WorldWideScience

Sample records for hidden drug resistant

  1. Molecular Evidence of Drug Resistance in Asymptomatic Malaria Infections, Myanmar, 2015.

    Science.gov (United States)

    Nyunt, Myat Htut; Shein, Thinzar; Zaw, Ni Ni; Han, Soe Soe; Muh, Fauzi; Lee, Seong-Kyun; Han, Jin-Hee; Thant, Kyaw Zin; Han, Eun-Taek; Kyaw, Myat Phone

    2017-03-01

    Artemisinin resistance containment in Myanmar was initiated in 2011 after artemisinin-resistant Plasmodium falciparum malaria was reported. Molecular evidence suggests that asymptomatic malaria infections harboring drug resistance genes are present among residents of the Myanmar artemisinin resistance containment zone. This evidence supports efforts to eliminate these hidden infections.

  2. Hidden Disabilities: A Look at Alcohol and Other Drug Abuse Prevention.

    Science.gov (United States)

    VSA Educational Services, Washington, DC. Resource Center on Substance Abuse Prevention and Disability.

    This leaflet discusses alcohol and other drug abuse prevention for individuals with hidden disabilities such as cancer, epilepsy, diabetes, kidney failure, hemophilia, hypertension, early stages of acquired immune deficiency syndrome (AIDS), or heart disease. Their increased risk for alcohol and other drug abuse and reasons for increased risk are…

  3. Abdominal candidiasis is a hidden reservoir of echinocandin resistance.

    Science.gov (United States)

    Shields, Ryan K; Nguyen, M Hong; Press, Ellen G; Clancy, Cornelius J

    2014-12-01

    FKS mutant Candida isolates were recovered from 24% (6/25) of abdominal candidiasis patients exposed to echinocandin. Candida glabrata (29%) and Candida albicans (14%) mutants were identified. Multidrug-resistant bacteria were recovered from 83% of FKS mutant infections. Mutations were associated with prolonged echinocandin exposure (P = 0.01), breakthrough infections (P = 0.03), and therapeutic failures despite source control interventions (100%). Abdominal candidiasis is a hidden reservoir for the emergence of echinocandin-resistant Candida. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  4. A reservoir of drug-resistant pathogenic bacteria in asymptomatic hosts.

    Directory of Open Access Journals (Sweden)

    Gabriel G Perron

    Full Text Available The population genetics of pathogenic bacteria has been intensively studied in order to understand the spread of disease and the evolution of virulence and drug resistance. However, much less attention has been paid to bacterial carriage populations, which inhabit hosts without producing disease. Since new virulent strains that cause disease can be recruited from the carriage population of bacteria, our understanding of infectious disease is seriously incomplete without knowledge on the population structure of pathogenic bacteria living in an asymptomatic host. We report the first extensive survey of the abundance and diversity of a human pathogen in asymptomatic animal hosts. We have found that asymptomatic swine from livestock productions frequently carry populations of Salmonella enterica with a broad range of drug-resistant strains and genetic diversity greatly exceeding that previously described. This study shows how agricultural practice and human intervention may lead and influence the evolution of a hidden reservoir of pathogens, with important implications for human health.

  5. Resisting persuasion by the skin of one's teeth: the hidden success of resisted persuasive messages.

    Science.gov (United States)

    Tormala, Zakary L; Clarkson, Joshua J; Petty, Richard E

    2006-09-01

    Recent research has suggested that when people resist persuasion they can perceive this resistance and, under specifiable conditions, become more certain of their initial attitudes (e.g., Z. L. Tormala & R. E. Petty, 2002). Within the same metacognitive framework, the present research provides evidence for the opposite phenomenon--that is, when people resist persuasion, they sometimes become less certain of their initial attitudes. Four experiments demonstrate that when people perceive that they have done a poor job resisting persuasion (e.g., they believe they generated weak arguments against a persuasive message), they lose attitude certainty, show reduced attitude-behavioral intention correspondence, and become more vulnerable to subsequent persuasive attacks. These findings suggest that resisted persuasive attacks can sometimes have a hidden yet important success by reducing the strength of the target attitude. ((c) 2006 APA, all rights reserved).

  6. Antimicrobial (Drug) Resistance

    Science.gov (United States)

    ... with facebook share with twitter share with linkedin Antimicrobial (Drug) Resistance Go to Information for Researchers ► Credit: ... and infectious diseases. Why Is the Study of Antimicrobial (Drug) Resistance a Priority for NIAID? Over time, ...

  7. Drug-resistant tuberculosis in Sindh

    International Nuclear Information System (INIS)

    Almani, S.A.; Memon, N.M.; Qureshi, A.F.

    2002-01-01

    Objective: To assess the prevalence of primary and secondary drug resistance amongst the clinical isolates of M.tuberculosis, to identify risk factors and how to overcome this problem. Design: A case series of 50 indoor patients with sputum smear-positive pulmonary tuberculosis. Place and duration of Study: Department of Medicine, Liaquat University of Medical and Health Sciences Jamshoro, Sindh, (Pakistan) from January 1999 to December 2000. Patients and methods: Four first line anti-tuberculous drugs rifampicine, ethambutol and streptomycin were tested for sensitivity pattern. Results: Twelve (26.66%) were sensitive to all four drugs, 12(26.66%) were resistant to one drug, 14 (31.11%) were resistant to two drugs, 2 (4.44%) were resistant to three drugs, and 5(11.11%) were resistant to all four drugs. Resistance to isoniazid was the most common in 27 cases (60%) with primary resistance in 6(13.33%) and secondary resistance in 21(46.66%), followed by resistance to streptomycin in 17 cases (37.77%) with primary resistance in 5(11.11%) and secondary resistance in 12 (26.66%). Resistance to ethambutol in 10 cases (22.22%) and rifampicine in 11 (24.44%) and all cases were secondary. Similarly multi-drugs resistance (MRD) TB was found in 11(24.44%) isolates. Conclusion: This study showed high prevalence of drug resistance among clinical isolates of M. tuberculosis. Their is a need to establish centers at number of places with adequate facilities for susceptibility testing so that the resistant pattern could be ascertained and treatment regimens tailored accordingly. (author)

  8. Drug resistance in Mexico: results from the National Survey on Drug-Resistant Tuberculosis.

    Science.gov (United States)

    Bojorquez-Chapela, I; Bäcker, C E; Orejel, I; López, A; Díaz-Quiñonez, A; Hernández-Serrato, M I; Balandrano, S; Romero, M; Téllez-Rojo Solís, M M; Castellanos, M; Alpuche, C; Hernández-Ávila, M; López-Gatell, H

    2013-04-01

    To present estimations obtained from a population-level survey conducted in Mexico of prevalence rates of mono-, poly- and multidrug-resistant strains among newly diagnosed cases of pulmonary tuberculosis (TB), as well as the main factors associated with multidrug resistance (combined resistance to isoniazid and rifampicin). Study data came from the National Survey on TB Drug Resistance (ENTB-2008), a nationally representative survey conducted during 2008-2009 in nine states with a stratified cluster sampling design. Samples were obtained for all newly diagnosed cases of pulmonary TB in selected sites. Drug susceptibility testing (DST) was performed for anti-tuberculosis drugs. DST results were obtained for 75% of the cases. Of these, 82.2% (95%CI 79.5-84.7) were susceptible to all drugs. The prevalence of multidrug-resistant TB (MDR-TB) was estimated at 2.8% (95%CI 1.9-4.0). MDR-TB was associated with previous treatment (OR 3.3, 95%CI 1.1-9.4). The prevalence of drug resistance is relatively low in Mexico. ENTB-2008 can be used as a baseline for future follow-up of drug resistance.

  9. Locating Hidden Servers

    National Research Council Canada - National Science Library

    Oeverlier, Lasse; Syverson, Paul F

    2006-01-01

    .... Announced properties include server resistance to distributed DoS. Both the EFF and Reporters Without Borders have issued guides that describe using hidden services via Tor to protect the safety of dissidents as well as to resist censorship...

  10. Preventing drug resistance in severe influenza

    Science.gov (United States)

    Dobrovolny, Hana; Deecke, Lucas

    2015-03-01

    Severe, long-lasting influenza infections are often caused by new strains of influenza. The long duration of these infections leads to an increased opportunity for the emergence of drug resistant mutants. This is particularly problematic for new strains of influenza since there is often no vaccine, so drug treatment is the first line of defense. One strategy for trying to minimize drug resistance is to apply periodic treatment. During treatment the wild-type virus decreases, but resistant virus might increase; when there is no treatment, wild-type virus will hopefully out-compete the resistant virus, driving down the number of resistant virus. We combine a mathematical model of severe influenza with a model of drug resistance to study emergence of drug resistance during a long-lasting infection. We apply periodic treatment with two types of antivirals: neuraminidase inhibitors, which block release of virions; and adamantanes, which block replication of virions. We compare the efficacy of the two drugs in reducing emergence of drug resistant mutants and examine the effect of treatment frequency on the emergence of drug resistant mutants.

  11. Role of drug transporters and drug accumulation in the temporal acquisition of drug resistance

    International Nuclear Information System (INIS)

    Hembruff, Stacey L; Laberge, Monique L; Villeneuve, David J; Guo, Baoqing; Veitch, Zachary; Cecchetto, Melanie; Parissenti, Amadeo M

    2008-01-01

    Anthracyclines and taxanes are commonly used in the treatment of breast cancer. However, tumor resistance to these drugs often develops, possibly due to overexpression of drug transporters. It remains unclear whether drug resistance in vitro occurs at clinically relevant doses of chemotherapy drugs and whether both the onset and magnitude of drug resistance can be temporally and causally correlated with the enhanced expression and activity of specific drug transporters. To address these issues, MCF-7 cells were selected for survival in increasing concentrations of doxorubicin (MCF-7 DOX-2 ), epirubicin (MCF-7 EPI ), paclitaxel (MCF-7 TAX-2 ), or docetaxel (MCF-7 TXT ). During selection cells were assessed for drug sensitivity, drug uptake, and the expression of various drug transporters. In all cases, resistance was only achieved when selection reached a specific threshold dose, which was well within the clinical range. A reduction in drug uptake was temporally correlated with the acquisition of drug resistance for all cell lines, but further increases in drug resistance at doses above threshold were unrelated to changes in cellular drug uptake. Elevated expression of one or more drug transporters was seen at or above the threshold dose, but the identity, number, and temporal pattern of drug transporter induction varied with the drug used as selection agent. The pan drug transporter inhibitor cyclosporin A was able to partially or completely restore drug accumulation in the drug-resistant cell lines, but had only partial to no effect on drug sensitivity. The inability of cyclosporin A to restore drug sensitivity suggests the presence of additional mechanisms of drug resistance. This study indicates that drug resistance is achieved in breast tumour cells only upon exposure to concentrations of drug at or above a specific selection dose. While changes in drug accumulation and the expression of drug transporters does occur at the threshold dose, the magnitude of

  12. Drug-resistant spinal tuberculosis

    Directory of Open Access Journals (Sweden)

    Anil K Jain

    2018-01-01

    Full Text Available Drug-resistant spinal tuberculosis (TB is an emerging health problem in both developing and developed countries. In this review article, we aim to define management protocols for suspicion, diagnosis, and treatment of such patients. Spinal TB is a deep-seated paucibacillary lesion, and the demonstration of acid-fast bacilli on Ziehl-Neelsen staining is possible only in 10%–30% of cases. Drug resistance is suspected in patients showing the failure of clinicoradiological improvement or appearance of a fresh lesion of osteoarticular TB while on anti tubercular therapy (ATT for a minimum period of 5 months. The conventional culture of Mycobacterium tuberculosis remains the gold standard for both bacteriological diagnosis and drug sensitivity testing (DST; however, the high turn around time of 2–6 weeks for detection with added 3 weeks for DST is a major limitation. To overcome this problem, rapid culture methods and molecular methods have been introduced. From a public health perspective, reducing the period between diagnosis and treatment initiation has direct benefits for both the patient and the community. For all patients of drug-resistant spinal TB, a complete Drug-O-Gram should be prepared which includes details of all drugs, their doses, and duration. Patients with confirmed multidrug-resistant TB strains should receive a regimen with at least five effective drugs, including pyrazinamide and one injectable. Patients with resistance to additional antitubercular drugs should receive individualized ATT as per their DST results.

  13. Study on drug resistance of mycobacterium tuberculosis in patients with pulmonary tuberculosis by drug resistance gene detecting

    International Nuclear Information System (INIS)

    Wang Wei; Li Hongmin; Wu Xueqiong; Wang Ansheng; Ye Yixiu; Wang Zhongyuan; Liu Jinwei; Chen Hongbing; Lin Minggui; Wang Jinhe; Li Sumei; Jiang Ping; Feng Bai; Chen Dongjing

    2004-01-01

    To investigate drug resistance of mycobacterium tuberculosis in different age group, compare detecting effect of two methods and evaluate their the clinical application value, all of the strains of mycobacterium tuberculosis were tested for resistance to RFP, INH SM PZA and EMB by the absolute concentration method on Lowenstein-Jensen medium and the mutation of the rpoB, katG, rpsL, pncA and embB resistance genes in M. tuberculosis was tested by PCR-SSCP. In youth, middle and old age group, the rate of acquired drug resistance was 89.2%, 85.3% and 67.6% respectively, the gene mutation rate was 76.2%, 81.3% and 63.2% respectively. The rate of acquired drug resistance and multiple drug resistance in youth group was much higher than those in other groups. The gene mutation was correlated with drug resistance level of mycobacterium tuberculosis. The gene mutation rate was higher in strains isolated from high concentration resistance than those in strains isolated from low concentration resistance. The more irregular treatment was longer, the rate of drug resistance was higher. Acquired drug resistance varies in different age group. It suggested that surveillance of drug resistence in different age group should be taken seriously, especially in youth group. PCR - SSCP is a sensitive and specific method for rapid detecting rpoB, katG, rpsL, pncA and embB genes mutations of MTB. (authors)

  14. Extensively Drug-Resistant Tuberculosis: Principles of Resistance, Diagnosis, and Management.

    Science.gov (United States)

    Wilson, John W; Tsukayama, Dean T

    2016-04-01

    Extensively drug-resistant (XDR) tuberculosis (TB) is an unfortunate by-product of mankind's medical and pharmaceutical ingenuity during the past 60 years. Although new drug developments have enabled TB to be more readily curable, inappropriate TB management has led to the emergence of drug-resistant disease. Extensively drug-resistant TB describes Mycobacterium tuberculosis that is collectively resistant to isoniazid, rifampin, a fluoroquinolone, and an injectable agent. It proliferates when established case management and infection control procedures are not followed. Optimized treatment outcomes necessitate time-sensitive diagnoses, along with expanded combinations and prolonged durations of antimicrobial drug therapy. The challenges to public health institutions are immense and most noteworthy in underresourced communities and in patients coinfected with human immunodeficiency virus. A comprehensive and multidisciplinary case management approach is required to optimize outcomes. We review the principles of TB drug resistance and the risk factors, diagnosis, and managerial approaches for extensively drug-resistant TB. Treatment outcomes, cost, and unresolved medical issues are also discussed. Copyright © 2016 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  15. Identifying clinically relevant drug resistance genes in drug-induced resistant cancer cell lines and post-chemotherapy tissues.

    Science.gov (United States)

    Tong, Mengsha; Zheng, Weicheng; Lu, Xingrong; Ao, Lu; Li, Xiangyu; Guan, Qingzhou; Cai, Hao; Li, Mengyao; Yan, Haidan; Guo, You; Chi, Pan; Guo, Zheng

    2015-12-01

    Until recently, few molecular signatures of drug resistance identified in drug-induced resistant cancer cell models can be translated into clinical practice. Here, we defined differentially expressed genes (DEGs) between pre-chemotherapy colorectal cancer (CRC) tissue samples of non-responders and responders for 5-fluorouracil and oxaliplatin-based therapy as clinically relevant drug resistance genes (CRG5-FU/L-OHP). Taking CRG5-FU/L-OHP as reference, we evaluated the clinical relevance of several types of genes derived from HCT116 CRC cells with resistance to 5-fluorouracil and oxaliplatin, respectively. The results revealed that DEGs between parental and resistant cells, when both were treated with the corresponding drug for a certain time, were significantly consistent with the CRG5-FU/L-OHP as well as the DEGs between the post-chemotherapy CRC specimens of responders and non-responders. This study suggests a novel strategy to extract clinically relevant drug resistance genes from both drug-induced resistant cell models and post-chemotherapy cancer tissue specimens.

  16. Radiosensitivity of drug-resistant human tumour xenografts

    International Nuclear Information System (INIS)

    Mattern, J.; Bak, M. Jr.; Volm, M.; Hoever, K.H.

    1989-01-01

    The radiosensitivity of three drug-resistant sublines of a human epidermoid lung carcinoma growing as xenografts in nude mice was investigated. Drug resistance to vincristine, actinomycin D and cisplatin was developed in vivo by repeated drug treatment. It was found that all three drug-resistant tumour lines were not cross-resistant to irradiation. (orig.) [de

  17. Prediction of resistance development against drug combinations by collateral responses to component drugs

    DEFF Research Database (Denmark)

    Munck, Christian; Gumpert, Heidi; Nilsson Wallin, Annika

    2014-01-01

    the genomes of all evolved E. coli lineages, we identified the mutational events that drive the differences in drug resistance levels and found that the degree of resistance development against drug combinations can be understood in terms of collateral sensitivity and resistance that occurred during...... adaptation to the component drugs. Then, using engineered E. coli strains, we confirmed that drug resistance mutations that imposed collateral sensitivity were suppressed in a drug pair growth environment. These results provide a framework for rationally selecting drug combinations that limit resistance......Resistance arises quickly during chemotherapeutic selection and is particularly problematic during long-term treatment regimens such as those for tuberculosis, HIV infections, or cancer. Although drug combination therapy reduces the evolution of drug resistance, drug pairs vary in their ability...

  18. Plasmodium falciparum drug resistance in Angola.

    Science.gov (United States)

    Fançony, Cláudia; Brito, Miguel; Gil, Jose Pedro

    2016-02-09

    Facing chloroquine drug resistance, Angola promptly adopted artemisinin-based combination therapy as the first-line to treat malaria. Currently, the country aims to consolidate malaria control, while preparing for the elimination of the disease, along with others African countries in the region. However, the remarkable capacity of Plasmodium to develop drug resistance represents an alarming threat for those achievements. Herein, the available, but relatively scarce and dispersed, information on malaria drug resistance in Angola, is reviewed and discussed. The review aims to inform but also to encourage future research studies that monitor and update the information on anti-malarial drug efficacy and prevalence of molecular markers of drug resistance, key fields in the context and objectives of elimination.

  19. [Change in drug resistance of Staphylococcus aureus].

    Science.gov (United States)

    Lin, Yan; Liu, Yan; Luo, Yan-Ping; Liu, Chang-Ting

    2013-11-01

    To analyze the change in drug resistance of Staphylococcus aureus (SAU) in the PLA general hospital from January 2008 to December 2012, and to provide solid evidence to support the rational use of antibiotics for clinical applications. The SAU strains isolated from clinical samples in the hospital were collected and subjected to the Kirby-Bauer disk diffusion test. The results were assessed based on the 2002 American National Committee for Clinical Laboratory Standards (NCCLS) guidelines. SAU strains were mainly isolated from sputum, urine, blood and wound excreta and distributed in penology, neurology wards, orthopedics and surgery ICU wards. Except for glycopeptide drugs, methicillin-resistant Staphylococcus aureus (MRSA) had a higher drug resistance rate than those of the other drugs and had significantly more resistance than methicillin-sensitive Staphylococcus aureus (MSSA) (P resistance, we discovered a gradual increase in drug resistance to fourteen test drugs during the last five years. Drug resistance rate of SAU stayed at a higher level over the last five years; moreover, the detection ratio of MRSA keeps rising year by year. It is crucial for physicians to use antibiotics rationally and monitor the change in drug resistance in a dynamic way.

  20. Drug Resistance

    Science.gov (United States)

    ... Drug-resistance testing is also recommended for all pregnant women with HIV before starting HIV medicines and also in some pregnant women already taking HIV medicines. Pregnant women will work with their health ...

  1. Mechanisms of drug resistance in cancer cells

    International Nuclear Information System (INIS)

    Iqbal, M.P.

    2003-01-01

    Development of drug resist chemotherapy. For the past several years, investigators have been striving hard to unravel mechanisms of drug resistance in cancer cells. Using different experimental models of cancer, some of the major mechanisms of drug resistance identified in mammalian cells include: (a) Altered transport of the drug (decreased influx of the drug; increased efflux of the drug (role of P-glycoprotein; role of polyglutamation; role of multiple drug resistance associated protein)), (b) Increase in total amount of target enzyme/protein (gene amplification), (c) alteration in the target enzyme/protein (low affinity enzyme), (d) Elevation of cellular glutathione, (e) Inhibition of drug-induced apoptosis (mutation in p53 tumor suppressor gene; increased expression of bcl-xl gene). (author)

  2. Drug resistance in leishmaniasis: current drug-delivery systems and future perspectives.

    Science.gov (United States)

    Yasinzai, Masoom; Khan, Momin; Nadhman, Akhtar; Shahnaz, Gul

    2013-10-01

    Leishmaniasis is a complex of diseases with numerous clinical manifestations for instance harshness from skin lesions to severe disfigurement and chronic systemic infection in the liver and spleen. So far, the most classical leishmaniasis therapy, despite its documented toxicities, remains pentavalent antimonial compounds. The arvailable therapeutic modalities for leishmaniasis are overwhelmed with resistance to leishmaniasis therapy. Mechanisms of classical drug resistance are often related with the lower drug uptake, increased efflux, the faster drug metabolism, drug target modifications and over-expression of drug transporters. The high prevalence of leishmaniasis and the appearance of resistance to classical drugs reveal the demand to develop and explore novel, less toxic, low cost and more promising therapeutic modalities. The review describes the mechanisms of classical drug resistance and potential drug targets in Leishmania infection. Moreover, current drug-delivery systems and future perspectives towards Leishmaniasis treatment are also covered.

  3. Clinical Management of HIV Drug Resistance

    Science.gov (United States)

    Cortez, Karoll J.; Maldarelli, Frank

    2011-01-01

    Combination antiretroviral therapy for HIV-1 infection has resulted in profound reductions in viremia and is associated with marked improvements in morbidity and mortality. Therapy is not curative, however, and prolonged therapy is complicated by drug toxicity and the emergence of drug resistance. Management of clinical drug resistance requires in depth evaluation, and includes extensive history, physical examination and laboratory studies. Appropriate use of resistance testing provides valuable information useful in constructing regimens for treatment-experienced individuals with viremia during therapy. This review outlines the emergence of drug resistance in vivo, and describes clinical evaluation and therapeutic options of the individual with rebound viremia during therapy. PMID:21994737

  4. Lysosomes as mediators of drug resistance in cancer.

    Science.gov (United States)

    Zhitomirsky, Benny; Assaraf, Yehuda G

    2016-01-01

    Drug resistance remains a leading cause of chemotherapeutic treatment failure and cancer-related mortality. While some mechanisms of anticancer drug resistance have been well characterized, multiple mechanisms remain elusive. In this respect, passive ion trapping-based lysosomal sequestration of multiple hydrophobic weak-base chemotherapeutic agents was found to reduce the accessibility of these drugs to their target sites, resulting in a markedly reduced cytotoxic effect and drug resistance. Recently we have demonstrated that lysosomal sequestration of hydrophobic weak base drugs triggers TFEB-mediated lysosomal biogenesis resulting in an enlarged lysosomal compartment, capable of enhanced drug sequestration. This study further showed that cancer cells with an increased number of drug-accumulating lysosomes are more resistant to lysosome-sequestered drugs, suggesting a model of drug-induced lysosome-mediated chemoresistance. In addition to passive drug sequestration of hydrophobic weak base chemotherapeutics, other mechanisms of lysosome-mediated drug resistance have also been reported; these include active lysosomal drug sequestration mediated by ATP-driven transporters from the ABC superfamily, and a role for lysosomal copper transporters in cancer resistance to platinum-based chemotherapeutics. Furthermore, lysosomal exocytosis was suggested as a mechanism to facilitate the clearance of chemotherapeutics which highly accumulated in lysosomes, thus providing an additional line of resistance, supplementing the organelle entrapment of chemotherapeutics away from their target sites. Along with these mechanisms of lysosome-mediated drug resistance, several approaches were recently developed for the overcoming of drug resistance or exploiting lysosomal drug sequestration, including lysosomal photodestruction and drug-induced lysosomal membrane permeabilization. In this review we explore the current literature addressing the role of lysosomes in mediating cancer drug

  5. Simple strategy to assess linezolid exposure in patients with multi-drug-resistant and extensively-drug-resistant tuberculosis

    NARCIS (Netherlands)

    Kamp, Jasper; Bolhuis, Mathieu S.; Tiberi, Simon; Akkerman, Onno W.; Centis, Rosella; de lange, Wiel C.; Kosterink, Jos G.; van der Werf, Tjip S.; Migliori, Giovanni B.; Alffenaar, Jan-Willem C.

    Linezolid is used increasingly for the treatment of multi-drug-resistant (MDR) and extensively-drug-resistant (XDR) tuberculosis (TB). However, linezolid can cause severe adverse events, such as peripheral and optical neuropathy or thrombocytopenia related to higher drug exposure. This study aimed

  6. Drug resistance

    NARCIS (Netherlands)

    Gorter, J.A.; Potschka, H.; Noebels, J.L.; Avoli, M.; Rogawski, M.A.; Olsen, R.W.; Delgado-Escueta, A.V.

    2012-01-01

    Drug resistance remains to be one of the major challenges in epilepsy therapy. Identification of factors that contribute to therapeutic failure is crucial for future development of novel therapeutic strategies for difficult-to-treat epilepsies. Several clinical studies have shown that high seizure

  7. Antimicrobial resistance determinant microarray for analysis of multi-drug resistant isolates

    Science.gov (United States)

    Taitt, Chris Rowe; Leski, Tomasz; Stenger, David; Vora, Gary J.; House, Brent; Nicklasson, Matilda; Pimentel, Guillermo; Zurawski, Daniel V.; Kirkup, Benjamin C.; Craft, David; Waterman, Paige E.; Lesho, Emil P.; Bangurae, Umaru; Ansumana, Rashid

    2012-06-01

    The prevalence of multidrug-resistant infections in personnel wounded in Iraq and Afghanistan has made it challenging for physicians to choose effective therapeutics in a timely fashion. To address the challenge of identifying the potential for drug resistance, we have developed the Antimicrobial Resistance Determinant Microarray (ARDM) to provide DNAbased analysis for over 250 resistance genes covering 12 classes of antibiotics. Over 70 drug-resistant bacteria from different geographic regions have been analyzed on ARDM, with significant differences in patterns of resistance identified: genes for resistance to sulfonamides, trimethoprim, chloramphenicol, rifampin, and macrolide-lincosamidesulfonamide drugs were more frequently identified in isolates from sources in Iraq/Afghanistan. Of particular concern was the presence of genes responsible for resistance to many of the last-resort antibiotics used to treat war traumaassociated infections.

  8. Hidden costs of antiretroviral treatment: the public health efficiency of drug packaging.

    Science.gov (United States)

    Andreu-Crespo, Àngels; Llibre, Josep M; Cardona-Peitx, Glòria; Sala-Piñol, Ferran; Clotet, Bonaventura; Bonafont-Pujol, Xavier

    2015-01-01

    While the overall percentage of unused antiretroviral medicines returned to the hospital pharmacy is low, their cost is quite high. Adverse events, treatment failure, pharmacokinetic interactions, pregnancy, or treatment simplification are common reasons for unplanned treatment changes. Socially inefficient antiretroviral packages prevent the reuse of drugs returned to the hospital pharmacy. We defined antiretroviral package categories based on the excellence of drug packaging and analyzed the number of pills and costs of drugs returned during a period of 1 year in a hospital-based HIV unit attending to 2,413 treated individuals. A total of 6,090 pills (34% of all returned antiretrovirals) - with a cost of 47,139.91 € - would be totally lost, mainly due to being packed up in the lowest efficiency packages. Newer treatments are packaged in low-excellence categories of packages, thus favoring the maintenance of these hidden costs in the near future. Therefore, costs of this low-efficiency drug packaging, where medication packages are started but not completed, in high-cost medications are substantial and should be properly addressed. Any improvement in the packaging by the manufacturer, and favoring the choice of drugs supplied through efficient packages (when efficacy, toxicity, and convenience are similar), should minimize the treatment expenditures paid by national health budgets.

  9. Drug-resistant gram-negative uropathogens: A review.

    Science.gov (United States)

    Khoshnood, Saeed; Heidary, Mohsen; Mirnejad, Reza; Bahramian, Aghil; Sedighi, Mansour; Mirzaei, Habibollah

    2017-10-01

    Urinary tract infection(UTI) caused by Gram-negative bacteria is the second most common infectious presentation in community medical practice. Approximately 150 million people are diagnosed with UTI each year worldwide. Drug resistance in Gram-negative uropathogens is a major global concern which can lead to poor clinical outcomes including treatment failure, development of bacteremia, requirement for intravenous therapy, hospitalization, and extended length of hospital stay. The mechanisms of drug resistance in these bacteria are important due to they are often not identified by routine susceptibility tests and have an exceptional potential for outbreaks. Treatment of UTIs depends on the access to effective drugs, which is now threatened by antibiotic resistant Gram-negative uropathogens. Although several effective antibiotics with activity against highly resistant Gram-negatives are available, there is not a unique antibiotic with activity against the high variety of resistance. Therefore, antimicrobial susceptibility tests, correlation between clinicians and laboratories, development of more rapid diagnostic methods, and continuous monitoring of drug resistance are urgent priorities. In this review, we will discuss about the current global status of drug-resistant Gram-negative uropathogens and their mechanisms of drug resistance to provide new insights into their treatment options. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Gene expression analysis of two extensively drug-resistant tuberculosis isolates show that two-component response systems enhance drug resistance.

    Science.gov (United States)

    Yu, Guohua; Cui, Zhenling; Sun, Xian; Peng, Jinfu; Jiang, Jun; Wu, Wei; Huang, Wenhua; Chu, Kaili; Zhang, Lu; Ge, Baoxue; Li, Yao

    2015-05-01

    Global analysis of expression profiles using DNA microarrays was performed between a reference strain H37Rv and two clinical extensively drug-resistant isolates in response to three anti-tuberculosis drug exposures (isoniazid, capreomycin, and rifampicin). A deep analysis was then conducted using a combination of genome sequences of the resistant isolates, resistance information, and related public microarray data. Certain known resistance-associated gene sets were significantly overrepresented in upregulated genes in the resistant isolates relative to that observed in H37Rv, which suggested a link between resistance and expression levels of particular genes. In addition, isoniazid and capreomycin response genes, but not rifampicin, either obtained from published works or our data, were highly consistent with the differentially expressed genes of resistant isolates compared to those of H37Rv, indicating a strong association between drug resistance of the isolates and genes differentially regulated by isoniazid and capreomycin exposures. Based on these results, 92 genes of the studied isolates were identified as candidate resistance genes, 10 of which are known resistance-related genes. Regulatory network analysis of candidate resistance genes using published networks and literature mining showed that three two-component regulatory systems and regulator CRP play significant roles in the resistance of the isolates by mediating the production of essential envelope components. Finally, drug sensitivity testing indicated strong correlations between expression levels of these regulatory genes and sensitivity to multiple anti-tuberculosis drugs in Mycobacterium tuberculosis. These findings may provide novel insights into the mechanism underlying the emergence and development of drug resistance in resistant tuberculosis isolates and useful clues for further studies on this issue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Kinetically Controlled Drug Resistance

    DEFF Research Database (Denmark)

    Sun, Xin E.; Hansen, Bjarne Gram; Hedstrom, Lizbeth

    2011-01-01

    The filamentous fungus Penicillium brevicompactum produces the immunosuppressive drug mycophenolic acid (MPA), which is a potent inhibitor of eukaryotic IMP dehydrogenases (IMPDHs). IMPDH catalyzes the conversion of IMP to XMP via a covalent enzyme intermediate, E-XMP*; MPA inhibits by trapping E...... of resistance is not apparent. Here, we show that, unlike MPA-sensitive IMPDHs, formation of E-XMP* is rate-limiting for both PbIMPDH-A and PbIMPDH-B. Therefore, MPA resistance derives from the failure to accumulate the drug-sensitive intermediate....

  12. Overview of drug-resistant tuberculosis worldwide

    Directory of Open Access Journals (Sweden)

    Ali A Velayati

    2016-01-01

    Full Text Available Even in the 21st century, we are losing the battle against eradication of tuberculosis (TB. In 2015, 9.6 million people were estimated to have fallen ill with TB, of which 1.5 million people died. This is the real situation despite the well-structured treatment programs and availability of effective treatment options since the 1950s. The high mortality rate has been associated with other risk factors, such as the HIV epidemic, underlying diseases, and decline of socioeconomic standards. Furthermore, the problem of drug resistance that was recognized in the early days of the chemotherapeutic era raises serious concerns. Although resistance to a single agent is the most common type, resistance to multiple agents is less frequent but of greater concern. The World Health Organization estimated approximately 5% of all new TB cases involved multidrug-resistant (MDR-TB. The estimation for MDR-TB is 3.3% for new cases, and 20.5% for previously treated cases. Failure to identify and appropriately treat MDR-TB patients has led to more dangerous forms of resistant TB. Based on World Health Organization reports, 5% of global TB cases are now considered to be extensively drug resistant (XDR, defined as MDR with additional resistance to both fluoroquinolones and at least one second-line injectable drug. XDR-TB had been reported by 105 countries by 2015. An estimated 9.7% of people with MDR-TB have XDR-TB. More recently, another dangerous form of TB bacillus was identified, which was named totally drug resistant (TDR-TB or extremely drug resistant TB. These strains were resistant to all first- and second-line anti-TB drugs. Collectively, it is accepted that 2% of MDR-TB strains turn to be TDR-TB. This number, however, may not reflect the real situation, as many laboratories in endemic TB countries do not have proper facilities and updated protocols to detect the XDR or TDR-TB strains. Nevertheless, existing data emphasize the need for additional control

  13. Effect of radiation decontamination on drug-resistant bacteria

    International Nuclear Information System (INIS)

    Ito, Hitoshi

    2006-01-01

    More than 80% of food poisoning bacteria such as Salmonella are reported as antibiotic-resistant to at least one type antibiotic, and more than 50% as resistant to two or more. For the decontamination of food poisoning bacteria in foods, radiation resistibility on drug-resistant bacteria were investigated compared with drug-sensitive bacteria. Possibility on induction of drug-resistant mutation by radiation treatment was also investigated. For these studies, type strains of Escherichia coli S2, Salmonella enteritidis YK-2 and Staphylococcus aureus H12 were used to induce drug-resistant strains with penicillin G. From the study of radiation sensitivity on the drug-resistant strain induced from E. coli S2, D 10 value was obtained to be 0.20 kGy compared with 0.25 kGy at parent strain. On S. enteritidis YK-2, D 10 value was obtained to be 0.14 kGy at drug-resistant strain compared with 0.16 kGy at parent strain. D 10 value was also obtained to be 0.15 kGy at drug-resistant strain compared with 0.21 kGy at parent strain of St. aureus H12. Many isolates of E. coli 157:H7 or other type of E. coli from meats such as beef were resistant to penicillin G, and looked to be no relationship on radiation resistivities between drug-resistant strains and sensitive strains. On the study of radiation sensitivity on E. coli S2 at plate agars containing antibiotics, higher survival fractions were obtained at higher doses compared with normal plate agar. The reason of higher survival fractions at higher doses on plate agar containing antibiotics should be recovery of high rate of injured cells by the relay of cell division, and drug-resistant strains by mutation are hardly induced by irradiation. (author)

  14. Competitive release of drug resistance following drug treatment of mixed Plasmodium chabaudi infections.

    Science.gov (United States)

    de Roode, Jacobus C; Culleton, Richard; Bell, Andrew S; Read, Andrew F

    2004-09-14

    Malaria infections are often genetically diverse, potentially leading to competition between co-infecting strains. Such competition is of key importance in the spread of drug resistance. The effects of drug treatment on within-host competition were studied using the rodent malaria Plasmodium chabaudi. Mice were infected simultaneously with a drug-resistant and a drug-sensitive clone and were then either drug-treated or left untreated. Transmission was assessed by feeding mice to Anopheles stephensi mosquitoes. In the absence of drugs, the sensitive clone competitively suppressed the resistant clone; this resulted in lower asexual parasite densities and also reduced transmission to the mosquito vector. Drug treatment, however, allowed the resistant clone to fill the ecological space emptied by the removal of the sensitive clone, allowing it to transmit as well as it would have done in the absence of competition. These results show that under drug pressure, resistant strains can have two advantages: (1) they survive better than sensitive strains and (2) they can exploit the opportunities presented by the removal of their competitors. When mixed infections are common, such effects could increase the spread of drug resistance.

  15. Distribution of red blood cell antigens in drug-resistant and drug ...

    African Journals Online (AJOL)

    sofo

    Frequency distribution of ABO, Rh-Hr, MN, Kell blood group system antigens were studied in 277 TB patients (151-drug-sensitive and 126 drug-resistant) of pulmonary tuberculosis to know whether there was any association between them, and also between drug resistance and sensitiveness. They were compared with 485 ...

  16. Resistance patterns and trends of extensively drug-resistant tuberculosis: 5-year experience

    Directory of Open Access Journals (Sweden)

    Amresh Kumar Singh

    2013-12-01

    Full Text Available Objective:Extensively drug-resistant tuberculosis (XDR-TB strains were emerged when multidrug-resistant TB (MDR- TB was inadequately treated. Inadequate treatment of MDR-TB cases may result in additional resistance especially non-XDR-TB and then XDR-TB. The aim of this study was to know the prevalence, resistance patterns and trends of the XDR-TB strains among the MDR-TB at a tertiary care hospital in Lucknow, India Methods: A total of 430 Mycobacterium isolates were underwent NAP test and TB MPT64 Ag test for the identification of Mycobacterium tuberculosis complex (MTBC. Drug-susceptibility test (DST was performed over MTBC for the first line drugs by 1% proportion method (Bactec and for the second-line drugs by 1% proportion method (Lowenstein- Jensen media. The XDR-TB status was further confirmed by line probe assay (GenoType® MTBDRsl assay. Results: Among the 430 isolates of mycobacterium, 365 (84.9% were MTBC and 139 (38.1% were MDR-TB respectively. Further 97 MDR-TB from “highly suspected drug resistant-TB (DR-TB” cases among MDR-TB were tested with second line drugs in which 15 (15.5% XDR-TB and 82 (84.5% were non-XDR-TB. Regarding XDR-TB status, using the 1% proportion method a 100% agreement was seen with the GenoType® MTBDRsl assay. Resistance patterns of XDR-TB were as; 10/15 (66.7% as isoniazid + rifampicin + ciprofloxacin + amikacin resistance and 5/15 (33.3% as isoniazid + rifampicin + ciprofloxacin + amikacin + kanamycin resistance. Conclusion:The prevalence of XDR-TB was 15.5% among MDR-TB. Hence laboratory testing of “highly suspected drug resistant-TB” isolates should be done for both first and second line drugs simultaneously especially in developing countries.J Microbiol Infect Dis 2013;3(4: 169-175

  17. Systematic drug screening reveals specific vulnerabilities and co-resistance patterns in endocrine-resistant breast cancer.

    Science.gov (United States)

    Kangaspeska, Sara; Hultsch, Susanne; Jaiswal, Alok; Edgren, Henrik; Mpindi, John-Patrick; Eldfors, Samuli; Brück, Oscar; Aittokallio, Tero; Kallioniemi, Olli

    2016-07-04

    The estrogen receptor (ER) inhibitor tamoxifen reduces breast cancer mortality by 31 % and has served as the standard treatment for ER-positive breast cancers for decades. However, 50 % of advanced ER-positive cancers display de novo resistance to tamoxifen, and acquired resistance evolves in 40 % of patients who initially respond. Mechanisms underlying resistance development remain poorly understood and new therapeutic opportunities are urgently needed. Here, we report the generation and characterization of seven tamoxifen-resistant breast cancer cell lines from four parental strains. Using high throughput drug sensitivity and resistance testing (DSRT) with 279 approved and investigational oncology drugs, exome-sequencing and network analysis, we for the first time, systematically determine the drug response profiles specific to tamoxifen resistance. We discovered emerging vulnerabilities towards specific drugs, such as ERK1/2-, proteasome- and BCL-family inhibitors as the cells became tamoxifen-resistant. Co-resistance to other drugs such as the survivin inhibitor YM155 and the chemotherapeutic agent paclitaxel also occurred. This study indicates that multiple molecular mechanisms dictate endocrine resistance, resulting in unexpected vulnerabilities to initially ineffective drugs, as well as in emerging co-resistances. Thus, combatting drug-resistant tumors will require patient-tailored strategies in order to identify new drug vulnerabilities, and to understand the associated co-resistance patterns.

  18. Candidate genes for cross-resistance against DNA-damaging drugs

    DEFF Research Database (Denmark)

    Wittig, Rainer; Nessling, Michelle; Will, Rainer D

    2002-01-01

    Drug resistance of tumor cells leads to major drawbacks in the treatment of cancer. To identify candidate genes for drug resistance, we compared the expression patterns of the drug-sensitive human malignant melanoma cell line MeWo and three derived sublines with acquired resistance to the DNA...... as several apoptosis-related genes, in particular STK17A and CRYAB. As MPP1 and CRYAB are also among the 14 genes differentially expressed in all three of the drug-resistant sublines, they represent the strongest candidates for resistance against DNA-damaging drugs....

  19. Emergence of Extensively Drug Resistant Tuberculosis

    Centers for Disease Control (CDC) Podcasts

    Extensively drug-resistant tuberculosis (XDR TB) outbreaks have been reported in South Africa, and strains have been identified on 6 continents. Dr. Peter Cegielski, team leader for drug-resistant TB with the Division of Tuberculosis Elimination at CDC, comments on a multinational team's report on this emerging global public health threat.

  20. Biologic Stress, Oxidative Stress, and Resistance to Drugs: What Is Hidden Behind

    Directory of Open Access Journals (Sweden)

    Maria Pantelidou

    2017-02-01

    Full Text Available Stress can be defined as the homeostatic, nonspecific defensive response of the organism to challenges. It is expressed by morphological, biochemical, and functional changes. In this review, we present biological and oxidative stress, as well as their interrelation. In addition to the mediation in biologic stress (central nervous, immune, and hormonal systems and oxidative stress, the effect of these phenomena on xenobiotic metabolism and drug response is also examined. It is concluded that stress decreases drug response, a result which seems to be mainly attributed to the induction of hepatic drug metabolizing enzymes. A number of mechanisms are presented. Structure-activity studies are also discussed. Vitamin E, as well as two synthetic novel compounds, seem to reduce both oxidative and biological stress and, consequently, influence drug response and metabolism.

  1. Early antiretroviral therapy and potent second-line drugs could decrease HIV incidence of drug resistance.

    Science.gov (United States)

    Shen, Mingwang; Xiao, Yanni; Rong, Libin; Meyers, Lauren Ancel; Bellan, Steven E

    2017-06-28

    Early initiation of antiretroviral therapy (ART) reduces the risk of drug-sensitive HIV transmission but may increase the transmission of drug-resistant HIV. We used a mathematical model to estimate the long-term population-level benefits of ART and determine the scenarios under which earlier ART (treatment at 1 year post-infection, on average) could decrease simultaneously both total and drug-resistant HIV incidence (new infections). We constructed an infection-age-structured mathematical model that tracked the transmission rates over the course of infection and modelled the patients' life expectancy as a function of ART initiation timing. We fitted this model to the annual AIDS incidence and death data directly, and to resistance data and demographic data indirectly among men who have sex with men (MSM) in San Francisco. Using counterfactual scenarios, we assessed the impact on total and drug-resistant HIV incidence of ART initiation timing, frequency of acquired drug resistance, and second-line drug effectiveness (defined as the combination of resistance monitoring, biomedical drug efficacy and adherence). Earlier ART initiation could decrease the number of both total and drug-resistant HIV incidence when second-line drug effectiveness is sufficiently high (greater than 80%), but increase the proportion of new infections that are drug resistant. Thus, resistance may paradoxically appear to be increasing while actually decreasing. © 2017 The Author(s).

  2. Repurposing and Revival of the Drugs: A New Approach to Combat the Drug Resistant Tuberculosis

    Directory of Open Access Journals (Sweden)

    Divakar Sharma

    2017-12-01

    Full Text Available Emergence of drug resistant tuberculosis like multi drug resistant tuberculosis (MDR-TB, extensively drug-resistant tuberculosis (XDR-TB and totally drug resistant tuberculosis (TDR-TB has created a new challenge to fight against these bad bugs of Mycobacterium tuberculosis. Repurposing and revival of the drugs are the new trends/options to combat these worsen situations of tuberculosis in the antibiotics resistance era or in the situation of global emergency. Bactericidal and synergistic effect of repurposed/revived drugs along with the latest drugs bedaquiline and delamanid used in the treatment of MDR-TB, XDR-TB, and TDR-TB might be the choice for future promising combinatorial chemotherapy against these bad bugs.

  3. Drug-resistant tuberculosis: emerging treatment options

    Directory of Open Access Journals (Sweden)

    Adhvaryu MR

    2011-12-01

    Full Text Available Meghna Adhvaryu1, Bhasker Vakharia21Department of Biotechnology, SRK Institute of Computer Education and Applied Sciences, 2R&D, Bhuma Research in Ayurvedic and Herbal Medicine, Surat, Gujarat, IndiaAbstract: Multidrug-resistant tuberculosis has emerged worldwide, with an increasing incidence due to failure of implementation of apparently effective first-line antituberculous therapy as well as primary infection with drug-resistant strains. Failure of current therapy is attributed to a long duration of treatment leading to nonadherence and irregular therapy, lack of patient education about the disease, poverty, irregular supply by care providers, drug–drug interactions in patients coinfected with human immunodeficiency virus (HIV, inadequate regulations causing market overlap and irresponsible drug usage in the private sector, and lack of research, with no addition of new drugs in the last four decades. Present standards of care for the treatment of drug-susceptible tuberculosis, multidrug-resistant tuberculosis, tuberculosis-HIV coinfection, and latent tuberculosis infection are all unsatisfactory. Since 2000, the World Health Organization (WHO has focused on drug development for tuberculosis, as well as research in all relevant aspects to discover new regimens by 2015 and to eliminate tuberculosis as a public health concern by 2050. As a result, some 20 promising compounds from 14 groups of drugs have been discovered. Twelve candidates from eight classes are currently being evaluated in clinical trials. Ongoing research should prioritize identification of novel targets and newer application of existing drugs, discovery of multitargeted drugs from natural compounds, strengthening host factors by immunopotentiation with herbal immunomodulators, as well as protective vaccines before and after exposure, consideration of surgical measures when indicated, development of tools for rapid diagnosis, early identification of resistant strains, and

  4. Mechanisms of first-line antimicrobial resistance in multi-drug and extensively drug resistant strains of Mycobacterium tuberculosis in KwaZulu-Natal, South Africa

    Directory of Open Access Journals (Sweden)

    Navisha Dookie

    2016-10-01

    Full Text Available Abstract Background In South Africa, drug resistant tuberculosis is a major public health crisis in the face of the colossal HIV pandemic. Methods In an attempt to understand the distribution of drug resistance in our setting, we analysed the rpoB, katG, inhA, pncA and embB genes associated with resistance to key drugs used in the treatment of tuberculosis in clinical isolates of Mycobacterium tuberculosis in the KwaZulu-Natal province. Results Classical mutations were detected in the katG, inhA and embB genes associated with resistance to isoniazid and ethambutol. Diverse mutations were recorded in the multidrug resistant (MDR and extensively drug resistant (XDR isolates for the rpoB and pncA gene associated with resistance to rifampicin and pyrazinamide. Conclusions M.tuberculosis strains circulating in our setting display a combination of previously observed mutations, each mediating resistance to a different drug. The MDR and XDR TB isolates analysed in this study displayed classical mutations linked to INH and EMB resistance, whilst diverse mutations were linked to RIF and PZA resistance. The similarity of the XDR strains confirms reports of the clonality of the XDR epidemic. The successful dissemination of the drug resistant strains in the province underscores the need for rapid diagnostics to effectively diagnose drug resistance and guide treatment.

  5. Multidrug resistant to extensively drug resistant tuberculosis: What is ...

    Indian Academy of Sciences (India)

    Prakash

    The modern, ... World Health Organization is based on a four-drug regimen ... Better management and control of tuberculosis specially drug resistant TB by experienced and qualified .... a comprehensive approach including the major DOTS.

  6. Systematic drug screening reveals specific vulnerabilities and co-resistance patterns in endocrine-resistant breast cancer

    International Nuclear Information System (INIS)

    Kangaspeska, Sara; Hultsch, Susanne; Jaiswal, Alok; Edgren, Henrik; Mpindi, John-Patrick; Eldfors, Samuli; Brück, Oscar; Aittokallio, Tero; Kallioniemi, Olli

    2016-01-01

    The estrogen receptor (ER) inhibitor tamoxifen reduces breast cancer mortality by 31 % and has served as the standard treatment for ER-positive breast cancers for decades. However, 50 % of advanced ER-positive cancers display de novo resistance to tamoxifen, and acquired resistance evolves in 40 % of patients who initially respond. Mechanisms underlying resistance development remain poorly understood and new therapeutic opportunities are urgently needed. Here, we report the generation and characterization of seven tamoxifen-resistant breast cancer cell lines from four parental strains. Using high throughput drug sensitivity and resistance testing (DSRT) with 279 approved and investigational oncology drugs, exome-sequencing and network analysis, we for the first time, systematically determine the drug response profiles specific to tamoxifen resistance. We discovered emerging vulnerabilities towards specific drugs, such as ERK1/2-, proteasome- and BCL-family inhibitors as the cells became tamoxifen-resistant. Co-resistance to other drugs such as the survivin inhibitor YM155 and the chemotherapeutic agent paclitaxel also occurred. This study indicates that multiple molecular mechanisms dictate endocrine resistance, resulting in unexpected vulnerabilities to initially ineffective drugs, as well as in emerging co-resistances. Thus, combatting drug-resistant tumors will require patient-tailored strategies in order to identify new drug vulnerabilities, and to understand the associated co-resistance patterns. The online version of this article (doi:10.1186/s12885-016-2452-5) contains supplementary material, which is available to authorized users

  7. Computational Studies of Drug Resistance

    DEFF Research Database (Denmark)

    da Silva Martins, João Miguel

    Drug resistance has been an increasing problem in patient treatment and drug development. Starting in the last century and becoming a major worry in the medical and scienti c communities in the early part of the current millennium, major research must be performed to address the issues of viral...... is of the utmost importance in developing better and less resistance-inducing drugs. A drug's in uence can be characterized in many diff erent ways, however, and the approaches I take in this work re ect those same different in uences. This is what I try to achieve in this work, through seemingly unrelated...... approaches that come together in the study of drug's and their in uence on proteins and vice-versa. In part I, I aim to understand through combined theoretical ensemble analysis and free energy calculations the e ects mutations have over the binding anity and function of the M2 proton channel. This research...

  8. Drug resistance patterns in pulmonary tuberculosis

    International Nuclear Information System (INIS)

    Khoharo, H.K.; Shaikh, I.A.

    2011-01-01

    Objective: To determine the resistance patterns of mycobacterium tuberculosis (MTB) isolates among category I and II patients of pulmonary tuberculosis. Methods: This cross sectional study was conducted at the Department of Medicine, Liaquat University of Medical and Health Sciences Jamshoro, from November 2008 to September 2009. Patients were divided into category I and II. The sputa were collected, stained with Ziehl-Nielsen (Z-N) staining and ultimately inoculated on Lowenstein-Jensen (L-J) media for six weeks. Out of 890 pulmonary tuberculosis (PTB) patients, the growth was obtained in 285 cases. The Drug sensitivity testing (DST) for Isoniazid (INH), Rifampicin (RIF), Ethambutol (EMB) Pyrazinamide (PZA) and Streptomycin (SM) were performed. The data was analyzed on SPSS 10.0. A p-value of <0.05 was taken as significant. Result: Out of 285 cases, 176 (61.75%) were male and 109 (38.24%) female. The mean age was 37 +- 19.90 years. The DST showed drug sensitive and drug resistant isolates in 80 (28.05%) and 205 (71.92%) cases respectively (p=0.001). The drug resistant tuberculosis (DR-TB) rates for individual drugs; INH, RIF, EMB, PZA and SM were 51,22%, 15.4%, 13.33%, 9%12, and 3.85% respectively (p=0.03). The MDR-TB isolates were detected in 120 (42.10%) cases, including 5 (5.88%) in category I and 115 (57.50%) in category II patients (p=0.0001). Conclusion: Drug resistant and multidrug resistant tuberculosis was observed mainly in category II patients. However, primary MDR was also observed in category I patients and reflects dissemination of MDR cases within the community. (author)

  9. Rationale and uses of a public HIV drug-resistance database.

    Science.gov (United States)

    Shafer, Robert W

    2006-09-15

    Knowledge regarding the drug resistance of human immunodeficiency virus (HIV) is critical for surveillance of drug resistance, development of antiretroviral drugs, and management of infections with drug-resistant viruses. Such knowledge is derived from studies that correlate genetic variation in the targets of therapy with the antiretroviral treatments received by persons from whom the variant was obtained (genotype-treatment), with drug-susceptibility data on genetic variants (genotype-phenotype), and with virological and clinical response to a new treatment regimen (genotype-outcome). An HIV drug-resistance database is required to represent, store, and analyze the diverse forms of data underlying our knowledge of drug resistance and to make these data available to the broad community of researchers studying drug resistance in HIV and clinicians using HIV drug-resistance tests. Such genotype-treatment, genotype-phenotype, and genotype-outcome correlations are contained in the Stanford HIV RT and Protease Sequence Database and have specific usefulness.

  10. HIV Genetic Diversity and Drug Resistance

    Science.gov (United States)

    Santos, André F.; Soares, Marcelo A.

    2010-01-01

    Most of the current knowledge on antiretroviral (ARV) drug development and resistance is based on the study of subtype B of HIV-1, which only accounts for 10% of the worldwide HIV infections. Cumulative evidence has emerged that different HIV types, groups and subtypes harbor distinct biological properties, including the response and susceptibility to ARV. Recent laboratory and clinical data highlighting such disparities are summarized in this review. Variations in drug susceptibility, in the emergence and selection of specific drug resistance mutations, in viral replicative capacity and in the dynamics of resistance acquisition under ARV selective pressure are discussed. Clinical responses to ARV therapy and associated confounding factors are also analyzed in the context of infections by distinct HIV genetic variants. PMID:21994646

  11. Spread of anti-malarial drug resistance: Mathematical model with implications for ACT drug policies

    Directory of Open Access Journals (Sweden)

    Dondorp Arjen M

    2008-11-01

    Full Text Available Abstract Background Most malaria-endemic countries are implementing a change in anti-malarial drug policy to artemisinin-based combination therapy (ACT. The impact of different drug choices and implementation strategies is uncertain. Data from many epidemiological studies in different levels of malaria endemicity and in areas with the highest prevalence of drug resistance like borders of Thailand are certainly valuable. Formulating an appropriate dynamic data-driven model is a powerful predictive tool for exploring the impact of these strategies quantitatively. Methods A comprehensive model was constructed incorporating important epidemiological and biological factors of human, mosquito, parasite and treatment. The iterative process of developing the model, identifying data needed, and parameterization has been taken to strongly link the model to the empirical evidence. The model provides quantitative measures of outcomes, such as malaria prevalence/incidence and treatment failure, and illustrates the spread of resistance in low and high transmission settings. The model was used to evaluate different anti-malarial policy options focusing on ACT deployment. Results The model predicts robustly that in low transmission settings drug resistance spreads faster than in high transmission settings, and treatment failure is the main force driving the spread of drug resistance. In low transmission settings, ACT slows the spread of drug resistance to a partner drug, especially at high coverage rates. This effect decreases exponentially with increasing delay in deploying the ACT and decreasing rates of coverage. In the high transmission settings, however, drug resistance is driven by the proportion of the human population with a residual drug level, which gives resistant parasites some survival advantage. The spread of drug resistance could be slowed down by controlling presumptive drug use and avoiding the use of combination therapies containing drugs with

  12. Antimicrobial Drugs in Fighting against Antimicrobial Resistance

    OpenAIRE

    Cheng, Guyue; Dai, Menghong; Ahmed, Saeed; Hao, Haihong; Wang, Xu; Yuan, Zonghui

    2016-01-01

    The outbreak of antimicrobial resistance, together with the lack of newly developed antimicrobial drugs, represents an alarming signal for both human and animal healthcare worldwide. Selection of rational dosage regimens for traditional antimicrobial drugs based on pharmacokinetic/pharmacodynamic principles as well as development of novel antimicrobials targeting new bacterial targets or resistance mechanisms are key approaches in tackling AMR. In addition to the cellular level resistance (i....

  13. ZK DrugResist 2.0: A TextMiner to extract semantic relations of drug resistance from PubMed.

    Science.gov (United States)

    Khalid, Zoya; Sezerman, Osman Ugur

    2017-05-01

    Extracting useful knowledge from an unstructured textual data is a challenging task for biologists, since biomedical literature is growing exponentially on a daily basis. Building an automated method for such tasks is gaining much attention of researchers. ZK DrugResist is an online tool that automatically extracts mutations and expression changes associated with drug resistance from PubMed. In this study we have extended our tool to include semantic relations extracted from biomedical text covering drug resistance and established a server including both of these features. Our system was tested for three relations, Resistance (R), Intermediate (I) and Susceptible (S) by applying hybrid feature set. From the last few decades the focus has changed to hybrid approaches as it provides better results. In our case this approach combines rule-based methods with machine learning techniques. The results showed 97.67% accuracy with 96% precision, recall and F-measure. The results have outperformed the previously existing relation extraction systems thus can facilitate computational analysis of drug resistance against complex diseases and further can be implemented on other areas of biomedicine. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Efflux Pump-mediated Drug Resistance in Burkholderia

    Directory of Open Access Journals (Sweden)

    Nicole L Podnecky

    2015-04-01

    Full Text Available Several members of the genus Burkholderia are prominent pathogens. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. Virtually all Burkholderia species are also resistant to polymyxin, prohibiting use of drugs like colistin that are available for treatment of infections caused by most other drug resistant Gram-negative bacteria. Despite clinical significance and antibiotic resistance of Burkholderia species, characterization of efflux pumps lags behind other non-enteric Gram-negative pathogens such as Acinetobacter baumannii and Pseudomonas aeruginosa. Although efflux pumps have been described in several Burkholderia species, they have been best studied in B. cenocepacia and B. pseudomallei. As in other non-enteric Gram-negatives, efflux pumps of the resistance nodulation cell division (RND family are the clinically most significant efflux systems in these two species. Several efflux pumps were described in B. cenocepacia, which when expressed confer resistance to clinically significant antibiotics, including aminoglycosides, chloramphenicol, fluoroquinolones, and tetracyclines. Three RND pumps have been characterized in B. pseudomallei, two of which confer either intrinsic or acquired resistance to aminoglycosides, macrolides, chloramphenicol, fluoroquinolones, tetracyclines, trimethoprim, and in some instances trimethoprim+sulfamethoxazole. Several strains of the host-adapted B. mallei, a clone of B. pseudomallei, lack AmrAB-OprA and are therefore aminoglycoside and macrolide susceptible. B. thailandensis is closely related to B. pseudomallei, but non-pathogenic to humans. Its pump repertoire and ensuing drug resistance profile parallels that of B. pseudomallei. An efflux pump in B. vietnamiensis plays a significant role in acquired aminoglycoside resistance. Summarily, efflux pumps are significant players in Burkholderia drug resistance.

  15. Drug Resistance of Mycobacterium tuberculosis Complex among ...

    African Journals Online (AJOL)

    BACKGROUND: In Burkina Faso, there is no recent data about the level of drug resistance in Mycobacterium tuberculosis strains among newly diagnosed tuberculosis cases. OBJECTIVE: To provide an update of the primary drug resistance of mycobacterium tuberculosis among patients in Burkina faso. METHODS: ...

  16. Enhanced transmission of drug-resistant parasites to mosquitoes following drug treatment in rodent malaria.

    Directory of Open Access Journals (Sweden)

    Andrew S Bell

    Full Text Available The evolution of drug resistant Plasmodium parasites is a major challenge to effective malaria control. In theory, competitive interactions between sensitive parasites and resistant parasites within infections are a major determinant of the rate at which parasite evolution undermines drug efficacy. Competitive suppression of resistant parasites in untreated hosts slows the spread of resistance; competitive release following treatment enhances it. Here we report that for the murine model Plasmodium chabaudi, co-infection with drug-sensitive parasites can prevent the transmission of initially rare resistant parasites to mosquitoes. Removal of drug-sensitive parasites following chemotherapy enabled resistant parasites to transmit to mosquitoes as successfully as sensitive parasites in the absence of treatment. We also show that the genetic composition of gametocyte populations in host venous blood accurately reflects the genetic composition of gametocytes taken up by mosquitoes. Our data demonstrate that, at least for this mouse model, aggressive chemotherapy leads to very effective transmission of highly resistant parasites that are present in an infection, the very parasites which undermine the long term efficacy of front-line drugs.

  17. Antimicrobial (Drug) Resistance Prevention

    Science.gov (United States)

    ... June 6, 2018 HIV Vaccine Elicits Antibodies in Animals that Neutralize Dozens of HIV Strains , June 4, 2018 ... Antimicrobial (Drug) Resistance > Understanding share with facebook share with twitter share ...

  18. Disinfectant-susceptibility of multi-drug-resistant Mycobacterium tuberculosis isolated in Japan

    Directory of Open Access Journals (Sweden)

    Noriko Shinoda

    2016-02-01

    Full Text Available Abstract Background Multi-drug-resistant Mycobacterium tuberculosis has been an important problem in public health around the world. However, limited information about disinfectant-susceptibility of multi-drug-resistant strain of M. tuberculosis was available. Findings We studied susceptibility of several Japanese isolates of multi-drug-resistant M. tuberculosis against disinfectants, which are commonly used in clinical and research laboratories. We selected a laboratory reference strain (H37Rv and eight Japanese isolates, containing five drug-susceptible strains and three multi-drug-resistant strains, and determined profiles of susceptibility against eight disinfectants. The M. tuberculosis strains were distinguished into two groups by the susceptibility profile. There was no relationship between multi-drug-resistance and disinfectant-susceptibility in the M. tuberculosis strains. Cresol soap and oxydol were effective against all strains we tested, regardless of drug resistance. Conclusions Disinfectant-resistance is independent from multi-drug-resistance in M. tuberculosis. Cresol soap and oxydol were effective against all strains we tested, regardless of drug resistance.

  19. Functional miRNAs in breast cancer drug resistance

    Directory of Open Access Journals (Sweden)

    Hu WZ

    2018-03-01

    Full Text Available Weizi Hu,1–3,* Chunli Tan,1–3,* Yunjie He,4 Guangqin Zhang,2 Yong Xu,3,5 Jinhai Tang1 1Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 2School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 3Nanjing Medical University Affiliated Cancer Hospital, 4The First Clinical School of Nanjing Medical University, 5Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, People’s Republic of China *These authors contributed equally to this work Abstract: Owing to improved early surveillance and advanced therapy strategies, the current death rate due to breast cancer has decreased; nevertheless, drug resistance and relapse remain obstacles on the path to successful systematic treatment. Multiple mechanisms responsible for drug resistance have been elucidated, and miRNAs seem to play a major part in almost every aspect of cancer progression, including tumorigenesis, metastasis, and drug resistance. In recent years, exosomes have emerged as novel modes of intercellular signaling vehicles, initiating cell–cell communication through their fusion with target cell membranes, delivering functional molecules including miRNAs and proteins. This review particularly focuses on enumerating functional miRNAs involved in breast cancer drug resistance as well as their targets and related mechanisms. Subsequently, we discuss the prospects and challenges of miRNA function in drug resistance and highlight valuable approaches for the investigation of the role of exosomal miRNAs in breast cancer progression and drug resistance. Keywords: microRNA, exosome, breast cancer, drug resistance

  20. Mining adverse drug reactions from online healthcare forums using hidden Markov model.

    Science.gov (United States)

    Sampathkumar, Hariprasad; Chen, Xue-wen; Luo, Bo

    2014-10-23

    Adverse Drug Reactions are one of the leading causes of injury or death among patients undergoing medical treatments. Not all Adverse Drug Reactions are identified before a drug is made available in the market. Current post-marketing drug surveillance methods, which are based purely on voluntary spontaneous reports, are unable to provide the early indications necessary to prevent the occurrence of such injuries or fatalities. The objective of this research is to extract reports of adverse drug side-effects from messages in online healthcare forums and use them as early indicators to assist in post-marketing drug surveillance. We treat the task of extracting adverse side-effects of drugs from healthcare forum messages as a sequence labeling problem and present a Hidden Markov Model(HMM) based Text Mining system that can be used to classify a message as containing drug side-effect information and then extract the adverse side-effect mentions from it. A manually annotated dataset from http://www.medications.com is used in the training and validation of the HMM based Text Mining system. A 10-fold cross-validation on the manually annotated dataset yielded on average an F-Score of 0.76 from the HMM Classifier, in comparison to 0.575 from the Baseline classifier. Without the Plain Text Filter component as a part of the Text Processing module, the F-Score of the HMM Classifier was reduced to 0.378 on average, while absence of the HTML Filter component was found to have no impact. Reducing the Drug names dictionary size by half, on average reduced the F-Score of the HMM Classifier to 0.359, while a similar reduction to the side-effects dictionary yielded an F-Score of 0.651 on average. Adverse side-effects mined from http://www.medications.com and http://www.steadyhealth.com were found to match the Adverse Drug Reactions on the Drug Package Labels of several drugs. In addition, some novel adverse side-effects, which can be potential Adverse Drug Reactions, were also

  1. Epigenetic modulation of the biophysical properties of drug-resistant cell lipids to restore drug transport and endocytic functions.

    Science.gov (United States)

    Vijayaraghavalu, Sivakumar; Peetla, Chiranjeevi; Lu, Shan; Labhasetwar, Vinod

    2012-09-04

    In our recent studies exploring the biophysical characteristics of resistant cell lipids, and the role they play in drug transport, we demonstrated the difference of drug-resistant breast cancer cells from drug-sensitive cells in lipid composition and biophysical properties, suggesting that cancer cells acquire a drug-resistant phenotype through the alteration of lipid synthesis to inhibit intracellular drug transport to protect from cytotoxic effect. In cancer cells, epigenetic changes (e.g., DNA hypermethylation) are essential to maintain this drug-resistant phenotype. Thus, altered lipid synthesis may be linked to epigenetic mechanisms of drug resistance. We hypothesize that reversing DNA hypermethylation in resistant cells with an epigenetic drug could alter lipid synthesis, changing the cell membrane's biophysical properties to facilitate drug delivery to overcome drug resistance. Herein we show that treating drug-resistant breast cancer cells (MCF-7/ADR) with the epigenetic drug 5-aza-2'-deoxycytidine (decitabine) significantly alters cell lipid composition and biophysical properties, causing the resistant cells to acquire biophysical characteristics similar to those of sensitive cell (MCF-7) lipids. Following decitabine treatment, resistant cells demonstrated increased sphingomyelinase activity, resulting in a decreased sphingomyelin level that influenced lipid domain structures, increased membrane fluidity, and reduced P-glycoprotein expression. Changes in the biophysical characteristics of resistant cell lipids facilitated doxorubicin transport and restored endocytic function for drug delivery with a lipid-encapsulated form of doxorubicin, enhancing the drug efficacy. In conclusion, we have established a new mechanism for efficacy of an epigenetic drug, mediated through changes in lipid composition and biophysical properties, in reversing cancer drug resistance.

  2. Emergence of Extensively Drug Resistant Tuberculosis

    Centers for Disease Control (CDC) Podcasts

    2007-03-01

    Extensively drug-resistant tuberculosis (XDR TB) outbreaks have been reported in South Africa, and strains have been identified on 6 continents. Dr. Peter Cegielski, team leader for drug-resistant TB with the Division of Tuberculosis Elimination at CDC, comments on a multinational team's report on this emerging global public health threat.  Created: 3/1/2007 by Emerging Infectious Diseases.   Date Released: 3/26/2007.

  3. Multi drug resistance tuberculosis: pattern seen in last 13 years

    International Nuclear Information System (INIS)

    Iqbal, R.; Shabbir, I.; Munir, K.; Tabassum, M.N.; Khan, S.U.; Khan, M.Z.U.

    2011-01-01

    Background: Drug resistance in tuberculosis is a serious problem throughout the world especially, after the emergence of multi drug resistant TB strains. Objectives: To estimate drug resistance in TB patients and compare it with previous studies to see the changing trends. Materials and Methods: The PMRC Research Centre receives sputum samples from all the leading hospitals of Lahore. This retrospective analysis was done from 1996 to 2008 on the multi drug resistant TB strains that were seen during these years. Five first lines anti tuberculosis drugs were tested on Lowenstein Jensen medium using standard proportion method. Results: A total of 2661 confirmed isolates of Mycobacterium tuberculosis were seen over the past 13 years. Of the total, 2182 were pulmonary and 479 were extra pulmonary specimens. The patients comprised of those with and without history of previous treatment. These specimens were subjected to drug susceptibility testing. Almost half of the patient had some resistance; multiple drug resistance was seen in 12.3% and 23.0% cases without and with history of previous treatment respectively. Overall resistance to rifampicin was 26.4%, isoniazid 24.1% streptomycin 21.6% ethambutol 13.4% and pyrazinamide 28.4% respectively. Statistically significant difference was seen between primary and acquired resistance. When compared with the reports from previous studies from the same area, there was a trend of gradual increase of drug resistance. Conclusions Resistance to anti tuberculosis drugs is high. Policy message. TB Control Program should start 'DOTS Plus' schemes for which drug susceptibility testing facilities should be available for correctly managing the patients. (author)

  4. Multi drug resistance tuberculosis: pattern seen in last 13 years

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, R; Shabbir, I; Munir, K [King Edward Medical University Hospital, Lahore (Pakistan). Dept. of Research Centre; Tabassum, M N; Khan, S U; Khan, M Z.U. [King Edward Medical University Hospital, Lahore (Pakistan). Dept. of Chest Medicine

    2011-01-15

    Background: Drug resistance in tuberculosis is a serious problem throughout the world especially, after the emergence of multi drug resistant TB strains. Objectives: To estimate drug resistance in TB patients and compare it with previous studies to see the changing trends. Materials and Methods: The PMRC Research Centre receives sputum samples from all the leading hospitals of Lahore. This retrospective analysis was done from 1996 to 2008 on the multi drug resistant TB strains that were seen during these years. Five first lines anti tuberculosis drugs were tested on Lowenstein Jensen medium using standard proportion method. Results: A total of 2661 confirmed isolates of Mycobacterium tuberculosis were seen over the past 13 years. Of the total, 2182 were pulmonary and 479 were extra pulmonary specimens. The patients comprised of those with and without history of previous treatment. These specimens were subjected to drug susceptibility testing. Almost half of the patient had some resistance; multiple drug resistance was seen in 12.3% and 23.0% cases without and with history of previous treatment respectively. Overall resistance to rifampicin was 26.4%, isoniazid 24.1% streptomycin 21.6% ethambutol 13.4% and pyrazinamide 28.4% respectively. Statistically significant difference was seen between primary and acquired resistance. When compared with the reports from previous studies from the same area, there was a trend of gradual increase of drug resistance. Conclusions Resistance to anti tuberculosis drugs is high. Policy message. TB Control Program should start 'DOTS Plus' schemes for which drug susceptibility testing facilities should be available for correctly managing the patients. (author)

  5. Drug resistance in the sexually transmitted protozoan Trichomonas vaginalis

    Institute of Scientific and Technical Information of China (English)

    REBECCA L DUNNE; LINDA A DUNN; PETER UPCROFT; PETER J O'DONOGHUE; JACQUELINE A UPCROFT

    2003-01-01

    Trichomoniasis is the most common, sexually transmitted infection. It is caused by the flagellated protozoan parasite Trichomonas vaginalis. Symptoms include vaginitis and infections have been associated with preterm delivery, low birth weight and increased infant mortality, as well as predisposing to HIV/AIDS and cervical cancer. Trichomoniasis has the highest prevalence and incidence of any sexually transmitted infection. The 5-nitroimidazole drugs, of which metronidazole is the most prescribed, are the only approved,effective drugs to treat trichomoniasis. Resistance against metronidazole is frequently reported and crossresistance among the family of 5-nitroimidazole drugs is common, leaving no alternative for treatment, with some cases remaining unresolved. The mechanism of metronidazole resistance in T. vaginalis from treatment failures is not well understood, unlike resistance which is developed in the laboratory under increasing metronidazole pressure. In the latter situation, hydrogenosomal function which is involved in activation of the prodrug, metronidazole, is down-regulated. Reversion to sensitivity is incomplete after removal of drug pressure in the highly resistant parasites while clinically resistant strains, so far analysed, maintain their resistance levels in the absence of drug pressure. Although anaerobic resistance has been regarded as a laboratory induced phenomenon, it clearly has been demonstrated in clinical isolates. Pursuit of both approaches will allow dissection of the underlying mechanisms. Many alternative drugs and treatments have been tested in vivo in cases of refractory trichomoniasis, as well as in vitro with some successes including the broad spectrum anti-parasitic drug nitazoxanide. Drug resistance incidence in T. vaginalis appears to be on the increase and improved surveillance of treatment failures is urged.

  6. Combined antiretroviral and anti- tuberculosis drug resistance ...

    African Journals Online (AJOL)

    these epidemics, many challenges remain.[3] Antiretroviral and anti-TB drug resistance pose considerable threats to the control of these epidemics.[4,5]. The breakdown in HIV/TB control within prisons is another emerging threat.[6,7] We describe one of the first reports of combined antiretroviral and anti-TB drug resistance ...

  7. Mechanisms of Candida biofilm drug resistance

    Science.gov (United States)

    Taff, Heather T; Mitchell, Kaitlin F; Edward, Jessica A; Andes, David R

    2013-01-01

    Candida commonly adheres to implanted medical devices, growing as a resilient biofilm capable of withstanding extraordinarily high antifungal concentrations. As currently available antifungals have minimal activity against biofilms, new drugs to treat these recalcitrant infections are urgently needed. Recent investigations have begun to shed light on the mechanisms behind the profound resistance associated with the biofilm mode of growth. This resistance appears to be multifactorial, involving both mechanisms similar to conventional, planktonic antifungal resistance, such as increased efflux pump activity, as well as mechanisms specific to the biofilm lifestyle. A unique biofilm property is the production of an extracellular matrix. Two components of this material, β-glucan and extracellular DNA, promote biofilm resistance to multiple antifungals. Biofilm formation also engages several stress response pathways that impair the activity of azole drugs. Resistance within a biofilm is often heterogeneous, with the development of a subpopulation of resistant persister cells. In this article we review the molecular mechanisms underlying Candida biofilm antifungal resistance and their relative contributions during various growth phases. PMID:24059922

  8. Streptococcus pneumoniae Drugs Resistance in Acute Rhinosinusitis

    Directory of Open Access Journals (Sweden)

    Chong Jie Hao

    2016-03-01

    Full Text Available Background: Acute rhinosinusitis that usually caused by Streptococcus pneumoniae becomes the reason why patients seek for medical care. Drugs resistance in Streptococcus pneumoniae is increasing worldwide. This study was conducted to determine drugs resistance of Streptococcus pneumonia from acute rhinosinusitis in Dr. Hasan Sadikin General Hospital. Methods: A descriptive laboratory study was conducted in June–October 2014 at the Laboratory of Microbiology Faculty of Medicine Universitas Padjadjaran. The sample was taken using nasopharyngeal swabbing from 100 acute rhinosinusitis patients in Dr. Hasan Sadikin General Hospital and planted on tryptic soy agar containing 5% sheep blood and 5 μg/ml of gentamicin sulphate and then incubated in 5% CO2 incubator at 37°C for 24 hours. The identification of Streptococcus pneumonia was performed by optochin test. The susceptibility test against Streptococcus pneumoniae was done using disk diffusion method.The antibiotic disks were trimethoprim-sulfamethoxazole, oxacillin, levofloxacin, azithromycin, and doxycycline. Results: Out of 100 samples, 8 of them were tested positive for Streptococcus pneumoniae. Three of Streptococcus pneumoniae isolates died with unknown reason after it were stored at -80 .The drugs resistance test showed the resistance of Streptococcus pneumonia to oxacillin, azithromycin and trimethoprim were 6, whereas levofloxacin and doxycycline are 4. Conclusions: Streptococcus pneumonia drugs resistance in acute rhinosinusitis shows the resistance of Streptococcus pneumoniae to oxacillin, azithromycin and trimethoprim are 6, whereas the resistance to levofloxacin and doxycycline are 4.

  9. A Structural View on Medicinal Chemistry Strategies against Drug Resistance.

    Science.gov (United States)

    Agnello, Stefano; Brand, Michael; Chellat, Mathieu F; Gazzola, Silvia; Riedl, Rainer

    2018-05-30

    The natural phenomenon of drug resistance represents a generic impairment that hampers the benefits of drugs in all major clinical indications. Antibacterials and antifungals are affected as well as compounds for the treatment of cancer, viral infections or parasitic diseases. Despite the very diverse set of biological targets and organisms involved in the development of drug resistance, underlying molecular processes have been identified to understand the emergence of resistance and to overcome this detrimental mechanism. Detailed structural information of the root causes for drug resistance is nowadays frequently available to design next generation drugs anticipated to suffer less from resistance. This knowledge-based approach is a prerequisite in the fight against the inevitable occurrence of drug resistance to secure the achievements of medicinal chemistry in the future. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Changing prevalence and resistance patterns in children with drug-resistant tuberculosis in Mumbai.

    Science.gov (United States)

    Shah, Ira; Shah, Forum

    2017-05-01

    The prevalence of drug-resistant (DR) tuberculosis (TB) in children is increasing. Although, in India, multi-drug-resistant (MDR) TB rates have been relatively stable, the number of children with pre-extensively drug-resistant and extensively drug-resistant (XDR) TB is increasing. To determine whether the prevalence of DR TB in children in Mumbai is changing and to study the evolving patterns of resistance. A retrospective study was undertaken in 1311 paediatric patients referred between April 2007 and March 2013 to the Paediatric TB clinic at B. J. Wadia Hospital for Children, Mumbai. Children were defined as having DR TB on the basis of drug susceptibility testing (DST) of Mycobacterium tuberculosis grown on culture of body fluids (in the case of extra pulmonary TB) or from gastric lavage/bronchi-alveolar lavage/sputum in patients with pulmonary TB or from DST of the contacts. The prevalence of DR TB was calculated and the type of DR was evaluated yearly and in the pre-2010 and post-2010 eras. The overall prevalence of DR TB was 86 (6.6%) with an increase from 23 (5.6%) patients pre-2010 to 63 (7%) post-2010 (P = 0.40). Nine (10.4%) patients were diagnosed on the basis of contact with a parent with DR TB. Overall fluoroquinolone resistance increased from 9 (39.1%) pre-2010 to 59 (93.7%) post-2010 (P = 0.0001): moxifloxacin resistance increased from 2 (8.7%) to 29 (46%) (P = 0.0018) and ofloxacin resistance increased from 7 (30.4%) to 30 (47.6%) (P = 0.14). Ethionamide resistance also increased from 6 (26.1%) to 31 (49.2%) (P = 0.04), aminoglycoside resistance was one (4.3%) pre-2010 and 12 (19%) post-2010 (P = 0.17) and resistance remained virtually the same for both amikacin [0 pre-2010 and 6 (9.5%) after 2010] and kanamycin [one (4.3%) pre- and 6 (9.5%) post-2010]. Of the first-line drugs, resistance remained the same for isoniazid [23 (100%) to 61 (96.8%)], rifampicin [22 (95.7%) to 51 (80.9%),P = 0.17], pyrazinamide [15 (65.2%) to

  11. Fitness of Leishmania donovani parasites resistant to drug combinations.

    Directory of Open Access Journals (Sweden)

    Raquel García-Hernández

    2015-04-01

    Full Text Available Drug resistance represents one of the main problems for the use of chemotherapy to treat leishmaniasis. Additionally, it could provide some advantages to Leishmania parasites, such as a higher capacity to survive in stress conditions. In this work, in mixed populations of Leishmania donovani parasites, we have analyzed whether experimentally resistant lines to one or two combined anti-leishmanial drugs better support the stress conditions than a susceptible line expressing luciferase (Luc line. In the absence of stress, none of the Leishmania lines showed growth advantage relative to the other when mixed at a 1:1 parasite ratio. However, when promastigotes from resistant lines and the Luc line were mixed and exposed to different stresses, we observed that the resistant lines are more tolerant of different stress conditions: nutrient starvation and heat shock-pH stress. Further to this, we observed that intracellular amastigotes from resistant lines present a higher capacity to survive inside the macrophages than those of the control line. These results suggest that resistant parasites acquire an overall fitness increase and that resistance to drug combinations presents significant differences in their fitness capacity versus single-drug resistant parasites, particularly in intracellular amastigotes. These results contribute to the assessment of the possible impact of drug resistance on leishmaniasis control programs.

  12. Nanoparticles: Alternatives Against Drug-Resistant Pathogenic Microbes

    Directory of Open Access Journals (Sweden)

    Gudepalya Renukaiah Rudramurthy

    2016-06-01

    Full Text Available Antimicrobial substances may be synthetic, semisynthetic, or of natural origin (i.e., from plants and animals. Antimicrobials are considered “miracle drugs” and can determine if an infected patient/animal recovers or dies. However, the misuse of antimicrobials has led to the development of multi-drug-resistant bacteria, which is one of the greatest challenges for healthcare practitioners and is a significant global threat. The major concern with the development of antimicrobial resistance is the spread of resistant organisms. The replacement of conventional antimicrobials by new technology to counteract antimicrobial resistance is ongoing. Nanotechnology-driven innovations provide hope for patients and practitioners in overcoming the problem of drug resistance. Nanomaterials have tremendous potential in both the medical and veterinary fields. Several nanostructures comprising metallic particles have been developed to counteract microbial pathogens. The effectiveness of nanoparticles (NPs depends on the interaction between the microorganism and the NPs. The development of effective nanomaterials requires in-depth knowledge of the physicochemical properties of NPs and the biological aspects of microorganisms. However, the risks associated with using NPs in healthcare need to be addressed. The present review highlights the antimicrobial effects of various nanomaterials and their potential advantages, drawbacks, or side effects. In addition, this comprehensive information may be useful in the discovery of broad-spectrum antimicrobial drugs for use against multi-drug-resistant microbial pathogens in the near future.

  13. Hidden costs of antiretroviral treatment: the public health efficiency of drug packaging

    Directory of Open Access Journals (Sweden)

    Andreu-Crespo À

    2015-08-01

    Full Text Available Àngels Andreu-Crespo,1,* Josep M Llibre,2,3,* Glòria Cardona-Peitx,1 Ferran Sala-Piñol,1 Bonaventura Clotet,2,4 Xavier Bonafont-Pujol1 1Pharmacy Department, 2HIV Unit and “Lluita contra la SIDA” Foundation, University Hospital Germans Trias i Pujol, Badalona, 3Universitat Autònoma de Barcelona, 4Universitat de Vic-Universitat Central de Catalunya (UVIC-UCC, Vic, Barcelona, Spain *These authors contributed equally to the work Abstract: While the overall percentage of unused antiretroviral medicines returned to the hospital pharmacy is low, their cost is quite high. Adverse events, treatment failure, pharmacokinetic interactions, pregnancy, or treatment simplification are common reasons for unplanned treatment changes. Socially inefficient antiretroviral packages prevent the reuse of drugs returned to the hospital pharmacy. We defined antiretroviral package categories based on the excellence of drug packaging and analyzed the number of pills and costs of drugs returned during a period of 1 year in a hospital-based HIV unit attending to 2,413 treated individuals. A total of 6,090 pills (34% of all returned antiretrovirals – with a cost of 47,139.91€ – would be totally lost, mainly due to being packed up in the lowest efficiency packages. Newer treatments are packaged in low-excellence categories of packages, thus favoring the maintenance of these hidden costs in the near future. Therefore, costs of this low-efficiency drug packaging, where medication packages are started but not completed, in high-cost medications are substantial and should be properly addressed. Any improvement in the packaging by the manufacturer, and favoring the choice of drugs supplied through efficient packages (when efficacy, toxicity, and convenience are similar, should minimize the treatment expenditures paid by national health budgets. Keywords: antiretroviral treatment, cost efficacy, drug packaging, treatment change

  14. Aggressive chemotherapy and the selection of drug resistant pathogens.

    Directory of Open Access Journals (Sweden)

    Silvie Huijben

    2013-09-01

    Full Text Available Drug resistant pathogens are one of the key public health challenges of the 21st century. There is a widespread belief that resistance is best managed by using drugs to rapidly eliminate target pathogens from patients so as to minimize the probability that pathogens acquire resistance de novo. Yet strong drug pressure imposes intense selection in favor of resistance through alleviation of competition with wild-type populations. Aggressive chemotherapy thus generates opposing evolutionary forces which together determine the rate of drug resistance emergence. Identifying treatment regimens which best retard resistance evolution while maximizing health gains and minimizing disease transmission requires empirical analysis of resistance evolution in vivo in conjunction with measures of clinical outcomes and infectiousness. Using rodent malaria in laboratory mice, we found that less aggressive chemotherapeutic regimens substantially reduced the probability of onward transmission of resistance (by >150-fold, without compromising health outcomes. Our experiments suggest that there may be cases where resistance evolution can be managed more effectively with treatment regimens other than those which reduce pathogen burdens as fast as possible.

  15. Risk Factors for Acquisition of Drug Resistance during Multidrug-Resistant Tuberculosis Treatment, Arkhangelsk Oblast, Russia, 2005–2010

    Science.gov (United States)

    Ershova, Julia; Vlasova, Natalia; Nikishova, Elena; Tarasova, Irina; Eliseev, Platon; Maryandyshev, Andrey O.; Shemyakin, Igor G.; Kurbatova, Ekaterina; Cegielski, J. Peter

    2015-01-01

    Acquired resistance to antituberculosis drugs decreases effective treatment options and the likelihood of treatment success. We identified risk factors for acquisition of drug resistance during treatment for multidrug-resistant tuberculosis (MDR TB) and evaluated the effect on treatment outcomes. Data were collected prospectively from adults from Arkhangelsk Oblast, Russia, who had pulmonary MDR TB during 2005–2008. Acquisition of resistance to capreomycin and of extensively drug-resistant TB were more likely among patients who received 3 effective drugs (9.4% vs. 0% and 8.6% vs. 0.8%, respectively). Poor outcomes were more likely among patients with acquired capreomycin resistance (100% vs. 25.9%), acquired ofloxacin resistance (83.6% vs. 22.7%), or acquired extensive drug resistance (100% vs. 24.4%). To prevent acquired drug resistance and poor outcomes, baseline susceptibility to first- and second-line drugs should be determined quickly, and treatment should be adjusted to contain >3 effective drugs. PMID:25988954

  16. Mathematical modeling and computational prediction of cancer drug resistance.

    Science.gov (United States)

    Sun, Xiaoqiang; Hu, Bin

    2017-06-23

    Diverse forms of resistance to anticancer drugs can lead to the failure of chemotherapy. Drug resistance is one of the most intractable issues for successfully treating cancer in current clinical practice. Effective clinical approaches that could counter drug resistance by restoring the sensitivity of tumors to the targeted agents are urgently needed. As numerous experimental results on resistance mechanisms have been obtained and a mass of high-throughput data has been accumulated, mathematical modeling and computational predictions using systematic and quantitative approaches have become increasingly important, as they can potentially provide deeper insights into resistance mechanisms, generate novel hypotheses or suggest promising treatment strategies for future testing. In this review, we first briefly summarize the current progress of experimentally revealed resistance mechanisms of targeted therapy, including genetic mechanisms, epigenetic mechanisms, posttranslational mechanisms, cellular mechanisms, microenvironmental mechanisms and pharmacokinetic mechanisms. Subsequently, we list several currently available databases and Web-based tools related to drug sensitivity and resistance. Then, we focus primarily on introducing some state-of-the-art computational methods used in drug resistance studies, including mechanism-based mathematical modeling approaches (e.g. molecular dynamics simulation, kinetic model of molecular networks, ordinary differential equation model of cellular dynamics, stochastic model, partial differential equation model, agent-based model, pharmacokinetic-pharmacodynamic model, etc.) and data-driven prediction methods (e.g. omics data-based conventional screening approach for node biomarkers, static network approach for edge biomarkers and module biomarkers, dynamic network approach for dynamic network biomarkers and dynamic module network biomarkers, etc.). Finally, we discuss several further questions and future directions for the use of

  17. HIV resistance testing and detected drug resistance in Europe

    DEFF Research Database (Denmark)

    Schultze, Anna; Phillips, Andrew N; Paredes, Roger

    2015-01-01

    to Southern Europe. CONCLUSIONS: Despite a concurrent decline in virological failure and testing, drug resistance was commonly detected. This suggests a selective approach to resistance testing. The regional differences identified indicate that policy aiming to minimize the emergence of resistance......OBJECTIVES: To describe regional differences and trends in resistance testing among individuals experiencing virological failure and the prevalence of detected resistance among those individuals who had a genotypic resistance test done following virological failure. DESIGN: Multinational cohort...... study. METHODS: Individuals in EuroSIDA with virological failure (>1 RNA measurement >500 on ART after >6 months on ART) after 1997 were included. Adjusted odds ratios (aORs) for resistance testing following virological failure and aORs for the detection of resistance among those who had a test were...

  18. Molecular chess? Hallmarks of anti-cancer drug resistance.

    Science.gov (United States)

    Cree, Ian A; Charlton, Peter

    2017-01-05

    The development of resistance is a problem shared by both classical chemotherapy and targeted therapy. Patients may respond well at first, but relapse is inevitable for many cancer patients, despite many improvements in drugs and their use over the last 40 years. Resistance to anti-cancer drugs can be acquired by several mechanisms within neoplastic cells, defined as (1) alteration of drug targets, (2) expression of drug pumps, (3) expression of detoxification mechanisms, (4) reduced susceptibility to apoptosis, (5) increased ability to repair DNA damage, and (6) altered proliferation. It is clear, however, that changes in stroma and tumour microenvironment, and local immunity can also contribute to the development of resistance. Cancer cells can and do use several of these mechanisms at one time, and there is considerable heterogeneity between tumours, necessitating an individualised approach to cancer treatment. As tumours are heterogeneous, positive selection of a drug-resistant population could help drive resistance, although acquired resistance cannot simply be viewed as overgrowth of a resistant cancer cell population. The development of such resistance mechanisms can be predicted from pre-existing genomic and proteomic profiles, and there are increasingly sophisticated methods to measure and then tackle these mechanisms in patients. The oncologist is now required to be at least one step ahead of the cancer, a process that can be likened to 'molecular chess'. Thus, as well as an increasing role for predictive biomarkers to clinically stratify patients, it is becoming clear that personalised strategies are required to obtain best results.

  19. Malaria medicines to address drug resistance and support malaria elimination efforts.

    Science.gov (United States)

    Achan, Jane; Mwesigwa, Julia; Edwin, Chinagozi Precious; D'alessandro, Umberto

    2018-01-01

    Antimalarial drugs are essential weapons to fight malaria and have been used effectively since the 17 th century. However, P.falciparum resistance has been reported to almost all available antimalarial drugs, including artemisinin derivatives, raising concerns that this could jeopardize malaria elimination. Areas covered: In this article, we present a historical perspective of antimalarial drug resistance, review current evidence of resistance to available antimalarial drugs and discuss possible mitigating strategies to address this challenge. Expert commentary: The historical approach to drug resistance has been to change the national treatment policy to an alternative treatment. However, alternatives to artemisinin-based combination treatment are currently extremely limited. Innovative approaches utilizing available schizonticidal drugs such as triple combination therapies or multiple first line treatments could delay the emergence and spread of drug resistance. Transmission blocking drugs like primaquine may play a key role if given to a substantial proportion of malaria infected persons. Deploying antimalarial medicines in mass drug administration or mass screening and treatment campaigns could also contribute to containment efforts by eliminating resistant parasites in some settings. Ultimately, response to drug resistance should also include further investment in the development of new antimalarial drugs.

  20. Adaptation and evolution of drug-resistant Mycobacterium tuberculosis

    NARCIS (Netherlands)

    Bergval, I.L.

    2013-01-01

    Many studies have been conducted on drug resistance and the evolution of Mycobacterium tuberculosis. Notwithstanding, many molecular mechanisms facilitating the emergence, adaptation and spread of drug-resistant tuberculosis have yet to be discovered. This thesis reports studies of the adaptive

  1. Drug resistance following irradiation of RIF-1 tumors: Influence of the interval between irradiation and drug treatment

    International Nuclear Information System (INIS)

    Hopwood, L.E.; Davies, B.M.; Moulder, J.E.

    1990-01-01

    RIF-1 tumors contain a small number of cells (1 to 100 per 10(6) cells) that are resistant to 5-fluorouracil, methotrexate, or adriamycin. The frequency of drug-resistant cells among individual untreated tumors is highly variable. Radiation, delivered in vivo at doses of 3 to 12 Gy, increases the frequency of methotrexate- and 5-fluorouracil-resistant cells, but not the frequency of adriamycin-resistant cells. The magnitude of induction of 5-fluorouracil and methotrexate resistance shows a complex dependence on the radiation dose and on the interval between irradiation and assessment of drug resistance. For a dose of 3 Gy, induced 5-fluorouracil and methotrexate resistance is seen only after an interval of 5 to 7 days, whereas for a dose of 12 Gy, high levels of induced resistance are observed 1 to 3 days after irradiation. The maximum absolute risk for induction of resistance is 4 per 10(4) cells per Gy for methotrexate, and 3 per 10(6) cells per Gy for 5-fluorouracil. These results indicate that tumor hypoxia may play a role in the increased levels of drug resistance seen after irradiation, and that both genetic and environmental factors may influence radiation-induction of drug resistance. These studies provide essential data for models of the development of tumor drug resistance, and imply that some of the drug resistance seen when chemotherapy follows radiotherapy may be caused by radiation-induced drug resistance

  2. [Tuberculosis and drug-resistance tuberculosis in prisoners. Colombia, 2010-2012].

    Science.gov (United States)

    Gómez, Ingrid T; Llerena, Claudia R; Zabaleta, Angie P

    2015-01-01

    To characterize tuberculosis drug-resistance using anti-tuberculosis drug-sensitivity tests in Colombian prisoners. Descriptive-retrospective analyses were performed on cases of tuberculosis in prisoners. Samples were evaluated by the National Reference Laboratory. Conditions like gender, TB/VIH co-infection and drug-resistance were evaluated. Anti-tuberculosis drug-sensitivity tests were carried out on 72 prisoners. Results showed a distribution of 90.7 % of cases in males and 9.3 % of cases in females. 12 % of cases were TB/VIH co-infections, 94 % of the cases had not received any anti-tuberculosis treatment before, six isolates were drug-resistant corresponding to 8.8 % of total cases, and two cases were multi drug-resistant representing 1.3 % of the cases. Of the drug-resistant cases, 83.3 % were TB/VIH co-infected. Previously treated cases corresponded to 5.6 % of the total cases analyzed. One case with TB/VIH co-infection and rifampicin resistance was observed, representing 1.3 % of the total cases. The government must create a clear policy for prisoners in Colombia, because a high rate of disease in prisoners was observed. In addition, the results showed an association between drug-resistance and TB/VIH co-infection. Overcrowding and low quality of life in penitentiaries could become an important public health problem.

  3. Rapid detection of drug resistance and mutational patterns of extensively drug-resistant strains by a novel GenoType® MTBDRsl assay

    Directory of Open Access Journals (Sweden)

    A K Singh

    2013-01-01

    Full Text Available Background: The emergence of extensively drug-resistant tuberculosis (XDR-TB is a major concern in the India. The burden of XDR-TB is increasing due to inadequate monitoring, lack of proper diagnosis, and treatment. The GenoType ® Mycobacterium tuberculosis drug resistance second line (MTBDRsl assay is a novel line probe assay used for the rapid detection of mutational patterns conferring resistance to XDR-TB. Aim: The aim of this study was to study the rapid detection of drug resistance and mutational patterns of the XDR-TB by a novel GenoType ® MTBDRsl assay. Materials and Methods: We evaluated 98 multidrug-resistant (MDR M. tuberculosis isolates for second line drugs susceptibility testing by 1% proportion method (BacT/ALERT 3D system and GenoType ® MTBDRsl assay for rapid detection of conferring drug resistance to XDR-TB. Results: A total of seven (17.4% were identified as XDR-TB by using standard phenotypic method. The concordance between phenotypic and GenoType ® MTBDRsl assay was 91.7-100% for different antibiotics. The sensitivity and specificity of the MTBDRsl assay were 100% and 100% for aminoglycosides; 100% and 100% for fluoroquinolones; 91.7% and 100% for ethambutol. The most frequent mutations and patterns were gyrA MUT1 (A90V in seven (41.2% and gyrA + WT1-3 + MUT1 in four (23.5%; rrs MUT1 (A1401G in 11 (64.7%, and rrs WT1-2 + MUT1 in eight (47.1%; and embB MUT1B (M306V in 11 (64.7% strains. Conclusions: These data suggest that the GenoType ® MTBDRsl assay is rapid, novel test for detection of resistance to second line anti-tubercular drugs. This assay provides additional information about the frequency and mutational patterns responsible for XDR-TB resistance.

  4. Quantifying the Determinants of Evolutionary Dynamics Leading to Drug Resistance.

    Directory of Open Access Journals (Sweden)

    Guillaume Chevereau

    Full Text Available The emergence of drug resistant pathogens is a serious public health problem. It is a long-standing goal to predict rates of resistance evolution and design optimal treatment strategies accordingly. To this end, it is crucial to reveal the underlying causes of drug-specific differences in the evolutionary dynamics leading to resistance. However, it remains largely unknown why the rates of resistance evolution via spontaneous mutations and the diversity of mutational paths vary substantially between drugs. Here we comprehensively quantify the distribution of fitness effects (DFE of mutations, a key determinant of evolutionary dynamics, in the presence of eight antibiotics representing the main modes of action. Using precise high-throughput fitness measurements for genome-wide Escherichia coli gene deletion strains, we find that the width of the DFE varies dramatically between antibiotics and, contrary to conventional wisdom, for some drugs the DFE width is lower than in the absence of stress. We show that this previously underappreciated divergence in DFE width among antibiotics is largely caused by their distinct drug-specific dose-response characteristics. Unlike the DFE, the magnitude of the changes in tolerated drug concentration resulting from genome-wide mutations is similar for most drugs but exceptionally small for the antibiotic nitrofurantoin, i.e., mutations generally have considerably smaller resistance effects for nitrofurantoin than for other drugs. A population genetics model predicts that resistance evolution for drugs with this property is severely limited and confined to reproducible mutational paths. We tested this prediction in laboratory evolution experiments using the "morbidostat", a device for evolving bacteria in well-controlled drug environments. Nitrofurantoin resistance indeed evolved extremely slowly via reproducible mutations-an almost paradoxical behavior since this drug causes DNA damage and increases the mutation

  5. Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition.

    Science.gov (United States)

    Morales, Eva; Cots, Francesc; Sala, Maria; Comas, Mercè; Belvis, Francesc; Riu, Marta; Salvadó, Margarita; Grau, Santiago; Horcajada, Juan P; Montero, Maria Milagro; Castells, Xavier

    2012-05-23

    We aimed to assess the hospital economic costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. A retrospective study of all hospital admissions between January 1, 2005, and December 31, 2006 was carried out in a 420-bed, urban, tertiary-care teaching hospital in Barcelona (Spain). All patients with a first positive clinical culture for P. aeruginosa more than 48 h after admission were included. Patient and hospitalization characteristics were collected from hospital and microbiology laboratory computerized records. According to antibiotic susceptibility, isolates were classified as non-resistant, resistant and multi-drug resistant. Cost estimation was based on a full-costing cost accounting system and on the criteria of clinical Activity-Based Costing methods. Multivariate analyses were performed using generalized linear models of log-transformed costs. Cost estimations were available for 402 nosocomial incident P. aeruginosa positive cultures. Their distribution by antibiotic susceptibility pattern was 37.1% non-resistant, 29.6% resistant and 33.3% multi-drug resistant. The total mean economic cost per admission of patients with multi-drug resistant P. aeruginosa strains was higher than that for non-resistant strains (15,265 vs. 4,933 Euros). In multivariate analysis, resistant and multi-drug resistant strains were independently predictive of an increased hospital total cost in compared with non-resistant strains (the incremental increase in total hospital cost was more than 1.37-fold and 1.77-fold that for non-resistant strains, respectively). P. aeruginosa multi-drug resistance independently predicted higher hospital costs with a more than 70% increase per admission compared with non-resistant strains. Prevention of the nosocomial emergence and spread of antimicrobial resistant microorganisms is essential to limit the strong economic impact.

  6. Enhanced Transmission of Drug-Resistant Parasites to Mosquitoes following Drug Treatment in Rodent Malaria

    OpenAIRE

    Bell, Andrew S.; Huijben, Silvie; Paaijmans, Krijn P.; Sim, Derek G.; Chan, Brian H. K.; Nelson, William A.; Read, Andrew F.

    2012-01-01

    The evolution of drug resistant Plasmodium parasites is a major challenge to effective malaria control. In theory, competitive interactions between sensitive parasites and resistant parasites within infections are a major determinant of the rate at which parasite evolution undermines drug efficacy. Competitive suppression of resistant parasites in untreated hosts slows the spread of resistance; competitive release following treatment enhances it. Here we report that for the murine model Plasm...

  7. Developing artemisinin based drug combinations for the treatment of drug resistant falciparum malaria: A review

    Directory of Open Access Journals (Sweden)

    Olliaro P

    2004-01-01

    Full Text Available The emergence and spread of drug resistant malaria represents a considerable challenge to controlling malaria. To date, malaria control has relied heavily on a comparatively small number of chemically related drugs, belonging to either the quinoline or the antifolate groups. Only recently have the artemisinin derivatives been used but mostly in south east Asia. Experience has shown that resistance eventually curtails the life-span of antimalarial drugs. Controlling resistance is key to ensuring that the investment put into developing new antimalarial drugs is not wasted. Current efforts focus on research into new compounds with novel mechanisms of action, and on measures to prevent or delay resistance when drugs are introduced. Drug discovery and development are long, risky and costly ventures. Antimalarial drug development has traditionally been slow but now various private and public institutions are at work to discover and develop new compounds. Today, the antimalarial development pipeline is looking reasonably healthy. Most development relies on the quinoline, antifolate and artemisinin compounds. There is a pressing need to have effective, easy to use, affordable drugs that will last a long time. Drug combinations that have independent modes of action are seen as a way of enhancing efficacy while ensuring mutual protection against resistance. Most research work has focused on the use of artesunate combined with currently used standard drugs, namely, mefloquine, amodiaquine, sulfadoxine/pyrimethamine, and chloroquine. There is clear evidence that combinations improve efficacy without increasing toxicity. However, the absolute cure rates that are achieved by combinations vary widely and depend on the level of resistance of the standard drug. From these studies, further work is underway to produce fixed dose combinations that will be packaged in blister packs. This review will summarise current antimalarial drug developments and outline recent

  8. Influence of multidrug resistance and drug transport proteins on chemotherapy drug metabolism.

    Science.gov (United States)

    Joyce, Helena; McCann, Andrew; Clynes, Martin; Larkin, Annemarie

    2015-05-01

    Chemotherapy involving the use of anticancer drugs remains an important strategy in the overall management of patients with metastatic cancer. Acquisition of multidrug resistance remains a major impediment to successful chemotherapy. Drug transporters in cell membranes and intracellular drug metabolizing enzymes contribute to the resistance phenotype and determine the pharmacokinetics of anticancer drugs in the body. ATP-binding cassette (ABC) transporters mediate the transport of endogenous metabolites and xenobiotics including cytotoxic drugs out of cells. Solute carrier (SLC) transporters mediate the influx of cytotoxic drugs into cells. This review focuses on the substrate interaction of these transporters, on their biology and what role they play together with drug metabolizing enzymes in eliminating therapeutic drugs from cells. The majority of anticancer drugs are substrates for the ABC transporter and SLC transporter families. Together, these proteins have the ability to control the influx and the efflux of structurally unrelated chemotherapeutic drugs, thereby modulating the intracellular drug concentration. These interactions have important clinical implications for chemotherapy because ultimately they determine therapeutic efficacy, disease progression/relapse and the success or failure of patient treatment.

  9. Molecular Genetics of Drug-resistance in Epilepsies

    Directory of Open Access Journals (Sweden)

    Kurupath Radhakrishnan

    2015-06-01

    Full Text Available Nearly one-third of newly diagnosed patients with epilepsy remain unresponsive to antiepileptic drugs (AEDs, etiopathogenesis of which is poorly understood. The genes encoding the proteins that regulate the pharmacokinetics such as P-glycoprotein [ABCBI], major vault protein [MVP gene] and drug metabolizing enzymes [ABCB1, ABCG2, MVP, CYP2C9, CYP2C19, CYP3A4, CYP3A5, EPHX1, UGT1A1, UGT2B7], and pharmacodynamics such as sodium channels [SCN1A, SCN2A] and GABA receptors [GABRA1, GABRA6, GABRB2, GABRG2] of AEDs are under intense investigation to unravel the mysteries of AED-resistance. However, till today, a consistent and reliable result that could help the clinician either to predict drug resistance or to overcome it has not been forthcoming. The discrepant results may be related to variations in the definition of drug-resistance, heterogeneous patient populations, ethnic variations in the frequency distribution of single nucleotide polymorphisms (SNPs and the selection of SNPs. Understanding of these limitations of existing studies, hopefully, will help in designing better studies. Nearly one-third of newly diagnosed patients with epilepsy remain unresponsive toantiepileptic drugs (AEDs, etiopathogenesis of which is poorly understood. The genesencoding the proteins that regulate the pharmacokinetics such as P-glycoprotein[ABCBI], major vault protein [MVP gene] and drug metabolizing enzymes [ABCB1,ABCG2, MVP, CYP2C9, CYP2C19, CYP3A4, CYP3A5, EPHX1, UGT1A1, UGT2B7],and pharmacodynamics such as sodium channels [SCN1A, SCN2A] and GABAreceptors [GABRA1, GABRA6, GABRB2, GABRG2] of AEDs are under intenseinvestigation to unravel the mysteries of AED-resistance. However, till today, aconsistent and reliable result that could help the clinician either to predict drugresistanceor to overcome it has not been forthcoming. The discrepant results may berelated to variations in the definition of drug-resistance, heterogeneous patientpopulations, ethnic

  10. Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition

    Directory of Open Access Journals (Sweden)

    Morales Eva

    2012-05-01

    Full Text Available Abstract Background We aimed to assess the hospital economic costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. Methods A retrospective study of all hospital admissions between January 1, 2005, and December 31, 2006 was carried out in a 420-bed, urban, tertiary-care teaching hospital in Barcelona (Spain. All patients with a first positive clinical culture for P. aeruginosa more than 48 h after admission were included. Patient and hospitalization characteristics were collected from hospital and microbiology laboratory computerized records. According to antibiotic susceptibility, isolates were classified as non-resistant, resistant and multi-drug resistant. Cost estimation was based on a full-costing cost accounting system and on the criteria of clinical Activity-Based Costing methods. Multivariate analyses were performed using generalized linear models of log-transformed costs. Results Cost estimations were available for 402 nosocomial incident P. aeruginosa positive cultures. Their distribution by antibiotic susceptibility pattern was 37.1% non-resistant, 29.6% resistant and 33.3% multi-drug resistant. The total mean economic cost per admission of patients with multi-drug resistant P. aeruginosa strains was higher than that for non-resistant strains (15,265 vs. 4,933 Euros. In multivariate analysis, resistant and multi-drug resistant strains were independently predictive of an increased hospital total cost in compared with non-resistant strains (the incremental increase in total hospital cost was more than 1.37-fold and 1.77-fold that for non-resistant strains, respectively. Conclusions P. aeruginosa multi-drug resistance independently predicted higher hospital costs with a more than 70% increase per admission compared with non-resistant strains. Prevention of the nosocomial emergence and spread of antimicrobial resistant microorganisms is essential to limit the strong economic impact.

  11. GEAR: A database of Genomic Elements Associated with drug Resistance

    Science.gov (United States)

    Wang, Yin-Ying; Chen, Wei-Hua; Xiao, Pei-Pei; Xie, Wen-Bin; Luo, Qibin; Bork, Peer; Zhao, Xing-Ming

    2017-01-01

    Drug resistance is becoming a serious problem that leads to the failure of standard treatments, which is generally developed because of genetic mutations of certain molecules. Here, we present GEAR (A database of Genomic Elements Associated with drug Resistance) that aims to provide comprehensive information about genomic elements (including genes, single-nucleotide polymorphisms and microRNAs) that are responsible for drug resistance. Right now, GEAR contains 1631 associations between 201 human drugs and 758 genes, 106 associations between 29 human drugs and 66 miRNAs, and 44 associations between 17 human drugs and 22 SNPs. These relationships are firstly extracted from primary literature with text mining and then manually curated. The drug resistome deposited in GEAR provides insights into the genetic factors underlying drug resistance. In addition, new indications and potential drug combinations can be identified based on the resistome. The GEAR database can be freely accessed through http://gear.comp-sysbio.org. PMID:28294141

  12. Malaria epidemic and drug resistance, Djibouti.

    Science.gov (United States)

    Rogier, Christophe; Pradines, Bruno; Bogreau, H; Koeck, Jean-Louis; Kamil, Mohamed-Ali; Mercereau-Puijalon, Odile

    2005-02-01

    Analysis of Plasmodium falciparum isolates collected before, during, and after a 1999 malaria epidemic in Djibouti shows that, despite a high prevalence of resistance to chloroquine, the epidemic cannot be attributed to a sudden increase in drug resistance of local parasite populations.

  13. Collateral Resistance and Sensitivity Modulate Evolution of High-Level Resistance to Drug Combination Treatment in Staphylococcus aureus

    DEFF Research Database (Denmark)

    de Evgrafov, Mari Cristina Rodriguez; Gumpert, Heidi; Munck, Christian

    2015-01-01

    As drug-resistant pathogens continue to emerge, combination therapy will increasingly be relied upon to treat infections and to help combat further development of multidrug resistance. At present a dichotomy exists between clinical practice, which favors therapeutically synergistic combinations......, to reflect drug concentrations more likely to be encountered during treatment. We performed a series of adaptive evolution experiments using Staphylococcus aureus. Interestingly, no relationship between drug interaction type and resistance evolution was found as resistance increased significantly beyond wild......-type levels. All drug combinations, irrespective of interaction types, effectively limited resistance evolution compared with monotreatment. Cross-resistance and collateral sensitivity were found to be important factors in the extent of resistance evolution toward a combination. Comparative genomic analyses...

  14. Pan Drug-Resistant Environmental Isolate of Acinetobacter baumannii from Croatia.

    Science.gov (United States)

    Goic-Barisic, Ivana; Seruga Music, Martina; Kovacic, Ana; Tonkic, Marija; Hrenovic, Jasna

    2017-06-01

    Acinetobacter baumannii is an emerging nosocomial pathogen with also emerging resistance to different antibiotics. Multidrug and pan drug-resistant clinical isolates were reported worldwide. Here we report the first evidence of pan drug-resistant environmental isolate of A. baumannii. The isolate was recovered from the effluent of secondary treated municipal wastewater of the City of Zagreb, Croatia. The isolate was resistant to penicillins/β-lactamase inhibitors, carbapenems, fluoroquinolones, aminoglycosides, folate pathway inhibitors, and polymyxins, except intermediately susceptible to minocycline and tigecycline. Intrinsic chromosomally located bla OXA-51-like gene and acquired plasmid-located bla OXA-23-like gene were related to clinical isolates. Pan drug-resistant A. baumannii can occur in natural environments outside of the hospital. Secondary treated municipal wastewater represents a potential epidemiological reservoir of pan drug-resistant A. baumannii and carbapenem resistance gene.

  15. Extensively and Pre-Extensively Drug Resistant Tuberculosis in Clinical Isolates of Multi-Drug Resistant Tuberculosis Using Classical Second Line Drugs (Levofloxacin and Amikacin)

    International Nuclear Information System (INIS)

    Mirza, I. A.; Khan, F. A.; Khan, K. A.; Satti, L.; Ghafoor, T.; Fayyaz, M.

    2015-01-01

    Objective:To find out the frequency of Extensively Drug Resistant (XDR) and pre-XDR tuberculosis in clinical isolates of Multi-Drug Resistant (MDR) Tuberculosis (TB) by determining the susceptibilities against Levofloxacin and Amikacin (classical second line antituberculosis drugs). Study Design: A descriptive cross-sectional study. Place and Duration of Study: Microbiology Department, Armed Forces Institute of Pathology (AFIP), Rawalpindi, from September 2011 to August 2013. Methodology: Amikacin (AK) and Levofloxacin (LEVO) were obtained in chemically pure form from Sigma (Taufkirchen, Germany). The breakpoint concentration used for AK was 1.0 micro g/ml and for LEVO 2.0 micro g/ml. Mycobacterial Growth Indicator Tube (MGIT) 960 system was used to carry out drug susceptibility testing as per recommended protocol. Results: A total of 3 MDR-TB isolates (3 percentage) turned out to be XDR-TB based upon simultaneous resistance to injectable second line antituberculosis drug AK and one of the fluoro-quinolones (LEVO). A total of 24 MDR-TB isolates (24 percentage) were found to be pre-XDR based upon resistance to LEVO alone. Treatment status record of patients with XDR and pre-XDRTB isolates revealed that majority of patients had received fluoroquinolones (FQs) during the course of treatment. Conclusion: XDR-TB has started to emerge in MDR-TB isolates in our set up. The worrying sign is the high frequency of pre-XDR tuberculosis. Urgent steps need to be taken to stem the tide of pre-XDR-TB in our population. It is thus recommended to develop facilities to carry out drug susceptibility testing to monitor the status of pre-XDR and XDR-TB in our population. (author)

  16. Prevalence of drug resistant tuberculosis in Arsi Zone, Ethiopia ...

    African Journals Online (AJOL)

    Background: Wide spread of occurrence of multi-drug resistance tuberculosis is becoming a major challenge to effective tuberculosis control. Thus, it is imperative to monitor the sensitivity of anti-TB drugs regularly. Objective: To determine the prevalence resistance to anti-TB drugs in a well established control program area ...

  17. Molecular detection methods of resistance to antituberculosis drugs in Mycobacterium tuberculosis.

    Science.gov (United States)

    Brossier, F; Sougakoff, W

    2017-09-01

    Molecular methods predict drug resistance several weeks before phenotypic methods and enable rapid implementation of appropriate therapeutic treatment. We aimed to detail the most representative molecular tools used in routine practice for the rapid detection of resistance to antituberculosis drugs among Mycobacterium tuberculosis strains. The molecular diagnosis of resistance to antituberculosis drugs in clinical samples or from in vitro cultures is based on the detection of the most common mutations in the genes involved in the development of resistance in M. tuberculosis strains (encoding either protein targets of antibiotics, or antibiotic activating enzymes) by commercial molecular kits or by sequencing. Three hypotheses could explain the discrepancies between the genotypic results and the phenotypic drug susceptibility testing results: a low percentage of resistant mutants precluding the detection by genotypic methods on the primary culture; a low level of resistance not detected by phenotypic testing; and other resistance mechanisms not yet characterized. Molecular methods have varying sensitivity with regards to detecting antituberculosis drug resistance; that is why phenotypic susceptibility testing methods are mandatory for detecting antituberculosis drug-resistant isolates that have not been detected by molecular methods. The questionable ability of existing phenotypic and genotypic drug susceptibility testing to properly classify strains as susceptible or resistant, and at what level of resistance, was raised for several antituberculosis agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Emergence of fluoroquinolone resistance among drug resistant tuberculosis patients at a tertiary care facility in Karachi, Pakistan.

    Science.gov (United States)

    Zaidi, Syed Mohammad Asad; Haseeb, Abdul; Habib, Shifa Salman; Malik, Amyn; Khowaja, Saira; SaifUllah, Nausheen; Rizvi, Nadeem

    2017-07-25

    Pakistan is classified as one of the high multi-drug resistant tuberculosis (MDR-TB) burden countries. A poorly regulated private sector, over-prescription of antibiotics and self-medication has led to augmented rates of drug-resistance in the country. Pakistan's first national anti-tuberculosis drug resistance survey identified high prevalence of fluoroquinolone resistance among MDR-TB patients. Further institutional evidence of fluoroquinolone drug-resistance can support re-evaluation of treatment regimens as well as invigorate efforts to control antibiotic resistance in the country. In this study, data for drug-susceptibility testing (DST) was retrospectively analyzed for a total of 133 patients receiving MDR-TB treatment at the Chest Department of Jinnah Postgraduate Medical Center, Karachi, Pakistan. Frequency analyses for resistance patterns was carried out and association of fluoroquinolone (ofloxacin) resistance with demographics and past TB treatment category were assessed. Within first-line drugs, resistance to isoniazid was detected in 97.7% of cases, followed by rifampicin (96.9%), pyrazinamide (86.4%), ethambutol (69.2%) and streptomycin (64.6%). Within second-line drugs, ofloxacin resistance was detected in 34.6% of cases. Resistance to ethionamide and amikacin was 2.3% and 1.6%, respectively. Combined resistance of oflaxacin and isoniazid was detected in 33.9% of cases. Age, gender and past TB treatment category were not significantly associated with resistance to ofloxacin. Fluoroquinolone resistance was observed in an alarmingly high proportion of MDR-TB cases. Our results suggest caution in their use for empirical management of MDR-TB cases and recommended treatment regimens for MDR-TB may require re-evaluation. Greater engagement of private providers and stringent pharmacy regulations are urgently required.

  19. Antiretroviral drug resistance in HIV-1 therapy-naive patients in Cuba.

    Science.gov (United States)

    Pérez, Lissette; Kourí, Vivian; Alemán, Yoan; Abrahantes, Yeisel; Correa, Consuelo; Aragonés, Carlos; Martínez, Orlando; Pérez, Jorge; Fonseca, Carlos; Campos, Jorge; Álvarez, Delmis; Schrooten, Yoeri; Dekeersmaeker, Nathalie; Imbrechts, Stijn; Beheydt, Gertjan; Vinken, Lore; Soto, Yudira; Álvarez, Alina; Vandamme, Anne-Mieke; Van Laethem, Kristel

    2013-06-01

    In Cuba, antiretroviral therapy rollout started in 2001 and antiretroviral therapy coverage has reached almost 40% since then. The objectives of this study were therefore to analyze subtype distribution, and level and patterns of drug resistance in therapy-naive HIV-1 patients. Four hundred and one plasma samples were collected from HIV-1 therapy-naive patients in 2003 and in 2007-2011. HIV-1 drug resistance genotyping was performed in the pol gene and drug resistance was interpreted according to the WHO surveillance drug-resistance mutations list, version 2009. Potential impact on first-line therapy response was estimated using genotypic drug resistance interpretation systems HIVdb version 6.2.0 and Rega version 8.0.2. Phylogenetic analysis was performed using Neighbor-Joining. The majority of patients were male (84.5%), men who have sex with men (78.1%) and from Havana City (73.6%). Subtype B was the most prevalent subtype (39.3%), followed by CRF20-23-24_BG (19.5%), CRF19_cpx (18.0%) and CRF18_cpx (10.3%). Overall, 29 patients (7.2%) had evidence of drug resistance, with 4.0% (CI 1.6%-4.8%) in 2003 versus 12.5% (CI 7.2%-14.5%) in 2007-2011. A significant increase in drug resistance was observed in recently HIV-1 diagnosed patients, i.e. 14.8% (CI 8.0%-17.0%) in 2007-2011 versus 3.8% (CI 0.9%-4.7%) in 2003 (OR 3.9, CI 1.5-17.0, p=0.02). The majority of drug resistance was restricted to a single drug class (75.8%), with 55.2% patients displaying nucleoside reverse transcriptase inhibitor (NRTI), 10.3% non-NRTI (NNRTI) and 10.3% protease inhibitor (PI) resistance mutations. Respectively, 20.7% and 3.4% patients carried viruses containing drug resistance mutations against NRTI+NNRTI and NRTI+NNRTI+PI. The first cases of resistance towards other drug classes than NRTI were only detected from 2008 onwards. The most frequent resistance mutations were T215Y/rev (44.8%), M41L (31.0%), M184V (17.2%) and K103N (13.8%). The median genotypic susceptibility score for the

  20. Radiation induction of drug resistance in RIF-1 tumors and tumor cells

    International Nuclear Information System (INIS)

    Hopwood, L.E.; Moulder, J.E.

    1989-01-01

    The RIF-1 tumor cell line contains a small number of cells (1-20 per 10(6) cells) that are resistant to various single antineoplastic drugs, including 5-fluorouracil (5FU), methotrexate (MTX), and adriamycin (ADR). For 5FU the frequency of drug resistance is lower for tumor-derived cells than for cells from cell culture; for MTX the reverse is true, and for ADR there is no difference. In vitro irradiation at 5 Gy significantly increased the frequency of drug-resistant cells for 5FU, MTX, and ADR. In vivo irradiation at 3 Gy significantly increased the frequency of drug-resistant cells for 5FU and MTX, but not for ADR. The absolute risk for in vitro induction of MTX, 5FU, and ADR resistance, and for in vivo induction of 5FU resistance, was 1-3 per 10(6) cells per Gy; but the absolute risk for in vivo induction of MTX resistance was 54 per 10(6) cells per Gy. The frequency of drug-resistant cells among individual untreated tumors was highly variable; among individual irradiated tumors the frequency of drug-resistant cells was significantly less variable. These studies provide supporting data for models of the development of tumor drug resistance, and imply that some of the drug resistance seen when chemotherapy follows radiotherapy may be due to radiation-induced drug resistance

  1. Pattern of secondary acquired drug resistance to antituberculosis drug in Mumbai, India--1991-1995.

    Science.gov (United States)

    Chowgule, R V; Deodhar, L

    1998-01-01

    A retrospective observational study was conducted to find out whether secondary acquired drug resistance to isoniazid and ethambutol is high and to rifamycin and pyrazinamide is low, as is commonly believed in India. There were 2033 patients, whose sputum samples (6099) were reviewed from a specimen registry of the microbiology laboratory for the years 1991 to 1995. Of these, 521 (25.6%) patients [335 males and 186 females; age ranged from 11 to 75 years] had sputum positive culture and sensitivity for acid-fast bacilli (AFB). The drug resistance patterns in our study were: isoniazid (H) 15%, rifamycin (R) 66.8%, pyrazinamide (Z) 72.2%, ethambutol (E) 8.4%, streptomycin (S) 53.6%, cycloserine (C) 39.2% kanamycin (K) 25.1% and ethionamide (Eth) 65.3%. The resistance to streptomycin showed a significant fall over a year while there was a rise in resistance to cycloserine and kanamycin which is significant. The rate of secondary acquired resistance of isoniazid and ethambutol was low, and the rate of secondary acquired resistance to rifamycin and pyrazinamide was high, which is contarary to the common belief regarding these drugs in India. This implies that isoniazid is still a valuable drug in the treatment of multidrug resistance in India.

  2. Extensively Drug-Resistant TB

    Centers for Disease Control (CDC) Podcasts

    2016-12-16

    Dr. Charlotte Kvasnovsky, a surgery resident and Ph.D. candidate in biostatistics, discusses various types of drug resistance in TB patients in South Africa.  Created: 12/16/2016 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 12/16/2016.

  3. Diversity and evolution of drug resistance mechanisms in Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Al-Saeedi M

    2017-10-01

    Full Text Available Mashael Al-Saeedi, Sahal Al-Hajoj Department of Infection and Immunity, Mycobacteriology Research Section, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia Abstract: Despite the efficacy of antibiotics to protect humankind against many deadly pathogens, such as Mycobacterium tuberculosis, nothing can prevent the emergence of drug-resistant strains. Several mechanisms facilitate drug resistance in M. tuberculosis including compensatory evolution, epistasis, clonal interference, cell wall integrity, efflux pumps, and target mimicry. In this study, we present recent findings relevant to these mechanisms, which can enable the discovery of new drug targets and subsequent development of novel drugs for treatment of drug-resistant M. tuberculosis. Keywords: Mycobacterium tuberculosis, antibiotic resistance, compensatory evolution, epistasis, efflux pumps, fitness cost

  4. Laboratory-Based Surveillance of Extensively Drug-Resistant Tuberculosis in Eastern China.

    Science.gov (United States)

    Huang, Yu; Wu, Qingqing; Xu, Shuiyang; Zhong, Jieming; Chen, Songhua; Xu, Jinghang; Zhu, Liping; He, Haibo; Wang, Xiaomeng

    2017-03-01

    With 25% of the global burden, China has the highest incidence of drug-resistant tuberculosis (TB) in the world. However, surveillance data on extensively drug-resistant TB (XDR-TB) from China are scant. To estimate the prevalence of XDR-TB in Zhejiang, Eastern China, 30 of 90 TB treatment centers in Zhejiang were recruited. Patients with suspected TB who reported to the clinics for diagnosis were requested to undergo a smear sputum test. Positive sputum samples were tested for drug susceptibility. Data on anti-TB drug resistance from 1999 to 2008 were also collected to assess drug resistance trends. A total of 931 cases were recruited for drug susceptibility testing (DST). Among these, 23.6% (95% confidence interval [CI], 18.8-24.4) were resistant to any of the following drugs: isoniazid, rifampin, streptomycin, and ethambutol. Multidrug resistant (MDR) strains were identified in 5.1% of all cases (95% CI, 3.61-6.49). Among MDR-TB cases, 6.4% were XDR (95% CI, 1.7-18.6) and 8.9% (95% CI, 7.0-10.8) of all cases were resistant to either isoniazid or rifampin (but not both). Among MDR-TB cases, 23.4% (95% CI, 12.8-38.4) were resistant to either fluoroquinolones or a second-line anti-TB injectable drug, but not both. From 1999 to 2014, the percentage of MDR cases decreased significantly, from 8.6% to 5.1% (p = 0.00). The Global Fund to Fight TB program showed signs of success in Eastern China. However, drug-resistant TB, MDR-TB, and XDR-TB still pose a challenge for TB control in Eastern China. High-quality directly observed treatment, short-course, and universal DST for TB cases to determine appropriate treatment regimens are urgently needed to prevent acquired drug resistance.

  5. Incidence of multidrug-resistant, extensively drug-resistant and pan-drug-resistant bacteria in children hospitalized at Dr. Hasan Sadikin general hospital Bandung Indonesia

    Science.gov (United States)

    Adrizain, R.; Suryaningrat, F.; Alam, A.; Setiabudi, D.

    2018-03-01

    Antibiotic resistance has become a global issue, with 700,000 deaths attributable to multidrug-resistance (MDR) occurring each year. Centers for Disease Control and Prevention (CDC) show rapidly increasing rates of infection due to antibiotic-resistant bacteria. The aim of the study isto describe the incidence of MDR, extensively drug-resistant (XDR) and pan drug-resistant (PDR) in Enterococcus spp., Staphylococcus aureus, K. pneumonia, Acinetobacter baumanii, P. aeruginosin, and Enterobacter spp. (ESKAPE) pathogens in children admitted to Dr. Hasan Sadikin Hospital. All pediatric patients having blood culture drawn from January 2015 to December 2016 were retrospectively studied. Data include the number of drawn blood culture, number of positive results, type of bacteria, sensitivity pattern. International standard definitions for acquired resistance by ECDC and CDC was used as definitions for MDR, XDR and PDR bacteria. From January 2015 to December 2016, 299 from 2.542 (11.7%) blood culture was positive, with Staphylococcus aureus, Enterococcus spp., Enterobacteriaceae, Pseudomonas aeruginosa, Acinetobacter spp., respectively 5, 6, 24, 5, 20 with total 60 (20%). The MDR and XDR pathogen found were 47 and 13 patients, respectively.

  6. Detection of First-Line Drug Resistance Mutations and Drug-Protein Interaction Dynamics from Tuberculosis Patients in South India.

    Science.gov (United States)

    Nachappa, Somanna Ajjamada; Neelambike, Sumana M; Amruthavalli, Chokkanna; Ramachandra, Nallur B

    2018-05-01

    Diagnosis of drug-resistant tuberculosis predominantly relies on culture-based drug susceptibility testing, which take weeks to produce a result and a more time-efficient alternative method is multiplex allele-specific PCR (MAS-PCR). Also, understanding the role of mutations in causing resistance helps better drug designing. To evaluate the ability of MAS-PCR in the detection of drug resistance and to understand the mechanism of interaction of drugs with mutant proteins in Mycobacterium tuberculosis. Detection of drug-resistant mutations using MAS-PCR and validation through DNA sequencing. MAS-PCR targeted five loci on three genes, katG 315 and inhA -15 for the drug isoniazid (INH), and rpoB 516, 526, and 531 for rifampicin (RIF). Furthermore, the sequence data were analyzed to study the effect on interaction of the anti-TB drug molecule with the target protein using in silico docking. We identified drug-resistant mutations in 8 out of 114 isolates with 2 of them as multidrug-resistant TB using MAS-PCR. DNA sequencing confirmed only six of these, recording a sensitivity of 85.7% and specificity of 99.3% for MAS-PCR. Molecular docking showed estimated free energy of binding (ΔG) being higher for RIF binding with RpoB S531L mutant. Codon 315 in KatG does not directly interact with INH but blocks the drug access to active site. We propose DNA sequencing-based drug resistance detection for TB, which is more accurate than MAS-PCR. Understanding the action of resistant mutations in disrupting the normal drug-protein interaction aids in designing effective drug alternatives.

  7. Effect of pretreatment HIV-1 drug resistance on immunological, virological, and drug-resistance outcomes of first-line antiretroviral treatment in sub-Saharan Africa: a multicentre cohort study

    NARCIS (Netherlands)

    Hamers, Raph L.; Schuurman, Rob; Sigaloff, Kim C. E.; Wallis, Carole L.; Kityo, Cissy; Siwale, Margaret; Mandaliya, Kishor; Ive, Prudence; Botes, Mariette E.; Wellington, Maureen; Osibogun, Akin; Wit, Ferdinand W.; van Vugt, Michèle; Stevens, Wendy S.; de Wit, Tobias F. Rinke

    2012-01-01

    Background The effect of pretreatment HIV-1 drug resistance on the response to first-line combination antiretroviral therapy (ART) in sub-Saharan Africa has not been assessed. We studied pretreatment drug resistance and virological, immunological, and drug-resistance treatment outcomes in a large

  8. The Association between Mycobacterium Tuberculosis Genotype and Drug Resistance in Peru.

    Directory of Open Access Journals (Sweden)

    Louis Grandjean

    Full Text Available The comparison of Mycobacterium tuberculosis bacterial genotypes with phenotypic, demographic, geospatial and clinical data improves our understanding of how strain lineage influences the development of drug-resistance and the spread of tuberculosis.To investigate the association of Mycobacterium tuberculosis bacterial genotype with drug-resistance. Drug susceptibility testing together with genotyping using both 15-loci MIRU-typing and spoligotyping, was performed on 2,139 culture positive isolates, each from a different patient in Lima, Peru. Demographic, geospatial and socio-economic data were collected using questionnaires, global positioning equipment and the latest national census.The Latin American Mediterranean (LAM clade (OR 2.4, p<0.001 was significantly associated with drug-resistance and alone accounted for more than half of all drug resistance in the region. Previously treated patients, prisoners and genetically clustered cases were also significantly associated with drug-resistance (OR's 2.5, 2.4 and 1.8, p<0.001, p<0.05, p<0.001 respectively.Tuberculosis disease caused by the LAM clade was more likely to be drug resistant independent of important clinical, genetic and socio-economic confounding factors. Explanations for this include; the preferential co-evolution of LAM strains in a Latin American population, a LAM strain bacterial genetic background that favors drug-resistance or the "founder effect" from pre-existing LAM strains disproportionately exposed to drugs.

  9. Antituberculosis drug resistance patterns in adults with tuberculous meningitis

    DEFF Research Database (Denmark)

    Senbayrak, Seniha; Ozkutuk, Nuri; Erdem, Hakan

    2015-01-01

    BACKGROUND: Tuberculous meningitis (TBM) caused by Mycobacterium tuberculosis resistant to antituberculosis drugs is an increasingly common clinical problem. This study aimed to evaluate drug resistance profiles of TBM isolates in adult patients in nine European countries involving 32 centers...

  10. Multi-drug resistant tuberculosis in Tanzania: Initial description of ...

    African Journals Online (AJOL)

    Background: Drug resistant Tuberculosis is well documented worldwide and is associated with increasing morbidity and mortality complicating Tuberculosis control with increasing costs of managing the disease. Broad. Objective: To describe clinical and laboratory characteristics of multi-drug resistant Tuberculosis ...

  11. Molecular basis of antifungal drug resistance in yeasts

    DEFF Research Database (Denmark)

    Morio, Florent; Jensen, Rasmus Hare; Le Pape, Patrice

    2017-01-01

    Besides inherent differences in in vitro susceptibilities, clinically-relevant yeast species may acquire resistance upon exposure to most antifungal drugs used in the clinic. In recent years, major fundamental research studies have been conducted to improve our understanding of the molecular basis...... of antifungal resistance. This topic is of major interest as antifungal resistance in yeast is clearly evolving and is correlated with clinical failure. This minireview is an overview of the most recent findings about key molecular mechanisms evolving in human pathogenic yeasts, particularly Candida spp......., in the context of antifungal drug resistance. Also included are the methods currently available for in vitro antifungal susceptibility testing and for molecular detection of mutations associated with resistance. Finally, the genetic drivers of antifungal resistance are discussed in light of the spectra...

  12. Exosomes from adriamycin-resistant breast cancer cells transmit drug resistance partly by delivering miR-222.

    Science.gov (United States)

    Yu, Dan-Dan; Wu, Ying; Zhang, Xiao-Hui; Lv, Meng-Meng; Chen, Wei-Xian; Chen, Xiu; Yang, Su-Jin; Shen, Hongyu; Zhong, Shan-Liang; Tang, Jin-Hai; Zhao, Jian-Hua

    2016-03-01

    Breast cancer (BCa) is one of the major deadly cancers in women. However, treatment of BCa is still hindered by the acquired-drug resistance. It is increasingly reported that exosomes take part in the development, metastasis, and drug resistance of BCa. However, the specific role of exosomes in drug resistance of BCa is poorly understood. In this study, we investigate whether exosomes transmit drug resistance through delivering miR-222. We established an adriamycin-resistant variant of Michigan Cancer Foundation-7 (MCF-7) breast cancer cell line (MCF-7/Adr) from a drug-sensitive variant (MCF-7/S). Exosomes were isolated from cell supernatant by ultracentrifugation. Cell viability was assessed by MTT assay and apoptosis assay. Individual miR-222 molecules in BCa cells were detected by fluorescence in situ hybridization (FISH). Then, FISH was combined with locked nucleic acid probes and enzyme-labeled fluorescence (LNA-ELF-FISH). Individual miR-222 could be detected as bright photostable fluorescent spots and then the quantity of miR-222 per cell could be counted. Stained exosomes were taken in by the receipt cells. MCF-7/S acquired drug resistance after co-culture with exosomes from MCF-7/Adr (A/exo) but did not after co-culture with exosomes from MCF-7/S (S/exo). The quantity of miR-222 in A/exo-treated MCF-7/S was significantly greater than in S/exo-treated MCF-7/S. MCF-7/S transfected with miR-222 mimics acquired adriamycin resistance while MCF-7/S transfected with miR-222 inhibitors lost resistance. In conclusion, exosomes are effective in transmitting drug resistance and the delivery of miR-222 via exosomes may be a mechanism.

  13. Epigenetic Modulation of the Biophysical Properties of Drug-Resistant Cell Lipids to Restore Drug Transport and Endocytic Functions

    OpenAIRE

    Vijayaraghavalu, Sivakumar; Peetla, Chiranjeevi; Lu, Shan; Labhasetwar, Vinod

    2012-01-01

    In our recent studies exploring the biophysical characteristics of resistant cell lipids, and the role they play in drug transport, we demonstrated the difference of drug-resistant breast cancer cells from drug-sensitive cells in lipid composition and biophysical properties, suggesting that cancer cells acquire a drug-resistant phenotype through the alteration of lipid synthesis to inhibit intracellular drug transport to protect from cytotoxic effect. In cancer cells, epigenetic changes (e.g....

  14. Impact of treatment heterogeneity on drug resistance and supply chain costs.

    Science.gov (United States)

    Spiliotopoulou, Eirini; Boni, Maciej F; Yadav, Prashant

    2013-09-01

    The efficacy of scarce drugs for many infectious diseases is threatened by the emergence and spread of resistance. Multiple studies show that available drugs should be used in a socially optimal way to contain drug resistance. This paper studies the tradeoff between risk of drug resistance and operational costs when using multiple drugs for a specific disease. Using a model for disease transmission and resistance spread, we show that treatment with multiple drugs, on a population level, results in better resistance-related health outcomes, but more interestingly, the marginal benefit decreases as the number of drugs used increases. We compare this benefit with the corresponding change in procurement and safety stock holding costs that result from higher drug variety in the supply chain. Using a large-scale simulation based on malaria transmission dynamics, we show that disease prevalence seems to be a less important factor when deciding the optimal width of drug assortment, compared to the duration of one episode of the disease and the price of the drug(s) used. Our analysis shows that under a wide variety of scenarios for disease prevalence and drug cost, it is optimal to simultaneously deploy multiple drugs in the population. If the drug price is high, large volume purchasing discounts are available, and disease prevalence is high, it may be optimal to use only one drug. Our model lends insights to policy makers into the socially optimal size of drug assortment for a given context.

  15. Shigella Antimicrobial Drug Resistance Mechanisms, 2004-2014.

    Science.gov (United States)

    Nüesch-Inderbinen, Magdalena; Heini, Nicole; Zurfluh, Katrin; Althaus, Denise; Hächler, Herbert; Stephan, Roger

    2016-06-01

    To determine antimicrobial drug resistance mechanisms of Shigella spp., we analyzed 344 isolates collected in Switzerland during 2004-2014. Overall, 78.5% of isolates were multidrug resistant; 10.5% were ciprofloxacin resistant; and 2% harbored mph(A), a plasmid-mediated gene that confers reduced susceptibility to azithromycin, a last-resort antimicrobial agent for shigellosis.

  16. Viability, biofilm formation, and MazEF expression in drug-sensitive and drug-resistant Mycobacterium tuberculosis strains circulating in Xinjiang, China.

    Science.gov (United States)

    Zhao, Ji-Li; Liu, Wei; Xie, Wan-Ying; Cao, Xu-Dong; Yuan, Li

    2018-01-01

    Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB) is one of the most common chronic infectious amphixenotic diseases worldwide. Prevention and control of TB are greatly difficult, due to the increase in drug-resistant TB, particularly multidrug-resistant TB. We speculated that there were some differences between drug-sensitive and drug-resistant MTB strains and that mazEF 3,6,9 toxin-antitoxin systems (TASs) were involved in MTB viability. This study aimed to investigate differences in viability, biofilm formation, and MazEF expression between drug-sensitive and drug-resistant MTB strains circulating in Xinjiang, China, and whether mazEF 3,6,9 TASs contribute to MTB viability under stress conditions. Growth profiles and biofilm-formation abilities of drug-sensitive, drug-resistant MTB strains and the control strain H37Rv were monitored. Using molecular biology experiments, the mRNA expression of the mazF 3, 6, and 9 toxin genes, the mazE 3, 6, and 9 antitoxin genes, and expression of the MazF9 protein were detected in the different MTB strains, H37RvΔ mazEF 3,6,9 mutants from the H37Rv parent strain were generated, and mutant viability was tested. Ex vivo culture analyses demonstrated that drug-resistant MTB strains exhibit higher survival rates than drug-sensitive strains and the control strain H37Rv. However, there was no statistical difference in biofilm-formation ability in the drug-sensitive, drug-resistant, and H37Rv strains. mazE 3,6 mRNA-expression levels were relatively reduced in the drug-sensitive and drug-resistant strains compared to H37Rv. Conversely, mazE 3,9 expression was increased in drug-sensitive strains compared to drug-resistant strains. Furthermore, compared with the H37Rv strain, mazF 3,6 expression was increased in drug-resistant strains, mazF 9 expression was increased in drug-sensitive strains, and mazF 9 exhibited reduced expression in drug-resistant strains compared with drug-sensitive strains. Protein expression of mazF9

  17. Economic implications of resistance to antimalarial drugs.

    Science.gov (United States)

    Phillips, M; Phillips-Howard, P A

    1996-09-01

    The widespread evolution of drug resistance in malarial parasites has seriously hampered efforts to control this debilitating disease. Chloroquine, the mainstay of malaria treatment for many decades, is now proving largely ineffective in many parts of the world, particularly against the most severe form of malaria--falciparum. Alternative drugs have been developed, but they are frequently less safe and are all between 50 and 700% more expensive than chloroquine. Choice of drug clearly has important budgetary implications and national malaria control programmes need to weigh up the costs and benefits in deciding whether to change to more effective but more expensive drugs. The growth in drug resistance also has implications for the choice of diagnostic tool. Clinical diagnosis of malaria is relatively cheap, but less specific than some technological approaches. As more expensive drugs are employed, the cost of wasted treatment on suspected cases who do not in fact have malaria rises and the more worthwhile it becomes to invest in more specific diagnostic techniques. This paper presents an economic framework for analysing the various malaria drug and diagnostic tool options available. It discusses the nature of the key factors that need to be considered when making choices of malaria treatment (including treatment costs, drug resistance, the costs of treatment failure and compliance) and diagnosis (including diagnosis cost and accuracy, and the often overlooked costs associated with delayed treatment), and uses some simple equations to illustrate the impact of these on the relative cost effectiveness of the alternatives being considered. On the basis of some simplifying assumptions and illustrative calculations, it appears that in many countries more effective drugs and more specific and rapid diagnostic approaches will be worth adopting even although they imply additional expense.

  18. Drug-resistance in chronic tuberculosis cases in Southern Nigeria ...

    African Journals Online (AJOL)

    Nigeria has a high burden of tuberculosis but the drug resistant situationwas previously unknown. This report evaluates the firstline drug resistance and associated factors among chronic tuberculosis cases from the tuberculosis control programme in South south and South east zones ofNigeria. Descriptive study of chronic ...

  19. Repurposing salicylanilide anthelmintic drugs to combat drug resistant Staphylococcus aureus.

    Science.gov (United States)

    Rajamuthiah, Rajmohan; Fuchs, Beth Burgwyn; Conery, Annie L; Kim, Wooseong; Jayamani, Elamparithi; Kwon, Bumsup; Ausubel, Frederick M; Mylonakis, Eleftherios

    2015-01-01

    Staphylococcus aureus is a Gram-positive bacterium that has become the leading cause of hospital acquired infections in the US. Repurposing Food and Drug Administration (FDA) approved drugs for antimicrobial therapy involves lower risks and costs compared to de novo development of novel antimicrobial agents. In this study, we examined the antimicrobial properties of two commercially available anthelmintic drugs. The FDA approved drug niclosamide and the veterinary drug oxyclozanide displayed strong in vivo and in vitro activity against methicillin resistant S. aureus (minimum inhibitory concentration (MIC): 0.125 and 0.5 μg/ml respectively; minimum effective concentration: ≤ 0.78 μg/ml for both drugs). The two drugs were also effective against another Gram-positive bacteria Enterococcus faecium (MIC 0.25 and 2 μg/ml respectively), but not against the Gram-negative species Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter aerogenes. The in vitro antimicrobial activity of niclosamide and oxyclozanide were determined against methicillin, vancomycin, linezolid or daptomycin resistant S. aureus clinical isolates, with MICs at 0.0625-0.5 and 0.125-2 μg/ml for niclosamide and oxyclozanide respectively. A time-kill study demonstrated that niclosamide is bacteriostatic, whereas oxyclozanide is bactericidal. Interestingly, oxyclozanide permeabilized the bacterial membrane but neither of the anthelmintic drugs exhibited demonstrable toxicity to sheep erythrocytes. Oxyclozanide was non-toxic to HepG2 human liver carcinoma cells within the range of its in vitro MICs but niclosamide displayed toxicity even at low concentrations. These data show that the salicylanilide anthelmintic drugs niclosamide and oxyclozanide are suitable candidates for mechanism of action studies and further clinical evaluation for treatment of staphylococcal infections.

  20. High prevalence of drug-resistant tuberculosis, Republic of Lithuania, 2002

    DEFF Research Database (Denmark)

    Dewan, P; Sosnovskaja, A; Thomsen, V

    2005-01-01

    BACKGROUND: Nations of the former Soviet Union have the world's highest reported levels of resistance to anti-tuberculosis drugs. We conducted the first national survey of anti-tuberculosis drug resistance in the Republic of Lithuania. METHODS: We tested Mycobacterium tuberculosis isolates from all...... isolates, 475 (41%) were resistant to at least one first-line drug, and 263 (23%) were resistant to at least INH and RMP (MDR); this included 76/818 (9.3%) from new patients and 187/345 (54%) from previously treated patients. Of 52 MDR isolates randomly selected for extended testing at an international...

  1. Young Women's Experiences of Resisting Invitations to Use Illicit Drugs

    Science.gov (United States)

    Koehn, Corinne V.; O'Neill, Linda K.

    2011-01-01

    Ten young women were interviewed regarding their experiences of resisting invitations to use illicit drugs. Hermeneutic phenomenology was used to gather and analyze information. One key theme was the motivations that inspired women to refuse drug offers. Young women resisted drug invitations because of their desires to be authentic, protect their…

  2. Status of drug-resistant tuberculosis in China: A systematic review and meta-analysis.

    Science.gov (United States)

    Zhang, Jingya; Gou, Haimei; Hu, Xuejiao; Hu, Xin; Shang, Mengqiao; Zhou, Juan; Zhou, Yi; Ye, Yuanxin; Song, Xingbo; Lu, Xiaojun; Chen, Xuerong; Ying, Binwu; Wang, Lanlan

    2016-06-01

    We conducted a systematic review and meta-analysis on drug-resistant tuberculosis in China to provide useful data for tuberculosis (TB) surveillance and treatment. Several databases, including PubMed, Embase, and the Chinese Biological Medical Database, were systematically searched between January 1, 1999, and August 31, 2015, using strict inclusion and exclusion criteria. The corresponding drug-resistant TB prevalence between the new and previously treated cases was significantly different in almost all of the economic regions. The Eastern coastal region is the most developed economic region with the lowest total drug-resistant TB prevalence (any drug resistance: 28%; 95% confidence interval [CI], 25%-32%; multidrug resistance: 9%; 95% CI, 8%-12%) and the lowest number of new cases (any drug resistance: 21%; 95% CI, 19%-23%; multidrug resistance: 4%; 95% CI, 3%-5%). The Northwest is the least developed area with the lowest drug-resistant TB prevalence for previously treated cases (any drug resistance: 45%; 95% CI, 36%-55%; multidrug resistance: 17%; 95% CI, 11%-26%). The prevalence (multidrug and first-line drug resistance) exhibited a downward trend from 1996-2014. The extensively drug-resistant prevalence in China was 3% (95% CI, 2%-5%) in this review. Overall, the status of drug-resistant tuberculosis in China is notably grim and exhibits regional epidemiologic characteristics. We are in urgent need of several comprehensive and effective control efforts to reverse this situation. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  3. CHEMOTHERAPY, WITHIN-HOST ECOLOGY AND THE FITNESS OF DRUG-RESISTANT MALARIA PARASITES

    OpenAIRE

    Huijben, Silvie; Nelson, William A.; Wargo, Andrew R.; Sim, Derek G.; Drew, Damien R.; Read, Andrew F.

    2010-01-01

    A major determinant of the rate at which drug-resistant malaria parasites spread through a population is the ecology of resistant and sensitive parasites sharing the same host. Drug treatment can significantly alter this ecology by removing the drug-sensitive parasites, leading to competitive release of resistant parasites. Here, we test the hypothesis that the spread of resistance can be slowed by reducing drug treatment and hence restricting competitive release. Using the rodent malaria mod...

  4. Tuberculosis drug resistance in the Western Cape | Weyer | South ...

    African Journals Online (AJOL)

    Objectives: Drug resistance is a serious problem in the treatment of tuberculosis and a threat to successful tuberculosis control programmes. Local health workers have expressed concern that the increasing tuberculosis epidemic in the Western Cape is partly attributable to drug resistance. The aim of this study was to ...

  5. Establishing Drug Resistance in Microorganisms by Mass Spectrometry

    Science.gov (United States)

    Demirev, Plamen A.; Hagan, Nathan S.; Antoine, Miquel D.; Lin, Jeffrey S.; Feldman, Andrew B.

    2013-08-01

    A rapid method to determine drug resistance in bacteria based on mass spectrometry is presented. In it, a mass spectrum of an intact microorganism grown in drug-containing stable isotope-labeled media is compared with a mass spectrum of the intact microorganism grown in non-labeled media without the drug present. Drug resistance is determined by predicting characteristic mass shifts of one or more microorganism biomarkers using bioinformatics algorithms. Observing such characteristic mass shifts indicates that the microorganism is viable even in the presence of the drug, thus incorporating the isotopic label into characteristic biomarker molecules. The performance of the method is illustrated on the example of intact E. coli, grown in control (unlabeled) and 13C-labeled media, and analyzed by MALDI TOF MS. Algorithms for data analysis are presented as well.

  6. Initial drug resistance in India

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Initial drug resistance in India. There is gradual increase in primary MDR all over India : Pondi= Pondicherry 1985; Bangalore =1986; Jaipur = 1991; Jaipur =2000. Overall the MDR is less than 3% (TRC studies).

  7. Mesenchymal change and drug resistance in neuroblastoma.

    Science.gov (United States)

    Naiditch, Jessica A; Jie, Chunfa; Lautz, Timothy B; Yu, Songtao; Clark, Sandra; Voronov, Dimitry; Chu, Fei; Madonna, Mary Beth

    2015-01-01

    Metastatic initiation has many phenotypic similarities to epithelial-to-mesenchymal transition, including loss of cell-cell adhesion, increased invasiveness, and increased cell mobility. We have previously demonstrated that drug resistance is associated with a metastatic phenotype in neuroblastoma (NB). The purpose of this project was to determine if the development of doxorubicin resistance is associated with characteristics of mesenchymal change in human NB cells. Total RNA was isolated from wild type (WT) and doxorubicin-resistant (DoxR) human NB cell lines (SK-N-SH and SK-N-BE(2)C) and analyzed using the Illumina Human HT-12 version 4 Expression BeadChip. Differentially expressed genes (DEGs) were identified. Volcano plots and heat maps were generated. Genes of interest with a fold change in expression >1.5 and an adjusted P change via multiple pathways in the transition to a drug-resistant state. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. DNA origami as a carrier for circumvention of drug resistance.

    Science.gov (United States)

    Jiang, Qiao; Song, Chen; Nangreave, Jeanette; Liu, Xiaowei; Lin, Lin; Qiu, Dengli; Wang, Zhen-Gang; Zou, Guozhang; Liang, Xingjie; Yan, Hao; Ding, Baoquan

    2012-08-15

    Although a multitude of promising anti-cancer drugs have been developed over the past 50 years, effective delivery of the drugs to diseased cells remains a challenge. Recently, nanoparticles have been used as drug delivery vehicles due to their high delivery efficiencies and the possibility to circumvent cellular drug resistance. However, the lack of biocompatibility and inability to engineer spatially addressable surfaces for multi-functional activity remains an obstacle to their widespread use. Here we present a novel drug carrier system based on self-assembled, spatially addressable DNA origami nanostructures that confronts these limitations. Doxorubicin, a well-known anti-cancer drug, was non-covalently attached to DNA origami nanostructures through intercalation. A high level of drug loading efficiency was achieved, and the complex exhibited prominent cytotoxicity not only to regular human breast adenocarcinoma cancer cells (MCF 7), but more importantly to doxorubicin-resistant cancer cells, inducing a remarkable reversal of phenotype resistance. With the DNA origami drug delivery vehicles, the cellular internalization of doxorubicin was increased, which contributed to the significant enhancement of cell-killing activity to doxorubicin-resistant MCF 7 cells. Presumably, the activity of doxorubicin-loaded DNA origami inhibits lysosomal acidification, resulting in cellular redistribution of the drug to action sites. Our results suggest that DNA origami has immense potential as an efficient, biocompatible drug carrier and delivery vehicle in the treatment of cancer.

  9. Detection of low frequency multi-drug resistance and novel putative maribavir resistance in immunocompromised paediatric patients with cytomegalovirus

    Directory of Open Access Journals (Sweden)

    Charlotte Jane Houldcroft

    2016-09-01

    Full Text Available Human cytomegalovirus (HCMV is a significant pathogen in immunocompromised individuals, with the potential to cause fatal pneumonitis and colitis, as well as increasing the risk of organ rejection in transplant patients. With the advent of new anti-HCMV drugs there is therefore considerable interest in using virus sequence data to monitor emerging resistance to antiviral drugs in HCMV viraemia and disease, including the identification of putative new mutations. We used target-enrichment to deep sequence HCMV DNA from 11 immunosuppressed paediatric patients receiving single or combination anti-HCMV treatment, serially sampled over 1-27 weeks. Changes in consensus sequence and resistance mutations were analysed for three ORFs targeted by anti-HCMV drugs and the frequencies of drug resistance mutations monitored. Targeted-enriched sequencing of clinical material detected mutations occurring at frequencies of 2%. Seven patients showed no evidence of drug resistance mutations. Four patients developed drug resistance mutations a mean of 16 weeks after starting treatment. In two patients, multiple resistance mutations accumulated at frequencies of 20% or less, including putative maribavir and ganciclovir resistance mutations P522Q (UL54 and C480F (UL97. In one patient, resistance was detected 14 days earlier than by PCR. Phylogenetic analysis suggested recombination or superinfection in one patient. Deep sequencing of HCMV enriched from clinical samples excluded resistance in 7 of eleven subjects and identified resistance mutations earlier than conventional PCR-based resistance testing in 2 patients. Detection of multiple low level resistance mutations was associated with poor outcome.

  10. Update on HIV-1 acquired and transmitted drug resistance in Africa.

    Science.gov (United States)

    Ssemwanga, Deogratius; Lihana, Raphael W; Ugoji, Chinenye; Abimiku, Alash'le; Nkengasong, John; Dakum, Patrick; Ndembi, Nicaise

    2015-01-01

    The last ten years have witnessed a significant scale-up and access to antiretroviral therapy in Africa, which has improved patient quality of life and survival. One major challenge associated with increased access to antiretroviral therapy is the development of antiretroviral resistance due to inconsistent drug supply and/or poor patient adherence. We review the current state of both acquired and transmitted drug resistance in Africa over the past ten years (2001-2011) to identify drug resistance associated with the different drug regimens used on the continent and to help guide affordable strategies for drug resistance surveillance. A total of 161 references (153 articles, six reports and two conference abstracts) were reviewed. Antiretroviral resistance data was available for 40 of 53 African countries. A total of 5,541 adult patients from 99 studies in Africa were included in this analysis. The pooled prevalence of drug resistance mutations in Africa was 10.6%, and Central Africa had the highest prevalence of 54.9%. The highest prevalence of nucleoside reverse transcriptase inhibitor mutations was in the west (55.3%) and central (54.8%) areas; nonnucleoside reverse transcriptase inhibitor mutations were highest in East Africa (57.0%) and protease inhibitors mutations highest in Southern Africa (16.3%). The major nucleoside reverse transcriptase inhibitor mutation in all four African regions was M184V. Major nonnucleoside reverse transcriptase inhibitor as well as protease inhibitor mutations varied by region. The prevalence of drug resistance has remained low in several African countries although the emergence of drug resistance mutations varied across countries. Continued surveillance of antiretroviral therapy resistance remains crucial in gauging the effectiveness of country antiretroviral therapy programs and strategizing on effective and affordable strategies for successful treatment.

  11. HIV-1 evolution, drug resistance, and host genetics: The Indian scenario

    Directory of Open Access Journals (Sweden)

    U Shankarkumar

    2009-03-01

    Full Text Available U Shankarkumar, A Pawar, K GhoshNational Institute of Immunohaematology (ICMR, KEM Hospital, Parel, Mumbai, Maharashtra, IndiaAbstract: A regimen with varied side effects and compliance is of paramount importance to prevent viral drug resistance. Most of the drug-resistance studies, as well as interpretation algorithms, are based on sequence data from HIV-1 subtype B viruses. Increased resistance to antiretroviral drugs leads to poor prognosis by restricting treatment options. Due to suboptimal adherence to antiretroviral therapy there is an emergence of drug-resistant HIV-1 strains. The other factors responsible for this viral evolution are antiretroviral drug types and host genetics, especially major histocompatibility complex (MHC. Both primary and secondary drug resistances occur due to mutations in specific epitopes of viral protein regions which may influence the T cell recognition by immune system through MHC Class I and class II alleles. Mutations in viral epitopes enable the virus to escape the immune system. New drugs under clinical trials are being added but their exorbitant costs limit their access in developing countries. Thus the environmental consequences and, the impact of both viral and host genetic variations on the therapy in persons infected with HIV-1 clade C from India need to be determined.Keywords: HIV-1 C drug resistance, virus adaptation, HARRT, India

  12. Genome-wide mutagenesis and multi-drug resistance in American trypanosomes induced by the front-line drug benznidazole

    KAUST Repository

    Campos, Mônica C.

    2017-10-25

    Chagas disease is caused by the protozoan parasite Trypanosoma cruzi and affects 5–8 million people in Latin America. Although the nitroheterocyclic compound benznidazole has been the front-line drug for several decades, treatment failures are common. Benznidazole is a pro-drug and is bio-activated within the parasite by the mitochondrial nitroreductase TcNTR-1, leading to the generation of reactive metabolites that have trypanocidal activity. To better assess drug action and resistance, we sequenced the genomes of T. cruzi Y strain (35.5 Mb) and three benznidazole-resistant clones derived from a single drug-selected population. This revealed the genome-wide accumulation of mutations in the resistant parasites, in addition to variations in DNA copy-number. We observed mutations in DNA repair genes, linked with increased susceptibility to DNA alkylating and inter-strand cross-linking agents. Stop-codon-generating mutations in TcNTR-1 were associated with cross-resistance to other nitroheterocyclic drugs. Unexpectedly, the clones were also highly resistant to the ergosterol biosynthesis inhibitor posaconazole, a drug proposed for use against T. cruzi infections, in combination with benznidazole. Our findings therefore identify the highly mutagenic activity of benznidazole metabolites in T. cruzi, demonstrate that this can result in multi-drug resistance, and indicate that vigilance will be required if benznidazole is used in combination therapy.

  13. Drug resistance in the mouse cancer clinic

    NARCIS (Netherlands)

    Rottenberg, Sven; Borst, Piet

    2012-01-01

    Drug resistance is one of the most pressing problems in treating cancer patients today. Local and regional disease can usually be adequately treated, but patients eventually die from distant metastases that have become resistant to all available chemotherapy. Although work on cultured tumor cell

  14. Surveillance of drug resistance for tuberculosis control: why and how?

    Science.gov (United States)

    Chaulet, P; Boulahbal, F; Grosset, J

    1995-12-01

    The resistance of Mycobacterium tuberculosis to antibiotics, which reflects the quality of the chemotherapy applied in the community, is one of the elements of epidemiological surveillance used in national tuberculosis programmes. Measurement of drug resistance poses problems for biologists in standardization of laboratory methods and quality control. The definition of rates of acquired and primary drug resistance also necessitates standardization in the methods used to collect information transmitted by clinicians. Finally, the significance of the rates calculated depends on the choice of the patients sample on which sensitivity tests have been performed. National surveys of drug resistance therefore require multidisciplinary participation in order to select the only useful indicators: rates of primary resistance and of acquired resistance. These indicators, gathered in representative groups of patients over a long period, are a measurement of the impact of modern chemotherapy regimens on bacterial ecology.

  15. New-Onset Psychosis in a Multi-Drug Resistant Tuberculosis Patient ...

    African Journals Online (AJOL)

    Drug-resistant tuberculosis poses a serious challenge to global control of TB. These forms of TB do not respond to the standard six-month treatment; it can take two years or more to treat with category IV drugs that are less potent, more toxic and much more expensive. Treatment of multi-drug resistant tuberculosis is still ...

  16. The role of compensatory mutations in the emergence of drug resistance.

    Directory of Open Access Journals (Sweden)

    Andreas Handel

    2006-10-01

    Full Text Available Pathogens that evolve resistance to drugs usually have reduced fitness. However, mutations that largely compensate for this reduction in fitness often arise. We investigate how these compensatory mutations affect population-wide resistance emergence as a function of drug treatment. Using a model of gonorrhea transmission dynamics, we obtain generally applicable, qualitative results that show how compensatory mutations lead to more likely and faster resistance emergence. We further show that resistance emergence depends on the level of drug use in a strongly nonlinear fashion. We also discuss what data need to be obtained to allow future quantitative predictions of resistance emergence.

  17. Parallel screening of wild-type and drug-resistant targets for anti-resistance neuraminidase inhibitors.

    Directory of Open Access Journals (Sweden)

    Kai-Cheng Hsu

    Full Text Available Infection with influenza virus is a major public health problem, causing serious illness and death each year. Emergence of drug-resistant influenza virus strains limits the effectiveness of drug treatment. Importantly, a dual H275Y/I223R mutation detected in the pandemic influenza A 2009 virus strain results in multidrug resistance to current neuraminidase (NA drugs. Therefore, discovery of new agents for treating multiple drug-resistant (MDR influenza virus infections is important. Here, we propose a parallel screening strategy that simultaneously screens wild-type (WT and MDR NAs, and identifies inhibitors matching the subsite characteristics of both NA-binding sites. These may maintain their potency when drug-resistant mutations arise. Initially, we analyzed the subsite of the dual H275Y/I223R NA mutant. Analysis of the site-moiety maps of NA protein structures show that the mutant subsite has a relatively small volume and is highly polar compared with the WT subsite. Moreover, the mutant subsite has a high preference for forming hydrogen-bonding interactions with polar moieties. These changes may drive multidrug resistance. Using this strategy, we identified a new inhibitor, Remazol Brilliant Blue R (RB19, an anthraquinone dye, which inhibited WT NA and MDR NA with IC(50 values of 3.4 and 4.5 µM, respectively. RB19 comprises a rigid core scaffold and a flexible chain with a large polar moiety. The former interacts with highly conserved residues, decreasing the probability of resistance. The latter forms van der Waals contacts with the WT subsite and yields hydrogen bonds with the mutant subsite by switching the orientation of its flexible side chain. Both scaffolds of RB19 are good starting points for lead optimization. The results reveal a parallel screening strategy for identifying resistance mechanisms and discovering anti-resistance neuraminidase inhibitors. We believe that this strategy may be applied to other diseases with high

  18. Drug resistance and genetic diversity of Plasmodium falciparum parasites from Suriname

    NARCIS (Netherlands)

    Peek, Ron; van Gool, Tom; Panchoe, Daynand; Greve, Sophie; Bus, Ellen; Resida, Lesley

    2005-01-01

    Plasmodium falciparum in Suriname was studied for the presence of drug resistance and genetic variation in blood samples of 86 patients with symptomatic malaria. Drug resistance was predicted by determining point mutations in the chloroquine resistance marker of the P. falciparum chloroquine

  19. Cancer stem cells and drug resistance: the potential of nanomedicine

    Science.gov (United States)

    Vinogradov, Serguei; Wei, Xin

    2012-01-01

    Properties of the small group of cancer cells called tumor-initiating or cancer stem cells (CSCs) involved in drug resistance, metastasis and relapse of cancers can significantly affect tumor therapy. Importantly, tumor drug resistance seems to be closely related to many intrinsic or acquired properties of CSCs, such as quiescence, specific morphology, DNA repair ability and overexpression of antiapoptotic proteins, drug efflux transporters and detoxifying enzymes. The specific microenvironment (niche) and hypoxic stability provide additional protection against anticancer therapy for CSCs. Thus, CSC-focused therapy is destined to form the core of any effective anticancer strategy. Nanomedicine has great potential in the development of CSC-targeting drugs, controlled drug delivery and release, and the design of novel gene-specific drugs and diagnostic modalities. This review is focused on tumor drug resistance-related properties of CSCs and describes current nanomedicine approaches, which could form the basis of novel combination therapies for eliminating metastatic and CSCs. PMID:22471722

  20. Ribonucleotide reductase as a drug target against drug resistance Mycobacterium leprae: A molecular docking study.

    Science.gov (United States)

    Mohanty, Partha Sarathi; Bansal, Avi Kumar; Naaz, Farah; Gupta, Umesh Datta; Dwivedi, Vivek Dhar; Yadava, Umesh

    2018-06-01

    Leprosy is a chronic infection of skin and nerve caused by Mycobacterium leprae. The treatment is based on standard multi drug therapy consisting of dapsone, rifampicin and clofazamine. The use of rifampicin alone or with dapsone led to the emergence of rifampicin-resistant Mycobacterium leprae strains. The emergence of drug-resistant leprosy put a hurdle in the leprosy eradication programme. The present study aimed to predict the molecular model of ribonucleotide reductase (RNR), the enzyme responsible for biosynthesis of nucleotides, to screen new drugs for treatment of drug-resistant leprosy. The study was conducted by retrieving RNR of M. leprae from GenBank. A molecular 3D model of M. leprae was predicted using homology modelling and validated. A total of 325 characters were included in the analysis. The predicted 3D model of RNR showed that the ϕ and φ angles of 251 (96.9%) residues were positioned in the most favoured regions. It was also conferred that 18 α-helices, 6 β turns, 2 γ turns and 48 helix-helix interactions contributed to the predicted 3D structure. Virtual screening of Food and Drug Administration approved drug molecules recovered 1829 drugs of which three molecules, viz., lincomycin, novobiocin and telithromycin, were taken for the docking study. It was observed that the selected drug molecules had a strong affinity towards the modelled protein RNR. This was evident from the binding energy of the drug molecules towards the modelled protein RNR (-6.10, -6.25 and -7.10). Three FDA-approved drugs, viz., lincomycin, novobiocin and telithromycin, could be taken for further clinical studies to find their efficacy against drug resistant leprosy. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Alteration of gene expression and DNA methylation in drug-resistant gastric cancer.

    Science.gov (United States)

    Maeda, Osamu; Ando, Takafumi; Ohmiya, Naoki; Ishiguro, Kazuhiro; Watanabe, Osamu; Miyahara, Ryoji; Hibi, Yoko; Nagai, Taku; Yamada, Kiyofumi; Goto, Hidemi

    2014-04-01

    The mechanisms of drug resistance in cancer are not fully elucidated. To study the drug resistance of gastric cancer, we analyzed gene expression and DNA methylation profiles of 5-fluorouracil (5-FU)- and cisplatin (CDDP)-resistant gastric cancer cells and biopsy specimens. Drug-resistant gastric cancer cells were established with culture for >10 months in a medium containing 5-FU or CDDP. Endoscopic biopsy specimens were obtained from gastric cancer patients who underwent chemotherapy with oral fluoropyrimidine S-1 and CDDP. Gene expression and DNA methylation analyses were performed using microarray, and validated using real-time PCR and pyrosequencing, respectively. Out of 17,933 genes, 541 genes commonly increased and 569 genes decreased in both 5-FU- and CDDP-resistant AGS cells. Genes with expression changed by drugs were related to GO term 'extracellular region' and 'p53 signaling pathway' in both 5-FU- and CDDP-treated cells. Expression of 15 genes including KLK13 increased and 12 genes including ETV7 decreased, in both drug-resistant cells and biopsy specimens of two patients after chemotherapy. Out of 10,365 genes evaluated with both expression microarray and methylation microarray, 74 genes were hypermethylated and downregulated, or hypomethylated and upregulated in either 5-FU-resistant or CDDP-resistant cells. Of these genes, expression of 21 genes including FSCN1, CPT1C and NOTCH3, increased from treatment with a demethylating agent. There are alterations of gene expression and DNA methylation in drug-resistant gastric cancer; they may be related to mechanisms of drug resistance and may be useful as biomarkers of gastric cancer drug sensitivity.

  2. [Detection of CRISPR and its relationship to drug resistance in Shigella].

    Science.gov (United States)

    Wang, Linlin; Wang, Yingfang; Duan, Guangcai; Xue, Zerun; Guo, Xiangjiao; Wang, Pengfei; Xi, Yuanlin; Yang, Haiyan

    2015-04-04

    To detect clustered regularly interspaced short palindromic repeats (CRISPR) in Shigella, and to analyze its relationship to drug resistance. Four pairs of primers were used for the detection of convincing CRISPR structures CRISPR-S2 and CRISPR-S4, questionable CRISPR structures CRISPR-S1 and CRISPR-S3 in 60 Shigella strains. All primers were designed using sequences in CRISPR database. CRISPR Finder was used to analyze CRISPR and susceptibilities of Shigella strains were tested by agar diffusion method. Furthermore, we analyzed the relationship between drug resistance and CRISPR-S4. The positive rate of convincing CRISPR structures was 95%. The four CRISPR loci formed 12 spectral patterns (A-L), all of which contained convincing CRISPR structures except type K. We found one new repeat and 12 new spacers. The multi-drug resistance rate was 53. 33% . We found no significant difference between CRISPR-S4 and drug resistant. However, the repeat sequence of CRISPR-S4 in multi- or TE-resistance strains was mainly R4.1 with AC deletions in the 3' end, and the spacer sequences of CRISPR-S4 in multi-drug resistance strains were mainly Sp5.1, Sp6.1 and Sp7. CRISPR was common in Shigella. Variations df repeat sequences and diversities of spacer sequences might be related to drug resistance in Shigella.

  3. A typology and analysis of drug resistance strategies of rural Native Hawaiian youth.

    Science.gov (United States)

    Okamoto, Scott K; Helm, Susana; Giroux, Danielle; Kaliades, Alexis; Kawano, Kaycee Nahe; Kulis, Stephen

    2010-12-01

    This study examines the drug resistance strategies described by Native Hawaiian youth residing in rural communities. Sixty-four youth from 7 middle and intermediate schools on the Island of Hawai'i participated in a series of gender-specific focus groups. Youth responded to 15 drug-related problem situations developed and validated from prior research. A total of 509 responses reflecting primary or secondary drug resistance strategies were identified by the youth, which were qualitatively collapsed into 16 different categories. Primary drug resistance strategies were those that participants listed as a single response, or the first part of a two-part response, while secondary drug resistance strategies were those that were used in tandem with primary drug resistance strategies. Over half of the responses reflecting primary drug resistance strategies fell into three different categories ("refuse," "explain," or "angry refusal"), whereas over half of the responses reflecting secondary drug resistance strategies represented one category ("explain"). Significant gender differences were found in the frequency of using different strategies as well as variations in the frequency of using different strategies based on the type of drug offerer (family versus friends/peers). Implications for prevention practice are discussed.

  4. Multi-drug resistance and molecular pattern of erythromycin and ...

    African Journals Online (AJOL)

    The appearance and dissemination of penicillin resistant and macrolide resistant Streptococcus pneumoniae strains has caused increasing concern worldwide. The aim of this study was to survey drug resistance and genetic characteristics of macrolide and penicillin resistance in S. pneumoniae. This is a cross-sectional ...

  5. HIV-1 evolution, drug resistance, and host genetics: The Indian scenario

    OpenAIRE

    Shankarkumar, U.; Pawar,Aruna; Ghosh,Kanjaksha

    2009-01-01

    U Shankarkumar, A Pawar, K GhoshNational Institute of Immunohaematology (ICMR), KEM Hospital, Parel, Mumbai, Maharashtra, IndiaAbstract: A regimen with varied side effects and compliance is of paramount importance to prevent viral drug resistance. Most of the drug-resistance studies, as well as interpretation algorithms, are based on sequence data from HIV-1 subtype B viruses. Increased resistance to antiretroviral drugs leads to poor prognosis by restricting treatment optio...

  6. Multi-clonal evolution of multi-drug-resistant/extensively drug-resistant Mycobacterium tuberculosis in a high-prevalence setting of Papua New Guinea for over three decades

    Science.gov (United States)

    Bainomugisa, Arnold; Lavu, Evelyn; Hiashiri, Stenard; Majumdar, Suman; Honjepari, Alice; Moke, Rendi; Dakulala, Paison; Hill-Cawthorne, Grant A.; Pandey, Sushil; Marais, Ben J.; Coulter, Chris; Coin, Lachlan

    2018-01-01

    An outbreak of multi-drug resistant (MDR) tuberculosis (TB) has been reported on Daru Island, Papua New Guinea. Mycobacterium tuberculosis strains driving this outbreak and the temporal accrual of drug resistance mutations have not been described. Whole genome sequencing of 100 of 165 clinical isolates referred from Daru General Hospital to the Supranational reference laboratory, Brisbane, during 2012–2015 revealed that 95 belonged to a single modern Beijing sub-lineage strain. Molecular dating suggested acquisition of streptomycin and isoniazid resistance in the 1960s, with potentially enhanced virulence mediated by an mycP1 mutation. The Beijing sub-lineage strain demonstrated a high degree of co-resistance between isoniazid and ethionamide (80/95; 84.2 %) attributed to an inhA promoter mutation combined with inhA and ndh coding mutations. Multi-drug resistance, observed in 78/95 samples, emerged with the acquisition of a typical rpoB mutation together with a compensatory rpoC mutation in the 1980s. There was independent acquisition of fluoroquinolone and aminoglycoside resistance, and evidence of local transmission of extensively drug resistant (XDR) strains from 2009. These findings underline the importance of whole genome sequencing in informing an effective public health response to MDR/XDR TB. PMID:29310751

  7. Drug resistance in Mycobacterium leprae from patients with leprosy in China.

    Science.gov (United States)

    Liu, D; Zhang, Q; Sun, Y; Wang, C; Zhang, Y; Fu, X; Chen, M; Zhou, G; Yu, X; Wang, J; Liu, H; Zhang, F

    2015-12-01

    Previous studies of drug resistance have shown that mutations in the drug resistance-determining region (DRDR) in the Folp1, RpoB and GyrA genes of Mycobacterium leprae are responsible for resistance to dapsone, rifampin and ofloxacin, respectively. To investigate the prevalence of mutations in genes associated with drug resistance in M. leprae isolates from patients with leprosy in Shandong Province. The DRDR in the FolP1, RpoB and GyrA genes was analysed by direct sequencing of the PCR product from 85 isolates of M. leprae sampled from patients with leprosy in Shandong, China. Sequencing results were obtained for FolP1, RpoB and GyrA in 67, 57 and 81 of the 85 samples, with mutation rates of 1.5% (1/67), 8.8% 5/57 and 25.9% (21/81). Three multidrug-resistant samples were found among the new cases: one had a mutation in both Folp1 and RpoB, while the other two had a mutation in both RpoB and GyrA. Primary resistance appears to be to either single drugs or combinations of two drugs. The resistance rate to dapsone seems to be low. To our knowledge, this is the first case of multidrug-resistant M. leprae from China. © 2015 British Association of Dermatologists.

  8. High Levels of Transmitted HIV Drug Resistance in a Study in Papua New Guinea.

    Science.gov (United States)

    Lavu, Evelyn; Kave, Ellan; Mosoro, Euodia; Markby, Jessica; Aleksic, Eman; Gare, Janet; Elsum, Imogen A; Nano, Gideon; Kaima, Petronia; Dala, Nick; Gurung, Anup; Bertagnolio, Silvia; Crowe, Suzanne M; Myatt, Mark; Hearps, Anna C; Jordan, Michael R

    2017-01-01

    Papua New Guinea is a Pacific Island nation of 7.3 million people with an estimated HIV prevalence of 0.8%. ART initiation and monitoring are guided by clinical staging and CD4 cell counts, when available. Little is known about levels of transmitted HIV drug resistance in recently infected individuals in Papua New Guinea. Surveillance of transmitted HIV drug resistance in a total of 123 individuals recently infected with HIV and aged less than 30 years was implemented in Port Moresby (n = 62) and Mount Hagen (n = 61) during the period May 2013-April 2014. HIV drug resistance testing was performed using dried blood spots. Transmitted HIV drug resistance was defined by the presence of one or more drug resistance mutations as defined by the World Health Organization surveillance drug resistance mutations list. The prevalence of non-nucleoside reverse transcriptase inhibitor transmitted HIV drug resistance was 16.1% (95% CI 8.8%-27.4%) and 8.2% (95% CI 3.2%-18.2%) in Port Moresby and Mount Hagen, respectively. The prevalence of nucleoside reverse transcriptase inhibitor transmitted HIV drug resistance was 3.2% (95% CI 0.2%-11.7%) and 3.3% (95% CI 0.2%-11.8%) in Port Moresby and Mount Hagen, respectively. No protease inhibitor transmitted HIV drug resistance was observed. The level of non-nucleoside reverse transcriptase inhibitor drug resistance in antiretroviral drug naïve individuals recently infected with HIV in Port Moresby is amongst the highest reported globally. This alarming level of transmitted HIV drug resistance in a young sexually active population threatens to limit the on-going effective use of NNRTIs as a component of first-line ART in Papua New Guinea. To support the choice of nationally recommended first-line antiretroviral therapy, representative surveillance of HIV drug resistance among antiretroviral therapy initiators in Papua New Guinea should be urgently implemented.

  9. Drug-resistant tuberculosis: time for visionary political leadership.

    Science.gov (United States)

    Abubakar, Ibrahim; Zignol, Matteo; Falzon, Dennis; Raviglione, Mario; Ditiu, Lucica; Masham, Susan; Adetifa, Ifedayo; Ford, Nathan; Cox, Helen; Lawn, Stephen D; Marais, Ben J; McHugh, Timothy D; Mwaba, Peter; Bates, Matthew; Lipman, Marc; Zijenah, Lynn; Logan, Simon; McNerney, Ruth; Zumla, Adam; Sarda, Krishna; Nahid, Payam; Hoelscher, Michael; Pletschette, Michel; Memish, Ziad A; Kim, Peter; Hafner, Richard; Cole, Stewart; Migliori, Giovanni Battista; Maeurer, Markus; Schito, Marco; Zumla, Alimuddin

    2013-06-01

    Two decades ago, WHO declared tuberculosis a global emergency, and invested in the highly cost-effective directly observed treatment short-course programme to control the epidemic. At that time, most strains of Mycobacterium tuberculosis were susceptible to first-line tuberculosis drugs, and drug resistance was not a major issue. However, in 2013, tuberculosis remains a major public health concern worldwide, with prevalence of multidrug-resistant (MDR) tuberculosis rising. WHO estimates roughly 630 000 cases of MDR tuberculosis worldwide, with great variation in the frequency of MDR tuberculosis between countries. In the past 8 years, extensively drug-resistant (XDR) tuberculosis has emerged, and has been reported in 84 countries, heralding the possibility of virtually untreatable tuberculosis. Increased population movement, the continuing HIV pandemic, and the rise in MDR tuberculosis pose formidable challenges to the global control of tuberculosis. We provide an overview of the global burden of drug-resistant disease; discuss the social, health service, management, and control issues that fuel and sustain the epidemic; and suggest specific recommendations for important next steps. Visionary political leadership is needed to curb the rise of MDR and XDR tuberculosis worldwide, through sustained funding and the implementation of global and regional action plans. Copyright © 2013 World Health Organization. Published by Elsevier Ltd/Inc/BV. All rights reserved. Published by Elsevier Ltd. All rights reserved.

  10. Hypoxia-induced cytotoxic drug resistance in osteosarcoma is independent of HIF-1Alpha.

    Directory of Open Access Journals (Sweden)

    Jennifer Adamski

    Full Text Available Survival rates from childhood cancer have improved dramatically in the last 40 years, such that over 80% of children are now cured. However in certain subgroups, including metastatic osteosarcoma, survival has remained stubbornly poor, despite dose intensive multi-agent chemotherapy regimens, and new therapeutic approaches are needed. Hypoxia is common in adult solid tumours and is associated with treatment resistance and poorer outcome. Hypoxia induces chemotherapy resistance in paediatric tumours including neuroblastoma, rhabdomyosarcoma and Ewing's sarcoma, in vitro, and this drug resistance is dependent on the oxygen-regulated transcription factor hypoxia inducible factor-1 (HIF-1. In this study the effects of hypoxia on the response of the osteosarcoma cell lines 791T, HOS and U2OS to the clinically relevant cytotoxics cisplatin, doxorubicin and etoposide were evaluated. Significant hypoxia-induced resistance to all three agents was seen in all three cell lines and hypoxia significantly reduced drug-induced apoptosis. Hypoxia also attenuated drug-induced activation of p53 in the p53 wild-type U2OS osteosarcoma cells. Drug resistance was not induced by HIF-1α stabilisation in normoxia by cobalt chloride nor reversed by the suppression of HIF-1α in hypoxia by shRNAi, siRNA, dominant negative HIF or inhibition with the small molecule NSC-134754, strongly suggesting that hypoxia-induced drug resistance in osteosarcoma cells is independent of HIF-1α. Inhibition of the phosphoinositide 3-kinase (PI3K pathway using the inhibitor PI-103 did not reverse hypoxia-induced drug resistance, suggesting the hypoxic activation of Akt in osteosarcoma cells does not play a significant role in hypoxia-induced drug resistance. Targeting hypoxia is an exciting prospect to improve current anti-cancer therapy and combat drug resistance. Significant hypoxia-induced drug resistance in osteosarcoma cells highlights the potential importance of hypoxia as a target

  11. A review of mechanisms of circumvention and modulation of chemotherapeutic drug resistance.

    Science.gov (United States)

    O'Connor, R

    2009-05-01

    Drug resistance is a serious limitation to the effective treatment of a number of common malignancies. Thirty years of laboratory and clinical research have greatly defined the molecular alterations underlying many drug resistance processes in cancer. Based on this knowledge, strategies to overcome the impact of resistance and increase the efficacy of cancer treatment have been translated from laboratory models to clinical trials. This article reviews laboratory and, in particular, clinical attempts at drug resistance circumvention from early forays in the inhibition of cellular efflux pump-mediated drug resistance through to more selective circumvention agent strategies and into inhibition of the other important mechanisms which can allow cancer cells to survive therapy, such as apoptosis resistance. Despite some promising results to date, resistance inhibition strategies have largely failed due to poor understanding of the pharmacology, dynamics and complexity of the resistance phenotype. With the realisation that new molecularly-targeted agents can also be rendered ineffectual by the actions of resistance mechanisms, a major focus is once again emerging on identifying new strategies/pharmaceuticals which can augment the activity of the arsenal of more conventional cytotoxics and newer targeted anti-cancer drugs. Future tactical directions where old and new resistance strategies may merge to overcome this challenge are discussed.

  12. Surveillance of extensively drug-resistant tuberculosis in Europe, 2003-2007.

    NARCIS (Netherlands)

    Devaux, I.; Manissero, D.; Fernandez de la Hoz, K.; Kremer, K.; Soolingen, D. van

    2010-01-01

    This paper describes the results of second-line drug (SLD) susceptibility tests among multidrug-resistant tuberculosis (MDR TB) cases reported in 20 European countries aiming to identify extensively drug-resistant tuberculosis (XDR TB) cases. A project on molecular surveillance of MDR TB cases was

  13. Higher Desolvation Energy Reduces Molecular Recognition in Multi-Drug Resistant HIV-1 Protease

    Directory of Open Access Journals (Sweden)

    Ladislau C. Kovari

    2012-05-01

    Full Text Available Designing HIV-1 protease inhibitors that overcome drug-resistance is still a challenging task. In this study, four clinical isolates of multi-drug resistant HIV-1 proteases that exhibit resistance to all the US FDA-approved HIV-1 protease inhibitors and also reduce the substrate recognition ability were examined. A multi-drug resistant HIV-1 protease isolate, MDR 769, was co-crystallized with the p2/NC substrate and the mutated CA/p2 substrate, CA/p2 P1’F. Both substrates display different levels of molecular recognition by the wild-type and multi-drug resistant HIV-1 protease. From the crystal structures, only limited differences can be identified between the wild-type and multi-drug resistant protease. Therefore, a wild-type HIV-1 protease and four multi-drug resistant HIV-1 proteases in complex with the two peptides were modeled based on the crystal structures and examined during a 10 ns-molecular dynamics simulation. The simulation results reveal that the multi-drug resistant HIV-1 proteases require higher desolvation energy to form complexes with the peptides. This result suggests that the desolvation of the HIV-1 protease active site is an important step of protease-ligand complex formation as well as drug resistance. Therefore, desolvation energy could be considered as a parameter in the evaluation of future HIV-1 protease inhibitor candidates.

  14. Definition of drug resistance of Mycobacterium tuberculosis to antituberculosis drugs in patients with multidrugresistant tuberculosis and TB with extremely drug resistant depending on the case of the disease

    Directory of Open Access Journals (Sweden)

    Kryzhanovsky D.G.

    2014-11-01

    Full Text Available There was studied the profile of drug resistance to the main (I line and reserve (II line antituberculosis drugs in patients with MDR and XDR tuberculosis, depending of the case of the disease. According to the randomized retrospective research 200 patients with MDR and XDR tuberculosis, who received treatment in the clinic of hospital Municipal institution «Dnipropetrovsk rigional clinical association «Phthisiology» Dnipropetrovsk regional Council» during the period 2010 – 2012 were involved. Data about patients contained the data on a case of the disease and the results of the test of drug sensitivity to MBT. XDR – TB was revealed in 7.5% of patients with MDR tuberculosis. In patients with MDR tuberculosis as compared with patients with XDR tuberculosis «new cases» were diagnosed in 19.5% against 18.5% (p <0.05. In patients with MDR tuberculosis and with XDR tuberculosis resistance to the antituberculosis drug more commonly developed to S - 88.5%, E - 55% and Z - 24%. The presence of MDR-TB and XDR-TB prevails in patients, who underwent previous courses of treatment with anti-TB drugs in case history as compared with patients with «new cases» of treatment. The development of resistance to anti-TB drugs depends on the availability of these drugs in the previous treatment regimens.

  15. Re-sensitizing drug-resistant bacteria to antibiotics by designing Antisense Therapeutics

    Science.gov (United States)

    Courtney, Colleen; Chatterjee, Anushree

    2014-03-01

    ``Super-bugs'' or ``multi-drug resistant organisms'' are a serious international health problem, with devastating consequences to patient health care. The Center for Disease Control has identified antibiotic resistance as one of the world's most pressing public health problems as a significant fraction of bacterial infections contracted are drug resistant. Typically, antibiotic resistance is encoded by ``resistance-genes'' which express proteins that carryout the resistance causing functions inside the bacterium. We present a RNA based therapeutic strategy for designing antimicrobials capable of re-sensitizing resistant bacteria to antibiotics by targeting labile regions of messenger RNAs encoding for resistance-causing proteins. We perform in silico RNA secondary structure modeling to identify labile target regions in an mRNA of interest. A synthetic biology approach is then used to administer antisense nucleic acids to our model system of ampicillin resistant Escherichia coli. Our results show a prolonged lag phase and decrease in viability of drug-resistant E. colitreated with antisense molecules. The antisense strategy can be applied to alter expression of other genes in antibiotic resistance pathways or other pathways of interest.

  16. Fluorometric assay for phenotypic differentiation of drug-resistant HIV mutants

    Science.gov (United States)

    Zhu, Qinchang; Yu, Zhiqiang; Kabashima, Tsutomu; Yin, Sheng; Dragusha, Shpend; El-Mahdy, Ahmed F. M.; Ejupi, Valon; Shibata, Takayuki; Kai, Masaaki

    2015-01-01

    Convenient drug-resistance testing of viral mutants is indispensable to effective treatment of viral infection. We developed a novel fluorometric assay for phenotypic differentiation of drug-resistant mutants of human immunodeficiency virus-I protease (HIV-PR) which uses enzymatic and peptide-specific fluorescence (FL) reactions and high-performance liquid chromatography (HPLC) of three HIV-PR substrates. This assay protocol enables use of non-purified enzyme sources and multiple substrates for the enzymatic reaction. In this study, susceptibility of HIV mutations to drugs was evaluated by selective formation of three FL products after the enzymatic HIV-PR reaction. This proof-of-concept study indicates that the present HPLC-FL method could be an alternative to current phenotypic assays for the evaluation of HIV drug resistance. PMID:25988960

  17. Hidden Liquidity

    OpenAIRE

    Cebiroglu, Gökhan; Horst, Ulrich

    2012-01-01

    We cross-sectionally analyze the presence of aggregated hidden depth and trade volume in the S&P 500 and identify its key determinants. We find that the spread is the main predictor for a stock’s hidden dimension, both in terms of traded and posted liquidity. Our findings moreover suggest that large hidden orders are associated with larger transaction costs, higher price impact and increased volatility. In particular, as large hidden orders fail to attract (latent) liquidity to the market, hi...

  18. Radiation induction of drug resistance in RIF-1: Correlation of tumor and cell culture results

    International Nuclear Information System (INIS)

    Moulder, J.E.; Hopwood, L.E.; Volk, D.M.; Davies, B.M.

    1991-01-01

    The RIF-1 tumor line contains cells that are resistant to various anti-neoplastic drugs, including 5-fluorouracil (5FU), methotrexate (MTX), adriamycin (ADR), and etoposide (VP16). The frequency of these drug-resistant cells is increased after irradiation. The frequency of drug-resistant cells and the magnitude of radiation-induced drug resistance are different in cell culture than in tumors. The dose-response and expression time relationships for radiation induction of drug resistance observed in RIF-1 tumors are unusual.We hypothesize that at high radiation doses in vivo, we are selecting for cells that are both drug resistant and radiation resistant due to microenvironmental factors, whereas at low radiation doses in vivo and all radiation doses in vitro, we are observing true mutants. These studies indicate that there can be significant differences in drug-resistance frequencies between tumors and their cell lines of origin, and that radiation induction of drug resistance depends significantly on whether the induction is done in tumors or in cell culture. These results imply that theories about the induction of drug resistance that are based on cell culture studies may be inapplicable to the induction of drug resistance in tumors

  19. Simple PCR assays improve the sensitivity of HIV-1 subtype B drug resistance testing and allow linking of resistance mutations.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Johnson

    Full Text Available BACKGROUND: The success of antiretroviral therapy is known to be compromised by drug-resistant HIV-1 at frequencies detectable by conventional bulk sequencing. Currently, there is a need to assess the clinical consequences of low-frequency drug resistant variants occurring below the detection limit of conventional genotyping. Sensitive detection of drug-resistant subpopulations, however, requires simple and practical methods for routine testing. METHODOLOGY: We developed highly-sensitive and simple real-time PCR assays for nine key drug resistance mutations and show that these tests overcome substantial sequence heterogeneity in HIV-1 clinical specimens. We specifically used early wildtype virus samples from the pre-antiretroviral drug era to measure background reactivity and were able to define highly-specific screening cut-offs that are up to 67-fold more sensitive than conventional genotyping. We also demonstrate that sequencing the mutation-specific PCR products provided a direct and novel strategy to further detect and link associated resistance mutations, allowing easy identification of multi-drug-resistant variants. Resistance mutation associations revealed in mutation-specific amplicon sequences were verified by clonal sequencing. SIGNIFICANCE: Combined, sensitive real-time PCR testing and mutation-specific amplicon sequencing provides a powerful and simple approach that allows for improved detection and evaluation of HIV-1 drug resistance mutations.

  20. Decreasing prevalence of multi-drugs resistant Mycobacterium tuberculosis in Nashik City, India

    Directory of Open Access Journals (Sweden)

    Arun P. More

    2013-03-01

    Full Text Available Objective: In India, increasing prevalence of multi-drug resistant tuberculosis (MDR has aggravated the control oftuberculosis problem. In many urban and semi-urban regions of India, no surveillance data of multidrug resistance inMycobacterium tuberculosisis available.Methods: A surveillance study on multidrug resistance was carried out in semi-urban and rural regions in and aroundNashik City of Maharashtra, India. The surveillance study was conducted in this region found that the prevalence ofcombined resistance to first and second-line anti-tuberculosis drugs is remarkably high. The isolates of M. tuberculosiswas identified and subjected to drug susceptibility testing. The patterns of drug susceptibility of isolates of M. tuberculosisduring the periods 2000 and 2004 were compared with drug susceptibility patterns of the organisms during theperiod 2008 to 2011.Results: The 260 isolates identified as M. tuberculosis show mean drug resistance prevalence of 45.6% for more than anytwo drugs and the MDR rate as 37% in the years 2000 to 2004 whereas 305 isolates of the organism show mean drugresistance prevalence of 30.2% and the MDR rate as 25% in the years 2008 to 2011.Conclusion: The researcher found that, though the prevalence of multidrug resistance to the drugs tested is remarkablyhigh, it has come down noticeably during the past seven years due to efforts of State Government and strict implementationof treatment guidelines of WHO by the physicians. J Microbiol Infect Dis 2013; 3(1: 12-17Key words: MDR-TB, XDR-TB, DOTS, drug-resistance prevalence rate.

  1. Multi drug resistant tuberculosis: a challenge in the management of ...

    African Journals Online (AJOL)

    Multi drug resistant tuberculosis (MDR-TB) will not usually respond to short course chemotherapy. Unless the individual infected with this bug is treated appropriately, they can continue spreading resistant strains in the community and further fuel the tuberculosis epidemic. Diagnosis requires drug sensitivity testing and the ...

  2. Engineered reversal of drug resistance in cancer cells--metastases suppressor factors as change agents.

    Science.gov (United States)

    Yadav, Vinod Kumar; Kumar, Akinchan; Mann, Anita; Aggarwal, Suruchi; Kumar, Maneesh; Roy, Sumitabho Deb; Pore, Subrata Kumar; Banerjee, Rajkumar; Mahesh Kumar, Jerald; Thakur, Ram Krishna; Chowdhury, Shantanu

    2014-01-01

    Building molecular correlates of drug resistance in cancer and exploiting them for therapeutic intervention remains a pressing clinical need. To identify factors that impact drug resistance herein we built a model that couples inherent cell-based response toward drugs with transcriptomes of resistant/sensitive cells. To test this model, we focused on a group of genes called metastasis suppressor genes (MSGs) that influence aggressiveness and metastatic potential of cancers. Interestingly, modeling of 84 000 drug response transcriptome combinations predicted multiple MSGs to be associated with resistance of different cell types and drugs. As a case study, on inducing MSG levels in a drug resistant breast cancer line resistance to anticancer drugs caerulomycin, camptothecin and topotecan decreased by more than 50-60%, in both culture conditions and also in tumors generated in mice, in contrast to control un-induced cells. To our knowledge, this is the first demonstration of engineered reversal of drug resistance in cancer cells based on a model that exploits inherent cellular response profiles.

  3. Specific Cell Targeting Therapy Bypasses Drug Resistance Mechanisms in African Trypanosomiasis.

    Directory of Open Access Journals (Sweden)

    Juan D Unciti-Broceta

    2015-06-01

    Full Text Available African trypanosomiasis is a deadly neglected disease caused by the extracellular parasite Trypanosoma brucei. Current therapies are characterized by high drug toxicity and increasing drug resistance mainly associated with loss-of-function mutations in the transporters involved in drug import. The introduction of new antiparasitic drugs into therapeutic use is a slow and expensive process. In contrast, specific targeting of existing drugs could represent a more rapid and cost-effective approach for neglected disease treatment, impacting through reduced systemic toxicity and circumventing resistance acquired through impaired compound uptake. We have generated nanoparticles of chitosan loaded with the trypanocidal drug pentamidine and coated by a single domain nanobody that specifically targets the surface of African trypanosomes. Once loaded into this nanocarrier, pentamidine enters trypanosomes through endocytosis instead of via classical cell surface transporters. The curative dose of pentamidine-loaded nanobody-chitosan nanoparticles was 100-fold lower than pentamidine alone in a murine model of acute African trypanosomiasis. Crucially, this new formulation displayed undiminished in vitro and in vivo activity against a trypanosome cell line resistant to pentamidine as a result of mutations in the surface transporter aquaglyceroporin 2. We conclude that this new drug delivery system increases drug efficacy and has the ability to overcome resistance to some anti-protozoal drugs.

  4. A meta-analysis of Drug resistant Tuberculosis in Sub-Saharan Africa

    African Journals Online (AJOL)

    Background: In Sub-Saharan Africa, the fight against tuberculosis (TB) has encountered a great challenge because of the emergence of drug resistant TB strains and the high prevalence of HIV infection. The aim of this meta-analysis was to determine the association of drug-resistant TB with anti-TB drug treatment history ...

  5. Molecular mechanisms of drug resistance in natural Leishmania populations vary with genetic background.

    Directory of Open Access Journals (Sweden)

    Saskia Decuypere

    Full Text Available The evolution of drug-resistance in pathogens is a major global health threat. Elucidating the molecular basis of pathogen drug-resistance has been the focus of many studies but rarely is it known whether a drug-resistance mechanism identified is universal for the studied pathogen; it has seldom been clarified whether drug-resistance mechanisms vary with the pathogen's genotype. Nevertheless this is of critical importance in gaining an understanding of the complexity of this global threat and in underpinning epidemiological surveillance of pathogen drug resistance in the field. This study aimed to assess the molecular and phenotypic heterogeneity that emerges in natural parasite populations under drug treatment pressure. We studied lines of the protozoan parasite Leishmania (L. donovani with differential susceptibility to antimonial drugs; the lines being derived from clinical isolates belonging to two distinct genetic populations that circulate in the leishmaniasis endemic region of Nepal. Parasite pathways known to be affected by antimonial drugs were characterised on five experimental levels in the lines of the two populations. Characterisation of DNA sequence, gene expression, protein expression and thiol levels revealed a number of molecular features that mark antimonial-resistant parasites in only one of the two populations studied. A final series of in vitro stress phenotyping experiments confirmed this heterogeneity amongst drug-resistant parasites from the two populations. These data provide evidence that the molecular changes associated with antimonial-resistance in natural Leishmania populations depend on the genetic background of the Leishmania population, which has resulted in a divergent set of resistance markers in the Leishmania populations. This heterogeneity of parasite adaptations provides severe challenges for the control of drug resistance in the field and the design of molecular surveillance tools for widespread

  6. Multidrug-resistant and extensively drug-resistant tuberculosis: implications for the HIV epidemic and antiretroviral therapy rollout in South Africa.

    Science.gov (United States)

    Andrews, Jason R; Shah, N Sarita; Gandhi, Neel; Moll, Tony; Friedland, Gerald

    2007-12-01

    Drug-resistant tuberculosis (TB) is emerging as a major clinical and public health challenge in areas of sub-Saharan Africa where there is a high prevalence of human immunodeficiency virus (HIV) infection. TB drug-resistance surveillance in this region has been limited by laboratory capacity and the public health infrastructure; however, with the maturation of the HIV epidemic, the burden of drug-resistant TB is increasing rapidly. The recent discovery of large numbers of cases of multidrug-resistant (MDR) TB and extensively drug-resistant (XDR) TB in South Africa likely represents an unrecognized and evolving epidemic rather than sporadic, localized outbreaks. The combination of a large population of HIV-infected susceptible hosts with poor TB treatment success rates, a lack of airborne infection control, limited drug-resistance testing, and an overburdened MDR-TB treatment program provides ideal conditions for an MDR-TB and XDR-TB epidemic of unparalleled magnitude. In the present article, we review the history of drug-resistant TB in South Africa, describe its interaction with the HIV epidemic and the resultant consequences, and suggest measures necessary for controlling MDR-TB and XDR-TB in this context. A successful response to the emergence of MDR-TB and XDR-TB will necessitate increased resources for and collaboration between TB and HIV programs.

  7. mTOR Signaling Confers Resistance to Targeted Cancer Drugs.

    Science.gov (United States)

    Guri, Yakir; Hall, Michael N

    2016-11-01

    Cancer is a complex disease and a leading cause of death worldwide. Extensive research over decades has led to the development of therapies that target cancer-specific signaling pathways. However, the clinical benefits of such drugs are at best transient due to tumors displaying intrinsic or adaptive resistance. The underlying compensatory pathways that allow cancer cells to circumvent a drug blockade are poorly understood. We review here recent studies suggesting that mammalian TOR (mTOR) signaling is a major compensatory pathway conferring resistance to many cancer drugs. mTOR-mediated resistance can be cell-autonomous or non-cell-autonomous. These findings suggest that mTOR signaling should be monitored routinely in tumors and that an mTOR inhibitor should be considered as a co-therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Clinical and Drug Resistance Characteristics of New Pediatric Tuberculosis Cases in Northern China.

    Science.gov (United States)

    Wang, Ting; Dong, Fang; Li, Qin-Jing; Yin, Qing-Qin; Song, Wen-Qi; Mokrousov, Igor; Jiao, Wei-Wei; Shen, A-Dong

    2018-05-09

    The aim of this study was to evaluate the clinical features and characteristics of drug resistance in newly diagnosed pediatric tuberculosis (TB) patients in northern China. Mycobacterium tuberculosis isolates were collected from September 2010 to October 2016 at the Beijing Children's Hospital. Patients were divided into two groups (resistant to at least one drug and pan-susceptible) according to drug susceptibility testing (DST) results. A total of 132 new cases, mainly from northern China (87.9%), were included in the study. The median age was 1.9 years (1 month-15 years). Resistance to at least one drug was detected in Mycobacterium tuberculosis isolates from 33 (25%) cases. Eight cases of multidrug-resistant TB (MDR-TB) (6.1%) were detected. The two groups did not differ in clinical presentations (disease site, fever >2 weeks, and cough >2 weeks) or in chest imaging (lesion location, lymphadenitis [mediastinal], and pleural effusion). The rate of Mycobacterium tuberculosis drug resistance in new pediatric TB cases was as high as in the new adult patients surveyed in the national drug resistance survey conducted in 2007. No significant difference was observed in clinical features between patients infected with drug-resistant and drug-susceptible strains. Routine DST is important for prescribing effective antituberculosis treatment regimens.

  9. Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance.

    Science.gov (United States)

    Khdair, Ayman; Chen, Di; Patil, Yogesh; Ma, Linan; Dou, Q Ping; Shekhar, Malathy P V; Panyam, Jayanth

    2010-01-25

    Tumor drug resistance significantly limits the success of chemotherapy in the clinic. Tumor cells utilize multiple mechanisms to prevent the accumulation of anticancer drugs at their intracellular site of action. In this study, we investigated the anticancer efficacy of doxorubicin in combination with photodynamic therapy using methylene blue in a drug-resistant mouse tumor model. Surfactant-polymer hybrid nanoparticles formulated using an anionic surfactant, Aerosol-OT (AOT), and a naturally occurring polysaccharide polymer, sodium alginate, were used for synchronized delivery of the two drugs. Balb/c mice bearing syngeneic JC tumors (mammary adenocarcinoma) were used as a drug-resistant tumor model. Nanoparticle-mediated combination therapy significantly inhibited tumor growth and improved animal survival. Nanoparticle-mediated combination treatment resulted in enhanced tumor accumulation of both doxorubicin and methylene blue, significant inhibition of tumor cell proliferation, and increased induction of apoptosis. These data suggest that nanoparticle-mediated combination chemotherapy and photodynamic therapy using doxorubicin and methylene blue has significant therapeutic potential against drug-resistant tumors. Copyright 2009 Elsevier B.V. All rights reserved.

  10. Prevalence of resistance to second-line tuberculosis drug among multidrug-resistant tuberculosis patients in Viet Nam, 2011.

    Science.gov (United States)

    Nguyen, Hoa Binh; Nguyen, Nhung Viet; Tran, Huong Thi Giang; Nguyen, Hai Viet; Bui, Quyen Thi Tu

    2016-01-01

    Extensively drug-resistant tuberculosis (XDR-TB) represents an emerging public health problem worldwide. According to the World Health Organization, an estimated 9.7% of multidrug-resistant TB (MDR-TB) cases are defined as XDR-TB globally. The objective of this study was to determine the prevalence of drug resistance to second-line TB drugs among MDR-TB cases detected in the Fourth National Anti-Tuberculosis Drug Resistance Survey in Viet Nam. Eighty clusters of TB cases were selected using a probability-proportion-to-size approach. To identify MDR-TB cases, drug susceptibility testing (DST) was performed for the four major first-line TB drugs. DST of second-line drugs (ofloxacin, amikacin, kanamycin, capreomycin) was performed on isolates from MDR-TB cases to identify pre-XDR and XDR cases. A total of 1629 smear-positive TB cases were eligible for culture and DST. Of those, DST results for first-line drugs were available for 1312 cases, and 91 (6.9%) had MDR-TB. Second-line DST results were available for 84 of these cases. Of those, 15 cases (17.9%) had ofloxacin resistance and 6.0% were resistant to kanamycin and capreomycin. Five MDR-TB cases (6.0%) met the criteria of XDR-TB. This survey provides the first estimates of the proportion of XDR-TB among MDR-TB cases in Viet Nam and provides important information for local policies regarding second-line DST. Local policies and programmes that are geared towards TB prevention, early diagnosis and treatment with effective regimens are of high importance.

  11. Withanolide D Exhibits Similar Cytostatic Effect in Drug-Resistant and Drug-Sensitive Multiple Myeloma Cells

    Directory of Open Access Journals (Sweden)

    Mark E. Issa

    2017-09-01

    Full Text Available In spite of recent therapeutic advances, multiple myeloma (MM remains a malignancy with very low curability. This has been partly attributed to the existence of a drug-resistant subpopulation known as cancer stem cells (CSCs. MM-CSCs are equipped with the necessary tools that render them highly resistant to virtually all conventional therapies. In this study, the growth inhibitory effects of withanolide D (WND, a steroidal lactone isolated from Withania somnifera, on drug-sensitive tumoral plasma cells and drug-resistant MM cells have been investigated. In MTT/XTT assays, WND exhibited similar cytostatic effects between drug-resistant and drug-sensitive cell lines in the nM range. WND also induced cell death and apoptosis in MM-CSCs and RPMI 8226 cells, as examined by the calcein/ethidium homodimer and annexin V/propidium iodide stainings, respectively. To determine whether P-glycoprotein (P-gp efflux affected the cytostatic activity of WND, P-gp was inhibited with verapamil and results indicated that the WND cytostatic effect in MM-CSCs was independent of P-gp efflux. Furthermore, WND did not increase the accumulation of the fluorescent P-gp substrate rhodamine 123 in MM-CSCs, suggesting that WND may not inhibit P-gp at the tested relevant doses. Therefore, the WND-induced cytostatic effect may be independent of P-gp efflux. These findings warrant further investigation of WND in MM-CSC animal models.

  12. Genotypic diversity of multidrug-, quinolone- and extensively drug-resistant Mycobacterium tuberculosis isolates in Thailand.

    Science.gov (United States)

    Disratthakit, Areeya; Meada, Shinji; Prammananan, Therdsak; Thaipisuttikul, Iyarit; Doi, Norio; Chaiprasert, Angkana

    2015-06-01

    Drug-resistant tuberculosis (TB), which includes multidrug-resistant (MDR-TB), quinolone-resistant (QR-TB) and extensively drug-resistant tuberculosis (XDR-TB), is a serious threat to TB control. We aimed to characterize the genotypic diversity of drug-resistant TB clinical isolates collected in Thailand to establish whether the emergence of drug-resistant TB is attributable to transmitted resistance or acquired resistance. We constructed the first molecular phylogeny of MDR-TB (n=95), QR-TB (n=69) and XDR-TB (n=28) in Thailand based on spoligotyping and proposed 24-locus multilocus variable-number of tandem repeat analysis (MLVA). Clustering analysis was performed using the unweighted pair group method with arithmetic mean. Spoligotyping identified the Beijing strain (SIT1) as the most predominant genotype (n=139; 72.4%). The discriminatory power of 0.9235 Hunter-Gaston Discriminatory Index (HGDI) with the 15-locus variable-number tandem repeats of mycobacterial interspersed repetitive units typing was improved to a 0.9574 HGDI with proposed 24-locus MLVA, thereby resulting in the subdivision of a large cluster of Beijing strains (SIT1) into 17 subclusters. We identified the spread of drug-resistant TB clones caused by three different MLVA types in the Beijing strain (SIT1) and a specific clone of XDR-TB caused by a rare genotype, the Manu-ancestor strain (SIT523). Overall, 49.5% of all isolates were clustered. These findings suggest that a remarkable transmission of drug-resistant TB occurred in Thailand. The remaining 50% of drug-resistant TB isolates were unique genotypes, which may have arisen from the individual acquisition of drug resistance. Our results suggest that transmitted and acquired resistance have played an equal role in the emergence of drug-resistant TB. Further characterization of whole genome sequences of clonal strains could help to elucidate the mycobacterial genetic factors relevant for drug resistance, transmissibility and virulence

  13. Graph theory enables drug repurposing--how a mathematical model can drive the discovery of hidden mechanisms of action.

    Science.gov (United States)

    Gramatica, Ruggero; Di Matteo, T; Giorgetti, Stefano; Barbiani, Massimo; Bevec, Dorian; Aste, Tomaso

    2014-01-01

    We introduce a methodology to efficiently exploit natural-language expressed biomedical knowledge for repurposing existing drugs towards diseases for which they were not initially intended. Leveraging on developments in Computational Linguistics and Graph Theory, a methodology is defined to build a graph representation of knowledge, which is automatically analysed to discover hidden relations between any drug and any disease: these relations are specific paths among the biomedical entities of the graph, representing possible Modes of Action for any given pharmacological compound. We propose a measure for the likeliness of these paths based on a stochastic process on the graph. This measure depends on the abundance of indirect paths between a peptide and a disease, rather than solely on the strength of the shortest path connecting them. We provide real-world examples, showing how the method successfully retrieves known pathophysiological Mode of Action and finds new ones by meaningfully selecting and aggregating contributions from known bio-molecular interactions. Applications of this methodology are presented, and prove the efficacy of the method for selecting drugs as treatment options for rare diseases.

  14. Graph theory enables drug repurposing--how a mathematical model can drive the discovery of hidden mechanisms of action.

    Directory of Open Access Journals (Sweden)

    Ruggero Gramatica

    Full Text Available We introduce a methodology to efficiently exploit natural-language expressed biomedical knowledge for repurposing existing drugs towards diseases for which they were not initially intended. Leveraging on developments in Computational Linguistics and Graph Theory, a methodology is defined to build a graph representation of knowledge, which is automatically analysed to discover hidden relations between any drug and any disease: these relations are specific paths among the biomedical entities of the graph, representing possible Modes of Action for any given pharmacological compound. We propose a measure for the likeliness of these paths based on a stochastic process on the graph. This measure depends on the abundance of indirect paths between a peptide and a disease, rather than solely on the strength of the shortest path connecting them. We provide real-world examples, showing how the method successfully retrieves known pathophysiological Mode of Action and finds new ones by meaningfully selecting and aggregating contributions from known bio-molecular interactions. Applications of this methodology are presented, and prove the efficacy of the method for selecting drugs as treatment options for rare diseases.

  15. Drug-Resistant Bacteria: On the Edge of a Crisis | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... drug-resistant bacteria research program. Why are certain bacteria becoming more resistant to drugs? There is a ... a national, even global crisis of drug-resistant bacteria. Why is that? The more we see this ...

  16. Life cycle synchronization is a viral drug resistance mechanism.

    Directory of Open Access Journals (Sweden)

    Iulia A Neagu

    2018-02-01

    Full Text Available Viral infections are one of the major causes of death worldwide, with HIV infection alone resulting in over 1.2 million casualties per year. Antiviral drugs are now being administered for a variety of viral infections, including HIV, hepatitis B and C, and influenza. These therapies target a specific phase of the virus's life cycle, yet their ultimate success depends on a variety of factors, such as adherence to a prescribed regimen and the emergence of viral drug resistance. The epidemiology and evolution of drug resistance have been extensively characterized, and it is generally assumed that drug resistance arises from mutations that alter the virus's susceptibility to the direct action of the drug. In this paper, we consider the possibility that a virus population can evolve towards synchronizing its life cycle with the pattern of drug therapy. The periodicity of the drug treatment could then allow for a virus strain whose life cycle length is a multiple of the dosing interval to replicate only when the concentration of the drug is lowest. This process, referred to as "drug tolerance by synchronization", could allow the virus population to maximize its overall fitness without having to alter drug binding or complete its life cycle in the drug's presence. We use mathematical models and stochastic simulations to show that life cycle synchronization can indeed be a mechanism of viral drug tolerance. We show that this effect is more likely to occur when the variability in both viral life cycle and drug dose timing are low. More generally, we find that in the presence of periodic drug levels, time-averaged calculations of viral fitness do not accurately predict drug levels needed to eradicate infection, even if there is no synchronization. We derive an analytical expression for viral fitness that is sufficient to explain the drug-pattern-dependent survival of strains with any life cycle length. We discuss the implications of these findings for

  17. Implementation of a national anti-tuberculosis drug resistance survey in Tanzania

    NARCIS (Netherlands)

    Chonde, Timothy M.; Doulla, Basra; van Leth, Frank; Mfinanga, Sayoki G. M.; Range, Nyagosya; Lwilla, Fred; Mfaume, Saidi M.; van Deun, Armand; Zignol, Matteo; Cobelens, Frank G.; Egwaga, Saidi M.

    2008-01-01

    BACKGROUND: A drug resistance survey is an essential public health management tool for evaluating and improving the performance of National Tuberculosis control programmes. The current manuscript describes the implementation of the first national drug resistance survey in Tanzania. METHODS:

  18. Occurrence of transmitted HIV-1 drug resistance among Drug-naïve pregnant women in selected HIV-care centres in Ghana.

    Science.gov (United States)

    Martin-Odoom, Alexander; Adiku, Theophilus; Delgado, Elena; Lartey, Margaret; Ampofo, William K

    2017-03-01

    Access to antiretroviral therapy in Ghana has been scaled up across the country over the last decade. This study sought to determine the occurrence of transmitted HIV-1 drug resistance in pregnant HIV-1 positive women yet to initiate antiretroviral therapy at selected HIV Care Centres in Ghana. Plasma specimens from twenty-six (26) HIV seropositive pregnant women who were less than 28weeks pregnant with their first pregnancy and ART naïve were collected from selected HIV care centres in three (3) regions in Ghana. Genotypic testing was done for the reverse transcriptase gene and the sequences generated were analyzed for HIV-1 drug resistance mutations using the Stanford University HIV Drug Resistance Database. Resistance mutations associated with the reverse transcriptase gene were detected in 4 (15.4%) of the participants. At least one major drug resistance mutation in the reverse transcriptase gene was found in 3 (11.5%) of the women. The detection of transmitted HIV-1 drug resistance in this drug-naïve group in two regional HIV care sites is an indication of the need for renewed action in monitoring the emergence of transmitted HIV-1 drug resistance in Ghana. None declared.

  19. Drug-resistant tuberculosis--current dilemmas, unanswered questions, challenges, and priority needs.

    Science.gov (United States)

    Zumla, Alimuddin; Abubakar, Ibrahim; Raviglione, Mario; Hoelscher, Michael; Ditiu, Lucica; McHugh, Timothy D; Squire, S Bertel; Cox, Helen; Ford, Nathan; McNerney, Ruth; Marais, Ben; Grobusch, Martin; Lawn, Stephen D; Migliori, Giovanni-Battista; Mwaba, Peter; O'Grady, Justin; Pletschette, Michel; Ramsay, Andrew; Chakaya, Jeremiah; Schito, Marco; Swaminathan, Soumya; Memish, Ziad; Maeurer, Markus; Atun, Rifat

    2012-05-15

    Tuberculosis was declared a global emergency by the World Health Organization (WHO) in 1993. Following the declaration and the promotion in 1995 of directly observed treatment short course (DOTS), a cost-effective strategy to contain the tuberculosis epidemic, nearly 7 million lives have been saved compared with the pre-DOTS era, high cure rates have been achieved in most countries worldwide, and the global incidence of tuberculosis has been in a slow decline since the early 2000s. However, the emergence and spread of multidrug-resistant (MDR) tuberculosis, extensively drug-resistant (XDR) tuberculosis, and more recently, totally drug-resistant tuberculosis pose a threat to global tuberculosis control. Multidrug-resistant tuberculosis is a man-made problem. Laboratory facilities for drug susceptibility testing are inadequate in most tuberculosis-endemic countries, especially in Africa; thus diagnosis is missed, routine surveillance is not implemented, and the actual numbers of global drug-resistant tuberculosis cases have yet to be estimated. This exposes an ominous situation and reveals an urgent need for commitment by national programs to health system improvement because the response to MDR tuberculosis requires strong health services in general. Multidrug-resistant tuberculosis and XDR tuberculosis greatly complicate patient management within resource-poor national tuberculosis programs, reducing treatment efficacy and increasing the cost of treatment to the extent that it could bankrupt healthcare financing in tuberculosis-endemic areas. Why, despite nearly 20 years of WHO-promoted activity and >12 years of MDR tuberculosis-specific activity, has the country response to the drug-resistant tuberculosis epidemic been so ineffectual? The current dilemmas, unanswered questions, operational issues, challenges, and priority needs for global drug resistance screening and surveillance, improved treatment regimens, and management of outcomes and prevention of DR

  20. Reduced intracellular drug accumulation in drug-resistant leukemia cells is not solely due to MDR-mediated efflux but also to decreased uptake

    Directory of Open Access Journals (Sweden)

    Angela Oliveira Pisco

    2014-10-01

    Full Text Available Expression of ABC family transporter proteins that promote drug efflux from cancer cells is a widely observed mechanism of multi-drug resistance of cancer cells. Cell adaptation in long-term culture of HL60 leukemic cells in the presence of chemotherapy leads to induction and maintenance of the ABC transporters expression, preventing further accumulation of drugs. However, we found that decreased accumulation of drugs and fluorescent dyes was also contributed by a reduced uptake by the resistant cells. Confocal time-lapse microscopy and flow cytometry revealed that fluid-phase endocytosis was diminished in drug-resistant cells compared to drug-sensitive cells. Drug uptake was increased by insulin co-treatment when cells were grown in methylcellulose and monitored under the microscope, but not when cultured in suspension. We propose that multi-drug resistance is not solely achieved by enhanced efflux capacity but also by supressed intake of the drug offering an alternative target to overcome drug resistance or potentiate chemotherapy.

  1. Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance in vitro.

    Science.gov (United States)

    Khdair, Ayman; Handa, Hitesh; Mao, Guangzhao; Panyam, Jayanth

    2009-02-01

    Drug resistance limits the success of many anticancer drugs. Reduced accumulation of the drug at its intracellular site of action because of overexpression of efflux transporters such as P-glycoprotein (P-gp) is a major mechanism of drug resistance. In this study, we investigated whether photodynamic therapy (PDT) using methylene blue, also a P-gp inhibitor, can be used to enhance doxorubicin-induced cytotoxicity in drug-resistant tumor cells. Aerosol OT (AOT)-alginate nanoparticles were used as a carrier for the simultaneous cellular delivery of doxorubicin and methylene blue. Methylene blue was photoactivated using light of 665 nm wavelength. Induction of apoptosis and necrosis following treatment with combination chemotherapy and PDT was investigated in drug-resistant NCI/ADR-RES cells using flow cytometry and fluorescence microscopy. Effect of encapsulation in nanoparticles on the intracellular accumulation of doxorubicin and methylene blue was investigated qualitatively using fluorescence microscopy and was quantitated using HPLC. Encapsulation in AOT-alginate nanoparticles significantly enhanced the cytotoxicity of combination therapy in resistant tumor cells. Nanoparticle-mediated combination therapy resulted in a significant induction of both apoptosis and necrosis. Improvement in cytotoxicity could be correlated with enhanced intracellular and nuclear delivery of the two drugs. Further, nanoparticle-mediated combination therapy resulted in significantly elevated reactive oxygen species (ROS) production compared to single drug treatment. In conclusion, nanoparticle-mediated combination chemotherapy and PDT using doxorubicin and methylene blue was able to overcome resistance mechanisms and resulted in improved cytotoxicity in drug-resistant tumor cells.

  2. Comparison of the pharmacokinetics of two dosage regimens of linezolid in multidrug-resistant and extensively drug-resistant tuberculosis patients.

    NARCIS (Netherlands)

    Alffenaar, J.W.C.; Altena, R. van; Harmelink, I.M.; Filguera, P.; Molenaar, E.; Wessels, A.M.; Soolingen, D. van; Kosterink, J.G.W.; Uges, D.R.A.; Werf, T.S. van der

    2010-01-01

    BACKGROUND AND OBJECTIVES: For the treatment of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB), potent new drugs are urgently needed. Linezolid is a promising drug, but its use is limited by adverse effects with prolonged administration of 600 mg twice daily. In

  3. Comparison of the Pharmacokinetics of Two Dosage Regimens of Linezolid in Multidrug-Resistant and Extensively Drug-Resistant Tuberculosis Patients

    NARCIS (Netherlands)

    Alffenaar, Jan-Willem C.; van Altena, Richard; Harmelink, Ilse M.; Filguera, Patricia; Molenaar, Esther; Wessels, A. Mireille A.; van Soolingen, Dick; Kosterink, Jos G. W.; Uges, Donald R. A.; van der Werf, Tjip S.

    2010-01-01

    Background and Objectives: For the treatment of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB), potent new drugs are urgently needed. Linezolid is a promising drug, but its use is limited by adverse effects with prolonged administration of 600 mg twice daily. In

  4. Population mobility, globalization, and antimicrobial drug resistance.

    Science.gov (United States)

    MacPherson, Douglas W; Gushulak, Brian D; Baine, William B; Bala, Shukal; Gubbins, Paul O; Holtom, Paul; Segarra-Newnham, Marisel

    2009-11-01

    Population mobility is a main factor in globalization of public health threats and risks, specifically distribution of antimicrobial drug-resistant organisms. Drug resistance is a major risk in healthcare settings and is emerging as a problem in community-acquired infections. Traditional health policy approaches have focused on diseases of global public health significance such as tuberculosis, yellow fever, and cholera; however, new diseases and resistant organisms challenge existing approaches. Clinical implications and health policy challenges associated with movement of persons across barriers permeable to products, pathogens, and toxins (e.g., geopolitical borders, patient care environments) are complex. Outcomes are complicated by high numbers of persons who move across disparate and diverse settings of disease threat and risk. Existing policies and processes lack design and capacity to prevent or mitigate adverse health outcomes. We propose an approach to global public health risk management that integrates population factors with effective and timely application of policies and processes.

  5. Modeling HIV-1 drug resistance as episodic directional selection.

    Science.gov (United States)

    Murrell, Ben; de Oliveira, Tulio; Seebregts, Chris; Kosakovsky Pond, Sergei L; Scheffler, Konrad

    2012-01-01

    The evolution of substitutions conferring drug resistance to HIV-1 is both episodic, occurring when patients are on antiretroviral therapy, and strongly directional, with site-specific resistant residues increasing in frequency over time. While methods exist to detect episodic diversifying selection and continuous directional selection, no evolutionary model combining these two properties has been proposed. We present two models of episodic directional selection (MEDS and EDEPS) which allow the a priori specification of lineages expected to have undergone directional selection. The models infer the sites and target residues that were likely subject to directional selection, using either codon or protein sequences. Compared to its null model of episodic diversifying selection, MEDS provides a superior fit to most sites known to be involved in drug resistance, and neither one test for episodic diversifying selection nor another for constant directional selection are able to detect as many true positives as MEDS and EDEPS while maintaining acceptable levels of false positives. This suggests that episodic directional selection is a better description of the process driving the evolution of drug resistance.

  6. Modeling HIV-1 drug resistance as episodic directional selection.

    Directory of Open Access Journals (Sweden)

    Ben Murrell

    Full Text Available The evolution of substitutions conferring drug resistance to HIV-1 is both episodic, occurring when patients are on antiretroviral therapy, and strongly directional, with site-specific resistant residues increasing in frequency over time. While methods exist to detect episodic diversifying selection and continuous directional selection, no evolutionary model combining these two properties has been proposed. We present two models of episodic directional selection (MEDS and EDEPS which allow the a priori specification of lineages expected to have undergone directional selection. The models infer the sites and target residues that were likely subject to directional selection, using either codon or protein sequences. Compared to its null model of episodic diversifying selection, MEDS provides a superior fit to most sites known to be involved in drug resistance, and neither one test for episodic diversifying selection nor another for constant directional selection are able to detect as many true positives as MEDS and EDEPS while maintaining acceptable levels of false positives. This suggests that episodic directional selection is a better description of the process driving the evolution of drug resistance.

  7. Towards an understanding of drug resistance in malaria

    DEFF Research Database (Denmark)

    Lemcke, T; Christensen, I T; Jørgensen, Flemming Steen

    1999-01-01

    and structural differences. Based on this analysis the molecular consequences of point mutations known to be involved in drug resistance were discussed. The significance of the most important point mutation causing resistance, S108N, could be explained by the model, whereas the point mutations associated...... with enhanced resistance, N51I and C59R, seem to have a more indirect effect on inhibitor binding....

  8. Molecular Basis for Drug Resistance in HIV-1 Protease

    Directory of Open Access Journals (Sweden)

    Celia A. Schiffer

    2010-11-01

    Full Text Available HIV-1 protease is one of the major antiviral targets in the treatment of patients infected with HIV-1. The nine FDA approved HIV-1 protease inhibitors were developed with extensive use of structure-based drug design, thus the atomic details of how the inhibitors bind are well characterized. From this structural understanding the molecular basis for drug resistance in HIV-1 protease can be elucidated. Selected mutations in response to therapy and diversity between clades in HIV-1 protease have altered the shape of the active site, potentially altered the dynamics and even altered the sequence of the cleavage sites in the Gag polyprotein. All of these interdependent changes act in synergy to confer drug resistance while simultaneously maintaining the fitness of the virus. New strategies, such as incorporation of the substrate envelope constraint to design robust inhibitors that incorporate details of HIV-1 protease’s function and decrease the probability of drug resistance, are necessary to continue to effectively target this key protein in HIV-1 life cycle.

  9. DRUG RESISTANCE IN HELICOBACTER PYLORI

    Directory of Open Access Journals (Sweden)

    Júlia Silveira VIANNA

    Full Text Available ABSTRACT Background Helicobacter pylori has a worldwide distribution and is associated with the pathogenesis of various diseases of the digestive system. Treatment to eradicate this microorganism involves the use of a combination of antimicrobials, such as amoxicillin, metronidazole, clarithromycin, and levofloxacin, combined with proton pump inhibitors. Although the current therapy is effective, a high rate of treatment failure has been observed, mainly because of the acquisition of point mutations, one of the major resistance mechanisms developed by H. pylori. This phenomenon is related to frequent and/or inappropriate use of antibiotics. Conclusion This review reported an overview of the resistance to the main drugs used in the treatment of H. pylori, confirming the hypothesis that antibacterial resistance is a highly local phenomenon and genetic characteristics of a given population can influence which therapy is the most appropriate.

  10. Characterization of drug resistant Enterobacter species isolated from ...

    African Journals Online (AJOL)

    Enterobacter species are emerging clinical pathogens and they play important roles in the dissemination of drug resistant traits within the food chain due to their intrinsic abilities for resistance to commonly used antibiotics such as cephalosporins. Two Enterobacter cloacae and one Enterobacter hormaechei characterized in ...

  11. The fourth national anti-tuberculosis drug resistance survey in Viet Nam.

    Science.gov (United States)

    Nhung, N V; Hoa, N B; Sy, D N; Hennig, C M; Dean, A S

    2015-06-01

    Viet Nam's Fourth National Anti-Tuberculosis Drug Resistance Survey was conducted in 2011. To determine the prevalence of resistance to the four main first-line anti-tuberculosis drugs in Viet Nam. Eighty clusters were selected using a probability proportion to size approach. Drug susceptibility testing (DST) against the four main first-line anti-tuberculosis drugs was performed. A total of 1629 smear-positive tuberculosis (TB) patients were eligible for culture. Of these, DST results were available for 1312 patients, including 1105 new TB cases, 195 previously treated TB cases and 12 cases with an unknown treatment history. The proportion of cases with resistance to any drug was 32.7% (95%CI 29.1-36.5) among new cases and 54.2% (95%CI 44.3-63.7) among previously treated cases. The proportion of multidrug-resistant TB (MDR-TB) cases was 4.0% (95%CI 2.5-5.4) in new cases and 23.3 (95%CI 16.7-29.9) in previously treated cases. The fourth drug resistance survey in Viet Nam found that the proportion of MDR-TB among new and previously treated cases was not significantly different from that in the 2005 survey. The National TB Programme should prioritise the detection and treatment of MDR-TB to reduce transmission of MDR-TB in the community.

  12. Low-level quinolone-resistance in multi-drug resistant typhoid

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, S H; Khan, M A [Armed Forces Inst. of Pathology, Rawalpindi (Pakistan). Dept. of Microbiolgy

    2008-01-15

    To find out the frequency of low-level quinolone-resistance in Multi-Drug Resistant (MDR) typhoid using nalidixic acid screening disc. Blood was obtained from suspected cases of typhoid fever and cultured in to BacT/ALERT. The positive blood cultures bottles were subcultured. The isolates were identified by colony morphology and biochemical tests using API-20E galleries. Susceptibility testing of isolates was done by modified Kirby-Bauer disc diffusion method on Muellar Hinton Agar. For the isolates, which were resistant to nalidixic acid by disc diffusion method, Minimal Inhibitory Concentrations (MICs) of ciprofloxacin and nalidixic acid were determined by using the E-test strips. Disc diffusion susceptibility tests and MICs were interpreted according to the guidelines provided by National Committee for Control Laboratory Standard (NCCLS). A total of 21(65.5%) out of 32 isolates of Salmonellae were nalidixic acid-resistant by disk diffusion method. All the nalidixic acid-resistant isolates by disc diffusion method were confirmed by MICs for both ciprofloxacin and nalidixic acid. All the nalidixic acid-resistant isolates had a ciprofloxacin MIC of 0.25-1 microg/ml (reduced susceptibility) and nalidixic acid MICs > 32 microg (resistant). Out of all Salmonella isolates, 24 (75%) were found to be MDR, and all were S. typbi. Low-level quinolone-resistance in typhoid was high in this small series. Screening for nalidixic acid resistance with a 30 microg nalidixic acid disk is a reliable and cost-effective method to detect low-level fluoroquinolone resistance, especially in the developing countries. (author)

  13. Low-level quinolone-resistance in multi-drug resistant typhoid

    International Nuclear Information System (INIS)

    Mirza, S.H.; Khan, M.A.

    2008-01-01

    To find out the frequency of low-level quinolone-resistance in Multi-Drug Resistant (MDR) typhoid using nalidixic acid screening disc. Blood was obtained from suspected cases of typhoid fever and cultured in to BacT/ALERT. The positive blood cultures bottles were subcultured. The isolates were identified by colony morphology and biochemical tests using API-20E galleries. Susceptibility testing of isolates was done by modified Kirby-Bauer disc diffusion method on Muellar Hinton Agar. For the isolates, which were resistant to nalidixic acid by disc diffusion method, Minimal Inhibitory Concentrations (MICs) of ciprofloxacin and nalidixic acid were determined by using the E-test strips. Disc diffusion susceptibility tests and MICs were interpreted according to the guidelines provided by National Committee for Control Laboratory Standard (NCCLS). A total of 21(65.5%) out of 32 isolates of Salmonellae were nalidixic acid-resistant by disk diffusion method. All the nalidixic acid-resistant isolates by disc diffusion method were confirmed by MICs for both ciprofloxacin and nalidixic acid. All the nalidixic acid-resistant isolates had a ciprofloxacin MIC of 0.25-1 microg/ml (reduced susceptibility) and nalidixic acid MICs > 32 microg (resistant). Out of all Salmonella isolates, 24 (75%) were found to be MDR, and all were S. typbi. Low-level quinolone-resistance in typhoid was high in this small series. Screening for nalidixic acid resistance with a 30 microg nalidixic acid disk is a reliable and cost-effective method to detect low-level fluoroquinolone resistance, especially in the developing countries. (author)

  14. Drug Targets and Mechanisms of Resistance in the Anaerobic Protozoa

    Science.gov (United States)

    Upcroft, Peter; Upcroft, Jacqueline A.

    2001-01-01

    The anaerobic protozoa Giardia duodenalis, Trichomonas vaginalis, and Entamoeba histolytica infect up to a billion people each year. G. duodenalis and E. histolytica are primarily pathogens of the intestinal tract, although E. histolytica can form abscesses and invade other organs, where it can be fatal if left untreated. T. vaginalis infection is a sexually transmitted infection causing vaginitis and acute inflammatory disease of the genital mucosa. T. vaginalis has also been reported in the urinary tract, fallopian tubes, and pelvis and can cause pneumonia, bronchitis, and oral lesions. Respiratory infections can be acquired perinatally. T. vaginalis infections have been associated with preterm delivery, low birth weight, and increased mortality as well as predisposing to human immunodeficiency virus infection, AIDS, and cervical cancer. All three organisms lack mitochondria and are susceptible to the nitroimidazole metronidazole because of similar low-redox-potential anaerobic metabolic pathways. Resistance to metronidazole and other drugs has been observed clinically and in the laboratory. Laboratory studies have identified the enzyme that activates metronidazole, pyruvate:ferredoxin oxidoreductase, to its nitroso form and distinct mechanisms of decreasing drug susceptibility that are induced in each organism. Although the nitroimidazoles have been the drug family of choice for treating the anaerobic protozoa, G. duodenalis is less susceptible to other antiparasitic drugs, such as furazolidone, albendazole, and quinacrine. Resistance has been demonstrated for each agent, and the mechanism of resistance has been investigated. Metronidazole resistance in T. vaginalis is well documented, and the principal mechanisms have been defined. Bypass metabolism, such as alternative oxidoreductases, have been discovered in both organisms. Aerobic versus anaerobic resistance in T. vaginalis is discussed. Mechanisms of metronidazole resistance in E. histolytica have recently

  15. Genotypic drug resistance and long-term mortality in patients with triple-class antiretroviral drug failure

    DEFF Research Database (Denmark)

    Lohse, Nicolai; Jørgensen, LB; Kronborg, G

    2007-01-01

    OBJECTIVE: To examine the prevalence of drug-resistance-associated mutations in HIV patients with triple-drug class virological failure (TCF) and their association with long-term mortality. DESIGN: Population-based study from the Danish HIV Cohort Study (DHCS). METHODS: We included all patients...... range 2-10), and 81 (61%) patients had mutations conferring resistance towards all three major drug classes. In a regression model adjusted for CD4+ T-cell count, HIV RNA, year of TCF, age, gender and previous inferior antiretroviral therapy, harbouring > or =9 versus ... in the DHCS who experienced TCF between January 1995 and November 2004, and we performed genotypic resistance tests for International AIDS Society (IAS)-USA primary mutations on virus from plasma samples taken around the date of TCF. We computed time to all-cause death from date of TCF. The relative risk...

  16. Drug Resistance to EGFR Inhibitors in Lung Cancer | Office of Cancer Genomics

    Science.gov (United States)

    The discovery of mutations in epidermal growth factor receptor (EGFR) has dramatically changed the treatment of patients with non-small-cell lung cancer (NSCLC), the leading cause of cancer deaths worldwide. EGFR-targeted therapies show considerable promise, but drug resistance has become a substantial issue. We reviewed the literature to provide an overview of the drug resistance to EGFR tyrosine kinase inhibitors (TKIs) in NSCLC. The mechanisms causing primary, acquired and persistent drug resistance to TKIs vary.

  17. Experimental studies on the ecology and evolution of drug-resistant malaria parasites

    OpenAIRE

    Huijben, Silvie

    2010-01-01

    Drug resistance is a serious problem in health care in general, and in malaria treatment in particular, rendering many of our previously considered ‘wonder drugs’ useless. Recently, large sums of money have been allocated for the continuous development of new drugs to replace the failing ones. We seem to be one step behind the evolution of antimalarial resistance; is it possible to get one step ahead? Are interventions which slow down the evolution and spread of drug-resistant ...

  18. Identifying co-targets to fight drug resistance based on a random walk model

    Directory of Open Access Journals (Sweden)

    Chen Liang-Chun

    2012-01-01

    Full Text Available Abstract Background Drug resistance has now posed more severe and emergent threats to human health and infectious disease treatment. However, wet-lab approaches alone to counter drug resistance have so far still achieved limited success due to less knowledge about the underlying mechanisms of drug resistance. Our approach apply a heuristic search algorithm in order to extract active network under drug treatment and use a random walk model to identify potential co-targets for effective antibacterial drugs. Results We use interactome network of Mycobacterium tuberculosis and gene expression data which are treated with two kinds of antibiotic, Isoniazid and Ethionamide as our test data. Our analysis shows that the active drug-treated networks are associated with the trigger of fatty acid metabolism and synthesis and nicotinamide adenine dinucleotide (NADH-related processes and those results are consistent with the recent experimental findings. Efflux pumps processes appear to be the major mechanisms of resistance but SOS response is significantly up-regulation under Isoniazid treatment. We also successfully identify the potential co-targets with literature confirmed evidences which are related to the glycine-rich membrane, adenosine triphosphate energy and cell wall processes. Conclusions With gene expression and interactome data supported, our study points out possible pathways leading to the emergence of drug resistance under drug treatment. We develop a computational workflow for giving new insights to bacterial drug resistance which can be gained by a systematic and global analysis of the bacterial regulation network. Our study also discovers the potential co-targets with good properties in biological and graph theory aspects to overcome the problem of drug resistance.

  19. "A'ole" Drugs! Cultural Practices and Drug Resistance of Rural Hawai'ian Youths

    Science.gov (United States)

    Po'A-Kekuawela, Ka'Ohinani; Okamoto, Scott K.; Nebre, La Risa H.; Helm, Susana; Chin, Coralee I. H.

    2009-01-01

    This qualitative study examined how Native Hawai'ian youths from rural communities utilized cultural practices to promote drug resistance and/or abstinence. Forty-seven students from five different middle schools participated in gender-specific focus groups that focused on the cultural and environmental contexts of drug use for Native Hawai'ian…

  20. Transmission of Drug-Resistant Leprosy in Guinea-Conakry Detected Using Molecular Epidemiological Approaches.

    Science.gov (United States)

    Avanzi, Charlotte; Busso, Philippe; Benjak, Andrej; Loiseau, Chloé; Fomba, Abdoulaye; Doumbia, Glodia; Camara, Idrissa; Lamou, André; Sock, Gouressy; Drame, Tiguidanké; Kodio, Mamadou; Sakho, Fatoumata; Sow, Samba O; Cole, Stewart T; Johnson, Roch Christian

    2016-12-01

    Molecular drug susceptibility testing was performed on skin biopsies from 24 leprosy patients from Guinea-Conakry for the first time. We identified primary drug resistance in 4 cases and a dapsone-resistant cluster caused by the same strain. Primary transmission of drug-resistant Mycobacterium leprae, including a rifampicin-resistant strain, is reported. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  1. Comparison of Strategies to Overcome Drug Resistance: Learning from Various Kingdoms

    Directory of Open Access Journals (Sweden)

    Hiroshi Ogawara

    2018-06-01

    Full Text Available Drug resistance, especially antibiotic resistance, is a growing threat to human health. To overcome this problem, it is significant to know precisely the mechanisms of drug resistance and/or self-resistance in various kingdoms, from bacteria through plants to animals, once more. This review compares the molecular mechanisms of the resistance against phycotoxins, toxins from marine and terrestrial animals, plants and fungi, and antibiotics. The results reveal that each kingdom possesses the characteristic features. The main mechanisms in each kingdom are transporters/efflux pumps in phycotoxins, mutation and modification of targets and sequestration in marine and terrestrial animal toxins, ABC transporters and sequestration in plant toxins, transporters in fungal toxins, and various or mixed mechanisms in antibiotics. Antibiotic producers in particular make tremendous efforts for avoiding suicide, and are more flexible and adaptable to the changes of environments. With these features in mind, potential alternative strategies to overcome these resistance problems are discussed. This paper will provide clues for solving the issues of drug resistance.

  2. Quadruple-first line drug resistance in Mycobacterium tuberculosis in Vietnam: What can we learn from genes?

    Science.gov (United States)

    Nguyen, Huy Quang; Nguyen, Nhung Viet; Contamin, Lucie; Tran, Thanh Hoa Thi; Vu, Thuong Thi; Nguyen, Hung Van; Nguyen, Ngoc Lan Thi; Nguyen, Son Thai; Dang, Anh Duc; Bañuls, Anne-Laure; Nguyen, Van Anh Thi

    2017-06-01

    In Vietnam, a country with high tuberculosis (137/100.000 population) and multidrug-resistant (MDR)-TB burdens (7.8/100.000 population), little is known about the molecular signatures of drug resistance in general and more particularly of second line drug (SLD) resistance. This study is specifically focused on Mycobacterium tuberculosis isolates resistant to four first-line drugs (FLDs) that make TB much more difficult to treat. The aim is to determine the proportion of SLD resistance in these quadruple drug resistant isolates and the genetic determinants linked to drug resistance to better understand the genetic processes leading to quadruple and extremely drug resistance (XDR). 91 quadruple (rifampicin, isoniazid, ethambutol and streptomycin) FLD resistant and 55 susceptible isolates were included. Spoligotyping and 24-locus MIRU-VNTR techniques were performed and 9 genes and promoters linked to FLD and SLD resistance were sequenced. SLD susceptibility testing was carried out on a subsample of isolates. High proportion of quadruple-FLD resistant isolates was resistant to fluoroquinolones (27%) and second-line injectable drugs (30.2%) by drug susceptibility testing. The sequencing revealed high mutation diversity with prevailing mutations at positions katG315, inhA-15, rpoB531, embB306, rrs1401, rpsL43 and gyrA94. The sensitivity and specificity were high for most drug resistances (>86%), but the sensitivity was lower for injectable drug resistances (resistance. Nevertheless, particular mutation patterns linked to high-level resistance and low fitness costs seem to be favored. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Drug-resistance patterns of Mycobacterium tuberculosis strains and associated risk factors among multi drug-resistant tuberculosis suspected patients from Ethiopia.

    Science.gov (United States)

    Mesfin, Eyob Abera; Beyene, Dereje; Tesfaye, Abreham; Admasu, Addisu; Addise, Desalegn; Amare, Miskir; Dagne, Biniyam; Yaregal, Zelalem; Tesfaye, Ephrem; Tessema, Belay

    2018-01-01

    Multidrug drug-resistant tuberculosis (MDR-TB) is a major health problem and seriously threatens TB control and prevention efforts globally. Ethiopia is among the 30th highest TB burden countries for MDR-TB with 14% prevalence among previously treated cases. The focus of this study was on determining drug resistance patterns of Mycobacterium tuberculosis among MDR-TB suspected cases and associated risk factors. A cross-sectional study was conducted in Addis Ababa from June 2015 to December 2016. Sputum samples and socio-demographic data were collected from 358 MDR-TB suspected cases. Samples were analyzed using Ziehl-Neelsen technique, GeneXpert MTB/RIF assay, and culture using Lowenstein-Jensen and Mycobacterial growth indicator tube. Data were analyzed using SPSS version 23. A total of 226 the study participants were culture positive for Mycobacterium tuberculosis, among them, 133 (58.8%) participants were males. Moreover, 162 (71.7%) had been previously treated for tuberculosis, while 128 (56.6%) were TB/HIV co-infected. A majority [122 (54%)] of the isolates were resistant to any first-line anti-TB drugs. Among the resistant isolates, 110 (48.7%) were determined to be resistant to isoniazid, 94 (41.6%) to streptomycin, 89 (39.4%) to rifampicin, 72 (31.9%) to ethambutol, and 70 (30.9%) to pyrazinamide. The prevalence of MDR-TB was 89 (39.4%), of which 52/89 (58.4%) isolates were resistance to all five first-line drugs. Risk factors such as TB/HIV co-infection (AOR = 5.59, p = 0.00), cigarette smoking (AOR = 3.52, p = 0.045), alcohol drinking (AOR = 5.14, p = 0.001) hospital admission (AOR = 3.49, p = 0.005) and visiting (AOR = 3.34, p = 0.044) were significantly associated with MDR-TB. The prevalence of MDR-TB in the study population was of a significantly high level among previously treated patients and age group of 25-34. TB/HIV coinfection, smoking of cigarette, alcohol drinking, hospital admission and health facility visiting were identified as risk factors

  4. Drug membrane interaction and the importance for drug transport, distribution, accumulation, efficacy and resistance.

    Science.gov (United States)

    Seydel, J K; Coats, E A; Cordes, H P; Wiese, M

    1994-10-01

    Some aspects of drug membrane interaction and its influence on drug transport, accumulation, efficacy and resistance have been discussed. The interactions manifest themselves macroscopically in changes in the physical and thermodynamic properties of "pure membranes" or bilayers. As various amounts of foreign molecules enter the membrane, in particular the main gel to liquid crystalline phase transition can be dramatically changed. This may change permeability, cell-fusion, cell resistance and may also lead to changes in conformation of the embedded receptor proteins. Furthermore, specific interactions with lipids may lead to drug accumulation in membranes and thus to much larger concentrations at the active site than present in the surrounding water phase. The lipid environment may also lead to changes in the preferred conformation of drug molecules. These events are directly related to drug efficacy. The determination of essential molecular criteria for the interaction could be used to design new and more selective therapeutics. This excursion in some aspects of drug membrane interaction underlines the importance of lipids and their interaction with drug molecules for our understanding of drug action, but this is not really a new thought but has been formulated in 1884 by THUDICUM: "Phospholipids are the centre, life and chemical soul of all bioplasm whatsoever, that of plants as well as of animals".

  5. Assessing the potential impact of artemisinin and partner drug resistance in sub-Saharan Africa.

    Science.gov (United States)

    Slater, Hannah C; Griffin, Jamie T; Ghani, Azra C; Okell, Lucy C

    2016-01-06

    Artemisinin and partner drug resistant malaria parasites have emerged in Southeast Asia. If resistance were to emerge in Africa it could have a devastating impact on malaria-related morbidity and mortality. This study estimates the potential impact of artemisinin and partner drug resistance on disease burden in Africa if it were to emerge. Using data from Asia and Africa, five possible artemisinin and partner drug resistance scenarios are characterized. An individual-based malaria transmission model is used to estimate the impact of each resistance scenario on clinical incidence and parasite prevalence across Africa. Artemisinin resistance is characterized by slow parasite clearance and partner drug resistance is associated with late clinical failure or late parasitological failure. Scenarios with high levels of recrudescent infections resulted in far greater increases in clinical incidence compared to scenarios with high levels of slow parasite clearance. Across Africa, it is estimated that artemisinin and partner drug resistance at levels similar to those observed in Oddar Meanchey province in Cambodia could result in an additional 78 million cases over a 5 year period, a 7% increase in cases compared to a scenario with no resistance. A scenario with high levels of slow clearance but no recrudescence resulted in an additional 10 million additional cases over the same period. Artemisinin resistance is potentially a more pressing concern than partner drug resistance due to the lack of viable alternatives. However, it is predicted that a failing partner drug will result in greater increases in malaria cases and morbidity than would be observed from artemisinin resistance only.

  6. Antituberculosis drug resistance in the south of Vietnam: prevalence and trends

    NARCIS (Netherlands)

    Huong, Nguyen T.; Lan, Nguyen T. N.; Cobelens, Frank G. J.; Duong, Bui D.; Co, Nguyen V.; Bosman, Maarten C.; Kim, Sang-Jae; van Soolingen, Dick; Borgdorff, Martien W.

    2006-01-01

    BACKGROUND: There is limited evidence that the DOTS (directly observed therapy, short course) strategy for tuberculosis (TB) control can contain the emergence and spread of drug resistance in the absence of second-line treatment. We compared drug-resistance levels between 1996 and 2001 in the south

  7. Interplay between Mutations and Efflux in Drug Resistant Clinical Isolates of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Miguel Viveiros

    2017-04-01

    Full Text Available Numerous studies show efflux as a universal bacterial mechanism contributing to antibiotic resistance and also that the activity of the antibiotics subject to efflux can be enhanced by the combined use of efflux inhibitors. Nevertheless, the contribution of efflux to the overall drug resistance levels of clinical isolates of Mycobacterium tuberculosis is poorly understood and still is ignored by many. Here, we evaluated the contribution of drug efflux plus target-gene mutations to the drug resistance levels in clinical isolates of M. tuberculosis. A panel of 17 M. tuberculosis clinical strains were characterized for drug resistance associated mutations and antibiotic profiles in the presence and absence of efflux inhibitors. The correlation between the effect of the efflux inhibitors and the resistance levels was assessed by quantitative drug susceptibility testing. The bacterial growth/survival vs. growth inhibition was analyzed through the comparison between the time of growth in the presence and absence of an inhibitor. For the same mutation conferring antibiotic resistance, different MICs were observed and the different resistance levels found could be reduced by efflux inhibitors. Although susceptibility was not restored, the results demonstrate the existence of a broad-spectrum synergistic interaction between antibiotics and efflux inhibitors. The existence of efflux activity was confirmed by real-time fluorometry. Moreover, the efflux pump genes mmr, mmpL7, Rv1258c, p55, and efpA were shown to be overexpressed in the presence of antibiotics, demonstrating the contribution of these efflux pumps to the overall resistance phenotype of the M. tuberculosis clinical isolates studied, independently of the genotype of the strains. These results showed that the drug resistance levels of multi- and extensively-drug resistant M. tuberculosis clinical strains are a combination between drug efflux and the presence of target-gene mutations, a reality

  8. Radiation response of drug-resistant variants of a human breast cancer cell line

    International Nuclear Information System (INIS)

    Lehnert, S.; Greene, D.; Batist, G.

    1989-01-01

    The radiation response of drug-resistant variants of the human tumor breast cancer cell line MCF-7 has been investigated. Two sublines, one resistant to adriamycin (ADRR) and the other to melphalan (MLNR), have been selected by exposure to stepwise increasing concentrations of the respective drugs. ADRR cells are 200-fold resistant to adriamycin and cross-resistant to a number of other drugs and are characterized by the presence of elevated levels of selenium-dependent glutathione peroxidase and glutathione-S-transferase. MLNR cells are fourfold resistant to melphalan and cross-resistant to some other drugs. The only mechanism of drug resistance established for MLNR cells to date is an enhancement of DNA excision repair processes. While the spectrum of drug resistance and the underlying mechanisms differ for the two sublines, their response to radiation is qualitatively similar. Radiation survival curves for ADRR and MLNR cells differ from that for wild-type cells in a complex manner with, for the linear-quadratic model, a decrease in the size of alpha and an increase in the size of beta. There is a concomitant decrease in the size of the alpha/beta ratio which is greater for ADRR cells than for MLNR cells. Analysis of results using the multitarget model gave values of D0 of 1.48, 1.43, and 1.67 Gy for MCF-7 cells are not a consequence of cell kinetic differences between these sublines. Results of split-dose experiments indicated that for both drug-resistant sublines the extent of sublethal damage repair reflected the width of the shoulder on the single-dose survival curve. For MCF-7 cells in the stationary phase of growth, the drug-resistant sublines did not show cross-resistance to radiation; however, delayed subculture following irradiation of stationary-phase cultures increased survival to a greater extent for ADRR and MLNR cells than for wild-type cells

  9. Primary drug-resistant tuberculosis in Hanoi, Viet Nam: present status and risk factors.

    Directory of Open Access Journals (Sweden)

    Nguyen Thi Le Hang

    Full Text Available INTRODUCTION: Resistance of Mycobacterium tuberculosis (MTB to anti-tuberculosis (TB drugs presents a serious challenge to TB control worldwide. We investigated the status of drug resistance, including multidrug-resistant (MDR TB, and possible risk factors among newly diagnosed TB patients in Hanoi, the capital of Viet Nam. METHODS: Clinical and epidemiological information was collected from 506 newly diagnosed patients with sputum smear- and culture-positive TB, and 489 (96.6% MTB isolates were subjected to conventional drug susceptibility testing, spoligotyping, and 15-locus variable numbers of tandem repeats typing. Adjusted odds ratios (aORs were calculated to analyze the risk factors for primary drug resistance. RESULTS: Of 489 isolates, 298 (60.9% were sensitive to all drugs tested. Resistance to isoniazid, rifampicin, streptomycin, ethambutol, and MDR accounted for 28.2%, 4.9%, 28.2%, 2.9%, and 4.5%, respectively. Of 24 isolates with rifampicin resistance, 22 (91.7% were MDR and also resistant to streptomycin, except one case. Factors associated with isoniazid resistance included living in old urban areas, presence of the Beijing genotype, and clustered strains [aOR = 2.23, 95% confidence interval (CI 1.15-4.35; 1.91, 1.18-3.10; and 1.69, 1.06-2.69, respectively. The Beijing genotype was also associated with streptomycin resistance (aOR = 2.10, 95% CI 1.29-3.40. Human immunodeficiency virus (HIV coinfection was associated with rifampicin resistance and MDR (aOR = 5.42, 95% CI 2.07-14.14; 6.23, 2.34-16.58, respectively. CONCLUSION: Isoniazid and streptomycin resistance was observed in more than a quarter of TB patients without treatment history in Hanoi. Transmission of isoniazid-resistant TB among younger people should be carefully monitored in urban areas, where Beijing strains and HIV coinfection are prevalent. Choosing an optimal treatment regimen on the basis of the results of drug susceptibility tests and monitoring of treatment

  10. Setting priorities for a research agenda to combat drug-resistant tuberculosis in children.

    Science.gov (United States)

    Velayutham, B; Nair, D; Ramalingam, S; Perez-Velez, C M; Becerra, M C; Swaminathan, S

    2015-12-21

    Numerous knowledge gaps hamper the prevention and treatment of childhood drug-resistant tuberculosis (TB). Identifying research priorities is vital to inform and develop strategies to address this neglected problem. To systematically identify and rank research priorities in childhood drug-resistant TB. Adapting the Child Health and Nutrition Research Initiative (CHNRI) methodology, we compiled 53 research questions in four research areas, then classified the questions into three research types. We invited experts in childhood drug-resistant TB to score these questions through an online survey. A total of 81 respondents participated in the survey. The top-ranked research question was to identify the best combination of existing diagnostic tools for early diagnosis. Highly ranked treatment-related questions centred on the reasons for and interventions to improve treatment outcomes, adverse effects of drugs and optimal treatment duration. The prevalence of drug-resistant TB was the highest-ranked question in the epidemiology area. The development type questions that ranked highest focused on interventions for optimal diagnosis, treatment and modalities for treatment delivery. This is the first effort to identify and rank research priorities for childhood drug-resistant TB. The result is a resource to guide research to improve prevention and treatment of drug-resistant TB in children.

  11. Protease Inhibitors Drug Resistance Mutations in Turkish Patients with Chronic Hepatitis C.

    Science.gov (United States)

    Sargin Altunok, Elif; Sayan, Murat; Akhan, Sila; Aygen, Bilgehan; Yildiz, Orhan; Tekin Koruk, Suda; Mistik, Resit; Demirturk, Nese; Ural, Onur; Kose, Şükran; Aynioglu, Aynur; Korkmaz, Fatime; Ersoz, Gülden; Tuna, Nazan; Ayaz, Celal; Karakecili, Faruk; Keten, Derya; Inan, Dilara; Yazici, Saadet; Koculu, Safiye; Yildirmak, Taner

    2016-09-01

    Drug resistance development is an expected problem during treatment with protease inhibitors (PIs), this is largely due to the fact that Pls are low-genetic barrier drugs. Resistance-associated variants (RAVs) however may also occur naturally, and prior to treatment with Pls, the clinical impact of this basal resistance remains unknown. In Turkey, there is yet to be an investigation into the hepatitis C (HCV) drug associated resistance to oral antivirals. 178 antiviral-naïve patients infected with HCV genotype 1 were selected from 27 clinical centers of various geographical regions in Turkey and included in the current study. The basal NS3 Pls resistance mutations of these patients were analyzed. In 33 (18.5%) of the patients included in the study, at least one mutation pattern that can cause drug resistance was identified. The most frequently detected mutation pattern was T54S while R109K was the second most frequently detected. Following a more general examination of the patients studied, telaprevir (TVR) resistance in 27 patients (15.2%), boceprevir (BOC) resistance in 26 (14.6%) patients, simeprevir (SMV) resistance in 11 (6.2%) patients and faldaprevir resistance in 13 (7.3%) patients were detected. Our investigation also revealed that rebound developed in the presence of a Q80K mutation and amongst two V55A mutations following treatment with TVR, while no response to treatment was detected in a patient with a R55K mutation. We are of the opinion that drug resistance analyses can be beneficial and necessary in revealing which variants are responsible for pre-treatment natural resistance and which mutations are responsible for the viral breakthrough that may develop during the treatment. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Drug Resistance Patterns of Escherichia coli in Ethiopia: A Meta-Analysis.

    Science.gov (United States)

    Tuem, Kald Beshir; Gebre, Abadi Kahsu; Atey, Tesfay Mehari; Bitew, Helen; Yimer, Ebrahim M; Berhe, Derbew Fikadu

    2018-01-01

    Antimicrobial drug resistance is a global threat for treatment of infectious diseases and costs life and money and threatens health delivery system's effectiveness. The resistance of E. coli to frequently utilized antimicrobial drugs is becoming a major challenge in Ethiopia. However, there is no inclusive countrywide study. Therefore, this study intended to assess the prevalence of E. coli resistance and antimicrobial-specific resistance pattern among E. coli clinical isolates in Ethiopia. Articles were retrieved from PubMed, Embase, and grey literature from 2007 to 2017. The main outcome measures were overall E. coli and drug-specific resistance patterns. A random-effects model was used to determine pooled prevalence with 95% confidence interval (CI), using DerSimonian and Laird method. In addition, subgroup analysis was conducted to improve the outcome. The study bias was assessed by Begg's funnel plot. This study was registered in PROSPERO as follows: PROSPERO 2017: CRD42017070106. Of 164 articles retrieved, 35 articles were included. A total of 19,235 study samples participated in the studies and 2,635 E. coli strains were isolated. Overall, E. coli antibacterial resistance was 45.38% (95% confidence interval (CI): 33.50 to 57.27). The resistance pattern ranges from 62.55% in Addis Ababa to 27.51% in Tigray region. The highest resistance of E. coli reported was to ampicillin (83.81%) and amoxicillin (75.79%), whereas only 13.55% of E. coli isolates showed resistance to nitrofurantoin. E. coli antimicrobial resistance remains high with disparities observed among regions. The bacterium was found to be highly resistant to aminopenicillins. The finding implies the need for effective prevention strategies for the E. coli drug resistance and calls for multifaceted approaches with full involvement of all stakeholders.

  13. Drug-resistant post-neurosurgical nosocomial Acinetobacter ...

    African Journals Online (AJOL)

    Drug-resistant post-neurosurgical nosocomial Acinetobacter baumannii meningitis in two Iranian hospitals. ... Vol 11, No 17 (2012) >. Log in or Register to get access to full text downloads. ... Acinetobacter baumannii may cause meningitis and ventriculitis, particularly after head trauma and/or neurosurgery. The rate of ...

  14. Challenges of drug resistance in the management of pancreatic cancer.

    LENUS (Irish Health Repository)

    Sheikh, Rizwan

    2012-02-01

    The current treatment of choice for metastatic pancreatic cancer involves single-agent gemcitabine or a combination of gemcitabine with capecitabine or erlotinib (a tyrosine kinase inhibitor). Only 25–30% of patients respond to this treatment and patients who do respond initially ultimately exhibit disease progression. Median survival for pancreatic cancer patients has reached a plateau due to inherent and acquired resistance to these agents. Key molecular factors implicated in this resistance include: deficiencies in drug uptake, alteration of drug targets, activation of DNA repair pathways, resistance to apoptosis and the contribution of the tumor microenvironment. Moreover, for newer agents including tyrosine kinase inhibitors, overexpression of signaling proteins, mutations in kinase domains, activation of alternative pathways, mutations of genes downstream of the target and\\/or amplification of the target represent key challenges for treatment efficacy. Here we will review the contribution of known mechanisms and markers of resistance to key pancreatic cancer drug treatments.

  15. Label-free recognition of drug resistance via impedimetric screening of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Bilge Eker

    Full Text Available We present a novel study on label-free recognition and distinction of drug resistant breast cancer cells (MCF-7 DOX from their parental cells (MCF-7 WT via impedimetric measurements. Drug resistant cells exhibited significant differences in their dielectric properties compared to wild-type cells, exerting much higher extracellular resistance (Rextra . Immunostaining revealed that MCF-7 DOX cells gained a much denser F-actin network upon acquiring drug resistance indicating that remodeling of actin cytoskeleton is probably the reason behind higher Rextra , providing stronger cell architecture. Moreover, having exposed both cell types to doxorubicin, we were able to distinguish these two phenotypes based on their substantially different drug response. Interestingly, impedimetric measurements identified a concentration-dependent and reversible increase in cell stiffness in the presence of low non-lethal drug doses. Combined with a profound frequency analysis, these findings enabled distinguishing distinct cellular responses during drug exposure within four concentration ranges without using any labeling. Overall, this study highlights the possibility to differentiate drug resistant phenotypes from their parental cells and to assess their drug response by using microelectrodes, offering direct, real-time and noninvasive measurements of cell dependent parameters under drug exposure, hence providing a promising step for personalized medicine applications such as evaluation of the disease progress and optimization of the drug treatment of a patient during chemotherapy.

  16. Prevalence of genotypic HIV-1 drug resistance in Thailand, 2002

    Directory of Open Access Journals (Sweden)

    Watitpun Chotip

    2003-03-01

    Full Text Available Abstract Background The prices of reverse transcriptase (RT inhibitors in Thailand have been reduced since December 1, 2001. It is expected that reduction in the price of these inhibitors may influence the drug resistance mutation pattern of HIV-1 among infected people. This study reports the frequency of HIV-1 genetic mutation associated with drug resistance in antiretroviral-treated patients from Thailand. Methods Genotypic resistance testing was performed on samples collected in 2002 from 88 HIV-1 infected individuals. Automated DNA sequencing was used to genotype the HIV-1 polymerase gene isolated from patients' plasma. Results Resistance to protease inhibitors, nucleoside and non-nucleoside reverse transcriptase inhibitors were found in 10 (12%, 42 (48% and 19 (21% patients, respectively. The most common drug resistance mutations in the protease gene were at codon 82 (8%, 90 (7% and 54 (6%, whereas resistant mutations at codon 215 (45%, 67 (40%, 41 (38% and 184 (27% were commonly found in the RT gene. This finding indicates that genotypic resistance to nucleoside reverse transcriptase inhibitors was prevalent in 2002. The frequency of resistant mutations corresponding to non-nucleoside reverse transcriptase inhibitors was three times higher-, while resistant mutation corresponding to protease inhibitors was two times lower than those frequencies determined in 2001. Conclusion This study shows that the frequencies of RT inhibitor resistance mutations have been increased after the reduction in the price of RT inhibitors since December 2001. We believe that this was an important factor that influenced the mutation patterns of HIV-1 protease and RT genes in Thailand.

  17. Analysis of metal and biocides resistance genes in drug resistance and susceptible Salmonella enterica from food animals

    Science.gov (United States)

    Background Generally drug resistant bacteria carry antibiotic resistance genes and heavy metal and biocide resistance genes on large conjugative plasmids. The presence of these metal and biocide resistance genes in susceptible bacteria are not assessed comprehensively. Hence, WGS data of susceptib...

  18. Prevalence of transmitted drug resistance and impact of transmitted resistance on treatment success in the German HIV-1 Seroconverter Cohort.

    Directory of Open Access Journals (Sweden)

    Barbara Bartmeyer

    Full Text Available BACKGROUND: The aim of this study is to analyse the prevalence of transmitted drug resistance, TDR, and the impact of TDR on treatment success in the German HIV-1 Seroconverter Cohort. METHODS: Genotypic resistance analysis was performed in treatment-naïve study patients whose sample was available 1,312/1,564 (83.9% October 2008. A genotypic resistance result was obtained for 1,276/1,312 (97.3%. The resistance associated mutations were identified according to the surveillance drug resistance mutations list recommended for drug-naïve patients. Treatment success was determined as viral suppression below 500 copies/ml. RESULTS: Prevalence of TDR was stable at a high level between 1996 and 2007 in the German HIV-1 Seroconverter Cohort (N = 158/1,276; 12.4%; CI(wilson 10.7-14.3; p(for trend = 0.25. NRTI resistance was predominant (7.5% but decreased significantly over time (CI(Wilson: 6.2-9.1, p(for trend = 0.02. NNRTI resistance tended to increase over time (NNRTI: 3.5%; CI(Wilson: 2.6-4.6; p(for trend= 0.07, whereas PI resistance remained stable (PI: 3.0%; CI(Wilson: 2.1-4.0; p(for trend = 0.24. Resistance to all drug classes was frequently caused by singleton resistance mutations (NRTI 55.6%, PI 68.4%, NNRTI 99.1%. The majority of NRTI-resistant strains (79.8% carried resistance-associated mutations selected by the thymidine analogues zidovudine and stavudine. Preferably 2NRTI/1PIr combinations were prescribed as first line regimen in patients with resistant HIV as well as in patients with susceptible strains (susceptible 45.3%; 173/382 vs. resistant 65.5%; 40/61. The majority of patients in both groups were treated successfully within the first year after ART-initiation (susceptible: 89.9%; 62/69; resistant: 7/9; 77.8%. CONCLUSION: Overall prevalence of TDR remained stable at a high level but trends of resistance against drug classes differed over time. The significant decrease of NRTI-resistance in patients newly infected

  19. Managing anthelmintic resistance-Variability in the dose of drug reaching the target worms influences selection for resistance?

    Science.gov (United States)

    Leathwick, Dave M; Luo, Dongwen

    2017-08-30

    The concentration profile of anthelmintic reaching the target worms in the host can vary between animals even when administered doses are tailored to individual liveweight at the manufacturer's recommended rate. Factors contributing to variation in drug concentration include weather, breed of animal, formulation and the route by which drugs are administered. The implications of this variability for the development of anthelmintic resistance was investigated using Monte-Carlo simulation. A model framework was established where 100 animals each received a single drug treatment. The 'dose' of drug allocated to each animal (i.e. the concentration-time profile of drug reaching the target worms) was sampled at random from a distribution of doses with mean m and standard deviation s. For each animal the dose of drug was used in conjunction with pre-determined dose-response relationships, representing single and poly-genetic inheritance, to calculate efficacy against susceptible and resistant genotypes. These data were then used to calculate the overall change in resistance gene frequency for the worm population as a result of the treatment. Values for m and s were varied to reflect differences in both mean dose and the variability in dose, and for each combination of these 100,000 simulations were run. The resistance gene frequency in the population after treatment increased as m decreased and as s increased. This occurred for both single and poly-gene models and for different levels of dominance (survival under treatment) of the heterozygote genotype(s). The results indicate that factors which result in lower and/or more variable concentrations of active reaching the target worms are more likely to select for resistance. The potential of different routes of anthelmintic administration to play a role in the development of anthelmintic resistance is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Multi drug resistance to cancer chemotherapy: Genes involved and blockers

    International Nuclear Information System (INIS)

    Sayed-Ahmed, Mohamed M.

    2007-01-01

    During the last three decades, important and considerable research efforts had been performed to investigate the mechanism through which cancer cells overcome the cytotoxic effects of a variety of chemotherapeutic drugs. Most of the previously published work has been focused on the resistance of tumor cells to those anticancer drugs of natural source. Multidrug resistance (MDR) is a cellular cross-resistance to a broad spectrum of natural products used in cancer chemotherapy and is believed to be the major cause of the therapeutic failures of the drugs belonging to different naturally obtained or semisynthetic groups including vinca alkaloids, taxans, epipodophyllotoxins and certain antibiotics. This phenomenon results from overexpression of four MDR genes and their corresponding proteins that act as membrane-bound ATP consuming pumps. These proteins mediate the efflux of many structurally and functionally unrelated anticancer drugs of natural source. MDR may be intrinsic or acquired following exposure to chemotherapy. The existence of intrinsically resistant tumor cell clone before and following chemotherapeutic treatment has been associated with a worse final outcome because of increased incidence of distant metasis. In view of irreplaceability of natural product anticancer drugs as effective chemotherapeutic agents, and in view of MDR as a major obstacle to successful chemotherapy, this review is aimed to highlight the genes involved in MDR, classical MDR blockers and gene therapy approaches to overcome MDR. (author)

  1. Sociology of Hidden Curriculum

    Directory of Open Access Journals (Sweden)

    Alireza Moradi

    2017-06-01

    Full Text Available This paper reviews the concept of hidden curriculum in the sociological theories and wants to explain sociological aspects of formation of hidden curriculum. The main question concentrates on the theoretical approaches in which hidden curriculum is explained sociologically.For this purpose it was applied qualitative research methodology. The relevant data include various sociological concepts and theories of hidden curriculum collected by the documentary method. The study showed a set of rules, procedures, relationships and social structure of education have decisive role in the formation of hidden curriculum. A hidden curriculum reinforces by existed inequalities among learners (based on their social classes or statues. There is, in fact, a balance between the learner's "knowledge receptions" with their "inequality proportion".The hidden curriculum studies from different major sociological theories such as Functionalism, Marxism and critical theory, Symbolic internationalism and Feminism. According to the functionalist perspective a hidden curriculum has a social function because it transmits social values. Marxists and critical thinkers correlate between hidden curriculum and the totality of social structure. They depicts that curriculum prepares learners for the exploitation in the work markets. Symbolic internationalism rejects absolute hegemony of hidden curriculum on education and looks to the socialization as a result of interaction between learner and instructor. Feminism theory also considers hidden curriculum as a vehicle which legitimates gender stereotypes.

  2. Perinatal acquisition of drug-resistant HIV-1 infection: mechanisms and long-term outcome

    Directory of Open Access Journals (Sweden)

    Dollfus Catherine

    2009-09-01

    Full Text Available Abstract Background Primary-HIV-1-infection in newborns that occurs under antiretroviral prophylaxis that is a high risk of drug-resistance acquisition. We examine the frequency and the mechanisms of resistance acquisition at the time of infection in newborns. Patients and Methods We studied HIV-1-infected infants born between 01 January 1997 and 31 December 2004 and enrolled in the ANRS-EPF cohort. HIV-1-RNA and HIV-1-DNA samples obtained perinatally from the newborn and mother were subjected to population-based and clonal analyses of drug resistance. If positive, serial samples were obtained from the child for resistance testing. Results Ninety-two HIV-1-infected infants were born during the study period. Samples were obtained from 32 mother-child pairs and from another 28 newborns. Drug resistance was detected in 12 newborns (20%: drug resistance to nucleoside reverse transcriptase inhibitors was seen in 10 cases, non-nucleoside reverse transcriptase inhibitors in two cases, and protease inhibitors in one case. For 9 children, the detection of the same resistance mutations in mothers' samples (6 among 10 available and in newborn lymphocytes (6/8 suggests that the newborn was initially infected by a drug-resistant strain. Resistance variants were either transmitted from mother-to-child or selected during subsequent temporal exposure under suboptimal perinatal prophylaxis. Follow-up studies of the infants showed that the resistance pattern remained stable over time, regardless of antiretroviral therapy, suggesting the early cellular archiving of resistant viruses. The absence of resistance in the mother of the other three children (3/10 and neonatal lymphocytes (2/8 suggests that the newborns were infected by a wild-type strain without long-term persistence of resistance when suboptimal prophylaxis was stopped. Conclusion This study confirms the importance of early resistance genotyping of HIV-1-infected newborns. In most cases (75%, drug

  3. Molecular approaches for detection of the multi-drug resistant tuberculosis (MDR-TB in Bangladesh.

    Directory of Open Access Journals (Sweden)

    Tafsina Haque Aurin

    Full Text Available The principal obstacles in the treatment of tuberculosis (TB are delayed and inaccurate diagnosis which often leads to the onset of the drug resistant TB cases. To avail the appropriate treatment of the patients and to hinder the transmission of drug-resistant TB, accurate and rapid detection of resistant isolates is critical. Present study was designed to demonstrate the efficacy of molecular techniques inclusive of line probe assay (LPA and GeneXpert MTB/RIF methods for the detection of multi-drug resistant (MDR TB. Sputum samples from 300 different categories of treated and new TB cases were tested for the detection of possible mutation in the resistance specific genes (rpoB, inhA and katG through Genotype MTBDRplus assay or LPA and GeneXpert MTB/RIF tests. Culture based conventional drug susceptibility test (DST was also carried out to measure the efficacy of the molecular methods employed. Among 300 samples, 191 (63.7% and 193 (64.3% cases were found to be resistant against rifampicin in LPA and GeneXpert methods, respectively; while 189 (63% cases of rifampicin resistance were detected by conventional DST methods. On the other hand, 196 (65.3% and 191 (63.7% isolates showed isoniazid resistance as detected by LPA and conventional drug susceptibility test (DST, respectively. Among the drug resistant isolates (collectively 198 in LPA and 193 in conventional DST, 189 (95.6% and 187 (96.9% were considered to be MDR as examined by LPA and conventional DST, respectively. Category-II and -IV patients encountered higher frequency of drug resistance compared to those from category-I and new cases. Considering the higher sensitivity, specificity and accuracy along with the required time to results significantly shorter, our study supports the adoption of LPA and GeneXpert assay as efficient tools in detecting drug resistant TB in Bangladesh.

  4. Genome Analysis of the First Extensively Drug-Resistant (XDR Mycobacterium tuberculosis in Malaysia Provides Insights into the Genetic Basis of Its Biology and Drug Resistance.

    Directory of Open Access Journals (Sweden)

    Chee Sian Kuan

    Full Text Available The outbreak of extensively drug-resistant tuberculosis (XDR-TB has become an increasing problem in many TB-burdened countries. The underlying drug resistance mechanisms, including the genetic variation favored by selective pressure in the resistant population, are partially understood. Recently, the first case of XDR-TB was reported in Malaysia. However, the detailed genotype family and mechanisms of the formation of multiple drugs resistance are unknown. We sequenced the whole genome of the UM 1072388579 strain with a 2-kb insert-size library and combined with that from previously sequenced 500-bp-insert paired-end reads to produce an improved sequence with maximal sequencing coverage across the genome. In silico spoligotyping and phylogenetic analyses demonstrated that UM 1072388579 strain belongs to an ancestral-like, non-Beijing clade of East Asia lineage. This is supported by the presence of a number of lineage-specific markers, including fadD28, embA, nuoD and pks7. Polymorphism analysis showed that the drug-susceptibility profile is correlated with the pattern of resistance mutations. Mutations in drug-efflux pumps and the cell wall biogenesis pathway such as mmpL, pks and fadD genes may play an important role in survival and adaptation of this strain to its surrounding environment. In this work, fifty-seven putative promoter SNPs were identified. Among them, we identified a novel SNP located at -4 T allele of TetR/acrR promoter as an informative marker to recognize strains of East Asian lineage. Our work indicates that the UM 1072388579 harbors both classical and uncommon SNPs that allow it to escape from inhibition by many antibiotics. This study provides a strong foundation to dissect the biology and underlying resistance mechanisms of the first reported XDR M. tuberculosis in Malaysia.

  5. Hidden wholesale: The drug diffusing capacity of online drug cryptomarkets.

    Science.gov (United States)

    Aldridge, Judith; Décary-Hétu, David

    2016-09-01

    In spite of globalizing processes 'offline' retail drug markets remain localized and - in recent decades - typically 'closed', in which dealers sell primarily to known customers. We characterize drug cryptomarkets as 'anonymous open' marketplaces that allow the diffusion of drugs across locales. Where cryptomarket customers make stock-sourcing purchases for offline distribution, the cryptomarket may indirectly serve drug users who are not themselves cryptomarket customers, thereby increasing the drug diffusing capacity of these marketplaces. Our research aimed to identify wholesale activity on the first major cryptomarket, Silk Road 1. Data were collected 13-15 September 2013. A bespoke web crawler downloaded content from the first major drug cryptomarket, Silk Road 1. This generated data on 1031 vendors and 10,927 drug listings. We estimated monthly revenues to ascertain the relative importance of wholesale priced listings. Wholesale-level revenue generation (sales for listings priced over USD $1000.00) accounted for about a quarter of the revenue generation on SR1 overall. Ecstasy-type drugs dominated wholesale activity on this marketplace, but we also identified substantial wholesale transactions for benzodiazepines and prescription stimulants. Less important, but still generating wholesale revenue, were cocaine, methamphetamine and heroin. Although vendors on the marketplace were located in 41 countries, wholesale activity was confined to only a quarter of these, with China, the Netherlands, Canada and Belgium prominent. The cryptomarket may function in part as a virtual broker, linking wholesalers with offline retail-level distributors. For drugs like ecstasy, these marketplaces may link vendors in producer countries directly with retail level suppliers. Wholesale activity on cryptomarkets may serve to increase the diffusion of new drugs - and wider range of drugs - in offline drug markets, thereby indirectly serving drug users who are not cryptomarket

  6. Hidden costs of HIV treatment in Spain: inefficiency of the antiretroviral drug packaging.

    Science.gov (United States)

    Llibre-Codina, Josep M; Andreu-Crespo, Angels; Cardona-Peitx, Gloria; Sala-Piñol, Ferran; Clotet-Sala, Bonaventura; Bonafont-Pujol, Xavier

    2014-01-01

    treating 78 patients with rilpivirine/TDF/FTC during 1 month. Class A and B packages in bad condition represented only 1.1% of the cost. However, 75.805€ came from returned packages in good condition that could potentially be reused. Most of the treatment changes were not foreseeable. A significant economic budget is lost through socially inefficient antiretroviral packages. Newer treatments are packaged in C and D categories, therefore maintaining these hidden costs in the near future. Any improvement in the excellence of packaging by the manufacturer, and favouring the choice of drugs supplied through efficient packages (when efficacy, toxicity and convenience are similar) should minimize the treatment expenditures paid by national health budgets.

  7. Effect and Safety of Shihogyejitang for Drug Resistant Childhood Epilepsy

    Directory of Open Access Journals (Sweden)

    Jinsoo Lee

    2016-01-01

    Full Text Available Objective. Herbal medicine has been widely used to treat drug resistant epilepsy. Shihogyejitang (SGT has been commonly used to treat epilepsy. We investigated the effect and safety of SGT in children with drug resistant epilepsy. Design. We reviewed medical records of 54 patients with epilepsy, who failed to respond to at least two antiepileptic drugs and have been treated with SGT between April 2006 and June 2014 at the Department of Pediatric Neurology, I-Tomato Hospital, Korea. Effect was measured by the response rate, seizure-free rate, and retention rate at six months. We also checked adverse events, change in antiepileptic drugs use, and the variables related to the outcome. Results. Intent-to-treat analysis showed that, after six months, 44.4% showed a >50% seizure reduction, 24.1% including seizure-free, respectively, and 53.7% remained on SGT. Two adverse events were reported, mild skin rash and fever. Focal seizure type presented significantly more positive responses when compared with other seizure types at six months (p=0.0284, Fisher’s exact test. Conclusion. SGT is an effective treatment with excellent tolerability for drug resistant epilepsy patients. Our data provide evidence that SGT may be used as alternative treatment option when antiepileptic drug does not work in epilepsy children.

  8. Novel diagnostics and therapeutics for drug-resistant tuberculosis.

    Science.gov (United States)

    Toosky, Melody; Javid, Babak

    2014-06-01

    Drug-resistant tuberculosis (DR-TB) is associated with increased mortality and morbidity. This is at least partly due to late diagnosis and ineffective treatment of drug-resistant status. Selective search of the literature on DR-TB supplemented by recent guidelines from the World Health Organization. Better and more rapid diagnosis of DR-TB by new techniques such as Xpert Mtb/RIF are likely to make a substantial impact on the disease. New therapeutics for DR-TB are entering, or about to enter the market for the first time in decades. It is not clear whether new treatments should be restricted for DR-TB or also used for drug-susceptible tuberculosis. With several new agents on the horizon, there is the real possibility of an entirely new regimen for tuberculosis. An inexpensive 'near-patient' diagnostic test is still needed. Optimizing new drug combination regimens in a timely manner is urgently required. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Molecular mechanisms and theranostic potential of miRNAs in drug resistance of gastric cancer.

    Science.gov (United States)

    Yang, Wanli; Ma, Jiaojiao; Zhou, Wei; Cao, Bo; Zhou, Xin; Yang, Zhiping; Zhang, Hongwei; Zhao, Qingchuan; Fan, Daiming; Hong, Liu

    2017-11-01

    Systemic chemotherapy is a curative approach to inhibit gastric cancer cells proliferation. Despite the great progress in anti-cancer treatment achieved during the last decades, drug resistance and treatment refractoriness still extensively persists. Recently, accumulating studies have highlighted the role of miRNAs in drug resistance of gastric cancers by modulating some drug resistance-related proteins and genes expression. Pre-clinical reports indicate that miRNAs might serve as ideal biomarkers and potential targets, thus holding great promise for developing targeted therapy and personalized treatment for the patients with gastric cancer. Areas covered: This review provide a comprehensive overview of the current advances of miRNAs and molecular mechanisms underlying miRNA-mediated drug resistance in gastric cancer. We particularly focus on the potential values of drug resistance-related miRNAs as biomarkers and novel targets in gastric cancer therapy and envisage the future research developments of these miRNAs and challenges in translating the new findings into clinical applications. Expert opinion: Although the concrete mechanisms of miRNAs in drug resistance of gastric cancer have not been fully clarified, miRNA may be a promising theranostic approach. Further studies are still needed to facilitate the clinical applications of miRNAs in drug resistant gastric cancer.

  10. Fluorometric assay for phenotypic differentiation of drug-resistant HIV mutants

    OpenAIRE

    Zhu, Qinchang; Yu, Zhiqiang; Kabashima, Tsutomu; Yin, Sheng; Dragusha, Shpend; El-Mahdy, Ahmed F. M.; Ejupi, Valon; Shibata, Takayuki; Kai, Masaaki

    2015-01-01

    Convenient drug-resistance testing of viral mutants is indispensable to effective treatment of viral infection. We developed a novel fluorometric assay for phenotypic differentiation of drug-resistant mutants of human immunodeficiency virus-I protease (HIV-PR) which uses enzymatic and peptide-specific fluorescence (FL) reactions and high-performance liquid chromatography (HPLC) of three HIV-PR substrates. This assay protocol enables use of non-purified enzyme sources and multiple substrates f...

  11. [Morphological signs of inflammatory activity in different clinical forms of drug-resistant pulmonary tuberculosis].

    Science.gov (United States)

    Elipashev, A A; Nikolsky, V O; Shprykov, A S

    to determine whether the activity of tuberculous inflammation is associated with different clinical forms of drug-resistant pulmonary tuberculosis. The material taken from 310 patients operated on in 2010-2015 were retrospectively examined. The patients underwent economical lung resections of limited extent (typical and atypical ones of up to 3 segments) for circumscribed forms of tuberculosis with bacterial excretion. A study group consisted of 161 (51.9%) patients with drug-resistant variants of pulmonary tuberculosis. A control group included 149 (48.1%) patients with preserved susceptibility of Mycobacterium tuberculosis to anti-TB drugs. The activity of specific changes in tuberculosis was morphologically evaluated in accordance with the classification proposed by B.M. Ariel in 1998. The highest activity of fourth-to-fifth degree specific inflammation, including that outside the primary involvement focus, was obtained in the drug-resistant pulmonary tuberculosis group due to the predominance of patients with cavernous and fibrous-cavernous tuberculosis versus those in whom the susceptibility to chemotherapeutic agents was preserved. A macroscopic study showed that the primary lesion focus had a median size in one-half of the all the examinees; but large tuberculomas, caverns, and fibrous caverns over 4 cm in diameter were multiple and detected in the drug-resistant pulmonary tuberculosis group. Multidrug resistance was observed in more than 60% of the patients with fibrous-cavernous pulmonary tuberculosis, extensive drug resistance was seen in those with cavernous tuberculosis, which is an aggravating factor. The data obtained from the morphological study of the intraoperative material can specify the clinical form of tuberculosis and evaluate the efficiency of preoperative specific therapy. The highest activity of specific inflammation was observed in patients with multiple drug-resistant pulmonary tuberculosis, the prevalence of third-to-fourth degree

  12. Phenotype, Genotype, and Drug Resistance in Subtype C HIV-1 Infection.

    Science.gov (United States)

    Derache, Anne; Wallis, Carole L; Vardhanabhuti, Saran; Bartlett, John; Kumarasamy, Nagalingeswaran; Katzenstein, David

    2016-01-15

    Virologic failure in subtype C is characterized by high resistance to first-line antiretroviral (ARV) drugs, including efavirenz, nevirapine, and lamivudine, with nucleoside resistance including type 2 thymidine analog mutations, K65R, a T69del, and M184V. However, genotypic algorithms predicting resistance are mainly based on subtype B viruses and may under- or overestimate drug resistance in non-B subtypes. To explore potential treatment strategies after first-line failure, we compared genotypic and phenotypic susceptibility of subtype C human immunodeficiency virus 1 (HIV-1) following first-line ARV failure. AIDS Clinical Trials Group 5230 evaluated patients failing an initial nonnucleoside reverse-transcriptase inhibitor (NNRTI) regimen in Africa and Asia, comparing the genotypic drug resistance and phenotypic profile from the PhenoSense (Monogram). Site-directed mutagenesis studies of K65R and T69del assessed the phenotypic impact of these mutations. Genotypic algorithms overestimated resistance to etravirine and rilpivirine, misclassifying 28% and 32%, respectively. Despite K65R with the T69del in 9 samples, tenofovir retained activity in >60%. Reversion of the K65R increased susceptibility to tenofovir and other nucleosides, while reversion of the T69del showed increased resistance to zidovudine, with little impact on other NRTI. Although genotype and phenotype were largely concordant for first-line drugs, estimates of genotypic resistance to etravirine and rilpivirine may misclassify subtype C isolates compared to phenotype. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  13. Consensus Statement on Research Definitions for Drug-Resistant Tuberculosis in Children

    OpenAIRE

    Seddon, James A.; Perez-Velez, Carlos M.; Schaaf, H. Simon; Furin, Jennifer J.; Marais, Ben J.; Tebruegge, Marc; Detjen, Anne; Hesseling, Anneke C.; Shah, Sarita; Adams, Lisa V.; Starke, Jeffrey R.; Swaminathan, Soumya; Becerra, Mercedes C.

    2013-01-01

    Few children with drug-resistant (DR) tuberculosis (TB) are identified, diagnosed, and given an appropriate treatment. The few studies that have described this vulnerable population have used inconsistent definitions. TheWorld Health Organization (WHO) definitions used for adults with DR-TB and for children with drug-susceptible TB are not always appropriate for children with DR-TB. The Sentinel Project on Pediatric Drug-Resistant Tuberculosis was formed in 2011 as a network of experts and st...

  14. Fitness trade-offs in the evolution of dihydrofolate reductase and drug resistance in Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Marna S Costanzo

    Full Text Available Patterns of emerging drug resistance reflect the underlying adaptive landscapes for specific drugs. In Plasmodium falciparum, the parasite that causes the most serious form of malaria, antifolate drugs inhibit the function of essential enzymes in the folate pathway. However, a handful of mutations in the gene coding for one such enzyme, dihydrofolate reductase, confer drug resistance. Understanding how evolution proceeds from drug susceptibility to drug resistance is critical if new antifolate treatments are to have sustained usefulness.We use a transgenic yeast expression system to build on previous studies that described the adaptive landscape for the antifolate drug pyrimethamine, and we describe the most likely evolutionary trajectories for the evolution of drug resistance to the antifolate chlorcycloguanil. We find that the adaptive landscape for chlorcycloguanil is multi-peaked, not all highly resistant alleles are equally accessible by evolution, and there are both commonalities and differences in adaptive landscapes for chlorcycloguanil and pyrimethamine.Our findings suggest that cross-resistance between drugs targeting the same enzyme reflect the fitness landscapes associated with each particular drug and the position of the genotype on both landscapes. The possible public health implications of these findings are discussed.

  15. Alarming levels of drug-resistant tuberculosis in HIV-infected patients in metropolitan Mumbai, India.

    Science.gov (United States)

    Isaakidis, Petros; Das, Mrinalini; Kumar, Ajay M V; Peskett, Christopher; Khetarpal, Minni; Bamne, Arun; Adsul, Balkrishna; Manglani, Mamta; Sachdeva, Kuldeep Singh; Parmar, Malik; Kanchar, Avinash; Rewari, B B; Deshpande, Alaka; Rodrigues, Camilla; Shetty, Anjali; Rebello, Lorraine; Saranchuk, Peter

    2014-01-01

    Drug-resistant tuberculosis (DR-TB) is a looming threat to tuberculosis control in India. However, no countrywide prevalence data are available. The burden of DR-TB in HIV-co-infected patients is likewise unknown. Undiagnosed and untreated DR-TB among HIV-infected patients is a major cause of mortality and morbidity. We aimed to assess the prevalence of DR-TB (defined as resistance to any anti-TB drug) in patients attending public antiretroviral treatment (ART) centers in greater metropolitan Mumbai, India. A cross-sectional survey was conducted among adults and children ART-center attendees. Smear microscopy, culture and drug-susceptibility-testing (DST) against all first and second-line TB-drugs using phenotypic liquid culture (MGIT) were conducted on all presumptive tuberculosis patients. Analyses were performed to determine DR-TB prevalence and resistance patterns separately for new and previously treated, culture-positive TB-cases. Between March 2013 and January 2014, ART-center attendees were screened during 14135 visits, of whom 1724 had presumptive TB. Of 1724 attendees, 72 (4%) were smear-positive and 202 (12%) had a positive culture for Mycobacterium tuberculosis. Overall DR-TB was diagnosed in 68 (34%, 95% CI: 27%-40%) TB-patients. The proportions of DR-TB were 25% (29/114) and 44% (39/88) among new and previously treated cases respectively. The patterns of DR-TB were: 21% mono-resistant, 12% poly-resistant, 38% multidrug-resistant (MDR-TB), 21% pre-extensively-drug-resistant (MDR-TB plus resistance to either a fluoroquinolone or second-line injectable), 6% extensively drug-resistant (XDR-TB) and 2% extremely drug-resistant TB (XDR-TB plus resistance to any group-IV/V drug). Only previous history of TB was significantly associated with the diagnosis of DR-TB in multivariate models. The burden of DR-TB among HIV-infected patients attending public ART-centers in Mumbai was alarmingly high, likely representing ongoing transmission in the community and

  16. Alarming levels of drug-resistant tuberculosis in HIV-infected patients in metropolitan Mumbai, India.

    Directory of Open Access Journals (Sweden)

    Petros Isaakidis

    Full Text Available BACKGROUND: Drug-resistant tuberculosis (DR-TB is a looming threat to tuberculosis control in India. However, no countrywide prevalence data are available. The burden of DR-TB in HIV-co-infected patients is likewise unknown. Undiagnosed and untreated DR-TB among HIV-infected patients is a major cause of mortality and morbidity. We aimed to assess the prevalence of DR-TB (defined as resistance to any anti-TB drug in patients attending public antiretroviral treatment (ART centers in greater metropolitan Mumbai, India. METHODS: A cross-sectional survey was conducted among adults and children ART-center attendees. Smear microscopy, culture and drug-susceptibility-testing (DST against all first and second-line TB-drugs using phenotypic liquid culture (MGIT were conducted on all presumptive tuberculosis patients. Analyses were performed to determine DR-TB prevalence and resistance patterns separately for new and previously treated, culture-positive TB-cases. RESULTS: Between March 2013 and January 2014, ART-center attendees were screened during 14135 visits, of whom 1724 had presumptive TB. Of 1724 attendees, 72 (4% were smear-positive and 202 (12% had a positive culture for Mycobacterium tuberculosis. Overall DR-TB was diagnosed in 68 (34%, 95% CI: 27%-40% TB-patients. The proportions of DR-TB were 25% (29/114 and 44% (39/88 among new and previously treated cases respectively. The patterns of DR-TB were: 21% mono-resistant, 12% poly-resistant, 38% multidrug-resistant (MDR-TB, 21% pre-extensively-drug-resistant (MDR-TB plus resistance to either a fluoroquinolone or second-line injectable, 6% extensively drug-resistant (XDR-TB and 2% extremely drug-resistant TB (XDR-TB plus resistance to any group-IV/V drug. Only previous history of TB was significantly associated with the diagnosis of DR-TB in multivariate models. CONCLUSION: The burden of DR-TB among HIV-infected patients attending public ART-centers in Mumbai was alarmingly high, likely representing

  17. Drug resistance pattern of M. tuberculosis in category II treatment failure pulmonary tuberculosis patients

    Directory of Open Access Journals (Sweden)

    Fahmida Rahman

    2013-01-01

    Full Text Available This study was designed to determine the extent of drug resistance of M. tuberculosis (MTB isolated from category II treatment failure pulmonary tuberculosis (PTB patients. A total of 100 Ziehl-Neelsen (Z-N smear positive category II failure PTB patients were included in this study. Sputum culture was done in Lowenstein-Jensen (L-J media. Conventional proportion method on Lowenstein-Jensen (L-J media was used to determine the drug susceptibility of M. tuberculosis to isoniazid (INH, rifampicin (RMP, ofloxacin (OFX and kanamycin (KA. Out of 100 sputum samples, a total of 87 samples were positive by culture. Drug susceptibility test (DST revealed that 82 (94.25% isolates were resistant to one or more anti -TB drugs. Resistance to isoniazide (INH, rifampicin (RMP, ofloxacin (OFX and kanamycin (KA was 94.25%, 82.75%, 29.90% and 3.45% respectively. Among these isolates, 79.31% and 3.45% isolates were multi-drug resistant (MDR and extended drug resistant (XDR M. tuberculosis respectively. High rate of anti-tubercular drug resistance was observed among the category II treatment failure TB patients. Ibrahim Med. Coll. J. 2013; 7(1: 9-11

  18. The role of miRNA regulation in cancer progression and drug resistance

    DEFF Research Database (Denmark)

    Joshi, Tejal

    RNAs in the context of cancer biology, drug resistance and disease progression. The first project described in Chapter 6 addresses the problem of tamoxifen resistance, an anti-estrogen drug that is generally highly effective in the treatment of ER-positive breast cancers. The underlying molecular mechanisms...... to the disease transformation. In summary, this thesis focuses on regulatory role of miRNAs in drug resistance and disease progression. The findings provide hints toward various biologically and perhaps therapeutically relevant gene regulatory events. This thesis demonstrates the right choice of data analysis...... for the acquired resistance to tamoxifen are not very well understood. Therefore, with the aid of miRNA and gene expression profiles for MCF7/S0.5 (tamoxifen sensitive) and three MCF7/S0.5 derived tamoxifen resistant cell lines, we obtained several miRNA-mediated regulatory events in the tamoxifen resistant cell...

  19. Clinical characteristics, drug resistance, and treatment outcomes among tuberculosis patients with diabetes in Peru.

    Science.gov (United States)

    Magee, M J; Bloss, E; Shin, S S; Contreras, C; Huaman, H Arbanil; Ticona, J Calderon; Bayona, J; Bonilla, C; Yagui, M; Jave, O; Cegielski, J P

    2013-06-01

    Diabetes is a risk factor for active tuberculosis (TB). Data are limited regarding the association between diabetes and TB drug resistance and treatment outcomes. We examined characteristics of TB patients with and without diabetes in a Peruvian cohort at high risk for drug-resistant TB. Among TB patients with diabetes (TB-DM), we studied the association between diabetes clinical/management characteristics and TB drug resistance and treatment outcomes. During 2005-2008, adults with suspected TB with respiratory symptoms in Lima, Peru, who received rapid drug susceptibility testing (DST), were prospectively enrolled and followed during treatment. Bivariate and Kaplan-Meier analyses were used to examine the relationships of diabetes characteristics with drug-resistant TB and TB outcomes. Of 1671 adult TB patients enrolled, 186 (11.1%) had diabetes. TB-DM patients were significantly more likely than TB patients without diabetes to be older, have had no previous TB treatment, and to have a body mass index (BMI) >18.5 kg/m(2) (pdiabetes, and 12% and 28%, respectively, among TB-DM patients. Among 149 TB-DM patients with DST results, 104 (69.8%) had drug-susceptible TB and 45 (30.2%) had drug-resistant TB, of whom 29 had multidrug-resistant TB. There was no association between diabetes characteristics and drug-resistant TB. Of 136 TB-DM patients with outcome information, 107 (78.7%) had a favorable TB outcome; active diabetes management was associated with a favorable outcome. Diabetes was common in a cohort of TB patients at high risk for drug-resistant TB. Despite prevalent multidrug-resistant TB among TB-DM patients, the majority had a favorable TB treatment outcome. Copyright © 2013 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  20. Hidden measurements, hidden variables and the volume representation of transition probabilities

    OpenAIRE

    Oliynyk, Todd A.

    2005-01-01

    We construct, for any finite dimension $n$, a new hidden measurement model for quantum mechanics based on representing quantum transition probabilities by the volume of regions in projective Hilbert space. For $n=2$ our model is equivalent to the Aerts sphere model and serves as a generalization of it for dimensions $n \\geq 3$. We also show how to construct a hidden variables scheme based on hidden measurements and we discuss how joint distributions arise in our hidden variables scheme and th...

  1. Implementation of a national anti-tuberculosis drug resistance survey in Tanzania

    Directory of Open Access Journals (Sweden)

    Mfaume Saidi M

    2008-12-01

    Full Text Available Abstract Background A drug resistance survey is an essential public health management tool for evaluating and improving the performance of National Tuberculosis control programmes. The current manuscript describes the implementation of the first national drug resistance survey in Tanzania. Methods Description of the implementation process of a national anti-tuberculosis drug resistance survey in Tanzania, in relation to the study protocol and Standard Operating Procedures. Results Factors contributing positively to the implementation of the survey were a continuous commitment of the key stakeholders, the existence of a well organized National Tuberculosis Programme, and a detailed design of cluster-specific arrangements for rapid sputum transportation. Factors contributing negatively to the implementation were a long delay between training and actual survey activities, limited monitoring of activities, and an unclear design of the data capture forms leading to difficulties in form-filling. Conclusion Careful preparation of the survey, timing of planned activities, a strong emphasis on data capture tools and data management, and timely supervision are essential for a proper implementation of a national drug resistance survey.

  2. Implementation of a national anti-tuberculosis drug resistance survey in Tanzania.

    Science.gov (United States)

    Chonde, Timothy M; Doulla, Basra; van Leth, Frank; Mfinanga, Sayoki G M; Range, Nyagosya; Lwilla, Fred; Mfaume, Saidi M; van Deun, Armand; Zignol, Matteo; Cobelens, Frank G; Egwaga, Saidi M

    2008-12-30

    A drug resistance survey is an essential public health management tool for evaluating and improving the performance of National Tuberculosis control programmes. The current manuscript describes the implementation of the first national drug resistance survey in Tanzania. Description of the implementation process of a national anti-tuberculosis drug resistance survey in Tanzania, in relation to the study protocol and Standard Operating Procedures. Factors contributing positively to the implementation of the survey were a continuous commitment of the key stakeholders, the existence of a well organized National Tuberculosis Programme, and a detailed design of cluster-specific arrangements for rapid sputum transportation. Factors contributing negatively to the implementation were a long delay between training and actual survey activities, limited monitoring of activities, and an unclear design of the data capture forms leading to difficulties in form-filling. Careful preparation of the survey, timing of planned activities, a strong emphasis on data capture tools and data management, and timely supervision are essential for a proper implementation of a national drug resistance survey.

  3. [Mechanisms of endogenous drug resistance acquisition by spontaneous chromosomal gene mutation].

    Science.gov (United States)

    Fukuda, H; Hiramatsu, K

    1997-05-01

    Endogenous resistance in bacteria is caused by a change or loss of function and generally genetically recessive. However, this type of resistance acquisition are now prevalent in clinical setting. Chromosomal genes that afford endogenous resistance are the genes correlated with the target of the drug, the drug inactivating enzymes, and permeability of the molecules including the antibacterial agents. Endogenous alteration of the drug target are mediated by the spontaneous mutation of their structural gene. This mutation provides much lower affinity of the drugs for the target. Gene expression of the inactivating enzymes, such as class C beta-lactamase, is generally regulated by regulatory genes. Spontaneous mutations in the regulatory genes cause constitutive enzyme production and provides the resistant to the agent which is usually stable for such enzymes. Spontaneous mutation in the structural gene gives the enzyme extra-spectrum substrate specificity, like ESBL (Extra-Spectrum-beta-Lactamase). Expression of structural genes encoding the permeability systems are also regulated by some regulatory genes. The spontaneous mutation of the regulatory genes reduce an amount of porin protein. This mutation causes much lower influx of the drug in the cell. Spontaneous mutation in promoter region of the structural gene of efflux protein was observed. This mutation raised the gene transcription and overproduced efflux protein. This protein progresses the drug efflux from the cell.

  4. Time-programmable drug dosing allows the manipulation, suppression and reversal of antibiotic drug resistance in vitro

    OpenAIRE

    Yoshida, Mari; Galiñanes Reyes, Sabrina Galiñanes; Tsuda, Soichiro; Horinouchi, Takaaki; Furusawa, Chikara; Cronin, Leroy

    2017-01-01

    Multi-drug strategies have been attempted to prolong the efficacy of existing antibiotics, but with limited success. Here we show that the evolution of multi-drug-resistant Escherichia coli can be manipulated in vitro by administering pairs of antibiotics and switching between them in ON/OFF manner. Using a multiplexed cell culture system, we find that switching between certain combinations of antibiotics completely suppresses the development of resistance to one of the antibiotics. Using thi...

  5. An ETP model (exclusion-tolerance-progression for multi drug resistance

    Directory of Open Access Journals (Sweden)

    Kannan Subburaj

    2005-04-01

    Full Text Available Abstract Background It is known that sensitivity or resistance of tumor cells to a given chemotherapeutic agent is an acquired characteristic(s, depending on the heterogeneity of the tumor mass subjected to the treatment. The clinical success of a chemotherapeutic regimen depends on the ratio of sensitive to resistant cell populations. Results Based on findings from clinical and experimental studies, a unifying model is proposed to delineate the potential mechanism by which tumor cells progress towards multi drug resistance, resulting in failure of chemotherapy. Conclusion It is suggested that the evolution of multi drug resistance is a developmentally orchestrated event. Identifying stage-specific time windows during this process would help to identify valid therapeutic targets for the effective elimination of malignancy.

  6. European recommendations for the clinical use of HIV drug resistance testing: 2011 update

    DEFF Research Database (Denmark)

    Vandamme, Anne-Mieke; Camacho, Ricardo J; Ceccherini-Silberstein, Francesca

    2011-01-01

    , and other drug targets (integrase and envelope) if such drugs were part of the failing regimen; (iii) consider testing for CCR5 tropism at virologic failure or when a change of therapy has to be made in absence of detectable viral load, and in the latter case test DNA or last detectable plasma RNA; (iv...... the following recommendations concerning the indications for resistance testing: for HIV-1 (i) test earliest sample for protease and reverse transcriptase drug resistance in drug-naive patients with acute or chronic infection; (ii) test protease and reverse transcriptase drug resistance at virologic failure...... is needed after treatment failure. The Panel recommends genotyping in most situations, using updated and clinically evaluated interpretation systems. It is mandatory that laboratories performing HIV resistance tests take part regularly in external quality assurance programs, and that they consider storing...

  7. Vaccination of chickens against coccidiosis ameliorates drug resistance in commercial poultry production

    Directory of Open Access Journals (Sweden)

    H. David Chapman

    2014-12-01

    Full Text Available Drug resistance is a problem wherever livestock are raised under intensive conditions and drugs are used to combat parasitic infections. This is particularly true for the anticoccidial agents used for the prevention of coccidiosis caused by protozoa of the apicomplexan genus Eimeria in poultry. Resistance has been documented for all the dozen or so drugs approved for use in chickens and varying levels of resistance is present for those currently employed. A possible solution may be the introduction of drug-sensitive parasites into the houses where poultry are raised so that they may replace such drug-resistant organisms. This can be achieved by utilizing live vaccines that contain strains of Eimeria that were isolated before most anticoccidial compounds were introduced. Such strains are inherently drug-sensitive. Practical proposals to achieve this objective involve the alternation of vaccination with medication (known as rotation programs in successive flocks reared in the same poultry house. A proposal for a yearly broiler production cycle involving chemotherapy and vaccination is presented. There are few, if any, examples in veterinary parasitology where it has proved possible to restore sensitivity to drugs used to control a widespread parasite. Further research is necessary to ascertain whether this can result in sustainable and long-term control of Eimeria infections in poultry.

  8. Vaccination of chickens against coccidiosis ameliorates drug resistance in commercial poultry production

    Science.gov (United States)

    Chapman, H. David; Jeffers, Thomas K.

    2014-01-01

    Drug resistance is a problem wherever livestock are raised under intensive conditions and drugs are used to combat parasitic infections. This is particularly true for the anticoccidial agents used for the prevention of coccidiosis caused by protozoa of the apicomplexan genus Eimeria in poultry. Resistance has been documented for all the dozen or so drugs approved for use in chickens and varying levels of resistance is present for those currently employed. A possible solution may be the introduction of drug-sensitive parasites into the houses where poultry are raised so that they may replace such drug-resistant organisms. This can be achieved by utilizing live vaccines that contain strains of Eimeria that were isolated before most anticoccidial compounds were introduced. Such strains are inherently drug-sensitive. Practical proposals to achieve this objective involve the alternation of vaccination with medication (known as rotation programs) in successive flocks reared in the same poultry house. A proposal for a yearly broiler production cycle involving chemotherapy and vaccination is presented. There are few, if any, examples in veterinary parasitology where it has proved possible to restore sensitivity to drugs used to control a widespread parasite. Further research is necessary to ascertain whether this can result in sustainable and long-term control of Eimeria infections in poultry. PMID:25516830

  9. Surgery for Drug-Resistant Epilepsy in Children.

    Science.gov (United States)

    Dwivedi, Rekha; Ramanujam, Bhargavi; Chandra, P Sarat; Sapra, Savita; Gulati, Sheffali; Kalaivani, Mani; Garg, Ajay; Bal, Chandra S; Tripathi, Madhavi; Dwivedi, Sada N; Sagar, Rajesh; Sarkar, Chitra; Tripathi, Manjari

    2017-10-26

    Neurosurgical treatment may improve seizures in children and adolescents with drug-resistant epilepsy, but additional data are needed from randomized trials. In this single-center trial, we randomly assigned 116 patients who were 18 years of age or younger with drug-resistant epilepsy to undergo brain surgery appropriate to the underlying cause of epilepsy along with appropriate medical therapy (surgery group, 57 patients) or to receive medical therapy alone (medical-therapy group, 59 patients). The patients in the medical-therapy group were assigned to a waiting list for surgery. The primary outcome was freedom from seizures at 12 months. Secondary outcomes were the score on the Hague Seizure Severity scale, the Binet-Kamat intelligence quotient, the social quotient on the Vineland Social Maturity Scale, and scores on the Child Behavior Checklist and the Pediatric Quality of Life Inventory. At 12 months, freedom from seizures occurred in 44 patients (77%) in the surgery group and in 4 (7%) in the medical-therapy group (Pchildren and adolescents with drug-resistant epilepsy who had undergone epilepsy surgery had a significantly higher rate of freedom from seizures and better scores with respect to behavior and quality of life than did those who continued medical therapy alone at 12 months. Surgery resulted in anticipated neurologic deficits related to the region of brain resection. (Funded by the Indian Council of Medical Research and others; Clinical Trial Registry-India number, CTRI/2010/091/000525 .).

  10. Options for modulation of drug resistance in ovarian cancer

    NARCIS (Netherlands)

    Arts, HJG; Van der Zee, AGJ; De Jong, S; De Vries, EGE

    2000-01-01

    The objective of this paper is to present an update of mechanisms responsible for drug resistance in ovarian cancer and the possible therapeutic options to modulate this resistance using literature review with emphasis on data acquired in studies comprising ovarian tumor samples. The classic

  11. Primary drug resistance in a region with high burden of tuberculosis. A critical problem.

    Science.gov (United States)

    Villa-Rosas, Cecilia; Laniado-Laborín, Rafael; Oceguera-Palao, Lorena

    2015-01-01

    To determine rates of drug resistance in new cases of pulmonary tuberculosis in a region with a high burden of the disease. New case suspects were referred for drug susceptibility testing. 28.9% of new cases were resistant to at least one first line drug; 3.9% had a multidrug-resistant strain, 15.6% a monoresistant strain and 9.4% a polyresistant strain. Our rate of drug resistant tuberculosis in new cases is very high; this has important clinical implications, since even monoresistance can have a negative impact on the outcome of new cases treated empirically with a six month regimen.

  12. Clinical and molecular surveillance of drug resistant vivax malaria in Myanmar (2009-2016).

    Science.gov (United States)

    Nyunt, Myat Htut; Han, Jin-Hee; Wang, Bo; Aye, Khin Myo; Aye, Kyin Hla; Lee, Seong-Kyun; Htut, Ye; Kyaw, Myat Phone; Han, Kay Thwe; Han, Eun-Taek

    2017-03-16

    One of the major challenges for control and elimination of malaria is ongoing spread and emergence of drug resistance. While epidemiology and surveillance of the drug resistance in falciparum malaria is being explored globally, there are few studies on drug resistance vivax malaria. To assess the spread of drug-resistant vivax malaria in Myanmar, a multisite, prospective, longitudinal study with retrospective analysis of previous therapeutic efficacy studies, was conducted. A total of 906 from nine study sites were included in retrospective analysis and 208 from three study sites in prospective study. Uncomplicated vivax mono-infected patients were recruited and monitored with longitudinal follow-up until day 28 after treatment with chloroquine. Amplification and sequence analysis of molecular markers, such as mutations in pvcrt-O, pvmdr1, pvdhps and pvdhfr, were done in day-0 samples in prospective study. Clinical failure cases were found only in Kawthaung, southern Myanmar and western Myanmar sites within 2009-2016. Chloroquine resistance markers, pvcrt-O 'AAG' insertion and pvmdr1 mutation (Y976F) showed higher mutant rate in southern and central Myanmar than western site: 66.7, 72.7 vs 48.3% and 26.7, 17.0 vs 1.7%, respectively. A similar pattern of significantly higher mutant rate of antifolate resistance markers, pvdhps (S382A, K512M, A553G) and pvdhfr (F57L/I, S58R, T61M, S117T/N) were noted. Although clinical failure rate was low, widespread distribution of chloroquine and antifolate resistance molecular makers alert to the emergence and spread of drug resistance vivax malaria in Myanmar. Proper strategy and action plan to eliminate and contain the resistant strain strengthened together with clinical and molecular surveillance on drug resistance vivax is recommended.

  13. Sentinel surveillance of HIV-1 transmitted drug resistance, acute infection and recent infection.

    Directory of Open Access Journals (Sweden)

    Hong-Ha M Truong

    Full Text Available HIV-1 acute infection, recent infection and transmitted drug resistance screening was integrated into voluntary HIV counseling and testing (VCT services to enhance the existing surveillance program in San Francisco. This study describes newly-diagnosed HIV cases and characterizes correlates associated with infection.A consecutive sample of persons presenting for HIV VCT at the municipal sexually transmitted infections (STI clinic from 2004 to 2006 (N = 9,868 were evaluated by standard enzyme-linked immunoassays (EIA. HIV antibody-positive specimens were characterized as recent infections using a less-sensitive EIA. HIV-RNA pooled testing was performed on HIV antibody-negative specimens to identify acute infections. HIV antibody-positive and acute infection specimens were evaluated for drug resistance by sequence analysis. Multivariable logistic regression was performed to evaluate associations. The 380 newly-diagnosed HIV cases included 29 acute infections, 128 recent infections, and 47 drug-resistant cases, with no significant increases or decreases in prevalence over the three years studied. HIV-1 transmitted drug resistance prevalence was 11.0% in 2004, 13.4% in 2005 and 14.9% in 2006 (p = 0.36. Resistance to non-nucleoside reverse transcriptase inhibitors (NNRTI was the most common pattern detected, present in 28 cases of resistance (59.6%. Among MSM, recent infection was associated with amphetamine use (AOR = 2.67; p<0.001, unprotected anal intercourse (AOR = 2.27; p<0.001, sex with a known HIV-infected partner (AOR = 1.64; p = 0.02, and history of gonorrhea (AOR = 1.62; p = 0.03.New HIV diagnoses, recent infections, acute infections and transmitted drug resistance prevalence remained stable between 2004 and 2006. Resistance to NNRTI comprised more than half of the drug-resistant cases, a worrisome finding given its role as the backbone of first-line antiretroviral therapy in San Francisco as well as worldwide. The integration of HIV-1 drug

  14. Hidden Wholesale: The drug diffusing capacity of online drug cryptomarkets

    OpenAIRE

    Aldridge, Judith A; Décary-Hétu, David

    2016-01-01

    Background: In spite of globalizing processes ‘offline’ retail drug markets remain localized and – in recent decades – typically ‘closed’, in which dealers sell primarily to known customers. We characterize drug cryptomarkets as ‘anonymous open’ marketplaces that allow the diffusion of drugs across locales. Where cryptomarket customers make stock-sourcing purchases for offline distribution, the cryptomarket may indirectly serve drug users who are not themselves cryptomarket customers, thereby...

  15. Investigational drugs to treat methicillin-resistant Staphylococcus aureus

    Science.gov (United States)

    Vuong, Cuong; Yeh, Anthony J; Cheung, Gordon YC; Otto, Michael

    2016-01-01

    Introduction Staphylococcus aureus remains one of the leading causes of morbidity and mortality worldwide. This is to a large extent due to antibiotic-resistant strains, in particular methicillin-resistant S. aureus (MRSA). While the toll of invasive MRSA infections appears to decrease in U.S. hospitals, the rate of community-associated MRSA infections remains constant and there is a surge of MRSA in many other countries. This situation calls for continuing if not increased efforts to find novel strategies to combat MRSA infections. Areas covered This review will provide an overview of current investigational antibiotics in clinical development (up to phase II), and of therapeutic antibodies and alternative drugs against S. aureus in preclinical and clinical development, including a short description of the mechanism of action and a presentation of microbiological and clinical data. Expert opinion Increased recent antibiotic development efforts and results from pathogenesis research have led to several new antibiotics and alternative drugs, as well as a more informed selection of targets for vaccination efforts against MRSA. This developing portfolio of novel anti-staphylococcal drugs will hopefully provide us with additional and more efficient ways to combat MRSA infections in the near future and prevent us from running out of treatment options, even if new resistances arise. PMID:26536498

  16. Neurological autoantibodies in drug-resistant epilepsy of unknown cause.

    Science.gov (United States)

    Tecellioglu, Mehmet; Kamisli, Ozden; Kamisli, Suat; Yucel, Fatma Ebru; Ozcan, Cemal

    2018-03-09

    Autoimmune epilepsy is a rarely diagnosed condition. Recognition of the underlying autoimmune condition is important, as these patients can be resistant to antiepileptic drugs. To determine the autoimmune and oncological antibodies in adult drug-resistant epilepsy of unknown cause and identify the clinical, radiological, and EEG findings associated with these antibodies according to data in the literature. Eighty-two patients with drug-resistant epilepsy of unknown cause were prospectively identified. Clinical features were recorded. The levels of anti-voltage-gated potassium channel complex (anti-VGKCc), anti-thyroid peroxidase (anti-TPO), anti-nuclear antibody (ANA), anti-glutamic acid decarboxylase (anti-GAD), anti-phospholipid IgG and IgM, anti-cardiolipin IgG and IgM, and onconeural antibodies were determined. Serum antibody positivity suggesting the potential role of autoimmunity in the aetiology was present in 17 patients with resistant epilepsy (22.0%). Multiple antibodies were found in two patients (2.6%). One of these patients (1.3%) had anti-VGKCc and ANA, whereas another (1.3%) had anti-VGKCc and anti-TPO. A single antibody was present in 15 patients (19.5%). Of the 77 patients finally included in the study, 4 had anti-TPO (5.2%), 1 had anti-GAD (1.3%), 4 had anti-VGKCc (5.2%) 8 had ANA (10.3%), and 2 had onconeural antibodies (2.6%) (1 patient had anti-Yo and 1 had anti-MA2/TA). The other antibodies investigated were not detected. EEG abnormality (focal), focal seizure incidence, and frequent seizures were more common in antibody-positive patients. Autoimmune factors may be aetiologically relevant in patients with drug-resistant epilepsy of unknown cause, especially if focal seizures are present together with focal EEG abnormality and frequent seizures.

  17. Plasmid Conjugation in E. coli and Drug Resistance | Igwe ...

    African Journals Online (AJOL)

    This study aimed at determining the antibiotics susceptibility pattern of E. coli isolates claimed to be multidrug resistance using disc diffusion method. It also determined the presence of transferable resistance plasmids through conjugation and evaluated the medical significance of plasmid encoding E. coli and drug ...

  18. Mycobacterium tuberculosis drug-resistance in previously treated ...

    African Journals Online (AJOL)

    Corresponding to: Professor Lassana Sangaré, Department of Bacteriology and Virology, University Hospital Centre. Yalgado Ouedraogo, 03 BP 7022 Ouagadougou 03, Burkina Faso. E-mail: sangarel@hotmail.com. Abstract. Background: Tuberculosis drug-resistance becomes common in sub-Saharan Africa; however, ...

  19. Mechanisms of antifungal drug resistance in Candida dubliniensis.

    LENUS (Irish Health Repository)

    Coleman, David C

    2010-06-01

    Candida dubliniensis was first described in 1995 and is the most closely related species to the predominant human fungal pathogen Candida albicans. C. dubliniensis is significantly less prevalent and less pathogenic than C. albicans and is primarily associated with infections in HIV-infected individuals and other immunocompromised cohorts. The population structure of C. dubliniensis consists of three well-defined major clades and is significantly less diverse than C. albicans. The majority of C. dubliniensis isolates are susceptible to antifungal drugs commonly used to treat Candida infections. To date only two major patterns of antifungal drug resistance have been identified and the molecular mechanisms of these are very similar to the resistance mechanisms that have been described previously in C. albicans. However, significant differences are evident in the predominant antifungal drug mechanisms employed by C. dubliniensis, differences that reflect its more clonal nature, its lower prevalence and characteristics of its genome, the complete sequence of which has only recently been determined.

  20. Association between Mycobacterium tuberculosis complex phylogenetic lineage and acquired drug resistance.

    Directory of Open Access Journals (Sweden)

    Courtney M Yuen

    Full Text Available BACKGROUND: Development of resistance to antituberculosis drugs during treatment (i.e., acquired resistance can lead to emergence of resistant strains and consequent poor clinical outcomes. However, it is unknown whether Mycobacterium tuberculosis complex species and lineage affects the likelihood of acquired resistance. METHODS: We analyzed data from the U.S. National Tuberculosis Surveillance System and National Tuberculosis Genotyping Service for tuberculosis cases during 2004-2011 with assigned species and lineage and both initial and final drug susceptibility test results. We determined univariate associations between species and lineage of Mycobacterium tuberculosis complex bacteria and acquired resistance to isoniazid, rifamycins, fluoroquinolones, and second-line injectables. We used Poisson regression with backward elimination to generate multivariable models for acquired resistance to isoniazid and rifamycins. RESULTS: M. bovis was independently associated with acquired resistance to isoniazid (adjusted prevalence ratio = 8.46, 95% CI 2.96-24.14 adjusting for HIV status, and with acquired resistance to rifamycins (adjusted prevalence ratio = 4.53, 95% CI 1.29-15.90 adjusting for homelessness, HIV status, initial resistance to isoniazid, site of disease, and administration of therapy. East Asian lineage was associated with acquired resistance to fluoroquinolones (prevalence ratio = 6.10, 95% CI 1.56-23.83. CONCLUSIONS: We found an association between mycobacterial species and lineage and acquired drug resistance using U.S. surveillance data. Prospective clinical studies are needed to determine the clinical significance of these findings, including whether rapid genotyping of isolates at the outset of treatment may benefit patient management.

  1. Genome-wide analysis of multi- and extensively drug-resistant Mycobacterium tuberculosis

    KAUST Repository

    Coll, Francesc

    2018-01-16

    To characterize the genetic determinants of resistance to antituberculosis drugs, we performed a genome-wide association study (GWAS) of 6,465 Mycobacterium tuberculosis clinical isolates from more than 30 countries. A GWAS approach within a mixed-regression framework was followed by a phylogenetics-based test for independent mutations. In addition to mutations in established and recently described resistance-associated genes, novel mutations were discovered for resistance to cycloserine, ethionamide and para-aminosalicylic acid. The capacity to detect mutations associated with resistance to ethionamide, pyrazinamide, capreomycin, cycloserine and para-aminosalicylic acid was enhanced by inclusion of insertions and deletions. Odds ratios for mutations within candidate genes were found to reflect levels of resistance. New epistatic relationships between candidate drug-resistance-associated genes were identified. Findings also suggest the involvement of efflux pumps (drrA and Rv2688c) in the emergence of resistance. This study will inform the design of new diagnostic tests and expedite the investigation of resistance and compensatory epistatic mechanisms.

  2. Exploiting Drug Addiction Mechanisms to Select against MAPKi-Resistant Melanoma.

    Science.gov (United States)

    Hong, Aayoung; Moriceau, Gatien; Sun, Lu; Lomeli, Shirley; Piva, Marco; Damoiseaux, Robert; Holmen, Sheri L; Sharpless, Norman E; Hugo, Willy; Lo, Roger S

    2018-01-01

    Melanoma resistant to MAPK inhibitors (MAPKi) displays loss of fitness upon experimental MAPKi withdrawal and, clinically, may be resensitized to MAPKi therapy after a drug holiday. Here, we uncovered and therapeutically exploited the mechanisms of MAPKi addiction in MAPKi-resistant BRAF MUT or NRAS MUT melanoma. MAPKi-addiction phenotypes evident upon drug withdrawal spanned transient cell-cycle slowdown to cell-death responses, the latter of which required a robust phosphorylated ERK (pERK) rebound. Generally, drug withdrawal-induced pERK rebound upregulated p38-FRA1-JUNB-CDKN1A and downregulated proliferation, but only a robust pERK rebound resulted in DNA damage and parthanatos-related cell death. Importantly, pharmacologically impairing DNA damage repair during MAPKi withdrawal augmented MAPKi addiction across the board by converting a cell-cycle deceleration to a caspase-dependent cell-death response or by furthering parthanatos-related cell death. Specifically in MEKi-resistant NRAS MUT or atypical BRAF MUT melanoma, treatment with a type I RAF inhibitor intensified pERK rebound elicited by MEKi withdrawal, thereby promoting a cell death-predominant MAPKi-addiction phenotype. Thus, MAPKi discontinuation upon disease progression should be coupled with specific strategies that augment MAPKi addiction. Significance: Discontinuing targeted therapy may select against drug-resistant tumor clones, but drug-addiction mechanisms are ill-defined. Using melanoma resistant to but withdrawn from MAPKi, we defined a synthetic lethality between supraphysiologic levels of pERK and DNA damage. Actively promoting this synthetic lethality could rationalize sequential/rotational regimens that address evolving vulnerabilities. Cancer Discov; 8(1); 74-93. ©2017 AACR. See related commentary by Stern, p. 20 This article is highlighted in the In This Issue feature, p. 1 . ©2017 American Association for Cancer Research.

  3. Supermolecular drug challenge to overcome drug resistance in cancer cells.

    Science.gov (United States)

    Onishi, Yasuhiko; Eshita, Yuki; Ji, Rui-Cheng; Kobayashi, Takashi; Onishi, Masayasu; Mizuno, Masaaki; Yoshida, Jun; Kubota, Naoji

    2018-06-04

    Overcoming multidrug resistance (MDR) of cancer cells can be accomplished using drug delivery systems in large-molecular-weight ATP-binding cassette transporters before entry into phagolysosomes and by particle-cell-surface interactions. However, these hypotheses do not address the intratumoral heterogeneity in cancer. Anti-MDR must be related to alterations of drug targets, expression of detoxification, as well as altered proliferation. In this study, it is shown that the excellent efficacy and sustainability of anti-MDR is due to a stable ES complex because of the allosteric facilities of artificial enzymes when they are used as supramolecular complexes. The allosteric effect of supermolecular drugs can be explained by the induced-fit model and can provide stable feedback control systems through the loop transfer function of the Hill equation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Primary drug resistance in a region with high burden of tuberculosis. A critical problem

    Directory of Open Access Journals (Sweden)

    Cecilia Villa-Rosas

    2015-03-01

    Full Text Available Objective. To determine rates of drug resistance in new cases of pulmonary tuberculosis in a region with a high burden of the disease. Materials and methods. New case suspects were referred for drug susceptibility testing. Results. 28.9% of new cases were resistant to at least one first line drug; 3.9% had a multidrug-resistant strain, 15.6% a monoresistant strain and 9.4% a polyresistant strain. Conclusion. Our rate of drug resistant tuberculosis in new cases is very high; this has important clinical implications, since even monoresistance can have a negative impact on the outcome of new cases treated empirically with a six month regimen.

  5. Drug Resistance and the Kinetics of Metastatic Cancer

    Science.gov (United States)

    Blagoev, Krastan B.

    2012-02-01

    Most metastatic cancers after initial response to current drug therapies develop resistance to the treatment. We present cancer data and a theory that explains the observed kinetics of tumor growth in cancer patients and using a stochastic model based on this theory we relate the kinetics of tumor growth to Kaplan-Meyer survival curves. The theory points to the tumor growth rate as the most important parameter determining the outcome of a drug treatment. The overall tumor growth or decay rate is a reflection of the balance between cell division, senescence and apoptosis and we propose that the deviation of the decay rate from exponential is a measure of the emergence of drug resistance. In clinical trials the progression free survival, the overall survival, and the shape of the Kaplan-Meyer plots are determined by the tumor growth rate probability distribution among the patients in the trial. How drug treatments modify this distribution will also be described. At the end of the talk we will discuss the connection between the theory described here and the age related cancer mortality rates in the United States.

  6. Structural Biology Meets Drug Resistance: An Overview on Multidrug Resistance Transporters

    DEFF Research Database (Denmark)

    Shaheen, Aqsa; Iqbal, Mazhar; Mirza, Osman

    2017-01-01

    . Research on the underlying causes of multidrug resistance in cancerous cells and later on in infectious bacteria revealed the involvement of integral membrane transporters, capable of recognizing a broad range of structurally different molecules as substrates and exporting them from the cell using cellular...... superfamilies, viz., ATP-binding cassette superfamily, major facilitator superfamily and resistance nodulation division superfamily are presented. Further, the future role of structural biology in improving our understanding of drug-transporter interactions and in designing novel inhibitors against MDR pump...... century, mankind has become aware and confronted with the emergence of antibiotic-resistant pathogens. In parallel to the failure of antibiotic therapy against infectious pathogens, there had been continuous reports of cancerous cells not responding to chemotherapy with increase in the duration of therapy...

  7. Molecular detection of drug resistance in microbes by isotopic techniques: The IAEA experience

    International Nuclear Information System (INIS)

    Dar, L.; Boussaha, A.; Padhy, A.K.; Khan, B.

    2003-01-01

    The International Atomic Energy Agency (IAEA) supports various programmes on the uses of radionuclide techniques in the management of human communicable diseases. An important issue, being addressed through several technology transfer projects, is the detection of drug resistance in microbes by radioisotope based molecular-biology diagnostic procedures. The techniques employed include dot blot hybridisation with P-32 labelled oligonucleotide probes to detect point mutations, associated with drug resistance, in microbial genes amplified by the polymerase chain reaction (PCR). Molecular methods have been used for the detection of drug resistance in the malarial parasite, Plasmodium falciparum, and in Mycobacterium tuberculosis. Radioisotope based molecular-biology methods have been demonstrated to have comparative advantages in being sensitive, specific, cost-effective, and suitable for application to large-scale molecular surveillance for drug resistance. (author)

  8. Drug Resistance and Population Structure of Mycobacterium tuberculosis Beijing Strains Isolated in Poland.

    Science.gov (United States)

    Kozińska, Monika; Augustynowicz-Kopeć, Ewa

    2015-01-01

    In total, 1095 Mycobacterium tuberculosis clinical isolates from 282 patients with drug-resistant and 813 with drug-sensitive tuberculosis (TB) in Poland during 2007-2011 were analysed. Seventy-one (6.5%) patients were found to have strains of Beijing genotype as defined by spoligotyping. The majority of patients were Polish-born; among foreign-born a large proportion came from Chechnya and Vietnam. Analysis showed strong associations between Beijing genotype infection and MDR, pre-XDR and XDR resistance, with a considerable relative risk among new patients, suggesting that this is due to increased spread of drug-resistant strains rather than acquisition of resistance during treatment.

  9. Dynamic optical tweezers based assay for monitoring early drug resistance

    International Nuclear Information System (INIS)

    Wu, Xiaojing; Zhu, Siwei; Feng, Jie; Zhang, Yuquan; Min, Changjun; Yuan, X-C

    2013-01-01

    In this letter, a dynamic optical tweezers based assay is proposed and investigated for monitoring early drug resistance with Pemetrexed-resistant non-small cell lung cancer (NSCLC) cell lines. The validity and stability of the method are verified experimentally in terms of the physical parameters of the optical tweezers system. The results demonstrate that the proposed technique is more convenient and faster than traditional techniques when the capability of detecting small variations of the response of cells to a drug is maintained. (letter)

  10. Drug resistance in vectorborne parasites: multiple actors and scenarios for an evolutionary arms race.

    Science.gov (United States)

    Vanaerschot, Manu; Huijben, Silvie; Van den Broeck, Frederik; Dujardin, Jean-Claude

    2014-01-01

    Drug-resistant pathogens emerge faster than new drugs come out of drug discovery pipelines. Current and future drug options should therefore be better protected, requiring a clear understanding of the factors that contribute to the natural history of drug resistance. Although many of these factors are relatively well understood for most bacteria, this proves to be more complex for vectorborne parasites. In this review, we discuss considering three key models (Plasmodium, Leishmania and Schistosoma) how drug resistance can emerge, spread and persist. We demonstrate a multiplicity of scenarios, clearly resulting from the biological diversity of the different organisms, but also from the different modes of action of the drugs used, the specific within- and between-host ecology of the parasites, and environmental factors that may have direct or indirect effects. We conclude that integrated control of drug-resistant vectorborne parasites is not dependent upon chemotherapy only, but also requires a better insight into the ecology of these parasites and how their transmission can be impaired. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  11. Pathogen infection distribution and drug resistance analysis of patients with severe liver disease

    Directory of Open Access Journals (Sweden)

    Xi CHEN

    2018-04-01

    Full Text Available Objective To explore the infection distribution and drug resistance of pathogens in patients with severe liver disease, and provide reference for clinical medication. Methods Retrospective analysis of the microbiological specimens from patients with severe liver disease in Department of Infection of our hospital from August 2014 to November 2016 and the drug susceptibility testing were carried out by means of K-B disc diffusion method after bacterial culturing, and the distribution and drug resistance of pathogens were analyzed. Results Totally 17 of 73 patients with severe liver disease developed hospital infection (23.3%. 104 strains of bacteria were isolated and 78 strains out of them were multidrug-resistant bacteria (75.0%. Among them, 28(26.9% strains were gram-positive coccus, mainly consisting of Staphylococcus aureus and Staphylococcus epidermidis, and 58(55.8% were gram-negative coccus, mainly composed of Escherichia coli, Klebsiella pneumonia and Acinetobacter baumannii, and 18(17.3% strains fungi. S.aureus and enterococci were resistant to penicillin, erythromycin and levofloxacin, the resistance rates were above 80.0%, but had low resistance rates to vancomycin, teicoplanin and tigecycline. The resistance rates of E.coli and K.pneumoniae to piperacillin, cefazolin and cefuroxime sodium were above 85.0%, but they had lower resistance rates to tigecycline and amikacin. Acinetobacter baumannii was 100% resistant to piperacillin and tazobactam, ceftazidime, imipenem and amikacin, but had low resistance to tigecycline and minocycline. Conclusions Multi-drug resistant bacteria are the main bacterial pathogens in patients with severe liver disease and have a high resistance rate to commonly used antibiotics, empirical treatment in the population at high risk of multidrug-resistant bacteria infections requires the use of broad-spectrum or high-grade antibiotics (e.g. carbapenems or tigecycline and drugs against specific pathogenic

  12. Streptococcus suis, an emerging drug-resistant animal and human pathogen

    Directory of Open Access Journals (Sweden)

    Claudio ePalmieri

    2011-11-01

    Full Text Available Streptococcus suis, a major porcine pathogen, has been receiving growing attention not only for its role in severe and increasingly reported infections in humans, but also for its involvement in drug resistance. Recent studies and the analysis of sequenced genomes have been providing important insights into the S. suis resistome, and have resulted in the identification of resistance determinants for tetracyclines, macrolides, aminoglycosides, chloramphenicol, antifolate drugs, streptothricin, and cadmium salts. Resistance gene-carrying genetic elements described so far include integrative and conjugative elements, transposons, genomic islands, phages, and chimeric elements. Some of these elements are similar to those reported in major streptococcal pathogens such as Streptococcus pyogenes, Streptococcus pneumoniae, and Streptococcus agalactiae and share the same chromosomal insertion sites. The available information strongly suggests that S. suis is an important antibiotic resistance reservoir that can contribute to the spread of resistance genes to the above-mentioned streptococci. S. suis is thus a paradigmatic example of possible intersections between animal and human resistomes.

  13. Drug-resistant tuberculosis in Mumbai, India: An agenda for operations research

    Science.gov (United States)

    Mistry, Nerges; Tolani, Monica; Osrin, David

    2012-01-01

    Operations research (OR) is well established in India and is also a prominent feature of the global and local agendas for tuberculosis (TB) control. India accounts for a quarter of the global burden of TB and of new cases. Multidrug-resistant TB is a significant problem in Mumbai, India’s most populous city, and there have been recent reports of totally resistant TB. Much thought has been given to the role of OR in addressing programmatic challenges, by both international partnerships and India’s Revised National TB Control Programme. We attempt to summarize the major challenges to TB control in Mumbai, with an emphasis on drug resistance. Specific challenges include diagnosis of TB and defining cure, detecting drug resistant TB, multiple sources of health care in the private, public and informal sectors, co-infection with human immunodeficiency virus (HIV) and a concurrent epidemic of non-communicable diseases, suboptimal prescribing practices, and infection control. We propose a local agenda for OR: modeling the effects of newer technologies, active case detection, and changes in timing of activities, and mapping hotspots and contact networks; modeling the effects of drug control, changing the balance of ambulatory and inpatient care, and adverse drug reactions; modeling the effects of integration of TB and HIV diagnosis and management, and preventive drug therapy; and modeling the effects of initiatives to improve infection control. PMID:24501697

  14. Multi drug resistance and β-lactamase production by Klebsiella ...

    African Journals Online (AJOL)

    SERVER

    2007-08-06

    Aug 6, 2007 ... *Corresponding author. E-mail: gnsimha123@rediffmail.com. (Rice, 1999). plasmid that can be easily spread from one organisms to another (Sirot, 1995) these enzymes are capable of inactivating a variety of β-lactam drugs (Rice,. 1999). The ESBL producing organisms often show multi- drug resistant as ...

  15. Characterization and drug resistance patterns of Ewing's sarcoma family tumor cell lines.

    Directory of Open Access Journals (Sweden)

    William A May

    Full Text Available Despite intensive treatment with chemotherapy, radiotherapy and surgery, over 70% of patients with metastatic Ewing's Sarcoma Family of Tumors (EFT will die of their disease. We hypothesize that properly characterized laboratory models reflecting the drug resistance of clinical tumors will facilitate the application of new therapeutic agents to EFT. To determine resistance patterns, we studied newly established EFT cell lines derived from different points in therapy: two established at diagnosis (CHLA-9, CHLA-32, two after chemotherapy and progressive disease (CHLA-10, CHLA-25, and two at relapse after myeloablative therapy and autologous bone marrow transplantation (post-ABMT (CHLA-258, COG-E-352. The new lines were compared to widely studied EFT lines TC-71, TC-32, SK-N-MC, and A-673. These lines were extensively characterized with regard to identity (short tandem repeat (STR analysis, p53, p16/14 status, and EWS/ETS breakpoint and target gene expression profile. The DIMSCAN cytotoxicity assay was used to assess in vitro drug sensitivity to standard chemotherapy agents. No association was found between drug resistance and the expression of EWS/ETS regulated genes in the EFT cell lines. No consistent association was observed between drug sensitivity and p53 functionality or between drug sensitivity and p16/14 functionality across the cell lines. Exposure to chemotherapy prior to cell line initiation correlated with drug resistance of EFT cell lines in 5/8 tested agents at clinically achievable concentrations (CAC or the lower tested concentration (LTC: (cyclophosphamide (as 4-HC and doxorubicin at CAC, etoposide, irinotecan (as SN-38 and melphalan at LTC; P<0.1 for one agent, and P<0.05 for four agents. This panel of well-characterized drug-sensitive and drug-resistant cell lines will facilitate in vitro preclinical testing of new agents for EFT.

  16. Antimicrobial drug resistance in Staphylococcus aureus isolated from cattle in Brazil.

    Science.gov (United States)

    Pereira, M S; Siqueira-Júnior, J P

    1995-06-01

    Isolates of Staphylococcus aureus obtained from apparently healthy cattle in the State of Paraiba, Brazil were characterized in relation to resistance to 21 antimicrobial agents. Among the 46 isolates obtained, resistance to penicillin was most frequent, followed by resistance to cadmium, streptomycin, arsenate, tetracycline, mercury, erythromycin and kanamycin/neomycin. All isolates were susceptible to fusidic acid, ethidium bromide, cetrimide, chloramphenicol, benzalkonium chloride, doxycycline, gentamicin, methicillin, minocycline, novobiocin, rifamycin, tylosin and vancomycin. Only six isolates were susceptible to all the drugs tested. With respect to the antibiotics, multi-resistant isolates were uncommon. These results are probably a consequence of the peculiarities of local drug usage pressures. In relation to metal ions, resistance to mercury was rare while resistance to arsenate was relatively frequent, which contrasts with the situation for human Staph. aureus strains. After treatment with ethidium bromide, elimination of resistance to penicillin, tetracycline, streptomycin, erythromycin and cadmium was observed, which was consistent with the genetic determinants being plasmid-borne.

  17. Treatment of extensively drug-resistant tuberculosis and role of the pharmacist.

    Science.gov (United States)

    Mitrzyk, Beatriz Manzor

    2008-10-01

    Abstract Outbreaks of extensively drug-resistant tuberculosis (XDR-TB) in developing countries and recent headlines of an American traveling with a resistant variant of tuberculosis have brought XDR-TB into the spotlight. The World Health Organization and the United States Centers for Disease Control and Prevention have identified XDR-TB as a serious public health threat and are mandating increased efforts at control of tuberculosis. Although XDR-TB is believed to be no more infectious than other variants of tuberculosis, infection with and spread of XDR-TB are concerning because of the ineffectiveness, toxicity, and cost of the available tuberculosis treatment options. Pharmacists may not be aware of the recent trends in tuberculosis resistance or of the impact that they can have on educating the public about this disease. To gain a better understanding of this disease and the potential roles for pharmacists in public health awareness of tuberculosis and in the care of patients with and at risk for this disease, we undertook an extensive search of the Internet, including Web sites of tuberculosis advocacy groups, and of MEDLINE from January 1968-March 2008. Currently, XDR-TB infection is uncommon in the United States, but if history is any indication, there is a high potential for an outbreak or epidemic. The XDR-TB variant has emerged from mismanaging multidrug-resistant tuberculosis, treating tuberculosis with too few drugs, using less effective second-line drugs, and not educating patients about the dangers of nonadherence. With only limited hopes of a novel effective drug combination regimen, use of available antimycobacterial drugs needs to be optimized. Pharmacists can be key players in the prevention and treatment of tuberculosis by promoting adherence, assessing patients for risk factors for resistant disease, providing information about disease control and prevention, and monitoring for effectiveness, adverse effects, and drug interactions.

  18. The Emerging Role of Extracellular Vesicle-Mediated Drug Resistance in Cancers: Implications in Advanced Prostate Cancer.

    Science.gov (United States)

    Soekmadji, Carolina; Nelson, Colleen C

    2015-01-01

    Emerging evidence has shown that the extracellular vesicles (EVs) regulate various biological processes and can control cell proliferation and survival, as well as being involved in normal cell development and diseases such as cancers. In cancer treatment, development of acquired drug resistance phenotype is a serious issue. Recently it has been shown that the presence of multidrug resistance proteins such as Pgp-1 and enrichment of the lipid ceramide in EVs could have a role in mediating drug resistance. EVs could also mediate multidrug resistance through uptake of drugs in vesicles and thus limit the bioavailability of drugs to treat cancer cells. In this review, we discussed the emerging evidence of the role EVs play in mediating drug resistance in cancers and in particular the role of EVs mediating drug resistance in advanced prostate cancer. The role of EV-associated multidrug resistance proteins, miRNA, mRNA, and lipid as well as the potential interaction(s) among these factors was probed. Lastly, we provide an overview of the current available treatments for advanced prostate cancer, considering where EVs may mediate the development of resistance against these drugs.

  19. Drug ratio-dependent antagonism: a new category of multidrug resistance and strategies for its circumvention.

    Science.gov (United States)

    Harasym, Troy O; Liboiron, Barry D; Mayer, Lawrence D

    2010-01-01

    A newly identified form of multidrug resistance (MDR) in tumor cells is presented, pertaining to the commonly encountered resistance of cancer cells to anticancer drug combinations at discrete drug:drug ratios. In vitro studies have revealed that whether anticancer drug combinations interact synergistically or antagonistically can depend on the ratio of the combined agents. Failure to control drug ratios in vivo due to uncoordinated pharmacokinetics could therefore lead to drug resistance if tumor cells are exposed to antagonistic drug ratios. Consequently, the most efficacious drug combination may not occur at the typically employed maximum tolerated doses of the combined drugs if this leads to antagonistic ratios in vivo after administration and resistance to therapeutic effects of the drug combination. Our approach to systematically screen a wide range of drug ratios and concentrations and encapsulate the drug combination in a liposomal delivery vehicle at identified synergistic ratios represents a means to mitigate this drug ratio-dependent MDR mechanism. The in vivo efficacy of the improved agents (CombiPlex formulations) is demonstrated and contrasted with the decreased efficacy when drug combinations are exposed to tumor cells in vivo at antagonistic ratios.

  20. The Pathway Analysis of Micrornas Regulated Drug-Resistant Responses in HeLa Cells.

    Science.gov (United States)

    Yang, Yubo; Dai, Cuihong; Cai, Zhipeng; Hou, Aiju; Cheng, Dayou; Wu, Guanying; Li, Jing; Cui, Jie; Xu, Dechang

    2016-03-01

    Chemotherapy is the main strategy in the treatment of cancer; however, the development of drug-resistance is the obstacle in long-term treatment of cervical cancer. Cisplatin is one of the most common drugs used in cancer therapy. Recently, accumulating evidence suggests that miRNAs are involved in various bioactivities in oncogenesis. It is not unexpected that miRNAs play a key role in acquiring of drug-resistance in the progression of tumor. In this study, we induced and maintained four levels of cisplatin-resistant HeLa cell lines (HeLa/CR1, HeLa/CR2, HeLa/CR3, and HeLa/CR4). According to the previous studies and existing evidence, we selected five miRNAs (miR-183, miR-182, miR-30a, miR-15b, and miR-16) and their potential target mRNAs as our research targets. The real-time RT-PCR was adopted to detect the relative expression of miRNAs and their mRNAs. The results show that miR-182 and miR-15b were up-regulated in resistant cell lines, while miR-30a was significantly down-regulated. At the same time, their targets are related to drug resistance. Compared to their parent HeLa cell line, the expression of selected miRNAs in resistant cell lines altered. The alteration suggests that HeLa cell drug resistance is associated with distinct miRNAs, which indicates that miRNAs may be one of the therapy targets in the treatment of cervical cancer by sensitizing cell to chemotherapy. We suggested a possible network diagram based on the existing theory and the preliminary results of candidate miRNAs and their targets in HeLa cells during development of drug resistance.

  1. Assessment of clinical risk factors for drug-resistant epilepsy in children and teenagers

    Directory of Open Access Journals (Sweden)

    Marta Kasprzyk

    2014-09-01

    Full Text Available Introduction: Epilepsy is one of the most common neurological illnesses occurring in children. In approximately 20–30% of cases it is drug-resistant. Aim of the research: To assess the already-known risk factors, analyse the rarely described ones, and find new causes of epilepsy drug resistance in children, taking into account the level of impact of each factor. Material and methods : The study comprised 152 of all 383 children hospitalised in 2012 at the Neurology Department of the Polish Mother’s Memorial Hospital in Lodz due to epilepsy. Based on medical documentation, neurological examination, and our own questionnaire, we divided patients into two groups: drug-resistant epilepsy or drug-sensitive epilepsy. We compared the type, level of influence, and prevalence of different factors. For statistical analysis, the 2 test was used. Statistical significance was set at p < 0.05. Results: Drug-resistant epilepsy was found in 64 patients (42.1%, and drug-sensitive epilepsy was found in 88 patients (57.9%. Factors that were most probable to cause drug resistance included: high prevalence of seizures (Cramer’s V = 0.66, type of epileptic syndrome (V = 0.62, psychomotor developmental delay (V = 0.62, and occurrence of status epilepticus (V = 0.6. Factors such as infections of CNS in early childhood, repeated severe infections of airways in childhood, and mother’s infectious diseases with high fever during pregnancy were rare or non occurring (Cramer’s V = 0.41, 0.32, and 0.31, respectively. Conclusions : The study confirmed the previously known causes of drug resistance and indicated the significance of underestimated inflammatory and infectious factors involving pyrexia, in children and also in mothers during pregnancy.

  2. Genetic Indicators of Drug Resistance in the Highly Repetitive Genome of Trichomonas vaginalis.

    Science.gov (United States)

    Bradic, Martina; Warring, Sally D; Tooley, Grace E; Scheid, Paul; Secor, William E; Land, Kirkwood M; Huang, Po-Jung; Chen, Ting-Wen; Lee, Chi-Ching; Tang, Petrus; Sullivan, Steven A; Carlton, Jane M

    2017-06-01

    Trichomonas vaginalis, the most common nonviral sexually transmitted parasite, causes ∼283 million trichomoniasis infections annually and is associated with pregnancy complications and increased risk of HIV-1 acquisition. The antimicrobial drug metronidazole is used for treatment, but in a fraction of clinical cases, the parasites can become resistant to this drug. We undertook sequencing of multiple clinical isolates and lab derived lines to identify genetic markers and mechanisms of metronidazole resistance. Reduced representation genome sequencing of ∼100 T. vaginalis clinical isolates identified 3,923 SNP markers and presence of a bipartite population structure. Linkage disequilibrium was found to decay rapidly, suggesting genome-wide recombination and the feasibility of genetic association studies in the parasite. We identified 72 SNPs associated with metronidazole resistance, and a comparison of SNPs within several lab-derived resistant lines revealed an overlap with the clinically resistant isolates. We identified SNPs in genes for which no function has yet been assigned, as well as in functionally-characterized genes relevant to drug resistance (e.g., pyruvate:ferredoxin oxidoreductase). Transcription profiles of resistant strains showed common changes in genes involved in drug activation (e.g., flavin reductase), accumulation (e.g., multidrug resistance pump), and detoxification (e.g., nitroreductase). Finally, we identified convergent genetic changes in lab-derived resistant lines of Tritrichomonas foetus, a distantly related species that causes venereal disease in cattle. Shared genetic changes within and between T. vaginalis and Tr. foetus parasites suggest conservation of the pathways through which adaptation has occurred. These findings extend our knowledge of drug resistance in the parasite, providing a panel of markers that can be used as a diagnostic tool. © The Author 2017. Published by Oxford University Press on behalf of the Society for

  3. The Prevalence of Drug-Resistant Tuberculosis in Mainland China: An Updated Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Duan, Qionghong; Chen, Zi; Chen, Cong; Zhang, Zhengbin; Lu, Zhouqin; Yang, Yalong; Zhang, Lin

    2016-01-01

    In recent years, drug resistant tuberculosis (DR-TB) particularly the emergence of multi-drug-resistant tuberculosis (MDR-TB) has become a major public health issue. The most recent study regarding the prevalence of drug-resistant tuberculosis in mainland China was a meta-analysis published in 2011, and the subjects from the included studies were mostly enrolled before 2008, thus making it now obsolete. Current data on the national prevalence of DR-TB is needed. This review aims to provide a comprehensive and up-to-date assessment of the status of DR-TB epidemic in mainland China. A systematic review and meta-analysis of studies regarding the prevalence of drug-resistant tuberculosis in mainland China was performed. Pubmed/MEDLINE, EMBASE, the Cochrane central database, the Chinese Biomedical Literature Database and the China National Knowledge Infrastructure Database were searched for studies relevant to drug-resistant tuberculosis that were published between January 1, 2012 and May 18, 2015. Comprehensive Meta-Analysis (V2.2, Biostat) software was used to analyse the data. A total of fifty-nine articles, published from 2012 to 2015, were included in our review. The result of this meta-analysis demonstrated that among new cases, the rate of resistance to any drug was 20.1% (18.0%-22.3%; n/N = 7203/34314) and among retreatment cases, the rate was 49.8% (46.0%-53.6%; n/N = 4155/8291). Multi-drug resistance among new and retreatment cases was 4.8% (4.0%-5.7%; n/N = 2300/42946) and 26.3% (23.1%-29.7%; n/N = 3125/11589) respectively. The results were significantly heterogeneous (pdrug resistance patterns were found by subgroup analysis according to geographic areas, subject enrolment time, and methods of drug susceptibility test (DST). The prevalence of resistance to any drug evidently dropped for both new and retreatment cases, and multi-drug resistance declined among new cases but became more prevalent among retreatment cases compared to the data before 2008

  4. [Antituberculosis-drug resistance in the border of Brazil with Paraguay and Bolivia].

    Science.gov (United States)

    Marques, Marli; Cunha, Eunice Atsuko Totumi; Evangelista, Maria do Socorro Nantua; Basta, Paulo Cesar; Marques, Ana Maria Campos; Croda, Julio; de Andrade, Sonia Maria Oliveira

    2017-04-20

    To estimate the rate of drug resistance among pulmonary tuberculosis (PTB) cases in the state of Mato Grosso do Sul, Brazil, and specifically in the border areas with Paraguay and Bolivia, as well as to identify associated risk factors. The present cross-sectional, epidemiological study focused on PTB cases recorded between January 2007 and December 2010 in the State Reportable Disease Information System with results of susceptibility tests to rifampicin, isoniazid, ethambutol, and streptomycin. Dependent variables were development of resistance to a single drug or any combination of drugs. Independent variables were being a new or treated case, living in border areas, presence/absence of diabetes, and history of alcoholism. There were 789 TBP cases with susceptibility testing. The following characteristics were associated with resistance: treated case (P = 0.0001), border region (P = 0.0142), alcoholism (P = 0.0451), and diabetes (P = 0.0708). The rates of combined, primary, and acquired resistance for the state were 16.3%, 10.6%, and 39.0%, vs. 22.3%, 19.2%, and 37.5% for the border region. The rates of combined, primary, and acquired multidrug resistance for the state were 1.8%, 0.6%, and 6.3%, vs. 3.1%, 1.2%, and 12.5% for the border region. In the border region, the state should investigate drug resistance in all patients with respiratory symptoms, determine the pattern of resistance in confirmed cases, adopt directly observed treatment for cases of PTB, and develop health actions together with neighboring countries. Across the state, the levels of acquired resistance should be monitored, with investigation of resistance in all treated cases and implementation of directly observed treatment especially among patients with diabetes or alcoholism.

  5. The Role of ABC Proteins in Drug Resistant Breast Cancer Cells

    Science.gov (United States)

    2008-04-01

    called the Plasmodium falciparum Chloroquine Transporter (PfCRT). While PfCRT is known to be the main molecular determinant of chloroquine resistance...proteins (such as human P-glycoprotein) and labeled PfCRT with a photoaffinity drug analogue . A manuscript is currently in preparation detailing my results...directly responsible for drug response, the Plasmodium falciparum Chloroquine Resistance Transporter (PfCRT) (Fidock et al 2000). While not a member of

  6. Exploring Culturally Specific Drug Resistance Strategies of Hawaiian Youth in Rural Communities

    Science.gov (United States)

    Okamoto, Scott K.; Po'a-Kekuawela, Ka'ohinani; Chin, Coralee I. H.; Nebre, La Risa H.; Helm, Susana

    2010-01-01

    This qualitative study examined the drug resistance strategies of Hawaiian youth residing in rural communities in Hawai'i. Forty seven youth participated in 14 focus groups which focused on the social and environmental context of drug use for these youth. The findings indicated that there were 47 references to resistance strategies used in drug…

  7. Characterization of extensively drug-resistant Mycobacterium tuberculosis in Nepal.

    Science.gov (United States)

    Poudel, Ajay; Maharjan, Bhagwan; Nakajima, Chie; Fukushima, Yukari; Pandey, Basu D; Beneke, Antje; Suzuki, Yasuhiko

    2013-01-01

    The emergence of extensively drug-resistant tuberculosis (XDR-TB) has raised public health concern for global control of TB. Although molecular characterization of drug resistance-associated mutations in multidrug-resistant isolates in Nepal has been made, mutations in XDR isolates and their genotypes have not been reported previously. In this study, we identified and characterized 13 XDR Mycobacterium tuberculosis isolates from clinical isolates in Nepal. The most prevalent mutations involved in rifampicin, isoniazid, ofloxacin, and kanamycin/capreomycin resistance were Ser531Leu in rpoB gene (92.3%), Ser315Thr in katG gene (92.3%), Asp94Gly in gyrA gene (53.9%) and A1400G in rrs gene (61.5%), respectively. Spoligotyping and multilocus sequence typing revealed that 69% belonged to Beijing family, especially modern types. Further typing with 26-loci variable number of tandem repeats suggested the current spread of XDR M. tuberculosis. Our result highlights the need to reinforce the TB policy in Nepal with regard to control and detection strategies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. The human multidrug resistance-associated protein MRP is a plasma membrane drug-efflux pump

    NARCIS (Netherlands)

    Zaman, G. J.; Flens, M. J.; van Leusden, M. R.; de Haas, M.; Mülder, H. S.; Lankelma, J.; Pinedo, H. M.; Scheper, R. J.; Baas, F.; Broxterman, H. J.

    1994-01-01

    The multidrug-resistance associated protein MRP is a 180- to 195-kDa membrane protein associated with resistance of human tumor cells to cytotoxic drugs. We have investigated how MRP confers drug resistance in SW-1573 human lung carcinoma cells by generating a subline stably transfected with an

  9. Multi-drug resistant Ewingella Americana

    International Nuclear Information System (INIS)

    Bukhari, Syed Z.; Ashshi, Ahmad M.; Hussain, Waleed M.; Fatani, Mohammad I.

    2008-01-01

    We report a case of pneumonia due to multi-drug resistant Ewingella Americana in a young patient admitted in the Intensive Care Unit of Hera General Hospital, Makkah, Saudi Arabia with severe head injury in a road traffic accident. He was an Indonesian pilgrim who had traveled to the Kingdom of Saudi Arabia to perform Hajj in December 2007. Ewingella Americana was identified to be the pathogen of pneumonia with clinical signs and symptoms along with positive radiological findings. (author)

  10. GENETIC DIVERSITY OF DRUG RESISTANT STRAINS OF MYCOBACTERIUM TUBERCULOSIS IN OMSK REGION

    Directory of Open Access Journals (Sweden)

    O. A. Pаsechnik

    2017-01-01

    Full Text Available The article presents the investigation results of the specific epidemic situation on tuberculous infection in Omsk Region in 2006-2015 and molecular genetic features of M. tuberculosis strains with multiple drug resistance circulating in this region. Bacteriological, molecular genetic methods, VNTR-typing were used as well as descriptive techniques of the epidemiological process. Tuberculosis prevalence made 269.2 per 100,000 population. There is an increase in those with bacillary excretion among new cases of respiratory tuberculosis from 39.8% to 53.4%. Drug resistance was detected in 48.0% of new cases. Among drug resistance patterns, MDR made 57%, and extensive drug resistance (XDR increased from 2.5 to 7.0%. In 2015 prevalence of XDR tuberculosis made 8.9 per 100,000 population in Omsk Region. When performing VNTR-typing of 77 samples of M. tuberculosis DNA with MDR, 27 genetic types were identified. The population of MDR strain of M. tuberculosis is heterogeneous and presented by strains of various genetic families -Beijing, LAM, S,Haarlem,Uganda. The investigation showed that isolates ofBeijing family prevailed (76.6%.

  11. Low-cost ultra-wide genotyping using Roche/454 pyrosequencing for surveillance of HIV drug resistance.

    Directory of Open Access Journals (Sweden)

    Dawn M Dudley

    Full Text Available Great efforts have been made to increase accessibility of HIV antiretroviral therapy (ART in low and middle-income countries. The threat of wide-scale emergence of drug resistance could severely hamper ART scale-up efforts. Population-based surveillance of transmitted HIV drug resistance ensures the use of appropriate first-line regimens to maximize efficacy of ART programs where drug options are limited. However, traditional HIV genotyping is extremely expensive, providing a cost barrier to wide-scale and frequent HIV drug resistance surveillance.We have developed a low-cost laboratory-scale next-generation sequencing-based genotyping method to monitor drug resistance. We designed primers specifically to amplify protease and reverse transcriptase from Brazilian HIV subtypes and developed a multiplexing scheme using multiplex identifier tags to minimize cost while providing more robust data than traditional genotyping techniques. Using this approach, we characterized drug resistance from plasma in 81 HIV infected individuals collected in São Paulo, Brazil. We describe the complexities of analyzing next-generation sequencing data and present a simplified open-source workflow to analyze drug resistance data. From this data, we identified drug resistance mutations in 20% of treatment naïve individuals in our cohort, which is similar to frequencies identified using traditional genotyping in Brazilian patient samples.The developed ultra-wide sequencing approach described here allows multiplexing of at least 48 patient samples per sequencing run, 4 times more than the current genotyping method. This method is also 4-fold more sensitive (5% minimal detection frequency vs. 20% at a cost 3-5× less than the traditional Sanger-based genotyping method. Lastly, by using a benchtop next-generation sequencer (Roche/454 GS Junior, this approach can be more easily implemented in low-resource settings. This data provides proof-of-concept that next

  12. Effect of repetitive transcranial magnetic stimulation in drug resistant depressed patients

    International Nuclear Information System (INIS)

    Chung, Yong An; Yoo, Ie Ryung; Kang, Bong Joo; Chae, Jeong Ho; Lee, Hye Won; Moon, Hyun Jin; Kim, Sung Hoon; Sohn, Hyung Sun; Chung, Soo Kyo

    2007-01-01

    Repetitive transcranial magnetic stimulation (rTMS) has recently been clinically applied in the treatment of drug resistant depressed patients. There are mixed findings about the efficacy of rTMS on depression. Furthermore, the influence of rTMS on the physiology of the brain is not clear. We prospectively evaluated changes of regional cerebral blood flow (rCBF) between pre- and post-rTMS treatment in patients with drug resistant depression. Twelve patients with drug-resistant depression (7 male, 5 female; age range; 19∼ 52 years; mean age: 29.3 ± 9.3 years) were given rTMS on right prefrontal lobe with low frequency (1 Hz) and on left prefrontal lobe with high frequency (20 Hz), with 20-minute-duration each day for 3 weeks. Tc-99m ECD brain perfusion SPECT was obtained before and after rTMS treatment. The changes of cerebral perfusion were analyzed using statistical parametric mapping (SPM; t=3.14, uncorrected ρ < 0.01, voxel = 100). Following areas showed significant increase in rCBF after 3 weeks rTMS treatment: the cingulate gyrus, fusiform gyrus of right temporal lobe, precuneus, and left lateral globus pallidus. Significant decrement was noted in the precental and middle frontal gyrus of right frontal lobe, and fusiform gyrus of left occipital lobe. Low-frequency rTMS on the right prefrontal cortex and high-frequency rTMS on the left prefrontal cortex for 3 weeks as an add-on regimen have increased and decreased rCBF in the specific brain regions in drug-resistant depressed patients. Further analyses correlating clinical characteristics and treatment paradigm with functional imaging data may be helpful in clarifying the pathophysiology of drug-resistant patients

  13. Effect of repetitive transcranial magnetic stimulation in drug resistant depressed patients

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong An; Yoo, Ie Ryung; Kang, Bong Joo; Chae, Jeong Ho; Lee, Hye Won; Moon, Hyun Jin; Kim, Sung Hoon; Sohn, Hyung Sun; Chung, Soo Kyo [The Catholic University of Korea, Seoul (Korea, Republic of)

    2007-02-15

    Repetitive transcranial magnetic stimulation (rTMS) has recently been clinically applied in the treatment of drug resistant depressed patients. There are mixed findings about the efficacy of rTMS on depression. Furthermore, the influence of rTMS on the physiology of the brain is not clear. We prospectively evaluated changes of regional cerebral blood flow (rCBF) between pre- and post-rTMS treatment in patients with drug resistant depression. Twelve patients with drug-resistant depression (7 male, 5 female; age range; 19{approx} 52 years; mean age: 29.3 {+-} 9.3 years) were given rTMS on right prefrontal lobe with low frequency (1 Hz) and on left prefrontal lobe with high frequency (20 Hz), with 20-minute-duration each day for 3 weeks. Tc-99m ECD brain perfusion SPECT was obtained before and after rTMS treatment. The changes of cerebral perfusion were analyzed using statistical parametric mapping (SPM; t=3.14, uncorrected {rho} < 0.01, voxel = 100). Following areas showed significant increase in rCBF after 3 weeks rTMS treatment: the cingulate gyrus, fusiform gyrus of right temporal lobe, precuneus, and left lateral globus pallidus. Significant decrement was noted in the precental and middle frontal gyrus of right frontal lobe, and fusiform gyrus of left occipital lobe. Low-frequency rTMS on the right prefrontal cortex and high-frequency rTMS on the left prefrontal cortex for 3 weeks as an add-on regimen have increased and decreased rCBF in the specific brain regions in drug-resistant depressed patients. Further analyses correlating clinical characteristics and treatment paradigm with functional imaging data may be helpful in clarifying the pathophysiology of drug-resistant patients.

  14. What is the mechanism for persistent coexistence of drug-susceptible and drug-resistant strains of Streptococcus pneumoniae?

    Science.gov (United States)

    Colijn, Caroline; Cohen, Ted; Fraser, Christophe; Hanage, William; Goldstein, Edward; Givon-Lavi, Noga; Dagan, Ron; Lipsitch, Marc

    2010-01-01

    The rise of antimicrobial resistance in many pathogens presents a major challenge to the treatment and control of infectious diseases. Furthermore, the observation that drug-resistant strains have risen to substantial prevalence but have not replaced drug-susceptible strains despite continuing (and even growing) selective pressure by antimicrobial use presents an important problem for those who study the dynamics of infectious diseases. While simple competition models predict the exclusion of one strain in favour of whichever is ‘fitter’, or has a higher reproduction number, we argue that in the case of Streptococcus pneumoniae there has been persistent coexistence of drug-sensitive and drug-resistant strains, with neither approaching 100 per cent prevalence. We have previously proposed that models seeking to understand the origins of coexistence should not incorporate implicit mechanisms that build in stable coexistence ‘for free’. Here, we construct a series of such ‘structurally neutral’ models that incorporate various features of bacterial spread and host heterogeneity that have been proposed as mechanisms that may promote coexistence. We ask to what extent coexistence is a typical outcome in each. We find that while coexistence is possible in each of the models we consider, it is relatively rare, with two exceptions: (i) allowing simultaneous dual transmission of sensitive and resistant strains lets coexistence become a typical outcome, as does (ii) modelling each strain as competing more strongly with itself than with the other strain, i.e. self-immunity greater than cross-immunity. We conclude that while treatment and contact heterogeneity can promote coexistence to some extent, the in-host interactions between strains, particularly the interplay between coinfection, multiple infection and immunity, play a crucial role in the long-term population dynamics of pathogens with drug resistance. PMID:19940002

  15. characterization of drug resistant pseudomonas aeruginosa and ...

    African Journals Online (AJOL)

    Abstract: Lizards as well as some other reptiles have been known to carry pathogenic bacteria organisms as well as drug resistant pathogens. Despite the fact that they remain asymptomatic in many cases, they nevertheless play significant roles in the epidemiology of these pathogens through their dissemination to the ...

  16. Clinical implications of molecular drug resistance testing for Mycobacterium tuberculosis: a TBNET/RESIST-TB consensus statement

    NARCIS (Netherlands)

    Domínguez, J.; Boettger, E. C.; Cirillo, D.; Cobelens, F.; Eisenach, K. D.; Gagneux, S.; Hillemann, D.; Horsburgh, R.; Molina-Moya, B.; Niemann, S.; Tortoli, E.; Whitelaw, A.; Lange, C.

    2016-01-01

    The emergence of drug-resistant strains of Mycobacterium tuberculosis is a challenge to global tuberculosis (TB) control. Although culture-based methods have been regarded as the gold standard for drug susceptibility testing (DST), molecular methods provide rapid information on mutations in the M.

  17. Monitoring of drug resistance amplification and attenuation with the use of tetracycline-resistant bacteria during wastewater treatment

    Science.gov (United States)

    Harnisz, Monika; Korzeniewska, Ewa; Niestępski, Sebastian; Osińska, Adriana; Nalepa, Beata

    2017-11-01

    The objective of this study was to monitor changes (amplification or attenuation) in antibiotic resistance during wastewater treatment based on the ecology of tetracycline-resistant bacteria. The untreated and treated wastewater were collected in four seasons. Number of tetracycline-(TETR) and oxytetracycline-resistant (OTCR) bacteria, their qualitative composition, minimum inhibitory concentrations (MICs), sensitivity to other antibiotics, and the presence of tet (A, B, C, D, E) resistance genes were determined. TETR and OTCR counts in untreated wastewater were 100 to 1000 higher than in treated effluent. OTCR bacterial counts were higher than TETR populations in both untreated and treated wastewater. TETR isolates were not dominated by a single bacterial genus or species, whereas Aeromonas hydrophila and Aeromonas sobria were the most common in OTCR isolates. The treatment process attenuated the drug resistance of TETR bacteria and amplified the resistance of OTCR bacteria. In both microbial groups, the frequency of tet(A) gene increased in effluent in comparison with untreated wastewater. Our results also indicate that treated wastewater is a reservoir of multiple drug-resistant bacteria as well as resistance determinants which may pose a health hazard for humans and animals when released to the natural environment.

  18. [Survey on the transmission of HIV drug resistance in Kunming, Yunnan province in 2010].

    Science.gov (United States)

    Chen, Min; Ma, Yan-ling; Chu, Cheng-xia; Xing, Hui; Xu, Yan-sheng; Su, Ying-zhen; Yang, Ying; Chen, Hui-chao; Luo, Hong-bing; Jia, Man-hong; Lu, Lin

    2012-01-01

    To study the HIV drug resistance (HIVDR) transmission in Kunming city of Yunnan province in 2010. Referring to the guidelines for HIV drug resistance threshold survey (HIVDR-TS) set by WHO, 62 plasma samples of recently reported HIV-infected individuals who were older than 25 years of age, were collected from January to August 2010. Genotyping of pol genetic mutations associated with HIVDR with reverse transcriptional PCR was performed and the prevalence of HIV-1 drug resistance transmission was evaluated. Of the 62 plasma samples, 54 were successfully sequenced and genotyped on pol sequence. Based on the pol sequences, HIV subtypes including CRF08_BC (53.2%), CRF07_BC (25.5%), CRF01_AE (19.1%) and C (2.1%) were identified. According to the time of sampling, the first 47 sequenced samples were used for drug resistance prevalence analysis. A protease inhibitor (PI) relative mutation was found in one sample. Based on the WHO standard, the prevalence of transmitted HIV-1 drug resistance was scientific management to AIDS patients seemed to be quite important.

  19. Efficacy of verapamil as an adjunctive treatment in children with drug-resistant epilepsy

    DEFF Research Database (Denmark)

    Nicita, Francesco; Spalice, Alberto; Papetti, Laura

    2014-01-01

    Verapamil, a voltage-gated calcium channel blocker, has been occasionally reported to have some effect on reducing seizure frequency in drug-resistant epilepsy or status epilepticus. We aimed to investigate the efficacy of verapamil as add-on treatment in children with drug-resistant epilepsy....

  20. Consensus Statement on Research Definitions for Drug-Resistant Tuberculosis in Children.

    Science.gov (United States)

    Seddon, James A; Perez-Velez, Carlos M; Schaaf, H Simon; Furin, Jennifer J; Marais, Ben J; Tebruegge, Marc; Detjen, Anne; Hesseling, Anneke C; Shah, Sarita; Adams, Lisa V; Starke, Jeffrey R; Swaminathan, Soumya; Becerra, Mercedes C

    2013-06-01

    Few children with drug-resistant (DR) tuberculosis (TB) are identified, diagnosed, and given an appropriate treatment. The few studies that have described this vulnerable population have used inconsistent definitions. The World Health Organization (WHO) definitions used for adults with DR-TB and for children with drug-susceptible TB are not always appropriate for children with DR-TB. The Sentinel Project on Pediatric Drug-Resistant Tuberculosis was formed in 2011 as a network of experts and stakeholders in childhood DR-TB. An early priority was to establish standardized definitions for key parameters in order to facilitate study comparisons and the development of an evidence base to guide future clinical management. This consensus statement proposes standardized definitions to be used in research. In particular, it suggests consistent terminology, as well as definitions for measures of exposure, drug resistance testing, previous episodes and treatment, certainty of diagnosis, site and severity of disease, adverse events, and treatment outcome. © The Author 2013. Published by Oxford University Press on behalf of the Pediatric Infectious Diseases Society.

  1. Acid-fast bacilli culture positivity and drug resistance in abdominal tuberculosis in Mumbai, India.

    Science.gov (United States)

    Samant, Hrishikesh; Desai, Devendra; Abraham, Philip; Joshi, Anand; Gupta, Tarun; Rodrigues, Camilla; George, Siji

    2014-09-01

    Culture positivity for Mycobacterium tuberculosis complex (MTB) in abdominal tuberculosis (TB) using Lowenstein Jensen medium and Bactec system varies from 25 % to 36 %. Data on the prevalence of drug resistance in primary abdominal TB is scant. Our aim was to study the acid-fast bacilli (AFB) culture positivity rate in primary abdominal TB using Bactec Mycobacterial Growth Indicator Tubes (MGIT) system and the prevalence of drug resistance in these patients. Records of patients with abdominal TB (diagnosed on clinical features, endoscopy, histology, microbiology) seen during the period 2008 to 2013 were retrieved from the Gastroenterology and Microbiology departments. Patients with extra-abdominal TB (five pulmonary, two nodal), adnexal (one), and HIV (one) were excluded from analysis. Of 61 patients, 31 (50.8 %) had a positive AFB culture. In the 30 culture-negative patients, histology showed non-caseating granulomas in 25 patients. Drug sensitivity pattern was analyzed in 18 patients; resistance was detected in eight (14.3 % of all patients and 44.4 % of patients in whom drug sensitivity was done) including three (5.4 % of all subjects and 16.6 % in whom drug sensitivity was available) who were multidrug-resistant. The rate of AFB culture positivity in primary abdominal TB was 50.8 % using Bactec MGIT. Likelihood of drug resistance was seen in 14.3 %, of whom 5.4 % were multidrug-resistant.

  2. Use of Lot Quality Assurance Sampling to Ascertain Levels of Drug Resistant Tuberculosis in Western Kenya.

    Directory of Open Access Journals (Sweden)

    Julia Jezmir

    Full Text Available To classify the prevalence of multi-drug resistant tuberculosis (MDR-TB in two different geographic settings in western Kenya using the Lot Quality Assurance Sampling (LQAS methodology.The prevalence of drug resistance was classified among treatment-naïve smear positive TB patients in two settings, one rural and one urban. These regions were classified as having high or low prevalence of MDR-TB according to a static, two-way LQAS sampling plan selected to classify high resistance regions at greater than 5% resistance and low resistance regions at less than 1% resistance.This study classified both the urban and rural settings as having low levels of TB drug resistance. Out of the 105 patients screened in each setting, two patients were diagnosed with MDR-TB in the urban setting and one patient was diagnosed with MDR-TB in the rural setting. An additional 27 patients were diagnosed with a variety of mono- and poly- resistant strains.Further drug resistance surveillance using LQAS may help identify the levels and geographical distribution of drug resistance in Kenya and may have applications in other countries in the African Region facing similar resource constraints.

  3. Use of Lot Quality Assurance Sampling to Ascertain Levels of Drug Resistant Tuberculosis in Western Kenya.

    Science.gov (United States)

    Jezmir, Julia; Cohen, Ted; Zignol, Matteo; Nyakan, Edwin; Hedt-Gauthier, Bethany L; Gardner, Adrian; Kamle, Lydia; Injera, Wilfred; Carter, E Jane

    2016-01-01

    To classify the prevalence of multi-drug resistant tuberculosis (MDR-TB) in two different geographic settings in western Kenya using the Lot Quality Assurance Sampling (LQAS) methodology. The prevalence of drug resistance was classified among treatment-naïve smear positive TB patients in two settings, one rural and one urban. These regions were classified as having high or low prevalence of MDR-TB according to a static, two-way LQAS sampling plan selected to classify high resistance regions at greater than 5% resistance and low resistance regions at less than 1% resistance. This study classified both the urban and rural settings as having low levels of TB drug resistance. Out of the 105 patients screened in each setting, two patients were diagnosed with MDR-TB in the urban setting and one patient was diagnosed with MDR-TB in the rural setting. An additional 27 patients were diagnosed with a variety of mono- and poly- resistant strains. Further drug resistance surveillance using LQAS may help identify the levels and geographical distribution of drug resistance in Kenya and may have applications in other countries in the African Region facing similar resource constraints.

  4. Simple strategy to assess linezolid exposure in patients with multi-drug-resistant and extensively-drug-resistant tuberculosis.

    Science.gov (United States)

    Kamp, Jasper; Bolhuis, Mathieu S; Tiberi, Simon; Akkerman, Onno W; Centis, Rosella; de Lange, Wiel C; Kosterink, Jos G; van der Werf, Tjip S; Migliori, Giovanni B; Alffenaar, Jan-Willem C

    2017-06-01

    Linezolid is used increasingly for the treatment of multi-drug-resistant (MDR) and extensively-drug-resistant (XDR) tuberculosis (TB). However, linezolid can cause severe adverse events, such as peripheral and optical neuropathy or thrombocytopenia related to higher drug exposure. This study aimed to develop a population pharmacokinetic model to predict the area under the concentration curve (AUC) for linezolid using a limited number of blood samples. Data from patients with MDR-/XDR-TB who received linezolid and therapeutic drug monitoring as part of their TB treatment were used. Mw\\Pharm 3.82 (Mediware, Zuidhorn, The Netherlands) was used to develop a population pharmacokinetic model and limited sampling strategy (LSS) for linezolid. LSS was evaluated over a time span of 6 h. Blood sampling directly before linezolid administration and 2 h after linezolid administration were considered to be the most clinically relevant sampling points. The model and LSS were evaluated by analysing the correlation between AUC 12h,observed and AUC 12h,estimated . In addition, LSS was validated with an external group of patients with MDR-/XDR-TB from Sondalo, Italy. Fifty-two pharmacokinetic profiles were used to develop the model. Thirty-three profiles with a 300 mg dosing regimen and 19 profiles with a 600 mg dosing regimen were obtained. Model validation showed prediction bias of 0.1% and r 2 of 0.99. Evaluation of the most clinically relevant LSS showed prediction bias of 4.8% and r 2 of 0.97. The root mean square error corresponding to the most relevant LSS was 6.07%. The developed LSS could be used to enable concentration-guided dosing of linezolid. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  5. Different frequencies of drug resistance mutations among HIV-1 subtypes circulating in China: a comprehensive study.

    Directory of Open Access Journals (Sweden)

    Hongshuai Sui

    Full Text Available The rapid spreading of HIV drug resistance is threatening the overall success of free HAART in China. Much work has been done on drug-resistant mutations, however, most of which were based on subtype B. Due to different genetic background, subtypes difference would have an effect on the development of drug-resistant mutations, which has already been proved by more and more studies. In China, the main epidemic subtypes are CRF07_BC, CRF08_BC, Thai B and CRF01_AE. The depiction of drug resistance mutations in those subtypes will be helpful for the selection of regimens for Chinese. In this study, the distributions difference of amino acids at sites related to HIV drug resistance were compared among subtype B, CRF01_AE, CRF07_BC and CRF08_BC strains prevalent in China. The amino acid composition of sequences belonging to different subtypes, which were obtained from untreated and treated individuals separately, were also compared. The amino acids proportions of 19 sites in RT among subtype B, CRF01_AE and CRF08_BC have significant difference in drug resistance groups (chi-square test, p<0.05. Genetic barriers analysis revealed that sites 69, 138, 181, 215 and 238 were significantly different among subtypes (Kruskal Wallis test, p<0.05. All subtypes shared three highest prevalent drug resistance sites 103, 181 and 184 in common. Many drug resistant sites in protease show surprising high proportions in almost all subtypes in drug-naïve patients. This is the first comprehensive study in China on different development of drug resistance among different subtypes. The detailed data will lay a foundation for HIV treatment regimens design and improve HIV therapy in China.

  6. Low-abundance HIV drug-resistant viral variants in treatment-experienced persons correlate with historical antiretroviral use.

    Science.gov (United States)

    Le, Thuy; Chiarella, Jennifer; Simen, Birgitte B; Hanczaruk, Bozena; Egholm, Michael; Landry, Marie L; Dieckhaus, Kevin; Rosen, Marc I; Kozal, Michael J

    2009-06-29

    It is largely unknown how frequently low-abundance HIV drug-resistant variants at levels under limit of detection of conventional genotyping (<20% of quasi-species) are present in antiretroviral-experienced persons experiencing virologic failure. Further, the clinical implications of low-abundance drug-resistant variants at time of virologic failure are unknown. Plasma samples from 22 antiretroviral-experienced subjects collected at time of virologic failure (viral load 1380 to 304,000 copies/mL) were obtained from a specimen bank (from 2004-2007). The prevalence and profile of drug-resistant mutations were determined using Sanger sequencing and ultra-deep pyrosequencing. Genotypes were interpreted using Stanford HIV database algorithm. Antiretroviral treatment histories were obtained by chart review and correlated with drug-resistant mutations. Low-abundance drug-resistant mutations were detected in all 22 subjects by deep sequencing and only in 3 subjects by Sanger sequencing. In total they accounted for 90 of 247 mutations (36%) detected by deep sequencing; the majority of these (95%) were not detected by standard genotyping. A mean of 4 additional mutations per subject were detected by deep sequencing (p<0.0001, 95%CI: 2.85-5.53). The additional low-abundance drug-resistant mutations increased a subject's genotypic resistance to one or more antiretrovirals in 17 of 22 subjects (77%). When correlated with subjects' antiretroviral treatment histories, the additional low-abundance drug-resistant mutations correlated with the failing antiretroviral drugs in 21% subjects and correlated with historical antiretroviral use in 79% subjects (OR, 13.73; 95% CI, 2.5-74.3, p = 0.0016). Low-abundance HIV drug-resistant mutations in antiretroviral-experienced subjects at time of virologic failure can increase a subject's overall burden of resistance, yet commonly go unrecognized by conventional genotyping. The majority of unrecognized resistant mutations correlate with

  7. Low-abundance HIV drug-resistant viral variants in treatment-experienced persons correlate with historical antiretroviral use.

    Directory of Open Access Journals (Sweden)

    Thuy Le

    Full Text Available BACKGROUND: It is largely unknown how frequently low-abundance HIV drug-resistant variants at levels under limit of detection of conventional genotyping (<20% of quasi-species are present in antiretroviral-experienced persons experiencing virologic failure. Further, the clinical implications of low-abundance drug-resistant variants at time of virologic failure are unknown. METHODOLOGY/PRINCIPAL FINDINGS: Plasma samples from 22 antiretroviral-experienced subjects collected at time of virologic failure (viral load 1380 to 304,000 copies/mL were obtained from a specimen bank (from 2004-2007. The prevalence and profile of drug-resistant mutations were determined using Sanger sequencing and ultra-deep pyrosequencing. Genotypes were interpreted using Stanford HIV database algorithm. Antiretroviral treatment histories were obtained by chart review and correlated with drug-resistant mutations. Low-abundance drug-resistant mutations were detected in all 22 subjects by deep sequencing and only in 3 subjects by Sanger sequencing. In total they accounted for 90 of 247 mutations (36% detected by deep sequencing; the majority of these (95% were not detected by standard genotyping. A mean of 4 additional mutations per subject were detected by deep sequencing (p<0.0001, 95%CI: 2.85-5.53. The additional low-abundance drug-resistant mutations increased a subject's genotypic resistance to one or more antiretrovirals in 17 of 22 subjects (77%. When correlated with subjects' antiretroviral treatment histories, the additional low-abundance drug-resistant mutations correlated with the failing antiretroviral drugs in 21% subjects and correlated with historical antiretroviral use in 79% subjects (OR, 13.73; 95% CI, 2.5-74.3, p = 0.0016. CONCLUSIONS/SIGNIFICANCE: Low-abundance HIV drug-resistant mutations in antiretroviral-experienced subjects at time of virologic failure can increase a subject's overall burden of resistance, yet commonly go unrecognized by conventional

  8. Drug resistance-related mutations in multidrug-resistant Mycobacterium tuberculosis isolates from diverse geographical regions

    Directory of Open Access Journals (Sweden)

    Senia Rosales-Klintz

    2012-01-01

    Conclusion: This study confirms that there are significant geographical differences in the distribution of resistance-related mutations and suggests that an increased understanding of such differences in the specific distribution of resistance conferring mutations is crucial for development of new, generally applicable, molecular tools for rapid diagnosis of drug-resistant TB. The fact that a narrower distribution of mutations in high MDR-TB prevalence settings was seen suggests that much of the problems in these settings can be a result of an ongoing transmission of certain MDR-TB strains.

  9. HIV drug resistance in infants increases with changing prevention of mother-to-child transmission regimens.

    Science.gov (United States)

    Poppe, Lisa K; Chunda-Liyoka, Catherine; Kwon, Eun H; Gondwe, Clement; West, John T; Kankasa, Chipepo; Ndongmo, Clement B; Wood, Charles

    2017-08-24

    The objectives of this study were to determine HIV drug resistance (HIVDR) prevalence in Zambian infants upon diagnosis, and to determine how changing prevention of mother-to-child transmission (PMTCT) drug regimens affect drug resistance. Dried blood spot (DBS) samples from infants in the Lusaka District of Zambia, obtained during routine diagnostic screening, were collected during four different years representing three different PMTCT drug treatment regimens. DNA extracted from dried blood spot samples was used to sequence a 1493 bp region of the reverse transcriptase gene. Sequences were analyzed via the Stanford HIVDRdatabase (http://hivdb.standford.edu) to screen for resistance mutations. HIVDR in infants increased from 21.5 in 2007/2009 to 40.2% in 2014. Nonnucleoside reverse transcriptase inhibitor resistance increased steadily over the sampling period, whereas nucleoside reverse transcriptase inhibitor resistance and dual class resistance both increased more than threefold in 2014. Analysis of drug resistance scores in each group revealed increasing strength of resistance over time. In 2014, children with reported PMTCT exposure, defined as infant prophylaxis and/or maternal treatment, showed a higher prevalence and strength of resistance compared to those with no reported exposure. HIVDR is on the rise in Zambia and presents a serious problem for the successful lifelong treatment of HIV-infected children. PMTCT affects both the prevalence and strength of resistance and further research is needed to determine how to mitigate its role leading to resistance.

  10. Drug resistant Salmonella in broiler chicken sold at local market in ...

    African Journals Online (AJOL)

    user

    2015-10-28

    Oct 28, 2015 ... Key words: Antibiogram, Salmonellosis, PCR, broiler chicken, drug resistance. ... of zoonotic origin and have gained their resistance in an animal host ..... dynamics of Salmonella enterica serotypes in commercial egg and.

  11. Drug-resistant tuberculosis among HIV-infected patients starting antiretroviral therapy in Durban, South Africa.

    Directory of Open Access Journals (Sweden)

    Jeffrey K Hom

    Full Text Available To estimate the prevalence of drug-resistant tuberculosis (TB and describe the resistance patterns in patients commencing antiretroviral therapy (ART in an HIV clinic in Durban, South Africa.Cross-sectional cohort study.Consecutive HIV-infected adults (≥ 18y/o initiating HIV care were enrolled from May 2007-May 2008, regardless of signs or symptoms of active TB. Prior TB history and current TB treatment status were self-reported. Subjects expectorated sputum for culture (MGIT liquid and 7H11 solid medium. Positive cultures were tested for susceptibility to first- and second-line anti-tuberculous drugs. The prevalence of drug-resistant TB, stratified by prior TB history and current TB treatment status, was assessed.1,035 subjects had complete culture results. Median CD4 count was 92/µl (IQR 42-150/µl. 267 subjects (26% reported a prior history of TB and 210 (20% were receiving TB treatment at enrollment; 191 (18% subjects had positive sputum cultures, among whom the estimated prevalence of resistance to any antituberculous drug was 7.4% (95% CI 4.0-12.4. Among those with prior TB, the prevalence of resistance was 15.4% (95% CI 5.9-30.5 compared to 5.2% (95% CI 2.1-8.9 among those with no prior TB. 5.1% (95% CI 2.4-9.5 had rifampin or rifampin plus INH resistance.The prevalence of TB resistance to at least one drug was 7.4% among adults with positive TB cultures initiating ART in Durban, South Africa, with 5.1% having rifampin or rifampin plus INH resistance. Improved tools for diagnosing TB and drug resistance are urgently needed in areas of high HIV/TB prevalence.

  12. Improved Tumor-Specific Drug Accumulation by Polymer Therapeutics with pH-Sensitive Drug Release Overcomes Chemotherapy Resistance.

    Science.gov (United States)

    Heinrich, Anne-Kathrin; Lucas, Henrike; Schindler, Lucie; Chytil, Petr; Etrych, Tomáš; Mäder, Karsten; Mueller, Thomas

    2016-05-01

    The success of chemotherapy is limited by poor selectivity of active drugs combined with occurrence of tumor resistance. New star-like structured N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer-based drug delivery systems containing doxorubicin attached via a pH-sensitive hydrazone bond were designed and investigated for their ability to overcome chemotherapy resistance. These conjugates combine two strategies to achieve a high drug concentration selectively at the tumor site: (I) high accumulation by passive tumor targeting based on enhanced permeability and retention effect and (II) pH-sensitive site-specific drug release due to an acidic tumor microenvironment. Mice bearing doxorubicin-resistant xenograft tumors were treated with doxorubicin, PBS, poly HPMA (pHPMA) precursor or pHPMA-doxorubicin conjugate at different equivalent doses of 5 mg/kg bodyweight doxorubicin up to a 7-fold total dose using different treatment schedules. Intratumoral drug accumulation was analyzed by fluorescence imaging utilizing intrinsic fluorescence of doxorubicin. Free doxorubicin induced significant toxicity but hardly any tumor-inhibiting effects. Administering at least a 3-fold dose of pHPMA-doxorubicin conjugate was necessary to induce a transient response, whereas doses of about 5- to 6-fold induced strong regressions. Tumors completely disappeared in some cases. The onset of response was differential delayed depending on the tumor model, which could be ascribed to distinct characteristics of the microenvironment. Further fluorescence imaging-based analyses regarding underlying mechanisms of the delayed response revealed a related switch to a more supporting intratumoral microenvironment for effective drug release. In conclusion, the current study demonstrates that the concept of tumor site-restricted high-dose chemotherapy is able to overcome therapy resistance. Mol Cancer Ther; 15(5); 998-1007. ©2016 AACR. ©2016 American Association for Cancer Research.

  13. Predicted levels of HIV drug resistance

    DEFF Research Database (Denmark)

    Cambiano, Valentina; Bertagnolio, Silvia; Jordan, Michael R

    2014-01-01

    -term effects. METHODS: The previously validated HIV Synthesis model was calibrated to South Africa. Resistance was modeled at the level of single mutations, transmission potential, persistence, and effect on drug activity. RESULTS: We estimate 652 000 people (90% uncertainty range: 543 000-744 000) are living...... are maintained, in 20 years' time HIV incidence is projected to have declined by 22% (95% confidence interval, CI -23 to -21%), and the number of people carrying NNRTI resistance to be 2.9-fold higher. If enhancements in diagnosis and retention in care occur, and ART is initiated at CD4 cell count less than 500......  cells/μl, HIV incidence is projected to decline by 36% (95% CI: -37 to -36%) and the number of people with NNRTI resistance to be 4.1-fold higher than currently. Prevalence of people with viral load more than 500  copies/ml carrying NRMV is not projected to differ markedly according to future ART...

  14. Genetic diversity of Plasmodium falciparum and distribution of drug resistance haplotypes in Yemen.

    Science.gov (United States)

    Al-Hamidhi, Salama; Mahdy, Mohammed A K; Al-Hashami, Zainab; Al-Farsi, Hissa; Al-mekhlafi, Abdulsalam M; Idris, Mohamed A; Beja-Pereira, Albano; Babiker, Hamza A

    2013-07-15

    Despite evident success of malaria control in many sites in the Arabian Peninsula, malaria remains endemic in a few spots, in Yemen and south-west of Saudi Arabia. In addition to local transmission, imported malaria sustains an extra source of parasites that can challenge the strengths of local control strategies. This study examined the genetic diversity of Plasmodium falciparum in Yemen and mutations of drug resistant genes, to elucidate parasite structure and distribution of drug resistance genotypes in the region. Five polymorphic loci (MSP-2, Pfg377 and three microsatellites on chromosome 8) not involved in anti-malarial drug resistance, and four drug resistant genes (pfcrt, pfmdr1, dhfr and dhps) were genotyped in 108 P. falciparum isolates collected in three sites in Yemen: Dhamar, Hodeidah and Taiz. High diversity was seen in non-drug genes, pfg377 (He = 0.66), msp-2 (He = 0.80) and three microsatellites on chr 8, 7.7 kb (He = 0.88), 4.3 kb (He = 0.77) and 0.8 kb (He = 0.71). There was a high level of mixed-genotype infections (57%), with an average 1.8 genotypes per patient. No linkage disequilibrium was seen between drug resistant genes and the non-drug markers (p Yemen is indicative of a large parasite reservoir, which represents a challenge to control efforts. The presence of two distinct pfcrt genotype, CVIET and SVMNT, suggests that chloroquine resistance can possibly be related to a migratory path from Africa and Asia. The absence of the triple mutant dhfr genotype (IRN) and dhps mutations supports the use of artesunate + sulphadoxine-pyrimethamine as first-line therapy. However, the prevalent pfmdr1 genotype NFSND [21%] has previously been associated with tolerance/resistance response to artemisinin combination therapy (ACT). Regular surveys are, therefore, important to monitor spread of pfmdr1 and dhfr mutations and response to ACT.

  15. Stability Analysis of an HIV/AIDS Dynamics Model with Drug Resistance

    Directory of Open Access Journals (Sweden)

    Qianqian Li

    2012-01-01

    Full Text Available A mathematical model of HIV/AIDS transmission incorporating treatment and drug resistance was built in this study. We firstly calculated the threshold value of the basic reproductive number (R0 by the next generation matrix and then analyzed stability of two equilibriums by constructing Lyapunov function. When R0<1, the system was globally asymptotically stable and converged to the disease-free equilibrium. Otherwise, the system had a unique endemic equilibrium which was also globally asymptotically stable. While an antiretroviral drug tried to reduce the infection rate and prolong the patients’ survival, drug resistance was neutralizing the effects of treatment in fact.

  16. Identification of a Non-Gatekeeper Hot Spot for Drug-Resistant Mutations in mTOR Kinase.

    Science.gov (United States)

    Wu, Tzung-Ju; Wang, Xiaowen; Zhang, Yanjie; Meng, Linghua; Kerrigan, John E; Burley, Stephen K; Zheng, X F Steven

    2015-04-21

    Protein kinases are therapeutic targets for human cancer. However, "gatekeeper" mutations in tyrosine kinases cause acquired clinical resistance, limiting long-term treatment benefits. mTOR is a key cancer driver and drug target. Numerous small-molecule mTOR kinase inhibitors have been developed, with some already in human clinical trials. Given our clinical experience with targeted therapeutics, acquired drug resistance in mTOR is thought likely, but not yet documented. Herein, we describe identification of a hot spot (L2185) for drug-resistant mutations, which is distinct from the gatekeeper site, and a chemical scaffold refractory to drug-resistant mutations. We also provide new insights into mTOR kinase structure and function. The hot spot mutations are potentially useful as surrogate biomarkers for acquired drug resistance in ongoing clinical trials and future treatments and for the design of the next generation of mTOR-targeted drugs. Our study provides a foundation for further research into mTOR kinase function and targeting. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Elucidating the Interdependence of Drug Resistance from Combinations of Mutations.

    Science.gov (United States)

    Ragland, Debra A; Whitfield, Troy W; Lee, Sook-Kyung; Swanstrom, Ronald; Zeldovich, Konstantin B; Kurt-Yilmaz, Nese; Schiffer, Celia A

    2017-11-14

    HIV-1 protease is responsible for the cleavage of 12 nonhomologous sites within the Gag and Gag-Pro-Pol polyproteins in the viral genome. Under the selective pressure of protease inhibition, the virus evolves mutations within (primary) and outside of (secondary) the active site, allowing the protease to process substrates while simultaneously countering inhibition. The primary protease mutations impede inhibitor binding directly, while the secondary mutations are considered accessory mutations that compensate for a loss in fitness. However, the role of secondary mutations in conferring drug resistance remains a largely unresolved topic. We have shown previously that mutations distal to the active site are able to perturb binding of darunavir (DRV) via the protein's internal hydrogen-bonding network. In this study, we show that mutations distal to the active site, regardless of context, can play an interdependent role in drug resistance. Applying eigenvalue decomposition to collections of hydrogen bonding and van der Waals interactions from a series of molecular dynamics simulations of 15 diverse HIV-1 protease variants, we identify sites in the protease where amino acid substitutions lead to perturbations in nonbonded interactions with DRV and/or the hydrogen-bonding network of the protease itself. While primary mutations are known to drive resistance in HIV-1 protease, these findings delineate the significant contributions of accessory mutations to resistance. Identifying the variable positions in the protease that have the greatest impact on drug resistance may aid in future structure-based design of inhibitors.

  18. Oridonin Targets Multiple Drug-Resistant Tumor Cells as Determined by in Silico and in Vitro Analyses

    Directory of Open Access Journals (Sweden)

    Onat Kadioglu

    2018-04-01

    Full Text Available Drug resistance is one of the main reasons of chemotherapy failure. Therefore, overcoming drug resistance is an invaluable approach to identify novel anticancer drugs that have the potential to bypass or overcome resistance to established drugs and to substantially increase life span of cancer patients for effective chemotherapy. Oridonin is a cytotoxic diterpenoid isolated from Rabdosia rubescens with in vivo anticancer activity. In the present study, we evaluated the cytotoxicity of oridonin toward a panel of drug-resistant cancer cells overexpressing ABCB1, ABCG2, or ΔEGFR or with a knockout deletion of TP53. Interestingly, oridonin revealed lower degree of resistance than the control drug, doxorubicin. Molecular docking analyses pointed out that oridonin can interact with Akt/EGFR pathway proteins with comparable binding energies and similar docking poses as the known inhibitors. Molecular dynamics results validated the stable conformation of oridonin docking pose on Akt kinase domain. Western blot experiments clearly revealed dose-dependent downregulation of Akt and STAT3. Pharmacogenomics analyses pointed to a mRNA signature that predicted sensitivity and resistance to oridonin. In conclusion, oridonin bypasses major drug resistance mechanisms and targets Akt pathway and might be effective toward drug refractory tumors. The identification of oridonin-specific gene expressions may be useful for the development of personalized treatment approaches.

  19. Prevalence of drug-resistant mutation among drug-treated HIV/AIDS inpatient in Airlangga University teaching hospital, Surabaya, Indonesia

    Science.gov (United States)

    Rachman, B. E.; Khairunisa, S. Q.; Witaningrum, A. M.; Yunifiar, M. Q.; Widiyanti, P.; Nasronudin

    2018-03-01

    Increased use of antiretroviral therapy did not completely reduce the incidence of HIV/AIDShospitalization. Various factors can be involved. The aim of this study is to examine HIV-1 drug resistance mutations profile in drug-treated HIV/AIDS patients who underwent hospitalization. HIV/AIDS patients who are admitted to hospital who had received ART are included in the study and then examined for the presence of drug resistance-associated mutations. A total of 17 samples were included in the study, but only 11 samples that could be sequence analyzed. On the mutation examination of drug resistance in reverse transcriptase gene, it werefound a major mutation in K103N (9%) and G190A (9%). Most minor mutations were found in A98S (18.1%), followed by M41L, M184V, L210W, T215Y, V108l, Y181C and H221Y at 9% each. Whereas, on examination of drug resistance mutations in protease genes, there is a major mutation in I84V of 9%. Most minor mutations on M36I (45.4%), followed by L10I (36.3%), H69K (36.3%), I93L (27.2%), G16E, L89M, K20R 18.1%, L64V and V771I 9% respectively.A large number of mutated samples pose a challenge in long-term antiretroviral treatment, so a breakthrough policy is needed to minimize the impact.

  20. Investigating the effects of ABC transporter-based acquired drug resistance mechanisms at the cellular and tissue scale.

    Science.gov (United States)

    Liu, Cong; Krishnan, J; Xu, Xiao Yun

    2013-03-01

    In this paper we systematically investigate the effects of acquired drug resistance at the cellular and tissue scale, with a specific focus on ATP-binding cassette (ABC) transporter-based mechanisms and contrast this with other representative intracellular resistance mechanisms. This is done by developing in silico models wherein the drug resistance mechanism is overlaid on a coarse-grained description of apoptosis; these cellular models are coupled with interstitial drug transport, allowing for a transparent examination of the effect of acquired drug resistances at the tissue level. While ABC transporter-mediated resistance mechanisms counteract drug effect at the cellular level, its tissue-level effect is more complicated, revealing unexpected trends in tissue response as drug stimuli are systematically varied. Qualitatively different behaviour is observed in other drug resistance mechanisms. Overall the paper (i) provides insight into the tissue level functioning of a particular resistance mechanism, (ii) shows that this is very different from other resistance mechanisms of an apparently similar type, and (iii) demonstrates a concrete instance of how the functioning of a negative feedback based cellular adaptive mechanism can have unexpected higher scale effects.

  1. Second line drug susceptibility testing to inform the treatment of rifampin-resistant tuberculosis: a quantitative perspective

    Directory of Open Access Journals (Sweden)

    Emily A. Kendall

    2017-03-01

    Full Text Available Treatment failure and resistance amplification are common among patients with rifampin-resistant tuberculosis (TB. Drug susceptibility testing (DST for second-line drugs is recommended for these patients, but logistical difficulties have impeded widespread implementation of second-line DST in many settings. To provide a quantitative perspective on the decision to scale up second-line DST, we synthesize literature on the prevalence of second-line drug resistance, the expected clinical and epidemiologic benefits of using second-line DST to ensure that patients with rifampin-resistant TB receive effective regimens, and the costs of implementing (or not implementing second-line DST for all individuals diagnosed with rifampin-resistant TB. We conclude that, in most settings, second-line DST could substantially improve treatment outcomes for patients with rifampin-resistant TB, reduce transmission of drug-resistant TB, prevent amplification of drug resistance, and be affordable or even cost-saving. Given the large investment made in each patient treated for rifampin-resistant TB, these payoffs would come at relatively small incremental cost. These anticipated benefits likely justify addressing the real challenges faced in implementing second-line DST in most high-burden settings.

  2. Telomerase and drug resistance in cancer

    OpenAIRE

    Lipinska, Natalia; Romaniuk, Aleksandra; Paszel-Jaworska, Anna; Toton, Ewa; Kopczynski, Przemyslaw; Rubis, Blazej

    2017-01-01

    It is well known that a decreased expression or inhibited activity of telomerase in cancer cells is accompanied by an increased sensitivity to some drugs (e.g., doxorubicin, cisplatin, or 5-fluorouracil). However, the mechanism of the resistance resulting from telomerase alteration remains elusive. There are theories claiming that it might be associated with telomere shortening, genome instability, hTERT translocation, mitochondria functioning modulation, or even alterations in ABC family gen...

  3. Thermoresponsive Supramolecular Chemotherapy by "V"-Shaped Armed β-Cyclodextrin Star Polymer to Overcome Drug Resistance.

    Science.gov (United States)

    Fan, Xiaoshan; Cheng, Hongwei; Wang, Xiaoyuan; Ye, Enyi; Loh, Xian Jun; Wu, Yun-Long; Li, Zibiao

    2018-04-01

    Pump mediated drug efflux is the key reason to result in the failure of chemotherapy. Herein, a novel star polymer β-CD-v-(PEG-β-PNIPAAm) 7 consisting of a β-CD core, grafted with thermo-responsive poly(N-isopropylacrylamide) (PNIPAAm) and biocompatible poly(ethylene glycol) (PEG) in the multiple "V"-shaped arms is designed and further fabricated into supramolecular nanocarriers for drug resistant cancer therapy. The star polymer could encapsulate chemotherapeutics between β-cyclodextrin and anti-cancer drug via inclusion complex (IC). Furthermore, the temperature induced chain association of PNIPAAm segments facilitated the IC to form supramolecular nanoparticles at 37 °C, whereas the presence of PEG impart great stability to the self-assemblies. When incubated with MDR-1 membrane pump regulated drug resistant tumor cells, much higher and faster cellular uptake of the supramolecular nanoparticles were detected, and the enhanced intracellular retention of drugs could lead to significant inhibition of cell growth. Further in vivo evaluation showed high therapeutic efficacy in suppressing drug resistant tumor growth without a significant impact on the normal functions of main organs. This work signifies thermo-responsive supramolecular chemotherapy is promising in combating pump mediated drug resistance in both in vitro and in vivo models, which may be encouraging for the advanced drug delivery platform design to overcome drug resistant cancer. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Transmission pattern of drug-resistant tuberculosis and its implication for tuberculosis control in eastern rural China.

    Directory of Open Access Journals (Sweden)

    Yi Hu

    Full Text Available OBJECTIVE: Transmission patterns of drug-resistant Mycobacterium tuberculosis (MTB may be influenced by differences in socio-demographics, local tuberculosis (TB endemicity and efficaciousness of TB control programs. This study aimed to investigate the impact of DOTS on the transmission of drug-resistant TB in eastern rural China. METHODS: We conducted a cross-sectional study of all patients diagnosed with drug-resistant TB over a one-year period in two rural Chinese counties with varying lengths of DOTS implementation. Counties included Deqing, with over 11 years' DOTS implementation and Guanyun, where DOTS was introduced 1 year prior to start of this study. We combined demographic, clinical and epidemiologic information with IS6110-based restricted fragment length polymorphism (RFLP and Spoligotyping analysis of MTB isolates. In addition, we conducted DNA sequencing of resistance determining regions to first-line anti-tuberculosis agents. RESULTS: Of the 223 drug-resistant isolates, 73(32.7% isolates were identified with clustered IS6110RFLP patterns. The clustering proportion among total drug-resistant TB was higher in Guanyun than Deqing (26/101.vs.47/122; p,0.04, but not significantly different among the 53 multidrug-resistant isolates (10/18.vs.24/35; p,0.35. Patients with cavitary had increased risk of clustering in both counties. In Guanyun, patients with positive smear test or previous treatment history had a higher clustering proportion. Beijing genotype and isolates resistant to isoniazid and/or rifampicin were more likely to be clustered. Of the 73 patients with clustered drug-resistant isolates, 71.2% lived in the same or neighboring villages. Epidemiological link (household and social contact was confirmed in 12.3% of the clustered isolates. CONCLUSION: Transmission of drug-resistant TB in eastern rural China is characterized by small clusters and limited geographic spread. Our observations highlight the need for supplementing DOTS

  5. Antimicrobial Drug-Resistant Shiga Toxin-Producing Escherichia coli Infections, Michigan, USA.

    Science.gov (United States)

    Mukherjee, Sanjana; Mosci, Rebekah E; Anderson, Chase M; Snyder, Brian A; Collins, James; Rudrik, James T; Manning, Shannon D

    2017-09-01

    High frequencies of antimicrobial drug resistance were observed in O157 and non-O157 Shiga toxin-producing E. coli strains recovered from patients in Michigan during 2010-2014. Resistance was more common in non-O157 strains and independently associated with hospitalization, indicating that resistance could contribute to more severe disease outcomes.

  6. Human Immunodeficiency Virus Type 1 Protease and the Emergence of Drug Resistance

    DEFF Research Database (Denmark)

    Poulsen, Nina Rødtness

    in multi-drug-resistant PRs. Computational analysis of a vast number of inhibitor-resistant HIV-1 PR variants can broaden the knowledge of how and why the mutations arise, which would be a great advantage in the design on resistance-evading inhibitors. Here we present a diverse system to select...... in the virus life cycle has made it a major target for drug development and active site competitive inhibitors have been successful in the battle against HIV. Unfortunately, the massive drug pressure along with high-level replication and lack of proofreading by the viral reverse transcriptase have resulted...... for catalytically active HIV-1 PR in the presence of inhibitor. The system is based on the protein AraC, which regulates transcription of the araA, araB and araD genes necessary for arabinose catabolism in Escherichia coli, and its effectiveness was demonstrated by the isolation of both known and unknown inhibitor-resistant...

  7. "I No Like Get Caught Using Drugs": Explanations for Refusal as a Drug-Resistance Strategy for Rural Native Hawaiian Youths

    Science.gov (United States)

    Okamoto, Scott K.; Helm, Susana; Giroux, Danielle; Kaliades, Alexis

    2011-01-01

    This exploratory study examines the use of explanations for refusal as a drug-resistance strategy for rural Native Hawaiian youths. Fourteen gender-specific focus groups were conducted within seven middle or intermediate schools on the Island of Hawai'i (N = 64). Participants were asked to describe drug-resistance strategies in response to 15…

  8. First insights into circulating Mycobacterium tuberculosis complex lineages and drug resistance in Guinea

    Science.gov (United States)

    Ejo, Mebrat; Gehre, Florian; Barry, Mamadou Dian; Sow, Oumou; Bah, Nene Mamata; Camara, Mory; Bah, Boubacar; Uwizeye, Cecile; Nduwamahoro, Elie; Fissette, Kristina; Rijk, Pim De; Merle, Corinne; Olliaro, Piero; Burgos, Marcos; Lienhardt, Christian; Rigouts, Leen; de Jong, Bouke C.

    2015-01-01

    In this study we assessed first-line anti-tuberculosis drug resistance and the genotypic distribution of Mycobacterium tuberculosis complex (MTBC) isolates that had been collected from consecutive new tuberculosis patients enrolled in two clinical trials conducted in Guinea between 2005 and 2010. Among the total 359 MTBC strains that were analyzed in this study, 22.8% were resistant to at least one of the first line anti-tuberculosis drugs, including 2.5% multidrug resistance and 17.5% isoniazid resistance, with or without other drugs. In addition, further characterization of isolates from a subset of the two trials (n = 184) revealed a total of 80 different spoligotype patterns, 29 “orphan” and 51 shared patterns. We identified the six major MTBC lineages of human relevance, with predominance of the Euro-American lineage. In total, 132 (71.7%) of the strains were genotypically clustered, and further analysis (using the DESTUS model) suggesting significantly faster spread of LAM10_CAM family (p = 0.00016). In conclusion, our findings provide a first insight into drug resistance and the population structure of the MTBC in Guinea, with relevance for public health scientists in tuberculosis control programs. PMID:26004194

  9. Cutaneous squamous cell carcinoma in lupus vulgaris caused by drug resistant Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Muthu S Kumaran

    2017-01-01

    Full Text Available Tuberculosis (TB is still a major public health problem in the world, with many factors contributing to this burden, including poor living conditions, overcrowding, poverty, malnutrition, illiteracy, and rapid spread of human immunodeficiency virus infection. Cutaneous tuberculosis is a less common form of extrapulmonary tuberculosis, and in this paucibacillary form the diagnosis depends on histopathology, tuberculin positivity, and response to treatment. The diagnosis is even more difficult in cases with drug resistant Mycobacterium tuberculosis due to lack of awareness and lack of facilities to diagnose drug resistant tuberculosis. In this article, we describe an unusual case of multidrug resistant lupus vulgaris (LV, in a 34-year-old male who responded to anti-tubercular treatment (ATT initially, but developed recurrent disease which failed to respond to standard four-drug ATT; subsequently, tissue culture showed growth of multidrug resistant M. tuberculosis. Subsequently, he also developed cutaneous squamous cell carcinoma. This article aims to exemplify a grave complication that can occur in long-standing case of LV, the limitations faced by clinicians in developing countries where tuberculosis is endemic, and classical methods of proving drug resistance are generally unavailable or fail.

  10. National anti-tuberculosis drug resistance study in Tanzania

    NARCIS (Netherlands)

    Chonde, T. M.; Basra, D.; Mfinanga, S. G. M.; Range, N.; Lwilla, F.; Shirima, R. P.; van Deun, A.; Zignol, M.; Cobelens, F. G.; Egwaga, S. M.; van Leth, F.

    2010-01-01

    OBJECTIVE: To assess the prevalence of anti-tuberculosis drug resistance in a national representative sample of tuberculosis (TB) patients in Tanzania according to recommended methodology. DESIGN: Cluster survey, with 40 clusters sampled proportional to size, of notified TB patients from all

  11. Estimating the future burden of multidrug-resistant and extensively drug-resistant tuberculosis in India, the Philippines, Russia, and South Africa: a mathematical modelling study.

    Science.gov (United States)

    Sharma, Aditya; Hill, Andrew; Kurbatova, Ekaterina; van der Walt, Martie; Kvasnovsky, Charlotte; Tupasi, Thelma E; Caoili, Janice C; Gler, Maria Tarcela; Volchenkov, Grigory V; Kazennyy, Boris Y; Demikhova, Olga V; Bayona, Jaime; Contreras, Carmen; Yagui, Martin; Leimane, Vaira; Cho, Sang Nae; Kim, Hee Jin; Kliiman, Kai; Akksilp, Somsak; Jou, Ruwen; Ershova, Julia; Dalton, Tracy; Cegielski, Peter

    2017-07-01

    Multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis are emerging worldwide. The Green Light Committee initiative supported programmatic management of drug-resistant tuberculosis in 90 countries. We used estimates from the Preserving Effective TB Treatment Study to predict MDR and XDR tuberculosis trends in four countries with a high burden of MDR tuberculosis: India, the Philippines, Russia, and South Africa. We calibrated a compartmental model to data from drug resistance surveys and WHO tuberculosis reports to forecast estimates of incident MDR and XDR tuberculosis and the percentage of incident MDR and XDR tuberculosis caused by acquired drug resistance, assuming no fitness cost of resistance from 2000 to 2040 in India, the Philippines, Russia, and South Africa. The model forecasted the percentage of MDR tuberculosis among incident cases of tuberculosis to increase, reaching 12·4% (95% prediction interval 9·4-16·2) in India, 8·9% (4·5-11·7) in the Philippines, 32·5% (27·0-35·8) in Russia, and 5·7% (3·0-7·6) in South Africa in 2040. It also predicted the percentage of XDR tuberculosis among incident MDR tuberculosis to increase, reaching 8·9% (95% prediction interval 5·1-12·9) in India, 9·0% (4·0-14·7) in the Philippines, 9·0% (4·8-14·2) in Russia, and 8·5% (2·5-14·7) in South Africa in 2040. Acquired drug resistance would cause less than 30% of incident MDR tuberculosis during 2000-40. Acquired drug resistance caused 80% of incident XDR tuberculosis in 2000, but this estimate would decrease to less than 50% by 2040. MDR and XDR tuberculosis were forecast to increase in all four countries despite improvements in acquired drug resistance shown by the Green Light Committee-supported programmatic management of drug-resistant tuberculosis. Additional control efforts beyond improving acquired drug resistance rates are needed to stop the spread of MDR and XDR tuberculosis in countries with a high burden of MDR

  12. Treatment of a solid tumor using engineered drug-resistant immunocompetent cells and cytotoxic chemotherapy.

    Science.gov (United States)

    Dasgupta, Anindya; Shields, Jordan E; Spencer, H Trent

    2012-07-01

    Multimodal therapy approaches, such as combining chemotherapy agents with cellular immunotherapy, suffers from potential drug-mediated toxicity to immune effector cells. Overcoming such toxic effects of anticancer cellular products is a potential critical barrier to the development of combined therapeutic approaches. We are evaluating an anticancer strategy that focuses on overcoming such a barrier by genetically engineering drug-resistant variants of immunocompetent cells, thereby allowing for the coadministration of cellular therapy with cytotoxic chemotherapy, a method we refer to as drug-resistant immunotherapy (DRI). The strategy relies on the use of cDNA sequences that confer drug resistance and recombinant lentiviral vectors to transfer nucleic acid sequences into immunocompetent cells. In the present study, we evaluated a DRI-based strategy that incorporates the immunocompetent cell line NK-92, which has intrinsic antitumor properties, genetically engineered to be resistant to both temozolomide and trimetrexate. These immune effector cells efficiently lysed neuroblastoma cell lines, which we show are also sensitive to both chemotherapy agents. The antitumor efficacy of the DRI strategy was demonstrated in vivo, whereby neuroblastoma-bearing NOD/SCID/γ-chain knockout (NSG) mice treated with dual drug-resistant NK-92 cell therapy followed by dual cytotoxic chemotherapy showed tumor regression and significantly enhanced survival compared with animals receiving either nonengineered cell-based therapy and chemotherapy, immunotherapy alone, or chemotherapy alone. These data show there is a benefit to using drug-resistant cellular therapy when combined with cytotoxic chemotherapy approaches.

  13. Energetic basis for drug resistance of HIV-1 protease mutants against amprenavir

    Science.gov (United States)

    Kar, Parimal; Knecht, Volker

    2012-02-01

    Amprenavir (APV) is a high affinity (0.15 nM) HIV-1 protease (PR) inhibitor. However, the affinities of the drug resistant protease variants V32I, I50V, I54V, I54M, I84V and L90M to amprenavir are decreased 3 to 30-fold compared to the wild-type. In this work, the popular molecular mechanics Poisson-Boltzmann surface area method has been used to investigate the effectiveness of amprenavir against the wild-type and these mutated protease variants. Our results reveal that the protonation state of Asp25/Asp25' strongly affects the dynamics, the overall affinity and the interactions of the inhibitor with individual residues. We emphasize that, in contrast to what is often assumed, the protonation state may not be inferred from the affinities but requires pKa calculations. At neutral pH, Asp25 and Asp25' are ionized or protonated, respectively, as suggested from pKa calculations. This protonation state was thus mainly considered in our study. Mutation induced changes in binding affinities are in agreement with the experimental findings. The decomposition of the binding free energy reveals the mechanisms underlying binding and drug resistance. Drug resistance arises from an increase in the energetic contribution from the van der Waals interactions between APV and PR (V32I, I50V, and I84V mutant) or a rise in the energetic contribution from the electrostatic interactions between the inhibitor and its target (I54M and I54V mutant). For the V32I mutant, also an increased free energy for the polar solvation contributes to the drug resistance. For the L90M mutant, a rise in the van der Waals energy for APV-PR interactions is compensated by a decrease in the polar solvation free energy such that the net binding affinity remains unchanged. Detailed understanding of the molecular forces governing binding and drug resistance might assist in the design of new inhibitors against HIV-1 PR variants that are resistant against current drugs.

  14. Impact of drug resistance on the tuberculosis treatment outcome

    Directory of Open Access Journals (Sweden)

    E. Lesnic

    2017-03-01

    Full Text Available Background. The standard treatment of a new case of multidrug-resistant tuberculosis (MDR-TB according to WHO recommendations in the Republic of Moldova is performed since 2005 showing a low treatment succes. Actually the treatment success rate increased due to excluding of MDR-TB patients from the general cohort. The major rate of patients with low outcome is represented by the failed and lost to follow-up cases. The purpose of the study was to assess the impact of multidrug-resiatnce and MDR-TB on the tuberculosis treatment outcome. Materials and methods. A retrospective selective, descriptive study targeting social, demographic, economic and epidemiological peculiarities, case-management, diagnostic radiological aspects and microbiological characteristics of 187 patients with pulmonary tuberculosis registered during 2013–2015 distributed in two groups: 1st group (61 patients with established multidrug-resistant strains using conventional cultural methods and the 2nd group (126 patients with MDR-TB. Results. Multidrug-resistance was established more frequently in new cases and MDR-TB in two thirds of retreated patients. No difference was identified in gender and age distribution, social, economical, educational characteristics; case-management assessment identified a similar proportion of patients revealed by general practitioners and specialists, with low rate of screened high risk groups. All patients from the multidrug-resistant group began the standard treatment for drug-responsiveness tuberculosis before drug susceptibility testing and one third of MDR-TB group was treated from the onset with the DOTS-Plus regimen. Highest success rate was identified in the new-case subgroups of both groups and higher rate of died patients was determined in the retreated subgroups. Such a low rate of patients aggrevates the resistance. Conclusions. Early diagnosis, drug responsiveness testing and raising awareness among about treatment compliance will

  15. Whole Genome Sequencing Based Characterization of Extensively Drug-Resistant Mycobacterium tuberculosis Isolates from Pakistan

    KAUST Repository

    Ali, Asho; Hasan, Zahra; McNerney, Ruth; Mallard, Kim; Hill-Cawthorne, Grant A.; Coll, Francesc; Nair, Mridul; Pain, Arnab; Clark, Taane G.; Hasan, Rumina

    2015-01-01

    Improved molecular diagnostic methods for detection drug resistance in Mycobacterium tuberculosis (MTB) strains are required. Resistance to first- and second- line anti-tuberculous drugs has been associated with single nucleotide polymorphisms (SNPs) in particular genes. However, these SNPs can vary between MTB lineages therefore local data is required to describe different strain populations. We used whole genome sequencing (WGS) to characterize 37 extensively drug-resistant (XDR) MTB isolates from Pakistan and investigated 40 genes associated with drug resistance. Rifampicin resistance was attributable to SNPs in the rpoB hot-spot region. Isoniazid resistance was most commonly associated with the katG codon 315 (92%) mutation followed by inhA S94A (8%) however, one strain did not have SNPs in katG, inhA or oxyR-ahpC. All strains were pyrazimamide resistant but only 43% had pncA SNPs. Ethambutol resistant strains predominantly had embB codon 306 (62%) mutations, but additional SNPs at embB codons 406, 378 and 328 were also present. Fluoroquinolone resistance was associated with gyrA 91-94 codons in 81% of strains; four strains had only gyr B mutations, while others did not have SNPs in either gyrA or gyrB. Streptomycin resistant strains had mutations in ribosomal RNA genes; rpsL codon 43 (42%); rrs 500 region (16%), and gidB (34%) while six strains did not have mutations in any of these genes. Amikacin/kanamycin/capreomycin resistance was associated with SNPs in rrs at nt1401 (78%) and nt1484 (3%), except in seven (19%) strains. We estimate that if only the common hot-spot region targets of current commercial assays were used, the concordance between phenotypic and genotypic testing for these XDR strains would vary between rifampicin (100%), isoniazid (92%), flouroquinolones (81%), aminoglycoside (78%) and ethambutol (62%); while pncA sequencing would provide genotypic resistance in less than half the isolates. This work highlights the importance of expanded

  16. Whole Genome Sequencing Based Characterization of Extensively Drug-Resistant Mycobacterium tuberculosis Isolates from Pakistan

    KAUST Repository

    Ali, Asho

    2015-02-26

    Improved molecular diagnostic methods for detection drug resistance in Mycobacterium tuberculosis (MTB) strains are required. Resistance to first- and second- line anti-tuberculous drugs has been associated with single nucleotide polymorphisms (SNPs) in particular genes. However, these SNPs can vary between MTB lineages therefore local data is required to describe different strain populations. We used whole genome sequencing (WGS) to characterize 37 extensively drug-resistant (XDR) MTB isolates from Pakistan and investigated 40 genes associated with drug resistance. Rifampicin resistance was attributable to SNPs in the rpoB hot-spot region. Isoniazid resistance was most commonly associated with the katG codon 315 (92%) mutation followed by inhA S94A (8%) however, one strain did not have SNPs in katG, inhA or oxyR-ahpC. All strains were pyrazimamide resistant but only 43% had pncA SNPs. Ethambutol resistant strains predominantly had embB codon 306 (62%) mutations, but additional SNPs at embB codons 406, 378 and 328 were also present. Fluoroquinolone resistance was associated with gyrA 91-94 codons in 81% of strains; four strains had only gyr B mutations, while others did not have SNPs in either gyrA or gyrB. Streptomycin resistant strains had mutations in ribosomal RNA genes; rpsL codon 43 (42%); rrs 500 region (16%), and gidB (34%) while six strains did not have mutations in any of these genes. Amikacin/kanamycin/capreomycin resistance was associated with SNPs in rrs at nt1401 (78%) and nt1484 (3%), except in seven (19%) strains. We estimate that if only the common hot-spot region targets of current commercial assays were used, the concordance between phenotypic and genotypic testing for these XDR strains would vary between rifampicin (100%), isoniazid (92%), flouroquinolones (81%), aminoglycoside (78%) and ethambutol (62%); while pncA sequencing would provide genotypic resistance in less than half the isolates. This work highlights the importance of expanded

  17. The culturable soil antibiotic resistome: a community of multi-drug resistant bacteria.

    Science.gov (United States)

    Walsh, Fiona; Duffy, Brion

    2013-01-01

    Understanding the soil bacterial resistome is essential to understanding the evolution and development of antibiotic resistance, and its spread between species and biomes. We have identified and characterized multi-drug resistance (MDR) mechanisms in the culturable soil antibiotic resistome and linked the resistance profiles to bacterial species. We isolated 412 antibiotic resistant bacteria from agricultural, urban and pristine soils. All isolates were multi-drug resistant, of which greater than 80% were resistant to 16-23 antibiotics, comprising almost all classes of antibiotic. The mobile resistance genes investigated, (ESBL, bla NDM-1, and plasmid mediated quinolone resistance (PMQR) resistance genes) were not responsible for the respective resistance phenotypes nor were they present in the extracted soil DNA. Efflux was demonstrated to play an important role in MDR and many resistance phenotypes. Clinically relevant Burkholderia species are intrinsically resistant to ciprofloxacin but the soil Burkholderia species were not intrinsically resistant to ciprofloxacin. Using a phenotypic enzyme assay we identified the antibiotic specific inactivation of trimethoprim in 21 bacteria from different soils. The results of this study identified the importance of the efflux mechanism in the soil resistome and variations between the intrinsic resistance profiles of clinical and soil bacteria of the same family.

  18. The culturable soil antibiotic resistome: a community of multi-drug resistant bacteria.

    Directory of Open Access Journals (Sweden)

    Fiona Walsh

    Full Text Available Understanding the soil bacterial resistome is essential to understanding the evolution and development of antibiotic resistance, and its spread between species and biomes. We have identified and characterized multi-drug resistance (MDR mechanisms in the culturable soil antibiotic resistome and linked the resistance profiles to bacterial species. We isolated 412 antibiotic resistant bacteria from agricultural, urban and pristine soils. All isolates were multi-drug resistant, of which greater than 80% were resistant to 16-23 antibiotics, comprising almost all classes of antibiotic. The mobile resistance genes investigated, (ESBL, bla NDM-1, and plasmid mediated quinolone resistance (PMQR resistance genes were not responsible for the respective resistance phenotypes nor were they present in the extracted soil DNA. Efflux was demonstrated to play an important role in MDR and many resistance phenotypes. Clinically relevant Burkholderia species are intrinsically resistant to ciprofloxacin but the soil Burkholderia species were not intrinsically resistant to ciprofloxacin. Using a phenotypic enzyme assay we identified the antibiotic specific inactivation of trimethoprim in 21 bacteria from different soils. The results of this study identified the importance of the efflux mechanism in the soil resistome and variations between the intrinsic resistance profiles of clinical and soil bacteria of the same family.

  19. Repurposing Clinical Molecule Ebselen to Combat Drug Resistant Pathogens.

    Science.gov (United States)

    Thangamani, Shankar; Younis, Waleed; Seleem, Mohamed N

    2015-01-01

    Without a doubt, our current antimicrobials are losing the battle in the fight against newly-emerged multidrug-resistant pathogens. There is a pressing, unmet need for novel antimicrobials and novel approaches to develop them; however, it is becoming increasingly difficult and costly to develop new antimicrobials. One strategy to reduce the time and cost associated with antimicrobial innovation is drug repurposing, which is to find new applications outside the scope of the original medical indication of the drug. Ebselen, an organoselenium clinical molecule, possesses potent antimicrobial activity against clinical multidrug-resistant Gram-positive pathogens, including Staphylococcus, Streptococcus, and Enterococcus, but not against Gram-negative pathogens. Moreover, the activity of ebselen against Gram-positive pathogens exceeded those activities determined for vancomycin and linezolid, drugs of choice for treatment of Enterococcus and Staphylococcus infections. The minimum inhibitory concentrations of ebselen at which 90% of clinical isolates of Enterococcus and Staphylococcus were inhibited (MIC90) were found to be 0.5 and 0.25 mg/L, respectively. Ebselen showed significant clearance of intracellular methicillin-resistant S. aureus (MRSA) in comparison to vancomycin and linezolid. We demonstrated that ebselen inhibits the bacterial translation process without affecting mitochondrial biogenesis. Additionally, ebselen was found to exhibit excellent activity in vivo in a Caenorhabditis elegans MRSA-infected whole animal model. Finally, ebselen showed synergistic activities with conventional antimicrobials against MRSA. Taken together, our results demonstrate that ebselen, with its potent antimicrobial activity and safety profiles, can be potentially used to treat multidrug resistant Gram-positive bacterial infections alone or in combination with other antibiotics and should be further clinically evaluated.

  20. Antiretroviral drug resistance: A guide for the southern African clinician

    African Journals Online (AJOL)

    Both private and public sector see a bewildering clinical array of patients taking failing antiretroviral (ARV) regimens. We intend this article to provide a practical guide to help clinicians understand and manage ARV drug resistance in an African context. ARV resistance is a rapidly evolving field, requiring expertise in dealing ...

  1. High prevalence of antiretroviral drug resistance among HIV-1-untreated patients in Guinea-Conakry and in Niger.

    Science.gov (United States)

    Charpentier, Charlotte; Bellecave, Pantxika; Cisse, Mohamed; Mamadou, Saidou; Diakite, Mandiou; Peytavin, Gilles; Tchiombiano, Stéphanie; Teisseire, Pierre; Pizarro, Louis; Storto, Alexandre; Brun-Vézinet, Françoise; Katlama, Christine; Calvez, Vincent; Marcelin, Anne-Geneviève; Masquelier, Bernard; Descamps, Diane

    2011-01-01

    The aim of the study was to assess the prevalence of antiretroviral drug resistance mutations in HIV-1 from recently diagnosed and untreated patients living in Conakry, Guinea-Conakry and in Niamey, Niger. The study was performed in two countries of Western Africa - Guinea-Conakry and Niger - using the same survey method in both sites. All newly HIV-1 diagnosed patients, naive of antiretroviral drugs, were consecutively included during September 2009 in each of the two sites. Protease and reverse transcriptase sequencing was performed using the ANRS procedures. Drug resistance mutations were identified according to the 2009 update surveillance drug resistance mutations. In Conakry, 99 patients were included, most of whom (89%) were infected with CRF02_AG recombinant virus. Resistance analysis among the 93 samples showed that ≥1 drug resistance mutation was observed in 8 samples, leading to a prevalence of primary resistance of 8.6% (95% CI 2.91-14.29%). In Niamey, 96 patients were included; a high diversity in HIV-1 subtypes was observed with 47 (51%) patients infected with CRF02_AG. Resistance analysis performed among the 92 samples with successful genotypic resistance test showed that ≥1 drug resistance mutation was observed in 6 samples, leading to a prevalence of primary resistance of 6.5% (95% CI 1.50-11.50%). We reported the first antiretroviral drug resistance survey studies in antiretroviral-naive patients living in Guinea-Conakry and in Niger. The prevalence of resistance was between 6% and 9% in both sites, which is higher than most of the other countries from Western Africa region.

  2. Phenotypic and genotypic analysis of anti-tuberculosis drug resistance in Mycobacterium tuberculosis isolates in Myanmar.

    Science.gov (United States)

    Aung, Wah Wah; Ei, Phyu Win; Nyunt, Wint Wint; Swe, Thyn Lei; Lwin, Thandar; Htwe, Mi Mi; Kim, Kyung Jun; Lee, Jong Seok; Kim, Chang Ki; Cho, Sang Nae; Song, Sun Dae; Chang, Chulhun L

    2015-09-01

    Tuberculosis (TB) is one of the most serious health problems in Myanmar. Because TB drug resistance is associated with genetic mutation(s) relevant to responses to each drug, genotypic methods for detecting these mutations have been proposed to overcome the limitations of classic phenotypic drug susceptibility testing (DST). We explored the current estimates of drug-resistant TB and evaluated the usefulness of genotypic DST in Myanmar. We determined the drug susceptibility of Mycobacterium tuberculosis isolated from sputum smear-positive patients with newly diagnosed pulmonary TB at two main TB centers in Myanmar during 2013 by using conventional phenotypic DST and the GenoType MTBDRplus assay (Hain Lifescience, Germany). Discrepant results were confirmed by sequencing the genes relevant to each type of resistance (rpoB for rifampicin; katG and inhA for isoniazid). Of 191 isolates, phenotypic DST showed that 27.7% (n=53) were resistant to at least one first-line drug and 20.9% (n=40) were resistant to two or more, including 18.3% (n=35) multidrug-resistant TB (MDR-TB) strains. Monoresistant strains accounted for 6.8% (n=13) of the samples. Genotypic assay of 189 isolates showed 17.5% (n=33) MDR-TB and 5.3% (n=10) isoniazid-monoresistant strains. Genotypic susceptibility results were 99.5% (n=188) concordant and agreed almost perfectly with phenotypic DST (kappa=0.99; 95% confidence interval 0.96-1.01). The results highlight the burden of TB drug resistance and prove the usefulness of the genotypic DST in Myanmar.

  3. A study on demographic characteristics of drug resistant Mycobacterium tuberculosis isolates in Belarus

    Directory of Open Access Journals (Sweden)

    L Surkova

    2012-01-01

    Conclusion: As Belarus is a high-burden MDR-TB country and treatment of drug-resistant TB is long and complicated, the findings of this study provided useful information to deliver effective community-based disease control measures and a proposed plane for the effective management of drug-resistant TB at the national level.

  4. Extent and origin of resistance to antituberculosis drugs in the Netherlands, 1993 to 2011.

    Science.gov (United States)

    Ruesen, C; van Gageldonk-Lafeber, A B; de Vries, G; Erkens, C G; van Rest, J; Korthals Altes, H; de Neeling, H; Kamst, M; van Soolingen, D

    2014-03-20

    The elimination of tuberculosis (TB) is threatened by an apparent increase in the level of resistance in Mycobacterium tuberculosis. In the Netherlands, where the majority of TB patients are migrants, resistance may also be increasing. We conducted a retrospective study, using 18,294 M. tuberculosis isolates from TB cases notified between 1993 and 2011. We investigated the trends in antituberculosis drug resistance, focusing on the country of birth of the patients and whether resistance had developed during treatment or was the result of transmission of resistant M. tuberculosis strains. For both scenarios, we determined whether this had happened in or outside the Netherlands. Antituberculosis drug resistance was found in 13% of all cases analysed and showed an increasing trend among patients who had been born in the Netherlands (pNetherlands or before 1993 (when DNA fingerprinting was not systematically performed), in some cases (n=45), resistance was acquired in the Netherlands. We conclude that antituberculosis drug resistance is increasing in the Netherlands, mostly related to migration from high TB-incidence countries, but also to domestic acquisition.

  5. Ion channels and transporters in the development of drug resistance in cancer cells

    DEFF Research Database (Denmark)

    Hoffmann, Else Kay; Lambert, Ian Henry

    2014-01-01

    Multi-drug resistance (MDR) to chemotherapy is the major challenge in the treatment of cancer. MDR can develop by numerous mechanisms including decreased drug uptake, increased drug efflux and the failure to undergo drug-induced apoptosis. Evasion of drug-induced apoptosis through modulation of i...

  6. Tuberculosis drug resistance isolates from pulmonary tuberculosis patients, Kassala State, Sudan

    Directory of Open Access Journals (Sweden)

    Fatima A Khalid

    2015-01-01

    This study revealed that high resistance to rifampicin was associated with various point mutations in and out of the RRDR of the rpoB gene. Molecular methods are needed for early detection of TB disease and drug resistance.

  7. The evolution of drug resistance and the curious orthodoxy of aggressive chemotherapy.

    Science.gov (United States)

    Read, Andrew F; Day, Troy; Huijben, Silvie

    2011-06-28

    The evolution of drug-resistant pathogens is a major challenge for 21st century medicine. Drug use practices vigorously advocated as resistance management tools by professional bodies, public health agencies, and medical schools represent some of humankind's largest attempts to manage evolution. It is our contention that these practices have poor theoretical and empirical justification for a broad spectrum of diseases. For instance, rapid elimination of pathogens can reduce the probability that de novo resistance mutations occur. This idea often motivates the medical orthodoxy that patients should complete drug courses even when they no longer feel sick. Yet "radical pathogen cure" maximizes the evolutionary advantage of any resistant pathogens that are present. It could promote the very evolution it is intended to retard. The guiding principle should be to impose no more selection than is absolutely necessary. We illustrate these arguments in the context of malaria; they likely apply to a wide range of infections as well as cancer and public health insecticides. Intuition is unreliable even in simple evolutionary contexts; in a social milieu where in-host competition can radically alter the fitness costs and benefits of resistance, expert opinion will be insufficient. An evidence-based approach to resistance management is required.

  8. The association between ARV and TB drug resistance on TB treatment outcome among Kazakh TB/HIV patients.

    Science.gov (United States)

    Mishkin, Kathryn; Alaei, Kamiar; Alikeyeva, Elmira; Paynter, Christopher; Aringazina, Altyn; Alaei, Arash

    2018-02-26

    TB drug resistance poses a serious threat to the public health of Kazakhstan. This paper presents findings related to TB treatment outcome and drug resistant status among people coinfected with HIV and TB in Kazakhstan. Cohort study using data were provided by the Kazakhstan Ministry of Health's National Tuberculosis Program for 2014 and 2015. Chi-square and logistical regression were performed to understand factors associated with drug resistant TB status and TB treatment outcome. In bivariate analysis, drug resistant status was significantly associated with year of TB diagnosis (p=0.001) viral load (p=0.03). TB treatment outcome was significantly associated with age at diagnosis (p=01), ARV treatment (p <0.0001), and TB drug resistant status (p=0.02). In adjusted analysis, drug resistance was associated with increased odds of successful completion of treatment with successful result compared to treatment failure (OR 6.94, 95% CI: 1.39-34.44) CONCLUSIONS: Our results suggest that being drug resistant is associated with higher odds of completing treatment with successful outcome, even when controlling for receipt of ARV therapy. Copyright © 2018. Published by Elsevier Ltd.

  9. MIRU-VNTR typing of drug-resistant tuberculosis isolates in Greece.

    Science.gov (United States)

    Rovina, Nikoletta; Karabela, Simona; Constantoulakis, Pantelis; Michou, Vassiliki; Konstantinou, Konstantinos; Sgountzos, Vassileios; Roussos, Charis; Poulakis, Nikolaos

    2011-08-01

    The increasing immigration rate in Greece from countries with a high prevalence of Mycobacterium tuberculosis (MTB) and multidrug-resistant tuberculosis (MDR-TB) may have an impact οn the number of MDR-TB cases in Greece. The aim of this study was to genotypically characterize the MTB isolates from patients with pulmonary drug-resistant tuberculosis (DR-TB) in Greece, and to determine whether there is any association between the prevalent genotypes and drug resistance. Fifty-three drug-resistant MTB strains isolated from culture specimens of clinical material from native Greeks and immigrant patients with pulmonary tuberculosis were genotyped using the mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR) method. The phylogenetically distinct groups of isolates identified were: the Beijing (34%), the LAM (11%), the Haarlem (24.5%), the Uganda I (9.4%), the Ural (3.8%), the Delhi/CAS (9.4%) and the Cameroon (3.8%) families. Greek patients were more likely to have monoresistant and polyresistant TB with the most prevalent isolates belonging to the Haarlem family. Among foreign-born patients with MDR-TB, the most prevalent genotypes belonged to the Beijing family. MIRU-VNTR rapidly obtained clinically useful genotyping data, by characterizing clonal MTB heterogeneity in the isolated strains. Our results underline the need for more effective antituberculosis control programs in order to control the expansion of DR-TB in Greece.

  10. P-glycoprotein inhibition of drug resistant cell lines by nanoparticles.

    Science.gov (United States)

    Singh, Manu Smriti; Lamprecht, Alf

    2016-01-01

    Several pharmaceutical excipients are known for their ability to interact with cell membrane lipids and reverse the phenomenon of multidrug resistance (MDR) in cancer. Interestingly, many excipients act as stabilizers and are key ingredients in a variety of nano-formulations. In this study, representatives of ionic and non-ionic excipients were used as surface active agents in nanoparticle (NP) formulations to utilize their MDR reversing potential. In-vitro assays were performed to elucidate particle-cell interaction and accumulation of P-glycoprotein (P-gp) substrates-rhodamine-123 and calcein AM, in highly drug resistant glioma cell lines. Chemosensitization achieved using NPs and their equivalent dose of free excipients was assessed with the co-administered anti-cancer drug doxorubicin. Among the excipients used, non-ionic surfactant, Cremophor® EL, and cationic surfactant, cetyltrimethylammonuium bromide (CTAB), demonstrated highest P-gp modulatory activity in both free solution form (up to 7-fold lower IC50) and as a formulation (up to 4.7-fold lower IC50) as compared to doxorubicin treatment alone. Solutol® HS15 and Tween® 80 exhibited considerable chemosensitization as free solution but not when incorporated into a formulation. Sodium dodecyl sulphate (SDS)-based nanocarriers resulted in slightly improved cytotoxicity. Overall, the results highlight and envisage the usage of excipient in nano-formulations in a bid to improve chemosensitization of drug resistant cancer cells towards anti-cancer drugs.

  11. Significance of MDR1 and multiple drug resistance in refractory human epileptic brain

    Directory of Open Access Journals (Sweden)

    Dini Gabriele

    2004-10-01

    Full Text Available Abstract Background The multiple drug resistance protein (MDR1/P-glycoprotein is overexpressed in glia and blood-brain barrier (BBB endothelium in drug refractory human epileptic tissue. Since various antiepileptic drugs (AEDs can act as substrates for MDR1, the enhanced expression/function of this protein may increase their active extrusion from the brain, resulting in decreased responsiveness to AEDs. Methods Human drug resistant epileptic brain tissues were collected after surgical resection. Astrocyte cell cultures were established from these tissues, and commercially available normal human astrocytes were used as controls. Uptake of fluorescent doxorubicin and radioactive-labeled Phenytoin was measured in the two cell populations, and the effect of MDR1 blockers was evaluated. Frozen human epileptic brain tissue slices were double immunostained to locate MDR1 in neurons and glia. Other slices were exposed to toxic concentrations of Phenytoin to study cell viability in the presence or absence of a specific MDR1 blocker. Results MDR1 was overexpressed in blood vessels, astrocytes and neurons in human epileptic drug-resistant brain. In addition, MDR1-mediated cellular drug extrusion was increased in human 'epileptic' astrocytes compared to 'normal' ones. Concomitantly, cell viability in the presence of cytotoxic compounds was increased. Conclusions Overexpression of MDR1 in different cell types in drug-resistant epileptic human brain leads to functional alterations, not all of which are linked to drug pharmacokinetics. In particular, the modulation of glioneuronal MDR1 function in epileptic brain in the presence of toxic concentrations of xenobiotics may constitute a novel cytoprotective mechanism.

  12. Selection of antibiotics for meticillin-resistant Staphylococcus pseudintermedius: time to revisit some old drugs?

    Science.gov (United States)

    Papich, Mark G

    2012-08-01

    The aim of this review is to consider systemic therapy options for meticillin-resistant Staphylococcus pseudintermedius (MRSP). Infections caused by MRSP in small animals--particularly dogs--have been frustrating veterinarians in recent years. After a susceptibility test is performed, veterinarians are left to select from drugs that have not been frequently encountered on a susceptibility report. Some of these are old drugs that have not been used regularly by veterinary dermatologists. As MRSP is, by definition, resistant to all β-lactam antibiotics, including cephalosporins, penicillins and amoxicillin-clavulanate combinations, the β-lactam drugs are not an option for systemic treatment. As most MRSPs are multidrug resistant, familiar drugs, such as trimethoprim-sulfonamides, fluoroquinolones, macrolides and lincosamides (clindamycin), are also not usually an option for treatment. Therefore, veterinarians are left with drugs such as rifampicin, chloramphenicol, tetracyclines, aminoglycosides and vancomycin to choose from on the basis of an in vitro susceptibility test. Some of these drugs were originally approved over 50 years ago and may not be familiar to some veterinarians. Each of these drugs possesses unique properties and has particular advantages and disadvantages. Veterinarians should be particularly aware of the adverse effects, limitations and precautions when using these drugs. New drugs also have been developed for meticillin-resistant Staphylococcus aureus in humans. These include linezolid, ceftaroline, daptomycin and tigecycline. Although these drugs are very infrequently--if ever--considered for veterinary use, the properties of these drugs should also be known to veterinary dermatologists. © 2012 The Author. Veterinary Dermatology. © 2012 ESVD and ACVD.

  13. Multi-drug-resistant tuberculosis in HIV positive patients in Eastern Europe

    DEFF Research Database (Denmark)

    Post, Frank A; Grint, Daniel; Efsen, Anne Marie Werlinrud

    2014-01-01

    Observational data from Eastern Europe on the management and outcome of multi-drug-resistant tuberculosis (MDR TB) in HIV positive populations remain sparse in the English-language literature.We compared clinical characteristics and outcomes of 55 patients who were diagnosed with HIV and MDR TB...... in Eastern Europe between 2004 and 2006 to 89 patients whose Mycobacterium tuberculosis isolates were susceptible to isoniazid and rifampicin.Patients with HIV and MDR TB were young and predominantly male with high rates of intravenous drug use, imprisonment and hepatitis C co-infection. Eighty-four per cent...... of patients with MDR TB had no history of previous TB drug exposure suggesting that the majority of MDR TB resulted from transmission of drug-resistant M. tuberculosis. The use of non-standardized tuberculosis treatment was common, and the use of antiretroviral therapy infrequent. Compared to those...

  14. Selection of drug resistant mutants from random library of Plasmodium falciparum dihydrofolate reductase in Plasmodium berghei model

    Directory of Open Access Journals (Sweden)

    Yuthavong Yongyuth

    2011-05-01

    Full Text Available Abstract Background The prevalence of drug resistance amongst the human malaria Plasmodium species has most commonly been associated with genomic mutation within the parasites. This phenomenon necessitates evolutionary predictive studies of possible resistance mutations, which may occur when a new drug is introduced. Therefore, identification of possible new Plasmodium falciparum dihydrofolate reductase (PfDHFR mutants that confer resistance to antifolate drugs is essential in the process of antifolate anti-malarial drug development. Methods A system to identify mutations in Pfdhfr gene that confer antifolate drug resistance using an animal Plasmodium parasite model was developed. By using error-prone PCR and Plasmodium transfection technologies, libraries of Pfdhfr mutant were generated and then episomally transfected to Plasmodium berghei parasites, from which pyrimethamine-resistant PfDHFR mutants were selected. Results The principal mutation found from this experiment was S108N, coincident with the first pyrimethamine-resistance mutation isolated from the field. A transgenic P. berghei, in which endogenous Pbdhfr allele was replaced with the mutant PfdhfrS108N, was generated and confirmed to have normal growth rate comparing to parental non-transgenic parasite and also confer resistance to pyrimethamine. Conclusion This study demonstrated the power of the transgenic P. berghei system to predict drug-resistant Pfdhfr mutations in an in vivo parasite/host setting. The system could be utilized for identification of possible novel drug-resistant mutants that could arise against new antifolate compounds and for prediction the evolution of resistance mutations.

  15. WITHDRAWN: Oxcarbazepine add-on for drug-resistant partial epilepsy.

    Science.gov (United States)

    Castillo, Sergio M; Schmidt, Dieter B; White, Sarah; Shukralla, Arif

    2016-11-15

    Most people with epilepsy have a good prognosis and their seizures can be well controlled with the use of a single antiepileptic drug, but up to 30% develop refractory epilepsy, especially those with partial seizures. In this review we summarize the current evidence regarding oxcarbazepine when used as an add-on treatment for drug-resistant partial epilepsy. To evaluate the effects of oxcarbazepine when used as an add-on treatment for drug-resistant partial epilepsy. We searched the Cochrane Epilepsy Group's Specialized Register (28 March 2006), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library Issue 1, 2006), MEDLINE (1966 to March 2006). No language restrictions were imposed. We checked the reference lists of retrieved studies for additional reports of relevant studies. We also contacted Novartis (manufacturers of oxcarbazepine) and experts in the field. Randomized, placebo-controlled, double-blinded, add-on trials of oxcarbazepine in patients with drug-resistant partial epilepsy. Two review authors independently assessed trials for inclusion and extracted the relevant data. The following outcomes were assessed : (a) 50% or greater reduction in seizure frequency; (b) treatment withdrawal (any reason); (c) side effects. Primary analyses were intention-to-treat. Summary odds ratios were estimated for each outcome. Two trials were included representing 961 randomized patients.Overall Odds Ratio (OR) (95% Confidence Interval (CIs)) for 50% or greater reduction in seizure frequency compared to placebo 2.96 (2.20, 4.00).Treatment withdrawal OR (95% CIs) compared to placebo 2.17 (1.59, 2.97).Side effects: OR (99% CIs) compared to placebo, ataxia 2.93 (1.72, 4.99); dizziness 3.05 (1.99, 4.67); fatigue 1.80 (1.02, 3.19); nausea 2.88 (1.77, 4.69); somnolence 2.55 (1.84, 3.55); diplopia 4.32 (2.65, 7.04), were significantly associated with oxcarbazepine. Oxcarbazepine has efficacy as an add-on treatment in patients with drug-resistant

  16. Quercetin suppresses drug-resistant spheres via the p38 MAPK-Hsp27 apoptotic pathway in oral cancer cells.

    Directory of Open Access Journals (Sweden)

    Su-Feng Chen

    Full Text Available BACKGROUND: Treatment failure in oral squamous cell carcinoma (OSCC leading to local recurrence(s and metastases is mainly due to drug resistance. Cancer stem cells (CSCs are thought be responsible for the development of drug resistance. However, the correlations between CSCs, drug resistance, and new strategy against drug resistance in OSCC remain elusive. METHODS: A drug-resistant sphere (DRSP model was generated by using a nonadhesive culture system to induce drug-resistant cells from SCC25 oral cancer cells. A comparative analysis was performed between the parent control cells and DRSPs with a related treatment strategy focusing on the expression of epithelial-mesenchymal transition (EMT-associated markers, drug-resistance-related genes, and CSC properties in vitro, as well as tumorigenicity and the regimen for tumor regression in vivo. RESULTS: Our data show the presence of a phenomenon of EMT with gradual cellular transition from an epithelioid to mesenchymal-like spheroid morphology during induction of drug resistance. The characterization of DRSPs revealed the upregulation of the drug-resistance-related genes ABCG2 and MDR-1 and of CSC-representative markers, suggesting that DRSPs have greater resistance to cisplatin (Cis and stronger CSC properties compared with the control. Moreover, overexpression of phosphorylated heat-shock protein 27 (p-Hsp27 via the activation of p38 MAPK signaling was observed in DRSPs. Knockdown of Hsp27 decreased Cis resistance and induced apoptosis in DRSPs. Furthermore, an inhibitor of Hsp27, quercetin (Qu, suppressed p-Hsp27 expression, with alterations of the EMT signature, leading to the promotion of apoptosis in DRSPs. A xenographic study also confirmed the increase of tumorigenicity in DRSPs. The combination of Qu and Cis can reduce tumor growth and decrease drug resistance in OSCC. CONCLUSIONS: The p38 MAPK-Hsp27 axis plays an important role in CSCs-mediated drug resistance in OSCC. Targeting this axis

  17. Pretreatment HIV drug resistance results in virological failure and accumulation of additional resistance mutations in Ugandan children

    NARCIS (Netherlands)

    Kityo, Cissy; Boerma, Ragna S.; Sigaloff, Kim C. E.; Kaudha, Elizabeth; Calis, Job C. J.; Musiime, Victor; Balinda, Sheila; Nakanjako, Rita; Boender, T. Sonia; Mugyenyi, Peter N.; Rinke de Wit, Tobias F.

    2017-01-01

    Background: Pretreatment HIV drug resistance (PDR) can impair virological response to ART, jeopardizing effective treatment for children. Methods: Children aged <12 years initiated first-line ART in Uganda during 2010-11. Baseline and 6 monthly viral load (VL) and genotypic resistance testing if VL.

  18. SURGERY FOR DRUG-RESISTANT DESTRUCTIVE PULMONARY TUBERCULOSIS

    Directory of Open Access Journals (Sweden)

    S. N. Skornyakov

    2015-01-01

    Full Text Available The paper presents the experience in surgically treating 145 patients with destructive, mainly fibrocavernous pulmonary tuberculosis. All the patients completed treatment. In the preoperative preparation, particular emphasis is laid on the promptest determination of a spectrum of pathogen susceptibility/resistance, individualized chemotherapy, and collapse therapy options. Postoperative complications occurred in 27 (18.6% patients, fatal outcomes in 4 (2.7%. The former were recorded most frequently after pneumonectomy in 13 (37.1% cases, the later were seen in 3 (8.6%. Sputum culture conversion was generally achieved in 111 (78% patients, particularly in 97 (78.2% patients with multidrug-resistant tuberculosis and in 14 (66.7% with a broad drug resistance in the pathogen. Out of the 64 patients followed up for more than 3 years, 48 (75.0% were in clinical and bacteriological remission.

  19. [A novel chemo-resistant gene MSX2 discovered by establishment of two pancreatic cancer drug resistant cell lines JF305/CDDP and PANC-1/GEM].

    Science.gov (United States)

    Yuan, W; Sui, C G; Ma, X; Ma, J

    2018-05-23

    Objective: To explore new multidrug resistant genes of pancreatic cancer by establishment and characterization of chemo-resistant cell lines. Methods: The cisplatin-resistant cell line JF305/CDDP and the gemcitabine-resistant cell line PANC-1/GEM were induced by high-dose intermittent treatment. CCK-8 assay was used to detect the 50% inhibiting concentration (IC(50)), drug resistance index (R), cross-resistance, and growth difference of different cells. The changes of cell cycle and migration ability of drug-resistant cells were determined by flow cytometry and transwell assay, respectively. And then real-time fluorescence quantitative PCR was used to detect the expression of multidrug resistance-related genes. Results: The drug resistance indexes of JF305/CDDP and PANC-1/GEM were 15.3 and 27.31, respectively, and there was cross-resistance. Compared with the parental cells, the proliferation rate of JF305/CDDP was decreased by 40% on the fourth day ( P PANC-1 cells upregulated MRP2 level ( P PANC-1/GEM, were successfully established. MSX2 might be a new drug resistance related gene in pancreatic cancer cells by up-regulation of MRP2 expression.

  20. HIV-1 drug resistance mutations among antiretroviral-naive HIV-1-infected patients in Asia: results from the TREAT Asia Studies to Evaluate Resistance-Monitoring Study.

    Science.gov (United States)

    Sungkanuparph, Somnuek; Oyomopito, Rebecca; Sirivichayakul, Sunee; Sirisanthana, Thira; Li, Patrick C K; Kantipong, Pacharee; Lee, Christopher K C; Kamarulzaman, Adeeba; Messerschmidt, Liesl; Law, Matthew G; Phanuphak, Praphan

    2011-04-15

    Of 682 antiretroviral-naïve patients initiating antiretroviral therapy in a prospective, multicenter human immunodeficiency virus type 1 (HIV-1) drug resistance monitoring study involving 8 sites in Hong Kong, Malaysia, and Thailand, the prevalence of patients with ≥1 drug resistance mutation was 13.8%. Primary HIV drug resistance is emerging after rapid scaling-up of antiretroviral therapy use in Asia.

  1. Beijing/W genotype Mycobacterium tuberculosis and drug resistance.

    NARCIS (Netherlands)

    Glynn, Judith R; Kremer, Kristin; Borgdorff, Martien W; Rodriguez, Mar Pujades; Soolingen, Dick van

    2006-01-01

    Beijing/W genotype Mycobacterium tuberculosis is widespread, may be increasing, and may have a predilection for drug resistance. Individual-level data on >29,000 patients from 49 studies in 35 countries were combined to assess the Beijing genotype's prevalence worldwide, trends over time and with

  2. Towards appropriate design solutions for drug-resistant TB facilities in SA

    CSIR Research Space (South Africa)

    Parsons, SA

    2010-07-01

    Full Text Available South Africa has a high and increasing burden of both drugs-susceptible and drug-resistant tuberculosis. This disease has been declared an emergency in Africa. South Africa has committed itself to addressing this national crises by designing...

  3. Mosaic Structure of a Multiple-Drug-Resistant, Conjugative Plasmid from Campylobacter jejuni

    National Research Council Canada - National Science Library

    Nirdnoy, Warawadee; Mason, Carl J; Guerry, Patricia

    2005-01-01

    ..., where it apparently integrated into the chromosome and expressed high-level resistance to multiple aminoglycoside antibiotics. This work provides new information about both the nature of drug resistance in C...

  4. Prevalence and risk factors for carriage of multi-drug resistant Staphylococci in healthy cats and dogs

    Science.gov (United States)

    Regula, Gertraud; Petrini, Orlando; Zinsstag, Jakob; Schelling, Esther

    2013-01-01

    We investigated the distribution of commensal staphylococcal species and determined the prevalence of multi-drug resistance in healthy cats and dogs. Risk factors associated with the carriage of multi-drug resistant strains were explored. Isolates from 256 dogs and 277 cats were identified at the species level using matrix-assisted laser desorption ionisation-time of flight mass spectrometry. The diversity of coagulase-negative Staphylococci (CNS) was high, with 22 species in dogs and 24 in cats. Multi-drug resistance was frequent (17%) and not always associated with the presence of the mecA gene. A stay in a veterinary clinic in the last year was associated with an increased risk of colonisation by multi-drug resistant Staphylococci (OR = 2.4, 95% CI: 1.1~5.2, p value LRT = 0.04). When identifying efficient control strategies against antibiotic resistance, the presence of mechanisms other than methicillin resistance and the possible role of CNS in the spread of resistance determinants should be considered. PMID:23820161

  5. Long-term occipital nerve stimulation for drug-resistant chronic cluster headache.

    Science.gov (United States)

    Leone, Massimo; Proietti Cecchini, Alberto; Messina, Giuseppe; Franzini, Angelo

    2017-07-01

    Introduction Chronic cluster headache is rare and some of these patients become drug-resistant. Occipital nerve stimulation has been successfully employed in open studies to treat chronic drug-resistant cluster headache. Data from large group of occipital nerve stimulation-treated chronic cluster headache patients with long duration follow-up are advantageous. Patients and methods Efficacy of occipital nerve stimulation has been evaluated in an experimental monocentric open-label study including 35 chronic drug-resistant cluster headache patients (mean age 42 years; 30 men; mean illness duration: 6.7 years). The primary end-point was a reduction in number of daily attacks. Results After a median follow-up of 6.1 years (range 1.6-10.7), 20 (66.7%) patients were responders (≥50% reduction in headache number per day): 12 (40%) responders showed a stable condition characterized by sporadic attacks, five responders had a 60-80% reduction in headache number per day and in the remaining three responders chronic cluster headache was transformed in episodic cluster headache. Ten (33.3%) patients were non-responders; half of these have been responders for a long period (mean 14.6 months; range 2-48 months). Battery depletion (21 patients 70%) and electrode migration (six patients - 20%) were the most frequent adverse events. Conclusions Occipital nerve stimulation efficacy is confirmed in chronic drug-resistant cluster headaches even after an exceptional long-term follow-up. Tolerance can occur years after improvement.

  6. Antimicrobial drug resistance of Salmonella isolates from meat and humans, Denmark

    DEFF Research Database (Denmark)

    Skov, Marianne Nielsine; Andersen, Jens Strodl; Aabo, Søren

    2007-01-01

    We compared 8,144 Salmonella isolates collected from meat imported to or produced in Denmark, as well as from Danish patients. Isolates from imported meat showed a higher rate of antimicrobial drug resistance, including multidrug resistance, than did isolates from domestic meat. Isolates from...... humans showed resistance rates lower than those found in imported meat but higher than in domestic meat. These findings indicate that programs for controlling resistant Salmonella spp. are a global issue...

  7. Antimicrobial drug resistance of Salmonella isolates from meat and humans, Denmark

    DEFF Research Database (Denmark)

    Skov, Marianne; Andersen, Jens Strodl; Aabo, Søren

    2007-01-01

    We compared 8,144 Salmonella isolates collected from meat imported to or produced in Denmark, as well as from Danish patients. Isolates from imported meat showed a higher rate of antimicrobial drug resistance, including multidrug resistance, than did isolates from domestic meat. Isolates from...... humans showed resistance rates lower than those found in imported meat but higher than in domestic meat. These findings indicate that programs for controlling resistant Salmonella spp. are a global issue....

  8. Competitive release and facilitation of drug-resistant parasites after therapeutic chemotherapy in a rodent malaria model

    Science.gov (United States)

    Wargo, A.R.; Huijben, S.; De Roode, J. C.; Shepherd, J.; Read, A.F.

    2007-01-01

    Malaria infections frequently consist of mixtures of drug-resistant and drug-sensitive parasites. If crowding occurs, where clonal population densities are suppressed by the presence of coinfecting clones, removal of susceptible clones by drug treatment could allow resistant clones to expand into the newly vacated niche space within a host. Theoretical models show that, if such competitive release occurs, it can be a potent contributor to the strength of selection, greatly accelerating the rate at which resistance spreads in a population. A variety of correlational field data suggest that competitive release could occur in human malaria populations, but direct evidence cannot be ethically obtained from human infections. Here we show competitive release after pyrimethamine curative chemotherapy of acute infections of the rodent malaria Plasmodium chabaudi in laboratory mice. The expansion of resistant parasite numbers after treatment resulted in enhanced transmission-stage densities. After the elimination or near-elimination of sensitive parasites, the number of resistant parasites increased beyond that achieved when a competitor had never been present. Thus, a substantial competitive release occurred, markedly elevating the fitness advantages of drug resistance above those arising from survival alone. This finding may explain the rapid spread of drug resistance and the subsequently brief useful lifespans of some antimalarial drugs. In a second experiment, where subcurative chemotherapy was administered, the resistant clone was only partly released from competitive suppression and experienced a restriction in the size of its expansion after treatment. This finding raises the prospect of harnessing in-host ecology to slow the spread of drug resistance. ?? 2007 by The National Academy of Sciences of the USA.

  9. Hidden gauge symmetry

    International Nuclear Information System (INIS)

    O'Raifeartaigh, L.

    1979-01-01

    This review describes the principles of hidden gauge symmetry and of its application to the fundamental interactions. The emphasis is on the structure of the theory rather than on the technical details and, in order to emphasise the structure, gauge symmetry and hidden symmetry are first treated as independent phenomena before being combined into a single (hidden gauge symmetric) theory. The main application of the theory is to the weak and electromagnetic interactions of the elementary particles, and although models are used for comparison with experiment and for illustration, emphasis is placed on those features of the application which are model-independent. (author)

  10. Molecular epidemiology of drug-resistant Plasmodium falciparum in Benguela province, Angola.

    Science.gov (United States)

    Foumane Ngane, Vincent; Allico Djaman, Joseph; Culeux, Cécile; Piette, Nathalie; Carnevale, Pierre; Besnard, Patrick; Fortes, Filomeno; Basco, Leonardo K; Tahar, Rachida

    2015-03-14

    The malaria situation has been worsening in Angola, partly due to armed conflict until the recent past and drug-resistant Plasmodium falciparum. Malaria transmission is heterogeneous within the country, and data on drug-resistant malaria in different parts of the country are incomplete. The aim of the present study was to evaluate resistance to 4-aminoquinolines and antifolate drugs in P. falciparum isolates collected in Benguela province, central Angola, using molecular markers. Fingerprick capillary blood was collected from asymptomatic children aged less than 15 years old during a household survey in and around Balombo town in 2010-2011. Samples were screened for P. falciparum by nested PCR. Molecular markers (P. falciparum dihydrofolate reductase [pfdhfr], P. falciparum dihydropteroate synthase [pfdhps], P. falciparum chloroquine resistance transporter [pfcrt], and P. falciparum multidrug-resistance gene 1 [pfmdr1]) were sequenced to determine the key codons associated with drug resistance. A total of 60 blood samples were positive for P. falciparum. Most isolates with successful PCR amplification had mutant pfdhfr alleles, with either double mutant AICNI (69%) or triple mutant AIRNI (21%) haplotypes. A16V, S108T, and I164L substitutions were not found. Many of the isolates were carriers of either SGKAA (60%) or AGKAA (27%) pfdhps haplotype. K540E substitution was absent. There were only two pfcrt haplotypes: wild-type CVMNK (11%) and mutant CVIET (89%). Wild-type pfmdr1 NYSND haplotype was found in 19% of the isolates, whereas single mutant pfmdr1 YYSND and NFSND haplotypes occurred in 48% and 11%, respectively. Double mutant pfmdr1 haplotypes (YFSND and YYSNY) occurred rarely. The results suggest that the high prevalence of mutant pfcrt CVIET haplotype is in agreement with low clinical efficacy of chloroquine observed in earlier studies and that the double pfdhfr mutant AICNI and single pfdhps mutant SGKAA are currently the predominant haplotypes associated

  11. Characterization of the multiple drug resistance phenotype expressed by tumour cells following in vitro exposure to fractionated X-irradiation

    International Nuclear Information System (INIS)

    Hill, B.T.; McClean, S.; Hosking, L.; Shellard, S.; Dempke, W.; Whelan, R.

    1992-01-01

    The major clinical problem of the emergence of drug resistant tumor cell populations is recognized in patients previously treated with antitumor drugs and with radiotherapy. It is proposed that, although radiation-induced vascular fibrosis may limit drug delivery to the tumor, exposure to radiation may 'induce' or 'select for' drug resistance. This hypothesis was examined by establishing in vitro model systems to investigate the resistance phenotype of tumor cells following exposure to X-rays. Characteristically tumor cells surviving exposure to a series of fractions of X-irradiation are shown to have consistently expressed resistance to multiple drugs, including the Vinca alkaloids and the epipodophyllotoxins. Currently this research is aimed at determining whether distinctive resistance mechanisms operate depending on whether resistance results following drug or X-ray exposure. Initial results indicate that whilst some common mechanisms operate, drug resistant tumor cells identified following exposure to X-irradiation appear to exhibit a novel multidrug resistance phenotype. (author). 13 refs., 1 tab

  12. Variational Infinite Hidden Conditional Random Fields

    NARCIS (Netherlands)

    Bousmalis, Konstantinos; Zafeiriou, Stefanos; Morency, Louis-Philippe; Pantic, Maja; Ghahramani, Zoubin

    2015-01-01

    Hidden conditional random fields (HCRFs) are discriminative latent variable models which have been shown to successfully learn the hidden structure of a given classification problem. An Infinite hidden conditional random field is a hidden conditional random field with a countably infinite number of

  13. MRP- and BCL-2-mediated drug resistance in human SCLC: effects of apoptotic sphingolipids in vitro.

    Science.gov (United States)

    Khodadadian, M; Leroux, M E; Auzenne, E; Ghosh, S C; Farquhar, D; Evans, R; Spohn, W; Zou, Y; Klostergaard, J

    2009-10-01

    Multidrug-resistance-associated protein (MRP) and BCL-2 contribute to drug resistance expressed in SCLC. To establish whether MRP-mediated drug resistance affects sphingolipid (SL)-induced apoptosis in SCLC, we first examined the human SCLC cell line, UMCC-1, and its MRP over-expressing, drug-resistant subline, UMCC-1/VP. Despite significantly decreased sensitivity to doxorubicin (Dox) and to the etoposide, VP-16, the drug-selected line was essentially equally as sensitive to treatment with exogenous ceramide (Cer), sphingosine (Sp) or dimethyl-sphingosine (DMSP) as the parental line. Next, we observed that high BCL-2-expressing human H69 SCLC cells, that were approximately 160-fold more sensitive to Dox than their combined BCL-2 and MRP-over-expressing (H69AR) counterparts, were only approximately 5-fold more resistant to DMSP. Time-lapse fluorescence microscopy of either UMCC cell line treated with DMSP-Coumarin revealed comparable extents and kinetics of SL uptake, further ruling out MRP-mediated effects on drug uptake. DMSP potentiated the cytotoxic activity of VP-16 and Taxol, but not Dox, in drug-resistant UMCC-1/VP cells. However, this sensitization did not appear to involve DMSP-mediated effects on the function of MRP in drug export; nor did DMSP strongly shift the balance of pro-apoptotic Sps and anti-apoptotic Sp-1-Ps in these cells. We conclude that SL-induced apoptosis markedly overcomes or bypasses MRP-mediated drug resistance relevant to SCLC and may suggest a novel therapeutic approach to chemotherapy for these tumors.

  14. An investigation of classification algorithms for predicting HIV drug resistance without genotype resistance testing

    CSIR Research Space (South Africa)

    Brandt, P

    2014-01-01

    Full Text Available is limited in low-resource settings. In this paper we investigate machine learning techniques for drug resistance prediction from routine treatment and laboratory data to help clinicians select patients for confirmatory genotype testing. The techniques...

  15. Glucuronidation as a mechanism of intrinsic drug resistance in colon cancer cells: contribution of drug transport proteins

    NARCIS (Netherlands)

    Cummings, Jeffrey; Zelcer, Noam; Allen, John D.; Yao, Denggao; Boyd, Gary; Maliepaard, Mark; Friedberg, Thomas H.; Smyth, John F.; Jodrell, Duncan I.

    2004-01-01

    We have recently shown that drug conjugation catalysed by UDP-glucuronosyltransferases (UGTs) functions as an intrinsic mechanism of resistance to the topoisomerase I inhibitors 7-ethyl-10-hydroxycamptothecin and NU/ICRF 505 in human colon cancer cells and now report on the role of drug transport in

  16. Activity of siderophores against drug-resistant Gram-positive and Gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Gokarn K

    2018-01-01

    Full Text Available Karuna Gokarn,1,2 Ramprasad B Pal1 1Department of Microbiology, Sir Hurkisondas Nurrotumdas Medical Research Society, 2Caius Research Laboratory, St Xavier’s College, Mumbai, India Abstract: Infections by drug-resistant bacteria are life-threatening. As iron is a vital element for the growth of bacteria, iron-chelating agents (siderophores can be used to arrest their multiplication. Exogenous siderophores – exochelin-MS and deferoxamine-B – were evaluated for their inhibitory activity against methicillin-resistant Staphylococcus aureus and metallo-β-lactamase producers – Pseudomonas aeruginosa and Acinetobacter baumannii – by disc diffusion, micro-broth dilution, and turbidimetric growth assays. The drug-resistant isolates were inhibited by the synergistic activity of siderophores and antibiotics. Minimum inhibitory concentration of exochelin-MS+ampicillin for different isolates was between 0.05 and 0.5 mg/mL. Minimum inhibitory concentration of deferoxamine-B+ampicillin was 1.0 mg/mL and greater. Iron-chelation therapy could provide a complementary approach to overcome drug resistance in pathogenic bacteria. Keywords: iron-chelation, xenosiderophores, exochelin MS, deferoxamine B

  17. Resistance to anticoccidial drugs : Alternative strategies to control coccidiosis in broilers

    NARCIS (Netherlands)

    Peek, H.W.

    2010-01-01

    Manuscripts documenting the occurrence of resistance against all commonly used anticoccidial drugs abroad, together with the high incidence of clinical coccidiosis in the field (60-90% of flocks) in the Netherlands, were the reasons to start investigations on the occurrence of anticoccidial drug

  18. Targeting oncoprotein stability overcomes drug resistance caused by FLT3 kinase domain mutations.

    Directory of Open Access Journals (Sweden)

    Chuanjiang Yu

    Full Text Available FLT3 is the most frequently mutated kinase in acute myeloid leukemia (AML. Internal tandem duplications (ITDs in the juxta-membrane region constitute the majority of activating FLT3 mutations. Several FLT3 kinase inhibitors were developed and tested in the clinic with significant success. However, recent studies have reported the development of secondary drug resistance in patients treated with FLT3 inhibitors. Since FLT3-ITD is an HSP90 client kinase, we here explored if targeting the stability of drug-resistant FLT3 mutant protein could be a potential therapeutic option. We observed that HSP90 inhibitor treatment resulted in the degradation of inhibitor-resistant FLT3-ITD mutants and selectively induced toxicity in cells expressing FLT3-ITD mutants. Thus, HSP90 inhibitors provide a potential therapeutic choice to overcome secondary drug resistance following TKI treatment in FLT3-ITD positive AML.

  19. Hidden charged dark matter

    International Nuclear Information System (INIS)

    Feng, Jonathan L.; Kaplinghat, Manoj; Tu, Huitzu; Yu, Hai-Bo

    2009-01-01

    Can dark matter be stabilized by charge conservation, just as the electron is in the standard model? We examine the possibility that dark matter is hidden, that is, neutral under all standard model gauge interactions, but charged under an exact (\\rm U)(1) gauge symmetry of the hidden sector. Such candidates are predicted in WIMPless models, supersymmetric models in which hidden dark matter has the desired thermal relic density for a wide range of masses. Hidden charged dark matter has many novel properties not shared by neutral dark matter: (1) bound state formation and Sommerfeld-enhanced annihilation after chemical freeze out may reduce its relic density, (2) similar effects greatly enhance dark matter annihilation in protohalos at redshifts of z ∼ 30, (3) Compton scattering off hidden photons delays kinetic decoupling, suppressing small scale structure, and (4) Rutherford scattering makes such dark matter self-interacting and collisional, potentially impacting properties of the Bullet Cluster and the observed morphology of galactic halos. We analyze all of these effects in a WIMPless model in which the hidden sector is a simplified version of the minimal supersymmetric standard model and the dark matter is a hidden sector stau. We find that charged hidden dark matter is viable and consistent with the correct relic density for reasonable model parameters and dark matter masses in the range 1 GeV ∼ X ∼< 10 TeV. At the same time, in the preferred range of parameters, this model predicts cores in the dark matter halos of small galaxies and other halo properties that may be within the reach of future observations. These models therefore provide a viable and well-motivated framework for collisional dark matter with Sommerfeld enhancement, with novel implications for astrophysics and dark matter searches

  20. Repurposing Clinical Molecule Ebselen to Combat Drug Resistant Pathogens.

    Directory of Open Access Journals (Sweden)

    Shankar Thangamani

    Full Text Available Without a doubt, our current antimicrobials are losing the battle in the fight against newly-emerged multidrug-resistant pathogens. There is a pressing, unmet need for novel antimicrobials and novel approaches to develop them; however, it is becoming increasingly difficult and costly to develop new antimicrobials. One strategy to reduce the time and cost associated with antimicrobial innovation is drug repurposing, which is to find new applications outside the scope of the original medical indication of the drug. Ebselen, an organoselenium clinical molecule, possesses potent antimicrobial activity against clinical multidrug-resistant Gram-positive pathogens, including Staphylococcus, Streptococcus, and Enterococcus, but not against Gram-negative pathogens. Moreover, the activity of ebselen against Gram-positive pathogens exceeded those activities determined for vancomycin and linezolid, drugs of choice for treatment of Enterococcus and Staphylococcus infections. The minimum inhibitory concentrations of ebselen at which 90% of clinical isolates of Enterococcus and Staphylococcus were inhibited (MIC90 were found to be 0.5 and 0.25 mg/L, respectively. Ebselen showed significant clearance of intracellular methicillin-resistant S. aureus (MRSA in comparison to vancomycin and linezolid. We demonstrated that ebselen inhibits the bacterial translation process without affecting mitochondrial biogenesis. Additionally, ebselen was found to exhibit excellent activity in vivo in a Caenorhabditis elegans MRSA-infected whole animal model. Finally, ebselen showed synergistic activities with conventional antimicrobials against MRSA. Taken together, our results demonstrate that ebselen, with its potent antimicrobial activity and safety profiles, can be potentially used to treat multidrug resistant Gram-positive bacterial infections alone or in combination with other antibiotics and should be further clinically evaluated.

  1. In vitro resistance profile of the candidate HIV-1 microbicide drug dapivirine.

    Science.gov (United States)

    Schader, Susan M; Oliveira, Maureen; Ibanescu, Ruxandra-Ilinca; Moisi, Daniela; Colby-Germinario, Susan P; Wainberg, Mark A

    2012-02-01

    Antiretroviral-based microbicides may offer a means to reduce the sexual transmission of HIV-1. Suboptimal use of a microbicide may, however, lead to the development of drug resistance in users that are already, or become, infected with HIV-1. In such cases, the efficacy of treatments may be compromised since the same (or similar) antiretrovirals used in treatments are being developed as microbicides. To help predict which drug resistance mutations may develop in the context of suboptimal use, HIV-1 primary isolates of different subtypes and different baseline resistance profiles were used to infect primary cells in vitro in the presence of increasing suboptimal concentrations of the two candidate microbicide antiretrovirals dapivirine (DAP) and tenofovir (TFV) alone or in combination. Infections were ongoing for 25 weeks, after which reverse transcriptase genotypes were determined and scrutinized for the presence of any clinically recognized reverse transcriptase drug resistance mutations. Results indicated that suboptimal concentrations of DAP alone facilitated the emergence of common nonnucleoside reverse transcriptase inhibitor resistance mutations, while suboptimal concentrations of DAP plus TFV gave rise to fewer mutations. Suboptimal concentrations of TFV alone did not frequently result in the development of resistance mutations. Sensitivity evaluations for stavudine (d4T), nevirapine (NVP), and lamivudine (3TC) revealed that the selection of resistance as a consequence of suboptimal concentrations of DAP may compromise the potential for NVP to be used in treatment, a finding of potential relevance in developing countries.

  2. Transmission of HIV Drug Resistance and the Predicted Effect on Current First-line Regimens in Europe

    DEFF Research Database (Denmark)

    Hofstra, L Marije; Sauvageot, Nicolas; Albert, Jan

    2016-01-01

    BACKGROUND:  Numerous studies have shown that baseline drug resistance patterns may influence the outcome of antiretroviral therapy. Therefore, guidelines recommend drug resistance testing to guide the choice of initial regimen. In addition to optimizing individual patient management......, these baseline resistance data enable transmitted drug resistance (TDR) to be surveyed for public health purposes. The SPREAD program systematically collects data to gain insight into TDR occurring in Europe since 2001. METHODS:  Demographic, clinical, and virological data from 4140 antiretroviral-naive human...... immunodeficiency virus (HIV)-infected individuals from 26 countries who were newly diagnosed between 2008 and 2010 were analyzed. Evidence of TDR was defined using the WHO list for surveillance of drug resistance mutations. Prevalence of TDR was assessed over time by comparing the results to SPREAD data from 2002...

  3. Localization of hidden Chua's attractors

    International Nuclear Information System (INIS)

    Leonov, G.A.; Kuznetsov, N.V.; Vagaitsev, V.I.

    2011-01-01

    The classical attractors of Lorenz, Rossler, Chua, Chen, and other widely-known attractors are those excited from unstable equilibria. From computational point of view this allows one to use numerical method, in which after transient process a trajectory, started from a point of unstable manifold in the neighborhood of equilibrium, reaches an attractor and identifies it. However there are attractors of another type: hidden attractors, a basin of attraction of which does not contain neighborhoods of equilibria. In the present Letter for localization of hidden attractors of Chua's circuit it is suggested to use a special analytical-numerical algorithm. -- Highlights: → There are hidden attractors: basin doesn't contain neighborhoods of equilibria. → Hidden attractors cannot be reached by trajectory from neighborhoods of equilibria. → We suggested special procedure for localization of hidden attractors. → We discovered hidden attractor in Chua's system, L. Chua in his work didn't expect this.

  4. Treatment Options for Carbapenem-Resistant and Extensively Drug-Resistant Acinetobacter baumannii Infections

    Science.gov (United States)

    Viehman, J. Alexander; Nguyen, Minh-Hong; Doi, Yohei

    2014-01-01

    Acinetobacter baumannii is a leading cause of healthcare-associated infections worldwide. Due to various intrinsic and acquired mechanisms of resistance, most β-lactam agents are not effective against many strains, and carbapenems have played an important role in therapy. Recent trends show many infections are caused by carbapenem-resistant, or even extensively drug-resistant (XDR) strains, for which effective therapy is not well established. Evidence to date suggests that colistin constitutes the backbone of therapy, but the unique pharmacokinetic properties of colistin have led many to suggest the use of combination antimicrobial therapy. However, the combination of agents and dosing regimens that delivers the best clinical efficacy while minimizing toxicity is yet to be defined. Carbapenems, sulbactam, rifampin and tigecycline have been the most studied in the context of combination therapy. Most data regarding therapy for invasive, resistant A. baumannii infections come from uncontrolled case series and retrospective analyses, though some clinical trials have been completed and others are underway. Early institution of appropriate antimicrobial therapy is shown to consistently improve survival of patients with carbapenem-resistant and XDR A. baumannii infection, but the choice of empiric therapy in these infections remains an open question. This review summarizes the most current knowledge regarding the epidemiology, mechanisms of resistance, and treatment considerations of carbapenem-resistant and XDR A. baumannii. PMID:25091170

  5. The Relationship Between Osteomyelitis Complication and Drug-Resistant Infection Risk in Diabetic Foot Ulcer: A Meta-analysis.

    Science.gov (United States)

    Chen, Yin; Ding, Hui; Wu, Hua; Chen, Hong-Lin

    2017-09-01

    In this study, we aimed to investigate the relationship between osteomyelitis complications and drug-resistant infection risk in diabetic foot ulcer. Searches of MEDLINE and ISI databases were performed for the studies. Odds ratios (ORs) for drug-resistant infection incidence were calculated for diabetic foot ulcer patients with or without osteomyelitis complications. Eleven studies (12 cohorts) with 1526 patients were included in this study. Meta-analysis showed that the summary OR was 3.343 (95% CI = 2.355-4.745; Z = 6.75, P analysis by only pooled the adjusted ORs showed that the result was robust (the summary OR = 4.081, 95% CI = 2.471-6.739). Subgroup analysis by drug-resistant type showed that the summary OR was 4.391 (95% CI = 2.287-8.394) for methicillin-resistant infection subgroup, and 2.693 (95% CI = 1.882-3.851) for multidrug-resistant infection subgroup. The meta-regression showed that drug-resistant incidence ( t = -0.90, P = .389) and published year ( t = -0.11, P = .913) were not related with the OR changes. In conclusion, our meta-analysis indicates that osteomyelitis complications are related with drug-resistant infection risk in diabetic foot ulcer. We suggest bone culture-based narrow-spectrum antibiotic therapy for osteomyelitis for prevention drug-resistant infection in diabetic foot ulcer.

  6. Shifts in Mycobacterial Populations and Emerging Drug-Resistance in West and Central Africa.

    Directory of Open Access Journals (Sweden)

    Florian Gehre

    Full Text Available In this study, we retrospectively analysed a total of 605 clinical isolates from six West or Central African countries (Benin, Cameroon, Central African Republic, Guinea-Conakry, Niger and Senegal. Besides spoligotyping to assign isolates to ancient and modern mycobacterial lineages, we conducted phenotypic drug-susceptibility-testing for each isolate for the four first-line drugs. We showed that phylogenetically modern Mycobacterium tuberculosis strains are more likely associated with drug resistance than ancient strains and predict that the currently ongoing replacement of the endemic ancient by a modern mycobacterial population in West/Central Africa might result in increased drug resistance in the sub-region.

  7. Whole genome sequencing-based characterization of extensively drug resistant (XDR) strains of Mycobacterium tuberculosis from Pakistan

    KAUST Repository

    Hasan, Zahra; Ali, Asho; McNerney, Ruth; Mallard, Kim; Hill-Cawthorne, Grant A.; Coll, Francesc; Nair, Mridul; Pain, Arnab; Clark, Taane G.; Hasan, Rumina

    2015-01-01

    Objectives: The global increase in drug resistance in Mycobacterium tuberculosis (MTB) strains increases the focus on improved molecular diagnostics for MTB. Extensively drug-resistant (XDR) - TB is caused by MTB strains resistant to rifampicin, isoniazid, fluoroquinolone and aminoglycoside antibiotics. Resistance to anti-tuberculous drugs has been associated with single nucleotide polymorphisms (SNPs), in particular MTB genes. However, there is regional variation between MTB lineages and the SNPs associated with resistance. Therefore, there is a need to identify common resistance conferring SNPs so that effective molecular-based diagnostic tests for MTB can be developed. This study investigated used whole genome sequencing (WGS) to characterize 37 XDR MTB isolates from Pakistan and investigated SNPs related to drug resistance. Methods: XDR-TB strains were selected. DNA was extracted from MTB strains, and samples underwent WGS with 76-base-paired end fragment sizes using Illumina paired end HiSeq2000 technology. Raw sequence data were mapped uniquely to H37Rv reference genome. The mappings allowed SNPs and small indels to be called using SAMtools/BCFtools. Results: This study found that in all XDR strains, rifampicin resistance was attributable to SNPs in the rpoB RDR region. Isoniazid resistance-associated mutations were primarily related to katG codon 315 followed by inhA S94A. Fluoroquinolone resistance was attributable to gyrA 91-94 codons in most strains, while one did not have SNPs in either gyrA or gyrB. Aminoglycoside resistance was mostly associated with SNPs in rrs, except in 6 strains. Ethambutol resistant strains had embB codon 306 mutations, but many strains did not have this present. The SNPs were compared with those present in commercial assays such as LiPA Hain MDRTBsl, and the sensitivity of the assays for these strains was evaluated. Conclusions: If common drug resistance associated with SNPs evaluated the concordance between phenotypic and

  8. Whole genome sequencing-based characterization of extensively drug resistant (XDR) strains of Mycobacterium tuberculosis from Pakistan

    KAUST Repository

    Hasan, Zahra

    2015-03-01

    Objectives: The global increase in drug resistance in Mycobacterium tuberculosis (MTB) strains increases the focus on improved molecular diagnostics for MTB. Extensively drug-resistant (XDR) - TB is caused by MTB strains resistant to rifampicin, isoniazid, fluoroquinolone and aminoglycoside antibiotics. Resistance to anti-tuberculous drugs has been associated with single nucleotide polymorphisms (SNPs), in particular MTB genes. However, there is regional variation between MTB lineages and the SNPs associated with resistance. Therefore, there is a need to identify common resistance conferring SNPs so that effective molecular-based diagnostic tests for MTB can be developed. This study investigated used whole genome sequencing (WGS) to characterize 37 XDR MTB isolates from Pakistan and investigated SNPs related to drug resistance. Methods: XDR-TB strains were selected. DNA was extracted from MTB strains, and samples underwent WGS with 76-base-paired end fragment sizes using Illumina paired end HiSeq2000 technology. Raw sequence data were mapped uniquely to H37Rv reference genome. The mappings allowed SNPs and small indels to be called using SAMtools/BCFtools. Results: This study found that in all XDR strains, rifampicin resistance was attributable to SNPs in the rpoB RDR region. Isoniazid resistance-associated mutations were primarily related to katG codon 315 followed by inhA S94A. Fluoroquinolone resistance was attributable to gyrA 91-94 codons in most strains, while one did not have SNPs in either gyrA or gyrB. Aminoglycoside resistance was mostly associated with SNPs in rrs, except in 6 strains. Ethambutol resistant strains had embB codon 306 mutations, but many strains did not have this present. The SNPs were compared with those present in commercial assays such as LiPA Hain MDRTBsl, and the sensitivity of the assays for these strains was evaluated. Conclusions: If common drug resistance associated with SNPs evaluated the concordance between phenotypic and

  9. The molecular basis of drug resistance against hepatitis C virus NS3/4A protease inhibitors.

    Directory of Open Access Journals (Sweden)

    Keith P Romano

    Full Text Available Hepatitis C virus (HCV infects over 170 million people worldwide and is the leading cause of chronic liver diseases, including cirrhosis, liver failure, and liver cancer. Available antiviral therapies cause severe side effects and are effective only for a subset of patients, though treatment outcomes have recently been improved by the combination therapy now including boceprevir and telaprevir, which inhibit the viral NS3/4A protease. Despite extensive efforts to develop more potent next-generation protease inhibitors, however, the long-term efficacy of this drug class is challenged by the rapid emergence of resistance. Single-site mutations at protease residues R155, A156 and D168 confer resistance to nearly all inhibitors in clinical development. Thus, developing the next-generation of drugs that retain activity against a broader spectrum of resistant viral variants requires a comprehensive understanding of the molecular basis of drug resistance. In this study, 16 high-resolution crystal structures of four representative protease inhibitors--telaprevir, danoprevir, vaniprevir and MK-5172--in complex with the wild-type protease and three major drug-resistant variants R155K, A156T and D168A, reveal unique molecular underpinnings of resistance to each drug. The drugs exhibit differential susceptibilities to these protease variants in both enzymatic and antiviral assays. Telaprevir, danoprevir and vaniprevir interact directly with sites that confer resistance upon mutation, while MK-5172 interacts in a unique conformation with the catalytic triad. This novel mode of MK-5172 binding explains its retained potency against two multi-drug-resistant variants, R155K and D168A. These findings define the molecular basis of HCV N3/4A protease inhibitor resistance and provide potential strategies for designing robust therapies against this rapidly evolving virus.

  10. Hidden Liquidity: Determinants and Impact

    OpenAIRE

    Gökhan Cebiroglu; Ulrich Horst

    2012-01-01

    We cross-sectionally analyze the presence of aggregated hidden depth and trade volume in the S&P 500 and identify its key determinants. We find that the spread is the main predictor for a stock’s hidden dimension, both in terms of traded and posted liquidity. Our findings moreover suggest that large hidden orders are associated with larger transaction costs, higher price impact and increased volatility. In particular, as large hidden orders fail to attract (latent) liquidity to the market, ...

  11. Drug Resistance versus Spiritual Resistance: A Comparative Analysis from the Perspective of Spiritual Health

    Directory of Open Access Journals (Sweden)

    Mohammad Baqer Mohammadi Laini

    2014-12-01

    Full Text Available Background and Objectives: Taking into account a few principles concerning human being, it becomes plausible that the human spirit would also have a similar reaction to spiritual “medicine” provided to it. In order to better understand how this is possible, we must consider the means by which the human spirit becomes resistant to spiritual remedies and compare them with the resistance developed by the body against physical drugs. As such, this research aimed at creating a comparative analysis between the elements that cause the human spirit to become resistant against spiritual remedies in comparison to the body’s resistance against physical treatments (e.g. drugs and other physical treatment. Methods: The research at hand highlights the conclusions of an overall study of the Holy Quran, books of Islamic narration, and extensive Internet research concerning this subject. With these resources, the various aspects of the spirit’s resistance against spiritual remedies were discussed in detail. Results: According to Holy Quran and Islamic narrations: Based on the expectations which God has of man, his heart (i.e. spirit has the potential to fall under one of two categories – positive or negative. An afflicted heart may at times, like an afflicted body, become resistant against a remedy designed to cure it. In both cases of physical or metaphysical resistance, the underlying element that causes this resistance as well as the symptoms which accompany it are similar to one another. Having considered the teachings found in religious texts, this research discovered the underlying causes of spiritual resistance, and outlined some solutions which can prevent this issue from arising in the first place. Conclusion: Based on the standards of health and spiritual wellbeing as outlined in Holy Quran, it is said that some hearts are unhealthy and require treatment and healing. In Holy Quran, there is also no doubt in it, guidance to the God wary

  12. Drug resistance patterns of acinetobacter baumannii in makkah, saudi arabia

    International Nuclear Information System (INIS)

    Khan, M.A.; Ashshi, A.M.; Mahomed, M.F.

    2012-01-01

    Background: Acinetobacter baumannii causes infections of respiratory, urinary tract, blood stream and surgical sites. Its clinical significance has increased due to its rapidly developing resistance to major groups of antibiotics used for its treatment. There is limited data available on antimicrobial susceptibility of A. baumannii from Saudi Arabia. Objectives: To determine the patterns of drug resistance of Acinetobacter baumannii and predisposing factors for its acquisition.Subjects and Methods: In this descriptive study, 72 hospitalized patients infected with A baumannii were studied. The clinical and demographic data of the patients were collected using a predesigned questionnaire. Isolation and identification of A.baumannii from all clinical specimens were done using standard microbiological methods. Antibiotic susce ptibility testing was performed by disk diffusion method recommended by Clinical Laboratory Standards Institute. Results: Majority of the isolates (61.1%) were from respiratory tract infections. A.baumannii isolates showed high drug resistance to piperacil lin (93.1%), aztreonam (80.5%), ticarcillin, ampicillin, and tetracycline (76.4%, each) and cefotaxime (75%). Only amikacin showed low rate of resistance compared to other antibiotics (40.3%). About 36% patients had some underlying diseases with diabetes mellitus (11%) being the predominant underlying disease. Conclusions: High antimicrobial resistance to commonly used antibiotics was seen against A.baumannii isolates. Only amikacin was most effective against it. (author)

  13. Activation of Antibiotic Production in Bacillus spp. by Cumulative Drug Resistance Mutations.

    Science.gov (United States)

    Tojo, Shigeo; Tanaka, Yukinori; Ochi, Kozo

    2015-12-01

    Bacillus subtilis strains produce a wide range of antibiotics, including ribosomal and nonribosomal peptide antibiotics, as well as bacilysocin and neotrehalosadiamine. Mutations in B. subtilis strain 168 that conferred resistance to drugs such as streptomycin and rifampin resulted in overproduction of the dipeptide antibiotic bacilysin. Cumulative drug resistance mutations, such as mutations in the mthA and rpsL genes, which confer low- and high-level resistance, respectively, to streptomycin, and mutations in rpoB, which confer resistance to rifampin, resulted in cells that overproduced bacilysin. Transcriptional analysis demonstrated that the enhanced transcription of biosynthesis genes was responsible for the overproduction of bacilysin. This approach was effective also in activating the cryptic genes of Bacillus amyloliquefaciens, leading to actual production of antibiotic(s). Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Drug Resistance and Pseudoresistance: An Unintended Consequence of Enteric Coating Aspirin

    Science.gov (United States)

    Grosser, Tilo; Fries, Susanne; Lawson, John A.; Kapoor, Shiv C.; Grant, Gregory R.; FitzGerald, Garret A.

    2013-01-01

    Background Low dose aspirin reduces the secondary incidence of myocardial infarction and stroke. Drug resistance to aspirin might result in treatment failure. Despite this concern, no clear definition of “aspirin resistance” has emerged and estimates of its incidence have varied remarkably. We aimed to determine the commonality of a mechanistically consistent, stable and specific phenotype of true pharmacological resistance to aspirin – such as might be explained by genetic causes. Methods and Results Healthy volunteers (n=400) were screened for their response to a single oral dose of 325 mg immediate release or enteric coated aspirin. Response parameters reflected the activity of aspirin's molecular target, cyclooxygenase-1. Individuals who appeared “aspirin resistant” on one occasion underwent repeat testing and if still “resistant” were exposed to low dose enteric coated aspirin (81 mg) and clopidogrel (75 mg) for one week each. Variable absorption caused a high frequency of apparent resistance to a single dose of 325 mg enteric coated aspirin (up to 49%) but not to immediate release aspirin (0%). All individuals responded to aspirin upon repeated exposure, extension of the post dosing interval or addition of aspirin to their platelets ex vivo. Conclusions Pharmacological resistance to aspirin is rare; this study failed to identify a single case of true drug resistance. Pseudoresistance, reflecting delayed and reduced drug absorption, complicates enteric coated but not immediate release aspirin administration. Clinical Trial Registration Information clinicaltrials.gov. Identifier: NCT00948987. PMID:23212718

  15. Reducing the Risk of Drug Involvement among Early Adolescents: An Evaluation of Drug Abuse Resistance Education (DARE).

    Science.gov (United States)

    Harmon, Michele Alicia

    1993-01-01

    DARE's effectiveness in Charleston County (South Carolina) was studied by comparing 341 DARE to 367 non-DARE fifth-grade students. DARE teaches students to recognize and resist social pressures to use drugs. DARE has positive impacts on anti-substance abuse attitudes, assertiveness, positive peer association, association with drug-using peers, and…

  16. Within-host selection of drug resistance in a mouse model reveals dose-dependent selection of atovaquone resistance mutations

    NARCIS (Netherlands)

    Nuralitha, Suci; Murdiyarso, Lydia S.; Siregar, Josephine E.; Syafruddin, Din; Roelands, Jessica; Verhoef, Jan; Hoepelman, Andy I.M.; Marzuki, Sangkot

    2017-01-01

    The evolutionary selection of malaria parasites within an individual host plays a critical role in the emergence of drug resistance. We have compared the selection of atovaquone resistance mutants in mouse models reflecting two different causes of failure of malaria treatment, an inadequate

  17. Characterization of p38 MAPK isoforms for drug resistance study using systems biology approach.

    Science.gov (United States)

    Peng, Huiming; Peng, Tao; Wen, Jianguo; Engler, David A; Matsunami, Risë K; Su, Jing; Zhang, Le; Chang, Chung-Che Jeff; Zhou, Xiaobo

    2014-07-01

    p38 mitogen-activated protein kinase activation plays an important role in resistance to chemotherapeutic cytotoxic drugs in treating multiple myeloma (MM). However, how the p38 mitogen-activated protein kinase signaling pathway is involved in drug resistance, in particular the roles that the various p38 isoforms play, remains largely unknown. To explore the underlying mechanisms, we developed a novel systems biology approach by integrating liquid chromatography-mass spectrometry and reverse phase protein array data from human MM cell lines with computational pathway models in which the unknown parameters were inferred using a proposed novel algorithm called modularized factor graph. New mechanisms predicted by our models suggest that combined activation of various p38 isoforms may result in drug resistance in MM via regulating the related pathways including extracellular signal-regulated kinase (ERK) pathway and NFкB pathway. ERK pathway regulating cell growth is synergistically regulated by p38δ isoform, whereas nuclear factor kappa B (NFкB) pathway regulating cell apoptosis is synergistically regulated by p38α isoform. This finding that p38δ isoform promotes the phosphorylation of ERK1/2 in MM cells treated with bortezomib was validated by western blotting. Based on the predicted mechanisms, we further screened drug combinations in silico and found that a promising drug combination targeting ERK1/2 and NFκB might reduce the effects of drug resistance in MM cells. This study provides a framework of a systems biology approach to studying drug resistance and drug combination selection. RPPA experimental Data and Matlab source codes of modularized factor graph for parameter estimation are freely available online at http://ctsb.is.wfubmc.edu/publications/modularized-factor-graph.php. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. [Potential antimicrobial drug interactions in clinical practice: consequences of polypharmacy and multidrug resistance].

    Science.gov (United States)

    Martínez-Múgica, Cristina

    2015-12-01

    Polypharmacy is a growing problem nowadays, which can increase the risk of potential drug interactions, and result in a loss of effectiveness. This is particularly relevant to the anti-infective therapy, especially when infection is produced by resistant bacteria, because therapeutic options are limited and interactions can cause treatment failure. All antimicrobial prescriptions were retrospectively reviewed during a week in the Pharmacy Department, in order to detect potential drug-interactions and analysing their clinical significance. A total of 314 antimicrobial prescriptions from 151 patients were checked. There was at least one potential interaction detected in 40% of patients, being more frequent and severe in those infected with multidrug-resistant microorganisms. Drugs most commonly involved were quinolones, azoles, linezolid and vancomycin. Potential drug interactions with antimicrobial agents are a frequent problem that can result in a loss of effectiveness. This is why they should be detected and avoided when possible, in order to optimize antimicrobial therapy, especially in case of multidrug resistant infections.

  19. Changes in drug resistance patterns following the introduction of HIV type 1 non-B subtypes in Spain.

    Science.gov (United States)

    De Mendoza, Carmen; Garrido, Carolina; Poveda, Eva; Corral, Angélica; Zahonero, Natalia; Treviño, Ana; Anta, Lourdes; Soriano, Vincent

    2009-10-01

    Natural genetic variability at the pol gene may account for differences in drug susceptibility and selection of resistance patterns across HIV-1 clades. Spread of non-B subtypes along with changes in antiretroviral drug use may have modified drug resistance patterns in recent years. All HIV-1 clinical samples sent to a reference laboratory located in Madrid for drug resistance testing since January 2000 were analyzed. The pol gene was sequenced and HIV-1 subtypes were assigned using the Stanford algorithm and phylogenetic analyses for non-B subtypes. Drug resistance mutations were recorded using the IAS-USA mutation list (April 2008). A total of 3034 specimens from 730 antiretroviral-naive individuals (92 with non-B subtypes) and 1569 antiretroviral-experienced patients (97 with non-B subtypes) were examined. The prevalence of HIV-1 non-B subtypes in the study period increased from 4.4% (2000-2003) to 10.1% (2004-2007) (p 41.8%) and G (17.5%). Thymidine analogue mutations (TAMs) were more prevalent in B than non-B subtypes, in both drug-naive (6.2% vs. 1%; p < 0.01) and treatment-experienced patients (49% vs. 30%, p < 0.01). K103N was most frequent in B than non-B subtypes (34% vs. 21%; p < 0.01); conversely, 106A/M was more prevalent in non-B than B clades (11% vs. 5%). Codon 179 mutations associated with etravirine resistance were more frequent in non-B than B subtypes. Finally, secondary protease resistance mutations were more common in non-B than B clades, with a potentially significant impact at least on tipranavir. The prevalence of HIV-1 non-B subtypes has increased since the year 2000 in a large drug resistance database in Spain, determining changes in drug resistance patterns that may influence the susceptibility to new antiretroviral drugs and have an impact on genotypic drug resistance interpretation algorithms.

  20. Molecular characterization of mutations associated with resistance to second-line tuberculosis drug among multidrug-resistant tuberculosis patients from high prevalence tuberculosis city in Morocco.

    Science.gov (United States)

    Oudghiri, Amal; Karimi, Hind; Chetioui, Fouad; Zakham, Fathiah; Bourkadi, Jamal Eddine; Elmessaoudi, My Driss; Laglaoui, Amin; Chaoui, Imane; El Mzibri, Mohammed

    2018-02-27

    The emergence of extensively drug-resistant tuberculosis (XDR-TB) has raised public health concern for global TB control. Although multi drug-resistant tuberculosis (MDR- TB) prevalence and associated genetic mutations in Morocco are well documented, scarce information on XDR TB is available. Hence, the evaluation of pre-XDR and XDR prevalence, as well as the mutation status of gyrA, gyrB, rrs, tlyA genes and eis promoter region, associated with resistance to second line drugs, is of great value for better management of M/XDR TB in Morocco. To evaluate pre-XDR and XDR prevalence, as well as the mutation status of gyrA, gyrB, rrs, tlyA genes and eis promoter region, associated with resistance to second line drug resistance, in 703 clinical isolates from TB patients recruited in Casablanca, and to assess the usefulness of molecular tools in clinical laboratories for better management of M/XDR TB in Morocco. Drug susceptibility testing (DST) was performed by the proportional method for first line drugs, and then the selected MDR isolates were tested for second line drugs (Ofloxacin, Kanamycin, Amikacin and Capreomycin). Along with DST, all samples were subjected to rpoB, katG and p-inhA mutation analysis by PCR and DNA sequencing. MDR isolates as well as 30 pan-susceptible strains were subjected to PCR and DNA sequencing of gyrA, gyrB, rrs, tlyA genes and eis promoter, associated with resistance to fluoroquinolones and injectable drugs. Among the 703 analysed strains, 12.8% were MDR; Ser531Leu and Ser315Thr being the most common recorded mutations within rpoB and katG genes associated with RIF and INH resistance respectively. Drug susceptibility testing for second line drugs showed that among the 90 MDR strains, 22.2% (20/90) were resistant to OFX, 2.22% (2/90) to KAN, 3.33% (3/90) to AMK and 1.11% (1/90) to CAP. Genotypic analysis revealed that 19 MDR strains harbored mutations in the gyrA gene; the most recorded mutation being Asp91Ala accounting for 47.6% (10

  1. In vivo selection of resistant E. coli after ingestion of milk with added drug residues.

    Directory of Open Access Journals (Sweden)

    Richard Van Vleck Pereira

    Full Text Available Antimicrobial resistance represents a major global threat to modern medicine. In vitro studies have shown that very low concentrations of drugs, as frequently identified in the environment, and in foods and water for human and animal consumption, can select for resistant bacteria. However, limited information is currently available on the in vivo impact of ingested drug residues. The objective of our study was to evaluate the effect of feeding preweaned calves milk containing antimicrobial drug residues (below the minimum inhibitory concentration, similar to concentrations detected in milk commonly fed to dairy calves, on selection of resistant fecal E. coli in calves from birth to weaning. At birth, thirty calves were randomly assigned to a controlled feeding trial where: 15 calves were fed raw milk with no drug residues (NR, and 15 calves were fed raw milk with drug residues (DR by adding ceftiofur, penicillin, ampicillin, and oxytetracycline at final concentrations in the milk of 0.1, 0.005, 0.01, and 0.3 µg/ml, respectively. Fecal samples were rectally collected from each calf once a week starting at birth prior to the first feeding in the trial (pre-treatment until 6 weeks of age. A significantly greater proportion of E. coli resistant to ampicillin, cefoxitin, ceftiofur, streptomycin and tetracycline was observed in DR calves when compared to NR calves. Additionally, isolates from DR calves had a significant decrease in susceptibility to ceftriaxone and ceftiofur when compared to isolates from NR calves. A greater proportion of E. coli isolates from calves in the DR group were resistant to 3 or more antimicrobial drugs when compared to calves in the ND group. These findings highlight the role that low concentrations of antimicrobial drugs have on the evolution and selection of resistance to multiple antimicrobial drugs in vivo.

  2. Molecular Genetic Analysis of Multi-drug Resistance in Indian Isolates of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Noman Siddiqi

    1998-09-01

    Full Text Available A total of 116 isolates from patients attending the out-patient department at the All India Institute of Medical Sciences, New Delhi and the New Delhi Tuberculosis Centre, New Delhi, India were collected. They were analyzed for resistance to drugs prescribed in the treatment for tuberculosis. The drug resistance was initially determined by microbiological techniques. The Bactec 460TB system was employed to determine the type and level of resistance in each isolate. The isolates were further characterized at molecular level. The multi-drug loci corresponding to rpo b, gyr A, kat G were studied for mutation(s by the polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP technique. The SSCP positive samples were sequenced to characterize the mutations in rpo b, and gyr A loci. While previously reported mutations in the gyr A and rpo b loci were found to be present, several novel mutations were also scored in the rpo b locus. Interestingly, analysis of the gyr A locus showed the presence of point mutation(s that could not be detected by PCR-SSCP. Furthermore, rifampicin resistance was found to be an important marker for checking multi-drug resistance (MDR in clinical isolates of Mycobacterium tuberculosis. This is the first report on molecular genetic analysis of MDR tuberculosis one from India, highlights the increasing incidence of MDR in the Indian isolates of M. tuberculosis.

  3. Genotypes of Mycobacterium tuberculosis in patients at risk of drug resistance in Bolivia.

    Science.gov (United States)

    Monteserin, Johana; Camacho, Mirtha; Barrera, Lucía; Palomino, Juan Carlos; Ritacco, Viviana; Martin, Anandi

    2013-07-01

    Bolivia ranks among the 10 Latin American countries with the highest rates of tuberculosis (TB) and multidrug resistant (MDR) TB. In view of this, and of the lacking information on the population structure of Mycobacterium tuberculosis in the country, we explored genotype associations with drug resistance and clustering by analyzing isolates collected in 2010 from 100 consecutive TB patients at risk of drug resistance in seven of the nine departments in which Bolivia is divided. Fourteen isolates were MDR, 29 had other drug resistance profiles, and 57 were pansusceptible. Spoligotype family distribution was: Haarlem 39.4%, LAM 26.3%, T 22.2%, S 2.0%, X 1.0%, orphan 9.1%, with very low intra-family diversity and absence of Beijing genotypes. We found 66 different MIRU-VNTR patterns; the most frequent corresponded to Multiple Locus Variable Analysis (MLVA) MtbC15 patterns 860, 372 and 873. Twelve clusters, each with identical MIRU-VNTR and spoligotypes, gathered 35 patients. We found no association of genotype with drug resistant or MDR-TB. Clustering associated with SIT 50 and the H3 subfamily to which it belongs (pBolivia. However, results should be taken cautiously because the sample is small and includes a particular subset of M. tuberculosis population. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Emerging drug -resistance and guidelines for treatment of malaria

    International Nuclear Information System (INIS)

    Khan, M.A.; Smego Jr, R.A.; Razi, S.T.; Beg, M.A.

    2004-01-01

    The increasing prevalence of multi-resistant Plasmodium falciparum malaria worldwide is a serious public health threat to the global control of malaria, especially in poor countries like Pakistan. In many countries chloroquine-resistance is a huge problem, accounting for more than 90% of malaria cases. In Pakistan, resistance to chloroquine is on the rise and reported in up to 16- 62% of Plasmodium falciparum. Four to 25% of Plasmodium falciparum also reported to be resistant to sulfadoxine-pyrimethamine and several cases of delayed parasite clearance have been observed in patients with Plasmodium falciparum malaria treated with quinine. In this article we have introduced the concept of artemisinin- based combination therapy (ACT) and emphasize the use of empiric combination therapy for all patients with Plasmodium falciparum malaria to prevent development of drug resistance and to obtain additive and synergistic killing of parasite. (author)

  5. Hidden burden of malaria in Indian women

    Directory of Open Access Journals (Sweden)

    Sharma Vinod P

    2009-12-01

    Full Text Available Abstract Malaria is endemic in India with an estimated 70-100 million cases each year (1.6-1.8 million reported by NVBDCP; of this 50-55% are Plasmodium vivax and 45-50% Plasmodium falciparum. A recent study on malaria in pregnancy reported from undivided Madhya Pradesh state (includes Chhattisgarh state, that an estimated over 220,000 pregnant women contract malaria infection each year. Malaria in pregnancy caused- abortions 34.5%; stillbirths 9%; and maternal deaths 0.45%. Bulk of this tragic outcome can be averted by following the Roll Back Malaria/WHO recommendations of the use of malaria prevention i.e. indoor residual spraying (IRS/insecticide-treated bed nets (ITN preferably long-lasting treated bed nets (LLIN; intermittent preventive therapy (IPT; early diagnosis, prompt and complete treatment using microscopic/malaria rapid diagnostics test (RDT and case management. High incidence in pregnancy has arisen because of malaria surveillance lacking coverage, lack of age and sex wise data, staff shortages, and intermittent preventive treatment (IPT applicable in high transmission states/pockets is not included in the national drug policy- an essential component of fighting malaria in pregnancy in African settings. Inadequate surveillance and gross under-reporting has been highlighted time and again for over three decades. As a result the huge problem of malaria in pregnancy reported occasionally by researchers has remained hidden. Malaria in pregnancy may quicken severity in patients with drug resistant parasites, anaemia, endemic poverty, and malnutrition. There is, therefore, urgent need to streamline malaria control strategies to make a difference in tackling this grim scenario in human health.

  6. Sleep instability and cognitive status in drug-resistant epilepsies.

    Science.gov (United States)

    Pereira, Alessandra Marques; Bruni, Oliviero; Ferri, Raffaele; Nunes, Magda Lahorgue

    2012-05-01

    The aims of this study were to evaluate the sleep habits of children with drug resistant epilepsy and to correlate sleep abnormalities with epilepsy and level of intelligence. Twenty five subjects with drug resistant epilepsy (14 males, age range 2-16.4 years) were recruited for this study. A control group was formed by 23 normal children. Two instruments to assess sleep habits were administered to the patients with epilepsy: a questionnaire on sleep habits (to preschool children) and a questionnaire on sleep behavior (for children aged more than seven years old); a cognitive test (Wechsler Intelligence Scale for Children-WISC) was also performed. Patients underwent a complete polysomnographic study and sleep parameters, including CAP, were analyzed and correlated according to cognitive-behavioral measures in children with epilepsy. Children with drug-resistant epilepsy and severe mental retardation showed sleep abnormalities such as low sleep efficiency, high percentage of wakefulness after sleep onset, reduced slow wave sleep, and reduced REM sleep. Sleep microstructure evaluated by means of CAP analysis showed a decrease in A1 index during N3 in patients with more severe cognitive impairment. Children with epilepsy and cognitive impairment (n=10) had higher Sleep Behavior Questionnaire for Children (SBQC) total scores (65.60 ± 18.56) compared to children with epilepsy and normal IQ (50.00 ± 10.40), pintellectual disability. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Adaptive and Mutational Resistance: Role of Porins and Efflux Pumps in Drug Resistance

    Science.gov (United States)

    Fernández, Lucía

    2012-01-01

    Summary: The substantial use of antibiotics in the clinic, combined with a dearth of new antibiotic classes, has led to a gradual increase in the resistance of bacterial pathogens to these compounds. Among the various mechanisms by which bacteria endure the action of antibiotics, those affecting influx and efflux are of particular importance, as they limit the interaction of the drug with its intracellular targets and, consequently, its deleterious effects on the cell. This review evaluates the impact of porins and efflux pumps on two major types of resistance, namely, mutational and adaptive types of resistance, both of which are regarded as key phenomena in the global rise of antibiotic resistance among pathogenic microorganisms. In particular, we explain how adaptive and mutational events can dramatically influence the outcome of antibiotic therapy by altering the mechanisms of influx and efflux of antibiotics. The identification of porins and pumps as major resistance markers has opened new possibilities for the development of novel therapeutic strategies directed specifically against these mechanisms. PMID:23034325

  8. Prediction of clinical response to drugs in ovarian cancer using the chemotherapy resistance test (CTR-test).

    Science.gov (United States)

    Kischkel, Frank Christian; Meyer, Carina; Eich, Julia; Nassir, Mani; Mentze, Monika; Braicu, Ioana; Kopp-Schneider, Annette; Sehouli, Jalid

    2017-10-27

    In order to validate if the test result of the Chemotherapy Resistance Test (CTR-Test) is able to predict the resistances or sensitivities of tumors in ovarian cancer patients to drugs, the CTR-Test result and the corresponding clinical response of individual patients were correlated retrospectively. Results were compared to previous recorded correlations. The CTR-Test was performed on tumor samples from 52 ovarian cancer patients for specific chemotherapeutic drugs. Patients were treated with monotherapies or drug combinations. Resistances were classified as extreme (ER), medium (MR) or slight (SR) resistance in the CTR-Test. Combination treatment resistances were transformed by a scoring system into these classifications. Accurate sensitivity prediction was accomplished in 79% of the cases and accurate prediction of resistance in 100% of the cases in the total data set. The data set of single agent treatment and drug combination treatment were analyzed individually. Single agent treatment lead to an accurate sensitivity in 44% of the cases and the drug combination to 95% accuracy. The detection of resistances was in both cases to 100% correct. ROC curve analysis indicates that the CTR-Test result correlates with the clinical response, at least for the combination chemotherapy. Those values are similar or better than the values from a publication from 1990. Chemotherapy resistance testing in vitro via the CTR-Test is able to accurately detect resistances in ovarian cancer patients. These numbers confirm and even exceed results published in 1990. Better sensitivity detection might be caused by a higher percentage of drug combinations tested in 2012 compared to 1990. Our study confirms the functionality of the CTR-Test to plan an efficient chemotherapeutic treatment for ovarian cancer patients.

  9. Drug resistance in colorectal cancer cell lines is partially associated with aneuploidy status in light of profiling gene expression

    DEFF Research Database (Denmark)

    Guo, Jiao; Xu, Shaohang; Huang, Xuanlin

    2016-01-01

    A priority in solving the problem of drug resistance is to understand the molecular mechanism of how a drug induces the resistance response within cells. Because many cancer cells exhibit chromosome aneuploidy, we explored whether changes of aneuploidy status result in drug resistance. Two typical...... colorectal cancer cells, HCT116 and LoVo, were cultured with the chemotherapeutic drugs irinotecan (SN38) or oxaliplatin (QxPt), and the non- and drug-resistant cell lines were selected. Whole exome sequencing (WES) was employed to evaluate the aneuploidy status of these cells, and RNAseq and LC-MS/MS were...... the aneuploidy status in cancer cells, which was partially associated with the acquired drug resistance....

  10. Outcomes after chemotherapy with WHO category II regimen in a population with high prevalence of drug resistant tuberculosis.

    Directory of Open Access Journals (Sweden)

    Francine Matthys

    Full Text Available Standard short course chemotherapy is recommended by the World Health Organization to control tuberculosis worldwide. However, in settings with high drug resistance, first line standard regimens are linked with high treatment failure. We evaluated treatment outcomes after standardized chemotherapy with the WHO recommended category II retreatment regimen in a prison with a high prevalence of drug resistant tuberculosis (TB. A cohort of 233 culture positive TB patients was followed through smear microscopy, culture, drug susceptibility testing and DNA fingerprinting at baseline, after 3 months and at the end of treatment. Overall 172 patients (74% became culture negative, while 43 (18% remained positive at the end of treatment. Among those 43 cases, 58% of failures were determined to be due to treatment with an inadequate drug regimen and 42% to either an initial mixed infection or re-infection while under treatment. Overall, drug resistance amplification during treatment occurred in 3.4% of the patient cohort. This study demonstrates that treatment failure is linked to initial drug resistance, that amplification of drug resistance occurs, and that mixed infection and re-infection during standard treatment contribute to treatment failure in confined settings with high prevalence of drug resistance.

  11. Molecular mechanisms of drug resistance and tumor promotion involving mammalian ribonucleotide reductase

    Energy Technology Data Exchange (ETDEWEB)

    Choy, B.B.K.

    1991-01-01

    Mammalian ribonucleotide reductase is a highly regulated, rate-limiting activity responsible for converting ribonucleoside diphosphates to the deoxyribonucleotide precursors of DNA. The enzyme consists of two nonidentical proteins called M1 and M2, both of which are required for activity. Hydroxyurea is an antitumor agent which inhibits ribonucleotide reductase by interacting with the M2 component specifically at a unique tyrosyl free radical. Studies were conducted on a series of drug resistant mouse cell lines, selected by a step-wise procedure for increasing levels of resistance to the cytotoxic effects of hydroxyurea. Each successive drug selection step leading to the isolation of highly resistant cells was accompanied by stable elevations in cellular resistance and ribonucleotide reductase activity. The drug resistant cell lines exhibited gene amplification of the M2 gene, elevated M2 mRNA, and M2 protein. In addition to M2 gene amplification, posttranscriptional modulation also occurred during the drug selection. Studies of the biosynthesis rates with exogenously added iron suggest a role for iron in regulating the level of M2 protein when cells are cultured in the presence of hydroxyurea. The hydroxyurea-inactivated ribonucleotide reductase protein M2 has a destabilized iron centre, which readily releases iron. Altered expression of ferritin appears to be required for the development of hydroxyurea resistance in nammalian cells. The results show an interesting relationship between the expressions of ribonucleotide reductase and ferritin. The phorbol ester tumor promoter, TPA, is also able to alter the expression of M2. TPA was able to induce M2 mRNA levels transiently up to 18-fold within 1/2 hour. This rapid and large elevation of ribonucleotide reductase suggests that the enzyme may play a role in tumor promotion. Studies of the M2 promoter region were undertaken to better understand the mechanism of TPA induction of M2.

  12. Clostridium difficile Infections: A Global Overview of Drug Sensitivity and Resistance Mechanisms

    Directory of Open Access Journals (Sweden)

    Saeed S. Banawas

    2018-01-01

    Full Text Available Clostridium difficile (C. difficile is the most prevalent causative pathogen of healthcare-associated diarrhea. Notably, over the past 10 years, the number of Clostridium difficile outbreaks has increased with the rate of morbidity and mortality. The occurrence and spread of C. difficile strains that are resistant to multiple antimicrobial drugs complicate prevention as well as potential treatment options. Most C. difficile isolates are still susceptible to metronidazole and vancomycin. Incidences of C. difficile resistance to other antimicrobial drugs have also been reported. Most of the antibiotics correlated with C. difficile infection (CDI, such as ampicillin, amoxicillin, cephalosporins, clindamycin, and fluoroquinolones, continue to be associated with the highest risk for CDI. Still, the detailed mechanism of resistance to metronidazole or vancomycin is not clear. Alternation in the target sites of the antibiotics is the main mechanism of erythromycin, fluoroquinolone, and rifamycin resistance in C. difficile. In this review, different antimicrobial agents are discussed and C. difficile resistance patterns and their mechanism of survival are summarized.

  13. Hidden sources of grapefruit in beverages: potential interactions with immunosuppressant medications.

    Science.gov (United States)

    Auten, Ashley A; Beauchamp, Lauren N; Joshua Taylor; Hardinger, Karen L

    2013-06-01

    The interaction between grapefruit-containing beverages and immunosuppressants is not well defined in the literature. This study was conducted to investigate possible sources of grapefruit juice or grapefruit extract in common US-manufactured beverages. The goal was to identify those products that might serve as hidden sources of dietary grapefruit intake, increasing a transplant patient's risk for drug interactions. A careful review of the ingredients of the 3 largest US beverage manufacturer's product lines was conducted through manufacturer correspondence, product labeling examination, and online nutrition database research. Focus was placed on citrus-flavored soft drinks, teas, and juice products and their impact on a patient's immunosuppressant regimens. Twenty-three beverages were identified that contained grapefruit. Five did not contain the word "grapefruit" in the product name. In addition to the confirmed grapefruit-containing products, 17 products were identified as possibly containing grapefruit juice or grapefruit extract. A greater emphasis should be placed upon properly educating patients regarding hidden sources of grapefruit in popular US beverages and the potential for food-drug interactions.

  14. DNA origami/gold nanorod hybrid nanostructures for the circumvention of drug resistance.

    Science.gov (United States)

    Song, Linlin; Jiang, Qiao; Liu, Jianbing; Li, Na; Liu, Qing; Dai, Luru; Gao, Yuan; Liu, Weili; Liu, Dongsheng; Ding, Baoquan

    2017-06-14

    We herein demonstrate that DNA origami can work as a multifunctional platform integrating a chemotherapeutic drug (doxorubicin), gold nanorods and a tumour-specific aptamer MUC-1, to realize the effective circumvention of drug resistance. Doxorubicin (DOX) was loaded efficiently onto DNA origami through base pair intercalation and surface-modified gold nanorods (AuNRs) were assembled onto the DNA origami through DNA hybridization. Due to the active targeting effect of the assembled aptamers, the multifunctional nanostructures achieved increased cellular internalization of DOX and AuNRs. Upon near-infrared (NIR) laser irradiation, the P-glycoprotein (multidrug resistance pump) expression of multidrug resistant MCF-7 (MCF-7/ADR) cells was down-regulated, achieving the synergistically chemotherapeutic (DOX) and photothermal (AuNRs) effects.

  15. Drug-resistant colon cancer cells produce high carcinoembryonic antigen and might not be cancer-initiating cells

    Science.gov (United States)

    Lee, Hsin-chung; Ling, Qing-Dong; Yu, Wan-Chun; Hung, Chunh-Ming; Kao, Ta-Chun; Huang, Yi-Wei; Higuchi, Akon

    2013-01-01

    Purpose We evaluated the higher levels of carcinoembryonic antigen (CEA) secreted by the LoVo human colon carcinoma cells in a medium containing anticancer drugs. Drug-resistant LoVo cells were analyzed by subcutaneously xenotransplanting them into mice. The aim of this study was to evaluate whether the drug-resistant cells isolated in this study were cancer-initiating cells, known also as cancer stem cells (CSCs). Methods The production of CEA was investigated in LoVo cells that were cultured with 0–10 mM of anticancer drugs, and we evaluated the increase in CEA production by the LoVo cells that were stimulated by anticancer drug treatment. The expression of several CSC markers in LoVo cells treated with anticancer drugs was also evaluated. Following anticancer drug treatment, LoVo cells were injected subcutaneously into the flanks of severe combined immunodeficiency mice in order to evaluate the CSC fraction. Results Production of CEA by LoVo cells was stimulated by the addition of anticancer drugs. Drug-resistant LoVo cells expressed lower levels of CSC markers, and LoVo cells treated with any of the anticancer drugs tested did not generate tumors within 8 weeks from when the cells were injected subcutaneously into severe combined immunodeficiency mice. These results suggest that the drug-resistant LoVo cells have a smaller population of CSCs than the untreated LoVo cells. Conclusion Production of CEA by LoVo cells can be stimulated by the addition of anticancer drugs. The drug-resistant subpopulation of LoVo colon cancer cells could stimulate the production of CEA, but these cells did not act as CSCs in in vivo tumor generation experiments. PMID:23818760

  16. Host population structure and treatment frequency maintain balancing selection on drug resistance

    Science.gov (United States)

    Baskerville, Edward B.; Colijn, Caroline; Hanage, William; Fraser, Christophe; Lipsitch, Marc

    2017-01-01

    It is a truism that antimicrobial drugs select for resistance, but explaining pathogen- and population-specific variation in patterns of resistance remains an open problem. Like other common commensals, Streptococcus pneumoniae has demonstrated persistent coexistence of drug-sensitive and drug-resistant strains. Theoretically, this outcome is unlikely. We modelled the dynamics of competing strains of S. pneumoniae to investigate the impact of transmission dynamics and treatment-induced selective pressures on the probability of stable coexistence. We find that the outcome of competition is extremely sensitive to structure in the host population, although coexistence can arise from age-assortative transmission models with age-varying rates of antibiotic use. Moreover, we find that the selective pressure from antibiotics arises not so much from the rate of antibiotic use per se but from the frequency of treatment: frequent antibiotic therapy disproportionately impacts the fitness of sensitive strains. This same phenomenon explains why serotypes with longer durations of carriage tend to be more resistant. These dynamics may apply to other potentially pathogenic, microbial commensals and highlight how population structure, which is often omitted from models, can have a large impact. PMID:28835542

  17. Linezolid in the treatment of drug-resistant tuberculosis: the challenge of its narrow therapeutic index.

    Science.gov (United States)

    Wasserman, Sean; Meintjes, Graeme; Maartens, Gary

    2016-10-01

    Linezolid is an oxazolidinone with potent activity against M tuberculosis, and improves culture conversion and cure rates when added to treatment regimens for drug resistant tuberculosis. However, linezolid has a narrow therapeutic window, and the optimal dosing strategy that minimizes the substantial toxicity associated with linezolid's prolonged use in tuberculosis treatment has not been determined, limiting the potential impact of this anti-mycobacterial agent. This paper aims to review and summarize the current knowledge on linezolid for the treatment of drug-resistant tuberculosis. The focus is on the pharmacokinetic-pharmacodynamic determinants of linezolid's efficacy and toxicity in tuberculosis, and how this relates to defining an optimal dose. Mechanisms of linezolid toxicity and resistance, and the potential role of therapeutic drug monitoring are also covered. Expert commentary: Prospective pharmacokinetic-pharmacodynamic studies are required to define optimal therapeutic targets and to inform improved linezolid dosing strategies for drug-resistant tuberculosis.

  18. New Treatments for Drug-Resistant Epilepsy that Target Presynaptic Transmitter Release

    Science.gov (United States)

    2015-07-01

    may become a key piece in the arsenal of antiepileptic drugs in mesial temporal lobe epilepsy . Thereby, screening for a presynaptic action site may be...neuronal damage, mesial temporal lobe epilepsy (MTLE) in ~30% of patients, and resistance to available anticonvulsant drugs. Therefore, it is of... temporal lobe epilepsy (MTLE) (months 1-12). Working hypothesis: Drugs acting on presynaptic Ca 2+ channels, autoreceptors, and SV2a will be more

  19. [Clinical significance of drug resistance-associated mutations in treatment of hepatitis C with direct-acting antiviral agents].

    Science.gov (United States)

    Li, Z; Chen, Z W; Ren, H; Hu, P

    2017-03-20

    Direct-acting antiviral agents (DAAs) achieve a high sustained virologic response rate in the treatment of chronic hepatitis C virus infection. However, drug resistance-associated mutations play an important role in treatment failure and have attracted more and more attention. This article elaborates on the clinical significance of drug resistance-associated mutations from the aspects of their definition, association with genotype, known drug resistance-associated mutations and their prevalence rates, the impact of drug resistance-associated mutations on treatment naive and treatment-experienced patients, and the role of clinical detection, in order to provide a reference for clinical regimens with DAAs and help to achieve higher sustained virologic response rates.

  20. Exosomes in development, metastasis and drug resistance of breast cancer.

    Science.gov (United States)

    Yu, Dan-dan; Wu, Ying; Shen, Hong-yu; Lv, Meng-meng; Chen, Wei-xian; Zhang, Xiao-hui; Zhong, Shan-liang; Tang, Jin-hai; Zhao, Jian-hua

    2015-08-01

    Transport through the cell membrane can be divided into active, passive and vesicular types (exosomes). Exosomes are nano-sized vesicles released by a variety of cells. Emerging evidence shows that exosomes play a critical role in cancers. Exosomes mediate communication between stroma and cancer cells through the transfer of nucleic acid and proteins. It is demonstrated that the contents and the quantity of exosomes will change after occurrence of cancers. Over the last decade, growing attention has been paid to the role of exosomes in the development of breast cancer, the most life-threatening cancer in women. Breast cancer could induce salivary glands to secret specific exosomes, which could be used as biomarkers in the diagnosis of early breast cancer. Exosome-delivered nucleic acid and proteins partly facilitate the tumorigenesis, metastasis and resistance of breast cancer. Exosomes could also transmit anti-cancer drugs outside breast cancer cells, therefore leading to drug resistance. However, exosomes are effective tools for transportation of anti-cancer drugs with lower immunogenicity and toxicity. This is a promising way to establish a drug delivery system. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  1. Diffusion and perfusion MRI for the localisation of epileptogenic foci in drug-resistant epilepsy

    International Nuclear Information System (INIS)

    Heiniger, P.; El-Koussy, M.; Kiefer, C.; Oswald, H.; Schroth, G.; Schindler, K.; Donati, F.; Loevblad, K.O.; Wissmeyer, M.; Mariani, L.; Weder, B.

    2002-01-01

    Drug-resistant epilepsy is an important clinical challenge, both diagnostically and therapeutically. More and more surgical options are being considered, but precise presurgical assessment is necessary. We prospectively studied eight patients with drug-resistant epilepsy, who underwent clinical examination, single photon emission computed tomography (SPECT) and interictal MRI, including diffusion- and perfusion-weighted echoplanar sequences. Lesions suspected on SPECT of being epileptogenic showed mild hypoperfusion, while the diffusion-weighted MRI (DWI) revealed increased apparent diffusion coefficients relative to the other side. However, these abnormalities were not visible on the corresponding maps. We showed that DWI and perfusion-weighted MRI could be used confirm the characteristics and site of an epileptogenic area in patients with drug-resistant epilepsy. (orig.)

  2. Drug resistance pattern of mycobacterial isolates in HIV and non-HIV population in South India

    Directory of Open Access Journals (Sweden)

    Umamaheshwari Shivaswamy

    2016-01-01

    Full Text Available Background: Emergence of drug resistance has complicated the treatment of tuberculosis (TB. WHO reports India to be one among 27 “high burden” multidrug-resistant (MDR TB countries. Objective: To diagnose TB and detect drug resistance of mycobacterial isolates in acid-fast bacilli (AFB smear negative HIV reactive patients (Group A and compare them with HIV seropositive AFB smear positive (Group B and HIV-seronegative AFB positive cases (Group C. Materials and Methods: Clinical specimens collected in all groups were processed as per the standard protocol except blood, which was processed by lysis centrifugation technique. They were then inoculated with Lowenstein-Jensen media and the isolates obtained were subjected to drug susceptibility test (DST by proportion method and genotype MTBDR plus assay. Results: In Group A, 162 patients were included. Of the 443 clinical samples collected, 76 mycobacterial strains were obtained from 67 (41% patients. Of these, 50 (65.8% were sensitive to all drugs and 26 (34.2% resistant to one or more anti-tubercular drugs. Antibiogram of Group A when compared with Group B and C showed that the MDR rate 6.6%, 6.7% and 8% respectively did not differ much; but resistance to at least single drug was (26 [34.2%], 3 [10%], and 8 [16%], respectively. Conclusion: Our study suggests that HIV has no influence on the anti-tubercular resistance pattern, but increased MDR rate along with HIV in high TB burden setting stresses the need for early diagnosis and DST in providing proper regimens and improve prognosis.

  3. Selection of drug resistant mutants from random library of Plasmodium falciparum dihydrofolate reductase in Plasmodium berghei model

    OpenAIRE

    Tipsuwan, Wachiraporn; Srichairatanakool, Somdet; Kamchonwongpaisan, Sumalee; Yuthavong, Yongyuth; Uthaipibull, Chairat

    2011-01-01

    Abstract Background The prevalence of drug resistance amongst the human malaria Plasmodium species has most commonly been associated with genomic mutation within the parasites. This phenomenon necessitates evolutionary predictive studies of possible resistance mutations, which may occur when a new drug is introduced. Therefore, identification of possible new Plasmodium falciparum dihydrofolate reductase (PfDHFR) mutants that confer resistance to antifolate drugs is essential in the process of...

  4. Drug-resistant tuberculosis in two children in Greece: report of the first extensively drug-resistant case.

    Science.gov (United States)

    Katragkou, Aspasia; Antachopoulos, Charalampos; Hatziagorou, Elpis; Sdougka, Maria; Roilides, Emmanuel; Tsanakas, John

    2013-04-01

    Extensively drug-resistant (XDR) tuberculosis (TB) represents a serious and growing problem in both endemic and non-endemic countries. We describe a 2.5-year-old girl with XDR-pulmonary TB and an 18-month-old boy with pre-XDR-central nervous system TB. Patients received individualized treatment with second-line anti-TB agents based on genotypic and phenotypic drug susceptibility testing results. Both children achieved culture conversion 3 months and 1 month after treatment initiation, respectively. The child with XDR-pulmonary TB showed evidence of cure while treatment adverse events were managed without treatment interruption. The child with pre-XDR-central nervous system TB after 6-month hospitalization with multiple infectious complications had a dismal end due to hepatic insufficiency possibly related to anti-TB treatment. This is the first report of children with pre-XDR and XDR TB in Greece, emphasizing the public health dimensions and management complexity of XDR TB.

  5. Patient participation in decision-making about cardiovascular preventive drugs - resistance as agency.

    Science.gov (United States)

    Hultberg, Josabeth; Rudebeck, Carl Edvard

    2017-09-01

    The aim of the study was to describe and explore patient agency through resistance in decision-making about cardiovascular preventive drugs in primary care. Six general practitioners from the southeast of Sweden audiorecorded 80 consultations. From these, 28 consultations with proposals from GPs for cardiovascular preventive drug treatments were chosen for theme-oriented discourse analysis. The study shows how patients participate in decision-making about cardiovascular preventive drug treatments through resistance in response to treatment proposals. Passive modes of resistance were withheld responses and minimal unmarked acknowledgements. Active modes were to ask questions, contest the address of an inclusive we, present an identity as a non-drugtaker, disclose non-adherence to drug treatments, and to present counterproposals. The active forms were also found in anticipation to treatment proposals from the GPs. Patients and GPs sometimes displayed mutual renouncement of responsibility for decision-making. The decision-making process appeared to expand both beyond a particular phase in the consultations and beyond the single consultation. The recognition of active and passive resistance from patients as one way of exerting agency may prove valuable when working for patient participation in clinical practice, education and research about patient-doctor communication about cardiovascular preventive medication. We propose particular attentiveness to patient agency through anticipatory resistance, patients' disclosures of non-adherence and presentations of themselves as non-drugtakers. The expansion of the decision-making process beyond single encounters points to the importance of continuity of care. KEY POINTS Guidelines recommend shared decision-making about cardiovascular preventive treatment. We need an understanding of how this is accomplished in actual consultations.This paper describes how patient agency in decision-making is displayed through different forms

  6. Transferable and non-transferable drug resistance in enteric bacteria from hospital and from general practice

    DEFF Research Database (Denmark)

    Møller, JK; Bak, AL; Bülow, P

    1976-01-01

    Drug resistance to 8 different antibiotics in Enterobacteriaceae isolated from different hospitals and two groups of general practitioners was studied. Escherichia coli dominated among the 632 strains investigated. Drug resistance was found in 62% of the 512 hospital strains and in 38% of the 120...

  7. Longitudinal trends of HIV drug resistance in a large Canadian cohort, 1996-2016.

    Science.gov (United States)

    Rocheleau, G; Brumme, C J; Shoveller, J; Lima, V D; Harrigan, P R

    2018-02-01

    We aim to identify long-term trends in HIV drug resistance before and after combined antiretroviral therapy (cART) initiation. IAS-USA (2015) mutations were identified in 23 271 HIV protease-reverse transcriptase sequences from 6543 treatment naïve adults in British Columbia. Participants who started cART between 1996 and 2014 were followed until April 2016. Equality of proportions test was used to compare the percentage of participants with acquired drug resistance (ADR) or transmitted drug resistance (TDR) in 1996, to those in 2014. Kaplan-Meier was used to estimate time to ADR in four drug resistance categories. Multivariable regression odds ratios (OR) of ADR for select clinical variables were determined by 5-year eras of cART initiation. The proportion of individuals with ADR declined from 39% (51/132) to 3% (8/322) in 1996-2014 (p 16 years of therapy. After 5 years on therapy, participants initiating cART in 1996-2000 had 5.5-times more 3TC/FTC ADR, 5.3-times more other nRTI ADR, 4.7-times more NNRTI ADR, and 24-times more PI ADR than those starting in 2011-2014. The individuals with highest odds of developing ADR in 1996-2010 were adherent to regimens at levels between 60% and 80%, which shifted to 40% adherent in 2011-2014. HIV drug resistance transitioned from being primarily selected de-novo to being driven by TDR. Among those who started treatment in the past 5 years, ADR is rare and observed mostly in the lowest adherence strata. Copyright © 2017 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  8. Neratinib resistance and cross-resistance to other HER2-targeted drugs due to increased activity of metabolism enzyme cytochrome P4503A4.

    Science.gov (United States)

    Breslin, Susan; Lowry, Michelle C; O'Driscoll, Lorraine

    2017-02-28

    Neratinib is in Phase 3 clinical trials but, unfortunately, the development of resistance is inevitable. Here, we investigated the effects of acquired neratinib resistance on cellular phenotype and the potential mechanism of this resistance. Neratinib-resistant variants of HER2-positive breast cancer cells were developed and their cross-resistance investigated using cytotoxicity assays. Similarly, sensitivity of trastuzumab-resistant and lapatinib-resistant cells to neratinib was assessed. Cellular phenotype changes were evaluated using migration, invasion and anoikis assays. Immunoblotting for HER family members and drug efflux pumps, as well as enzyme activity assays were performed. Neratinib resistance conferred cross-resistance to trastuzumab, lapatinib and afatinib. Furthermore, the efficacy of neratinib was reduced in trastuzumab- and lapatinib-resistant cells. Neratinib-resistant cells were more aggressive than their drug-sensitive counterparts, with increased CYP3A4 activity identified as a novel mechanism of neratinib resistance. The potential of increased CYP3A4 activity as a biomarker and/or target to add value to neratinib warrants investigation.

  9. Laboratory methods for diagnosis and detection of drug resistant ...

    African Journals Online (AJOL)

    Data source: Published series of peer reviewed journals and manuals written on laboratory methods that are currently used for diagnosis and detection of drug resistance of Mycobacterium tuberculosis complex were reviewed using the index medicus, pubmed and medline search. Conventional bacteriological microscopy ...

  10. Quercetin and doxorubicin co-encapsulated biotin receptor-targeting nanoparticles for minimizing drug resistance in breast cancer.

    Science.gov (United States)

    Lv, Li; Liu, Chunxia; Chen, Chuxiong; Yu, Xiaoxia; Chen, Guanghui; Shi, Yonghui; Qin, Fengchao; Ou, Jiebin; Qiu, Kaifeng; Li, Guocheng

    2016-05-31

    The combination of a chemotherapeutic drug with a chemosensitizer has emerged as a promising strategy for cancers showing multidrug resistance (MDR). Herein we describe the simultaneous targeted delivery of two drugs to tumor cells by using biotin-decorated poly(ethylene glycol)-b-poly(ε-caprolactone) nanoparticles encapsulating the chemotherapeutic drug doxorubicin and the chemosensitizer quercetin (BNDQ). Next, the potential ability of BNDQ to reverse MDR in vitro and in vivo was investigated. Studies demonstrated that BNDQ was more effectively taken up with less efflux by doxorubicin-resistant MCF-7 breast cancer cells (MCF-7/ADR cells) than by the cells treated with the free drugs, single-drug-loaded nanoparticles, or non-biotin-decorated nanoparticles. BNDQ exhibited clear inhibition of both the activity and expression of P-glycoprotein in MCF-7/ADR cells. More importantly, it caused a significant reduction in doxorubicin resistance in MCF-7/ADR breast cancer cells both in vitro and in vivo, among all the groups. Overall, this study suggests that BNDQ has a potential role in the treatment of drug-resistant breast cancer.

  11. Lack of cross-resistance to fostriecin in a human small-cell lung carcinoma cell line showing topoisomerase II-related drug resistance

    NARCIS (Netherlands)

    de Jong, Steven; Zijlstra, J G; Mulder, Nanno; de Vries, Liesbeth

    1991-01-01

    Cells exhibiting decreased topoisomerase II (Topo II) activity are resistant to several drugs that require Topo II as an intermediate. These drugs are cytotoxic due to the formation of a cleavable complex between the drug, Topo II and DNA. Fostriecin belongs to a new class of drugs that inhibit Topo

  12. Inhibition of c-Myc overcomes cytotoxic drug resistance in acute myeloid leukemia cells by promoting differentiation.

    Directory of Open Access Journals (Sweden)

    Xiao-Na Pan

    Full Text Available Nowadays, drug resistance still represents a major obstacle to successful acute myeloid leukemia (AML treatment and the underlying mechanism is not fully elucidated. Here, we found that high expression of c-Myc was one of the cytogenetic characteristics in the drug-resistant leukemic cells. c-Myc over-expression in leukemic cells induced resistance to chemotherapeutic drugs, enhanced colony formation capacity and inhibited cell differentiation induced by all-trans retinoic acid (ATRA. Meanwhile, inhibition of c-Myc by shRNA or specific c-Myc inhibitor 10058-F4 rescued the sensitivity to cytotoxic drugs, restrained the colony formation ability and promoted differentiation. RT-PCR and western blotting analysis showed that down-regulation of C/EBPβ contributed to the poor differentiation state of leukemic cells induced by c-Myc over-expression. Importantly, over-expression of C/EBPβ could reverse c-Myc induced drug resistance. In primary AML cells, the c-Myc expression was negatively correlated with C/EBPβ. 10058-F4, displayed anti-proliferative activity and increased cellular differentiation with up-regulation of C/EBPβ in primary AML cells. Thus, our study indicated that c-Myc could be a novel target to overcome drug resistance, providing a new approach in AML therapy.

  13. HSA-based multi-target combination therapy: regulating drugs' release from HSA and overcoming single drug resistance in a breast cancer model.

    Science.gov (United States)

    Gou, Yi; Zhang, Zhenlei; Li, Dongyang; Zhao, Lei; Cai, Meiling; Sun, Zhewen; Li, Yongping; Zhang, Yao; Khan, Hamid; Sun, Hongbing; Wang, Tao; Liang, Hong; Yang, Feng

    2018-11-01

    Multi-drug delivery systems, which may be promising solution to overcome obstacles, have limited the clinical success of multi-drug combination therapies to treat cancer. To this end, we used three different anticancer agents, Cu(BpT)Br, NAMI-A, and doxorubicin (DOX), to build human serum albumin (HSA)-based multi-drug delivery systems in a breast cancer model to investigate the therapeutic efficacy of overcoming single drug (DOX) resistance to cancer cells in vivo, and to regulate the drugs' release from HSA. The HSA complex structure revealed that NAMI-A and Cu(BpT)Br bind to the IB and IIA sub-domain of HSA by N-donor residue replacing a leaving group and coordinating to their metal centers, respectively. The MALDI-TOF mass spectra demonstrated that one DOX molecule is conjugated with lysine of HSA by a pH-sensitive linker. Furthermore, the release behavior of three agents form HSA can be regulated at different pH levels. Importantly, in vivo results revealed that the HSA-NAMI-A-Cu(BpT)Br-DOX complex not only increases the targeting ability compared with a combination of the three agents (the NAMI-A/Cu(BpT)Br/DOX mixture), but it also overcomes DOX resistance to drug-resistant breast cancer cell lines.

  14. A real-time PCR antibiogram for drug-resistant sepsis.

    Directory of Open Access Journals (Sweden)

    John R Waldeisen

    Full Text Available Current molecular diagnostic techniques for susceptibility testing of septicemia rely on genotyping for the presence of known resistance cassettes. This technique is intrinsically vulnerable due to the inability to detect newly emergent resistance genes. Traditional phenotypic susceptibility testing has always been a superior method to assay for resistance; however, relying on the multi-day growth period to determine which antimicrobial to administer jeopardizes patient survival. These factors have resulted in the widespread and deleterious use of broad-spectrum antimicrobials. The real-time PCR antibiogram, described herein, combines universal phenotypic susceptibility testing with the rapid diagnostic capabilities of PCR. We have developed a procedure that determines susceptibility by monitoring pathogenic load with the highly conserved 16S rRNA gene in blood samples exposed to different antimicrobial drugs. The optimized protocol removes heme and human background DNA from blood, which allows standard real-time PCR detection systems to be employed with high sensitivity (<100 CFU/mL. Three strains of E. coli, two of which were antimicrobial resistant, were spiked into whole blood and exposed to three different antibiotics. After real-time PCR-based determination of pathogenic load, a ΔC(t<3.0 between untreated and treated samples was found to indicate antimicrobial resistance (P<0.01. Minimum inhibitory concentration was determined for susceptible bacteria and pan-bacterial detection was demonstrated with 3 gram-negative and 2 gram-positive bacteria. Species identification was performed via analysis of the hypervariable amplicons. In summary, we have developed a universal diagnostic phenotyping technique that assays for the susceptibility of drug-resistant septicemia with the speed of PCR. The real-time PCR antibiogram achieves detection, susceptibility testing, minimum inhibitory concentration determination, and identification in less than 24

  15. Population Genetics and Drug Resistance Markers: An Essential for Malaria Surveillance in Pakistan

    International Nuclear Information System (INIS)

    Raza, A.; Beg, M.A.

    2013-01-01

    Plasmodium (P.) vivax is the prevalent malarial species accounting for 70% of malaria cases in Pakistan. However, baseline epidemiological data on P. vivax population structure and drug resistance are lacking from Pakistan. For population structure studies, molecular genetic markers, circumsporozoite protein (csp) and merozoite surface protein-1 (msp-1) are considered useful as these play an important role in P. vivax survival under immune and environmental pressure. Furthermore, these genes have also been identified as suitable candidates for vaccine development. While efforts for effective vaccine are underway, anti-malarial agents remain the mainstay for control. Evidence of resistance against commonly used anti-malarial agents, particularly Sulphadoxine-Pyrimethamine (SP) is threatening to make this form of control defunct. Therefore, studies on drug resistance are necessary so that anti-malarial treatment strategies can be structured and implemented accordingly by the Malaria Control Program, Pakistan. This review aims to provide information on genetic markers of P. vivax population structure and drug resistance and comment on their usefulness in molecular surveillance and control. (author)

  16. A market on both "sides" of the law: The use of the hidden web for the sale of new psychoactive substances.

    Science.gov (United States)

    Wadsworth, Elle; Drummond, Colin; Kimergård, Andreas; Deluca, Paolo

    2017-05-01

    The hidden Web is used for the anonymous sale of drugs, and with the UK Psychoactive Substances Act, 2016, implemented on May 26th 2016; it could increase as a platform for obtaining new psychoactive substances (NPS). This study aims to describe the NPS market on the visible and hidden Web preban, and assess whether the hidden Web is a likely place for the sale of NPS postban. Data collection of 113 online shops took place in October 2015. Data collection of 22 cryptomarkets took place every 2 months from October 2015 to 2016 as part of the CASSANDRA project. All online shops with a UK domain location sold NPS that were uncontrolled by the UK Misuse of Drugs Act, 1971, and closed after the ban. Of the cryptomarkets analysed, the total number of vendors selling NPS, number of substances, and listings advertised, all increased over the year. The majority of the NPS advertised on the hidden Web were phenethylamines and cathinones, yet the majority of uncontrolled NPS were synthetic cannabinoids. Vendors selling and availability of NPS increased over the 12 months of data collection. Potential displacement from the visible Web to hidden Web should be taken into consideration. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Circumvention of inherent or acquired cytotoxic drug resistance in vitro using combinations of modulating agents.

    Science.gov (United States)

    Cadagan, David; Merry, Stephen

    2013-10-01

    Modulating agents are used to circumvent drug resistance in the clinical setting. However achievable serum concentrations are often lower than those which are optimal in vitro. Combination of modulating agents with non-overlapping toxicities may overcome this obstacle. We have investigated combinations of three modulating agents (quinine, verapamil, and cinnarizine) to circumvent inherent or acquired resistance to the cytotoxic drugs doxorubicin, vincristine and paclitaxel. Dose-response curves to cytotoxic drugs in the presence/absence of modulating agents were determined using colony formation and cell proliferation assays. Doxorubicin accumulation into cell monolayers was measured by fluorescence spectrophotometry. Greater (1.9-fold) sensitisation to particular cytotoxic drugs was observed for certain combinations of modulating agents compared to individual effects. The most effective combination was quinine-plus-verapamil with the cytotoxic drug doxorubicin. This increase in sensitivity was associated with increased doxorubicin accumulation. Such enhanced activity was, however, not observed for all combinations of modulating agents or for all studied cytotoxic drugs. The findings of the present study suggest certain combinations of modulating agents to have a clinical role in circumventing drug resistance. Particular combinations of modulating agents must be carefully chosen to suit particular cytotoxic drug treatments.

  18. Hidden Curriculum: An Analytical Definition

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Andarvazh

    2018-03-01

    Full Text Available Background: The concept of hidden curriculum was first used by Philip Jackson in 1968, and Hafferty brought this concept to the medical education. Many of the subjects that medical students learn are attributed to this curriculum. So far several definitions have been presented for the hidden curriculum, which on the one hand made this concept richer, and on the other hand, led to confusion and ambiguity.This paper tries to provide a clear and comprehensive definition of it.Methods: In this study, concept analysis of McKenna method was used. Using keywords and searching in the databases, 561 English and 26 Persian references related to the concept was found, then by limitingthe research scope, 125 abstracts and by finding more relevant references, 55 articles were fully studied.Results: After analyzing the definitions by McKenna method, the hidden curriculum is defined as follows: The hidden curriculum is a hidden, powerful, intrinsic in organizational structure and culture and sometimes contradictory message, conveyed implicitly and tacitly in the learning environment by structural and human factors and its contents includes cultural habits and customs, norms, values, belief systems, attitudes, skills, desires and behavioral and social expectations can have a positive or negative effect, unplanned, neither planners nor teachers, nor learners are aware of it. The ultimate consequence of the hidden curriculum includes reproducing the existing class structure, socialization, and familiarizing learners for transmission and joining the professional world.Conclusion: Based on the concept analysis, we arrived at an analytical definition of the hidden curriculum that could be useful for further studies in this area.Keywords: CONCEPT ANALYSIS, HIDDEN CURRICULUM, MCKENNA’S METHOD

  19. a meta-analysis of drug resistant tuberculosis in sub-saharan africa

    African Journals Online (AJOL)

    GB

    2013-11-03

    Nov 3, 2013 ... challenge because of the emergence of drug resistant TB strains and the high prevalence of HIV ... The risk ratios for each included study and for the pooled ... treatment warrants special emphasis, and screening for anti-TB drugs sensitivity .... the titles and abstracts. •. 92 were not directly related to our topic.

  20. Genetic diversity of drug and multidrug-resistant Mycobacterium tuberculosis circulating in Veracruz, Mexico

    Science.gov (United States)

    Munro-Rojas, Daniela; Fernandez-Morales, Esdras; Zarrabal-Meza, José; Martínez-Cazares, Ma. Teresa; Parissi-Crivelli, Aurora; Fuentes-Domínguez, Javier; Séraphin, Marie Nancy; Lauzardo, Michael; González-y-Merchand, Jorge Alberto; Rivera-Gutierrez, Sandra

    2018-01-01

    Background Mexico is one of the most important contributors of drug and multidrug-resistant tuberculosis in Latin America; however, knowledge of the genetic diversity of drug-resistant tuberculosis isolates is limited. Methods In this study, the genetic structure of 112 Mycobacterium tuberculosis strains from the southeastern Mexico was determined by spoligotyping and 24-loci MIRU-VNTRs. Findings The results show eight major lineages, the most of which was T1 (24%), followed by LAM (16%) and H (15%). A total of 29 (25%) isolates were identified as orphan. The most abundant SITs were SIT53/T1 and SIT42/LAM9 with 10 isolates each and SIT50/H3 with eight isolates. Fifty-two spoligotype patterns, twenty-seven clusters and ten clonal complexes were observed, demonstrating an important genetic diversity of drug and multidrug-resistant tuberculosis isolates in circulation and transmission level of these aggravated forms of tuberculosis. Being defined as orphan or as part of an orphan cluster, was a risk factor for multidrug resistant-tuberculosis (OR 2.5, IC 1.05–5.86 and OR 3.3, IC 1–11.03, respectively). Multiple correspondence analyses showed association of some clusters and SITs with specific geographical locations. Conclusions Our study provides one of the most detailed description of the genetic structure of drug and multidrug-resistant tuberculosis strains in southeast Mexico, establishing for the first time a baseline of the genotypes observed in resistant isolates circulating, however further studies are required to better elucidate the genetic structure of tuberculosis in region and the factors that could be participating in their dispersion. PMID:29543819

  1. Hidden particle production at the ILC

    International Nuclear Information System (INIS)

    Fujii, Keisuke; Itoh, Hideo; Okada, Nobuchika; Hano, Hitoshi; Yoshioka, Tamaki

    2008-01-01

    In a class of new physics models, the new physics sector is completely or partly hidden, namely, a singlet under the standard model (SM) gauge group. Hidden fields included in such new physics models communicate with the standard model sector through higher-dimensional operators. If a cutoff lies in the TeV range, such hidden fields can be produced at future colliders. We consider a scalar field as an example of the hidden fields. Collider phenomenology on this hidden scalar is similar to that of the SM Higgs boson, but there are several features quite different from those of the Higgs boson. We investigate productions of the hidden scalar at the International Linear Collider (ILC) and study the feasibility of its measurements, in particular, how well the ILC distinguishes the scalar from the Higgs boson, through realistic Monte Carlo simulations.

  2. The role of exosomes and miRNAs in drug-resistance of cancer cells.

    Science.gov (United States)

    Bach, Duc-Hiep; Hong, Ji-Young; Park, Hyen Joo; Lee, Sang Kook

    2017-07-15

    Chemotherapy, one of the principal approaches for cancer patients, plays a crucial role in controlling tumor progression. Clinically, tumors reveal a satisfactory response following the first exposure to the chemotherapeutic drugs in treatment. However, most tumors sooner or later become resistant to even chemically unrelated anticancer agents after repeated treatment. The reduced drug accumulation in tumor cells is considered one of the significant mechanisms by decreasing drug permeability and/or increasing active efflux (pumping out) of the drugs across the cell membrane. The mechanisms of treatment failure of chemotherapeutic drugs have been investigated, including drug efflux, which is mediated by extracellular vesicles (EVs). Exosomes, a subset of EVs with a size range of 40-150 nm and a lipid bilayer membrane, can be released by all cell types. They mediate specific cell-to-cell interactions and activate signaling pathways in cells they either fuse with or interact with, including cancer cells. Exosomal RNAs are heterogeneous in size but enriched in small RNAs, such as miRNAs. In the primary tumor microenvironment, cancer-secreted exosomes and miRNAs can be internalized by other cell types. MiRNAs loaded in these exosomes might be transferred to recipient niche cells to exert genome-wide regulation of gene expression. How exosomal miRNAs contribute to the development of drug resistance in the context of the tumor microenvironment has not been fully described. In this review, we will highlight recent studies regarding EV-mediated microRNA delivery in formatting drug resistance. We also suggest the use of EVs as an advancing method in antiresistance treatment. © 2017 UICC.

  3. Dynamic HIV-1 genetic recombination and genotypic drug resistance among treatment-experienced adults in northern Ghana.

    Science.gov (United States)

    Nii-Trebi, Nicholas Israel; Brandful, James Ashun Mensah; Ibe, Shiro; Sugiura, Wataru; Barnor, Jacob Samson; Bampoh, Patrick Owiredu; Yamaoka, Shoji; Matano, Tetsuro; Yoshimura, Kazuhisa; Ishikawa, Koichi; Ampofo, William Kwabena

    2017-11-01

    There have been hardly any reports on the human immunodeficiency virus type 1 (HIV-1) drug-resistance profile from northern Ghana since antiretroviral therapy (ART) was introduced over a decade ago. This study investigated prevailing HIV-1 subtypes and examined the occurrence of drug resistance in ART-experienced patients in Tamale, the capital of the Northern Region of Ghana. A cross-sectional study was carried out on HIV-infected adult patients receiving first-line ART. HIV viral load (VL) and CD4 + T-cell counts were measured. The pol gene sequences were analysed for genotypic resistance by an in-house HIV-1 drug-resistance test; the prevailing HIV-1 subtypes were analysed in detail.Results/Key findings. A total of 33 subjects were studied. Participants comprised 11 males (33.3 %) and 22 (66.7 %) females, with a median age of 34.5 years [interquartile range (IQR) 30.0-40.3]. The median duration on ART was 12 months (IQR 8.0-24). Of the 24 subjects successfully genotyped, 10 (41.7 %) viruses possessed at least one mutation conferring resistance to nucleoside or non-nucleoside reverse-transcriptase inhibitors (NRTIs/NNRTIs). Two-class drug resistance to NRTI and NNRTI was mostly detected (25 %, 6/24). The most frequent mutations were lamivudine-resistance M184V and efavirenz/nevirapine-resistance K103N. HIV-1 subtype CRF02_AG was predominant (79.2 %). Other HIV-1 subtypes detected were G (8.3 %), A3 (4.2 %) and importantly two (8.3 %) unique HIV-1 recombinant forms with CRF02_AG/A3 mosaic. HIV-1 shows high genetic diversity and on-going viral genetic recombination in the study region. Nearly 42 % of the patients studied harboured a drug-resistant virus. The study underscores the need for continued surveillance of HIV-1 subtype diversity; and of drug-resistance patterns to guide selection of second-line regimens in northern Ghana.

  4. A model of directional selection applied to the evolution of drug resistance in HIV-1.

    Science.gov (United States)

    Seoighe, Cathal; Ketwaroo, Farahnaz; Pillay, Visva; Scheffler, Konrad; Wood, Natasha; Duffet, Rodger; Zvelebil, Marketa; Martinson, Neil; McIntyre, James; Morris, Lynn; Hide, Winston

    2007-04-01

    Understanding how pathogens acquire resistance to drugs is important for the design of treatment strategies, particularly for rapidly evolving viruses such as HIV-1. Drug treatment can exert strong selective pressures and sites within targeted genes that confer resistance frequently evolve far more rapidly than the neutral rate. Rapid evolution at sites that confer resistance to drugs can be used to help elucidate the mechanisms of evolution of drug resistance and to discover or corroborate novel resistance mutations. We have implemented standard maximum likelihood methods that are used to detect diversifying selection and adapted them for use with serially sampled reverse transcriptase (RT) coding sequences isolated from a group of 300 HIV-1 subtype C-infected women before and after single-dose nevirapine (sdNVP) to prevent mother-to-child transmission. We have also extended the standard models of codon evolution for application to the detection of directional selection. Through simulation, we show that the directional selection model can provide a substantial improvement in sensitivity over models of diversifying selection. Five of the sites within the RT gene that are known to harbor mutations that confer resistance to nevirapine (NVP) strongly supported the directional selection model. There was no evidence that other mutations that are known to confer NVP resistance were selected in this cohort. The directional selection model, applied to serially sampled sequences, also had more power than the diversifying selection model to detect selection resulting from factors other than drug resistance. Because inference of selection from serial samples is unlikely to be adversely affected by recombination, the methods we describe may have general applicability to the analysis of positive selection affecting recombining coding sequences when serially sampled data are available.

  5. [From the discovery of antibiotics to emerging highly drug-resistant bacteria].

    Science.gov (United States)

    Meunier, Olivier

    2015-01-01

    The discovery of antibiotics has enabled serious infections to be treated. However, bacteria resistant to several families of antibiotics and the emergence of new highly drug-resistant bacteria constitute a public health issue in France and across the world. Actions to prevent their transmission are being put in place. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. Approaches to drug resistance in solid tumors : with emphasis on lung cancer

    NARCIS (Netherlands)

    Bakker, Marleen

    2005-01-01

    De novo or acquired resistance of tumor cells to anticancer agents remains a major problem for the therapeutic efficacy of chemotherapeutic drugs. Most solid tumors are intrinsically insensitive or acquire resistance after initial response to chemotherapy. Different mechanisms seem to play a role in

  7. Probing hidden sector photons through the Higgs window

    International Nuclear Information System (INIS)

    Ahlers, M.

    2008-07-01

    We investigate the possibility that a (light) hidden sector extra photon receives its mass via spontaneous symmetry breaking of a hidden sector Higgs boson, the so-called hidden-Higgs. The hidden-photon can mix with the ordinary photon via a gauge kinetic mixing term. The hidden-Higgs can couple to the Standard Model Higgs via a renormalizable quartic term - sometimes called the Higgs Portal. We discuss the implications of this light hidden-Higgs in the context of laser polarization and light-shining-through-the-wall experiments as well as cosmological, astrophysical, and non-Newtonian force measurements. For hidden-photons receiving their mass from a hidden-Higgs we find in the small mass regime significantly stronger bounds than the bounds on massive hidden sector photons alone. (orig.)

  8. Probing hidden sector photons through the Higgs window

    International Nuclear Information System (INIS)

    Ahlers, Markus; Jaeckel, Joerg; Redondo, Javier; Ringwald, Andreas

    2008-01-01

    We investigate the possibility that a (light) hidden sector extra photon receives its mass via spontaneous symmetry breaking of a hidden sector Higgs boson, the so-called hidden-Higgs. The hidden-photon can mix with the ordinary photon via a gauge kinetic mixing term. The hidden-Higgs can couple to the standard model Higgs via a renormalizable quartic term - sometimes called the Higgs portal. We discuss the implications of this light hidden-Higgs in the context of laser polarization and light-shining-through-the-wall experiments as well as cosmological, astrophysical, and non-Newtonian force measurements. For hidden-photons receiving their mass from a hidden-Higgs, we find in the small mass regime significantly stronger bounds than the bounds on massive hidden sector photons alone.

  9. Transmission of HIV drug resistance and the predicted effect on current first-line regimens in Europe

    NARCIS (Netherlands)

    Hofstra, L. Marije; Sauvageot, Nicolas; Albert, Jan; Alexiev, Ivailo; Garcia, Federico; Struck, Daniel; Van De Vijver, David A M C; Åsjö, Birgitta; Beshkov, Danail; Coughlan, Suzie; Descamps, Diane; Griskevicius, Algirdas; Hamouda, Osamah; Horban, Andrzej; Van Kasteren, Marjo; Kolupajeva, Tatjana; Kostrikis, Leontios G.; Liitsola, Kirsi; Linka, Marek; Mor, Orna; Nielsen, Claus; Otelea, Dan; Paraskevis, Dimitrios; Paredes, Roger; Poljak, Mario; Puchhammer-Stöckl, Elisabeth; Sönnerborg, Anders; Staneková, Danica; Stanojevic, Maja; Van Laethem, Kristel; Zazzi, Maurizio; Lepej, Snjezana Zidovec; Boucher, Charles A B; Schmit, Jean Claude; Wensing, Annemarie M J; Puchhammer-Stockl, E.; Sarcletti, M.; Schmied, B.; Geit, M.; Balluch, G.; Vandamme, A. M.; Vercauteren, J.; Derdelinckx, I.; Sasse, A.; Bogaert, M.; Ceunen, H.; De Roo, A.; De Wit, S.; Echahidi, F.; Fransen, K.; Goffard, J. C.; Goubau, P.; Goudeseune, E.; Yombi, J. C.; Lacor, P.; Liesnard, C.; Moutschen, M.; Pierard, D.; Rens, R.; Schrooten, Y.; Vaira, D.; Vandekerckhove, L. P R; Van Den Heuvel, A.; Van Der Gucht, B.; Van Ranst, M.; Van Wijngaerden, E.; Vandercam, B.; Vekemans, M.; Verhofstede, C.; Clumeck, N.; Van Laethem, K.; Beshkov, D.; Alexiev, I.; Lepej, S. Zidovec; Begovac, J.; Kostrikis, Leontios G.; Demetriades, I.; Kousiappa, I.; Demetriou, V.; Hezka, J.; Linka, M.; Maly, M.; Machala, L.; Nielsen, C.; Jørgensen, L. B.; Gerstoft, J.; Mathiesen, L.; Pedersen, C.; Nielsen, H.; Laursen, A.; Kvinesdal, B.; Liitsola, K.; Ristola, M.; Suni, J.; Sutinen, J.; Descamps, D.; Assoumou, L.; Castor, G.; Grude, M.; Flandre, P.; Storto, A.; Hamouda, O.; Kücherer, C.; Berg, T.; Braun, P.; Poggensee, G.; Däumer, M.; Eberle, J.; Heiken, H.; Kaiser, R.; Knechten, H.; Korn, K.; Müller, H.; Neifer, S.; Schmidt, B.; Walter, H.; Gunsenheimer-Bartmeyer, B.; Harrer, T.; Paraskevis, D.; Hatzakis, A.; Zavitsanou, A.; Vassilakis, A.; Lazanas, M.; Chini, M.; Lioni, A.; Sakka, V.; Kourkounti, S.; Paparizos, V.; Antoniadou, A.; Papadopoulos, A.; Poulakou, G.; Katsarolis, I.; Protopapas, K.; Chryssos, G.; Drimis, S.; Gargalianos, P.; Xylomenos, G.; Lourida, G.; Psichogiou, M.; Daikos, G. L.; Sipsas, N. V.; Kontos, A.; Gamaletsou, M. N.; Koratzanis, G.; Sambatakou, E.; Mariolis, H.; Skoutelis, A.; Papastamopoulos, V.; Georgiou, O.; Panagopoulos, P.; Maltezos, E.; Coughlan, S.; De Gascun, C.; Byrne, C.; Duffy, M.; Bergin, C.; Reidy, D.; Farrell, G.; Lambert, J.; O'Connor, E.; Rochford, A.; Low, J.; Coakely, P.; O'Dea, S.; Hall, W.; Mor, O.; Levi, I.; Chemtob, D.; Grossman, Z.; Zazzi, M.; De Luca, A.; Balotta, C.; Riva, C.; Mussini, C.; Caramma, I.; Capetti, A.; Colombo, M. C.; Rossi, C.; Prati, F.; Tramuto, F.; Vitale, F.; Ciccozzi, M.; Angarano, G.; Rezza, G.; Kolupajeva, T.; Kolupajeva, T.; Vasins, O.; Griskevicius, A.; Lipnickiene, V.; Schmit, J. C.; Struck, D.; Sauvageot, N.; Hemmer, R.; Arendt, V.; Michaux, C.; Staub, T.; Sequin-Devaux, C.; Wensing, A. M J; Boucher, C. A B; Van Kessel, A.; Van Bentum, P. H M; Brinkman, K.; Connell, B. J.; Van Der Ende, M. E.; Hoepelman, I. M.; Van Kasteren, M.; Kuipers, M.; Langebeek, N.; Richter, C.; Santegoets, R. M W J; Schrijnders-Gudde, L.; Schuurman, R.; Van De Ven, B. J M; Åsjö, B.; Kran, A. M Bakken; Ormaasen, V.; Aavitsland, P.; Horban, A.; Stanczak, J. J.; Stanczak, G. P.; Firlag-Burkacka, E.; Wiercinska-Drapalo, A.; Jablonowska, E.; Maolepsza, E.; Leszczyszyn-Pynka, M.; Szata, W.; Camacho, R.; Palma, C.; Borges, F.; Paixão, T.; Duque, V.; Araújo, F.; Otelea, D.; Paraschiv, S.; Tudor, A. M.; Cernat, R.; Chiriac, C.; Dumitrescu, F.; Prisecariu, L. J.; Stanojevic, M.; Jevtovic, Dj; Salemovic, D.; Stanekova, D.; Habekova, M.; Chabadová, Z.; Drobkova, T.; Bukovinova, P.; Shunnar, A.; Truska, P.; Poljak, M.; Lunar, M.; Babic, D.; Tomazic, J.; Vidmar, L.; Vovko, T.; Karner, P.; Garcia, F.; Paredes, R.; Monge, S.; Moreno, S.; Del Amo, J.; Asensi, V.; Sirvent, J. L.; De Mendoza, C.; Delgado, R.; Gutiérrez, F.; Berenguer, J.; Garcia-Bujalance, S.; Stella, N.; De Los Santos, I.; Blanco, J. R.; Dalmau, D.; Rivero, M.; Segura, F.; Elías, M. J Pérez; Alvarez, M.; Chueca, N.; Rodríguez-Martín, C.; Vidal, C.; Palomares, J. C.; Viciana, I.; Viciana, P.; Cordoba, J.; Aguilera, A.; Domingo, P.; Galindo, M. J.; Miralles, C.; Del Pozo, M. A.; Ribera, E.; Iribarren, J. A.; Ruiz, L.; De La Torre, J.; Vidal, F.; Clotet, B.; Albert, J.; Heidarian, A.; Aperia-Peipke, K.; Axelsson, M.; Mild, M.; Karlsson, A.; Sönnerborg, A.; Thalme, A.; Navér, L.; Bratt, G.; Karlsson, A.; Blaxhult, A.; Gisslén, M.; Svennerholm, B.; Bergbrant, I.; Björkman, P.; Säll, C.; Lindholm, A.; Kuylenstierna, N.; Montelius, R.; Azimi, F.; Johansson, B.; Carlsson, M.; Johansson, E.; Ljungberg, B.; Ekvall, H.; Strand, A.; Mäkitalo, S.; Öberg, S.; Holmblad, P.; Höfer, M.; Holmberg, H.; Josefson, P.; Ryding, U.

    2016-01-01

    Background. Numerous studies have shown that baseline drug resistance patterns may influence the outcome of antiretroviral therapy. Therefore, guidelines recommend drug resistance testing to guide the choice of initial regimen. In addition to optimizing individual patient management, these baseline

  10. mtct regimen choice, drug resistance and the treatment of hiv

    African Journals Online (AJOL)

    risk of transmission is highest during labour and delivery, ... will have a major impact on controlling perinatally acquired HIV infection. ... could result in the development of drug resistance with potential .... dosing, pharmacokinetics and safety.

  11. Rapid molecular diagnostics for multi-drug resistant tuberculosis in India.

    Science.gov (United States)

    Ramachandran, Rajeswari; Muniyandi, M

    2018-03-01

    Rapid molecular diagnostic methods help in the detection of TB and Rifampicin resistance. These methods detect TB early, are accurate and play a crucial role in reducing the burden of drug resistant tuberculosis. Areas covered: This review analyses rapid molecular diagnostic tools used in the diagnosis of MDR-TB in India, such as the Line Probe Assay and GeneXpert. We have discussed the burden of MDR-TB and the impact of recent diagnostic tools on case detection and treatment outcomes. This review also discusses the costs involved in establishing these new techniques in India. Expert commentary: Molecular methods have considerable advantages for the programmatic management of drug resistant TB. These include speed, standardization of testing, potentially high throughput and reduced laboratory biosafety requirements. There is a desperate need for India to adopt modern, rapid, molecular tools with point-of-care tests being currently evaluated. New molecular diagnostic tests appear to be cost effective and also help in detecting missing cases. There is enough evidence to support the scaling up of these new tools in India.

  12. Metabolomics As a Tool for the Characterization of Drug-Resistant Epilepsy

    OpenAIRE

    Federica Murgia; Antonella Muroni; Monica Puligheddu; Lorenzo Polizzi; Luigi Barberini; Gianni Orofino; Paolo Solla; Simone Poddighe; Simone Poddighe; Francesco Del Carratore; Francesco Del Carratore; Julian L. Griffin; Luigi Atzori; Francesco Marrosu

    2017-01-01

    PurposeDrug resistance is a critical issue in the treatment of epilepsy, contributing to clinical emergencies and increasing both serious social and economic burdens on the health system. The wide variety of potential drug combinations followed by often failed consecutive attempts to match drugs to an individual patient may mean that this treatment stage may last for years with suboptimal benefit to the patient. Given these challenges, it is valuable to explore the availability of new methodo...

  13. Metabolomics as a Tool for the characterization of Drug-resistant epilepsy

    OpenAIRE

    Murgia, Federica; Muroni, Antonella; Puligheddu, Monica; Polizzi, Lorenzo; Barberini, Luigi; Orofino, Gianni; Solla, Paolo; Poddighe, Simone; Carratore, Francesco Del; Griffin, Julian L.; Atzori, Luigi; Marrosu, Francesco

    2017-01-01

    Purpose: Drug resistance is a critical issue in the treatment of epilepsy, contributing to clinical emergencies and increasing both serious social and economic burdens on the health system. The wide variety of potential drug combinations followed by often failed consecutive attempts to match drugs to an individual patient may mean that this treatment stage may last for years with suboptimal benefit to the patient. Given these challenges, it is valuable to explore the availability of new metho...

  14. Dissecting the Mechanisms of Drug Resistance in BRCA1/2-Mutant Breast Cancers

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0600 TITLE: Dissecting the Mechanisms of Drug Resistance in BRCA1/2-Mutant Breast Cancers PRINCIPAL INVESTIGATOR: Dr...2017 4. TITLE AND SUBTITLE Dissecting the Mechanisms of Drug Resistance in BRCA1/2- Mutant Breast Cancers 5a. CONTRACT NUMBER W81XWH-16-1-0600 5b...therapeutic modality for targeting homologous recombination (HR) deficient tumors such as BRCA1 and BRCA2-mutated triple negative breast cancers

  15. Insight: Exploring Hidden Roles in Collaborative Play

    Directory of Open Access Journals (Sweden)

    Tricia Shi

    2015-06-01

    Full Text Available This paper looks into interaction modes between players in co-located, collaborative games. In particular, hidden traitor games, in which one or more players is secretly working against the group mission, has the effect of increasing paranoia and distrust between players, so this paper looks into the opposite of a hidden traitor – a hidden benefactor. Rather than sabotaging the group mission, the hidden benefactor would help the group achieve the end goal while still having a reason to stay hidden. The paper explores what games with such a role can look like and how the role changes player interactions. Finally, the paper addresses the divide between video game and board game interaction modes; hidden roles are not common within video games, but they are of growing prevalence in board games. This fact, combined with the exploration of hidden benefactors, reveals that hidden roles is a mechanic that video games should develop into in order to match board games’ complexity of player interaction modes.

  16. Hidden attractors in dynamical systems

    Science.gov (United States)

    Dudkowski, Dawid; Jafari, Sajad; Kapitaniak, Tomasz; Kuznetsov, Nikolay V.; Leonov, Gennady A.; Prasad, Awadhesh

    2016-06-01

    Complex dynamical systems, ranging from the climate, ecosystems to financial markets and engineering applications typically have many coexisting attractors. This property of the system is called multistability. The final state, i.e., the attractor on which the multistable system evolves strongly depends on the initial conditions. Additionally, such systems are very sensitive towards noise and system parameters so a sudden shift to a contrasting regime may occur. To understand the dynamics of these systems one has to identify all possible attractors and their basins of attraction. Recently, it has been shown that multistability is connected with the occurrence of unpredictable attractors which have been called hidden attractors. The basins of attraction of the hidden attractors do not touch unstable fixed points (if exists) and are located far away from such points. Numerical localization of the hidden attractors is not straightforward since there are no transient processes leading to them from the neighborhoods of unstable fixed points and one has to use the special analytical-numerical procedures. From the viewpoint of applications, the identification of hidden attractors is the major issue. The knowledge about the emergence and properties of hidden attractors can increase the likelihood that the system will remain on the most desirable attractor and reduce the risk of the sudden jump to undesired behavior. We review the most representative examples of hidden attractors, discuss their theoretical properties and experimental observations. We also describe numerical methods which allow identification of the hidden attractors.

  17. Synergy against drug-resistant HIV-1 with the microbicide antiretrovirals, dapivirine and tenofovir, in combination.

    Science.gov (United States)

    Schader, Susan M; Colby-Germinario, Susan P; Schachter, Jordana R; Xu, Hongtao; Wainberg, Mark A

    2011-08-24

    To evaluate the candidate antiretroviral microbicide compounds, dapivirine (DAP) and tenofovir (TFV), alone and in combination against the transmission of wild-type and nonnucleoside reverse transcriptase inhibitor (NNRTI)-resistant HIV-1 from different subtypes. We determined single-drug efficacy of the RTIs, DAP and TFV, against subtype B and non-B wild-type and NNRTI-resistant HIV-1 in vitro. To assess breadth of activity, compounds were tested alone and in combination against wild-type and NNRTI-resistant subtype C primary HIV-1 isolates and complimentary clonal HIV-1 from subtypes B, C and CRF02_AG to control for viral variation. Early infection was quantified by counting light units emitted from TZM-bl cells less than 48-h postinfection. Combination ratios were based on drug inhibitory concentrations (IC(50)s) and combined effects were determined by calculating combination indices. Both candidate microbicide antiretrovirals demonstrated potent anti-NNRTI-resistant HIV-1 activity in vitro, albeit the combination protected better than the single-drug treatments. Of particular interest, the DAP with TFV combination exhibited synergy (50% combination index, CI(50) = 0.567) against subtype C NNRTI-resistant HIV-1, whereas additivity (CI(50) = 0.987) was observed against the wild-type counterpart from the same patient. The effect was not compounded by the presence of subdominant viral fractions, as experiments using complimentary clonal subtype C wild-type (CI(50) = 0.968) and NNRTI-resistant (CI(50) = 0.672) HIV-1, in lieu of the patient quasispecies, gave similar results. This study supports the notion that antiretroviral drug combinations may retain antiviral activity against some drug-resistant HIV-1 despite subtype classification and quasispecies diversity.

  18. Exosomes derived from human mesenchymal stem cells confer drug resistance in gastric cancer.

    Science.gov (United States)

    Ji, Runbi; Zhang, Bin; Zhang, Xu; Xue, Jianguo; Yuan, Xiao; Yan, Yongmin; Wang, Mei; Zhu, Wei; Qian, Hui; Xu, Wenrong

    2015-08-03

    Mesenchymal stem cells (MSCs) play an important role in chemoresistance. Exosomes have been reported to modify cellular phenotype and function by mediating cell-cell communication. In this study, we aimed to investigate whether exosomes derived from MSCs (MSC-exosomes) are involved in mediating the resistance to chemotherapy in gastric cancer and to explore the underlying molecular mechanism. We found that MSC-exosomes significantly induced the resistance of gastric cancer cells to 5-fluorouracil both in vivo and ex vivo. MSC-exosomes antagonized 5-fluorouracil-induced apoptosis and enhanced the expression of multi-drug resistance associated proteins, including MDR, MRP and LRP. Mechanistically, MSC-exosomes triggered the activation of calcium/calmodulin-dependent protein kinases (CaM-Ks) and Raf/MEK/ERK kinase cascade in gastric cancer cells. Blocking the CaM-Ks/Raf/MEK/ERK pathway inhibited the promoting role of MSC-exosomes in chemoresistance. Collectively, MSC-exosomes could induce drug resistance in gastric cancer cells by activating CaM-Ks/Raf/MEK/ERK pathway. Our findings suggest that MSC-exosomes have profound effects on modifying gastric cancer cells in the development of drug resistance. Targeting the interaction between MSC-exosomes and cancer cells may help improve the efficacy of chemotherapy in gastric cancer.

  19. Overcoming STC2 mediated drug resistance through drug and gene co-delivery by PHB-PDMAEMA cationic polyester in liver cancer cells.

    Science.gov (United States)

    Cheng, Hongwei; Wu, Zhixian; Wu, Caisheng; Wang, Xiaoyuan; Liow, Sing Shy; Li, Zibiao; Wu, Yun-Long

    2018-02-01

    Stanniocalcin 2 (STC2) overexpression in hepatocellular carcinoma (HCC) could lead to poor prognosis, which might be due to its induced P-glycoprotein and Bcl-2 protein expression level increase. P-glycoprotein or membrane pump induced drug efflux and altered prosurvival Bcl-2 expression are key mechanisms for drug resistance leading to failure of chemotherapy in HCC. However, current strategy to overcome both P-glycoprotein and Bcl-2 protein induced drug resistance was rarely reported. In this work, we utilized an amphiphilic poly[(R)-3-hydroxybutyrate] (PHB)-b-poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) cationic polyester to encapsulate chemotherapeutic paclitaxel (PTX) in hydrophobic PHB domain and Bcl-2 convertor Nur77/ΔDBD gene (Nur77 without DNA binding domain for mitochondria localization) by formation of polyplex due to cationic PDMAEMA segment, to effectively inhibit the drug resistant HepG2/STC2 and SMCC7721/STC2 liver cancer cell growth. Thanks to the cationic nanoparticle complex formation ability and high transfection efficiency to express Bcl-2 conversion proteins, PHB-PDMAEMA/PTX@polyplex could partially impair P-glycoprotein induced PTX efflux and activate the apoptotic function of previous prosurvival Bcl-2 protein. This is the pioneer report of cationic amphiphilic polyester PHB-PDMAEMA to codeliver anticancer drug and therapeutic plasmid to overcome both pump and non-pump mediated chemotherapeutic resistance in liver cancer cells, which might be inspiring for the application of polyester in personalized cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Recent advances in novel heterocyclic scaffolds for the treatment of drug-resistant malaria.

    Science.gov (United States)

    Kumar, Sahil; Singh, Rajesh K; Patial, Babita; Goyal, Sachin; Bhardwaj, T R

    2016-01-01

    Malaria is a major public health problem all over the world, particularly in tropical and subtropical countries due to the development of resistance and most deadly infection is caused by Plasmodium falciparum. There is a direct need for the discovery of new drugs with unique structures and mechanism of action to treat sensitive and drug-resistant strains of various plasmodia for radical cure of this disease. Traditional compounds such as quinine and related derivatives represent a major source for the development of new drugs. This review presents recent modifications of 4-aminoquinoline and 8-aminoquinolone rings as leads to novel active molecules which are under clinical trials. The review also encompasses the other heterocyclic compounds emerged as potential antimalarial agents with promising results such as acridinediones and acridinone analogues, pyridines and quinolones as antimalarials. Miscellaneous heterocyclics such as tetroxane derivatives, indole derivatives, imidazolopiperazine derivatives, biscationic choline-based compounds and polymer-linked combined antimalarial drugs are also discussed. At last brief introduction to heterocyclics in natural products is also reviewed. Most of them have been under clinical trials and found to be promising in the treatment of drug-resistant strains of Plasmodium and others can be explored for the same purpose.

  1. Simplified Paper Format for Detecting HIV Drug Resistance in Clinical Specimens by Oligonucleotide Ligation

    Science.gov (United States)

    Panpradist, Nuttada; Beck, Ingrid A.; Chung, Michael H.; Kiarie, James N.; Frenkel, Lisa M.; Lutz, Barry R.

    2016-01-01

    Human immunodeficiency virus (HIV) is a chronic infection that can be managed by antiretroviral treatment (ART). However, periods of suboptimal viral suppression during lifelong ART can select for HIV drug resistant (DR) variants. Transmission of drug resistant virus can lessen or abrogate ART efficacy. Therefore, testing of individuals for drug resistance prior to initiation of treatment is recommended to ensure effective ART. Sensitive and inexpensive HIV genotyping methods are needed in low-resource settings where most HIV infections occur. The oligonucleotide ligation assay (OLA) is a sensitive point mutation assay for detection of drug resistance mutations in HIV pol. The current OLA involves four main steps from sample to analysis: (1) lysis and/or nucleic acid extraction, (2) amplification of HIV RNA or DNA, (3) ligation of oligonucleotide probes designed to detect single nucleotide mutations that confer HIV drug resistance, and (4) analysis via oligonucleotide surface capture, denaturation, and detection (CDD). The relative complexity of these steps has limited its adoption in resource-limited laboratories. Here we describe a simplification of the 2.5-hour plate-format CDD to a 45-minute paper-format CDD that eliminates the need for a plate reader. Analysis of mutations at four HIV-1 DR codons (K103N, Y181C, M184V, and G190A) in 26 blood specimens showed a strong correlation of the ratios of mutant signal to total signal between the paper CDD and the plate CDD. The assay described makes the OLA easier to perform in low resource laboratories. PMID:26751207

  2. Partially Hidden Markov Models

    DEFF Research Database (Denmark)

    Forchhammer, Søren Otto; Rissanen, Jorma

    1996-01-01

    Partially Hidden Markov Models (PHMM) are introduced. They differ from the ordinary HMM's in that both the transition probabilities of the hidden states and the output probabilities are conditioned on past observations. As an illustration they are applied to black and white image compression where...

  3. Retinal nerve fibre layer thinning is associated with drug resistance in epilepsy.

    Science.gov (United States)

    Balestrini, Simona; Clayton, Lisa M S; Bartmann, Ana P; Chinthapalli, Krishna; Novy, Jan; Coppola, Antonietta; Wandschneider, Britta; Stern, William M; Acheson, James; Bell, Gail S; Sander, Josemir W; Sisodiya, Sanjay M

    2016-04-01

    Retinal nerve fibre layer (RNFL) thickness is related to the axonal anterior visual pathway and is considered a marker of overall white matter 'integrity'. We hypothesised that RNFL changes would occur in people with epilepsy, independently of vigabatrin exposure, and be related to clinical characteristics of epilepsy. Three hundred people with epilepsy attending specialist clinics and 90 healthy controls were included in this cross-sectional cohort study. RNFL imaging was performed using spectral-domain optical coherence tomography (OCT). Drug resistance was defined as failure of adequate trials of two antiepileptic drugs to achieve sustained seizure freedom. The average RNFL thickness and the thickness of each of the 90° quadrants were significantly thinner in people with epilepsy than healthy controls (p<0.001, t test). In a multivariate logistic regression model, drug resistance was the only significant predictor of abnormal RNFL thinning (OR=2.09, 95% CI 1.09 to 4.01, p=0.03). Duration of epilepsy (coefficient -0.16, p=0.004) and presence of intellectual disability (coefficient -4.0, p=0.044) also showed a significant relationship with RNFL thinning in a multivariate linear regression model. Our results suggest that people with epilepsy with no previous exposure to vigabatrin have a significantly thinner RNFL than healthy participants. Drug resistance emerged as a significant independent predictor of RNFL borderline attenuation or abnormal thinning in a logistic regression model. As this is easily assessed by OCT, RNFL thickness might be used to better understand the mechanisms underlying drug resistance, and possibly severity. Longitudinal studies are needed to confirm our findings. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  4. Metabolomics As a Tool for the Characterization of Drug-Resistant Epilepsy.

    Science.gov (United States)

    Murgia, Federica; Muroni, Antonella; Puligheddu, Monica; Polizzi, Lorenzo; Barberini, Luigi; Orofino, Gianni; Solla, Paolo; Poddighe, Simone; Del Carratore, Francesco; Griffin, Julian L; Atzori, Luigi; Marrosu, Francesco

    2017-01-01

    Drug resistance is a critical issue in the treatment of epilepsy, contributing to clinical emergencies and increasing both serious social and economic burdens on the health system. The wide variety of potential drug combinations followed by often failed consecutive attempts to match drugs to an individual patient may mean that this treatment stage may last for years with suboptimal benefit to the patient. Given these challenges, it is valuable to explore the availability of new methodologies able to shorten the period of determining a rationale pharmacologic treatment. Metabolomics could provide such a tool to investigate possible markers of drug resistance in subjects with epilepsy. Blood samples were collected from (1) controls (C) ( n  = 35), (2) patients with epilepsy "responder" (R) ( n  = 18), and (3) patients with epilepsy "non-responder" (NR) ( n  = 17) to the drug therapy. The samples were analyzed using nuclear magnetic resonance spectroscopy, followed by multivariate statistical analysis. A different metabolic profile based on metabolomics analysis of the serum was observed between C and patients with epilepsy and also between R and NR patients. It was possible to identify the discriminant metabolites for the three classes under investigation. Serum from patients with epilepsy were characterized by increased levels of 3-OH-butyrate, 2-OH-valerate, 2-OH-butyrate, acetoacetate, acetone, acetate, choline, alanine, glutamate, scyllo-inositol (C lactate, and citrate compared to C (C > R > NR). In conclusion, metabolomics may represent an important tool for discovery of differences between subjects affected by epilepsy responding or resistant to therapies and for the study of its pathophysiology, optimizing the therapeutic resources and the quality of life of patients.

  5. Hidden photons in connection to dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, Sarah; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Goodsell, Mark D. [CPhT, Ecole Polytechnique, Palaiseau (France)

    2013-06-15

    Light extra U(1) gauge bosons, so called hidden photons, which reside in a hidden sector have attracted much attention since they are a well motivated feature of many scenarios beyond the Standard Model and furthermore could mediate the interaction with hidden sector dark matter.We review limits on hidden photons from past electron beam dump experiments including two new limits from such experiments at KEK and Orsay. In addition, we study the possibility of having dark matter in the hidden sector. A simple toy model and different supersymmetric realisations are shown to provide viable dark matter candidates in the hidden sector that are in agreement with recent direct detection limits.

  6. Hidden photons in connection to dark matter

    International Nuclear Information System (INIS)

    Andreas, Sarah; Ringwald, Andreas; Goodsell, Mark D.

    2013-06-01

    Light extra U(1) gauge bosons, so called hidden photons, which reside in a hidden sector have attracted much attention since they are a well motivated feature of many scenarios beyond the Standard Model and furthermore could mediate the interaction with hidden sector dark matter.We review limits on hidden photons from past electron beam dump experiments including two new limits from such experiments at KEK and Orsay. In addition, we study the possibility of having dark matter in the hidden sector. A simple toy model and different supersymmetric realisations are shown to provide viable dark matter candidates in the hidden sector that are in agreement with recent direct detection limits.

  7. HLA-class II alleles in patients with drug-resistant pulmonary tuberculosis in Kazakhstan.

    Science.gov (United States)

    Kuranov, A B; Kozhamkulov, U A; Vavilov, M N; Belova, E S; Bismilda, V L; Alenova, A H; Ismailov, S S; Momynaliev, K T

    2014-02-01

    The human leukocyte antigen (HLA) system has a major role in the regulation of the immune response as it is involved in the defense against pathogens. Some studies have reported that HLA class II genes play a strong role in severe cases of pulmonary tuberculosis (PTB) in several populations. Thus the aim of the study was to compare the HLA-class II alleles of patients with drug resistant tuberculosis with those of healthy controls from the same ethnic group in Kazakhstan. The aim of the present study was to evaluate the correlation of HLA-class II alleles by patients with drug resistant tuberculosis and the healthy controls of the same ethnic group in Kazakhstan. The HLA-class II alleles of 76 patients with tuberculosis (TB) and 157 healthy volunteers were investigated using sequence-based typing (SBT)-method. HLA-DQA1*03:02 HLA-DRB1*08:01 and DRB1*08:03 occurred more frequently (P = 0.05) in patients with drug resistant tuberculosis than in controls. We observed a possible association between certain HLA alleles and TB that are specific for the Kazakh population. Further studies are needed to confirm our findings using a larger number of patients with drug resistant tuberculosis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Mechanisms of action of systemic antibiotics used in periodontal treatment and mechanisms of bacterial resistance to these drugs

    Directory of Open Access Journals (Sweden)

    Geisla Mary Silva Soares

    2012-06-01

    Full Text Available Antibiotics are important adjuncts in the treatment of infectious diseases, including periodontitis. The most severe criticisms to the indiscriminate use of these drugs are their side effects and, especially, the development of bacterial resistance. The knowledge of the biological mechanisms involved with the antibiotic usage would help the medical and dental communities to overcome these two problems. Therefore, the aim of this manuscript was to review the mechanisms of action of the antibiotics most commonly used in the periodontal treatment (i.e. penicillin, tetracycline, macrolide and metronidazole and the main mechanisms of bacterial resistance to these drugs. Antimicrobial resistance can be classified into three groups: intrinsic, mutational and acquired. Penicillin, tetracycline and erythromycin are broad-spectrum drugs, effective against gram-positive and gram-negative microorganisms. Bacterial resistance to penicillin may occur due to diminished permeability of the bacterial cell to the antibiotic; alteration of the penicillin-binding proteins, or production of β-lactamases. However, a very small proportion of the subgingival microbiota is resistant to penicillins. Bacteria become resistant to tetracyclines or macrolides by limiting their access to the cell, by altering the ribosome in order to prevent effective binding of the drug, or by producing tetracycline/macrolide-inactivating enzymes. Periodontal pathogens may become resistant to these drugs. Finally, metronidazole can be considered a prodrug in the sense that it requires metabolic activation by strict anaerobe microorganisms. Acquired resistance to this drug has rarely been reported. Due to these low rates of resistance and to its high activity against the gram-negative anaerobic bacterial species, metronidazole is a promising drug for treating periodontal infections.

  9. Definition of drug-resistant epilepsy: is it evidence based?

    Science.gov (United States)

    Wiebe, Samuel

    2013-05-01

    Clinical case definitions are the cornerstone of clinical communication and of clinical and epidemiologic research. The ramifications of establishing a case definition are extensive, including potentially large changes in epidemiologic estimates of frequency, and decisions for clinical management. Yet, defining a condition entails numerous challenges such as defining the scope and purpose, incorporating the strongest evidence base with clinical expertise, accounting for patients' values, and considering impact on care. The clinical case definition of drug-resistant epilepsy, in addition, must address what constitutes an adequate intervention for an individual drug, what are the outcomes of relevance, what period of observation is sufficient to determine success or failure, how many medications should be tried, whether seizure frequency should play a role, and what is the role of side effects and tolerability. On the other hand, the principles of evidence-based medicine (EBM) aim at providing a systematic approach to incorporating the best available evidence into the process of clinical decision for individual patients. The case definition of drug-resistant epilepsy proposed by the the International League Against Epilepsy (ILAE) in 2009 is evaluated in terms of the principles of EBM as well as the stated goals of the authors of the definition. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  10. POVMs and hidden variables

    International Nuclear Information System (INIS)

    Stairs, Allen

    2007-01-01

    Recent results by Paul Busch and Adan Cabello claim to show that by appealing to POVMs, non-contextual hidden variables can be ruled out in two dimensions. While the results of Busch and Cabello are mathematically correct, interpretive problems render them problematic as no hidden variable proofs

  11. In vitro drug response and efflux transporters associated with drug resistance in pediatric high grade glioma and diffuse intrinsic pontine glioma.

    Directory of Open Access Journals (Sweden)

    Susanna J E Veringa

    Full Text Available Pediatric high-grade gliomas (pHGG, including diffuse intrinsic pontine gliomas (DIPG, are the leading cause of cancer-related death in children. While it is clear that surgery (if possible, and radiotherapy are beneficial for treatment, the role of chemotherapy for these tumors is still unclear. Therefore, we performed an in vitro drug screen on primary glioma cells, including three DIPG cultures, to determine drug sensitivity of these tumours, without the possible confounding effect of insufficient drug delivery. This screen revealed a high in vitro cytotoxicity for melphalan, doxorubicine, mitoxantrone, and BCNU, and for the novel, targeted agents vandetanib and bortezomib in pHGG and DIPG cells. We subsequently determined the expression of the drug efflux transporters P-gp, BCRP1, and MRP1 in glioma cultures and their corresponding tumor tissues. Results indicate the presence of P-gp, MRP1 and BCRP1 in the tumor vasculature, and expression of MRP1 in the glioma cells themselves. Our results show that pediatric glioma and DIPG tumors per se are not resistant to chemotherapy. Treatment failure observed in clinical trials, may rather be contributed to the presence of drug efflux transporters that constitute a first line of drug resistance located at the blood-brain barrier or other resistance mechanism. As such, we suggest that alternative ways of drug delivery may offer new possibilities for the treatment of pediatric high-grade glioma patients, and DIPG in particular.

  12. A market on both ‘sides’ of the law: the use of the hidden web for the sale of new psychoactive substances

    OpenAIRE

    Wadsworth, Elle; Drummond, Colin; Kimergård, Andreas; Deluca, Paolo

    2017-01-01

    ObjectiveThe hidden Web is used for the anonymous sale of drugs, and with the UK Psychoactive Substances Act, 2016, implemented on May 26th 2016; it could increase as a platform for obtaining new psychoactive substances (NPS).This study aims to describe the NPS market on the visible and hidden Web preban, and assess whether the hidden Web is a likely place for the sale of NPS postban.MethodsData collection of 113 online shops took place in October 2015. Data collection of 22 cryptomarkets too...

  13. [Antimicrobial susceptibility and drug-resistance genes of Yersinia spp. of retailed poultry in 4 provinces of China].

    Science.gov (United States)

    Peng, Z X; Zou, M Y; Xu, J; Guan, W Y; Li, Y; Liu, D R; Zhang, S S; Hao, Q; Yan, S F; Wang, W; Yu, D M; Li, F Q

    2018-04-06

    Objective: To monitor the antimicrobial resistance and drug-resistance genes of Yersinia enterocolitis , Y. intermedia and Y. frederiksenii recovered from retailed fresh poultry of 4 provinces of China. Methods: The susceptibility of 25 isolated Yersinia spp. to 14 classes and 25 kinds of antibiotics was determined by broth microdilution method according to CLSI (Clinical and Laboratory Standards Institute). The antibiotic resistance genes were predicted with antibiotic resistance genes database (ARDB) using whole genome sequences of Yersinia spp. Results: In all 22 Y. enterocolitis tested, 63.7% (14 isolates), 22.8% (5 isolates), 4.6% and 4.6% of 1 isolates exhibited the resistance to cefoxitin, ampicillin-sulbactam, nitrofurantoin and trimethoprim-sulfamethoxazole, respectively. All the 25 isolates were multi-drug resistant to more than 3 antibiotics, while 64.0% of isolates were resistant to more than 4 antibiotics. A few Y. enterocolitis isolates of this study were intermediate to ceftriaxone and ciprofloxacin. Most Yersinia spp. isolates contained antibiotic resistance genes mdtG, ksgA, bacA, blaA, rosAB and acrB , and 5 isolates recovered from fresh chicken also contained dfrA 1, catB 2 and ant 3 ia . Conclusion: The multi-drug resistant Yersinia spp. isolated from retailed fresh poultry is very serious in the 4 provinces of China, and their contained many kinds of drug-resistance genes.

  14. Perturbation biology nominates upstream-downstream drug combinations in RAF inhibitor resistant melanoma cells.

    Science.gov (United States)

    Korkut, Anil; Wang, Weiqing; Demir, Emek; Aksoy, Bülent Arman; Jing, Xiaohong; Molinelli, Evan J; Babur, Özgün; Bemis, Debra L; Onur Sumer, Selcuk; Solit, David B; Pratilas, Christine A; Sander, Chris

    2015-08-18

    Resistance to targeted cancer therapies is an important clinical problem. The discovery of anti-resistance drug combinations is challenging as resistance can arise by diverse escape mechanisms. To address this challenge, we improved and applied the experimental-computational perturbation biology method. Using statistical inference, we build network models from high-throughput measurements of molecular and phenotypic responses to combinatorial targeted perturbations. The models are computationally executed to predict the effects of thousands of untested perturbations. In RAF-inhibitor resistant melanoma cells, we measured 143 proteomic/phenotypic entities under 89 perturbation conditions and predicted c-Myc as an effective therapeutic co-target with BRAF or MEK. Experiments using the BET bromodomain inhibitor JQ1 affecting the level of c-Myc protein and protein kinase inhibitors targeting the ERK pathway confirmed the prediction. In conclusion, we propose an anti-cancer strategy of co-targeting a specific upstream alteration and a general downstream point of vulnerability to prevent or overcome resistance to targeted drugs.

  15. THE EFFECT OF DIFFERENT TB DRUGS AND ANTIMICROBIAL AGENTS ON THE EFFICIENCY OF TREATMENT OF TUBERCULOSIS PATIENTS WITH MULTIPLE DRUG RESISTANCE

    Directory of Open Access Journals (Sweden)

    I. A. Vasilyeva

    2017-01-01

    Full Text Available Objective of the study: to study the effect of specific TB drugs and antimicrobial agents constituting chemotherapy regimens on the efficiency of treatment of tuberculosis patients with various patterns of multiple drug resistance.Subjects and Methods. 412 pulmonary tuberculosis patients with bacillary excretion and various patterns of multiple drug resistance were enrolled into the study (117 patients with MDR TB (non pre-XDR and non-XDR; 120 patients with pre-XDR TB and 175 with XDR TB. Patients in the subgroups were compatible regarding sex and age. The patients were prescribed regimens including 5-6 drugs in accordance with their drug resistance pattern. The time of sputum conversion (by culture versus the year of treatment was selected as a surrogate endpoint. The effect of specific TB drugs and antimicrobial agents on treatment efficiency was assessed through calculation of odds ratio (OR of achieving a surrogate endpoint in the patients receiving and not receiving a certain drug.Results. In the subgroup of pre-XDR TB, the following drugs demonstrated the valid increase of odds of sputum conversion: ethambutol (OR 11.8, pyrazinamide (OR 10.2, moxifloxacin (OR 7.8, capreomicin (OR 4.41. Sputum conversion was achieved in all 11 patients treated with bedaquiline.In the subgroup of XDR TB, the following drugs provided a positive effect on the achievement of sputum conversion: bedaquiline (OR 9.62, linezolid (OR 8.15, cycloserine (OR 7.88, pyrazinamide (OR 7.29, moxifloxacin (OR 7.08, and ethambutol (OR 6.69. Ofloxacin demonstrated a confident negative effect on achieving sputum conversion (95% CI 0.06-0.32. 

  16. ANTIMICROBIAL DRUG RESISTANCE IN STRAINS OF Escherichia coli ISOLATED FROM FOOD SOURCES

    Directory of Open Access Journals (Sweden)

    Mohammed Uddin Rasheed

    2014-07-01

    Full Text Available A variety of foods and environmental sources harbor bacteria that are resistant to one or more antimicrobial drugs used in medicine and agriculture. Antibiotic resistance in Escherichia coli is of particular concern because it is the most common Gram-negative pathogen in humans. Hence this study was conducted to determine the antibiotic sensitivity pattern of E. coli isolated from different types of food items collected randomly from twelve localities of Hyderabad, India. A total of 150 samples comprising; vegetable salad, raw egg-surface, raw chicken, unpasteurized milk, and raw meat were processed microbiologically to isolate E. coli and to study their antibiotic susceptibility pattern by the Kirby-Bauer method. The highest percentages of drug resistance in isolates of E. coli were detected from raw chicken (23.3% followed by vegetable salad (20%, raw meat (13.3%, raw egg-surface (10% and unpasteurized milk (6.7%. The overall incidence of drug resistant E. coli was 14.7%. A total of six (4% Extended Spectrum β-Lactamase (ESBL producers were detected, two each from vegetable salads and raw chicken, and one each from raw egg-surface and raw meat. Multidrug resistant strains of E. coli are a matter of concern as resistance genes are easily transferable to other strains. Pathogen cycling through food is very common and might pose a potential health risk to the consumer. Therefore, in order to avoid this, good hygienic practices are necessary in the abattoirs to prevent contamination of cattle and poultry products with intestinal content as well as forbidding the use of untreated sewage in irrigating vegetables.

  17. Responding to the challenge of antimalarial drug resistance by routine monitoring to update national malaria treatment policies

    DEFF Research Database (Denmark)

    Vestergaard, Lasse S; Ringwald, Pascal

    2007-01-01

    of rational and updated malaria treatment policies, but defining and updating such policies requires a sufficient volume of high-quality drug-resistance data collected at national and regional levels. Three main tools are used for drug resistance monitoring, including therapeutic efficacy tests, in vitro...... additional information about changing patterns of resistance. However, some of the tests are technically demanding, and thus there is a need for more resources for training and capacity building in endemic countries to be able to adequately respond to the challenge of drug resistance.......Reduced sensitivity of Plasmodium falciparum to formerly recommended cheap and well-known antimalarial drugs places an increasing burden on malaria control programs and national health systems in endemic countries. The high costs of the new artemisinin-based combination treatments underline the use...

  18. Identification and Determination of Drug Resistant of Candida species isolated from Hospital Acquired Infections

    Directory of Open Access Journals (Sweden)

    Kambiz Diba

    2015-01-01

    Full Text Available Background & aim: Currently, the use of antifungal azole group and yeasts resistant to these drugs is increasing. The aim of this study was to isolate and identify the yeasts obtained from candidiasis patients and furthermore determining thier antifungal resistance. Methods: In the present descriptive study, infections samples were collected from 256 patients with suspected nosocomial candidiasis, then direct exam and culture were performed. Yeast colonies were identified using phenotypic methods, polymerase chain reaction method and enzyme digestion. Data were analyzed using Descriptive statistical tests. Results: Of sixty isolated yeast, thirty-seven cases of Candida albicans (61.6%, seven cases of C. krusei and C. glabrata (11.6% each, five cases of C. dubliniensis (8.3% and four cases of C. tropicalis (6.6% were indicated. The study showed that the sensitivity of C. albicans and C. cruise species to amphotericin B was negligible in disk diffusion and very sensitve in microdilution. Conclusion: Inspite of the results of antifungal susceptibility test of strains studied did not show high resistance, but screening for drug-resistant Candida isolates in Candida infection by disk diffusion and microdilution methods for new cases of drug resistance is reasonable.

  19. Hidden markov model for the prediction of transmembrane proteins using MATLAB.

    Science.gov (United States)

    Chaturvedi, Navaneet; Shanker, Sudhanshu; Singh, Vinay Kumar; Sinha, Dhiraj; Pandey, Paras Nath

    2011-01-01

    Since membranous proteins play a key role in drug targeting therefore transmembrane proteins prediction is active and challenging area of biological sciences. Location based prediction of transmembrane proteins are significant for functional annotation of protein sequences. Hidden markov model based method was widely applied for transmembrane topology prediction. Here we have presented a revised and a better understanding model than an existing one for transmembrane protein prediction. Scripting on MATLAB was built and compiled for parameter estimation of model and applied this model on amino acid sequence to know the transmembrane and its adjacent locations. Estimated model of transmembrane topology was based on TMHMM model architecture. Only 7 super states are defined in the given dataset, which were converted to 96 states on the basis of their length in sequence. Accuracy of the prediction of model was observed about 74 %, is a good enough in the area of transmembrane topology prediction. Therefore we have concluded the hidden markov model plays crucial role in transmembrane helices prediction on MATLAB platform and it could also be useful for drug discovery strategy. The database is available for free at bioinfonavneet@gmail.comvinaysingh@bhu.ac.in.

  20. Absence of association between major vault protein (MVP) gene polymorphisms and drug resistance in Chinese Han patients with partial epilepsy.

    Science.gov (United States)

    Zhou, Luo; Zhang, Mengqi; Long, Hongyu; Long, Lili; Xie, Yuanyuan; Liu, Zhaoqian; Kang, Jin; Chen, Qihua; Feng, Li; Xiao, Bo

    2015-11-15

    Drug resistance in epilepsy is common despite many antiepileptic drugs (AEDs) available for treatment. The development of drug resistant epilepsy may be a result of multiple factors. Several previous studies reported that the major vault protein (MVP) was significantly increased in epileptogenic brain tissues resected from patients with partial-onset seizures, indicating the possible involvement of MVP in drug resistance. In this article, we aimed to identify the association between single nucleotide polymorphisms (SNPs) of MVP gene and drug resistance of partial epilepsy in a Chinese Han population. A total of 510 patients with partial-onset seizures and 206 healthy controls were recruited. Among the patients, 222 were drug resistant and 288 were responsive. The selection of tagging SNPs was based on the Hapmap database and Haploview software and the genotyping was conducted on the Sequenom MassARRAY iPLEX platform. For the selected loci rs12149746, rs9938630 and rs4788186 in the MVP gene, there was no significant difference in allele or genotype distribution between the drug resistant and responsive groups, or between all of the patients and healthy controls. Linkage disequilibrium between any two loci was detected but there was no significant difference in haplotype frequency between the drug resistant and responsive groups. Our results suggest that MVP genetic polymorphisms and haplotypes may not be associated with drug resistance of partial epilepsy in the Chinese Han population. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Eslicarbazepine acetate add-on for drug-resistant partial epilepsy.

    Science.gov (United States)

    Chang, Xian-Chao; Yuan, Hai; Wang, Yi; Xu, Hui-Qin; Hong, Wen-Ke; Zheng, Rong-Yuan

    2017-10-25

    This is an updated version of the Cochrane Review published in the Cochrane Library 2011, Issue 12.The majority of people with epilepsy have a good prognosis, but up to 30% of people continue to have seizures despite several regimens of antiepileptic drugs. In this review, we summarized the current evidence regarding eslicarbazepine acetate (ESL) when used as an add-on treatment for drug-resistant partial epilepsy. To evaluate the efficacy and tolerability of ESL when used as an add-on treatment for people with drug-resistant partial epilepsy. The searches for the original review were run in November 2011. Subsequently, we searched the Cochrane Epilepsy Group Specialized Register (6 December 2016), the Cochrane Central Register of Controlled Trials (CENTRAL 2016, Issue 11) and MEDLINE (1946 to 6 December 2016). There were no language restrictions. We reviewed the reference lists of retrieved studies to search for additional reports of relevant studies. We also contacted the manufacturers of ESL and experts in the field for information about any unpublished or ongoing studies. Randomized placebo controlled double-blind add-on trials of ESL in people with drug-resistant partial epilepsy. Two review authors independently selected trials for inclusion and extracted data. Outcomes investigated included 50% or greater reduction in seizure frequency, seizure freedom, treatment withdrawal, adverse effects, and drug interactions. Primary analyses were by intention to treat (ITT). The dose-response relationship was evaluated in regression models. We included five trials (1799 participants) rated at low risk of bias; all studies were funded by BIAL. The overall risk ratio (RR) with 95% confidence interval (CI) for 50% or greater reduction in seizure frequency was 1.71 (95% CI 1.42 to 2.05). Dose regression analysis showed evidence that ESL reduced seizure frequency with an increase in efficacy with increasing doses of ESL. ESL was significantly associated with seizure freedom

  2. Factors contributing to the development of anaemia in Plasmodium falciparum malaria: what about drug-resistant parasites?

    DEFF Research Database (Denmark)

    Quashie, Neils Ben; Akanmori, Bartholomew D; Ofori-Adjei, David

    2006-01-01

    implicated in its pathogenesis. Since resolution of malaria restores erythropoiesis, we hypothesized that drug-resistant strains of Plasmodium falciparum would increase the risk of severe anaemia developing from initially uncomplicated malaria. Using both in vivo and in vitro drug-sensitivity tests we...... compared the prevalence of drug-resistant malaria between severe malarial anaemia SA and non-anaemic malaria NAM patients. Assessment of treatment outcome using the WHO in vivo criteria showed no significant difference in parasite resistance between the two groups. The mean parasite clearance time was also......-treatment blood levels of chloroquine did not differ much between the two groups. Findings from this study could not therefore implicate drug-resistant parasites in the pathogenesis of severe malarial anaemia....

  3. Etanercept overcomes P-glycoprotein-induced drug resistance in lymphocytes of patients with intractable rheumatoid arthritis.

    Science.gov (United States)

    Tsujimura, Shizuyo; Saito, Kazuyoshi; Nakayamada, Shingo; Tanaka, Yoshiya

    2010-04-01

    P-glycoprotein (P-gp) on activated lymphocytes is an adenosine triphosphate (ATP)-binding cassette transporter that causes drug resistance by exclusion of intracellular drugs in patients with active rheumatoid arthritis (RA). However, infliximab with methotrexate (MTX) can overcome P-gp-mediated drug resistance. We encounter patients who cannot continue infliximab or MTX. Here we tested how etanercept affected P-gp-mediated drug resistance in such intractable RA patients. Peripheral lymphocytes of 11 RA patients (3 switched from infliximab and 8 who could not be treated with MTX) were analyzed for P-gp expression by flow cytometry and for drug exclusion using radioisotope-labeled dexamethasone. Activated lymphocytes of RA patients overexpressed P-gp and coexpressed CD69. Incubation of these lymphocytes with dexamethasone in vitro reduced intracellular dexamethasone levels. Two-week etanercept therapy significantly reduced P-gp expression and eliminated such P-gp- and CD69-high-expressing subgroup. The reduction in P-gp resulted in recovery of intracellular dexamethasone levels in lymphocytes and improvement of disease activity, thus allowing tapering of corticosteroids. None of the patients experienced any severe adverse effects. Etanercept is useful for overcoming P-gp-mediated treatment resistance in intractable RA patients who have to discontinue infliximab or are intolerant to MTX.

  4. Whole genome sequencing-based characterization of extensively drug resistant (XDR strains of Mycobacterium tuberculosis from Pakistan

    Directory of Open Access Journals (Sweden)

    Zahra Hasan

    2015-01-01

    Conclusions: If common drug resistance associated with SNPs evaluated the concordance between phenotypic and genotypic testing, the results would be rifampicin (100%, isoniazid (89%, fluoroquinolones (95%, aminoglycoside (81% and ethambutol (61%. This work highlights the importance of expanded targets for drug resistance detection in MTB isolates.

  5. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences

    KAUST Repository

    Coll, Francesc; McNerney, Ruth; Preston, Mark D; Guerra-Assunç ã o, José Afonso; Warry, Andrew; Hill-Cawthorne, Grant A.; Mallard, Kim; Nair, Mridul; Miranda, Anabela; Alves, Adriana; Perdigã o, Joã o; Viveiros, Miguel; Portugal, Isabel; Hasan, Zahra; Hasan, Rumina; Glynn, Judith R; Martin, Nigel; Pain, Arnab; Clark, Taane G

    2015-01-01

    Mycobacterium tuberculosis drug resistance (DR) challenges effective tuberculosis disease control. Current molecular tests examine limited numbers of mutations, and although whole genome sequencing approaches could fully characterise DR, data

  6. Use and Misuse of Antimicrobial Drugs in Poultry and Livestock: Mechanisms of Antimicrobial Resistance

    Directory of Open Access Journals (Sweden)

    Toni Poole* and Cynthia Sheffield

    2013-07-01

    Full Text Available Food safety begins on the farm with management practices that contribute to an abundant, safe, and affordable food supply. To attain this goal antimicrobials have been used in all stages of food animal production in the United States and elsewhere around the world at one time or another. Among food–production animals antimicrobials are used for growth promotion, disease prophylaxis or disease treatment, and are generally administered to the entire flock or herd. Over many decades bacteria have become resistant to multiple antimicrobial classes in a cumulative manner. Bacteria exhibit a number of well characterized mechanisms of resistance to antimicrobials that include: 1 modification of the antimicrobial; 2 alteration of the drug target; 3 decreased access of drug to target; and 4 implementation of an alternative metabolic pathway not affected by the drug. The mechanisms of resistance are complex and depend on the type of bacterium involved (e.g. Gram–positive or Gram–negative and the class of drug. Some bacterial species have accumulated resistance to nearly all antimicrobial classes due to a combination of intrinsic and acquired processes. This has and will continue to lead to clinical failures of antimicrobial treatment in both human and animal medicine.

  7. Clinical data and molecular analysis of Mycobacterium tuberculosi isolates from drug-resistant tuberculosis patients in Goiás, Brazil

    Directory of Open Access Journals (Sweden)

    Sueli Lemes de Ávila Alves

    2011-09-01

    Full Text Available Drug resistance is one of the major concerns regarding tuberculosis (TB infection worldwide because it hampers control of the disease. Understanding the underlying mechanisms responsible for drug resistance development is of the highest importance. To investigate clinical data from drug-resistant TB patients at the Tropical Diseases Hospital, Goiás (GO, Brazil and to evaluate the molecular basis of rifampin (R and isoniazid (H resistance in Mycobacterium tuberculosis. Drug susceptibility testing was performed on 124 isolates from 100 patients and 24 isolates displayed resistance to R and/or H. Molecular analysis of drug resistance was performed by partial sequencing of the rpoB and katGgenes and analysis of the inhA promoter region. Similarity analysis of isolates was performed by 15 loci mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR typing. The molecular basis of drug resistance among the 24 isolates from 16 patients was confirmed in 18 isolates. Different susceptibility profiles among the isolates from the same individual were observed in five patients; using MIRU-VNTR, we have shown that those isolates were not genetically identical, with differences in one to three loci within the 15 analysed loci. Drug-resistant TB in GO is caused by M. tuberculosis strains with mutations in previously described sites of known genes and some patients harbour a mixed phenotype infection as a consequence of a single infective event; however, further and broader investigations are needed to support our findings.

  8. Effect of transmission reduction by insecticide-treated bednets (ITNs on antimalarial drug resistance in western Kenya.

    Directory of Open Access Journals (Sweden)

    Monica Shah

    Full Text Available Despite the clear public health benefit of insecticide-treated bednets (ITNs, the impact of malaria transmission-reduction by vector control on the spread of drug resistance is not well understood. In the present study, the effect of sustained transmission reduction by ITNs on the prevalence of Plasmodium falciparum gene mutations associated with resistance to the antimalarial drugs sulfadoxine-pyrimethamine (SP and chloroquine (CQ in children under the age of five years was investigated during an ITN trial in Asembo area, western Kenya. During the ITN trial, the national first line antimalarial treatment changed from CQ to SP. Smear-positive samples collected from cross sectional surveys prior to ITN introduction (baseline, n = 250 and five years post-ITN intervention (year 5 survey, n = 242 were genotyped for single nucleotide polymorphisms (SNPs at dhfr-51, 59, 108, 164 and dhps-437, 540 (SP resistance, and pfcrt-76 and pfmdr1-86 (CQ resistance. The association between the drug resistance mutations and epidemiological variables was evaluated. There were significant increases in the prevalence of SP dhps mutations and the dhfr/dhps quintuple mutant, and a significant reduction in the proportion of mixed infections detected at dhfr-51, 59 and dhps-437, 540 SNPs from baseline to the year 5 survey. There was no change in the high prevalence of pfcrt-76 and pfmdr1-86 mutations. Multivariable regression analysis further showed that current antifolate use and year of survey were significantly associated with more SP drug resistance mutations. These results suggest that increased antifolate drug use due to drug policy change likely led to the high prevalence of SP mutations 5 years post-ITN intervention and reduced transmission had no apparent effect on the existing high prevalence of CQ mutations. There is no evidence from the current study that sustained transmission reduction by ITNs reduces the prevalence of genes associated with malaria

  9. Metabolomics As a Tool for the Characterization of Drug-Resistant Epilepsy

    Directory of Open Access Journals (Sweden)

    Federica Murgia

    2017-09-01

    Full Text Available PurposeDrug resistance is a critical issue in the treatment of epilepsy, contributing to clinical emergencies and increasing both serious social and economic burdens on the health system. The wide variety of potential drug combinations followed by often failed consecutive attempts to match drugs to an individual patient may mean that this treatment stage may last for years with suboptimal benefit to the patient. Given these challenges, it is valuable to explore the availability of new methodologies able to shorten the period of determining a rationale pharmacologic treatment. Metabolomics could provide such a tool to investigate possible markers of drug resistance in subjects with epilepsy.MethodsBlood samples were collected from (1 controls (C (n = 35, (2 patients with epilepsy “responder” (R (n = 18, and (3 patients with epilepsy “non-responder” (NR (n = 17 to the drug therapy. The samples were analyzed using nuclear magnetic resonance spectroscopy, followed by multivariate statistical analysis.Key findingsA different metabolic profile based on metabolomics analysis of the serum was observed between C and patients with epilepsy and also between R and NR patients. It was possible to identify the discriminant metabolites for the three classes under investigation. Serum from patients with epilepsy were characterized by increased levels of 3-OH-butyrate, 2-OH-valerate, 2-OH-butyrate, acetoacetate, acetone, acetate, choline, alanine, glutamate, scyllo-inositol (C < R < NR, and decreased concentration of glucose, lactate, and citrate compared to C (C > R > NR.SignificanceIn conclusion, metabolomics may represent an important tool for discovery of differences between subjects affected by epilepsy responding or resistant to therapies and for the study of its pathophysiology, optimizing the therapeutic resources and the quality of life of patients.

  10. "DRUG RESISTANCE PATTERN IN ISOLATED BACTERIA FROM BLOOD CULTURES"

    Directory of Open Access Journals (Sweden)

    A. Sobhani

    2004-05-01

    Full Text Available Bacteremia is an important infectious disease which may lead to death. Common bacteria and pattern of antibiotic resistance in different communities are different and understanding these differences is important. In the present study, relative frequency and pattern of drug resistance have been examined in bacteria isolated from blood cultures in Razi Hospital laboratory. The method of the study was descriptive. Data collection was carried out retrospectively. Total sample consisted of 311 positive blood cultures from 1999 to 2001. Variables under study were bacterial strains, antibiotics examined in antibiogram, microbial resistance, and patients' age and sex. The most common isolated bacteria were Salmonella typhi (22.2% and the least common ones were Citrobacter (1.6%. The highest antibiotic resistance was seen against amoxicillin (88.4%. The proportion of males to females was1: 1/1 and the most common age group was 15-44 (47.3%. Common bacteria and pattern of antibiotic resistance were different in some areas and this subject requires further studies in the future.

  11. Helioscope bounds on hidden sector photons

    International Nuclear Information System (INIS)

    Redondo, J.

    2008-01-01

    The flux of hypothetical ''hidden photons'' from the Sun is computed under the assumption that they interact with normal matter only through kinetic mixing with the ordinary standard model photon. Requiring that the exotic luminosity is smaller than the standard photon luminosity provides limits for the mixing parameter down to χ -14 , depending on the hidden photon mass. Furthermore, it is pointed point out that helioscopes looking for solar axions are also sensitive to hidden photons. The recent results of the CAST collaboration are used to further constrain the mixing parameter χ at low masses (m γ' <1 eV) where the luminosity bound is weaker. In this regime the solar hidden photon ux has a sizable contribution of longitudinally polarized hidden photons of low energy which are invisible for current helioscopes. (orig.)

  12. Antibacterial activity of combined medicinal plants extract against multiple drug resistant strains

    Directory of Open Access Journals (Sweden)

    Rafiqul Islam

    2015-06-01

    Full Text Available Objective: To find out the combined antibacterial efficacy of Aegle marmelos, Aphanamixis polystachya, Cuscuta reflexa and Aesclynomene indica against bacterial pathogens. Methods: Antibacterial potency of combined plant extracts has been tested against Bacillus subtilis IFO 3026, Sarcina lutea IFO 3232, Xanthomonas campestris IAM 1671, Escherichia coli IFO 3007, Klebsiella pneumoniae ATTC 10031, Proteus vulgaris MTCC 321 and Pseudomonas denitrificans KACC 32026 by disc diffusion assay. Commercially available standard antibiotic discs were also used to find out antibiotic resistance pattern of test organisms. Results: Among the test organisms, Escherichia coli, Proteus vulgaris, Klebsiella pneumoniae and Proteus denitrificans showed resistance against multiple commercially available antibiotics. On the other hand, these multiple drug resistant organisms showed susceptibility against combined plant extracts. Conclusions: These combined plants extracts showed synergistic antibacterial activity and could lead to new antibacterial drug designing.

  13. Taking aim at a moving target: designing drugs to inhibit drug-resistant HIV-1 reverse transcriptases.

    Science.gov (United States)

    Sarafianos, Stefan G; Das, Kalyan; Hughes, Stephen H; Arnold, Eddy

    2004-12-01

    HIV undergoes rapid genetic variation; this variation is caused primarily by the enormous number of viruses produced daily in an infected individual. Because of this variation, HIV presents a moving target for drug and vaccine development. The variation within individuals has led to the generation of diverse HIV-1 subtypes, which further complicates the development of effective drugs and vaccines. In general, it is more difficult to hit a moving target than a stationary target. Two broad strategies for hitting a moving target (in this case, HIV replication) are to understand the movement and to aim at the portions that move the least. In the case of anti-HIV drug development, the first option can be addressed by understanding the mechanism(s) of drug resistance and developing drugs that effectively inhibit mutant viruses. The second can be addressed by designing drugs that interact with portions of the viral machinery that are evolutionarily conserved, such as enzyme active sites.

  14. Decreasing prevalence of multi-drugs resistant Mycobacterium tuberculosis in Nashik City, India

    OpenAIRE

    More, Arun Punaji; Nagdawane, Ramkrishna Panchamrao; Gangurde, Aniket K

    2013-01-01

    Objective: In India, increasing prevalence of multi-drug resistant tuberculosis (MDR) has aggravated the control oftuberculosis problem. In many urban and semi-urban regions of India, no surveillance data of multidrug resistance inMycobacterium tuberculosisis available.Methods: A surveillance study on multidrug resistance was carried out in semi-urban and rural regions in and aroundNashik City of Maharashtra, India. The surveillance study was conducted in this region found that the prevalence...

  15. Genipin-induced inhibition of uncoupling protein-2 sensitizes drug-resistant cancer cells to cytotoxic agents.

    Directory of Open Access Journals (Sweden)

    Ryan J Mailloux

    2010-10-01

    Full Text Available Uncoupling protein-2 (UCP2 is known to suppress mitochondrial reactive oxygen species (ROS production and is employed by drug-resistant cancer cells to mitigate oxidative stress. Using the drug-sensitive HL-60 cells and the drug-resistant MX2 subline as model systems, we show that genipin, a UCP2 inhibitor, sensitizes drug-resistant cells to cytotoxic agents. Increased MX2 cell death was observed upon co-treatment with genipin and different doses of menadione, doxorubicin, and epirubicin. DCFH-DA fluorimetry revealed that the increase in MX2 cell death was accompanied by enhanced cellular ROS levels. The drug-induced increase in ROS was linked to genipin-mediated inhibition of mitochondrial proton leak. State 4 and resting cellular respiratory rates were higher in the MX2 cells in comparison to the HL-60 cells, and the increased respiration was readily suppressed by genipin in the MX2 cells. UCP2 accounted for a remarkable 37% of the resting cellular oxygen consumption indicating that the MX2 cells are functionally reliant on this protein. Higher amounts of UCP2 protein were detected in the MX2 versus the HL-60 mitochondria. The observed effects of genipin were absent in the HL-60 cells pointing to the selectivity of this natural product for drug-resistant cells. The specificity of genipin for UCP2 was confirmed using CHO cells stably expressing UCP2 in which genipin induced an ∼22% decrease in state 4 respiration. These effects were absent in empty vector CHO cells expressing no UCP2. Thus, the chemical inhibition of UCP2 with genipin sensitizes multidrug-resistant cancer cells to cytotoxic agents.

  16. CRISPR-Cas9-mediated saturated mutagenesis screen predicts clinical drug resistance with improved accuracy.

    Science.gov (United States)

    Ma, Leyuan; Boucher, Jeffrey I; Paulsen, Janet; Matuszewski, Sebastian; Eide, Christopher A; Ou, Jianhong; Eickelberg, Garrett; Press, Richard D; Zhu, Lihua Julie; Druker, Brian J; Branford, Susan; Wolfe, Scot A; Jensen, Jeffrey D; Schiffer, Celia A; Green, Michael R; Bolon, Daniel N

    2017-10-31

    Developing tools to accurately predict the clinical prevalence of drug-resistant mutations is a key step toward generating more effective therapeutics. Here we describe a high-throughput CRISPR-Cas9-based saturated mutagenesis approach to generate comprehensive libraries of point mutations at a defined genomic location and systematically study their effect on cell growth. As proof of concept, we mutagenized a selected region within the leukemic oncogene BCR-ABL1 Using bulk competitions with a deep-sequencing readout, we analyzed hundreds of mutations under multiple drug conditions and found that the effects of mutations on growth in the presence or absence of drug were critical for predicting clinically relevant resistant mutations, many of which were cancer adaptive in the absence of drug pressure. Using this approach, we identified all clinically isolated BCR-ABL1 mutations and achieved a prediction score that correlated highly with their clinical prevalence. The strategy described here can be broadly applied to a variety of oncogenes to predict patient mutations and evaluate resistance susceptibility in the development of new therapeutics. Published under the PNAS license.

  17. Managing Hidden Costs of Offshoring

    DEFF Research Database (Denmark)

    Larsen, Marcus M.; Pedersen, Torben

    2014-01-01

    This chapter investigates the concept of the ‘hidden costs’ of offshoring, i.e. unexpected offshoring costs exceeding the initially expected costs. Due to the highly undefined nature of these costs, we position our analysis towards the strategic responses of firms’ realisation of hidden costs....... In this regard, we argue that a major response to the hidden costs of offshoring is the identification and utilisation of strategic mechanisms in the organisational design to eventually achieving system integration in a globally dispersed and disaggregated organisation. This is heavily moderated by a learning......-by-doing process, where hidden costs motivate firms and their employees to search for new and better knowledge on how to successfully manage the organisation. We illustrate this thesis based on the case of the LEGO Group....

  18. The Hidden Costs of Offshoring

    DEFF Research Database (Denmark)

    Møller Larsen, Marcus; Manning, Stephan; Pedersen, Torben

    2011-01-01

    of offshoring. Specifically, we propose that hidden costs can be explained by the combination of increasing structural, operational and social complexity of offshoring activities. In addition, we suggest that firm orientation towards organizational design as part of an offshoring strategy and offshoring......This study seeks to explain hidden costs of offshoring, i.e. unexpected costs resulting from the relocation of business tasks and activities outside the home country. We develop a model that highlights the role of complexity, design orientation and experience in explaining hidden costs...... experience moderate the relationship between complexity and hidden costs negatively i.e. reduces the cost generating impact of complexity. We develop three hypotheses and test them on comprehensive data from the Offshoring Research Network (ORN). In general, we find support for our hypotheses. A key result...

  19. HIV-1 Drug Resistance Mutations Among Antiretroviral-Naïve HIV-1–Infected Patients in Asia: Results From the TREAT Asia Studies to Evaluate Resistance-Monitoring Study

    Science.gov (United States)

    Oyomopito, Rebecca; Sirivichayakul, Sunee; Sirisanthana, Thira; Kantipong, Pacharee; Lee, Christopher K. C.; Kamarulzaman, Adeeba; Messerschmidt, Liesl; Law, Matthew G.; Phanuphak, Praphan

    2011-01-01

    (See editorial commentary by Jordan on pages 1058–1060.) Of 682 antiretroviral-naïve patients initiating antiretroviral therapy in a prospective, multicenter human immunodeficiency virus type 1 (HIV-1) drug resistance monitoring study involving 8 sites in Hong Kong, Malaysia, and Thailand, the prevalence of patients with ≥1 drug resistance mutation was 13.8%. Primary HIV drug resistance is emerging after rapid scaling-up of antiretroviral therapy use in Asia. PMID:21460324

  20. Overcoming Resistance of Cancer Cells to PARP-1 Inhibitors with Three Different Drug Combinations.

    Directory of Open Access Journals (Sweden)

    Michal Yalon

    Full Text Available Inhibitors of poly[ADP-ribose] polymerase 1 (PARPis show promise for treatment of cancers which lack capacity for homologous recombination repair (HRR. However, new therapeutic strategies are required in order to overcome innate and acquired resistance to these drugs and thus expand the array of cancers that could benefit from them. We show that human cancer cell lines which respond poorly to ABT-888 (a PARPi, become sensitive to it when co-treated with vorinostat (a histone deacetylase inhibitor (HDACi. Vorinostat also sensitized PARPis insensitive cancer cell lines to 6-thioguanine (6-TG-a drug that targets PARPis sensitive cells. The sensitizing effect of vorinostat was associated with increased phosphorylation of eukaryotic initiation factor (eIF 2α which in and of itself increases the sensitivity of cancer cells to ABT-888. Importantly, these drug combinations did not affect survival of normal fibroblasts and breast cells, and significantly increased the inhibition of xenograft tumor growth relative to each drug alone, without affecting the mice weight or their liver and kidney function. Our results show that combination of vorinostat and ABT-888 could potentially prove useful for treatment of cancer with innate resistance to PARPis due to active HRR machinery, while the combination of vorinostat and 6-TG could potentially overcome innate or acquired resistance to PARPis due to secondary or reversal BRCA mutations, to decreased PARP-1 level or to increased expression of multiple drug resistant proteins. Importantly, drugs which increase phosphorylation of eIF2α may mimic the sensitizing effect of vorinostat on cellular response to PARPis or to 6-TG, without activating all of its downstream effectors.