WorldWideScience

Sample records for hhw collection facilities

  1. Characteristics and Generation of Household Hazardous Waste (HHW) in Semarang City Indonesia

    Science.gov (United States)

    Fikri, Elanda; Purwanto; Sunoko, Henna Rya

    2018-02-01

    Most of Household Hazardous Waste (HHW) is currently mixed with domestics waste. So that, it can impact human health and environmental quality. One important aspect in the management strategy is to determine the quantity generated and characteristics of HHW. The method used to determine the characteristics HHW refers to SNI 19-2454-2002, while the HHW generation refers to the SNI 19-3694-1994 calculated based on weight and volume. Research was conducted in four districts of Semarang. The samples used in this study were 400 families calculated based on the proportion of Slovin Formula. The characteristic of HHW in Semarang City is mainly infectious (79%), then poisonous (13%), combustible (6%) and corrosive materials (2%). The quantity HHW generated is 0.01 kg/person/day equivalent with 5.1% of municipal solid waste (MSW) in Semarang (linear equations : y=1,278x+82,00 (volume), y=0,216x+13,89 (weight).

  2. Characteristics and Generation of Household Hazardous Waste (HHW in Semarang City Indonesia

    Directory of Open Access Journals (Sweden)

    Fikri Elanda

    2018-01-01

    Full Text Available Most of Household Hazardous Waste (HHW is currently mixed with domestics waste. So that, it can impact human health and environmental quality. One important aspect in the management strategy is to determine the quantity generated and characteristics of HHW. The method used to determine the characteristics HHW refers to SNI 19-2454-2002, while the HHW generation refers to the SNI 19-3694-1994 calculated based on weight and volume. Research was conducted in four districts of Semarang. The samples used in this study were 400 families calculated based on the proportion of Slovin Formula. The characteristic of HHW in Semarang City is mainly infectious (79%, then poisonous (13%, combustible (6% and corrosive materials (2%. The quantity HHW generated is 0.01 kg/person/day equivalent with 5.1% of municipal solid waste (MSW in Semarang (linear equations : y=1,278x+82,00 (volume, y=0,216x+13,89 (weight.

  3. Education & Collection Facility GSHP Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Joplin, Jeff [Denver Museum of Nature and Science, Denver, CO (United States)

    2015-03-28

    The Denver Museum of Nature & Science (DMNS) designed and implemented an innovative ground source heat pump (GSHP) system for heating and cooling its new Education and Collection Facility (ECF) building addition. The project goal was to successfully design and install an open-loop GSHP system that utilized water circulating within an underground municipal recycled (non-potable) water system as the heat sink/source as a demonstration project. The expected results were to significantly reduce traditional GSHP installation costs while increasing system efficiency, reduce building energy consumption, require significantly less area and capital to install, and be economically implemented wherever access to a recycled water system is available. The project added to the understanding of GSHP technology by implementing the first GSHP system in the United States utilizing a municipal recycled water system as a heat sink/source. The use of this fluid through a GSHP system has not been previously documented. This use application presents a new opportunity for local municipalities to develop and expand the use of underground municipal recycled (non-potable) water systems. The installation costs for this type of technology in the building structure would be a cost savings over traditional GSHP costs, provided the local municipal infrastructure was developed. Additionally, the GSHP system functions as a viable method of heat sink/source as the thermal characteristics of the fluid are generally consistent throughout the year and are efficiently exchanged through the GSHP system and its components. The use of the recycled water system reduces the area required for bore or loop fields; therefore, presenting an application for building structures that have little to no available land use or access. This GSHP application demonstrates the viability of underground municipal recycled (non-potable) water systems as technically achievable, environmentally supportive, and an efficient

  4. Cold Vacuum Drying facility sanitary sewage collection system design description

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) sanitary sewage collection system. The sanitary sewage collection system provides collection and storage of effluents and raw sewage from the CVDF to support the cold vacuum drying process. This system is comprised of a sanitary sewage holding tank and pipes for collection and transport of effluents to the sanitary sewage holding tank

  5. Cold Vacuum Drying facility condensate collection system design description

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) condensate collection system (CCS). The function of the CCS is to collect cooling coil condensate from air-handling units in the CVDF and to isolate the condensate in collection tanks until the condensate is determined to be acceptable to drain to the effluent drain collection basin

  6. Characterization Of Core Sample Collected From The Saltstone Disposal Facility

    International Nuclear Information System (INIS)

    Cozzi, A.; Duncan, A.

    2010-01-01

    During the month of September 2008, grout core samples were collected from the Saltstone Disposal Facility, Vault 4, cell E. This grout was placed during processing campaigns in December 2007 from Deliquification, Dissolution and Adjustment Batch 2 salt solution. The 4QCY07 Waste Acceptance Criteria sample collected on 11/16/07 represents the salt solution in the core samples. Core samples were retrieved to initiate the historical database of properties of emplaced Saltstone and to demonstrate the correlation between field collected and laboratory prepared samples. Three samples were collected from three different locations. Samples were collected using a two-inch diameter concrete coring bit. In April 2009, the core samples were removed from the evacuated sample container, inspected, transferred to PVC containers, and backfilled with nitrogen. Samples furthest from the wall were the most intact cylindrically shaped cored samples. The shade of the core samples darkened as the depth of coring increased. Based on the visual inspection, sample 3-3 was selected for all subsequent analysis. The density and porosity of the Vault 4 core sample, 1.90 g/cm 3 and 59.90% respectively, were comparable to values achieved for laboratory prepared samples. X-ray diffraction analysis identified phases consistent with the expectations for hydrated Saltstone. Microscopic analysis revealed morphology features characteristic of cementitious materials with fly ash and calcium silicate hydrate gel. When taken together, the results of the density, porosity, x-ray diffraction analysis and microscopic analysis support the conclusion that the Vault 4, Cell E core sample is representative of the expected waste form.

  7. Considerations on collected data with the Low Frequency Facility experiment

    Energy Technology Data Exchange (ETDEWEB)

    Di Virgilio, A [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Polo Fibonacci Ed. C, via F. Buonarrori 2, Pisa (Italy); Cella, G [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Polo Fibonacci Ed. C, via F. Buonarrori 2, Pisa (Italy); Dattilo, V [EGO, European, Gravitational Observatory, Cascina (Italy); Frasconi, F [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Polo Fibonacci Ed. C, via F. Buonarrori 2, Pisa (Italy); Gennai, A [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Polo Fibonacci Ed. C, via F. Buonarrori 2, Pisa (Italy); Penna, P La [EGO, European, Gravitational Observatory, Cascina (Italy); Losurdo, G [INFN Sezione di Firenze, Sesto Fiorentino (Italy); Pasqualetti, A [EGO, European, Gravitational Observatory, Cascina (Italy); Passuello, D [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Polo Fibonacci Ed. C, via F. Buonarrori 2, Pisa (Italy); Piergiovanni, F [Universita di Urbino, Urbino (Italy); Porzio, A [Coherentia, CNR-INFM Napoli (Italy); Raffaelli, F [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Polo Fibonacci Ed. C, via F. Buonarrori 2, Pisa (Italy); Rapagnani, P [Universita di Roma, Roma1, Rome (Italy); Ricci, F [Universita di Roma, Roma1, Rome (Italy); Solimeno, S [Coherentia, CNR-INFM Napoli (Italy); Istituto Nazionale di Fisica Nucleare, Sez. Napoli, and Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' (Italy); Zhang, Z [EGO, European, Gravitational Observatory, Cascina (Italy)

    2006-03-02

    The Low Frequency Facility consists of a 1 cm Fabry-Perot cavity suspended to a single SuperAttenuator, which is the mechanical system adopted to isolate the test masses of the Virgo interferometer. In this paper we present the preliminary results of measurements performed with a cavity of finesse 4000 and lasting 1-2 hours in different working conditions. The analysis presented here is focused mainly on the region below 100 Hz, and uses data collected with longitudinal control bandwidth below 150 Hz. A calibration test confirmed that the collected data are in good agreement with the model of the longitudinal control loop based on the open loop measurements. In addition to this, above 2 Hz the power spectrum of the two mirrors relative displacement shows a stationary noise floor and few peaks with high mechanical quality factor. Studying these peaks in the time domain, it has been observed that the energy associated with a single peak is Boltzman distributed, whether the oscillations are not excited. The measured upper limit of the seismic noise contamination at 10 Hz is around 2 x 10{sup -14} m/{radical}Hz.

  8. 77 FR 3787 - Notice of Submission of Proposed Information Collection to OMB; Office of Hospital Facilities...

    Science.gov (United States)

    2012-01-25

    ... administration and initial/final endorsement of projects undertaken by Office of Hospital Facilities. DATES... Proposed Information Collection to OMB; Office of Hospital Facilities Transactional Forms for FHA Programs... Lists the Following Information Title of Proposal: Office of Hospital Facilities Transactional Forms for...

  9. Cold Vacuum Drying facility condensate collection system design description (SYS 19); FINAL

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) condensate collection system (CCS). The function of the CCS is to collect cooling coil condensate from air-handling units in the CVDF and to isolate the condensate in collection tanks until the condensate is determined to be acceptable to drain to the effluent drain collection basin

  10. Hand held data collection and monitoring system for nuclear facilities

    Science.gov (United States)

    Brayton, D.D.; Scharold, P.G.; Thornton, M.W.; Marquez, D.L.

    1999-01-26

    Apparatus and method is disclosed for a data collection and monitoring system that utilizes a pen based hand held computer unit which has contained therein interaction software that allows the user to review maintenance procedures, collect data, compare data with historical trends and safety limits, and input new information at various collection sites. The system has a means to allow automatic transfer of the collected data to a main computer data base for further review, reporting, and distribution purposes and uploading updated collection and maintenance procedures. The hand held computer has a running to-do list so sample collection and other general tasks, such as housekeeping are automatically scheduled for timely completion. A done list helps users to keep track of all completed tasks. The built-in check list assures that work process will meet the applicable processes and procedures. Users can hand write comments or drawings with an electronic pen that allows the users to directly interface information on the screen. 15 figs.

  11. Hand held data collection and monitoring system for nuclear facilities

    International Nuclear Information System (INIS)

    Brayton, D.D.; Scharold, P.G.; Thornton, M.W.; Marquez, D.L.

    1999-01-01

    Apparatus and method is disclosed for a data collection and monitoring system that utilizes a pen based hand held computer unit which has contained therein interaction software that allows the user to review maintenance procedures, collect data, compare data with historical trends and safety limits, and input new information at various collection sites. The system has a means to allow automatic transfer of the collected data to a main computer data base for further review, reporting, and distribution purposes and uploading updated collection and maintenance procedures. The hand held computer has a running to-do list so sample collection and other general tasks, such as housekeeping are automatically scheduled for timely completion. A done list helps users to keep track of all completed tasks. The built-in check list assures that work process will meet the applicable processes and procedures. Users can hand write comments or drawings with an electronic pen that allows the users to directly interface information on the screen. 15 figs

  12. The adequacy of the facility and the location of waste collection

    Science.gov (United States)

    Ulrich-Supovec, Marjana

    2017-07-01

    The purpose of this article is to summarise some provisions of the legislation applicable in the territory of the Republic of Slovenia that have to be complied with when selecting facilities intended for waste collection. In addition to equipment, the adequacy of such facility also depends on its site. Not only waste management legislation and environment protection legislation, but also legislation governing water, nature preservation and conservation, natural and cultural heritage and mining legislation stipulate the possibility of using facilities where collectors can sort and store waste before depositing it for subsequent management. This paper presents location examples where various factors exclude the possibility of using facilities as waste collection centres.

  13. Cold Vacuum Drying Facility Condensate Collection System Design Description. System 19

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    2000-01-01

    The Cold Vacuum Drying (CVD) Facility of Spent Nuclear Fuel (SNF) provides required process systems, supporting equipment, and facilities to support the SNF Project mission. This system design description (SDD) addresses the Condensate Collection System (CCS). This is a general service system. The CCS begins at the condensate outlet of the general process air-handling unit (AHU) and the condensate outlets for the active process bays AHUs. The system terminates at each condensate collection tank (5 total)

  14. 77 FR 74512 - Interim Policy Leasing for Renewable Energy Data Collection Facility on the Outer Continental...

    Science.gov (United States)

    2012-12-14

    ... Company to conduct data collection and technology testing activities in one of the following ways: 1... Management Service, now BOEM, announced an interim policy for authorizing the issuance of leases for the installation of offshore data collection and technology testing facilities on the OCS (72 FR 62673). An...

  15. The adequacy of the facility and the location of waste collection

    Directory of Open Access Journals (Sweden)

    Ulrich-Supovec Marjana

    2017-07-01

    Full Text Available The purpose of this article is to summarise some provisions of the legislation applicable in the territory of the Republic of Slovenia that have to be complied with when selecting facilities intended for waste collection. In addition to equipment, the adequacy of such facility also depends on its site. Not only waste management legislation and environment protection legislation, but also legislation governing water, nature preservation and conservation, natural and cultural heritage and mining legislation stipulate the possibility of using facilities where collectors can sort and store waste before depositing it for subsequent management. This paper presents location examples where various factors exclude the possibility of using facilities as waste collection centres.

  16. Adapting federated cyberinfrastructure for shared data collection facilities in structural biology

    International Nuclear Information System (INIS)

    Stokes-Rees, Ian; Levesque, Ian; Murphy, Frank V. IV; Yang, Wei; Deacon, Ashley; Sliz, Piotr

    2012-01-01

    It has been difficult, historically, to manage and maintain early-stage experimental data collected by structural biologists in synchrotron facilities. This work describes a prototype system that adapts existing federated cyberinfrastructure technology and techniques to manage collected data at synchrotrons and to facilitate the efficient and secure transfer of data to the owner's home institution. Early stage experimental data in structural biology is generally unmaintained and inaccessible to the public. It is increasingly believed that this data, which forms the basis for each macromolecular structure discovered by this field, must be archived and, in due course, published. Furthermore, the widespread use of shared scientific facilities such as synchrotron beamlines complicates the issue of data storage, access and movement, as does the increase of remote users. This work describes a prototype system that adapts existing federated cyberinfrastructure technology and techniques to significantly improve the operational environment for users and administrators of synchrotron data collection facilities used in structural biology. This is achieved through software from the Virtual Data Toolkit and Globus, bringing together federated users and facilities from the Stanford Synchrotron Radiation Lightsource, the Advanced Photon Source, the Open Science Grid, the SBGrid Consortium and Harvard Medical School. The performance and experience with the prototype provide a model for data management at shared scientific facilities

  17. Adapting federated cyberinfrastructure for shared data collection facilities in structural biology

    Energy Technology Data Exchange (ETDEWEB)

    Stokes-Rees, Ian [Harvard Medical School, Boston, MA 02115 (United States); Levesque, Ian [Harvard Medical School, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States); Murphy, Frank V. IV [Argonne National Laboratory, Argonne, IL 60439 (United States); Yang, Wei; Deacon, Ashley [Stanford University, Menlo Park, CA 94025 (United States); Sliz, Piotr, E-mail: piotr-sliz@hms.harvard.edu [Harvard Medical School, Boston, MA 02115 (United States)

    2012-05-01

    It has been difficult, historically, to manage and maintain early-stage experimental data collected by structural biologists in synchrotron facilities. This work describes a prototype system that adapts existing federated cyberinfrastructure technology and techniques to manage collected data at synchrotrons and to facilitate the efficient and secure transfer of data to the owner's home institution. Early stage experimental data in structural biology is generally unmaintained and inaccessible to the public. It is increasingly believed that this data, which forms the basis for each macromolecular structure discovered by this field, must be archived and, in due course, published. Furthermore, the widespread use of shared scientific facilities such as synchrotron beamlines complicates the issue of data storage, access and movement, as does the increase of remote users. This work describes a prototype system that adapts existing federated cyberinfrastructure technology and techniques to significantly improve the operational environment for users and administrators of synchrotron data collection facilities used in structural biology. This is achieved through software from the Virtual Data Toolkit and Globus, bringing together federated users and facilities from the Stanford Synchrotron Radiation Lightsource, the Advanced Photon Source, the Open Science Grid, the SBGrid Consortium and Harvard Medical School. The performance and experience with the prototype provide a model for data management at shared scientific facilities.

  18. Adapting federated cyberinfrastructure for shared data collection facilities in structural biology.

    Science.gov (United States)

    Stokes-Rees, Ian; Levesque, Ian; Murphy, Frank V; Yang, Wei; Deacon, Ashley; Sliz, Piotr

    2012-05-01

    Early stage experimental data in structural biology is generally unmaintained and inaccessible to the public. It is increasingly believed that this data, which forms the basis for each macromolecular structure discovered by this field, must be archived and, in due course, published. Furthermore, the widespread use of shared scientific facilities such as synchrotron beamlines complicates the issue of data storage, access and movement, as does the increase of remote users. This work describes a prototype system that adapts existing federated cyberinfrastructure technology and techniques to significantly improve the operational environment for users and administrators of synchrotron data collection facilities used in structural biology. This is achieved through software from the Virtual Data Toolkit and Globus, bringing together federated users and facilities from the Stanford Synchrotron Radiation Lightsource, the Advanced Photon Source, the Open Science Grid, the SBGrid Consortium and Harvard Medical School. The performance and experience with the prototype provide a model for data management at shared scientific facilities.

  19. New requirements to collect operational data that are essential for facility decommissioning

    International Nuclear Information System (INIS)

    Kristofova, K.; Valcuha, P.

    2017-01-01

    The paper describes the features of the first nuclear regulatory safety guide to be released by the Nuclear Regulatory Authority of the Slovak Republic (UJD SR) in field of decommissioning. This safety guide specifies requirements to collect those nuclear facility operational data that are essential for its decommissioning. Recommendations of international organisations as well as experience in selected countries are provided. The following operational data types necessary for decommissioning process are identified and analysed: design documentation including modifications and changes during operation, photo-documentation, operational events and material and radiological inventory of the nuclear facility. The guide establishes requirements for collection of the operational data that can be recorded in interconnected database modules. In addition, a structure of decommissioning database is proposed, representing material and radiological inventory of a nuclear facility. This inventory database forms a basis for planning of the decommissioning process. At last, the guide summarises recommendations for data collection, archiving and maintenance of database records and also their applications in safety documentation necessary for decommissioning of nuclear facilities in Slovakia. (authors)

  20. Data collection, validation, and description for the Oak Ridge nuclear facilities mortality study

    International Nuclear Information System (INIS)

    Watkins, J.P.; Reagan, J.L.; Cragle, D.L.; West, C.M.; Tankersley, W.G.; Crawford-Brown, D.J.

    1995-01-01

    To investigate the long-term health effects of protracted occupational exposure to low levels of ionizing radiation, a mortality study was initiated by pooling data for 118,588 workers hired between 1943 and 1982, at three Department of Energy (DOE) facilities in Oak Ridge, Tennessee, with follow-up through 1984. Topics for this discussion will include issues involving the collection and validation of data for individuals in the study cohort, and characteristics of their demographic and radiation exposure data. Since the data were compiled between the late 1960s and the present under the direction of several principal investigators, it was essential to verify data precision and to understand how exposure data were generated prior to beginning any analysis. A stratified random sample of workers in the cohort was chosen for verification of their computerized data as it appeared in the database. Original source documents were reviewed to verify demographic data, as well as internal and external radiation exposure data. Extensive effort was expended to document the personal radiation monitoring policies and types of dosimeters used at each facility over the 42 years included in the study. Characteristics of internal and external exposure data by facility and year were examined by graphical methods with the intent of combining these monitoring data over time and across facilities

  1. Uranium isotopic signatures measured in samples of dirt collected at two former uranium facilities

    International Nuclear Information System (INIS)

    Meyers, L.A.; Stalcup, A.M.; LaMont, S.P.; Spitz, H.B.

    2014-01-01

    Nuclear forensics is a multidisciplinary science that uses a variety of analytical methods and tools to explore the physical, chemical, and isotopic characteristics of nuclear and radiological materials. These characteristics, when evaluated alone or in combination, become signatures that may reveal how and when the material was fabricated. The signatures contained in samples of dirt collected at two different uranium metal processing facilities in the United States were evaluated to determine uranium isotopic composition and compare results with processes that were conducted at these sites. One site refined uranium and fabricated uranium metal ingots for fuel and targets and the other site rolled hot forged uranium and other metals into dimensional rods. Unique signatures were found that are consistent with the activities and processes conducted at each facility and establish confidence in using these characteristics to reveal the provenance of other materials that exhibit similar signatures. (author)

  2. GIS DATA COLLECTION FOR PEDESTRIAN FACILITIES AND FURNITURE USING MAPINR FOR ANDROID

    Directory of Open Access Journals (Sweden)

    N. Naharudin

    2016-09-01

    Full Text Available Mobile GIS is introduced to reduce the time taken in completing the field data collection procedure. With the expansion of technology today, mobile GIS is not far behind. It can be integrated with the high-end innovation tools like smartphones. Spatial data capture which deemed to be the toughest stage of a GIS project is made simple with this method. Many studies had demonstrated the usage of mobile GIS in collecting spatial data and this paper discusses how it can be applied in capturing the GPS location of pedestrian furniture and facilities. Although some of the spatial data are available from local agencies, still a more detailed data is needed to create a better data model for this study. This study uses a free android application, MAPinr, which is available on the Google PlayStore to collect spatial data on site. It adopted the GNSS and cellular network positioning to locate the position of the required data. As the application allows the captured data to be exported to a GIS platform, the geometric error of the data was improved. In the end, an authenticated spatial dataset comprising pedestrian facilities and furniture in point and line form will be produced and later be used in a pedestrian network analysis study.

  3. GIS Data Collection for Pedestrian Facilities and Furniture Using Mapinr for Android

    Science.gov (United States)

    Naharudin, N.; Ahamad, M. S. S.; Sadullah, A. F. M.

    2016-09-01

    Mobile GIS is introduced to reduce the time taken in completing the field data collection procedure. With the expansion of technology today, mobile GIS is not far behind. It can be integrated with the high-end innovation tools like smartphones. Spatial data capture which deemed to be the toughest stage of a GIS project is made simple with this method. Many studies had demonstrated the usage of mobile GIS in collecting spatial data and this paper discusses how it can be applied in capturing the GPS location of pedestrian furniture and facilities. Although some of the spatial data are available from local agencies, still a more detailed data is needed to create a better data model for this study. This study uses a free android application, MAPinr, which is available on the Google PlayStore to collect spatial data on site. It adopted the GNSS and cellular network positioning to locate the position of the required data. As the application allows the captured data to be exported to a GIS platform, the geometric error of the data was improved. In the end, an authenticated spatial dataset comprising pedestrian facilities and furniture in point and line form will be produced and later be used in a pedestrian network analysis study.

  4. CERN-MEDICIS (Medical Isotopes Collected from ISOLDE: A New Facility

    Directory of Open Access Journals (Sweden)

    Ricardo Manuel dos Santos Augusto

    2014-05-01

    Full Text Available About 50% of the 1.4 GeV CERN (European Organization for Nuclear Research, www.cern.ch protons are sent onto targets to produce radioactive beams by online mass separation at the Isotope Separator Online Device (ISOLDE facility, for a wide range of studies in fundamental and applied physics. CERN-MEDICIS is a spin-off dedicated to R&D in life sciences and medical applications. It is located in an extension of the Class A building presently under construction. It will comprise laboratories to receive the irradiated targets from a new station located at the dump position behind the ISOLDE production targets. An increasing range of innovative isotopes will thus progressively become accessible from the start-up of the facility in 2015 onward; for fundamental studies in cancer research, for new imaging and therapy protocols in cell and animal models and for pre-clinical trials, possibly extended to specific early phase clinical studies up to Phase I trials. Five hundred megabecquerel isotope batches purified by electromagnetic mass separation combined with chemical methods will be collected on a weekly basis. A possible future upgrade with gigabecquerel pharmaceutical-grade i.e., current good manufacturing practices (cGMP batch production capabilities is finally presented.

  5. Estimating collective dose in nuclear facilities, with emphasis on the design process

    International Nuclear Information System (INIS)

    Cohen, S.; Mann, B.

    1987-01-01

    The report presents a more accurate, systematic method than has been available previously for predicting worker doses which might be incurred during routine and non-routine work in radioactive areas. Besides assisting regulators with an analysis of the ''potential impact on radiological exposures of facility employees'' now required under the new backfit rule (10 CFR 50.109c), this predictive model will also help licensees conserve dollars as well as dose because it can be employed very early in the engineering design phase of a modification, when adjustments can still be made easily to change orders. Such early estimates make good business sense because they will facilitate planning, labor loading, costing, resource and equipment scheduling, and overall coordination of both single and repetitive projects. Also, with the support of corporate management, radiation protection coordinators can introduce the model into training programs to acquaint design engineers and others with dose calculation techniques. The importance assigned by nuclear industry senior management to the principle of ALARA and the reduction of collective worker dose is measured, in large part, by demonstrated efforts to integrate the control of radiation exposure fully into the overall planning function of nuclear facility management. That integration will be fostered through the use of this approach

  6. Chemical Characterization and Behavior of Respirable Fractions of Indoor Dusts Collected Near a Landfill Facility

    Directory of Open Access Journals (Sweden)

    Rheo B. Lamorena-Lim

    2016-06-01

    Full Text Available The study aims to determine the inorganic and organic phases in airborne particulate matter (PM collected near a landf ill facility. The establishments within the vicinity of the landfill considered in the study were a junk shop, a school, and a money changer shop. From the elemental analysis using inductively-coupled plasma mass spectrometry (ICP-MS, lead and cadmium were discovered to be more abundant in the total suspended particulate (TSP fraction, whereas copper was more abundant in the smaller PM2.5. Manganese, arsenic, strontium, cadmium, and lead were more abundant in the PM10 fraction than in PM2.5. The results of the chemical characterization were compiled and evaluated in a geochemical modelling code (PHREEQC to determine the potential speciation of these chemical constituents. Solution complexes of As, Pb, Cd and phthalates, and metal species, such as H2AsO3- , Cd2OH3+, Pb(OH3-, were predicted to form by the PHREEQC simulation runs once the endmember components interact with water. The results contribute to the background information on the potential impacts from exposure to airborne PM at workplaces around landfill facilities. Moreover, the data gathered provide a baseline for the chemical characterization and behavior of chemical constituents of PM possibly present in this specific type of environment.

  7. Minthorn Springs Creek Summer Juvenile Release and Adult Collection Facility; 1994 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rowan, Gerald D.

    1995-05-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Oregon Department of Fish and Wildlife (ODFW) are cooperating in a joint effort to enhance steelhead and re-establish salmon runs in the Umatilla River Basin. Bonifer Pond, Minthorn Springs and Imeques C-mem-ini-kem acclimation facilities are operated for acclimation and release of juvenile summer steelhead (Oncorhynchus mykiss), fall and spring chinook salmon (O. tshawytscha) and coho salmon (O, kisutch). Minthorn is also used for holding and spawning summer steelhead, fall chinook and coho salmon. In the spring of 1994, juvenile summer steelhead were acclimated at Bonifer and Minthorn. At Imeques C-mem-ini-kem, juvenile spring chinook were acclimated in the spring and fall. A total of 92 unmarked and 42 marked summer steelhead were collected for broodstock at Three Mile Dam from October 1, 1993 through May 2, 1994 and held at Minthorn. An estimated 234,432 green eggs were taken from 48 females. The eggs were transferred to Irrigon Hatchery for incubation and early rearing. Fingerlings were transferred to Umatilla Hatchery for final rearing and release into the Umatilla River in 1995. Fall chinook and coho salmon broodstock were not collected in 1994. Coded-wire tag recovery information was accessed to determine the contribution of Umatilla River releases to ocean, Columbia River and Umatilla River fisheries. Total estimated juvenile adult survival rates are detailed in this document.

  8. Information collection regarding geoscientific monitoring techniques during closure of underground facility in crystalline rock

    International Nuclear Information System (INIS)

    Hosoya, Shinichi; Yamashita, Tadashi; Iwatsuki, Teruki; Saegusa, Hiromitsu; Onoe, Hironori; Ishibashi, Masayuki

    2016-01-01

    The Mizunami Underground Research Laboratory (MIU) project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of geological disposal technologies through investigations of the deep geological environment in the crystalline host rock (granite) at Mizunami City in Gifu Prefecture, central Japan. On the occasion of the reform of the entire JAEA organization in 2014, JAEA identified the critical issues on the geoscientific research program: “Development of modelling technologies for mass transport”, “Development of drift backfilling technologies” and “Development of technologies for reducing groundwater inflow”, based on the latest results of the synthesizing R and D. The purposes of the “Development of drift backfilling technologies” are to develop closure methodology and technology, and long-term monitoring technology, and to evaluate resilience of geological environment. In order to achieve the purposes, previous information from the case example of underground facility constructed in crystalline rock in Europe has been collected in this study. In particular, the boundary conditions for the closure, geological characteristics, technical specifications, and method of monitoring have been focused. The information on the international project regarding drift closure test and development of monitoring technologies has also been collected. In addition, interviews were conducted to Finnish and Swedish specialists who have experiences involving planning, construction management, monitoring, and safety assessment for the closure to obtain the technical knowledge. Based on the collected information, concept and point of attention, which are regarding drift closure testing, and planning, execution management and monitoring on the closure of MIU, have been specified. (author)

  9. Characterization of uranium in surface-waters collected at the Rocky Flats Facility

    International Nuclear Information System (INIS)

    Efurd, D.W.; Rokop, D.J.; Aguilar, R.D.; Roensch, F.R.; Perrin, R.E.; Banar, J.C.

    1994-01-01

    The Rocky Flats Plant (RFP) is a Department of Energy (DOE) facility where plutonium and uranium components were manufactured for nuclear weapons. During plant operations radioactivity was inadvertently released into the environment. This study was initiated to characterize the uranium present in surface-waters at RFP. Three drainage basins and natural ephemeral streams transverse RFP. The Woman Creek drainage basin traverses and drains the southern portion of the site. The Rock Creek drainage basin drains the northwestern portion of the plant complex. The Walnut Creek drainage basin traverses the western, northern, and northeastern portions of the RFP site. Dams, detention ponds, diversion structures, and ditches have been constructed at RFP to control the release of plant discharges and surface (storm water) runoff. The ponds located downstream of the plant complex on North Walnut Creek are designated A-1 through A-4. Ponds on South Walnut Creek are designated B-1 through B-5. The ponds in the Woman Creek drainage basin are designated C-1 and C-2. Water samples were collected from each pond and the uranium was characterized by TIMS measurement techniques

  10. Aerosols from metal cutting techniques typical of decommissioning nuclear facilities - experimental system for collection and characterization

    International Nuclear Information System (INIS)

    Newton, G.J.; Hoover, M.D.; Barr, E.B.; Wong, B.A.; Ritter, P.D.

    1982-01-01

    Decommissioning of radioactively contaminated sites has the potential for creating radioactive and other potentially toxic aerosols. We describe an experimental system to collect and characterize aerosols from metal cutting activities typical of those used in decommissioning of nuclear facilities. A special enclosure was designed for the experiment and consisted of a 2-in. x 4-in. stud frame with double walls of flame retardant polyethylene film. Large plexiglass windows allowed the cutting operations to be directed and filmed. Ventilation was 8500 L/min (300 CFM) exhausted through HEPA filters. Seven cutting techniques were evaluated: pipe cutter, reciprocating saw, band saw, chop saw, oxy-acetylene torch, electric arc cut rod and plasma torch. Two grinding tools were also evaluated. Materials cut were 2-, 3- and 4-in. dia schedule 40, 80 and 180 type 304L stainless steel pipe. Basic studies were done on uncontaminated pipe. Four-inch-diameter sections of schedule 180 type 304L stainless steel pipe with radioactively contaminated internal surfaces were also cut. The experiments controlled important variables including tools, cutting technique, and type and thickness of material. 15 references, 4 figures, 2 tables

  11. CERN-MEDICIS (MEDical Isotopes Collected from ISOLDE): A new facility

    CERN Document Server

    Augusto, Ricardo Manuel dos Santos; Lawson, Zoe; Marzari, Stefano; Stachura, Monika; Stora, Thierry; CERN. Geneva. ATS Department

    2014-01-01

    About 50% of the 1.4GeV CERN’s protons are sent onto targets to produce radioactive beams by online mass separation at ISOLDE, for a wide range of studies in fundamental and applied physics. CERN-MEDICIS is a spin-off dedicated to R&D in life sciences and medical applications. It is located in an extension of the Class A building presently under construction. It will comprise laboratories to receive the irradiated targets from a new station located at the dump position behind the ISOLDE production targets. An increasing range of innovative isotopes will thus progressively become accessible from the start-up of the facility in 2015 onward; for fundamental studies in cancer research, for new imaging and therapy protocols in cell and animal models and for pre-clinical trials, possibly extended to specific early phase clinical studies up to phase I trials. 500 MBq isotope batches purified by electromagnetic mass separation combined with chemical methods will be collected on a weekly basis. Possible future u...

  12. Inventory of closed mine waste facilities in Northern Ireland. Phase 1, data collection and categorisation

    OpenAIRE

    Palumbo-Roe, B.; Linley, K.; Cameron, D.; Mankelow, J.

    2013-01-01

    This mid-project report is a required deliverable for a BGS project commissioned by the Northern Ireland Department of the Environment (DoENI) to assist in their implementation of the EU Mine Waste Directive (MWD) with regards to Article 20 − Inventory of closed waste facilities. The objective of this project is to address the requirement of the EU Directive for an inventory of closed waste facilities, including abandoned facilities, which cause or could potentially cause serious negative env...

  13. Library Facility Siting and Location Handbook. The Greenwood Library Management Collection.

    Science.gov (United States)

    Koontz, Christine M.

    This handbook is a guide to the complex process of library facility siting and location. It includes relevant research and professionals' siting experiences, as well as actual case studies of closures, openings, mergers, and relocations of library facilities. While the bulk of the volume provides practical information, the work also presents an…

  14. Minthorn Springs Creek summer juvenile release and adult collection facility: Annual report 1992; ANNUAL

    International Nuclear Information System (INIS)

    Rowan, Gerald D.

    1993-01-01

    The Confederated Tribes of the Umatilla Indian Reservation (CT'UIR) and Oregon Department of Fish and Wildlife (ODFW) are cooperating in a joint effort to supplement steelhead and re-establish salmon runs in the Umatilla River Basin. As an integral part of this program, Bonifer and Minthorn Acclimation Facilities are operated for holding and spawning adult steelhead and fall chinook salmon and acclimation and release of juvenile salmon and steelhead. Acclimation of 109,101 spring chinook salmon and 19,977 summer steelhead was completed at Bonifer in the spring of 1992. At Minthorn, 47,458 summer steelhead were acclimated and released. Control groups of spring chinook salmon were released instream concurrent with the acclimated releases to evaluate the effects of acclimation on adult returns to the Umatilla River. Acclimation studies with summer steelhead were not conducted in 1992. A total of 237 unmarked adult steelhead were collected for broodstock at Three Mile Dam from October 18, 1991 through April 24, 1992 and held at Minthorn. Utilizing a 3 x 3 spawning matrix, a total of 476,871 green eggs were taken from 86 females. The eggs were transferred to Umatilla Hatchery for incubation, rearing, and later release into the Umatilla River. A total of 211 fall chinook salmon were also collected for broodstock at Three Mile Dam and held at Minthorn. Using a 1:1 spawning ratio, a total of 195,637 green eggs were taken from 58 females. They were also transferred to Umatilla Hatchery for incubation, rearing, and later release into the Umatilla River. Personnel from the ODFW Eastern Oregon Fish Pathology Laboratory in La Grande took samples of tissues and reproductive fluids from Umatilla River summer steelhead and fall chinook salmon broodstock for monitoring and evaluation purposes. Cell culture assays for replicating agents, including IHNV virus, on all spawned fish were negative. One of 60 summer steelhead tested positive for EIBS virus, while all fall chinook tested

  15. Distribution Coeficients (Kd) Generated From A Core Sample Collected From The Saltstone Disposal Facility

    International Nuclear Information System (INIS)

    Almond, P.; Kaplan, D.

    2011-01-01

    Core samples originating from Vault 4, Cell E of the Saltstone Disposal Facility (SDF) were collected in September of 2008 (Hansen and Crawford 2009, Smith 2008) and sent to SRNL to measure chemical and physical properties of the material including visual uniformity, mineralogy, microstructure, density, porosity, distribution coefficients (K d ), and chemical composition. Some data from these experiments have been reported (Cozzi and Duncan 2010). In this study, leaching experiments were conducted with a single core sample under conditions that are representative of saltstone performance. In separate experiments, reducing and oxidizing environments were targeted to obtain solubility and Kd values from the measurable species identified in the solid and aqueous leachate. This study was designed to provide insight into how readily species immobilized in saltstone will leach from the saltstone under oxidizing conditions simulating the edge of a saltstone monolith and under reducing conditions, targeting conditions within the saltstone monolith. Core samples were taken from saltstone poured in December of 2007 giving a cure time of nine months in the cell and a total of thirty months before leaching experiments began in June 2010. The saltstone from Vault 4, Cell E is comprised of blast furnace slag, class F fly ash, portland cement, and Deliquification, Dissolution, and Adjustment (DDA) Batch 2 salt solution. The salt solution was previously analyzed from a sample of Tank 50 salt solution and characterized in the 4QCY07 Waste Acceptance Criteria (WAC) report (Zeigler and Bibler 2009). Subsequent to Tank 50 analysis, additional solution was added to the tank solution from the Effluent Treatment Project as well as from inleakage from Tank 50 pump bearings (Cozzi and Duncan 2010). Core samples were taken from three locations and at three depths at each location using a two-inch diameter concrete coring bit (1-1, 1-2, 1-3; 2-1, 2-2, 2-3; 3-1, 3-2, 3-3) (Hansen and Crawford

  16. DISTRIBUTION COEFICIENTS (KD) GENERATED FROM A CORE SAMPLE COLLECTED FROM THE SALTSTONE DISPOSAL FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Almond, P.; Kaplan, D.

    2011-04-25

    Core samples originating from Vault 4, Cell E of the Saltstone Disposal Facility (SDF) were collected in September of 2008 (Hansen and Crawford 2009, Smith 2008) and sent to SRNL to measure chemical and physical properties of the material including visual uniformity, mineralogy, microstructure, density, porosity, distribution coefficients (K{sub d}), and chemical composition. Some data from these experiments have been reported (Cozzi and Duncan 2010). In this study, leaching experiments were conducted with a single core sample under conditions that are representative of saltstone performance. In separate experiments, reducing and oxidizing environments were targeted to obtain solubility and Kd values from the measurable species identified in the solid and aqueous leachate. This study was designed to provide insight into how readily species immobilized in saltstone will leach from the saltstone under oxidizing conditions simulating the edge of a saltstone monolith and under reducing conditions, targeting conditions within the saltstone monolith. Core samples were taken from saltstone poured in December of 2007 giving a cure time of nine months in the cell and a total of thirty months before leaching experiments began in June 2010. The saltstone from Vault 4, Cell E is comprised of blast furnace slag, class F fly ash, portland cement, and Deliquification, Dissolution, and Adjustment (DDA) Batch 2 salt solution. The salt solution was previously analyzed from a sample of Tank 50 salt solution and characterized in the 4QCY07 Waste Acceptance Criteria (WAC) report (Zeigler and Bibler 2009). Subsequent to Tank 50 analysis, additional solution was added to the tank solution from the Effluent Treatment Project as well as from inleakage from Tank 50 pump bearings (Cozzi and Duncan 2010). Core samples were taken from three locations and at three depths at each location using a two-inch diameter concrete coring bit (1-1, 1-2, 1-3; 2-1, 2-2, 2-3; 3-1, 3-2, 3-3) (Hansen and

  17. 78 FR 17680 - Information Collection Request; Chemical Facility Anti-Terrorism Standards Personnel Surety Program

    Science.gov (United States)

    2013-03-22

    ... Total Burden Cost (Capital/Startup) [cir] Estimating Capital Costs for Option 3--Number and Type of High... Department to take advantage of the vetting for terrorist ties already being conducted on affected... Department anticipates that many high-risk chemical facilities will rely on businesses that provide contract...

  18. 77 FR 31017 - Office of Facilities Management and Program Services; Information Collection; Background...

    Science.gov (United States)

    2012-05-24

    ... 3090-0287, Background Investigations for Child Care Workers. Instructions: Please submit comments only... request for review and approval for background check investigations of child care workers, form GSA 176C... Child Care Workers AGENCY: Office of Facilities Management and Program Services, Public Building Service...

  19. Recent developments in the Los Alamos National Laboratory Plutonium Facility Waste Tracking System-automated data collection pilot project

    International Nuclear Information System (INIS)

    Martinez, B.; Montoya, A.; Klein, W.

    1999-01-01

    The waste management and environmental compliance group (NMT-7) at the Los Alamos National Laboratory has initiated a pilot project for demonstrating the feasibility and utility of automated data collection as a solution for tracking waste containers at the Los Alamos National Laboratory Plutonium Facility. This project, the Los Alamos Waste Tracking System (LAWTS), tracks waste containers during their lifecycle at the facility. LAWTS is a two-tiered system consisting of a server/workstation database and reporting engine and a hand-held data terminal-based client program for collecting data directly from tracked containers. New containers may be added to the system from either the client unit or from the server database. Once containers are in the system, they can be tracked through one of three primary transactions: Move, Inventory, and Shipment. Because LAWTS is a pilot project, it also serves as a learning experience for all parties involved. This paper will discuss many of the lessons learned in implementing a data collection system in the restricted environment. Specifically, the authors will discuss issues related to working with the PPT 4640 terminal system as the data collection unit. They will discuss problems with form factor (size, usability, etc.) as well as technical problems with wireless radio frequency functions. They will also discuss complications that arose from outdoor use of the terminal (barcode scanning failures, screen readability problems). The paper will conclude with a series of recommendations for proceeding with LAWTS based on experience to date

  20. Minthorn Springs Creek summer juvenile release and adult collection facility : annual report 1990.; ANNUAL

    International Nuclear Information System (INIS)

    Lofy, Peter T.; Rowan, Gerald D.

    1991-01-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Oregon Department of Fish and Wildlife (ODFW) are cooperating in a joint effort to increase steelhead and re-establish salmon runs in the Umatilla River Basin. As part of this program, Bonifer and Minthorn Acclimation Facilities are operated for holding and spawning adult steelhead and acclimation and release of juvenile salmon and steelhead. Regularly-scheduled maintenance was completed in 1990. Equipment and pumps received maintenance and repair. Two of the Minthorn and all of the Bonifer pond outlet screens were replaced with vertical bars to alleviate clogging problems. A horizontal bar screen was installed in the water control structure at the largest spring at Bonifer to prevent fish from migrating upstream during acclimation. A pipe was installed under the railroad tracks at Bonifer to make unloading of fish from transport trucks easier and safer. The Minthorn access road was repaired to provide better access for delivery of fish to the facility and for general operations and maintenance

  1. GIS DATA COLLECTION FOR PEDESTRIAN FACILITIES AND FURNITURE USING MAPINR FOR ANDROID

    OpenAIRE

    N. Naharudin; M. S. S. Ahamad; A. F. M. Sadullah

    2016-01-01

    Mobile GIS is introduced to reduce the time taken in completing the field data collection procedure. With the expansion of technology today, mobile GIS is not far behind. It can be integrated with the high-end innovation tools like smartphones. Spatial data capture which deemed to be the toughest stage of a GIS project is made simple with this method. Many studies had demonstrated the usage of mobile GIS in collecting spatial data and this paper discusses how it can be applied in capturing th...

  2. 78 FR 25472 - Information Collection: Oil Spill Financial Responsibility for Offshore Facilities; Proposed...

    Science.gov (United States)

    2013-05-01

    ... disclose this information, you should comment and provide your total capital and startup cost components or... use to estimate major cost factors, including system and technology acquisition, expected useful life... startup costs include, among other items, computers and software you purchase to prepare for collecting...

  3. Income Groups, Social Capital, and Collective Action on Small-Scale Irrigation Facilities

    NARCIS (Netherlands)

    Miao, Shanshan; Heijman, Wim; Zhu, Xueqin; Qiao, Dan; Lu, Qian

    2018-01-01

    This article examines whether relationships between social capital characteristics and the willingness of farmers to cooperate in collective action is moderated by the farmers' income level. We employed a structural equation model to analyze the influence of social capital components (social

  4. [CERN-MEDICIS (Medical Isotopes Collected from ISOLDE): a new facility].

    Science.gov (United States)

    Viertl, David; Buchegger, Franz; Prior, John O; Forni, Michel; Morel, Philippe; Ratib, Osman; Bühler Léo H; Stora, Thierry

    2015-06-17

    CERN-MEDICIS is a facility dedicated to research and development in life science and medical applications. The research platform was inaugurated in October 2014 and will produce an increasing range of innovative isotopes using the proton beam of ISOLDE for fundamental studies in cancer research, for new imaging and therapy protocols in cell and animal models and for preclinical trials, possibly extended to specific early phase clinical studies (phase 0) up to phase I trials. CERN, the University Hospital of Geneva (HUG), the University Hospital of Lausanne (CHUV), the Swiss Institute for Experimental Cancer (ISREC) at Swiss Federal Institutes of Technology (EPFL) that currently support the project will benefit of the initial production that will then be extended to other centers.

  5. Summary of the first neutron image data collected at the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Grim Gary P.

    2013-11-01

    Full Text Available A summary of data and results from the first neutron images produced by the National Ignition Facility (NIF, Lawrence Livermore National Laboratory, Livermore, CA, USA are presented. An overview of the neutron imaging technique is presented, as well as a synopsis of data and measurements made to date. Data from directly driven, DT filled microballoons, as well as indirectly driven, cryogenically layered ignition experiments are presented. The data show that the primary cores from directly driven implosions are approximately twice as large, 64 ± 3 μm, as indirectly driven cores, 25 ± 4 and 29 ± 4 μm and more asymmetric, P2/P0 = 47% vs. − 14% and 7%. Further, comparison with the size and shape of X-ray image data on the same implosions show good agreement, indicating X-ray emission is dominated by the hot regions of the implosion.

  6. Collective statement on major nuclear safety research facilities and programmes at risk

    International Nuclear Information System (INIS)

    2001-01-01

    Nuclear safety research remains necessary, since nuclear power programmes are dynamic. In addition to maintaining in-depth competencies, its aim is to provide information to plant designers, operators and regulators in support of the resolution of safety issues, to strengthen confidence in their solution and their implementation, and also to anticipate problems of potential significance. New fields of research open up as a result of plant ageing, plant life extension, plant up-rating, optimisation of plant economics and the associated need to further reduce uncertainties in safety margins quantification. The safety evaluation of future reactor systems being developed or considered in several Member countries also requires new research efforts. Accordingly, Member countries are encouraged to support efforts to maintain key research data, facilities and programmes through national support of international co-operation and funding. This should be under-pinned by development of short-, medium- and long-term strategic visions of the needs of the nuclear safety research community, including a strong component of international collaboration given the international nature of nuclear safety issues. (author)

  7. Prisons and Correctional Facilities, Located during MicroData field address collection 2004-2006. Kept in Spillman database for retrieval., Published in 2004, Vilas County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Prisons and Correctional Facilities dataset current as of 2004. Located during MicroData field address collection 2004-2006. Kept in Spillman database for retrieval..

  8. Industrial Manufacturing Facilities, Located during MicroData field address collection 2004-2006. Kept in Spillman database for retrieval., Published in 2004, Vilas County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Industrial Manufacturing Facilities dataset current as of 2004. Located during MicroData field address collection 2004-2006. Kept in Spillman database for retrieval..

  9. Dissolution of aerosol particles collected from nuclear facility plutonium production process

    International Nuclear Information System (INIS)

    Ning Xu; Martinez, Alex; Schappert, Michael; Montoya, D.P.; Martinez, Patrick; Tandon, Lav

    2016-01-01

    A simple, robust analytical chemistry method has been developed to dissolve plutonium containing particles in a complex matrix. The aerosol particles collected on Marple cascade impactor substrates were shown to be dissolved completely with an acid mixture of 12 M HNO 3 and 0.1 M HF. A pressurized closed vessel acid digestion technique was utilized to heat the samples at 130 deg C for 16 h to facilitate the digestion. The dissolution efficiency for plutonium particles was 99 %. The resulting particle digestate solution was suitable for trace elemental analysis and isotope composition determination, as well as radiochemistry measurements. (author)

  10. Radiocarbon data collection, filtering and analysis at the NRL TEAMS facility

    International Nuclear Information System (INIS)

    Tumey, S.J.; Grabowski, K.S.; Knies, D.L.; Mignerey, A.C.

    2004-01-01

    This report describes a novel approach to collection and analysis of radiocarbon data due to the unique design of the Naval Research Laboratory Trace Element Accelerator Mass Spectrometry system. In this approach, targets are loaded on the cathode wheel such that samples are clustered in groups of five between standards. Each target is measured until the external error asymptotically reaches a constant value and the internal error dominates, or until a predefined time limit is reached. These measurements are repeated until the desired level of counting statistics is attained. Cycle control software saves the measured beam currents and count rate, as well as all system parameters to disc at fixed intervals throughout each measurement. Data visualization software has aided in system diagnosis by exposing relationships between the measured isotope ratios and system parameters. A filtering algorithm is employed to the data set of each target measurement in an attempt to achieve a Gaussian distribution. Final results are generated by a radiocarbon calculator that allows a user to select which target measurements to treat as samples, standards and blanks, and calculates the desired values (i.e. conventional radiocarbon age, percent modern carbon, etc.) with full error propagation. Currently, a Microsoft Access [reg] relational database is being developed which will be integrated into the existing LabVIEW [reg] control, filtering and calculation programs in order to streamline the process from sample submission to report generation, as well as improve quality control

  11. Evaluating the use of crowdsourcing as a data collection method for bicycle performance measures and identification of facility improvement needs.

    Science.gov (United States)

    2015-08-01

    This research developed a smartphone application called ORcycle to collect cyclists routes, users, and : comfort levels. ORcycle combines GPS revealed route data collection with new questionnaires that try : to elicit cyclists attitudes as well...

  12. A beginners guide for video production. [Prepared by the Energy Task Force of the Urban Consortium for Technology Initiatives

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    The Seattle-King County Hazardous Waste Management Plan provides the framework for an intensive effort to keep Household Hazardous Waste (HHW) and Small Quantity Generator (SQG) wastes from entering the municipal solid and liquid waste streams. Many innovative programs for managing small sources of hazardous waste have been developed in response to the Plan. With the assistance of Urban Consortium grants, the City of Seattle has researched and developed a series of reports describing the planning, operation and evaluation of the plan's HHW collection programs. Three of the Plan's programs of particular interest to other jurisdictions are the fixed site and mobile HHW Collection Facilities, and the Business Waste Consultations provided to SQG's. In 1991, Seattle received an Urban Consortium grant to produce two videos showing how the HHW Collection Facilities and Business Consultations programs work. This report provides an overviews of the video development and production process and a discussion of the lessons learned by the staff directing the production.

  13. A beginners guide for video production

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    The Seattle-King County Hazardous Waste Management Plan provides the framework for an intensive effort to keep Household Hazardous Waste (HHW) and Small Quantity Generator (SQG) wastes from entering the municipal solid and liquid waste streams. Many innovative programs for managing small sources of hazardous waste have been developed in response to the Plan. With the assistance of Urban Consortium grants, the City of Seattle has researched and developed a series of reports describing the planning, operation and evaluation of the plan`s HHW collection programs. Three of the Plan`s programs of particular interest to other jurisdictions are the fixed site and mobile HHW Collection Facilities, and the Business Waste Consultations provided to SQG`s. In 1991, Seattle received an Urban Consortium grant to produce two videos showing how the HHW Collection Facilities and Business Consultations programs work. This report provides an overviews of the video development and production process and a discussion of the lessons learned by the staff directing the production.

  14. Measures of stress corrosion cracking in the canister storage facility of spent nuclear fuel. Vol.3. Development of salt particle collection device

    International Nuclear Information System (INIS)

    Takeda, Hirofumi; Saegusa, Toshiari

    2009-01-01

    A natural ventilation system is generally adopted for storage facilities of spent nuclear fuel. At the storage facilities of concrete casks built near the seashore, the air including the sea salt particles comes into the concrete casks and could cause SCC to the canister made of stainless steel. In this study, we proposed a salt particle collection device with a low flow resistance which does not block the air flow into the building. The effect of the device was evaluated quantitatively in laboratory experiments and in field tests. Obtained results are as follows: (1) The pressure loss of the device is smaller than one-sevenths of pressure loss of a filter used in a forced ventilation system and the efficiency of salt particle collection is more than 80% in both laboratory experiments and field tests. However, the efficiency of salt particle collection depends on the diameter of a salt particle. (2) It was clarified the diameter of the particle which can be collected by the device under the condition of the size of the device, the density and velocity of the particle. And the pressure loss of the device was evaluated. In the case of setting the device in the air inlet of a concrete cask, salt particles lager than 27μm in diameter can be collected by the device under the condition of the same pressure loss of a bard screen which opening ratio is 80%. (author)

  15. Consecutive collection of new finding and knowledge on science and technology to be reflected to seismic safety assessment for nuclear facilities

    International Nuclear Information System (INIS)

    Tsutsumi, Hideaki; Iijima, Toru

    2013-05-01

    JNES had been collecting and analyzing new finding and knowledge on science and technology to be reflected to seismic safety assessment for nuclear facilities, which was updated so as to develop a system to organize and disseminate such information in response to Nuclear Regulation Authority (NRA)'s policy on new safety regulations requesting enhanced protective measures against extreme natural hazards. The tasks were as follows; (1) collection of new finding and knowledge from seismic safety research of JNES, (2) constructing database of seismic safety research from documents published by committees and including the Great East Japan Earthquake and (3) dissemination of information related to seismic research. As for JFY 2012 activities, collecting and analyzing new finding and knowledge were on three areas such as active fault, seismic source/ground motion and tsunami. 4 theme related with the Great East Japan Earthquake, 7 items not related with the Great East Japan Earthquake and one item on external event were collected and analyzed whether incorporating in seismic safety research important for regulation to increase seismic safety of nuclear facilities, with no such theme confirmed. (T. Tanaka)

  16. The lessons learned from Andra's Experiences on the Leachate Collection System of the Surface Disposal Facility

    International Nuclear Information System (INIS)

    Chang, Keunpack; Na, Hanjeong; Lee, Joonho; Lee, Dongjae

    2014-01-01

    This paper is based on the lessons learned from Andra's experiences especially on the drainage system which are given in the references. This paper also presents key items which need to be looked into for the local design which might be adopted at the second phase of LILW disposal facility at Wolsong. It is widely known that Andra has demonstrated that low and intermediate level of waste can be managed in a safe and efficient manner and disposed of surface level of ground. This paper has reviewed upgraded. EBSs evolved by Andra's many years of experiences, especially the measures to deal with drainage system which is available information online published to the public. Andra's Centre de I'Aube has been used as a reference model for the surface disposal of radioactive waste by many countries worldwide. But, the detail design of this type of facility needs to be improved and developed suitably for local characteristics taking into account the radioactive waste properties, local site environment and regulatory requirements in each country. The main design scenario to handle radioactive material in surface or near-surface radioactive nuclides are leached from waste by dissolving into rainwater passed through the disposal cover and concrete slab, and the infiltrated rainwater with radioactive nuclides flows to the aquifer through the concrete slab, and the infiltrated rainwater with radioactive nuclides flows to the aquifer through the concrete mat and the vadose zone, finally they are reached east sea through the aquifer or fault zone according to the hydro-geological characteristics of the site. The design concept to tackle this scenario and to deal with infiltrated and rain water in the surface disposal facility is described herein

  17. Patterns of Plasmodium vivax and Plasmodium falciparum malaria underscore importance of data collection from private health care facilities in India.

    Science.gov (United States)

    Gupta, Sangeeta; Gunter, James T; Novak, Robert J; Regens, James L

    2009-10-12

    This study describes patterns of falciparum and vivax malaria in a private comprehensive-care, multi-specialty hospital in New Delhi from July 2006 to July 2008. Malarial morbidity by Plasmodium species (Plasmodium falciparum, Plasmodium vivax, or Plasmodium sp.) was confirmed using microscopy and antigen tests. The influence of seasonal factors and selected patient demographics on morbidity was evaluated. The proportions of malaria cases caused by P. falciparum at the private facility were compared to data from India's National Vector Borne Disease Control Programme (NVBDCP) during the same period for the Delhi region. In New Delhi, P. faciparum was the dominant cause of cases requiring treatment in the private hospital during the period examined. The national data reported a smaller proportion of malaria cases caused by P. falciparum in the national capital region than was observed in a private facility within the region. Plasmodium vivax also caused a large proportion of the cases presenting clinically at the private hospital during the summer and monsoon seasons. The proportion of P. falciparum malaria cases tends to be greatest during the post-monsoon season while the proportion of P. vivax malaria cases tends to be greatest in the monsoon season. Private hospital data demonstrate an under-reporting of malaria case incidences in the data from India's national surveillance programme during the same period for the national capital region.

  18. Direct provision versus facility collection of HIV self-tests among female sex workers in Uganda: A cluster-randomized controlled health systems trial.

    Directory of Open Access Journals (Sweden)

    Katrina Ortblad

    2017-11-01

    Full Text Available HIV self-testing allows HIV testing at any place and time and without health workers. HIV self-testing may thus be particularly useful for female sex workers (FSWs, who should test frequently but face stigma and financial and time barriers when accessing healthcare facilities.We conducted a cluster-randomized controlled health systems trial among FSWs in Kampala, Uganda, to measure the effect of 2 HIV self-testing delivery models on HIV testing and linkage to care outcomes. FSW peer educator groups (1 peer educator and 8 participants were randomized to either (1 direct provision of HIV self-tests, (2 provision of coupons for free collection of HIV self-tests in a healthcare facility, or (3 standard of care HIV testing. We randomized 960 participants in 120 peer educator groups from October 18, 2016, to November 16, 2016. Participants' median age was 28 years (IQR 24-32. Our prespecified primary outcomes were self-report of any HIV testing at 1 month and at 4 months; our prespecified secondary outcomes were self-report of HIV self-test use, seeking HIV-related medical care and ART initiation. In addition, we analyzed 2 secondary outcomes that were not prespecified: self-report of repeat HIV testing-to understand the intervention effects on frequent testing-and self-reported facility-based testing-to quantify substitution effects. Participants in the direct provision arm were significantly more likely to have tested for HIV than those in the standard of care arm, both at 1 month (risk ratio [RR] 1.33, 95% CI 1.17-1.51, p < 0.001 and at 4 months (RR 1.14, 95% CI 1.07-1.22, p < 0.001. Participants in the direct provision arm were also significantly more likely to have tested for HIV than those in the facility collection arm, both at 1 month (RR 1.18, 95% CI 1.07-1.31, p = 0.001 and at 4 months (RR 1.03, 95% CI 1.01-1.05, p = 0.02. At 1 month, fewer participants in the intervention arms had sought medical care for HIV than in the standard of care arm

  19. Summary of treatment, storage, and disposal facility usage data collected from U.S. Department of Energy sites

    International Nuclear Information System (INIS)

    Jacobs, A.; Oswald, K.; Trump, C.

    1995-04-01

    This report presents an analysis for the US Department of Energy (DOE) to determine the level and extent of treatment, storage, and disposal facility (TSDF) assessment duplication. Commercial TSDFs are used as an integral part of the hazardous waste management process for those DOE sites that generate hazardous waste. Data regarding the DOE sites' usage have been extracted from three sets of data and analyzed in this report. The data are presented both qualitatively and quantitatively, as appropriate. This information provides the basis for further analysis of assessment duplication to be documented in issue papers as appropriate. Once the issues have been identified and adequately defined, corrective measures will be proposed and subsequently implemented

  20. Summary of Blast Shield and Material Testing for Development of Solid Debris Collection at the National Ignition Facility (NIF)

    International Nuclear Information System (INIS)

    Shaughnessy, D.A.; Gostic, J.M.; Moody, K.J.; Grant, P.M.; Lewis, L.A.; Hutcheon, I.D.

    2011-01-01

    The ability to collect solid debris from the target chamber following a NIF shot has application for both capsule diagnostics, particularly for fuel-ablator mix, and measuring cross sections relevant to the Stockpile Stewardship program and nuclear astrophysics. Simulations have shown that doping the capsule with up to 10 15 atoms of an impurity not otherwise found in the capsule does not affect its performance. The dopant is an element that will undergo nuclear activations during the NIF implosion, forming radioactive species that can be collected and measured after extraction from the target chamber. For diagnostics, deuteron or alpha induced reactions can be used to probe the fuel-ablator mix. For measuring neutron cross sections, the dopant should be something that is sensitive to the 14 MeV neutrons produced through the fusion of deuterium and tritium. Developing the collector is a challenge due to the extreme environment of the NIF chamber. The collector surface is exposed to a large photon flux from x-rays and unconverted laser light before it is exposed to a debris wind that is formed from vaporized material from the target chamber center. The photons will ablate the collector surface to some extent, possibly impeding the debris from reaching the collector and sticking. In addition, the collector itself must be mechanically strong enough to withstand the large amount of energy it will be exposed to, and it should be something that will be easy to count and chemically process. In order to select the best material for the collector, a variety of different metals have been tested in the NIF chamber. They were exposed to high-energy laser shots in order to evaluate their postshot surface characterization, morphology, degree of melt, and their ability to retain debris from the chamber center. The first set of samples consisted of 1 mm thick pieces of aluminum that had been fielded in the chamber as blast shields protecting the neutron activation diagnostic. Ten

  1. CSNI collective statement on support facilities for existing and advanced reactors. The function of OECD/Nea joint projects Nea committee on the safety of nuclear installations (CSNI)

    International Nuclear Information System (INIS)

    2008-01-01

    The NEA Committee on the Safety of Nuclear Installations (CSNI) has recently completed a study on the availability and utilisation of facilities supporting safety studies for current and advanced nuclear power reactors. The study showed that significant steps had been undertaken in the past several years in support of safety test facilities, mainly by conducting multinational joint projects centered on the capability of unique test facilities worldwide. Given the positive experience of the safety research projects, it has been recommended that efforts be made to prioritize technical issues associated with advanced (Generation IV) reactor designs and to develop options on how to efficiently obtain the necessary data through internationally co-ordinated research, preparing a gradual extension of safety research beyond the needs set by currently operating reactors. This statement constitutes a reference for future CSNI activities and for safety authorities, R and D centres and industry for internationally co-ordinated research initiatives in the nuclear safety research area. (author)

  2. APPLICATION OF STANDARDIZED QUALITY CONTROL PROCEDURES TO OPEN-PATH FOURIER TRANSFORM INFRARED DATA COLLECTED AT A CONCENTRATED SWINE PRODUCTION FACILITY

    Science.gov (United States)

    Open-path Fourier transform infrared (OP/FT-IR) spectrometry was used to measure the concentrations of ammonia, methane, and other atmospheric eases at a concentrated swine production facility. A total of 2200 OP/FT-IR spectra were acquired along nine different monitoring paths d...

  3. COMPARISON OF AN INNOVATIVE NONLINEAR ALGORITHM TO CLASSICAL LEAST SQUARES FOR ANALYZING OPEN-PATH FOURIER TRANSFORM INFRARED SPECTRA COLLECTED AT A CONCENTRATED SWINE PRODUCTION FACILITY

    Science.gov (United States)

    Open-path Fourier transform infrared (OP/FTIR) spectrometry was used to measure the concentrations of ammonia, methane, and other atmospheric gases at an integrated swine production facility. The concentration-pathlength products of the target gases at this site often exceeded th...

  4. Treated Effluent Disposal Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Treated non-hazardous and non-radioactive liquid wastes are collected and then disposed of through the systems at the Treated Effluent Disposal Facility (TEDF). More...

  5. Facilities & Leadership

    Data.gov (United States)

    Department of Veterans Affairs — The facilities web service provides VA facility information. The VA facilities locator is a feature that is available across the enterprise, on any webpage, for the...

  6. Biochemistry Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Biochemistry Facility provides expert services and consultation in biochemical enzyme assays and protein purification. The facility currently features 1) Liquid...

  7. Dance Facilities.

    Science.gov (United States)

    Ashton, Dudley, Ed.; Irey, Charlotte, Ed.

    This booklet represents an effort to assist teachers and administrators in the professional planning of dance facilities and equipment. Three chapters present the history of dance facilities, provide recommended dance facilities and equipment, and offer some adaptations of dance facilities and equipment, for elementary, secondary and college level…

  8. Design/Installation and Structural Integrity Assessment of Bethel Valley Low-Level Waste collection and transfer system upgrade for Building 3092 (central off-gas scrubber facility) at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1994-10-01

    This document describes and assesses planned modifications to be made to the Building 3092 Central Off-Gas Scrubber Facility of the Oak Ridge National Laboratory, Oak Ridge, Tennessee. The modifications are made in response to the requirements of 40CFR264 Subpart J, relating to environmental protection requirements for buried tank systems. The modifications include the provision of a new scrubber recirculation tank in a new, below ground, lined concrete vault, replacing an existing recirculation sump that does not provide double containment. A new buried, double contained pipeline is provided to permit discharge of spent scrubber recirculation fluid to the Central Waste Collection Header. The new vault, tank, and discharge line are provided with leak detection and provisions to remove accumulated liquid. Ne scrubber recirculation pumps, piping, and accessories are also provided. This assessment concludes that the planned modifications comply with applicable requirements of 40CFR264 Subpart J, as set forth in Appendix F to the Federal Facility Agreement, Docket No. 89-04-FF, covering the Oak Ridge Reservation. A formal design certification statement is included herein on Page 53, a certification covering the installation shall be executed prior to placing the modified facility into service

  9. Digital food photography technology improves efficiency and feasibility of dietary intake assessments in large populations eating ad libitum in collective dining facilities.

    Science.gov (United States)

    McClung, Holly L; Champagne, Catherine M; Allen, H Raymond; McGraw, Susan M; Young, Andrew J; Montain, Scott J; Crombie, Aaron P

    2017-09-01

    Accurate assessment of dietary intake continues to challenge researchers, especially in field, or non-laboratory settings. In this study, digital food photography (DFP) methodology was used to assess nutritional intake (NI) of Soldiers participating in the US Army's Ranger Selection and Assessment Program (RASP). During this high-intensity six-week course, Soldiers complete simulated operational missions, perform various military tasks, and importantly, eating time is severely limited. Therefore, this study provided an opportunity to evaluate the utility of DFP methods for accurate assessment of energy balance in conditions where consumption of large numbers of subjects must be completed in a very short periods of time (≤20 min). NI of 131 male, enlisted Soldiers (21 ± 4 years, 178±7 cm, and 78±8 kg) enrolled in the RASP course was assessed in their garrison dining facility using DFP utilizing visual estimation of pre- and post-meal photos of participant meals concurrently with photos of weighed, standardized portions. Total daily energy expenditure (TDEE) was assessed using doubly-labeled water ( 2 H 2 18 O) in a sub-group of 19 volunteers. During the study, data loss (i.e., missing meal photos) was less than 5% per meal, and during the visual estimation process discrepancies in food identification averaged less than 10% per meal, while approximately a third of serving size estimations required a third party adjudication prior to finalization and calculation NI. We conclude that the use of DFP allows an adequately reliable approach for quantifying NI in real-world scenarios involving large numbers of participants who must be assessed very rapidly, and researchers must have a small footprint. Published by Elsevier Ltd.

  10. Waste Facilities

    Data.gov (United States)

    Vermont Center for Geographic Information — This dataset was developed from the Vermont DEC's list of certified solid waste facilities. It includes facility name, contact information, and the materials...

  11. Health Facilities

    Science.gov (United States)

    Health facilities are places that provide health care. They include hospitals, clinics, outpatient care centers, and specialized care centers, ... psychiatric care centers. When you choose a health facility, you might want to consider How close it ...

  12. Fabrication Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Fabrication Facilities are a direct result of years of testing support. Through years of experience, the three fabrication facilities (Fort Hood, Fort Lewis, and...

  13. Design/installation and structural integrity assessment of Bethel Valley low-level waste collection and transfer system upgrade for Building 3092 (Central Off-Gas Scrubber Facility) at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1995-01-01

    This document describes and assesses planned modifications to be made to the Building 3092 Central Off-Gas Scrubber Facility of the Oak Ridge National Laboratory, Oak Ridge, Tennessee. The modifications are made in responsible to the requirements of 40CFR264 Subpart J, relating to environmental protection requirements for buried tank systems. The modifications include the provision of a new scrubber recirculation tank in a new, below ground, lines concrete vault, replacing and existing recirculation sump that does not provide double containment. A new buried, double contained pipeline is provided to permit discharge of spent scrubber recirculation fluid to the Central Waste Collection Header. The new vault, tank, and discharge line are provided with leak detection and provisions to remove accumulated liquid. New scrubber recirculation pumps, piping, and accessories are also provided. This assessment concludes that the planned modifications comply with applicable requirements of 40CFR264 Subpart J, as set forth in Appendix F to the Federal Facility Agreement, Docket No. 89-04-FF, covering the Oak Ridge Reservation

  14. FY 1998 evaluation/analysis of the data collected in the field test project for photovoltaic power generation for public facilities; 1998 nendo kokyo shisetsu nadoyo taiyoko hatsuden field test jigyo ni okeru shushu data hyoka kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    In the field test project for the photovoltaic power generation for public facilities, operational data were collected/analyzed on facilities at 158 sites installed from FY 1994 to FY 1997. As a result, the following were found out: Average values of the global radiation on an inclined surface, equivalent array operation time, equivalent system operation time, system operation time, inverter performance efficiency, inverter load factor, array power coefficient, and system power coefficient are 3.51 kWh/m{sup 2}/D, 2.72 h/D, 2.47 h/D, 10.3 h/D, 0.91, 0.30, 0.77 and 0.70, respectively. No deterioration with age was recognized in the 4-year operation data. As to the maintenance, the item, 'there are a lot of failures in the photovoltaic power system,' was 2% in rate. As to the inspection, times are mostly once a month. The annual maintenance cost was widely between about 360 yen/kW and about 30,000 yen/kW. Supposing annual expenses to be a total of capital expense, direct expense, and general administrative expense, the power generation cost dropped from approximately 240 yen/kWh in FY 1994 to 100 yen/kWh in FY 1997. (NEDO)

  15. Animal facilities

    International Nuclear Information System (INIS)

    Fritz, T.E.; Angerman, J.M.; Keenan, W.G.; Linsley, J.G.; Poole, C.M.; Sallese, A.; Simkins, R.C.; Tolle, D.

    1981-01-01

    The animal facilities in the Division are described. They consist of kennels, animal rooms, service areas, and technical areas (examining rooms, operating rooms, pathology labs, x-ray rooms, and 60 Co exposure facilities). The computer support facility is also described. The advent of the Conversational Monitor System at Argonne has launched a new effort to set up conversational computing and graphics software for users. The existing LS-11 data acquisition systems have been further enhanced and expanded. The divisional radiation facilities include a number of gamma, neutron, and x-ray radiation sources with accompanying areas for related equipment. There are five 60 Co irradiation facilities; a research reactor, Janus, is a source for fission-spectrum neutrons; two other neutron sources in the Chicago area are also available to the staff for cell biology studies. The electron microscope facilities are also described

  16. Facilities Programming.

    Science.gov (United States)

    Bullis, Robert V.

    1992-01-01

    A procedure for physical facilities management written 17 years ago is still worth following today. Each of the steps outlined for planning, organizing, directing, controlling, and evaluating must be accomplished if school facilities are to be properly planned and constructed. However, lessons have been learned about energy consumption and proper…

  17. Nuclear facilities

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Here is given the decree (2000-1065) of the 25. of October 2000 reporting the publication of the convention between the Government of the French Republic and the CERN concerning the safety of the LHC (Large Hadron Collider) and the SPS (Proton Supersynchrotron) facilities, signed in Geneva on July 11, 2000. By this convention, the CERN undertakes to ensure the safety of the LHC and SPS facilities and those of the operations of the LEP decommissioning. The French legislation and regulations on basic nuclear facilities (concerning more particularly the protection against ionizing radiations, the protection of the environment and the safety of facilities) and those which could be decided later on apply to the LHC, SPS and auxiliary facilities. (O.M.)

  18. Fiscal 1997 research report on the data collection, evaluation and analysis in the PV power generation field test project for public facilities; 1997 nendo kokyo shisetsu nado yo taiyoko hatsuden field test jigyo ni okeru shushu data hyoka kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    As a part of the field test project for diffusing PV power generation into public facilities generally, evaluation and analysis were made on the collected data from 105 sites installed during fiscal 1993-1996. Analysis of operation characteristics was made by using parameters obtained by developing a basic equation for every component. 94% of all the sites fell under the total solar irradiation of 3.0- 4.5kWh/m{sup 2}/D. 83% of those fell under the equivalent array operation time of 2.5-4.0h/D. 70% of those fell under the equivalent system operation time of 2.5-3.5h/D. 72% of those fell under the system operation time of 9.0-12.0h/D. 78% of those fell under the effective inverter efficiency of 0.84- 0.96. 68% of those fell under the inverter load factor of 0.25-0.35. 85% of those fell under the array performance ratio of 0.7-1.0. 83% of those fell under the system performance ratio of 0.6-0.9. The generation cost decreased from 270yen/kWh in 1993 to 100yen/kWh in 1996 because reduction of an installation cost largely contributed to reduction of the total cost. (NEDO)

  19. Mammography Facilities

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Mammography Facility Database is updated periodically based on information received from the four FDA-approved accreditation bodies: the American College of...

  20. Canyon Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — B Plant, T Plant, U Plant, PUREX, and REDOX (see their links) are the five facilities at Hanford where the original objective was plutonium removal from the uranium...

  1. US EPA Region 4 RMP Facilities

    Data.gov (United States)

    U.S. Environmental Protection Agency — To improve public health and the environment, the United States Environmental Protection Agency (USEPA) collects information about facilities, sites, or places...

  2. Service quality in contracted facilities.

    Science.gov (United States)

    Rabbani, Fauziah; Pradhan, Nousheen Akber; Zaidi, Shehla; Azam, Syed Iqbal; Yousuf, Farheen

    2015-01-01

    The purpose of this paper is to explore the readiness of contracted and non-contracted first-level healthcare facilities in Pakistan to deliver quality maternal and neonatal health (MNH) care. A balanced scorecard (BSC) was used as the assessment framework. Using a cross-sectional study design, two rural health centers (RHCs) contracted out to Aga Khan Health Service, Pakistan were compared with four government managed RHCs. A BSC was designed to assess RHC readiness to deliver good quality MNH care. In total 20 indicators were developed, representing five BSC domains: health facility functionality, service provision, staff capacity, staff and patient satisfaction. Validated data collection tools were used to collect information. Pearson χ2, Fisher's Exact and the Mann-Whitney tests were applied as appropriate to detect significant service quality differences among the two facilities. Contracted facilities were generally found to be better than non-contracted facilities in all five BSC domains. Patients' inclination for facility-based delivery at contracted facilities was, however, significantly higher than non-contracted facilities (80 percent contracted vs 43 percent non-contracted, p=0.006). The study shows that contracting out initiatives have the potential to improve MNH care. This is the first study to compare MNH service delivery quality across contracted and non-contracted facilities using BSC as the assessment framework.

  3. Computer-Aided Facilities Management Systems (CAFM).

    Science.gov (United States)

    Cyros, Kreon L.

    Computer-aided facilities management (CAFM) refers to a collection of software used with increasing frequency by facilities managers. The six major CAFM components are discussed with respect to their usefulness and popularity in facilities management applications: (1) computer-aided design; (2) computer-aided engineering; (3) decision support…

  4. Advanced reactor experimental facilities

    International Nuclear Information System (INIS)

    Amri, A.; Papin, J.; Uhle, J.; Vitanza, C.

    2010-01-01

    For many years, the NEA has been examining advanced reactor issues and disseminating information of use to regulators, designers and researchers on safety issues and research needed. Following the recommendation of participants at an NEA workshop, a Task Group on Advanced Reactor Experimental Facilities (TAREF) was initiated with the aim of providing an overview of facilities suitable for carrying out the safety research considered necessary for gas-cooled reactors (GCRs) and sodium fast reactors (SFRs), with other reactor systems possibly being considered in a subsequent phase. The TAREF was thus created in 2008 with the following participating countries: Canada, the Czech Republic, Finland, France, Germany, Hungary, Italy, Japan, Korea and the United States. In a second stage, India provided valuable information on its experimental facilities related to SFR safety research. The study method adopted entailed first identifying high-priority safety issues that require research and then categorizing the available facilities in terms of their ability to address the safety issues. For each of the technical areas, the task members agreed on a set of safety issues requiring research and established a ranking with regard to safety relevance (high, medium, low) and the status of knowledge based on the following scale relative to full knowledge: high (100%-75%), medium (75 - 25%) and low (25-0%). Only the issues identified as being of high safety relevance and for which the state of knowledge is low or medium were included in the discussion, as these issues would likely warrant further study. For each of the safety issues, the TAREF members identified appropriate facilities, providing relevant information such as operating conditions (in- or out-of reactor), operating range, description of the test section, type of testing, instrumentation, current status and availability, and uniqueness. Based on the information collected, the task members assessed prospects and priorities

  5. Support facilities

    International Nuclear Information System (INIS)

    Williamson, F.S.; Blomquist, J.A.; Fox, C.A.

    1977-01-01

    Computer support is centered on the Remote Access Data Station (RADS), which is equipped with a 1000 lpm printer, 1000 cpm reader, and a 300 cps paper tape reader with 500-foot spools. The RADS is located in a data preparation room with four 029 key punches (two of which interpret), a storage vault for archival magnetic tapes, card files, and a 30 cps interactive terminal principally used for job inquiry and routing. An adjacent room provides work space for users, with a documentation library and a consultant's office, plus file storage for programs and their documentations. The facility has approximately 2,600 square feet of working laboratory space, and includes two fully equipped photographic darkrooms, sectioning and autoradiographic facilities, six microscope cubicles, and five transmission electron microscopes and one Cambridge scanning electron microscope equipped with an x-ray energy dispersive analytical system. Ancillary specimen preparative equipment includes vacuum evaporators, freeze-drying and freeze-etching equipment, ultramicrotomes, and assorted photographic and light microscopic equipment. The extensive physical plant of the animal facilities includes provisions for holding all species of laboratory animals under controlled conditions of temperature, humidity, and lighting. More than forty rooms are available for studies of the smaller species. These have a potential capacity of more than 75,000 mice, or smaller numbers of larger species and those requiring special housing arrangements. There are also six dog kennels to accommodate approximately 750 dogs housed in runs that consist of heated indoor compartments and outdoor exercise areas

  6. Mineral facilities of Europe

    Science.gov (United States)

    Almanzar, Francisco; Baker, Michael S.; Elias, Nurudeen; Guzman, Eric

    2010-01-01

    This map displays over 1,700 records of mineral facilities within the countries of Europe and western Eurasia. Each record represents one commodity and one facility type at a single geographic location. Facility types include mines, oil and gas fields, and plants, such as refineries, smelters, and mills. Common commodities of interest include aluminum, cement, coal, copper, gold, iron and steel, lead, nickel, petroleum, salt, silver, and zinc. Records include attributes, such as commodity, country, location, company name, facility type and capacity (if applicable), and latitude and longitude geographical coordinates (in both degrees-minutes-seconds and decimal degrees). The data shown on this map and in table 1 were compiled from multiple sources, including (1) the most recently available data from the U.S. Geological Survey (USGS) Minerals Yearbook (Europe and Central Eurasia volume), (2) mineral statistics and information from the USGS Minerals Information Web site (http://minerals.usgs.gov/minerals/pubs/country/europe.html), and (3) data collected by the USGS minerals information country specialists from sources, such as statistical publications of individual countries, annual reports and press releases of operating companies, and trade journals. Data reflect the most recently published table of industry structure for each country at the time of this publication. Additional information is available from the country specialists listed in table 2.

  7. 77 FR 36544 - Agency Information Collection Activities; Proposed Collection; Comment Request; Survey on the...

    Science.gov (United States)

    2012-06-19

    ... 2013 with the initial data collection for select restaurant facility types, followed by the initial... (baseline collection period data collection survey measurement) period Restaurants Full Service 2013 2016 2019 Restaurants Fast Food Restaurants. Institutional Foodservice........ Hospitals 2014 2017 2020...

  8. Emission Facilities - Erosion & Sediment Control Facilities

    Data.gov (United States)

    NSGIC Education | GIS Inventory — An Erosion and Sediment Control Facility is a DEP primary facility type related to the Water Pollution Control program. The following sub-facility types related to...

  9. EPA Linked Open Data (Collection)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This is a collection item referencing the following EPA Linked Data resources: - EPA Facility Registry Service (FRS) - EPA Substance Registry Service (SRS) -...

  10. FY 1999 research report on the evaluation/analysis of the data collected in the field test project for the photovoltaic power system for public facility use; 1999 nendo kokyo shisetsu nadoyo taiyoko hatsuden field test jigyo ni okeru shushu data hyoka kaiseki kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    In this research, the photovoltaic power system is experimentally installed at various facilities (public facilities such as public hall, school and museum), and operated on a long term basis under the actual loads. Various kinds of data are collected/analyzed and used as the data useful for the full-scale introduction and spread. The photovoltaic power generation field test project for public facilities using the photovoltaic power system was started in FY 1992 by NEDO. Systems at 116 sites started operation by FY 1996, and in FY 1997 systems were installed at a total of 70 sites. The paper outlined the project and described the results of the collection/analyses of the operational data obtained at 145 sites where systems were installed from FY 1995 to FY 1997. The term of analysis in FY 1999 was made from April 1999 to December 1999, being different from usual, to avoid the Y2K problem on data collecting software, measuring use personal computer, etc. Further, since there are no sites where no systems were newly installed in and after FY 1998, there are no analyses of economical efficiency in and after FY 1999. The paper indicated a list of all the sites with system installation in FY 1995-1997 including the main items. (NEDO)

  11. Air Quality Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research FacilityFacilities with operating permits for Title V of the Federal Clean Air Act, as well as facilities required to submit an air emissions inventory, and other facilities...

  12. 40 CFR 160.43 - Test system care facilities.

    Science.gov (United States)

    2010-07-01

    ... testing facility shall have a number of animal rooms or other test system areas separate from those... housed, facilities shall exist for the collection and disposal of all animal waste and refuse or for safe sanitary storage of waste before removal from the testing facility. Disposal facilities shall be so...

  13. Survey of solar thermal test facilities

    Energy Technology Data Exchange (ETDEWEB)

    Masterson, K.

    1979-08-01

    The facilities that are presently available for testing solar thermal energy collection and conversion systems are briefly described. Facilities that are known to meet ASHRAE standard 93-77 for testing flat-plate collectors are listed. The DOE programs and test needs for distributed concentrating collectors are identified. Existing and planned facilities that meet these needs are described and continued support for most of them is recommended. The needs and facilities that are suitable for testing components of central receiver systems, several of which are located overseas, are identified. The central contact point for obtaining additional details and test procedures for these facilities is the Solar Thermal Test Facilities Users' Association in Albuquerque, N.M. The appendices contain data sheets and tables which give additional details on the technical capabilities of each facility. Also included is the 1975 Aerospace Corporation report on test facilities that is frequently referenced in the present work.

  14. 78 FR 29123 - Proposed Collection; Comment Request

    Science.gov (United States)

    2013-05-17

    ... INFORMATION: Summary of Information Collection In the case of members of the public, this system collects... data, exposure data, facility inspection data, assessment/evaluation data, OSHA activity data...

  15. Reactor facility

    International Nuclear Information System (INIS)

    Suzuki, Hiroaki; Murase, Michio; Yokomizo, Osamu.

    1997-01-01

    The present invention provides a BWR type reactor facility capable of suppressing the amount of steams generated by the mutual effect of a failed reactor core and coolants upon occurrence of an imaginal accident, and not requiring spacial countermeasures for enhancing the pressure resistance of the container vessel. Namely, a means for supplying cooling water at a temperature not lower by 30degC than the saturated temperature corresponding to the inner pressure of the containing vessel upon occurrence of an accident is disposed to a lower dry well below the pressure vessel. As a result, upon occurrence of such an accident that the reactor core should be melted and flown downward of the pressure vessel, when cooling water at a temperature not lower than the saturated temperature, for example, cooling water at 100degC or higher is supplied to the lower dry well, abrupt generation of steams by the mutual effect of the failed reactor core and cooling water is scarcely caused compared with a case of supplying cooling water at a temperature lower than the saturation temperature by 30degC or more. Accordingly, the amount of steams to be generated can be suppressed, and special countermeasure is no more necessary for enhancing the pressure resistance of the container vessel is no more necessary. (I.S.)

  16. Nuclear facilities

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    During September and October 2001, 15 events were recorded on the first grade and 1 on the second grade of the INES scale. The second grade event is in fact a re-classification of an incident that occurred on the second april 2001 at Dampierre power plant. This event happened during core refueling, a shift in the operation sequence led to the wrong positioning of 113 assemblies. A preliminary study of this event shows that this wrong positioning could have led, in other circumstances, to the ignition of nuclear reactions. Even in that case, the analysis made by EDF shows that the consequences on the staff would have been limited. Nevertheless a further study has shown that the existing measuring instruments could not have detected the power increase announcing the beginning of the chain reaction. The investigation has shown that there were deficiencies in the control of the successive operations involved in refueling. EDF has proposed a series of corrective measures to be implemented in all nuclear power plants. The other 15 events are described in the article. During this period 121 inspections have been made in nuclear facilities. (A.C.)

  17. Collective nuclear dynamics. Proceedings

    International Nuclear Information System (INIS)

    Ivanyuk, F.A.

    1994-01-01

    The Fourth International school on nuclear physics was help on 29 Aug - 7 Sep, 1994 in Ukraine. The specialists discussed following subjects:liquid drop and the shell correction method; nuclear deformation energy and fission; nuclear structure at high spins, superdeformed states, structure of excited and exotic nuclei; nuclear fluid dynamics and large scale collective motion; order and chaos as they relate to the collective motion; quantum and interference phenomena in nuclear collisions; quasi-fission and multinucleon fragmentation effects; shell effects in non-nuclear systems; new nuclear facilities

  18. Collective nuclear dynamics. Abstracts

    International Nuclear Information System (INIS)

    Abrosimov, V.I.; Kolomietz, V.M.

    1994-01-01

    The fourth International school on nuclear physics was help on 29 Aug - 7 Sep, 1994 in Ukraine. The specialists discussed following subjects: liquid drop and the shell correction method; nuclear deformation energy and fission; nuclear structure at high spins, superdeformed states, structure of excited and exotic nuclei; nuclear fluid dynamics and large scale collective motion; order and chaos as they relate to the collective motion; quantum and interference phenomena in nuclear collisions; quasi-fission and multinucleon fragmentation effects; shell effects in non-nuclear systems; new nuclear facilities

  19. Collective nuclear dynamics. Proceedings.

    Energy Technology Data Exchange (ETDEWEB)

    Ivanyuk, F A [eds.

    1994-12-31

    The Fourth International school on nuclear physics was help on 29 Aug - 7 Sep, 1994 in Ukraine. The specialists discussed following subjects:liquid drop and the shell correction method; nuclear deformation energy and fission; nuclear structure at high spins, superdeformed states, structure of excited and exotic nuclei; nuclear fluid dynamics and large scale collective motion; order and chaos as they relate to the collective motion; quantum and interference phenomena in nuclear collisions; quasi-fission and multinucleon fragmentation effects; shell effects in non-nuclear systems; new nuclear facilities.

  20. Irradiation Facilities at CERN

    CERN Document Server

    Gkotse, Blerina; Carbonez, Pierre; Danzeca, Salvatore; Fabich, Adrian; Garcia, Alia, Ruben; Glaser, Maurice; Gorine, Georgi; Jaekel, Martin, Richard; Mateu,Suau, Isidre; Pezzullo, Giuseppe; Pozzi, Fabio; Ravotti, Federico; Silari, Marco; Tali, Maris

    2017-01-01

    CERN provides unique irradiation facilities for applications in many scientific fields. This paper summarizes the facilities currently operating for proton, gamma, mixed-field and electron irradiations, including their main usage, characteristics and information about their operation. The new CERN irradiation facilities database is also presented. This includes not only CERN facilities but also irradiation facilities available worldwide.

  1. Research Facilities | Wind | NREL

    Science.gov (United States)

    Research Facilities Research Facilities NREL's state-of-the-art wind research facilities at the Research Facilities Photo of five men in hard hards observing the end of a turbine blade while it's being tested. Structural Research Facilities A photo of two people silhouetted against a computer simulation of

  2. Analysis of facility-monitoring data

    Energy Technology Data Exchange (ETDEWEB)

    Howell, J.A.

    1996-09-01

    This paper discusses techniques for analysis of data collected from nuclear-safeguards facility-monitoring systems. These methods can process information gathered from sensors and make interpretations that are in the best interests of the facility or agency, thereby enhancing safeguards while shortening inspection time.

  3. North Slope, Alaska ESI: FACILITY (Facility Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains data for oil field facilities for the North Slope of Alaska. Vector points in this data set represent oil field facility locations. This data...

  4. Uniform Facility Data Set US (UFDS-1998)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Uniform Facility Data Set (UFDS) was designed to measure the scope and use of drug abuse treatment services in the United States. The survey collects information...

  5. Collective Improvisation

    Directory of Open Access Journals (Sweden)

    Clare M. Cooper

    2016-08-01

    Full Text Available Collective improvisation as a creative practice is intensely social, trusting, unpopular, anti-hierarchical and, for these reasons, political. Cooper describes the risks and rich rewards of improvising with fellow artists and identifies the parallels between improvising ensembles of musicians in Australia with the collectively painted protest banners of the Taring Padi Collective in Indonesia after a brief visit to Jogjakarta.

  6. Jupiter Laser Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Jupiter Laser Facility is an institutional user facility in the Physical and Life Sciences Directorate at LLNL. The facility is designed to provide a high degree...

  7. Basic Research Firing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Basic Research Firing Facility is an indoor ballistic test facility that has recently transitioned from a customer-based facility to a dedicated basic research...

  8. Aperture area measurement facility

    Data.gov (United States)

    Federal Laboratory Consortium — NIST has established an absolute aperture area measurement facility for circular and near-circular apertures use in radiometric instruments. The facility consists of...

  9. High Throughput Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne?s high throughput facility provides highly automated and parallel approaches to material and materials chemistry development. The facility allows scientists...

  10. Licensed Healthcare Facilities

    Data.gov (United States)

    California Natural Resource Agency — The Licensed Healthcare Facilities point layer represents the locations of all healthcare facilities licensed by the State of California, Department of Health...

  11. Facility Registry Service (FRS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Facility Registry Service (FRS) provides an integrated source of comprehensive (air, water, and waste) environmental information about facilities across EPA,...

  12. 78 FR 28244 - Agency Information Collection Activities; Proposed Collection; Comment Request

    Science.gov (United States)

    2013-05-14

    ... Licensing of Production and Utilization Facilities,'' specifies technical information and data to be... NUCLEAR REGULATORY COMMISSION [Docket No. NRC-2013-0085] Agency Information Collection Activities; Proposed Collection; Comment Request AGENCY: Nuclear Regulatory Commission. ACTION: Notice of pending NRC...

  13. 77 FR 12861 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Science.gov (United States)

    2012-03-02

    ... days after the date of the publication in the Federal Register. Summer King, Statistician. [FR Doc...-Locator universe.... 15,000 1 .42 6,300 Newly identified facilities \\1\\ 1,500 1 .42 630 Total Facilities 16,500 6,930 \\1\\ Collection of information on newly identified facilities throughout the year, as...

  14. Liquid effluent retention facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-06-01

    This appendix to the Liquid Effluent Retention Facility Dangerous Waste Permit Application contains pumps, piping, leak detection systems, geomembranes, leachate collection systems, earthworks and floating cover systems

  15. EPA Facility Registry Service (FRS): ER_STATE_ID

    Data.gov (United States)

    U.S. Environmental Protection Agency — To improve public health and the environment, the United States Environmental Protection Agency (USEPA) collects information about facilities, sites, or places...

  16. EPA Facility Registry Service (FRS): ER_WTP

    Data.gov (United States)

    U.S. Environmental Protection Agency — To improve public health and the environment, the United States Environmental Protection Agency (USEPA) collects information about facilities, sites, or places...

  17. EPA Facility Registry Service (FRS): ER_SIC

    Data.gov (United States)

    U.S. Environmental Protection Agency — To improve public health and the environment, the United States Environmental Protection Agency (USEPA) collects information about facilities, sites, or places...

  18. EPA Facility Registry Service (FRS): ER_NAICS

    Data.gov (United States)

    U.S. Environmental Protection Agency — To improve public health and the environment, the United States Environmental Protection Agency (USEPA) collects information about facilities, sites, or places...

  19. EPA Facility Registry Service (FRS): ER_CONTACTS

    Data.gov (United States)

    U.S. Environmental Protection Agency — To improve public health and the environment, the United States Environmental Protection Agency (USEPA) collects information about facilities, sites, or places...

  20. Guide to research facilities

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  1. Fiscal 1996 research report on the PV power generation field test project for public facilities. Evaluation and analysis of collected data for every site (1/2); 1996 nendo kokyo shisetsu nadoyo taiyoko hatsuden field test jigyo ni okeru shushu data hyoka kaiseki. Kaku site betsu (1/2)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    As a part of the PV power generation field test project, this report summarizes the monthly collected data for every site in fiscal 1996. The test sites include various public facilities such as park, school, university, museum, Shinkansen platform, laboratory, technical center, training building, local governmental hotel, health athletic center, community center, joint purchase center, consumers' cooperative (CO-OP), school meals provision center, prefectural office building, police station garage, water purification plant, general disaster prevention center, and health center. Collected data items are as follows: total solar irradiation (kWh/m{sup 2}), average air temperature, array power, system power, load power, power system supply load, reverse power flow, self supply load (kWh for every item), system disinterconnection time (min), system operation time (min), equivalent array/system operation time, array/system performance ratio, system use factor, system generation efficiency, effective inverter efficiency, and inverter load factor. (NEDO)

  2. Facility Interface Capability Assessment (FICA) project report

    International Nuclear Information System (INIS)

    Pope, R.B.; MacDonald, R.R.; Viebrock, J.M.; Mote, N.

    1995-09-01

    The US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing the Civilian Radioactive Waste Management System (CRWMS) to accept spent nuclear fuel from commercial facilities. The objective of the Facility Interface Capability Assessment (FICA) project was to assess the capability of each commercial spent nuclear fuel (SNF) storage facility, at which SNF is stored, to handle various SNF shipping casks. The purpose of this report is to present and analyze the results of the facility assessments completed within the FICA project. During Phase 1, the data items required to complete the facility assessments were identified and the database for the project was created. During Phase 2, visits were made to 122 facilities on 76 sites to collect data and information, the database was updated, and assessments of the cask-handling capabilities at each facility were performed. Each assessment of cask-handling capability contains three parts: the current capability of the facility (planning base); the potential enhanced capability if revisions were made to the facility licensing and/or administrative controls; and the potential enhanced capability if limited physical modifications were made to the facility. The main conclusion derived from the planning base assessments is that the current facility capabilities will not allow handling of any of the FICA Casks at 49 of the 122 facilities evaluated. However, consideration of potential revisions and/or modifications showed that all but one of the 49 facilities could be adapted to handle at least one of the FICA Casks. For this to be possible, facility licensing, administrative controls, and/or physical aspects of the facility would need to be modified

  3. Facility Interface Capability Assessment (FICA) project report

    Energy Technology Data Exchange (ETDEWEB)

    Pope, R.B. [ed.] [Oak Ridge National Lab., TN (United States); MacDonald, R.R. [ed.] [Civilian Radioactive Waste Management System, Vienna, VA (United States); Viebrock, J.M.; Mote, N. [Nuclear Assurance Corp., Norcross, GA (United States)

    1995-09-01

    The US Department of Energy`s (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing the Civilian Radioactive Waste Management System (CRWMS) to accept spent nuclear fuel from commercial facilities. The objective of the Facility Interface Capability Assessment (FICA) project was to assess the capability of each commercial spent nuclear fuel (SNF) storage facility, at which SNF is stored, to handle various SNF shipping casks. The purpose of this report is to present and analyze the results of the facility assessments completed within the FICA project. During Phase 1, the data items required to complete the facility assessments were identified and the database for the project was created. During Phase 2, visits were made to 122 facilities on 76 sites to collect data and information, the database was updated, and assessments of the cask-handling capabilities at each facility were performed. Each assessment of cask-handling capability contains three parts: the current capability of the facility (planning base); the potential enhanced capability if revisions were made to the facility licensing and/or administrative controls; and the potential enhanced capability if limited physical modifications were made to the facility. The main conclusion derived from the planning base assessments is that the current facility capabilities will not allow handling of any of the FICA Casks at 49 of the 122 facilities evaluated. However, consideration of potential revisions and/or modifications showed that all but one of the 49 facilities could be adapted to handle at least one of the FICA Casks. For this to be possible, facility licensing, administrative controls, and/or physical aspects of the facility would need to be modified.

  4. Communication grounding facility

    International Nuclear Information System (INIS)

    Lee, Gye Seong

    1998-06-01

    It is about communication grounding facility, which is made up twelve chapters. It includes general grounding with purpose, materials thermal insulating material, construction of grounding, super strength grounding method, grounding facility with grounding way and building of insulating, switched grounding with No. 1A and LCR, grounding facility of transmission line, wireless facility grounding, grounding facility in wireless base station, grounding of power facility, grounding low-tenton interior power wire, communication facility of railroad, install of arrester in apartment and house, install of arrester on introduction and earth conductivity and measurement with introduction and grounding resistance.

  5. Safeguards Automated Facility Evaluation (SAFE) methodology

    International Nuclear Information System (INIS)

    Chapman, L.D.; Grady, L.M.; Bennett, H.A.; Sasser, D.W.; Engi, D.

    1978-08-01

    An automated approach to facility safeguards effectiveness evaluation has been developed. This automated process, called Safeguards Automated Facility Evaluation (SAFE), consists of a collection of a continuous stream of operational modules for facility characterization, the selection of critical paths, and the evaluation of safeguards effectiveness along these paths. The technique has been implemented on an interactive computer time-sharing system and makes use of computer graphics for the processing and presentation of information. Using this technique, a comprehensive evaluation of a safeguards system can be provided by systematically varying the parameters that characterize the physical protection components of a facility to reflect the perceived adversary attributes and strategy, environmental conditions, and site operational conditions. The SAFE procedure has broad applications in the nuclear facility safeguards field as well as in the security field in general. Any fixed facility containing valuable materials or components to be protected from theft or sabotage could be analyzed using this same automated evaluation technique

  6. AOV Facility Tool/Facility Safety Specifications -

    Data.gov (United States)

    Department of Transportation — Develop and maintain authorizing documents that are standards that facilities must follow. These standards are references of FAA regulations and are specific to the...

  7. Culture collections.

    Science.gov (United States)

    Smith, David

    2012-01-01

    Culture collections no matter their size, form, or institutional objectives play a role in underpinning microbiology, supplying the resources for study, innovation, and discovery. Their basic roles include providing a mechanism for ex situ conservation of organisms; they are repositories for strains subject to publication, taking in safe, confidential, and patent deposits from researchers. They supply strains for use; therefore, the microorganisms provided must be authentic and preserved well, and any associated information must be valid and sufficient to facilitate the confirmation of their identity and to facilitate their use. The organisms must be collected in compliance with international conventions, international and national legislation and distributed to users indicating clearly the terms and conditions under which they are received and can be used. Collections are harmonizing approaches and characterizing strains to meet user needs. No one single collection can carry out this task alone, and therefore, it is important that output and strategy are coordinated to ensure culture collections deliver the basic resources and services microbiological innovation requires. This chapter describes the types of collection and how they can implement quality management systems and operate to deliver their basic functions. The links to information sources given not only provide support for the practitioners within collections but also provide guidance to users on accessing the huge resource available and how they can help ensure microbiology has the resources and a solid platform for future development. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. AGING FACILITY WORKER DOSE ASSESSMENT

    International Nuclear Information System (INIS)

    R.L. Thacker

    2005-01-01

    The purpose of this calculation is to estimate radiation doses received by personnel working in the Aging Facility performing operations to transfer aging casks to the aging pads for thermal and logistical management, stage empty aging casks, and retrieve aging casks from the aging pads for further processing in other site facilities. Doses received by workers due to aging cask surveillance and maintenance operations are also included. The specific scope of work contained in this calculation covers both collective doses and individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation from normal operation. There are no Category 1 event sequences associated with the Aging Facility (BSC 2004 [DIRS 167268], Section 7.2.1). The results of this calculation will be used to support the design of the Aging Facility and to provide occupational dose estimates for the License Application. The calculations contained in this document were developed by Environmental and Nuclear Engineering of the Design and Engineering Organization and are intended solely for the use of the Design and Engineering Organization in its work regarding facility operation. Yucca Mountain Project personnel from the Environmental and Nuclear Engineering should be consulted before use of the calculations for purposes other than those stated herein or use by individuals other than authorized personnel in Environmental and Nuclear Engineering

  9. Remote intelligent nuclear facility monitoring in LabVIEW

    International Nuclear Information System (INIS)

    Kucewicz, J.C.; Argo, P.E.; Caffrey, M.; Loveland, R.C.; McNeil, P.J.

    1996-01-01

    A prototype system implemented in LabVIEW for the intelligent monitoring of the movement of radioactive' material within a nuclear facility is presented. The system collects and analyzes radiation sensor and video data to identify suspicious movement of material within the facility. The facility system also transmits wavelet- compressed data to a remote system for concurrent monitoring. 2 refs., 2 figs

  10. Collective Efficacy

    DEFF Research Database (Denmark)

    Chen, Ying; Zhou, Xiaohu; Klyver, Kim

    2018-01-01

    at manufacturing companies show that benevolent leadership and moral leadership, both components of paternalistic leadership, are positively related to organizational commitment and further that collective efficacy mediates the moral leadership–organizational commitment relationship. We did not find a relationship...... between authoritarian leadership and organizational commitment. Besides, it was found that team cohesion negatively moderates the relationship between moral leadership and collective efficacy and positively moderates the relationship between collective efficacy and organizational commitment. Explanations......Based on social cognitive theory, we theorize that collective efficacy plays a mediating role in the relationship between paternalistic leadership and organizational commitment and that this mediating role depends on team cohesion. The empirical results from a study of 238 employees from 52 teams...

  11. 200 Area Liquid Effluent Facilities -- Quality assurance program plan

    International Nuclear Information System (INIS)

    Fernandez, L.

    1995-01-01

    This Quality Assurance Program Plan (QAPP) describes the quality assurance and management controls used by the 200 Area Liquid Effluent Facilities (LEF) to perform its activities in accordance with DOE Order 5700.6C. The 200 Area LEF consists of the following facilities: Effluent Treatment Facility (ETF); Treated Effluent Disposal Facility (TEDF); Liquid Effluent Retention facility (LERF); and Truck Loading Facility -- (Project W291). The intent is to ensure that all activities such as collection of effluents, treatment, concentration of secondary wastes, verification, sampling and disposal of treated effluents and solids related with the LEF operations, conform to established requirements

  12. Collective Security

    DEFF Research Database (Denmark)

    Galster, Kjeld

    in worldwide market conditions left perceptible ripples in Danish economy, budget discussions grew in importance over this period. The pacifist stance entailed disinclination to accept that the collective security concept and international treaties and accords signed by Denmark should necessitate credible...... and other international treaties provided arguments for adjusting the foreign and security policy ambitions, and since the general flux in worldwide market conditions left perceptible ripples in Danish economy, budget discussions grew in importance over this period. The pacifist stance entailed......Collective Security: National Egotism (Abstract) In Danish pre-World War I defence debate the notion of collective security is missing. During the early years of the 19th century, the political work is influenced by a pervasive feeling of rising tension and danger on the continent of Europe...

  13. Locals Collection

    Directory of Open Access Journals (Sweden)

    Stephen Hastings-King

    2010-03-01

    Full Text Available A locals collection is a set of parameters that are used to delimit data-mining operations. This piece uses a collection of locals from around Essex Massachusetts to shape and delimit an interrogation of post-reality in contemporary America. It explores the notion of crisis, the possibility of a crisis of empire that may or may not emerge in a media-space that does not allow crisis of empire to be mentioned and relations this maybe-crisis to the various levels of economic dysfunction that have become evident since late 2008. But mostly this piece explores ways in which particular stories about particular people do and do not link/link to these larger-scale narratives. This is the first of a potential series of locals collections that will mine the American post-real.

  14. Select Papyri from Danish Collections

    DEFF Research Database (Denmark)

    Christiansen, Thomas

    The thesis, Select Papyri from Danish Collections: Philological and Archaeometric Studies, consists of an introduction, a book, four articles and a rapport on a scientific experiment at EuropeanRadiation Synchrotron Facility(ESRF), Grenoble, France, together with an application for another...

  15. Parking Navigation for Alleviating Congestion in Multilevel Parking Facility

    OpenAIRE

    Kenmotsu, Masahiro; Sun, Weihua; Shibata, Naoki; Yasumoto, Keiichi; Ito, Minoru

    2012-01-01

    Finding a vacant parking space in a large crowded parking facility takes long time. In this paper, we propose a navigation method that minimizes the parking time based on collected real-time positional information of cars. In the proposed method, a central server in the parking facility collects the information and estimates the occupancy of each parking zone. Then, the server broadcasts the occupancy data to the cars in the parking facility. Each car then computes a parking route with the sh...

  16. Lesotho - Health Facility Survey

    Data.gov (United States)

    Millennium Challenge Corporation — The main objective of the 2011 Health Facility Survey (HFS) was to establish a baseline for informing the Health Project performance indicators on health facilities,...

  17. Armament Technology Facility (ATF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Armament Technology Facility is a 52,000 square foot, secure and environmentally-safe, integrated small arms and cannon caliber design and evaluation facility....

  18. Projectile Demilitarization Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Projectile Wash Out Facility is US Army Ammunition Peculiar Equipment (APE 1300). It is a pilot scale wash out facility that uses high pressure water and steam...

  19. Rocketball Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This test facility offers the capability to emulate and measure guided missile radar cross-section without requiring flight tests of tactical missiles. This facility...

  20. Wastewater Treatment Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Individual permits for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System (NPDES)...

  1. Materiel Evaluation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — CRREL's Materiel Evaluation Facility (MEF) is a large cold-room facility that can be set up at temperatures ranging from −20°F to 120°F with a temperature change...

  2. Environmental Toxicology Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Fully-equipped facilities for environmental toxicology researchThe Environmental Toxicology Research Facility (ETRF) located in Vicksburg, MS provides over 8,200 ft...

  3. Dialysis Facility Compare

    Data.gov (United States)

    U.S. Department of Health & Human Services — Dialysis Facility Compare helps you find detailed information about Medicare-certified dialysis facilities. You can compare the services and the quality of care that...

  4. Energetics Conditioning Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetics Conditioning Facility is used for long term and short term aging studies of energetic materials. The facility has 10 conditioning chambers of which 2...

  5. Explosive Components Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The 98,000 square foot Explosive Components Facility (ECF) is a state-of-the-art facility that provides a full-range of chemical, material, and performance analysis...

  6. Facilities for US Radioastronomy.

    Science.gov (United States)

    Thaddeus, Patrick

    1982-01-01

    Discusses major developments in radioastronomy since 1945. Topics include proposed facilities, very-long-baseline interferometric array, millimeter-wave telescope, submillimeter-wave telescope, and funding for radioastronomy facilities and projects. (JN)

  7. Neighbourhood facilities for sustainability

    CSIR Research Space (South Africa)

    Gibberd, Jeremy T

    2013-01-01

    Full Text Available . In this paper these are referred to as ‘Neighbourhood Facilities for Sustainability’. Neighbourhood Facilities for Sustainability (NFS) are initiatives undertaken by individuals and communities to build local sustainable systems which not only improve...

  8. Cold Vacuum Drying Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Located near the K-Basins (see K-Basins link) in Hanford's 100 Area is a facility called the Cold Vacuum Drying Facility (CVDF).Between 2000 and 2004, workers at the...

  9. Ouellette Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Test Facility is a joint Army/Navy state-of-the-art facility (8,100 ft2) that was designed to:Evaluate and characterize the effect of flame and thermal...

  10. Integrated Disposal Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Located near the center of the 586-square-mile Hanford Site is the Integrated Disposal Facility, also known as the IDF.This facility is a landfill similar in concept...

  11. Facility design: introduction

    International Nuclear Information System (INIS)

    Unger, W.E.

    1980-01-01

    The design of shielded chemical processing facilities for handling plutonium is discussed. The TRU facility is considered in particular; its features for minimizing the escape of process materials are listed. 20 figures

  12. EPA Facility Registry System (FRS): NCES

    Science.gov (United States)

    This web feature service contains location and facility identification information from EPA's Facility Registry System (FRS) for the subset of facilities that link to the National Center for Education Statistics (NCES). The primary federal database for collecting and analyzing data related to education in the United States and other Nations, NCES is located in the U.S. Department of Education, within the Institute of Education Sciences. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA00e2??s national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. This data set contains the subset of FRS integrated facilities that link to NCES school facilities once the NCES data has been integrated into the FRS database. Additional information on FRS is available at the EPA website http://www.epa.gov/enviro/html/fii/index.html.

  13. FY 1999 Evaluation and analysis of the data collected by the field test project for photovoltaic power generation in public facilities. By site (1/3); 1999 nendo kokyo shisetsu nadoyo taiyoko hatsuden field test jigyo ni okeru shushu data hyoka kaiseki. 1/3. Kaku site betsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    Described herein are the results of evaluation and analysis of the data (management nos.701 to 814) collected by the field test project for photovoltaic power generation in a total of 45 facilities, mainly public. Each system is operated for 30 to 31 days every month. A total of 23 items of the data described below are recorded every day, and totaled up, averaged and evaluated for effectiveness at the end of the month: solar radiation on a horizontal, sloped and effective sloped plane, average air temperature, array electric energy, system electric energy, system power consumption, load electric energy, load for supplying power to a network, electric energy of reversed flow, linkage protection actions, linkage parallel off time, system operation time, self-sustaining load, load of voluntary supply, equivalent array operation, equivalent system operation, array output coefficient, system output coefficient, system utilization, system power generation efficiency, INV effective efficiency, and INV load factor. (NEDO)

  14. CLEAR test facility

    CERN Multimedia

    Ordan, Julien Marius

    2017-01-01

    A new user facility for accelerator R&D, the CERN Linear Electron Accelerator for Research (CLEAR), started operation in August 2017. CLEAR evolved from the former CLIC Test Facility 3 (CTF3) used by the Compact Linear Collider (CLIC). The new facility is able to host and test a broad range of ideas in the accelerator field.

  15. US EPA Region 4 RMP Facilities

    Science.gov (United States)

    To improve public health and the environment, the United States Environmental Protection Agency (USEPA) collects information about facilities, sites, or places subject to environmental regulation or of environmental interest. Through the Geospatial Data Download Service, the public is now able to download the EPA Geodata shapefile containing facility and site information from EPA's national program systems. The file is Internet accessible from the Envirofacts Web site (http://www.epa.gov/enviro). The data may be used with geospatial mapping applications. (Note: The shapefile omits facilities without latitude/longitude coordinates.) The EPA Geospatial Data contains the name, location (latitude/longitude), and EPA program information about specific facilities and sites. In addition, the file contains a Uniform Resource Locator (URL), which allows mapping applications to present an option to users to access additional EPA data resources on a specific facility or site.

  16. Effluent Treatment Facility tritium emissions monitoring

    International Nuclear Information System (INIS)

    Dunn, D.L.

    1991-01-01

    An Environmental Protection Agency (EPA) approved sampling and analysis protocol was developed and executed to verify atmospheric emissions compliance for the new Savannah River Site (SRS) F/H area Effluent Treatment Facility. Sampling equipment was fabricated, installed, and tested at stack monitoring points for filtrable particulate radionuclides, radioactive iodine, and tritium. The only detectable anthropogenic radionuclides released from Effluent Treatment Facility stacks during monitoring were iodine-129 and tritium oxide. This paper only examines the collection and analysis of tritium oxide

  17. Operating instructions for LBL radon measurement facilities

    International Nuclear Information System (INIS)

    Ingersoll, J.G.

    1980-06-01

    This manual is intended for users of the radon-measuring facilities of the Radon Project of the Building Ventilation and Indoor Air Quality Program at Lawrence Berkeley Laboratory. The manual comprises three parts. Part 1 sets out the steps involved in collecting, transferring, and counting radon. Part 2 describes the calibration of the transfer system and of the Lucas cells in the counting system. Part 3 outlines the maintenance procedures for the facility

  18. Facility or Facilities? That is the Question.

    Science.gov (United States)

    Viso, M.

    2018-04-01

    The management of the martian samples upon arrival on the Earth will require a lot of work to ensure a safe life detection and biohazard testing during the quarantine. This will induce a sharing of the load between several facilities.

  19. Medical facility statistics in Japan.

    Science.gov (United States)

    Hamajima, Nobuyuki; Sugimoto, Takuya; Hasebe, Ryo; Myat Cho, Su; Khaing, Moe; Kariya, Tetsuyoshi; Mon Saw, Yu; Yamamoto, Eiko

    2017-11-01

    Medical facility statistics provide essential information to policymakers, administrators, academics, and practitioners in the field of health services. In Japan, the Health Statistics Office of the Director-General for Statistics and Information Policy at the Ministry of Health, Labour and Welfare is generating these statistics. Although the statistics are widely available in both Japanese and English, the methodology described in the technical reports are primarily in Japanese, and are not fully described in English. This article aimed to describe these processes for readers in the English-speaking world. The Health Statistics Office routinely conduct two surveys called the Hospital Report and the Survey of Medical Institutions. The subjects of the former are all the hospitals and clinics with long-term care beds in Japan. It comprises a Patient Questionnaire focusing on the numbers of inpatients, admissions, discharges, and outpatients in one month, and an Employee Questionnaire, which asks about the number of employees as of October 1. The Survey of Medical Institutions consists of the Dynamic Survey, which focuses on the opening and closing of facilities every month, and the Static Survey, which focuses on staff, facilities, and services as of October 1, as well as the number of inpatients as of September 30 and the total number of outpatients during September. All hospitals, clinics, and dental clinics are requested to submit the Static Survey questionnaire every three years. These surveys are useful tools for collecting essential information, as well as providing occasions to implicitly inform facilities of the movements of government policy.

  20. Concurrent Collections

    OpenAIRE

    Budimlić, Zoran; Burke, Michael; Cavé, Vincent; Knobe, Kathleen; Lowney, Geoff; Newton, Ryan; Palsberg, Jens; Peixotto, David; Sarkar, Vivek; Schlimbach, Frank; Taşırlar, Sağnak

    2010-01-01

    We introduce the Concurrent Collections (CnC) programming model. CnC supports flexible combinations of task and data parallelism while retaining determinism. CnC is implicitly parallel, with the user providing high-level operations along with semantic ordering constraints that together form a CnC graph. We formally describe the execution semantics of CnC and prove that the model guarantees deterministic computation. We evaluate the performance of CnC implementations on several applications an...

  1. The STARLINK software collection

    Science.gov (United States)

    Penny, A. J.; Wallace, P. T.; Sherman, J. C.; Terret, D. L.

    1993-12-01

    A demonstration will be given of some recent Starlink software. STARLINK is: a network of computers used by UK astronomers; a collection of programs for the calibration and analysis of astronomical data; a team of people giving hardware, software and administrative support. The Starlink Project has been in operation since 1980 to provide UK astronomers with interactive image processing and data reduction facilities. There are now Starlink computer systems at 25 UK locations, serving about 1500 registered users. The Starlink software collection now has about 25 major packages covering a wide range of astronomical data reduction and analysis techniques, as well as many smaller programs and utilities. At the core of most of the packages is a common `software environment', which provides many of the functions which applications need and offers standardized methods of structuring and accessing data. The software environment simplifies programming and support, and makes it easy to use different packages for different stages of the data reduction. Users see a consistent style, and can mix applications without hitting problems of differing data formats. The Project group coordinates the writing and distribution of this software collection, which is Unix based. Outside the UK, Starlink is used at a large number of places, which range from installations at major UK telescopes, which are Starlink-compatible and managed like Starlink sites, to individuals who run only small parts of the Starlink software collection.

  2. Consumption patterns and household hazardous solid waste generation in an urban settlement in Mexico

    International Nuclear Information System (INIS)

    Delgado Otoniel, Buenrostro; Liliana, Marquez-Benavides; Gaona Francelia, Pinette

    2008-01-01

    Mexico is currently facing a crisis in the waste management field. Some efforts have just commenced in urban and in rural settlements, e.g., conversion of open dumps into landfills, a relatively small composting culture, and implementation of source separation and plastic recycling strategies. Nonetheless, the high heterogeneity of components in the waste, many of these with hazardous properties, present the municipal collection services with serious problems, due to the risks to the health of the workers and to the impacts to the environment as a result of the inadequate disposition of these wastes. A generation study in the domestic sector was undertaken with the aim of finding out the composition and the generation rate of household hazardous waste (HHW) produced at residences. Simultaneously to the generation study, a socioeconomic survey was applied to determine the influence of income level on the production of HHW. Results from the solid waste generation analysis indicated that approximately 1.6% of the waste stream consists of HHW. Correspondingly, it was estimated that in Morelia, a total amount of 442 ton/day of domestic waste are produced, including 7.1 ton of HHW per day. Furthermore, the overall amount of HHW is not directly related to income level, although particular byproducts do correlate. However, an important difference was observed, as the brands and the presentation sizes of goods and products used in each socioeconomic stratum varied

  3. Household hazardous waste management: a review.

    Science.gov (United States)

    Inglezakis, Vassilis J; Moustakas, Konstantinos

    2015-03-01

    This paper deals with the waste stream of household hazardous waste (HHW) presenting existing management systems, legislation overview and other relevant quantitative and qualitative information. European Union legislation and international management schemes are summarized and presented in a concise manner by the use of diagrams in order to provide crucial information on HHW. Furthermore, sources and types, numerical figures about generation, collection and relevant management costs are within the scope of the present paper. The review shows that the term used to refer to hazardous waste generated in households is not clearly defined in legislation, while there is absence of specific acts regulating the management of HHW. The lack of obligation to segregate HHW from the household waste and the different terminology used makes it difficult to determine the quantities and composition of this waste stream, while its generation amount is relatively small and, therefore, is commonly overlooked in waste statistics. The paper aims to cover the gap in the related literature on a subject that is included within the crucial waste management challenges at world level, considering that HHW can also have impact on other waste streams by altering the redox conditions or causing direct reactions with other non hazardous waste substances. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Fiscal 1997 research report on the PV power generation field test project for public facilities. Evaluation and analysis of collected data for every site (2/3); 1997 nendo kokyo shisetsu nadoyo taiyoko hatsuden field test jigyo ni okeru shushu data hyoka kaiseki. Kaku site betsu (2/3)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    As a part of the PV power generation field test project, this report summarizes the monthly collected data for every site in fiscal 1996. Collected data items are as follows: horizontal/total/effective solar irradiation (kWh/m{sup 2}), average air temperature, array power, system power, load power, power system supply load, reverse power flow (kWh for every item), power system protective operation frequency, system disinterconnection time (min), system operation time (min), self-operation load, self-supply load, equivalent array/system operation time, array/system performance ratio, system use factor, system generation efficiency, effective inverter efficiency, and inverter load factor. The test sites include various public facilities such as doctor's office, newspaper office, general building for public corporations, primary school, hot water pool, health center, public hall, town/ward office, water purification plant, consumers' cooperative (CO-OP), university, high school, technical center, training center, nursery school, kindergarten, and nursing home for the aged. (NEDO)

  5. Facility transition instruction

    International Nuclear Information System (INIS)

    Morton, M.R.

    1997-01-01

    The Bechtel Hanford, Inc. facility transition instruction was initiated in response to the need for a common, streamlined process for facility transitions and to capture the knowledge and experience that has accumulated over the last few years. The instruction serves as an educational resource and defines the process for transitioning facilities to long-term surveillance and maintenance (S and M). Generally, these facilities do not have identified operations missions and must be transitioned from operational status to a safe and stable configuration for long-term S and M. The instruction can be applied to a wide range of facilities--from process canyon complexes like the Plutonium Uranium Extraction Facility or B Plant, to stand-alone, lower hazard facilities like the 242B/BL facility. The facility transition process is implemented (under the direction of the US Department of Energy, Richland Operations Office [RL] Assistant Manager-Environmental) by Bechtel Hanford, Inc. management, with input and interaction with the appropriate RL division and Hanford site contractors as noted in the instruction. The application of the steps identified herein and the early participation of all organizations involved are expected to provide a cost-effective, safe, and smooth transition from operational status to deactivation and S and M for a wide range of Hanford Site facilities

  6. Collective Success or Collective Failure?

    DEFF Research Database (Denmark)

    Fayyaz, Anjum

    study of soccer village project to learn how various attempts at facilitating joint CSR action in the Pakistani football manufacturing have consistently failed in addressing international CSR compliance demands. I conclude that this form of collective failure – along with technological changes, lack...... of innovation, and government failure - can partly explain why Sialkot has been marginalized in terms of its overall share of world football manufacturing in the last decade....

  7. Facilities inventory protection for nuclear facilities

    International Nuclear Information System (INIS)

    Schmitt, F.J.

    1989-01-01

    The fact that shut-down applications have been filed for nuclear power plants, suggests to have a scrutinizing look at the scopes of assessment and decision available to administrations and courts for the protection of facilities inventories relative to legal and constitutional requirements. The paper outlines the legal bases which need to be observed if purposeful calculation is to be ensured. Based on the different actual conditions and legal consequences, the author distinguishes between 1) the legal situation of facilities licenced already and 2) the legal situation of facilities under planning during the licencing stage. As indicated by the contents and restrictions of the pertinent provisions of the Atomic Energy Act and by the corresponding compensatory regulation, the object of the protection of facilities inventor in the legal position of the facility owner within the purview of the Atomic Energy Act, and the licensing proper. Art. 17 of the Atomic Energy Act indicates the legislators intent that, once issued, the licence will be the pivotal point for regulations aiming at protection and intervention. (orig./HSCH) [de

  8. Facilities projects performance measurement system

    International Nuclear Information System (INIS)

    Erben, J.F.

    1979-01-01

    The two DOE-owned facilities at Hanford, the Fuels and Materials Examination Facility (FMEF), and the Fusion Materials Irradiation Test Facility (FMIT), are described. The performance measurement systems used at these two facilities are next described

  9. 340 Facility compliance assessment

    International Nuclear Information System (INIS)

    English, S.L.

    1993-10-01

    This study provides an environmental compliance evaluation of the RLWS and the RPS systems of the 340 Facility. The emphasis of the evaluation centers on compliance with WAC requirements for hazardous and mixed waste facilities, federal regulations, and Westinghouse Hanford Company (WHC) requirements pertinent to the operation of the 340 Facility. The 340 Facility is not covered under either an interim status Part A permit or a RCRA Part B permit. The detailed discussion of compliance deficiencies are summarized in Section 2.0. This includes items of significance that require action to ensure facility compliance with WAC, federal regulations, and WHC requirements. Outstanding issues exist for radioactive airborne effluent sampling and monitoring, radioactive liquid effluent sampling and monitoring, non-radioactive liquid effluent sampling and monitoring, less than 90 day waste storage tanks, and requirements for a permitted facility

  10. Trauma facilities in Denmark

    DEFF Research Database (Denmark)

    Weile, Jesper; Nielsen, Klaus; Primdahl, Stine C

    2018-01-01

    Background: Trauma is a leading cause of death among adults aged challenge. Evidence supports the centralization of trauma facilities and the use multidisciplinary trauma teams. Because knowledge is sparse on the existing distribution of trauma facilities...... and the organisation of trauma care in Denmark, the aim of this study was to identify all Danish facilities that care for traumatized patients and to investigate the diversity in organization of trauma management. Methods: We conducted a systematic observational cross-sectional study. First, all hospitals in Denmark...... were identified via online services and clarifying phone calls to each facility. Second, all trauma care manuals on all facilities that receive traumatized patients were gathered. Third, anesthesiologists and orthopedic surgeons on call at all trauma facilities were contacted via telephone...

  11. Synchrotron radiation facilities

    CERN Multimedia

    1972-01-01

    Particularly in the past few years, interest in using the synchrotron radiation emanating from high energy, circular electron machines has grown considerably. In our February issue we included an article on the synchrotron radiation facility at Frascati. This month we are spreading the net wider — saying something about the properties of the radiation, listing the centres where synchrotron radiation facilities exist, adding a brief description of three of them and mentioning areas of physics in which the facilities are used.

  12. Facility of aerosol filtration

    Energy Technology Data Exchange (ETDEWEB)

    Duverger de Cuy, G; Regnier, J

    1975-04-18

    Said invention relates to a facility of aerosol filtration, particularly of sodium aerosols. Said facility is of special interest for fast reactors where sodium fires involve the possibility of high concentrations of sodium aerosols which soon clog up conventional filters. The facility intended for continuous operation, includes at the pre-filtering stage, means for increasing the size of the aerosol particles and separating clustered particles (cyclone separator).

  13. Textiles Performance Testing Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Textiles Performance Testing Facilities has the capabilities to perform all physical wet and dry performance testing, and visual and instrumental color analysis...

  14. Geodynamics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This GSL facility has evolved over the last three decades to support survivability and protective structures research. Experimental devices include three gas-driven...

  15. Materials Characterization Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Materials Characterization Facility enables detailed measurements of the properties of ceramics, polymers, glasses, and composites. It features instrumentation...

  16. Mobile Solar Tracker Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NIST's mobile solar tracking facility is used to characterize the electrical performance of photovoltaic panels. It incorporates meteorological instruments, a solar...

  17. Proximal Probes Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Proximal Probes Facility consists of laboratories for microscopy, spectroscopy, and probing of nanostructured materials and their functional properties. At the...

  18. Geospatial Data Analysis Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Geospatial application development, location-based services, spatial modeling, and spatial analysis are examples of the many research applications that this facility...

  19. Facility Environmental Management System

    Data.gov (United States)

    Federal Laboratory Consortium — This is the Web site of the Federal Highway Administration's (FHWA's) Turner-Fairbank Highway Research Center (TFHRC) facility Environmental Management System (EMS)....

  20. Heated Tube Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Heated Tube Facility at NASA GRC investigates cooling issues by simulating conditions characteristic of rocket engine thrust chambers and high speed airbreathing...

  1. Magnetics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetics Research Facility houses three Helmholtz coils that generate magnetic fields in three perpendicular directions to balance the earth's magnetic field....

  2. Transonic Experimental Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Transonic Experimental Research Facility evaluates aerodynamics and fluid dynamics of projectiles, smart munitions systems, and sub-munitions dispensing systems;...

  3. Engine Test Facility (ETF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Air Force Arnold Engineering Development Center's Engine Test Facility (ETF) test cells are used for development and evaluation testing of propulsion systems for...

  4. Target Assembly Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Target Assembly Facility integrates new armor concepts into actual armored vehicles. Featuring the capability ofmachining and cutting radioactive materials, it...

  5. Pavement Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Comprehensive Environmental and Structural AnalysesThe ERDC Pavement Testing Facility, located on the ERDC Vicksburg campus, was originally constructed to provide an...

  6. Composite Structures Manufacturing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Composite Structures Manufacturing Facility specializes in the design, analysis, fabrication and testing of advanced composite structures and materials for both...

  7. GPS Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Global Positioning System (GPS) Test Facility Instrumentation Suite (GPSIS) provides great flexibility in testing receivers by providing operational control of...

  8. Manufacturing Demonstration Facility (MDF)

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Department of Energy Manufacturing Demonstration Facility (MDF) at Oak Ridge National Laboratory (ORNL) provides a collaborative, shared infrastructure to...

  9. Surplus Facilities Management Program

    International Nuclear Information System (INIS)

    Coobs, J.H.

    1983-01-01

    This is the second of two programs that are concerned with the management of surplus facilities. The facilities in this program are those related to commercial activities, which include the three surplus experimental and test reactors [(MSRE, HRE-2, and the Low Intensity Test Reactor (LITR)] and seven experimental loops at the ORR. The program is an integral part of the Surplus Facilities Management Program, which is a national program administered for DOE by the Richland Operations Office. Very briefly reported here are routine surveillance and maintenance of surplus radioactively contaminated DOE facilities awaiting decommissioning

  10. Imagery Data Base Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Imagery Data Base Facility supports AFRL and other government organizations by providing imagery interpretation and analysis to users for data selection, imagery...

  11. Neutron Therapy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Neutron Therapy Facility provides a moderate intensity, broad energy spectrum neutron beam that can be used for short term irradiations for radiobiology (cells)...

  12. Universal Drive Train Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This vehicle drive train research facility is capable of evaluating helicopter and ground vehicle power transmission technologies in a system level environment. The...

  13. High Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL's High-Pressure Combustion Research Facility in Morgantown, WV, researchers can investigate new high-pressure, high-temperature hydrogen turbine combustion...

  14. Catalytic Fuel Conversion Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility enables unique catalysis research related to power and energy applications using military jet fuels and alternative fuels. It is equipped with research...

  15. Flexible Electronics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Flexible Electronics Research Facility designs, synthesizes, tests, and fabricates materials and devices compatible with flexible substrates for Army information...

  16. DUPIC facility engineering

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Lee, H. H.; Kim, K. H. and others

    2000-03-01

    The objectives of this study are (1) the refurbishment for PIEF(Post Irradiation Examination Facility) and M6 hot-cell in IMEF(Irradiated Material Examination Facility), (2) the establishment of the compatible facility for DUPIC fuel fabrication experiments which is licensed by government organization, and (3) the establishment of the transportation system and transportation cask for nuclear material between facilities. The report for this project describes following contents, such as objectives, necessities, scope, contents, results of current step, R and D plan in future and etc.

  17. Facility effluent monitoring plan determinations for the 400 Area facilities

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1991-09-01

    This Facility Effluent Monitoring Plan determination resulted from an evaluation conducted for the Westinghouse Hanford Company 400 Area facilities on the Hanford Site. The Facility Effluent Monitoring Plan determinations have been prepared in accordance with A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans. Two major Westinghouse Hanford Company facilities in the 400 Area were evaluated: the Fast Flux Test Facility and the Fuels Manufacturing and examination Facility. The determinations were prepared by Westinghouse Hanford Company. Of these two facilities, only the Fast Flux Test Facility will require a Facility Effluent Monitoring Plan. 7 refs., 5 figs., 4 tabs

  18. Radiological dose assessment from the operation of Daeduk nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Won Tae; Kim, Eun Han; Suh, Kyung Suk; Choi, Young Gil [Korea Atomic Energy Research Institute, Taejon (Korea)

    2000-02-01

    The objective of this project is to assure the public acceptance for nuclear facilities, and the environmental safety from the operation of Daeduk nuclear facilities, such as HANARO research reactor, nuclear fuel processing facilities and others. For identifying the integrity of their facilities, the maximum individual doses at the site boundary and on the areas with high population density were assessed. Also, the collective doses within radius 80 km from the site were assessed. The radiation impacts for residents around the site from the operation of Daeduk nuclear facilities in 1999 were neglectable. 8 refs., 10 figs., 27 tabs. (Author)

  19. Safety guide data on radiation shielding in a reprocessing facility

    International Nuclear Information System (INIS)

    Sekiguchi, Noboru; Naito, Yoshitaka

    1986-04-01

    In a reprocessing facility, various radiation sources are handled and have many geometrical conditions. To aim drawing up a safety guidebook on radiation shielding in order to evaluate shielding safety in a reprocessing facility with high reliability and reasonableness, JAERI trusted investigation on safety evaluation techniques of radiation shielding in a reprocessing facility to Nuclear Safety Research Association. This report is the collection of investigation results, and describes concept of shielding safety design principle, radiation sources in reprocessing facility and estimation of its strength, techniques of shielding calculations, and definite examples of shielding calculation in reprocessing facility. (author)

  20. INTEGRATION OF FACILITY MODELING CAPABILITIES FOR NUCLEAR NONPROLIFERATION ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.; Hamm, L.; Garcia, H.; Burr, T.; Coles, G.; Edmunds, T.; Garrett, A.; Krebs, J.; Kress, R.; Lamberti, V.; Schoenwald, D.; Tzanos, C.; Ward, R.

    2011-07-18

    Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

  1. Integration of facility modeling capabilities for nuclear nonproliferation analysis

    International Nuclear Information System (INIS)

    Garcia, Humberto; Burr, Tom; Coles, Garill A.; Edmunds, Thomas A.; Garrett, Alfred; Gorensek, Maximilian; Hamm, Luther; Krebs, John; Kress, Reid L.; Lamberti, Vincent; Schoenwald, David; Tzanos, Constantine P.; Ward, Richard C.

    2012-01-01

    Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

  2. Integration Of Facility Modeling Capabilities For Nuclear Nonproliferation Analysis

    International Nuclear Information System (INIS)

    Gorensek, M.; Hamm, L.; Garcia, H.; Burr, T.; Coles, G.; Edmunds, T.; Garrett, A.; Krebs, J.; Kress, R.; Lamberti, V.; Schoenwald, D.; Tzanos, C.; Ward, R.

    2011-01-01

    Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

  3. High-capacity neutron activation analysis facility

    International Nuclear Information System (INIS)

    Hochel, R.C.

    1979-01-01

    A high-capacity neutron activation analysis facility, the Reactor Activation Facility, was designed and built and has been in operation for about a year at one of the Savannah River Plant's production reactors. The facility determines uranium and about 19 other trace elements in hydrogeochemical samples collected in the National Uranium Resource Evaluation program. The facility has a demonstrated average analysis rate of over 10,000 samples per month, and a peak rate of over 16,000 samples per month. Uranium is determined by cyclic activation and delayed neutron counting of the U-235 fission products; other elements are determined from gamma-ray spectra recorded in subsequent irradiation, decay, and counting steps. The method relies on the absolute activation technique and is highly automated for round-the-clock unattended operation

  4. High-capacity neutron activation analysis facility

    International Nuclear Information System (INIS)

    Hochel, R.C.; Bowman, W.W.; Zeh, C.W.

    1980-01-01

    A high-capacity neutron activation analysis facility, the Reactor Activation Facility, was designed and built and has been in operation for about a year at one of the Savannah River Plant's production reactors. The facility determines uranium and about 19 other elements in hydrogeochemical samples collected in the National Uranium Resource Evaluation program, which is sponsored and funded by the United States Department of Energy, Grand Junction Office. The facility has a demonstrated average analysis rate of over 10,000 samples per month, and a peak rate of over 16,000 samples per month. Uranium is determined by cyclic activation and delayed neutron counting of the U-235 fission products; other elements are determined from gamma-ray spectra recorded in subsequent irradiation, decay, and counting steps. The method relies on the absolute activation technique and is highly automated for round-the-clock unattended operation

  5. Green facility location

    NARCIS (Netherlands)

    Velázquez Martínez, J.C.; Fransoo, J.C.; Bouchery, Y.; Corbett, C.J.; Fransoo, J.C.; Tan, T.

    2017-01-01

    Transportation is one of the main contributing factors of global carbon emissions, and thus, when dealing with facility location models in a distribution context, transportation emissions may be substantially higher than the emissions due to production or storage. Because facility location models

  6. A Remote WIRELESS Facility

    Directory of Open Access Journals (Sweden)

    Kees Uiterwijk

    2007-10-01

    Full Text Available Continuing need for available distance learning facilities has led to the development of a remote lab facility focusing on wireless technology. In the field of engineering there is a student need of gaining experience in set-up, monitoring and maintenance of 802.11A/B/G based wireless LAN environments.

  7. Medical cyclotron facilities

    International Nuclear Information System (INIS)

    1984-09-01

    This report examines the separate proposals from the Austin Hospital and the Australian Atomic Energy Commission for a medical cyclotron facility. The proponents have argued that a cyclotron facility would benefit Australia in areas of patient care, availability and export of radioisotopes, and medical research. Positron emission tomography (PET) and neutron beam therapy are also examined

  8. Global Environment Facility |

    Science.gov (United States)

    environment Countries pledge US$4.1 billion to the Global Environment Facility Ringtail lemur mom with two of paradise Nations rally to protect global environment Countries pledge US$4.1 billion to the Global Environment Facility Stockholm, Sweden birds-eye view Events GEF-7 Replenishment Trung Truong Son Landscapes

  9. Samarbejdsformer og Facilities Management

    DEFF Research Database (Denmark)

    Storgaard, Kresten

    Resultater fra en surveyundersøgelse om fordele og ulemper ved forskellige samarbejdsformer indenfor Facilities Management fremlægges.......Resultater fra en surveyundersøgelse om fordele og ulemper ved forskellige samarbejdsformer indenfor Facilities Management fremlægges....

  10. DUPIC facility engineering

    International Nuclear Information System (INIS)

    Park, J. J.; Lee, H. H.; Kim, K. H.

    2002-03-01

    With starting DUPIC fuel fabrication experiment by using spent fuels, 1) operation and refurbishment for DFDF (DUPIC fuel development facility), and 2) operation and improvement of transportation equipment for radioactive materials between facilities became the objectives of this study. This report describes objectives of the project, necessities, state of related technology, R and D scope, R and D results, proposal for application etc

  11. Economics of reusable facilities

    International Nuclear Information System (INIS)

    Antia, D.D.J.

    1992-01-01

    In this paper some of the different economic development strategies that can be used for reusable facilities in the UK, Norway, Netherlands and in some production sharing contracts are outlined. These strategies focus on an integrated decision analysis approach which considers development phasing, reservoir management, tax planning and where appropriate facility purchase, leasing, or sale and leaseback decisions

  12. Facilities Performance Indicators Report, 2006-07

    Science.gov (United States)

    Glazner, Steve, Ed.

    2008-01-01

    The "Facilities Performance Indicators Survey" ("FPI") supersedes and builds upon the two major surveys APPA conducted in the past: the Comparative Costs and Staffing (CCAS) survey and the Strategic Assessment Model (SAM). The "FPI" covers all the materials collected in CCAS and SAM, along with some select new data points and improved survey…

  13. Nuclear physics accelerator facilities

    International Nuclear Information System (INIS)

    1988-12-01

    This paper describes many of the nuclear physics heavy-ion accelerator facilities in the US and the research programs being conducted. The accelerators described are: Argonne National Laboratory--ATLAS; Brookhaven National Laboratory--Tandem/AGS Heavy Ion Facility; Brookhaven National Laboratory--Relativistic Heavy Ion Collider (RHIC) (Proposed); Continuous Electron Beam Accelerator Facility; Lawrence Berkeley Laboratory--Bevalac; Lawrence Berkeley Laboratory--88-Inch Cyclotron; Los Alamos National Laboratory--Clinton P. Anderson Meson Physics Facility (LAMPF); Massachusetts Institute of Technology--Bates Linear Accelerator Center; Oak Ridge National Laboratory--Holifield Heavy Ion Research Facility; Oak Ridge National Laboratory--Oak Ridge Electron Linear Accelerator; Stanford Linear Accelerator Center--Nuclear Physics Injector; Texas AandM University--Texas AandM Cyclotron; Triangle Universities Nuclear Laboratory (TUNL); University of Washington--Tandem/Superconducting Booster; and Yale University--Tandem Van de Graaff

  14. Outline of NUCEF facility

    International Nuclear Information System (INIS)

    Takeshita, Isao

    1996-01-01

    NUCEF is a multipurpose research facility in the field of safety and advanced technology of nuclear fuel cycle back-end. Various experiment facilities and its supporting installations, in which nuclear fuel materials, radio isotopes and TRU elements can be handled, are arranged in more than one hundred rooms of two experiment buildings. Its construction was completed in middle of 1994 and hot experiments have been started since then. NUCEF is located on the site (30,000 m 2 ) of southeastern part in the Tokai Research Establishment of JAERI facing to the Pacific Ocean. The base of Experiment Buildings A and B was directly founded on the rock existing at 10-15 m below ground level taking the aseismatic design into consideration. Each building is almost same sized and composed of one basement and three floors of which area is 17,500 m 2 in total. In the basement, there are exhaust facilities of ventilation system, treatment system of solution fuel and radioactive waste solution and storage tanks of them. Major experiment facilities are located on the first or the second floors in each building. An air-inlet facility of ventilation system for each building is equipped on the third floor. Most of experiment facilities for criticality safety research including two critical facilities: Static Experiment Critical Facility (STACY) and Transient Experiment Critical Facility (TRACY) are installed in Experiment Building A. Experiment equipments for research on advanced fuel reprocessing process and on TRU waste management, which are named BECKY (Back End Fuel Cycle Key Elements Research Facility), are installed in laboratories and a-g cells in Experiment Building B. (J.P.N.)

  15. Collection of Recyclables from Cubes

    DEFF Research Database (Denmark)

    Wøhlk, Sanne; Bogh, Morten Bie; Mikkelsen, Hardy

    2014-01-01

    Collection of recyclable materials is a major part of reverse logistics and an important issue in sustainable logistics. In this paper we consider a case study where paper and glass are collected from recycling cubes and transported to a treatment facility where it is processed for reuse. We...... analyze how outsourcing the planning and transportation of the service can result in conflicts of interest and as a consequence cause unsustainable solutions. Finally, we suggest an alternative payment structure which can lead to a common goal, overall economic sustainability, and an improved financial...

  16. The Perspective of the Staff Regarding Facility Revitalization at Walter Reed Army Medical Center

    National Research Council Canada - National Science Library

    Baker, Jimmy G

    2004-01-01

    ...). The response rate for the questionnaire was 40.69%, Analysis of collected data revealed that most respondents believe major facility revitalization must occur at WRAMC, staff awareness of the Master Facility Plan is lacking and staff education...

  17. 78 FR 16698 - Chemical Facility Anti-Terrorism Standards (CFATS) Chemical-Terrorism Vulnerability Information...

    Science.gov (United States)

    2013-03-18

    ... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2012-0057] Chemical Facility Anti-Terrorism Standards (CFATS) Chemical- Terrorism Vulnerability Information (CVI) AGENCY: National Protection and... notice is also soliciting comments concerning the Information Collection Request, Chemical Facility Anti...

  18. Report to Congress on innovative safety and security technology solutions for alternative transportation facilities

    Science.gov (United States)

    2017-05-01

    This research collected information on the frequency and impact of safety and security incidents (threats) at selected facilities and identified priority incidents at each facility. A customized all hazards approach was used to determine the ha...

  19. FY 1997 evaluation/analysis by site of the data collected in the field test project for photovoltaic power generation for public facilities. 1/3; Kokyo shisetsunadoyo taiyoko hatsuden field test jigyo ni okeru shushu data hyoka kaiseki kaku site betsu (1997 nendo). 1/3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The data on field tests of the photovoltaic power generation were collected. The items for survey were as follows: horizontal insolation intensity, inclined insolation intensity, effective inclined insolation intensity, average temperature, array electric energy, system electric energy, load electric energy, system supply load, back flow electric energy, interconnected protective movement, disconnection hour, system operation hour, independent operation load, independent supply load, equivalent array operation, equivalent system operation, array output coefficient, system output coefficient, system utilization rate, system charging efficiency, INV effective efficiency, INV load factor, etc. The number of the places for survey is 37 including the following: Hikarigaoka Park of Sakata City, Koiwai Plant of Koiwai Dairy Product Co., Kameoka Ayumi Nursely School, Ichinoseki I-DOME, Okano Park, Kuriyama Park Health Sports Center, Mejiro University, Tokyo Hikarigaoka Sports Facilities, Regional Community Center, Yokohama Tobu Joint Purchase Center, Taemi-so Nursing Care Center for the Elderly, Uemichi School Meal Providing Center, Okayama Prefectural Office, Oita Prefectural Agricultural Research Center, Kanagawa Industrial Technology Research Center Institute, etc. (NEDO)

  20. DUPIC facility engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J S; Choi, J W; Go, W I; Kim, H D; Song, K C; Jeong, I H; Park, H S; Im, C S; Lee, H M; Moon, K H; Hong, K P; Lee, K S; Suh, K S; Kim, E K; Min, D K; Lee, J C; Chun, Y B; Paik, S Y; Lee, E P; Yoo, G S; Kim, Y S; Park, J C

    1997-09-01

    In the early stage of the project, a comprehensive survey was conducted to identify the feasibility of using available facilities and of interface between those facilities. It was found out that the shielded cell M6 interface between those facilities. It was found out that the shielded cell M6 of IMEF could be used for the main process experiments of DUPIC fuel fabrication in regard to space adequacy, material flow, equipment layout, etc. Based on such examination, a suitable adapter system for material transfer around the M6 cell was engineered. Regarding the PIEF facility, where spent PWR fuel assemblies are stored in an annex pool, disassembly devices in the pool are retrofitted and spent fuel rod cutting and shipping system to the IMEF are designed and built. For acquisition of casks for radioactive material transport between the facilities, some adaptive refurbishment was applied to the available cask (Padirac) based on extensive analysis on safety requirements. A mockup test facility was newly acquired for remote test of DUPIC fuel fabrication process equipment prior to installation in the M6 cell of the IMEF facility. (author). 157 refs., 57 tabs., 65 figs.

  1. DUPIC facility engineering

    International Nuclear Information System (INIS)

    Lee, J. S.; Choi, J. W.; Go, W. I.; Kim, H. D.; Song, K. C.; Jeong, I. H.; Park, H. S.; Im, C. S.; Lee, H. M.; Moon, K. H.; Hong, K. P.; Lee, K. S.; Suh, K. S.; Kim, E. K.; Min, D. K.; Lee, J. C.; Chun, Y. B.; Paik, S. Y.; Lee, E. P.; Yoo, G. S.; Kim, Y. S.; Park, J. C.

    1997-09-01

    In the early stage of the project, a comprehensive survey was conducted to identify the feasibility of using available facilities and of interface between those facilities. It was found out that the shielded cell M6 interface between those facilities. It was found out that the shielded cell M6 of IMEF could be used for the main process experiments of DUPIC fuel fabrication in regard to space adequacy, material flow, equipment layout, etc. Based on such examination, a suitable adapter system for material transfer around the M6 cell was engineered. Regarding the PIEF facility, where spent PWR fuel assemblies are stored in an annex pool, disassembly devices in the pool are retrofitted and spent fuel rod cutting and shipping system to the IMEF are designed and built. For acquisition of casks for radioactive material transport between the facilities, some adaptive refurbishment was applied to the available cask (Padirac) based on extensive analysis on safety requirements. A mockup test facility was newly acquired for remote test of DUPIC fuel fabrication process equipment prior to installation in the M6 cell of the IMEF facility. (author). 157 refs., 57 tabs., 65 figs

  2. STAR facility tritium accountancy

    International Nuclear Information System (INIS)

    Pawelko, R. J.; Sharpe, J. P.; Denny, B. J.

    2008-01-01

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5 g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed. (authors)

  3. Nuclear physics accelerator facilities of the world

    International Nuclear Information System (INIS)

    1991-12-01

    this report is intended to provide a convenient summary of the world's major nuclear physics accelerator facility with emphasis on those facilities supported by the US Department of Energy (DOE). Previous editions of this report have contained only DOE facilities. However, as the extent of global collaborations in nuclear physics grows, gathering summary information on the world's nuclear physics accelerator facilities in one place is useful. Therefore, the present report adds facilities operated by the National Science Foundation (NSF) as well as the leading foreign facilities, with emphasis on foreign facilities that have significant outside user programs. The principal motivation for building and operating these facilities is, of course, basic research in nuclear physics. The scientific objectives for this research were recently reviewed by the DOE/NSF Nuclear Science Advisory Committee, who developed a long range plan, Nuclei, Nucleons, and Quarks -- Nuclear Science in the 1990's. Their report begins as follows: The central thrust of nuclear science is the study of strongly interacting matter and of the forces that govern its structure and dynamics; this agenda ranges from large- scale collective nuclear behavior through the motions of individual nucleons and mesons, atomic nuclei, to the underlying distribution of quarks and gluons. It extends to conditions at the extremes of temperature and density which are of significance to astrophysics and cosmology and are conducive to the creation of new forms of strongly interacting matter; and another important focus is on the study of the electroweak force, which plays an important role in nuclear stability, and on precision tests of fundamental interactions. The present report provides brief descriptions of the accelerator facilities available for carrying out this agenda and their research programs

  4. Sustainable Facilities Management

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Elle, Morten; Hoffmann, Birgitte

    2004-01-01

    The Danish public housing sector has more than 20 years of experience with sustainable facilities management based on user involvement. The paper outlines this development in a historical perspective and gives an analysis of different approaches to sustainable facilities management. The focus...... is on the housing departments and strateies for the management of the use of resources. The research methods used are case studies based on interviews in addition to literature studies. The paper explores lessons to be learned about sustainable facilities management in general, and points to a need for new...

  5. WORKSHOPS: Hadron facilities

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    'Hadron facilities' – high intensity (typically a hundred microamps), medium energy (30-60 GeV) machines producing intense secondary beams of pions, kaons, etc., are being widely touted as a profitable research avenue to supplement what is learned through the thrust for higher and higher energies. This interest was reflected at an International Workshop on Hadron Facility Technology, held in Santa Fe, New Mexico. As well as invited talks describing the various projects being pushed in the US, Europe and Japan, the meeting included working groups covering linacs, beam dynamics, hardware, radiofrequency, polarized beams and experimental facilities

  6. Radioactive facilities classification criteria

    International Nuclear Information System (INIS)

    Briso C, H.A.; Riesle W, J.

    1992-01-01

    Appropriate classification of radioactive facilities into groups of comparable risk constitutes one of the problems faced by most Regulatory Bodies. Regarding the radiological risk, the main facts to be considered are the radioactive inventory and the processes to which these radionuclides are subjected. Normally, operations are ruled by strict safety procedures. Thus, the total activity of the radionuclides existing in a given facility is the varying feature that defines its risk. In order to rely on a quantitative criterion and, considering that the Annual Limits of Intake are widely accepted references, an index based on these limits, to support decisions related to radioactive facilities, is proposed. (author)

  7. Wind Energy Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laurie, Carol

    2017-02-01

    This book takes readers inside the places where daily discoveries shape the next generation of wind power systems. Energy Department laboratory facilities span the United States and offer wind research capabilities to meet industry needs. The facilities described in this book make it possible for industry players to increase reliability, improve efficiency, and reduce the cost of wind energy -- one discovery at a time. Whether you require blade testing or resource characterization, grid integration or high-performance computing, Department of Energy laboratory facilities offer a variety of capabilities to meet your wind research needs.

  8. Test and User Facilities | NREL

    Science.gov (United States)

    Test and User Facilities Test and User Facilities Our test and user facilities are available to | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z B Battery Thermal and Life Test Facility Biochemical Conversion Pilot Plant C Controllable Grid Interface Test System D Dynamometer Test Facilities

  9. 21 CFR 58.43 - Animal care facilities.

    Science.gov (United States)

    2010-04-01

    ... testing facility shall have a sufficient number of animal rooms or areas, as needed, to assure proper: (1... (4) routine or specialized housing of animals. (b) A testing facility shall have a number of animal... shall exist for the collection and disposal of all animal waste and refuse or for safe sanitary storage...

  10. An Analysis of the Charter School Facility Landscape in Massachusetts

    Science.gov (United States)

    National Alliance for Public Charter Schools, 2013

    2013-01-01

    In the spring of 2012, the Massachusetts Charter Public School Association, the Colorado League of Charter Schools, and the National Alliance for Public Charter Schools worked to collect data that would reveal and accurately portray the adequacy of charter school facilities and the average spending for facilities out of charter schools' operating…

  11. An Analysis of the Charter School Facility Landscape in Albuquerque

    Science.gov (United States)

    Hesla, Kevin; Johnson, Jessica; Callahan, Kelly; Roskom, Greta; Ziebarth, Todd

    2017-01-01

    In 2016, the National Charter School Resource Center (NCSRC), the Colorado League of Charter Schools (the League), the New Mexico Coalition for Charter Schools (NMCCS), and the National Alliance for Public Charter Schools (the Alliance) collaborated to collect data and information about charter school facilities and facilities expenditures in the…

  12. An Analysis of the Charter School Facility Landscape in Delaware

    Science.gov (United States)

    Hesla, Kevin; Johnson, Jessica M.; Massett, Kendall; Ziebarth, Todd

    2018-01-01

    In the spring of 2016, the National Charter School Resource Center (NCSRC), the Colorado League of Charter Schools (the League), the Delaware Charter Schools Network (DCSN), and the National Alliance for Public Charter Schools (the Alliance) collaborated to collect data and information about charter school facilities and facilities expenditures in…

  13. Drainage facility management system : final report, June 2009.

    Science.gov (United States)

    2009-06-01

    This research project identified requirements for a drainage facility management system for the Oregon Department of Transportation. It also estimated the personnel resources needed to collect the inventory to populate such a system with data. A tota...

  14. Aviation Flight Support Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility consists of a 75' x 200' hanger with two adjacent helicopter pads located at Felker Army Airfield on Fort Eustis. A staff of Government and contractor...

  15. Airborne & Field Sensors Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — RTTC facilities include an 800' x 60' paved UAV operational area, clearapproach/departure zone, concrete pads furnished with 208VAC, 3 phase,200 amp power, 20,000 sq...

  16. Field Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Field Research Facility (FRF) located in Duck, N.C. was established in 1977 to support the U.S. Army Corps of Engineers' coastal engineering mission. The FRF is...

  17. Air Data Calibration Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility is for low altitude subsonic altimeter system calibrations of air vehicles. Mission is a direct support of the AFFTC mission. Postflight data merge is...

  18. Robotics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This 60 feet x 100 feet structure on the grounds of the Fort Indiantown Gap Pennsylvania National Guard (PNG) Base is a mixed-use facility comprising office space,...

  19. Ballistic Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Ballistic Test Facility is comprised of two outdoor and one indoor test ranges, which are all instrumented for data acquisition and analysis. Full-size aircraft...

  20. Concrete Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This is a 20,000-sq ft laboratory that supports research on all aspects of concrete and materials technology. The staff of this facility offer wide-ranging expertise...

  1. Climatic Environmental Test Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — RTTC has an extensive suite of facilities for supporting MIL-STD-810 testing, toinclude: Temperature/Altitude, Rapid Decompression, Low/High Temperature,Temperature...

  2. HNF - Helmholtz Nano Facility

    Directory of Open Access Journals (Sweden)

    Wolfgang Albrecht

    2017-05-01

    Full Text Available The Helmholtz Nano Facility (HNF is a state-of-the-art cleanroom facility. The cleanroom has ~1100 m2 with cleanroom classes of DIN ISO 1-3. HNF operates according to VDI DIN 2083, Good Manufacturing Practice (GMP and aquivalent to Semiconductor Industry Association (SIA standards. HNF is a user facility of Forschungszentrum Jülich and comprises a network of facilities, processes and systems for research, production and characterization of micro- and nanostructures. HNF meets the basic supply of micro- and nanostructures for nanoelectronics, fluidics. micromechanics, biology, neutron and energy science, etc.. The task of HNF is rapid progress in nanostructures and their technology, offering efficient access to infrastructure and equipment. HNF gives access to expertise and provides resources in production, synthesis, characterization and integration of structures, devices and circuits. HNF covers the range from basic research to application oriented research facilitating a broad variety of different materials and different sample sizes.

  3. Advanced Microscopy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides a facility for high-resolution studies of complex biomolecular systems. The goal is an understanding of how to engineer biomolecules for various...

  4. Electra Laser Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: The Electra Laser Facility is used to develop the science and technology needed to develop a reliable, efficient, high-energy, repetitively pulsed krypton...

  5. Mark 1 Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Mark I Test Facility is a state-of-the-art space environment simulation test chamber for full-scale space systems testing. A $1.5M dollar upgrade in fiscal year...

  6. Coastal Harbors Modeling Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Coastal Harbors Modeling Facility is used to aid in the planning of harbor development and in the design and layout of breakwaters, absorbers, etc.. The goal is...

  7. Corrosion Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Corrosion Testing Facility is part of the Army Corrosion Office (ACO). It is a fully functional atmospheric exposure site, called the Corrosion Instrumented Test...

  8. Skilled Nursing Facility PPS

    Data.gov (United States)

    U.S. Department of Health & Human Services — Section 4432(a) of the Balanced Budget Act (BBA) of 1997 modified how payment is made for Medicare skilled nursing facility (SNF) services. Effective with cost...

  9. Frost Effects Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Full-scale study in controlled conditionsThe Frost Effects Research Facility (FERF) is the largest refrigerated warehouse in the United States that can be used for a...

  10. GPS Satellite Simulation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The GPS satellite simulation facility consists of a GPS satellite simulator controlled by either a Silicon Graphics Origin 2000 or PC depending upon unit under test...

  11. VT Telecommunication Facilities

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The UtilityTelecom_TELEFAC data layer contains points which are intended to represent the location of telecommunications facilities (towers and/or...

  12. Laser Guidance Analysis Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility, which provides for real time, closed loop evaluation of semi-active laser guidance hardware, has and continues to be instrumental in the development...

  13. The Birmingham Irradiation Facility

    CERN Document Server

    Dervan, P; Hodgson, P; Marin-Reyes, H; Wilson, J

    2013-01-01

    At the end of 2012 the proton irradiation facility at the CERN PS [1] will shut down for two years. With this in mind, we have been developing a new ATLAS scanning facility at the University of Birmingham Medical Physics cyclotron. With proton beams of energy approximately 30 MeV, fluences corresponding to those of the upgraded Large Hadron Collider (HL-LHC) can be reached conveniently. The facility can be used to irradiate silicon sensors, optical components and mechanical structures (e.g. carbon fibre sandwiches) for the LHC upgrade programme. Irradiations of silicon sensors can be carried out in a temperature controlled cold box that can be scanned through the beam. The facility is described in detail along with the first tests carried out with mini (1 x 1 cm^2 ) silicon sensors.

  14. Advanced Microanalysis Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Microanalysis Facility fully integrates capabilities for chemical and structural analysis of electronic materials and devices for the U.S. Army and DoD....

  15. The Birmingham Irradiation Facility

    International Nuclear Information System (INIS)

    Dervan, P.; French, R.; Hodgson, P.; Marin-Reyes, H.; Wilson, J.

    2013-01-01

    At the end of 2012 the proton irradiation facility at the CERN PS will shut down for two years. With this in mind, we have been developing a new ATLAS scanning facility at the University of Birmingham Medical Physics cyclotron. With proton beams of energy approximately 30 MeV, fluences corresponding to those of the upgraded Large Hadron Collider (HL-LHC) can be reached conveniently. The facility can be used to irradiate silicon sensors, optical components and mechanical structures (e.g. carbon fibre sandwiches) for the LHC upgrade programme. Irradiations of silicon sensors can be carried out in a temperature controlled cold box that can be scanned through the beam. The facility is described in detail along with the first tests carried out with mini (1×1 cm 2 ) silicon sensors

  16. Decontamination of nuclear facilities

    International Nuclear Information System (INIS)

    1982-01-01

    Thirty-seven papers were presented at this conference in five sessions. Topics covered include regulation, control and consequences of decontamination; decontamination of components and facilities; chemical and non-chemical methods of decontamination; and TMI decontamination experience

  17. Pit Fragment Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility contains two large (20 foot high by 20 foot diameter) double walled steel tubs in which experimental munitions are exploded while covered with sawdust....

  18. Joint Computing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Raised Floor Computer Space for High Performance ComputingThe ERDC Information Technology Laboratory (ITL) provides a robust system of IT facilities to develop and...

  19. Coastal Inlet Model Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Coastal Inlet Model Facility, as part of the Coastal Inlets Research Program (CIRP), is an idealized inlet dedicated to the study of coastal inlets and equipped...

  20. Wind Tunnel Testing Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — NASA Ames Research Center is pleased to offer the services of our premier wind tunnel facilities that have a broad range of proven testing capabilities to customers...

  1. Space Power Facility (SPF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Space Power Facility (SPF) houses the world's largest space environment simulation chamber, measuring 100 ft. in diameter by 122 ft. high. In this chamber, large...

  2. Airborne Evaluation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — AFRL's Airborne Evaluation Facility (AEF) utilizes Air Force Aero Club resources to conduct test and evaluation of a variety of equipment and concepts. Twin engine...

  3. Pittsburgh City Facilities

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Pittsburgh City FacilitiesIncludes: City Administrative Buildings, Police Stations, Fire Stations, EMS Stations, DPW Sites, Senior Centers, Recreation Centers, Pool...

  4. Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 30 years The Combustion Research Facility (CRF) has served as a national and international leader in combustion science and technology. The need for a...

  5. Plutonium metal burning facility

    International Nuclear Information System (INIS)

    Hausburg, D.E.; Leebl, R.G.

    1977-01-01

    A glove-box facility was designed to convert plutonium skull metal or unburned oxide to an oxide acceptable for plutonium recovery and purification. A discussion of the operation, safety aspects, and electrical schematics are included

  6. Geophysical Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Geophysical Research Facility (GRF) is a 60 ft long × 22 ft wide × 7 ft deep concrete basin at CRREL for fresh or saltwater investigations and can be temperature...

  7. Mass Properties Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility is used to acquire accurate weight, 3 axis center of gravity and 3 axis moment of inertia measurements for air launched munitions and armament equipment.

  8. Hypersonic Tunnel Facility (HTF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Hypersonic Tunnel Facility (HTF) is a blow-down, non-vitiated (clean air) free-jet wind tunnel capable of testing large-scale, propulsion systems at Mach 5, 6,...

  9. Powder Metallurgy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The facility is uniquely equipped as the only laboratory within DA to conduct PM processing of refractory metals and alloys as well as the processing of a wide range...

  10. Environmental Test Facility (ETF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Environmental Test Facility (ETF) provides non-isolated shock testing for stand-alone equipment and full size cabinets under MIL-S-901D specifications. The ETF...

  11. Dialysis Facility Compare Data

    Data.gov (United States)

    U.S. Department of Health & Human Services — These are the official datasets used on the Medicare.gov Dialysis Facility Compare Website provided by the Centers for Medicare and Medicaid Services. These data...

  12. Wind Tunnel Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This ARDEC facility consists of subsonic, transonic, and supersonic wind tunnels to acquire aerodynamic data. Full-scale and sub-scale models of munitions are fitted...

  13. Structural Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Provides a wide variety of testing equipment, fixtures and facilities to perform both unique aviation component testing as well as common types of materials testing...

  14. Liquid Effluent Retention Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Liquid Effluent Retention Facility (LERF) is located in the central part of the Hanford Site. LERF is permitted by the State of Washington and has three liquid...

  15. Decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    Harmon, K.M.; Jenkins, C.E.; Waite, D.A.; Brooksbank, R.E.; Lunis, B.C.; Nemec, J.F.

    1976-01-01

    This paper describes the currently accepted alternatives for decommissioning retired light water reactor fuel cycle facilities and the current state of decommissioning technology. Three alternatives are recognized: Protective Storage; Entombment; and Dismantling. Application of these alternatives to the following types of facilities is briefly described: light water reactors; fuel reprocessing plants, and mixed oxide fuel fabrication plants. Brief descriptions are given of decommissioning operations and results at a number of sites, and recent studies of the future decommissioning of prototype fuel cycle facilities are reviewed. An overview is provided of the types of operations performed and tools used in common decontamination and decommissioning techniques and needs for improved technology are suggested. Planning for decommissioning a nuclear facility is dependent upon the maximum permitted levels of residual radioactive contamination. Proposed guides and recently developed methodology for development of site release criteria are reviewed. 21 fig, 32 references

  16. Water Tunnel Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NETL’s High-Pressure Water Tunnel Facility in Pittsburgh, PA, re-creates the conditions found 3,000 meters beneath the ocean’s surface, allowing scientists to study...

  17. Hanford Facility contingency plan

    International Nuclear Information System (INIS)

    Sutton, L.N.; Miskho, A.G.; Brunke, R.C.

    1993-10-01

    The Hanford Facility Contingency Plan, together with each TSD unit-specific contingency plan, meets the WAC 173-303 requirements for a contingency plan. This plan includes descriptions of responses to a nonradiological hazardous materials spill or release at Hanford Facility locations not covered by TSD unit-specific contingency plans or building emergency plans. This plan includes descriptions of responses for spills or releases as a result of transportation activities, movement of materials, packaging, and storage of hazardous materials

  18. Auditing radiation sterilization facilities

    Science.gov (United States)

    Beck, Jeffrey A.

    The diversity of radiation sterilization systems available today places renewed emphasis on the need for thorough Quality Assurance audits of these facilities. Evaluating compliance with Good Manufacturing Practices is an obvious requirement, but an effective audit must also evaluate installation and performance qualification programs (validation_, and process control and monitoring procedures in detail. The present paper describes general standards that radiation sterilization operations should meet in each of these key areas, and provides basic guidance for conducting QA audits of these facilities.

  19. Cold Vacuum Drying facility effluent drain system design description

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) effluent drain system (EFS). The primary function of the EFS is to collect and transport fire suppression water discharged into a CVDF process bay to a retention basin located outside the facility. The EFS also provides confinement of spills that occur inside a process bay and allows non-contaminated water that drains to the process bay sumps to be collected until sampling and analysis are complete

  20. JRR-3 neutron radiography facility

    International Nuclear Information System (INIS)

    Matsubayashi, M.; Tsuruno, A.

    1992-01-01

    JRR-3 neutron radiography facility consists of thermal neutron radiography facility (TNRF) and cold neutron radiography facility (CNRF). TNRF is installed in JRR-3 reactor building. CNRF is installed in the experimental beam hall adjacent to the reactor building. (author)

  1. National Solar Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The National Solar Thermal Test Facility (NSTTF) is the only test facility in the United States of its type. This unique facility provides experimental engineering...

  2. The CUTLASS database facilities

    International Nuclear Information System (INIS)

    Jervis, P.; Rutter, P.

    1988-09-01

    The enhancement of the CUTLASS database management system to provide improved facilities for data handling is seen as a prerequisite to its effective use for future power station data processing and control applications. This particularly applies to the larger projects such as AGR data processing system refurbishments, and the data processing systems required for the new Coal Fired Reference Design stations. In anticipation of the need for improved data handling facilities in CUTLASS, the CEGB established a User Sub-Group in the early 1980's to define the database facilities required by users. Following the endorsement of the resulting specification and a detailed design study, the database facilities have been implemented as an integral part of the CUTLASS system. This paper provides an introduction to the range of CUTLASS Database facilities, and emphasises the role of Database as the central facility around which future Kit 1 and (particularly) Kit 6 CUTLASS based data processing and control systems will be designed and implemented. (author)

  3. Mound facility physical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Tonne, W.R.; Alexander, B.M.; Cage, M.R.; Hase, E.H.; Schmidt, M.J.; Schneider, J.E.; Slusher, W.; Todd, J.E.

    1993-12-01

    The purpose of this report is to provide a baseline physical characterization of Mound`s facilities as of September 1993. The baseline characterizations are to be used in the development of long-term future use strategy development for the Mound site. This document describes the current missions and alternative future use scenarios for each building. Current mission descriptions cover facility capabilities, physical resources required to support operations, current safety envelope and current status of facilities. Future use scenarios identify potential alternative future uses, facility modifications required for likely use, facility modifications of other uses, changes to safety envelope for the likely use, cleanup criteria for each future use scenario, and disposition of surplus equipment. This Introductory Chapter includes an Executive Summary that contains narrative on the Functional Unit Material Condition, Current Facility Status, Listing of Buildings, Space Plans, Summary of Maintenance Program and Repair Backlog, Environmental Restoration, and Decontamination and Decommissioning Programs. Under Section B, Site Description, is a brief listing of the Site PS Development, as well as Current Utility Sources. Section C contains Site Assumptions. A Maintenance Program Overview, as well as Current Deficiencies, is contained within the Maintenance Program Chapter.

  4. A comparison of goniophotometric measurement facilities

    DEFF Research Database (Denmark)

    Thorseth, Anders; Lindén, Johannes; Dam-Hansen, Carsten

    2016-01-01

    In this paper, we present the preliminary results of a comparison between widely different goniophotometric and goniospectroradiometric measurement facilities. The objective of the comparison is to increase consistency and clarify the capabilities among Danish test laboratories. The study will seek...... to find the degree of equivalence between the various facilities and methods. The collected data is compared by using a three-way variation of principal component analysis, which is well suited for modelling large sets of correlated data. This method drastically decreases the number of numerical values...

  5. 340 Facility secondary containment and leak detection

    International Nuclear Information System (INIS)

    Bendixsen, R.B.

    1995-01-01

    This document presents a preliminary safety evaluation for the 340 Facility Secondary Containment and Leak Containment system, Project W-302. Project W-302 will construct Building 340-C which has been designed to replace the current 340 Building and vault tank system for collection of liquid wastes from the Pacific Northwest Laboratory buildings in the 300 Area. This new nuclear facility is Hazard Category 3. The vault tank and related monitoring and control equipment are Safety Class 2 with the remainder of the structure, systems and components as Safety Class 3 or 4

  6. 40 CFR 279.30 - Do-it-yourselfer used oil collection centers.

    Science.gov (United States)

    2010-07-01

    ... WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Collection Centers and... collection center is any site or facility that accepts/aggregates and stores used oil collected only from...

  7. Distributed Energy Resources Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NREL's Distributed Energy Resources Test Facility (DERTF) is a working laboratory for interconnection and systems integration testing. This state-of-the-art facility...

  8. 75 FR 9444 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Science.gov (United States)

    2010-03-02

    ... Utilization Facilities,'' specifies technical information and data to be provided to the NRC or maintained by... NUCLEAR REGULATORY COMMISSION [Docket No. NRC-2010-0063] Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: U.S. Nuclear Regulatory Commission (NRC). ACTION: Notice of...

  9. Collective Action of 'Others' in Sydney

    Directory of Open Access Journals (Sweden)

    Walter F Lalich

    2006-02-01

    Full Text Available Various ethnic communities undertake collective action to satisfy their social needs in a place of settlement. Collectively created social resources are representative of the patterns of fragmented ethnic collective actions that differ in their capability to appropriate human and material resources, orientation, outcome, form and intensity. Through collective creation of social space migrants add a new and dynamic dimension to the social environment. During the dramatic post-1945 changes in Sydney demographic and cultural structures, over 450 “other” (ethnic collectives mobilised through grass-roots efforts their scarce resources and created needed collective goods, such as places of worship, clubs, schools, age care facilities. In this way, through creation of communal roots ethnic collectives navigate the path between exclusion and the various forms of inclusion in a dynamic culturally diverse society. Ethnic communal places signify collective conscience, participation, and the embeddedness of transplanted cultures in a transforming social environment and transnational social space.

  10. Shimpent mobility accountability collection (SMAC)

    International Nuclear Information System (INIS)

    Best, R.E.; Hamberger, C.R.; Moerchen, M.F.; Maddigan, R.J.; Lester, P.B.; Shappert, L.B.

    1995-01-01

    SMAC 4 is the US Department of Energy's (DOE) information system that collects, stores, and analyzes information on all unclassified shipments to and from DOE facilities. SMAC is operated for and under the direction of DOE's Office of Environmental Management (EM) Transportation Management Division (TMD). Currently, SMAC serves DOE Headquarters, Operations offices, Field Offices, and 64 field locations. The system provides data and analysis services to DOE and its contractors, transportation managers, and specialists. It is used to collect data from the sources of transportation activities, screen the data to ensure their quality, train personnel who collect and report the data, analyze data elements, help users conduct their own analyses, and develop and present reports on DOE's transportation activities to DOE and contractor management

  11. Collective effects analysis for the Berkeley femtosource

    International Nuclear Information System (INIS)

    Corlett, J.; De Santis, S.; Wolski, A.; Zholents, A.

    2003-01-01

    We present an overview of the collective effects in a proposed ultrafast x-ray facility, based on a recirculating linac. The facility requires a small vertical ewmittance of 0.4 mm-mrad and is designed to operate with a ''flat bunch'' with a large aspect ratio of emittances. Emittance control from the electron source at the RF photocathode to the photon production chain of undulators, and understanding and the mitigation of collective effects is critical to a successful machine operation. Key aspects of accelerator physics involved in beam break-up, coherent synchrotron radiation, resistive wall impedance and other effects have been addressed and reported here

  12. NLO error propagation exercise data collection system

    International Nuclear Information System (INIS)

    Keisch, B.; Bieber, A.M. Jr.

    1983-01-01

    A combined automated and manual system for data collection is described. The system is suitable for collecting, storing, and retrieving data related to nuclear material control at a bulk processing facility. The system, which was applied to the NLO operated Feed Materials Production Center, was successfully demonstrated for a selected portion of the facility. The instrumentation consisted of off-the-shelf commercial equipment and provided timeliness, convenience, and efficiency in providing information for generating a material balance and performing error propagation on a sound statistical basis

  13. Comprehensive facilities plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The Ernest Orlando Lawrence Berkeley National Laboratory`s Comprehensive Facilities Plan (CFP) document provides analysis and policy guidance for the effective use and orderly future development of land and capital assets at the Berkeley Lab site. The CFP directly supports Berkeley Lab`s role as a multiprogram national laboratory operated by the University of California (UC) for the Department of Energy (DOE). The CFP is revised annually on Berkeley Lab`s Facilities Planning Website. Major revisions are consistent with DOE policy and review guidance. Facilities planing is motivated by the need to develop facilities for DOE programmatic needs; to maintain, replace and rehabilitate existing obsolete facilities; to identify sites for anticipated programmatic growth; and to establish a planning framework in recognition of site amenities and the surrounding community. The CFP presents a concise expression of the policy for the future physical development of the Laboratory, based upon anticipated operational needs of research programs and the environmental setting. It is a product of the ongoing planning processes and is a dynamic information source.

  14. Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    Goldhagen, P.; Marino, S.A.; Randers-Pehrson, G.; Hall, E.J.

    1986-01-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which can be used to generate a variety of well-characterized radiation beams for research in radiobiology and radiological physics. It is part of the Radiological Research Laboratory (RRL), and its operation is supported as a National Facility by the US Department of Energy. RARAF is available to all potential users on an equal basis, with priorities based on the recommendations of a Scientific Advisory Committee. Facilities and services are provided to users, but the research projects themselves must be supported separately. This chapter presents a brief description of current experiments being carried out at RARAF and of the operation of the Facility from January through June, 1986. Operation of the Facility for all of 1985 was described in the 1985 Progress Report for RARAF. The experiments described here were supported by various Grants and Contracts from NIH and DOE and by the Statens Stralskyddsinstitut of Sweden

  15. European Synchrotron Radiation Facility

    International Nuclear Information System (INIS)

    Buras, B.

    1985-01-01

    How a European Synchrotron Radiation Facility has developed into a detailed proposal recently accepted as the basis for construction of the facility at Grenoble is discussed. In November 1977, the General Assembly of the European Science Foundation (ESF) approved the report of the ESF working party on synchrotron radiation entitled Synchrotron Radiation - a Perspective View for Europe. This report contained as one of its principal recommendations that work should commence on a feasibility study for a European synchrotron radiation laboratory having a dedicated hard X-ray storage ring and appropriate advanced instrumentation. In order to prepare a feasibility study the European Science Foundation set up the Ad-hoc Committee on Synchrotron Radiation, which in turn formed two working groups: one for the machine and another for instrumentation. This feasibility study was completed in 1979 with the publication of the Blue Book describing in detail the so called 1979 European Synchrotron Radiation Facility. The heart of the facility was a 5 GeV electron storage ring and it was assumed that mainly the radiation from bending magnets will be used. The facility is described

  16. Berkeley Low Background Facility

    International Nuclear Information System (INIS)

    Thomas, K. J.; Norman, E. B.; Smith, A. R.; Poon, A. W. P.; Chan, Y. D.; Lesko, K. T.

    2015-01-01

    The Berkeley Low Background Facility (BLBF) at Lawrence Berkeley National Laboratory (LBNL) in Berkeley, California provides low background gamma spectroscopy services to a wide array of experiments and projects. The analysis of samples takes place within two unique facilities; locally within a carefully-constructed, low background laboratory on the surface at LBNL and at the Sanford Underground Research Facility (SURF) in Lead, SD. These facilities provide a variety of gamma spectroscopy services to low background experiments primarily in the form of passive material screening for primordial radioisotopes (U, Th, K) or common cosmogenic/anthropogenic products; active screening via neutron activation analysis for U,Th, and K as well as a variety of stable isotopes; and neutron flux/beam characterization measurements through the use of monitors. A general overview of the facilities, services, and sensitivities will be presented. Recent activities and upgrades will also be described including an overview of the recently installed counting system at SURF (recently relocated from Oroville, CA in 2014), the installation of a second underground counting station at SURF in 2015, and future plans. The BLBF is open to any users for counting services or collaboration on a wide variety of experiments and projects

  17. Power Systems Development Facility

    International Nuclear Information System (INIS)

    1993-06-01

    The objective of the PSDF would be to provide a modular facility which would support the development of advanced, pilot-scale, coal-based power systems and hot gas clean-up components. These pilot-scale components would be designed to be large enough so that the results can be related and projected to commercial systems. The facility would use a modular approach to enhance the flexibility and capability for testing; consequently, overall capital and operating costs when compared with stand-alone facilities would be reduced by sharing resources common to different modules. The facility would identify and resolve technical barrier, as well as-provide a structure for long-term testing and performance assessment. It is also intended that the facility would evaluate the operational and performance characteristics of the advanced power systems with both bituminous and subbituminous coals. Five technology-based experimental modules are proposed for the PSDF: (1) an advanced gasifier module, (2) a fuel cell test module, (3) a PFBC module, (4) a combustion gas turbine module, and (5) a module comprised of five hot gas cleanup particulate control devices. The final module, the PCD, would capture coal-derived ash and particles from both the PFBC and advanced gasifier gas streams to provide for overall particulate emission control, as well as to protect the combustion turbine and the fuel cell

  18. Decommissioning engineering systems for nuclear facilities and knowledge inheritance for decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Tachibana, Mitsuo

    2016-01-01

    Information on construction, operation and maintenance of a nuclear facility is essential in order to plan and implement the decommissioning of the nuclear facility. A decommissioning engineering system collects these information efficiently, retrieves necessary information rapidly, and support to plan the reasonable decommissioning as well as the systematic implementation of dismantling activities. Then, knowledge of workers involved facility operation and dismantling activities is important because decommissioning of nuclear facility will be carried out for a long period. Knowledge inheritance for decommissioning has been carried out in various organizations. This report describes an outline of and experiences in applying decommissioning engineering systems in JAEA and activities related to knowledge inheritance for decommissioning in some organizations. (author)

  19. FY 1998 evaluation/analysis by site of the data collected in the field test project for photovoltaic power generation for public facilities. 4/4; 1998 nendo kokyo shisetsu nadoyo taiyoko hatsuden field test jigyo ni okeru shushu data hyoka kaiseki kaku site betsu. 4/4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The data items are horizontal insolation intensity, inclined insolation intensity, effective inclined insolation intensity (each unit: kWh/m{sup 2}), average temperature, array power energy, system power energy, system consumption power, load power energy, system supply load, and back flow power energy (each unit: kWh). Besides, the number of interconnected protective movement, disconnection hour (minute), system operating hour (minute), independent operating load, independent supply load (each unit: kWh), equivalent array operating hour, equivalent system operating hour, array/system output coefficient, system utilization rate/power generation rate, INV effective efficiency, and INV load factor. The objects of field tests are government office (joint office building, etc.), school (college, high school, elementary school, etc.), the Shinkansen Kyoto Station, health/welfare facilities (health facilities for the elderly, welfare center, etc.), hospital, industrial experimental station, training facilities (exhibition training facilities, etc.), broadcasting facilities, etc. (NEDO)

  20. Central Facilities Area Sewage Lagoon Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Giesbrecht, Alan [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    The Central Facilities Area (CFA) located in Butte County, Idaho at Idaho National Laboratory (INL) has an existing wastewater system to collect and treat sanitary wastewater and non contact cooling water from the facility. The existing treatment facility consists of three cells: Cell 1 has a surface area of 1.7 acres, Cell 2 has a surface area of 10.3 acres, and Cell 3 has a surface area of 0.5 acres. If flows exceed the evaporative capacity of the cells, wastewater is discharged to a 73.5 acre land application site that utilizes a center pivot irrigation sprinkler system. The purpose of this current study is to update the analysis and conclusions of the December 2013 study. In this current study, the new seepage rate and influent flow rate data have been used to update the calculations, model, and analysis.

  1. Evaluation of multiple emission point facilities

    International Nuclear Information System (INIS)

    Miltenberger, R.P.; Hull, A.P.; Strachan, S.; Tichler, J.

    1988-01-01

    In 1970, the New York State Department of Environmental Conservation (NYSDEC) assumed responsibility for the environmental aspect of the state's regulatory program for by-product, source, and special nuclear material. The major objective of this study was to provide consultation to NYSDEC and the US NRC to assist NYSDEC in determining if broad-based licensed facilities with multiple emission points were in compliance with NYCRR Part 380. Under this contract, BNL would evaluate a multiple emission point facility, identified by NYSDEC, as a case study. The review would be a nonbinding evaluation of the facility to determine likely dispersion characteristics, compliance with specified release limits, and implementation of the ALARA philosophy regarding effluent release practices. From the data collected, guidance as to areas of future investigation and the impact of new federal regulations were to be developed. Reported here is the case study for the University of Rochester, Strong Memorial Medical Center and Riverside Campus

  2. Significant incidents in nuclear fuel cycle facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    In contrast to nuclear power plants, events in nuclear fuel cycle facilities are not well documented. The INES database covers all the nuclear fuel cycle facilities; however, it was developed in the early 1990s and does not contain information on events prior to that. The purpose of the present report is to collect significant events and analyze them in order to give a safety related overview of nuclear fuel cycle facilities. Significant incidents were selected using the following criteria: release of radioactive material or exposure to radiation; degradation of items important to safety; and deficiencies in design, quality assurance, etc. which include criticality incidents, fire, explosion, radioactive release and contamination. This report includes an explanation, where possible, of root causes, lessons learned and action taken. 4 refs, 4 tabs.

  3. Significant incidents in nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    1996-03-01

    In contrast to nuclear power plants, events in nuclear fuel cycle facilities are not well documented. The INES database covers all the nuclear fuel cycle facilities; however, it was developed in the early 1990s and does not contain information on events prior to that. The purpose of the present report is to collect significant events and analyze them in order to give a safety related overview of nuclear fuel cycle facilities. Significant incidents were selected using the following criteria: release of radioactive material or exposure to radiation; degradation of items important to safety; and deficiencies in design, quality assurance, etc. which include criticality incidents, fire, explosion, radioactive release and contamination. This report includes an explanation, where possible, of root causes, lessons learned and action taken. 4 refs, 4 tabs

  4. The ISOLDE Facility: Radioactive beams at CERN

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    The Isope Separation On-Line (ISOL) technique evolved from chemical techniques used to separate radioactive isotopes off-line from irradiated "targets". The ISOL targets of today, used at e.g. ISOLDE, can be of many different types and in different phases but the isotopes are always delivered at very low energies making the technique ideal for study of ground state properties and collections for other applications such as solid state physics and medical physics. The possibility of accelerating these low energy beams for nuclear structure studies, and in the long term future for neutrino physics, is now being explored at first generation radioactive beam facilities. The upgrade towards HIE-ISOLDE aim to consolidate ISOLDE's position as a world leading radioactive nuclear beam facility and it will be a pre-cursor to a future all European ISOL facility, EURISOL, with order of magnitudes higher radioactive beam intensities and energies. Prerequisite knowledge and references: None

  5. UHV facility at pelletron

    International Nuclear Information System (INIS)

    Gupta, S.K.; Hattangadi, V.A.

    1993-01-01

    One of the important requirements of a heavy ion accelerator is the maintenance of a clean, ultrahigh vacuum (UHV) environment in the accelerating tubes as well as in the beamlines. This becomes necessary in order to minimise transmission losses of the ion beam due to charge exchange or scattering during collisions with the residual gas atoms. In view of these considerations, as an essential ancillary facility, a UHV laboratory with all required facilities has been set up for the pelletron accelerator and the work done in this laboratory is described. First the pelletron accelerator vacuum system is described in brief. The UHV laboratory facilities are described. Our operational experience with the accelerator vacuum system is discussed. The development of accelerator components carried out by the UHV laboratory is also discussed. (author)

  6. FACILITIES MANAGEMENT AT CERN

    CERN Multimedia

    2002-01-01

    Recently we have been confronted with difficulties concerning services which are part of a new contract for facilities management. Please see below for some information about this contract. Following competitive tendering and the Finance Committee decision, the contract was awarded to the Swiss firm 'Facilities Management Network (FMN)'. The owners of FMN are two companies 'M+W Zander' and 'Avireal', both very experienced in this field of facilities management. The contract entered into force on 1st July 2002. CERN has grouped together around 20 different activities into this one contract, which was previously covered by separate contracts. The new contract includes the management and execution of many activities, in particular: Guards and access control; cleaning; operation and maintenance of heating plants, cooling and ventilation equipment for buildings not related to the tunnel or the LHC; plumbing; sanitation; lifts; green areas and roads; waste disposal; and includes a centralised helpdesk for these act...

  7. The ORION Facility

    International Nuclear Information System (INIS)

    Noble, Robert

    2003-01-01

    ORION will be a user-oriented research facility for understanding the physics and developing the technology for future high-energy particle accelerators, as well as for research in related fields. The facility has as its centerpiece the Next Linear Collider Test Accelerator (NLCTA) at the Stanford Linear Accelerator Center (SLAC). The NLCTA will be modified with the addition of a new, high-brightness photoinjector, its drive laser, an S-band rf power system, a user laser room, a low-energy experimental hall supplied with electron beams up to 60 MeV in energy, and a high-energy hall supplied with beams up to 350 MeV. The facility design and parameters are described here along with highlights from the 2nd ORION Workshop held in February 2003

  8. Workforce Competitiveness Collection. "LINCS" Resource Collection News

    Science.gov (United States)

    Literacy Information and Communication System, 2011

    2011-01-01

    This edition of "'LINCS' Resource Collection News" features the Workforce Competitiveness Collection, covering the topics of workforce education, English language acquisition, and technology. Each month Collections News features one of the three "LINCS" (Literacy Information and Communication System) Resource Collections--Basic…

  9. 78 FR 38983 - Agency Information Collection Activities: Submission for OMB Review; Comment Request

    Science.gov (United States)

    2013-06-28

    ... specialties: clinical nurse specialist, nurse practitioner, certified nurse anesthetist, certified nurse... a decision aid for dialysis facility selection; (2) aid facilities with their internal quality... a new OMB control number); Title of Information Collection: Evaluation of the Graduate Nurse...

  10. Applications of microtron facility

    International Nuclear Information System (INIS)

    Sanjeev, Ganesh

    2013-01-01

    An 8 MeV Microtron accelerator installed and commissioned in Mangalore University to strengthen research activities in the area of Radiation Physics and allied sciences is also being used extensively for coordinated research programs in basic and applied areas of science and technology involving researchers from national laboratories and sister universities of the region. The electron accelerator with its versatile features extends energetic electrons, intense photons and neutrons of moderate flux to cater to the needs of the users of the facility. A brief view of this 'first of its kind' facility in the country and the R and D programs with some sample results is presented. (author)

  11. Bevalac Radiotherapy Facility

    International Nuclear Information System (INIS)

    Alonso, J.R.; Howard, J.; Criswell, T.

    1979-03-01

    Patient Treatment Room at the Bevalac is now in full operation. In the design of this facility, emphasis has been placed on creating an atmosphere appropriate to a clinical facility; the usual features of an irradiation cave have been hidden behind carpets, curtains and paint. Patient positioning is done with a Philips Ram-style couch, with additional fixtures to accommodate a patient in the seated or standing, as well as the supine, position. Dosimetry apparatus, collimators, ion chambers and the beam flattening system used to produce the highly uniform 20 cm diameter therapy field are described

  12. Line facilities outline

    International Nuclear Information System (INIS)

    1998-08-01

    This book deals with line facilities. The contents of this book are outline line of wire telecommunication ; development of line, classification of section of line and theory of transmission of line, cable line ; structure of line, line of cable in town, line out of town, domestic cable and other lines, Optical communication ; line of optical cable, transmission method, measurement of optical communication and cable of the sea bottom, Equipment of telecommunication line ; telecommunication line facilities and telecommunication of public works, construction of cable line and maintenance and Regulation of line equipment ; regulation on technique, construction and maintenance.

  13. Robotics for nuclear facilities

    International Nuclear Information System (INIS)

    Abe, Akira; Nakayama, Ryoichi; Kubo, Katsumi

    1988-01-01

    It is highly desirable that automatic or remotely controlled machines perform inspection and maintenance tasks in nuclear facilities. Toshiba has been working to develop multi-functional robots, with one typical example being a master-slave manipulator for use in reprocessing facilities. At the same time, the company is also working on the development of multi-purpose intelligent robots. One such device, an automatic inspection robot, to be deployed along a monorail, performs inspection by means of image processing technology, while and advanced intelligent maintenance robot is equipped with a special wheel-locomotion mechanism and manipulator and is designed to perform maintenance tasks. (author)

  14. Next generation storage facility

    International Nuclear Information System (INIS)

    Schlesser, J.A.

    1994-01-01

    With diminishing requirements for plutonium, a substantial quantity of this material requires special handling and ultimately, long-term storage. To meet this objective, we at Los Alamos, have been involved in the design of a storage facility with the goal of providing storage capabilities for this and other nuclear materials. This paper presents preliminary basic design data, not for the structure and physical plant, but for the container and arrays which might be configured within the facility, with strong emphasis on criticality safety features

  15. Bevalac Radiotherapy Facility

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, J.R.; Howard, J.; Criswell, T.

    1979-03-01

    Patient Treatment Room at the Bevalac is now in full operation. In the design of this facility, emphasis has been placed on creating an atmosphere appropriate to a clinical facility; the usual features of an irradiation cave have been hidden behind carpets, curtains and paint. Patient positioning is done with a Philips Ram-style couch, with additional fixtures to accommodate a patient in the seated or standing, as well as the supine, position. Dosimetry apparatus, collimators, ion chambers and the beam flattening system used to produce the highly uniform 20 cm diameter therapy field are described.

  16. RCRA facility stabilization initiative

    International Nuclear Information System (INIS)

    1995-02-01

    The RCRA Facility Stabilization Initiative was developed as a means of implementing the Corrective Action Program's management goals recommended by the RIS for stabilizing actual or imminent releases from solid waste management units that threaten human health and the environment. The overall goal of stabilization is to, as situations warrant, control or abate threats to human health and/or the environment from releases at RCRA facilities, and/or to prevent or minimize the further spread of contamination while long-term remedies are pursued. The Stabilization initiative is a management philosophy and should not be confused with stabilization technologies

  17. Exhaust gas processing facility

    International Nuclear Information System (INIS)

    Terada, Shin-ichi.

    1995-01-01

    The facility of the present invention comprises a radioactive liquid storage vessel, an exhaust gas dehumidifying device for dehumidifying gases exhausted from the vessel and an exhaust gas processing device for reducing radioactive materials in the exhaust gases. A purified gas line is disposed to the radioactive liquid storage vessel for purging exhaust gases generated from the radioactive liquid, then dehumidified and condensed liquid is recovered, and exhaust gases are discharged through an exhaust gas pipe disposed downstream of the exhaust gas processing device. With such procedures, the scale of the exhaust gas processing facility can be reduced and exhaust gases can be processed efficiently. (T.M.)

  18. TMX, a new facility

    International Nuclear Information System (INIS)

    Thomas, S.R. Jr.

    1977-01-01

    As a mirror fusion facility, the Tandem Mirror Experiment (TMX) at the Lawrence Livermore Laboratory (LLL) is both new and different. It utilizes over 23,000 ft 2 of work area in three buildings and consumes over 14 kWh of energy with each shot. As a systems design, the facility is broken into discreet functional regions. Among them are a mechanical vacuum pumping system, a liquid-nitrogen system, neutral-beam and magnet power supplies, tiered structures to support these supplies, a neutron-shielded vacuum vessel, a control area, and a diagnostics area. Constraints of space, time, and cost have all affected the design

  19. The industrial facility for Grouping, Storage and Disposal

    International Nuclear Information System (INIS)

    Torres, Patrice

    2013-07-01

    The industrial facility for grouping, storage and disposal (called Cires in French), in the Aube district, is run by Andra. The facility is licensed to dispose of very-low-level waste, to collect non-nuclear-power radioactive waste and to provide storage for some of the waste for which a final management solution has not yet been found. The Cires facility is located a few kilometers from the Aube disposal facility (CSA), another of Andra's waste disposal facilities, currently dealing with low- and intermediate-level, short-lived waste. Contents: Andra in the Aube district, an exemplary industrial operator - The industrial facility for grouping, storage and disposal (Cires); Disposal of very-low-level waste (VLLW); The journey taken by VLL waste; Grouping of non-nuclear-power waste; Storage of non-nuclear-power waste; The journey taken by non-nuclear-power waste; Protecting present and future generations

  20. Facility effluent monitoring plan determinations for the 200 Area facilities

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1991-11-01

    The following facility effluent monitoring plan determinations document the evaluations conducted for the Westinghouse Hanford Company 200 Area facilities (chemical processing, waste management, 222-S Laboratory, and laundry) on the Hanford Site in south central Washington State. These evaluations determined the need for facility effluent monitoring plans for the 200 Area facilities. The facility effluent monitoring plan determinations have been prepared in accordance with A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438 (WHC 1991). The Plutonium/Uranium Extraction Plant and UO 3 facility effluent monitoring plan determinations were prepared by Los Alamos Technical Associates, Richland, Washington. The Plutonium Finishing Plant, Transuranic Waste Storage and Assay Facility, T Plant, Tank Farms, Low Level Burial Grounds, and 222-S Laboratory determinations were prepared by Science Applications International Corporation of Richland, Washington. The B Plant Facility Effluent Monitoring Plan Determination was prepared by ERCE Environmental Services of Richland, Washington

  1. CERN IRRADIATION FACILITIES.

    Science.gov (United States)

    Pozzi, Fabio; Garcia Alia, Ruben; Brugger, Markus; Carbonez, Pierre; Danzeca, Salvatore; Gkotse, Blerina; Richard Jaekel, Martin; Ravotti, Federico; Silari, Marco; Tali, Maris

    2017-09-28

    CERN provides unique irradiation facilities for applications in dosimetry, metrology, intercomparison of radiation protection devices, benchmark of Monte Carlo codes and radiation damage studies to electronics. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Shared Facilities Canadian Style.

    Science.gov (United States)

    Galonski, Mark A.

    1998-01-01

    Describes two projects arising from an Ontario (Canada) Ministry of Education initiative that combined school and nonschool capital funds to build joint facilities. The Stratford Education and Recreation Centre and the Humberwood Community Centre demonstrate that government agencies can cooperate to benefit the community. Success depends on having…

  3. Facility effluent monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the facility effluent monitoring programs and provides an evaluation of effluent monitoring data. These evaluations are useful in assessing the effectiveness of effluent treatment and control systems, as well as management practices.

  4. Facility Management Innovation (FMI)

    NARCIS (Netherlands)

    Mobach, Mark P.; Nardelli, Giulia; Kok, Herman; Konkol, Jennifer; Alexander, Keith; Alexander, Keith

    2014-01-01

    This current green paper deals with innovation in facility management (FM), a subject which is at the heart of Working Group 3, in benefit of the EuroFM Research Network. It aims to stimulate discussion and further collaborative work, and to generate new knowledge for the European FM community. We

  5. PFP Wastewater Sampling Facility

    International Nuclear Information System (INIS)

    Hirzel, D.R.

    1995-01-01

    This test report documents the results obtained while conducting operational testing of the sampling equipment in the 225-WC building, the PFP Wastewater Sampling Facility. The Wastewater Sampling Facility houses equipment to sample and monitor the PFP's liquid effluents before discharging the stream to the 200 Area Treated Effluent Disposal Facility (TEDF). The majority of the streams are not radioactive and discharges from the PFP Heating, Ventilation, and Air Conditioning (HVAC). The streams that might be contaminated are processed through the Low Level Waste Treatment Facility (LLWTF) before discharging to TEDF. The sampling equipment consists of two flow-proportional composite samplers, an ultrasonic flowmeter, pH and conductivity monitors, chart recorder, and associated relays and current isolators to interconnect the equipment to allow proper operation. Data signals from the monitors are received in the 234-5Z Shift Office which contains a chart recorder and alarm annunciator panel. The data signals are also duplicated and sent to the TEDF control room through the Local Control Unit (LCU). Performing the OTP has verified the operability of the PFP wastewater sampling system. This Operability Test Report documents the acceptance of the sampling system for use

  6. Toroid magnet test facility

    CERN Multimedia

    2002-01-01

    Because of its exceptional size, it was not feasible to assemble and test the Barrel Toroid - made of eight coils - as an integrated toroid on the surface, prior to its final installation underground in LHC interaction point 1. It was therefore decided to test these eight coils individually in a dedicated test facility.

  7. Facilities of Environmental Distinction

    Science.gov (United States)

    Pascopella, Angela

    2011-01-01

    Three of nine school buildings that have won the latest Educational Facility Design Awards from the American Institute of Architects (AIA) Committee on Architecture for Education stand out from the crowd of other school buildings because they are sustainable and are connected to the nature that surrounds them. They are: (1) Thurston Elementary…

  8. Improved Emission Spectrographic Facility

    International Nuclear Information System (INIS)

    Goergen, C.R.; Lethco, A.J.; Hosken, G.B.; Geckeler, D.R.

    1980-10-01

    The Savannah River Plant's original Emission Spectrographic Laboratory for radioactive samples had been in operation for 25 years. Due to the deteriorated condition and the fire hazard posed by the wooden glove box trains, a project to update the facility was funded. The new laboratory improved efficiency of operation and incorporated numerous safety and contamination control features

  9. Dismantling of nuclear facilities

    International Nuclear Information System (INIS)

    Tallec, M.; Kus, J.P.

    2009-01-01

    Nuclear facilities have a long estimable lifetime but necessarily limited in time. At the end of their operation period, basic nuclear installations are the object of cleansing operations and transformations that will lead to their definitive decommissioning and then to their dismantling. Because each facility is somewhere unique, cleansing and dismantling require specific techniques. The dismantlement consists in the disassembly and disposing off of big equipments, in the elimination of radioactivity in all rooms of the facility, in the demolition of buildings and eventually in the reconversion of all or part of the facility. This article describes these different steps: 1 - dismantling strategy: main de-construction guidelines, expected final state; 2 - industries and sites: cleansing and dismantling at the CEA, EDF's sites under de-construction; 3 - de-construction: main steps, definitive shutdown, preparation of dismantling, electromechanical dismantling, cleansing/decommissioning, demolition, dismantling taken into account at the design stage, management of polluted soils; 4 - waste management: dismantlement wastes, national policy of radioactive waste management, management of dismantlement wastes; 5 - mastery of risks: risk analysis, conformability of risk management with reference documents, main risks encountered at de-construction works; 6 - regulatory procedures; 7 - international overview; 8 - conclusion. (J.S.)

  10. Calculation of transportation energy for biomass collection

    Energy Technology Data Exchange (ETDEWEB)

    Kanai, G.; Takekura, K.; Kato, H.; Kobayashi, Y.; Yakushido, K. [National Agricultural Research Center, Tsukuba, Ibaraki (Japan)

    2010-07-01

    This paper reported on a study at a rice straw facility in Japan that produces bioethanol. Simulation modeling and calculations methods were used to examine the characteristics of field-to-facility transportation. Fuel consumption was found to be influenced by the conversion rate from straw to ethanol, the quantity of straw collected, and the ratio of the field area to that around the facility. Standard conditions were assumed based on reported data and actual observations for 15 ML/yr ethanol production, 0.3 kL output of ethanol from 1 t dry straw, 53.6 day/yr working days, 2.7 t truck load capacity, and 0.128 as the ratio of field to the area around the facility. According to calculations, a quantity of 50 kt dry straw requires 2.78 L of fuel to transport 1 t of dry straw, 109.5 trucks, and a 19.1 km collection area radius. The fuel consumption for transportation was found to be proportional to the quantity of straw to the 0.5 power, but inversely proportional to the ratio of field to the 0.5 power. The rate of increase in the number of trucks needed to collect straw increases with the decrease in the ratio of the field to area surface around the facility.

  11. Cathodic protection of a nuclear fuel facility

    International Nuclear Information System (INIS)

    Corbett, R.A.

    1989-01-01

    This article discusses corrosion on buried process piping and tanks at a nuclear fuel facility and the steps taken to design a system to control underground corrosion. Collected data have indicated that cathodic protection is needed to supplement the regular use of high-integrity, corrosion-resistant coatings; wrapping systems; special backfills; and insulation material. The technical approach discussed in this article is generally applicable to other types of power and/or industrial plants with extensive networks of underground steel piping

  12. Centralized collection of radioactive wastes

    International Nuclear Information System (INIS)

    1985-06-01

    The standard based upon TGL-190-921/02 applies to solid wastes of the category A1 and the radiation protection groups S1 and S2. The following items are specified: (1) requirements concerning the form and properties of the waste (permitted composition, unpermitted components, type of packaging, maximum weight per package/container), (2) technical conditions for connecting technical means of collection (lifting devices, traffic connections) with customer, and (3) tasks in handing/taking over the waste in relation to waste type (controls, operation of facilities, decontamination, transport documents)

  13. Evaluated data collections from ENSDF

    International Nuclear Information System (INIS)

    Ewbank, W.B.

    1979-01-01

    For several years the Nuclear Data Project has been maintaining an Evaluated Nuclear Structure Data File (ENSDF), which is designed to include critically evaluated values for most nuclear spectroscopic quantities. The information in ENSDF is the same as in the Nuclear Data Sheets, which illustrates two particular output formats (drawings and tables). Spectroscopic information for nuclei with A < 45 is put into ENSDF from the evaluations of Aizenberg-Selove and of Endt and van der Leun. An international network was organized to provide regular revisions of the data file. Computer facilities were developed to retrieve collections of evaluated data for special calculations or detailed examination

  14. Centralized collection of radioactive wastes

    International Nuclear Information System (INIS)

    1985-06-01

    The standard based upon TGL-190-921/03 applies to solid wastes of the category A2 and the radiation protection groups S3, S4 and S5. The following items are specified: (1) requirements concerning the form and properties of the waste (permitted composition, unpermitted components, type of packaging, maximum weight per package/container), (2) technical conditions for connecting technical means of collection (lifting devices, traffic connections) with customer, and (3) tasks in handing/taking over the waste in relation to waste type (controls, operation of facilities, decontamination, transport documents)

  15. Fast flux test facility noise data management

    International Nuclear Information System (INIS)

    Thie, J.A.

    1988-01-01

    An extensive collection of spectra from an automated data collection system at the Fast Flux Facility has features from neutron data extracted and managed by database software. Inquiry techniques, including screening, applied to database results show the influences of control rods on wideband noise and, more generally, abilities to detect diverse types of off-normal noise. Uncovering a temporary 0.1-Hz resonance shift gave additional diagnostic information on a 13-Hz mechanical motion characterized by the interference of two resonances. The latter phenomenon is discussed generically for possible application to other reactor types. (author)

  16. Effectiveness of data collection and information transmission ...

    African Journals Online (AJOL)

    2012-12-24

    Dec 24, 2012 ... correctness of records, Health Management Information System records ... Conclusion: The health workers were not operating the DSN system in the State to optimal functionality. ... Key words: Data collection, disease notification, effectiveness, information transmission process .... facilities to support it.

  17. Feasibility Investigation for a Solar Power Generation Facility

    Science.gov (United States)

    Nathan, Lakshmi

    2010-01-01

    The Energy Policy Act of 2005 states that by fiscal year 2013, at least 7.5% of the energy consumed by the government must be renewable energy. In an effort to help meet this goal, Johnson Space Center (JSC) is considering installing a solar power generation facility. The purpose of this project is to conduct a feasibility investigation for such a facility. Because Kennedy Space Center (KSC) has a solar power generation facility, the first step in this investigation is to learn about KSC's facility and obtain information on how it was constructed. After collecting this information, the following must be determined: the amount of power desired, the size of the facility, potential locations for it, and estimated construction and maintenance costs. Contacts with JSC's energy provider must also be established to determine if a partnership would be agreeable to both parties. Lastly, all of this data must be analyzed to decide whether or not JSC should construct the facility. The results from analyzing the data collected indicate that a 200 kW facility would provide enough energy to meet 1% of JSC's energy demand. This facility would require less than 1 acre of land. In the map below, potential locations are shown in green. The solar power facility is projected to cost $2 M. So far, the information collected indicates that such a facility could be constructed. The next steps in this investigation include contacting JSC's energy provider, CenterPoint Energy, to discuss entering a partnership; developing a life cycle cost analysis to determine payback time; developing more detailed plans; and securing funding.

  18. Association between Gastrointestinal Illness and Precipitation in Areas Impacted by Combined Sewer Facilities: Analysis of Massachusetts Data, 2003-2007

    Science.gov (United States)

    Background: Combined sewer systems (CSS) collect rainwater runoff, sewage, and industrial wastewater for transit to treatment facilities. With heavy precipitation, volumes can exceed capacity of treatment facilities, and wastewater discharges directly to receiving waters. These c...

  19. EPA Facility Registry Service (FRS): Facility Interests Dataset - Intranet

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in...

  20. EPA Facility Registry Service (FRS): Facility Interests Dataset - Intranet Download

    Data.gov (United States)

    U.S. Environmental Protection Agency — This downloadable data package consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are...

  1. EPA Facility Registry Service (FRS): Facility Interests Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in...

  2. EPA Facility Registry Service (FRS): Facility Interests Dataset Download

    Data.gov (United States)

    U.S. Environmental Protection Agency — This downloadable data package consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are...

  3. EPA Facility Registry Service (FRS): Facility Interests Dataset - Intranet Download

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in...

  4. EPA Facility Registry Service (FRS): AIRS_AFS Sub Facilities

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Air Facility System (AFS) contains compliance and permit data for stationary sources regulated by EPA, state and local air pollution agencies. The sub facility...

  5. Using Smartphones to Collect Bicycle Travel Data in Texas

    Science.gov (United States)

    2012-08-08

    Researchers believed that if smartphones could prove to be an effective tool for collecting bicycle travel data, the information could be used for aiding decision making as to what types of facilities users prefer and guiding decisions about future f...

  6. Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Munn, W.I.

    1981-01-01

    The Fast Flux Test Facility (FFTF), located on the Hanford site a few miles north of Richland, Washington, is a major link in the chain of development required to sustain and advance Liquid Metal Fast Breeder Reactor (LMFBR) technology in the United States. This 400 MWt sodium cooled reactor is a three loop design, is operated by Westinghouse Hanford Company for the US Department of Energy, and is the largest research reactor of its kind in the world. The purpose of the facility is three-fold: (1) to provide a test bed for components, materials, and breeder reactor fuels which can significantly extend resource reserves; (2) to produce a complete body of base data for the use of liquid sodium in heat transfer systens; and (3) to demonstrate inherent safety characteristics of LMFBR designs

  7. Pumps for nuclear facilities

    International Nuclear Information System (INIS)

    1999-01-01

    The guide describes how the Finnish Radiation and Nuclear Safety Authority (STUK) controls pumps and their motors at nuclear power plants and other nuclear facilities. The scope of the control is determined by the Safety Class of the pump in question. The various phases of the control are: (1) review of construction plan, (2) control of manufacturing, and construction inspection, (3) commissioning inspection, and (4) control during operation. STUK controls Safety Class 1, 2 and 3 pumps at nuclear facilities as described in this guide. STUK inspects Class EYT (non-nuclear) pumps separately or in connection with the commissioning inspections of the systems. This guide gives the control procedure and related requirements primarily for centrifugal pumps. However, it is also applied to the control of piston pumps and other pump types not mentioned in this guide

  8. TIARA electrostatic accelerator facility

    International Nuclear Information System (INIS)

    Tajima, Satoshi; Takada, Isao; Mizuhashi, Kiyoshi; Uno, Sadanori; Ohkoshi, Kiyonori; Nakajima, Yoshinori; Saitoh, Yuichi; Ishii, Yasuyuki; Kamiya, Tomihiro

    1996-07-01

    In order to promote the Advanced Radiation Technology Project, Japan Atomic Energy Research Institute constructed TIARA facility composed of four ion accelerators at Takasaki Radiation Chemistry Research Establishment for the period from 1988 to 1993. A 3MV tandem accelerator and an AVF cycrotron were completed in 1991 as the first phase of the construction, and a 3MV single-ended accelerator and a 400kV ion implanter were completed in 1993 as the second phase. Three electrostatic accelerators, the tandem, the single-ended and the implanter, were installed in the Multiple-beam facility of TIARA and have been operated for various experiments with using single, dual and triple beams without any serious trouble. This report describes the constructive works, machine performances, control systems, safety systems and accessory equipments of the electrostatic accelerators. (author)

  9. World Class Facilities Management

    DEFF Research Database (Denmark)

    Malmstrøm, Ole Emil; Jensen, Per Anker

    2013-01-01

    Alle der med entusiasme arbejder med Facilities Management drømmer om at levere World Class. DFM drømmer om at skabe rammer og baggrund for, at vi i Danmark kan bryste os at være blandt de førende på verdensplan. Her samles op på, hvor tæt vi er på at nå drømmemålet.......Alle der med entusiasme arbejder med Facilities Management drømmer om at levere World Class. DFM drømmer om at skabe rammer og baggrund for, at vi i Danmark kan bryste os at være blandt de førende på verdensplan. Her samles op på, hvor tæt vi er på at nå drømmemålet....

  10. Universal Test Facility

    Science.gov (United States)

    Laughery, Mike

    A universal test facility (UTF) for Space Station Freedom is developed. In this context, universal means that the experimental rack design must be: automated, highly marketable, and able to perform diverse microgravity experiments according to NASA space station requirements. In order to fulfill these broad objectives, the facility's customers, and their respective requirements, are first defined. From these definitions, specific design goals and the scope of the first phase of this project are determined. An examination is first made into what types of research are most likely to make the UTF marketable. Based on our findings, the experiments for which the UTF would most likely be used included: protein crystal growth, hydroponics food growth, gas combustion, gallium arsenide crystal growth, microorganism development, and cell encapsulation. Therefore, the UTF is designed to fulfill all of the major requirements for the experiments listed above. The versatility of the design is achieved by taking advantage of the many overlapping requirements presented by these experiments.

  11. The ISOLDE facility

    Science.gov (United States)

    Catherall, R.; Andreazza, W.; Breitenfeldt, M.; Dorsival, A.; Focker, G. J.; Gharsa, T. P.; J, Giles T.; Grenard, J.-L.; Locci, F.; Martins, P.; Marzari, S.; Schipper, J.; Shornikov, A.; Stora, T.

    2017-09-01

    The ISOLDE facility has undergone numerous changes over the last 17 years driven by both the physics and technical community with a common goal to improve on beam variety, beam quality and safety. Improvements have been made in civil engineering and operational equipment while continuing developments aim to ensure operations following a potential increase in primary beam intensity and energy. This paper outlines the principal technical changes incurred at ISOLDE by building on a similar publication of the facility upgrades by Kugler (2000 Hyperfine Interact. 129 23-42). It also provides an insight into future perspectives through a brief summary issues addressed in the HIE-ISOLDE design study Catherall et al (2013 Nucl. Instrum. Methods Phys. Res. B 317 204-207).

  12. Separations canyon decontamination facilities

    International Nuclear Information System (INIS)

    Hershey, J.H.

    1975-01-01

    Highly radioactive process equipment is decontaminated at the Savannah River Plant in specially equipped areas of the separations canyon building so that direct mechanical repairs or alterations can be made. Using these facilities it is possible to decontaminate and repair equipment such as 10- x 11-ft storage tanks, 8- x 8-ft batch evaporator pots and columns, 40-in. Bird centrifuges, canyon pumps and agitators, and various canyon piping systems or ''jumpers.'' For example, centrifuge or evaporator pots can be decontaminated and rebuilt for about 60 percent of the 1974 replacement cost. The combined facilities can decontaminate and repair 6 to 10 pieces of major equipment per year. Decontamination time varies with type of equipment and radioactivity levels encountered

  13. Separations canyon decontamination facilities

    International Nuclear Information System (INIS)

    Hershey, J.H.

    1975-05-01

    Highly radioactive process equipment is decontaminated at the Savannah River Plant in specially equipped areas of the separations canyon buildings so that direct mechanical repairs or alterations can be made. Using these facilities it is possible to decontaminate and repair equipment such as 10- x 11-ft storage tanks, 8- x 8-ft batch evaporator pots and columns, 40-in. Bird centrifuges, canyon pumps and agitators, and various canyon piping systems or ''jumpers.'' For example, centrifuge or evaporator pots can be decontaminated and rebuilt for about 60 percent of the 1974 replacement cost. The combined facilities can decontaminate and repair 6 to 10 pieces of major equipment per year. Decontamination time varies with type of equipment and radioactivity levels encountered. (U.S.)

  14. Facilities evaluation report

    International Nuclear Information System (INIS)

    Sloan, P.A.; Edinborough, C.R.

    1992-04-01

    The Buried Waste Integrated Demonstration (BWID) is a program of the Department of Energy (DOE) Office of Technology Development whose mission is to evaluate different new and existing technologies and determine how well they address DOE community waste remediation problems. Twenty-three Technical Task Plans (TTPs) have been identified to support this mission during FY-92; 10 of these have identified some support requirements when demonstrations take place. Section 1 of this report describes the tasks supported by BWID, determines if a technical demonstration is proposed, and if so, identifies the support requirements requested by the TTP Principal Investigators. Section 2 of this report is an evaluation identifying facility characteristics of existing Idaho National Engineering Laboratory (INEL) facilities that may be considered for use in BWID technology demonstration activities

  15. Condition of America's Public School Facilities: 2012-13. First Look. NCES 2014-022

    Science.gov (United States)

    Alexander, Debbie; Lewis, Laurie

    2014-01-01

    This report provides nationally representative data on the condition of public school facilities. The National Center for Education Statistics (NCES) previously collected data on this topic in 1999 (Lewis et al. 2000). The study presented in this report collected information about the condition of public school facilities in the 2012-13 school…

  16. The engineering test facility

    International Nuclear Information System (INIS)

    Steiner, D.; Becraft, W.R.; Sager, P.H.

    1981-01-01

    The vehicle by which the fusion program would move into the engineering testing phase of fusion power development is designated the Engineering Test Facility (ETF). The ETF would provide a test-bed for reactor components in the fusion environment. In order to initiate preliminary planning for the ETF decision, the Office of Fusion Energy established the ETF Design Center activity to prepare the design of the ETF. This paper describes the design status of the ETF. (orig.)

  17. Engineering test facility

    International Nuclear Information System (INIS)

    Steiner, D.; Becraft, W.R.; Sager, P.H.

    1981-01-01

    The vehicle by which the fusion program would move into the engineering testing phase of fusion power development is designated the Engineering Test Facility (ETF). The ETF would provide a test-bed for reactor components in the fusion environment. In order to initiate preliminary planning for the ETF decision, the Office of Fusion Energy established the ETF Design Center activity to prepare the design of the ETF. This paper described the design status of the ETF

  18. Large mass storage facility

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, Arnold M.

    1978-08-01

    This is the final report of a study group organized to investigate questions surrounding the acquisition of a large mass storage facility. The programatic justification for such a system at Brookhaven is reviewed. Several candidate commercial products are identified and discussed. A draft of a procurement specification is developed. Some thoughts on possible new directions for computing at Brookhaven are also offered, although this topic was addressed outside of the context of the group's deliberations. 2 figures, 3 tables.

  19. Proton beam therapy facility

    International Nuclear Information System (INIS)

    1984-01-01

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs

  20. Facility decontamination technology workshop

    International Nuclear Information System (INIS)

    1980-10-01

    Purpose of the meeting was to provide a record of experience at nuclear facilities, other than TMI-2, of events and incidents which have required decontamination and dose reduction activities, and to furnish GPU and others involved in the TMI-2 cleanup with the results of that decontamination and dose reduction technology. Separate abstracts were prepared for 24 of the 25 papers; the remaining paper had been previously abstracted

  1. Proton beam therapy facility

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-09

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs.

  2. SIGMA Experimental Facility

    International Nuclear Information System (INIS)

    Rivarola, Martin; Florido, Pablo; Gonzalez, Jose; Brasnarof, Daniel; Orellano, Pablo; Bergallo, Juan

    2000-01-01

    The SIGMA ( Separacion Isotopica Gaseosa por Metodos Avanzados) concept is outlined.The old gaseous diffusion process to enrich uranium has been updated to be economically competitive for small production volumes.Major innovations have been introduced in the membrane design and in the integrated design of compressors and diffusers.The use of injectors and gas turbines has been also adopted.The paper describes the demonstration facility installed by the Argentine Atomic Energy Commission

  3. Facility decontamination technology workshop

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    Purpose of the meeting was to provide a record of experience at nuclear facilities, other than TMI-2, of events and incidents which have required decontamination and dose reduction activities, and to furnish GPU and others involved in the TMI-2 cleanup with the results of that decontamination and dose reduction technology. Separate abstracts were prepared for 24 of the 25 papers; the remaining paper had been previously abstracted. (DLC)

  4. ORNL calibrations facility

    International Nuclear Information System (INIS)

    Berger, C.D.; Gupton, E.D.; Lane, B.H.; Miller, J.H.; Nichols, S.W.

    1982-08-01

    The ORNL Calibrations Facility is operated by the Instrumentation Group of the Industrial Safety and Applied Health Physics Division. Its primary purpose is to maintain radiation calibration standards for calibration of ORNL health physics instruments and personnel dosimeters. This report includes a discussion of the radioactive sources and ancillary equipment in use and a step-by-step procedure for calibration of those survey instruments and personnel dosimeters in routine use at ORNL

  5. Japan hadron facility

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Tokushi [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    1998-03-01

    JHF aims at promoting the variety of research fields using various secondary beams produced by high-intensity proton beams. The accelerator of JHF will be an accelerator complex of a 200 MeV LINAC, a 3 GeV booster proton synchrotron, and a 50 GeV proton synchrotron. The four main experimental facilities of K-Arena, M-Arena, N-Arena, and E-Arena are planed. The outline of the project is presented. (author)

  6. Bevalac Minibeam Facility

    International Nuclear Information System (INIS)

    Schimmerling, W.; Alonso, J.; Morgado, R.; Tobias, C.A.; Grunder, H.; Upham, F.T.; Windsor, A.; Armer, R.A.; Yang, T.C.H.; Gunn, J.T.

    1977-03-01

    The Minibeam Facility is a biomedical heavy-ion beam area at the Bevalac designed to satisfy the following requirements: (1) provide a beam incident in a vertical plane for experiments where a horizontal apparatus significantly increases the convenience of performing an experiment or even determines its feasibility; (2) provide an area that is well shielded with respect to electronic interference so that microvolt signals can be detected with acceptable signal-to-noise ratios; (3) provide a beam of small diameter, typically a few millimeters or less, for various studies of cellular function; and (4) provide a facility for experiments that require long setup and preparation times and apparatus that must be left relatively undisturbed between experiments and that need short periods of beam time. The design of such a facility and its main components is described. In addition to the above criteria, the design was constrained by the desire to have inexpensive, simple devices that work reliably and can be easily upgraded for interfacing to the Biomedical PDP 11/45 computer

  7. Description of pelletizing facility

    Energy Technology Data Exchange (ETDEWEB)

    Vojin Cokorilo; Dinko Knezevic; Vladimir Milisavljevic [University of Belgrade, Belgrade (Serbia). Faculty of Mining and Geology

    2006-07-01

    A lot of electrical energy in Serbia was used for heating, mainly for domestics. As it is the most expensive source for heating the government announced a National Program of Energy Efficiency with only one aim, to reduce the consumption of electric energy for the heating. One of the contributions to mentioned reduction is production of coal pellets from the fine coal and its use for domestic heating but also for heating of schools, hospitals, military barracks etc. Annual production of fine coal in Serbia is 300,000 tons. The stacks of fine coal present difficulties at each deep mine because of environmental pollution, spontaneous combustion, low price, smaller market etc. To overcome the difficulties and to give the contribution to National Program of Energy Efficiency researchers from the Department of Mining Engineering, the University of Belgrade designed and realized the project of fine coal pelletizing. This paper describes technical aspect of this project. Using a CPM machine Model 7900, a laboratory facility, then a semi-industrial pelletizing facility followed by an industrial facility was set up and produced good quality pellets. The plant comprised a coal fines hopper, conveyor belt, hopper for screw conveyor, screw conveyor, continuous mixer conditioner, binder reservoir, pump and pipelines, pellet mill, product conveyor belt and product hopper. 4 refs., 3 figs., 1 tab.

  8. ATLAS Facility Description Report

    International Nuclear Information System (INIS)

    Kang, Kyoung Ho; Moon, Sang Ki; Park, Hyun Sik; Cho, Seok; Choi, Ki Yong

    2009-04-01

    A thermal-hydraulic integral effect test facility, ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation), has been constructed at KAERI (Korea Atomic Energy Research Institute). The ATLAS has the same two-loop features as the APR1400 and is designed according to the well-known scaling method suggested by Ishii and Kataoka to simulate the various test scenarios as realistically as possible. It is a half-height and 1/288-volume scaled test facility with respect to the APR1400. The fluid system of the ATLAS consists of a primary system, a secondary system, a safety injection system, a break simulating system, a containment simulating system, and auxiliary systems. The primary system includes a reactor vessel, two hot legs, four cold legs, a pressurizer, four reactor coolant pumps, and two steam generators. The secondary system of the ATLAS is simplified to be of a circulating loop-type. Most of the safety injection features of the APR1400 and the OPR1000 are incorporated into the safety injection system of the ATLAS. In the ATLAS test facility, about 1300 instrumentations are installed to precisely investigate the thermal-hydraulic behavior in simulation of the various test scenarios. This report describes the scaling methodology, the geometric data of the individual component, and the specification and the location of the instrumentations in detail

  9. Hot Hydrogen Test Facility

    International Nuclear Information System (INIS)

    W. David Swank

    2007-01-01

    The core in a nuclear thermal rocket will operate at high temperatures and in hydrogen. One of the important parameters in evaluating the performance of a nuclear thermal rocket is specific impulse, ISp. This quantity is proportional to the square root of the propellant's absolute temperature and inversely proportional to square root of its molecular weight. Therefore, high temperature hydrogen is a favored propellant of nuclear thermal rocket designers. Previous work has shown that one of the life-limiting phenomena for thermal rocket nuclear cores is mass loss of fuel to flowing hydrogen at high temperatures. The hot hydrogen test facility located at the Idaho National Lab (INL) is designed to test suitability of different core materials in 2500 C hydrogen flowing at 1500 liters per minute. The facility is intended to test non-uranium containing materials and therefore is particularly suited for testing potential cladding and coating materials. In this first installment the facility is described. Automated Data acquisition, flow and temperature control, vessel compatibility with various core geometries and overall capabilities are discussed

  10. Cryogenic Fluid Management Facility

    Science.gov (United States)

    Eberhardt, R. N.; Bailey, W. J.

    1985-01-01

    The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).

  11. Collection Directions: The Evolution of Library Collections and Collecting

    Science.gov (United States)

    Dempsey, Lorcan; Malpas, Constance; Lavoie, Brian

    2014-01-01

    This article takes a broad view of the evolution of collecting behaviors in a network environment and suggests some future directions based on various simple models. The authors look at the changing dynamics of print collections, at the greater engagement with research and learning behaviors, and at trends in scholarly communication. The goal is…

  12. Indoor Lighting Facilities

    Science.gov (United States)

    Matsushima, Koji; Saito, Yoshinori; Ichikawa, Shigenori; Kawauchi, Takao; Tanaka, Tsuneo; Hirano, Rika; Tazuke, Fuyuki

    According to the statistics by the Ministry of Land, Infrastructure and Transport, the total floor space of all building construction started was 188.87 million m2 (1.5% increase y/y), marking the fourth straight year of increase. Many large-scale buildings under construction in central Tokyo become fully occupied by tenants before completion. As for office buildings, it is required to develop comfortable and functional office spaces as working styles are becoming more and more diversified, and lighting is also an element of such functionalities. The total floor space of construction started for exhibition pavilions, multipurpose halls, conference halls and religious architectures decreased 11.1% against the previous year. This marked a decline for 10 consecutive years and the downward trend continues. In exhibition pavilions, the light radiation is measured and adjusted throughout the year so as not to damage the artworks by lighting. Hospitals, while providing higher quality medical services and enhancing the dwelling environment of patients, are expected to meet various restrictions and requirements, including the respect for privacy. Meanwhile, lighting designs for school classrooms tend to be homogeneous, yet new ideas are being promoted to strike a balance between the economical and functional aspects. The severe economic environment continues to be hampering the growth of theaters and halls in both the private and public sectors. Contrary to the downsizing trend of such facilities, additional installations of lighting equipment were conspicuous, and the adoption of high efficacy lighting appliances and intelligent function control circuits are becoming popular. In the category of stores/commercial facilities, the construction of complex facilities is a continuing trend. Indirect lighting, high luminance discharge lamps with excellent color rendition and LEDs are being effectively used in these facilities, together with the introduction of lighting designs

  13. Carbon Fiber Technology Facility (CFTF)

    Data.gov (United States)

    Federal Laboratory Consortium — Functionally within the MDF, ORNL operates DOE’s unique Carbon Fiber Technology Facility (CFTF)—a 42,000 ft2 innovative technology facility and works with leading...

  14. Shock Thermodynamic Applied Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Shock Thermodynamic Applied Research Facility (STAR) facility, within Sandia’s Solid Dynamic Physics Department, is one of a few institutions in the world with a...

  15. Emission Facilities - Air Emission Plants

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Represents the Primary Facility type Air Emission Plant (AEP) point features. Air Emissions Plant is a DEP primary facility type related to the Air Quality Program....

  16. Skilled nursing or rehabilitation facilities

    Science.gov (United States)

    ... ency/patientinstructions/000435.htm Skilled nursing or rehabilitation facilities To use the sharing features on this page, ... to go to a Skilled Nursing or Rehabilitation Facility? Your health care provider may determine that you ...

  17. Tier II Chemical Storage Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research FacilityFacilities that store hazardous chemicals above certain quantities must submit an annual emergency and hazardous chemical inventory on a Tier II form. This is a...

  18. Nitramine Drying & Fine Grinding Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Nitramine Drying and Fine Grinding Facility provides TACOM-ARDEC with a state-of-the-art facility capable of drying and grinding high explosives (e.g., RDX and...

  19. Tandem Van de Graaff facility

    Data.gov (United States)

    Federal Laboratory Consortium — Completed in 1970, the Tandem Van de Graaff facility was for many years the world's largest electrostatic accelerator facility. It can provide researchers with beams...

  20. New Ideas on Facilities Management.

    Science.gov (United States)

    Grimm, James C.

    1986-01-01

    Examines trends in facilities management relating to products and people. Reviews new trends in products, including processes, techniques, and programs that are being expounded by business and industry. Discusses the "people factors" involved in facilities management. (ABB)

  1. Arc Heated Scramjet Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Arc Heated Scramjet Test Facility is an arc heated facility which simulates the true enthalpy of flight over the Mach number range of about 4.7 to 8 for free-jet...

  2. Environmentally Regulated Facilities in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — A unique record for each facility site with an environmental interest by DNR (such as permits). This brings together core environmental information in one place for...

  3. Preconceptual design for a Monitored Retrievable Storage (MRS) transfer facility

    International Nuclear Information System (INIS)

    Woods, W.D.; Jowdy, A.K.; Smith, R.I.

    1990-09-01

    The contract between the DOE and the utilities specifies that the DOE will receive spent fuel from the nuclear utilities in 1998. This study investigates the feasibility of employing a simple Transfer Facility which can be constructed quickly, and operate while the full-scale MRS facilities are being constructed. The Transfer Facility is a hot cell designed only for the purpose of transferring spent fuel assemblies from the Office of Civilian Radioactive Waste Management (OCRWM) transport casks (shipped from the utility sites) into onsite concrete storage casks. No operational functions other than spent fuel assembly transfers and the associated cask handling, opening, and closing would be performed in this facility. Radioactive waste collected in the Transfer Facility during operations would be stored until the treatment facilities in the full-scale MRS facility became operational, approximately 2 years after the Transfer Facility started operation. An alternate wherein the Transfer Facility was the only waste handling building on the MRS site was also examined and evaluated. 6 figs., 26 tabs

  4. Robins Air Force Base Solar Cogeneration Facility design

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, B.L.; Bodenschatz, C.A.

    1982-06-01

    A conceptual design and a cost estimate have been developed for a Solar Cogeneration Facility at Robins Air Force Base. This demonstration solar facility was designed to generate and deliver electrical power and process steam to the existing base distribution systems. The facility was to have the potential for construction and operation by 1986 and make use of existing technology. Specific objectives during the DOE funded conceptual design program were to: prepare a Solar Cogeneration Facility (overall System) Specification, select a preferred configuration and develop a conceptual design, establish the performance and economic characteristics of the facility, and prepare a development plan for the demonstration program. The Westinghouse team, comprised of the Westinghouse Advanced Energy Systems Division, Heery and Heery, Inc., and Foster Wheeler Solar Development Corporation, in conjunction with the U.S. Air Force Logistics Command and Georgia Power Company, has selected a conceptual design for the facility that will utilize the latest DOE central receiver technology, effectively utilize the energy collected in the application, operate base-loaded every sunny day of the year, and be applicable to a large number of military and industrial facilities throughout the country. The design of the facility incorporates the use of a Collector System, a Receiver System, an Electrical Power Generating System, a Balance of Facility - Steam and Feedwater System, and a Master Control System.

  5. Facility planning and site development

    International Nuclear Information System (INIS)

    Reisman, R.C.; Handmaker, H.

    1986-01-01

    Planning for a magnetic resonance imaging (MRI) facility should provide for the efficient operation of current and future MRI devices and must also take into consideration a broad range of general planning principles. Control of budgeted facility costs and construction schedules is of increasing importance due to the magnitude of expense of MRI facility development as well as the need to protect institutional or entrepreneurial investment. In a competitive environment facility costs may be the determining factor in a project's success

  6. PUREX facility preclosure work plan

    International Nuclear Information System (INIS)

    Engelmann, R.H.

    1997-01-01

    This preclosure work plan presents a description of the PUREX Facility, the history of the waste managed, and addresses transition phase activities that position the PUREX Facility into a safe and environmentally secure configuration. For purposes of this documentation, the PUREX Facility does not include the PUREX Storage Tunnels (DOE/RL-90/24). Information concerning solid waste management units is discussed in the Hanford Facility Dangerous Waste Permit Application, General Information Portion (DOE/RL-91-28, Appendix 2D)

  7. Superior Hiking Trail Facilities

    Data.gov (United States)

    Minnesota Department of Natural Resources — Superior Hiking Trail main trail, spurs, and camp spurs for completed trail throughout Cook, Lake, St. Louis and Carlton counties. These data were collected with...

  8. Eccentric Coil Test Facility (ECTF)

    International Nuclear Information System (INIS)

    Burn, P.B.; Walstrom, P.L.; Anderson, W.C.; Marguerat, E.F.

    1975-01-01

    The conceptual design of a facility for testing superconducting coils under some conditions peculiar to tokamak systems is given. A primary element of the proposed facility is a large 25 MJ background solenoid. Discussions of the mechanical structure, the stress distribution and the thermal stability for this coil are included. The systems for controlling the facility and diagnosing test coil behavior are also described

  9. Hot cell verification facility update

    International Nuclear Information System (INIS)

    Titzler, P.A.; Moffett, S.D.; Lerch, R.E.

    1985-01-01

    The Hot Cell Verification Facility (HCVF) provides a prototypic hot cell mockup to check equipment for functional and remote operation, and provides actual hands-on training for operators. The facility arrangement is flexible and assists in solving potential problems in a nonradioactive environment. HCVF has been in operation for six years, and the facility is a part of the Hanford Engineering Development Laboratory

  10. Capital Ideas for Facilities Management.

    Science.gov (United States)

    Golding, Stephen T.; Gordon, Janet; Gravina, Arthur

    2001-01-01

    Asserting that just like chief financial officers, higher education facilities specialists must maximize the long-term performance of assets under their care, describes strategies for strategic facilities management. Discusses three main approaches to facilities management (insourcing, cosourcing, and outsourcing) and where boards of trustees fit…

  11. Australian national proton facility

    International Nuclear Information System (INIS)

    Jackson, M.

    2000-01-01

    Full text: Proton therapy has been in use since 1954 and over 25,000 patients have been treated worldwide. Until recently most patients were treated at physics research facilities and apart from the Harvard Cyclotron Laboratory and some low energy machines for eye treatment, only small numbers of patients were treated in each centre and conditions were less than optimal. Limited beam time and lack of support facilities restricted the type of patient treated and conventional fractionation could not be used. The initial clinical experience was mainly with small tumours and other lesions close to critical organs. Large numbers of eye tumours have also been treated. Protons have a well-defined role in these situations and are now being used in the treatment of more common cancers. Since the development of hospital-based facilities, such as the one in Loma Linda in California, over 2,500 patients with prostate cancer have been treated using a simple technique which gives results at least as good as radical surgery, external beam radiotherapy or brachytherapy. Importantly, the incidence of severe complications is very low. There are encouraging results in many disease sites including lung, liver, soft tissue sarcomas and oesophagus. As proton therapy becomes more widely available, randomised trials comparing it with conventional radiotherapy or intensity modulated radiotherapy (IMRT) will be possible. In most situations the use of protons will enable a higher dose to be given safely but in situations where local control rates are already satisfactory, protons are expected to produce less complications than conventional treatment. The initial costs of a proton facility are high but the recurrent costs are similar to other forms of high technology radiotherapy. Simple treatment techniques with only a few fields are usually possible and proton therapy avoids the high integral doses associated with IMRT. This reduction in the low dose volume is likely to be particularly

  12. Mineral facilities of Northern and Central Eurasia

    Science.gov (United States)

    Baker, Michael S.; Elias, Nurudeen; Guzman, Eric; Soto-Viruet, Yadira

    2010-01-01

    This map displays almost 900 records of mineral facilities within the countries that formerly constituted the Union of Soviet Socialist Republics (USSR). Each record represents one commodity and one facility type at a single geographic location. Facility types include mines, oil and gas fields, and plants, such as refineries, smelters, and mills. Common commodities of interest include aluminum, cement, coal, copper, gold, iron and steel, lead, nickel, petroleum, salt, silver, and zinc. Records include attributes, such as commodity, country, location, company name, facility type and capacity (if applicable), and latitude and longitude geographical coordinates (in both degrees-minutes-seconds and decimal degrees). The data shown on this map and in table 1 were compiled from multiple sources, including (1) the most recently available data from the U.S. Geological Survey (USGS) Minerals Yearbook (Europe and Central Eurasia volume), (2) mineral statistics and information from the USGS Minerals Information Web site (http://minerals.usgs.gov/minerals/pubs/country/europe.html), and (3) data collected by the USGS minerals information country specialists from sources, such as statistical publications of individual countries, annual reports and press releases of operating companies, and trade journals. Data reflect the most recent published table of industry structure for each country at the time of this publication. Additional information is available from the country specialists listed in table 2

  13. Mineral facilities of Asia and the Pacific

    Science.gov (United States)

    Baker, Michael S.; Elias, Nurudeen; Guzman, Eric; Soto-Viruet, Yadira

    2010-01-01

    This map displays over 1,500 records of mineral facilities throughout the continent of Asia and the countries of the Pacific Ocean. Each record represents one commodity and one facility type at a single geographic location. Facility types include mines, oil and gas fields, and plants, such as refineries, smelters, and mills. Common commodities of interest include aluminum, cement, coal, copper, gold, iron and steel, lead, nickel, petroleum, salt, silver, and zinc. Records include attributes, such as commodity, country, location, company name, facility type and capacity (if applicable), and latitude and longitude geographical coordinates (in both degrees-minutes-seconds and decimal degrees). The data shown on this map and in table 1 were compiled from multiple sources, including (1) the 2008 U.S. Geological Survey Minerals Yearbook (Asia and the Pacific volume), (2) minerals statistics and information from the U.S. Geological Survey Minerals Information Web site (http://minerals.usgs.gov/minerals/), and (3) data collected by U.S. Geological Survey minerals information country specialists. Other sources include statistical publications of individual countries, annual reports and press releases of operating companies, and trade journals. Due to the sensitivity of some energy commodity data, the quality of these data should be evaluated on a country-by-country basis. Additional information is available from the country specialists listed in table 2.

  14. HYTEST Phase I Facility Commissioning and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lee P. Shunn; Richard D. Boardman; Shane J. Cherry; Craig G. Rieger

    2009-09-01

    The purpose of this document is to report the first year accomplishments of two coordinated Laboratory Directed Research and Development (LDRD) projects that utilize a hybrid energy testing laboratory that couples various reactors to investigate system reactance behavior. This work is the first phase of a series of hybrid energy research and testing stations - referred to hereafter as HYTEST facilities – that are planned for construction and operation at the Idaho National Laboratory (INL). A HYTEST Phase I facility was set up and commissioned in Bay 9 of the Bonneville County Technology Center (BCTC). The purpose of this facility is to utilize the hydrogen and oxygen that is produced by the High Temperature Steam Electrolysis test reactors operating in Bay 9 to support the investigation of kinetic phenomena and transient response of integrated reactor components. This facility provides a convenient scale for conducting scoping tests of new reaction concepts, materials performance, new instruments, and real-time data collection and manipulation for advance process controls. An enclosed reactor module was assembled and connected to a new ventilation system equipped with a variable-speed exhaust blower to mitigate hazardous gas exposures, as well as contract with hot surfaces. The module was equipped with a hydrogen gas pump and receiver tank to supply high quality hydrogen to chemical reactors located in the hood.

  15. Decommissioning of the Risoe Hot Cell facility

    International Nuclear Information System (INIS)

    Carlsen, H.

    1993-02-01

    A concise description of the current status (December 31st, 1992) regarding the decommissioning of the hot cell facility at Risoe National Laboratory is given in this periodic report. During the second half of the year 1992, all remaining fissile material and a large amount of contaminated material were removed, major repair work was carried out on the in-cell crane, the shielded storage facility was decontaminated and sealed, iodine filters in the cell ventilation system were removed, remote cleaning was carried out on three concrete cells to radiation levels acceptable for final cleaning by frogmen, and the remaining work schedule was planned. These processes are briefly described. Some breakdowns of older, but vital equipment (i.e. the in-cell crane and the power manipulator) that was taken into extensive use led to a certain amount of delay. The collective radiation doses during this half-year were no higher than under normal operation of the facility, and amounted to 12 man-mSv ascribed to 14 persons. It was concluded that, when removing old epoxy paint in the cells using paint strippers applied by hand, personnel can wear polythene oversuits, although a technique for remote handling has been developed. Tables illustrate measured radiation levels in cells number 1,4,5 and 6, and a diagram describes the shielded storage facility. (AB)

  16. Shiva target irradiation facility

    International Nuclear Information System (INIS)

    Manes, K.R.; Ahlstrom, H.G.; Coleman, L.W.; Storm, E.K.; Glaze, J.A.; Hurley, C.A.; Rienecker, F.; O'Neal, W.C.

    1977-01-01

    The first laser/plasma studies performed with the Shiva laser system will be two sided irradiations extending the data obtained by other LLL lasers to higher powers. The twenty approximately 1 TW laser pulses will reach the target simultaneously from above and below in nested pentagonal clusters. The upper and lower clusters of ten beams each are radially polarized so that they strike the target in p-polarization and maximize absorption. This geometry introduces laser system isolation problems which will be briefly discussed. The layout and types of target diagnostics will be described and a brief status report on the facility given

  17. Filters in nuclear facilities

    International Nuclear Information System (INIS)

    Berg, K.H.; Wilhelm, J.G.

    1985-01-01

    The topics of the nine papers given include the behavior of HEPA filters during exposure to air flows of high humidity as well as of high differential pressure, the development of steel-fiber filters suitable for extreme operating conditions, and the occurrence of various radioactive iodine species in the exhaust air from boiling water reactors. In an introductory presentation the German view of the performance requirements to be met by filters in nuclear facilities as well as the present status of filter quality assurance are discussed. (orig.) [de

  18. Decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    Buck, S.

    1996-01-01

    Nuclear facilities present a number of problems at the end of their working lives. They require dismantling and removal but public and environmental protection remain a priority. The principles and strategies are outlined. Experience of decommissioning in France and the U.K. had touched every major stage of the fuel cycle by the early 1990's. Decommissioning projects attempt to restrict waste production and proliferation as waste treatment and disposal are costly. It is concluded that technical means exist to deal with present civil plant and costs are now predictable. Strategies for decommissioning and future financial provisions are important. (UK)

  19. CLIC Test Facility 3

    CERN Multimedia

    Kossyvakis, I; Faus-golfe, A

    2007-01-01

    The design of CLIC is based on a two-beam scheme, where short pulses of high power 30 GHz RF are extracted from a drive beam running parallel to the main beam. The 3rd generation CLIC Test Facility (CTF3) will demonstrate the generation of the drive beam with the appropriate time structure, the extraction of 30 GHz RF power from this beam, as well as acceleration of a probe beam with 30 GHz RF cavities. The project makes maximum use of existing equipment and infrastructure of the LPI complex, which became available after the closure of LEP.

  20. Power source facility

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Kazuhiro; Kinoshita, Shoichiro

    1998-09-29

    The present invention concerns a power plant, in which power is supplied from an ordinary system battery to an ordinary DC bus system when all of the AC power sources should be lost and a generator is driven by a steam turbine. A generator is connected with an ordinary system battery charger by way of a channel. If all of power sources should be lost, the ordinary system battery charger is driven by using emergency steam turbine generator facilities, and reactor steams are supplied thereby enabling to supply power to the ordinary system DC bus system for a long period of time. (N.H.)

  1. Nuclear reactor facility

    International Nuclear Information System (INIS)

    Wampole, N.C.

    1978-01-01

    In order to improve the performance of manitenance and inspections it is proposed for a nuclear reactor facility with a primary circuit containing liquid metal to provide a thermally insulated chamber, within which are placed a number of components of the primary circuit, as e.g. valves, recirculation pump, heat exchangers. The isolated placement permit controlled preheating on one hand, but prevents undesirable heating of adjacent load-bearing elements on the other. The chamber is provided with heating devices and, on the outside, with cooling devices; it is of advantage to fill it with an inert gas. (UWI) 891 HP [de

  2. LEGS data acquisition facility

    International Nuclear Information System (INIS)

    LeVine, M.J.

    1985-01-01

    The data acquisition facility for the LEGS medium energy photonuclear beam line is composed of an auxiliary crate controller (ACC) acting as a front-end processor, loosely coupled to a time-sharing host computer based on a UNIX-like environment. The ACC services all real-time demands in the CAMAC crate: it responds to LAMs generated by data acquisition modules, to keyboard commands, and it refreshes the graphics display at frequent intervals. The host processor is needed only for printing histograms and recording event buffers on magnetic tape. The host also provides the environment for software development. The CAMAC crate is interfaced by a VERSAbus CAMAC branch driver

  3. Large coil test facility

    International Nuclear Information System (INIS)

    Nelms, L.W.; Thompson, P.B.

    1980-01-01

    Final design of the facility is nearing completion, and 20% of the construction has been accomplished. A large vacuum chamber, houses the test assembly which is coupled to appropriate cryogenic, electrical, instrumentation, diagnostc systems. Adequate assembly/disassembly areas, shop space, test control center, offices, and test support laboratories are located in the same building. Assembly and installation operations are accomplished with an overhead crane. The major subsystems are the vacuum system, the test stand assembly, the cryogenic system, the experimental electric power system, the instrumentation and control system, and the data aquisition system

  4. Innovation Sources and Role of ICT in Facilities Services

    DEFF Research Database (Denmark)

    Scupola, Ada; Holzweber, Markus; Tuunainen, VK.

    2010-01-01

    structured interviews with main actors in the facilities management market. Our main finding is that facilities services innovation is mainly driven by management. However, employees also contribute to innovation. Customers have also a role in co-creation and as customer pull, even though these roles seem......In this paper, we investigate innovation sources in facilities services and the role that ICT has in supporting such innovation processes. Based on literature review, we propose a conceptual framework, which is then used to analyze empirical data. The empirical data was collected through seven semi...

  5. Spacing Sensitivity Analysis of HLW Intermediate Storage Facility

    International Nuclear Information System (INIS)

    Youn, Bum Soo; Lee, Kwang Ho

    2010-01-01

    Currently, South Korea's spent fuels are stored in its temporary storage within the plant. But the temporary storage is expected to be reaching saturation soon. For the effective management of spent fuel wastes, the need for intermediate storage facility is a desperate position. However, the research for the intermediate storage facility for waste has not made active so far. In addition, in case of foreign countries it is mostly treated confidentially and the information isn't easy to collect. Therefore, the purpose of this study is creating the basic thermal analysis data for the waste storage facility that will be valuable in the future

  6. Automation and Remote Synchrotron Data Collection

    International Nuclear Information System (INIS)

    Gilski, M.

    2008-01-01

    X-ray crystallography is the natural choice for macromolecular structure determination by virtue of its accuracy, speed, and potential for further speed gains, while synchrotron radiation is indispensable because of its intensity and tuneability. Good X-ray crystallographic diffraction patterns are essential and frequently this is achievable through using the few large synchrotrons located worldwide. Beamline time on these facilities have long queues, and increasing the efficiency of utilization of these facilities will help in expediting the structure determination process. Automation and remote data collection are therefore essential steps in ensuring that macromolecular structure determination becomes a very high throughput process. (author)

  7. Technical Merits and Leadership in Facility Management

    National Research Council Canada - National Science Library

    Shoemaker, Jerry

    1997-01-01

    .... The document is divided into six chapters; the introduction, facility management and leadership, building systems, facility operations, facility maintenance strategies, and the conclusion and final analysis...

  8. Grout Facilities standby plan

    Energy Technology Data Exchange (ETDEWEB)

    Claghorn, R.D.; Kison, P.F.; Nunamaker, D.R.; Yoakum, A.K.

    1994-09-29

    This plan defines how the Grout Facilities will be deactivated to meet the intent of the recently renegotiated Tri-Party Agreement (TPA). The TPA calls for the use of the grout process as an emergency option only in the event that tank space is not available to resolve tank safety issues. The availability of new tanks is expected by 1997. Since a grout startup effort would take an estimated two years, a complete termination of the Grout Disposal Program is expected in December 1995. The former Tank Waste Remediation (TWRS) Strategy, adopted in 1988, called for the contents of Hanford`s 28 newer double-shell waste tanks to be separated into high-level radioactive material to be vitrified and disposed of in a geologic repository; low-level wastes were to be sent to the Grout Facility to be made into a cement-like-mixture and poured into underground vaults at Hanford for disposal. The waste in the 149 older single-shell tanks (SST) were to undergo further study and analysis before a disposal decision was made.

  9. Underground Facilities, Technological Challenges

    CERN Document Server

    Spooner, N

    2010-01-01

    This report gives a summary overview of the status of international under- ground facilities, in particular as relevant to long-baseline neutrino physics and neutrino astrophysics. The emphasis is on the technical feasibility aspects of creating the large underground infrastructures that will be needed in the fu- ture to house the necessary detectors of 100 kton to 1000 kton scale. There is great potential in Europe to build such a facility, both from the technical point of view and because Europe has a large concentration of the necessary engi- neering and geophysics expertise. The new LAGUNA collaboration has made rapid progress in determining the feasibility for a European site for such a large detector. It is becoming clear in fact that several locations are technically fea- sible in Europe. Combining this with the possibility of a new neutrino beam from CERN suggests a great opportunity for Europe to become the leading centre of neutrino studies, combining both neutrino astrophysics and neutrino beam stu...

  10. Tritium Systems Test Facility

    International Nuclear Information System (INIS)

    Cafasso, F.A.; Maroni, V.A.; Smith, W.H.; Wilkes, W.R.; Wittenberg, L.J.

    1978-01-01

    This TSTF proposal has two principal objectives. The first objective is to provide by mid-FY 1981 a demonstration of the fuel cycle and tritium containment systems which could be used in a Tokamak Experimental Power Reactor for operation in the mid-1980's. The second objective is to provide a capability for further optimization of tritium fuel cycle and environmental control systems beyond that which is required for the EPR. The scale and flow rates in TSTF are close to those which have been projected for a prototype experimental power reactor (PEPR/ITR) and will permit reliable extrapolation to the conditions found in an EPR. The fuel concentrations will be the same as in an EPR. Demonstrations of individual components of the deuterium-tritium fuel cycle and of monitoring, accountability and containment systems and of a maintenance methodology will be achieved at various times in the FY 1979-80 time span. Subsequent to the individual component demonstrations--which will proceed from tests with hydrogen (and/or deuterium) through tracer levels of tritium to full operational concentrations--a complete test and demonstration of the integrated fuel processing and tritium containment facility will be performed. This will occur near the middle of FY 1981. Two options were considered for the TSTF: (1) The modification of an existing building and (2) the construction of a new facility

  11. PUREX facility hazards assessment

    International Nuclear Information System (INIS)

    Sutton, L.N.

    1994-01-01

    This report documents the hazards assessment for the Plutonium Uranium Extraction Plant (PUREX) located on the US Department of Energy (DOE) Hanford Site. Operation of PUREX is the responsibility of Westinghouse Hanford Company (WHC). This hazards assessment was conducted to provide the emergency planning technical basis for PUREX. DOE Order 5500.3A requires an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification. In October of 1990, WHC was directed to place PUREX in standby. In December of 1992 the DOE Assistant Secretary for Environmental Restoration and Waste Management authorized the termination of PUREX and directed DOE-RL to proceed with shutdown planning and terminal clean out activities. Prior to this action, its mission was to reprocess irradiated fuels for the recovery of uranium and plutonium. The present mission is to establish a passively safe and environmentally secure configuration at the PUREX facility and to preserve that condition for 10 years. The ten year time frame represents the typical duration expended to define, authorize and initiate follow-on decommissioning and decontamination activities

  12. Released radioactivity reducing facility

    International Nuclear Information System (INIS)

    Tanaka, Takeaki.

    1992-01-01

    Upon occurrence of a reactor accident, penetration portions of a reactor container, as a main leakage source from a reactor container, are surrounded by a plurality of gas-tight chambers, the outside of which is surrounded by highly gas-tightly buildings. Branched pipelines of an emergency gas processing system are introduced to each of the gas-tight chambers and they are joined and in communication with an emergency gas processing device. With such a constitution, radioactive materials are prevented from leaking directly from the buildings. Further, pipeline openings of the emergency gas processing facility are disposed in the plurality highly gas-tight penetration chambers. If the radioactive materials are leaked from the reactor to elevate the pressure in the penetration chambers, the radioactive materials are introduced to a filter device in the emergency gas processing facility by way of the branched pipelines, filtered and then released to the atmosphere. Accordingly, the reliability and safety of the system can be improved. (T.M.)

  13. Mixed Waste Management Facility

    International Nuclear Information System (INIS)

    Brummond, W.; Celeste, J.; Steenhoven, J.

    1993-08-01

    The DOE has developed a National Mixed Waste Strategic Plan which calls for the construction of 2 to 9 mixed waste treatment centers in the Complex in the near future. LLNL is working to establish an integrated mixed waste technology development and demonstration system facility, the Mixed Waste Management Facility (MWMF), to support the DOE National Mixed Waste Strategic Plan. The MWMF will develop, demonstrate, test, and evaluate incinerator-alternatives which will comply with regulations governing the treatment and disposal of organic mixed wastes. LLNL will provide the DOE with engineering data for design and operation of new technologies which can be implemented in their mixed waste treatment centers. MWMF will operate under real production plant conditions and process samples of real LLNL mixed waste. In addition to the destruction of organic mixed wastes, the development and demonstration will include waste feed preparation, material transport systems, aqueous treatment, off-gas treatment, and final forms, thus making it an integrated ''cradle to grave'' demonstration. Technologies from offsite as well as LLNL's will be tested and evaluated when they are ready for a pilot scale demonstration, according to the needs of the DOE

  14. Reactor feedwater facility

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Tadashi; Kinoshita, Shoichiro; Akatsu, Jun-ichi

    1996-04-30

    In a reactor feedwater facility in which one stand-by system and at least three ordinary systems are disposed in parallel, each of the feedwater pumps is driven by an electromotor, and has substantially the same capacity. At least two systems among the ordinary systems have a pump rotation number variable means. Since the volume of each of the feedwater pump of each system is determined substantially equal, standardization is enabled to facilitate the production. While the number of electromotors is increased, since they are driven by electromotors, turbines, steam pipelines and valves for driving feed water pumps can be eliminated. Therefore, the feedwater pumps can be disposed to a region of low radiation dose being separated from a main turbine and a main condensator, to improve the degree of freedom in view of the installation. In addition, accessibility to equipments during operation is improved to improve the maintenance of feed water facilities. The number of parts for equipments can be reduced compared with that in a turbine-driving system thereby capable of reducing the operation amount for the maintenance and inspection. (N.H.)

  15. The Torbay fog facility

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    A series of lighting sources are needed to help helicopters in their approaches to offshore oil platforms. The Torbay fog facility in Newfoundland was created in May 1998 and has been instrumental in studying different light sources. The facility has been used for fog characterization studies to determine the transmission of various light sources through fog up to a distance of 980 meters and correlating this with fog droplet size and concentration. The most cost effective method of increasing visibility is through high intensity searchlights. In this study, a 150 watt searchlight was set up on the south side of Torbay Bay and fog droplet size and concentration were measured. The main objective of the study was to characterize fog and precipitation (rain and snow) to enable daylight approaches to be made to the Hibernia platform in low visibility conditions. Different methods of measuring visibility were investigated to define a suitable sensor/detector which, when installed on the Hibernia platform, will allow a prediction of visibility to be made for flight operational purposes. 2 figs

  16. Grout Facilities standby plan

    International Nuclear Information System (INIS)

    Claghorn, R.D.; Kison, P.F.; Nunamaker, D.R.; Yoakum, A.K.

    1994-01-01

    This plan defines how the Grout Facilities will be deactivated to meet the intent of the recently renegotiated Tri-Party Agreement (TPA). The TPA calls for the use of the grout process as an emergency option only in the event that tank space is not available to resolve tank safety issues. The availability of new tanks is expected by 1997. Since a grout startup effort would take an estimated two years, a complete termination of the Grout Disposal Program is expected in December 1995. The former Tank Waste Remediation (TWRS) Strategy, adopted in 1988, called for the contents of Hanford's 28 newer double-shell waste tanks to be separated into high-level radioactive material to be vitrified and disposed of in a geologic repository; low-level wastes were to be sent to the Grout Facility to be made into a cement-like-mixture and poured into underground vaults at Hanford for disposal. The waste in the 149 older single-shell tanks (SST) were to undergo further study and analysis before a disposal decision was made

  17. FRACTURING FLUID CHARACTERIZATION FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Subhash Shah

    2000-08-01

    Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.

  18. The LLNL AMS facility

    International Nuclear Information System (INIS)

    Roberts, M.L.; Bench, G.S.; Brown, T.A.

    1996-05-01

    The AMS facility at Lawrence Livermore National Laboratory (LLNL) routinely measures the isotopes 3 H, 7 Be, 10 Be, 14 C, 26 Al, 36 Cl, 41 Ca, 59,63 Ni, and 129 I. During the past two years, over 30,000 research samples have been measured. Of these samples, approximately 30% were for 14 C bioscience tracer studies, 45% were 14 C samples for archaeology and the geosciences, and the other isotopes constitute the remaining 25%. During the past two years at LLNL, a significant amount of work has gone into the development of the Projectile X-ray AMS (PXAMS) technique. PXAMS uses induced characteristic x-rays to discriminate against competing atomic isobars. PXAMS has been most fully developed for 63 Ni but shows promise for the measurement of several other long lived isotopes. During the past year LLNL has also conducted an 129 I interlaboratory comparison exercise. Recent hardware changes at the LLNL AMS facility include the installation and testing of a new thermal emission ion source, a new multianode gas ionization detector for general AMS use, re-alignment of the vacuum tank of the first of the two magnets that make up the high energy spectrometer, and a new cryo-vacuum system for the AMS ion source. In addition, they have begun design studies and carried out tests for a new high-resolution injector and a new beamline for heavy element AMS

  19. TESLA Test Facility. Status

    International Nuclear Information System (INIS)

    Aune, B.

    1996-01-01

    The TESLA Test Facility (TTF), under construction at DESY by an international collaboration, is an R and D test bed for the superconducting option for future linear e+/e-colliders. It consists of an infrastructure to process and test the cavities and of a 500 MeV linac. The infrastructure has been installed and is fully operational. It includes a complex of clean rooms, an ultra-clean water plant, a chemical etching installation and an ultra-high vacuum furnace. The linac will consist of four cryo-modules, each containing eight 1 meter long nine-cell cavities operated at 1.3 GHz. The base accelerating field is 15 MV/m. A first injector will deliver a low charge per bunch beam, with the full average current (8 mA in pulses of 800 μs). A more powerful injector based on RF gun technology will ultimately deliver a beam with high charge and low emittance to allow measurements necessary to qualify the TESLA option and to demonstrate the possibility of operating a free electron laser based on the Self-Amplified-Spontaneous-Emission principle. Overview and status of the facility will be given. Plans for the future use of the linac are presented. (R.P.)

  20. Geothermal energy conversion facility

    Energy Technology Data Exchange (ETDEWEB)

    Kutscher, C.F.

    1997-12-31

    With the termination of favorable electricity generation pricing policies, the geothermal industry is exploring ways to improve the efficiency of existing plants and make them more cost-competitive with natural gas. The Geothermal Energy Conversion Facility (GECF) at NREL will allow researchers to study various means for increasing the thermodynamic efficiency of binary cycle geothermal plants. This work has received considerable support from the US geothermal industry and will be done in collaboration with industry members and utilities. The GECF is being constructed on NREL property at the top of South Table Mountain in Golden, Colorado. As shown in Figure 1, it consists of an electrically heated hot water loop that provides heating to a heater/vaporizer in which the working fluid vaporizes at supercritical or subcritical pressures as high as 700 psia. Both an air-cooled and water-cooled condenser will be available for condensing the working fluid. In order to minimize construction costs, available equipment from the similar INEL Heat Cycle Research Facility is being utilized.

  1. Household batteries: Evaluation of collection methods

    Energy Technology Data Exchange (ETDEWEB)

    Seeberger, D.A.

    1992-12-31

    While it is difficult to prove that a specific material is causing contamination in a landfill, tests have been conducted at waste-to-energy facilities that indicate that household batteries contribute significant amounts of heavy metals to both air emissions and ash residue. Hennepin County, MN, used a dual approach for developing and implementing a special household battery collection. Alternative collection methods were examined; test collections were conducted. The second phase examined operating and disposal policy issues. This report describes the results of the grant project, moving from a broad examination of the construction and content of batteries, to a description of the pilot collection programs, and ending with a discussion of variables affecting the cost and operation of a comprehensive battery collection program. Three out-of-state companies (PA, NY) were found that accept spent batteries; difficulties in reclaiming household batteries are discussed.

  2. Household batteries: Evaluation of collection methods

    Energy Technology Data Exchange (ETDEWEB)

    Seeberger, D.A.

    1992-01-01

    While it is difficult to prove that a specific material is causing contamination in a landfill, tests have been conducted at waste-to-energy facilities that indicate that household batteries contribute significant amounts of heavy metals to both air emissions and ash residue. Hennepin County, MN, used a dual approach for developing and implementing a special household battery collection. Alternative collection methods were examined; test collections were conducted. The second phase examined operating and disposal policy issues. This report describes the results of the grant project, moving from a broad examination of the construction and content of batteries, to a description of the pilot collection programs, and ending with a discussion of variables affecting the cost and operation of a comprehensive battery collection program. Three out-of-state companies (PA, NY) were found that accept spent batteries; difficulties in reclaiming household batteries are discussed.

  3. 77 FR 65555 - Agency Information Collection Activities; Submission for Office of Management and Budget Review...

    Science.gov (United States)

    2012-10-29

    ... the initial data collection for select restaurant facility types, followed by the initial data... period data collection survey measurement) period Restaurants Full Service 2013 2016 2019 Restaurants. Fast Food Restaurants. Institutional Foodservice........ Hospitals 2014 2017 2020 Nursing Homes...

  4. 75 FR 3906 - Request for Public Comment: 30-Day Proposed Information Collection: Indian Health Service...

    Science.gov (United States)

    2010-01-25

    ... Proposed Information Collection: Indian Health Service Customer Satisfaction Survey AGENCY: Indian Health...: 0917-NEW, ``Indian Health Service Customer Satisfaction Survey.'' Type of Information Collection... facilities programs will make improvements that will result in improved quality of services. Voluntary...

  5. Striped Marlin Hardparts and Gonads Collected by the PIRO Hawaii Longline Observer Program

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Compilation of all samples collected from striped marlin (Tetrapturus audax) collected and brought to the Aiea Heights Research Facility by the PIRO Hawaii Longline...

  6. Enhancement of safety for reprocessing facilities

    International Nuclear Information System (INIS)

    2012-06-01

    The adequacy of the safety measures for utility loss accidents in nuclear fuel reprocessing facilities which have been formulated by the nuclear enterprises is investigated in JNES which organizes an advanced committee to specifically study this problem. The results are reviewed in the present report including the case of such severe accidents as in Fukushima Daiichi Nuclear Power Plant. The report also represents a tentative proposal for examination standards of such unimaginable severe accidents as 'station blackout,' urgent safety measures necessary for reoperation of nuclear power plants and requested by nuclear and industrial safety agency, and pointing out and clarification of the potential weakness from the safety point of view, and collective and composite evaluation of safety of the relevant facilities. Furthermore, the definition of accident management is given as of controlled condition and the authorized way of thinking for the cases of plural events happening at the same time and the cases when risks exist radioactivity emits with explosion. (S. Ohno)

  7. Operation of Temporary Radioactive waste stoprage facility

    Energy Technology Data Exchange (ETDEWEB)

    Kinseem, A A; Abulfaraj, W H; Sohsah, M A; Kamal, S M; Mamoon, A M [Nuclear Engineering Department, Faculty of Engineering, King Abdelazizi University jeddah-21413, Saudi Arabia (Saudi Arabia)

    1997-12-31

    Radionuclides of various half lives have been in use for several years years at different Departments of king Abdulaziz university, the university hospital, and research center. The use of unsealed radionuclides in many laboratories, resulted in considerable amounts of solid and liquid radwaste, mainly radiopharmaceuticals. To avoid accumulation of radwastes in working areas, a temporary radioactive waste storage facility was built. Segregation of radwastes according to type was carried out, followed by collection into appropriate containers and transfer to the storage facility. Average radiation dose rate inside the store was maintained at about 75 {mu} h{sup -1} through use of appropriate shielding. The dose rates at points one meter outside the store walls were maintained at about 15-20 {mu}Sv h{sup -1}. Utilization of radioisotopes during the period of 1991-1995 resulted in a volume of about 1.8 m{sup 3} of solid radwaste and about 200 L of liquid radwaste. Records of the store inventory are maintained in a computer database, listing dates, types, activities and packaging data pertinent to the radwastes delivered to the store. Quality assurance procedures are implemented during the different stages of the radwaste collection, transportation, and storage. Construction and operation of the storage facility comply with radiation safety requirements for the workers handling the radwastes, the public and the environment. The capacity of the storage facility is such that it will accommodate storage of generated radwastes of long half life up to year 2016. Permanent disposal of such radwastes may be indicated afterwards. 2 figs., 3 tabs.

  8. Indoor Lighting Facilities

    Science.gov (United States)

    Matsushima, Koji; Saito, Yoshinori; Ichikawa, Shigenori; Kawauchi, Takao; Tanaka, Tsuneo; Hirano, Rika; Tazuke, Fuyuki

    According to the statistics on building construction floor area from the Ministry of Land, Infrastructure, Transport and Tourism, the total floor area of building construction started in Japan in 2007 was 160,991 thousand square meters, or 14.8% less than the area of the previous year, and the reduction was the first reduction in the past five years. The office markets in Tokyo and Nagoya were active, as represented by the supplies of skyscrapers, and energy saving measures, such as the adoption of high efficiency lighting equipment, the control for initial stage illuminance, daylight harvesting, and the use of occupancy sensors, were well established. In the field of public construction, including museums, multi-purpose halls, and religious buildings, the total area of the new construction was 10.8% less than the total for the previous year, and this reduction was a continuation of an eleven-year trend. In spaces with high ceiling, the innovation for easy replacement of light sources used with reflection mirror systems and optical fibers was noted. Hospitals adapted to the expectation for improved services in their selection of lighting facilities to improve the residential environment for patients while taking into consideration the needs of the aging population, by their use of devices in corridors to help maintain a continuity of light. In libraries, a pendant system was developed to illuminate both ceilings and book shelves. In the field of theaters and halls, the time limit for repairing existing systems had come for the large facilities that were opened during the theater and hall construction boom of the 1960s through 1980s, and around 26 renovations were done. Almost all the renovations were conversions to intelligent dimming systems and lighting control desks. In the field of stores and commercial facilities, the atmosphere and glitter of the selling floor was produced by new light sources, such as ceramic metal halide lamps and LEDs, which have high

  9. Automated approach to nuclear facility safeguards effectiveness evaluation

    International Nuclear Information System (INIS)

    1977-01-01

    Concern over the security of nuclear facilities has generated a need for a reliable, time efficient, and easily applied method of evaluating the effectiveness of safeguards systems. Such an evaluation technique could be used (1) by the Nuclear Regulatory Commission to evaluate a licensee's proposal, (2) to assess the security status of a system, or (3) to design and/or upgrade nuclear facilities. The technique should be capable of starting with basic information, such as the facility layout and performance parameters for physical protection components, and analyzing that information so that a reliable overall facility evaluation is obtained. Responding to this expressed need, an automated approach to facility safeguards effectiveness evaluation has been developed. This procedure consists of a collection of functional modules for facility characterization, critical path generation, and path evaluation combined into a continuous stream of operations. The technique has been implemented on an interactive computer-timesharing system and makes use of computer graphics for the handling and presentation of information. Using this technique a thorough facility evaluation can be made by systematically varying parameters that characterize the physical protection components of a facility according to changes in perceived adversary attributes and strategy, environmental conditions, and site status

  10. Liquid Effluent Retention Facility/Effluent Treatment Facility Hazards Assessment

    International Nuclear Information System (INIS)

    Simiele, G.A.

    1994-01-01

    This document establishes the technical basis in support of Emergency Planning activities for the Liquid Effluent Retention Facility and Effluent Treatment Facility the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE ORDER 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated

  11. Design of the PRIDE Facility

    International Nuclear Information System (INIS)

    You, Gil Sung; Choung, Won Myung; Lee, Eun Pyo; Cho, Il Je; Kwon, Kie Chan; Hong, Dong Hee; Lee, Won Kyung; Ku, Jeong Hoe

    2009-01-01

    From 2007, KAERI is developing a PyRoprocess Integrated inactive DEmonstration facility (the PRIDE facility). The maximum annual treatment capacity of this facility will be a 10 ton-HM. The process will use a natural uranium feed material or a natural uranium mixed with some surrogate material for a simulation of a spent fuel. KAERI has also another plan to construct a demonstration facility which can treat a real spent fuel by pyroprocessing. This facility is called by ESPF, Engineering Scale Pyroprocess Facility. The ESPF will have the same treatment capability of spent fuel with the PRIDE facility. The only difference between the PRIDE and the ESPF is a radiation shielding capability. From the PRIDE facility designing works and demonstration with a simulated spent fuel after construction, it will be able to obtain the basic facility requirements, remote operability, interrelation properties between process equipment for designing of the ESPF. The flow sheet of the PRIDE processes is composed of five main processes, such as a decladding and voloxidation, an electro-reduction, an electrorefining, an electro-winning, and a salt waste treatment. The final products from the PRIDE facility are a simulated TRU metal and U metal ingot

  12. 76 FR 7841 - Agency Information Collection Activities; Proposed Collections; Toxic Chemical Release Reporting...

    Science.gov (United States)

    2011-02-11

    ... agencies, and others to promote reductions in toxic chemical releases. Industrial facilities use the TRI... Activities; Proposed Collections; Toxic Chemical Release Reporting; Request for Comments on Proposed Renewal... the individual listed in the preceding FOR FURTHER INFORMATION CONTACT section. Title: Toxic Chemical...

  13. 75 FR 12566 - Agency Information Collection Activities: Existing Collection; Comments Requested

    Science.gov (United States)

    2010-03-16

    ... appearances and bringing them back to detention, discharging inmates at the behest of the court or other... previous year to June 30 of the current collection year: the number of inmate-inflicted physical assaults...: how many jail operation employees did the facility hire for employment; how many jail operation...

  14. 78 FR 57150 - Agency Information Collection Activities; Proposed Collection; Request for Comments on Three...

    Science.gov (United States)

    2013-09-17

    ... your comments, identified by Docket ID No. EPA-HQ-OW- 2008-0719, by one of the following methods: http...; train personnel to be able to respond to a collection of information; search data sources; complete and... average of 965,509 hours of burden divided among an anticipated annual average of 472 facilities). The...

  15. 75 FR 23266 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Science.gov (United States)

    2010-05-03

    ... each study arm (treatment and control). This study is being conducted by AHRQ through its contractors... purpose of these interviews is to generate ideas on how best to implement the new procedures and what..., gender, race/ethnicity, proportion long-stay vs. post-acute/ rehab). Facility data will be collected...

  16. 75 FR 38104 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Science.gov (United States)

    2010-07-01

    ... each study arm (treatment and control). This study is being conducted by AHRQ through its contractors... purpose of these interviews is to generate ideas on how best to implement the new procedures and what..., gender, race/ethnicity, proportion long-stay vs. post-acute/ rehab). Facility data will be collected...

  17. 76 FR 71568 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Science.gov (United States)

    2011-11-18

    ... control number); Title of Information Collection: Nursing Home Quality Improvement Questionnaire; Use: The information obtained via the Nursing Home Quality Improvement Questionnaire will be utilized by CMS staff in... and performance improvement (QAPI) technical assistance (TA) that will be useful to nursing facilities...

  18. Water Activities in Laxemar Simpevarp. Clab/encapsulation facility (Clink) - removal of groundwater, collection of cooling water from the sea and the construction of day water pond; Vattenverksamhet i Laxemar-Simpevarp. Clab/inkapslingsanlaeggning (Clink) - bortledande av grundvatten, uttag av kylvatten fraan havet samt anlaeggande av dagvattendamm

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Kent (EmpTec (Sweden))

    2010-09-15

    This report is an appendix to an Environmental Impact Assessment that accompanies a permit application according to the Swedish Environmental Code. The report concerns water operations (Chapter 11 in the Environmental Code) associated with construction of an encapsulation plant in direct connection to SKB's existing Clab facility on the Simpevarp peninsula in the Municipality of Oskarshamn (the report is also included in the permit application according to the Nuclear Activities Act). Moreover, the report deals with water operations associated with the operation of the integrated facility, which is named Clink. Specifically, the water operations that are treated in the report include diversion of groundwater, withdrawal of cooling water from the sea, and construction of a storm-water treatment pond. There are valid permits regarding diversion of groundwater and withdrawal of cooling water for the current facility and activities at Clab. It is presupposed that the cooling-water withdrawal from the sea to Clink can be handled within the limits of the valid Clab permit. The diversion of groundwater from Clink may be somewhat larger compared to the present diversion from Clab. The increase is due to a relatively small, additional rock shaft for the encapsulation plant, adjacent to the current surface facility and above one of the two existing rock caverns (Clab 1). Based on the location of the planned rock shaft (above one of the existing rock caverns) and its small volume, it is judged that the inflow of groundwater during operation of Clink will be only 5-10 percent larger compared to the inflow to the current Clab facility. It is possible that the inflow will be larger during the construction phase, prior to grouting of the shaft. Based on the limited increase of the groundwater inflow and results from the ongoing Clab monitoring programme, it is judged that the construction of the encapsulation plant and the operation of Clink will only lead to very small

  19. Facility effluent monitoring plan for the fast flux test facility

    International Nuclear Information System (INIS)

    Nickels, J.M.; Dahl, N.R.

    1992-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in US Department of Energy Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A Facility Effluent Monitoring Plan determination was performed during calendar year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements

  20. Facility effluent monitoring plan for the 327 Facility

    International Nuclear Information System (INIS)

    1994-11-01

    The 327 Facility [Post-Irradiation Testing Laboratory] provides office and laboratory space for Pacific Northwest Laboratory (PNL) scientific and engineering staff conducting multidisciplinary research in the areas of post-irradiated fuels and structural materials. The facility is designed to accommodate the use of radioactive and hazardous materials in the conduct of these activities. This report summarizes the airborne emissions and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements

  1. The National Ignition Facility

    International Nuclear Information System (INIS)

    Hogan, W.J.; Moses, E.; Warner, B.; Sorem, M.; Soures, J.M.

    2001-01-01

    The National Ignition Facility (NIF) is the largest construction project ever undertaken at Lawrence Livermore National Laboratory (LLNL). NIF consists of 192 forty-centimeter-square laser beams and a 10-m-diameter target chamber. NIF is being designed and built by an LLNL-led team from Los Alamos National Laboratory, Sandia National Laboratories, the University of Rochester, and LLNL. Physical construction began in 1997. The Laser and Target Area Building and the Optics Assembly Building were the first major construction activities, and despite several unforeseen obstacles, the buildings are now 92% complete and have been done on time and within cost. Prototype component development and testing has proceeded in parallel. Optics vendors have installed full-scale production lines and have done prototype production runs. The assembly and integration of the beampath infrastructure has been reconsidered and a new approach has been developed. This paper will discuss the status of the NIF project and the plans for completion. (author)

  2. Dismantling of nuclear facilities

    International Nuclear Information System (INIS)

    Tallec, Michele; Kus, Jean-Pierre; Mogavero, Robert; Genelot, Gabriel

    2009-01-01

    Although the operational life of nuclear plants is long (around 60 years for French reactors) it is nonetheless limited in time, the stopping of it being essentially due to the obsolescence of materials and processes or to economic or safety considerations. The nuclear power plants are then subjected to cleanup and dismantling operations which have different objectives and require specific techniques. The cleanup and/or dismantling of a nuclear power produces significant quantities of waste which is generally of a different nature to that produced during the operation of the concerned plant. The radioactive waste produced by these operations is destined to be sent to the waste disposal facilities of the French National Agency for the Management of Nuclear Waste. (authors)

  3. Siting controversial facilities

    International Nuclear Information System (INIS)

    Baird, R.D.; Blacker, P.B.

    1985-01-01

    There is often significant difficulty involved with siting controversial facilities. The social and political problems are frequently far more difficult to resolve than the technical and economic issues. The tendancy for most developing organizations is to address only technical issues in the search for a technically optimal site, to the exclusion of such weighting considerations as the social and political climate associated with potential sites--an approach which often imperils the success of the project. The site selection processes currently suggested is summarized and two contemporary examples of their application are cited. The difference between developers' real objectives and the objectives they have implicitly assumed by adopting the recommended approaches without augmentation are noted. The resulting morass of public opposition is attributed to the failure to consider the needs of individuals and groups who stand to be negatively impacted by the development. A comprehensive implementation strategy which addresses non-technical consideration in parallel with technical ones is presented and evaluated

  4. Technology Development Facility (TDF)

    International Nuclear Information System (INIS)

    Doggett, J.N.

    1982-01-01

    We have been studying small, driven, magnetic-mirror-based fusion reactors for the Technology Development Facility (TDF), that will test fusion reactor materials, components, and subsystems. Magnetic mirror systems are particularly interesting for this application because of their inherent steady-state operation, potentially high neutron wall loading, and relatively small size. Our design is a tandem mirror device first described by Fowler and Logan, based on the physics of the TMX experiments at Lawrence Livermore National Laboratory (LLNL). The device produces 20 MW of fusion power with a first-wall, uncollided 14-MeV neutron flux of 1.4 MW/m 2 on an area of approximately 8 m 2 , while consuming approximately 250 MW of electrical power. The work was done by a combined industrial-laboratory-university group

  5. Pool water cleaning facility

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Kazuhiro; Kinoshita, Shoichiro [Hitachi Ltd., Tokyo (Japan); Asano, Takashi

    1998-05-29

    Only one system comprising a suppression poor water cleaning system (SPCU) and a filtration desalting tower (F/D) is connected for a plurality of nuclear power plants. Pipelines/valves for connecting the one system of the SPCU pump, the F/D and the plurality of nuclear power plants are disposed, and the system is used in common with the plurality of nuclear power plants. Pipelines/valves for connecting a pipeline for passing SP water to the commonly used SPCU pump and a skimmer surge tank are disposed, and fuel pool water is cooled and cleaned by the commonly used SPCU pump and the commonly used F/D. The number of SPCU pumps and the F/D facilities can be reduced, and a fuel pool water cooling operation mode and a fuel pool water cleaning operation mode which were conducted by an FPC pump so far are conducted by the SPCU pump. (N.H.)

  6. Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2009-01-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

  7. Studsvik thermal neutron facility

    International Nuclear Information System (INIS)

    Pettersson, O.A.; Larsson, B.; Grusell, E.; Svensson, P.

    1992-01-01

    The Studsvik thermal neutron facility at the R2-0 reactor originally designed for neutron capture radiography has been modified to permit irradiation of living cells and animals. A hole was drilled in the concrete shielding to provide a cylindrical channel with diameter of 25.3 cm. A shielding water tank serves as an entry holder for cells and animals. The advantage of this modification is that cells and animals can be irradiated at a constant thermal neutron fluence rate of approximately 10 9 n cm -2 s -1 (at 100 kW) without stopping and restarting the reactor. Topographic analysis of boron done by neutron capture autoradiography (NCR) can be irradiated under the same conditions as previously

  8. The QUASAR facility

    Science.gov (United States)

    Gates, David

    2013-10-01

    The QUAsi-Axisymmetric Research (QUASAR) stellarator is a new facility which can solve two critical problems for fusion, disruptions and steady-state, and which provides new insights into the role of magnetic symmetry in plasma confinement. If constructed it will be the only quasi-axisymmetric stellarator in the world. The innovative principle of quasi-axisymmetry (QA) will be used in QUASAR to study how ``tokamak-like'' systems can be made: 1) Disruption-free, 2) Steady-state with low recirculating power, while preserving or improving upon features of axisymmetric tokamaks, such as 1) Stable at high pressure simultaneous with 2) High confinement (similar to tokamaks), and 3) Scalable to a compact reactor Stellarator research is critical to fusion research in order to establish the physics basis for a magnetic confinement device that can operate efficiently in steady-state, without disruptions at reactor-relevant parameters. The two large stellarator experiments - LHD in Japan and W7-X under construction in Germany are pioneering facilities capable of developing 3D physics understanding at large scale and for very long pulses. The QUASAR design is unique in being QA and optimized for confinement, stability, and moderate aspect ratio (4.5). It projects to a reactor with a major radius of ~8 m similar to advanced tokamak concepts. It is striking that (a) the EU DEMO is a pulsed (~2.5 hour) tokamak with major R ~ 9 m and (b) the ITER physics scenarios do not presume steady-state behavior. Accordingly, QUASAR fills a critical gap in the world stellarator program. This work supported by DoE Contract No. DEAC02-76CH03073.

  9. Decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Lunning, W.H.

    1977-01-01

    Collaborative studies are in progress in the U.K. between the U.K.A.E.A., the Generating Boards and other outside bodies, to identify the development issues and practical aspects of decommissioning redundant nuclear facilities. The various types of U.K.A.E.A. experimental reactors (D.F.R., W.A.G.R , S.G.H.W.R.) in support of the nuclear power development programme, together with the currently operating commercial 26 Magnox reactors in 11 stations, totalling some 5 GW will be retired before the end of the century and attention is focussed on these. The actual timing of withdrawal from service will be dictated by development programme requirements in the case of experimental reactors and by commercial and technical considerations in the case of electricity production reactors. Decommissioning studies have so far been confined to technical appraisals including the sequence logic of achieving specific objectives and are based on the generally accepted three stage progression. Stage 1, which is essentially a defuelling and coolant removal operation, is an interim phase. Stage 2 is a storage situation, the duration of which will be influenced by environmental pressures or economic factors including the re-use of existing sites. Stage 3, which implies removal of all active and non-active waste material and returning the site to general use, must be the ultimate objective. The engineering features and the radioactive inventory of the system must be assessed in detail to avoid personnel or environmental hazards during Stage 2. These factors will also influence decisions on the degree of Stage 2 decommissioning and its duration, bearing in mind that for Stage 3 activation may govern the waste disposal route and the associated radiation man-rem exposure during dismantling. Ideally, planning for decommissioning should be considered at the design stage of the facility. An objective of present studies is to identify features which would assist decommissioning of future systems

  10. Realities of proximity facility siting

    International Nuclear Information System (INIS)

    DeMott, D.L.

    1981-01-01

    Numerous commercial nuclear power plant sites have 2 to 3 reactors located together, and a group of Facilities with capabilities for fuel fabrication, a nuclear reactor, a storage area for spent fuel, and a maintenance area for contaminated equipment and radioactive waste storage are being designed and constructed in the US. The proximity of these facilities to each other provides that the ordinary flow of materials remain within a limited area. Interactions between the various facilities include shared resources such as communication, fire protection, security, medical services, transportation, water, electrical, personnel, emergency planning, transport of hazardous material between facilities, and common safety and radiological requirements between facilities. This paper will explore the advantages and disadvantages of multiple facilities at one site. Problem areas are identified, and recommendations for planning and coordination are discussed

  11. Hanford Surplus Facilities Program plan

    International Nuclear Information System (INIS)

    Hughes, M.C.; Wahlen, R.K.; Winship, R.A.

    1989-09-01

    The Hanford Surplus Facilities Program is responsible for the safe and cost-effective surveillance, maintenance, and decommissioning of surplus facilities at the Hanford Site. The management of these facilities requires a surveillance and maintenance program to keep them in a safe condition and development of a plan for ultimate disposition. Criteria used to evaluate each factor relative to decommissioning are based on the guidelines presented by the US Department of Energy-Richland Operations Office, Defense Facilities Decommissioning Program Office, and are consistent with the Westinghouse Hanford Company commitment to decommission the Hanford Site retired facilities in the safest and most cost-effective way achievable. This document outlines the plan for managing these facilities to the end of disposition

  12. Nuclear power plant simulation facility evaluation methodology

    International Nuclear Information System (INIS)

    Haas, P.M.; Carter, R.J.; Laughery, K.R. Jr.

    1985-01-01

    A methodology for evaluation of nuclear power plant simulation facilities with regard to their acceptability for use in the US Nuclear Regulatory Commission (NRC) operator licensing exam is described. The evaluation is based primarily on simulator fidelity, but incorporates some aspects of direct operator/trainee performance measurement. The panel presentation and paper discuss data requirements, data collection, data analysis and criteria for conclusions regarding the fidelity evaluation, and summarize the proposed use of direct performance measurment. While field testing and refinement of the methodology are recommended, this initial effort provides a firm basis for NRC to fully develop the necessary methodology

  13. Regulatory facility guide for Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.S.; Bock, R.E.; Francis, M.W.; Gove, R.M.; Johnson, P.E.; Kovac, F.M.; Mynatt, J.O. [Oak Ridge National Lab., TN (United States); Rymer, A.C. [Transportation Consulting Services, Knoxville, TN (United States)

    1994-02-28

    The Regulatory Facility Guide (RFG) has been developed for the DOE and contractor facilities located in the state of Ohio. It provides detailed compilations of international, federal, and state transportation-related regulations applicable to shipments originating at destined to Ohio facilities. This RFG was developed as an additional resource tool for use both by traffic managers who must ensure that transportation operations are in full compliance with all applicable regulatory requirements and by oversight personnel who must verify compliance activities.

  14. Hanford Site Near-Facility Environmental Monitoring Data Report for Calendar Year 2007- Appendix 2

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, Craig J.; Dorsey, Michael; Mckinney, Stephen M.; Wilde, Justin W.; Duncan, Joanne P.

    2008-10-13

    Near-facility environmental monitoring is defined as monitoring near facilities that have the potential to discharge or have discharged, stored, or disposed of radioactive or hazardous materials. Monitoring locations are associated with nuclear facilities such as the Plutonium Finishing Plant (PFP), Canister Storage Building (CSB), and the K Basins; inactive nuclear facilities such as N Reactor and the Plutonium-Uranium Extraction (PUREX) Facility; and waste storage or disposal facilities such as burial grounds, cribs, ditches, ponds, tank farms, and trenches. Much of the monitoring consists of collecting and analyzing environmental samples and methodically surveying areas near facilities. The program is also designed to evaluate acquired analytical data, determine the effectiveness of facility effluent monitoring and controls, assess the adequacy of containment at waste disposal units, and detect and monitor unusual conditions.

  15. Hanford Site Near-Facility Environmental Monitoring Data Report for Calendar Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, Craig J.; Dorsey, Michael C.; Mckinney, Stephen M.; Wilde, Justin W.; Poston, Ted M.

    2009-09-15

    Near-facility environmental monitoring is defined as monitoring near facilities that have the potential to discharge or have discharged, stored, or disposed of radioactive or hazardous materials. Monitoring locations are associated with nuclear facilities such as the Plutonium Finishing Plant, Canister Storage Building, and the K Basins; inactive nuclear facilities such as N Reactor and the Plutonium-Uranium Extraction (PUREX) Facility; and waste storage or disposal facilities such as burial grounds, cribs, ditches, ponds, tank farms, and trenches. Much of the monitoring consists of collecting and analyzing environmental samples and methodically surveying areas near facilities. The program is also designed to evaluate acquired analytical data, determine the effectiveness of facility effluent monitoring and controls, assess the adequacy of containment at waste disposal units, and detect and monitor unusual conditions.

  16. Collective phenomena in synchrotron radiation sources. Prediction, diagnostics, countermeasures

    International Nuclear Information System (INIS)

    Khan, S.

    2006-01-01

    This book helps to dispel the notion that collective phenomena, which have become increasingly important in modern storage rings, are an obscure and inaccessible topic. Despite an emphasis on synchrotron light sources, the basic concepts presented here are valid for other facilities as well. Graduate students, scientists and engineers working in an accelerator environment will find this to be a systematic exposition of the principles behind collective instabilities and lifetime-limiting effects. Experimental methods to identify and characterize collective effects are also surveyed. Among other measures to improve the performance of a projected or existing facility, a detailed account of feedback control of instabilities is given. (orig.)

  17. 76 FR 4932 - Notice of Submission of Proposed Information Collection to OMB; Capital Fund Education and...

    Science.gov (United States)

    2011-01-27

    ... Proposed Information Collection to OMB; Capital Fund Education and Training Community Facilities AGENCY..., Congress set aside up to $40 million of the Capital Fund for Education and Training Community Facilities... the burden of the proposed collection of information; (3) Enhance the quality, utility, and clarity of...

  18. 304 Concretion facility closure plan

    International Nuclear Information System (INIS)

    1990-04-01

    The Hanford Site, located northwest of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. Recyclable scrap uranium Zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/Zircaloy-2 alloy, and Zircaloy-2 chips and fines were secured in concrete billets in the 304 Concretion Facility, located in the 300 Area. The beryllium/Zircaloy-2 alloy and Zircaloy-2 chips and fines are designated as low-level radioactive mixed waste (LLRMW) with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 304 Concretion Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act of 1976 (RCRA). This closure plan presents a description of the facility, the history of materials and wastes managed, and the procedures that will be followed to close the 304 Concretion Facility (304 Facility). Clean closure of the 304 Facility is the proposed method for closure of the facility. Justification for this proposal is presented. 15 refs., 22 figs., 4 tabs

  19. Agency Data on User Facilities

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of the Aerospace Technical Facility Inventory is to facilitate the sharing of specialized capabilities within the aerospace research/engineering...

  20. Poultry Slaughtering and Processing Facilities

    Data.gov (United States)

    Department of Homeland Security — Agriculture Production Poultry Slaughtering and Processing in the United States This dataset consists of facilities which engage in slaughtering, processing, and/or...

  1. Electronic Warfare Signature Measurement Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Electronic Warfare Signature Measurement Facility contains specialized mobile spectral, radiometric, and imaging measurement systems to characterize ultraviolet,...

  2. Challenges for proteomics core facilities.

    Science.gov (United States)

    Lilley, Kathryn S; Deery, Michael J; Gatto, Laurent

    2011-03-01

    Many analytical techniques have been executed by core facilities established within academic, pharmaceutical and other industrial institutions. The centralization of such facilities ensures a level of expertise and hardware which often cannot be supported by individual laboratories. The establishment of a core facility thus makes the technology available for multiple researchers in the same institution. Often, the services within the core facility are also opened out to researchers from other institutions, frequently with a fee being levied for the service provided. In the 1990s, with the onset of the age of genomics, there was an abundance of DNA analysis facilities, many of which have since disappeared from institutions and are now available through commercial sources. Ten years on, as proteomics was beginning to be utilized by many researchers, this technology found itself an ideal candidate for being placed within a core facility. We discuss what in our view are the daily challenges of proteomics core facilities. We also examine the potential unmet needs of the proteomics core facility that may also be applicable to proteomics laboratories which do not function as core facilities. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Radio Frequency Anechoic Chamber Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports the design, manufacture, and test of antenna systems. The facility is also used as an electromagnetic compatibility/radio frequency interference...

  4. Engine Environment Research Facility (EERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: This facility supports research and development testing of the behavior of turbine engine lubricants, fuels and sensors in an actual engine environment....

  5. Materials Engineering Research Facility (MERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne?s Materials Engineering Research Facility (MERF) enables engineers to develop manufacturing processes for producing advanced battery materials in sufficient...

  6. Making of the NSTX Facility

    International Nuclear Information System (INIS)

    Neumeyer, C.; Ono, M.; Kaye, S.M.; Peng, Y.-K.M.

    1999-01-01

    The NSTX (National Spherical Torus Experiment) facility located at Princeton Plasma Physics Laboratory is the newest national fusion science experimental facility for the restructured US Fusion Energy Science Program. The NSTX project was approved in FY 97 as the first proof-of-principle national fusion facility dedicated to the spherical torus research. On Feb. 15, 1999, the first plasma was achieved 10 weeks ahead of schedule. The project was completed on budget and with an outstanding safety record. This paper gives an overview of the NSTX facility construction and the initial plasma operations

  7. Low background infrared (LBIR) facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Low background infrared (LBIR) facility was originally designed to calibrate user supplied blackbody sources and to characterize low-background IR detectors and...

  8. 33-GVA interrupter test facility

    International Nuclear Information System (INIS)

    Parsons, W.M.; Honig, E.M.; Warren, R.W.

    1979-01-01

    The use of commercial ac circuit breakers for dc switching operations requires that they be evaluated to determine their dc limitations. Two 2.4-GVA facilities have been constructed and used for this purpose at LASL during the last several years. In response to the increased demand on switching technology, a 33-GVA facility has been constructed. Novel features incorporated into this facility include (1) separate capacitive and cryogenic inductive energy storage systems, (2) fiber-optic controls and optically-coupled data links, and (3) digital data acquisition systems. Facility details and planned tests on an experimental rod-array vacuum interrupter are presented

  9. Experimental facilities for gas-cooled reactor safety studies. Task group on Advanced Reactor Experimental Facilities (TAREF)

    International Nuclear Information System (INIS)

    2009-01-01

    In 2007, the NEA Committee on the Safety of Nuclear Installations (CSNI) completed a study on Nuclear Safety Research in OECD Countries: Support Facilities for Existing and Advanced Reactors (SFEAR) which focused on facilities suitable for current and advanced water reactor systems. In a subsequent collective opinion on the subject, the CSNI recommended to conduct a similar exercise for Generation IV reactor designs, aiming to develop a strategy for ' better preparing the CSNI to play a role in the planned extension of safety research beyond the needs set by current operating reactors'. In that context, the CSNI established the Task Group on Advanced Reactor Experimental Facilities (TAREF) in 2008 with the objective of providing an overview of facilities suitable for performing safety research relevant to gas-cooled reactors and sodium fast reactors. This report addresses gas-cooled reactors; a similar report covering sodium fast reactors is under preparation. The findings of the TAREF are expected to trigger internationally funded CSNI projects on relevant safety issues at the key facilities identified. Such CSNI-sponsored projects constitute a means for efficiently obtaining the necessary data through internationally co-ordinated research. This report provides an overview of experimental facilities that can be used to carry out nuclear safety research for gas-cooled reactors and identifies priorities for organizing international co-operative programmes at selected facilities. The information has been collected and analysed by a Task Group on Advanced Reactor Experimental Facilities (TAREF) as part of an ongoing initiative of the NEA Committee on the Safety of Nuclear Installations (CSNI) which aims to define and to implement a strategy for the efficient utilisation of facilities and resources for Generation IV reactor systems. (author)

  10. National Ignition Facility system design requirements conventional facilities SDR001

    International Nuclear Information System (INIS)

    Hands, J.

    1996-01-01

    This System Design Requirements (SDR) document specifies the functions to be performed and the minimum design requirements for the National Ignition Facility (NIF) site infrastructure and conventional facilities. These consist of the physical site and buildings necessary to house the laser, target chamber, target preparation areas, optics support and ancillary functions

  11. Facility effluent monitoring plan for 242-A Evaporator facility

    International Nuclear Information System (INIS)

    Crummel, G.M.; Gustavson, R.D.

    1993-03-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1* for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation showed the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility effluent Monitoring Plans, WHC-EP-0438-1**. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements

  12. Integration of facility modeling capabilities for nuclear nonproliferation analysis

    International Nuclear Information System (INIS)

    Burr, Tom; Gorensek, M.B.; Krebs, John; Kress, Reid L.; Lamberti, Vincent; Schoenwald, David; Ward, Richard C.

    2012-01-01

    Developing automated methods for data collection and analysis that can facilitate nuclearnonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facilitymodeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facilitymodeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facilitymodelingcapabilities and illustrates how they could be integrated and utilized for nonproliferationanalysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facilitymodeling tools. After considering a representative sampling of key facilitymodelingcapabilities, the proposed integration framework is illustrated with several examples.

  13. Forum Guide to Facilities Information Management: A Resource for State and Local Education Agencies. NFES 2012-808

    Science.gov (United States)

    National Forum on Education Statistics, 2012

    2012-01-01

    Safe and secure facilities that foster learning are crucial to providing quality education services, and developing and maintaining these facilities requires considerable resources and organization. Facility information systems allow education organizations to collect and manage data that can be used to inform and guide decisionmaking about the…

  14. Introduction to symposium 'radiation protection at nuclear facilities'

    International Nuclear Information System (INIS)

    Stricker, L.

    1996-01-01

    An introduction to the symposium 'radiation protection of nuclear facilities' on Wednesday, April 17, 1996 in Vienna has been given. The number of operating reactors and the total collective dose per reactor in OECD countries has been discussed. The evolution of the total collective dose associated with the replacement of steam generators at nuclear power reactors from 1979 to 1995 is presented. The background and culture of radiation protection, regulatory aspects, strategic formulation, plan management policy and organization responsibilities are discussed generally. (Suda)

  15. Towards modern petrological collections

    NARCIS (Netherlands)

    Kriegsman, L.M.

    2004-01-01

    Petrological collections result from sampling for academic research, for aesthetic or commercial reasons, and to document natural diversity. Selection criteria for reducing and enhancing collections include adequate documentation, potential for future use, information density, time and money

  16. Oxygen injection facility

    International Nuclear Information System (INIS)

    Ota, Masamoto; Hirose, Yuki

    1998-01-01

    A compressor introduces air as a starting material and sends it to a dust removing device, a dehumidifying device and an adsorption/separation system disposed downstream. The facility of the present invention is disposed in the vicinity of an injection point and installed in a turbine building of a BWR type reactor having a pipeline of a feedwater system to be injected. The adsorbing/separation system comprises an adsorbing vessel and an automatic valve, and the adsorbing vessel is filled with an adsorbent for selectively adsorbing nitrogen. Zeolite is used as the adsorbent. Nitrogen in the air passing through the adsorbing vessel is adsorbed and removed under a pressurized condition, and a highly concentrated oxygen gas is formed. The direction of the steam of the adsorbed nitrogen is changed by an opening/closing switching operation of an automatic valve and released to the atmosphere (the pressure is released). Generated oxygen gas is stored under pressure in a tank, and injected to the pipeline of the feedwater system by an oxygen injection conduit by way of a flow rate control valve. In the adsorbing vessel, steps of adsorption, separation and storage under pressure are repeated successively. (I.N.)

  17. Nuclear reactor containing facility

    International Nuclear Information System (INIS)

    Hidaka, Masataka; Murase, Michio.

    1994-01-01

    In a reactor containing facility, a condensation means is disposed above the water level of a cooling water pool to condensate steams of the cooling water pool, and return the condensated water to the cooling water pool. Upon occurrence of a pipeline rupture accident, steams generated by after-heat of a reactor core are caused to flow into a bent tube, blown from the exit of the bent tube into a suppression pool and condensated in a suppression pool water, thereby suppressing the pressure in the reactor container. Cooling water in the cooling water pool is boiled by heat conduction due to the condensation of steams, then the steams are exhausted to the outside of the reactor container to remove the heat of the reactor container to the outside of the reactor. In addition, since cooling water is supplied to the cooling water pool quasi-permanently by gravity as a natural force, the reactor container can be cooled by the cooling water pool for a long period of time. Since the condensation means is constituted with a closed loop and interrupted from the outside, radioactive materials are never released to the outside. (N.H.)

  18. Security of pipeline facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.C. [Alberta Energy and Utilities Board, Calgary, AB (Canada); Van Egmond, C.; Duquette, L. [National Energy Board, Calgary, AB (Canada); Revie, W. [Canada Centre for Mineral and Energy Technology, Ottawa, ON (Canada)

    2005-07-01

    This working group provided an update on provincial, federal and industry directions regarding the security of pipeline facilities. The decision to include security issues in the NEB Act was discussed as well as the Pipeline Security Management Assessment Project, which was created to establish a better understanding of existing security management programs as well as to assist the NEB in the development and implementation of security management regulations and initiatives. Amendments to the NEB were also discussed. Areas of pipeline security management assessment include physical safety management; cyber and information security management; and personnel security. Security management regulations were discussed, as well as implementation policies. Details of the Enbridge Liquids Pipelines Security Plan were examined. It was noted that the plan incorporates flexibility for operations and is integrated with Emergency Response and Crisis Management. Asset characterization and vulnerability assessments were discussed, as well as security and terrorist threats. It was noted that corporate security threat assessment and auditing are based on threat information from the United States intelligence community. It was concluded that the oil and gas industry is a leader in security in North America. The Trans Alaska Pipeline Incident was discussed as a reminder of how costly accidents can be. Issues of concern for the future included geographic and climate issues. It was concluded that limited resources are an ongoing concern, and that the regulatory environment is becoming increasingly prescriptive. Other concerns included the threat of not taking international terrorism seriously, and open media reporting of vulnerability of critical assets, including maps. tabs., figs.

  19. Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Johnson, R.L.

    1985-01-01

    The Advanced Toroidal Facility (ATF) is a new magnetic confinement plasma device under construction at the Oak Ridge National Laboratory (ORNL) that will lead to improvements in toroidal magnetic fusion reactors. The ATF is a type of stellerator, known as a ''torsatron'' which theoretically has the capability to operate at greater than or equal to8% beta in steady state. The ATF plasma has a major radius of 2.1 m, an average minor radius of 0.3 m, and a field of 2 T for a 2 s duration or 1 T steady state. The ATF device consists of a helical field (HF) coil set, a set of poloidal field (PF) coils, an exterior shell structure to support the coils, and a thin, helically contoured vacuum vessel inside the coils. The ATF replaces the Impurities Studies Experiment (ISX-B) tokamak at ORNL and will use the ISX-B auxiliary systems including 4 MW of electron cyclotron heating. The ATF is scheduled to start operation in late 1986. An overview of the ATF device is presented, including details of the construction process envisioned. 9 refs., 7 figs., 3 tabs

  20. Nuclear power generation facility

    International Nuclear Information System (INIS)

    Kubo, Mitsuji.

    1996-01-01

    Main steams are introduced from a moisture separation device for removing moisture content of the main steams to a low pressure turbine passing through a cross-around pipe. A condensate desalter comprising a mixed floor-type desalting tower using granular ion exchange resins is disposed at the downstream of the main condensator by way of condensate pipelines, and a feedwater heater is disposed at the downstream. Structural members of the main condensator are formed by weather proof steels. Low alloy steels are used partially or entirely for the cross-around pipe, gas extraction pipelines, heat draining pipelines, inner structural members other than pipelines in the feedwater heater, and the body and the inner structural members of the moisture separator. Titanium or a titanium alloy is used for the pipelines in the main condensator. With such a constitution, BWR type reactor facilities, in which the concentration of cruds inflown to the condensate cleanup system is reduced to simplify the condensate cleanup device can be obtained. (I.N.)

  1. The Rock Characterization Facility

    International Nuclear Information System (INIS)

    Holmes, J.

    1994-01-01

    In 1989, UK Nirex began a programme of surface-based characterization of the geology and hydrogeology of a site at Sellafield to evaluate its suitability to host a deep repository for radioactive waste. The next major stage in site characterization will be the construction and operation of a Rock Characterization Facility (RCF). It will be designed to provide rock characterization information and scope for model validation to permit firmer assessment of long-term safety. It will also provide information needed to decide the detailed location, design and orientation of a repository and to inform repository construction methods. A three-phase programme is planned for the RCF. During each phase, testwork will steadily improve our geological, hydrogeological and geotechnical understanding of the site. The first phase will involve sinking two shafts. That will be preceded by the establishment of a network of monitoring boreholes to ensure that the impact of shaft sinking can be measured. This will provide valuable data for model validation. In phase two, initial galleries will be excavated, probably at a depth of 650 m below Ordnance datum, which will host a comprehensive suite of experiments. These galleries will be extended in phase three to permit access to most of the rock volume that would host the repository. (Author)

  2. Gaseous waste processing facility

    International Nuclear Information System (INIS)

    Konno, Masanobu; Uchiyama, Yoshio; Suzuki, Kunihiko; Kimura, Masahiro; Kawabe, Ken-ichi.

    1992-01-01

    Gaseous waste recombiners 'A' and 'B' are connected in series and three-way valves are disposed at the upstream and the downstream of the recombiners A and B, and bypass lines are disposed to the recombiners A and B, respectively. An opening/closing controller for the three-way valves is interlocked with a hydrogen densitometer disposed to a hydrogen injection line. Hydrogen gas and oxygen gas generated by radiolysis in the reactor are extracted from a main condenser and caused to flow into a gaseous waste processing system. Gaseous wastes are introduced together with overheated steams to the recombiner A upon injection of hydrogen. Both of the bypass lines of the recombiners A and B are closed, and recombining reaction for the increased hydrogen gas is processed by the recombiners A and B connected in series. In an operation mode not conducting hydrogen injection, it is passed through the bypass line of the recombiner A and processed by the recombiner B. With such procedures, the increase of gaseous wastes due to hydrogen injection can be coped with existent facilities. (I.N.)

  3. Generalized plotting facility

    Energy Technology Data Exchange (ETDEWEB)

    Burris, R.D.; Gray, W.H.

    1978-01-01

    A command which causes the translation of any supported graphics file format to a format acceptable to any supported device was implemented on two linked DECsystem-10s. The processing of the command is divided into parsing and translating phases. In the parsing phase, information is extracted from the command and augmented by default data. The results of this phase are saved on disk, and the appropriate translating routine is invoked. Twenty-eight translating programs were implemented in this system. They support four different graphics file formats, including the DISSPLA and Calcomp formats, and seven different types of plotters, including Tektronix, Calcomp, and Versatec devices. Some of the plotters are devices linked to the DECsystem-10s, and some are driven by IBM System/360 computers linked via a communications network to the DECsystem-10s. The user of this facility can use any of the supported packages to create a file of graphics data, preview the file on an on-line scope, and, when satisfied, cause the same data to be plotted on a hard-copy device. All of the actions utilize a single simple command format. 2 figures.

  4. Advanced Toroidal Facility (ATF)

    International Nuclear Information System (INIS)

    Thompson, P.B.

    1985-01-01

    The Advanced Toroidal Facility (ATF) is a new magnetic plasma confinement device, under construction at Oak Ridge National Laboratory (ORNL), which will lead to improvements in toroidal magnetic fusion reactors. ATF is a type of stellarator known as a torsatron which theoretically has the capability at greater than or equal to8% beta in steady state. The ATF plasma has a major radius of 2.1 m, an average minor radius of 0.3 m, and a field of 2 T for a 5-s duration or 1 T steady state. The ATF device consists of a helical field (HF) coil set, a set of poloidal field (PF) coils, an exterior shell structure to support the coils, and a thin helically contoured vacuum vessel inside the coils. The ATF replaces the ISX-B tokamak at ORNL and will use the ISX-B auxiliary systems including 4 MW of neutral injection heating and 0.2 MW of electron cyclotron heating. ATF device is scheduled to start operation in the fall of 1986. An overview of the ATF device is presented including details of the construction process envisioned

  5. Nuclear fuel storage facility

    International Nuclear Information System (INIS)

    Matsumoto, Takashi; Isaka, Shinji.

    1987-01-01

    Purpose: To increase the spent fuel storage capacity and reduce the installation cost in a nuclear fuel storage facility. Constitution: Fuels handled in the nuclear fuel storage device of the present invention include the following four types: (1) fresh fuels, (2) 100 % reactor core charged fuels, (3) spent fuels just after taking out and (4) fuels after a certain period (for example one half-year) from taking out of the reactor. Reactivity is high for the fuels (1), and some of fuels (2), while low in the fuels (3) (4), Source intensity is strong for the fuels (3) and some of the fuels (2), while it is low for the fuels (1) and (4). Taking notice of the fact that the reactivity, radioactive source intensity and generated after heat are different in the respective fuels, the size of the pool and the storage capacity are increased by the divided storage control. While on the other hand, since the division is made in one identical pool, the control method becomes important, and the working range is restricted by means of a template, interlock, etc., the operation mode of the handling machine is divided into four, etc. for preventing errors. (Kamimura, M.)

  6. Nuclear physics accelerator facilities

    International Nuclear Information System (INIS)

    1985-01-01

    The Department of Energy's Nuclear Physics program is a comprehensive program of interdependent experimental and theoretical investigation of atomic nuclei. Long range goals are an understanding of the interactions, properties, and structures of atomic nuclei and nuclear matter at the most elementary level possible and an understanding of the fundamental forces of nature by using nuclei as a proving ground. Basic ingredients of the program are talented and imaginative scientists and a diversity of facilities to provide the variety of probes, instruments, and computational equipment needed for modern nuclear research. Approximately 80% of the total Federal support of basic nuclear research is provided through the Nuclear Physics program; almost all of the remaining 20% is provided by the National Science Foundation. Thus, the Department of Energy (DOE) has a unique responsibility for this important area of basic science and its role in high technology. Experimental and theoretical investigations are leading us to conclude that a new level of understanding of atomic nuclei is achievable. This optimism arises from evidence that: (1) the mesons, protons, and neutrons which are inside nuclei are themselves composed of quarks and gluons and (2) quantum chromodynamics can be developed into a theory which both describes correctly the interaction among quarks and gluons and is also an exact theory of the strong nuclear force. These concepts are important drivers of the Nuclear Physics program

  7. Data Analysis Facility (DAF)

    Science.gov (United States)

    1991-01-01

    NASA-Dryden's Data Analysis Facility (DAF) provides a variety of support services to the entire Dryden community. It provides state-of-the-art hardware and software systems, available to any Dryden engineer for pre- and post-flight data processing and analysis, plus supporting all archival and general computer use. The Flight Data Access System (FDAS) is one of the advanced computer systems in the DAF, providing for fast engineering unit conversion and archival processing of flight data delivered from the Western Aeronautical Test Range. Engineering unit conversion and archival formatting of flight data is performed by the DRACO program on a Sun 690MP and an E-5000 computer. Time history files produced by DRACO are then moved to a permanent magneto-optical archive, where they are network-accessible 24 hours a day, 7 days a week. Pertinent information about the individual flights is maintained in a relational (Sybase) database. The DAF also houses all general computer services, including; the Compute Server 1 and 2 (CS1 and CS2), the server for the World Wide Web, overall computer operations support, courier service, a CD-ROM Writer system, a Technical Support Center, the NASA Dryden Phone System (NDPS), and Hardware Maintenance.

  8. Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-07-01

    This report discusses Test Campaign TC12 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (SW) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC12 began on May 16, 2003, with the startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until May 24, 2003, when a scheduled outage occurred to allow maintenance crews to install the fuel cell test unit and modify the gas clean-up system. On June 18, 2003, the test run resumed when operations relit the start-up burner, and testing continued until the scheduled end of the run on July 14, 2003. TC12 had a total of 733 hours using Powder River Basin (PRB) subbituminous coal. Over the course of the entire test run, gasifier temperatures varied between 1,675 and 1,850 F at pressures from 130 to 210 psig.

  9. Mineral Facilities of Latin America and Canada

    Science.gov (United States)

    Bernstein, Rachel; Eros, Mike; Quintana-Velazquez, Meliany

    2006-01-01

    This data set consists of records for over 900 mineral facilities in Latin America and Canada. The mineral facilities include mines, plants, smelters, or refineries of aluminum, cement, coal, copper, diamond, gold, iron and steel, nickel, platinum-group metals, salt, and silver, among others. Records include attributes such as commodity, country, location, company name, facility type and capacity if applicable, and generalized coordinates. The data were compiled from multiple sources, including the 2003 and 2004 USGS Minerals Yearbooks (Latin America and Candada volume), data to be published in the 2005 Minerals Yearbook Latin America and Canada Volume, minerals statistics and information from the USGS minerals information Web site (minerals.usgs.gov/minerals), and data collected by USGS minerals information country specialists. Data reflect the most recent published table of industry structure for each country. Other sources include statistical publications of individual countries, annual reports and press releases of operating companies,and trade journals. Due to the sensitivity of some energy commodity data, the quality of these data should be evaluated on a country-by-country basis. Additional information and explanation is available from the country specialists.

  10. Conceptual design of tritium treatment facility

    International Nuclear Information System (INIS)

    Tachikawa, Katsuhiro

    1982-01-01

    In connection with the development of fusion reactors, the development of techniques concerning tritium fuel cycle, such as the refining and circulation of fuel, the recovery of tritium from blanket, waste treatment and safe handling, is necessary. In Japan Atomic Energy Research Institute, the design of the tritium process research laboratory has been performed since fiscal 1977, in which the following research is carried out: 1) development of hydrogen isotope separation techniques by deep cooling distillation method and thermal diffusion method, 2) development of the refining, collection and storage techniques for tritium using metallic getters and palladium-silver alloy films, and 3) development of the safe handling techniques for tritium. The design features of this facility are explained, and the design standard for radiation protection is shown. At present, in the detailed design stage, the containment of tritium and safety analysis are studied. The building is of reinforced concrete, and the size is 48 m x 26 m. Glove boxes and various tritium-removing facilities are installed in two operation rooms. Multiple wall containment system and tritium-removing facilities are explained. (Kako, I.)

  11. Underground characterisation and research facility ONKALO

    International Nuclear Information System (INIS)

    Ikonen, Antti; Ylae-Mella, Mia; Aeikaes, Timo

    2006-01-01

    Posiva's repository for geological disposal of the spent fuel from Finnish nuclear reactors will be constructed at Olkiluoto. The selection of Olkiluoto was made based on site selection research programme conducted between 1987-2001. The next step is to carry out complementary investigations of the site and apply for the construction license for the disposal facility. The license application will be submitted in 2012. To collect detailed information of the geological environment at planned disposal depth an underground characterisation and research facility will be built at the site. This facility, named as ONKALO, will comprise a spiral access tunnel and two vertical shafts. The excavation of ONKALO is in progress and planned depth (400 m) will be reached in 2009. During the course of the excavation Posiva will conduct site characterisation activities to assess the structure and other properties of the site geology. The aim is that construction will not compromise the favourable conditions of the planned disposal depth or introduce harmful effects in the surrounding bedrock which could jeopardize the long-term safety of the geological disposal. (author)

  12. Neutron radiographic techniques, facilities and applications

    International Nuclear Information System (INIS)

    Domanus, J.C.

    1984-08-01

    This is a collection of three papers, written for presentation on two international conferences. The first paper: ''Neutron radiography. Techniques and facilities'', written by J.P. Barton of N-Ray Engineering Co. La Jolla, CA., USA and J.C. Domanus was presented at the International Symposium on the Use and Development of Low and Medium Flux Research Reactors at the Massachusets Institute of Technology, Cambridge, Mass., USA, 16-19 October 1983. The second paper: ''Neutron radiography with the DR-1 reactor at Risoe National Laboratory'', written by J.C. Domanus, was presented at the same Symposium. The third paper: ''Defects in nuclear fuel revealed by neutron radiography'', written by J.C. Domanus is accepted for presentation on 18 October 1984 to the 3rd European Conference on Nondestructive Testing, Florence, Italy, 15-18 October 1984. While the first paper describes the principles of neutron radiographic techniques and facilities, the second one describes an example of such facility and the third gives an example of application of neutron radiography in the field of nuclear fuel. (author)

  13. Availability of Supportive Facilities for Effective Teaching

    Directory of Open Access Journals (Sweden)

    Eugene Okyere-Kwakye

    2013-10-01

    Full Text Available Work environment of teachers has been identified by many researchers as one of the key propensity for quality teaching. Unlike the private schools, there has been a continues sentiments that, most government Junior High schools in Ghana do not performance satisfactorily during the Basic Education Certificate Examination (B.E.C.E. As majority of Ghanaian pupils’ school in this sector of education, hence this argument is wealthy of investigation. Therefore the purpose of this study is to identify the availability and the adequacy of certain necessary school facilities within the environment of Junior High Schools in the New Juaben Municipality, Eastern Region of Ghana. Questionnaire was used to collect data from two hundred (200 teachers who were selected from twenty (20 Junior High Schools in the New Juaben Municipality. The results reveal that facilities like furniture for pupil, urinal and toilet facilities and classroom blocks, were available but not adequate. However, computer laboratories, library books, staff common room and teachers’ accommodation were unavailable. Practical Implications of these results are been discussed.

  14. Old tropical botanical collections

    DEFF Research Database (Denmark)

    Friis, Ib

    2017-01-01

    The early history of botanical collections is reviewed, with particular emphasis on old collections from the tropics. The information available about older and newer botanical collections from the tropics was much improved after World War Two, including better lists of validly published names, more...

  15. The waste disposal facility in the Aube District

    International Nuclear Information System (INIS)

    Torres, Patrice

    2013-06-01

    The waste disposal facility in the Aube district is the second surface waste disposal facility built in France. It is located in the Aube district, and has been operated by Andra since 1992. With a footprint of 95 hectares, it is licensed for the disposal of 1 million cubic meters of low- and intermediate-level, short-lived waste packages. The CSA is located a few kilometers away another Andra facility, currently in operation for very-low-level waste, and collection and storage of non-nuclear power waste (the Cires). Contents: Andra in the Aube district, an exemplary industrial operator - The waste disposal facility in the Aube district (CSA); Low- and intermediate-level, short-lived radioactive waste (LILW-SL); The LILW-SL circuit; Protecting present and future generations

  16. The experimental sodium facility NAVA

    International Nuclear Information System (INIS)

    Langenbrunner, H.; Grunwald, G.; May, R.

    1976-01-01

    Within the framework of preparations for the introduction of sodium cooled fast breeder reactors an experimental sodium facility was installed at the Central Institute of Nuclear Research at Rossendorf. Design, engineering aspects and operation of this facility are described; operating experience is briefly discussed. (author)

  17. Life Sciences Centrifuge Facility assessment

    Science.gov (United States)

    Benson, Robert H.

    1994-01-01

    This report provides an assessment of the status of the Centrifuge Facility being developed by ARC for flight on the International Space Station Alpha. The assessment includes technical status, schedules, budgets, project management, performance of facility relative to science requirements, and identifies risks and issues that need to be considered in future development activities.

  18. Data analysis facility at LAMPF

    International Nuclear Information System (INIS)

    Perry, D.G.; Amann, J.F.; Butler, H.S.; Hoffman, C.J.; Mischke, R.E.; Shera, E.B.; Thiessen, H.A.

    1977-11-01

    This report documents the discussions and conclusions of a study held in July 1977 to develop the requirements for a data analysis facility to support the experimental program in medium-energy physics at the Clinton P. Anderson Meson Physics Facility (LAMPF). 2 tables

  19. Facility design, installation and operation

    International Nuclear Information System (INIS)

    Fleischmann, A.W.

    1985-01-01

    Problems that may arise when considering the design, construction and use of a facility that could contain up to tens of petabecquerel of either cobalt-60 or caesium-137 are examined. The safe operation of an irradiation facility depends on an appreciation of the in built safety systems, adequate training of personnel and the existence of an emergency system

  20. Empowering Facilities Teams through Technology

    Science.gov (United States)

    Cormier, Scott

    2013-01-01

    Facilities departments at colleges and universities are facing the same challenge: how not to do just the most projects, but also the right projects with the limited funds they are given. In order to make the best decisions, they need more control over the capital planning process, which requires accurate, current facility condition data. Each…