of outbreak can be directly assessed. The numbers of daily emergency room ILI visits at five community hospitals in Taipei City during 2006-2007 were collected and fitted with a Bayesian hierarchical model containing meteorological factors such as temperature and vapor pressure, spatial interaction with conditional autoregressive structure, weekend and holiday effects, seasonality factors, and previous ILI visits. The proposed algorithm recommends an alert for action if the posterior probability is larger than 70%. External data from January to February of 2008 were retained for validation. The decision rule detects successfully the peak in the validation period. When comparing the posterior probability evaluation with the modified Cusum method, results show that the proposed method is able to detect the signals 1-2 days prior to the rise of ILI visits. CONCLUSIONS: This Bayesian hierarchical model not only constitutes a dynamic surveillance system but also constructs a stochastic evaluation of the need to call for alert. The monitoring mechanism provides earlier detection as well as a complementary tool for current surveillance programs.

  19. An approach based on Hierarchical Bayesian Graphical Models for measurement interpretation under uncertainty

    Science.gov (United States)

    Skataric, Maja; Bose, Sandip; Zeroug, Smaine; Tilke, Peter

    2017-02-01

    It is not uncommon in the field of non-destructive evaluation that multiple measurements encompassing a variety of modalities are available for analysis and interpretation for determining the underlying states of nature of the materials or parts being tested. Despite and sometimes due to the richness of data, significant challenges arise in the interpretation manifested as ambiguities and inconsistencies due to various uncertain factors in the physical properties (inputs), environment, measurement device properties, human errors, and the measurement data (outputs). Most of these uncertainties cannot be described by any rigorous mathematical means, and modeling of all possibilities is usually infeasible for many real time applications. In this work, we will discuss an approach based on Hierarchical Bayesian Graphical Models (HBGM) for the improved interpretation of complex (multi-dimensional) problems with parametric uncertainties that lack usable physical models. In this setting, the input space of the physical properties is specified through prior distributions based on domain knowledge and expertise, which are represented as Gaussian mixtures to model the various possible scenarios of interest for non-destructive testing applications. Forward models are then used offline to generate the expected distribution of the proposed measurements which are used to train a hierarchical Bayesian network. In Bayesian analysis, all model parameters are treated as random variables, and inference of the parameters is made on the basis of posterior distribution given the observed data. Learned parameters of the posterior distribution obtained after the training can therefore be used to build an efficient classifier for differentiating new observed data in real time on the basis of pre-trained models. We will illustrate the implementation of the HBGM approach to ultrasonic measurements used for cement evaluation of cased wells in the oil industry.

  20. A Bayesian Framework for Reliability Analysis of Spacecraft Deployments

    Science.gov (United States)

    Evans, John W.; Gallo, Luis; Kaminsky, Mark

    2012-01-01

    Deployable subsystems are essential to mission success of most spacecraft. These subsystems enable critical functions including power, communications and thermal control. The loss of any of these functions will generally result in loss of the mission. These subsystems and their components often consist of unique designs and applications for which various standardized data sources are not applicable for estimating reliability and for assessing risks. In this study, a two stage sequential Bayesian framework for reliability estimation of spacecraft deployment was developed for this purpose. This process was then applied to the James Webb Space Telescope (JWST) Sunshield subsystem, a unique design intended for thermal control of the Optical Telescope Element. Initially, detailed studies of NASA deployment history, "heritage information", were conducted, extending over 45 years of spacecraft launches. This information was then coupled to a non-informative prior and a binomial likelihood function to create a posterior distribution for deployments of various subsystems uSing Monte Carlo Markov Chain sampling. Select distributions were then coupled to a subsequent analysis, using test data and anomaly occurrences on successive ground test deployments of scale model test articles of JWST hardware, to update the NASA heritage data. This allowed for a realistic prediction for the reliability of the complex Sunshield deployment, with credibility limits, within this two stage Bayesian framework.

  1. Hierarchical Visual Analysis and Steering Framework for Astrophysical Simulations

    Institute of Scientific and Technical Information of China (English)

    肖健; 张加万; 原野; 周鑫; 纪丽; 孙济洲

    2015-01-01

    A framework for accelerating modern long-running astrophysical simulations is presented, which is based on a hierarchical architecture where computational steering in the high-resolution run is performed under the guide of knowledge obtained in the gradually refined ensemble analyses. Several visualization schemes for facilitating ensem-ble management, error analysis, parameter grouping and tuning are also integrated owing to the pluggable modular design. The proposed approach is prototyped based on the Flash code, and it can be extended by introducing user-defined visualization for specific requirements. Two real-world simulations, i.e., stellar wind and supernova remnant, are carried out to verify the proposed approach.

  2. Bayesian Hierarchical Random Intercept Model Based on Three Parameter Gamma Distribution

    Science.gov (United States)

    Wirawati, Ika; Iriawan, Nur; Irhamah

    2017-06-01

    Hierarchical data structures are common throughout many areas of research. Beforehand, the existence of this type of data was less noticed in the analysis. The appropriate statistical analysis to handle this type of data is the hierarchical linear model (HLM). This article will focus only on random intercept model (RIM), as a subclass of HLM. This model assumes that the intercept of models in the lowest level are varied among those models, and their slopes are fixed. The differences of intercepts were suspected affected by some variables in the upper level. These intercepts, therefore, are regressed against those upper level variables as predictors. The purpose of this paper would demonstrate a proven work of the proposed two level RIM of the modeling on per capita household expenditure in Maluku Utara, which has five characteristics in the first level and three characteristics of districts/cities in the second level. The per capita household expenditure data in the first level were captured by the three parameters Gamma distribution. The model, therefore, would be more complex due to interaction of many parameters for representing the hierarchical structure and distribution pattern of the data. To simplify the estimation processes of parameters, the computational Bayesian method couple with Markov Chain Monte Carlo (MCMC) algorithm and its Gibbs Sampling are employed.

  3. A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning

    CERN Document Server

    Brochu, Eric; de Freitas, Nando

    2010-01-01

    We present a tutorial on Bayesian optimization, a method of finding the maximum of expensive cost functions. Bayesian optimization employs the Bayesian technique of setting a prior over the objective function and combining it with evidence to get a posterior function. This permits a utility-based selection of the next observation to make on the objective function, which must take into account both exploration (sampling from areas of high uncertainty) and exploitation (sampling areas likely to offer improvement over the current best observation). We also present two detailed extensions of Bayesian optimization, with experiments---active user modelling with preferences, and hierarchical reinforcement learning---and a discussion of the pros and cons of Bayesian optimization based on our experiences.

  4. C-HiLasso: A Collaborative Hierarchical Sparse Modeling Framework

    CERN Document Server

    Sprechmann, Pablo; Sapiro, Guillermo; Eldar, Yonina

    2010-01-01

    Sparse modeling is a powerful framework for data analysis and processing. Traditionally, encoding in this framework is performed by solving an L1-regularized linear regression problem, commonly referred to as Lasso or Basis Pursuit. In this work we combine the sparsity-inducing property of the Lasso model at the individual feature level, with the block-sparsity property of the Group Lasso model, where sparse groups of features are jointly encoded, obtaining a sparsity pattern hierarchically structured. This results in the Hierarchical Lasso (HiLasso), which shows important practical modeling advantages. We then extend this approach to the collaborative case, where a set of simultaneously coded signals share the same sparsity pattern at the higher (group) level, but not necessarily at the lower (inside the group) level, obtaining the collaborative HiLasso model (C-HiLasso). Such signals then share the same active groups, or classes, but not necessarily the same active set. This model is very well suited for ap...

  5. Correlation Between Hierarchical Bayesian and Aerosol Optical Depth PM2.5 Data and Respiratory-Cardiovascular Chronic Diseases

    Science.gov (United States)

    Tools to estimate PM2.5 mass have expanded in recent years, and now include: 1) stationary monitor readings, 2) Community Multi-Scale Air Quality (CMAQ) model estimates, 3) Hierarchical Bayesian (HB) estimates from combined stationary monitor readings and CMAQ model output; and, ...

  6. A hierarchical Bayesian approach for reconstructing the Initial Mass Function of Single Stellar Populations

    CERN Document Server

    Dries, M; Koopmans, L V E

    2016-01-01

    Recent studies based on the integrated light of distant galaxies suggest that the initial mass function (IMF) might not be universal. Variations of the IMF with galaxy type and/or formation time may have important consequences for our understanding of galaxy evolution. We have developed a new stellar population synthesis (SPS) code specifically designed to reconstruct the IMF. We implement a novel approach combining regularization with hierarchical Bayesian inference. Within this approach we use a parametrized IMF prior to regulate a direct inference of the IMF. This direct inference gives more freedom to the IMF and allows the model to deviate from parametrized models when demanded by the data. We use Markov Chain Monte Carlo sampling techniques to reconstruct the best parameters for the IMF prior, the age, and the metallicity of a single stellar population. We present our code and apply our model to a number of mock single stellar populations with different ages, metallicities, and IMFs. When systematic unc...

  7. A spectral-spatial-dynamic hierarchical Bayesian (SSD-HB) model for estimating soybean yield

    Science.gov (United States)

    Kazama, Yoriko; Kujirai, Toshihiro

    2014-10-01

    A method called a "spectral-spatial-dynamic hierarchical-Bayesian (SSD-HB) model," which can deal with many parameters (such as spectral and weather information all together) by reducing the occurrence of multicollinearity, is proposed. Experiments conducted on soybean yields in Brazil fields with a RapidEye satellite image indicate that the proposed SSD-HB model can predict soybean yield with a higher degree of accuracy than other estimation methods commonly used in remote-sensing applications. In the case of the SSD-HB model, the mean absolute error between estimated yield of the target area and actual yield is 0.28 t/ha, compared to 0.34 t/ha when conventional PLS regression was applied, showing the potential effectiveness of the proposed model.

  8. Bayesian Framework for Automatic Image Annotation Using Visual Keywords

    Science.gov (United States)

    Agrawal, Rajeev; Wu, Changhua; Grosky, William; Fotouhi, Farshad

    In this paper, we propose a Bayesian probability based framework, which uses visual keywords and already available text keywords to automatically annotate the images. Taking the cue from document classification, an image can be considered as a document and objects present in it as words. Using this concept, we can create visual keywords by dividing an image into tiles based on a certain template size. Visual keywords are simple vector quantization of small-sized image tiles. We estimate the conditional probability of a text keyword in the presence of visual keywords, described by a multivariate Gaussian distribution. We demonstrate the effectiveness of our approach by comparing predicted text annotations with manual annotations and analyze the effect of text annotation length on the performance.

  9. Hierarchical Bayesian approach for estimating physical properties in spiral galaxies: Age Maps for M74

    Science.gov (United States)

    Sánchez Gil, M. Carmen; Berihuete, Angel; Alfaro, Emilio J.; Pérez, Enrique; Sarro, Luis M.

    2015-09-01

    One of the fundamental goals of modern Astronomy is to estimate the physical parameters of galaxies from images in different spectral bands. We present a hierarchical Bayesian model for obtaining age maps from images in the Ha line (taken with Taurus Tunable Filter (TTF)), ultraviolet band (far UV or FUV, from GALEX) and infrared bands (24, 70 and 160 microns (μm), from Spitzer). As shown in [1], we present the burst ages for young stellar populations in the nearby and nearly face on galaxy M74. As it is shown in the previous work, the Hα to FUV flux ratio gives a good relative indicator of very recent star formation history (SFH). As a nascent star-forming region evolves, the Ha line emission declines earlier than the UV continuum, leading to a decrease in the HαFUV ratio. Through a specific star-forming galaxy model (Starburst 99, SB99), we can obtain the corresponding theoretical ratio Hα / FUV to compare with our observed flux ratios, and thus to estimate the ages of the observed regions. Due to the nature of the problem, it is necessary to propose a model of high complexity to take into account the mean uncertainties, and the interrelationship between parameters when the Hα / FUV flux ratio mentioned above is obtained. To address the complexity of the model, we propose a Bayesian hierarchical model, where a joint probability distribution is defined to determine the parameters (age, metallicity, IMF), from the observed data, in this case the observed flux ratios Hα / FUV. The joint distribution of the parameters is described through an i.i.d. (independent and identically distributed random variables), generated through MCMC (Markov Chain Monte Carlo) techniques.

  10. Bayesian-based Project Monitoring: Framework Development and Model Testing

    Directory of Open Access Journals (Sweden)

    Budi Hartono

    2015-12-01

    Full Text Available During project implementation, risk becomes an integral part of project monitoring. Therefore. a tool that could dynamically include elements of risk in project progress monitoring is needed. This objective of this study is to develop a general framework that addresses such a concern. The developed framework consists of three interrelated major building blocks, namely: Risk Register (RR, Bayesian Network (BN, and Project Time Networks (PTN for dynamic project monitoring. RR is used to list and to categorize identified project risks. PTN is utilized for modeling the relationship between project activities. BN is used to reflect the interdependence among risk factors and to bridge RR and PTN. A residential development project is chosen as a working example and the result shows that the proposed framework has been successfully applied. The specific model of the development project is also successfully developed and is used to monitor the project progress. It is shown in this study that the proposed BN-based model provides superior performance in terms of forecast accuracy compared to the extant models.

  11. Bayesian inversion for facies detection: An extensible level set framework

    Science.gov (United States)

    Cardiff, M.; Kitanidis, P. K.

    2009-10-01

    In many cases, it has been assumed that the variability in hydrologic parameters can be adequately described through a simple geostatistical model with a given variogram. In other cases, variability may be best described as a series of "jumps" in parameter behavior, e.g., those that occur at geologic facies contacts. When using indirect measurements such as pump tests to try to map such heterogeneity (during inverse modeling), the resulting images of the subsurface are always affected by the assumptions invoked. In this paper, we discuss inversion for parameter fields where prior information has suggested that major variability can be described by boundaries between geologic units or facies. In order to identify such parameter fields, we propose a Bayesian level set inversion protocol framework, which allows for flexible zones of any shape, size, and number. We review formulas for defining facies locations using the level set method and for moving the boundaries between zones using a gradient-based technique that improves fit through iterative deformation of the boundaries. We describe the optimization algorithm employed when multiple level set functions are used to represent a field with more than two facies. We extend these formulas to the investigation of the inverse problem in a Bayesian context in which prior information is taken into account and through which measures of uncertainty can be derived. We also demonstrate that the level set method is well suited for joint inversion problems and present a strategy for integrating different data types (such as hydrologic and geophysical) without assuming strict petrophysical relations. Our framework for joint inversion also contrasts with many previous methods in that all data sources (e.g., both hydrologic and geophysical) contribute to boundary delineation at once.

  12. Bayesian hierarchical models combining different study types and adjusting for covariate imbalances: a simulation study to assess model performance.

    Directory of Open Access Journals (Sweden)

    C Elizabeth McCarron

    Full Text Available BACKGROUND: Bayesian hierarchical models have been proposed to combine evidence from different types of study designs. However, when combining evidence from randomised and non-randomised controlled studies, imbalances in patient characteristics between study arms may bias the results. The objective of this study was to assess the performance of a proposed Bayesian approach to adjust for imbalances in patient level covariates when combining evidence from both types of study designs. METHODOLOGY/PRINCIPAL FINDINGS: Simulation techniques, in which the truth is known, were used to generate sets of data for randomised and non-randomised studies. Covariate imbalances between study arms were introduced in the non-randomised studies. The performance of the Bayesian hierarchical model adjusted for imbalances was assessed in terms of bias. The data were also modelled using three other Bayesian approaches for synthesising evidence from randomised and non-randomised studies. The simulations considered six scenarios aimed at assessing the sensitivity of the results to changes in the impact of the imbalances and the relative number and size of studies of each type. For all six scenarios considered, the Bayesian hierarchical model adjusted for differences within studies gave results that were unbiased and closest to the true value compared to the other models. CONCLUSIONS/SIGNIFICANCE: Where informed health care decision making requires the synthesis of evidence from randomised and non-randomised study designs, the proposed hierarchical Bayesian method adjusted for differences in patient characteristics between study arms may facilitate the optimal use of all available evidence leading to unbiased results compared to unadjusted analyses.

  13. Hierarchical Bayesian analysis of censored microbiological contamination data for use in risk assessment and mitigation.

    Science.gov (United States)

    Busschaert, P; Geeraerd, A H; Uyttendaele, M; Van Impe, J F

    2011-06-01

    Microbiological contamination data often is censored because of the presence of non-detects or because measurement outcomes are known only to be smaller than, greater than, or between certain boundary values imposed by the laboratory procedures. Therefore, it is not straightforward to fit distributions that summarize contamination data for use in quantitative microbiological risk assessment, especially when variability and uncertainty are to be characterized separately. In this paper, distributions are fit using Bayesian analysis, and results are compared to results obtained with a methodology based on maximum likelihood estimation and the non-parametric bootstrap method. The Bayesian model is also extended hierarchically to estimate the effects of the individual elements of a covariate such as, for example, on a national level, the food processing company where the analyzed food samples were processed, or, on an international level, the geographical origin of contamination data. Including this extra information allows a risk assessor to differentiate between several scenario's and increase the specificity of the estimate of risk of illness, or compare different scenario's to each other. Furthermore, inference is made on the predictive importance of several different covariates while taking into account uncertainty, allowing to indicate which covariates are influential factors determining contamination.

  14. Bayesian hierarchical clustering for studying cancer gene expression data with unknown statistics.

    Directory of Open Access Journals (Sweden)

    Korsuk Sirinukunwattana

    Full Text Available Clustering analysis is an important tool in studying gene expression data. The Bayesian hierarchical clustering (BHC algorithm can automatically infer the number of clusters and uses Bayesian model selection to improve clustering quality. In this paper, we present an extension of the BHC algorithm. Our Gaussian BHC (GBHC algorithm represents data as a mixture of Gaussian distributions. It uses normal-gamma distribution as a conjugate prior on the mean and precision of each of the Gaussian components. We tested GBHC over 11 cancer and 3 synthetic datasets. The results on cancer datasets show that in sample clustering, GBHC on average produces a clustering partition that is more concordant with the ground truth than those obtained from other commonly used algorithms. Furthermore, GBHC frequently infers the number of clusters that is often close to the ground truth. In gene clustering, GBHC also produces a clustering partition that is more biologically plausible than several other state-of-the-art methods. This suggests GBHC as an alternative tool for studying gene expression data. The implementation of GBHC is available at https://sites.google.com/site/gaussianbhc/

  15. A Hierarchical Bayesian Setting for an Inverse Problem in Linear Parabolic PDEs with Noisy Boundary Conditions

    KAUST Repository

    Ruggeri, Fabrizio

    2016-05-12

    In this work we develop a Bayesian setting to infer unknown parameters in initial-boundary value problems related to linear parabolic partial differential equations. We realistically assume that the boundary data are noisy, for a given prescribed initial condition. We show how to derive the joint likelihood function for the forward problem, given some measurements of the solution field subject to Gaussian noise. Given Gaussian priors for the time-dependent Dirichlet boundary values, we analytically marginalize the joint likelihood using the linearity of the equation. Our hierarchical Bayesian approach is fully implemented in an example that involves the heat equation. In this example, the thermal diffusivity is the unknown parameter. We assume that the thermal diffusivity parameter can be modeled a priori through a lognormal random variable or by means of a space-dependent stationary lognormal random field. Synthetic data are used to test the inference. We exploit the behavior of the non-normalized log posterior distribution of the thermal diffusivity. Then, we use the Laplace method to obtain an approximated Gaussian posterior and therefore avoid costly Markov Chain Monte Carlo computations. Expected information gains and predictive posterior densities for observable quantities are numerically estimated using Laplace approximation for different experimental setups.

  16. Improving water quality assessments through a hierarchical Bayesian analysis of variability.

    Science.gov (United States)

    Gronewold, Andrew D; Borsuk, Mark E

    2010-10-15

    Water quality measurement error and variability, while well-documented in laboratory-scale studies, is rarely acknowledged or explicitly resolved in most model-based water body assessments, including those conducted in compliance with the United States Environmental Protection Agency (USEPA) Total Maximum Daily Load (TMDL) program. Consequently, proposed pollutant loading reductions in TMDLs and similar water quality management programs may be biased, resulting in either slower-than-expected rates of water quality restoration and designated use reinstatement or, in some cases, overly conservative management decisions. To address this problem, we present a hierarchical Bayesian approach for relating actual in situ or model-predicted pollutant concentrations to multiple sampling and analysis procedures, each with distinct sources of variability. We apply this method to recently approved TMDLs to investigate whether appropriate accounting for measurement error and variability will lead to different management decisions. We find that required pollutant loading reductions may in fact vary depending not only on how measurement variability is addressed but also on which water quality analysis procedure is used to assess standard compliance. As a general strategy, our Bayesian approach to quantifying variability may represent an alternative to the common practice of addressing all forms of uncertainty through an arbitrary margin of safety (MOS).

  17. A Bisimulation-based Hierarchical Framework for Software Development Models

    Directory of Open Access Journals (Sweden)

    Ping Liang

    2013-08-01

    Full Text Available Software development models have been ripen since the emergence of software engineering, like waterfall model, V-model, spiral model, etc. To ensure the successful implementation of those models, various metrics for software products and development process have been developed along, like CMMI, software metrics, and process re-engineering, etc. The quality of software products and processes can be ensured in consistence as much as possible and the abstract integrity of a software product can be achieved. However, in reality, the maintenance of software products is still high and even higher along with software evolution due to the inconsistence occurred by changes and inherent errors of software products. It is better to build up a robust software product that can sustain changes as many as possible. Therefore, this paper proposes a process algebra based hierarchical framework to extract an abstract equivalent of deliverable at the end of phases of a software product from its software development models. The process algebra equivalent of the deliverable is developed hierarchically with the development of the software product, applying bi-simulation to test run the deliverable of phases to guarantee the consistence and integrity of the software development and product in a trivially mathematical way. And an algorithm is also given to carry out the assessment of the phase deliverable in process algebra.  

  18. Hierarchical Bayesian Markov switching models with application to predicting spawning success of shovelnose sturgeon

    Science.gov (United States)

    Holan, S.H.; Davis, G.M.; Wildhaber, M.L.; DeLonay, A.J.; Papoulias, D.M.

    2009-01-01

    The timing of spawning in fish is tightly linked to environmental factors; however, these factors are not very well understood for many species. Specifically, little information is available to guide recruitment efforts for endangered species such as the sturgeon. Therefore, we propose a Bayesian hierarchical model for predicting the success of spawning of the shovelnose sturgeon which uses both biological and behavioural (longitudinal) data. In particular, we use data that were produced from a tracking study that was conducted in the Lower Missouri River. The data that were produced from this study consist of biological variables associated with readiness to spawn along with longitudinal behavioural data collected by using telemetry and archival data storage tags. These high frequency data are complex both biologically and in the underlying behavioural process. To accommodate such complexity we developed a hierarchical linear regression model that uses an eigenvalue predictor, derived from the transition probability matrix of a two-state Markov switching model with generalized auto-regressive conditional heteroscedastic dynamics. Finally, to minimize the computational burden that is associated with estimation of this model, a parallel computing approach is proposed. ?? Journal compilation 2009 Royal Statistical Society.

  19. Influence of Climate Change on Flood Hazard using Climate Informed Bayesian Hierarchical Model in Johnson Creek River

    Science.gov (United States)

    Zarekarizi, M.; Moradkhani, H.

    2015-12-01

    Extreme events are proven to be affected by climate change, influencing hydrologic simulations for which stationarity is usually a main assumption. Studies have discussed that this assumption would lead to large bias in model estimations and higher flood hazard consequently. Getting inspired by the importance of non-stationarity, we determined how the exceedance probabilities have changed over time in Johnson Creek River, Oregon. This could help estimate the probability of failure of a structure that was primarily designed to resist less likely floods according to common practice. Therefore, we built a climate informed Bayesian hierarchical model and non-stationarity was considered in modeling framework. Principle component analysis shows that North Atlantic Oscillation (NAO), Western Pacific Index (WPI) and Eastern Asia (EA) are mostly affecting stream flow in this river. We modeled flood extremes using peaks over threshold (POT) method rather than conventional annual maximum flood (AMF) mainly because it is possible to base the model on more information. We used available threshold selection methods to select a suitable threshold for the study area. Accounting for non-stationarity, model parameters vary through time with climate indices. We developed a couple of model scenarios and chose one which could best explain the variation in data based on performance measures. We also estimated return periods under non-stationarity condition. Results show that ignoring stationarity could increase the flood hazard up to four times which could increase the probability of an in-stream structure being overtopped.

  20. Bayesian hierarchical joint modeling of repeatedly measured continuous and ordinal markers of disease severity: Application to Ugandan diabetes data.

    Science.gov (United States)

    Buhule, O D; Wahed, A S; Youk, A O

    2017-08-22

    Modeling of correlated biomarkers jointly has been shown to improve the efficiency of parameter estimates, leading to better clinical decisions. In this paper, we employ a joint modeling approach to a unique diabetes dataset, where blood glucose (continuous) and urine glucose (ordinal) measures of disease severity for diabetes are known to be correlated. The postulated joint model assumes that the outcomes are from distributions that are in the exponential family and hence modeled as multivariate generalized linear mixed effects model associated through correlated and/or shared random effects. The Markov chain Monte Carlo Bayesian approach is used to approximate posterior distribution and draw inference on the parameters. This proposed methodology provides a flexible framework to account for the hierarchical structure of the highly unbalanced data as well as the association between the 2 outcomes. The results indicate improved efficiency of parameter estimates when blood glucose and urine glucose are modeled jointly. Moreover, the simulation studies show that estimates obtained from the joint model are consistently less biased and more efficient than those in the separate models. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Linking bovine tuberculosis on cattle farms to white-tailed deer and environmental variables using Bayesian hierarchical analysis

    Science.gov (United States)

    Walter, William D.; Smith, Rick; Vanderklok, Mike; VerCauterren, Kurt C.

    2014-01-01

    Bovine tuberculosis is a bacterial disease caused by Mycobacterium bovis in livestock and wildlife with hosts that include Eurasian badgers (Meles meles), brushtail possum (Trichosurus vulpecula), and white-tailed deer (Odocoileus virginianus). Risk-assessment efforts in Michigan have been initiated on farms to minimize interactions of cattle with wildlife hosts but research onM. bovis on cattle farms has not investigated the spatial context of disease epidemiology. To incorporate spatially explicit data, initial likelihood of infection probabilities for cattle farms tested for M. bovis, prevalence of M. bovis in white-tailed deer, deer density, and environmental variables for each farm were modeled in a Bayesian hierarchical framework. We used geo-referenced locations of 762 cattle farms that have been tested for M. bovis, white-tailed deer prevalence, and several environmental variables that may lead to long-term survival and viability of M. bovis on farms and surrounding habitats (i.e., soil type, habitat type). Bayesian hierarchical analyses identified deer prevalence and proportion of sandy soil within our sampling grid as the most supported model. Analysis of cattle farms tested for M. bovisidentified that for every 1% increase in sandy soil resulted in an increase in odds of infection by 4%. Our analysis revealed that the influence of prevalence of M. bovis in white-tailed deer was still a concern even after considerable efforts to prevent cattle interactions with white-tailed deer through on-farm mitigation and reduction in the deer population. Cattle farms test positive for M. bovis annually in our study area suggesting that the potential for an environmental source either on farms or in the surrounding landscape may contributing to new or re-infections with M. bovis. Our research provides an initial assessment of potential environmental factors that could be incorporated into additional modeling efforts as more knowledge of deer herd

  2. Parameterization of aquatic ecosystem functioning and its natural variation: Hierarchical Bayesian modelling of plankton food web dynamics

    Science.gov (United States)

    Norros, Veera; Laine, Marko; Lignell, Risto; Thingstad, Frede

    2017-10-01

    Methods for extracting empirically and theoretically sound parameter values are urgently needed in aquatic ecosystem modelling to describe key flows and their variation in the system. Here, we compare three Bayesian formulations for mechanistic model parameterization that differ in their assumptions about the variation in parameter values between various datasets: 1) global analysis - no variation, 2) separate analysis - independent variation and 3) hierarchical analysis - variation arising from a shared distribution defined by hyperparameters. We tested these methods, using computer-generated and empirical data, coupled with simplified and reasonably realistic plankton food web models, respectively. While all methods were adequate, the simulated example demonstrated that a well-designed hierarchical analysis can result in the most accurate and precise parameter estimates and predictions, due to its ability to combine information across datasets. However, our results also highlighted sensitivity to hyperparameter prior distributions as an important caveat of hierarchical analysis. In the more complex empirical example, hierarchical analysis was able to combine precise identification of parameter values with reasonably good predictive performance, although the ranking of the methods was less straightforward. We conclude that hierarchical Bayesian analysis is a promising tool for identifying key ecosystem-functioning parameters and their variation from empirical datasets.

  3. Abrupt Strategy Change Underlies Gradual Performance Change: Bayesian Hierarchical Models of Component and Aggregate Strategy Use.

    Science.gov (United States)

    Wynton, Sarah K A; Anglim, Jeromy

    2017-04-10

    While researchers have often sought to understand the learning curve in terms of multiple component processes, few studies have measured and mathematically modeled these processes on a complex task. In particular, there remains a need to reconcile how abrupt changes in strategy use can co-occur with gradual changes in task completion time. Thus, the current study aimed to assess the degree to which strategy change was abrupt or gradual, and whether strategy aggregation could partially explain gradual performance change. It also aimed to show how Bayesian methods could be used to model the effect of practice on strategy use. To achieve these aims, 162 participants completed 15 blocks of practice on a complex computer-based task-the Wynton-Anglim booking (WAB) task. The task allowed for multiple component strategies (i.e., memory retrieval, information reduction, and insight) that could also be aggregated to a global measure of strategy use. Bayesian hierarchical models were used to compare abrupt and gradual functions of component and aggregate strategy use. Task completion time was well-modeled by a power function, and global strategy use explained substantial variance in performance. Change in component strategy use tended to be abrupt, whereas change in global strategy use was gradual and well-modeled by a power function. Thus, differential timing of component strategy shifts leads to gradual changes in overall strategy efficiency, and this provides one reason for why smooth learning curves can co-occur with abrupt changes in strategy use. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. Full Bayesian hierarchical light curve modeling of core-collapse supernova populations

    Science.gov (United States)

    Sanders, Nathan; Betancourt, Michael; Soderberg, Alicia Margarita

    2016-06-01

    While wide field surveys have yielded remarkable quantities of photometry of transient objects, including supernovae, light curves reconstructed from this data suffer from several characteristic problems. Because most transients are discovered near the detection limit, signal to noise is generally poor; because coverage is limited to the observing season, light curves are often incomplete; and because temporal sampling can be uneven across filters, these problems can be exacerbated at any one wavelength. While the prevailing approach of modeling individual light curves independently is successful at recovering inferences for the objects with the highest quality observations, it typically neglects a substantial portion of the data and can introduce systematic biases. Joint modeling of the light curves of transient populations enables direct inference on population-level characteristics as well as superior measurements for individual objects. We present a new hierarchical Bayesian model for supernova light curves, where information inferred from observations of every individual light curve in a sample is partially pooled across objects to constrain population-level hyperparameters. Using an efficient Hamiltonian Monte Carlo sampling technique, the model posterior can be explored to enable marginalization over weakly-identified hyperparameters through full Bayesian inference. We demonstrate our technique on the Pan-STARRS1 (PS1) Type IIP supernova light curve sample published by Sanders et al. (2015), consisting of nearly 20,000 individual photometric observations of more than 70 supernovae in five photometric filters. We discuss the Stan probabilistic programming language used to implement the model, computational challenges, and prospects for future work including generalization to multiple supernova types. We also discuss scientific results from the PS1 dataset including a new relation between the peak magnitude and decline rate of SNe IIP, a new perspective on the

  5. Testing comparative phylogeographic models of marine vicariance and dispersal using a hierarchical Bayesian approach

    Directory of Open Access Journals (Sweden)

    Meyer Christopher P

    2008-11-01

    Full Text Available Abstract Background Marine allopatric speciation is an enigma because pelagic larval dispersal can potentially connect disjunct populations thereby preventing reproductive and morphological divergence. Here we present a new hierarchical approximate Bayesian computation model (HABC that tests two hypotheses of marine allopatric speciation: 1. "soft vicariance", where a speciation involves fragmentation of a large widespread ancestral species range that was previously connected by long distance gene flow; and 2. peripatric colonization, where speciations in peripheral archipelagos emerge from sweepstakes colonizations from central source regions. The HABC approach analyzes all the phylogeographic datasets at once in order to make across taxon-pair inferences about biogeographic processes while explicitly allowing for uncertainty in the demographic differences within each taxon-pair. Our method uses comparative phylogeographic data that consists of single locus mtDNA sequences from multiple co-distributed taxa containing pairs of central and peripheral populations. We use the method on two comparative phylogeographic data sets consisting of cowrie gastropod endemics co-distributed in the Hawaiian (11 taxon-pairs and Marquesan archipelagos (7 taxon-pairs. Results Given the Marquesan data, we find strong evidence of simultaneous colonization across all seven cowrie gastropod endemics co-distributed in the Marquesas. In contrast, the lower sample sizes in the Hawaiian data lead to greater uncertainty associated with the Hawaiian estimates. Although, the hyper-parameter estimates point to soft vicariance in a subset of the 11 Hawaiian taxon-pairs, the hyper-prior and hyper-posterior are too similar to make a definitive conclusion. Both results are not inconsistent with what is known about the geologic history of the archipelagos. Simulations verify that our method can successfully distinguish these two histories across a wide range of conditions given

  6. Approximate Bayesian Computation by Subset Simulation using hierarchical state-space models

    Science.gov (United States)

    Vakilzadeh, Majid K.; Huang, Yong; Beck, James L.; Abrahamsson, Thomas

    2017-02-01

    A new multi-level Markov Chain Monte Carlo algorithm for Approximate Bayesian Computation, ABC-SubSim, has recently appeared that exploits the Subset Simulation method for efficient rare-event simulation. ABC-SubSim adaptively creates a nested decreasing sequence of data-approximating regions in the output space that correspond to increasingly closer approximations of the observed output vector in this output space. At each level, multiple samples of the model parameter vector are generated by a component-wise Metropolis algorithm so that the predicted output corresponding to each parameter value falls in the current data-approximating region. Theoretically, if continued to the limit, the sequence of data-approximating regions would converge on to the observed output vector and the approximate posterior distributions, which are conditional on the data-approximation region, would become exact, but this is not practically feasible. In this paper we study the performance of the ABC-SubSim algorithm for Bayesian updating of the parameters of dynamical systems using a general hierarchical state-space model. We note that the ABC methodology gives an approximate posterior distribution that actually corresponds to an exact posterior where a uniformly distributed combined measurement and modeling error is added. We also note that ABC algorithms have a problem with learning the uncertain error variances in a stochastic state-space model and so we treat them as nuisance parameters and analytically integrate them out of the posterior distribution. In addition, the statistical efficiency of the original ABC-SubSim algorithm is improved by developing a novel strategy to regulate the proposal variance for the component-wise Metropolis algorithm at each level. We demonstrate that Self-regulated ABC-SubSim is well suited for Bayesian system identification by first applying it successfully to model updating of a two degree-of-freedom linear structure for three cases: globally

  7. A sow replacement model using Bayesian updating in a three-level hierarchic Markov process. II. Optimization model

    DEFF Research Database (Denmark)

    Kristensen, Anders Ringgaard; Søllested, Thomas Algot

    2004-01-01

    herds. It is concluded that the Bayesian updating technique and the hierarchical structure decrease the size of the state space dramatically. Since parameter estimates vary considerably among herds it is concluded that decision support concerning sow replacement only makes sense with parameters...... estimated at herd level. It is argued that the multi-level formulation and the standard software comprise a flexible tool and a shortcut to working prototypes...

  8. DUST SPECTRAL ENERGY DISTRIBUTIONS IN THE ERA OF HERSCHEL AND PLANCK: A HIERARCHICAL BAYESIAN-FITTING TECHNIQUE

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Brandon C.; Goodman, Alyssa A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Shetty, Rahul [Zentrum fuer Astronomie der Universitaet Heidelberg, Institut fuer Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg (Germany); Stutz, Amelia M.; Launhardt, Ralf [Max Planck Institut fuer Astronomie, Koenigstuhl 17, 69117 Heidelberg (Germany); Kauffmann, Jens [NASA JPL, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2012-06-10

    We present a hierarchical Bayesian method for fitting infrared spectral energy distributions (SEDs) of dust emission to observed fluxes. Under the standard assumption of optically thin single temperature (T) sources, the dust SED as represented by a power-law-modified blackbody is subject to a strong degeneracy between T and the spectral index {beta}. The traditional non-hierarchical approaches, typically based on {chi}{sup 2} minimization, are severely limited by this degeneracy, as it produces an artificial anti-correlation between T and {beta} even with modest levels of observational noise. The hierarchical Bayesian method rigorously and self-consistently treats measurement uncertainties, including calibration and noise, resulting in more precise SED fits. As a result, the Bayesian fits do not produce any spurious anti-correlations between the SED parameters due to measurement uncertainty. We demonstrate that the Bayesian method is substantially more accurate than the {chi}{sup 2} fit in recovering the SED parameters, as well as the correlations between them. As an illustration, we apply our method to Herschel and submillimeter ground-based observations of the star-forming Bok globule CB244. This source is a small, nearby molecular cloud containing a single low-mass protostar and a starless core. We find that T and {beta} are weakly positively correlated-in contradiction with the {chi}{sup 2} fits, which indicate a T-{beta} anti-correlation from the same data set. Additionally, in comparison to the {chi}{sup 2} fits the Bayesian SED parameter estimates exhibit a reduced range in values.

  9. Assessing Local Model Adequacy in Bayesian Hierarchical Models Using the Partitioned Deviance Information Criterion.

    Science.gov (United States)

    Wheeler, David C; Hickson, Demarc A; Waller, Lance A

    2010-06-01

    Many diagnostic tools and goodness-of-fit measures, such as the Akaike information criterion (AIC) and the Bayesian deviance information criterion (DIC), are available to evaluate the overall adequacy of linear regression models. In addition, visually assessing adequacy in models has become an essential part of any regression analysis. In this paper, we focus on a spatial consideration of the local DIC measure for model selection and goodness-of-fit evaluation. We use a partitioning of the DIC into the local DIC, leverage, and deviance residuals to assess local model fit and influence for both individual observations and groups of observations in a Bayesian framework. We use visualization of the local DIC and differences in local DIC between models to assist in model selection and to visualize the global and local impacts of adding covariates or model parameters. We demonstrate the utility of the local DIC in assessing model adequacy using HIV prevalence data from pregnant women in the Butare province of Rwanda during 1989-1993 using a range of linear model specifications, from global effects only to spatially varying coefficient models, and a set of covariates related to sexual behavior. Results of applying the diagnostic visualization approach include more refined model selection and greater understanding of the models as applied to the data.

  10. ACES-Based Testbed and Bayesian Game-Theoretic Framework for Dynamic Airspace Configuration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The key innovation in this effort is the development of algorithms and a framework for automated Dynamic Airspace Configuration (DAC) using a cooperative Bayesian...

  11. Monitoring schistosomiasis risk in East China over space and time using a Bayesian hierarchical modeling approach.

    Science.gov (United States)

    Hu, Yi; Ward, Michael P; Xia, Congcong; Li, Rui; Sun, Liqian; Lynn, Henry; Gao, Fenghua; Wang, Qizhi; Zhang, Shiqing; Xiong, Chenglong; Zhang, Zhijie; Jiang, Qingwu

    2016-04-07

    Schistosomiasis remains a major public health problem and causes substantial economic impact in east China, particularly along the Yangtze River Basin. Disease forecasting and surveillance can assist in the development and implementation of more effective intervention measures to control disease. In this study, we applied a Bayesian hierarchical spatio-temporal model to describe trends in schistosomiasis risk in Anhui Province, China, using annual parasitological and environmental data for the period 1997-2010. A computationally efficient approach-Integrated Nested Laplace Approximation-was used for model inference. A zero-inflated, negative binomial model best described the spatio-temporal dynamics of schistosomiasis risk. It predicted that the disease risk would generally be low and stable except for some specific, local areas during the period 2011-2014. High-risk counties were identified in the forecasting maps: three in which the risk remained high, and two in which risk would become high. The results indicated that schistosomiasis risk has been reduced to consistently low levels throughout much of this region of China; however, some counties were identified in which progress in schistosomiasis control was less than satisfactory. Whilst maintaining overall control, specific interventions in the future should focus on these refractive counties as part of a strategy to eliminate schistosomiasis from this region.

  12. Hierarchical Bayesian approach for estimating physical properties in spiral galaxies: Age Maps for M74

    CERN Document Server

    Gil, M Carmen Sánchez; Alfaro, Emilio J; Pérez, Enrique; Sarro, Luis M

    2015-01-01

    One of the fundamental goals of modern Astronomy is to estimate the physical parameters of galaxies from images in different spectral bands. We present a hierarchical Bayesian model for obtaining age maps from images in the \\Ha\\ line (taken with Taurus Tunable Filter (TTF)), ultraviolet band (far UV or FUV, from GALEX) and infrared bands (24, 70 and 160 microns ($\\mu$m), from Spitzer). As shown in S\\'anchez-Gil et al. (2011), we present the burst ages for young stellar populations in the nearby and nearly face on galaxy M74. As it is shown in the previous work, the \\Ha\\ to FUV flux ratio gives a good relative indicator of very recent star formation history (SFH). As a nascent star-forming region evolves, the \\Ha\\ line emission declines earlier than the UV continuum, leading to a decrease in the \\Ha\\/FUV ratio. Through a specific star-forming galaxy model (Starburst 99, SB99), we can obtain the corresponding theoretical ratio \\Ha\\ / FUV to compare with our observed flux ratios, and thus to estimate the ages of...

  13. Predicting protein subcellular locations using hierarchical ensemble of Bayesian classifiers based on Markov chains

    Directory of Open Access Journals (Sweden)

    Eils Roland

    2006-06-01

    Full Text Available Abstract Background The subcellular location of a protein is closely related to its function. It would be worthwhile to develop a method to predict the subcellular location for a given protein when only the amino acid sequence of the protein is known. Although many efforts have been made to predict subcellular location from sequence information only, there is the need for further research to improve the accuracy of prediction. Results A novel method called HensBC is introduced to predict protein subcellular location. HensBC is a recursive algorithm which constructs a hierarchical ensemble of classifiers. The classifiers used are Bayesian classifiers based on Markov chain models. We tested our method on six various datasets; among them are Gram-negative bacteria dataset, data for discriminating outer membrane proteins and apoptosis proteins dataset. We observed that our method can predict the subcellular location with high accuracy. Another advantage of the proposed method is that it can improve the accuracy of the prediction of some classes with few sequences in training and is therefore useful for datasets with imbalanced distribution of classes. Conclusion This study introduces an algorithm which uses only the primary sequence of a protein to predict its subcellular location. The proposed recursive scheme represents an interesting methodology for learning and combining classifiers. The method is computationally efficient and competitive with the previously reported approaches in terms of prediction accuracies as empirical results indicate. The code for the software is available upon request.

  14. Bayesian hierarchical regression analysis of variations in sea surface temperature change over the past million years

    Science.gov (United States)

    Snyder, Carolyn W.

    2016-09-01

    Statistical challenges often preclude comparisons among different sea surface temperature (SST) reconstructions over the past million years. Inadequate consideration of uncertainty can result in misinterpretation, overconfidence, and biased conclusions. Here I apply Bayesian hierarchical regressions to analyze local SST responsiveness to climate changes for 54 SST reconstructions from across the globe over the past million years. I develop methods to account for multiple sources of uncertainty, including the quantification of uncertainty introduced from absolute dating into interrecord comparisons. The estimates of local SST responsiveness explain 64% (62% to 77%, 95% interval) of the total variation within each SST reconstruction with a single number. There is remarkable agreement between SST proxy methods, with the exception of Mg/Ca proxy methods estimating muted responses at high latitudes. The Indian Ocean exhibits a muted response in comparison to other oceans. I find a stable estimate of the proposed "universal curve" of change in local SST responsiveness to climate changes as a function of sin2(latitude) over the past 400,000 years: SST change at 45°N/S is larger than the average tropical response by a factor of 1.9 (1.5 to 2.6, 95% interval) and explains 50% (35% to 58%, 95% interval) of the total variation between each SST reconstruction. These uncertainty and statistical methods are well suited for application across paleoclimate and environmental data series intercomparisons.

  15. Mapping brucellosis increases relative to elk density using hierarchical Bayesian models

    Science.gov (United States)

    Cross, Paul C.; Heisey, Dennis M.; Scurlock, Brandon M.; Edwards, William H.; Brennan, Angela; Ebinger, Michael R.

    2010-01-01

    The relationship between host density and parasite transmission is central to the effectiveness of many disease management strategies. Few studies, however, have empirically estimated this relationship particularly in large mammals. We applied hierarchical Bayesian methods to a 19-year dataset of over 6400 brucellosis tests of adult female elk (Cervus elaphus) in northwestern Wyoming. Management captures that occurred from January to March were over two times more likely to be seropositive than hunted elk that were killed in September to December, while accounting for site and year effects. Areas with supplemental feeding grounds for elk had higher seroprevalence in 1991 than other regions, but by 2009 many areas distant from the feeding grounds were of comparable seroprevalence. The increases in brucellosis seroprevalence were correlated with elk densities at the elk management unit, or hunt area, scale (mean 2070 km2; range = [95–10237]). The data, however, could not differentiate among linear and non-linear effects of host density. Therefore, control efforts that focus on reducing elk densities at a broad spatial scale were only weakly supported. Additional research on how a few, large groups within a region may be driving disease dynamics is needed for more targeted and effective management interventions. Brucellosis appears to be expanding its range into new regions and elk populations, which is likely to further complicate the United States brucellosis eradication program. This study is an example of how the dynamics of host populations can affect their ability to serve as disease reservoirs.

  16. Mapping brucellosis increases relative to elk density using hierarchical Bayesian models.

    Directory of Open Access Journals (Sweden)

    Paul C Cross

    Full Text Available The relationship between host density and parasite transmission is central to the effectiveness of many disease management strategies. Few studies, however, have empirically estimated this relationship particularly in large mammals. We applied hierarchical Bayesian methods to a 19-year dataset of over 6400 brucellosis tests of adult female elk (Cervus elaphus in northwestern Wyoming. Management captures that occurred from January to March were over two times more likely to be seropositive than hunted elk that were killed in September to December, while accounting for site and year effects. Areas with supplemental feeding grounds for elk had higher seroprevalence in 1991 than other regions, but by 2009 many areas distant from the feeding grounds were of comparable seroprevalence. The increases in brucellosis seroprevalence were correlated with elk densities at the elk management unit, or hunt area, scale (mean 2070 km(2; range = [95-10237]. The data, however, could not differentiate among linear and non-linear effects of host density. Therefore, control efforts that focus on reducing elk densities at a broad spatial scale were only weakly supported. Additional research on how a few, large groups within a region may be driving disease dynamics is needed for more targeted and effective management interventions. Brucellosis appears to be expanding its range into new regions and elk populations, which is likely to further complicate the United States brucellosis eradication program. This study is an example of how the dynamics of host populations can affect their ability to serve as disease reservoirs.

  17. A Bayesian hierarchical model with novel prior specifications for estimating HIV testing rates

    Science.gov (United States)

    An, Qian; Kang, Jian; Song, Ruiguang; Hall, H. Irene

    2016-01-01

    Human immunodeficiency virus (HIV) infection is a severe infectious disease actively spreading globally, and acquired immunodeficiency syndrome (AIDS) is an advanced stage of HIV infection. The HIV testing rate, that is, the probability that an AIDS-free HIV infected person seeks a test for HIV during a particular time interval, given no previous positive test has been obtained prior to the start of the time, is an important parameter for public health. In this paper, we propose a Bayesian hierarchical model with two levels of hierarchy to estimate the HIV testing rate using annual AIDS and AIDS-free HIV diagnoses data. At level one, we model the latent number of HIV infections for each year using a Poisson distribution with the intensity parameter representing the HIV incidence rate. At level two, the annual numbers of AIDS and AIDS-free HIV diagnosed cases and all undiagnosed cases stratified by the HIV infections at different years are modeled using a multinomial distribution with parameters including the HIV testing rate. We propose a new class of priors for the HIV incidence rate and HIV testing rate taking into account the temporal dependence of these parameters to improve the estimation accuracy. We develop an efficient posterior computation algorithm based on the adaptive rejection metropolis sampling technique. We demonstrate our model using simulation studies and the analysis of the national HIV surveillance data in the USA. PMID:26567891

  18. Cosmological parameters, shear maps and power spectra from CFHTLenS using Bayesian hierarchical inference

    CERN Document Server

    Alsing, Justin; Jaffe, Andrew H

    2016-01-01

    We apply two Bayesian hierarchical inference schemes to infer shear power spectra, shear maps and cosmological parameters from the CFHTLenS weak lensing survey - the first application of this method to data. In the first approach, we sample the joint posterior distribution of the shear maps and power spectra by Gibbs sampling, with minimal model assumptions. In the second approach, we sample the joint posterior of the shear maps and cosmological parameters, providing a new, accurate and principled approach to cosmological parameter inference from cosmic shear data. As a first demonstration on data we perform a 2-bin tomographic analysis to constrain cosmological parameters and investigate the possibility of photometric redshift bias in the CFHTLenS data. Under the baseline $\\Lambda$CDM model we constrain $S_8 = \\sigma_8(\\Omega_\\mathrm{m}/0.3)^{0.5} = 0.67 ^{\\scriptscriptstyle+ 0.03 }_{\\scriptscriptstyle- 0.03 }$ $(68\\%)$, consistent with previous CFHTLenS analysis but in tension with Planck. Adding neutrino m...

  19. Type Ia Supernova Colors and Ejecta Velocities: Hierarchical Bayesian Regression with Non-Gaussian Distributions

    CERN Document Server

    Mandel, Kaisey S; Kirshner, Robert P

    2014-01-01

    We investigate the correlations between the peak intrinsic colors of Type Ia supernovae (SN Ia) and their expansion velocities at maximum light, measured from the Si II 6355 A spectral feature. We construct a new hierarchical Bayesian regression model and Gibbs sampler to estimate the dependence of the intrinsic colors of a SN Ia on its ejecta velocity, while accounting for the random effects of intrinsic scatter, measurement error, and reddening by host galaxy dust. The method is applied to the apparent color data from BVRI light curves and Si II velocity data for 79 nearby SN Ia. Comparison of the apparent color distributions of high velocity (HV) and normal velocity (NV) supernovae reveals significant discrepancies in B-V and B-R, but not other colors. Hence, they are likely due to intrinsic color differences originating in the B-band, rather than dust reddening. The mean intrinsic B-V and B-R color differences between HV and NV groups are 0.06 +/- 0.02 and 0.09 +/- 0.02 mag, respectively. Under a linear m...

  20. Hierarchical Bayesian modeling of random and residual variance-covariance matrices in bivariate mixed effects models.

    Science.gov (United States)

    Bello, Nora M; Steibel, Juan P; Tempelman, Robert J

    2010-06-01

    Bivariate mixed effects models are often used to jointly infer upon covariance matrices for both random effects (u) and residuals (e) between two different phenotypes in order to investigate the architecture of their relationship. However, these (co)variances themselves may additionally depend upon covariates as well as additional sets of exchangeable random effects that facilitate borrowing of strength across a large number of clusters. We propose a hierarchical Bayesian extension of the classical bivariate mixed effects model by embedding additional levels of mixed effects modeling of reparameterizations of u-level and e-level (co)variances between two traits. These parameters are based upon a recently popularized square-root-free Cholesky decomposition and are readily interpretable, each conveniently facilitating a generalized linear model characterization. Using Markov Chain Monte Carlo methods, we validate our model based on a simulation study and apply it to a joint analysis of milk yield and calving interval phenotypes in Michigan dairy cows. This analysis indicates that the e-level relationship between the two traits is highly heterogeneous across herds and depends upon systematic herd management factors.

  1. Modeling inter-subject variability in fMRI activation location: A Bayesian hierarchical spatial model

    Science.gov (United States)

    Xu, Lei; Johnson, Timothy D.; Nichols, Thomas E.; Nee, Derek E.

    2010-01-01

    Summary The aim of this work is to develop a spatial model for multi-subject fMRI data. There has been extensive work on univariate modeling of each voxel for single and multi-subject data, some work on spatial modeling of single-subject data, and some recent work on spatial modeling of multi-subject data. However, there has been no work on spatial models that explicitly account for inter-subject variability in activation locations. In this work, we use the idea of activation centers and model the inter-subject variability in activation locations directly. Our model is specified in a Bayesian hierarchical frame work which allows us to draw inferences at all levels: the population level, the individual level and the voxel level. We use Gaussian mixtures for the probability that an individual has a particular activation. This helps answer an important question which is not addressed by any of the previous methods: What proportion of subjects had a significant activity in a given region. Our approach incorporates the unknown number of mixture components into the model as a parameter whose posterior distribution is estimated by reversible jump Markov Chain Monte Carlo. We demonstrate our method with a fMRI study of resolving proactive interference and show dramatically better precision of localization with our method relative to the standard mass-univariate method. Although we are motivated by fMRI data, this model could easily be modified to handle other types of imaging data. PMID:19210732

  2. A hierarchical framework for understanding human-human interactions in video surveillance

    Science.gov (United States)

    Park, Sangho; Aggarwal, J. K.

    2005-01-01

    Understanding human behavior in video is essential in numerous applications including smart surveillance, video annotation/retrieval, and human-computer interaction. However, recognizing human interactions is a challenging task due to ambiguity in body articulation, variations in body size and appearance, loose clothing, mutual occlusion, and shadows. In this paper we present a framework for recognizing human actions and interactions in color video, and a hierarchical graphical model that unifies multiple-level processing in video computing: pixel level, blob level, object level, and event level. A mixture of Gaussian (MOG) model is used at the pixel level to train and classify individual pixel colors. A relaxation labeling with attribute relational graph (ARG) is used at the blob level to merge the pixels into coherent blobs and to register inter-blob relations. At the object level, the poses of individual body parts are recognized using Bayesian networks (BNs). At the event level, the actions of a single person are modeled using a dynamic Bayesian network (DBN). The results of the object-level descriptions for each person are juxtaposed along a common timeline to identify an interaction between two persons. The linguistic 'verb argument structure' is used to represent human action in terms of triplets. A meaningful semantic description in terms of is obtained. Our system achieves semantic descriptions of positive, neutral, and negative interactions between two persons including hand-shaking, standing hand-in-hand, and hugging as the positive interactions, approaching, departing, and pointing as the neutral interactions, and pushing, punching, and kicking as the negative interactions.

  3. Airline Sustainability Modeling: A New Framework with Application of Bayesian Structural Equation Modeling

    Directory of Open Access Journals (Sweden)

    Hashem Salarzadeh Jenatabadi

    2016-11-01

    Full Text Available There are many factors which could influence the sustainability of airlines. The main purpose of this study is to introduce a framework for a financial sustainability index and model it based on structural equation modeling (SEM with maximum likelihood and Bayesian predictors. The introduced framework includes economic performance, operational performance, cost performance, and financial performance. Based on both Bayesian SEM (Bayesian-SEM and Classical SEM (Classical-SEM, it was found that economic performance with both operational performance and cost performance are significantly related to the financial performance index. The four mathematical indices employed are root mean square error, coefficient of determination, mean absolute error, and mean absolute percentage error to compare the efficiency of Bayesian-SEM and Classical-SEM in predicting the airline financial performance. The outputs confirmed that the framework with Bayesian prediction delivered a good fit with the data, although the framework predicted with a Classical-SEM approach did not prepare a well-fitting model. The reasons for this discrepancy between Classical and Bayesian predictions, as well as the potential advantages and caveats with the application of Bayesian approach in airline sustainability studies, are debated.

  4. Differentiating Wheat Genotypes by Bayesian Hierarchical Nonlinear Mixed Modeling of Wheat Root Density.

    Science.gov (United States)

    Wasson, Anton P; Chiu, Grace S; Zwart, Alexander B; Binns, Timothy R

    2017-01-01

    Ensuring future food security for a growing population while climate change and urban sprawl put pressure on agricultural land will require sustainable intensification of current farming practices. For the crop breeder this means producing higher crop yields with less resources due to greater environmental stresses. While easy gains in crop yield have been made mostly "above ground," little progress has been made "below ground"; and yet it is these root system traits that can improve productivity and resistance to drought stress. Wheat pre-breeders use soil coring and core-break counts to phenotype root architecture traits, with data collected on rooting density for hundreds of genotypes in small increments of depth. The measured densities are both large datasets and highly variable even within the same genotype, hence, any rigorous, comprehensive statistical analysis of such complex field data would be technically challenging. Traditionally, most attributes of the field data are therefore discarded in favor of simple numerical summary descriptors which retain much of the high variability exhibited by the raw data. This poses practical challenges: although plant scientists have established that root traits do drive resource capture in crops, traits that are more randomly (rather than genetically) determined are difficult to breed for. In this paper we develop a hierarchical nonlinear mixed modeling approach that utilizes the complete field data for wheat genotypes to fit, under the Bayesian paradigm, an "idealized" relative intensity function for the root distribution over depth. Our approach was used to determine heritability: how much of the variation between field samples was purely random vs. being mechanistically driven by the plant genetics? Based on the genotypic intensity functions, the overall heritability estimate was 0.62 (95% Bayesian confidence interval was 0.52 to 0.71). Despite root count profiles that were statistically very noisy, our approach led

  5. A new hierarchical Bayesian approach to analyse environmental and climatic influences on debris flow occurrence

    Science.gov (United States)

    Jomelli, Vincent; Pavlova, Irina; Eckert, Nicolas; Grancher, Delphine; Brunstein, Daniel

    2015-12-01

    How can debris flow occurrences be modelled at regional scale and take both environmental and climatic conditions into account? And, of the two, which has the most influence on debris flow activity? In this paper, we try to answer these questions with an innovative Bayesian hierarchical probabilistic model that simultaneously accounts for how debris flows respond to environmental and climatic variables. In it, full decomposition of space and time effects in occurrence probabilities is assumed, revealing an environmental and a climatic trend shared by all years/catchments, respectively, clearly distinguished from residual "random" effects. The resulting regional and annual occurrence probabilities evaluated as functions of the covariates make it possible to weight the respective contribution of the different terms and, more generally, to check the model performances at different spatio-temporal scales. After suitable validation, the model can be used to make predictions at undocumented sites and could be used in further studies for predictions under future climate conditions. Also, the Bayesian paradigm easily copes with missing data, thus making it possible to account for events that may have been missed during surveys. As a case study, we extract 124 debris flow event triggered between 1970 and 2005 in 27 catchments located in the French Alps from the French national natural hazard survey and model their variability of occurrence considering environmental and climatic predictors at the same time. We document the environmental characteristics of each debris flow catchment (morphometry, lithology, land cover, and the presence of permafrost). We also compute 15 climate variables including mean temperature and precipitation between May and October and the number of rainy days with daily cumulative rainfall greater than 10/15/20/25/30/40 mm day- 1. Application of our model shows that the combination of environmental and climatic predictors explained 77% of the overall

  6. Selenocompounds in juvenile white sturgeon: estimating absorption, disposition, and elimination of selenium using Bayesian hierarchical modeling.

    Science.gov (United States)

    Huang, Susie Shih-Yin; Strathe, Anders Bjerring; Hung, Silas S O; Boston, Raymond C; Fadel, James G

    2012-03-01

    The biological function of selenium (Se) is determined by its form and concentration. Selenium is an essential micronutrient for all vertebrates, however, at environmental levels, it is a potent toxin. In the San Francisco Bay-Delta, Se pollution threatens top predatory fish, including white sturgeon. A multi-compartmental Bayesian hierarchical model was developed to estimate the fractional rates of absorption, disposition, and elimination of selenocompounds, in white sturgeon, from tissue measurements obtained in a previous study (Huang et al., 2012). This modeling methodology allows for a population based approach to estimate kinetic physiological parameters in white sturgeon. Briefly, thirty juvenile white sturgeon (five per treatment) were orally intubated with a control (no selenium) or a single dose of Se (500 μg Se/kg body weight) in the form of one inorganic (Selenite) or four organic selenocompounds: selenocystine (SeCys), l-selenomethionine (SeMet), Se-methylseleno-l-cysteine (MSeCys), or selenoyeast (SeYeast). Blood and urine Se were measured at intervals throughout the 48h post intubation period and eight tissues were sampled at 48 h. The model is composed of four state variables, conceptually the gut (Q1), blood (Q2), and tissue (Q3); and urine (Q0), all in units of μg Se. Six kinetics parameters were estimated: the fractional rates [1/h] of absorption, tissue disposition, tissue release, and urinary elimination (k12, k23, k32, and k20), the proportion of the absorbed dose eliminated through the urine (f20), and the distribution blood volume (V; percent body weight, BW). The parameter k12 was higher in sturgeon given the organic Se forms, in the descending order of MSeCys > SeMet > SeCys > Selenite > SeYeast. The parameters k23 and k32 followed similar patterns, and f20 was lowest in fish given MSeCys. Selenium form did not affect k20 or V. The parameter differences observed can be attributed to the different mechanisms of transmucosal transport

  7. Differentiating Wheat Genotypes by Bayesian Hierarchical Nonlinear Mixed Modeling of Wheat Root Density

    Science.gov (United States)

    Wasson, Anton P.; Chiu, Grace S.; Zwart, Alexander B.; Binns, Timothy R.

    2017-01-01

    Ensuring future food security for a growing population while climate change and urban sprawl put pressure on agricultural land will require sustainable intensification of current farming practices. For the crop breeder this means producing higher crop yields with less resources due to greater environmental stresses. While easy gains in crop yield have been made mostly “above ground,” little progress has been made “below ground”; and yet it is these root system traits that can improve productivity and resistance to drought stress. Wheat pre-breeders use soil coring and core-break counts to phenotype root architecture traits, with data collected on rooting density for hundreds of genotypes in small increments of depth. The measured densities are both large datasets and highly variable even within the same genotype, hence, any rigorous, comprehensive statistical analysis of such complex field data would be technically challenging. Traditionally, most attributes of the field data are therefore discarded in favor of simple numerical summary descriptors which retain much of the high variability exhibited by the raw data. This poses practical challenges: although plant scientists have established that root traits do drive resource capture in crops, traits that are more randomly (rather than genetically) determined are difficult to breed for. In this paper we develop a hierarchical nonlinear mixed modeling approach that utilizes the complete field data for wheat genotypes to fit, under the Bayesian paradigm, an “idealized” relative intensity function for the root distribution over depth. Our approach was used to determine heritability: how much of the variation between field samples was purely random vs. being mechanistically driven by the plant genetics? Based on the genotypic intensity functions, the overall heritability estimate was 0.62 (95% Bayesian confidence interval was 0.52 to 0.71). Despite root count profiles that were statistically very noisy, our

  8. Hierarchical Bayesian inference for the EEG inverse problem using realistic FE head models: depth localization and source separation for focal primary currents.

    Science.gov (United States)

    Lucka, Felix; Pursiainen, Sampsa; Burger, Martin; Wolters, Carsten H

    2012-07-16

    The estimation of the activity-related ion currents by measuring the induced electromagnetic fields at the head surface is a challenging and severely ill-posed inverse problem. This is especially true in the recovery of brain networks involving deep-lying sources by means of EEG/MEG recordings which is still a challenging task for any inverse method. Recently, hierarchical Bayesian modeling (HBM) emerged as a unifying framework for current density reconstruction (CDR) approaches comprising most established methods as well as offering promising new methods. Our work examines the performance of fully-Bayesian inference methods for HBM for source configurations consisting of few, focal sources when used with realistic, high-resolution finite element (FE) head models. The main foci of interest are the correct depth localization, a well-known source of systematic error of many CDR methods, and the separation of single sources in multiple-source scenarios. Both aspects are very important in the analysis of neurophysiological data and in clinical applications. For these tasks, HBM provides a promising framework and is able to improve upon established CDR methods such as minimum norm estimation (MNE) or sLORETA in many aspects. For challenging multiple-source scenarios where the established methods show crucial errors, promising results are attained. Additionally, we introduce Wasserstein distances as performance measures for the validation of inverse methods in complex source scenarios.

  9. msBayes: Pipeline for testing comparative phylogeographic histories using hierarchical approximate Bayesian computation

    Directory of Open Access Journals (Sweden)

    Takebayashi Naoki

    2007-07-01

    Full Text Available Abstract Background Although testing for simultaneous divergence (vicariance across different population-pairs that span the same barrier to gene flow is of central importance to evolutionary biology, researchers often equate the gene tree and population/species tree thereby ignoring stochastic coalescent variance in their conclusions of temporal incongruence. In contrast to other available phylogeographic software packages, msBayes is the only one that analyses data from multiple species/population pairs under a hierarchical model. Results msBayes employs approximate Bayesian computation (ABC under a hierarchical coalescent model to test for simultaneous divergence (TSD in multiple co-distributed population-pairs. Simultaneous isolation is tested by estimating three hyper-parameters that characterize the degree of variability in divergence times across co-distributed population pairs while allowing for variation in various within population-pair demographic parameters (sub-parameters that can affect the coalescent. msBayes is a software package consisting of several C and R programs that are run with a Perl "front-end". Conclusion The method reasonably distinguishes simultaneous isolation from temporal incongruence in the divergence of co-distributed population pairs, even with sparse sampling of individuals. Because the estimate step is decoupled from the simulation step, one can rapidly evaluate different ABC acceptance/rejection conditions and the choice of summary statistics. Given the complex and idiosyncratic nature of testing multi-species biogeographic hypotheses, we envision msBayes as a powerful and flexible tool for tackling a wide array of difficult research questions that use population genetic data from multiple co-distributed species. The msBayes pipeline is available for download at http://msbayes.sourceforge.net/ under an open source license (GNU Public License. The msBayes pipeline is comprised of several C and R programs that

  10. A hierarchical framework of aquatic ecological units in North America (Nearctic Zone).

    Science.gov (United States)

    James R. Maxwell; Clayton J. Edwards; Mark E. Jensen; Steven J. Paustian; Harry Parrott; Donley M. Hill

    1995-01-01

    Proposes a framework for classifying and mapping aquatic systems at various scales using ecologically significant physical and biological criteria. Classification and mapping concepts follow tenets of hierarchical theory, pattern recognition, and driving variables. Criteria are provided for the hierarchical classification and mapping of aquatic ecological units of...

  11. Modeling type 1 and type 2 diabetes mellitus incidence in youth: an application of Bayesian hierarchical regression for sparse small area data.

    Science.gov (United States)

    Song, Hae-Ryoung; Lawson, Andrew; D'Agostino, Ralph B; Liese, Angela D

    2011-03-01

    Sparse count data violate assumptions of traditional Poisson models due to the excessive amount of zeros, and modeling sparse data becomes challenging. However, since aggregation to reduce sparseness may result in biased estimates of risk, solutions need to be found at the level of disaggregated data. We investigated different statistical approaches within a Bayesian hierarchical framework for modeling sparse data without aggregation of data. We compared our proposed models with the traditional Poisson model and the zero-inflated model based on simulated data. We applied statistical models to type 1 and type 2 diabetes in youth 10-19 years known as rare diseases, and compared models using the inference results and various model diagnostic tools. We showed that one of the models we proposed, a sparse Poisson convolution model, performed better than other models in the simulation and application based on the deviance information criterion (DIC) and the mean squared prediction error.

  12. The application of a hierarchical Bayesian spatiotemporal model for forecasting the SAA trapped particle flux distribution

    Indian Academy of Sciences (India)

    Wayan Suparta; Gusrizal

    2014-08-01

    We implement a hierarchical Bayesian spatiotemporal (HBST) model to forecast the daily trapped particle flux distribution over the South Atlantic Anomaly (SAA) region. The National Oceanic and Atmospheric Administration (NOAA)-15 data from 1–30 March 2008 with particle energies as < 30 keV (mep0e1) and < 300 keV (mep0e3) for electrons and 80–240 keV (mep0p2) and < 6900 keV (mep0p6) for protons were used as the model input to forecast the flux values on 31 March 2008. Data were transformed into logarithmic values and gridded in a 5° × 5° longitude and latitude size to fulfill the modeling precondition. A Monte Carlo Markov chain (MCMC) was then performed to solve the HBST Gaussian Process (GP) model by using the Gibbs sampling method. The result for this model was interpolated by a Kriging technique to achieve the whole distribution figure over the SAA region. Statistical results of the root mean square error (RMSE), mean absolute percentage error (MAPE), and bias (BIAS) showed a good indicator of the HBST method. The statistical validation also indicated the high variability of particle flux values in the SAA core area. The visual validation showed a powerful combination of HBST-GP model with Kriging interpolation technique. The Kriging also produced a good quality of the distribution map of particle flux over the SAA region as indicated by its small variance value. This suggests that the model can be applied in the development of a Low Earth Orbit (LEO)-Equatorial satellite for monitoring trapped particle radiation hazard.

  13. Cosmological parameters, shear maps and power spectra from CFHTLenS using Bayesian hierarchical inference

    Science.gov (United States)

    Alsing, Justin; Heavens, Alan; Jaffe, Andrew H.

    2017-04-01

    We apply two Bayesian hierarchical inference schemes to infer shear power spectra, shear maps and cosmological parameters from the Canada-France-Hawaii Telescope (CFHTLenS) weak lensing survey - the first application of this method to data. In the first approach, we sample the joint posterior distribution of the shear maps and power spectra by Gibbs sampling, with minimal model assumptions. In the second approach, we sample the joint posterior of the shear maps and cosmological parameters, providing a new, accurate and principled approach to cosmological parameter inference from cosmic shear data. As a first demonstration on data, we perform a two-bin tomographic analysis to constrain cosmological parameters and investigate the possibility of photometric redshift bias in the CFHTLenS data. Under the baseline ΛCDM (Λ cold dark matter) model, we constrain S_8 = σ _8(Ω _m/0.3)^{0.5} = 0.67+0.03-0.03 (68 per cent), consistent with previous CFHTLenS analyses but in tension with Planck. Adding neutrino mass as a free parameter, we are able to constrain ∑mν linear redshift-dependent photo-z bias Δz = p2(z - p1), we find p_1=-0.25+0.53-0.60 and p_2 = -0.15+0.17-0.15, and tension with Planck is only alleviated under very conservative prior assumptions. Neither the non-minimal neutrino mass nor photo-z bias models are significantly preferred by the CFHTLenS (two-bin tomography) data.

  14. TYPE Ia SUPERNOVA COLORS AND EJECTA VELOCITIES: HIERARCHICAL BAYESIAN REGRESSION WITH NON-GAUSSIAN DISTRIBUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mandel, Kaisey S.; Kirshner, Robert P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Foley, Ryan J., E-mail: kmandel@cfa.harvard.edu [Astronomy Department, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States)

    2014-12-20

    We investigate the statistical dependence of the peak intrinsic colors of Type Ia supernovae (SNe Ia) on their expansion velocities at maximum light, measured from the Si II λ6355 spectral feature. We construct a new hierarchical Bayesian regression model, accounting for the random effects of intrinsic scatter, measurement error, and reddening by host galaxy dust, and implement a Gibbs sampler and deviance information criteria to estimate the correlation. The method is applied to the apparent colors from BVRI light curves and Si II velocity data for 79 nearby SNe Ia. The apparent color distributions of high-velocity (HV) and normal velocity (NV) supernovae exhibit significant discrepancies for B – V and B – R, but not other colors. Hence, they are likely due to intrinsic color differences originating in the B band, rather than dust reddening. The mean intrinsic B – V and B – R color differences between HV and NV groups are 0.06 ± 0.02 and 0.09 ± 0.02 mag, respectively. A linear model finds significant slopes of –0.021 ± 0.006 and –0.030 ± 0.009 mag (10{sup 3} km s{sup –1}){sup –1} for intrinsic B – V and B – R colors versus velocity, respectively. Because the ejecta velocity distribution is skewed toward high velocities, these effects imply non-Gaussian intrinsic color distributions with skewness up to +0.3. Accounting for the intrinsic-color-velocity correlation results in corrections to A{sub V} extinction estimates as large as –0.12 mag for HV SNe Ia and +0.06 mag for NV events. Velocity measurements from SN Ia spectra have the potential to diminish systematic errors from the confounding of intrinsic colors and dust reddening affecting supernova distances.

  15. Regularization of non-homogeneous dynamic Bayesian networks with global information-coupling based on hierarchical Bayesian models

    NARCIS (Netherlands)

    Grzegorczyk, Marco; Husmeier, Dirk

    2013-01-01

    To relax the homogeneity assumption of classical dynamic Bayesian networks (DBNs), various recent studies have combined DBNs with multiple changepoint processes. The underlying assumption is that the parameters associated with time series segments delimited by multiple changepoints are a priori inde

  16. A Bayesian Hierarchical Model for Spatio-Temporal Prediction and Uncertainty Assessment Using Repeat LiDAR Acquisitions for the Kenai Peninsula, AK, USA

    Science.gov (United States)

    Babcock, C. R.; Andersen, H. E.; Finley, A. O.; Cook, B.; Morton, D. C.

    2015-12-01

    Models using repeat LiDAR and field campaigns may be one mechanism to monitor carbon storage and flux in forested regions. Considering the ability of multi-temporal LiDAR to estimate growth, it is not surprising that there is great interest in developing forest carbon monitoring strategies that rely on repeated LiDAR acquisitions. Allowing for sparser field campaigns, LiDAR stands to make monitoring forest carbon cheaper and more efficient than field-only sampling procedures. Here, we look to the spatio-temporally data-rich Kenai Peninsula in Alaska to examine the potential for Bayesian spatio-temporal mapping of forest carbon storage and uncertainty. The framework explored here can predict forest carbon through space and time, while formally propagating uncertainty through to prediction. Bayesian spatio-temporal models are flexible frameworks allowing for forest growth processes to be formally integrated into the model. By incorporating a mechanism for growth---using temporally repeated field and LiDAR data---we can more fully exploit the information-rich inventory network to improve prediction accuracy. LiDAR data for the Kenai Peninsula has been collected on four different occasions---spatially coincident LiDAR strip samples in 2004, 09 and 14, along with a wall-to-wall collection in 2008. There were 436 plots measured twice between 2002 and 2014. LiDAR was acquired at least once over most inventory plots with many having LiDAR collected during 2, 3 or 4 different campaigns. Results from this research will impact how forests are inventoried. It is too expensive to monitor terrestrial carbon using field-only sampling strategies and currently proposed LiDAR model-based techniques lack the ability to properly utilize temporally repeated and misaligned data. Bayesian hierarchical spatio-temporal models offer a solution to these shortcomings and allow for formal predictive error assessment, which is useful for policy development and decision making.

  17. A Bayesian framework for uncertainty formulation of engineering design proces

    NARCIS (Netherlands)

    Rajabalinejad, M.; Spitas, C.; Kahraman, Cengiz; Kerre, Etienne; Bozbura, Faik Tunc

    2012-01-01

    Uncertainties in the design process are investigated in this paper. A formal Bayesian method is presented for designers to quantify uncertainties in design process. The uncertainties are implemented in a decision support system that plays a key role in design of complex projects where a large and mu

  18. A sow replacement model using Bayesian updating in a three-level hierarchic Markov process. I. Biological model

    DEFF Research Database (Denmark)

    Kristensen, Anders Ringgaard; Søllested, Thomas Algot

    2004-01-01

    that really uses all these methodological improvements. In this paper, the biological model describing the performance and feed intake of sows is presented. In particular, estimation of herd specific parameters is emphasized. The optimization model is described in a subsequent paper......Several replacement models have been presented in literature. In other applicational areas like dairy cow replacement, various methodological improvements like hierarchical Markov processes and Bayesian updating have been implemented, but not in sow models. Furthermore, there are methodological...... improvements like multi-level hierarchical Markov processes with decisions on multiple time scales, efficient methods for parameter estimations at herd level and standard software that has been hardly implemented at all in any replacement model. The aim of this study is to present a sow replacement model...

  19. A hierarchical Bayesian approach to the modified Bartlett-Lewis rectangular pulse model for a joint estimation of model parameters across stations

    Science.gov (United States)

    Kim, Jang-Gyeong; Kwon, Hyun-Han; Kim, Dongkyun

    2017-01-01

    Poisson cluster stochastic rainfall generators (e.g., modified Bartlett-Lewis rectangular pulse, MBLRP) have been widely applied to generate synthetic sub-daily rainfall sequences. The MBLRP model reproduces the underlying distribution of the rainfall generating process. The existing optimization techniques are typically based on individual parameter estimates that treat each parameter as independent. However, parameter estimates sometimes compensate for the estimates of other parameters, which can cause high variability in the results if the covariance structure is not formally considered. Moreover, uncertainty associated with model parameters in the MBLRP rainfall generator is not usually addressed properly. Here, we develop a hierarchical Bayesian model (HBM)-based MBLRP model to jointly estimate parameters across weather stations and explicitly consider the covariance and uncertainty through a Bayesian framework. The model is tested using weather stations in South Korea. The HBM-based MBLRP model improves the identification of parameters with better reproduction of rainfall statistics at various temporal scales. Additionally, the spatial variability of the parameters across weather stations is substantially reduced compared to that of other methods.

  20. A hierarchical method for Bayesian inference of rate parameters from shock tube data: Application to the study of the reaction of hydroxyl with 2-methylfuran

    KAUST Repository

    Kim, Daesang

    2017-06-22

    We developed a novel two-step hierarchical method for the Bayesian inference of the rate parameters of a target reaction from time-resolved concentration measurements in shock tubes. The method was applied to the calibration of the parameters of the reaction of hydroxyl with 2-methylfuran, which is studied experimentally via absorption measurements of the OH radical\\'s concentration following shock-heating. In the first step of the approach, each shock tube experiment is treated independently to infer the posterior distribution of the rate constant and error hyper-parameter that best explains the OH signal. In the second step, these posterior distributions are sampled to calibrate the parameters appearing in the Arrhenius reaction model for the rate constant. Furthermore, the second step is modified and repeated in order to explore alternative rate constant models and to assess the effect of uncertainties in the reflected shock\\'s temperature. Comparisons of the estimates obtained via the proposed methodology against the common least squares approach are presented. The relative merits of the novel Bayesian framework are highlighted, especially with respect to the opportunity to utilize the posterior distributions of the parameters in future uncertainty quantification studies.

  1. Using Bayesian hierarchical models to better understand nitrate sources and sinks in agricultural watersheds.

    Science.gov (United States)

    Xia, Yongqiu; Weller, Donald E; Williams, Meghan N; Jordan, Thomas E; Yan, Xiaoyuan

    2016-11-15

    Export coefficient models (ECMs) are often used to predict nutrient sources and sinks in watersheds because ECMs can flexibly incorporate processes and have minimal data requirements. However, ECMs do not quantify uncertainties in model structure, parameters, or predictions; nor do they account for spatial and temporal variability in land characteristics, weather, and management practices. We applied Bayesian hierarchical methods to address these problems in ECMs used to predict nitrate concentration in streams. We compared four model formulations, a basic ECM and three models with additional terms to represent competing hypotheses about the sources of error in ECMs and about spatial and temporal variability of coefficients: an ADditive Error Model (ADEM), a SpatioTemporal Parameter Model (STPM), and a Dynamic Parameter Model (DPM). The DPM incorporates a first-order random walk to represent spatial correlation among parameters and a dynamic linear model to accommodate temporal correlation. We tested the modeling approach in a proof of concept using watershed characteristics and nitrate export measurements from watersheds in the Coastal Plain physiographic province of the Chesapeake Bay drainage. Among the four models, the DPM was the best--it had the lowest mean error, explained the most variability (R(2) = 0.99), had the narrowest prediction intervals, and provided the most effective tradeoff between fit complexity (its deviance information criterion, DIC, was 45.6 units lower than any other model, indicating overwhelming support for the DPM). The superiority of the DPM supports its underlying hypothesis that the main source of error in ECMs is their failure to account for parameter variability rather than structural error. Analysis of the fitted DPM coefficients for cropland export and instream retention revealed some of the factors controlling nitrate concentration: cropland nitrate exports were positively related to stream flow and watershed average slope

  2. FUZZY CLUSTERING BASED BAYESIAN FRAMEWORK TO PREDICT MENTAL HEALTH PROBLEMS AMONG CHILDREN

    Directory of Open Access Journals (Sweden)

    M R Sumathi

    2017-04-01

    Full Text Available According to World Health Organization, 10-20% of children and adolescents all over the world are experiencing mental disorders. Correct diagnosis of mental disorders at an early stage improves the quality of life of children and avoids complicated problems. Various expert systems using artificial intelligence techniques have been developed for diagnosing mental disorders like Schizophrenia, Depression, Dementia, etc. This study focuses on predicting basic mental health problems of children, like Attention problem, Anxiety problem, Developmental delay, Attention Deficit Hyperactivity Disorder (ADHD, Pervasive Developmental Disorder(PDD, etc. using the machine learning techniques, Bayesian Networks and Fuzzy clustering. The focus of the article is on learning the Bayesian network structure using a novel Fuzzy Clustering Based Bayesian network structure learning framework. The performance of the proposed framework was compared with the other existing algorithms and the experimental results have shown that the proposed framework performs better than the earlier algorithms.

  3. Bayesian uncertainty quantification and propagation in molecular dynamics simulations: A high performance computing framework

    Science.gov (United States)

    Angelikopoulos, Panagiotis; Papadimitriou, Costas; Koumoutsakos, Petros

    2012-10-01

    We present a Bayesian probabilistic framework for quantifying and propagating the uncertainties in the parameters of force fields employed in molecular dynamics (MD) simulations. We propose a highly parallel implementation of the transitional Markov chain Monte Carlo for populating the posterior probability distribution of the MD force-field parameters. Efficient scheduling algorithms are proposed to handle the MD model runs and to distribute the computations in clusters with heterogeneous architectures. Furthermore, adaptive surrogate models are proposed in order to reduce the computational cost associated with the large number of MD model runs. The effectiveness and computational efficiency of the proposed Bayesian framework is demonstrated in MD simulations of liquid and gaseous argon.

  4. Group Tracking of Space Objects within Bayesian Framework

    Directory of Open Access Journals (Sweden)

    Huang Jian

    2013-03-01

    Full Text Available It is imperative to efficiently track and catalogue the extensive dense group space objects for space surveillance. As the main instrument for Low Earth Orbit (LEO space surveillance, ground-based radar system is usually limited by its resolving power while tracking the small space debris with high dense population. Thus, the obtained information about target detection and observation will be seriously missed, which makes the traditional tracking method inefficient. Therefore, we conceived the concept of group tracking. The overall motional tendency of the group objects is particularly focused, while the individual object is simultaneously tracked in effect. The tracking procedure is based on the Bayesian frame. According to the restriction among the group center and observations of multi-targets, the reconstruction of targets’ number and estimation of individual trajectory can be greatly improved on the accuracy and robustness in the case of high miss alarm. The Markov Chain Monte Carlo Particle (MCMC-Particle algorism is utilized for solving the Bayesian integral problem. Finally, the simulation of the group space objects tracking is carried out to validate the efficiency of the proposed method.

  5. Bayesian Option Pricing Framework with Stochastic Volatility for FX Data

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2016-12-01

    Full Text Available The application of stochastic volatility (SV models in the option pricing literature usually assumes that the market has sufficient option data to calibrate the model’s risk-neutral parameters. When option data are insufficient or unavailable, market practitioners must estimate the model from the historical returns of the underlying asset and then transform the resulting model into its risk-neutral equivalent. However, the likelihood function of an SV model can only be expressed in a high-dimensional integration, which makes the estimation a highly challenging task. The Bayesian approach has been the classical way to estimate SV models under the data-generating (physical probability measure, but the transformation from the estimated physical dynamic into its risk-neutral counterpart has not been addressed. Inspired by the generalized autoregressive conditional heteroskedasticity (GARCH option pricing approach by Duan in 1995, we propose an SV model that enables us to simultaneously and conveniently perform Bayesian inference and transformation into risk-neutral dynamics. Our model relaxes the normality assumption on innovations of both return and volatility processes, and our empirical study shows that the estimated option prices generate realistic implied volatility smile shapes. In addition, the volatility premium is almost flat across strike prices, so adding a few option data to the historical time series of the underlying asset can greatly improve the estimation of option prices.

  6. Estimating temporal trend in the presence of spatial complexity: A Bayesian hierarchical model for a wetland plant population undergoing restoration

    Science.gov (United States)

    Rodhouse, T.J.; Irvine, K.M.; Vierling, K.T.; Vierling, L.A.

    2011-01-01

    Monitoring programs that evaluate restoration and inform adaptive management are important for addressing environmental degradation. These efforts may be well served by spatially explicit hierarchical approaches to modeling because of unavoidable spatial structure inherited from past land use patterns and other factors. We developed Bayesian hierarchical models to estimate trends from annual density counts observed in a spatially structured wetland forb (Camassia quamash [camas]) population following the cessation of grazing and mowing on the study area, and in a separate reference population of camas. The restoration site was bisected by roads and drainage ditches, resulting in distinct subpopulations ("zones") with different land use histories. We modeled this spatial structure by fitting zone-specific intercepts and slopes. We allowed spatial covariance parameters in the model to vary by zone, as in stratified kriging, accommodating anisotropy and improving computation and biological interpretation. Trend estimates provided evidence of a positive effect of passive restoration, and the strength of evidence was influenced by the amount of spatial structure in the model. Allowing trends to vary among zones and accounting for topographic heterogeneity increased precision of trend estimates. Accounting for spatial autocorrelation shifted parameter coefficients in ways that varied among zones depending on strength of statistical shrinkage, autocorrelation and topographic heterogeneity-a phenomenon not widely described. Spatially explicit estimates of trend from hierarchical models will generally be more useful to land managers than pooled regional estimates and provide more realistic assessments of uncertainty. The ability to grapple with historical contingency is an appealing benefit of this approach.

  7. A continuous-time Bayesian network reliability modeling and analysis framework

    NARCIS (Netherlands)

    Boudali, H.; Dugan, J.B.

    2006-01-01

    We present a continuous-time Bayesian network (CTBN) framework for dynamic systems reliability modeling and analysis. Dynamic systems exhibit complex behaviors and interactions between their components; where not only the combination of failure events matters, but so does the sequence ordering of th

  8. Bayesian Integration of Large Scale SNA Data Frameworks with an Application to Guatemala

    NARCIS (Netherlands)

    Van Tongeren, J.W.; Magnus, J.R.

    2011-01-01

    We present a Bayesian estimation method applied to an extended set of national accounts data and estimates of approximately 2500 variables. The method is based on conventional national accounts frameworks as compiled by countries in Central America, in particular Guatemala, and on concepts that are

  9. A continuous-time Bayesian network reliability modeling and analysis framework

    NARCIS (Netherlands)

    Boudali, H.; Dugan, J.B.

    2006-01-01

    We present a continuous-time Bayesian network (CTBN) framework for dynamic systems reliability modeling and analysis. Dynamic systems exhibit complex behaviors and interactions between their components; where not only the combination of failure events matters, but so does the sequence ordering of th

  10. A Bayesian modelling framework for tornado occurrences in North America.

    Science.gov (United States)

    Cheng, Vincent Y S; Arhonditsis, George B; Sills, David M L; Gough, William A; Auld, Heather

    2015-03-25

    Tornadoes represent one of nature's most hazardous phenomena that have been responsible for significant destruction and devastating fatalities. Here we present a Bayesian modelling approach for elucidating the spatiotemporal patterns of tornado activity in North America. Our analysis shows a significant increase in the Canadian Prairies and the Northern Great Plains during the summer, indicating a clear transition of tornado activity from the United States to Canada. The linkage between monthly-averaged atmospheric variables and likelihood of tornado events is characterized by distinct seasonality; the convective available potential energy is the predominant factor in the summer; vertical wind shear appears to have a strong signature primarily in the winter and secondarily in the summer; and storm relative environmental helicity is most influential in the spring. The present probabilistic mapping can be used to draw inference on the likelihood of tornado occurrence in any location in North America within a selected time period of the year.

  11. Time-series gas prediction model using LS-SVR within a Bayesian framework

    Institute of Scientific and Technical Information of China (English)

    Qiao Meiying; Ma Xiaoping; Lan Jianyi; Wang Ying

    2011-01-01

    The traditional least squares support vector regression (LS-SVR) model, using cross validation to determine the regularization parameter and kernel parameter, is time-consuming. We propose a Bayesian evidence framework to infer the LS-SVR model parameters. Three levels Bayesian inferences are used to determine the model parameters, regularization hyper-parameters and tune the nuclear parameters by model comparison. On this basis, we established Bayesian LS-SVR time-series gas forecasting models and provide steps for the algorithm. The gas outburst data of a Hebi 10th mine working face is used to validate the model. The optimal embedding dimension and delay time of the time series were obtained by the smallest differential entropy method. Finally, within a MATLAB7.1 environment, we used actual coal gas data to compare the traditional LS-SVR and the Bayesian LS-SVR with LS-SVMlab1.5 Toolbox simulation. The results show that the Bayesian framework of an LS-SVR significantly improves the speed and accuracy of the forecast

  12. Bayesian hierarchical modelling of continuous non-negative longitudinal data with a spike at zero: An application to a study of birds visiting gardens in winter.

    Science.gov (United States)

    Swallow, Ben; Buckland, Stephen T; King, Ruth; Toms, Mike P

    2016-03-01

    The development of methods for dealing with continuous data with a spike at zero has lagged behind those for overdispersed or zero-inflated count data. We consider longitudinal ecological data corresponding to an annual average of 26 weekly maximum counts of birds, and are hence effectively continuous, bounded below by zero but also with a discrete mass at zero. We develop a Bayesian hierarchical Tweedie regression model that can directly accommodate the excess number of zeros common to this type of data, whilst accounting for both spatial and temporal correlation. Implementation of the model is conducted in a Markov chain Monte Carlo (MCMC) framework, using reversible jump MCMC to explore uncertainty across both parameter and model spaces. This regression modelling framework is very flexible and removes the need to make strong assumptions about mean-variance relationships a priori. It can also directly account for the spike at zero, whilst being easily applicable to other types of data and other model formulations. Whilst a correlative study such as this cannot prove causation, our results suggest that an increase in an avian predator may have led to an overall decrease in the number of one of its prey species visiting garden feeding stations in the United Kingdom. This may reflect a change in behaviour of house sparrows to avoid feeding stations frequented by sparrowhawks, or a reduction in house sparrow population size as a result of sparrowhawk increase.

  13. Probabilistic risk assessment framework for structural systems under multiple hazards using Bayesian statistics

    Energy Technology Data Exchange (ETDEWEB)

    Kwag, Shinyoung [North Carolina State University, Raleigh, NC 27695 (United States); Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Gupta, Abhinav, E-mail: agupta1@ncsu.edu [North Carolina State University, Raleigh, NC 27695 (United States)

    2017-04-15

    Highlights: • This study presents the development of Bayesian framework for probabilistic risk assessment (PRA) of structural systems under multiple hazards. • The concepts of Bayesian network and Bayesian inference are combined by mapping the traditionally used fault trees into a Bayesian network. • The proposed mapping allows for consideration of dependencies as well as correlations between events. • Incorporation of Bayesian inference permits a novel way for exploration of a scenario that is likely to result in a system level “vulnerability.” - Abstract: Conventional probabilistic risk assessment (PRA) methodologies (USNRC, 1983; IAEA, 1992; EPRI, 1994; Ellingwood, 2001) conduct risk assessment for different external hazards by considering each hazard separately and independent of each other. The risk metric for a specific hazard is evaluated by a convolution of the fragility and the hazard curves. The fragility curve for basic event is obtained by using empirical, experimental, and/or numerical simulation data for a particular hazard. Treating each hazard as an independently can be inappropriate in some cases as certain hazards are statistically correlated or dependent. Examples of such correlated events include but are not limited to flooding induced fire, seismically induced internal or external flooding, or even seismically induced fire. In the current practice, system level risk and consequence sequences are typically calculated using logic trees to express the causative relationship between events. In this paper, we present the results from a study on multi-hazard risk assessment that is conducted using a Bayesian network (BN) with Bayesian inference. The framework can consider statistical dependencies among risks from multiple hazards, allows updating by considering the newly available data/information at any level, and provide a novel way to explore alternative failure scenarios that may exist due to vulnerabilities.

  14. Optimizing Battery Life for Electric UAVs using a Bayesian Framework

    Data.gov (United States)

    National Aeronautics and Space Administration — In summary, this paper lays a simple flight plan optimization strategy based on the particle filtering framework described in [5]. This is meant as a first step in...

  15. Sparse Estimation Using Bayesian Hierarchical Prior Modeling for Real and Complex Linear Models

    DEFF Research Database (Denmark)

    Pedersen, Niels Lovmand; Manchón, Carles Navarro; Badiu, Mihai Alin;

    2015-01-01

    In sparse Bayesian learning (SBL), Gaussian scale mixtures (GSMs) have been used to model sparsity-inducing priors that realize a class of concave penalty functions for the regression task in real-valued signal models. Motivated by the relative scarcity of formal tools for SBL in complex-valued m......In sparse Bayesian learning (SBL), Gaussian scale mixtures (GSMs) have been used to model sparsity-inducing priors that realize a class of concave penalty functions for the regression task in real-valued signal models. Motivated by the relative scarcity of formal tools for SBL in complex...

  16. Stitched Together: Transitioning CMS to a Hierarchical Threaded Framework

    Science.gov (United States)

    Jones, C. D.; Sexton-Kennedy, E.

    2014-06-01

    Modern computing hardware is transitioning from using a single high frequency complicated computing core to many lower frequency simpler cores. As part of that transition, hardware manufacturers are urging developers to exploit concurrency in their programs via operating system threads. We will present CMS' effort to evolve our single threaded framework into a highly concurrent framework. We will outline the design of the new framework and how the design was constrained by the initial single threaded design. Then we will discuss the tools we have used to identify and correct thread unsafe user code. Finally we will end with a description of the coding patterns we found useful when converting code to being thread-safe.

  17. Inference of Environmental Factor-Microbe and Microbe-Microbe Associations from Metagenomic Data Using a Hierarchical Bayesian Statistical Model.

    Science.gov (United States)

    Yang, Yuqing; Chen, Ning; Chen, Ting

    2017-01-25

    The inference of associations between environmental factors and microbes and among microbes is critical to interpreting metagenomic data, but compositional bias, indirect associations resulting from common factors, and variance within metagenomic sequencing data limit the discovery of associations. To account for these problems, we propose metagenomic Lognormal-Dirichlet-Multinomial (mLDM), a hierarchical Bayesian model with sparsity constraints, to estimate absolute microbial abundance and simultaneously infer both conditionally dependent associations among microbes and direct associations between microbes and environmental factors. We empirically show the effectiveness of the mLDM model using synthetic data, data from the TARA Oceans project, and a colorectal cancer dataset. Finally, we apply mLDM to 16S sequencing data from the western English Channel and report several associations. Our model can be used on both natural environmental and human metagenomic datasets, promoting the understanding of associations in the microbial community.

  18. A Framework for Analyzing Software Quality using Hierarchical Clustering

    Directory of Open Access Journals (Sweden)

    Arashdeep Kaur

    2011-02-01

    Full Text Available Fault proneness data available in the early software life cycle from previous releases or similar kind of projects will aid in improving software quality estimations. Various techniques have been proposed in the literature which includes statistical method, machine learning methods, neural network techniques and clustering techniques for the prediction of faulty and non faulty modules in the project. In this study, Hierarchical clustering algorithm is being trained and tested with lifecycle data collected from NASA projects namely, CM1, PC1 and JM1 as predictive models. These predictive models contain requirement metrics and static code metrics. We have combined requirement metric model with static code metric model to get fusion metric model. Further we have investigated that which of the three prediction models is found to be the best prediction model on the basis of fault detection. The basic hypothesis of software quality estimation is that automatic quality prediction models enable verificationexperts to concentrate their attention and resources at problem areas of the system under development. The proposed approach has been implemented in MATLAB 7.4. The results show that when all the prediction techniques are evaluated, the best prediction model is found to be the fusion metric model. This proposed model is also compared with other quality models available in the literature and is found to be efficient for predicting faulty modules.

  19. A Framework for Hierarchical Clustering Based Indexing in Search Engines

    Directory of Open Access Journals (Sweden)

    Parul Gupta

    2011-01-01

    Full Text Available Granting efficient and fast accesses to the index is a key issuefor performances of Web Search Engines. In order to enhancememory utilization and favor fast query resolution, WSEs useInverted File (IF indexes that consist of an array of theposting lists where each posting list is associated with a termand contains the term as well as the identifiers of the documentscontaining the term. Since the document identifiers are stored insorted order, they can be stored as the difference between thesuccessive documents so as to reduce the size of the index. Thispaper describes a clustering algorithm that aims atpartitioning the set of documents into ordered clusters so thatthe documents within the same cluster are similar and are beingassigned the closer document identifiers. Thus the averagevalue of the differences between the successive documents willbe minimized and hence storage space would be saved. Thepaper further presents the extension of this clustering algorithmto be applied for the hierarchical clustering in which similarclusters are clubbed to form a mega cluster and similar megaclusters are then combined to form super cluster. Thus thepaper describes the different levels of clustering whichoptimizes the search process by directing the searchto a specific path from higher levels of clustering to the lowerlevels i.e. from super clusters to mega clusters, then to clustersand finally to the individual documents so that the user gets thebest possible matching results in minimum possible time.

  20. Generic, hierarchical framework for massively parallel Wang-Landau sampling.

    Science.gov (United States)

    Vogel, Thomas; Li, Ying Wai; Wüst, Thomas; Landau, David P

    2013-05-24

    We introduce a parallel Wang-Landau method based on the replica-exchange framework for Monte Carlo simulations. To demonstrate its advantages and general applicability for simulations of complex systems, we apply it to different spin models including spin glasses, the Ising model, and the Potts model, lattice protein adsorption, and the self-assembly process in amphiphilic solutions. Without loss of accuracy, the method gives significant speed-up and potentially scales up to petaflop machines.

  1. Generic, Hierarchical Framework for Massively Parallel Wang-Landau Sampling

    Science.gov (United States)

    Vogel, Thomas; Li, Ying Wai; Wüst, Thomas; Landau, David P.

    2013-05-01

    We introduce a parallel Wang-Landau method based on the replica-exchange framework for Monte Carlo simulations. To demonstrate its advantages and general applicability for simulations of complex systems, we apply it to different spin models including spin glasses, the Ising model, and the Potts model, lattice protein adsorption, and the self-assembly process in amphiphilic solutions. Without loss of accuracy, the method gives significant speed-up and potentially scales up to petaflop machines.

  2. A generic, hierarchical framework for massively parallel Wang Landau sampling

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Thomas [University of Georgia, Athens, GA; Li, Ying Wai [ORNL; Wuest, Thomas [Swiss Federal Research Institute, Switzerland; Landau, David P [University of Georgia, Athens, GA

    2013-01-01

    We introduce a parallel Wang Landau method based on the replica-exchange framework for Monte Carlo simulations. To demonstrate its advantages and general applicability for simulations of com- plex systems, we apply it to the self-assembly process in amphiphilic solutions and to lattice protein adsorption. Without loss of accuracy, the method gives significant speed-up on small architectures like multi-core processors, and should be beneficial for petaflop machines.

  3. A Bayesian framework for automated cardiovascular risk scoring on standard lumbar radiographs

    DEFF Research Database (Denmark)

    Petersen, Peter Kersten; Ganz, Melanie; Mysling, Peter

    2012-01-01

    the score. Since the aorta is invisible on X-ray images, its position is reasoned from (1) the shape and location of the lumbar vertebrae and (2) the location, shape, and orientation of potential calcifications. The proposed framework follows the principle of Bayesian inference, which has several advantages......We present a fully automated framework for scoring a patients risk of cardiovascular disease (CVD) and mortality from a standard lateral radiograph of the lumbar aorta. The framework segments abdominal aortic calcifications for computing a CVD risk score and performs a survival analysis to validate...

  4. Hierarchical Bayesian analysis of outcome- and process-based social preferences and beliefs in Dictator Games and sequential Prisoner's Dilemmas.

    Science.gov (United States)

    Aksoy, Ozan; Weesie, Jeroen

    2014-05-01

    In this paper, using a within-subjects design, we estimate the utility weights that subjects attach to the outcome of their interaction partners in four decision situations: (1) binary Dictator Games (DG), second player's role in the sequential Prisoner's Dilemma (PD) after the first player (2) cooperated and (3) defected, and (4) first player's role in the sequential Prisoner's Dilemma game. We find that the average weights in these four decision situations have the following order: (1)>(2)>(4)>(3). Moreover, the average weight is positive in (1) but negative in (2), (3), and (4). Our findings indicate the existence of strong negative and small positive reciprocity for the average subject, but there is also high interpersonal variation in the weights in these four nodes. We conclude that the PD frame makes subjects more competitive than the DG frame. Using hierarchical Bayesian modeling, we simultaneously analyze beliefs of subjects about others' utility weights in the same four decision situations. We compare several alternative theoretical models on beliefs, e.g., rational beliefs (Bayesian-Nash equilibrium) and a consensus model. Our results on beliefs strongly support the consensus effect and refute rational beliefs: there is a strong relationship between own preferences and beliefs and this relationship is relatively stable across the four decision situations.

  5. Hierarchical Bayesian Spatio-Temporal Analysis of Climatic and Socio-Economic Determinants of Rocky Mountain Spotted Fever.

    Directory of Open Access Journals (Sweden)

    Ram K Raghavan

    Full Text Available This study aims to examine the spatio-temporal dynamics of Rocky Mountain spotted fever (RMSF prevalence in four contiguous states of Midwestern United States, and to determine the impact of environmental and socio-economic factors associated with this disease. Bayesian hierarchical models were used to quantify space and time only trends and spatio-temporal interaction effect in the case reports submitted to the state health departments in the region. Various socio-economic, environmental and climatic covariates screened a priori in a bivariate procedure were added to a main-effects Bayesian model in progressive steps to evaluate important drivers of RMSF space-time patterns in the region. Our results show a steady increase in RMSF incidence over the study period to newer geographic areas, and the posterior probabilities of county-specific trends indicate clustering of high risk counties in the central and southern parts of the study region. At the spatial scale of a county, the prevalence levels of RMSF is influenced by poverty status, average relative humidity, and average land surface temperature (>35°C in the region, and the relevance of these factors in the context of climate-change impacts on tick-borne diseases are discussed.

  6. A Bayesian framework for parameter estimation in dynamical models.

    Directory of Open Access Journals (Sweden)

    Flávio Codeço Coelho

    Full Text Available Mathematical models in biology are powerful tools for the study and exploration of complex dynamics. Nevertheless, bringing theoretical results to an agreement with experimental observations involves acknowledging a great deal of uncertainty intrinsic to our theoretical representation of a real system. Proper handling of such uncertainties is key to the successful usage of models to predict experimental or field observations. This problem has been addressed over the years by many tools for model calibration and parameter estimation. In this article we present a general framework for uncertainty analysis and parameter estimation that is designed to handle uncertainties associated with the modeling of dynamic biological systems while remaining agnostic as to the type of model used. We apply the framework to fit an SIR-like influenza transmission model to 7 years of incidence data in three European countries: Belgium, the Netherlands and Portugal.

  7. Hierarchical Linear Modeling with Maximum Likelihood, Restricted Maximum Likelihood, and Fully Bayesian Estimation

    Science.gov (United States)

    Boedeker, Peter

    2017-01-01

    Hierarchical linear modeling (HLM) is a useful tool when analyzing data collected from groups. There are many decisions to be made when constructing and estimating a model in HLM including which estimation technique to use. Three of the estimation techniques available when analyzing data with HLM are maximum likelihood, restricted maximum…

  8. Hierarchical Bayesian Data Analysis in Radiometric SAR System Calibration: A Case Study on Transponder Calibration with RADARSAT-2 Data

    Directory of Open Access Journals (Sweden)

    Björn J. Döring

    2013-12-01

    Full Text Available A synthetic aperture radar (SAR system requires external absolute calibration so that radiometric measurements can be exploited in numerous scientific and commercial applications. Besides estimating a calibration factor, metrological standards also demand the derivation of a respective calibration uncertainty. This uncertainty is currently not systematically determined. Here for the first time it is proposed to use hierarchical modeling and Bayesian statistics as a consistent method for handling and analyzing the hierarchical data typically acquired during external calibration campaigns. Through the use of Markov chain Monte Carlo simulations, a joint posterior probability can be conveniently derived from measurement data despite the necessary grouping of data samples. The applicability of the method is demonstrated through a case study: The radar reflectivity of DLR’s new C-band Kalibri transponder is derived through a series of RADARSAT-2 acquisitions and a comparison with reference point targets (corner reflectors. The systematic derivation of calibration uncertainties is seen as an important step toward traceable radiometric calibration of synthetic aperture radars.

  9. A High Performance Bayesian Computing Framework for Spatiotemporal Uncertainty Modeling

    Science.gov (United States)

    Cao, G.

    2015-12-01

    All types of spatiotemporal measurements are subject to uncertainty. With spatiotemporal data becomes increasingly involved in scientific research and decision making, it is important to appropriately model the impact of uncertainty. Quantitatively modeling spatiotemporal uncertainty, however, is a challenging problem considering the complex dependence and dataheterogeneities.State-space models provide a unifying and intuitive framework for dynamic systems modeling. In this paper, we aim to extend the conventional state-space models for uncertainty modeling in space-time contexts while accounting for spatiotemporal effects and data heterogeneities. Gaussian Markov Random Field (GMRF) models, also known as conditional autoregressive models, are arguably the most commonly used methods for modeling of spatially dependent data. GMRF models basically assume that a geo-referenced variable primarily depends on its neighborhood (Markov property), and the spatial dependence structure is described via a precision matrix. Recent study has shown that GMRFs are efficient approximation to the commonly used Gaussian fields (e.g., Kriging), and compared with Gaussian fields, GMRFs enjoy a series of appealing features, such as fast computation and easily accounting for heterogeneities in spatial data (e.g, point and areal). This paper represents each spatial dataset as a GMRF and integrates them into a state-space form to statistically model the temporal dynamics. Different types of spatial measurements (e.g., categorical, count or continuous), can be accounted for by according link functions. A fast alternative to MCMC framework, so-called Integrated Nested Laplace Approximation (INLA), was adopted for model inference.Preliminary case studies will be conducted to showcase the advantages of the described framework. In the first case, we apply the proposed method for modeling the water table elevation of Ogallala aquifer over the past decades. In the second case, we analyze the

  10. Hierarchical Pore Development by Plasma Etching of Zr-Based Metal-Organic Frameworks.

    Science.gov (United States)

    DeCoste, Jared B; Rossin, Joseph A; Peterson, Gregory W

    2015-12-07

    The typically stable Zr-based metal-organic frameworks (MOFs) UiO-66 and UiO-66-NH2 were treated with tetrafluoromethane (CF4 ) and hexafluoroethane (C2 F6 ) plasmas. Through interactions between fluoride radicals from the perfluoroalkane plasma and the zirconium-oxygen bonds of the MOF, the resulting materials showed the development of mesoporosity, creating a hierarchical pore structure. It is anticipated that this strategy can be used as a post-synthetic technique for developing hierarchical networks in a variety of MOFs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Hierarchical petascale simulation framework for stress corrosion cracking

    Science.gov (United States)

    Vashishta, P.; Kalia, R. K.; Nakano, A.; Kaxiras, E.; Grama, A.; Lu, G.; Eidenbenz, S.; Voter, A. F.; Hood, R. Q.; Moriarty, J. A.; Yang, L. H.

    2008-07-01

    We are developing a scalable parallel and distributed computational framework consisting of methods, algorithms, and integrated software tools for multi-terascle-to-petascale simulations of stress corrosion cracking (SCC) with quantum-level accuracy. We have performed multimillion- to billion-atom molecular dynamics (MD) simulations of deformation, flow, and fracture in amorphous silica with interatomic potentials and forces validated by density functional theory (DFT) calculations. Optimized potentials have been developed to study sulfur embrittlement of nickel with multimillion-to-multibillion atom MD simulations based on DFT and temperature dependent model generalized pseudopotential theory. We have also developed a quasi-continuum method embedded with quantum simulations based on DFT to reach macroscopic length scales and an accelerated molecular dynamics scheme to reach macroscopic time scales in simulations of solid-fluid interfaces that are relevant to SCC. A hybrid MD and mesoscale lattice Boltzmann simulation algorithm is being designed to study fluid flow through cracks.

  12. A Bayesian Network-Based Probabilistic Framework for Drought Forecasting and Outlook

    Directory of Open Access Journals (Sweden)

    Ji Yae Shin

    2016-01-01

    Full Text Available Reliable drought forecasting is necessary to develop mitigation plans to cope with severe drought. This study developed a probabilistic scheme for drought forecasting and outlook combined with quantification of the prediction uncertainties. The Bayesian network was mainly employed as a statistical scheme for probabilistic forecasting that can represent the cause-effect relationships between the variables. The structure of the Bayesian network-based drought forecasting (BNDF model was designed using the past, current, and forecasted drought condition. In this study, the drought conditions were represented by the standardized precipitation index (SPI. The accuracy of forecasted SPIs was assessed by comparing the observed SPIs and confidence intervals (CIs, exhibiting the associated uncertainty. Then, this study suggested the drought outlook framework based on probabilistic drought forecasting results. The overall results provided sufficient agreement between the observed and forecasted drought conditions in the outlook framework.

  13. Using hierarchical Bayesian multi-species mixture models to estimate tandem hoop-net based habitat associations and detection probabilities of fishes in reservoirs

    Science.gov (United States)

    Stewart, David R.; Long, James M.

    2015-01-01

    Species distribution models are useful tools to evaluate habitat relationships of fishes. We used hierarchical Bayesian multispecies mixture models to evaluate the relationships of both detection and abundance with habitat of reservoir fishes caught using tandem hoop nets. A total of 7,212 fish from 12 species were captured, and the majority of the catch was composed of Channel Catfish Ictalurus punctatus (46%), Bluegill Lepomis macrochirus(25%), and White Crappie Pomoxis annularis (14%). Detection estimates ranged from 8% to 69%, and modeling results suggested that fishes were primarily influenced by reservoir size and context, water clarity and temperature, and land-use types. Species were differentially abundant within and among habitat types, and some fishes were found to be more abundant in turbid, less impacted (e.g., by urbanization and agriculture) reservoirs with longer shoreline lengths; whereas, other species were found more often in clear, nutrient-rich impoundments that had generally shorter shoreline length and were surrounded by a higher percentage of agricultural land. Our results demonstrated that habitat and reservoir characteristics may differentially benefit species and assemblage structure. This study provides a useful framework for evaluating capture efficiency for not only hoop nets but other gear types used to sample fishes in reservoirs.

  14. Bayesian inference and decision theory - A framework for decision making in natural resource management

    Science.gov (United States)

    Dorazio, R.M.; Johnson, F.A.

    2003-01-01

    Bayesian inference and decision theory may be used in the solution of relatively complex problems of natural resource management, owing to recent advances in statistical theory and computing. In particular, Markov chain Monte Carlo algorithms provide a computational framework for fitting models of adequate complexity and for evaluating the expected consequences of alternative management actions. We illustrate these features using an example based on management of waterfowl habitat.

  15. Bayesian hierarchical model used to analyze regression between fish body size and scale size: application to rare fish species Zingel asper

    Directory of Open Access Journals (Sweden)

    Fontez B.

    2014-04-01

    Full Text Available Back-calculation allows to increase available data on fish growth. The accuracy of back-calculation models is of paramount importance for growth analysis. Frequentist and Bayesian hierarchical approaches were used for regression between fish body size and scale size for the rare fish species Zingel asper. The Bayesian approach permits more reliable estimation of back-calculated size, taking into account biological information and cohort variability. This method greatly improves estimation of back-calculated length when sampling is uneven and/or small.

  16. A Bayesian framework to estimate diversification rates and their variation through time and space

    Directory of Open Access Journals (Sweden)

    Silvestro Daniele

    2011-10-01

    Full Text Available Abstract Background Patterns of species diversity are the result of speciation and extinction processes, and molecular phylogenetic data can provide valuable information to derive their variability through time and across clades. Bayesian Markov chain Monte Carlo methods offer a promising framework to incorporate phylogenetic uncertainty when estimating rates of diversification. Results We introduce a new approach to estimate diversification rates in a Bayesian framework over a distribution of trees under various constant and variable rate birth-death and pure-birth models, and test it on simulated phylogenies. Furthermore, speciation and extinction rates and their posterior credibility intervals can be estimated while accounting for non-random taxon sampling. The framework is particularly suitable for hypothesis testing using Bayes factors, as we demonstrate analyzing dated phylogenies of Chondrostoma (Cyprinidae and Lupinus (Fabaceae. In addition, we develop a model that extends the rate estimation to a meta-analysis framework in which different data sets are combined in a single analysis to detect general temporal and spatial trends in diversification. Conclusions Our approach provides a flexible framework for the estimation of diversification parameters and hypothesis testing while simultaneously accounting for uncertainties in the divergence times and incomplete taxon sampling.

  17. Materials Knowledge Systems in Python - A Data Science Framework for Accelerated Development of Hierarchical Materials.

    Science.gov (United States)

    Brough, David B; Wheeler, Daniel; Kalidindi, Surya R

    2017-03-01

    There is a critical need for customized analytics that take into account the stochastic nature of the internal structure of materials at multiple length scales in order to extract relevant and transferable knowledge. Data driven Process-Structure-Property (PSP) linkages provide systemic, modular and hierarchical framework for community driven curation of materials knowledge, and its transference to design and manufacturing experts. The Materials Knowledge Systems in Python project (PyMKS) is the first open source materials data science framework that can be used to create high value PSP linkages for hierarchical materials that can be leveraged by experts in materials science and engineering, manufacturing, machine learning and data science communities. This paper describes the main functions available from this repository, along with illustrations of how these can be accessed, utilized, and potentially further refined by the broader community of researchers.

  18. Quantifying inter- and intra-population niche variability using hierarchical bayesian stable isotope mixing models.

    Science.gov (United States)

    Semmens, Brice X; Ward, Eric J; Moore, Jonathan W; Darimont, Chris T

    2009-07-09

    Variability in resource use defines the width of a trophic niche occupied by a population. Intra-population variability in resource use may occur across hierarchical levels of population structure from individuals to subpopulations. Understanding how levels of population organization contribute to population niche width is critical to ecology and evolution. Here we describe a hierarchical stable isotope mixing model that can simultaneously estimate both the prey composition of a consumer diet and the diet variability among individuals and across levels of population organization. By explicitly estimating variance components for multiple scales, the model can deconstruct the niche width of a consumer population into relevant levels of population structure. We apply this new approach to stable isotope data from a population of gray wolves from coastal British Columbia, and show support for extensive intra-population niche variability among individuals, social groups, and geographically isolated subpopulations. The analytic method we describe improves mixing models by accounting for diet variability, and improves isotope niche width analysis by quantitatively assessing the contribution of levels of organization to the niche width of a population.

  19. Bayesian hierarchical piecewise regression models: a tool to detect trajectory divergence between groups in long-term observational studies.

    Science.gov (United States)

    Buscot, Marie-Jeanne; Wotherspoon, Simon S; Magnussen, Costan G; Juonala, Markus; Sabin, Matthew A; Burgner, David P; Lehtimäki, Terho; Viikari, Jorma S A; Hutri-Kähönen, Nina; Raitakari, Olli T; Thomson, Russell J

    2017-06-06

    Bayesian hierarchical piecewise regression (BHPR) modeling has not been previously formulated to detect and characterise the mechanism of trajectory divergence between groups of participants that have longitudinal responses with distinct developmental phases. These models are useful when participants in a prospective cohort study are grouped according to a distal dichotomous health outcome. Indeed, a refined understanding of how deleterious risk factor profiles develop across the life-course may help inform early-life interventions. Previous techniques to determine between-group differences in risk factors at each age may result in biased estimate of the age at divergence. We demonstrate the use of Bayesian hierarchical piecewise regression (BHPR) to generate a point estimate and credible interval for the age at which trajectories diverge between groups for continuous outcome measures that exhibit non-linear within-person response profiles over time. We illustrate our approach by modeling the divergence in childhood-to-adulthood body mass index (BMI) trajectories between two groups of adults with/without type 2 diabetes mellitus (T2DM) in the Cardiovascular Risk in Young Finns Study (YFS). Using the proposed BHPR approach, we estimated the BMI profiles of participants with T2DM diverged from healthy participants at age 16 years for males (95% credible interval (CI):13.5-18 years) and 21 years for females (95% CI: 19.5-23 years). These data suggest that a critical window for weight management intervention in preventing T2DM might exist before the age when BMI growth rate is naturally expected to decrease. Simulation showed that when using pairwise comparison of least-square means from categorical mixed models, smaller sample sizes tended to conclude a later age of divergence. In contrast, the point estimate of the divergence time is not biased by sample size when using the proposed BHPR method. BHPR is a powerful analytic tool to model long-term non

  20. Hierarchical Bayesian modeling and Markov chain Monte Carlo sampling for tuning-curve analysis.

    Science.gov (United States)

    Cronin, Beau; Stevenson, Ian H; Sur, Mriganka; Körding, Konrad P

    2010-01-01

    A central theme of systems neuroscience is to characterize the tuning of neural responses to sensory stimuli or the production of movement. Statistically, we often want to estimate the parameters of the tuning curve, such as preferred direction, as well as the associated degree of uncertainty, characterized by error bars. Here we present a new sampling-based, Bayesian method that allows the estimation of tuning-curve parameters, the estimation of error bars, and hypothesis testing. This method also provides a useful way of visualizing which tuning curves are compatible with the recorded data. We demonstrate the utility of this approach using recordings of orientation and direction tuning in primary visual cortex, direction of motion tuning in primary motor cortex, and simulated data.

  1. Bayesian Hierarchical Model for Estimating Gene Expression Intensity Using Multiple Scanned Microarrays

    Directory of Open Access Journals (Sweden)

    Auvinen Petri

    2008-01-01

    Full Text Available We propose a method for improving the quality of signal from DNA microarrays by using several scans at varying scanner sen-sitivities. A Bayesian latent intensity model is introduced for the analysis of such data. The method improves the accuracy at which expressions can be measured in all ranges and extends the dynamic range of measured gene expression at the high end. Our method is generic and can be applied to data from any organism, for imaging with any scanner that allows varying the laser power, and for extraction with any image analysis software. Results from a self-self hybridization data set illustrate an improved precision in the estimation of the expression of genes compared to what can be achieved by applying standard methods and using only a single scan.

  2. Contending non-double-couple source components with hierarchical Bayesian moment tensor inversion

    Science.gov (United States)

    Mustac, M.; Tkalcic, H.

    2015-12-01

    Seismic moment tensors can aid the discrimination between earthquakes and explosions. However, the isotropic component can be found in a large number of earthquakes simply as a consequence of earthquake location, poorly modeled structure or noise in the data. Recently, we have developed a method for moment tensor inversion, capable of retrieving parameter uncertainties together with their optimal values, using probabilistic Bayesian inference. It has been applied to data from a complex volcanic environment in the Long Valley Caldera (LVC), California, and confirmed a large isotropic source component. We now extend the application to two different environments where the existence of non-double-couple source components is likely. The method includes notable treatment of the noise, utilizing pre-event noise to estimate the noise covariance matrix. This is extended throughout the inversion, where noise variance is a "hyperparameter" that determines the level of data fit. On top of that, different noise parameters for each station are used as weights, naturally penalizing stations with noisy data. In the LVC case, this means increasing the amount of information from two stations at moderate distances, which results in a 1 km deeper estimate for the source location. This causes a change in the non-double-couple components in the inversions assuming a simple diagonal or exponential covariance matrix, but not in the inversion assuming a more complicated, attenuated cosine covariance matrix. Combining a sophisticated noise treatment with a powerful Bayesian inversion technique can give meaningful uncertainty estimates for long-period (20-50 s) data, provided an appropriate regional structure model.

  3. Multilevel Optimization Framework for Hierarchical Stiffened Shells Accelerated by Adaptive Equivalent Strategy

    Science.gov (United States)

    Wang, Bo; Tian, Kuo; Zhao, Haixin; Hao, Peng; Zhu, Tianyu; Zhang, Ke; Ma, Yunlong

    2016-09-01

    In order to improve the post-buckling optimization efficiency of hierarchical stiffened shells, a multilevel optimization framework accelerated by adaptive equivalent strategy is presented in this paper. Firstly, the Numerical-based Smeared Stiffener Method (NSSM) for hierarchical stiffened shells is derived by means of the numerical implementation of asymptotic homogenization (NIAH) method. Based on the NSSM, a reasonable adaptive equivalent strategy for hierarchical stiffened shells is developed from the concept of hierarchy reduction. Its core idea is to self-adaptively decide which hierarchy of the structure should be equivalent according to the critical buckling mode rapidly predicted by NSSM. Compared with the detailed model, the high prediction accuracy and efficiency of the proposed model is highlighted. On the basis of this adaptive equivalent model, a multilevel optimization framework is then established by decomposing the complex entire optimization process into major-stiffener-level and minor-stiffener-level sub-optimizations, during which Fixed Point Iteration (FPI) is employed to accelerate convergence. Finally, the illustrative examples of the multilevel framework is carried out to demonstrate its efficiency and effectiveness to search for the global optimum result by contrast with the single-level optimization method. Remarkably, the high efficiency and flexibility of the adaptive equivalent strategy is indicated by compared with the single equivalent strategy.

  4. Template-Free Synthesis of Hierarchical Porous Metal-Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Yanfeng [ORNL; Qiao, Zhen-an [University of Tennessee, Knoxville (UTK); Fulvio, Pasquale F [ORNL; Dai, Sheng [ORNL; Binder, Andrew J [ORNL; Tian, Chengcheng [ORNL; Nelson, Kimberly M [ORNL; Zhu, Xiang [ORNL

    2013-01-01

    A template-free synthesis of a hierarchical microporous-mesoporous metal-organic framework (MOF) of Zn(II)-2,5-dihydroxy-1,4-benzenedicarboxylate, namely Zn-MOF-74, is reported. The surface morphology and porosity of the bimodal materials can be modified by etching the pore walls with the synthesis solvent under different reaction times and different solvents. This template-free strategy allows for the preparation of stable frameworks with mesopores exceeding 15 nm, which was previously unattained by the synthesis of MOFs by ligand exten-sion method.

  5. Π4U: A high performance computing framework for Bayesian uncertainty quantification of complex models

    Science.gov (United States)

    Hadjidoukas, P. E.; Angelikopoulos, P.; Papadimitriou, C.; Koumoutsakos, P.

    2015-03-01

    We present Π4U, an extensible framework, for non-intrusive Bayesian Uncertainty Quantification and Propagation (UQ+P) of complex and computationally demanding physical models, that can exploit massively parallel computer architectures. The framework incorporates Laplace asymptotic approximations as well as stochastic algorithms, along with distributed numerical differentiation and task-based parallelism for heterogeneous clusters. Sampling is based on the Transitional Markov Chain Monte Carlo (TMCMC) algorithm and its variants. The optimization tasks associated with the asymptotic approximations are treated via the Covariance Matrix Adaptation Evolution Strategy (CMA-ES). A modified subset simulation method is used for posterior reliability measurements of rare events. The framework accommodates scheduling of multiple physical model evaluations based on an adaptive load balancing library and shows excellent scalability. In addition to the software framework, we also provide guidelines as to the applicability and efficiency of Bayesian tools when applied to computationally demanding physical models. Theoretical and computational developments are demonstrated with applications drawn from molecular dynamics, structural dynamics and granular flow.

  6. Π4U: A high performance computing framework for Bayesian uncertainty quantification of complex models

    Energy Technology Data Exchange (ETDEWEB)

    Hadjidoukas, P.E.; Angelikopoulos, P. [Computational Science and Engineering Laboratory, ETH Zürich, CH-8092 (Switzerland); Papadimitriou, C. [Department of Mechanical Engineering, University of Thessaly, GR-38334 Volos (Greece); Koumoutsakos, P., E-mail: petros@ethz.ch [Computational Science and Engineering Laboratory, ETH Zürich, CH-8092 (Switzerland)

    2015-03-01

    We present Π4U,{sup 1} an extensible framework, for non-intrusive Bayesian Uncertainty Quantification and Propagation (UQ+P) of complex and computationally demanding physical models, that can exploit massively parallel computer architectures. The framework incorporates Laplace asymptotic approximations as well as stochastic algorithms, along with distributed numerical differentiation and task-based parallelism for heterogeneous clusters. Sampling is based on the Transitional Markov Chain Monte Carlo (TMCMC) algorithm and its variants. The optimization tasks associated with the asymptotic approximations are treated via the Covariance Matrix Adaptation Evolution Strategy (CMA-ES). A modified subset simulation method is used for posterior reliability measurements of rare events. The framework accommodates scheduling of multiple physical model evaluations based on an adaptive load balancing library and shows excellent scalability. In addition to the software framework, we also provide guidelines as to the applicability and efficiency of Bayesian tools when applied to computationally demanding physical models. Theoretical and computational developments are demonstrated with applications drawn from molecular dynamics, structural dynamics and granular flow.

  7. Framework for microbial food-safety risk assessments amenable to Bayesian modeling.

    Science.gov (United States)

    Williams, Michael S; Ebel, Eric D; Vose, David

    2011-04-01

    Regulatory agencies often perform microbial risk assessments to evaluate the change in the number of human illnesses as the result of a new policy that reduces the level of contamination in the food supply. These agencies generally have regulatory authority over the production and retail sectors of the farm-to-table continuum. Any predicted change in contamination that results from new policy that regulates production practices occurs many steps prior to consumption of the product. This study proposes a framework for conducting microbial food-safety risk assessments; this framework can be used to quantitatively assess the annual effects of national regulatory policies. Advantages of the framework are that estimates of human illnesses are consistent with national disease surveillance data (which are usually summarized on an annual basis) and some of the modeling steps that occur between production and consumption can be collapsed or eliminated. The framework leads to probabilistic models that include uncertainty and variability in critical input parameters; these models can be solved using a number of different Bayesian methods. The Bayesian synthesis method performs well for this application and generates posterior distributions of parameters that are relevant to assessing the effect of implementing a new policy. An example, based on Campylobacter and chicken, estimates the annual number of illnesses avoided by a hypothetical policy; this output could be used to assess the economic benefits of a new policy. Empirical validation of the policy effect is also examined by estimating the annual change in the numbers of illnesses observed via disease surveillance systems.

  8. A Bayesian Framework for Reliability Assessment via Wiener Process and MCMC

    Directory of Open Access Journals (Sweden)

    Huibing Hao

    2014-01-01

    Full Text Available The population and individual reliability assessment are discussed, and a Bayesian framework is proposed to integrate the population degradation information and individual degradation data. Different from fixed effect Wiener process modeling, the population degradation path is characterized by a random effect Wiener process, and the model can capture sources of uncertainty including unit to unit variation and time correlated structure. Considering that the model is so complicated and analytically intractable, Markov Chain Monte Carlo (MCMC method is used to estimate the unknown parameters in the population model. To achieve individual reliability assessment, we exploit a Bayesian updating method, by which the unknown parameters are updated iteratively. Based on updated results, the residual use life and reliability evaluation are obtained. A lasers data example is given to demonstrate the usefulness and validity of the proposed model and method.

  9. A Hierarchical Framework Combining Motion and Feature Information for Infrared-Visible Video Registration

    Science.gov (United States)

    Sun, Xinglong; Xu, Tingfa; Zhang, Jizhou; Li, Xiangmin

    2017-01-01

    In this paper, we propose a novel hierarchical framework that combines motion and feature information to implement infrared-visible video registration on nearly planar scenes. In contrast to previous approaches, which involve the direct use of feature matching to find the global homography, the framework adds coarse registration based on the motion vectors of targets to estimate scale and rotation prior to matching. In precise registration based on keypoint matching, the scale and rotation are used in re-location to eliminate their impact on targets and keypoints. To strictly match the keypoints, first, we improve the quality of keypoint matching by using normalized location descriptors and descriptors generated by the histogram of edge orientation. Second, we remove most mismatches by counting the matching directions of correspondences. We tested our framework on a public dataset, where our proposed framework outperformed two recently-proposed state-of-the-art global registration methods in almost all tested videos. PMID:28212350

  10. Bayesian inversion of microtremor array dispersion data with hierarchical trans-dimensional earth and autoregressive error models

    Science.gov (United States)

    Molnar, S.; Dettmer, J.; Steininger, G.; Dosso, S. E.; Cassidy, J. F.

    2013-12-01

    This paper applies hierarchical, trans-dimensional Bayesian models for earth and residual-error parametrizations to the inversion of microtremor array dispersion data for shear-wave velocity (Vs) structure. The earth is parametrized in terms of flat-lying, homogeneous layers and residual errors are parametrized with a first-order autoregressive data-error model. The inversion accounts for the limited knowledge of the optimal earth and residual error model parametrization (e.g. the number of layers in the Vs profile) in the resulting Vs parameter uncertainty estimates. The assumed earth model parametrization influences estimates of parameter values and uncertainties due to different parametrizations leading to different ranges of data predictions. The support of the data for a particular model is often non-unique and several parametrizations may be supported. A trans-dimensional formulation accounts for this non-uniqueness by including a model-indexing parameter as an unknown so that groups of models (identified by the index) are considered in the results. In addition, serial residual-error correlations are addressed by augmenting the geophysical forward model with a hierarchical autoregressive error model that can account for a wide range of error processes with a small number of parameters. Hence, the limited knowledge about the true statistical distribution of data errors is also accounted for in the earth model parameter estimates, resulting in more realistic uncertainties and parameter values. Hierarchical autoregressive error models do not rely on point estimates of the model vector to estimate residual-error statistics, and have no requirement for computing the inverse or determinant of a covariance matrix. This approach is particularly useful for trans-dimensional inverse problems, as point estimates may not be representative of the state space that spans multiple subspaces of different dimensions. The autoregressive process is restricted to first order and

  11. Estimating seed and pollen movement in a monoecious plant: a hierarchical Bayesian approach integrating genetic and ecological data.

    Science.gov (United States)

    Moran, Emily V; Clark, James S

    2011-03-01

    The scale of seed and pollen movement in plants has a critical influence on population dynamics and interspecific interactions, as well as on their capacity to respond to environmental change through migration or local adaptation. However, dispersal can be challenging to quantify. Here, we present a Bayesian model that integrates genetic and ecological data to simultaneously estimate effective seed and pollen dispersal parameters and the parentage of sampled seedlings. This model is the first developed for monoecious plants that accounts for genotyping error and treats dispersal from within and beyond a plot in a fully consistent manner. The flexible Bayesian framework allows the incorporation of a variety of ecological variables, including individual variation in seed production, as well as multiple sources of uncertainty. We illustrate the method using data from a mixed population of red oak (Quercus rubra, Q. velutina, Q. falcata) in the NC piedmont. For simulated test data sets, the model successfully recovered the simulated dispersal parameters and pedigrees. Pollen dispersal in the example population was extensive, with an average father-mother distance of 178 m. Estimated seed dispersal distances at the piedmont site were substantially longer than previous estimates based on seed-trap data (average 128 m vs. 9.3 m), suggesting that, under some circumstances, oaks may be less dispersal-limited than is commonly thought, with a greater potential for range shifts in response to climate change.

  12. Extracting a common high frequency signal from Northern Quebec black spruce tree-rings with a Bayesian hierarchical model

    Directory of Open Access Journals (Sweden)

    J.-J. Boreux

    2009-10-01

    Full Text Available One basic premise of dendroclimatology is that tree rings can be viewed as climate proxies, i.e. rings are assumed to contain some hidden information about past climate. From a statistical perspective, this extraction problem can be understood as the search of a hidden variable which represents the common signal within a collection of tree-ring width series. Classical average-based techniques used in dendrochronology have been applied to estimate the mean behavior of this latent variable. Still, depending on tree species, regional factors and statistical methods, a precise quantification of uncertainties associated to the hidden variable distribution is difficult to assess. To model the error propagation throughout the extraction procedure, we propose and study a Bayesian hierarchical model that focuses on extracting an inter-annual high frequency signal. Our method is applied to black spruce (Picea mariana tree-rings recorded in Northern Quebec and compared to a classical average-based techniques used by dendrochronologists (Cook and Kairiukstis, 1992.

  13. A Bayesian hierarchical nonlinear mixture model in the presence of artifactual outliers in a population pharmacokinetic study.

    Science.gov (United States)

    Choi, Leena; Caffo, Brian S; Kohli, Utkarsh; Pandharipande, Pratik; Kurnik, Daniel; Ely, E Wesley; Stein, C Michael

    2011-10-01

    The purpose of this study is to develop a statistical methodology to handle a large proportion of artifactual outliers in a population pharmacokinetic (PK) modeling. The motivating PK data were obtained from a population PK study to examine associations between PK parameters such as clearance of dexmedetomidine (DEX) and cytochrome P450 2A6 phenotypes. The blood samples were sparsely sampled from patients in intensive care units (ICUs) while different doses of DEX were continuously infused. Conventional population PK analysis of these data revealed several challenges and intricacies. Especially, there was strong evidence that some plasma drug concentrations were artifactually high and likely contaminated with the infused drug due to blood sampling processes that are sometimes unavoidable in an ICU setting. If not addressed, or if arbitrarily excluded, these outlying values could lead to biased estimates of PK parameters and miss important relationships between PK parameters and covariates due to increased variability. We propose a novel population PK model, a Bayesian hierarchical nonlinear mixture model, to accommodate the artifactual outliers using a finite mixture as the residual error model. Our results showed that the proposed model handles the outliers well. We also conducted simulation studies with a varying proportion of the outliers. These simulation results showed that the proposed model can accommodate the outliers well so that the estimated PK parameters are less biased.

  14. Relative age and birthplace effect in Japanese professional sports: a quantitative evaluation using a Bayesian hierarchical Poisson model.

    Science.gov (United States)

    Ishigami, Hideaki

    2016-01-01

    Relative age effect (RAE) in sports has been well documented. Recent studies investigate the effect of birthplace in addition to the RAE. The first objective of this study was to show the magnitude of the RAE in two major professional sports in Japan, baseball and soccer. Second, we examined the birthplace effect and compared its magnitude with that of the RAE. The effect sizes were estimated using a Bayesian hierarchical Poisson model with the number of players as dependent variable. The RAEs were 9.0% and 7.7% per month for soccer and baseball, respectively. These estimates imply that children born in the first month of a school year have about three times greater chance of becoming a professional player than those born in the last month of the year. Over half of the difference in likelihoods of becoming a professional player between birthplaces was accounted for by weather conditions, with the likelihood decreasing by 1% per snow day. An effect of population size was not detected in the data. By investigating different samples, we demonstrated that using quarterly data leads to underestimation and that the age range of sampled athletes should be set carefully.

  15. Improved Estimates of the Milky Way's Stellar Mass and Star Formation Rate from Hierarchical Bayesian Meta-Analysis

    CERN Document Server

    Licquia, Timothy C

    2014-01-01

    We present improved estimates of several global properties of the Milky Way, including its current star formation rate (SFR), the stellar mass contained in its disk and bulge+bar components, as well as its total stellar mass. We do so by combining previous measurements from the literature using a hierarchical Bayesian (HB) statistical method that allows us to account for the possibility that any value may be incorrect or have underestimated errors. We show that this method is robust to a wide variety of assumptions about the nature of problems in individual measurements or error estimates. Ultimately, our analysis yields a SFR for the Galaxy of $\\dot{\\rm M}_\\star=1.65\\pm0.19$ ${\\rm M}_\\odot$ yr$^{-1}$. By combining HB methods with Monte Carlo simulations that incorporate the latest estimates of the Galactocentric radius of the Sun, $R_0$, the exponential scale-length of the disk, $L_d$, and the local surface density of stellar mass, $\\Sigma_\\star(R_0)$, we show that the mass of the Galactic bulge+bar is ${\\rm...

  16. Extracting a common high frequency signal from northern Quebec black spruce tree-rings with a Bayesian hierarchical model

    Directory of Open Access Journals (Sweden)

    J.-J. Boreux

    2009-03-01

    Full Text Available Dendrochronology, the scientific dating method based on the analysis of tree-ring growth patterns, has been frequently applied in climatology. The basic premise of dendroclimatology is that tree rings can be viewed as climate proxies, i.e. rings are assumed to contain some hidden information about past climate. From a statistical perspective, this extraction problem can be understood as the search of a hidden variable which represents the common signal within a collection of tree-ring width series. Classical average-based techniques used in dendrochronology have been, with different degrees of success (depending on tree species, regional factors and statistical methods, applied to estimate the mean behavior of this latent variable. Still, a precise quantification of uncertainties associated to the hidden variable distribution is difficult to assess. To model the error propagation throughout the extraction procedure, we propose and study a Bayesian hierarchical model that focuses on extracting an inter-annual high frequency signal. Our method is applied to black spruce (Picea mariana tree-rings recorded in northern Quebec and compared to a classical average-based techniques used by dendrochronologists.

  17. Manual hierarchical clustering of regional geochemical data using a Bayesian finite mixture model

    Science.gov (United States)

    Ellefsen, Karl J.; Smith, David

    2016-01-01

    Interpretation of regional scale, multivariate geochemical data is aided by a statistical technique called “clustering.” We investigate a particular clustering procedure by applying it to geochemical data collected in the State of Colorado, United States of America. The clustering procedure partitions the field samples for the entire survey area into two clusters. The field samples in each cluster are partitioned again to create two subclusters, and so on. This manual procedure generates a hierarchy of clusters, and the different levels of the hierarchy show geochemical and geological processes occurring at different spatial scales. Although there are many different clustering methods, we use Bayesian finite mixture modeling with two probability distributions, which yields two clusters. The model parameters are estimated with Hamiltonian Monte Carlo sampling of the posterior probability density function, which usually has multiple modes. Each mode has its own set of model parameters; each set is checked to ensure that it is consistent both with the data and with independent geologic knowledge. The set of model parameters that is most consistent with the independent geologic knowledge is selected for detailed interpretation and partitioning of the field samples.

  18. A BAYESIAN HIERARCHICAL SPATIAL POINT PROCESS MODEL FOR MULTI-TYPE NEUROIMAGING META-ANALYSIS.

    Science.gov (United States)

    Kang, Jian; Nichols, Thomas E; Wager, Tor D; Johnson, Timothy D

    2014-09-01

    Neuroimaging meta-analysis is an important tool for finding consistent effects over studies that each usually have 20 or fewer subjects. Interest in meta-analysis in brain mapping is also driven by a recent focus on so-called "reverse inference": where as traditional "forward inference" identifies the regions of the brain involved in a task, a reverse inference identifies the cognitive processes that a task engages. Such reverse inferences, however, requires a set of meta-analysis, one for each possible cognitive domain. However, existing methods for neuroimaging meta-analysis have significant limitations. Commonly used methods for neuroimaging meta-analysis are not model based, do not provide interpretable parameter estimates, and only produce null hypothesis inferences; further, they are generally designed for a single group of studies and cannot produce reverse inferences. In this work we address these limitations by adopting a non-parametric Bayesian approach for meta analysis data from multiple classes or types of studies. In particular, foci from each type of study are modeled as a cluster process driven by a random intensity function that is modeled as a kernel convolution of a gamma random field. The type-specific gamma random fields are linked and modeled as a realization of a common gamma random field, shared by all types, that induces correlation between study types and mimics the behavior of a univariate mixed effects model. We illustrate our model on simulation studies and a meta analysis of five emotions from 219 studies and check model fit by a posterior predictive assessment. In addition, we implement reverse inference by using the model to predict study type from a newly presented study. We evaluate this predictive performance via leave-one-out cross validation that is efficiently implemented using importance sampling techniques.

  19. Bayesian framework to constrain the photon mass with a catalog of fast radio bursts

    Science.gov (United States)

    Shao, Lijing; Zhang, Bing

    2017-06-01

    A hypothetical photon mass, mγ, gives an energy-dependent light speed in a Lorentz-invariant theory. Such a modification causes an additional time delay between photons of different energies when they travel through a fixed distance. Fast radio bursts (FRBs), with their short time duration and cosmological propagation distance, are excellent astrophysical objects to constrain mγ. Here for the first time we develop a Bayesian framework to study this problem with a catalog of FRBs. Those FRBs with and without redshift measurement are both useful in this framework, and can be combined in a Bayesian way. A catalog of 21 FRBs (including 20 FRBs without redshift measurement, and one, FRB 121102, with a measured redshift z =0.19273 ±0.00008 ) give a combined limit mγ≤8.7 ×10-51 kg , or equivalently mγ≤4.9 ×10-15 eV /c2 (mγ≤1.5 ×10-50 kg , or equivalently mγ≤8.4 ×10-15 eV /c2 ) at 68% (95%) confidence level, which represents the best limit that comes purely from kinematics. The framework proposed here will be valuable when FRBs are observed daily in the future. Increment in the number of FRBs, and refinement in the knowledge about the electron distributions in the Milky Way, the host galaxies of FRBs, and the intergalactic medium, will further tighten the constraint.

  20. Mapping informative clusters in a hierarchical [corrected] framework of FMRI multivariate analysis.

    Directory of Open Access Journals (Sweden)

    Rui Xu

    Full Text Available Pattern recognition methods have become increasingly popular in fMRI data analysis, which are powerful in discriminating between multi-voxel patterns of brain activities associated with different mental states. However, when they are used in functional brain mapping, the location of discriminative voxels varies significantly, raising difficulties in interpreting the locus of the effect. Here we proposed a hierarchical framework of multivariate approach that maps informative clusters rather than voxels to achieve reliable functional brain mapping without compromising the discriminative power. In particular, we first searched for local homogeneous clusters that consisted of voxels with similar response profiles. Then, a multi-voxel classifier was built for each cluster to extract discriminative information from the multi-voxel patterns. Finally, through multivariate ranking, outputs from the classifiers were served as a multi-cluster pattern to identify informative clusters by examining interactions among clusters. Results from both simulated and real fMRI data demonstrated that this hierarchical approach showed better performance in the robustness of functional brain mapping than traditional voxel-based multivariate methods. In addition, the mapped clusters were highly overlapped for two perceptually equivalent object categories, further confirming the validity of our approach. In short, the hierarchical framework of multivariate approach is suitable for both pattern classification and brain mapping in fMRI studies.

  1. Forward Affine Point Set Matching Under Variational Bayesian Framework

    Institute of Scientific and Technical Information of China (English)

    QU Han-Bing; CHEN Xi; WANG Song-Tao; YU Ming

    2015-01-01

    In this work, the affine point set matching is formulated under a variational Bayesian framework and the model points are projected forward into the scene space by a linear transformation. A directed acyclic graph is presented to represent the relationship between the parameters, latent variables, model and scene point sets and an iterative approximate algorithm is proposed for the estimation of the posterior distributions over parameters. Furthermore, the anisotropic covariance is assumed on the transition variable and one Gaussian component is provided for the inference of outlier points. Experimental results demonstrate that the proposed algorithm achieves good performance in terms of both robustness and accuracy.

  2. A Bayesian posterior predictive framework for weighting ensemble regional climate models

    Science.gov (United States)

    Fan, Yanan; Olson, Roman; Evans, Jason P.

    2017-06-01

    We present a novel Bayesian statistical approach to computing model weights in climate change projection ensembles in order to create probabilistic projections. The weight of each climate model is obtained by weighting the current day observed data under the posterior distribution admitted under competing climate models. We use a linear model to describe the model output and observations. The approach accounts for uncertainty in model bias, trend and internal variability, including error in the observations used. Our framework is general, requires very little problem-specific input, and works well with default priors. We carry out cross-validation checks that confirm that the method produces the correct coverage.

  3. When mechanism matters: Bayesian forecasting using models of ecological diffusion

    Science.gov (United States)

    Hefley, Trevor J.; Hooten, Mevin B.; Russell, Robin E.; Walsh, Daniel P.; Powell, James A.

    2017-01-01

    Ecological diffusion is a theory that can be used to understand and forecast spatio-temporal processes such as dispersal, invasion, and the spread of disease. Hierarchical Bayesian modelling provides a framework to make statistical inference and probabilistic forecasts, using mechanistic ecological models. To illustrate, we show how hierarchical Bayesian models of ecological diffusion can be implemented for large data sets that are distributed densely across space and time. The hierarchical Bayesian approach is used to understand and forecast the growth and geographic spread in the prevalence of chronic wasting disease in white-tailed deer (Odocoileus virginianus). We compare statistical inference and forecasts from our hierarchical Bayesian model to phenomenological regression-based methods that are commonly used to analyse spatial occurrence data. The mechanistic statistical model based on ecological diffusion led to important ecological insights, obviated a commonly ignored type of collinearity, and was the most accurate method for forecasting.

  4. Planetary micro-rover operations on Mars using a Bayesian framework for inference and control

    Science.gov (United States)

    Post, Mark A.; Li, Junquan; Quine, Brendan M.

    2016-03-01

    With the recent progress toward the application of commercially-available hardware to small-scale space missions, it is now becoming feasible for groups of small, efficient robots based on low-power embedded hardware to perform simple tasks on other planets in the place of large-scale, heavy and expensive robots. In this paper, we describe design and programming of the Beaver micro-rover developed for Northern Light, a Canadian initiative to send a small lander and rover to Mars to study the Martian surface and subsurface. For a small, hardware-limited rover to handle an uncertain and mostly unknown environment without constant management by human operators, we use a Bayesian network of discrete random variables as an abstraction of expert knowledge about the rover and its environment, and inference operations for control. A framework for efficient construction and inference into a Bayesian network using only the C language and fixed-point mathematics on embedded hardware has been developed for the Beaver to make intelligent decisions with minimal sensor data. We study the performance of the Beaver as it probabilistically maps a simple outdoor environment with sensor models that include uncertainty. Results indicate that the Beaver and other small and simple robotic platforms can make use of a Bayesian network to make intelligent decisions in uncertain planetary environments.

  5. Construction of hierarchically porous metal-organic frameworks through linker labilization

    Science.gov (United States)

    Yuan, Shuai; Zou, Lanfang; Qin, Jun-Sheng; Li, Jialuo; Huang, Lan; Feng, Liang; Wang, Xuan; Bosch, Mathieu; Alsalme, Ali; Cagin, Tahir; Zhou, Hong-Cai

    2017-05-01

    A major goal of metal-organic framework (MOF) research is the expansion of pore size and volume. Although many approaches have been attempted to increase the pore size of MOF materials, it is still a challenge to construct MOFs with precisely customized pore apertures for specific applications. Herein, we present a new method, namely linker labilization, to increase the MOF porosity and pore size, giving rise to hierarchical-pore architectures. Microporous MOFs with robust metal nodes and pro-labile linkers were initially synthesized. The mesopores were subsequently created as crystal defects through the splitting of a pro-labile-linker and the removal of the linker fragments by acid treatment. We demonstrate that linker labilization method can create controllable hierarchical porous structures in stable MOFs, which facilitates the diffusion and adsorption process of guest molecules to improve the performances of MOFs in adsorption and catalysis.

  6. Hierarchical mesoporous/microporous carbon with graphitized frameworks for high-performance lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Yingying Lv

    2014-11-01

    Full Text Available A hierarchical meso-/micro-porous graphitized carbon with uniform mesopores and ordered micropores, graphitized frameworks, and extra-high surface area of ∼2200 m2/g, was successfully synthesized through a simple one-step chemical vapor deposition process. The commercial mesoporous zeolite Y was utilized as a meso-/ micro-porous template, and the small-molecule methane was employed as a carbon precursor. The as-prepared hierarchical meso-/micro-porous carbons have homogeneously distributed mesopores as a host for electrolyte, which facilitate Li+ ions transport to the large-area micropores, resulting a high reversible lithium ion storage of 1000 mA h/g and a high columbic efficiency of 65% at the first cycle.

  7. A Framework for a Decision Support System in a Hierarchical Extended Enterprise Decision Context

    Science.gov (United States)

    Boza, Andrés; Ortiz, Angel; Vicens, Eduardo; Poler, Raul

    Decision Support System (DSS) tools provide useful information to decision makers. In an Extended Enterprise, a new goal, changes in the current objectives or small changes in the extended enterprise configuration produce a necessary adjustment in its decision system. A DSS in this context must be flexible and agile to make suitable an easy and quickly adaptation to this new context. This paper proposes to extend the Hierarchical Production Planning (HPP) structure to an Extended Enterprise decision making context. In this way, a framework for DSS in Extended Enterprise context is defined using components of HPP. Interoperability details have been reviewed to identify the impact in this framework. The proposed framework allows overcoming some interoperability barriers, identifying and organizing components for a DSS in Extended Enterprise context, and working in the definition of an architecture to be used in the design process of a flexible DSS in Extended Enterprise context which can reuse components for futures Extended Enterprise configurations.

  8. Hierarchical control framework for integrated coordination between distributed energy resources and demand response

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Di; Lian, Jianming; Sun, Yannan; Yang, Tao; Hansen, Jacob

    2017-09-01

    Demand response is representing a significant but largely untapped resource that can greatly enhance the flexibility and reliability of power systems. In this paper, a hierarchical control framework is proposed to facilitate the integrated coordination between distributed energy resources and demand response. The proposed framework consists of coordination and device layers. In the coordination layer, various resource aggregations are optimally coordinated in a distributed manner to achieve the system-level objectives. In the device layer, individual resources are controlled in real time to follow the optimal power generation or consumption dispatched from the coordination layer. For the purpose of practical applications, a method is presented to determine the utility functions of controllable loads by taking into account the real-time load dynamics and the preferences of individual customers. The effectiveness of the proposed framework is validated by detailed simulation studies.

  9. An enhanced Bayesian fingerprinting framework for studying sediment source dynamics in intensively managed landscapes

    Science.gov (United States)

    Abban, B.; (Thanos) Papanicolaou, A. N.; Cowles, M. K.; Wilson, C. G.; Abaci, O.; Wacha, K.; Schilling, K.; Schnoebelen, D.

    2016-06-01

    An enhanced revision of the Fox and Papanicolaou (hereafter referred to as "F-P") (2008a) Bayesian, Markov Chain Monte Carlo fingerprinting framework for estimating sediment source contributions and their associated uncertainties is presented. The F-P framework included two key deterministic parameters, α and β, that, respectively, reflected the spatial origin attributes of sources and the time history of eroded material delivered to and collected at the watershed outlet. However, the deterministic treatment of α and β is limited to cases with well-defined spatial partitioning of sources, high sediment delivery, and relatively short travel times with little variability in transport within the watershed. For event-based studies in intensively managed landscapes, this may be inadequate since landscape heterogeneity results in variabilities in source contributions, their pathways, delivery times, and storage within the watershed. Thus, probabilistic treatments of α and β are implemented in the enhanced framework to account for these variabilities. To evaluate the effects of the treatments of α and β on source partitioning, both frameworks are applied to the South Amana Subwatershed (SASW) in the U.S. midwest. The enhanced framework is found to estimate mean source contributions that are in good agreement with estimates from other studies in SASW. The enhanced framework is also able to produce expected trends in uncertainty during the study period, unlike the F-P framework, which does not perform as expected. Overall, the enhanced framework is found to be less sensitive to changes in α and β than the F-P framework, and, therefore, is more robust and desirable from a management standpoint.

  10. A Bayesian least squares support vector machines based framework for fault diagnosis and failure prognosis

    Science.gov (United States)

    Khawaja, Taimoor Saleem

    A high-belief low-overhead Prognostics and Health Management (PHM) system is desired for online real-time monitoring of complex non-linear systems operating in a complex (possibly non-Gaussian) noise environment. This thesis presents a Bayesian Least Squares Support Vector Machine (LS-SVM) based framework for fault diagnosis and failure prognosis in nonlinear non-Gaussian systems. The methodology assumes the availability of real-time process measurements, definition of a set of fault indicators and the existence of empirical knowledge (or historical data) to characterize both nominal and abnormal operating conditions. An efficient yet powerful Least Squares Support Vector Machine (LS-SVM) algorithm, set within a Bayesian Inference framework, not only allows for the development of real-time algorithms for diagnosis and prognosis but also provides a solid theoretical framework to address key concepts related to classification for diagnosis and regression modeling for prognosis. SVM machines are founded on the principle of Structural Risk Minimization (SRM) which tends to find a good trade-off between low empirical risk and small capacity. The key features in SVM are the use of non-linear kernels, the absence of local minima, the sparseness of the solution and the capacity control obtained by optimizing the margin. The Bayesian Inference framework linked with LS-SVMs allows a probabilistic interpretation of the results for diagnosis and prognosis. Additional levels of inference provide the much coveted features of adaptability and tunability of the modeling parameters. The two main modules considered in this research are fault diagnosis and failure prognosis. With the goal of designing an efficient and reliable fault diagnosis scheme, a novel Anomaly Detector is suggested based on the LS-SVM machines. The proposed scheme uses only baseline data to construct a 1-class LS-SVM machine which, when presented with online data is able to distinguish between normal behavior

  11. Using hierarchical Bayesian binary probit models to analyze crash injury severity on high speed facilities with real-time traffic data.

    Science.gov (United States)

    Yu, Rongjie; Abdel-Aty, Mohamed

    2014-01-01

    Severe crashes are causing serious social and economic loss, and because of this, reducing crash injury severity has become one of the key objectives of the high speed facilities' (freeway and expressway) management. Traditional crash injury severity analysis utilized data mainly from crash reports concerning the crash occurrence information, drivers' characteristics and roadway geometric related variables. In this study, real-time traffic and weather data were introduced to analyze the crash injury severity. The space mean speeds captured by the Automatic Vehicle Identification (AVI) system on the two roadways were used as explanatory variables in this study; and data from a mountainous freeway (I-70 in Colorado) and an urban expressway (State Road 408 in Orlando) have been used to identify the analysis result's consistence. Binary probit (BP) models were estimated to classify the non-severe (property damage only) crashes and severe (injury and fatality) crashes. Firstly, Bayesian BP models' results were compared to the results from Maximum Likelihood Estimation BP models and it was concluded that Bayesian inference was superior with more significant variables. Then different levels of hierarchical Bayesian BP models were developed with random effects accounting for the unobserved heterogeneity at segment level and crash individual level, respectively. Modeling results from both studied locations demonstrate that large variations of speed prior to the crash occurrence would increase the likelihood of severe crash occurrence. Moreover, with considering unobserved heterogeneity in the Bayesian BP models, the model goodness-of-fit has improved substantially. Finally, possible future applications of the model results and the hierarchical Bayesian probit models were discussed.

  12. UNITY: Confronting Supernova Cosmology's Statistical and Systematic Uncertainties in a Unified Bayesian Framework

    CERN Document Server

    Rubin, David; Barbary, Kyle; Boone, Kyle; Chappell, Greta; Currie, Miles; Deustua, Susana; Fagrelius, Parker; Fruchter, Andrew; Hayden, Brian; Lidman, Chris; Nordin, Jakob; Perlmutter, Saul; Saunders, Clare; Sofiatti, Caroline

    2015-01-01

    While recent supernova cosmology research has benefited from improved measurements, current analysis approaches are not statistically optimal and will prove insufficient for future surveys. This paper discusses the limitations of current supernova cosmological analyses in treating outliers, selection effects, shape- and color-standardization relations, intrinsic dispersion, and heterogeneous observations. We present a new Bayesian framework, called UNITY (Unified Nonlinear Inference for Type-Ia cosmologY), that incorporates significant improvements in our ability to confront these effects. We apply the framework to real supernova observations and demonstrate smaller statistical and systematic uncertainties. We verify earlier results that SNe Ia require nonlinear shape and color standardizations, but we now include these nonlinear relations in a statistically well-justified way. This analysis was blinded, in that the method was first validated on simulated data, and no analysis changes were made after transiti...

  13. Estimating wildlife disease dynamics in complex systems using an Approximate Bayesian Computation framework.

    Science.gov (United States)

    Kosmala, Margaret; Miller, Philip; Ferreira, Sam; Funston, Paul; Keet, Dewald; Packer, Craig

    2016-01-01

    Emerging infectious diseases of wildlife are of increasing concern to managers and conservation policy makers, but are often difficult to study and predict due to the complexity of host-disease systems and a paucity of empirical data. We demonstrate the use of an Approximate Bayesian Computation statistical framework to reconstruct the disease dynamics of bovine tuberculosis in Kruger National Park's lion population, despite limited empirical data on the disease's effects in lions. The modeling results suggest that, while a large proportion of the lion population will become infected with bovine tuberculosis, lions are a spillover host and long disease latency is common. In the absence of future aggravating factors, bovine tuberculosis is projected to cause a lion population decline of ~3% over the next 50 years, with the population stabilizing at this new equilibrium. The Approximate Bayesian Computation framework is a new tool for wildlife managers. It allows emerging infectious diseases to be modeled in complex systems by incorporating disparate knowledge about host demographics, behavior, and heterogeneous disease transmission, while allowing inference of unknown system parameters.

  14. EEG-fMRI Bayesian framework for neural activity estimation: a simulation study

    Science.gov (United States)

    Croce, Pierpaolo; Basti, Alessio; Marzetti, Laura; Zappasodi, Filippo; Del Gratta, Cosimo

    2016-12-01

    Objective. Due to the complementary nature of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), and given the possibility of simultaneous acquisition, the joint data analysis can afford a better understanding of the underlying neural activity estimation. In this simulation study we want to show the benefit of the joint EEG-fMRI neural activity estimation in a Bayesian framework. Approach. We built a dynamic Bayesian framework in order to perform joint EEG-fMRI neural activity time course estimation. The neural activity is originated by a given brain area and detected by means of both measurement techniques. We have chosen a resting state neural activity situation to address the worst case in terms of the signal-to-noise ratio. To infer information by EEG and fMRI concurrently we used a tool belonging to the sequential Monte Carlo (SMC) methods: the particle filter (PF). Main results. First, despite a high computational cost, we showed the feasibility of such an approach. Second, we obtained an improvement in neural activity reconstruction when using both EEG and fMRI measurements. Significance. The proposed simulation shows the improvements in neural activity reconstruction with EEG-fMRI simultaneous data. The application of such an approach to real data allows a better comprehension of the neural dynamics.

  15. Effects of management intervention on post-disturbance community composition: an experimental analysis using bayesian hierarchical models.

    Science.gov (United States)

    Giovanini, Jack; Kroll, Andrew J; Jones, Jay E; Altman, Bob; Arnett, Edward B

    2013-01-01

    As human demand for ecosystem products increases, management intervention may become more frequent after environmental disturbances. Evaluations of ecological responses to cumulative effects of management interventions and natural disturbances provide critical decision-support tools for managers who strive to balance environmental conservation and economic development. We conducted an experiment to evaluate the effects of salvage logging on avian community composition in lodgepole pine (Pinus contorta) forests affected by beetle outbreaks in Oregon, USA, 1996-1998. Treatments consisted of the removal of lodgepole pine snags only, and live trees were not harvested. We used a bayesian hierarchical model to quantify occupancy dynamics for 27 breeding species, while accounting for variation in the detection process. We examined how magnitude and precision of treatment effects varied when incorporating prior information from a separate intervention study that occurred in a similar ecological system. Regardless of which prior we evaluated, we found no evidence that the harvest treatment had a negative impact on species richness, with an estimated average of 0.2-2.2 more species in harvested stands than unharvested stands. Estimated average similarity between control and treatment stands ranged from 0.82-0.87 (1 indicating complete similarity between a pair of stands) and suggested that treatment stands did not contain novel assemblies of species responding to the harvesting prescription. Estimated treatment effects were positive for twenty-four (90%) of the species, although the credible intervals contained 0 in all cases. These results suggest that, unlike most post-fire salvage logging prescriptions, selective harvesting after beetle outbreaks may meet multiple management objectives, including the maintenance of avian community richness comparable to what is found in unharvested stands. Our results provide managers with prescription alternatives to respond to severe

  16. Effects of management intervention on post-disturbance community composition: an experimental analysis using bayesian hierarchical models.

    Directory of Open Access Journals (Sweden)

    Jack Giovanini

    Full Text Available As human demand for ecosystem products increases, management intervention may become more frequent after environmental disturbances. Evaluations of ecological responses to cumulative effects of management interventions and natural disturbances provide critical decision-support tools for managers who strive to balance environmental conservation and economic development. We conducted an experiment to evaluate the effects of salvage logging on avian community composition in lodgepole pine (Pinus contorta forests affected by beetle outbreaks in Oregon, USA, 1996-1998. Treatments consisted of the removal of lodgepole pine snags only, and live trees were not harvested. We used a bayesian hierarchical model to quantify occupancy dynamics for 27 breeding species, while accounting for variation in the detection process. We examined how magnitude and precision of treatment effects varied when incorporating prior information from a separate intervention study that occurred in a similar ecological system. Regardless of which prior we evaluated, we found no evidence that the harvest treatment had a negative impact on species richness, with an estimated average of 0.2-2.2 more species in harvested stands than unharvested stands. Estimated average similarity between control and treatment stands ranged from 0.82-0.87 (1 indicating complete similarity between a pair of stands and suggested that treatment stands did not contain novel assemblies of species responding to the harvesting prescription. Estimated treatment effects were positive for twenty-four (90% of the species, although the credible intervals contained 0 in all cases. These results suggest that, unlike most post-fire salvage logging prescriptions, selective harvesting after beetle outbreaks may meet multiple management objectives, including the maintenance of avian community richness comparable to what is found in unharvested stands. Our results provide managers with prescription alternatives to

  17. The Type Ia Supernova Color-Magnitude Relation and Host Galaxy Dust: A Simple Hierarchical Bayesian Model

    Science.gov (United States)

    Mandel, Kaisey S.; Scolnic, Daniel M.; Shariff, Hikmatali; Foley, Ryan J.; Kirshner, Robert P.

    2017-06-01

    Conventional Type Ia supernova (SN Ia) cosmology analyses currently use a simplistic linear regression of magnitude versus color and light curve shape, which does not model intrinsic SN Ia variations and host galaxy dust as physically distinct effects, resulting in low color-magnitude slopes. We construct a probabilistic generative model for the dusty distribution of extinguished absolute magnitudes and apparent colors as the convolution of an intrinsic SN Ia color-magnitude distribution and a host galaxy dust reddening-extinction distribution. If the intrinsic color-magnitude (M B versus B - V) slope {β }{int} differs from the host galaxy dust law R B , this convolution results in a specific curve of mean extinguished absolute magnitude versus apparent color. The derivative of this curve smoothly transitions from {β }{int} in the blue tail to R B in the red tail of the apparent color distribution. The conventional linear fit approximates this effective curve near the average apparent color, resulting in an apparent slope {β }{app} between {β }{int} and R B . We incorporate these effects into a hierarchical Bayesian statistical model for SN Ia light curve measurements, and analyze a data set of SALT2 optical light curve fits of 248 nearby SNe Ia at zlinear fit gives {β }{app}≈ 3. Our model finds {β }{int}=2.3+/- 0.3 and a distinct dust law of {R}B=3.8+/- 0.3, consistent with the average for Milky Way dust, while correcting a systematic distance bias of ˜0.10 mag in the tails of the apparent color distribution. Finally, we extend our model to examine the SN Ia luminosity-host mass dependence in terms of intrinsic and dust components.

  18. Global trends and factors associated with the illegal killing of elephants: A hierarchical bayesian analysis of carcass encounter data.

    Science.gov (United States)

    Burn, Robert W; Underwood, Fiona M; Blanc, Julian

    2011-01-01

    Elephant poaching and the ivory trade remain high on the agenda at meetings of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). Well-informed debates require robust estimates of trends, the spatial distribution of poaching, and drivers of poaching. We present an analysis of trends and drivers of an indicator of elephant poaching of all elephant species. The site-based monitoring system known as Monitoring the Illegal Killing of Elephants (MIKE), set up by the 10(th) Conference of the Parties of CITES in 1997, produces carcass encounter data reported mainly by anti-poaching patrols. Data analyzed were site by year totals of 6,337 carcasses from 66 sites in Africa and Asia from 2002-2009. Analysis of these observational data is a serious challenge to traditional statistical methods because of the opportunistic and non-random nature of patrols, and the heterogeneity across sites. Adopting a bayesian hierarchical modeling approach, we used the proportion of carcasses that were illegally killed (PIKE) as a poaching index, to estimate the trend and the effects of site- and country-level factors associated with poaching. Important drivers of illegal killing that emerged at country level were poor governance and low levels of human development, and at site level, forest cover and area of the site in regions where human population density is low. After a drop from 2002, PIKE remained fairly constant from 2003 until 2006, after which it increased until 2008. The results for 2009 indicate a decline. Sites with PIKE ranging from the lowest to the highest were identified. The results of the analysis provide a sound information base for scientific evidence-based decision making in the CITES process.

  19. Global trends and factors associated with the illegal killing of elephants: A hierarchical bayesian analysis of carcass encounter data.

    Directory of Open Access Journals (Sweden)

    Robert W Burn

    Full Text Available Elephant poaching and the ivory trade remain high on the agenda at meetings of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES. Well-informed debates require robust estimates of trends, the spatial distribution of poaching, and drivers of poaching. We present an analysis of trends and drivers of an indicator of elephant poaching of all elephant species. The site-based monitoring system known as Monitoring the Illegal Killing of Elephants (MIKE, set up by the 10(th Conference of the Parties of CITES in 1997, produces carcass encounter data reported mainly by anti-poaching patrols. Data analyzed were site by year totals of 6,337 carcasses from 66 sites in Africa and Asia from 2002-2009. Analysis of these observational data is a serious challenge to traditional statistical methods because of the opportunistic and non-random nature of patrols, and the heterogeneity across sites. Adopting a bayesian hierarchical modeling approach, we used the proportion of carcasses that were illegally killed (PIKE as a poaching index, to estimate the trend and the effects of site- and country-level factors associated with poaching. Important drivers of illegal killing that emerged at country level were poor governance and low levels of human development, and at site level, forest cover and area of the site in regions where human population density is low. After a drop from 2002, PIKE remained fairly constant from 2003 until 2006, after which it increased until 2008. The results for 2009 indicate a decline. Sites with PIKE ranging from the lowest to the highest were identified. The results of the analysis provide a sound information base for scientific evidence-based decision making in the CITES process.

  20. A Hierarchical Framework for Visualising and Simulating Supply Chains in Virtual Environments

    Institute of Scientific and Technical Information of China (English)

    Hai-Yan Zhang; Zheng-Xu Zhao

    2005-01-01

    This paper presents research into applying virtual environment (VE) technology to supply chain management (SCM). Our research work has employed virtual manufacturing environments to represent supply chain nodes to simulate processes and activities in supply chain management. This will enable those who are involved in these processes and activities to gain an intuitive understanding of them, so as to design robust supply chains and make correct decisions at the right time.A framework system and its hierarchical structure for visualising and simulating supply chains in virtual environments are reported and detailed in this paper.

  1. Removal of Pertechnetate-Related Oxyanions from Solution Using Functionalized Hierarchical Porous Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Debasis [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Elsaidi, Sameh K. [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia Alexandria 21321 Egypt; Aguila, Briana [Department of Chemistry, University of South Florida, USA; Li, Baiyan [Department of Chemistry, University of South Florida, USA; Kim, Dongsang [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Schweiger, Michael J. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Kruger, Albert A. [US Department of Energy, Office of River Protection, Richland WA 99352 USA; Doonan, Christian J. [Department of Chemistry, The University of Adelaide, Adelaide South Australia 5005 Australia; Ma, Shengqian [Department of Chemistry, University of South Florida, USA; Thallapally, Praveen K. [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA

    2016-10-20

    Efficient and cost-effective removal of radioactive pertechnetate anions from nuclear waste is a key challenge to mitigate long-term nuclear waste storage issues. Traditional materials such as resins and layered double hydroxides (LDHs) were evaluated for their pertechnetate or perrhenate (the non-radioactive surrogate) removal capacity, but there is room for improvement in terms of capacity, selectivity and kinetics. A series of functionalized hierarchical porous frameworks were evaluated for their perrhenate removal capacity in the presence of other competing anions.

  2. A hierarchical framework for the multiscale modeling of microstructure evolution in heterogeneous materials.

    Energy Technology Data Exchange (ETDEWEB)

    Luscher, Darby J.

    2010-04-01

    All materials are heterogeneous at various scales of observation. The influence of material heterogeneity on nonuniform response and microstructure evolution can have profound impact on continuum thermomechanical response at macroscopic “engineering” scales. In many cases, it is necessary to treat this behavior as a multiscale process thus integrating the physical understanding of material behavior at various physical (length and time) scales in order to more accurately predict the thermomechanical response of materials as their microstructure evolves. The intent of the dissertation is to provide a formal framework for multiscale hierarchical homogenization to be used in developing constitutive models.

  3. Bayesian data analysis

    CERN Document Server

    Gelman, Andrew; Stern, Hal S; Dunson, David B; Vehtari, Aki; Rubin, Donald B

    2013-01-01

    FUNDAMENTALS OF BAYESIAN INFERENCEProbability and InferenceSingle-Parameter Models Introduction to Multiparameter Models Asymptotics and Connections to Non-Bayesian ApproachesHierarchical ModelsFUNDAMENTALS OF BAYESIAN DATA ANALYSISModel Checking Evaluating, Comparing, and Expanding ModelsModeling Accounting for Data Collection Decision AnalysisADVANCED COMPUTATION Introduction to Bayesian Computation Basics of Markov Chain Simulation Computationally Efficient Markov Chain Simulation Modal and Distributional ApproximationsREGRESSION MODELS Introduction to Regression Models Hierarchical Linear

  4. A second gradient theoretical framework for hierarchical multiscale modeling of materials

    Energy Technology Data Exchange (ETDEWEB)

    Luscher, Darby J [Los Alamos National Laboratory; Bronkhorst, Curt A [Los Alamos National Laboratory; Mc Dowell, David L [GEORGIA TECH

    2009-01-01

    A theoretical framework for the hierarchical multiscale modeling of inelastic response of heterogeneous materials has been presented. Within this multiscale framework, the second gradient is used as a non local kinematic link between the response of a material point at the coarse scale and the response of a neighborhood of material points at the fine scale. Kinematic consistency between these scales results in specific requirements for constraints on the fluctuation field. The wryness tensor serves as a second-order measure of strain. The nature of the second-order strain induces anti-symmetry in the first order stress at the coarse scale. The multiscale ISV constitutive theory is couched in the coarse scale intermediate configuration, from which an important new concept in scale transitions emerges, namely scale invariance of dissipation. Finally, a strategy for developing meaningful kinematic ISVs and the proper free energy functions and evolution kinetics is presented.

  5. Hierarchical Brokering with Feedback Control Framework in Mobile Device-Centric Clouds

    Directory of Open Access Journals (Sweden)

    Chao-Lieh Chen

    2016-01-01

    Full Text Available We propose a hierarchical brokering architecture (HiBA and Mobile Multicloud Networking (MMCN feedback control framework for mobile device-centric cloud (MDC2 computing. Exploiting the MMCN framework and RESTful web-based interconnection, each tier broker probes resource state of its federation for control and management. Real-time and seamless services were developed. Case studies including intrafederation energy-aware balancing based on fuzzy feedback control and higher tier load balancing are further demonstrated to show how HiBA with MMCN relieves the embedding of algorithms when developing services. Theoretical performance model and real-world experiments both show that an MDC2 based on HiBA features better quality in terms of resource availability and network latency if it federates devices with enough resources distributed in lower tier hierarchy. The proposed HiBA realizes a development platform for MDC2 computing which is a feasible solution to User-Centric Networks (UCNs.

  6. Quantifying structural uncertainty on fault networks using a marked point process within a Bayesian framework

    Science.gov (United States)

    Aydin, Orhun; Caers, Jef Karel

    2017-08-01

    Faults are one of the building-blocks for subsurface modeling studies. Incomplete observations of subsurface fault networks lead to uncertainty pertaining to location, geometry and existence of faults. In practice, gaps in incomplete fault network observations are filled based on tectonic knowledge and interpreter's intuition pertaining to fault relationships. Modeling fault network uncertainty with realistic models that represent tectonic knowledge is still a challenge. Although methods that address specific sources of fault network uncertainty and complexities of fault modeling exists, a unifying framework is still lacking. In this paper, we propose a rigorous approach to quantify fault network uncertainty. Fault pattern and intensity information are expressed by means of a marked point process, marked Strauss point process. Fault network information is constrained to fault surface observations (complete or partial) within a Bayesian framework. A structural prior model is defined to quantitatively express fault patterns, geometries and relationships within the Bayesian framework. Structural relationships between faults, in particular fault abutting relations, are represented with a level-set based approach. A Markov Chain Monte Carlo sampler is used to sample posterior fault network realizations that reflect tectonic knowledge and honor fault observations. We apply the methodology to a field study from Nankai Trough & Kumano Basin. The target for uncertainty quantification is a deep site with attenuated seismic data with only partially visible faults and many faults missing from the survey or interpretation. A structural prior model is built from shallow analog sites that are believed to have undergone similar tectonics compared to the site of study. Fault network uncertainty for the field is quantified with fault network realizations that are conditioned to structural rules, tectonic information and partially observed fault surfaces. We show the proposed

  7. Divisive normalization and neuronal oscillations in a single hierarchical framework of selective visual attention

    Directory of Open Access Journals (Sweden)

    Jorrit Steven Montijn

    2012-05-01

    Full Text Available In divisive normalization models of covert attention, spike rate modulations are commonly used as indicators of the effect of top-down attention. In addition, an increasing number of studies have shown that top-down attention increases the synchronization of neuronal oscillations as well, particularly those in gamma-band frequencies (25 to 100 Hz. Although modulations of spike rate and synchronous oscillations are not mutually exclusive as mechanisms of attention, there has thus far been little effort to integrate these concepts into a single framework of attention. Here, we aim to provide such a unified framework by expanding the normalization model of attention with a time dimension; allowing the simulation of a recently reported backward progression of attentional effects along the visual cortical hierarchy. A simple hierarchical cascade of normalization models simulating different cortical areas however leads to signal degradation and a loss of discriminability over time. To negate this degradation and ensure stable neuronal stimulus representations, we incorporate oscillatory phase entrainment into our model, a mechanism previously proposed as the communication-through-coherence (CTC hypothesis. Our analysis shows that divisive normalization and oscillation models can complement each other in a unified account of the neural mechanisms of selective visual attention. The resulting hierarchical normalization and oscillation (HNO model reproduces several additional spatial and temporal aspects of attentional modulation.

  8. Anatomical entity recognition with a hierarchical framework augmented by external resources.

    Directory of Open Access Journals (Sweden)

    Yan Xu

    Full Text Available References to anatomical entities in medical records consist not only of explicit references to anatomical locations, but also other diverse types of expressions, such as specific diseases, clinical tests, clinical treatments, which constitute implicit references to anatomical entities. In order to identify these implicit anatomical entities, we propose a hierarchical framework, in which two layers of named entity recognizers (NERs work in a cooperative manner. Each of the NERs is implemented using the Conditional Random Fields (CRF model, which use a range of external resources to generate features. We constructed a dictionary of anatomical entity expressions by exploiting four existing resources, i.e., UMLS, MeSH, RadLex and BodyPart3D, and supplemented information from two external knowledge bases, i.e., Wikipedia and WordNet, to improve inference of anatomical entities from implicit expressions. Experiments conducted on 300 discharge summaries showed a micro-averaged performance of 0.8509 Precision, 0.7796 Recall and 0.8137 F1 for explicit anatomical entity recognition, and 0.8695 Precision, 0.6893 Recall and 0.7690 F1 for implicit anatomical entity recognition. The use of the hierarchical framework, which combines the recognition of named entities of various types (diseases, clinical tests, treatments with information embedded in external knowledge bases, resulted in a 5.08% increment in F1. The resources constructed for this research will be made publicly available.

  9. Using a Bayesian hierarchical model for identifying single nucleotide polymorphisms associated with childhood acute lymphoblastic leukemia risk in case-parent triads.

    Directory of Open Access Journals (Sweden)

    Ying Cao

    Full Text Available Childhood acute lymphoblastic leukemia (ALL is a condition that arises from complex etiologies. The absence of consistent environmental risk factors and the presence of modest familial associations suggest ALL is a complex trait with an underlying genetic component. The identification of genetic factors associated with disease is complicated by complex genetic covariance structures and multiple testing issues. Both issues can be resolved with appropriate Bayesian variable selection methods. The present study was undertaken to extend our hierarchical Bayesian model for case-parent triads to incorporate single nucleotide polymorphisms (SNPs and incorporate the biological grouping of SNPs within genes. Based on previous evidence that genetic variation in the folate metabolic pathway influences ALL risk, we evaluated 128 tagging SNPs in 16 folate metabolic genes among 118 ALL case-parent triads recruited from the Texas Children's Cancer Center (Houston, TX between 2003 and 2010. We used stochastic search gene suggestion (SSGS in hierarchical Bayesian models to evaluate the association between folate metabolic SNPs and ALL. Using Bayes factors among these variants in childhood ALL case-parent triads, two SNPs were identified with a Bayes factor greater than 1. There was evidence that the minor alleles of NOS3 rs3918186 (OR = 2.16; 95% CI: 1.51-3.15 and SLC19A1 rs1051266 (OR = 2.07; 95% CI: 1.25-3.46 were positively associated with childhood ALL. Our findings are suggestive of the role of inherited genetic variation in the folate metabolic pathway on childhood ALL risk, and they also suggest the utility of Bayesian variable selection methods in the context of case-parent triads for evaluating the role of SNPs on disease risk.

  10. Inverse scattering in a Bayesian framework: application to microwave imaging for breast cancer detection

    Science.gov (United States)

    Gharsalli, Leila; Ayasso, Hacheme; Duchêne, Bernard; Mohammad-Djafari, Ali

    2014-11-01

    In this paper, we deal with a nonlinear inverse scattering problem where the goal is to detect breast cancer from measurements of the scattered field that results from the interaction between the breast and a known interrogating wave in the microwave frequency range. Modeling of the wave-object (breast) interaction is tackled through a domain integral representation of the electric field in a 2D-TM configuration. The inverse problem is solved in a Bayesian framework where prior information, which consists in the fact that the object is supposed to be composed of compact homogeneous regions made of a restricted number of different materials, is introduced via a Gauss-Markov-Potts model. As an analytic expression for the joint maximum a posteriori (MAP) estimators yields an intractable solution, an approximation of the latter is proposed. This is done by means of a variational Bayesian approximation (VBA) technique that is adapted to complex-valued contrast and applied to compute the posterior estimators, and reconstruct maps of both permittivity and conductivity of the sought object. This leads to a joint semi-supervised estimation approach, which allows us to estimate the induced currents, the contrast and all of the parameters introduced in the prior model. The method is tested on two sets of synthetic data generated in different configurations and its performances are compared to that given by a contrast source inversion technique.

  11. Crack detection of beam-type structures following the bayesian system identification framework

    Energy Technology Data Exchange (ETDEWEB)

    Lam, H F; Leung, A Y T [Department of Building and Construction, City University of Hong Kong, Hong Kong (China)

    2008-07-15

    This paper puts forward a method for the detection of crack locations and extents on a structural member utilizing measured dynamic responses following the Bayesian probabilistic framework. In the proposed crack detection method a beam with different number of cracks is modelled using different classes of models. The Bayesian model class selection method is then applied to select the 'most plausible' class of models in order to identify the number of cracks on the structural member. The objective of the proposed method is not to pinpoint the crack locations and extents but to calculate the posterior (updated) probability density function (PDF) of crack parameters (i.e., crack locations and extents). The method explicitly handles the uncertainties introduced by measurement noise and modelling error. This paper presents not only the theoretical development of the proposed method but also the numerical and experimental verifications. In the numerical case studies, noisy data generated by a Bernoulli-Euler beam with semi-rigid connections is used to demonstrate the procedures of the proposed method. The method is finally verified by measured dynamic responses of a cantilever beam utilizing laser Doppler vibrometer.

  12. Bayesian framework for parametric bivariate accelerated lifetime modeling and its application to hospital acquired infections.

    Science.gov (United States)

    Bilgili, D; Ryu, D; Ergönül, Ö; Ebrahimi, N

    2016-03-01

    Infectious diseases that can be spread directly or indirectly from one person to another are caused by pathogenic microorganisms such as bacteria, viruses, parasites, or fungi. Infectious diseases remain one of the greatest threats to human health and the analysis of infectious disease data is among the most important application of statistics. In this article, we develop Bayesian methodology using parametric bivariate accelerated lifetime model to study dependency between the colonization and infection times for Acinetobacter baumannii bacteria which is leading cause of infection among the hospital infection agents. We also study their associations with covariates such as age, gender, apache score, antibiotics use 3 months before admission and invasive mechanical ventilation use. To account for singularity, we use Singular Bivariate Extreme Value distribution to model residuals in Bivariate Accelerated lifetime model under the fully Bayesian framework. We analyze a censored data related to the colonization and infection collected in five major hospitals in Turkey using our methodology. The data analysis done in this article is for illustration of our proposed method and can be applied to any situation that our model can be used.

  13. The Type Ia Supernova Color-Magnitude Relation and Host Galaxy Dust: A Simple Hierarchical Bayesian Model

    Science.gov (United States)

    Mandel, Kaisey; Scolnic, Daniel; Shariff, Hikmatali; Foley, Ryan; Kirshner, Robert

    2017-01-01

    Inferring peak optical absolute magnitudes of Type Ia supernovae (SN Ia) from distance-independent measures such as their light curve shapes and colors underpins the evidence for cosmic acceleration. SN Ia with broader, slower declining optical light curves are more luminous (“broader-brighter”) and those with redder colors are dimmer. But the “redder-dimmer” color-luminosity relation widely used in cosmological SN Ia analyses confounds its two separate physical origins. An intrinsic correlation arises from the physics of exploding white dwarfs, while interstellar dust in the host galaxy also makes SN Ia appear dimmer and redder. Conventional SN Ia cosmology analyses currently use a simplistic linear regression of magnitude versus color and light curve shape, which does not model intrinsic SN Ia variations and host galaxy dust as physically distinct effects, resulting in low color-magnitude slopes. We construct a probabilistic generative model for the dusty distribution of extinguished absolute magnitudes and apparent colors as the convolution of an intrinsic SN Ia color-magnitude distribution and a host galaxy dust reddening-extinction distribution. If the intrinsic color-magnitude (MB vs. B-V) slope βint differs from the host galaxy dust law RB, this convolution results in a specific curve of mean extinguished absolute magnitude vs. apparent color. The derivative of this curve smoothly transitions from βint in the blue tail to RB in the red tail of the apparent color distribution. The conventional linear fit approximates this effective curve near the average apparent color, resulting in an apparent slope βapp between βint and RB. We incorporate these effects into a hierarchical Bayesian statistical model for SN Ia light curve measurements, and analyze a dataset of SALT2 optical light curve fits of 277 nearby SN Ia at z < 0.10. The conventional linear fit obtains βapp ≈ 3. Our model finds a βint = 2.2 ± 0.3 and a distinct dust law of RB = 3.7 ± 0

  14. Anticipating species distributions: Handling sampling effort bias under a Bayesian framework.

    Science.gov (United States)

    Rocchini, Duccio; Garzon-Lopez, Carol X; Marcantonio, Matteo; Amici, Valerio; Bacaro, Giovanni; Bastin, Lucy; Brummitt, Neil; Chiarucci, Alessandro; Foody, Giles M; Hauffe, Heidi C; He, Kate S; Ricotta, Carlo; Rizzoli, Annapaola; Rosà, Roberto

    2017-04-15

    Anticipating species distributions in space and time is necessary for effective biodiversity conservation and for prioritising management interventions. This is especially true when considering invasive species. In such a case, anticipating their spread is important to effectively plan management actions. However, considering uncertainty in the output of species distribution models is critical for correctly interpreting results and avoiding inappropriate decision-making. In particular, when dealing with species inventories, the bias resulting from sampling effort may lead to an over- or under-estimation of the local density of occurrences of a species. In this paper we propose an innovative method to i) map sampling effort bias using cartogram models and ii) explicitly consider such uncertainty in the modeling procedure under a Bayesian framework, which allows the integration of multilevel input data with prior information to improve the anticipation species distributions.

  15. A Bayesian Framework for Combining Protein and Network Topology Information for Predicting Protein-Protein Interactions.

    Science.gov (United States)

    Birlutiu, Adriana; d'Alché-Buc, Florence; Heskes, Tom

    2015-01-01

    Computational methods for predicting protein-protein interactions are important tools that can complement high-throughput technologies and guide biologists in designing new laboratory experiments. The proteins and the interactions between them can be described by a network which is characterized by several topological properties. Information about proteins and interactions between them, in combination with knowledge about topological properties of the network, can be used for developing computational methods that can accurately predict unknown protein-protein interactions. This paper presents a supervised learning framework based on Bayesian inference for combining two types of information: i) network topology information, and ii) information related to proteins and the interactions between them. The motivation of our model is that by combining these two types of information one can achieve a better accuracy in predicting protein-protein interactions, than by using models constructed from these two types of information independently.

  16. Bayesian Framework Approach for Prognostic Studies in Electrolytic Capacitor under Thermal Overstress Conditions

    Science.gov (United States)

    Kulkarni, Chetan S.; Celaya, Jose R.; Goebel, Kai; Biswas, Gautam

    2012-01-01

    Electrolytic capacitors are used in several applications ranging from power supplies for safety critical avionics equipment to power drivers for electro-mechanical actuator. Past experiences show that capacitors tend to degrade and fail faster when subjected to high electrical or thermal stress conditions during operations. This makes them good candidates for prognostics and health management. Model-based prognostics captures system knowledge in the form of physics-based models of components in order to obtain accurate predictions of end of life based on their current state of heal th and their anticipated future use and operational conditions. The focus of this paper is on deriving first principles degradation models for thermal stress conditions and implementing Bayesian framework for making remaining useful life predictions. Data collected from simultaneous experiments are used to validate the models. Our overall goal is to derive accurate models of capacitor degradation, and use them to remaining useful life in DC-DC converters.

  17. Conceptual framework for distributed expert-system use in time-sensitive hierarchical control

    Energy Technology Data Exchange (ETDEWEB)

    Henningsen, J.R.

    1987-01-01

    There are many problems faced by decision makers involved in complex, time-sensitive hierarchical control systems. These may include maintaining knowledge of the functional status of the system components, forecasting the impact of past and future events, transferring information to a distant or poorly connected location, changing the requirements for an operation according to resources available, or creating an independent course of action when system connectivity falls. These problems are transdisciplinary in nature, so decision makers in a variety of organizations face them. This research develops a framework for the use of distributed expert systems in support of time-sensitive hierarchical control systems. Attention is focused on determining ways to enhance the likelihood that a system will remain functional during a crisis in which one or more of the system nodes fail. Options in the use of distributed expert systems for this purpose are developed following investigation of related research in the areas of cooperative and distributed systems. A prototype under development of a generic system model called DES (distributed expert systems) is described. DES is a trimular form of support structure, where a trimule is defined to be a combination of a human decision agent, a component system model and an expert system. This concept is an extension of the domular theory of Tenney and Sandell (1981).

  18. A process-based hierarchical framework for monitoring glaciated alpine headwaters

    Science.gov (United States)

    Weekes, Anne A.; Torgersen, Christian E.; Montgomery, David R.; Woodward, Andrea; Bolton, Susan M.

    2012-01-01

    Recent studies have demonstrated the geomorphic complexity and wide range of hydrologic regimes found in alpine headwater channels that provide complex habitats for aquatic taxa. These geohydrologic elements are fundamental to better understand patterns in species assemblages and indicator taxa and are necessary to aquatic monitoring protocols that aim to track changes in physical conditions. Complex physical variables shape many biological and ecological traits, including life history strategies, but these mechanisms can only be understood if critical physical variables are adequately represented within the sampling framework. To better align sampling design protocols with current geohydrologic knowledge, we present a conceptual framework that incorporates regional-scale conditions, basin-scale longitudinal profiles, valley-scale glacial macroform structure, valley segment-scale (i.e., colluvial, alluvial, and bedrock), and reach-scale channel types. At the valley segment- and reach-scales, these hierarchical levels are associated with differences in streamflow and sediment regime, water source contribution and water temperature. Examples of linked physical-ecological hypotheses placed in a landscape context and a case study using the proposed framework are presented to demonstrate the usefulness of this approach for monitoring complex temporal and spatial patterns and processes in glaciated basins. This approach is meant to aid in comparisons between mountain regions on a global scale and to improve management of potentially endangered alpine species affected by climate change and other stressors.

  19. Inferring land use and land cover impact on stream water quality using a Bayesian hierarchical modeling approach in the Xitiaoxi River Watershed, China.

    Science.gov (United States)

    Wan, Rongrong; Cai, Shanshan; Li, Hengpeng; Yang, Guishan; Li, Zhaofu; Nie, Xiaofei

    2014-01-15

    Lake eutrophication has become a very serious environmental problem in China. If water pollution is to be controlled and ultimately eliminated, it is essential to understand how human activities affect surface water quality. A recently developed technique using the Bayesian hierarchical linear regression model revealed the effects of land use and land cover (LULC) on stream water quality at a watershed scale. Six LULC categories combined with watershed characteristics, including size, slope, and permeability were the variables that were studied. The pollutants of concern were nutrient concentrations of total nitrogen (TN) and total phosphorus (TP), common pollutants found in eutrophication. The monthly monitoring data at 41 sites in the Xitiaoxi Watershed, China during 2009-2010 were used for model demonstration. The results showed that the relationships between LULC and stream water quality are so complicated that the effects are varied over large areas. The models suggested that urban and agricultural land are important sources of TN and TP concentrations, while rural residential land is one of the major sources of TN. Certain agricultural practices (excessive fertilizer application) result in greater concentrations of nutrients in paddy fields, artificial grasslands, and artificial woodlands. This study suggests that Bayesian hierarchical modeling is a powerful tool for examining the complicated relationships between land use and water quality on different scales, and for developing land use and water management policies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Hierarchical and dynamic seascapes: A quantitative framework for scaling pelagic biogeochemistry and ecology

    Science.gov (United States)

    Kavanaugh, Maria T.; Hales, Burke; Saraceno, Martin; Spitz, Yvette H.; White, Angelicque E.; Letelier, Ricardo M.

    2014-01-01

    Comparative analyses of oceanic ecosystems require an objective framework to define coherent study regions and scale the patterns and processes observed within them. We applied the hierarchical patch mosaic paradigm of landscape ecology to the study of the seasonal variability of the North Pacific to facilitate comparative analysis between pelagic ecosystems and provide spatiotemporal context for Eulerian time-series studies. Using 13-year climatologies of sea surface temperature (SST), photosynthetically active radiation (PAR), and chlorophyll a (chl-a), we classified seascapes in environmental space that were monthly-resolved, dynamic and nested in space and time. To test the assumption that seascapes represent coherent regions with unique biogeochemical function and to determine the hierarchical scale that best characterized variance in biogeochemical parameters, independent data sets were analyzed across seascapes using analysis of variance (ANOVA), nested-ANOVA and multiple linear regression (MLR) analyses. We also compared the classification efficiency (as defined by the ANOVA F-statistic) of resultant dynamic seascapes to a commonly-used static classification system. Variance of nutrients and net primary productivity (NPP) were well characterized in the first two levels of hierarchy of eight seascapes nested within three superseascapes (R2 = 0.5-0.7). Dynamic boundaries at this level resulted in a nearly 2-fold increase in classification efficiency over static boundaries. MLR analyses revealed differential forcing on pCO2 across seascapes and hierarchical levels and a 33% reduction in mean model error with increased partitioning (from 18.5 μatm to 12.0 μatm pCO2). Importantly, the empirical influence of seasonality was minor across seascapes at all hierarchical levels, suggesting that seascape partitioning minimizes the effect of non-hydrographic variables. As part of the emerging field of pelagic seascape ecology, this effort provides an improved means of

  1. Self-Evaluation of Decision-Making: A General Bayesian Framework for Metacognitive Computation

    Science.gov (United States)

    2017-01-01

    People are often aware of their mistakes, and report levels of confidence in their choices that correlate with objective performance. These metacognitive assessments of decision quality are important for the guidance of behavior, particularly when external feedback is absent or sporadic. However, a computational framework that accounts for both confidence and error detection is lacking. In addition, accounts of dissociations between performance and metacognition have often relied on ad hoc assumptions, precluding a unified account of intact and impaired self-evaluation. Here we present a general Bayesian framework in which self-evaluation is cast as a “second-order” inference on a coupled but distinct decision system, computationally equivalent to inferring the performance of another actor. Second-order computation may ensue whenever there is a separation between internal states supporting decisions and confidence estimates over space and/or time. We contrast second-order computation against simpler first-order models in which the same internal state supports both decisions and confidence estimates. Through simulations we show that second-order computation provides a unified account of different types of self-evaluation often considered in separate literatures, such as confidence and error detection, and generates novel predictions about the contribution of one’s own actions to metacognitive judgments. In addition, the model provides insight into why subjects’ metacognition may sometimes be better or worse than task performance. We suggest that second-order computation may underpin self-evaluative judgments across a range of domains. PMID:28004960

  2. Integrated survival analysis using an event-time approach in a Bayesian framework

    Science.gov (United States)

    Walsh, Daniel P.; Dreitz, VJ; Heisey, Dennis M.

    2015-01-01

    Event-time or continuous-time statistical approaches have been applied throughout the biostatistical literature and have led to numerous scientific advances. However, these techniques have traditionally relied on knowing failure times. This has limited application of these analyses, particularly, within the ecological field where fates of marked animals may be unknown. To address these limitations, we developed an integrated approach within a Bayesian framework to estimate hazard rates in the face of unknown fates. We combine failure/survival times from individuals whose fates are known and times of which are interval-censored with information from those whose fates are unknown, and model the process of detecting animals with unknown fates. This provides the foundation for our integrated model and permits necessary parameter estimation. We provide the Bayesian model, its derivation, and use simulation techniques to investigate the properties and performance of our approach under several scenarios. Lastly, we apply our estimation technique using a piece-wise constant hazard function to investigate the effects of year, age, chick size and sex, sex of the tending adult, and nesting habitat on mortality hazard rates of the endangered mountain plover (Charadrius montanus) chicks. Traditional models were inappropriate for this analysis because fates of some individual chicks were unknown due to failed radio transmitters. Simulations revealed biases of posterior mean estimates were minimal (≤ 4.95%), and posterior distributions behaved as expected with RMSE of the estimates decreasing as sample sizes, detection probability, and survival increased. We determined mortality hazard rates for plover chicks were highest at <5 days old and were lower for chicks with larger birth weights and/or whose nest was within agricultural habitats. Based on its performance, our approach greatly expands the range of problems for which event-time analyses can be used by eliminating the

  3. A Framework for Parameter Estimation and Model Selection from Experimental Data in Systems Biology Using Approximate Bayesian Computation

    Science.gov (United States)

    Liepe, Juliane; Kirk, Paul; Filippi, Sarah; Toni, Tina; Barnes, Chris P.; Stumpf, Michael P.H.

    2016-01-01

    As modeling becomes a more widespread practice in the life- and biomedical sciences, we require reliable tools to calibrate models against ever more complex and detailed data. Here we present an approximate Bayesian computation framework and software environment, ABC-SysBio, which enables parameter estimation and model selection in the Bayesian formalism using Sequential Monte-Carlo approaches. We outline the underlying rationale, discuss the computational and practical issues, and provide detailed guidance as to how the important tasks of parameter inference and model selection can be carried out in practice. Unlike other available packages, ABC-SysBio is highly suited for investigating in particular the challenging problem of fitting stochastic models to data. Although computationally expensive, the additional insights gained in the Bayesian formalism more than make up for this cost, especially in complex problems. PMID:24457334

  4. A Bayesian framework for human body pose tracking from depth image sequences.

    Science.gov (United States)

    Zhu, Youding; Fujimura, Kikuo

    2010-01-01

    This paper addresses the problem of accurate and robust tracking of 3D human body pose from depth image sequences. Recovering the large number of degrees of freedom in human body movements from a depth image sequence is challenging due to the need to resolve the depth ambiguity caused by self-occlusions and the difficulty to recover from tracking failure. Human body poses could be estimated through model fitting using dense correspondences between depth data and an articulated human model (local optimization method). Although it usually achieves a high accuracy due to dense correspondences, it may fail to recover from tracking failure. Alternately, human pose may be reconstructed by detecting and tracking human body anatomical landmarks (key-points) based on low-level depth image analysis. While this method (key-point based method) is robust and recovers from tracking failure, its pose estimation accuracy depends solely on image-based localization accuracy of key-points. To address these limitations, we present a flexible Bayesian framework for integrating pose estimation results obtained by methods based on key-points and local optimization. Experimental results are shown and performance comparison is presented to demonstrate the effectiveness of the proposed approach.

  5. Thermorheologically simple materials: A bayesian framework for model calibration and validation

    Science.gov (United States)

    Hernández, W. P.; Castello, D. A.; Roitman, N.; Magluta, C.

    2017-08-01

    The dynamic properties of viscoelastic materials show highly frequency-temperature dependency and numerical methods for structural systems containing this type of material require accurate mathematical models to describe their dynamical behaviour. The material behaviour here is modelled using a constitutive equation based on fractional derivative operators and considering the temperature dependence of the material under the thermorheologically simple postulate. The quest for information about the constitutive model parameters is phrased as a statistical inverse problem under the Bayesian framework. A Markov Chain Monte Carlo (MCMC) method is used to explore the posterior density of model parameters using measured data from dynamic tests at different temperatures. The agreement between measured data and the predictive capabilities of sixteen models were quantitatively assessed using two validation metrics. Based on the validation metrics analysis it is possible to conclude that the range of temperature of the calibration data set is a key-point into the implementation of the Frequency Temperature Superposition Principle (FTSP). This was verified defining some scenarios for assessing the agreement of model predictions and the set of available experimental data. The results are quite compelling due to the fact that the proposed approach is easy-handed. Furthermore, this approach could be applied on any generic constitutive model using the FTSP.

  6. Bayesian framework for modeling diffusion processes with nonlinear drift based on nonlinear and incomplete observations.

    Science.gov (United States)

    Wu, Hao; Noé, Frank

    2011-03-01

    Diffusion processes are relevant for a variety of phenomena in the natural sciences, including diffusion of cells or biomolecules within cells, diffusion of molecules on a membrane or surface, and diffusion of a molecular conformation within a complex energy landscape. Many experimental tools exist now to track such diffusive motions in single cells or molecules, including high-resolution light microscopy, optical tweezers, fluorescence quenching, and Förster resonance energy transfer (FRET). Experimental observations are most often indirect and incomplete: (1) They do not directly reveal the potential or diffusion constants that govern the diffusion process, (2) they have limited time and space resolution, and (3) the highest-resolution experiments do not track the motion directly but rather probe it stochastically by recording single events, such as photons, whose properties depend on the state of the system under investigation. Here, we propose a general Bayesian framework to model diffusion processes with nonlinear drift based on incomplete observations as generated by various types of experiments. A maximum penalized likelihood estimator is given as well as a Gibbs sampling method that allows to estimate the trajectories that have caused the measurement, the nonlinear drift or potential function and the noise or diffusion matrices, as well as uncertainty estimates of these properties. The approach is illustrated on numerical simulations of FRET experiments where it is shown that trajectories, potentials, and diffusion constants can be efficiently and reliably estimated even in cases with little statistics or nonequilibrium measurement conditions.

  7. A bayesian framework that integrates heterogeneous data for inferring gene regulatory networks.

    Science.gov (United States)

    Santra, Tapesh

    2014-01-01

    Reconstruction of gene regulatory networks (GRNs) from experimental data is a fundamental challenge in systems biology. A number of computational approaches have been developed to infer GRNs from mRNA expression profiles. However, expression profiles alone are proving to be insufficient for inferring GRN topologies with reasonable accuracy. Recently, it has been shown that integration of external data sources (such as gene and protein sequence information, gene ontology data, protein-protein interactions) with mRNA expression profiles may increase the reliability of the inference process. Here, I propose a new approach that incorporates transcription factor binding sites (TFBS) and physical protein interactions (PPI) among transcription factors (TFs) in a Bayesian variable selection (BVS) algorithm which can infer GRNs from mRNA expression profiles subjected to genetic perturbations. Using real experimental data, I show that the integration of TFBS and PPI data with mRNA expression profiles leads to significantly more accurate networks than those inferred from expression profiles alone. Additionally, the performance of the proposed algorithm is compared with a series of least absolute shrinkage and selection operator (LASSO) regression-based network inference methods that can also incorporate prior knowledge in the inference framework. The results of this comparison suggest that BVS can outperform LASSO regression-based method in some circumstances.

  8. A Bayesian Framework that integrates heterogeneous data for inferring gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Tapesh eSantra

    2014-05-01

    Full Text Available Reconstruction of gene regulatory networks (GRNs from experimental data is a fundamental challenge in systems biology. A number of computational approaches have been developed to infer GRNs from mRNA expression profiles. However, expression profiles alone are proving to be insufficient for inferring GRN topologies with reasonable accuracy. Recently, it has been shown that integration of external data sources (such as gene and protein sequence information, gene ontology data, protein protein interactions with mRNA expression profiles may increase the reliability of the inference process. Here, I propose a new approach that incorporates transcription factor binding sites (TFBS and physical protein interactions (PPI among transcription factors (TFs in a Bayesian Variable Selection (BVS algorithm which can infer GRNs from mRNA expression profiles subjected to genetic perturbations. Using real experimental data, I show that the integration of TFBS and PPI data with mRNA expression profiles leads to significantly more accurate networks than those inferred from expression profiles alone. Additionally, the performance of the proposed algorithm is compared with a series of LASSO regression based network inference methods that can also incorporate prior knowledge in the inference framework. The results of this comparison suggest that BVS can outperform LASSO regression based method in some circumstances.

  9. A decision-making framework to model environmental flow requirements in oasis areas using Bayesian networks

    Science.gov (United States)

    Xue, Jie; Gui, Dongwei; Zhao, Ying; Lei, Jiaqiang; Zeng, Fanjiang; Feng, Xinlong; Mao, Donglei; Shareef, Muhammad

    2016-09-01

    The competition for water resources between agricultural and natural oasis ecosystems has become an increasingly serious problem in oasis areas worldwide. Recently, the intensive extension of oasis farmland has led to excessive exploitation of water discharge, and consequently has resulted in a lack of water supply in natural oasis. To coordinate the conflicts, this paper provides a decision-making framework for modeling environmental flows in oasis areas using Bayesian networks (BNs). Three components are included in the framework: (1) assessment of agricultural economic loss due to meeting environmental flow requirements; (2) decision-making analysis using BNs; and (3) environmental flow decision-making under different water management scenarios. The decision-making criterion is determined based on intersection point analysis between the probability of large-level total agro-economic loss and the ratio of total to maximum agro-economic output by satisfying environmental flows. An application in the Qira oasis area of the Tarim Basin, Northwest China indicates that BNs can model environmental flow decision-making associated with agricultural economic loss effectively, as a powerful tool to coordinate water-use conflicts. In the case study, the environmental flow requirement is determined as 50.24%, 49.71% and 48.73% of the natural river flow in wet, normal and dry years, respectively. Without further agricultural economic loss, 1.93%, 0.66% and 0.43% of more river discharge can be allocated to eco-environmental water demands under the combined strategy in wet, normal and dry years, respectively. This work provides a valuable reference for environmental flow decision-making in any oasis area worldwide.

  10. A state-space Bayesian framework for estimating biogeochemical transformations using time-lapse geophysical data

    Science.gov (United States)

    Chen, Jinsong; Hubbard, Susan S.; Williams, Kenneth H.; Pride, Steve; Li, Li; Steefel, Carl; Slater, Lee

    2009-08-01

    We develop a state-space Bayesian framework to combine time-lapse geophysical data with other types of information for quantitative estimation of biogeochemical parameters during bioremediation. We consider characteristics of end products of biogeochemical transformations as state vectors, which evolve under constraints of local environments through evolution equations, and consider time-lapse geophysical data as available observations, which could be linked to the state vectors through petrophysical models. We estimate the state vectors and their associated unknown parameters over time using Markov chain Monte Carlo sampling methods. To demonstrate the use of the state-space approach, we apply it to complex resistivity data collected during laboratory column biostimulation experiments that were poised to precipitate iron and zinc sulfides during sulfate reduction. We develop a petrophysical model based on sphere-shaped cells to link the sulfide precipitate properties to the time-lapse geophysical attributes and estimate volume fraction of the sulfide precipitates, fraction of the dispersed, sulfide-encrusted cells, mean radius of the aggregated clusters, and permeability over the course of the experiments. Results of the case study suggest that the developed state-space approach permits the use of geophysical data sets for providing quantitative estimates of end-product characteristics and hydrological feedbacks associated with biogeochemical transformations. Although tested here on laboratory column experiment data sets, the developed framework provides the foundation needed for quantitative field-scale estimation of biogeochemical parameters over space and time using direct, but often sparse wellbore data with indirect, but more spatially extensive geophysical data sets.

  11. Cancer driver gene discovery through an integrative genomics approach in a non-parametric Bayesian framework.

    Science.gov (United States)

    Yang, Hai; Wei, Qiang; Zhong, Xue; Yang, Hushan; Li, Bingshan

    2017-02-15

    Comprehensive catalogue of genes that drive tumor initiation and progression in cancer is key to advancing diagnostics, therapeutics and treatment. Given the complexity of cancer, the catalogue is far from complete yet. Increasing evidence shows that driver genes exhibit consistent aberration patterns across multiple-omics in tumors. In this study, we aim to leverage complementary information encoded in each of the omics data to identify novel driver genes through an integrative framework. Specifically, we integrated mutations, gene expression, DNA copy numbers, DNA methylation and protein abundance, all available in The Cancer Genome Atlas (TCGA) and developed iDriver, a non-parametric Bayesian framework based on multivariate statistical modeling to identify driver genes in an unsupervised fashion. iDriver captures the inherent clusters of gene aberrations and constructs the background distribution that is used to assess and calibrate the confidence of driver genes identified through multi-dimensional genomic data. We applied the method to 4 cancer types in TCGA and identified candidate driver genes that are highly enriched with known drivers. (e.g.: P < 3.40 × 10 -36 for breast cancer). We are particularly interested in novel genes and observed multiple lines of supporting evidence. Using systematic evaluation from multiple independent aspects, we identified 45 candidate driver genes that were not previously known across these 4 cancer types. The finding has important implications that integrating additional genomic data with multivariate statistics can help identify cancer drivers and guide the next stage of cancer genomics research. The C ++ source code is freely available at https://medschool.vanderbilt.edu/cgg/ . hai.yang@vanderbilt.edu or bingshan.li@Vanderbilt.Edu. Supplementary data are available at Bioinformatics online.

  12. A Bayesian framework for adaptive selection, calibration, and validation of coarse-grained models of atomistic systems

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, Kathryn, E-mail: kfarrell@ices.utexas.edu; Oden, J. Tinsley, E-mail: oden@ices.utexas.edu; Faghihi, Danial, E-mail: danial@ices.utexas.edu

    2015-08-15

    A general adaptive modeling algorithm for selection and validation of coarse-grained models of atomistic systems is presented. A Bayesian framework is developed to address uncertainties in parameters, data, and model selection. Algorithms for computing output sensitivities to parameter variances, model evidence and posterior model plausibilities for given data, and for computing what are referred to as Occam Categories in reference to a rough measure of model simplicity, make up components of the overall approach. Computational results are provided for representative applications.

  13. A Bayesian Framework for False Belief Reasoning in Children: A Rational Integration of Theory-Theory and Simulation Theory.

    Science.gov (United States)

    Asakura, Nobuhiko; Inui, Toshio

    2016-01-01

    Two apparently contrasting theories have been proposed to account for the development of children's theory of mind (ToM): theory-theory and simulation theory. We present a Bayesian framework that rationally integrates both theories for false belief reasoning. This framework exploits two internal models for predicting the belief states of others: one of self and one of others. These internal models are responsible for simulation-based and theory-based reasoning, respectively. The framework further takes into account empirical studies of a developmental ToM scale (e.g., Wellman and Liu, 2004): developmental progressions of various mental state understandings leading up to false belief understanding. By representing the internal models and their interactions as a causal Bayesian network, we formalize the model of children's false belief reasoning as probabilistic computations on the Bayesian network. This model probabilistically weighs and combines the two internal models and predicts children's false belief ability as a multiplicative effect of their early-developed abilities to understand the mental concepts of diverse beliefs and knowledge access. Specifically, the model predicts that children's proportion of correct responses on a false belief task can be closely approximated as the product of their proportions correct on the diverse belief and knowledge access tasks. To validate this prediction, we illustrate that our model provides good fits to a variety of ToM scale data for preschool children. We discuss the implications and extensions of our model for a deeper understanding of developmental progressions of children's ToM abilities.

  14. Bayesian Framework for Water Quality Model Uncertainty Estimation and Risk Management

    Science.gov (United States)

    A formal Bayesian methodology is presented for integrated model calibration and risk-based water quality management using Bayesian Monte Carlo simulation and maximum likelihood estimation (BMCML). The primary focus is on lucid integration of model calibration with risk-based wat...

  15. A Hierarchical Feature and Sample Selection Framework and Its Application for Alzheimer’s Disease Diagnosis

    Science.gov (United States)

    An, Le; Adeli, Ehsan; Liu, Mingxia; Zhang, Jun; Lee, Seong-Whan; Shen, Dinggang

    2017-01-01

    Classification is one of the most important tasks in machine learning. Due to feature redundancy or outliers in samples, using all available data for training a classifier may be suboptimal. For example, the Alzheimer’s disease (AD) is correlated with certain brain regions or single nucleotide polymorphisms (SNPs), and identification of relevant features is critical for computer-aided diagnosis. Many existing methods first select features from structural magnetic resonance imaging (MRI) or SNPs and then use those features to build the classifier. However, with the presence of many redundant features, the most discriminative features are difficult to be identified in a single step. Thus, we formulate a hierarchical feature and sample selection framework to gradually select informative features and discard ambiguous samples in multiple steps for improved classifier learning. To positively guide the data manifold preservation process, we utilize both labeled and unlabeled data during training, making our method semi-supervised. For validation, we conduct experiments on AD diagnosis by selecting mutually informative features from both MRI and SNP, and using the most discriminative samples for training. The superior classification results demonstrate the effectiveness of our approach, as compared with the rivals. PMID:28358032

  16. A Hierarchical Feature and Sample Selection Framework and Its Application for Alzheimer’s Disease Diagnosis

    Science.gov (United States)

    An, Le; Adeli, Ehsan; Liu, Mingxia; Zhang, Jun; Lee, Seong-Whan; Shen, Dinggang

    2017-03-01

    Classification is one of the most important tasks in machine learning. Due to feature redundancy or outliers in samples, using all available data for training a classifier may be suboptimal. For example, the Alzheimer’s disease (AD) is correlated with certain brain regions or single nucleotide polymorphisms (SNPs), and identification of relevant features is critical for computer-aided diagnosis. Many existing methods first select features from structural magnetic resonance imaging (MRI) or SNPs and then use those features to build the classifier. However, with the presence of many redundant features, the most discriminative features are difficult to be identified in a single step. Thus, we formulate a hierarchical feature and sample selection framework to gradually select informative features and discard ambiguous samples in multiple steps for improved classifier learning. To positively guide the data manifold preservation process, we utilize both labeled and unlabeled data during training, making our method semi-supervised. For validation, we conduct experiments on AD diagnosis by selecting mutually informative features from both MRI and SNP, and using the most discriminative samples for training. The superior classification results demonstrate the effectiveness of our approach, as compared with the rivals.

  17. Social Influence on Information Technology Adoption and Sustained Use in Healthcare: A Hierarchical Bayesian Learning Method Analysis

    Science.gov (United States)

    Hao, Haijing

    2013-01-01

    Information technology adoption and diffusion is currently a significant challenge in the healthcare delivery setting. This thesis includes three papers that explore social influence on information technology adoption and sustained use in the healthcare delivery environment using conventional regression models and novel hierarchical Bayesian…

  18. A Bayesian framework for early risk prediction in traumatic brain injury

    Science.gov (United States)

    Chaganti, Shikha; Plassard, Andrew J.; Wilson, Laura; Smith, Miya A.; Patel, Mayur B.; Landman, Bennett A.

    2016-03-01

    Early detection of risk is critical in determining the course of treatment in traumatic brain injury (TBI). Computed tomography (CT) acquired at admission has shown latent prognostic value in prior studies; however, no robust clinical risk predictions have been achieved based on the imaging data in large-scale TBI analysis. The major challenge lies in the lack of consistent and complete medical records for patients, and an inherent bias associated with the limited number of patients samples with high-risk outcomes in available TBI datasets. Herein, we propose a Bayesian framework with mutual information-based forward feature selection to handle this type of data. Using multi-atlas segmentation, 154 image-based features (capturing intensity, volume and texture) were computed over 22 ROIs in 1791 CT scans. These features were combined with 14 clinical parameters and converted into risk likelihood scores using Bayes modeling. We explore the prediction power of the image features versus the clinical measures for various risk outcomes. The imaging data alone were more predictive of outcomes than the clinical data (including Marshall CT classification) for discharge disposition with an area under the curve of 0.81 vs. 0.67, but less predictive than clinical data for discharge Glasgow Coma Scale (GCS) score with an area under the curve of 0.65 vs. 0.85. However, in both cases, combining imaging and clinical data increased the combined area under the curve with 0.86 for discharge disposition and 0.88 for discharge GCS score. In conclusion, CT data have meaningful prognostic value for TBI patients beyond what is captured in clinical measures and the Marshall CT classification.

  19. JAM: A Scalable Bayesian Framework for Joint Analysis of Marginal SNP Effects.

    Science.gov (United States)

    Newcombe, Paul J; Conti, David V; Richardson, Sylvia

    2016-04-01

    Recently, large scale genome-wide association study (GWAS) meta-analyses have boosted the number of known signals for some traits into the tens and hundreds. Typically, however, variants are only analysed one-at-a-time. This complicates the ability of fine-mapping to identify a small set of SNPs for further functional follow-up. We describe a new and scalable algorithm, joint analysis of marginal summary statistics (JAM), for the re-analysis of published marginal summary statistics under joint multi-SNP models. The correlation is accounted for according to estimates from a reference dataset, and models and SNPs that best explain the complete joint pattern of marginal effects are highlighted via an integrated Bayesian penalized regression framework. We provide both enumerated and Reversible Jump MCMC implementations of JAM and present some comparisons of performance. In a series of realistic simulation studies, JAM demonstrated identical performance to various alternatives designed for single region settings. In multi-region settings, where the only multivariate alternative involves stepwise selection, JAM offered greater power and specificity. We also present an application to real published results from MAGIC (meta-analysis of glucose and insulin related traits consortium) - a GWAS meta-analysis of more than 15,000 people. We re-analysed several genomic regions that produced multiple significant signals with glucose levels 2 hr after oral stimulation. Through joint multivariate modelling, JAM was able to formally rule out many SNPs, and for one gene, ADCY5, suggests that an additional SNP, which transpired to be more biologically plausible, should be followed up with equal priority to the reported index.

  20. A Relevancy, Hierarchical and Contextual Maximum Entropy Framework for a Data-Driven 3D Scene Generation

    Directory of Open Access Journals (Sweden)

    Mesfin Dema

    2014-05-01

    Full Text Available We introduce a novel Maximum Entropy (MaxEnt framework that can generate 3D scenes by incorporating objects’ relevancy, hierarchical and contextual constraints in a unified model. This model is formulated by a Gibbs distribution, under the MaxEnt framework, that can be sampled to generate plausible scenes. Unlike existing approaches, which represent a given scene by a single And-Or graph, the relevancy constraint (defined as the frequency with which a given object exists in the training data require our approach to sample from multiple And-Or graphs, allowing variability in terms of objects’ existence across synthesized scenes. Once an And-Or graph is sampled from the ensemble, the hierarchical constraints are employed to sample the Or-nodes (style variations and the contextual constraints are subsequently used to enforce the corresponding relations that must be satisfied by the And-nodes. To illustrate the proposed methodology, we use desk scenes that are composed of objects whose existence, styles and arrangements (position and orientation can vary from one scene to the next. The relevancy, hierarchical and contextual constraints are extracted from a set of training scenes and utilized to generate plausible synthetic scenes that in turn satisfy these constraints. After applying the proposed framework, scenes that are plausible representations of the training examples are automatically generated.

  1. Hierarchical Bayesian mixture modelling for antigen-specific T-cell subtyping in combinatorially encoded flow cytometry studies

    DEFF Research Database (Denmark)

    Lin, Lin; Chan, Cliburn; Hadrup, Sine R

    2013-01-01

    Novel uses of automated flow cytometry technology for measuring levels of protein markers on thousands to millions of cells are promoting increasing need for relevant, customized Bayesian mixture modelling approaches in many areas of biomedical research and application. In studies of immune...... profiling in many biological areas, traditional flow cytometry measures relative levels of abundance of marker proteins using fluorescently labeled tags that identify specific markers by a single-color. One specific and important recent development in this area is the use of combinatorial marker assays...

  2. A Bayesian Belief Network framework to predict SOC stock change: the Veneto region (Italy) case study

    Science.gov (United States)

    Dal Ferro, Nicola; Quinn, Claire Helen; Morari, Francesco

    2017-04-01

    A key challenge for soil scientists is predicting agricultural management scenarios that combine crop productions with high standards of environmental quality. In this context, reversing the soil organic carbon (SOC) decline in croplands is required for maintaining soil fertility and contributing to mitigate GHGs emissions. Bayesian belief networks (BBN) are probabilistic models able to accommodate uncertainty and variability in the predictions of the impacts of management and environmental changes. By linking multiple qualitative and quantitative variables in a cause-and-effect relationships, BBNs can be used as a decision support system at different spatial scales to find best management strategies in the agroecosystems. In this work we built a BBN to model SOC dynamics (0-30 cm layer) in the low-lying plain of Veneto region, north-eastern Italy, and define best practices leading to SOC accumulation and GHGs (CO2-equivalent) emissions reduction. Regional pedo-climatic, land use and management information were combined with experimental and modelled data on soil C dynamics as natural and anthropic key drivers affecting SOC stock change. Moreover, utility nodes were introduced to determine optimal decisions for mitigating GHGs emissions from croplands considering also three different IPCC climate scenarios. The network was finally validated with real field data in terms of SOC stock change. Results showed that the BBN was able to model real SOC stock changes, since validation slightly overestimated SOC reduction (+5%) at the expenses of its accumulation. At regional level, probability distributions showed 50% of SOC loss, while only 17% of accumulation. However, the greatest losses (34%) were associated with low reduction rates (100-500 kg C ha-1 y-1), followed by 33% of stabilized conditions (-100 < SOC < 100 kg ha-1 y-1). Land use management (especially tillage operations and soil cover) played a primary role to affect SOC stock change, while climate conditions

  3. Uncertainty of mass discharge estimates from contaminated sites using a fully Bayesian framework

    DEFF Research Database (Denmark)

    Troldborg, Mads; Nowak, Wolfgang; Binning, Philip John

    2011-01-01

    plane. The method accounts for: (1) conceptual model uncertainty through Bayesian model averaging, (2) heterogeneity through Bayesian geostatistics with an uncertain geostatistical model, and (3) measurement uncertainty. An ensemble of unconditional steady-state plume realizations is generated through...... Monte Carlo simulation. By use of the Kalman Ensemble Generator, these realizations are conditioned on site-specific data. Hereby a posterior ensemble of realizations, all honouring the measured data at the control plane, is generated for each of the conceptual models considered. The ensembles from...

  4. Uncertainty estimation of the mass discharge from a contaminated site using a fully Bayesian framework

    DEFF Research Database (Denmark)

    Troldborg, Mads; Nowak, W.; Binning, Philip John

    2010-01-01

    for quantifying the uncertainty in the mass discharge across a multilevel control plane. The method is based on geostatistical inverse modelling and accounts for i) conceptual model uncertainty through multiple conceptual models and Bayesian model averaging, ii) heterogeneity through Bayesian geostatistics...... with an uncertain geostatistical model and iii) measurement uncertainty. The method is tested on a TCE contaminated site for which four different conceptual models were set up. The mass discharge and the associated uncertainty are hereby determined. It is discussed which of the conceptual models is most likely...

  5. A Bayesian Missing Data Framework for Generalized Multiple Outcome Mixed Treatment Comparisons

    Science.gov (United States)

    Hong, Hwanhee; Chu, Haitao; Zhang, Jing; Carlin, Bradley P.

    2016-01-01

    Bayesian statistical approaches to mixed treatment comparisons (MTCs) are becoming more popular because of their flexibility and interpretability. Many randomized clinical trials report multiple outcomes with possible inherent correlations. Moreover, MTC data are typically sparse (although richer than standard meta-analysis, comparing only two…

  6. Neural network modeling and an uncertainty analysis in Bayesian framework: A case study from the KTB borehole site

    Science.gov (United States)

    Maiti, Saumen; Tiwari, Ram Krishna

    2010-10-01

    A new probabilistic approach based on the concept of Bayesian neural network (BNN) learning theory is proposed for decoding litho-facies boundaries from well-log data. We show that how a multi-layer-perceptron neural network model can be employed in Bayesian framework to classify changes in litho-log successions. The method is then applied to the German Continental Deep Drilling Program (KTB) well-log data for classification and uncertainty estimation in the litho-facies boundaries. In this framework, a posteriori distribution of network parameter is estimated via the principle of Bayesian probabilistic theory, and an objective function is minimized following the scaled conjugate gradient optimization scheme. For the model development, we inflict a suitable criterion, which provides probabilistic information by emulating different combinations of synthetic data. Uncertainty in the relationship between the data and the model space is appropriately taken care by assuming a Gaussian a priori distribution of networks parameters (e.g., synaptic weights and biases). Prior to applying the new method to the real KTB data, we tested the proposed method on synthetic examples to examine the sensitivity of neural network hyperparameters in prediction. Within this framework, we examine stability and efficiency of this new probabilistic approach using different kinds of synthetic data assorted with different level of correlated noise. Our data analysis suggests that the designed network topology based on the Bayesian paradigm is steady up to nearly 40% correlated noise; however, adding more noise (˜50% or more) degrades the results. We perform uncertainty analyses on training, validation, and test data sets with and devoid of intrinsic noise by making the Gaussian approximation of the a posteriori distribution about the peak model. We present a standard deviation error-map at the network output corresponding to the three types of the litho-facies present over the entire litho

  7. Understanding uncertainties in non-linear population trajectories: a Bayesian semi-parametric hierarchical approach to large-scale surveys of coral cover.

    Directory of Open Access Journals (Sweden)

    Julie Vercelloni

    Full Text Available Recently, attempts to improve decision making in species management have focussed on uncertainties associated with modelling temporal fluctuations in populations. Reducing model uncertainty is challenging; while larger samples improve estimation of species trajectories and reduce statistical errors, they typically amplify variability in observed trajectories. In particular, traditional modelling approaches aimed at estimating population trajectories usually do not account well for nonlinearities and uncertainties associated with multi-scale observations characteristic of large spatio-temporal surveys. We present a Bayesian semi-parametric hierarchical model for simultaneously quantifying uncertainties associated with model structure and parameters, and scale-specific variability over time. We estimate uncertainty across a four-tiered spatial hierarchy of coral cover from the Great Barrier Reef. Coral variability is well described; however, our results show that, in the absence of additional model specifications, conclusions regarding coral trajectories become highly uncertain when considering multiple reefs, suggesting that management should focus more at the scale of individual reefs. The approach presented facilitates the description and estimation of population trajectories and associated uncertainties when variability cannot be attributed to specific causes and origins. We argue that our model can unlock value contained in large-scale datasets, provide guidance for understanding sources of uncertainty, and support better informed decision making.

  8. A species-level phylogeny of all extant and late Quaternary extinct mammals using a novel heuristic-hierarchical Bayesian approach.

    Science.gov (United States)

    Faurby, Søren; Svenning, Jens-Christian

    2015-03-01

    Across large clades, two problems are generally encountered in the estimation of species-level phylogenies: (a) the number of taxa involved is generally so high that computation-intensive approaches cannot readily be utilized and (b) even for clades that have received intense study (e.g., mammals), attention has been centered on relatively few selected species, and most taxa must therefore be positioned on the basis of very limited genetic data. Here, we describe a new heuristic-hierarchical Bayesian approach and use it to construct a species-level phylogeny for all extant and late Quaternary extinct mammals. In this approach, species with large quantities of genetic data are placed nearly freely in the mammalian phylogeny according to these data, whereas the placement of species with lower quantities of data is performed with steadily stricter restrictions for decreasing data quantities. The advantages of the proposed method include (a) an improved ability to incorporate phylogenetic uncertainty in downstream analyses based on the resulting phylogeny, (b) a reduced potential for long-branch attraction or other types of errors that place low-data taxa far from their true position, while maintaining minimal restrictions for better-studied taxa, and (c) likely improved placement of low-data taxa due to the use of closer outgroups. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. A hybrid Bayesian hierarchical model combining cohort and case-control studies for meta-analysis of diagnostic tests: Accounting for partial verification bias.

    Science.gov (United States)

    Ma, Xiaoye; Chen, Yong; Cole, Stephen R; Chu, Haitao

    2014-05-26

    To account for between-study heterogeneity in meta-analysis of diagnostic accuracy studies, bivariate random effects models have been recommended to jointly model the sensitivities and specificities. As study design and population vary, the definition of disease status or severity could differ across studies. Consequently, sensitivity and specificity may be correlated with disease prevalence. To account for this dependence, a trivariate random effects model had been proposed. However, the proposed approach can only include cohort studies with information estimating study-specific disease prevalence. In addition, some diagnostic accuracy studies only select a subset of samples to be verified by the reference test. It is known that ignoring unverified subjects may lead to partial verification bias in the estimation of prevalence, sensitivities, and specificities in a single study. However, the impact of this bias on a meta-analysis has not been investigated. In this paper, we propose a novel hybrid Bayesian hierarchical model combining cohort and case-control studies and correcting partial verification bias at the same time. We investigate the performance of the proposed methods through a set of simulation studies. Two case studies on assessing the diagnostic accuracy of gadolinium-enhanced magnetic resonance imaging in detecting lymph node metastases and of adrenal fluorine-18 fluorodeoxyglucose positron emission tomography in characterizing adrenal masses are presented.

  10. Understanding uncertainties in non-linear population trajectories: a Bayesian semi-parametric hierarchical approach to large-scale surveys of coral cover.

    Science.gov (United States)

    Vercelloni, Julie; Caley, M Julian; Kayal, Mohsen; Low-Choy, Samantha; Mengersen, Kerrie

    2014-01-01

    Recently, attempts to improve decision making in species management have focussed on uncertainties associated with modelling temporal fluctuations in populations. Reducing model uncertainty is challenging; while larger samples improve estimation of species trajectories and reduce statistical errors, they typically amplify variability in observed trajectories. In particular, traditional modelling approaches aimed at estimating population trajectories usually do not account well for nonlinearities and uncertainties associated with multi-scale observations characteristic of large spatio-temporal surveys. We present a Bayesian semi-parametric hierarchical model for simultaneously quantifying uncertainties associated with model structure and parameters, and scale-specific variability over time. We estimate uncertainty across a four-tiered spatial hierarchy of coral cover from the Great Barrier Reef. Coral variability is well described; however, our results show that, in the absence of additional model specifications, conclusions regarding coral trajectories become highly uncertain when considering multiple reefs, suggesting that management should focus more at the scale of individual reefs. The approach presented facilitates the description and estimation of population trajectories and associated uncertainties when variability cannot be attributed to specific causes and origins. We argue that our model can unlock value contained in large-scale datasets, provide guidance for understanding sources of uncertainty, and support better informed decision making.

  11. Nonlinear calibration transfer based on hierarchical Bayesian models and Lagrange Multipliers: Error bounds of estimates via Monte Carlo - Markov Chain sampling.

    Science.gov (United States)

    Seichter, Felicia; Vogt, Josef; Radermacher, Peter; Mizaikoff, Boris

    2017-01-25

    The calibration of analytical systems is time-consuming and the effort for daily calibration routines should therefore be minimized, while maintaining the analytical accuracy and precision. The 'calibration transfer' approach proposes to combine calibration data already recorded with actual calibrations measurements. However, this strategy was developed for the multivariate, linear analysis of spectroscopic data, and thus, cannot be applied to sensors with a single response channel and/or a non-linear relationship between signal and desired analytical concentration. To fill this gap for a non-linear calibration equation, we assume that the coefficients for the equation, collected over several calibration runs, are normally distributed. Considering that coefficients of an actual calibration are a sample of this distribution, only a few standards are needed for a complete calibration data set. The resulting calibration transfer approach is demonstrated for a fluorescence oxygen sensor and implemented as a hierarchical Bayesian model, combined with a Lagrange Multipliers technique and Monte-Carlo Markov-Chain sampling. The latter provides realistic estimates for coefficients and prediction together with accurate error bounds by simulating known measurement errors and system fluctuations. Performance criteria for validation and optimal selection of a reduced set of calibration samples were developed and lead to a setup which maintains the analytical performance of a full calibration. Strategies for a rapid determination of problems occurring in a daily calibration routine, are proposed, thereby opening the possibility of correcting the problem just in time.

  12. A Framework for Final Drive Simultaneous Failure Diagnosis Based on Fuzzy Entropy and Sparse Bayesian Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Qing Ye

    2015-01-01

    Full Text Available This research proposes a novel framework of final drive simultaneous failure diagnosis containing feature extraction, training paired diagnostic models, generating decision threshold, and recognizing simultaneous failure modes. In feature extraction module, adopt wavelet package transform and fuzzy entropy to reduce noise interference and extract representative features of failure mode. Use single failure sample to construct probability classifiers based on paired sparse Bayesian extreme learning machine which is trained only by single failure modes and have high generalization and sparsity of sparse Bayesian learning approach. To generate optimal decision threshold which can convert probability output obtained from classifiers into final simultaneous failure modes, this research proposes using samples containing both single and simultaneous failure modes and Grid search method which is superior to traditional techniques in global optimization. Compared with other frequently used diagnostic approaches based on support vector machine and probability neural networks, experiment results based on F1-measure value verify that the diagnostic accuracy and efficiency of the proposed framework which are crucial for simultaneous failure diagnosis are superior to the existing approach.

  13. Chemical purity using quantitative (1)H-nuclear magnetic resonance: a hierarchical Bayesian approach for traceable calibrations.

    Science.gov (United States)

    Toman, Blaza; Nelson, Michael A; Lippa, Katrice A

    2016-01-01

    Chemical purity assessment using quantitative (1)H-nuclear magnetic resonance spectroscopy is a method based on ratio references of mass and signal intensity of the analyte species to that of chemical standards of known purity. As such, it is an example of a calculation using a known measurement equation with multiple inputs. Though multiple samples are often analyzed during purity evaluations in order to assess measurement repeatability, the uncertainty evaluation must also account for contributions from inputs to the measurement equation. Furthermore, there may be other uncertainty components inherent in the experimental design, such as independent implementation of multiple calibration standards. As such, the uncertainty evaluation is not purely bottom up (based on the measurement equation) or top down (based on the experimental design), but inherently contains elements of both. This hybrid form of uncertainty analysis is readily implemented with Bayesian statistical analysis. In this article we describe this type of analysis in detail and illustrate it using data from an evaluation of chemical purity and its uncertainty for a folic acid material.

  14. A Monte-Carlo Bayesian framework for urban rainfall error modelling

    Science.gov (United States)

    Ochoa Rodriguez, Susana; Wang, Li-Pen; Willems, Patrick; Onof, Christian

    2016-04-01

    Rainfall estimates of the highest possible accuracy and resolution are required for urban hydrological applications, given the small size and fast response which characterise urban catchments. While significant progress has been made in recent years towards meeting rainfall input requirements for urban hydrology -including increasing use of high spatial resolution radar rainfall estimates in combination with point rain gauge records- rainfall estimates will never be perfect and the true rainfall field is, by definition, unknown [1]. Quantifying the residual errors in rainfall estimates is crucial in order to understand their reliability, as well as the impact that their uncertainty may have in subsequent runoff estimates. The quantification of errors in rainfall estimates has been an active topic of research for decades. However, existing rainfall error models have several shortcomings, including the fact that they are limited to describing errors associated to a single data source (i.e. errors associated to rain gauge measurements or radar QPEs alone) and to a single representative error source (e.g. radar-rain gauge differences, spatial temporal resolution). Moreover, rainfall error models have been mostly developed for and tested at large scales. Studies at urban scales are mostly limited to analyses of propagation of errors in rain gauge records-only through urban drainage models and to tests of model sensitivity to uncertainty arising from unmeasured rainfall variability. Only few radar rainfall error models -originally developed for large scales- have been tested at urban scales [2] and have been shown to fail to well capture small-scale storm dynamics, including storm peaks, which are of utmost important for urban runoff simulations. In this work a Monte-Carlo Bayesian framework for rainfall error modelling at urban scales is introduced, which explicitly accounts for relevant errors (arising from insufficient accuracy and/or resolution) in multiple data

  15. Uncertainty evaluation of mass discharge estimates from a contaminated site using a fully Bayesian framework

    DEFF Research Database (Denmark)

    Troldborg, Mads; Nowak, W.; Tuxen, N.

    2010-01-01

    for each of the conceptual models considered. The probability distribution of mass discharge is obtained by combining all ensembles via BMA. The method was applied to a trichloroethylene-contaminated site located in northern Copenhagen. Four essentially different conceptual models based on two source zone......, it is important to quantify the associated uncertainties. Here a rigorous approach for quantifying the uncertainty in the mass discharge across a multilevel control plane is presented. The method accounts for (1) conceptual model uncertainty using multiple conceptual models and Bayesian model averaging (BMA), (2......) heterogeneity through Bayesian geostatistics with an uncertain geostatistical model, and (3) measurement uncertainty. Through unconditional and conditional Monte Carlo simulation, ensembles of steady state plume realizations are generated. The conditional ensembles honor all measured data at the control plane...

  16. A Cooperative Bayesian Nonparametric Framework for Primary User Activity Monitoring in Cognitive Radio Network

    CERN Document Server

    Saad, Walid; Poor, H Vincent; Başar, Tamer; Song, Ju Bin

    2012-01-01

    This paper introduces a novel approach that enables a number of cognitive radio devices that are observing the availability pattern of a number of primary users(PUs), to cooperate and use \\emph{Bayesian nonparametric} techniques to estimate the distributions of the PUs' activity pattern, assumed to be completely unknown. In the proposed model, each cognitive node may have its own individual view on each PU's distribution, and, hence, seeks to find partners having a correlated perception. To address this problem, a coalitional game is formulated between the cognitive devices and an algorithm for cooperative coalition formation is proposed. It is shown that the proposed coalition formation algorithm allows the cognitive nodes that are experiencing a similar behavior from some PUs to self-organize into disjoint, independent coalitions. Inside each coalition, the cooperative cognitive nodes use a combination of Bayesian nonparametric models such as the Dirichlet process and statistical goodness of fit techniques ...

  17. Perturbation Detection Through Modeling of Gene Expression on a Latent Biological Pathway Network: A Bayesian hierarchical approach.

    Science.gov (United States)

    Pham, Lisa M; Carvalho, Luis; Schaus, Scott; Kolaczyk, Eric D

    Cellular response to a perturbation is the result of a dynamic system of biological variables linked in a complex network. A major challenge in drug and disease studies is identifying the key factors of a biological network that are essential in determining the cell's fate. Here our goal is the identification of perturbed pathways from high-throughput gene expression data. We develop a three-level hierarchical model, where (i) the first level captures the relationship between gene expression and biological pathways using confirmatory factor analysis, (ii) the second level models the behavior within an underlying network of pathways induced by an unknown perturbation using a conditional autoregressive model, and (iii) the third level is a spike-and-slab prior on the perturbations. We then identify perturbations through posterior-based variable selection. We illustrate our approach using gene transcription drug perturbation profiles from the DREAM7 drug sensitivity predication challenge data set. Our proposed method identified regulatory pathways that are known to play a causative role and that were not readily resolved using gene set enrichment analysis or exploratory factor models. Simulation results are presented assessing the performance of this model relative to a network-free variant and its robustness to inaccuracies in biological databases.

  18. Search for patterns of functional specificity in the brain: a nonparametric hierarchical Bayesian model for group fMRI data.

    Science.gov (United States)

    Lashkari, Danial; Sridharan, Ramesh; Vul, Edward; Hsieh, Po-Jang; Kanwisher, Nancy; Golland, Polina

    2012-01-16

    Functional MRI studies have uncovered a number of brain areas that demonstrate highly specific functional patterns. In the case of visual object recognition, small, focal regions have been characterized with selectivity for visual categories such as human faces. In this paper, we develop an algorithm that automatically learns patterns of functional specificity from fMRI data in a group of subjects. The method does not require spatial alignment of functional images from different subjects. The algorithm is based on a generative model that comprises two main layers. At the lower level, we express the functional brain response to each stimulus as a binary activation variable. At the next level, we define a prior over sets of activation variables in all subjects. We use a Hierarchical Dirichlet Process as the prior in order to learn the patterns of functional specificity shared across the group, which we call functional systems, and estimate the number of these systems. Inference based on our model enables automatic discovery and characterization of dominant and consistent functional systems. We apply the method to data from a visual fMRI study comprised of 69 distinct stimulus images. The discovered system activation profiles correspond to selectivity for a number of image categories such as faces, bodies, and scenes. Among systems found by our method, we identify new areas that are deactivated by face stimuli. In empirical comparisons with previously proposed exploratory methods, our results appear superior in capturing the structure in the space of visual categories of stimuli.

  19. Bayesian distributed articulated object tracking using multiple collaborative trackers

    Science.gov (United States)

    Qu, Wei; Schonfeld, Dan

    2007-01-01

    In this paper, we propose two novel articulated object tracking approaches. The Decentralized Articulated Object Tracking approach avoids the common practice of using a high-dimensional joint state representation for articulated object tracking. Instead, it introduces a decentralized scheme and models the inter-part interaction within an innovative Bayesian framework. To handle severe self-occlusions, we further extend the first approach by modeling high-level inter-unit interactions and develop the Hierarchical Articulated Object Tracking algorithm within a consistent hierarchical framework. Preliminary experimental results have demonstrated the superior performance of the proposed approaches for real-world videos sequences.

  20. A Bayesian framework to account for uncertainty due to missing binary outcome data in pairwise meta-analysis.

    Science.gov (United States)

    Turner, N L; Dias, S; Ades, A E; Welton, N J

    2015-05-30

    Missing outcome data are a common threat to the validity of the results from randomised controlled trials (RCTs), which, if not analysed appropriately, can lead to misleading treatment effect estimates. Studies with missing outcome data also threaten the validity of any meta-analysis that includes them. A conceptually simple Bayesian framework is proposed, to account for uncertainty due to missing binary outcome data in meta-analysis. A pattern-mixture model is fitted, which allows the incorporation of prior information on a parameter describing the missingness mechanism. We describe several alternative parameterisations, with the simplest being a prior on the probability of an event in the missing individuals. We describe a series of structural assumptions that can be made concerning the missingness parameters. We use some artificial data scenarios to demonstrate the ability of the model to produce a bias-adjusted estimate of treatment effect that accounts for uncertainty. A meta-analysis of haloperidol versus placebo for schizophrenia is used to illustrate the model. We end with a discussion of elicitation of priors, issues with poor reporting and potential extensions of the framework. Our framework allows one to make the best use of evidence produced from RCTs with missing outcome data in a meta-analysis, accounts for any uncertainty induced by missing data and fits easily into a wider evidence synthesis framework for medical decision making.

  1. Low Energy Wireless Body-Area Networks for Fetal ECG Telemonitoring via the Framework of Block Sparse Bayesian Learning

    CERN Document Server

    Zhang, Zhilin; Makeig, Scott; Rao, Bhaskar D

    2012-01-01

    Fetal ECG (FECG) telemonitoring is an important branch in telemedicine. The design of a telemonitoring system via a low-power wireless body-area network for ambulatory use is highly desirable. As an emerging technique, compressed sensing (CS) shows great promise in compressing data with low power consumption. However, due to some specific characteristics of FECG recordings such as non-sparsity and strong noise contamination, current CS algorithms generally fail in this application. In this work we utilize the block sparse Bayesian learning (bSBL) framework, a recently developed framework solving the CS problems. To illustrate the ability of the bSBL methods, we apply it to two representative FECG datasets. In one dataset the fetal heartbeat signals are visible, while in the other dataset are barely visible. The experiment results show that the bSBL framework is capable of compressing FECG raw recordings and successfully reconstructing them. These successes rely on two unique features of the bSBL framework; on...

  2. How much of the world’s land has been urbanized, really? A hierarchical framework for evading confusion

    Energy Technology Data Exchange (ETDEWEB)

    Liu, zhifeng; He, Chunyang; Zhou, Yuyu; Wu, jianguo

    2014-05-01

    Urbanization has transformed the world’s landscapes, resulting in a series of ecological and environmental problems. To assess urbanization impacts and improve sustainability, one of the first questions that we must address is: how much of the world’s land has been urbanized? Unfortunately, the estimates of the global urban land reported in the literature vary widely from less than 1% to 3% primarily because different definitions of urban land were used. To evade confusion, here we propose a hierarchical framework for representing and communicating the spatial extent of the world’s urbanized land at the global, regional, and more local levels. The hierarchical framework consists of three spatially nested definitions: “urban area” that is delineated by administrative boundaries, “built-up area” that is dominated by artificial surfaces, and “impervious surface area” that is devoid of life. These are really three different measures of urbanization. In 2010, the global urban land was close to 3%, the global built-up area was 0.65%, and the global impervious surface area was 0.45%, of the word’s total land area (excluding Antarctica and Greenland). We argue that this hierarchy of urban land measures, in particular the ratios between them, can also facilitate better understanding the biophysical and socioeconomic processes and impacts of urbanization.

  3. Ozone and childhood respiratory disease in three US cities: evaluation of effect measure modification by neighborhood socioeconomic status using a Bayesian hierarchical approach.

    Science.gov (United States)

    O' Lenick, Cassandra R; Chang, Howard H; Kramer, Michael R; Winquist, Andrea; Mulholland, James A; Friberg, Mariel D; Sarnat, Stefanie Ebelt

    2017-04-05

    Ground-level ozone is a potent airway irritant and a determinant of respiratory morbidity. Susceptibility to the health effects of ambient ozone may be influenced by both intrinsic and extrinsic factors, such as neighborhood socioeconomic status (SES). Questions remain regarding the manner and extent that factors such as SES influence ozone-related health effects, particularly across different study areas. Using a 2-stage modeling approach we evaluated neighborhood SES as a modifier of ozone-related pediatric respiratory morbidity in Atlanta, Dallas, & St. Louis. We acquired multi-year data on emergency department (ED) visits among 5-18 year olds with a primary diagnosis of respiratory disease in each city. Daily concentrations of 8-h maximum ambient ozone were estimated for all ZIP Code Tabulation Areas (ZCTA) in each city by fusing observed concentration data from available network monitors with simulations from an emissions-based chemical transport model. In the first stage, we used conditional logistic regression to estimate ZCTA-specific odds ratios (OR) between ozone and respiratory ED visits, controlling for temporal trends and meteorology. In the second stage, we combined ZCTA-level estimates in a Bayesian hierarchical model to assess overall associations and effect modification by neighborhood SES considering categorical and continuous SES indicators (e.g., ZCTA-specific levels of poverty). We estimated ORs and 95% posterior intervals (PI) for a 25 ppb increase in ozone. The hierarchical model combined effect estimates from 179 ZCTAs in Atlanta, 205 ZCTAs in Dallas, and 151 ZCTAs in St. Louis. The strongest overall association of ozone and pediatric respiratory disease was in Atlanta (OR = 1.08, 95% PI: 1.06, 1.11), followed by Dallas (OR = 1.04, 95% PI: 1.01, 1.07) and St. Louis (OR = 1.03, 95% PI: 0.99, 1.07). Patterns of association across levels of neighborhood SES in each city suggested stronger ORs in low compared to high SES areas, with

  4. A Bayesian Prediction Framework of Weather Based Power Line Damages in the Northeast

    Science.gov (United States)

    frediani, M.; Anagnostou, E. N.; Wanik, D.; Scerbo, D.

    2012-12-01

    This study aims to evaluate the predictability of damages to overhead power distribution lines from severe weather events in the New England area. During storms, trees and branches can come down and interact with power lines that results in significant interruptions to electricity distribution, causing major interruptions to residents and monetary losses to the utility company. In Connecticut, a densely forested state, severe winds and precipitation (in the form of rain and snow) from storms are key weather factors that challenge the power grid infrastructure vulnerability. Evaluating the local predictability of these impacts may aid local power utilities with crew allocation and preparedness during an event. A probabilistic approach to damage prediction caused by trees subjected to severe weather is being investigated in the region. This study specifically, explores the feasibility of applying Bayesian inversion technique to weather parameters by developing a damage decision tree composed of various meteorological and static parameters, like wind gust, precipitation (rain and snow accumulation and rates), high canopy forest density and tree trimming history for the power distribution lines. The resulting decision tree can be used as a Bayesian inversion database to predict the probability distribution of damages given a storm forecast. The Bayesian database is based on a historical data source provided by The Connecticut Light & Power Company (Connecticut's primary power utility) containing geographical information of trouble spots caused by thunderstorm and winter/snow-storm events; power line specifications and trimming history; and high-resolution model analysis of those storms. The analysis is based on a 2-sqkm model grid cropped over the state of Connecticut comprising a database of 3,307 pixels per storm. Each storm pixel is flagged to contain power line damages or no-damages. A total of 50 storm simulations is used to build the database. Pairs of

  5. Boosted Supercapacitive Energy with High Rate Capability of aCarbon Framework with Hierarchical Pore Structure in an Ionic Liquid.

    Science.gov (United States)

    Wang, Xuehang; Zhou, Haitao; Lou, Fengliu; Li, Yahao; Buan, Marthe E M; Duan, Xuezhi; Walmsley, John C; Sheridan, Edel; Chen, De

    2016-11-09

    The specific energy of a supercapacitor (SC) with an ionic liquid (IL)-based electrolyte is larger than that using an aqueous electrolyte owing to the wide operating voltage window provided by the IL. However, the wide-scale application of high-energy SCs using ILs is limited owing to a serious reduction of the energy with increasing power. The introduction of macropores to the porous material can mitigate the reduction in the gravimetric capacitance at high rates, but this lowers the volumetric capacitance. Synthetic polymers can be used to obtain macroporous frameworks with high apparent densities, but the preservation of the frameworks during activation is challenging. To simultaneously achieve high gravimetric capacitance, volumetric capacitance, and rate capability, a systematic strategy was used to synthesize a densely knitted carbon framework with a hierarchical pore structure by using a polymer. The energy of the SC using the hierarchically porous carbon was 160 Wh kg(-1) and 85 Wh L(-1) on an active material base at a power of 100 W kg(-1) in an IL electrolyte, and 60 % of the energy was still retained at a power larger than 5000 W kg(-1) . To illustrate, a full-packaged SC with the material could store/release energy comparable to a Ni-metal hydride battery (gravimetrically) and one order of magnitude higher than a commercial carbon-based SC (volumetrically), within one minute. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A Bayesian inversion framework for yield and height-of-burst/depth-of-burial for near-surface explosions

    Energy Technology Data Exchange (ETDEWEB)

    Johannesson, Gardar [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bulaevskaya, Vera [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ramirez, Abe [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ford, Sean [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rodgers, Artie [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-09-07

    A Bayesian inversion framework is presented to estimate the yield of an explosion and height-of-burst/depth-of-burial (HOB/DOB) using seismic and air pressure data. This is accomplished by first calibrating the parameters in the forward models that relate the observations to the yield and HOB/DOB and then using the calibrated model to estimate yield and HOB/DOB associated with a new set of seismic and air pressure observations. The MCMC algorithms required to perform these steps are outlined, and the results with real data are shown. Finally, an extension is proposed for a case when clustering in the seismic displacement occurs as a function of different types of rock and other factors.

  7. Modeling the marketing strategy-performance relationship : towards an hierarchical marketing performance framework

    NARCIS (Netherlands)

    Huizingh, Eelko K.R.E.; Zengerink, Evelien

    2001-01-01

    Accurate measurement of marketing performance is an important topic for both marketing academics and marketing managers. Many researchers have recognized that marketing performance measurement should go beyond financial measurement. In this paper we propose a conceptual framework that models

  8. Modeling the marketing strategy-performance relationship : towards an hierarchical marketing performance framework

    NARCIS (Netherlands)

    Huizingh, Eelko K.R.E.; Zengerink, Evelien

    2001-01-01

    Accurate measurement of marketing performance is an important topic for both marketing academics and marketing managers. Many researchers have recognized that marketing performance measurement should go beyond financial measurement. In this paper we propose a conceptual framework that models marketi

  9. A decision‐making framework for flood risk management based on a Bayesian Influence Diagram

    DEFF Research Database (Denmark)

    Åstrøm, Helena Lisa Alexandra; Madsen, Henrik; Friis-Hansen, Peter

    2014-01-01

    ‐making is difficult, and considering the partly unknown processes related to anthropogenic climate change we need to model a very complex system. In our study we showed that IDs are a noteworthy alternative as decision‐making method in flood risk management and is a useful method when several hazards......We develop a Bayesian Influence Diagram (ID) approach for risk‐based decision‐ making in flood management. We show that it is a flexible decision‐making tool to assess flood risk in a non‐stationary environment and with an ability to test different adaptation measures in order to agree on the best...... for assessing the risk of something we ?believe? may occur in the future. An ID has two layers; 1) a graphical description of the system built up by system variables, adaptation measures, costs/benefits of these measures and the dependencies of all these, which is an effective means to communicate the system...

  10. Particle Kalman Filtering: A Nonlinear Bayesian Framework for Ensemble Kalman Filters

    CERN Document Server

    Hoteit, Ibrahim; Pham, Dinh-Tuan

    2011-01-01

    This paper investigates an approximation scheme of the optimal nonlinear Bayesian filter based on the Gaussian mixture representation of the state probability distribution function. The resulting filter is similar to the particle filter, but is different from it in that, the standard weight-type correction in the particle filter is complemented by the Kalman-type correction with the associated covariance matrices in the Gaussian mixture. We show that this filter is an algorithm in between the Kalman filter and the particle filter, and therefore is referred to as the particle Kalman filter (PKF). In the PKF, the solution of a nonlinear filtering problem is expressed as the weighted average of an "ensemble of Kalman filters" operating in parallel. Running an ensemble of Kalman filters is, however, computationally prohibitive for realistic atmospheric and oceanic data assimilation problems. For this reason, we consider the construction of the PKF through an "ensemble" of ensemble Kalman filters (EnKFs) instead, ...

  11. Assembly of tin oxide/graphene nanosheets into 3D hierarchical frameworks for high-performance lithium storage.

    Science.gov (United States)

    Huang, Yanshan; Wu, Dongqing; Han, Sheng; Li, Shuang; Xiao, Li; Zhang, Fan; Feng, Xinliang

    2013-08-01

    3D hierarchical tin oxide/graphene frameworks (SnO2 /GFs) were built up by the in situ synthesis of 2D SnO2 /graphene nanosheets followed by hydrothermal assembly. These SnO2 /GFs exhibited a 3D hierarchical porous architecture with mesopores (≈3 nm), macropores (3-6 μm), and a large surface area (244 m(2) g(-1) ), which not only effectively prevented the agglomeration of SnO2 nanoparticles, but also facilitated fast ion and electron transport in 3D pathways. As a consequence, the SnO2 /GFs exhibited a high capacity of 830 mAh g(-1) for up to 70 charge-discharge cycles at 100 mA g(-1) . Even at a high current density of 500 mA g(-1) , a reversible capacity of 621 mAh g(-1) could be maintained for SnO2 /GFs with excellent cycling stability. Such performance is superior to that of previously reported SnO2 /graphene and other SnO2 /carbon composites with similar weight contents of SnO2 .

  12. A Modulator-Induced Defect-Formation Strategy to Hierarchically Porous Metal-Organic Frameworks with High Stability.

    Science.gov (United States)

    Cai, Guorui; Jiang, Hai-Long

    2017-01-09

    The pore size enlargement and structural stability have been recognized as two crucial targets, which are rarely achieved together, in the development of metal-organic frameworks (MOFs). Herein, we have developed a versatile modulator-induced defect-formation strategy, in the presence of monocarboxylic acid as a modulator and an insufficient amount of organic ligand, successfully realizing the controllable synthesis of hierarchically porous MOFs (HP-MOFs) with high stability and tailorable pore characters. Remarkably, the integration of high stability and large mesoporous property enables these HP-MOFs to be important porous platforms for applications involving large molecules, especially in catalysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Hierarchical Multiscale Framework for Materials Modeling: Advances in Scale-Bridging Applied to a Taylor Anvil Impact Test of RDX

    Science.gov (United States)

    Barnes, Brian; Leiter, Kenneth; Becker, Richard; Knap, Jaroslaw; Brennan, John

    As part of a multiscale modeling effort, we present progress on a challenge in continuum-scale modeling: the direct incorporation of complex molecular-level processes in the constitutive evaluation. In this initial phase of the research we use a concurrent scale-bridging approach, with a hierarchical multiscale framework running in parallel to couple a particle-based model (the ''lower scale'') computing the equation of state (EOS) to the constitutive response in a finite-element multi-physics simulation (the ''upper scale''). The lower scale simulations of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) use a force-matched coarse-grain model and dissipative particle dynamics methods, and the upper scale simulation is of a Taylor anvil impact experiment. Results emphasize use of adaptive sampling (via dynamic kriging) that accelerates time to solution, and its comparison to fully ''on the fly'' runs. Work towards inclusion of a fully reactive EOS is also discussed.

  14. Thermally Stable Metal-Organic Framework-Templated Synthesis of Hierarchically Porous Metal Sulfides: Enhanced Photocatalytic Hydrogen Production.

    Science.gov (United States)

    Xiao, Juan-Ding; Jiang, Hai-Long

    2017-07-01

    Porous nanostructured materials are demonstrated to be very promising in catalysis due to their well accessible active sites. Thermally stable metal-organic frameworks (MOFs) as hard templates are successfully utilized to afford porous metal oxides and subsequently metal sulfides by a nanocasting method. The resultant metal oxides/sulfides show considerable Brunauer-Emmett-Teller (BET) surface areas, by partially inheriting the pore character of MOF templates. Preliminary investigation on the obtained hierarchically porous CdS for water splitting, as a proof of concept, demonstrates its much higher activity than both corresponding bulk and nanosized counterparts, under visible light irradiation. Given the structural diversity and tailorability of MOFs, such synthetic approach may open an avenue to the synthesis of advanced porous materials for functional applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Metal-Organic Framework Derived Hierarchically Porous Nitrogen-Doped Carbon Nanostructures as Novel Electrocatalyst for Oxygen Reduction Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Shaofang; Zhu, Chengzhou; Zhou, Yazhou; Yang, Guohai; Jeon, Ju Won; Lemmon, John P.; Du, Dan; Nune, Satish K.; Lin, Yuehe

    2015-10-01

    The hierarchically porous nitrogen-doped carbon materials, derived from nitrogen-containing isoreticular metal-organic framework-3 (IRMOF-3) through direct carbonization, exhibited excellent electrocatalytic activity in alkaline solution for oxygen reduction reaction (ORR). This high activity is attributed to the 10 presence of high percentage of quaternary and pyridinic nitrogen, the high surface area as well as good conductivity. When IRMOF-3 was carbonized at 950 °C (CIRMOF-3-950), it showed four-electron reduction pathway for ORR and exhibited better stability (about 78.5% current density was maintained) than platinum/carbon (Pt/C) in the current durability test. In addition, CIRMOF-3-950 presented high selectivity to cathode reactions compared to commercial Pt/C.

  16. Globally COnstrained Local Function Approximation via Hierarchical Modelling, a Framework for System Modelling under Partial Information

    DEFF Research Database (Denmark)

    Øjelund, Henrik; Sadegh, Payman

    2000-01-01

    , constraints are introduced to ensure the conformity of the estimates to a gien global structure. Hierarchical models are then utilized as a tool to ccomodate global model uncertainties via parametric variabilities within the structure. The global parameters and their associated uncertainties are estimated...... simultaneously with the (local estimates of) function values. The approach is applied to modelling of a linear time variant dynamic system under prior linear time invariant structure where local regression fails as a result of high dimensionality.......Local function approximations concern fitting low order models to weighted data in neighbourhoods of the points where the approximations are desired. Despite their generality and convenience of use, local models typically suffer, among others, from difficulties arising in physical interpretation...

  17. A hierarchical spatial framework and database for the national river fish habitat condition assessment

    Science.gov (United States)

    Wang, L.; Infante, D.; Esselman, P.; Cooper, A.; Wu, D.; Taylor, W.; Beard, D.; Whelan, G.; Ostroff, A.

    2011-01-01

    Fisheries management programs, such as the National Fish Habitat Action Plan (NFHAP), urgently need a nationwide spatial framework and database for health assessment and policy development to protect and improve riverine systems. To meet this need, we developed a spatial framework and database using National Hydrography Dataset Plus (I-.100,000-scale); http://www.horizon-systems.com/nhdplus). This framework uses interconfluence river reaches and their local and network catchments as fundamental spatial river units and a series of ecological and political spatial descriptors as hierarchy structures to allow users to extract or analyze information at spatial scales that they define. This database consists of variables describing channel characteristics, network position/connectivity, climate, elevation, gradient, and size. It contains a series of catchment-natural and human-induced factors that are known to influence river characteristics. Our framework and database assembles all river reaches and their descriptors in one place for the first time for the conterminous United States. This framework and database provides users with the capability of adding data, conducting analyses, developing management scenarios and regulation, and tracking management progresses at a variety of spatial scales. This database provides the essential data needs for achieving the objectives of NFHAP and other management programs. The downloadable beta version database is available at http://ec2-184-73-40-15.compute-1.amazonaws.com/nfhap/main/.

  18. Robust Bayesian Regularized Estimation Based on t Regression Model

    Directory of Open Access Journals (Sweden)

    Zean Li

    2015-01-01

    Full Text Available The t distribution is a useful extension of the normal distribution, which can be used for statistical modeling of data sets with heavy tails, and provides robust estimation. In this paper, in view of the advantages of Bayesian analysis, we propose a new robust coefficient estimation and variable selection method based on Bayesian adaptive Lasso t regression. A Gibbs sampler is developed based on the Bayesian hierarchical model framework, where we treat the t distribution as a mixture of normal and gamma distributions and put different penalization parameters for different regression coefficients. We also consider the Bayesian t regression with adaptive group Lasso and obtain the Gibbs sampler from the posterior distributions. Both simulation studies and real data example show that our method performs well compared with other existing methods when the error distribution has heavy tails and/or outliers.

  19. Hierarchical Downlink Resource Management Framework for OFDMA based WiMAX Systems

    DEFF Research Database (Denmark)

    Wang, Hua; Iversen, Villy Bæk

    2008-01-01

    resource management framework for OFDMA based WiMAX systems. Our framework consists of a dynamic resource allocation (DRA) module and a connection admission control (CAC) module. DRA emphasizes on how to share the limited radio resources in term of subchannels and time slots among WiMAX subscribers...... belonging to different service classes with the objective of increasing the spectral efficiency while satisfying the diverse QoS requirements in each service class. CAC highlights how to limit the number of ongoing connections preventing the system capacity from being overused. Through system...

  20. A Parametric Empirical Bayesian framework for the EEG/MEG inverse problem: generative models for multisubject and multimodal integration

    Directory of Open Access Journals (Sweden)

    Richard N Henson

    2011-08-01

    Full Text Available We review recent methodological developments within a Parametric Empirical Bayesian (PEB framework for reconstructing intracranial sources of extracranial electroencephalographic (EEG and magnetoencephalographic (MEG data under linear Gaussian assumptions. The PEB framework offers a natural way to integrate multiple constraints (spatial priors on this inverse problem, such as those derived from different modalities (e.g., from functional magnetic resonance imaging, fMRI or from multiple replications (e.g., subjects. Using variations of the same basic generative model, we illustrate the application of PEB to three cases: 1 symmetric integration (fusion of MEG and EEG; 2 asymmetric integration of MEG or EEG with fMRI, and 3 group-optimisation of spatial priors across subjects. We evaluate these applications on multimodal data acquired from 18 subjects, focusing on energy induced by face perception within a time-frequency window of 100-220ms, 8-18Hz. We show the benefits of multi-modal, multi-subject integration in terms of the model evidence and the reproducibility (over subjects of cortical responses to faces.

  1. Metal organic framework synthesis in the presence of surfactants: towards hierarchical MOFs?

    NARCIS (Netherlands)

    Seoane, B.; Dikhtiarenko, A.; Mayoral, A.; Tellez, C.; Coronas,J.; Kapteijn, F.; Gascon, J.

    2015-01-01

    The effect of synthesis pH and H2O/EtOH molar ratio on the textural properties of different aluminium trimesate metal organic frameworks (MOFs) prepared in the presence of the well-known cationic surfactant cetyltrimethylammonium bromide (CTAB) at 120 °C was studied with the purpose of obtaining a

  2. Particle Kalman Filtering: A Nonlinear Bayesian Framework for Ensemble Kalman Filters*

    KAUST Repository

    Hoteit, Ibrahim

    2012-02-01

    This paper investigates an approximation scheme of the optimal nonlinear Bayesian filter based on the Gaussian mixture representation of the state probability distribution function. The resulting filter is similar to the particle filter, but is different from it in that the standard weight-type correction in the particle filter is complemented by the Kalman-type correction with the associated covariance matrices in the Gaussian mixture. The authors show that this filter is an algorithm in between the Kalman filter and the particle filter, and therefore is referred to as the particle Kalman filter (PKF). In the PKF, the solution of a nonlinear filtering problem is expressed as the weighted average of an “ensemble of Kalman filters” operating in parallel. Running an ensemble of Kalman filters is, however, computationally prohibitive for realistic atmospheric and oceanic data assimilation problems. For this reason, the authors consider the construction of the PKF through an “ensemble” of ensemble Kalman filters (EnKFs) instead, and call the implementation the particle EnKF (PEnKF). It is shown that different types of the EnKFs can be considered as special cases of the PEnKF. Similar to the situation in the particle filter, the authors also introduce a resampling step to the PEnKF in order to reduce the risk of weights collapse and improve the performance of the filter. Numerical experiments with the strongly nonlinear Lorenz-96 model are presented and discussed.

  3. 基于DNA微阵列数据分析的分级Bayes模型%A Bayesian Hierarchical Model for DNA Microarray Data

    Institute of Scientific and Technical Information of China (English)

    刘妍岩; 杨丹

    2009-01-01

    In DNA microarray analysis, there is often interest in isolating a few genes that best discriminate between tissue types. In particular, it is critical to develop suitable models to explain the patterns of DNA expression for these different types of tissues. Toward this goal, we propose a methodology for the analysis of high-density oligonucleotide arrays.The log-transformed data are assumed to follow a mixture normal distribution based on the characteristic of gene itself. The variation in the data can reasonably be thought to arise from the effects of genes, tissue types, and their interactions. We introduce a hierarchical Bayesian priors for the parameters and propose a model selection criterion for identifying subsets of genes that show different expression levels between normal and tumor types. In addition, we develop Markov chain Monte Carlo algorithms for sampling from the posterior distribution of parameters and for computing criterion. The proposed methodology is evaluated via simulations studies.%如何分离出少量区别不同组织类型的特异性基因是DNA微阵列数据分析中的主要问题,特别是构建恰当的统计模型来刻画这些不同组织类型的DNA表达形式尤为重要.为此,基于基因DNA微阵列数据的特点,我们假定对数变换后的微阵列数据服从混合正态分布.我们采用分级Bayesian先验刻画不同基因的相关性,利用分级Bayesian方法构建模型,给出了刻画不同组织基因表达的差异的一个标准,用MCMC迭代计算该标准.模拟计算表明我们的模型具有较好的识别能力.

  4. Hierarchically designed three-dimensional macro/mesoporous carbon frameworks for advanced electrochemical capacitance storage.

    Science.gov (United States)

    Yang, Yanbing; Li, Peixu; Wu, Shiting; Li, Xinyang; Shi, Enzheng; Shen, Qicang; Wu, Dehai; Xu, Wenjing; Cao, Anyuan; Yuan, Quan

    2015-04-13

    Mesoporous carbon (m-C) has potential applications as porous electrodes for electrochemical energy storage, but its applications have been severely limited by the inherent fragility and low electrical conductivity. A rational strategy is presented to construct m-C into hierarchical porous structures with high flexibility by using a carbon nanotube (CNT) sponge as a three-dimensional template, and grafting Pt nanoparticles at the m-C surface. This method involves several controllable steps including solution deposition of a mesoporous silica (m-SiO2 ) layer onto CNTs, chemical vapor deposition of acetylene, and etching of m-SiO2 , resulting in a CNT@m-C core-shell or a CNT@m-C@Pt core-shell hybrid structure after Pt adsorption. The underlying CNT network provides a robust yet flexible support and a high electrical conductivity, whereas the m-C provides large surface area, and the Pt nanoparticles improves interfacial electron and ion diffusion. Consequently, specific capacitances of 203 and 311 F g(-1) have been achieved in these CNT@m-C and CNT@m-C@Pt sponges as supercapacitor electrodes, respectively, which can retain 96 % of original capacitance under large degree compression.

  5. A generic, hierarchical framework for massively parallel Wang-Landau sampling

    CERN Document Server

    Vogel, Thomas; Wüst, Thomas; Landau, David P

    2013-01-01

    We introduce a parallel Wang-Landau method based on the replica-exchange framework for Monte Carlo simulations. To demonstrate its advantages and general applicability for simulations of complex systems, we apply it to different spin models including spin glasses, the Ising model and the Potts model, lattice protein adsorption, and the self-assembly process in amphiphilic solutions. Without loss of accuracy, the method gives significant speed-up and potentially scales up to petaflop machines.

  6. A Nonparametric Bayesian Approach to Seismic Hazard Modeling Using the ETAS Framework

    Science.gov (United States)

    Ross, G.

    2015-12-01

    The epidemic-type aftershock sequence (ETAS) model is one of the most popular tools for modeling seismicity and quantifying risk in earthquake-prone regions. Under the ETAS model, the occurrence times of earthquakes are treated as a self-exciting Poisson process where each earthquake briefly increases the probability of subsequent earthquakes occurring soon afterwards, which captures the fact that large mainshocks tend to produce long sequences of aftershocks. A triggering kernel controls the amount by which the probability increases based on the magnitude of each earthquake, and the rate at which it then decays over time. This triggering kernel is usually chosen heuristically, to match the parametric form of the modified Omori law for aftershock decay. However recent work has questioned whether this is an appropriate choice. Since the choice of kernel has a large impact on the predictions made by the ETAS model, avoiding misspecification is crucially important. We present a novel nonparametric version of ETAS which avoids making parametric assumptions, and instead learns the correct specification from the data itself. Our approach is based on the Dirichlet process, which is a modern class of Bayesian prior distribution which allows for efficient inference over an infinite dimensional space of functions. We show how our nonparametric ETAS model can be fit to data, and present results demonstrating that the fit is greatly improved compared to the standard parametric specification. Additionally, we explain how our model can be used to perform probabilistic declustering of earthquake catalogs, to classify earthquakes as being either aftershocks or mainshocks. and to learn the causal relations between pairs of earthquakes.

  7. A Framework for Land Cover Classification Using Discrete Return LiDAR Data: Adopting Pseudo-Waveform and Hierarchical Segmentation

    Science.gov (United States)

    Jung, Jinha; Pasolli, Edoardo; Prasad, Saurabh; Tilton, James C.; Crawford, Melba M.

    2014-01-01

    Acquiring current, accurate land-use information is critical for monitoring and understanding the impact of anthropogenic activities on natural environments.Remote sensing technologies are of increasing importance because of their capability to acquire information for large areas in a timely manner, enabling decision makers to be more effective in complex environments. Although optical imagery has demonstrated to be successful for land cover classification, active sensors, such as light detection and ranging (LiDAR), have distinct capabilities that can be exploited to improve classification results. However, utilization of LiDAR data for land cover classification has not been fully exploited. Moreover, spatial-spectral classification has recently gained significant attention since classification accuracy can be improved by extracting additional information from the neighboring pixels. Although spatial information has been widely used for spectral data, less attention has been given to LiDARdata. In this work, a new framework for land cover classification using discrete return LiDAR data is proposed. Pseudo-waveforms are generated from the LiDAR data and processed by hierarchical segmentation. Spatial featuresare extracted in a region-based way using a new unsupervised strategy for multiple pruning of the segmentation hierarchy. The proposed framework is validated experimentally on a real dataset acquired in an urban area. Better classification results are exhibited by the proposed framework compared to the cases in which basic LiDAR products such as digital surface model and intensity image are used. Moreover, the proposed region-based feature extraction strategy results in improved classification accuracies in comparison with a more traditional window-based approach.

  8. Enabling Sustainability: Hierarchical Need-Based Framework for Promoting Sustainable Data Infrastructure in Developing Countries

    Directory of Open Access Journals (Sweden)

    David O. Yawson

    2009-11-01

    Full Text Available The paper presents thoughts on Sustainable Data Infrastructure (SDI development, and its user requirements bases. It brings Maslow's motivational theory to the fore, and proposes it as a rationalization mechanism for entities (mostly governmental that aim at realizing SDI. Maslow's theory, though well-known, is somewhat new in geospatial circles; this is where the novelty of the paper resides. SDI has been shown to enable and aid development in diverse ways. However, stimulating developing countries to appreciate the utility of SDI, implement, and use SDI in achieving sustainable development has proven to be an imposing challenge. One of the key reasons for this could be the absence of a widely accepted psychological theory to drive needs assessment and intervention design for the purpose of SDI development. As a result, it is reasonable to explore Maslow’s theory of human motivation as a psychological theory for promoting SDI in developing countries. In this article, we review and adapt Maslow’s hierarchy of needs as a framework for the assessment of the needs of developing nations. The paper concludes with the implications of this framework for policy with the view to stimulating the implementation of SDI in developing nations.

  9. A Framework for Hierarchical Perception-Action Learning Utilizing Fuzzy Reasoning.

    Science.gov (United States)

    Windridge, David; Felsberg, Michael; Shaukat, Affan

    2013-02-01

    Perception-action (P-A) learning is an approach to cognitive system building that seeks to reduce the complexity associated with conventional environment-representation/action-planning approaches. Instead, actions are directly mapped onto the perceptual transitions that they bring about, eliminating the need for intermediate representation and significantly reducing training requirements. We here set out a very general learning framework for cognitive systems in which online learning of the P-A mapping may be conducted within a symbolic processing context, so that complex contextual reasoning can influence the P-A mapping. In utilizing a variational calculus approach to define a suitable objective function, the P-A mapping can be treated as an online learning problem via gradient descent using partial derivatives. Our central theoretical result is to demonstrate top-down modulation of low-level perceptual confidences via the Jacobian of the higher levels of a subsumptive P-A hierarchy. Thus, the separation of the Jacobian as a multiplying factor between levels within the objective function naturally enables the integration of abstract symbolic manipulation in the form of fuzzy deductive logic into the P-A mapping learning. We experimentally demonstrate that the resulting framework achieves significantly better accuracy than using P-A learning without top-down modulation. We also demonstrate that it permits novel forms of context-dependent multilevel P-A mapping, applying the mechanism in the context of an intelligent driver assistance system.

  10. Hierarchical Multiagent Reinforcement Learning

    Science.gov (United States)

    2004-01-25

    In this paper, we investigate the use of hierarchical reinforcement learning (HRL) to speed up the acquisition of cooperative multiagent tasks. We...introduce a hierarchical multiagent reinforcement learning (RL) framework and propose a hierarchical multiagent RL algorithm called Cooperative HRL. In

  11. A Bayesian framework to assess the potential for controlling classical scrapie in sheep flocks using a live diagnostic test.

    Science.gov (United States)

    Gryspeirt, Aiko; Gubbins, Simon

    2013-09-01

    Current strategies to control classical scrapie remove animals at risk of scrapie rather than those known to be infected with the scrapie agent. Advances in diagnostic tests, however, suggest that a more targeted approach involving the application of a rapid live test may be feasible in future. Here we consider the use of two diagnostic tests: recto-anal mucosa-associated lymphatic tissue (RAMALT) biopsies; and a blood-based assay. To assess their impact we developed a stochastic age- and prion protein (PrP) genotype-structured model for the dynamics of scrapie within a sheep flock. Parameters were estimated in a Bayesian framework to facilitate integration of a number of disparate datasets and to allow parameter uncertainty to be incorporated in model predictions. In small flocks a control strategy based on removal of clinical cases was sufficient to control disease and more stringent measures (including the use of a live diagnostic test) did not significantly reduce outbreak size or duration. In medium or large flocks strategies in which a large proportion of animals are tested with either live diagnostic test significantly reduced outbreak size, but not always duration, compared with removal of clinical cases. However, the current Compulsory Scrapie Flocks Scheme (CSFS) significantly reduced outbreak size and duration compared with both removal of clinical cases and all strategies using a live diagnostic test. Accordingly, under the assumptions made in the present study there is little benefit from implementing a control strategy which makes use of a live diagnostic test.

  12. Immobilization of Bacillus subtilis lipase on a Cu-BTC based hierarchically porous metal-organic framework material: a biocatalyst for esterification.

    Science.gov (United States)

    Cao, Yu; Wu, Zhuofu; Wang, Tao; Xiao, Yu; Huo, Qisheng; Liu, Yunling

    2016-04-28

    Bacillus subtilis lipase (BSL2) has been successfully immobilized into a Cu-BTC based hierarchically porous metal-organic framework material for the first time. The Cu-BTC hierarchically porous MOF material with large mesopore apertures is prepared conveniently by using a template-free strategy under mild conditions. The immobilized BSL2 presents high enzymatic activity and perfect reusability during the esterification reaction. After 10 cycles, the immobilized BSL2 still exhibits 90.7% of its initial enzymatic activity and 99.6% of its initial conversion.

  13. Synthesis of hierarchical porous carbon monoliths with incorporated metal-organic frameworks for enhancing volumetric based CO₂ capture capability.

    Science.gov (United States)

    Qian, Dan; Lei, Cheng; Hao, Guang-Ping; Li, Wen-Cui; Lu, An-Hui

    2012-11-01

    This work aims to optimize the structural features of hierarchical porous carbon monolith (HCM) by incorporating the advantages of metal-organic frameworks (MOFs) (Cu₃(BTC)₂) to maximize the volumetric based CO₂ capture capability (CO₂ capacity in cm³ per cm³ adsorbent), which is seriously required for the practical application of CO₂ capture. The monolithic HCM was used as a matrix, in which Cu₃(BTC)₂ was in situ synthesized, to form HCM-Cu₃(BTC)₂ composites by a step-by-step impregnation and crystallization method. The resulted HCM-Cu₃(BTC)₂ composites, which retain the monolithic shape and exhibit unique hybrid structure features of both HCM and Cu₃(BTC)₂, show high CO₂ uptake of 22.7 cm³ cm⁻³ on a volumetric basis. This value is nearly as twice as the uptake of original HCM. The dynamic gas separation measurement of HCM-Cu₃(BTC)₂, using 16% (v/v) CO₂ in N₂ as feedstock, illustrates that CO₂ can be easily separated from N₂ under the ambient conditions and achieves a high separation factor for CO₂ over N₂, ranging from 67 to 100, reflecting a strongly competitive CO₂ adsorption by the composite. A facile CO₂ release can be realized by purging an argon flow through the fixed-bed adsorber at 25 °C, indicating the good regeneration ability.

  14. An in situ self-assembly template strategy for the preparation of hierarchical-pore metal-organic frameworks

    Science.gov (United States)

    Huang, Hongliang; Li, Jian-Rong; Wang, Keke; Han, Tongtong; Tong, Minman; Li, Liangsha; Xie, Yabo; Yang, Qingyuan; Liu, Dahuan; Zhong, Chongli

    2015-01-01

    Metal-organic frameworks (MOFs) have recently emerged as a new type of nanoporous materials with tailorable structures and functions. Usually, MOFs have uniform pores smaller than 2 nm in size, limiting their practical applications in some cases. Although a few approaches have been adopted to prepare MOFs with larger pores, it is still challenging to synthesize hierarchical-pore MOFs (H-MOFs) with high structural controllability and good stability. Here we demonstrate a facile and versatile method, an in situ self-assembly template strategy for fabricating stable H-MOFs, in which multi-scale soluble and/or acid-sensitive metal-organic assembly (MOA) fragments form during the reactions between metal ions and organic ligands (to construct MOFs), and act as removable dynamic chemical templates. This general strategy was successfully used to prepare various H-MOFs that show rich porous properties and potential applications, such as in large molecule adsorption. Notably, the mesopore sizes of the H-MOFs can be tuned by varying the amount of templates. PMID:26548441

  15. Metal organic framework derived magnetically separable 3-dimensional hierarchical Ni@C nanocomposites: Synthesis and adsorption properties

    Science.gov (United States)

    Song, Yixuan; Qiang, Tingting; Ye, Ming; Ma, Qiuyang; Fang, Zhen

    2015-12-01

    Design an effective absorbent that has high surface area, and perfect recyclable is imperative for pollution elimination. Herein, we report a facile two-step strategy to fabricate magnetically separable 3-dimensional (3D) hierarchical carbon-coated nickel (Ni@C) nanocomposites by calcinating nickel based metal organic framework (Ni3(OH)2(C8H4O4)2(H2O)4). SEM and TEM images illuminate that the nanocomposites were constructed by 8 nm nickel nanoparticle encapsulated in 3D flake like carbon. The specific surface area of the obtained nanocomposites is up to 120.38 m2 g-1. Room temperature magnetic measurement indicates the nanocomposites show soft magnetism property, which endows the nanocomposites with an ideal fast magnetic separable property. The maximum adsorption capacity of the nanocomposites for rhodamine B is 84.5 mg g-1. Furthermore, the nanocomposites also exhibit a high adsorption capacity for heavy metal ions. The adsorbent can be very easily separated from the solution by using a common magnet without exterior energy. The as-prepared Ni@C nanocomposites can apply in waste water treatment on a large-scale as a new adsorbent with high efficiency and excellent recyclability.

  16. A data-driven SVR model for long-term runoff prediction and uncertainty analysis based on the Bayesian framework

    Science.gov (United States)

    Liang, Zhongmin; Li, Yujie; Hu, Yiming; Li, Binquan; Wang, Jun

    2017-06-01

    Accurate and reliable long-term forecasting plays an important role in water resources management and utilization. In this paper, a hybrid model called SVR-HUP is presented to predict long-term runoff and quantify the prediction uncertainty. The model is created based on three steps. First, appropriate predictors are selected according to the correlations between meteorological factors and runoff. Second, a support vector regression (SVR) model is structured and optimized based on the LibSVM toolbox and a genetic algorithm. Finally, using forecasted and observed runoff, a hydrologic uncertainty processor (HUP) based on a Bayesian framework is used to estimate the posterior probability distribution of the simulated values, and the associated uncertainty of prediction was quantitatively analyzed. Six precision evaluation indexes, including the correlation coefficient (CC), relative root mean square error (RRMSE), relative error (RE), mean absolute percentage error (MAPE), Nash-Sutcliffe efficiency (NSE), and qualification rate (QR), are used to measure the prediction accuracy. As a case study, the proposed approach is applied in the Han River basin, South Central China. Three types of SVR models are established to forecast the monthly, flood season and annual runoff volumes. The results indicate that SVR yields satisfactory accuracy and reliability at all three scales. In addition, the results suggest that the HUP cannot only quantify the uncertainty of prediction based on a confidence interval but also provide a more accurate single value prediction than the initial SVR forecasting result. Thus, the SVR-HUP model provides an alternative method for long-term runoff forecasting.

  17. Bayesian framework to identify the main effects of long term climatic constraints on soil moisture decline in conterminous United States

    Science.gov (United States)

    Guevara, M.; Vargas, R.

    2016-12-01

    We used a Bayesian regression framework based on Hamiltonian Monte Carlo simulations to identify the main effects of mean annual soil moisture, temperature, evapotranspiration, and precipitation, on long-term soil moisture decline across conterminous United States based on 36 years of remotely sensed available data. We found that mean soil moisture was a positive control of soil moisture decline in areas with long-term high precipitation but low evapotranspiration. Furthermore, mean soil moisture is a negative control on soil moisture decline in areas with long-term low precipitation and low evapotranspiration. In contrast, mean soil moisture had no effect on soil moisture decline in areas with long-term low precipitation and high evapotranspiration. These results highlight the importance of having accurate spatial soil moisture information to better inform earth system models to predict regional to global water balance and climate trends. These results support the current understanding of the basic physical mechanisms governing the coupling of soil moisture with temperature, precipitation, and evapotranspiration, but bring attention to high spatial heterogeneity in the constraints of soil moisture at the continental scale. The response of soil moisture to climate variability is considered to be one of the largest uncertainties for global land surface models, and resolving high spatial resolution of soil moisture is an ongoing challenge. Independent estimates of high spatial resolution of soil moisture could improve parameterizations of land surface models and cross-validate the current functions that mainly relay on precipitation, aerodynamic representation of the latent and sensible heat fluxes, and land surface cover type.

  18. Flexible Bayesian Human Fecundity Models.

    Science.gov (United States)

    Kim, Sungduk; Sundaram, Rajeshwari; Buck Louis, Germaine M; Pyper, Cecilia

    2012-12-01

    Human fecundity is an issue of considerable interest for both epidemiological and clinical audiences, and is dependent upon a couple's biologic capacity for reproduction coupled with behaviors that place a couple at risk for pregnancy. Bayesian hierarchical models have been proposed to better model the conception probabilities by accounting for the acts of intercourse around the day of ovulation, i.e., during the fertile window. These models can be viewed in the framework of a generalized nonlinear model with an exponential link. However, a fixed choice of link function may not always provide the best fit, leading to potentially biased estimates for probability of conception. Motivated by this, we propose a general class of models for fecundity by relaxing the choice of the link function under the generalized nonlinear model framework. We use a sample from the Oxford Conception Study (OCS) to illustrate the utility and fit of this general class of models for estimating human conception. Our findings reinforce the need for attention to be paid to the choice of link function in modeling conception, as it may bias the estimation of conception probabilities. Various properties of the proposed models are examined and a Markov chain Monte Carlo sampling algorithm was developed for implementing the Bayesian computations. The deviance information criterion measure and logarithm of pseudo marginal likelihood are used for guiding the choice of links. The supplemental material section contains technical details of the proof of the theorem stated in the paper, and contains further simulation results and analysis.

  19. From individual to population level effects of toxicants in the tubicifid Branchiura sowerbyi using threshold effect models in a Bayesian framework.

    Science.gov (United States)

    Ducrot, Virginie; Billoir, Elise; Péry, Alexandre R R; Garric, Jeanne; Charles, Sandrine

    2010-05-01

    Effects of zinc were studied in the freshwater worm Branchiura sowerbyi using partial and full life-cycle tests. Only newborn and juveniles were sensitive to zinc, displaying effects on survival, growth, and age at first brood at environmentally relevant concentrations. Threshold effect models were proposed to assess toxic effects on individuals. They were fitted to life-cycle test data using Bayesian inference and adequately described life-history trait data in exposed organisms. The daily asymptotic growth rate of theoretical populations was then simulated with a matrix population model, based upon individual-level outputs. Population-level outputs were in accordance with existing literature for controls. Working in a Bayesian framework allowed incorporating parameter uncertainty in the simulation of the population-level response to zinc exposure, thus increasing the relevance of test results in the context of ecological risk assessment.

  20. Uncertainty reduction and characterization for complex environmental fate and transport models: An empirical Bayesian framework incorporating the stochastic response surface method

    Science.gov (United States)

    Balakrishnan, Suhrid; Roy, Amit; Ierapetritou, Marianthi G.; Flach, Gregory P.; Georgopoulos, Panos G.

    2003-12-01

    In this work, a computationally efficient Bayesian framework for the reduction and characterization of parametric uncertainty in computationally demanding environmental 3-D numerical models has been developed. The framework is based on the combined application of the Stochastic Response Surface Method (SRSM, which generates accurate and computationally efficient statistically equivalent reduced models) and the Markov chain Monte Carlo method. The application selected to demonstrate this framework involves steady state groundwater flow at the U.S. Department of Energy Savannah River Site General Separations Area, modeled using the Subsurface Flow And Contaminant Transport (FACT) code. Input parameter uncertainty, based initially on expert opinion, was found to decrease in all variables of the posterior distribution. The joint posterior distribution obtained was then further used for the final uncertainty analysis of the stream base flows and well location hydraulic head values.

  1. Unit-Specific Event-Based and Slot-Based Hybrid Model Framework with Hierarchical Structure for Short-Term Scheduling

    Directory of Open Access Journals (Sweden)

    Yue Wang

    2015-01-01

    Full Text Available Unit-specific event-based continuous-time model has inaccurate calculation problems in involving resource constraints, due to the heterogeneous locations of the event points for different units. In order to address this limitation, a continuous-time unit-specific event-based and slot-based hybrid model framework with hierarchical structure is proposed in this work. A unit-specific event-based model without utility constraints is formulated in upper layer, and a slot-based model is introduced in lower layer. In the hierarchical structure, the two layers jointly address the short-term production scheduling problem of batch plants under utility consideration. The key features of this work include the following: (a eliminating overstrict constraints on utility resources, (b solving multiple counting problems, and (c considering duration time of event points in calculating utility utilization level. The effectiveness and advantages of proposed model are illustrated through two benchmark examples from the literatures.

  2. Bayesian programming

    CERN Document Server

    Bessiere, Pierre; Ahuactzin, Juan Manuel; Mekhnacha, Kamel

    2013-01-01

    Probability as an Alternative to Boolean LogicWhile logic is the mathematical foundation of rational reasoning and the fundamental principle of computing, it is restricted to problems where information is both complete and certain. However, many real-world problems, from financial investments to email filtering, are incomplete or uncertain in nature. Probability theory and Bayesian computing together provide an alternative framework to deal with incomplete and uncertain data. Decision-Making Tools and Methods for Incomplete and Uncertain DataEmphasizing probability as an alternative to Boolean

  3. Robust full Bayesian learning for radial basis networks.

    Science.gov (United States)

    Andrieu, C; de Freitas, N; Doucet, A

    2001-10-01

    We propose a hierarchical full Bayesian model for radial basis networks. This model treats the model dimension (number of neurons), model parameters, regularization parameters, and noise parameters as unknown random variables. We develop a reversible-jump Markov chain Monte Carlo (MCMC) method to perform the Bayesian computation. We find that the results obtained using this method are not only better than the ones reported previously, but also appear to be robust with respect to the prior specification. In addition, we propose a novel and computationally efficient reversible-jump MCMC simulated annealing algorithm to optimize neural networks. This algorithm enables us to maximize the joint posterior distribution of the network parameters and the number of basis function. It performs a global search in the joint space of the parameters and number of parameters, thereby surmounting the problem of local minima to a large extent. We show that by calibrating the full hierarchical Bayesian prior, we can obtain the classical Akaike information criterion, Bayesian information criterion, and minimum description length model selection criteria within a penalized likelihood framework. Finally, we present a geometric convergence theorem for the algorithm with homogeneous transition kernel and a convergence theorem for the reversible-jump MCMC simulated annealing method.

  4. Hierarchical Linear Modeling (HLM): An Introduction to Key Concepts within Cross-Sectional and Growth Modeling Frameworks. Technical Report #1308

    Science.gov (United States)

    Anderson, Daniel

    2012-01-01

    This manuscript provides an overview of hierarchical linear modeling (HLM), as part of a series of papers covering topics relevant to consumers of educational research. HLM is tremendously flexible, allowing researchers to specify relations across multiple "levels" of the educational system (e.g., students, classrooms, schools, etc.).…

  5. Programming with Hierarchical Maps

    DEFF Research Database (Denmark)

    Ørbæk, Peter

    This report desribes the hierarchical maps used as a central data structure in the Corundum framework. We describe its most prominent features, ague for its usefulness and briefly describe some of the software prototypes implemented using the technology....

  6. Bayesian methods for the design and analysis of noninferiority trials.

    Science.gov (United States)

    Gamalo-Siebers, Margaret; Gao, Aijun; Lakshminarayanan, Mani; Liu, Guanghan; Natanegara, Fanni; Railkar, Radha; Schmidli, Heinz; Song, Guochen

    2016-01-01

    The gold standard for evaluating treatment efficacy of a medical product is a placebo-controlled trial. However, when the use of placebo is considered to be unethical or impractical, a viable alternative for evaluating treatment efficacy is through a noninferiority (NI) study where a test treatment is compared to an active control treatment. The minimal objective of such a study is to determine whether the test treatment is superior to placebo. An assumption is made that if the active control treatment remains efficacious, as was observed when it was compared against placebo, then a test treatment that has comparable efficacy with the active control, within a certain range, must also be superior to placebo. Because of this assumption, the design, implementation, and analysis of NI trials present challenges for sponsors and regulators. In designing and analyzing NI trials, substantial historical data are often required on the active control treatment and placebo. Bayesian approaches provide a natural framework for synthesizing the historical data in the form of prior distributions that can effectively be used in design and analysis of a NI clinical trial. Despite a flurry of recent research activities in the area of Bayesian approaches in medical product development, there are still substantial gaps in recognition and acceptance of Bayesian approaches in NI trial design and analysis. The Bayesian Scientific Working Group of the Drug Information Association provides a coordinated effort to target the education and implementation issues on Bayesian approaches for NI trials. In this article, we provide a review of both frequentist and Bayesian approaches in NI trials, and elaborate on the implementation for two common Bayesian methods including hierarchical prior method and meta-analytic-predictive approach. Simulations are conducted to investigate the properties of the Bayesian methods, and some real clinical trial examples are presented for illustration.

  7. Hierarchical hollow Fe2O3@MIL-101(Fe)/C derived from metal-organic frameworks for superior sodium storage

    Science.gov (United States)

    Li, Chengping; Hu, Qian; Li, Yan; Zhou, Hang; Lv, Zhaolin; Yang, Xiangjun; Liu, Lixiang; Guo, Hong

    2016-05-01

    A facile generic template-free strategy is employed to prepare hierarchical hollow hybrid Fe2O3@MIL-101(Fe)/C materials derived from metal-organic frameworks as anode materials for Na-ion batteries. The intrinsic hollow nanostructure can shorten the lengths for both electronic and ionic transport, enlarge the surface areas of electrodes, and improve accommodation of the volume change during Na+ insertion/extraction cycling. Therefore, The stable reversible capacity of Fe2O3@MIL-101(Fe)/C electrode is 710 mAhg‑1, and can be retained at 662 mAhg‑1 after 200 cycles with the retention of 93.2%. Especially, its overall rate performance data confirm again the importance of the hierarchical hollow structures and multi-elements characteristics toward high capacities in both low and high current rates. This general strategy may shed light on a new avenue for fast synthesis of hierarchic hollow functional materials for energy storage, catalyst, sensor and other new applications.

  8. In-situ observation for growth of hierarchical metal-organic frameworks and their self-sequestering mechanism for gas storage

    Science.gov (United States)

    Hyo Park, Jung; Min Choi, Kyung; Joon Jeon, Hyung; Jung Choi, Yoon; Ku Kang, Jeung

    2015-07-01

    Although structures with the single functional constructions and micropores were demonstrated to capture many different molecules such as carbon dioxide, methane, and hydrogen with high capacities at low temperatures, their feeble interactions still limit practical applications at room temperature. Herein, we report in-situ growth observation of hierarchical pores in pomegranate metal-organic frameworks (pmg-MOFs) and their self-sequestering storage mechanism, not observed for pristine MOFs. Direct observation of hierarchical pores inside the pmg-MOF was evident by in-situ growth X-ray measurements while self-sequestering storage mechanism was revealed by in-situ gas sorption X-ray analysis and molecular dynamics simulations. The results show that meso/macropores are created at the early stage of crystal growth and then enclosed by micropore crystalline shells, where hierarchical pores are networking under self-sequestering mechanism to give enhanced gas storage. This pmg-MOF gives higher CO2 (39%) and CH4 (14%) storage capacity than pristine MOF at room temperature, in addition to fast kinetics with robust capacity retention during gas sorption cycles, thus giving the clue to control dynamic behaviors of gas adsorption.

  9. An Integrated Hydrologic Bayesian Multi-Model Combination Framework: Confronting Input, parameter and model structural uncertainty in Hydrologic Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Ajami, N K; Duan, Q; Sorooshian, S

    2006-05-05

    This paper presents a new technique--Integrated Bayesian Uncertainty Estimator (IBUNE) to account for the major uncertainties of hydrologic rainfall-runoff predictions explicitly. The uncertainties from the input (forcing) data--mainly the precipitation observations and from the model parameters are reduced through a Monte Carlo Markov Chain (MCMC) scheme named Shuffled Complex Evolution Metropolis (SCEM) algorithm which has been extended to include a precipitation error model. Afterwards, the Bayesian Model Averaging (BMA) scheme is employed to further improve the prediction skill and uncertainty estimation using multiple model output. A series of case studies using three rainfall-runoff models to predict the streamflow in the Leaf River basin, Mississippi are used to examine the necessity and usefulness of this technique. The results suggests that ignoring either input forcings error or model structural uncertainty will lead to unrealistic model simulations and their associated uncertainty bounds which does not consistently capture and represent the real-world behavior of the watershed.

  10. Freestanding hierarchically porous carbon framework decorated by polyaniline as binder-free electrodes for high performance supercapacitors

    Science.gov (United States)

    Miao, Fujun; Shao, Changlu; Li, Xinghua; Wang, Kexin; Lu, Na; Liu, Yichun

    2016-10-01

    Freestanding hierarchically porous carbon electrode materials with favorable features of large surface areas, hierarchical porosity and continuous conducting pathways are very attractive for practical applications in electrochemical devices. Herein, three-dimensional freestanding hierarchically porous carbon (HPC) materials have been fabricated successfully mainly by the facile phase separation method. In order to further improve the energy storage ability, polyaniline (PANI) with high pseudocapacitance has been decorated on HPC through in situ chemical polymerization of aniline monomers. Benefiting from the synergistic effects between HPC and PANI, the resulting HPC/PANI composites as electrode materials present dramatic electrochemical performance with high specific capacitance up to 290 F g-1 at 0.5 A g-1 and good rate capability with ∼86% (248 F g-1) capacitance retention at 64 A g-1 of initial capacitance in three-electrode configuration. Moreover, the as-assembled symmetric supercapacitor based on HPC/PANI composites also demonstrates good capacitive properties with high energy density of 9.6 Wh kg-1 at 223 W kg-1 and long-term cycling stability with 78% capacitance retention after 10 000 cycles. Therefore, this work provides a new approach for designing high-performance electrodes with exceptional electrochemical performance, which are very promising for practical application in the energy storage field.

  11. Bayesian Inference: with ecological applications

    Science.gov (United States)

    Link, William A.; Barker, Richard J.

    2010-01-01

    This text provides a mathematically rigorous yet accessible and engaging introduction to Bayesian inference with relevant examples that will be of interest to biologists working in the fields of ecology, wildlife management and environmental studies as well as students in advanced undergraduate statistics.. This text opens the door to Bayesian inference, taking advantage of modern computational efficiencies and easily accessible software to evaluate complex hierarchical models.

  12. Bayesian Methods for Statistical Analysis

    OpenAIRE

    Puza, Borek

    2015-01-01

    Bayesian methods for statistical analysis is a book on statistical methods for analysing a wide variety of data. The book consists of 12 chapters, starting with basic concepts and covering numerous topics, including Bayesian estimation, decision theory, prediction, hypothesis testing, hierarchical models, Markov chain Monte Carlo methods, finite population inference, biased sampling and nonignorable nonresponse. The book contains many exercises, all with worked solutions, including complete c...

  13. Detecting Hierarchical Structure in Networks

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard;

    2012-01-01

    a generative Bayesian model that is able to infer whether hierarchies are present or not from a hypothesis space encompassing all types of hierarchical tree structures. For efficient inference we propose a collapsed Gibbs sampling procedure that jointly infers a partition and its hierarchical structure......Many real-world networks exhibit hierarchical organization. Previous models of hierarchies within relational data has focused on binary trees; however, for many networks it is unknown whether there is hierarchical structure, and if there is, a binary tree might not account well for it. We propose....... On synthetic and real data we demonstrate that our model can detect hierarchical structure leading to better link-prediction than competing models. Our model can be used to detect if a network exhibits hierarchical structure, thereby leading to a better comprehension and statistical account the network....

  14. Optimal design under uncertainty of a passive defense structure against snow avalanches: from a general Bayesian framework to a simple analytical model

    Directory of Open Access Journals (Sweden)

    N. Eckert

    2008-10-01

    Full Text Available For snow avalanches, passive defense structures are generally designed by considering high return period events. In this paper, taking inspiration from other natural hazards, an alternative method based on the maximization of the economic benefit of the defense structure is proposed. A general Bayesian framework is described first. Special attention is given to the problem of taking the poor local information into account in the decision-making process. Therefore, simplifying assumptions are made. The avalanche hazard is represented by a Peak Over Threshold (POT model. The influence of the dam is quantified in terms of runout distance reduction with a simple relation derived from small-scale experiments using granular media. The costs corresponding to dam construction and the damage to the element at risk are roughly evaluated for each dam height-hazard value pair, with damage evaluation corresponding to the maximal expected loss. Both the classical and the Bayesian risk functions can then be computed analytically. The results are illustrated with a case study from the French avalanche database. A sensitivity analysis is performed and modelling assumptions are discussed in addition to possible further developments.

  15. Introduction to Bayesian modelling in dental research.

    Science.gov (United States)

    Gilthorpe, M S; Maddick, I H; Petrie, A

    2000-12-01

    To explain the concepts and application of Bayesian modelling and how it can be applied to the analysis of dental research data. Methodological in nature, this article introduces Bayesian modelling through hypothetical dental examples. The synthesis of RCT results with previous evidence, including expert opinion, is used to illustrate full Bayesian modelling. Meta-analysis, in the form of empirical Bayesian modelling, is introduced. An example of full Bayesian modelling is described for the synthesis of evidence from several studies that investigate the success of root canal treatment. Hierarchical (Bayesian) modelling is demonstrated for a survey of childhood caries, where surface data is nested within subjects. Bayesian methods enhance interpretation of research evidence through the synthesis of information from multiple sources. Bayesian modelling is now readily accessible to clinical researchers and is able to augment the application of clinical decision making in the development of guidelines and clinical practice.

  16. Bayesian modeling using WinBUGS

    CERN Document Server

    Ntzoufras, Ioannis

    2009-01-01

    A hands-on introduction to the principles of Bayesian modeling using WinBUGS Bayesian Modeling Using WinBUGS provides an easily accessible introduction to the use of WinBUGS programming techniques in a variety of Bayesian modeling settings. The author provides an accessible treatment of the topic, offering readers a smooth introduction to the principles of Bayesian modeling with detailed guidance on the practical implementation of key principles. The book begins with a basic introduction to Bayesian inference and the WinBUGS software and goes on to cover key topics, including: Markov Chain Monte Carlo algorithms in Bayesian inference Generalized linear models Bayesian hierarchical models Predictive distribution and model checking Bayesian model and variable evaluation Computational notes and screen captures illustrate the use of both WinBUGS as well as R software to apply the discussed techniques. Exercises at the end of each chapter allow readers to test their understanding of the presented concepts and all ...

  17. Hierarchical Bayesian analysis to incorporate age uncertainty in growth curve analysis and estimates of age from length: Florida manatee (Trichechus manatus) carcasses

    Science.gov (United States)

    Schwarz, L.K.; Runge, M.C.

    2009-01-01

    Age estimation of individuals is often an integral part of species management research, and a number of ageestimation techniques are commonly employed. Often, the error in these techniques is not quantified or accounted for in other analyses, particularly in growth curve models used to describe physiological responses to environment and human impacts. Also, noninvasive, quick, and inexpensive methods to estimate age are needed. This research aims to provide two Bayesian methods to (i) incorporate age uncertainty into an age-length Schnute growth model and (ii) produce a method from the growth model to estimate age from length. The methods are then employed for Florida manatee (Trichechus manatus) carcasses. After quantifying the uncertainty in the aging technique (counts of ear bone growth layers), we fit age-length data to the Schnute growth model separately by sex and season. Independent prior information about population age structure and the results of the Schnute model are then combined to estimate age from length. Results describing the age-length relationship agree with our understanding of manatee biology. The new methods allow us to estimate age, with quantified uncertainty, for 98% of collected carcasses: 36% from ear bones, 62% from length.

  18. Novel Method for Calculating a Nonsubjective Informative Prior for a Bayesian Model in Toxicology Screening: A Theoretical Framework.

    Science.gov (United States)

    Woldegebriel, Michael

    2015-11-17

    In toxicology screening (forensic, food-safety), due to several analytical errors (e.g., retention time shift, lack of repeatability in m/z scans, etc.), the ability to confidently identify/confirm a compound remains a challenge. Due to these uncertainties, a probabilistic approach is currently preferred. However, if a probabilistic approach is followed, the only statistical method that is capable of estimating the probability of whether the compound of interest (COI) is present/absent in a given sample is Bayesian statistics. Bayes' theorem can combine prior information (prior probability) with data (likelihood) to give an optimal probability (posterior probability) reflecting the presence/absence of the COI. In this work, a novel method for calculating an informative prior probability for a Bayesian model in targeted toxicology screening is introduced. In contrast to earlier proposals making use of literature citation rates and the prior knowledge of the analyst, this method presents a thorough and nonsubjective approach. The formulation approaches the probability calculation as a clustering and random draw problem that incorporates few analytical method parameters meticulously estimated to reflect sensitivity and specificity of the system. The practicality of the method has been demonstrated and validated using real data and simulated analytical techniques.

  19. Bayesian phylogeography of influenza A/H3N2 for the 2014-15 season in the United States using three frameworks of ancestral state reconstruction

    Science.gov (United States)

    Suchard, Marc A.

    2017-01-01

    Ancestral state reconstructions in Bayesian phylogeography of virus pandemics have been improved by utilizing a Bayesian stochastic search variable selection (BSSVS) framework. Recently, this framework has been extended to model the transition rate matrix between discrete states as a generalized linear model (GLM) of genetic, geographic, demographic, and environmental predictors of interest to the virus and incorporating BSSVS to estimate the posterior inclusion probabilities of each predictor. Although the latter appears to enhance the biological validity of ancestral state reconstruction, there has yet to be a comparison of phylogenies created by the two methods. In this paper, we compare these two methods, while also using a primitive method without BSSVS, and highlight the differences in phylogenies created by each. We test six coalescent priors and six random sequence samples of H3N2 influenza during the 2014–15 flu season in the U.S. We show that the GLMs yield significantly greater root state posterior probabilities than the two alternative methods under five of the six priors, and significantly greater Kullback-Leibler divergence values than the two alternative methods under all priors. Furthermore, the GLMs strongly implicate temperature and precipitation as driving forces of this flu season and nearly unanimously identified a single root state, which exhibits the most tropical climate during a typical flu season in the U.S. The GLM, however, appears to be highly susceptible to sampling bias compared with the other methods, which casts doubt on whether its reconstructions should be favored over those created by alternate methods. We report that a BSSVS approach with a Poisson prior demonstrates less bias toward sample size under certain conditions than the GLMs or primitive models, and believe that the connection between reconstruction method and sampling bias warrants further investigation. PMID:28170397

  20. Bayesian phylogeography of influenza A/H3N2 for the 2014-15 season in the United States using three frameworks of ancestral state reconstruction.

    Directory of Open Access Journals (Sweden)

    Daniel Magee

    2017-02-01

    Full Text Available Ancestral state reconstructions in Bayesian phylogeography of virus pandemics have been improved by utilizing a Bayesian stochastic search variable selection (BSSVS framework. Recently, this framework has been extended to model the transition rate matrix between discrete states as a generalized linear model (GLM of genetic, geographic, demographic, and environmental predictors of interest to the virus and incorporating BSSVS to estimate the posterior inclusion probabilities of each predictor. Although the latter appears to enhance the biological validity of ancestral state reconstruction, there has yet to be a comparison of phylogenies created by the two methods. In this paper, we compare these two methods, while also using a primitive method without BSSVS, and highlight the differences in phylogenies created by each. We test six coalescent priors and six random sequence samples of H3N2 influenza during the 2014-15 flu season in the U.S. We show that the GLMs yield significantly greater root state posterior probabilities than the two alternative methods under five of the six priors, and significantly greater Kullback-Leibler divergence values than the two alternative methods under all priors. Furthermore, the GLMs strongly implicate temperature and precipitation as driving forces of this flu season and nearly unanimously identified a single root state, which exhibits the most tropical climate during a typical flu season in the U.S. The GLM, however, appears to be highly susceptible to sampling bias compared with the other methods, which casts doubt on whether its reconstructions should be favored over those created by alternate methods. We report that a BSSVS approach with a Poisson prior demonstrates less bias toward sample size under certain conditions than the GLMs or primitive models, and believe that the connection between reconstruction method and sampling bias warrants further investigation.

  1. Bayesian inference with ecological applications

    CERN Document Server

    Link, William A

    2009-01-01

    This text is written to provide a mathematically sound but accessible and engaging introduction to Bayesian inference specifically for environmental scientists, ecologists and wildlife biologists. It emphasizes the power and usefulness of Bayesian methods in an ecological context. The advent of fast personal computers and easily available software has simplified the use of Bayesian and hierarchical models . One obstacle remains for ecologists and wildlife biologists, namely the near absence of Bayesian texts written specifically for them. The book includes many relevant examples, is supported by software and examples on a companion website and will become an essential grounding in this approach for students and research ecologists. Engagingly written text specifically designed to demystify a complex subject Examples drawn from ecology and wildlife research An essential grounding for graduate and research ecologists in the increasingly prevalent Bayesian approach to inference Companion website with analyt...

  2. Bayesian Rose Trees

    CERN Document Server

    Blundell, Charles; Heller, Katherine A

    2012-01-01

    Hierarchical structure is ubiquitous in data across many domains. There are many hier- archical clustering methods, frequently used by domain experts, which strive to discover this structure. However, most of these meth- ods limit discoverable hierarchies to those with binary branching structure. This lim- itation, while computationally convenient, is often undesirable. In this paper we ex- plore a Bayesian hierarchical clustering algo- rithm that can produce trees with arbitrary branching structure at each node, known as rose trees. We interpret these trees as mixtures over partitions of a data set, and use a computationally efficient, greedy ag- glomerative algorithm to find the rose trees which have high marginal likelihood given the data. Lastly, we perform experiments which demonstrate that rose trees are better models of data than the typical binary trees returned by other hierarchical clustering algorithms.

  3. Commentary on Bayesian coincidence assessment (cross-matching)

    CERN Document Server

    Loredo, Thomas J

    2012-01-01

    This paper is an invited commentary on Tamas Budavari's presentation, "On statistical cross-identification in astronomy," for the Statistical Challenges in Modern Astronomy V conference held at Pennsylvania State University in June 2011. I begin with a brief review of previous work on probabilistic (Bayesian) assessment of directional and spatio-temporal coincidences in astronomy (e.g., cross-matching or cross-identification of objects across multiple catalogs). Then I discuss an open issue in the recent innovative work of Budavari and his colleagues on large-scale probabilistic cross-identification: how to assign prior probabilities that play an important role in the analysis. With a simple toy problem, I show how Bayesian multilevel modeling (hierarchical Bayes) provides a principled framework that justifies and generalizes pragmatic rules of thumb that have been successfully used by Budavari's team to assign priors.

  4. Fatigue Damage Prognosis in FRP Composites by Combining Multi-Scale Degradation Fault Modes in an Uncertainty Bayesian Framework

    Data.gov (United States)

    National Aeronautics and Space Administration — In this work, a framework for the estimation of the fatigue damage propagation in CFRP composites is proposed. Macro-scale phenomena such as stiffness and strength...

  5. How does the connectivity of open-framework conglomerates within multi-scale hierarchical fluvial architecture affect oil sweep efficiency in waterflooding?

    CERN Document Server

    Gershenzon, Naum I; Ritzi, Robert W; Dominic, David F; Keefer, Don; Shaffer, Eric; Storsved, Brynne

    2015-01-01

    We studied the effects on oil sweep efficiency of the proportion, hierarchical organization, and connectivity of high-permeability open-framework conglomerate (OFC) cross-sets within the multi-scale stratal architecture found in fluvial deposits. Utilizing numerical simulations and the RVA/Paraview open-source visualization package, we analyzed oil production rate, water breakthrough time, and spatial and temporal distribution of residual oil saturation. The effective permeability of the reservoir exhibits large-scale anisotropy created by the organization of OFC cross-sets within unit bars, and the organization of unit bars within compound bars. As a result oil sweep efficiency critically depends on the direction of the pressure gradient. When pressure gradient is oriented normal to paleoflow direction, the total oil production and the water breakthrough time are larger, and remaining oil saturation is smaller. This result is found regardless of the proportion or connectivity of the OFC cross-sets, within th...

  6. Hierarchical (Ni,Co)Se 2 /Carbon Hollow Rhombic Dodecahedra Derived from Metal-Organic Frameworks for Efficient Water-Splitting Electrocatalysis

    KAUST Repository

    Ming, Fangwang

    2017-08-12

    In this work, we demonstrate that the electrocatalytic activity of transition metal chalcogenides can be greatly enhanced by simultaneously engineering the active sites, surface area, and conductivity. Using metal-organic frameworks-derived (Ni,Co)Se2/C hollow rhombic dodecahedra (HRD) as a demonstration, we show that the incorporation of Ni into CoSe2 could generates additional active sites, the hierarchical hollow structure promotes the electrolyte diffusion, the in-situ hybridization with C improves the conductivity. As a result, the (Ni,Co)Se2/C HRD exhibit superior performance toward the overall water-splitting electrocatalysis in 1M KOH with a cell voltage as low as 1.58V at the current density of 10mAcm−2, making the (Ni,Co)Se2/C HRD as a promising alternative to noble metal catalysts for water splitting.

  7. Inference in hybrid Bayesian networks

    DEFF Research Database (Denmark)

    Lanseth, Helge; Nielsen, Thomas Dyhre; Rumí, Rafael

    2009-01-01

    Since the 1980s, Bayesian Networks (BNs) have become increasingly popular for building statistical models of complex systems. This is particularly true for boolean systems, where BNs often prove to be a more efficient modelling framework than traditional reliability-techniques (like fault trees...... decade's research on inference in hybrid Bayesian networks. The discussions are linked to an example model for estimating human reliability....

  8. On how to avoid input and structural uncertainties corrupt the inference of hydrological parameters using a Bayesian framework

    Science.gov (United States)

    Hernández, Mario R.; Francés, Félix

    2015-04-01

    One phase of the hydrological models implementation process, significantly contributing to the hydrological predictions uncertainty, is the calibration phase in which values of the unknown model parameters are tuned by optimizing an objective function. An unsuitable error model (e.g. Standard Least Squares or SLS) introduces noise into the estimation of the parameters. The main sources of this noise are the input errors and the hydrological model structural deficiencies. Thus, the biased calibrated parameters cause the divergence model phenomenon, where the errors variance of the (spatially and temporally) forecasted flows far exceeds the errors variance in the fitting period, and provoke the loss of part or all of the physical meaning of the modeled processes. In other words, yielding a calibrated hydrological model which works well, but not for the right reasons. Besides, an unsuitable error model yields a non-reliable predictive uncertainty assessment. Hence, with the aim of prevent all these undesirable effects, this research focuses on the Bayesian joint inference (BJI) of both the hydrological and error model parameters, considering a general additive (GA) error model that allows for correlation, non-stationarity (in variance and bias) and non-normality of model residuals. As hydrological model, it has been used a conceptual distributed model called TETIS, with a particular split structure of the effective model parameters. Bayesian inference has been performed with the aid of a Markov Chain Monte Carlo (MCMC) algorithm called Dream-ZS. MCMC algorithm quantifies the uncertainty of the hydrological and error model parameters by getting the joint posterior probability distribution, conditioned on the observed flows. The BJI methodology is a very powerful and reliable tool, but it must be used correctly this is, if non-stationarity in errors variance and bias is modeled, the Total Laws must be taken into account. The results of this research show that the

  9. Bayesian Face Sketch Synthesis.

    Science.gov (United States)

    Wang, Nannan; Gao, Xinbo; Sun, Leiyu; Li, Jie

    2017-03-01

    Exemplar-based face sketch synthesis has been widely applied to both digital entertainment and law enforcement. In this paper, we propose a Bayesian framework for face sketch synthesis, which provides a systematic interpretation for understanding the common properties and intrinsic difference in different methods from the perspective of probabilistic graphical models. The proposed Bayesian framework consists of two parts: the neighbor selection model and the weight computation model. Within the proposed framework, we further propose a Bayesian face sketch synthesis method. The essential rationale behind the proposed Bayesian method is that we take the spatial neighboring constraint between adjacent image patches into consideration for both aforementioned models, while the state-of-the-art methods neglect the constraint either in the neighbor selection model or in the weight computation model. Extensive experiments on the Chinese University of Hong Kong face sketch database demonstrate that the proposed Bayesian method could achieve superior performance compared with the state-of-the-art methods in terms of both subjective perceptions and objective evaluations.

  10. A Bayesian framework for estimating the incremental value of a diagnostic test in the absence of a gold standard.

    Science.gov (United States)

    Ling, Daphne I; Pai, Madhukar; Schiller, Ian; Dendukuri, Nandini

    2014-05-15

    The absence of a gold standard, i.e., a diagnostic reference standard having perfect sensitivity and specificity, is a common problem in clinical practice and in diagnostic research studies. There is a need for methods to estimate the incremental value of a new, imperfect test in this context. We use a Bayesian approach to estimate the probability of the unknown disease status via a latent class model and extend two commonly-used measures of incremental value based on predictive values [difference in the area under the ROC curve (AUC) and integrated discrimination improvement (IDI)] to the context where no gold standard exists. The methods are illustrated using simulated data and applied to the problem of estimating the incremental value of a novel interferon-gamma release assay (IGRA) over the tuberculin skin test (TST) for latent tuberculosis (TB) screening. We also show how to estimate the incremental value of IGRAs when decisions are based on observed test results rather than predictive values. We showed that the incremental value is greatest when both sensitivity and specificity of the new test are better and that conditional dependence between the tests reduces the incremental value. The incremental value of the IGRA depends on the sensitivity and specificity of the TST, as well as the prevalence of latent TB, and may thus vary in different populations. Even in the absence of a gold standard, incremental value statistics may be estimated and can aid decisions about the practical value of a new diagnostic test.

  11. Extraction of Active Regions and Coronal Holes from EUV Images Using the Unsupervised Segmentation Method in the Bayesian Framework

    CERN Document Server

    Arish, Saeid; Safari, Hossein; Amiri, Ali

    2016-01-01

    The solar corona is the origin of very dynamic events that are mostly produced in active regions (AR) and coronal holes (CH). The exact location of these large-scale features can be determined by applying image-processing approaches to extreme-ultraviolet (EUV) data. We here investigate the problem of segmentation of solar EUV images into ARs, CHs, and quiet-Sun (QS) images in a firm Bayesian way. On the basis of Bayes' rule, we need to obtain both prior and likelihood models. To find the prior model of an image, we used a Potts model in non-local mode. To construct the likelihood model, we combined a mixture of a Markov-Gauss model and non-local means. After estimating labels and hyperparameters with the Gibbs estimator, cellular learning automata were employed to determine the label of each pixel. We applied the proposed method to a Solar Dynamics Observatory/ Atmospheric Imaging Assembly (SDO/AIA) dataset recorded during 2011 and found that the mean value of the filling factor of ARs is 0.032 and 0.057 for...

  12. How to practise Bayesian statistics outside the Bayesian church: What philosophy for Bayesian statistical modelling?

    NARCIS (Netherlands)

    Borsboom, D.; Haig, B.D.

    2013-01-01

    Unlike most other statistical frameworks, Bayesian statistical inference is wedded to a particular approach in the philosophy of science (see Howson & Urbach, 2006); this approach is called Bayesianism. Rather than being concerned with model fitting, this position in the philosophy of science primar

  13. Bayesian Model Averaging for Propensity Score Analysis

    Science.gov (United States)

    Kaplan, David; Chen, Jianshen

    2013-01-01

    The purpose of this study is to explore Bayesian model averaging in the propensity score context. Previous research on Bayesian propensity score analysis does not take into account model uncertainty. In this regard, an internally consistent Bayesian framework for model building and estimation must also account for model uncertainty. The…

  14. Bayesian Exploratory Factor Analysis

    DEFF Research Database (Denmark)

    Conti, Gabriella; Frühwirth-Schnatter, Sylvia; Heckman, James J.;

    2014-01-01

    This paper develops and applies a Bayesian approach to Exploratory Factor Analysis that improves on ad hoc classical approaches. Our framework relies on dedicated factor models and simultaneously determines the number of factors, the allocation of each measurement to a unique factor, and the corr......This paper develops and applies a Bayesian approach to Exploratory Factor Analysis that improves on ad hoc classical approaches. Our framework relies on dedicated factor models and simultaneously determines the number of factors, the allocation of each measurement to a unique factor......, and the corresponding factor loadings. Classical identification criteria are applied and integrated into our Bayesian procedure to generate models that are stable and clearly interpretable. A Monte Carlo study confirms the validity of the approach. The method is used to produce interpretable low dimensional aggregates...

  15. Multifunctional Supramolecular Hybrid Materials Constructed from Hierarchical Self-Ordering of In Situ Generated Metal-Organic Framework (MOF) Nanoparticles.

    Science.gov (United States)

    Chaudhari, Abhijeet K; Han, Intaek; Tan, Jin-Chong

    2015-06-25

    A synergistic approach is described to engineer supramolecular hybrid materials based on metal-organic frameworks, encompassing HKUST-1 nanoparticles formed in situ, coexisting with an electrically conducting gel fiber network. Following findings were made: (a) multistimuli-responsive structural transformation via reversible sol-gel switching, and (b) radical conversion of a soft hybrid gel into a mechanically malleable, viscoelastic matter. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Hierarchical representations of the five-factor model of personality in predicting job performance: integrating three organizing frameworks with two theoretical perspectives.

    Science.gov (United States)

    Judge, Timothy A; Rodell, Jessica B; Klinger, Ryan L; Simon, Lauren S; Crawford, Eean R

    2013-11-01

    Integrating 2 theoretical perspectives on predictor-criterion relationships, the present study developed and tested a hierarchical framework in which each five-factor model (FFM) personality trait comprises 2 DeYoung, Quilty, and Peterson (2007) facets, which in turn comprise 6 Costa and McCrae (1992) NEO facets. Both theoretical perspectives-the bandwidth-fidelity dilemma and construct correspondence-suggest that lower order traits would better predict facets of job performance (task performance and contextual performance). They differ, however, as to the relative merits of broad and narrow traits in predicting a broad criterion (overall job performance). We first meta-analyzed the relationship of the 30 NEO facets to overall job performance and its facets. Overall, 1,176 correlations from 410 independent samples (combined N = 406,029) were coded and meta-analyzed. We then formed the 10 DeYoung et al. facets from the NEO facets, and 5 broad traits from those facets. Overall, results provided support for the 6-2-1 framework in general and the importance of the NEO facets in particular. (c) 2013 APA, all rights reserved.

  17. Hierarchical multiscale framework for materials modeling: Equation of state implementation and application to a Taylor anvil impact test of RDX

    Science.gov (United States)

    Barnes, Brian C.; Spear, Carrie E.; Leiter, Ken W.; Becker, Richard; Knap, Jaroslaw; Lísal, Martin; Brennan, John K.

    2017-01-01

    In order to progress towards a materials-by-design capability, we present work on a challenge in continuum-scale modeling: the direct incorporation of complex physical processes in the constitutive evaluation. In this work, we use an adaptive scale-bridging computational framework executing in parallel in a heterogeneous computational environment to couple a fine-scale, particle-based model computing the equation of state (EOS) to the constitutive response in a finite-element multi-physics simulation. The EOS is obtained from high fidelity materials simulations performed via dissipative particle dynamics (DPD) methods. This scale-bridging framework is progress towards an innovation infrastructure that will be of great utility for systems in which essential aspects of material response are too complex to capture by closed form material models. The design, implementation, and performance of the scale-bridging framework are discussed. Also presented is a proof-of-concept Taylor anvil impact test of non-reacting 1,3,5-trinitrohexahydro-s-triazine (RDX).

  18. [The Bayesian framework of detection of cariesgenic Streptoccocus in dental plaque in children with distal occlusion under orthodontic treatment].

    Science.gov (United States)

    Chesnokov, V A; Chesnokova, M G; Mironov, A Iu; Turchaninov, D V; Kriga, A S

    2013-08-01

    The application of Bayes theorem in medical diagnostic includes such important step as derivation for every symptom and diagnosis data values of finite or a posteriori probability of presence of germ, for instance S. sanguis, in patients receiving orthodontic treatment. This value expresses importance of the given symptoms for detection of germ presence. In the implemented studies the Bayes theorem was applied to evaluate probability of presence of particular germ in particular concentration (degree of semination, CO) under concrete symptom group. The rates were used to calculate probability of presence of cariesgenic streptococcus S. mutans and S. sanguis in prospect patient. The rates were calculated for the group with fixed orthodontic apparatuses. The high degree of risk of development of caries in children under orthodontic treatment is conditioned by a whole complex of existing unfavorable factors present in oral cavity. Hence, a powerful negative potential to develop expressed cariesgenic situation in oral cavity is present. The analysis of medical data of patients with distal occlusion was applied using Bayes theorem from the point of view their diagnostic value. The study established 36 symptoms, factors, risk factors and background diseases common in case of distal occlusion in children. The probability to detect the mentioned characteristics and likelihood ratio under different degree of concentration of cariesgenic Streptococcus mutans and Streptococcus sanguis in dental plaque of children was considered. The establishment of character of likelihood ratio for different qualitative content of streptococcus in case of isolation from biotope of dental plaque permitted to determine the informative characteristics. The Bayesian model can be applied in clinics as a computer program to process incoming information about patients with distal occlusion under active orthodontic treatment. The developed diagnostic algorithm in a fast and simple mode of clinical

  19. Evaluating nonindigenous species management in a Bayesian networks derived relative risk framework for Padilla Bay, WA, USA.

    Science.gov (United States)

    Herring, Carlie E; Stinson, Jonah; Landis, Wayne G

    2015-10-01

    Many coastal regions are encountering issues with the spread of nonindigenous species (NIS). In this study, we conducted a regional risk assessment using a Bayesian network relative risk model (BN-RRM) to analyze multiple vectors of NIS introductions to Padilla Bay, Washington, a National Estuarine Research Reserve. We had 3 objectives in this study. The 1st objective was to determine whether the BN-RRM could be used to calculate risk from NIS introductions for Padilla Bay. Our 2nd objective was to determine which regions and endpoints were at greatest risk from NIS introductions. Our 3rd objective was to incorporate a management option into the model and predict endpoint risk if it were to be implemented. Eradication can occur at different stages of NIS invasions, such as the elimination of these species before being introduced to the habitat or removal of the species after settlement. We incorporated the ballast water treatment management scenario into the model, observed the risk to the endpoints, and compared this risk with the initial risk estimates. The model results indicated that the southern portion of the bay was at greatest risk because of NIS. Changes in community composition, Dungeness crab, and eelgrass were the endpoints most at risk from NIS introductions. The currents node, which controls the exposure of NIS to the bay from the surrounding marine environment, was the parameter that had the greatest influence on risk. The ballast water management scenario displayed an approximate 1% reduction in risk in this Padilla Bay case study. The models we developed provide an adaptable template for decision makers interested in managing NIS in other coastal regions and large bodies of water.

  20. Bayesian multivariate disease mapping and ecological regression with errors in covariates: Bayesian estimation of DALYs and 'preventable' DALYs.

    Science.gov (United States)

    Macnab, Ying C

    2009-04-30

    This paper presents Bayesian multivariate disease mapping and ecological regression models that take into account errors in covariates. Bayesian hierarchical formulations of multivariate disease models and covariate measurement models, with related methods of estimation and inference, are developed as an integral part of a Bayesian disability adjusted life years (DALYs) methodology for the analysis of multivariate disease or injury data and associated ecological risk factors and for small area DALYs estimation, inference, and mapping. The methodology facilitates the estimation of multivariate small area disease and injury rates and associated risk effects, evaluation of DALYs and 'preventable' DALYs, and identification of regions to which disease or injury prevention resources may be directed to reduce DALYs. The methodology interfaces and intersects the Bayesian disease mapping methodology and the global burden of disease framework such that the impact of disease, injury, and risk factors on population health may be evaluated to inform community health, health needs, and priority considerations for disease and injury prevention. A burden of injury study on road traffic accidents in local health areas in British Columbia, Canada, is presented as an illustrative example.

  1. Bayesian Independent Component Analysis

    DEFF Research Database (Denmark)

    Winther, Ole; Petersen, Kaare Brandt

    2007-01-01

    In this paper we present an empirical Bayesian framework for independent component analysis. The framework provides estimates of the sources, the mixing matrix and the noise parameters, and is flexible with respect to choice of source prior and the number of sources and sensors. Inside the engine...... in a Matlab toolbox, is demonstrated for non-negative decompositions and compared with non-negative matrix factorization....

  2. Under which conditions, additional monitoring data are worth gathering for improving decision making? Application of the VOI theory in the Bayesian Event Tree eruption forecasting framework

    Science.gov (United States)

    Loschetter, Annick; Rohmer, Jérémy

    2016-04-01

    Standard and new generation of monitoring observations provide in almost real-time important information about the evolution of the volcanic system. These observations are used to update the model and contribute to a better hazard assessment and to support decision making concerning potential evacuation. The framework BET_EF (based on Bayesian Event Tree) developed by INGV enables dealing with the integration of information from monitoring with the prospect of decision making. Using this framework, the objectives of the present work are i. to propose a method to assess the added value of information (within the Value Of Information (VOI) theory) from monitoring; ii. to perform sensitivity analysis on the different parameters that influence the VOI from monitoring. VOI consists in assessing the possible increase in expected value provided by gathering information, for instance through monitoring. Basically, the VOI is the difference between the value with information and the value without additional information in a Cost-Benefit approach. This theory is well suited to deal with situations that can be represented in the form of a decision tree such as the BET_EF tool. Reference values and ranges of variation (for sensitivity analysis) were defined for input parameters, based on data from the MESIMEX exercise (performed at Vesuvio volcano in 2006). Complementary methods for sensitivity analyses were implemented: local, global using Sobol' indices and regional using Contribution to Sample Mean and Variance plots. The results (specific to the case considered) obtained with the different techniques are in good agreement and enable answering the following questions: i. Which characteristics of monitoring are important for early warning (reliability)? ii. How do experts' opinions influence the hazard assessment and thus the decision? Concerning the characteristics of monitoring, the more influent parameters are the means rather than the variances for the case considered

  3. A Bayesian framework for data and hypotheses driven fusion of high throughput data: application to mouse organogenesis.

    Science.gov (United States)

    Bhattacharjee, Madhuchhanda; Pritchard, Colin; Nelson, Peter

    2008-01-01

    In this paper we present a framework for integrating diverse data sets under a coherent probabilistic setup. The necessity of a probabilistic modeling arises from the fact that data integration does not restrict to compiling information from data bases with data that are typically thought to be non-random. Currently wide range of experimental data is also available however rarely these data sets can be summarized in simple output data, e.g. in categorical form. Moreover it may not even be appropriate to do so. The proposed setup allows modeling not only the observed data and parameters of interest but most importantly to incorporate prior knowledge. Additionally the setup easily extends to facilitate more popular data-driven analysis.

  4. Bayesian Exploratory Factor Analysis

    DEFF Research Database (Denmark)

    Conti, Gabriella; Frühwirth-Schnatter, Sylvia; Heckman, James J.

    2014-01-01

    This paper develops and applies a Bayesian approach to Exploratory Factor Analysis that improves on ad hoc classical approaches. Our framework relies on dedicated factor models and simultaneously determines the number of factors, the allocation of each measurement to a unique factor......, and the corresponding factor loadings. Classical identification criteria are applied and integrated into our Bayesian procedure to generate models that are stable and clearly interpretable. A Monte Carlo study confirms the validity of the approach. The method is used to produce interpretable low dimensional aggregates...

  5. Assessing the importance of demographic parameters for population dynamics using Bayesian integrated population modeling.

    Science.gov (United States)

    Eacker, Daniel R; Lukacs, Paul M; Proffitt, Kelly M; Hebblewhite, Mark

    2017-06-01

    To successfully respond to changing habitat, climate or harvest, managers need to identify the most effective strategies to reverse population trends of declining species and/or manage harvest of game species. A classic approach in conservation biology for the last two decades has been the use of matrix population models to determine the most important vital rates affecting population growth rate (λ), that is, sensitivity. Ecologists quickly realized the critical role of environmental variability in vital rates affecting λ by developing approaches such as life-stage simulation analysis (LSA) that account for both sensitivity and variability of a vital rate. These LSA methods used matrix-population modeling and Monte Carlo simulation methods, but faced challenges in integrating data from different sources, disentangling process and sampling variation, and in their flexibility. Here, we developed a Bayesian integrated population model (IPM) for two populations of a large herbivore, elk (Cervus canadensis) in Montana, USA. We then extended the IPM to evaluate sensitivity in a Bayesian framework. We integrated known-fate survival data from radio-marked adults and juveniles, fecundity data, and population counts in a hierarchical population model that explicitly accounted for process and sampling variance. Next, we tested the prevailing paradigm in large herbivore population ecology that juvenile survival of neonates modeling in a Bayesian framework can provide multiple advantages. Our Bayesian LSA framework will provide a useful approach to addressing conservation challenges across a variety of species and data types. © 2017 by the Ecological Society of America.

  6. A Bayesian foundation for individual learning under uncertainty

    Directory of Open Access Journals (Sweden)

    Christoph eMathys

    2011-05-01

    Full Text Available Computational learning models are critical for understanding mechanisms of adaptive behavior. However, the two major current frameworks, reinforcement learning (RL and Bayesian learning, both have certain limitations. For example, many Bayesian models are agnostic of inter-individual variability and involve complicated integrals, making online learning difficult. Here, we introduce a generic hierarchical Bayesian framework for individual learning under multiple forms of uncertainty (e.g., environmental volatility and perceptual uncertainty. The model assumes Gaussian random walks of states at all but the first level, with the step size determined by the next higher level. The coupling between levels is controlled by parameters that shape the influence of uncertainty on learning in a subject-specific fashion. Using variational Bayes under a mean field approximation and a novel approximation to the posterior energy function, we derive trial-by-trial update equations which (i are analytical and extremely efficient, enabling real-time learning, (ii have a natural interpretation in terms of RL, and (iii contain parameters representing processes which play a key role in current theories of learning, e.g., precision-weighting of prediction error. These parameters allow for the expression of individual differences in learning and may relate to specific neuromodulatory mechanisms in the brain. Our model is very general: it can deal with both discrete and continuous states and equally accounts for deterministic and probabilistic relations between environmental events and perceptual states (i.e., situations with and without perceptual uncertainty. These properties are illustrated by simulations and analyses of empirical time series. Overall, our framework provides a novel foundation for understanding normal and pathological learning that contextualizes RL within a generic Bayesian scheme and thus connects it to principles of optimality from probability

  7. A bayesian foundation for individual learning under uncertainty.

    Science.gov (United States)

    Mathys, Christoph; Daunizeau, Jean; Friston, Karl J; Stephan, Klaas E

    2011-01-01

    Computational learning models are critical for understanding mechanisms of adaptive behavior. However, the two major current frameworks, reinforcement learning (RL) and Bayesian learning, both have certain limitations. For example, many Bayesian models are agnostic of inter-individual variability and involve complicated integrals, making online learning difficult. Here, we introduce a generic hierarchical Bayesian framework for individual learning under multiple forms of uncertainty (e.g., environmental volatility and perceptual uncertainty). The model assumes Gaussian random walks of states at all but the first level, with the step size determined by the next highest level. The coupling between levels is controlled by parameters that shape the influence of uncertainty on learning in a subject-specific fashion. Using variational Bayes under a mean-field approximation and a novel approximation to the posterior energy function, we derive trial-by-trial update equations which (i) are analytical and extremely efficient, enabling real-time learning, (ii) have a natural interpretation in terms of RL, and (iii) contain parameters representing processes which play a key role in current theories of learning, e.g., precision-weighting of prediction error. These parameters allow for the expression of individual differences in learning and may relate to specific neuromodulatory mechanisms in the brain. Our model is very general: it can deal with both discrete and continuous states and equally accounts for deterministic and probabilistic relations between environmental events and perceptual states (i.e., situations with and without perceptual uncertainty). These properties are illustrated by simulations and analyses of empirical time series. Overall, our framework provides a novel foundation for understanding normal and pathological learning that contextualizes RL within a generic Bayesian scheme and thus connects it to principles of optimality from probability theory.

  8. A Bayesian Approach for Summarizing and Modeling Time-Series Exposure Data with Left Censoring.

    Science.gov (United States)

    Houseman, E Andres; Virji, M Abbas

    2017-08-01

    Direct reading instruments are valuable tools for measuring exposure as they provide real-time measurements for rapid decision making. However, their use is limited to general survey applications in part due to issues related to their performance. Moreover, statistical analysis of real-time data is complicated by autocorrelation among successive measurements, non-stationary time series, and the presence of left-censoring due to limit-of-detection (LOD). A Bayesian framework is proposed that accounts for non-stationary autocorrelation and LOD issues in exposure time-series data in order to model workplace factors that affect exposure and estimate summary statistics for tasks or other covariates of interest. A spline-based approach is used to model non-stationary autocorrelation with relatively few assumptions about autocorrelation structure. Left-censoring is addressed by integrating over the left tail of the distribution. The model is fit using Markov-Chain Monte Carlo within a Bayesian paradigm. The method can flexibly account for hierarchical relationships, random effects and fixed effects of covariates. The method is implemented using the rjags package in R, and is illustrated by applying it to real-time exposure data. Estimates for task means and covariates from the Bayesian model are compared to those from conventional frequentist models including linear regression, mixed-effects, and time-series models with different autocorrelation structures. Simulations studies are also conducted to evaluate method performance. Simulation studies with percent of measurements below the LOD ranging from 0 to 50% showed lowest root mean squared errors for task means and the least biased standard deviations from the Bayesian model compared to the frequentist models across all levels of LOD. In the application, task means from the Bayesian model were similar to means from the frequentist models, while the standard deviations were different. Parameter estimates for covariates

  9. Dissecting magnetar variability with Bayesian hierarchical models

    CERN Document Server

    Huppenkothen, D; Hogg, D W; Murray, I; Frean, M; Elenbaas, C; Watts, A L; Levin, Y; van der Horst, A J; Kouveliotou, C

    2015-01-01

    Neutron stars are a prime laboratory for testing physical processes under conditions of strong gravity, high density, and extreme magnetic fields. Among the zoo of neutron star phenomena, magnetars stand out for their bursting behaviour, ranging from extremely bright, rare giant flares to numerous, less energetic recurrent bursts. The exact trigger and emission mechanisms for these bursts are not known; favoured models involve either a crust fracture and subsequent energy release into the magnetosphere, or explosive reconnection of magnetic field lines. In the absence of a predictive model, understanding the physical processes responsible for magnetar burst variability is difficult. Here, we develop an empirical model that decomposes magnetar bursts into a superposition of small spike-like features with a simple functional form, where the number of model components is itself part of the inference problem. The cascades of spikes that we model might be formed by avalanches of reconnection, or crust rupture afte...

  10. Bayesian least squares deconvolution

    Science.gov (United States)

    Asensio Ramos, A.; Petit, P.

    2015-11-01

    Aims: We develop a fully Bayesian least squares deconvolution (LSD) that can be applied to the reliable detection of magnetic signals in noise-limited stellar spectropolarimetric observations using multiline techniques. Methods: We consider LSD under the Bayesian framework and we introduce a flexible Gaussian process (GP) prior for the LSD profile. This prior allows the result to automatically adapt to the presence of signal. We exploit several linear algebra identities to accelerate the calculations. The final algorithm can deal with thousands of spectral lines in a few seconds. Results: We demonstrate the reliability of the method with synthetic experiments and we apply it to real spectropolarimetric observations of magnetic stars. We are able to recover the magnetic signals using a small number of spectral lines, together with the uncertainty at each velocity bin. This allows the user to consider if the detected signal is reliable. The code to compute the Bayesian LSD profile is freely available.

  11. Bayesian least squares deconvolution

    CERN Document Server

    Ramos, A Asensio

    2015-01-01

    Aims. To develop a fully Bayesian least squares deconvolution (LSD) that can be applied to the reliable detection of magnetic signals in noise-limited stellar spectropolarimetric observations using multiline techniques. Methods. We consider LSD under the Bayesian framework and we introduce a flexible Gaussian Process (GP) prior for the LSD profile. This prior allows the result to automatically adapt to the presence of signal. We exploit several linear algebra identities to accelerate the calculations. The final algorithm can deal with thousands of spectral lines in a few seconds. Results. We demonstrate the reliability of the method with synthetic experiments and we apply it to real spectropolarimetric observations of magnetic stars. We are able to recover the magnetic signals using a small number of spectral lines, together with the uncertainty at each velocity bin. This allows the user to consider if the detected signal is reliable. The code to compute the Bayesian LSD profile is freely available.

  12. The Public's Willingness to Pay for Improvement of Environment Quality:A Hierarchical Bayesian Analysis%公众改善环境之意愿的层次贝叶斯分析

    Institute of Scientific and Technical Information of China (English)

    曹怀术; 廖华

    2013-01-01

    In this paper, the public's willingness to pay for the long-run air quality improvement is examined based on the internet survey data and the employed multinomial Probit model is estimated in a hierarchical Bayes framework. Our results show that the public's willingness to pay for the long-run increase in air quality to the best level in our survey in 20 years is about 47 RMB per person per month for the next 5 years, and the discount rate of that payment is about 3.8%.%公众改善环境之意愿的最直接体现是支付意愿.在介绍了多项式概率模型及其层次贝叶斯估计方法后,利用问卷数据研究了北京市公众(大学生群体)对于改善长期空气质量的支付意愿.结果显示,为了在20年内北京市空气质量良级天数(API<100)达到90%以上,公众的支付意愿为未来5年47元/人/月,支付意愿随时间的贴现率大约为3.8%.

  13. A Bayesian framework to account for complex non-genetic factors in gene expression levels greatly increases power in eQTL studies.

    Directory of Open Access Journals (Sweden)

    Oliver Stegle

    2010-05-01

    Full Text Available Gene expression measurements are influenced by a wide range of factors, such as the state of the cell, experimental conditions and variants in the sequence of regulatory regions. To understand the effect of a variable of interest, such as the genotype of a locus, it is important to account for variation that is due to confounding causes. Here, we present VBQTL, a probabilistic approach for mapping expression quantitative trait loci (eQTLs that jointly models contributions from genotype as well as known and hidden confounding factors. VBQTL is implemented within an efficient and flexible inference framework, making it fast and tractable on large-scale problems. We compare the performance of VBQTL with alternative methods for dealing with confounding variability on eQTL mapping datasets from simulations, yeast, mouse, and human. Employing Bayesian complexity control and joint modelling is shown to result in more precise estimates of the contribution of different confounding factors resulting in additional associations to measured transcript levels compared to alternative approaches. We present a threefold larger collection of cis eQTLs than previously found in a whole-genome eQTL scan of an outbred human population. Altogether, 27% of the tested probes show a significant genetic association in cis, and we validate that the additional eQTLs are likely to be real by replicating them in different sets of individuals. Our method is the next step in the analysis of high-dimensional phenotype data, and its application has revealed insights into genetic regulation of gene expression by demonstrating more abundant cis-acting eQTLs in human than previously shown. Our software is freely available online at http://www.sanger.ac.uk/resources/software/peer/.

  14. AlignerBoost: A Generalized Software Toolkit for Boosting Next-Gen Sequencing Mapping Accuracy Using a Bayesian-Based Mapping Quality Framework.

    Directory of Open Access Journals (Sweden)

    Qi Zheng

    2016-10-01

    Full Text Available Accurate mapping of next-generation sequencing (NGS reads to reference genomes is crucial for almost all NGS applications and downstream analyses. Various repetitive elements in human and other higher eukaryotic genomes contribute in large part to ambiguously (non-uniquely mapped reads. Most available NGS aligners attempt to address this by either removing all non-uniquely mapping reads, or reporting one random or "best" hit based on simple heuristics. Accurate estimation of the mapping quality of NGS reads is therefore critical albeit completely lacking at present. Here we developed a generalized software toolkit "AlignerBoost", which utilizes a Bayesian-based framework to accurately estimate mapping quality of ambiguously mapped NGS reads. We tested AlignerBoost with both simulated and real DNA-seq and RNA-seq datasets at various thresholds. In most cases, but especially for reads falling within repetitive regions, AlignerBoost dramatically increases the mapping precision of modern NGS aligners without significantly compromising the sensitivity even without mapping quality filters. When using higher mapping quality cutoffs, AlignerBoost achieves a much lower false mapping rate while exhibiting comparable or higher sensitivity compared to the aligner default modes, therefore significantly boosting the detection power of NGS aligners even using extreme thresholds. AlignerBoost is also SNP-aware, and higher quality alignments can be achieved if provided with known SNPs. AlignerBoost's algorithm is computationally efficient, and can process one million alignments within 30 seconds on a typical desktop computer. AlignerBoost is implemented as a uniform Java application and is freely available at https://github.com/Grice-Lab/AlignerBoost.

  15. Bayesian mapping QTL for fruit and growth phenological traits in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-01-19

    Jan 19, 2009 ... for breeding purposes and scientific reasoning. ... these traits, but also is useful for marker-assisted selec- ... Bayesian model selection within the framework of. Bayesian ...... pattern of tomato carpel shape well before anthesis.

  16. Bayesian tests of measurement invariance

    NARCIS (Netherlands)

    Verhagen, A.J.; Fox, J.P.

    2013-01-01

    Random item effects models provide a natural framework for the exploration of violations of measurement invariance without the need for anchor items. Within the random item effects modelling framework, Bayesian tests (Bayes factor, deviance information criterion) are proposed which enable multiple m

  17. Bayesian biostatistics

    CERN Document Server

    Lesaffre, Emmanuel

    2012-01-01

    The growth of biostatistics has been phenomenal in recent years and has been marked by considerable technical innovation in both methodology and computational practicality. One area that has experienced significant growth is Bayesian methods. The growing use of Bayesian methodology has taken place partly due to an increasing number of practitioners valuing the Bayesian paradigm as matching that of scientific discovery. In addition, computational advances have allowed for more complex models to be fitted routinely to realistic data sets. Through examples, exercises and a combination of introd

  18. Bayesian Tracking of Visual Objects

    Science.gov (United States)

    Zheng, Nanning; Xue, Jianru

    Tracking objects in image sequences involves performing motion analysis at the object level, which is becoming an increasingly important technology in a wide range of computer video applications, including video teleconferencing, security and surveillance, video segmentation, and editing. In this chapter, we focus on sequential Bayesian estimation techniques for visual tracking. We first introduce the sequential Bayesian estimation framework, which acts as the theoretic basis for visual tracking. Then, we present approaches to constructing representation models for specific objects.

  19. Synthesis of Hierarchically Structured Hybrid Materials by Controlled Self-Assembly of Metal-Organic Framework with Mesoporous Silica for CO2 Adsorption.

    Science.gov (United States)

    Chen, Chong; Li, Bingxue; Zhou, Lijin; Xia, Zefeng; Feng, Nengjie; Ding, Jing; Wang, Lei; Wan, Hui; Guan, Guofeng

    2017-07-12

    The HKUST-1@SBA-15 composites with hierarchical pore structure were constructed by in situ self-assembly of metal-organic framework (MOF) with mesoporous silica. The structure directing role of SBA-15 had an obvious impact on the growth of MOF crystals, which in turn affected the morphologies and structural properties of the composites. The pristine HKUST-1 and the composites with different content of SBA-15 were characterized by XRD, N2 adsorption-desorption, SEM, TEM, FT-IR, TG, XPS, and CO2-TPD techniques. It was found that the composites were assembled by oriented growth of MOF nanocrystals on the surfaces of SBA-15 matrix. The interactions between surface silanol groups and metal centers induced structural changes and resulted in the increases in surface areas as well as micropore volumes of hybrid materials. Besides, the additional constraints from SBA-15 also restrained the expansion of HKUST-1, contributing to their smaller crystal sizes in the composites. The adsorption isotherms of CO2 on the materials were measured and applied to calculate the isosteric heats of adsorption. The HS-1 composite exhibited an increase of 15.9% in CO2 uptake capacity compared with that of HKUST-1. Moreover, its higher isosteric heats of CO2 adsorption indicated the stronger interactions between the surfaces and CO2 molecules. The adsorption rate of the composite was also improved due to the introduction of mesopores. Ten cycles of CO2 adsorption-desorption experiments implied that the HS-1 had excellent reversibility of CO2 adsorption. This study was intended to provide the possibility of assembling new composites with tailored properties based on MOF and mesoporous silica to satisfy the requirements of various applications.

  20. Hierarchically Flower-like N-Doped Porous Carbon Materials Derived from an Explosive 3-Fold Interpenetrating Diamondoid Copper Metal-Organic Framework for a Supercapacitor.

    Science.gov (United States)

    Li, Zuo-Xi; Zou, Kang-Yu; Zhang, Xue; Han, Tong; Yang, Ying

    2016-07-05

    A peculiar copper metal-organic framework (Cu-MOF) was synthesized by a self-assembly method, which presents a 3-fold interpenetrating diamondoid net based on the square-planar Cu(II) node. Although it exhibits a high degree of interpenetration, the Cu-MOF still exhibits a one-dimensional channel, which provides a template for constructing porous materials through the "precursor" strategy. Furthermore, the explosive ClO4(-) ion, which resided in the channel, could induce the quick decomposition of organic ingredients and release a huge amount of gas, which is beneficial for the porosity of postsynthetic materials. Significantly, we first utilize this explosive MOF to prepare a series of Cu@C composites through the calcination-thermolysis method at different temperatures, which contain copper particles exhibiting various shapes and combinations with the carbon substrate. Considering the hole-forming effect of copper particles, Cu@C composites were etched by HCl to afford a sequence of hierarchically flower-like N-doped porous carbon materials (NPCs), which retain the original morphology of the Cu-MOF. Interestingly, NPC-900, originating from the calcination of the Cu-MOF at 900 °C, exhibits a more regular flower-like morphology, the largest specific surface area, abundant porosities, and multiple nitrogen functionalities. The remarkable specific capacitances are 138 F g(-1) at 5 mV s(-1) and 149 F g(-1) at 0.5 A g(-1) for the NPC-900 electrode in a 6 M potassium hydroxide aqueous solution. Moreover, the retention of capacitance remains 86.8% (125 F g(-1)) at 1 A g(-1) over 2000 cycles, which displays good chemical stability. These findings suggest that NPC-900 can be applied as a suitable electrode for a supercapacitor.

  1. Bayesian statistics

    OpenAIRE

    新家, 健精

    2013-01-01

    © 2012 Springer Science+Business Media, LLC. All rights reserved. Article Outline: Glossary Definition of the Subject and Introduction The Bayesian Statistical Paradigm Three Examples Comparison with the Frequentist Statistical Paradigm Future Directions Bibliography

  2. Bayesian theory and applications

    CERN Document Server

    Dellaportas, Petros; Polson, Nicholas G; Stephens, David A

    2013-01-01

    The development of hierarchical models and Markov chain Monte Carlo (MCMC) techniques forms one of the most profound advances in Bayesian analysis since the 1970s and provides the basis for advances in virtually all areas of applied and theoretical Bayesian statistics. This volume guides the reader along a statistical journey that begins with the basic structure of Bayesian theory, and then provides details on most of the past and present advances in this field. The book has a unique format. There is an explanatory chapter devoted to each conceptual advance followed by journal-style chapters that provide applications or further advances on the concept. Thus, the volume is both a textbook and a compendium of papers covering a vast range of topics. It is appropriate for a well-informed novice interested in understanding the basic approach, methods and recent applications. Because of its advanced chapters and recent work, it is also appropriate for a more mature reader interested in recent applications and devel...

  3. Multiview Bayesian Correlated Component Analysis

    DEFF Research Database (Denmark)

    Kamronn, Simon Due; Poulsen, Andreas Trier; Hansen, Lars Kai

    2015-01-01

    we denote Bayesian correlated component analysis, evaluates favorably against three relevant algorithms in simulated data. A well-established benchmark EEG data set is used to further validate the new model and infer the variability of spatial representations across multiple subjects....... are identical. Here we propose a hierarchical probabilistic model that can infer the level of universality in such multiview data, from completely unrelated representations, corresponding to canonical correlation analysis, to identical representations as in correlated component analysis. This new model, which...

  4. Dichroic polarization at mid-infrared wavelengths: a Bayesian approach

    CERN Document Server

    Lopez-Rodriguez, E

    2015-01-01

    A fast and general Bayesian inference framework to infer the physical properties of dichroic polarization using mid-infrared imaging- and spectro-polarimetric observations is presented. The Bayesian approach is based on a hierarchical regression and No-U-Turn Sampler method. This approach simultaneously infers the normalized Stokes parameters to find the full family of solutions that best describe the observations. In comparison with previous methods, the developed Bayesian approach allows the user to introduce a customized absorptive polarization component based on the dust composition, and the appropriate extinction curve of the object. This approach allows the user to obtain more precise estimations of the magnetic field strength and geometry for tomographic studies, and information about the dominant polarization components of the object. Based on this model, imaging-polarimetric observations using two or three filters located in the central 9.5-10.5 $\\mu$m, and the edges 8-9 $\\mu$m and/or 11-13 $\\mu$m, o...

  5. Assessing the impact of fine particulate matter (PM2.5) on respiratory-cardiovascular chronic diseases in the New York City Metropolitan area using Hierarchical Bayesian Model estimates.

    Science.gov (United States)

    Weber, Stephanie A; Insaf, Tabassum Z; Hall, Eric S; Talbot, Thomas O; Huff, Amy K

    2016-11-01

    An enhanced research paradigm is presented to address the spatial and temporal gaps in fine particulate matter (PM2.5) measurements and generate realistic and representative concentration fields for use in epidemiological studies of human exposure to ambient air particulate concentrations. The general approach for research designed to analyze health impacts of exposure to PM2.5 is to use concentration data from the nearest ground-based air quality monitor(s), which typically have missing data on the temporal and spatial scales due to filter sampling schedules and monitor placement, respectively. To circumvent these data gaps, this research project uses a Hierarchical Bayesian Model (HBM) to generate estimates of PM2.5 in areas with and without air quality monitors by combining PM2.5 concentrations measured by monitors, PM2.5 concentration estimates derived from satellite aerosol optical depth (AOD) data, and Community-Multiscale Air Quality (CMAQ) model predictions of PM2.5 concentrations. This methodology represents a substantial step forward in the approach for developing representative PM2.5 concentration datasets to correlate with inpatient hospitalizations and emergency room visits data for asthma and inpatient hospitalizations for myocardial infarction (MI) and heart failure (HF) using case-crossover analysis. There were two key objective of this current study. First was to show that the inputs to the HBM could be expanded to include AOD data in addition to data from PM2.5 monitors and predictions from CMAQ. The second objective was to determine if inclusion of AOD surfaces in HBM model algorithms results in PM2.5 air pollutant concentration surfaces which more accurately predict hospital admittance and emergency room visits for MI, asthma, and HF. This study focuses on the New York City, NY metropolitan and surrounding areas during the 2004-2006 time period, in order to compare the health outcome impacts with those from previous studies and focus on any

  6. ANALYSIS OF BAYESIAN CLASSIFIER ACCURACY

    Directory of Open Access Journals (Sweden)

    Felipe Schneider Costa

    2013-01-01

    Full Text Available The naïve Bayes classifier is considered one of the most effective classification algorithms today, competing with more modern and sophisticated classifiers. Despite being based on unrealistic (naïve assumption that all variables are independent, given the output class, the classifier provides proper results. However, depending on the scenario utilized (network structure, number of samples or training cases, number of variables, the network may not provide appropriate results. This study uses a process variable selection, using the chi-squared test to verify the existence of dependence between variables in the data model in order to identify the reasons which prevent a Bayesian network to provide good performance. A detailed analysis of the data is also proposed, unlike other existing work, as well as adjustments in case of limit values between two adjacent classes. Furthermore, variable weights are used in the calculation of a posteriori probabilities, calculated with mutual information function. Tests were applied in both a naïve Bayesian network and a hierarchical Bayesian network. After testing, a significant reduction in error rate has been observed. The naïve Bayesian network presented a drop in error rates from twenty five percent to five percent, considering the initial results of the classification process. In the hierarchical network, there was not only a drop in fifteen percent error rate, but also the final result came to zero.

  7. Hierarchical topic modeling with nested hierarchical Dirichlet process

    Institute of Scientific and Technical Information of China (English)

    Yi-qun DING; Shan-ping LI; Zhen ZHANG; Bin SHEN

    2009-01-01

    This paper deals with the statistical modeling of latent topic hierarchies in text corpora. The height of the topic tree is assumed as fixed, while the number of topics on each level as unknown a priori and to be inferred from data. Taking a nonparametric Bayesian approach to this problem, we propose a new probabilistic generative model based on the nested hierarchical Dirichlet process (nHDP) and present a Markov chain Monte Carlo sampling algorithm for the inference of the topic tree structure as welt as the word distribution of each topic and topic distribution of each document. Our theoretical analysis and experiment results show that this model can produce a more compact hierarchical topic structure and captures more free-grained topic relationships compared to the hierarchical latent Dirichlet allocation model.

  8. Testing for divergent transmission histories among cultural characters: a study using Bayesian phylogenetic methods and Iranian tribal textile data.

    Science.gov (United States)

    Matthews, Luke J; Tehrani, Jamie J; Jordan, Fiona M; Collard, Mark; Nunn, Charles L

    2011-04-29

    Archaeologists and anthropologists have long recognized that different cultural complexes may have distinct descent histories, but they have lacked analytical techniques capable of easily identifying such incongruence. Here, we show how bayesian phylogenetic analysis can be used to identify incongruent cultural histories. We employ the approach to investigate Iranian tribal textile traditions. We used bayes factor comparisons in a phylogenetic framework to test two models of cultural evolution: the hierarchically integrated system hypothesis and the multiple coherent units hypothesis. In the hierarchically integrated system hypothesis, a core tradition of characters evolves through descent with modification and characters peripheral to the core are exchanged among contemporaneous populations. In the multiple coherent units hypothesis, a core tradition does not exist. Rather, there are several cultural units consisting of sets of characters that have different histories of descent. For the Iranian textiles, the bayesian phylogenetic analyses supported the multiple coherent units hypothesis over the hierarchically integrated system hypothesis. Our analyses suggest that pile-weave designs represent a distinct cultural unit that has a different phylogenetic history compared to other textile characters. The results from the Iranian textiles are consistent with the available ethnographic evidence, which suggests that the commercial rug market has influenced pile-rug designs but not the techniques or designs incorporated in the other textiles produced by the tribes. We anticipate that bayesian phylogenetic tests for inferring cultural units will be of great value for researchers interested in studying the evolution of cultural traits including language, behavior, and material culture.

  9. Image-based computer-aided prognosis of lung cancer: predicting patient recurrent-free survival via a variational Bayesian mixture modeling framework for cluster analysis of CT histograms

    Science.gov (United States)

    Kawata, Y.; Niki, N.; Ohamatsu, H.; Kusumoto, M.; Tsuchida, T.; Eguchi, K.; Kaneko, M.; Moriyama, N.

    2012-03-01

    In this paper, we present a computer-aided prognosis (CAP) scheme that utilizes quantitatively derived image information to predict patient recurrent-free survival for lung cancers. Our scheme involves analyzing CT histograms to evaluate the volumetric distribution of CT values within pulmonary nodules. A variational Bayesian mixture modeling framework translates the image-derived features into an image-based risk score for predicting the patient recurrence-free survival. Using our dataset of 454 patients with NSCLC, we demonstrate the potential usefulness of the CAP scheme which can provide a quantitative risk score that is strongly correlated with prognostic factors.

  10. Bayesian analysis of non-homogeneous Markov chains: application to mental health data.

    Science.gov (United States)

    Sung, Minje; Soyer, Refik; Nhan, Nguyen

    2007-07-10

    In this paper we present a formal treatment of non-homogeneous Markov chains by introducing a hierarchical Bayesian framework. Our work is motivated by the analysis of correlated categorical data which arise in assessment of psychiatric treatment programs. In our development, we introduce a Markovian structure to describe the non-homogeneity of transition patterns. In doing so, we introduce a logistic regression set-up for Markov chains and incorporate covariates in our model. We present a Bayesian model using Markov chain Monte Carlo methods and develop inference procedures to address issues encountered in the analyses of data from psychiatric treatment programs. Our model and inference procedures are implemented to some real data from a psychiatric treatment study.

  11. Mining Boundary Effects in Areally Referenced Spatial Data Using the Bayesian Information Criterion.

    Science.gov (United States)

    Li, Pei; Banerjee, Sudipto; McBean, Alexander M

    2011-07-01

    Statistical models for areal data are primarily used for smoothing maps revealing spatial trends. Subsequent interest often resides in the formal identification of 'boundaries' on the map. Here boundaries refer to 'difference boundaries', representing significant differences between adjacent regions. Recently, Lu and Carlin (2004) discussed a Bayesian framework to carry out edge detection employing a spatial hierarchical model that is estimated using Markov chain Monte Carlo (MCMC) methods. Here we offer an alternative that avoids MCMC and is easier to implement. Our approach resembles a model comparison problem where the models correspond to different underlying edge configurations across which we wish to smooth (or not). We incorporate these edge configurations in spatially autoregressive models and demonstrate how the Bayesian Information Criteria (BIC) can be used to detect difference boundaries in the map. We illustrate our methods with a Minnesota Pneumonia amd Influenza Hospitalization dataset to elicit boundaries detected from the different models.

  12. Bayesian inference of local geomagnetic secular variation curves: application to archaeomagnetism

    Science.gov (United States)

    Lanos, Philippe

    2014-05-01

    The errors that occur at different stages of the archaeomagnetic calibration process are combined using a Bayesian hierarchical modelling. The archaeomagnetic data obtained from archaeological structures such as hearths, kilns or sets of bricks and tiles, exhibit considerable experimental errors and are generally more or less well dated by archaeological context, history or chronometric methods (14C, TL, dendrochronology, etc.). They can also be associated with stratigraphic observations which provide prior relative chronological information. The modelling we propose allows all these observations and errors to be linked together thanks to appropriate prior probability densities. The model also includes penalized cubic splines for estimating the univariate, spherical or three-dimensional curves for the secular variation of the geomagnetic field (inclination, declination, intensity) over time at a local place. The mean smooth curve we obtain, with its posterior Bayesian envelop provides an adaptation to the effects of variability in the density of reference points over time. Moreover, the hierarchical modelling also allows an efficient way to penalize outliers automatically. With this new posterior estimate of the curve, the Bayesian statistical framework then allows to estimate the calendar dates of undated archaeological features (such as kilns) based on one, two or three geomagnetic parameters (inclination, declination and/or intensity). Date estimates are presented in the same way as those that arise from radiocarbon dating. In order to illustrate the model and the inference method used, we will present results based on French, Bulgarian and Austrian datasets recently published.

  13. Collaborative Hierarchical Sparse Modeling

    CERN Document Server

    Sprechmann, Pablo; Sapiro, Guillermo; Eldar, Yonina C

    2010-01-01

    Sparse modeling is a powerful framework for data analysis and processing. Traditionally, encoding in this framework is done by solving an l_1-regularized linear regression problem, usually called Lasso. In this work we first combine the sparsity-inducing property of the Lasso model, at the individual feature level, with the block-sparsity property of the group Lasso model, where sparse groups of features are jointly encoded, obtaining a sparsity pattern hierarchically structured. This results in the hierarchical Lasso, which shows important practical modeling advantages. We then extend this approach to the collaborative case, where a set of simultaneously coded signals share the same sparsity pattern at the higher (group) level but not necessarily at the lower one. Signals then share the same active groups, or classes, but not necessarily the same active set. This is very well suited for applications such as source separation. An efficient optimization procedure, which guarantees convergence to the global opt...

  14. Bayesian Theory

    CERN Document Server

    Bernardo, Jose M

    2000-01-01

    This highly acclaimed text, now available in paperback, provides a thorough account of key concepts and theoretical results, with particular emphasis on viewing statistical inference as a special case of decision theory. Information-theoretic concepts play a central role in the development of the theory, which provides, in particular, a detailed discussion of the problem of specification of so-called prior ignorance . The work is written from the authors s committed Bayesian perspective, but an overview of non-Bayesian theories is also provided, and each chapter contains a wide-ranging critica

  15. Accounting for uncertainty in ecological analysis: the strengths and limitations of hierarchical statistical modeling.

    Science.gov (United States)

    Cressie, Noel; Calder, Catherine A; Clark, James S; Ver Hoef, Jay M; Wikle, Christopher K

    2009-04-01

    Analyses of ecological data should account for the uncertainty in the process(es) that generated the data. However, accounting for these uncertainties is a difficult task, since ecology is known for its complexity. Measurement and/or process errors are often the only sources of uncertainty modeled when addressing complex ecological problems, yet analyses should also account for uncertainty in sampling design, in model specification, in parameters governing the specified model, and in initial and boundary conditions. Only then can we be confident in the scientific inferences and forecasts made from an analysis. Probability and statistics provide a framework that accounts for multiple sources of uncertainty. Given the complexities of ecological studies, the hierarchical statistical model is an invaluable tool. This approach is not new in ecology, and there are many examples (both Bayesian and non-Bayesian) in the literature illustrating the benefits of this approach. In this article, we provide a baseline for concepts, notation, and methods, from which discussion on hierarchical statistical modeling in ecology can proceed. We have also planted some seeds for discussion and tried to show where the practical difficulties lie. Our thesis is that hierarchical statistical modeling is a powerful way of approaching ecological analysis in the presence of inevitable but quantifiable uncertainties, even if practical issues sometimes require pragmatic compromises.

  16. Improving Hierarchical Models Using Historical Data with Applications in High-Throughput Genomics Data Analysis.

    Science.gov (United States)

    Li, Ben; Li, Yunxiao; Qin, Zhaohui S

    2017-06-01

    Modern high-throughput biotechnologies such as microarray and next generation sequencing produce a massive amount of information for each sample assayed. However, in a typical high-throughput experiment, only limited amount of data are observed for each individual feature, thus the classical 'large p, small n' problem. Bayesian hierarchical model, capable of borrowing strength across features within the same dataset, has been recognized as an effective tool in analyzing such data. However, the shrinkage effect, the most prominent feature of hierarchical features, can lead to undesirable over-correction for some features. In this work, we discuss possible causes of the over-correction problem and propose several alternative solutions. Our strategy is rooted in the fact that in the Big Data era, large amount of historical data are available which should be taken advantage of. Our strategy presents a new framework to enhance the Bayesian hierarchical model. Through simulation and real data analysis, we demonstrated superior performance of the proposed strategy. Our new strategy also enables borrowing information across different platforms which could be extremely useful with emergence of new technologies and accumulation of data from different platforms in the Big Data era. Our method has been implemented in R package "adaptiveHM", which is freely available from https://github.com/benliemory/adaptiveHM.

  17. Bayesian Network for multiple hypthesis tracking

    NARCIS (Netherlands)

    W.P. Zajdel; B.J.A. Kröse

    2002-01-01

    For a flexible camera-to-camera tracking of multiple objects we model the objects behavior with a Bayesian network and combine it with the multiple hypohesis framework that associates observations with objects. Bayesian networks offer a possibility to factor complex, joint distributions into a produ

  18. Family-based Bayesian collapsing method for rare-variant association study.

    Science.gov (United States)

    He, Liang; Pitkäniemi, Janne M

    2014-01-01

    In this study, we analyze the Genetic Analysis Workshop 18 data to identify the genes and underlying single-nucleotide polymorphisms on 11 chromosomes that exhibit significant association with systolic blood pressure. We propose a novel family-based method for rare-variant association detection based on the hierarchical Bayesian framework. The method controls spurious associations caused by population stratification, and improves the statistical power to detect not only individual rare variants, but also genes with either continuous or binary outcomes. Our method utilizes nuclear family information, and takes into account the effects of all single-nucleotide polymorphisms in a gene, using a hierarchical model. When we apply this method to the genome-wide Genetic Analysis Workshop 18 data, several genes and single-nucleotide polymorphisms are identified as potentially related to systolic blood pressure.

  19. Bayesian multi-scale modeling for aggregated disease mapping data.

    Science.gov (United States)

    Aregay, Mehreteab; Lawson, Andrew B; Faes, Christel; Kirby, Russell S

    2015-09-29

    In disease mapping, a scale effect due to an aggregation of data from a finer resolution level to a coarser level is a common phenomenon. This article addresses this issue using a hierarchical Bayesian modeling framework. We propose four different multiscale models. The first two models use a shared random effect that the finer level inherits from the coarser level. The third model assumes two independent convolution models at the finer and coarser levels. The fourth model applies a convolution model at the finer level, but the relative risk at the coarser level is obtained by aggregating the estimates at the finer level. We compare the models using the deviance information criterion (DIC) and Watanabe-Akaike information criterion (WAIC) that are applied to real and simulated data. The results indicate that the models with shared random effects outperform the other models on a range of criteria.

  20. Visual tracker using sequential bayesian learning: discriminative, generative, and hybrid.

    Science.gov (United States)

    Lei, Yun; Ding, Xiaoqing; Wang, Shengjin

    2008-12-01

    This paper presents a novel solution to track a visual object under changes in illumination, viewpoint, pose, scale, and occlusion. Under the framework of sequential Bayesian learning, we first develop a discriminative model-based tracker with a fast relevance vector machine algorithm, and then, a generative model-based tracker with a novel sequential Gaussian mixture model algorithm. Finally, we present a three-level hierarchy to investigate different schemes to combine the discriminative and generative models for tracking. The presented hierarchical model combination contains the learner combination (at level one), classifier combination (at level two), and decision combination (at level three). The experimental results with quantitative comparisons performed on many realistic video sequences show that the proposed adaptive combination of discriminative and generative models achieves the best overall performance. Qualitative comparison with some state-of-the-art methods demonstrates the effectiveness and efficiency of our method in handling various challenges during tracking.

  1. Bayesian SPLDA

    OpenAIRE

    Villalba, Jesús

    2015-01-01

    In this document we are going to derive the equations needed to implement a Variational Bayes estimation of the parameters of the simplified probabilistic linear discriminant analysis (SPLDA) model. This can be used to adapt SPLDA from one database to another with few development data or to implement the fully Bayesian recipe. Our approach is similar to Bishop's VB PPCA.

  2. Hierarchical photocatalysts.

    Science.gov (United States)

    Li, Xin; Yu, Jiaguo; Jaroniec, Mietek

    2016-05-01

    As a green and sustainable technology, semiconductor-based heterogeneous photocatalysis has received much attention in the last few decades because it has potential to solve both energy and environmental problems. To achieve efficient photocatalysts, various hierarchical semiconductors have been designed and fabricated at the micro/nanometer scale in recent years. This review presents a critical appraisal of fabrication methods, growth mechanisms and applications of advanced hierarchical photocatalysts. Especially, the different synthesis strategies such as two-step templating, in situ template-sacrificial dissolution, self-templating method, in situ template-free assembly, chemically induced self-transformation and post-synthesis treatment are highlighted. Finally, some important applications including photocatalytic degradation of pollutants, photocatalytic H2 production and photocatalytic CO2 reduction are reviewed. A thorough assessment of the progress made in photocatalysis may open new opportunities in designing highly effective hierarchical photocatalysts for advanced applications ranging from thermal catalysis, separation and purification processes to solar cells.

  3. Quantifying and reducing uncertainties in estimated soil CO2 fluxes with hierarchical data-model integration

    Science.gov (United States)

    Ogle, Kiona; Ryan, Edmund; Dijkstra, Feike A.; Pendall, Elise

    2016-12-01

    Nonsteady state chambers are often employed to measure soil CO2 fluxes. CO2 concentrations (C) in the headspace are sampled at different times (t), and fluxes (f) are calculated from regressions of C versus t based on a limited number of observations. Variability in the data can lead to poor fits and unreliable f estimates; groups with too few observations or poor fits are often discarded, resulting in "missing" f values. We solve these problems by fitting linear (steady state) and nonlinear (nonsteady state, diffusion based) models of C versus t, within a hierarchical Bayesian framework. Data are from the Prairie Heating and CO2 Enrichment study that manipulated atmospheric CO2, temperature, soil moisture, and vegetation. CO2 was collected from static chambers biweekly during five growing seasons, resulting in >12,000 samples and >3100 groups and associated fluxes. We compare f estimates based on nonhierarchical and hierarchical Bayesian (B versus HB) versions of the linear and diffusion-based (L versus D) models, resulting in four different models (BL, BD, HBL, and HBD). Three models fit the data exceptionally well (R2 ≥ 0.98), but the BD model was inferior (R2 = 0.87). The nonhierarchical models (BL and BD) produced highly uncertain f estimates (wide 95% credible intervals), whereas the hierarchical models (HBL and HBD) produced very precise estimates. Of the hierarchical versions, the linear model (HBL) underestimated f by 33% relative to the nonsteady state model (HBD). The hierarchical models offer improvements upon traditional nonhierarchical approaches to estimating f, and we provide example code for the models.

  4. Simultaneous estimation of noise variance and number of peaks in Bayesian spectral deconvolution

    CERN Document Server

    Tokuda, Satoru; Okada, Masato

    2016-01-01

    Heuristic identification of peaks from noisy complex spectra often leads to misunderstanding physical and chemical properties of matter. In this paper, we propose a framework based on Bayesian inference, which enables us to separate multi-peak spectra into single peaks statistically and is constructed in two steps. The first step is estimating both noise variance and number of peaks as hyperparameters based on Bayes free energy, which generally is not analytically tractable. The second step is fitting the parameters of each peak function to the given spectrum by calculating the posterior density, which has a problem of local minima and saddles since multi-peak models are nonlinear and hierarchical. Our framework enables escaping from local minima or saddles by using the exchange Monte Carlo method and calculates Bayes free energy. We discuss a simulation demonstrating how efficient our framework is and show that estimating both noise variance and number of peaks prevents overfitting, overpenalizing, and misun...

  5. Bayesian stable isotope mixing models

    Science.gov (United States)

    In this paper we review recent advances in Stable Isotope Mixing Models (SIMMs) and place them into an over-arching Bayesian statistical framework which allows for several useful extensions. SIMMs are used to quantify the proportional contributions of various sources to a mixtur...

  6. Doing bayesian data analysis a tutorial with R and BUGS

    CERN Document Server

    Kruschke, John K

    2011-01-01

    There is an explosion of interest in Bayesian statistics, primarily because recently created computational methods have finally made Bayesian analysis obtainable to a wide audience. Doing Bayesian Data Analysis, A Tutorial Introduction with R and BUGS provides an accessible approach to Bayesian data analysis, as material is explained clearly with concrete examples. The book begins with the basics, including essential concepts of probability and random sampling, and gradually progresses to advanced hierarchical modeling methods for realistic data. The text delivers comprehensive coverage of all

  7. 基于分层贝叶斯网络的反潜编队对潜威胁估计%Method for Evaluate Threat of Anti-submarine War Fleet to Submarine Based on Hierarchical Bayesian Network

    Institute of Scientific and Technical Information of China (English)

    王小龙; 宋裕农; 丁文强

    2014-01-01

    应用贝叶斯网络模型进行威胁估计是当前研究的热点和难点。提出了应用分层贝叶斯网络模型构建威胁估计网络,用于估计反潜编队对潜威胁等级。首先,对分层贝叶斯网络模型进行了简要的阐述,并对利用该模型进行威胁估计的可行性进行了分析。其次,分析了反潜编队对潜威胁产生的原因和机理,在此基础上,构建了威胁估计网络。最后,通过算例仿真验证了威胁估计网络的有效性。%Usage of bayesian network for threat evaluation is a hot and difficult problem. The threat evaluation network is constructed by the method of the bayesian network,which uses for evaluating the threat level of the anti-submarine war fleet. First,the principle of the bayesian network is constructed,and the feasibility of using bayesian network is analyzed for threat evaluation. Second, the causes and mechanism of the anti-submarine fleet submarine threat is analyzed,on this basis,the threat evaluation network is constructed. Finally,simulation experiment is used to verify the validity of the threat evaluation network constructed.

  8. Bayesian signaling

    OpenAIRE

    Hedlund, Jonas

    2014-01-01

    This paper introduces private sender information into a sender-receiver game of Bayesian persuasion with monotonic sender preferences. I derive properties of increasing differences related to the precision of signals and use these to fully characterize the set of equilibria robust to the intuitive criterion. In particular, all such equilibria are either separating, i.e., the sender's choice of signal reveals his private information to the receiver, or fully disclosing, i.e., the outcome of th...

  9. Bayesian Monitoring.

    OpenAIRE

    Kirstein, Roland

    2005-01-01

    This paper presents a modification of the inspection game: The ?Bayesian Monitoring? model rests on the assumption that judges are interested in enforcing compliant behavior and making correct decisions. They may base their judgements on an informative but imperfect signal which can be generated costlessly. In the original inspection game, monitoring is costly and generates a perfectly informative signal. While the inspection game has only one mixed strategy equilibrium, three Perfect Bayesia...

  10. Hierarchical spatiotemporal matrix models for characterizing invasions.

    Science.gov (United States)

    Hooten, Mevin B; Wikle, Christopher K; Dorazio, Robert M; Royle, J Andrew

    2007-06-01

    The growth and dispersal of biotic organisms is an important subject in ecology. Ecologists are able to accurately describe survival and fecundity in plant and animal populations and have developed quantitative approaches to study the dynamics of dispersal and population size. Of particular interest are the dynamics of invasive species. Such nonindigenous animals and plants can levy significant impacts on native biotic communities. Effective models for relative abundance have been developed; however, a better understanding of the dynamics of actual population size (as opposed to relative abundance) in an invasion would be beneficial to all branches of ecology. In this article, we adopt a hierarchical Bayesian framework for modeling the invasion of such species while addressing the discrete nature of the data and uncertainty associated with the probability of detection. The nonlinear dynamics between discrete time points are intuitively modeled through an embedded deterministic population model with density-dependent growth and dispersal components. Additionally, we illustrate the importance of accommodating spatially varying dispersal rates. The method is applied to the specific case of the Eurasian Collared-Dove, an invasive species at mid-invasion in the United States at the time of this writing.

  11. Hierarchical modeling and inference in ecology: The analysis of data from populations, metapopulations and communities

    Science.gov (United States)

    Royle, J. Andrew; Dorazio, Robert M.

    2008-01-01

    A guide to data collection, modeling and inference strategies for biological survey data using Bayesian and classical statistical methods. This book describes a general and flexible framework for modeling and inference in ecological systems based on hierarchical models, with a strict focus on the use of probability models and parametric inference. Hierarchical models represent a paradigm shift in the application of statistics to ecological inference problems because they combine explicit models of ecological system structure or dynamics with models of how ecological systems are observed. The principles of hierarchical modeling are developed and applied to problems in population, metapopulation, community, and metacommunity systems. The book provides the first synthetic treatment of many recent methodological advances in ecological modeling and unifies disparate methods and procedures. The authors apply principles of hierarchical modeling to ecological problems, including * occurrence or occupancy models for estimating species distribution * abundance models based on many sampling protocols, including distance sampling * capture-recapture models with individual effects * spatial capture-recapture models based on camera trapping and related methods * population and metapopulation dynamic models * models of biodiversity, community structure and dynamics.

  12. Bayesian analysis of rare events

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Daniel, E-mail: straub@tum.de; Papaioannou, Iason; Betz, Wolfgang

    2016-06-01

    In many areas of engineering and science there is an interest in predicting the probability of rare events, in particular in applications related to safety and security. Increasingly, such predictions are made through computer models of physical systems in an uncertainty quantification framework. Additionally, with advances in IT, monitoring and sensor technology, an increasing amount of data on the performance of the systems is collected. This data can be used to reduce uncertainty, improve the probability estimates and consequently enhance the management of rare events and associated risks. Bayesian analysis is the ideal method to include the data into the probabilistic model. It ensures a consistent probabilistic treatment of uncertainty, which is central in the prediction of rare events, where extrapolation from the domain of observation is common. We present a framework for performing Bayesian updating of rare event probabilities, termed BUS. It is based on a reinterpretation of the classical rejection-sampling approach to Bayesian analysis, which enables the use of established methods for estimating probabilities of rare events. By drawing upon these methods, the framework makes use of their computational efficiency. These methods include the First-Order Reliability Method (FORM), tailored importance sampling (IS) methods and Subset Simulation (SuS). In this contribution, we briefly review these methods in the context of the BUS framework and investigate their applicability to Bayesian analysis of rare events in different settings. We find that, for some applications, FORM can be highly efficient and is surprisingly accurate, enabling Bayesian analysis of rare events with just a few model evaluations. In a general setting, BUS implemented through IS and SuS is more robust and flexible.

  13. Bayesian astrostatistics: a backward look to the future

    CERN Document Server

    Loredo, Thomas J

    2012-01-01

    This perspective chapter briefly surveys: (1) past growth in the use of Bayesian methods in astrophysics; (2) current misconceptions about both frequentist and Bayesian statistical inference that hinder wider adoption of Bayesian methods by astronomers; and (3) multilevel (hierarchical) Bayesian modeling as a major future direction for research in Bayesian astrostatistics, exemplified in part by presentations at the first ISI invited session on astrostatistics, commemorated in this volume. It closes with an intentionally provocative recommendation for astronomical survey data reporting, motivated by the multilevel Bayesian perspective on modeling cosmic populations: that astronomers cease producing catalogs of estimated fluxes and other source properties from surveys. Instead, summaries of likelihood functions (or marginal likelihood functions) for source properties should be reported (not posterior probability density functions), including nontrivial summaries (not simply upper limits) for candidate objects ...

  14. Universal Darwinism as a process of Bayesian inference

    CERN Document Server

    Campbell, John O

    2016-01-01

    Many of the mathematical frameworks describing natural selection are equivalent to Bayes Theorem, also known as Bayesian updating. By definition, a process of Bayesian Inference is one which involves a Bayesian update, so we may conclude that these frameworks describe natural selection as a process of Bayesian inference. Thus natural selection serves as a counter example to a widely-held interpretation that restricts Bayesian Inference to human mental processes (including the endeavors of statisticians). As Bayesian inference can always be cast in terms of (variational) free energy minimization, natural selection can be viewed as comprising two components: a generative model of an "experiment" in the external world environment, and the results of that "experiment" or the "surprise" entailed by predicted and actual outcomes of the "experiment". Minimization of free energy implies that the implicit measure of "surprise" experienced serves to update the generative model in a Bayesian manner. This description clo...

  15. Bayesian Decision-theoretic Methods for Parameter Ensembles with Application to Epidemiology

    CERN Document Server

    Ginestet, Cedric E

    2011-01-01

    Parameter ensembles or sets of random effects constitute one of the cornerstones of modern statistical practice. This is especially the case in Bayesian hierarchical models, where several decision theoretic frameworks can be deployed. The estimation of these parameter ensembles may substantially vary depending on which inferential goals are prioritised by the modeller. Since one may wish to satisfy a range of desiderata, it is therefore of interest to investigate whether some sets of point estimates can simultaneously meet several inferential objectives. In this thesis, we will be especially concerned with identifying ensembles of point estimates that produce good approximations of (i) the true empirical quantiles and empirical quartile ratio (QR) and (ii) provide an accurate classification of the ensemble's elements above and below a given threshold. For this purpose, we review various decision-theoretic frameworks, which have been proposed in the literature in relation to the optimisation of different aspec...

  16. A hierarchical state space approach to affective dynamics

    Science.gov (United States)

    Lodewyckx, Tom; Tuerlinckx, Francis; Kuppens, Peter; Allen, Nicholas; Sheeber, Lisa

    2010-01-01

    Linear dynamical system theory is a broad theoretical framework that has been applied in various research areas such as engineering, econometrics and recently in psychology. It quantifies the relations between observed inputs and outputs that are connected through a set of latent state variables. State space models are used to investigate the dynamical properties of these latent quantities. These models are especially of interest in the study of emotion dynamics, with the system representing the evolving emotion components of an individual. However, for simultaneous modeling of individual and population differences, a hierarchical extension of the basic state space model is necessary. Therefore, we introduce a Bayesian hierarchical model with random effects for the system parameters. Further, we apply our model to data that were collected using the Oregon adolescent interaction task: 66 normal and 67 depressed adolescents engaged in a conflict interaction with their parents and second-to-second physiological and behavioral measures were obtained. System parameters in normal and depressed adolescents were compared, which led to interesting discussions in the light of findings in recent literature on the links between cardiovascular processes, emotion dynamics and depression. We illustrate that our approach is flexible and general: The model can be applied to any time series for multiple systems (where a system can represent any entity) and moreover, one is free to focus on whatever component of the versatile model. PMID:21516216

  17. Functional units and lead topologies: a hierarchical framework for observing and modeling the interplay of structures, storage dynamics and integral mass and energy flows in lower mesoscale catchments

    Science.gov (United States)

    Zehe, Erwin; Jackisch, Conrad; Blume, Theresa; Haßler, Sibylle; Allroggen, Niklas; Tronicke, Jens

    2013-04-01

    The CAOS Research Unit recently proposed a hierarchical classification scheme to subdivide a catchment into what we vaguely name classes of functional entities that puts the gradients driving mass and energy flows and their controls on top of the hierarchy and the arrangement of landscape attributes controlling flow resistances along these driving gradients (for instance soil types and apparent preferential pathways) at the second level. We name these functional entities lead topology classes, to highlight that they are characterized by a spatially ordered arrangement of landscape elements along a superordinate driving gradient. Our idea is that these lead topology classes have a distinct way how their structural and textural architecture controls the interplay of storage dynamics and integral response behavior that is typical for all members of a class, but is dissimilar between different classes. This implies that we might gain exemplary understanding of the typical dynamic behavior of the class, when thoroughly studying a few class members. We propose that the main integral catchment functions mass export and drainage, mass redistribution and storage, energy exchange with the atmosphere, as well as energy redistribution and storage - result from spatially organized interactions of processes within lead topologies that operate at different scale levels and partly dominate during different conditions. We distinguish: 1) Lead topologies controlling the land surface energy balance during radiation driven conditions at the plot/pedon scale level. In this case energy fluxes dominate and deplete a vertical temperature gradient that is build up by depleting a gradient in radiation fluxes. Water is a facilitator in this concert due to the high specific heat of vaporization. Slow vertical water fluxes in soil dominate, which are driven by vertical gradients in atmospheric water potential, chemical potential in the plant and in soil hydraulic potentials. 2) Lead topologies

  18. CARBayes: An R Package for Bayesian Spatial Modeling with Conditional Autoregressive Priors

    Directory of Open Access Journals (Sweden)

    Duncan Lee

    2013-11-01

    Full Text Available Conditional autoregressive models are commonly used to represent spatial autocorrelation in data relating to a set of non-overlapping areal units, which arise in a wide variety of applications including agriculture, education, epidemiology and image analysis. Such models are typically specified in a hierarchical Bayesian framework, with inference based on Markov chain Monte Carlo (MCMC simulation. The most widely used software to fit such models is WinBUGS or OpenBUGS, but in this paper we introduce the R package CARBayes. The main advantage of CARBayes compared with the BUGS software is its ease of use, because: (1 the spatial adjacency information is easy to specify as a binary neighbourhood matrix; and (2 given the neighbourhood matrix the models can be implemented by a single function call in R. This paper outlines the general class of Bayesian hierarchical models that can be implemented in the CARBayes software, describes their implementation via MCMC simulation techniques, and illustrates their use with two worked examples in the fields of house price analysis and disease mapping.

  19. Picturing classical and quantum Bayesian inference

    CERN Document Server

    Coecke, Bob

    2011-01-01

    We introduce a graphical framework for Bayesian inference that is sufficiently general to accommodate not just the standard case but also recent proposals for a theory of quantum Bayesian inference wherein one considers density operators rather than probability distributions as representative of degrees of belief. The diagrammatic framework is stated in the graphical language of symmetric monoidal categories and of compact structures and Frobenius structures therein, in which Bayesian inversion boils down to transposition with respect to an appropriate compact structure. We characterize classical Bayesian inference in terms of a graphical property and demonstrate that our approach eliminates some purely conventional elements that appear in common representations thereof, such as whether degrees of belief are represented by probabilities or entropic quantities. We also introduce a quantum-like calculus wherein the Frobenius structure is noncommutative and show that it can accommodate Leifer's calculus of `cond...

  20. Multi-level Bayesian safety analysis with unprocessed Automatic Vehicle Identification data for an urban expressway.

    Science.gov (United States)

    Shi, Qi; Abdel-Aty, Mohamed; Yu, Rongjie

    2016-03-01

    In traffic safety studies, crash frequency modeling of total crashes is the cornerstone before proceeding to more detailed safety evaluation. The relationship between crash occurrence and factors such as traffic flow and roadway geometric characteristics has been extensively explored for a better understanding of crash mechanisms. In this study, a multi-level Bayesian framework has been developed in an effort to identify the crash contributing factors on an urban expressway in the Central Florida area. Two types of traffic data from the Automatic Vehicle Identification system, which are the processed data capped at speed limit and the unprocessed data retaining the original speed were incorporated in the analysis along with road geometric information. The model framework was proposed to account for the hierarchical data structure and the heterogeneity among the traffic and roadway geometric data. Multi-level and random parameters models were constructed and compared with the Negative Binomial model under the Bayesian inference framework. Results showed that the unprocessed traffic data was superior. Both multi-level models and random parameters models outperformed the Negative Binomial model and the models with random parameters achieved the best model fitting. The contributing factors identified imply that on the urban expressway lower speed and higher speed variation could significantly increase the crash likelihood. Other geometric factors were significant including auxiliary lanes and horizontal curvature.

  1. The Infinite Hierarchical Factor Regression Model

    CERN Document Server

    Rai, Piyush

    2009-01-01

    We propose a nonparametric Bayesian factor regression model that accounts for uncertainty in the number of factors, and the relationship between factors. To accomplish this, we propose a sparse variant of the Indian Buffet Process and couple this with a hierarchical model over factors, based on Kingman's coalescent. We apply this model to two problems (factor analysis and factor regression) in gene-expression data analysis.

  2. Bayesian flood forecasting methods: A review

    Science.gov (United States)

    Han, Shasha; Coulibaly, Paulin

    2017-08-01

    Over the past few decades, floods have been seen as one of the most common and largely distributed natural disasters in the world. If floods could be accurately forecasted in advance, then their negative impacts could be greatly minimized. It is widely recognized that quantification and reduction of uncertainty associated with the hydrologic forecast is of great importance for flood estimation and rational decision making. Bayesian forecasting system (BFS) offers an ideal theoretic framework for uncertainty quantification that can be developed for probabilistic flood forecasting via any deterministic hydrologic model. It provides suitable theoretical structure, empirically validated models and reasonable analytic-numerical computation method, and can be developed into various Bayesian forecasting approaches. This paper presents a comprehensive review on Bayesian forecasting approaches applied in flood forecasting from 1999 till now. The review starts with an overview of fundamentals of BFS and recent advances in BFS, followed with BFS application in river stage forecasting and real-time flood forecasting, then move to a critical analysis by evaluating advantages and limitations of Bayesian forecasting methods and other predictive uncertainty assessment approaches in flood forecasting, and finally discusses the future research direction in Bayesian flood forecasting. Results show that the Bayesian flood forecasting approach is an effective and advanced way for flood estimation, it considers all sources of uncertainties and produces a predictive distribution of the river stage, river discharge or runoff, thus gives more accurate and reliable flood forecasts. Some emerging Bayesian forecasting methods (e.g. ensemble Bayesian forecasting system, Bayesian multi-model combination) were shown to overcome limitations of single model or fixed model weight and effectively reduce predictive uncertainty. In recent years, various Bayesian flood forecasting approaches have been

  3. 层次化动态实时调度框架的设计与实现%Design and Realization of Hierarchical Dynamic Real-time Scheduling Framework

    Institute of Scientific and Technical Information of China (English)

    胡家义; 张激; 刘玲

    2013-01-01

    The development of embedded systems is facing new trends including variousness of usage scenarios, strict requirement for real-time feature, complexity of upper applications and assurance of strong robustness, demanding the advance of system safety by means of promoting embedded operating systems. Temporal isolation mechanism is an important part to improve the safety of system, proposing a hierarchical dynamic real-time scheduling framework to be the implementation of temporal isolation. This paper uses the homogeneity of task to generate task sets, which can be the basis of hierarchical framework for task partitioning;testifies the schedulable condition of the framework, designs the structure of scheduling algorithm and realizes the dynamic switching of scheduling algorithm. The simulation result and theoretical analysis indicate that the issued framework can improve the safety of system and dynamically adjust to the variation of system load while guaranteeing the stability of time complexity of context switch.%现有嵌入式系统具有应用场景多变、实时性要求严格、上层应用复杂、鲁棒性较强等特点,在嵌入式操作系统层面对系统防危性要求较高。时间隔离机制是提高系统防危性的重要组成部分,为此,提出一种将层次化动态实时调度框架作为时间隔离的实现策略。引入任务同质性的概念进行任务分划,将产生的任务集作为层次框架的基础,证明多层次框架下实时任务的可调度性条件,设计调度算法结构并实现调度算法的动态切换。仿真结果和理论分析表明,该调度框架在保证上下文切换时间复杂度稳定的前提下,可提高系统防危性并动态应对系统负载的变化。

  4. Hierarchical Reverberation Mapping

    CERN Document Server

    Brewer, Brendon J

    2013-01-01

    Reverberation mapping (RM) is an important technique in studies of active galactic nuclei (AGN). The key idea of RM is to measure the time lag $\\tau$ between variations in the continuum emission from the accretion disc and subsequent response of the broad line region (BLR). The measurement of $\\tau$ is typically used to estimate the physical size of the BLR and is combined with other measurements to estimate the black hole mass $M_{\\rm BH}$. A major difficulty with RM campaigns is the large amount of data needed to measure $\\tau$. Recently, Fine et al (2012) introduced a new approach to RM where the BLR light curve is sparsely sampled, but this is counteracted by observing a large sample of AGN, rather than a single system. The results are combined to infer properties of the sample of AGN. In this letter we implement this method using a hierarchical Bayesian model and contrast this with the results from the previous stacked cross-correlation technique. We find that our inferences are more precise and allow fo...

  5. An Automatic Hierarchical Delay Analysis Tool

    Institute of Scientific and Technical Information of China (English)

    FaridMheir-El-Saadi; BozenaKaminska

    1994-01-01

    The performance analysis of VLSI integrated circuits(ICs) with flat tools is slow and even sometimes impossible to complete.Some hierarchical tools have been developed to speed up the analysis of these large ICs.However,these hierarchical tools suffer from a poor interaction with the CAD database and poorly automatized operations.We introduce a general hierarchical framework for performance analysis to solve these problems.The circuit analysis is automatic under the proposed framework.Information that has been automatically abstracted in the hierarchy is kept in database properties along with the topological information.A limited software implementation of the framework,PREDICT,has also been developed to analyze the delay performance.Experimental results show that hierarchical analysis CPU time and memory requirements are low if heuristics are used during the abstraction process.

  6. Evaluation of hierarchical temporal memory for a real world application

    OpenAIRE

    Melis, Wim J.C.; Chizuwa, Shuhei; Kameyama, Michitaka

    2010-01-01

    A large number of real world applications, such as user support systems, can still not be performed easily by conventional algorithms in comparison with the human brain. Such intelligence is often implemented, by using probability based systems. This paper focuses on comparing the implementation of a cellular phone intention estimation example on a Bayesian Network and Hierarchical Temporal Memory. It is found that Hierarchical Temporal Memory is a system that requires little effort for desig...

  7. Bayesian Inference Methods for Sparse Channel Estimation

    DEFF Research Database (Denmark)

    Pedersen, Niels Lovmand

    2013-01-01

    This thesis deals with sparse Bayesian learning (SBL) with application to radio channel estimation. As opposed to the classical approach for sparse signal representation, we focus on the problem of inferring complex signals. Our investigations within SBL constitute the basis for the development...... of Bayesian inference algorithms for sparse channel estimation. Sparse inference methods aim at finding the sparse representation of a signal given in some overcomplete dictionary of basis vectors. Within this context, one of our main contributions to the field of SBL is a hierarchical representation...... analysis of the complex prior representation, where we show that the ability to induce sparse estimates of a given prior heavily depends on the inference method used and, interestingly, whether real or complex variables are inferred. We also show that the Bayesian estimators derived from the proposed...

  8. 多级孔复合沸石的骨架结构与酸性能%Framework and Acidity Properties of Hierarchical Composite Zeolites

    Institute of Scientific and Technical Information of China (English)

    马丽; 郭科; 潘梦; 郑家军; 李瑞丰

    2015-01-01

    The Mordenite (MOR) and ZSM-5 zeolites were respectively used as the nutrient of synthesizing composite zeolite ,and then the hierarchical composite zeolites of MOR/FAU (MFZ) and ZSM-5/FAU (MFC ) with different ratios of two zeolites were prepared . The structural performances of the as-synthesized MFC and MFZ with different crystalline time were characterized by XRD and FT-IR methods .At the same time ,their surface acidity were characterized by NH3-TPD and in-situ Py-IR methods ,and compared with those of the single type zeolite .The structural effects on the surface acidity in hierarchical composite zeolites were investigated in detail . The results showed that the composite zeolite had obviously more excellent acidity than the single type zeolite .And the acid strength , total acidic amount and acid-typed distribution in the composite could be changed by adjusting the content of two zeolites .%多级孔复合沸石是一类具有丰富酸性基的新型催化材料。分别以MOR沸石和ZSM-5型沸石为原料制备了MOR/FAU(记为MFZ)和ZSM-5/FAU(记为MFC)2种复合沸石;采用XRD和FT-IR表征了不同晶化时间合成的M FZ和M FC的结构性能,采用N H3-T PD和Py-IR技术研究了该2种复合沸石催化剂的酸性能,并与单一型沸石催化剂的酸性能进行了对比。结果表明,一种沸石晶体的消失和另一种沸石的生成规律性地体现在复合沸石的形成过程中,揭示了骨架结构性能对复合沸石酸性的影响和调变作用;复合沸石的酸性能明显优于单一型沸石,且可以通过调节复合沸石中某一组分的含量来改变复合沸石的结构,从而达到调节复合沸石的酸量、酸强度和酸性分布的目的。

  9. Introduction to Bayesian statistics

    CERN Document Server

    Bolstad, William M

    2017-01-01

    There is a strong upsurge in the use of Bayesian methods in applied statistical analysis, yet most introductory statistics texts only present frequentist methods. Bayesian statistics has many important advantages that students should learn about if they are going into fields where statistics will be used. In this Third Edition, four newly-added chapters address topics that reflect the rapid advances in the field of Bayesian staistics. The author continues to provide a Bayesian treatment of introductory statistical topics, such as scientific data gathering, discrete random variables, robust Bayesian methods, and Bayesian approaches to inferenfe cfor discrete random variables, bionomial proprotion, Poisson, normal mean, and simple linear regression. In addition, newly-developing topics in the field are presented in four new chapters: Bayesian inference with unknown mean and variance; Bayesian inference for Multivariate Normal mean vector; Bayesian inference for Multiple Linear RegressionModel; and Computati...

  10. What can we gain by using Bayesian methods to combine information from a multi-model ensemble?

    Science.gov (United States)

    Jonko, A. K.; Urban, N. M.

    2016-12-01

    Multi-model ensembles are used extensively to study both future climate projections and properties of the climate system such as climate sensitivity and feedbacks. Individual climate model projections generally disagree with one another, can be biased and are not independent. How to combine results from various models to assess their projections and the uncertainties associated with them is a difficult, but important question. Many different approaches, ranging from giving each model one vote, to model weighting and Bayesian methods, have been used to date. Here we evaluate the utility of a Bayesian reduced model framework relative to a simple pooling of global climate model (GCM) projections. Rather than focusing on the discrete projections made by individual GCMs, this approach allows us to generate probabilistic projections that smoothly interpolate between the dynamics of the multi-model ensemble. The simple model is an idealized ocean atmosphere energy balance model (EBM), fit to surface temperatures of GCMs participating in the Coupled Model Intercomparison Project version 5 (CMIP5) by tuning several parameters, including equilibrium climate sensitivity, forcing and feedback. We derive probability distributions of the reduced model parameters for each GCM individually as well as jointly for all GCMs in a Bayesian hierarchical modeling framework, using CMIP5 abrupt CO2 quadrupling simulations. We then compare climate sensitivity and feedback estimates as well as temperature projections for historical and RCP8.5 scenarios generated using these two approaches to results obtained from the multi-model ensemble alone.

  11. Bayesian data analysis in population ecology: motivations, methods, and benefits

    Science.gov (United States)

    Dorazio, Robert

    2016-01-01

    During the 20th century ecologists largely relied on the frequentist system of inference for the analysis of their data. However, in the past few decades ecologists have become increasingly interested in the use of Bayesian methods of data analysis. In this article I provide guidance to ecologists who would like to decide whether Bayesian methods can be used to improve their conclusions and predictions. I begin by providing a concise summary of Bayesian methods of analysis, including a comparison of differences between Bayesian and frequentist approaches to inference when using hierarchical models. Next I provide a list of problems where Bayesian methods of analysis may arguably be preferred over frequentist methods. These problems are usually encountered in analyses based on hierarchical models of data. I describe the essentials required for applying modern methods of Bayesian computation, and I use real-world examples to illustrate these methods. I conclude by summarizing what I perceive to be the main strengths and weaknesses of using Bayesian methods to solve ecological inference problems.

  12. Bayesian tests of measurement invariance.

    Science.gov (United States)

    Verhagen, A J; Fox, J P

    2013-11-01

    Random item effects models provide a natural framework for the exploration of violations of measurement invariance without the need for anchor items. Within the random item effects modelling framework, Bayesian tests (Bayes factor, deviance information criterion) are proposed which enable multiple marginal invariance hypotheses to be tested simultaneously. The performance of the tests is evaluated with a simulation study which shows that the tests have high power and low Type I error rate. Data from the European Social Survey are used to test for measurement invariance of attitude towards immigrant items and to show that background information can be used to explain cross-national variation in item functioning.

  13. Bayesian artificial intelligence

    CERN Document Server

    Korb, Kevin B

    2010-01-01

    Updated and expanded, Bayesian Artificial Intelligence, Second Edition provides a practical and accessible introduction to the main concepts, foundation, and applications of Bayesian networks. It focuses on both the causal discovery of networks and Bayesian inference procedures. Adopting a causal interpretation of Bayesian networks, the authors discuss the use of Bayesian networks for causal modeling. They also draw on their own applied research to illustrate various applications of the technology.New to the Second EditionNew chapter on Bayesian network classifiersNew section on object-oriente

  14. Bayesian artificial intelligence

    CERN Document Server

    Korb, Kevin B

    2003-01-01

    As the power of Bayesian techniques has become more fully realized, the field of artificial intelligence has embraced Bayesian methodology and integrated it to the point where an introduction to Bayesian techniques is now a core course in many computer science programs. Unlike other books on the subject, Bayesian Artificial Intelligence keeps mathematical detail to a minimum and covers a broad range of topics. The authors integrate all of Bayesian net technology and learning Bayesian net technology and apply them both to knowledge engineering. They emphasize understanding and intuition but also provide the algorithms and technical background needed for applications. Software, exercises, and solutions are available on the authors' website.

  15. Bayesian Graphical Models

    DEFF Research Database (Denmark)

    Jensen, Finn Verner; Nielsen, Thomas Dyhre

    2016-01-01

    Mathematically, a Bayesian graphical model is a compact representation of the joint probability distribution for a set of variables. The most frequently used type of Bayesian graphical models are Bayesian networks. The structural part of a Bayesian graphical model is a graph consisting of nodes...... is largely due to the availability of efficient inference algorithms for answering probabilistic queries about the states of the variables in the network. Furthermore, to support the construction of Bayesian network models, learning algorithms are also available. We give an overview of the Bayesian network...

  16. Bayesian Analysis of Perceived Eye Level

    Science.gov (United States)

    Orendorff, Elaine E.; Kalesinskas, Laurynas; Palumbo, Robert T.; Albert, Mark V.

    2016-01-01

    To accurately perceive the world, people must efficiently combine internal beliefs and external sensory cues. We introduce a Bayesian framework that explains the role of internal balance cues and visual stimuli on perceived eye level (PEL)—a self-reported measure of elevation angle. This framework provides a single, coherent model explaining a set of experimentally observed PEL over a range of experimental conditions. Further, it provides a parsimonious explanation for the additive effect of low fidelity cues as well as the averaging effect of high fidelity cues, as also found in other Bayesian cue combination psychophysical studies. Our model accurately estimates the PEL and explains the form of previous equations used in describing PEL behavior. Most importantly, the proposed Bayesian framework for PEL is more powerful than previous behavioral modeling; it permits behavioral estimation in a wider range of cue combination and perceptual studies than models previously reported. PMID:28018204

  17. 基于贝叶斯和层次模型的传感器网络节点故障预测研究%Study on fault prognosis of sensor network nodes using Bayesian and hierarchical model

    Institute of Scientific and Technical Information of China (English)

    何永强; 宫玉荣; 朱予聪

    2015-01-01

    提出了运用贝叶斯理论和层次模型对传感器网络节点故障进行预测的方法,结合传感器网络各节点处理信息的时序关系,用定性分析将时间信息融合到节点中分析故障传播机制和故障预测。根据节点的历史信息和当前运行情况,预测和确定节点的故障概率;利用参数学习和概率推理,预测上层节点的故障概率。通过仿真实验并与其他预测方法进行比较分析,验证了该方法的可靠性和精确性,为传感器网络节点的故障预测提供了新的思路和方法。%This paper presents the method for sensor network node failure prediction with the relationship between timing and level using Bayesian model methods. The method combines processing information in each node sensor network and uses qualitative analysis to integrate time information into the node to analyze the fault propagation mechanism and failure prediction. According to the probabili-ty of failure history information of node and the current operating conditions,nodes failure probabilities are forecasted and determined. Using the parameters of learning and probabilistic reasoning,the probability of failure of the upper node is predicted. Through simula-tion analysis and comparative analysis with other forecasting methods,the accuracy and precision of the method for sensor network node failure prediction is verified,providing new ideas and methods for nodes failure detection.

  18. Towards Bayesian Inference of the Fast-Ion Distribution Function

    DEFF Research Database (Denmark)

    Stagner, L.; Heidbrink, W.W.; Salewski, Mirko

    2012-01-01

    . However, when theory and experiment disagree (for one or more diagnostics), it is unclear how to proceed. Bayesian statistics provides a framework to infer the DF, quantify errors, and reconcile discrepant diagnostic measurements. Diagnostic errors and ``weight functions" that describe the phase space...... sensitivity of the measurements are incorporated into Bayesian likelihood probabilities, while prior probabilities enforce physical constraints. As an initial step, this poster uses Bayesian statistics to infer the DIII-D electron density profile from multiple diagnostic measurements. Likelihood functions...

  19. Bayesian Network Enhanced with Structural Reliability Methods: Methodology

    OpenAIRE

    Straub, Daniel; Der Kiureghian, Armen

    2012-01-01

    We combine Bayesian networks (BNs) and structural reliability methods (SRMs) to create a new computational framework, termed enhanced Bayesian network (eBN), for reliability and risk analysis of engineering structures and infrastructure. BNs are efficient in representing and evaluating complex probabilistic dependence structures, as present in infrastructure and structural systems, and they facilitate Bayesian updating of the model when new information becomes available. On the other hand, SR...

  20. Molecular phylogeny of coleoid cephalopods (Mollusca: Cephalopoda) using a multigene approach; the effect of data partitioning on resolving phylogenies in a Bayesian framework.

    Science.gov (United States)

    Strugnell, Jan; Norman, Mark; Jackson, Jennifer; Drummond, Alexei J; Cooper, Alan

    2005-11-01

    The resolution of higher level phylogeny of the coleoid cephalopods (octopuses, squids, and cuttlefishes) has been hindered by homoplasy among morphological characters in conjunction with a very poor fossil record. Initial molecular studies, based primarily on small fragments of single mitochondrial genes, have produced little resolution of the deep relationships amongst coleoid cephalopod families. The present study investigated this issue using 3415 base pairs (bp) from three nuclear genes (octopine dehydrogenase, pax-6, and rhodopsin) and three mitochondrial genes (12S rDNA, 16S rDNA, and cytochrome oxidase I) from a total of 35 species (including representatives of each of the higher level taxa). Bayesian analyses were conducted on mitochondrial and nuclear genes separately and also all six genes together. Separate analyses were conducted with the data partitioned by gene, codon/rDNA, gene+codon/rDNA or not partitioned at all. In the majority of analyses partitioning the data by gene+codon was the appropriate model with partitioning by codon the second most selected model. In some instances the topology varied according to the model used. Relatively high posterior probabilities and high levels of congruence were present between the topologies resulting from the analysis of all Octopodiform (octopuses and vampire "squid") taxa for all six genes, and independently for the datasets of mitochondrial and nuclear genes. In contrast, the highest levels of resolution within the Decapodiformes (squids and cuttlefishes) resulted from analysis of nuclear genes alone. Different higher level Decapodiform topologies were obtained through the analysis of only the 1st+2nd codon positions of nuclear genes and of all three codon positions. It is notable that there is strong evidence of saturation among the 3rd codon positions within the Decapodiformes and this may contribute spurious signal. The results suggest that the Decapodiformes may have radiated earlier and/or had faster

  1. Variational Bayesian Inference of Line Spectra

    DEFF Research Database (Denmark)

    Badiu, Mihai Alin; Hansen, Thomas Lundgaard; Fleury, Bernard Henri

    2017-01-01

    In this paper, we address the fundamental problem of line spectral estimation in a Bayesian framework. We target model order and parameter estimation via variational inference in a probabilistic model in which the frequencies are continuous-valued, i.e., not restricted to a grid; and the coeffici......In this paper, we address the fundamental problem of line spectral estimation in a Bayesian framework. We target model order and parameter estimation via variational inference in a probabilistic model in which the frequencies are continuous-valued, i.e., not restricted to a grid...

  2. Bayesian approach to noninferiority trials for proportions.

    Science.gov (United States)

    Gamalo, Mark A; Wu, Rui; Tiwari, Ram C

    2011-09-01

    Noninferiority trials are unique because they are dependent upon historical information in order to make meaningful interpretation of their results. Hence, a direct application of the Bayesian paradigm in sequential learning becomes apparently useful in the analysis. This paper describes a Bayesian procedure for testing noninferiority in two-arm studies with a binary primary endpoint that allows the incorporation of historical data on an active control via the use of informative priors. In particular, the posteriors of the response in historical trials are assumed as priors for its corresponding parameters in the current trial, where that treatment serves as the active control. The Bayesian procedure includes a fully Bayesian method and two normal approximation methods on the prior and/or on the posterior distributions. Then a common Bayesian decision criterion is used but with two prespecified cutoff levels, one for the approximation methods and the other for the fully Bayesian method, to determine whether the experimental treatment is noninferior to the active control. This criterion is evaluated and compared with the frequentist method using simulation studies in keeping with regulatory framework that new methods must protect type I error and arrive at a similar conclusion with existing standard strategies. Results show that both methods arrive at comparable conclusions of noninferiority when applied to a modified real data set. The advantage of the proposed Bayesian approach lies in its ability to provide posterior probabilities for effect sizes of the experimental treatment over the active control.

  3. A neural signature of hierarchical reinforcement learning.

    Science.gov (United States)

    Ribas-Fernandes, José J F; Solway, Alec; Diuk, Carlos; McGuire, Joseph T; Barto, Andrew G; Niv, Yael; Botvinick, Matthew M

    2011-07-28

    Human behavior displays hierarchical structure: simple actions cohere into subtask sequences, which work together to accomplish overall task goals. Although the neural substrates of such hierarchy have been the target of increasing research, they remain poorly understood. We propose that the computations supporting hierarchical behavior may relate to those in hierarchical reinforcement learning (HRL), a machine-learning framework that extends reinforcement-learning mechanisms into hierarchical domains. To test this, we leveraged a distinctive prediction arising from HRL. In ordinary reinforcement learning, reward prediction errors are computed when there is an unanticipated change in the prospects for accomplishing overall task goals. HRL entails that prediction errors should also occur in relation to task subgoals. In three neuroimaging studies we observed neural responses consistent with such subgoal-related reward prediction errors, within structures previously implicated in reinforcement learning. The results reported support the relevance of HRL to the neural processes underlying hierarchical behavior.

  4. A Tutorial Introduction to Bayesian Models of Cognitive Development

    Science.gov (United States)

    Perfors, Amy; Tenenbaum, Joshua B.; Griffiths, Thomas L.; Xu, Fei

    2011-01-01

    We present an introduction to Bayesian inference as it is used in probabilistic models of cognitive development. Our goal is to provide an intuitive and accessible guide to the "what", the "how", and the "why" of the Bayesian approach: what sorts of problems and data the framework is most relevant for, and how and why it may be useful for…

  5. Hopes and Cautions in Implementing Bayesian Structural Equation Modeling

    Science.gov (United States)

    MacCallum, Robert C.; Edwards, Michael C.; Cai, Li

    2012-01-01

    Muthen and Asparouhov (2012) have proposed and demonstrated an approach to model specification and estimation in structural equation modeling (SEM) using Bayesian methods. Their contribution builds on previous work in this area by (a) focusing on the translation of conventional SEM models into a Bayesian framework wherein parameters fixed at zero…

  6. Domino effect analysis using Bayesian networks.

    Science.gov (United States)

    Khakzad, Nima; Khan, Faisal; Amyotte, Paul; Cozzani, Valerio

    2013-02-01

    A new methodology is introduced based on Bayesian network both to model domino effect propagation patterns and to estimate the domino effect probability at different levels. The flexible structure and the unique modeling techniques offered by Bayesian network make it possible to analyze domino effects through a probabilistic framework, considering synergistic effects, noisy probabilities, and common cause failures. Further, the uncertainties and the complex interactions among the domino effect components are captured using Bayesian network. The probabilities of events are updated in the light of new information, and the most probable path of the domino effect is determined on the basis of the new data gathered. This study shows how probability updating helps to update the domino effect model either qualitatively or quantitatively. The methodology is applied to a hypothetical example and also to an earlier-studied case study. These examples accentuate the effectiveness of Bayesian network in modeling domino effects in processing facility. © 2012 Society for Risk Analysis.

  7. Loss Function Based Ranking in Two-Stage, Hierarchical Models

    Science.gov (United States)

    Lin, Rongheng; Louis, Thomas A.; Paddock, Susan M.; Ridgeway, Greg

    2009-01-01

    Performance evaluations of health services providers burgeons. Similarly, analyzing spatially related health information, ranking teachers and schools, and identification of differentially expressed genes are increasing in prevalence and importance. Goals include valid and efficient ranking of units for profiling and league tables, identification of excellent and poor performers, the most differentially expressed genes, and determining “exceedances” (how many and which unit-specific true parameters exceed a threshold). These data and inferential goals require a hierarchical, Bayesian model that accounts for nesting relations and identifies both population values and random effects for unit-specific parameters. Furthermore, the Bayesian approach coupled with optimizing a loss function provides a framework for computing non-standard inferences such as ranks and histograms. Estimated ranks that minimize Squared Error Loss (SEL) between the true and estimated ranks have been investigated. The posterior mean ranks minimize SEL and are “general purpose,” relevant to a broad spectrum of ranking goals. However, other loss functions and optimizing ranks that are tuned to application-specific goals require identification and evaluation. For example, when the goal is to identify the relatively good (e.g., in the upper 10%) or relatively poor performers, a loss function that penalizes classification errors produces estimates that minimize the error rate. We construct loss functions that address this and other goals, developing a unified framework that facilitates generating candidate estimates, comparing approaches and producing data analytic performance summaries. We compare performance for a fully parametric, hierarchical model with Gaussian sampling distribution under Gaussian and a mixture of Gaussians prior distributions. We illustrate approaches via analysis of standardized mortality ratio data from the United States Renal Data System. Results show that SEL

  8. Decentralized Cooperative TOA/AOA Target Tracking for Hierarchical Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chih-Yu Wen

    2012-11-01

    Full Text Available This paper proposes a distributed method for cooperative target tracking in hierarchical wireless sensor networks. The concept of leader-based information processingis conducted to achieve object positioning, considering a cluster-based network topology. Random timers and local information are applied to adaptively select a sub-cluster for thelocalization task. The proposed energy-efficient tracking algorithm allows each sub-clustermember to locally estimate the target position with a Bayesian filtering framework and a neural networking model, and further performs estimation fusion in the leader node with the covariance intersection algorithm. This paper evaluates the merits and trade-offs of the protocol design towards developing more efficient and practical algorithms for objectposition estimation. 

  9. Decentralized cooperative TOA/AOA target tracking for hierarchical wireless sensor networks.

    Science.gov (United States)

    Chen, Ying-Chih; Wen, Chih-Yu

    2012-11-08

    This paper proposes a distributed method for cooperative target tracking in hierarchical wireless sensor networks. The concept of leader-based information processing is conducted to achieve object positioning, considering a cluster-based network topology. Random timers and local information are applied to adaptively select a sub-cluster for the localization task. The proposed energy-efficient tracking algorithm allows each sub-cluster member to locally estimate the target position with a Bayesian filtering framework and a neural networking model, and further performs estimation fusion in the leader node with the covariance intersection algorithm. This paper evaluates the merits and trade-offs of the protocol design towards developing more efficient and practical algorithms for object position estimation.

  10. Object-Oriented Bayesian Networks (OOBN) for Aviation Accident Modeling and Technology Portfolio Impact Assessment

    Science.gov (United States)

    Shih, Ann T.; Ancel, Ersin; Jones, Sharon M.

    2012-01-01

    The concern for reducing aviation safety risk is rising as the National Airspace System in the United States transforms to the Next Generation Air Transportation System (NextGen). The NASA Aviation Safety Program is committed to developing an effective aviation safety technology portfolio to meet the challenges of this transformation and to mitigate relevant safety risks. The paper focuses on the reasoning of selecting Object-Oriented Bayesian Networks (OOBN) as the technique and commercial software for the accident modeling and portfolio assessment. To illustrate the benefits of OOBN in a large and complex aviation accident model, the in-flight Loss-of-Control Accident Framework (LOCAF) constructed as an influence diagram is presented. An OOBN approach not only simplifies construction and maintenance of complex causal networks for the modelers, but also offers a well-organized hierarchical network that is easier for decision makers to exploit the model examining the effectiveness of risk mitigation strategies through technology insertions.

  11. A semiparametric Bayesian proportional hazards model for interval censored data with frailty effects

    Directory of Open Access Journals (Sweden)

    Hölzel Dieter

    2009-02-01

    Full Text Available Abstract Background Multivariate analysis of interval censored event data based on classical likelihood methods is notoriously cumbersome. Likelihood inference for models which additionally include random effects are not available at all. Developed algorithms bear problems for practical users like: matrix inversion, slow convergence, no assessment of statistical uncertainty. Methods MCMC procedures combined with imputation are used to implement hierarchical models for interval censored data within a Bayesian framework. Results Two examples from clinical practice demonstrate the handling of clustered interval censored event times as well as multilayer random effects for inter-institutional quality assessment. The software developed is called survBayes and is freely available at CRAN. Conclusion The proposed software supports the solution of complex analyses in many fields of clinical epidemiology as well as health services research.

  12. Bayesian approach to rough set

    CERN Document Server

    Marwala, Tshilidzi

    2007-01-01

    This paper proposes an approach to training rough set models using Bayesian framework trained using Markov Chain Monte Carlo (MCMC) method. The prior probabilities are constructed from the prior knowledge that good rough set models have fewer rules. Markov Chain Monte Carlo sampling is conducted through sampling in the rough set granule space and Metropolis algorithm is used as an acceptance criteria. The proposed method is tested to estimate the risk of HIV given demographic data. The results obtained shows that the proposed approach is able to achieve an average accuracy of 58% with the accuracy varying up to 66%. In addition the Bayesian rough set give the probabilities of the estimated HIV status as well as the linguistic rules describing how the demographic parameters drive the risk of HIV.

  13. Bayesian Source Separation and Localization

    CERN Document Server

    Knuth, K H

    1998-01-01

    The problem of mixed signals occurs in many different contexts; one of the most familiar being acoustics. The forward problem in acoustics consists of finding the sound pressure levels at various detectors resulting from sound signals emanating from the active acoustic sources. The inverse problem consists of using the sound recorded by the detectors to separate the signals and recover the original source waveforms. In general, the inverse problem is unsolvable without additional information. This general problem is called source separation, and several techniques have been developed that utilize maximum entropy, minimum mutual information, and maximum likelihood. In previous work, it has been demonstrated that these techniques can be recast in a Bayesian framework. This paper demonstrates the power of the Bayesian approach, which provides a natural means for incorporating prior information into a source model. An algorithm is developed that utilizes information regarding both the statistics of the amplitudes...

  14. Bayesian priors for transiting planets

    CERN Document Server

    Kipping, David M

    2016-01-01

    As astronomers push towards discovering ever-smaller transiting planets, it is increasingly common to deal with low signal-to-noise ratio (SNR) events, where the choice of priors plays an influential role in Bayesian inference. In the analysis of exoplanet data, the selection of priors is often treated as a nuisance, with observers typically defaulting to uninformative distributions. Such treatments miss a key strength of the Bayesian framework, especially in the low SNR regime, where even weak a priori information is valuable. When estimating the parameters of a low-SNR transit, two key pieces of information are known: (i) the planet has the correct geometric alignment to transit and (ii) the transit event exhibits sufficient signal-to-noise to have been detected. These represent two forms of observational bias. Accordingly, when fitting transits, the model parameter priors should not follow the intrinsic distributions of said terms, but rather those of both the intrinsic distributions and the observational ...

  15. Hierarchical spatial capture-recapture models: Modeling population density from stratified populations

    Science.gov (United States)

    Royle, J. Andrew; Converse, Sarah J.

    2014-01-01

    Capture–recapture studies are often conducted on populations that are stratified by space, time or other factors. In this paper, we develop a Bayesian spatial capture–recapture (SCR) modelling framework for stratified populations – when sampling occurs within multiple distinct spatial and temporal strata.We describe a hierarchical model that integrates distinct models for both the spatial encounter history data from capture–recapture sampling, and also for modelling variation in density among strata. We use an implementation of data augmentation to parameterize the model in terms of a latent categorical stratum or group membership variable, which provides a convenient implementation in popular BUGS software packages.We provide an example application to an experimental study involving small-mammal sampling on multiple trapping grids over multiple years, where the main interest is in modelling a treatment effect on population density among the trapping grids.Many capture–recapture studies involve some aspect of spatial or temporal replication that requires some attention to modelling variation among groups or strata. We propose a hierarchical model that allows explicit modelling of group or strata effects. Because the model is formulated for individual encounter histories and is easily implemented in the BUGS language and other free software, it also provides a general framework for modelling individual effects, such as are present in SCR models.

  16. Hierarchical Cobalt Hydroxide and B/N Co-Doped Graphene Nanohybrids Derived from Metal-Organic Frameworks for High Energy Density Asymmetric Supercapacitors

    Science.gov (United States)

    Tabassum, Hassina; Mahmood, Asif; Wang, Qingfei; Xia, Wei; Liang, Zibin; Qiu, Bin; Zhao, Ruo; Zou, Ruqiang

    2017-02-01

    To cater for the demands of electrochemical energy storage system, the development of cost effective, durable and highly efficient electrode materials is desired. Here, a novel electrode material based on redox active β-Co(OH)2 and B, N co-doped graphene nanohybrid is presented for electrochemical supercapacitor by employing a facile metal-organic frameworks (MOFs) route through pyrolysis and hydrothermal treatment. The Co(OH)2 could be firmly stabilized by dual protection of N-doped carbon polyhedron (CP) and B/N co-doped graphene (BCN) nanosheets. Interestingly, the porous carbon and BCN nanosheets greatly improve the charge storage, wettability, and redox activity of electrodes. Thus the hybrid delivers specific capacitance of 1263 F g‑1 at a current density of 1A g‑1 with 90% capacitance retention over 5000 cycles. Furthermore, the new aqueous asymmetric supercapacitor (ASC) was also designed by using Co(OH)2@CP@BCN nanohybrid and BCN nanosheets as positive and negative electrodes respectively, which leads to high energy density of 20.25 Whkg‑1. This device also exhibits excellent rate capability with energy density of 15.55 Whkg‑1 at power density of 9331 Wkg‑1 coupled long termed stability up to 6000 cycles.

  17. Hierarchical Cobalt Hydroxide and B/N Co-Doped Graphene Nanohybrids Derived from Metal-Organic Frameworks for High Energy Density Asymmetric Supercapacitors

    Science.gov (United States)

    Tabassum, Hassina; Mahmood, Asif; Wang, Qingfei; Xia, Wei; Liang, Zibin; Qiu, Bin; zhao, Ruo; Zou, Ruqiang

    2017-01-01

    To cater for the demands of electrochemical energy storage system, the development of cost effective, durable and highly efficient electrode materials is desired. Here, a novel electrode material based on redox active β-Co(OH)2 and B, N co-doped graphene nanohybrid is presented for electrochemical supercapacitor by employing a facile metal-organic frameworks (MOFs) route through pyrolysis and hydrothermal treatment. The Co(OH)2 could be firmly stabilized by dual protection of N-doped carbon polyhedron (CP) and B/N co-doped graphene (BCN) nanosheets. Interestingly, the porous carbon and BCN nanosheets greatly improve the charge storage, wettability, and redox activity of electrodes. Thus the hybrid delivers specific capacitance of 1263 F g−1 at a current density of 1A g−1 with 90% capacitance retention over 5000 cycles. Furthermore, the new aqueous asymmetric supercapacitor (ASC) was also designed by using Co(OH)2@CP@BCN nanohybrid and BCN nanosheets as positive and negative electrodes respectively, which leads to high energy density of 20.25 Whkg−1. This device also exhibits excellent rate capability with energy density of 15.55 Whkg−1 at power density of 9331 Wkg−1 coupled long termed stability up to 6000 cycles. PMID:28240224

  18. An introduction to Bayesian statistics in health psychology.

    Science.gov (United States)

    Depaoli, Sarah; Rus, Holly M; Clifton, James P; van de Schoot, Rens; Tiemensma, Jitske

    2017-09-01

    The aim of the current article is to provide a brief introduction to Bayesian statistics within the field of health psychology. Bayesian methods are increasing in prevalence in applied fields, and they have been shown in simulation research to improve the estimation accuracy of structural equation models, latent growth curve (and mixture) models, and hierarchical linear models. Likewise, Bayesian methods can be used with small sample sizes since they do not rely on large sample theory. In this article, we discuss several important components of Bayesian statistics as they relate to health-based inquiries. We discuss the incorporation and impact of prior knowledge into the estimation process and the different components of the analysis that should be reported in an article. We present an example implementing Bayesian estimation in the context of blood pressure changes after participants experienced an acute stressor. We conclude with final thoughts on the implementation of Bayesian statistics in health psychology, including suggestions for reviewing Bayesian manuscripts and grant proposals. We have also included an extensive amount of online supplementary material to complement the content presented here, including Bayesian examples using many different software programmes and an extensive sensitivity analysis examining the impact of priors.

  19. Application of Hierarchical Bilevel Framework of MDO Methodology to AUV Design Optimization%两层分级多学科设计框架在AUV的总体设计中的应用

    Institute of Scientific and Technical Information of China (English)

    刘蔚; 苟鹏; 操安喜; 崔维成

    2006-01-01

    将多学科优化方法作为一种新的设计方法应用于AUV的总体性能优化设计中.文中构建顶层控制系统层和并行独立子系统底层的两层分级的多学科优化设计框架,来实现AUV总体设计的有效载荷部分长度和推进力最大化和总重量最小化等的多个设计目标.使用的设计工具为商业软件iSIGHT和Fortran.%Multidisciplinary optimization design (MDO) is presented for an autonomous underwater vehicle (AUV) design as a new approach of general performance optimization. The framework of MDO introduced in this paper is bilevel and hierarchical, which is the high controlling system level and low level of parallel individual subsystems. The methodology is suitable to maximize the payload length and thrust force of AUV and minimize its gross weight.The tools of commercial software iSIGHT and Fortran are used to realize MDO design of AUV.

  20. Variational Bayesian<