WorldWideScience

Sample records for hgfa pathophysiological functions

  1. HGFA Is an Injury-Regulated Systemic Factor that Induces the Transition of Stem Cells into GAlert

    Directory of Open Access Journals (Sweden)

    Joseph T. Rodgers

    2017-04-01

    Full Text Available Summary: The activation of quiescent stem cells into the cell cycle is a key step in initiating the process of tissue repair. We recently reported that quiescent stem cells can transition into GAlert, a cellular state in which they have an increased functional ability to activate and participate in tissue repair. However, the precise molecular signals that induce GAlert in stem cells have remained elusive. Here, we show that the injury-induced regulation of hepatocyte growth factor (HGF proteolytic processing via the systemic protease, hepatocyte growth factor activator (HGFA, stimulates GAlert in skeletal muscle stem cells (MuSCs and fibro-adipogenic progenitors (FAPs. We demonstrate that administering active HGFA to animals is sufficient to induce GAlert in stem cells throughout the body and to significantly accelerate the processes of stem cell activation and tissue repair. Our data suggest that factors that induce GAlert will have broad therapeutic applications for regenerative medicine and wound healing. : Rodgers et al. show that HGFA is a systemic protease that is activated by tissue injury and relays a signal to stem cells in non-injured tissues that induces their transition into a primed, “GAlert” state in which they possess an enhanced potential to activate and repair tissue damage. Keywords: satellite cells, muscle stem cells, fibro-adipogenic progenitors, HGFA, HGF, mTORC1, cMet, stem cell quiescence, stem cell activation, GAlert

  2. [Functional pathophysiology of consciousness].

    Science.gov (United States)

    Jellinger, Kurt A

    2009-01-01

    from important somatic and sensory pathways and acts as a control system of neuronal activities of the cerebral cortex. The principal function of the ARAS is to focus our alertness on specific stimuli or internal processes, which run via complex neuronal cell groups and numerous neurotransmitters that influence various aspects of consciousness and wakefulness. Stimulation of the ARAS produces an arousal reaction as the electric correlate of consciousness; its destruction causes coma and related states. The highest level are cortical (prefrontal and association) networks for recognition, motor activity, longterm memory and attention, the left hemisphere being considered as the dominant one. Different levels of consciousness are distinguished: 1. hyperalertness, 2. alertness (normal state of wakefulness), 3. somnolence or lethargy, 4. obtundation with tendency to fall asleep, 5. stupor, 6. coma and its subtypes, like akinetic mutism, apallic syndrome or persistent vegative state, locked-in syndrome, delirium, and catatonia. They are caused by damages in various functional levels of the brain, by psychogenic factors or experimentally, and are accompanied by characteristic neurological and psychiatric disorders. The relevant morphological lesions can be detected by electrophysiological and imaging studies. The bases of functional anatomy and pathophysiology of consciousness, its cognitive aspects and its major disorders, their causes and functional substrates with reference to sleep and both spontaneous and iatrogenic disorders of consciousness are critically summarized.

  3. Dissecting carboxypeptidase E: properties, functions and pathophysiological roles in disease

    Directory of Open Access Journals (Sweden)

    Lin Ji

    2017-04-01

    Full Text Available Since discovery in 1982, carboxypeptidase E (CPE has been shown to be involved in the biosynthesis of a wide range of neuropeptides and peptide hormones in endocrine tissues, and in the nervous system. This protein is produced from pro-CPE and exists in soluble and membrane forms. Membrane CPE mediates the targeting of prohormones to the regulated secretory pathway, while soluble CPE acts as an exopeptidase and cleaves C-terminal basic residues from peptide intermediates to generate bioactive peptides. CPE also participates in protein internalization, vesicle transport and regulation of signaling pathways. Therefore, in two types of CPE mutant mice, Cpefat/Cpefat and Cpe knockout, loss of normal CPE leads to a lot of disorders, including diabetes, hyperproinsulinemia, low bone mineral density and deficits in learning and memory. In addition, the potential roles of CPE and ΔN-CPE, an N-terminal truncated form, in tumorigenesis and diagnosis were also addressed. Herein, we focus on dissecting the pathophysiological roles of CPE in the endocrine and nervous systems, and related diseases.

  4. Pathophysiologic insights into motor axonal function in Kennedy disease.

    Science.gov (United States)

    Vucic, Steve; Kiernan, Matthew C

    2007-11-06

    Kennedy disease (KD), or spinobulbomuscular atrophy, is a slowly progressive inherited neurodegenerative disorder, marked by prominent fasciculations that typically precede the development of other symptoms. Although the genetic basis of KD relates to triplet (CAG) repeat expansion in the androgen receptor (AR) gene on the X chromosome, the mechanisms underlying the clinical presentation in KD have yet to be established. Consequently, the present study applied axonal excitability techniques to investigate the pathophysiologic mechanisms associated with KD. Peripheral nerve excitability studies were undertaken in 7 patients with KD with compound muscle action potentials (CMAP) recorded from the right abductor pollicis brevis. Strength-duration time constant (KD 0.54 +/- 0.03 msec; controls, 0.41 +/- 0.02 msec, p TEd [90 to 100 msec], 50.75 +/- 1.98%; controls TEd [90 to 100 msec], 45.67 +/- 0.67%, p < 0.01) and hyperpolarizing (KD TEh [90 to 100 msec], 128.5 +/- 6.9%; controls TEh [90 to 100 msec], 120.5 +/- 2.4%) conditioning pulses. Measurements of refractoriness, superexcitability, and late subexcitability changed appropriately for axonal hyperpolarization, perhaps reflecting the effects of increased ectopic activity. In total, the increase in the strength-duration time constant may be the primary event, occurring early in course of the disease, contributing to the development of axonal hyperexcitability in Kennedy disease, and thereby to the generation of fasciculations, a characteristic hallmark of the disease.

  5. Pathophysiology of recent advances in current thyroid function testing

    International Nuclear Information System (INIS)

    Hesch, R.D.

    1977-01-01

    In the first chapter I have discussed thyroid function and thyroid status which is determined by thyroid gland function in secreting T4 and peripheral biotransformation of T4. The accuracy of a current in-vitro diagnostic strategy allows high reliability in clinical routine. More recent test procedures for iodothyronines and immunological phenomena need further evaluation. In another chapter the biotransformation of T4 to bioactive and regulatory iodothyronines with respect to possible clinical implications is discussed. Finally, the role of TBG for interpration of T4 and T3 concentrations is determined and more attention directed to its functional heterogeneity. (orig.) [de

  6. The Physiology of Female Sexual Function and the Pathophysiology of Female Sexual Dysfunction (Committee 13A)

    NARCIS (Netherlands)

    Levin, Roy J.; Both, Stephanie; Georgiadis, Janniko; Kukkonen, Tuuli; Park, Kwangsung; Yang, Claire C.

    Introduction: The article consists of six sections written by separate authors that review female genital anatomy, the physiology of female sexual function, and the pathophysiology of female sexual dysfunction but excluding hormonal aspects. Aim: To review the physiology of female sexual function

  7. The effect of pregnancy on renal function: physiology and pathophysiology.

    Science.gov (United States)

    Dafnis, E; Sabatini, S

    1992-03-01

    Marked changes in renal function occur with pregnancy. We present a summary of these changes in this review and give insight into possible mechanisms if they are known. Controversies exist regarding the therapy of pregnancy-induced hypertension and asymptomatic and recurrent bacteriuria. The current views on these topics are given. Specific renal diseases are summarized, including transplantation, and optimum management strategies and maternal and fetal prognosis during pregnancy are given.

  8. Brain functional connectivity and the pathophysiology of schizophrenia.

    Science.gov (United States)

    Angelopoulos, E

    2014-01-01

    In the last decade there is extensive evidence to suggest that cognitive functions depending on coordination of distributed neuronal responses are associated with synchronized oscillatory activity in various frequency ranges suggesting a functional mechanism of neural oscillations in cortical networks. In addition to their role in normal brain functioning, there is increasing evidence that altered oscillatory activity may be associated with certain neuropsychiatric disorders, such as schizophrenia. Consequently, disturbances in neural synchronization may represent the functional relationship of disordered connectivity of cortical networks underlying the characteristic fragmentation of mind and behavior in schizophrenia. In recent studies the synchronization of oscillatory activity in the experience of characteristic symptoms such as auditory verbal hallucinations and thought blocks have been studied in patients with schizophrenia. Studies involving analysis of EEG activity obtained from individuals in resting state (in cage Faraday, isolated from external influences and with eyes closed). In patients with schizophrenia and persistent auditory verbal hallucinations (AVHs) observed a temporary increase in the synchronization phase of α and high θ oscillations of the electroencephalogram (EEG) compared with those of healthy controls and patients without AVHs . This functional hyper-connection manifested in time windows corresponding to experience AVHs, as noted by the patients during the recording of EEG and observed in speech related cortical areas. In another study an interaction of theta and gamma oscillations engages in the production and experience of AVHs. The results showed increased phase coupling between theta and gamma EEG rhythms in the left temporal cortex during AVHs experiences. A more recent study, approaches the thought blocking experience in terms of functional brain connectivity. Thought blocks (TBs) are characterized by regular interruptions of

  9. Orofacial complex regional pain syndrome: pathophysiologic mechanisms and functional MRI.

    Science.gov (United States)

    Lee, Yeon-Hee; Lee, Kyung Mi; Kim, Hyug-Gi; Kang, Soo-Kyung; Auh, Q-Schick; Hong, Jyung-Pyo; Chun, Yang-Hyun

    2017-08-01

    Complex regional pain syndrome (CRPS) is one of the most challenging chronic pain conditions and is characterized by burning pain, allodynia, hyperalgesia, autonomic changes, trophic changes, edema, and functional loss involving mainly the extremities. Until recently, very few reports have been published concerning CRPS involving the orofacial area. We report on a 50-year-old female patient who presented with unbearable pain in all of her teeth and hypersensitivity of the facial skin. She also reported intractable pain in both extremities accompanied by temperature changes and orofacial pain that increased when the other pains were aggravated. In the case of CRPS with trigeminal neuropathic pain, protocols for proper diagnosis and prompt treatment have yet to be established in academia or in the clinical field. We performed functional magnetic resonance imaging for a thorough analysis of the cortical representation of the affected orofacial area immediately before and immediately after isolated light stimulus of the affected hand and foot and concluded that CRPS can be correlated with trigeminal neuropathy in the orofacial area. Furthermore, the patient was treated with carbamazepine administration and stellate ganglion block, which can result in a rapid improvement of pain in the trigeminal region. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The pathophysiological functions mediated by D-1 dopamine receptors

    International Nuclear Information System (INIS)

    Goldstein, M.; Kuga, S.; Meller, E.; SHimizu, Y.

    1986-01-01

    This chapter describes some behavioral responses which might be mediated by D 1 and D 2 DA receptors, and the authors discuss their clinical relevance. It was of considerable interest to determine whether a selective D 1 DA antagonist, such as SCH 23390, will induce catalepsy and whether this behavior is mediated by D 1 , or by both D 1 and D 2 DA receptors. Rats were used in the experiments. The authors examined whether the addition of the S 2 antagonist ketanserin affects the displacement of 3 H-Spi by SCH 23390. Induction of self-mutilating biting (SMB) behavior in monkeys with unilateral ventromedial tegmental (VMT) lesions by DA agonists and its prevention by DA antagonists is examined. The authors also discuss the possible relationships between abnormal guanine nucleotide metabolism and dopaminergic neuronal function through the implications in LeschNyhan syndrome and in some mental disorders

  11. The Physiology of Female Sexual Function and the Pathophysiology of Female Sexual Dysfunction (Committee 13A).

    Science.gov (United States)

    Levin, Roy J; Both, Stephanie; Georgiadis, Janniko; Kukkonen, Tuuli; Park, Kwangsung; Yang, Claire C

    2016-05-01

    The article consists of six sections written by separate authors that review female genital anatomy, the physiology of female sexual function, and the pathophysiology of female sexual dysfunction but excluding hormonal aspects. To review the physiology of female sexual function and the pathophysiology of female sexual dysfunction especially since 2010 and to make specific recommendations according to the Oxford Centre for evidence based medicine (2009) "levels of evidence" wherever relevant. Recommendations were made for particular studies to be undertaken especially in controversial aspects in all six sections of the reviewed topics. Despite numerous laboratory assessments of female sexual function, genital assessments alone appear insufficient to characterise fully the complete sexual response. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  12. Prenatal cocaine exposure and its impact on cognitive functions of offspring: a pathophysiological insight.

    Science.gov (United States)

    Gkioka, Eleana; Korou, Laskarina Maria; Daskalopoulou, Afrodite; Misitzi, Angelica; Batsidis, Eleni; Bakoyiannis, Ioannis; Pergialiotis, Vasilios

    2016-07-01

    It is estimated that approximately 0.5%-3% of fetuses are prenatally exposed to cocaine (COC). The neurodevelopmental implications of this exposure are numerous and include motor skill impairments, alterations of social function, predisposition to anxiety, and memory function and attention deficits; these implications are commonly observed in experimental studies and ultimately affect both learning and IQ. According to previous studies, the clinical manifestations of prenatal COC exposure seem to persist at least until adolescence. The pathophysiological cellular processes that underlie these impairments include dysfunctional myelination, disrupted dendritic architecture, and synaptic alterations. On a molecular level, various neurotransmitters such as serotonin, dopamine, catecholamines, and γ-aminobutyric acid seem to participate in this process. Finally, prenatal COC abuse has been also associated with functional changes in the hormones of the hypothalamic-pituitary-adrenal axis that mediate neuroendocrine responses. The purpose of this review is to summarize the neurodevelopmental consequences of prenatal COC abuse, to describe the pathophysiological pathways that underlie these consequences, and to provide implications for future research in the field.

  13. Role of brain orexin in the pathophysiology of functional gastrointestinal disorders.

    Science.gov (United States)

    Okumura, Toshikatsu; Nozu, Tsukasa

    2011-04-01

    Orexins are neuropeptides that are localized in neurons within the lateral hypothalamic area and regulate feeding behavior. The lateral hypothalamic area plays an important role in not only feeding but the central regulation of other functions including gut physiology. Accumulating evidence have shown that orexins acts in the brain to regulate a wide variety of body functions including gastrointestinal functions. The purpose of this review is to summarize relevant findings on brain orexins and a digestive system, and discuss the pathophysiological roles of the peptides with special reference to functional gastrointestinal disorders. Exogenously administered orexin or endogenously released orexin in the brain potently stimulates gastric acid secretion in pylorus-ligated conscious rats. The vagal cholinergic pathway is involved in the orexin-induced stimulation of acid secretion, suggesting that orexin-containing neurons in lateral hypothalamic area activates neurons in the dorsal motor nucleus in medulla oblongata, followed by increasing vagal outflow, thereby stimulating gastric acid secretion. In addition, brain orexin stimulates gastric motility, pancreatic secretion and induce gastroprotective action. On the other hand, brain orexin is involved in a number of physiological functions other than gut physiology, such as control of sleep/awake cycle and anti-depressive action in addition to increase in appetite. From these evidence, we would like to make a hypothesis that decreased orexin signaling in the brain may play a role in the pathophysiology in a part of patients with functional gastrointestinal disorders who are frequently accompanied with appetite loss, sleep disturbance, depressive state and the inhibition of gut function. © 2011 Journal of Gastroenterology and Hepatology Foundation and Blackwell Publishing Asia Pty Ltd.

  14. Review article: dyssynergic defaecation and biofeedback therapy in the pathophysiology and management of functional constipation.

    Science.gov (United States)

    Skardoon, G R; Khera, A J; Emmanuel, A V; Burgell, R E

    2017-08-01

    Functional constipation is a common clinical presentation in primary care. Functional defaecation disorders are defined as the paradoxical contraction or inadequate relaxation of the pelvic floor muscles during attempted defaecation (dyssynergic defaecation) and/or inadequate propulsive forces during attempted defaecation. Prompt diagnosis and management of dyssynergic defaecation is hindered by uncertainty regarding nomenclature, diagnostic criteria, pathophysiology and efficacy of management options such as biofeedback therapy. To review the evidence pertaining to the pathophysiology of functional defaecation disorders and the efficacy of biofeedback therapy in the management of patients with dyssynergic defaecation and functional constipation. Relevant articles addressing functional defaecation disorders and the efficacy of biofeedback therapy in the management of dyssynergic defaecation and functional constipation were identified from a search of Pubmed, MEDLINE Ovid and the Cochrane Library. The prevalence of dyssynergic defaecation in patients investigated for chronic constipation is as many as 40%. Randomised controlled trials have demonstrated major symptom improvement in 70%-80% of patients undergoing biofeedback therapy for chronic constipation resistant to standard medical therapy and have determined it to be superior to polyethylene glycol laxatives, diazepam or sham therapy. Long-term studies have shown 55%-82% of patients maintain symptom improvement. Dyssynergic defaecation is a common clinical condition in patients with chronic constipation not responding to conservative management. Biofeedback therapy appears to be a safe, successful treatment with sustained results for patients with dyssynergic defaecation. Further studies are required to standardise the diagnosis of dyssynergic defaecation in addition to employing systematic protocols for biofeedback therapy. © 2017 John Wiley & Sons Ltd.

  15. [Functional childhood gastrointestinal disorders. II. Constipation and solitary encopresis: physiology and pathophysiology].

    Science.gov (United States)

    van Ginkel, R; Büller, H A; Heymans, H S; Taminiau, J A; Boeckxstaens, G E; Benninga, M A

    2003-06-28

    The childhood prevalences of constipation and encopresis are 0.3-8% and 1-3% respectively. Following a recent stricter definition and classification, constipation and solitary encopresis are now recognised to be two separate entities. Constipation is characterised by infrequent defecation, often in combination with involuntary loss of faeces. Solitary encopresis most often occurs once a day after school hours. When there is no defecation, the frequency of encopresis increases, the abdominal pain becomes more severe and the appetite becomes less, until a large quantity of faeces is produced (often once per week). The physiology of the defecation and continence mechanism is complex and has only been unravelled in part. The multiple physiological mechanisms involved have a complementary and compensatory effect on each other. This makes it difficult to determine the underlying pathophysiological mechanisms of these functional disorders.

  16. The role of the lacrimal functional unit in the pathophysiology of dry eye.

    Science.gov (United States)

    Stern, Michael E; Gao, Jianping; Siemasko, Karyn F; Beuerman, Roger W; Pflugfelder, Stephen C

    2004-03-01

    The majority of dry eye symptoms are due to a chronic inflammation of the lacrimal functional unit resulting in a loss of tear film integrity and normal function. This leads to a reduction in the ability of the ocular surface to respond to environmental challenges. The underlying cause of tear film dysfunction is the alteration of tear aqueous, mucin, and lipid components. This may result from a systemic autoimmune disease or a local autoimmune event. A lack of systemic androgen support to the lacrimal gland has been shown to be a facilitative factor in the initiation of this type of pathophysiology. Tear secretion is controlled by the lacrimal functional unit consisting of the ocular surface (cornea, conjunctiva, accessory lacrimal glands, and meibomian glands), the main lacrimal gland and the interconnecting innervation. If any portion of this functional unit is compromised, lacrimal gland support to the ocular surface is impeded. Factors such as neurogenic inflammation and T cell involvement in the disease pathogenesis as well as newly developed animal models of ocular surface inflammation are discussed.

  17. Esophageal baseline impedance levels in patients with pathophysiological characteristics of functional heartburn.

    Science.gov (United States)

    Martinucci, I; de Bortoli, N; Savarino, E; Piaggi, P; Bellini, M; Antonelli, A; Savarino, V; Frazzoni, M; Marchi, S

    2014-04-01

    Recently, it has been suggested that low esophageal basal impedance may reflect impaired mucosal integrity and increased acid sensitivity. We aimed to compare baseline impedance levels in patients with heartburn and pathophysiological characteristics related to functional heartburn (FH) divided into two groups on the basis of symptom relief after proton pump inhibitors (PPIs). Patients with heartburn and negative endoscopy were treated with esomeprazole or pantoprazole 40 mg daily for 8 weeks. According to MII-pH (off therapy) analysis, patients with normal acid exposure time (AET), normal reflux number, and lack of association between symptoms and refluxes were selected; of whom 30 patients with a symptom relief higher than 50% after PPIs composed Group A, and 30 patients, matched for sex and age, without symptom relief composed Group B. A group of 20 healthy volunteers (HVs) was enrolled. For each patient and HV, we evaluated the baseline impedance levels at channel 3, during the overnight rest, at three different times. Group A (vs Group B) showed an increase in the following parameters: mean AET (1.4 ± 0.8% vs 0.5 ± 0.6%), mean reflux number (30.4 ± 8.7 vs 24 ± 6.9), proximal reflux number (11.1 ± 5.2 vs 8.2 ± 3.6), acid reflux number (17.9 ± 6.1 vs 10.7 ± 6.9). Baseline impedance levels were lower in Group A than in Group B and in HVs (p heartburn and normal AET could achieve a better understanding of pathophysiology in reflux disease patients, and could improve the distinction between FH and hypersensitive esophagus. © 2014 John Wiley & Sons Ltd.

  18. Gastroesophageal reflux disease-related and functional heartburn: pathophysiology and treatment.

    Science.gov (United States)

    Miwa, Hiroto; Kondo, Takashi; Oshima, Tadayuki

    2016-07-01

    Patients who continue to experience heartburn symptoms despite adequate-dose proton pump inhibitor therapy have unmet clinical needs. In this review, we focus on the most recent findings related to the mechanism of heartburn symptom generation, and on the treatment of gastroesophageal reflux disease-related and functional heartburn. The immunological mechanism in the esophageal mucosa has been addressed as a potential mechanism of the onset of esophageal mucosa damage and the generation of heartburn symptoms. Peripheral or central hypersensitivity in viscera is a potentially unifying pathophysiological concept in functional heartburn. Vonoprazan, a novel and potent first-in-class potassium-competitive acid blocker, is expected to prove useful in the treatment of reflux disease. New findings in the mechanisms of heartburn symptom generation are emerging, including the immunological mediation of esophageal mucosal damage and the development of visceral hypersensitivity in functional heartburn. In the future, we anticipate the emergence of new and specific therapeutic options based on these mechanisms, with less dependence on acid-suppressing agents.

  19. Investigation of the Lower Resistance Meridian: Speculation on the Pathophysiological Functions of Acupuncture Meridians

    Directory of Open Access Journals (Sweden)

    Weisheng Yang

    2014-01-01

    Full Text Available It was pointed out in the two earlier papers of the present author that the meridians are in fact zones in the loose connective tissue containing richer interstitial fluid and thus are lower-resistance passages for diffusion of meridian-signal carriers or mediators. Moreover, a hypothesis, which incorporates the wide variety of functions of the loose connective tissue, the circulatory system, and the nervous system into the meridian function, has been proposed and in the hypothesis the mast cell plays some key roles. In the present paper, considering also the latest knowledge on cell migration along with some existing experimental results, it is further pointed out that meridians ought to be lower-resistance passages for chemotactic migration of cells and mast cells can indeed migrate longitudinally along meridians. Finally, the present paper points out that if we add the last two points to the hypothesis and keep in mind that mast cells have been known very recently to be versatile regulators of inflammation, tissue remodeling, host defense, and homeostasis, the rich pathophysiological functions of the meridian pointed out by the traditional Chinese medicine can be understood quite naturally.

  20. Functional O-GlcNAc modifications: Implications in molecular regulation and pathophysiology

    Science.gov (United States)

    Wells, Lance

    2016-01-01

    O-linked β-N-acetylglucosamine (O-GlcNAc) is a regulatory post-translational modification of intracellular proteins. The dynamic and inducible cycling of the modification is governed by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) in response to UDP-GlcNAc levels in the hexosamine biosynthetic pathway (HBP). Due to its reliance on glucose flux and substrate availability, a major focus in the field has been on how O-GlcNAc contributes to metabolic disease. For years this post-translational modification has been known to modify thousands of proteins implicated in various disorders, but direct functional connections have until recently remained elusive. New research is beginning to reveal the specific mechanisms through which O-GlcNAc influences cell dynamics and disease pathology including clear examples of O-GlcNAc modification at a specific site on a given protein altering its biological functions. The following review intends to focus primarily on studies in the last half decade linking O-GlcNAc modification of proteins with chromatin-directed gene regulation, developmental processes, and several metabolically related disorders including Alzheimer’s, heart disease and cancer. These studies illustrate the emerging importance of this post-translational modification in biological processes and multiple pathophysiologies. PMID:24524620

  1. Epidemiological and pathophysiological aspects of abdominal pain predominant functional gastrointestinal disorders in children and adolescents: a Sri Lankan perspective

    NARCIS (Netherlands)

    Devanarayana, N.M.

    2015-01-01

    Abdominal pain-predominant functional gastrointestinal disorders (AP-FGIDs) are a worldwide pediatric problem with uncertain pathology. Main objectives of this thesis were to assess epidemiology, risk factors and underlying pathophysiological mechanisms of AP-FGIDs. A systematic review and

  2. Bridging from Cells to Cognition in Autism Pathophysiology: Biological Pathways to Defective Brain Function and Plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Matthew; Hooker, Brian S.; Herbert, Martha

    2008-01-01

    We review evidence to support the model that autism may begin when a maternal environmental, infectious, or autoantibody insult causes inflammation which increases reactive oxygen species (ROS) production in the fetus, leading to fetal DNA damage (nuclear and mitochondrial), and that these inflammatory and oxidative stressors persist beyond early development (with potential further exacerbations), producing ongoing functional consequences. In organs with a high metabolic demand such as the central nervous system, the continued use of mitochondria with DNA damage may generate additional ROS which will activate the innate immune system leading to more ROS production. Such a mechanism would self-sustain and possibly progressively worsen. The mitochondrial dysfunction and altered redox signal transduction pathways found in autism would conspire to activate both astroglia and microglia. These activated cells can then initiate a broad-spectrum proinflammatory gene response. Neurons may have acquired receptors for these inflammatory signals to inhibit neuronal signaling as a protection from excitotoxic damage during various pathologic insults (e.g., infection). In autism, over-zealous neuroinflammatory responses could not only influence neural developmental processes, but may more significantly impair neural signaling involved in cognition in an ongoing fashion. This model makes specific predictions in patients and experimental animal models and suggests a number of targets sites of intervention. Our model of potentially reversible pathophysiological mechanisms in autism motivates our hope that effective therapies may soon appear on the horizon.

  3. Pathophysiology of functional heartburn based on Rome III criteria in Japanese patients.

    Science.gov (United States)

    Tamura, Yasuhiro; Funaki, Yasushi; Izawa, Shinya; Iida, Akihito; Yamaguchi, Yoshiharu; Adachi, Kazunori; Ogasawara, Naotaka; Sasaki, Makoto; Kaneko, Hiroshi; Kasugai, Kunio

    2015-04-28

    To investigate the pathophysiology of functional heartburn (FH) in Japanese patients. A total of 111 patients with proton pump inhibitor (PPI)-refractory non-erosive gastroesophageal reflux disease underwent intraesophageal pressure testing and 24-h multichannel intraluminal impedance-pH (24MII-pH) testing. The patients also completed several questionnaires while they were receiving the PPI treatment, including the questionnaire for the diagnosis of reflux disease (QUEST), the frequency scale for the symptoms of gastroesophageal reflux disease (FSSG), the gastrointestinal symptoms rating scale (GSRS), SF-36, and the Cornell Medical Index (CMI). The subjects were classified into FH and endoscopy-negative reflux disease (ENRD) groups based on the Rome III criteria. Thirty-three patients with esophageal motility disorder were excluded from this study, while 22 patients with abnormal esophageal acid exposure time (pH-POS) and 34 with hypersensitive esophagus (HE) were included in the ENRD group. The FH group included 22 patients with no reflux involvement. Sex, age, and body mass index did not differ significantly between the groups. The mean SF-36 values were < 50 (normal) for all scales in these groups, with no significant differences. The GSRS scores in these groups were not different and showed overlap with other gastrointestinal symptoms. The QUEST and the FSSG scores did not differ significantly between the groups. Neuroticism was diagnosed using the CMI questionnaire in 17 of the 78 included subjects within the pH-POS (n = 4), HE (n = 8), and FH (n = 5) groups, with no significant differences. Clinical characteristics of the FH and PPI-refractory ENRD groups were similar. Therefore, esophageal function should be examined via manometry and 24MII-pH testing to differentiate between them.

  4. Functional brain imaging with SPECT in normal again and dementia. Methodological, pathophysiological, and diagnostic aspects

    International Nuclear Information System (INIS)

    Waldemar, G.

    1996-03-01

    New developments in instrumentation, radiochemistry, and data analysis, particularly the introduction of 99m Tc-labeled brain-retained tracers for perfusion studies, have opened up a new era of single photon emission computed tomography (SPECT). In this review critical methodological issues relating to the SPECT instrument, the radioactive tracers, the scanning procedure, the data analysis and interpretation of data, and subject selection are discussed together with the changes in regional cerebral blood flow (rCBF) observed in normal aging. An overview is given of the topography and the pathophysiological and diagnostic significance of focal rCBF deficits in Alzheimer's disease and in other dementia disorders, in which SPECT is capable of early or preclinical disease detection. In Alzheimer's disease, the diagnostic sensitivity and specificity of focal rCBF deficits measured with SPECT and brain-retained tracers are very high, in particular when combined with medial temporal lob atrophy on CT. Together with neuropsychological testing, SPECT serves to map the topography of brain dysfunction. Thus, in the clinical setting, SPECT provides information that is supplemental to that obtained in other studies. Future applications include neuroreceptor studies and treatment studies, in which SPECT may serve as a diagnostic aid in the selection of patients and as a potential mean for monitoring treatment effects. Although positron emission tomography is the best characterized tool for addressing some of these clinical and research issues in dementia, only the less expensive and technically simpler SPECT technique will have the potential of being available as a screening diagnostic instrument in the clinical setting. It is concluded that, properly approached, functional brain imaging with SPECT represents an important tool in the diagnosis, management, and research of dementia disorders. (au) 251 refs

  5. Understanding the Pathophysiology of Spinocerebellar Ataxias through genetics, neurophysiology, structural and functional neuroimaging

    Directory of Open Access Journals (Sweden)

    Pramod Kumar Pal

    2015-12-01

    largely absent with additional activity in contralateral cortices and in thalami in patients with SCA1; increased thalamic function could be one of the causes for disinhibition of the motor cortex contributing to uncoordinated movements.Studies on larger cohort of each subtype of SCAs to validate the above findings, follow-up studies to determine the rate and nature of progression of neurodegeneration and evaluation of pre-symptomatic genetically confirmed SCAs will help understand the pathophysiology of the SCAs.

  6. Mapping of brain function with positron emission tomography for pathophysiological analysis of neurological disorders

    International Nuclear Information System (INIS)

    Nariai, Tadashi

    2001-01-01

    The role of PET is discussed mainly through author's clinical experience in patients with brain lesions from the view of mapping of brain function. Procedure for PET concept in clinical practice is summarized. PET using tracers like [ 15 O]water and [ 18 F]fluorodeoxyglucose for mapping of the function has been used in combination with MRI, MEG (magnetoencephalography), SPECT and other imaging means for morphological identification. Actual those images before and after surgery are presented in cases of epilepsy, moyamoya disease, stegnosis of cervical artery, arteriovenous malformation and oligodendroglioma. Images of [ 11 C]flumazenil in epilepsies are also presented to show the neurological dysfunctions. PET evaluation of neurological functions is concluded to become more important in parallel with the advancement of therapeutics. (K.H.)

  7. Ravages of Diabetes on Gastrointestinal Sensory-Motor Function: Implications for Pathophysiology and Treatment.

    Science.gov (United States)

    Gregersen, Hans; Liao, Donghua; Drewes, Anne Mohr; Drewes, Asbjørn Mohr; Zhao, Jingbo

    2016-02-01

    Symptoms related to functional and sensory abnormalities are frequently encountered in patients with diabetes mellitus. Most symptoms are associated with impaired gastric and intestinal function. In this review, we discuss basic concepts of sensory-motor dysfunction and how they relate to clinical findings and gastrointestinal abnormalities that are commonly seen in diabetes. In addition, we review techniques that are available for investigating the autonomic nervous system, neuroimaging and neurophysiology of sensory-motor function. Such technological advances, while not readily available in the clinical setting, may facilitate stratification and individualization of therapy in diabetic patients in the future. Unraveling the structural, mechanical, and sensory remodeling in diabetes disease is based on a multidisciplinary approach that can bridge the knowledge from a variety of scientific disciplines. The final goal is to increase the understanding of the damage to GI structures and to sensory processing of symptoms, in order to assist clinicians with developing an optimal mechanics based treatment.

  8. Pathophysiological analysis of hepatobiliary function on sup(99m)Tc-labeled-cholescintigram

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, K; Hayashi, S; Kogure, T; Hirakawa, K; Akaike, A [Tokyo Univ. (Japan). Faculty of Medicine

    1979-05-01

    sup(99m)Tc-pylidoxylideneisoleucine (PI) was injected into 106 patients in order to study the mechanism of bile accumulation in the gallbladder in analysis of the visualization time of the gallbladder, intrahepatic bile duct, common bile duct and duodenum on sup(99m)Tc-PI cholescintigrams relating to hepatobiliary function. In cases of normal hepatobiliary function, sup(99m)Tc-PI is rapidly cleared from the blood by hepatocytes and is rapidly excreted through the biliary tree into the duodenum. The common bile duct was seen within 15 min of injection in 93.5% of the patients, the gallbladder within 20 min in 80.8%, the intrahepatic bile duct within 20 min in 96.3%, and the duodenum within 30 min in 58%. Marked accumulation of sup(99m)Tc-PI was noted in the gallbladder within 30 min. In cases of hepatobiliary dysfunction, the duodenum is visualized earlier than the gallbladder and intrahepatic bile duct, and the visualization ratio of the gallbladder and intrahepatic bile duct is decreased with an increased degree of hepatobiliary dysfunction. In regard to serum bilirubin level, the gallbladder was seen up to 3.5 mg%, the intrahepatic bile duct up to 4.0 mg% and the common bile duct up to 22.6 mg%. The duodenum was seen in all but two cases of complete obstruction of the common bile duct. In regard to meal time, marked accumulation of sup(99m)Tc-PI in the gallbladder was seen within 30 min and re-dilatation was seen with in 90 min after the beginning of contraction. In cases of normal hepatobiliary function, the gallbladder was seen in over 70% of the cases more than two hours after meals. This study shows that the hepatobiliary tract can be easily imaged by sup(99m)Tc-PI in proportion to hepatobiliary function and that this agent may be useful in the diagnosis of abnormal hepatobiliary tract and the jaundiced patient with hyperbilirubinemias. (Bell, E.).

  9. The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration

    Science.gov (United States)

    Makris, Eleftherios A.; Hadidi, Pasha; Athanasiou, Kyriacos A.

    2011-01-01

    Extensive scientific investigations in recent decades have established the anatomical, biomechanical, and functional importance that the meniscus holds within the knee joint. As a vital part of the joint, it acts to prevent the deterioration and degeneration of articular cartilage, and the onset and development of osteoarthritis. For this reason, research into meniscus repair has been the recipient of particular interest from the orthopedic and bioengineering communities. Current repair techniques are only effective in treating lesions located in the peripheral vascularized region of the meniscus. Healing lesions found in the inner avascular region, which functions under a highly demanding mechanical environment, is considered to be a significant challenge. An adequate treatment approach has yet to be established, though many attempts have been undertaken. The current primary method for treatment is partial meniscectomy, which commonly results in the progressive development of osteoarthritis. This drawback has shifted research interest towards the fields of biomaterials and bioengineering, where it is hoped that meniscal deterioration can be tackled with the help of tissue engineering. So far, different approaches and strategies have contributed to the in vitro generation of meniscus constructs, which are capable of restoring meniscal lesions to some extent, both functionally as well as anatomically. The selection of the appropriate cell source (autologous, allogeneic, or xenogeneic cells, or stem cells) is undoubtedly regarded as key to successful meniscal tissue engineering. Furthermore, a large variation of scaffolds for tissue engineering have been proposed and produced in experimental and clinical studies, although a few problems with these (e.g., byproducts of degradation, stress shielding) have shifted research interest towards new strategies (e.g., scaffoldless approaches, self-assembly). A large number of different chemical (e.g., TGF-β1, C-ABC) and

  10. [Functional connectivity and complex networks in focal epilepsy. Pathophysiology and therapeutic implications].

    Science.gov (United States)

    Pastor, Jesús; Sola, Rafael G; Vega-Zelaya, Lorena; Garnes, Óscar; Ortega, Guillermo J

    2014-05-01

    The traditional surgical approach to treat drug-resistant focal epileptic patients is in the resection or disconnection of the epileptic focus. However, a significant minority of patients continue to experience seizures after surgery, which shows the incomplete level of knowledge that currently we have of this pathology. This paper introduces some concepts of functional connectivity and complex networks methodology with its application to the study of neurophysiological recordings from patients suffering from drug-resistant focal epilepsy. In order to fully understand the new developments in the area of complex networks and its applications to the study of epilepsy, we will here review fundamental concepts in complex networks methodology, synchronization and functional connectivity. Some of the most recent published works dealing with focal epilepsy viewed under this new perspective will be revised and commented. We think that a wider perspective in the study of epilepsy, such as the one reviewed in this work, will allow epileptologists to consider surgical alternatives in the usual treatment of focal epilepsy at those currently performed in most medical centers around the world. Combining the traditional knowledge with new insights provided by network theory will certainly fill many of the gaps we have today in the fragmented understanding of epilepsy.

  11. Abnormal function of monoamine oxidase-A in comorbid major depressive disorder and cardiovascular disease: pathophysiological and therapeutic implications (review).

    Science.gov (United States)

    Machado-Vieira, Rodrigo; Mallinger, Alan G

    2012-11-01

    The association between major depressive disorder (MDD) and cardiovascular disease (CVD) is among the best described medical comorbidities. The presence of MDD increases the risk of cardiac admissions and mortality and increases healthcare costs in patients with CVD, and similarly, CVD affects the course and outcome of MDD. The potential shared biological mechanisms involved in these comorbid conditions are not well known. However, the enzyme monoamine oxidase-A (MAO-A), which has a key role in the degradation of catecholamines, has been associated with the pathophysiology and therapeutics of both MDD and CVD. Increased MAO-A activity results in the dysregulation of downstream targets of this enzyme and thus affects the pathophysiology of the two diseases. These deleterious effects include altered noradrenaline turnover, with a direct elevation in oxidative stress parameters, as well as increased platelet activity and cytokine levels. These effects were shown to be reversed by MAO inhibitors. Here, a model describing a key role for the MAO-A in comorbid MDD and CVD is proposed, with focus on the shared pathophysiological mechanisms and the potential therapeutic relevance of agents targeting this enzyme.

  12. Powerful functional imaging of respiratory nuclear medicine. Is CT imaging alone really sufficient for diagnosis and pathophysiologic assessment of lung diseases?

    International Nuclear Information System (INIS)

    Suga, Kazuyoshi

    2010-01-01

    Ventilation (V)-perfusion (Q) single photon emission computed tomography (SPECT) provides important information of functional impairment in various lung diseases, and often sensitively detects CT-undetectable lesions. V·Q SPECT also provides objective and quantitative assessment of severity of lung functional impairment. Functional-morphological correlation on V·Q SPECT-CT fusion images further facilitates these advantages of V·Q SPECT. This article describes clinical feasibility of V·Q SPECT in functional assessment and diagnosis of chronic obstructive pulmonary diseases, pulmonary embolism, pulmonary hypertension, interstitial lung diseases, and lung right-to-left shunt diseases. This article hopefully provides sufficient responses to the crucial query of ''Is CT imaging alone really sufficient for diagnosis and pathophysiological assessment of various lung diseases?'' (author)

  13. The pathophysiology of bronchiectasis

    Directory of Open Access Journals (Sweden)

    Paul T King

    2009-10-01

    Full Text Available Paul T KingDepartment of Medicine, Department of Respiratory and Sleep Medicine, Monash University, Monash Medical Centre, Melbourne, Victoria, AustraliaAbstract: Bronchiectasis is defined by permanent and abnormal widening of the bronchi. This process occurs in the context of chronic airway infection and inflammation. It is usually diagnosed using computed tomography scanning to visualize the larger bronchi. Bronchiectasis is also characterized by mild to moderate airflow obstruction. This review will describe the pathophysiology of noncystic fibrosis bronchiectasis. Studies have demonstrated that the small airways in bronchiectasis are obstructed from an inflammatory infiltrate in the wall. As most of the bronchial tree is composed of small airways, the net effect is obstruction. The bronchial wall is typically thickened by an inflammatory infiltrate of lymphocytes and macrophages which may form lymphoid follicles. It has recently been demonstrated that patients with bronchiectasis have a progressive decline in lung function. There are a large number of etiologic risk factors associated with bronchiectasis. As there is generally a long-term retrospective history, it may be difficult to determine the exact role of such factors in the pathogenesis. Extremes of age and smoking/chronic obstructive pulmonary disease may be important considerations. There are a variety of different pathogens involved in bronchiectasis, but a common finding despite the presence of purulent sputum is failure to identify any pathogenic microorganisms. The bacterial flora appears to change with progression of disease. Keywords: bronchiectasis, inflammation, obstructive lung disease, pathophysiology, pathology

  14. Ostreolysin A/Pleurotolysin B and Equinatoxins: Structure, Function and Pathophysiological Effects of These Pore-Forming Proteins

    Directory of Open Access Journals (Sweden)

    Robert Frangež

    2017-04-01

    Full Text Available Acidic ostreolysin A/pleurotolysin B (OlyA/PlyB, formerly known as ostreolysin (Oly, and basic 20 kDa equinatoxins (EqTs are cytolytic proteins isolated from the edible mushroom Pleurotus ostreatus and the sea anemone Actinia equina, respectively. Both toxins, although from different sources, share many similar biological activities: (i colloid-osmotic shock by forming pores in cellular and artificial membranes enriched in cholesterol and sphingomyelin; (ii increased vascular endothelial wall permeability in vivo and perivascular oedema; (iii dose-dependent contraction of coronary vessels; (iv haemolysis with pronounced hyperkalaemia in vivo; (v bradycardia, myocardial ischemia and ventricular extrasystoles accompanied by progressive fall of arterial blood pressure and respiratory arrest in rodents. Both types of toxins are haemolytic within nanomolar range concentrations, and it seems that hyperkalaemia plays an important role in toxin cardiotoxicity. However, it was observed that the haemolytically more active EqT III is less toxic than EqT I, the most toxic and least haemolytic EqT. In mice, EqT II is more than 30 times more toxic than OlyA/PlyB when applied intravenously. These observations imply that haemolysis with hyperkalaemia is not the sole cause of the lethal activity of both toxins. Additional mechanisms responsible for lethal action of the two toxins are direct effects on heart, coronary vasoconstriction and related myocardial hypoxia. In this review, we appraise the pathophysiological mechanisms related to the chemical structure of OlyA/PlyB and EqTs, as well as their toxicity.

  15. Pathophysiology of glucagon secretion

    International Nuclear Information System (INIS)

    Boettger, J.; Pabst, H.W.

    1980-01-01

    Pathophysiology of glucagon secretion is reviewed in brief separating hyperglucagonemic from hypoclucagonemic states. Many questions concerning the role of glucagon in diabetes mellitus and in other diseases are still unresolved. The clucagon RIA is of clinical significance in a few diseases like glucagonoma, which may present without symptoms of the 'glucagonoma syndrome', the probably very rare hyperglucagonemia and some of the spontaneous hypoglycemias. Glucagon secretion may be evaluated by the determination of fasting immunoreactive glucagon (IRG) and by appropriate function tests as stimulation with i.v. arginine and suppression with oral glucose. However, the glucagon RIA at present is not a routine method, although commercial kits are available. Many pitfalls of radioimmunological glucagon determination still exist. (orig.) [de

  16. Pathophysiology of nocturnal enuresis

    DEFF Research Database (Denmark)

    Rittig, Søren; Kamperis, Konstantinos

    2015-01-01

    The perception of the pathogenesis of enuresis has undergone marked changes over the past 30 years from a psychiatric/psychological background to a more somatic model where nighttime urine production and bladder capacity are main components together with an arousal dysfunction that prevents...... that dysfunction of the intrinsic circadian regulation located in the suprachiasmatic nucleus results in dysfunction of one or more of the brainstem centers involved in AVP secretion, arousal function, bladder control, and blood pressure regulation. Furthermore, nocturnal enuresis has a strong genetic influence...... that in some families present as autosomal dominant inheritance with high degree of penetrance. Linkage to several chromosomal areas have been confirmed in such families although a specific causative enuresis gene has not yet been identified. In conclusion, our understanding of enuresis pathophysiology has...

  17. Pathophysiology of chronic childhood constipation: functional and morphological evaluation by anorectal manometry and endosonography and colonic transit study.

    Science.gov (United States)

    Keshtgar, Alireza S; Ward, Harry C; Clayden, Graham S

    2013-04-01

    sphincter resting pressure or obstructive defecation. Further studies should be done to investigate the role of external anal sphincter dysfunction in pathophysiology of childhood constipation and fecal incontinence. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Disturbed cortico-amygdalar functional connectivity as pathophysiological correlate of working memory deficits in bipolar affective disorder.

    Science.gov (United States)

    Stegmayer, Katharina; Usher, Juliana; Trost, Sarah; Henseler, Ilona; Tost, Heike; Rietschel, Marcella; Falkai, Peter; Gruber, Oliver

    2015-06-01

    Patients suffering from bipolar affective disorder show deficits in working memory functions. In a previous functional magnetic resonance imaging study, we observed an abnormal hyperactivity of the amygdala in bipolar patients during articulatory rehearsal in verbal working memory. In the present study, we investigated the dynamic neurofunctional interactions between the right amygdala and the brain systems that underlie verbal working memory in both bipolar patients and healthy controls. In total, 18 euthymic bipolar patients and 18 healthy controls performed a modified version of the Sternberg item-recognition (working memory) task. We used the psychophysiological interaction approach in order to assess functional connectivity between the right amygdala and the brain regions involved in verbal working memory. In healthy subjects, we found significant negative functional interactions between the right amygdala and multiple cortical brain areas involved in verbal working memory. In comparison with the healthy control subjects, bipolar patients exhibited significantly reduced functional interactions of the right amygdala particularly with the right-hemispheric, i.e., ipsilateral, cortical regions supporting verbal working memory. Together with our previous finding of amygdala hyperactivity in bipolar patients during verbal rehearsal, the present results suggest that a disturbed right-hemispheric "cognitive-emotional" interaction between the amygdala and cortical brain regions underlying working memory may be responsible for amygdala hyperactivation and affects verbal working memory (deficits) in bipolar patients.

  19. Pathophysiology of Glucocorticoid Signaling.

    Science.gov (United States)

    Vitellius, Géraldine; Trabado, Séverine; Bouligand, Jérôme; Delemer, Brigitte; Lombès, Marc

    2018-06-01

    Glucocorticoids (GC), such as cortisol or dexamethasone, control various physiological functions, notably those involved in development, metabolism, inflammatory processes and stress, and exert most of their effects upon binding to the glucocorticoid receptor (GR, encoded by NR3C1 gene). GC signaling follows several consecutive steps leading to target gene transactivation, including ligand binding, nuclear translocation of ligand-activated GR complexes, DNA binding, coactivator interaction and recruitment of functional transcriptional machinery. Any step may be impaired and may account for altered GC signaling. Partial or generalized glucocorticoid resistance syndrome may result in a reduced level of functional GR, a decreased hormone affinity and binding, a defect in nuclear GR translocation, a decrease or lack of DNA binding and/or post-transcriptional GR modifications. To date, 26 loss-of-function NR3C1 mutations have been reported in the context of hypertension, hirsutism, adrenal hyperplasia or metabolic disorders. These clinical signs are generally associated with biological features including hypercortisolism without negative regulatory feedback loop on the hypothalamic-pituitary-adrenal axis. Patients had often low plasma aldosterone and renin levels despite hypertension. Only one GR gain-of-function mutation has been described associating Cushing's syndrome phenotype with normal urinary-free cortisol. Some GR polymorphisms (ER22/23EK, GR-9β) have been linked to glucocorticoid resistance and a healthier metabolic profile whereas some others seemed to be associated with GC hypersensitivity (N363S, BclI), increasing cardiovascular risk (diabetes type 2, visceral obesity). This review focuses on the earlier findings on the pathophysiology of GR signaling and presents criteria facilitating identification of novel NR3C1 mutations in selected patients. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  20. Thalassemia: Pathophysiology and management. Part A

    International Nuclear Information System (INIS)

    Fucharoen, S.; Rowley, P.T.; Paul, N.W.

    1988-01-01

    This book contains papers divided among the following sections: molecular biology and pathogenesis; pathophysiology - molecular and cellular; clinical manifestations and hematologic changes; cardiopulmonary defects and platelet function; hormones and minerals; and infection and immunology

  1. The Pathophysiology of Insomnia

    Science.gov (United States)

    Levenson, Jessica C.; Kay, Daniel B.

    2015-01-01

    Insomnia disorder is characterized by chronic dissatisfaction with sleep quantity or quality that is associated with difficulty falling asleep, frequent nighttime awakenings with difficulty returning to sleep, and/or awakening earlier in the morning than desired. Although progress has been made in our understanding of the nature, etiology, and pathophysiology of insomnia, there is still no universally accepted model. Greater understanding of the pathophysiology of insomnia may provide important information regarding how, and under what conditions, the disorder develops and is maintained as well as potential targets for prevention and treatment. The aims of this report are (1) to summarize current knowledge on the pathophysiology of insomnia and (2) to present a model of the pathophysiology of insomnia that considers evidence from various domains of research. Working within several models of insomnia, evidence for the pathophysiology of the disorder is presented across levels of analysis, from genetic to molecular and cellular mechanisms, neural circuitry, physiologic mechanisms, sleep behavior, and self-report. We discuss the role of hyperarousal as an overarching theme that guides our conceptualization of insomnia. Finally, we propose a model of the pathophysiology of insomnia that integrates the various types of evidence presented. PMID:25846534

  2. Impact of surgery targeting the caudal intralaminar thalamic nuclei on the pathophysiological functioning of basal ganglia in a rat model of Parkinson's disease.

    Science.gov (United States)

    Kerkerian-Le Goff, Lydia; Bacci, Jean-Jacques; Jouve, Loreline; Melon, Christophe; Salin, Pascal

    2009-02-16

    There is accumulating evidence that the centre median-parafascicular (CM/Pf) complex of the thalamus is implicated in basal ganglia-related movement disorders and notably in Parkinson's disease. However, the impact of the changes affecting CM/Pf on the pathophysiological functioning of basal ganglia in parkinsonian state remains poorly understood. To address this issue, we have examined the effects of excitotoxic lesion of CM/Pf and of 6-hydroxydopamine-induced lesion of nigral dopamine neurons, separately or in association, on gene expression of markers of neuronal activity in the rat basal ganglia (striatal neuropeptide precursors, GAD67, cytochrome oxidase subunit I) by quantitative in situ hybridization histochemistry. CM/Pf lesion prevented the changes produced by the dopamine denervation in the components of the indirect pathway connecting the striatum to the output structures (striatopallidal neurons, globus pallidus, subthalamic nucleus), and among the output structures, in the entopeduncular nucleus. Preliminary data on the effects of deep brain stimulation of CM/Pf in rats with nigral dopamine lesion show that this surgical approach produces efficient anti-akinetic effect associated with partial reversal of the dopamine lesion-induced increase in striatal preproenkephalin A mRNA levels, a marker of the striatopallidal neurons. These data, which provide substrates for the potential of CM/Pf surgery in the treatment of movement disorders, are discussed in comparison with the effects of lesion or deep brain stimulation of the subthalamic nucleus, the currently preferred target for the surgical treatment of PD.

  3. Pathophysiology of Cushing's disease.

    Science.gov (United States)

    Fehm, H L; Voigt, K H

    1979-01-01

    The term Cushing's disease is applied to those cases of Cushing's syndrome in which hypercortisolism is secondary to inappropriate secretion of ACTH by the pituitary. Studies on control of ACTH secretion in these patients reveal: (a) that the episodic secretion of ACTH is similar to the normal; however, frequency and amplitude of the secretory episodes lack the normal circadian rhythm; (b) that ACTH release can be stimulated by vasopressin and metyrapone in a normal or above-normal manner; and (c) that it can be suppressed by large doses of corticosteroids. When the dynamic aspects of the ACTH response to corticosteroid administration are studied, it appears that the normally negative differential feedback mechanism is converted into a positive one, whereas the delayed, integral mechanism is undisturbed. Patients with Cushing's disease in the presence of obvious pituitary tumors cannot be distinguished from those without pituitary tumors by studying only the pituitary function. All these and other well-known facts would favor the concept that ACTH secretion in Cushing's disease is under hypothalamic control whether or not a pituitary tumor is present. Moreover, there are observations that suggest that brain centers superior to the hypophysiotropic area of the hypothalamus are involved in the pathophysiology of Cushing's disease. This concept has led to the discovery of neurotropic drugs that are able to induce complete remission of Cushing's syndrome in a cerain percentage of patients. In some patients with severe psychiatric diseases, neuroendocrine abnormalities are present that resemble closely those characteristic for Cushing's disease. With the most refined neuroradiological methods, pituitary microadenomas are demonstrable in approximately 70% of patients with Cushing's disease, and this number compares well with those of earlier autopsy findings (70 to 80%). In a small number of patients (4 to 10%), these tumors are large and can easily be detected by

  4. Obesity: Pathophysiology and Intervention

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2014-11-01

    Full Text Available Obesity presents a major health hazard of the 21st century. It promotes co-morbid diseases such as heart disease, type 2 diabetes, obstructive sleep apnea, certain types of cancer, and osteoarthritis. Excessive energy intake, physical inactivity, and genetic susceptibility are main causal factors for obesity, while gene mutations, endocrine disorders, medication, or psychiatric illnesses may be underlying causes in some cases. The development and maintenance of obesity may involve central pathophysiological mechanisms such as impaired brain circuit regulation and neuroendocrine hormone dysfunction. Dieting and physical exercise offer the mainstays of obesity treatment, and anti-obesity drugs may be taken in conjunction to reduce appetite or fat absorption. Bariatric surgeries may be performed in overtly obese patients to lessen stomach volume and nutrient absorption, and induce faster satiety. This review provides a summary of literature on the pathophysiological studies of obesity and discusses relevant therapeutic strategies for managing obesity.

  5. Pathophysiology of cervical myelopathy.

    Science.gov (United States)

    Baptiste, Darryl C; Fehlings, Michael G

    2006-01-01

    Cervical myelopathy is a group of closely related disorders usually caused by spondylosis or by ossification of the posterior longitudinal ligament and is characterized by compression of the cervical spinal cord or nerve roots by varying degrees and number of levels. The decrease in diameter of the vertebral canal secondary to disc degeneration and osteophytic spurs compresses the spinal cord and nerve roots at one or several levels, producing direct damage and often secondary ischemic changes. Clinicians who treat cervical myelopathy cord injuries should have a basic understanding of the pathophysiology and the processes that are initiated after the spinal cord has been injured. Literature review. Literature review of human cervical myelopathy and clinically relevant animal models to further our understanding of the pathological mechanisms involved. The pathophysiology of cervical myelopathy involves static factors, which result in acquired or developmental stenosis of the cervical canal and dynamic factors, which involve repetitive injury to the cervical cord. These mechanical factors in turn result in direct injury to neurons and glia as well as a secondary cascade of events including ischemia, excitotoxicity, and apoptosis; a pathobiology similar to that occurring in traumatic spinal cord injury. This review summarizes some of the significant pathophysiological processes involved in cervical myelopathy.

  6. Understanding changes in cardiovascular pathophysiology.

    Science.gov (United States)

    Chummun, Harry

    Cardiovascular pathophysiological changes, such as hypertension and enlarged ventricles, reflect the altered functions of the heart and its circulation during ill-health. This article examines the normal and altered anatomy of the cardiac valves, the contractile elements and enzymes of the myocardium, the significance of the different factors associated with cardiac output, and the role of the autonomic nervous system in the heart beat. It also explores how certain diseases alter these functions and result in cardiac symptoms. Nurses can benefit from knowledge of these specific changes, for example, by being able to ask relevant questions in order to ascertain the nature of a patients condition, by being able to take an effective patient history and by being able to read diagnostic results, such as electrocardiograms and cardiac enzyme results. All this will help nurses to promote sound cardiac care based on a physiological rationale.

  7. Dry eye disease: pathophysiology, classification, and diagnosis.

    Science.gov (United States)

    Perry, Henry D

    2008-04-01

    Dry eye disease (DED) is a multifactorial disorder of the tear film and ocular surface that results in eye discomfort, visual disturbance, and often ocular surface damage. Although recent research has made progress in elucidating DED pathophysiology, currently there are no uniform diagnostic criteria. This article discusses the normal anatomy and physiology of the lacrimal functional unit and the tear film; the pathophysiology of DED; DED etiology, classification, and risk factors; and DED diagnosis, including symptom assessment and the roles of selected diagnostic tests.

  8. Pathophysiology, Evaluation, and Treatment of Bloating

    Science.gov (United States)

    Gabbard, Scott L.; Crowell, Michael D.

    2011-01-01

    Abdominal bloating is commonly reported by men and women of all ages. Bloating occurs in nearly all patients with irritable bowel syndrome, and it also occurs in patients with other functional and organic disorders. Bloating is frequently disturbing to patients and frustrating to clinicians, as effective treatments are limited and are not universally successful. Although the terms bloating and abdominal distention are often used interchangeably, these symptoms likely involve different pathophysiologic processes, both of which are still not completely understood. The goal of this paper is to review the pathophysiology, evaluation, and treatment of bloating and abdominal distention. PMID:22298969

  9. Pathophysiological basis of pharmacotherapy in the hepatorenal syndrome

    DEFF Research Database (Denmark)

    Møller, Søren; Bendtsen, Flemming; Henriksen, Jens H

    2005-01-01

    Hepatorenal syndrome (HRS) is a functional and reversible impairment of renal function in patients with severe cirrhosis. Major pathophysiological elements include liver dysfunction, a circulatory derangement with central hypovolaemia and neurohumoral activation of potent vasoactive systems leading...

  10. Follow-up findings in regional cerebral blood flow (r-CBF)-SPECT in a case of idiopathic childhood hemidystonia. Functional neuroimaging and pathophysiological implications

    International Nuclear Information System (INIS)

    Fiedler, A.; Aderbauer, J.; Segerer, H.; Marienhagen, J.; Bock, E.; Eilles, C.

    1999-01-01

    A 9 1/2-year-old girl suffered from intermitting tremor and jitteriness of her left hand and oral muscles every 4 to 6 weeks with long lasting episodes. Clinically myoclonias and dystonic positioning of the left arm, hand and facial muscles were seen. No evidence of trauma, infection or inborn errors of metabolism was found. Successful therapy with carbamazepine was initiated while L-DOPA failed. An ictal 99m-Tc-HMPAO-SPECT showed severe asymmetry with focal hyperperfusion of the contralateral right thalamus and basal ganglia as well as of the bifrontal cortex, whereas no anatomical lesions were found by MRI. In contrast, an interictally performed 99m-Tc-HMPAO SPECT showed hypoperfusion or the right thalamus and normalisation of the frontal perfusion under medical treatment. These 99m-Tc-HMPAO-SPECT findings may provide new insights into the localisation and pathophysiological pathways of idiopathic childhood dystonia. (orig.) [de

  11. Follow-up findings in regional cerebral blood flow (r-CBF)-SPECT in a case of idiopathic childhood hemidystonia. Functional neuroimaging and pathophysiological implications

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, A.; Aderbauer, J.; Segerer, H. [St. Hedwig Hospital, Regensburg (Germany). Dept. of Pediatrics; Marienhagen, J.; Bock, E.; Eilles, C. [Univ. Hospital, Regensburg (Germany). Dept. of Nuclear Medicine

    1999-05-01

    A 9 1/2-year-old girl suffered from intermitting tremor and jitteriness of her left hand and oral muscles every 4 to 6 weeks with long lasting episodes. Clinically myoclonias and dystonic positioning of the left arm, hand and facial muscles were seen. No evidence of trauma, infection or inborn errors of metabolism was found. Successful therapy with carbamazepine was initiated while L-DOPA failed. An ictal 99m-Tc-HMPAO-SPECT showed severe asymmetry with focal hyperperfusion of the contralateral right thalamus and basal ganglia as well as of the bifrontal cortex, whereas no anatomical lesions were found by MRI. In contrast, an interictally performed 99m-Tc-HMPAO SPECT showed hypoperfusion or the right thalamus and normalisation of the frontal perfusion under medical treatment. These 99m-Tc-HMPAO-SPECT findings may provide new insights into the localisation and pathophysiological pathways of idiopathic childhood dystonia. (orig.) [Deutsch] Ein 9 1/2jaehriges Maedchen litt an rezidivierenden, langdauernden Schueben von Tremor und Zittern der linken Hand und der perioralen Muskulatur links. Klinisch fanden sich eine dystone Haltung des linken Armes und unerschoepfliche Myoklonien des Armes, der Hand und der Gesichtsmuskulatur links. Trauma, Infektion oder ein Stoffwechseldefekt als Ursache lagen nicht vor. Ein Therapieversuch mit L-DOPA war erfolglos. Unter Gabe von Carbamazepin wurde Beschwerdefreiheit bleibend erreicht. Ein iktuales 99m-Tc-HMPAO-SPECT zeigte eine fokale Hyperperfusion des rechtsseitigen Thalamus und der Basalganglien, sowie des bifrontalen Kortex. Ein interiktuales 99m-Tc-HMPAOSPECT ergab dann eine deutliche Hypoperfusion des rechtseitigen Thalamus bei normalisierter Perfusion des bifrontalen Kortex. Eine kranielle Magnetresonanztomographie (MRI) ergab einen unauffaelligen Befund. Der Vergleich der iktualen und interiktualen Perfusionsverhaeltnisse weist auf neue pathophysiologische Zusammenhaenge bei idiopathischer kindlicher Dystonie hin. (orig.)

  12. Visceral hypersensitivity in Irritable Bowel Syndrome:pathophysiological mechanisms

    NARCIS (Netherlands)

    Kerckhoffs, A.P.M.

    2009-01-01

    Irritable Bowel Syndrome (IBS) is a functional bowel disease characterized by abdominal pain or discomfort associated with a disordered defecation. No unique pathophysiological mechanism has been identified. It is most likely a multifactorial disease involving alterations in intestinal microbiota

  13. Pathophysiology of spontaneous venous gas embolism

    Science.gov (United States)

    Lambertsen, C. J.; Albertine, K. H.; Pisarello, J. B.; Flores, N. D.

    1991-01-01

    The use of controllable degrees and durations of continuous isobaric counterdiffusion venous gas embolism to investigate effects of venous gas embolism upon blood, cardiovascular, and respiratory gas exchange function, as well as pathological effects upon the lung and its microcirculation is discussed. Use of N2O/He counterdiffusion permitted performance of the pathophysiologic and pulmonary microstructural effects at one ATA without hyperbaric or hypobaric exposures.

  14. [Pathophysiology of prolonged hypokinesia].

    Science.gov (United States)

    Kovalenko, E A

    1976-01-01

    Hypokinesia is an important problem in modern medicine. In the pathogenetic effect of prolonged hypokinesia the main etiological factor is diminished motor activity; of major importance are disorders in the energy and plastic metabolism which affect the muscle system; the contributing factors are cardiovascular deconditioning and orthostatic intolerance. This is attributed to a decreased oxygen supply and eliminated hydrostatic influences during a prolonged recumbency. Blood redistribution in the vascular bed is related to the Gauer-Henry reflex and subsequent changes in the fluid-electrolyte balance. Decreased load on the bone system induces changes in the protein-phosphate-calcium metabolism, diminished bone density and increased calcium content in the blood and urine. Changes in the calcium metabolism are systemic. The activity of the higher nervous system and reflex functions is lowered. Changes in the function of the autonomic nervous system which include a noticeable decline of its adaptive-trophic role as a result of the decrease of afferent and efferent impulsation are of great importance. Changes in the hormonal function involve a peculiar stress-reaction which develops at an early stage of hypokinesia as a response to an unusual situation. Prolonged hypokinesia may result in a disturbed function of the pituitary-adrenal system. It is assumed that prolonged hypokinesia may induce a specific disease of hypokinesia during which man cannot lead a normal mode of life and work.

  15. Pathophysiology of thyroid cancer

    International Nuclear Information System (INIS)

    Rajan, M.G.R.; Nadkarni, G.D.

    1999-01-01

    The main physiological function of the thyroid gland is to produce thyroid hormones. The primary physiological control over iodine transport, organification and hormone synthesis appears to be through thyroid stimulating hormone (TSH). Regulation of tumor cells, biochemical studies in experimental tumors, role of oxygen free radical and antioxidants, role of proteases in metastasis, influence of growth factors and influence of sex hormones and receptors are discussed

  16. Pathophysiology of the anorexia of aging.

    Science.gov (United States)

    Morley, John E

    2013-01-01

    Anorexia represents a major problem for older persons leading to weight loss, sarcopenia, functional decline, and mortality. There is increasing information on the pathophysiological mechanisms that lead to anorexia. Increasing evidence has shown the importance of gastrointestinal hormones (ghrelin, cholecystokinin, and glucagon-like peptide) and adipokines in producing the anorexia of aging. Numerous neurotransmitters have been shown to be involved in this aging anorexia, but evidence in humans is lacking. The early recognition of anorexia of aging is important to allow intervention and prevent functional deterioration in older persons. Screening tests for anorexia have been developed. New approaches to managing anorexia are being tested.

  17. Pathophysiology of muscle contractures in cerebral palsy.

    Science.gov (United States)

    Mathewson, Margie A; Lieber, Richard L

    2015-02-01

    Patients with cerebral palsy present with a variety of adaptations to muscle structure and function. These pathophysiologic symptoms include functional deficits such as decreased force production and range of motion, in addition to changes in muscle structure such as decreased muscle belly size, increased sarcomere length, and altered extracellular matrix structure and composition. On a cellular level, patients with cerebral palsy have fewer muscle stem cells, termed satellite cells, and altered gene expression. Understanding the nature of these changes may present opportunities for the development of new muscle treatment therapies. Published by Elsevier Inc.

  18. The pathophysiology of heart failure.

    Science.gov (United States)

    Kemp, Clinton D; Conte, John V

    2012-01-01

    Heart failure is a clinical syndrome that results when the heart is unable to provide sufficient blood flow to meet metabolic requirements or accommodate systemic venous return. This common condition affects over 5 million people in the United States at a cost of $10-38 billion per year. Heart failure results from injury to the myocardium from a variety of causes including ischemic heart disease, hypertension, and diabetes. Less common etiologies include cardiomyopathies, valvular disease, myocarditis, infections, systemic toxins, and cardiotoxic drugs. As the heart fails, patients develop symptoms which include dyspnea from pulmonary congestion, and peripheral edema and ascites from impaired venous return. Constitutional symptoms such as nausea, lack of appetite, and fatigue are also common. There are several compensatory mechanisms that occur as the failing heart attempts to maintain adequate function. These include increasing cardiac output via the Frank-Starling mechanism, increasing ventricular volume and wall thickness through ventricular remodeling, and maintaining tissue perfusion with augmented mean arterial pressure through activation of neurohormonal systems. Although initially beneficial in the early stages of heart failure, all of these compensatory mechanisms eventually lead to a vicious cycle of worsening heart failure. Treatment strategies have been developed based upon the understanding of these compensatory mechanisms. Medical therapy includes diuresis, suppression of the overactive neurohormonal systems, and augmentation of contractility. Surgical options include ventricular resynchronization therapy, surgical ventricular remodeling, ventricular assist device implantation, and heart transplantation. Despite significant understanding of the underlying pathophysiological mechanisms in heart failure, this disease causes significant morbidity and carries a 50% 5-year mortality. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Hypophosphatasia - pathophysiology and treatment.

    Science.gov (United States)

    Millán, José Luis; Plotkin, Horacio

    2012-09-01

    Hypophosphatasia (HPP) is the inborn-error-of-metabolism caused by loss-of-function mutation(s) in the gene that encodes the tissue-nonspecific isozyme of alkaline phosphatase (TNAP). The disease has been classified according to patient age when the first signs and symptoms manifest; i.e., perinatal, infantile, childhood, adult HPP. Other types include odonto HPP and perinatal benign. Babies with the perinatal/infantile forms of HPP often die with severe rickets and respiratory insufficiency and sometimes hypercalcemia and vitamin B 6 -responsive seizures. The primary biochemical defect in HPP is a deficiency of TNAP activity that leads to elevated circulating levels of substrates, in particular inorganic pyrophosphate (PP i ), a potent calcification inhibitor. To-date, the management of HPP has been essentially symptomatic or orthopedic. However, enzyme replacement therapy with mineral-targeting TNAP (sALP-FcD 10 , also known as ENB-0040 or asfotase alfa) has shown promising results in a mouse model of HPP ( Alpl -/- mice). Administration of mineral-targeting TNAP from birth increased survival and prevented the seizures, rickets, as well as all the tooth abnormalities, including dentin, acellular cementum, and enamel defects in this model of severe HPP. Clinical trials using mineral-targeting TNAP in children 3 years of age or younger with life-threatening HPP was associated with healing of the skeletal manifestations of HPP as well as improved respiratory and motor function. Improvement is still being observed in the patients receiving continued asfotase alfa therapy, with more than 3 years of treatment in some children. Enzyme replacement therapy with asfotase alfa has to-date been successful in patients with life-threatening HPP.

  20. Pathophysiology of chronic pancreatitis.

    Science.gov (United States)

    Brock, Christina; Nielsen, Lecia Møller; Lelic, Dina; Drewes, Asbjørn Mohr

    2013-11-14

    Chronic pancreatitis (CP) is an inflammatory disease of the pancreas characterized by progressive fibrotic destruction of the pancreatic secretory parenchyma. Despite the heterogeneity in pathogenesis and involved risk factors, processes such as necrosis/apoptosis, inflammation or duct obstruction are involved. This fibrosing process ultimately leads to progressive loss of the lobular morphology and structure of the pancreas, deformation of the large ducts and severe changes in the arrangement and composition of the islets. These conditions lead to irreversible morphological and structural changes resulting in impairment of both exocrine and endocrine functions. The prevalence of the disease is largely dependent on culture and geography. The etiological risk-factors associated with CP are multiple and involve both genetic and environmental factors. Throughout this review the M-ANNHEIM classification system will be used, comprising a detailed description of risk factors such as: alcohol-consumption, nicotine-consumption, nutritional factors, hereditary factors, efferent duct factors, immunological factors and miscellaneous and rare metabolic factors. Increased knowledge of the different etiological factors may encourage the use of further advanced diagnostic tools, which potentially will help clinicians to diagnose CP at an earlier stage. However, in view of the multi factorial disease and the complex clinical picture, it is not surprising that treatment of patients with CP is challenging and often unsuccessful.

  1. Pathophysiology of chronic pancreatitis

    Science.gov (United States)

    Brock, Christina; Nielsen, Lecia Møller; Lelic, Dina; Drewes, Asbjørn Mohr

    2013-01-01

    Chronic pancreatitis (CP) is an inflammatory disease of the pancreas characterized by progressive fibrotic destruction of the pancreatic secretory parenchyma. Despite the heterogeneity in pathogenesis and involved risk factors, processes such as necrosis/apoptosis, inflammation or duct obstruction are involved. This fibrosing process ultimately leads to progressive loss of the lobular morphology and structure of the pancreas, deformation of the large ducts and severe changes in the arrangement and composition of the islets. These conditions lead to irreversible morphological and structural changes resulting in impairment of both exocrine and endocrine functions. The prevalence of the disease is largely dependent on culture and geography. The etiological risk-factors associated with CP are multiple and involve both genetic and environmental factors. Throughout this review the M-ANNHEIM classification system will be used, comprising a detailed description of risk factors such as: alcohol-consumption, nicotine-consumption, nutritional factors, hereditary factors, efferent duct factors, immunological factors and miscellaneous and rare metabolic factors. Increased knowledge of the different etiological factors may encourage the use of further advanced diagnostic tools, which potentially will help clinicians to diagnose CP at an earlier stage. However, in view of the multi factorial disease and the complex clinical picture, it is not surprising that treatment of patients with CP is challenging and often unsuccessful. PMID:24259953

  2. Pathophysiological mechanisms of insulin resistance

    NARCIS (Netherlands)

    Brands, M.

    2013-01-01

    In this thesis we studied pathophysiological mechanisms of insulin resistance in different conditions in humans, i.e. in obesity, during lipid infusions, after hypercaloric feeding, and glucocorticoid treatment. We focused on 3 important hypotheses that are suggested to be implicated in the

  3. Pathophysiology of gastroesophageal reflux disease

    NARCIS (Netherlands)

    Boeckxstaens, Guy E.; Rohof, Wout O.

    2014-01-01

    Gastroesophageal reflux disease (GERD) is one of the most common digestive diseases in the Western world, with typical symptoms, such as heartburn, regurgitation, or retrosternal pain, reported by 15% to 20% of the general population. The pathophysiology of GERD is multifactorial. Our understanding

  4. Gas embolism: pathophysiology and treatment

    NARCIS (Netherlands)

    van Hulst, Robert A.; Klein, Jan; Lachmann, Burkhard

    2003-01-01

    Based on a literature search, an overview is presented of the pathophysiology of venous and arterial gas embolism in the experimental and clinical environment, as well as the relevance and aims of diagnostics and treatment of gas embolism. The review starts with a few historical observations and

  5. Velopharyngeal sphincter pathophysiologic aspects in the in cleft palat

    Directory of Open Access Journals (Sweden)

    Collares, Marcus Vinicius Martins

    2008-09-01

    Full Text Available Introduction: Cleft lip and palate are common congenital abnormalities with typical functional disorders on speech, deglutition and middle ear function. Objective: This article reviews functional labiopalatine disorders through a pathophysiological view. Method: We performed a literature search on line, as well as books and periodicals related to velopharyngeal sphincter. Our sources were LILACS, MEDLINE and SciELO databases, and we applied to the research Keywords of interest on the velopharyngeal pathophysiology, for articles published between 1965 and 2007. Conclusion: Velopharyngeal sphincter plays a central role in speech, swallowing and middle ear physiology in patients with labiopalatine cleft. At the end of our bibliographic review, pursuant to the velopharyngeal physiology in individuals with this disorder in the functional speech, deglutition and otologic function, we observed that although there is a great number of published data discussing this issue, further studies are necessary to completely understand the pathophysiology, due to the fact they have been exploited superficially.

  6. CARDIAC FUNCTION AND IRON CHELATION IN THALASSEMIA MAJOR AND INTERMEDIA: A REVIEW OF THE UNDERLYING PATHOPHYSIOLOGY AND APPROACH TO CHELATION MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Athanasios Aessopos

    2009-07-01

    Full Text Available Heart disease is the leading cause of mortality and one of the main causes of morbidity in beta-thalassemia. Patients with homozygous thalassemia may have either a severe phenotype which is usually transfusion dependent or a milder form that is thalassemia intermedia.  The two main factors that determine cardiac disease in homozygous β thalassemia are the high output state that results from chronic tissue hypoxia, hypoxia-induced compensatory reactions and iron overload.  The high output state playing a major role in thalassaemia intermedia and the iron load being more significant in the major form. Arrhythmias, vascular involvement that leads to an increased pulmonary vascular resistance and an increased systemic vascular stiffness and valvular abnormalities also contribute to the cardiac dysfunction in varying degrees according to the severity of the phenotype.  Endocrine abnormalities, infections, renal function and medications can also play a role in the overall cardiac function.  For thalassaemia major, regular and adequate blood transfusions and iron chelation therapy are the mainstays of management. The approach to thalassaemia intermedia, today, is aimed at monitoring for complications and initiating, timely, regular transfusions and/or iron chelation therapy.  Once the patients are on transfusions, then they should be managed in the same way as the thalassaemia major patients.  If cardiac manifestations of dysfunction are present in either form of thalassaemia, high pre transfusion Hb levels need to be maintained in order to reduce cardiac output and appropriate intensive chelation therapy needs to be instituted.  In general recommendations on chelation, today, are usually made according to the Cardiac Magnetic Resonance findings, if available.  With the advances in the latter technology and the ability to tailor chelation therapy according to the MRI findings as well as the availability of three iron chelators, together with

  7. Dispepsia funcional: Nuevos conocimientos en la fisiopatogenia con implicaciones terapéuticas Functional dyspepsia: New pathophysiologic knowledge with therapeutic implications

    Directory of Open Access Journals (Sweden)

    Ana C. Hernando-Harder

    2007-08-01

    Full Text Available La dispepsia funcional (DF es un complejo sintomático, heterogéneo y altamente prevalente en la comunidad y en la práctica general. La DF se define como la presencia de síntomas que se piensan originados en la región gastroduodenal, en ausencia de enfermedad orgánica, sistémica o metabólica que pueda explicarlos. Entre los factores fisiopatogénicos se incluyen los trastornos de la acomodación y del vaciamiento gástrico, dismotilidad duodenal, sensibilidad aumentada, factores psicosociales y una asociación con un estado postinfeccioso. Se han hecho numerosos esfuerzos para aumentar los conocimientos en la etiopatogenia del síndrome, incluyendo nuevos aspectos moleculares y genéticos. Sin embargo, el mecanismo etiopatogénico exacto que causa los síntomas en un paciente individual sigue siendo difícil de identificar. Los nuevos criterios de Roma III redefinen y subclasifican la DF basándose en sus síntomas principales, lo cual es de gran valor para la investigación, el desarrollo y el control estandarizados de nuevas estrategias terapéuticas así como la formulación de recomendaciones para la práctica clínica. Las modalidades terapéuticas que se han empleado incluyen: modificaciones dietéticas, agentes farmacológicos dirigidos a actuar sobre distintos blancos dentro del aparato gastrointestinal, del sistema nervioso central y periférico, y terapias psicológicas incluyendo la hipnoterapia. Desafortunadamente, hasta la fecha, todas estas terapias han rendido solamente resultados marginales. Después de excluir enfermedad orgánica, es esencial que el paciente esté informado sobre la naturaleza y el pronóstico benignos de su enfermedad, y esto puede ser, a veces, la inversión más provechosa tanto para el paciente como para su médico.Functional dyspepsia (FD is a heterogeneous, highly prevalent symptom complex in the community and general practice. FD is defined as the presence of symptoms considered as originated in

  8. Photoreactivity of the occipital cortex measured by functional magnetic resonance imaging-blood oxygenation level dependent in migraine patients and healthy volunteers: pathophysiological implications.

    Science.gov (United States)

    Martín, Helena; Sánchez del Río, Margarita; de Silanes, Carlos López; Álvarez-Linera, Juan; Hernández, Juan Antonio; Pareja, Juan A

    2011-01-01

    The brain of migraineurs is hyperexcitable, particularly the occipital cortex, which is probably hypersensitive to light. Photophobia or hypersensitivity to light may be accounted for by an increased excitability of trigeminal, the visual pathways, and the occipital cortex. To study light sensitivity and photophobia by assessing the response to light stimuli with functional magnetic resonance imaging-blood oxygenation level dependent (fMRI-BOLD) of the occipital cortex in migraineurs and in controls. Also, to try to decipher the contribution of the occipital cortex to photophobia and whether the cortical reactivity of migraineurs may be part of a constitutional (defensive) mechanism or represents an acquired (sensitization) phenomenon. Nineteen patients with migraine (7 with aura and 12 without aura) and 19 controls were studied with fMRI-BOLD during 4 increasing light intensities. Eight axial image sections of 0.5 cm that covered the occipital cortex were acquired for each intensity. We measured the extension and the intensity of activation for every light stimuli. Photophobia was estimated according to a 0 to 3 semiquantitative scale of light discomfort. Migraineurs had a significantly higher number of fMRI-activated voxels at low (320.4 for migraineurs [SD = 253.9] and 164.3 for controls [SD = 102.7], P = .027) and medium-low luminance levels (501.2 for migraineurs [SD = 279.5] and 331.1 for controls [SD = 194.3], P = .034) but not at medium-high (579.5 for migraineurs [SD = 201.4] and 510.2 for controls [SD = 239.5], P = .410) and high light stimuli (496.2 for migraineurs [SD = 216.2] and 394.7 for controls [SD = 240], P = .210). No differences were found with respect to the voxel activation intensity (amplitude of the BOLD wave) between migraineurs and controls (8.98 [SD = 2.58] vs 7.99 [SD = 2.57], P = .25; 10.82 [SD = 3.27] vs 9.81 [SD = 3.19], P = .31; 11.90 [SD = 3.18] vs 11.06 [SD = 2.56], P = .62; 11.45 [SD = 2.65] vs 10.25 [SD = 2.22], P = .16). Light

  9. Assessing pathophysiology of cancer anorexia.

    Science.gov (United States)

    Laviano, Alessandro; Koverech, Angela; Seelaender, Marilia

    2017-09-01

    Cancer anorexia is a negative prognostic factor and is broadly defined as the loss of the interest in food. However, multiple clinical domains contribute to the phenotype of cancer anorexia. The characterization of the clinical and molecular pathophysiology of cancer anorexia may enhance the efficacy of preventive and therapeutic strategies. Clinical trials showed that cancer anorexia should be considered as an umbrella encompassing different signs and symptoms contributing to appetite disruption in cancer patients. Loss of appetite, early satiety, changes in taste and smell are determinants of cancer anorexia, whose presence should be assessed in cancer patients. Interestingly, neuronal correlates of cancer anorexia-related symptoms have been revealed by brain imaging techniques. The pathophysiology of cancer anorexia is complex and involves different domains influencing eating behavior. Limiting the assessment of cancer anorexia to questions investigating changes in appetite may impede correct identification of the targets to address.

  10. The pathophysiology of Peyronie's disease.

    Science.gov (United States)

    El-Sakka, Ahmed I; Salabas, Emre; Dinçer, Murat; Kadioglu, Ates

    2013-09-01

    To review the contemporary knowledge of the pathophysiology of Peyronie's disease (PD). Medline was searched for papers published in English from 2000 to March 2013, using the keywords 'Peyronie's disease' and 'pathophysiology'. More than 300 relevant articles were identified for the purpose of this review. Unfortunately only a few studies had a high level of evidence, and the remaining studies were not controlled in their design. Many theories have been proposed to explain the cause of PD, but the true pathogenesis of PD remains an enigma. Identifying particular growth factors and the specific genes responsible for the induction of PD have been the ultimate goal of research over the past several decades. This would provide the means to devise a possible gene therapy for this devastating condition. We discuss present controversies and new discoveries related to the pathophysiology of this condition. PD is one of the most puzzling diseases in urology. The pathogenesis remains uncertain and there is still controversy about the best management. The pathogenesis of PD has been explored in animal models, cell cultures and clinical trials, but the results have led to further questions. New research on the aetiology and pathogenesis of PD is needed, and which will hopefully improve the understanding and management for patients with this frustrating disease.

  11. Islet Amyloid Polypeptide: Structure, Function, and Pathophysiology

    Directory of Open Access Journals (Sweden)

    Rehana Akter

    2016-01-01

    Full Text Available The hormone islet amyloid polypeptide (IAPP, or amylin plays a role in glucose homeostasis but aggregates to form islet amyloid in type-2 diabetes. Islet amyloid formation contributes to β-cell dysfunction and death in the disease and to the failure of islet transplants. Recent work suggests a role for IAPP aggregation in cardiovascular complications of type-2 diabetes and hints at a possible role in type-1 diabetes. The mechanisms of IAPP amyloid formation in vivo or in vitro are not understood and the mechanisms of IAPP induced β-cell death are not fully defined. Activation of the inflammasome, defects in autophagy, ER stress, generation of reactive oxygen species, membrane disruption, and receptor mediated mechanisms have all been proposed to play a role. Open questions in the field include the relative importance of the various mechanisms of β-cell death, the relevance of reductionist biophysical studies to the situation in vivo, the molecular mechanism of amyloid formation in vitro and in vivo, the factors which trigger amyloid formation in type-2 diabetes, the potential role of IAPP in type-1 diabetes, the development of clinically relevant inhibitors of islet amyloidosis toxicity, and the design of soluble, bioactive variants of IAPP for use as adjuncts to insulin therapy.

  12. Physiological and pathophysiological functions of SIRT1.

    Science.gov (United States)

    Wojcik, M; Mac-Marcjanek, K; Wozniak, L A

    2009-03-01

    The human SIRT1 is a nuclear enzyme from the class III histone deacetylases (HDACs) which is widely distributed in mammalian tissues. A variety of SIRT1 substrates hints that this protein is involved in the regulation of diverse biological processes, including cell survival, apoptosis, gluconeogenesis, adipogenesis, lipolysis, stress resistance, muscle differentiation, and insulin secretion. This review emphasizes catalytic properties of SIRT1 and its role in apoptosis, insulin pathway, and neuron survival.

  13. An update on pancreatic pathophysiology (do we have to rewrite pancreatic pathophysiology?).

    Science.gov (United States)

    Hammer, Heinz F

    2014-02-01

    This review focuses on seven aspects of physiology and pathophysiology of the exocrine pancreas that have been intensively discussed and studied within the past few years: (1) the role of neurohormonal mechanisms like melatonin, leptin, or ghrelin in the stimulation of pancreatic enzyme secretion; (2) the initiation processes of acute pancreatitis, like fusion of zymogen granules with lysosomes leading to intracellular activation of trypsinogen by the lysosomal enzyme cathepsin B, or autoactivation of trypsinogen; (3) the role of genes in the pathogenesis of acute pancreatitis; (4) the role of alcohol and constituents of alcoholic beverages in the pathogenesis of acute pancreatitis; (5) the role of pancreatic hypertension, neuropathy, and central mechanisms for the pathogenesis of pain in chronic pancreatitis; (6) the relation between exocrine pancreatic function and diabetes mellitus; and (7) pathophysiology, diagnosis and treatment of pancreatic steatorrhea.

  14. Adropin – physiological and pathophysiological role

    Directory of Open Access Journals (Sweden)

    Natalia Marczuk

    2016-09-01

    Full Text Available Adropin is a peptide hormone that was discovered in 2008 by Kumar et al. This protein consists of 76 amino acids, and it was originally described as a secreted peptide, with residues 1-33 encoding a secretory signal peptide sequence. The amino acid sequence of this protein in humans, mice and rats is identical. While our knowledge of the exact physiological roles of this poorly understood peptide continues to evolve, recent data suggest a role in energy homeostasis and the control of glucose and fatty acid metabolism. This protein is encoded by the Enho gene, which is expressed primarily in the liver and the central nervous system. The regulation of adropin secretion is controversial. Adropin immunoreactivity has been reported by several laboratories in the circulation of humans, non-human primates and rodents. However, more recently it has been suggested that adropin is a membrane-bound protein that modulates cell-cell communication. Moreover, adropin has been detected in various tissues and body fluids, such as brain, cerebellum, liver, kidney, heart, pancreas, small intestine, endothelial cells, colostrum, cheese whey and milk. The protein level, as shown by previous research, changes in various physiological and pathophysiological conditions. Adropin is involved in carbohydrate-lipid metabolism, metabolic diseases, central nervous system function, endothelial function and cardiovascular disease. The knowledge of this interesting protein, its exact role and mechanism of action is insufficient. This article provides an overview of the existing literature about the role of adropin, both in physiological and pathophysiological conditions.

  15. Pathophysiology and Treatment of Alien Hand Syndrome

    Directory of Open Access Journals (Sweden)

    Harini Sarva

    2014-12-01

    Full Text Available Background: Alien hand syndrome (AHS is a disorder of involuntary, yet purposeful, hand movements that may be accompanied by agnosia, aphasia, weakness, or sensory loss. We herein review the most reported cases, current understanding of the pathophysiology, and treatments.Methods: We performed a PubMed search in July of 2014 using the phrases “alien hand syndrome,” “alien hand syndrome pathophysiology,” “alien hand syndrome treatment,” and “anarchic hand syndrome.” The search yielded 141 papers (reviews, case reports, case series, and clinical studies, of which we reviewed 109. Non‐English reports without English abstracts were excluded.Results: Accumulating evidence indicates that there are three AHS variants: frontal, callosal, and posterior. Patients may demonstrate symptoms of multiple types; there is a lack of correlation between phenomenology and neuroimaging findings. Most pathologic and functional imaging studies suggest network disruption causing loss of inhibition as the likely cause. Successful interventions include botulinum toxin injections, clonazepam, visuospatial coaching techniques, distracting the affected hand, and cognitive behavioral therapy.Discussion: The available literature suggests that overlap between AHS subtypes is common. The evidence for effective treatments remains anecdotal, and, given the rarity of AHS, the possibility of performing randomized, placebo‐controlled trials seems unlikely. As with many other interventions for movement disorders, identifying the specific functional impairments caused by AHS may provide the best guidance towards individualized supportive care.

  16. Diagnosing the pathophysiologic mechanisms of nocturnal polyuria.

    Science.gov (United States)

    Goessaert, An-Sofie; Krott, Louise; Hoebeke, Piet; Vande Walle, Johan; Everaert, Karel

    2015-02-01

    Diagnosis of nocturnal polyuria (NP) is based on a bladder diary. Addition of a renal function profile (RFP) for analysis of concentrating and solute-conserving capacity allows differentiation of NP pathophysiology and could facilitate individualized treatment. To map circadian rhythms of water and solute diuresis by comparing participants with and without NP. This prospective observational study was carried out in Ghent University Hospital between 2011 and 2013. Participants with and without NP completed a 72-h bladder dairy. RFP, free water clearance (FWC), and creatinine, solute, sodium, and urea clearance were measured for all participants. The study participants were divided into those with (n=77) and those without (n=35) NP. The mean age was 57 yr (SD 16 yr) and 41% of the participants were female. Compared to participants without NP, the NP group exhibited a higher diuresis rate throughout the night (p=0.015); higher FWC (p=0.013) and lower osmolality (p=0.030) at the start of the night; and persistently higher sodium clearance during the night (p<0.001). The pathophysiologic mechanism of NP was identified as water diuresis alone in 22%, sodium diuresis alone in 19%, and a combination of water and sodium diuresis in 47% of the NP group. RFP measurement in first-line NP screening to discriminate between water and solute diuresis as pathophysiologic mechanisms complements the bladder diary and could facilitate optimal individualized treatment of patients with NP. We evaluated eight urine samples collected over 24h to detect the underlying problem in NP. We found that NP can be attributed to water or sodium diuresis or a combination of both. This urinalysis can be used to adapt treatment according to the underlying mechanism in patients with bothersome consequences of NP, such as nocturia and urinary incontinence. Copyright © 2014 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  17. Contrast medium-induced nephropathy: the pathophysiology

    DEFF Research Database (Denmark)

    Persson, P B; Tepel, Martin

    2006-01-01

    A widespread, rather general, definition of contrast-induced nephropathy (CIN) is an impairment in renal function occurring within 3 days following the intravascular administration of contrast media (CM) and the absence of an alternative aetiology. In spite of the vast clinical importance of CIN...... haemodynamics, regional hypoxia, auto-, and paracrine factors (adenosine, endothelin, reactive oxygen species) to direct cytotoxic effects. Although these potential mediators of CIN will be discussed separately, several factors may act in concert to perturb kidney function after exposure to contrast media. From...... the current knowledge of the mechanisms causing CIN, it is not possible to recommend a certain class of contrast media, except to avoid large doses of CM of the first generation. From a pathophysiological perspective, volume expansion is effective in avoiding CIN, since water permeability of the collecting...

  18. Molecular pathophysiology of cerebral edema

    Science.gov (United States)

    Gerzanich, Volodymyr; Simard, J Marc

    2015-01-01

    Advancements in molecular biology have led to a greater understanding of the individual proteins responsible for generating cerebral edema. In large part, the study of cerebral edema is the study of maladaptive ion transport. Following acute CNS injury, cells of the neurovascular unit, particularly brain endothelial cells and astrocytes, undergo a program of pre- and post-transcriptional changes in the activity of ion channels and transporters. These changes can result in maladaptive ion transport and the generation of abnormal osmotic forces that, ultimately, manifest as cerebral edema. This review discusses past models and current knowledge regarding the molecular and cellular pathophysiology of cerebral edema. PMID:26661240

  19. Narcolepsy: Pathophysiology and Neuropsychological Changes

    Directory of Open Access Journals (Sweden)

    Angela Naumann

    2003-01-01

    Full Text Available Narcolepsy is now recognized as a distinctive disorder with specific pathophysiology and neurochemical abnormalities. Findings on the role of the neuropeptide hypocretin are opening new avenues of research and new strategies for therapy. Recently, neuropsychological and electrophysiological studies have provided evidence for reduced memory performance on standard memory tests in addition to subjective complaints of forgetfulness which may be related to changes in attentional processing. Further studies are, however, necessary to clarify the neuropsychological profile in narcolepsy. This review focuses on the recent advances in understanding narcolepsy.

  20. Pathophysiology and management of pediatric ascites.

    Science.gov (United States)

    Sabri, Mahmoud; Saps, Miguel; Peters, John M

    2003-06-01

    Ascites accumulation is the product of a complex process involving hepatic, renal, systemic, hemodynamic, and neurohormonal factors. The main pathophysiologic theories of ascites formation include the "underfill," "overflow," and peripheral arterial vasodilation hypotheses. These theories are not necessarily mutually exclusive and are linked at some level by a common pathophysiologic thread: The body senses a decreased effective arterial blood volume, leading to stimulation of the sympathetic nervous system, arginine-vasopressin feedback loops, and the renin-angiotensin-aldosterone system. Cornerstones of ascites management include dietary sodium restriction and diuretics. Spironolactone is generally tried initially, with furosemide added if clinical response is suboptimal. More refractory patients require large-volume paracentesis (LVP) accompanied by volume expansion with albumin. Placement of a transjugular intrahepatic portosystemic shunt is reserved for individuals with compensated liver function who require very frequent sessions of LVP. Peritoneovenous shunts are not used in contemporary ascites management. Liver transplantation remains the definitive therapy for refractory ascites. Although treatment of ascites fails to improve survival, it benefits quality of life and limits the development of such complications as spontaneous bacterial peritonitis.

  1. Pathophysiology of Chemotherapy-Induced Peripheral Neuropathy

    Directory of Open Access Journals (Sweden)

    Hana Starobova

    2017-05-01

    Full Text Available Chemotherapy-induced neuropathy is a common, dose-dependent adverse effect of several antineoplastics. It can lead to detrimental dose reductions and discontinuation of treatment, and severely affects the quality of life of cancer survivors. Clinically, chemotherapy-induced peripheral neuropathy presents as deficits in sensory, motor, and autonomic function which develop in a glove and stocking distribution due to preferential effects on longer axons. The pathophysiological processes are multi-factorial and involve oxidative stress, apoptotic mechanisms, altered calcium homeostasis, axon degeneration and membrane remodeling as well as immune processes and neuroinflammation. This review focusses on the commonly used antineoplastic substances oxaliplatin, cisplatin, vincristine, docetaxel, and paclitaxel which interfere with the cancer cell cycle—leading to cell death and tumor degradation—and cause severe acute and chronic peripheral neuropathies. We discuss drug mechanism of action and pharmacokinetic disposition relevant to the development of peripheral neuropathy, the epidemiology and clinical presentation of chemotherapy-induced neuropathy, emerging insight into genetic susceptibilities as well as current understanding of the pathophysiology and treatment approaches.

  2. The Pathophysiology of Eosinophilic Esophagitis

    Directory of Open Access Journals (Sweden)

    Daniel Avi Lemberg

    2014-05-01

    Full Text Available Eosinophilic Esophagitis (EoE is an emerging disease characterised by esophageal eosinophilia (>15eos/hpf, lack of responsiveness to acid-suppressive medication and is managed by allergen elimination and anti-allergy therapy. Although the pathophysiology of EoE is currently unsubstantiated, evidence implicates food and aeroallergen hypersensitivity in genetically predisposed individuals as contributory factors. Genome-wide expression analyses have isolated a remarkably conserved gene-expression profile irrespective of age and gender, suggesting a genetic contribution. EoE has characteristics of mainly TH2 type immune responses but also some TH1 cytokines, which appear to strongly contribute to tissue fibrosis, with esophageal epithelial cells providing a hospitable environment for this inflammatory process. Eosinophil-degranulation products appear to play a central role in tissue remodeling in EoE. This remodeling and dysregulation predisposes to fibrosis. Mast cell-derived molecules such as histamine may have an effect on enteric nerves and may also act in concert with TGF-β to interfere with esophageal musculature. Additionally, the esophageal epithelium may facilitate the inflammatory process under pathogenic contexts such as in EoE. This article aims to discuss the contributory factors in the pathophysiology of EoE.

  3. New insights into pathophysiology of vestibular migraine

    Directory of Open Access Journals (Sweden)

    Juan Manuel Espinosa-Sanchez

    2015-02-01

    Full Text Available Vestibular migraine (VM is a common disorder in which genetic, epigenetic and environmental factors probably contribute to its development. The pathophysiology of VM is unknown; nevertheless in the last few years, several studies are contributing to understand the neurophysiological pathways involved in VM. The current hypotheses are mostly based on the knowledge of migraine itself. The evidence of trigeminal innervation of the labyrinth vessels and the localization of vasoactive neuropeptides in the perivascular afferent terminals of these trigeminal fibers support the involvement of the trigemino-vascular system. The neurogenic inflammation triggered by activation of the trigeminal-vestibulocochlear reflex, with the subsequent inner ear plasma protein extravasation and the release of inflammatory mediators, can contribute to a sustained activation and sensitization of the trigeminal primary afferent neurons explaining VM symptoms. The reciprocal connections between brainstem vestibular nuclei and the structures that modulate trigeminal nociceptive inputs (rostral ventromedial medulla, ventrolateral periaqueductal grey, locus coeruleus and nucleus raphe magnus are critical to understand the pathophysiology of VM. Although cortical spreading depression can affect cortical areas involved in processing vestibular information, functional neuroimaging techniques suggest a dysmodulation in the multimodal sensory integration and processing of vestibular and nociceptive information, resulting from a vestibulo-thalamo-cortical dysfunction, as the pathogenic mechanism underlying VM. The elevated prevalence of VM suggests that multiple functional variants may confer a genetic susceptibility leading to a dysregulation of excitatory-inhibitory balance in brain structures involved in the processing of sensory information, vestibular inputs and pain. The interactions among several functional and structural neural networks could explain the pathogenic

  4. Fisiopatologia da enxaqueca Migraine pathophysiology

    Directory of Open Access Journals (Sweden)

    MAURICE B. VINCENT

    1998-12-01

    Full Text Available A fisiopatologia da enxaqueca ainda não foi completamente elucidada. As principais estruturas envolvidas parecem ser o sistema nervoso central (córtex e tronco cerebral, o sistema trigeminovascular e os vasos correspondentes, outras fibras autonômicas que inervam estes vasos, e os vários agentes vasoativos locais, como a SP, CGRP, NO, VIP, NPY, ACh, NA, NKA, entre outros. A depressão alastrante é o fenômeno neurológico que provavelmente justifica achados experimenais e clínicos na enxaqueca. Ela tem velocidade de propagação semelhante à aura, ativa o núcleo espinhal do trigêmeo e está relacionada à liberação de CGRP e NO. Alterações circulatórias detectadas por métodos complementares reforçam o papel da depressão alastrante. A identificação de anormalidades em pelo menos três loci (cromossomas 19 e 1 na enxaqueca hemiplégica familiar ocorreu recentemente. Elas estão relacionadas a anormalidades nos canais de cálcio voltagem dependentes tipo P/Q, específicos do sistema nervoso central, que regulam a liberação de vários neurotransmissores, incluindo possivelmente a serotonina. A exemplo de outras anormalidades neurológicas paroxísticas que resultam da hiperexcitabilidade da membrana plasmática, é possível que a enxaqueca ocorra devido a uma desordem de canais iônicos.The pathophysiology of migraine is not yet fully understood. The most important structures involved seem to be the central nervous system (cortex and brain stem, the trigeminovascular system and related cranial arteries, other autonomic fibres innervating such vessels, and various local vasoactive agents, including SP, CGRP, NO, VIP, NPY, ACh, NA, NKA, among others. The spreading depression phenomenon may explain clinical as well experimental findings in migraine. Its propagation velocity mirrors what is found in clinical aura, it may activate the spinal trigeminal nucleus and may induce CGRP and NO release. Circulatory changes detected with

  5. Pathophysiology of MDS: genomic aberrations.

    Science.gov (United States)

    Ichikawa, Motoshi

    2016-01-01

    Myelodysplastic syndromes (MDS) are characterized by clonal proliferation of hematopoietic stem/progenitor cells and their apoptosis, and show a propensity to progress to acute myelogenous leukemia (AML). Although MDS are recognized as neoplastic diseases caused by genomic aberrations of hematopoietic cells, the details of the genetic abnormalities underlying disease development have not as yet been fully elucidated due to difficulties in analyzing chromosomal abnormalities. Recent advances in comprehensive analyses of disease genomes including whole-genome sequencing technologies have revealed the genomic abnormalities in MDS. Surprisingly, gene mutations were found in approximately 80-90% of cases with MDS, and the novel mutations discovered with these technologies included previously unknown, MDS-specific, mutations such as those of the genes in the RNA-splicing machinery. It is anticipated that these recent studies will shed new light on the pathophysiology of MDS due to genomic aberrations.

  6. Preeclampsia: from Pathophysiology to Treatment

    Directory of Open Access Journals (Sweden)

    Kaculini Enton

    2016-12-01

    Full Text Available Preeclampsia is a multisystem disorder unique to human pregnancy and is its most common glomerular complication. It occurs in 2% to 8% of pregnancies and is a major contributor to maternal mortality worldwide. Although the pathophysiology of this syndrome is not fully understood, many pathogenetic mechanisms are involved in this disorder. The role of the placenta is crucial in the development of this disorder. Some pathogenetic mechanisms involved in this disease comprise defective deep placentation, autoantibodies to type-1 angiotensin II receptor, endothelial dysfunction, oxidative stress, platelet and thrombin activation, intravascular inflammation, and the imbalance between angiogenic and antiangiogenic factors which is thought to be one of the most crucial mechanisms. Further understanding of the full picture could enhance our current knowledge of the pathogenesis of preeclampsia and improve its treatment. Thus, based on specific biomarkers the diagnosis and subclassification of preeclampsia might be more accurate in identifying patients at risk, monitoring disease progression and providing effective interventions

  7. Tuberculosis 2: Pathophysiology and microbiology of pulmonary ...

    African Journals Online (AJOL)

    2005-08-01

    Aug 1, 2005 ... February 2013 Downloaded from www.southsudanmedicaljournal.com. MaIN arTIClES. 10. Tuberculosis 2: Pathophysiology and microbiology of pulmonary tuberculosis. Robert L. Serafino Wania MBBS, MrCP, MSc (Trop Med). Pathophysiology. Inhalation of Mycobacterium tuberculosis leads to one of.

  8. Pathophysiologic mechanisms of biomedical nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liming, E-mail: wangliming@ihep.ac.cn; Chen, Chunying, E-mail: chenchy@nanoctr.cn

    2016-05-15

    Nanomaterials (NMs) have been widespread used in biomedical fields, daily consuming, and even food industry. It is crucial to understand the safety and biomedical efficacy of NMs. In this review, we summarized the recent progress about the physiological and pathological effects of NMs from several levels: protein-nano interface, NM-subcellular structures, and cell–cell interaction. We focused on the detailed information of nano-bio interaction, especially about protein adsorption, intracellular trafficking, biological barriers, and signaling pathways as well as the associated mechanism mediated by nanomaterials. We also introduced related analytical methods that are meaningful and helpful for biomedical effect studies in the future. We believe that knowledge about pathophysiologic effects of NMs is not only significant for rational design of medical NMs but also helps predict their safety and further improve their applications in the future. - Highlights: • Rapid protein adsorption onto nanomaterials that affects biomedical effects • Nanomaterials and their interaction with biological membrane, intracellular trafficking and specific cellular effects • Nanomaterials and their interaction with biological barriers • The signaling pathways mediated by nanomaterials and related biomedical effects • Novel techniques for studying translocation and biomedical effects of NMs.

  9. Pathophysiologic mechanisms of biomedical nanomaterials

    International Nuclear Information System (INIS)

    Wang, Liming; Chen, Chunying

    2016-01-01

    Nanomaterials (NMs) have been widespread used in biomedical fields, daily consuming, and even food industry. It is crucial to understand the safety and biomedical efficacy of NMs. In this review, we summarized the recent progress about the physiological and pathological effects of NMs from several levels: protein-nano interface, NM-subcellular structures, and cell–cell interaction. We focused on the detailed information of nano-bio interaction, especially about protein adsorption, intracellular trafficking, biological barriers, and signaling pathways as well as the associated mechanism mediated by nanomaterials. We also introduced related analytical methods that are meaningful and helpful for biomedical effect studies in the future. We believe that knowledge about pathophysiologic effects of NMs is not only significant for rational design of medical NMs but also helps predict their safety and further improve their applications in the future. - Highlights: • Rapid protein adsorption onto nanomaterials that affects biomedical effects • Nanomaterials and their interaction with biological membrane, intracellular trafficking and specific cellular effects • Nanomaterials and their interaction with biological barriers • The signaling pathways mediated by nanomaterials and related biomedical effects • Novel techniques for studying translocation and biomedical effects of NMs

  10. Pathophysiological significance and therapeutic applications of snake venom protease inhibitors.

    Science.gov (United States)

    Thakur, Rupamoni; Mukherjee, Ashis K

    2017-06-01

    Protease inhibitors are important constituents of snake venom and play important roles in the pathophysiology of snakebite. Recently, research on snake venom protease inhibitors has provided valuable information to decipher the molecular details of various biological processes and offer insight for the development of some therapeutically important molecules from snake venom. The process of blood coagulation and fibrinolysis, in addition to affecting platelet function, are well known as the major targets of several snake venom protease inhibitors. This review summarizes the structure-functional aspects of snake venom protease inhibitors that have been described to date. Because diverse biological functions have been demonstrated by protease inhibitors, a comparative overview of their pharmacological and pathophysiological properties is also highlighted. In addition, since most snake venom protease inhibitors are non-toxic on their own, this review evaluates the different roles of individual protease inhibitors that could lead to the identification of drug candidates and diagnostic molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. TFOS DEWS II pathophysiology report.

    Science.gov (United States)

    Bron, Anthony J; de Paiva, Cintia S; Chauhan, Sunil K; Bonini, Stefano; Gabison, Eric E; Jain, Sandeep; Knop, Erich; Markoulli, Maria; Ogawa, Yoko; Perez, Victor; Uchino, Yuichi; Yokoi, Norihiko; Zoukhri, Driss; Sullivan, David A

    2017-07-01

    The TFOS DEWS II Pathophysiology Subcommittee reviewed the mechanisms involved in the initiation and perpetuation of dry eye disease. Its central mechanism is evaporative water loss leading to hyperosmolar tissue damage. Research in human disease and in animal models has shown that this, either directly or by inducing inflammation, causes a loss of both epithelial and goblet cells. The consequent decrease in surface wettability leads to early tear film breakup and amplifies hyperosmolarity via a Vicious Circle. Pain in dry eye is caused by tear hyperosmolarity, loss of lubrication, inflammatory mediators and neurosensory factors, while visual symptoms arise from tear and ocular surface irregularity. Increased friction targets damage to the lids and ocular surface, resulting in characteristic punctate epithelial keratitis, superior limbic keratoconjunctivitis, filamentary keratitis, lid parallel conjunctival folds, and lid wiper epitheliopathy. Hybrid dry eye disease, with features of both aqueous deficiency and increased evaporation, is common and efforts should be made to determine the relative contribution of each form to the total picture. To this end, practical methods are needed to measure tear evaporation in the clinic, and similarly, methods are needed to measure osmolarity at the tissue level across the ocular surface, to better determine the severity of dry eye. Areas for future research include the role of genetic mechanisms in non-Sjögren syndrome dry eye, the targeting of the terminal duct in meibomian gland disease and the influence of gaze dynamics and the closed eye state on tear stability and ocular surface inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. An update on oxidative stress-mediated organ pathophysiology.

    Science.gov (United States)

    Rashid, Kahkashan; Sinha, Krishnendu; Sil, Parames C

    2013-12-01

    Exposure to environmental pollutants and drugs can result in pathophysiological situations in the body. Research in this area is essential as the knowledge on cellular survival and death would help in designing effective therapeutic strategies that are needed for the maintenance of the normal physiological functions of the body. In this regard, naturally occurring bio-molecules can be considered as potential therapeutic targets as they are normally available in commonly consumed foodstuffs and are thought to have minimum side effects. This review article describes the detailed mechanisms of oxidative stress-mediated organ pathophysiology and the ultimate fate of the cells either to survive or to undergo necrotic or apoptotic death. The mechanisms underlying the beneficial role of a number of naturally occurring bioactive molecules in oxidative stress-mediated organ pathophysiology have also been included in the review. The review provides useful information about the recent progress in understanding the mechanism(s) of various types of organ pathophysiology, the complex cross-talk between these pathways, as well as their modulation in stressed conditions. Additionally, it suggests possible therapeutic applications of a number of naturally occurring bioactive molecules in conditions involving oxidative stress. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Stroke MRI: pathophysiology, potential and perspectives

    International Nuclear Information System (INIS)

    Fiehler, J.; Kucinski, T.; Zeumer, H.

    2004-01-01

    Magnetic resonance imaging (MRT) is increasingly utilized as the primary imaging modality in major stroke centers. The ability to depict several aspects of individual pathophysiology makes the use of MRI in stroke both attractive and complex. Profound knowledge of the pathophysiology of the imaging findings is crucial for a rational diagnostic workup. The pathophysiology of MRI in stroke will be reviewed considering recent experiences in clinical application, and the potential of stroke MRI will be assessed. Further perspectives like application of 'blood oxygen level dependent' (BOLD) and the use of multiparametric prediction maps will be discussed. (orig.) [de

  14. Chemical sensitivity: pathophysiology or pathopsychology?

    Science.gov (United States)

    Genuis, Stephen J

    2013-05-01

    symptoms in some cases. Sustained resolution of the CS state occurs after successful elimination of the accrued body burden of toxicants through natural mechanisms of toxicant bioelimination and/or interventions of clinical detoxification. Despite extensive clinical evidence to support the veracity of this clinical state, many members of the medical community are reluctant to accept this condition as a pathophysiologic disorder. The emerging problem of ubiquitous adverse toxicant exposures in modern society has resulted in escalating numbers of individuals developing a CS disorder. As usual in medical history, iconoclastic ideas and emerging evidence regarding novel disease mechanisms, such as the pathogenesis of CS, have been met with controversy, resistance, and sluggish knowledge translation. Copyright © 2013 Elsevier HS Journals, Inc. All rights reserved.

  15. Pathophysiological relationships between heart failure and depression and anxiety.

    Science.gov (United States)

    Chapa, Deborah W; Akintade, Bimbola; Son, Heesook; Woltz, Patricia; Hunt, Dennis; Friedmann, Erika; Hartung, Mary Kay; Thomas, Sue Ann

    2014-04-01

    Depression and anxiety are common comorbid conditions in patients with heart failure. Patients with heart failure and depression have increased mortality. The association of anxiety with increased mortality in patients with heart failure is not established. The purpose of this article is to illustrate the similarities of the underlying pathophysiology of heart failure, depression, and anxiety by using the Biopsychosocial Holistic Model of Cardiovascular Health. Depression and anxiety affect biological processes of cardiovascular function in patients with heart failure by altering neurohormonal function via activation of the hypothalamic-pituitary-adrenal axis, autonomic dysregulation, and activation of cytokine cascades and platelets. Patients with heart failure and depression or anxiety may exhibit a continued cycle of heart failure progression, increased depression, and increased anxiety. Understanding the underlying pathophysiological relationships in patients with heart failure who experience comorbid depression and/or anxiety is critical in order to implement appropriate treatments, educate patients and caregivers, and educate other health professionals.

  16. Pancreatitis in dogs and cats – definitions and pathophysiology

    OpenAIRE

    Watson, Penelope Jayne

    2014-01-01

    Pancreatitis, or inflammation of the pancreas, is commonly seen in dogs and cats and presents a spectrum of disease severities from acute to chronic and mild to severe. It is usually sterile, but the causes and pathophysiology remain poorly understood. The acute end of the disease spectrum is associated with a high mortality but the potential for complete recovery of organ structure and function if the animal survives. At the other end of the spectrum, chronic pancreatitis in either species c...

  17. A vicious circle in chronic lymphoedema pathophysiology?

    DEFF Research Database (Denmark)

    Cucchi, F; Rossmeislova, L; Simonsen, L

    2017-01-01

    Chronic lymphoedema is a disease caused by a congenital or acquired damage to the lymphatic system and characterized by complex chains of pathophysiologic events such as lymphatic fluid stasis, chronic inflammation, lymphatic vessels impairment, adipose tissue deposition and fibrosis. These event....... Together, these observations indicate strong reciprocal relationship between lymphatics and adipose tissue and suggest a possible key role of the adipocyte in the pathophysiology of chronic lymphoedema's vicious circle....

  18. Orthostatic intolerance: potential pathophysiology and therapy.

    Science.gov (United States)

    Lu, Chih-Cherng; Tseng, Ching-Jiunn; Tang, Hung-Shang; Tung, Che-Se

    2004-09-30

    Orthostatic intolerance affects an estimated 1 in 500 persons and causes a wide range of disabilities. After essential hypertension, it is the most frequently encountered dysautonomia, accounting for the majority of patients referred to centers specializing in autonomic disorders. Patients are typically young females with symptoms such as dizziness, visual changes, head and neck discomfort, poor concentration, fatigue, palpitations, tremulousness, anxiety, and, in some cases, syncope. Syncope is the most hazardous symptom of orthostatic intolerance, presumably occurring because of impaired cerebral perfusion and in part to compensatory autonomic mechanisms. The etiology of this syndrome is still unclear but is heterogeneous. Orthostatic intolerance used to be characterized by an overall enhancement of noradrenergic tone at rest in some patients and by a patchy dysautonomia of postganglionic sympathetic fibers with a compensatory cardiac sympathetic activation in others. However, recent advances in molecular genetics are improving our understanding of orthostatic intolerance, such as several genetic diseases (such as Ehler-Danlos syndrome and norepinephrine transporter deficiency) presenting with symptoms typical of orthostatic intolerance. Future work will include investigation of genetic functional mutations underlying interindividual differences in autonomic cardiovascular control, body fluid regulation, and vascular regulation in orthostatic intolerance patients. The goal of this review article is to describe recent advances in understanding the pathophysiological mechanisms of orthostatic intolerance and their clinical significance.

  19. [Pathophysiology and new treatment of uveitis].

    Science.gov (United States)

    Yanai, Ryoji; Takeda, Atsunobu; Yoshimura, Takeru; Sonoda, Koh-Hei

    2014-01-01

    Uveitis is narrow-defined inflammation of the uvea, also clinically include all inflammatory conditions in the eye. Uveitis may occur as a consequence of various causes and background, such as autoimmune diseases, infections, and hematopoietic malignancy. We have to treat uveitis not only controlling the inflammation but also maintaining up the visual function of the eye because the most uveitis is chronic and relapsing inflammatory disorder. Behçét's disease is a systemic disease and results in loss of vision without adequate treatment. Behçét's disease was a representative of vision loss uveitis because Behçét's patient usually had treatment resistance of conventional treatment, such as colchicine and cyclosporine. However, biological therapy with TNF-α, which started from 2007, has revolutionized the treatment strategy of Behçét's disease. It is not too much to say that Behçét's patient is free from fear of vision loss by the dramatic decrease of ocular attach. Biological therapy is not approved as a treatment of uveitis except Behçét's disease. Some protracted cases of Sarcoidosis and Vogt-Koyanagi-Harada disease are resistant to corticosteroid therapy and require new treatment. In this review, we discuss the pathophysiology of uveitis and report new treatment of Behçét's disease by biological therapy.

  20. Orexinergic system and pathophysiology of epilepsy.

    Science.gov (United States)

    Doreulee, N; Alania, M; Vashalomidze, G; Skhirtladze, E; Kapanadze, Ts

    2010-11-01

    Neuropeptids orexins, also known as the hypocretins, are expressed in the lateral hypothalamus. Orexin-containing cells project widely throughout the brains, are crucial for the regulation of wakefulness and dysfunction of this system is associated with pathophysiology of narcolepsy-cataplexy. Orexin neurons play an important role in motivation, feeding and adaptive behaviors. Distribution of orexinergic receptors in the hippocampus tended to the ideas that orexins might be involved in the functions relating to the hippocampus. Effects of neuropeptide orexin-A on epileptiform activity in hippocampal slices were investigated. 500 µm thick hippocampal slices from 8-10 week-old rodents were used. Field excitatory postsynaptic potential (pop-fEPSP) and population spike in CA1 of hippocamopus were registered using standard protocol of in vitro electrophysiological experiments. Initial slope of the fEPSP and amplitude of II pop-spike were measured. Bursting neurons in CA3 were recorded in modified saline. We have found that orexin-A decreases duration/amplitude of multiple discharges of pop-spikes and inhibits spontaneous epileptiform afterdischarges induced by bicuculline methiodide in CA1. Orexin-A also modulates the frequency of discharges of bursting neurons in CA3. Our results suggest possible involvement of orexinergic system in antiepileptic action. Supported by ISTC Grant G-1318.

  1. The pathophysiology of trauma-induced coagulopathy.

    Science.gov (United States)

    Frith, Daniel; Brohi, Karim

    2012-12-01

    Transfusion paradigms and protocols have evolved at a rapid pace in the last few years to ameliorate the adverse effects of trauma-induced coagulopathy (TIC). This has occurred despite fragmented and inadequate knowledge of the underlying pathophysiology that they are supposed to treat. This review will collate and assimilate the most recent data about TIC in order to present our state-of-the-art understanding of this condition. TIC was conventionally construed simply as depletion, dysfunction or dilution of procoagulant factors. However, contemporary understanding recognizes it as an imbalance of the dynamic equilibrium between procoagulant factors, anticoagulant factors, platelets, endothelium and fibrinolysis. The endogenous component of TIC (acute traumatic coagulopathy) is not merely a consumptive coagulopathy, but is characterized by isolated factor V inhibition, dysfibrinogenaemia, systemic anticoagulation, impaired platelet function and hyperfibrinolysis. Acute traumatic coagulopathy then becomes exacerbated by hypothermia, acidosis and resuscitation with hypocoagulable fluids. Further improvement in the outcome from trauma-haemorrhage is possible with more refined and tailored haemostatic resuscitation. Achieving this will depend upon a better understanding of the haemostatic defects that develop after injury.

  2. Altered Mitochondrial Dynamics and TBI Pathophysiology

    Directory of Open Access Journals (Sweden)

    Tara Diane Fischer

    2016-03-01

    Full Text Available Mitochondrial function is intimately linked to cellular survival, growth, and death. Mitochondria not only generate ATP from oxidative phosphorylation, but also mediate intracellular calcium buffering, generation of reactive oxygen species (ROS, and apoptosis. Electron leakage from the electron transport chain, especially from damaged or depolarized mitochondria, can generate excess free radicals that damage cellular proteins, DNA, and lipids. Furthermore, mitochondrial damage releases pro-apoptotic factors to initiate cell death. Previous studies have reported that traumatic brain injury (TBI reduces mitochondrial respiration, enhances production of ROS, and triggers apoptotic cell death, suggesting a prominent role of mitochondria in TBI pathophysiology. Mitochondria maintain cellular energy homeostasis and health via balanced processes of fusion and fission, continuously dividing and fusing to form an interconnected network throughout the cell. An imbalance of these processes, particularly an excess of fission, can be detrimental to mitochondrial function, causing decreased respiration, ROS production, and apoptosis. Mitochondrial fission is regulated by the cytosolic GTPase, dynamin-related protein 1 (Drp1, which translocates to the mitochondrial outer membrane to initiate fission. Aberrant Drp1 activity has been linked to excessive mitochondrial fission and neurodegeneration. Measurement of Drp1 levels in purified hippocampal mitochondria showed an increase in TBI animals as compared to sham controls. Analysis of cryo-electron micrographs of these mitochondria also showed that TBI caused an initial increase in the length of hippocampal mitochondria at 24 hours post-injury, followed by a significant decrease in length at 72 hours. Post-TBI administration of Mdivi-1, a pharmacological inhibitor of Drp1, prevented this decrease in mitochondria length. Mdivi-1 treatment also reduced the loss of newborn neurons in the hippocampus and improved

  3. Pathophysiological characterization of asthma transitions across adolescence.

    Science.gov (United States)

    Arshad, Syed Hasan; Raza, Abid; Lau, Laurie; Bawakid, Khalid; Karmaus, Wilfried; Zhang, Hongmei; Ewart, Susan; Patil, Veersh; Roberts, Graham; Kurukulaaratchy, Ramesh

    2014-11-29

    Adolescence is a period of change, which coincides with disease remission in a significant proportion of subjects with childhood asthma. There is incomplete understanding of the changing characteristics underlying different adolescent asthma transitions. We undertook pathophysiological characterization of transitional adolescent asthma phenotypes in a longitudinal birth cohort. The Isle of Wight Birth Cohort (N = 1456) was reviewed at 1, 2, 4, 10 and 18-years. Characterization included questionnaires, skin tests, spirometry, exhaled nitric oxide, bronchial challenge and (in a subset of 100 at 18-years) induced sputum. Asthma groups were "never asthma" (no asthma since birth), "persistent asthma" (asthma at age 10 and 18), "remission asthma" (asthma at age 10 but not at 18) and "adolescent-onset asthma" (asthma at age 18 but not at age 10). Participants whose asthma remitted during adolescence had lower bronchial reactivity (odds ratio (OR) 0.30; CI 0.10 -0.90; p = 0.03) at age 10 plus greater improvement in lung function (forced expiratory flow 25-75% gain: 1.7 L; 1.0-2.9; p = 0.04) compared to persistent asthma by age 18. Male sex (0.3; 0.1-0.7; p adolescent-onset asthma showed eosinophilic airway inflammation (3.0%, 0.7-6.6), not seen in persistent asthma (1.0%, 0-3.9), while remission group had the lowest sputum eosinophil count (0.3%, 0-1.4) and lowest eosinophils/neutrophils ratio of 0.0 (Interquartile range: 0.1). Asthma remission during adolescence is associated with lower initial BHR and greater gain in small airways function, while adolescent-onset asthma is primarily eosinophilic.

  4. Pancreatitis in dogs and cats: definitions and pathophysiology.

    Science.gov (United States)

    Watson, P

    2015-01-01

    Pancreatitis, or inflammation of the pancreas, is commonly seen in dogs and cats and presents a spectrum of disease severities from acute to chronic and mild to severe. It is usually sterile, but the causes and pathophysiology remain poorly understood. The acute end of the disease spectrum is associated with a high mortality but the potential for complete recovery of organ structure and function if the animal survives. At the other end of the spectrum, chronic pancreatitis in either species can cause refractory pain and reduce quality of life. It may also result in progressive exocrine and endocrine functional impairment. There is confusion in the veterinary literature about definitions of acute and chronic pancreatitis and there are very few studies on the pathophysiology of naturally occurring pancreatitis in dogs and cats. This article reviews histological and clinical definitions and current understanding of the pathophysiology and causes in small animals by comparison with the much more extensive literature in humans, and suggests many areas that need further study in dogs and cats. © 2015 British Small Animal Veterinary Association.

  5. Pathophysiology of pediatric fecal incontinence

    NARCIS (Netherlands)

    Di Lorenzo, Carlo; Benninga, Marc A.

    2004-01-01

    This article addresses the diagnosis and treatment of pediatric fecal incontinence in 4 main categories: (1) Functional fecal retention, the withholding of feces because of fear of painful defecation, results in constipation and overflow soiling. Treatment includes dietary changes, use of laxatives,

  6. Inflammatory and Other Biomarkers: Role in Pathophysiology and Prediction of Gestational Diabetes Mellitus

    Science.gov (United States)

    Abell, Sally K.; De Courten, Barbora; Boyle, Jacqueline A.; Teede, Helena J.

    2015-01-01

    Understanding pathophysiology and identifying mothers at risk of major pregnancy complications is vital to effective prevention and optimal management. However, in current antenatal care, understanding of pathophysiology of complications is limited. In gestational diabetes mellitus (GDM), risk prediction is mostly based on maternal history and clinical risk factors and may not optimally identify high risk pregnancies. Hence, universal screening is widely recommended. Here, we will explore the literature on GDM and biomarkers including inflammatory markers, adipokines, endothelial function and lipids to advance understanding of pathophysiology and explore risk prediction, with a goal to guide prevention and treatment of GDM. PMID:26110385

  7. Imaging Alzheimer's disease pathophysiology with PET

    Directory of Open Access Journals (Sweden)

    Lucas Porcello Schilling

    Full Text Available ABSTRACT Alzheimer's disease (AD has been reconceptualised as a dynamic pathophysiological process characterized by preclinical, mild cognitive impairment (MCI, and dementia stages. Positron emission tomography (PET associated with various molecular imaging agents reveals numerous aspects of dementia pathophysiology, such as brain amyloidosis, tau accumulation, neuroreceptor changes, metabolism abnormalities and neuroinflammation in dementia patients. In the context of a growing shift toward presymptomatic early diagnosis and disease-modifying interventions, PET molecular imaging agents provide an unprecedented means of quantifying the AD pathophysiological process, monitoring disease progression, ascertaining whether therapies engage their respective brain molecular targets, as well as quantifying pharmacological responses. In the present study, we highlight the most important contributions of PET in describing brain molecular abnormalities in AD.

  8. Current concepts in the pathophysiology of glaucoma

    Directory of Open Access Journals (Sweden)

    Agarwal Renu

    2009-01-01

    Full Text Available Glaucoma, the second leading cause of blindness, is characterized by changes in the optic disc and visual field defects. The elevated intraocular pressure was considered the prime factor responsible for the glaucomatous optic neuropathy involving death of retinal ganglion cells and their axons. Extensive investigations into the pathophysiology of glaucoma now reveal the role of multiple factors in the development of retinal ganglion cell death. A better understanding of the pathophysiological mechanisms involved in the onset and progression of glaucomatous optic neuropathy is crucial in the development of better therapeutic options. This review is an effort to summarize the current concepts in the pathophysiology of glaucoma so that newer therapeutic targets can be recognized. The literature available in the National Medical Library and online Pubmed search engine was used for literature review.

  9. Pathophysiology of heatstroke in dogs - revisited.

    Science.gov (United States)

    Bruchim, Yaron; Horowitz, Michal; Aroch, Itamar

    2017-01-01

    Heatstroke results from a failure to dissipate accumulated heat during exposure to hot environments, or during strenuous physical exercise under heat stress. It is characterized by core body temperatures > 41°C, with central nervous system dysfunction. Functional morphology and thermoregulatory effectors differences between dogs and humans may require special heatstroke protective adaptations in dogs, however, the risk factors for developing heatstroke are similar in both. In dogs, these include hot, especially highly humid environments, excessive physical activity, obesity, large (>15 kg) body weight, being of certain breed (e.g., Labrador retrievers and brachycephalic breeds), upper airway obstruction and prolonged seizures. Lack of acclimation to heat and physical fitness decreases the survival of heat stroked dogs. At the systemic level, blood pooling within the large internal organs (e.g., spleen, liver) is a major contributor to the development of shock and consequent intestinal ischemia, hypoxia and endothelial hyperpermeability, commonly occurring in heatstroke patients. Evoked serious complications include rhabdomyolysis, acute kidney injury, acute respiratory distress syndrome and ultimately, sepsis and disseminated intravascular coagulation. The most common clinical signs in dogs include acute collapse, tachypnea, spontaneous bleeding, shock signs and mental abnormalities, including depression, disorientation or delirium, seizures, stupor and coma. In such dogs, presence of peripheral blood nucleated red blood cells uniquely occurs, and is a highly sensitive diagnostic and prognostic biomarker. Despite early, appropriate body cooling, and intensive supportive treatment, with no available specific treatment to ameliorate the severe inflammatory and hemostatic derangements, the mortality rate is around 50%, similar to that of human heatstroke victims. This review discusses the pathophysiology of canine heatstroke from a veterinarian's point of view

  10. Tics and Tourette's: update on pathophysiology and tic control.

    Science.gov (United States)

    Ganos, Christos

    2016-08-01

    To describe recent advances in the pathophysiology of tics and Tourette syndrome, and novel insights on tic control. The cortico-basal ganglia-thalamo-cortical loops are implicated in generation of tics. Disruption of GABAergic inhibition lies at the core of tic pathophysiology, but novel animal models also implicate cholinergic and histaminergic neurotransmission. Tourette syndrome patients have altered awareness of volition and enhanced formation of habits. Premonitory urges are not the driving force behind all tics. The intensity of premonitory urges depends on patients' capacity to perceive interoceptive signals. The insular cortex is a key structure in this process. The trait intensity of premonitory urges is not a prerequisite of voluntary tic inhibition, a distinct form of motor control. Voluntary tic inhibition is most efficient in the body parts that tic the least. The prefrontal cortex is associated with the capacity to inhibit tics. The management of tics includes behavioral, pharmacological and surgical interventions. Treatment recommendations differ based on patients' age. The study of Tourette syndrome pathophysiology involves different neural disciplines and provides novel, exciting insights of brain function in health and disease. These in turn provide the basis for innovative treatment approaches of tics and their associations.

  11. The pathophysiology of restless legs syndrome

    International Nuclear Information System (INIS)

    Miyamoto, Masayuki; Miyamoto, Tomoyuki; Iwanami, Masaoki; Suzuki, Keisuke; Hirata, Koichi

    2009-01-01

    Restless legs syndrome (RLS) is a sensorimotor disorder that is frequently associated with periodic leg movements (PLMS). RLS is generally considered to be a central nervous system (CNS)-related disorder although no specific lesion has been found to be associated with the syndrome. Reduced intracortical inhibition has been demonstrated in RLS by transcranial magnetic stimulation. Some MRI studies have revealed the presence of morphologic changes in the somatosensory cortex, motor cortex and thalamic gray matter. The results of single photon emission computed tomography (SPECT) and positron emission tomography (PET) studies showed that the limbic and opioid systems also play important roles in the pathophysiology of RLS. A functional MRI study revealed abnormal bilateral cerebellar and thalamic activation during the manifestation of sensory symptoms, with additional red nucleus and reticular formation activity during PLMS. PLMS is likely to occur in patients with spinal cord lesions, and some patients with sensory polyneuropathy may exhibit RLS symptoms. RLS symptoms seem to depend on abnormal spinal sensorimotor integration at the spinal cord level and abnormal central somatosensory processing. PLMS appears to depend on increased excitability of the spinal cord and a decreased supraspinal inhibitory mechanism from the A11 diencephalic dopaminergic system. RLS symptoms respond very dramatically to dopaminergic therapy. The results of analysis by PET and SPECT studies of striatal D2 receptor binding in humans are inconclusive. However, studies in animal models suggest that the participation of the A11 dopaminergic system and the D3 receptor in RLS symptoms. The symptoms of RLS are aggravated in those with iron deficiency, and iron treatment ameliorates the symptoms in some patients. Neuroimaging studies, analysis of the cerebrospinal fluid, and studies on postmortem tissue and use of animal models have indicated that low brain iron concentrations and dysfunction of

  12. Retinal vein occlusion: pathophysiology and treatment options

    OpenAIRE

    Karia, Niral

    2010-01-01

    Niral KariaDepartment of Ophthalmology, Southend Hospital, Prittlewell Chase, Westcliff on Sea, Essex, United KingdomAbstract: This paper reviews the current thinking about retinal vein occlusion. It gives an overview of its pathophysiology and discusses the evidence behind the various established and emerging treatment paradigms.Keywords: central, hemispheric, branch, retinal vein occlusion, visual loss

  13. Pathophysiology of diurnal drooling in Parkinson's disease

    NARCIS (Netherlands)

    Kalf, J.G.; Munneke, M.; Engel-Hoek, L. van den; Swart, B.J.M. de; Borm, G.F.; Bloem, B.R.; Zwarts, M.J.

    2011-01-01

    Drooling is an incapacitating feature of Parkinson's disease. Better pathophysiological insights are needed to improve treatment. In this study, we tested the hypothesis that the cause of drooling is multifactorial. We examined 15 patients with Parkinson's disease with distinct diurnal saliva loss

  14. Role of renal vascular potassium channels in physiology and pathophysiology

    DEFF Research Database (Denmark)

    Salomonsson, Max; Brasen, Jens Christian; Sorensen, Charlotte Mehlin

    2017-01-01

    The control of renal vascular tone is important for the regulation of salt and water balance, blood pressure and the protection against damaging elevated glomerular pressure. The K+ conductance is a major factor in the regulation of the membrane potential (Vm ) in vascular smooth muscle (VSMC...... the ambiguous in vitro and in vivo results. We discuss the role of single types of K+ channels and the integrated function of several classes. We also deal with the possible role of renal vascular K+ channels in the pathophysiology of hypertension, diabetes mellitus and sepsis. This article is protected...

  15. Pathophysiological Mechanisms of Laser Correction in Critical Conditions

    Directory of Open Access Journals (Sweden)

    V. L. Kozhura

    2006-01-01

    Full Text Available The paper provides the generalized results of studies dealing with the use of low-intensive laser irradiation in blood loss-induced critical conditions in an experiment and in patients with severe mechanical injury. In the light of recent data and the data available in the literature, the authors consider some pathophysiological mechanisms of action of laser radiation at all living matter organization levels: molecular, cellular, organ, and systemic. The feasibilities of laser correction of hemostastic disorders are defined in relation to the volume of blood loss and the functional state of compensatory systems. 

  16. Concussion: the history of clinical and pathophysiological concepts and misconceptions.

    Science.gov (United States)

    McCrory, P R; Berkovic, S F

    2001-12-26

    Concussion is a well-recognized clinical entity; however, its pathophysiologic basis remains a mystery. One unresolved issue is whether concussion is associated with lesser degrees of diffuse structural change seen in severe traumatic brain injury, or is the mechanism entirely caused by reversible functional changes. This issue is clouded not only by the lack of critical data, but also by confusion in terminology, even in contemporary literature. This confusion began in ancient times when no distinction was made between the transient effects of concussion and severe traumatic brain injury. The first clear separate recognition of concussion was made by the Persian physician, Rhazes, in the 10th century. Lanfrancus subsequently expanded this concept as brain "commotion" in the 13th century, although other Renaissance physicians continued to obscure this concept. By the 18th century, a variety of hypotheses for concussion had emerged. The 19th century discovery of petechial hemorrhagic lesions in severe traumatic brain injury led to these being posited as the basis of concussion, and a similar logic was used later to suggest diffuse axonal injury was responsible. The neuropathology and pathophysiology of concussion has important implications in neurology, sports medicine, medicolegal medicine, and in the understanding of consciousness. Fresh approaches to these questions are needed and modern research tools, including functional imaging and experimental studies of ion-channel function, could help elucidate this puzzle that has evolved over the past 3,000 years.

  17. Stable coronary syndromes: pathophysiology, diagnostic advances and therapeutic need

    Science.gov (United States)

    Corcoran, David

    2018-01-01

    The diagnostic management of patients with angina pectoris typically centres on the detection of obstructive epicardial CAD, which aligns with evidence-based treatment options that include medical therapy and myocardial revascularisation. This clinical paradigm fails to account for the considerable proportion (approximately one-third) of patients with angina in whom obstructive CAD is excluded. This common scenario presents a diagnostic conundrum whereby angina occurs but there is no obstructive CAD (ischaemia and no obstructive coronary artery disease—INOCA). We review new insights into the pathophysiology of angina whereby myocardial ischaemia results from a deficient supply of oxygenated blood to the myocardium, due to various combinations of focal or diffuse epicardial disease (macrovascular), microvascular dysfunction or both. Macrovascular disease may be due to the presence of obstructive CAD secondary to atherosclerosis, or may be dynamic due to a functional disorder (eg, coronary artery spasm, myocardial bridging). Pathophysiology of coronary microvascular disease may involve anatomical abnormalities resulting in increased coronary resistance, or functional abnormalities resulting in abnormal vasomotor tone. We consider novel clinical diagnostic techniques enabling new insights into the causes of angina and appraise the need for improved therapeutic options for patients with INOCA. We conclude that the taxonomy of stable CAD could improve to better reflect the heterogeneous pathophysiology of the coronary circulation. We propose the term ‘stable coronary syndromes’ (SCS), which aligns with the well-established terminology for ‘acute coronary syndromes’. SCS subtends a clinically relevant classification that more fully encompasses the different diseases of the epicardial and microvascular coronary circulation. PMID:29030424

  18. Otosclerosis update (1). Pathophysiology and diagnosis

    International Nuclear Information System (INIS)

    Ogawa, Kaoru; Inoue, Yasuhiro; Saito, Hideyuki; Kanzaki, Sho; Okamoto, Yasuhide; Mizutari, Kunio; Suzuki, Takashi; Oishi, Naoki

    2009-01-01

    Otosclerosis is an otological disease that typicaly causes conductive hearing loss. This disease is an important clinical entity since hearing impairment in these case can be dramatically improved by surgery. In this review paper, we review recent research into the pathophysiology of otosclerosis and summarize clinical features, audiometry and diagnostic imaging examinations in 160 ears with otosclerosis that we treated surgically in our department. (author)

  19. Pathophysiology-based phenotyping in type 2 diabetes

    DEFF Research Database (Denmark)

    Stidsen, Jacob V; Henriksen, Jan E; Olsen, Michael H

    2018-01-01

    clinically diagnosed type 2 diabetes. METHODS: We first identified all patients with rare subtypes of diabetes, latent autoimmune diabetes of adults (LADA), secondary diabetes, or glucocorticoid-associated diabetes. We then used the homeostatic assessment model to subphenotype all remaining patients......BACKGROUND: Type 2 diabetes may be a more heterogeneous disease than previously thought. Better understanding of pathophysiological subphenotypes could lead to more individualized diabetes treatment. We examined the characteristics of different phenotypes among 5813 Danish patients with new...... into insulinopenic (high insulin sensitivity and low beta cell function), classical (low insulin sensitivity and low beta cell function), or hyperinsulinemic (low insulin sensitivity and high beta cell function) type 2 diabetes. RESULTS: Among 5813 patients diagnosed with incident type 2 diabetes in the community...

  20. The pathophysiology of lifelong premature ejaculation

    Science.gov (United States)

    2016-01-01

    For many decades it has been thought that lifelong premature ejaculation (PE) is only characterized by persistent early ejaculations. Despite enormous progress of in vivo animal research, and neurobiological, genetic and pharmacological research in men with lifelong PE, our current understanding of the mechanisms behind early ejaculations is far from complete. The new classification of PE into four PE subtypes has shown that the symptomatology of lifelong PE strongly differs from acquired PE, subjective PE and variable PE. The phenotype of lifelong PE and therefore also the pathophysiology of lifelong PE is much more complex. A substantial number of men with lifelong PE not only have PE, but also premature erection and premature penile detumescence as part of an acute hypertonic or hypererotic state when engaged in an erotic situation or when making love. As both erectio praecox, ejaculatio praecox, detumescentia praecox, and the hypererotic state are part of the phenotype lifelong PE, it is argued that lifelong PE is not only a disturbance of the timing of ejaculation but also a disturbance of the timing of erection, detumescence and arousal. Since 1998, the pathophysiology of lifelong PE was thought to be mainly mediated by the central serotonergic system in line with genetic polymorphisms of specific serotonergic genes. However, by accepting that lifelong PE is characterized by the reversible hypertonic state the hypothesis of mainly serotonergic dysfunction is no longer tenable. Instead, it has been postulated that the pathophysiology of lifelong PE is mediated by a very complex interplay of central and peripheral serotonergic, dopaminergic, oxytocinergic, endocrinological, genetic and probably also epigenetic factors. Progress in research of lifelong PE can only be accomplished when a stopwatch is used to measure the IELT and the cut-off point of 1 minute for the definition of lifelong PE is maintained. Current use of validated questionnaires, neglect of

  1. Narcolepsy and Psychiatric Disorders: Comorbidities or Shared Pathophysiology?

    Directory of Open Access Journals (Sweden)

    Anne Marie Morse

    2018-02-01

    Full Text Available Narcolepsy and psychiatric disorders have a significant but unrecognized relationship, which is an area of evolving interest, but unfortunately, the association is poorly understood. It is not uncommon for the two to occur co-morbidly. However, narcolepsy is frequently misdiagnosed initially as a psychiatric condition, contributing to the protracted time to accurate diagnosis and treatment. Narcolepsy is a disabling neurodegenerative condition that carries a high risk for development of social and occupational dysfunction. Deterioration in function may lead to the secondary development of psychiatric symptoms. Inversely, the development of psychiatric symptoms can lead to the deterioration in function and quality of life. The overlap in pharmaceutical intervention may further enhance the difficulty to distinguish between diagnoses. Comprehensive care for patients with narcolepsy should include surveillance for psychiatric illness and appropriate treatment when necessary. Further research is necessary to better understand the underlying pathophysiology between psychiatric disease and narcolepsy.

  2. BACE inhibition-dependent repair of Alzheimer's pathophysiology.

    Science.gov (United States)

    Keskin, Aylin D; Kekuš, Maja; Adelsberger, Helmuth; Neumann, Ulf; Shimshek, Derya R; Song, Beomjong; Zott, Benedikt; Peng, Tingying; Förstl, Hans; Staufenbiel, Matthias; Nelken, Israel; Sakmann, Bert; Konnerth, Arthur; Busche, Marc Aurel

    2017-08-08

    Amyloid-β (Aβ) is thought to play an essential pathogenic role in Alzheimer´s disease (AD). A key enzyme involved in the generation of Aβ is the β-secretase BACE, for which powerful inhibitors have been developed and are currently in use in human clinical trials. However, although BACE inhibition can reduce cerebral Aβ levels, whether it also can ameliorate neural circuit and memory impairments remains unclear. Using histochemistry, in vivo Ca 2+ imaging, and behavioral analyses in a mouse model of AD, we demonstrate that along with reducing prefibrillary Aβ surrounding plaques, the inhibition of BACE activity can rescue neuronal hyperactivity, impaired long-range circuit function, and memory defects. The functional neuronal impairments reappeared after infusion of soluble Aβ, mechanistically linking Aβ pathology to neuronal and cognitive dysfunction. These data highlight the potential benefits of BACE inhibition for the effective treatment of a wide range of AD-like pathophysiological and cognitive impairments.

  3. Multimodal approach to control postoperative pathophysiology and rehabilitation

    DEFF Research Database (Denmark)

    Kehlet, H

    1997-01-01

    Major surgery is still associated with undesirable sequelae such as pain, cardiopulmonary, infective and thromboembolic complications, cerebral dysfunction, nausea and gastrointestinal paralysis, fatigue and prolonged convalescence. The key pathogenic factor in postoperative morbidity, excluding...... failures of surgical and anaesthetic technique, is the surgical stress response with subsequent increased demands on organ function. These changes in organ function are thought to be mediated by trauma-induced endocrine metabolic changes and activation of several biological cascade systems (cytokines......, complement, arachidonic acid metabolites, nitric oxide, free oxygen radicals, etc). To understand postoperative morbidity it is therefore necessary to understand the pathophysiological role of the various components of the surgical stress response and to determine if modification of such responses may...

  4. Functional dyspepsia

    NARCIS (Netherlands)

    Kleibeuker, JH; Thijs, JC

    2004-01-01

    Purpose of review Functional dyspepsia is a common disorder, most of the time of unknown etiology and with variable pathophysiology. Therapy has been and still is largely empirical. Data from recent studies provide new clues for targeted therapy based on knowledge of etiology and pathophysiologic

  5. Pathophysiology of osteoporosis: new mechanistic insights.

    Science.gov (United States)

    Armas, Laura A G; Recker, Robert R

    2012-09-01

    Understanding of the pathophysiology of osteoporosis has evolved to include compromised bone strength and skeletal fragility caused by several factors: (1) defects in microarchitecture of trabeculae, (2) defective intrinsic material properties of bone tissue, (3) defective repair of microdamage from normal daily activities, and (4) excessive bone remodeling rates. These factors occur in the context of age-related bone loss. Clinical studies of estrogen deprivation, antiresorptives, mechanical loading, and disuse have helped further knowledge of the factors affecting bone quality and the mechanisms that underlie them. This progress has led to several new drug targets in the treatment of osteoporosis. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Sepsis: Current Definition, Pathophysiology, Diagnosis, and Management.

    Science.gov (United States)

    Taeb, Abdalsamih M; Hooper, Michael H; Marik, Paul E

    2017-06-01

    Sepsis is a clinical syndrome that results from the dysregulated inflammatory response to infection that leads to organ dysfunction. The resulting losses to society in terms of financial burden, morbidity, and mortality are enormous. We provide a review of sepsis, its underlying pathophysiology, and guidance for diagnosis and management of this common disease. Current established treatments include appropriate antimicrobial agents to target the underlying infection, optimization of intravascular volume to improve stroke volume, vasopressors to counteract vasoplegic shock, and high-quality supportive care. Appropriate implementation of established treatments combined with novel therapeutic approaches promises to continue to decrease the impact of this disease.

  7. 95th Anniversary of Pathophysiology in Croatia.

    Science.gov (United States)

    Kovač, Zdenko

    2017-12-01

    University level of Pathophysiology research and teaching in Croatia had started with the third year of Medical School of Zagreb in academic year 1919./20. Ever since, despite historical changes of the main university stake holder, the state of Croatia, Department of Pathophysiology development progressed and has made visible academic achievements, with a broader effect in medical community. The first 95 years of academic tradition and major achievements are shortly described in this paper. Professor Miroslav Mikuličić envisioned Pathophysiology in close relations with Pharmacology and made the pioneering steps of establishing the "double" department at Šalata. His group was academically very pro-active, with strong international scientific participation and recruitment of professionals. The group published the first voluminous textbook of Pharmacology and Pathophysiology, in Croatian. In fifties, professor Pavao Sokolić established clinical pathophysiology within the Hospital Centre at Rebro. Out of "double" department two new departments were founded, the Pathophysiology one was completed with the clinical ward. That institutional move from Šalata hill to the Rebro hill was a necessary gigantic step and a prerequisite for the proper further development. It was in accordance with the concept of the Mikuličić's program of Pathophysiology from 1917. Pavao Sokolić has been remembered for his visions, deep insights into etiopathogenesis, ability to transfer knowledge and friendly relations to students. Sharp intellectual power, emanating charisma, academic erudition and unique clinical competencies made the legendary image of the "Teacher" - as students used to refer to him with admiration. He was second to no one when complex patient issues were to be resolved. Clinical Hospital Centre Zagreb and his Department at Rebro have become a referral point to whom to go to despair. Students recognized in their Teacher the landmark of Croatian medicine, which made a

  8. Lafora disease: epidemiology, pathophysiology and management.

    LENUS (Irish Health Repository)

    Monaghan, Thomas S

    2010-07-01

    Lafora disease is a rare, fatal, autosomal recessive, progressive myoclonic epilepsy. It may also be considered as a disorder of carbohydrate metabolism because of the formation of polyglucosan inclusion bodies in neural and other tissues due to abnormalities of the proteins laforin or malin. The condition is characterized by epilepsy, myoclonus and dementia. Diagnostic findings on MRI and neurophysiological testing are not definitive and biopsy or genetic studies may be required. Therapy in Lafora disease is currently limited to symptomatic management of the epilepsy, myoclonus and intercurrent complications. With a greater understanding of the pathophysiological processes involved, there is justified hope for future therapies.

  9. Discrete Pathophysiology is Uncommon in Patients with Nonspecific Arm Pain.

    Science.gov (United States)

    Kortlever, Joost T P; Janssen, Stein J; Molleman, Jeroen; Hageman, Michiel G J S; Ring, David

    2016-06-01

    Nonspecific symptoms are common in all areas of medicine. Patients and caregivers can be frustrated when an illness cannot be reduced to a discrete pathophysiological process that corresponds with the symptoms. We therefore asked the following questions: 1) Which demographic factors and psychological comorbidities are associated with change from an initial diagnosis of nonspecific arm pain to eventual identification of discrete pathophysiology that corresponds with symptoms? 2) What is the percentage of patients eventually diagnosed with discrete pathophysiology, what are those pathologies, and do they account for the symptoms? We evaluated 634 patients with an isolated diagnosis of nonspecific upper extremity pain to see if discrete pathophysiology was diagnosed on subsequent visits to the same hand surgeon, a different hand surgeon, or any physician within our health system for the same pain. There were too few patients with discrete pathophysiology at follow-up to address the primary study question. Definite discrete pathophysiology that corresponded with the symptoms was identified in subsequent evaluations by the index surgeon in one patient (0.16% of all patients) and cured with surgery (nodular fasciitis). Subsequent doctors identified possible discrete pathophysiology in one patient and speculative pathophysiology in four patients and the index surgeon identified possible discrete pathophysiology in four patients, but the five discrete diagnoses accounted for only a fraction of the symptoms. Nonspecific diagnoses are not harmful. Prospective randomized research is merited to determine if nonspecific, descriptive diagnoses are better for patients than specific diagnoses that imply pathophysiology in the absence of discrete verifiable pathophysiology.

  10. Pathophysiology of increased intestinal permeability in obstructive jaundice

    Science.gov (United States)

    Assimakopoulos, Stelios F; Scopa, Chrisoula D; Vagianos, Constantine E

    2007-01-01

    Despite advances in preoperative evaluation and postoperative care, intervention, especially surgery, for relief of obstructive jaundice still carries high morbidity and mortality rates, mainly due to sepsis and renal dysfunction. The key event in the pathophysiology of obstructive jaundice-associated complications is endotoxemia of gut origin because of intestinal barrier failure. This breakage of the gut barrier in obstructive jaundice is multi-factorial, involving disruption of the immunologic, biological and mechanical barrier. Experimental and clinical studies have shown that obstructive jaundice results in increased intestinal permeability. The mechanisms implicated in this phenomenon remain unresolved, but growing research interest during the last decade has shed light in our knowledge in the field. This review summarizes the current concepts in the pathophysiology of obstructive jaundice-induced gut barrier dysfunction, analyzing pivotal factors, such as altered intestinal tight junctions expression, oxidative stress and imbalance of enterocyte proliferation and apoptosis. Clinicians handling patients with obstructive jaundice should not neglect protecting the intestinal barrier function before, during and after intervention for the relief of this condition, which may improve their patients’ outcome. PMID:18161914

  11. SREBP-regulated lipid metabolism: convergent physiology - divergent pathophysiology.

    Science.gov (United States)

    Shimano, Hitoshi; Sato, Ryuichiro

    2017-12-01

    Cellular lipid metabolism and homeostasis are controlled by sterol regulatory-element binding proteins (SREBPs). In addition to performing canonical functions in the transcriptional regulation of genes involved in the biosynthesis and uptake of lipids, genome-wide system analyses have revealed that these versatile transcription factors act as important nodes of convergence and divergence within biological signalling networks. Thus, they are involved in myriad physiological and pathophysiological processes, highlighting the importance of lipid metabolism in biology. Changes in cell metabolism and growth are reciprocally linked through SREBPs. Anabolic and growth signalling pathways branch off and connect to multiple steps of SREBP activation and form complex regulatory networks. In addition, SREBPs are implicated in numerous pathogenic processes such as endoplasmic reticulum stress, inflammation, autophagy and apoptosis, and in this way, they contribute to obesity, dyslipidaemia, diabetes mellitus, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, chronic kidney disease, neurodegenerative diseases and cancers. This Review aims to provide a comprehensive understanding of the role of SREBPs in physiology and pathophysiology at the cell, organ and organism levels.

  12. Transcranial magnetic stimulation and sleep disorders: pathophysiologic insights.

    Science.gov (United States)

    Nardone, Raffaele; Höller, Yvonne; Brigo, Francesco; Tezzon, Frediano; Golaszewski, Stefan; Trinka, Eugen

    2013-11-01

    The neural mechanisms underlying the development of the most common intrinsic sleep disorders are not completely known. Therefore, there is a great need for noninvasive tools which can be used to better understand the pathophysiology of these diseases. Transcranial magnetic stimulation (TMS) offers a method to noninvasively investigate the functional integrity of the motor cortex and its corticospinal projections in neurologic and psychiatric diseases. To date, TMS studies have revealed cortical and corticospinal dysfunction in several sleep disorders, with cortical hyperexcitability being a characteristic feature in some disorders (i.e., the restless legs syndrome) and cortical hypoexcitability being a well-established finding in others (i.e., obstructive sleep apnea syndrome narcolepsy). Several research groups also have applied TMS to evaluate the effects of pharmacologic agents, such as dopaminergic agent or wake-promoting substances. Our review will focus on the mechanisms underlying the generation of abnormal TMS measures in the different types of sleep disorders, the contribution of TMS in enhancing the understanding of their pathophysiology, and the potential diagnostic utility of TMS techniques. We also briefly discussed the possible future implications for improving therapeutic approaches. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Postoperative ileus: Recent developments in pathophysiology and management.

    Science.gov (United States)

    Bragg, Damian; El-Sharkawy, Ahmed M; Psaltis, Emmanouil; Maxwell-Armstrong, Charles A; Lobo, Dileep N

    2015-06-01

    Postoperative ileus (POI) is a frequent occurrence after abdominal and other types of surgery, and is associated with significant morbidity and costs to health care providers. The aims of this narrative review were to provide an update of classification systems, preventive techniques, pathophysiological mechanisms, and treatment options for established POI. The Web of Science, MEDLINE, PubMed and Google Scholar databases were searched using the key phrases 'ileus', 'postoperative ileus' and 'definition', for relevant studies published in English from January 1997 to August 2014. POI is still a problematic and frequent complication of surgery. Fluid overload, exogenous opioids, neurohormonal dysfunction, and gastrointestinal stretch and inflammation are key mechanisms in the pathophysiology of POI. Evidence is supportive of thoracic epidural analgesia, avoidance of salt and water overload, alvimopan and gum chewing as measures for the prevention of POI, and should be incorporated into perioperative care protocols. Minimal access surgery and avoidance of nasogastric tubes may also help. Novel strategies are emerging, but further studies are required for the treatment of prolonged POI, where evidence is still lacking. Although POI is often inevitable, methods to reduce its duration and facilitate recovery of postoperative gastrointestinal function are evolving rapidly. Utilisation of standardised diagnostic classification systems will help improve applicability of future studies. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  14. Human Pathophysiological Adaptations to the Space Environment

    Directory of Open Access Journals (Sweden)

    Gian C. Demontis

    2017-08-01

    Full Text Available Space is an extreme environment for the human body, where during long-term missions microgravity and high radiation levels represent major threats to crew health. Intriguingly, space flight (SF imposes on the body of highly selected, well-trained, and healthy individuals (astronauts and cosmonauts pathophysiological adaptive changes akin to an accelerated aging process and to some diseases. Such effects, becoming manifest over a time span of weeks (i.e., cardiovascular deconditioning to months (i.e., loss of bone density and muscle atrophy of exposure to weightlessness, can be reduced through proper countermeasures during SF and in due time are mostly reversible after landing. Based on these considerations, it is increasingly accepted that SF might provide a mechanistic insight into certain pathophysiological processes, a concept of interest to pre-nosological medicine. In this article, we will review the main stress factors encountered in space and their impact on the human body and will also discuss the possible lessons learned with space exploration in reference to human health on Earth. In fact, this is a productive, cross-fertilized, endeavor in which studies performed on Earth yield countermeasures for protection of space crew health, and space research is translated into health measures for Earth-bound population.

  15. [Current concepts in pathophysiology of CRPS I].

    Science.gov (United States)

    Nickel, F T; Maihöfner, C

    2010-02-01

    Knowledge about the pathophysiology underlying the complex regional pain syndrome (CRPS) has increased over the last years. Classically, CRPS has been considered to be mainly driven by sympathetic dysfunction with sympathetically maintained pain being its major pathogenetic mechanism. Currently, the disease is understood as result of a complex interplay between altered somatosensory, motor, autonomic and inflammatory systems. Peripheral and central sensitization is a common feature in CRPS as in other neuropathic pain syndromes. One important mechanism is the sensitization of spinal dorsal horn cells via activation of postsynaptic NMDA-receptors by chronic C-fiber input. Differential activity of endogenous pain modulating systems may play a pivotal role in the development of CRPS, too. Neuronal plasticity of the somatosensory cortex accounts for central sensory signs. Also the motor system is subject to central adaptive changes in patients with CRPS. Calcitonin-gene related peptide (CGRP) and substance P mediate neurogenic inflammation. Additionally other proinflammatory cytokines involved in the inflammatory response in CRPS have been identified. In terms of the sympathetic nervous system, recent evidence rather points to a sensitization of adrenergic receptors than to increased efferent sympathetic activity. Particularly the expression of alpha (1)-adrenoceptors on nociceptive C-fibers may play a major role. These pathophysiological ideas do not exclude each other. In fact they complement one another. The variety of the involved systems may explain the versatile clinical picture of CRPS. Georg Thieme Verlag KG Stuttgart, New York.

  16. Pathogenesis and Pathophysiology of Pneumococcal Meningitis

    Science.gov (United States)

    Mook-Kanamori, Barry B.; Geldhoff, Madelijn; van der Poll, Tom; van de Beek, Diederik

    2011-01-01

    Summary: Pneumococcal meningitis continues to be associated with high rates of mortality and long-term neurological sequelae. The most common route of infection starts by nasopharyngeal colonization by Streptococcus pneumoniae, which must avoid mucosal entrapment and evade the host immune system after local activation. During invasive disease, pneumococcal epithelial adhesion is followed by bloodstream invasion and activation of the complement and coagulation systems. The release of inflammatory mediators facilitates pneumococcal crossing of the blood-brain barrier into the brain, where the bacteria multiply freely and trigger activation of circulating antigen-presenting cells and resident microglial cells. The resulting massive inflammation leads to further neutrophil recruitment and inflammation, resulting in the well-known features of bacterial meningitis, including cerebrospinal fluid pleocytosis, cochlear damage, cerebral edema, hydrocephalus, and cerebrovascular complications. Experimental animal models continue to further our understanding of the pathophysiology of pneumococcal meningitis and provide the platform for the development of new adjuvant treatments and antimicrobial therapy. This review discusses the most recent views on the pathophysiology of pneumococcal meningitis, as well as potential targets for (adjunctive) therapy. PMID:21734248

  17. Retinovascular physiology and pathophysiology: new experimental approach/new insights

    Science.gov (United States)

    Puro, Donald G.

    2012-01-01

    An important challenge in visual neuroscience is understand the physiology and pathophysiology of the intra-retinal vasculature, whose function is required for ophthalmoception by humans and most other mammals. In the quest to learn more about this highly specialized portion of the circulatory system, a newly developed method for isolating vast microvascular complexes from the rodent retina has opened the way for using techniques such as patch-clamping, fluorescence imaging and time-lapse photography to elucidate the functional organization of a capillary network and its pre-capillary arteriole. For example, the ability to obtain dual perforated-patch recordings from well-defined sites within an isolated microvascular complex permitted the first characterization of the electrotonic architecture of a capillary/arteriole unit. This analysis revealed that this operational unit is not simply a homogenous synctium, but has a complex functional organization that is dynamically modulated by extracellular signals such as angiotensin II. Another recent discovery is that a capillary and its pre-capillary arteriole have distinct physiological differences; capillaries have an abundance of ATP-sensitive potassium (KATP) channels and a dearth of voltage-dependent calcium channels (VDCCs) while the converse is true for arterioles. In addition, voltage transmission between abluminal cells and the endothelium is more efficient in the capillaries. Thus, the capillary network is well-equipped to generate and transmit voltages, and the pre-capillary arteriole is well-adapted to transduce a capillary-generated voltage into a change in abluminal cell calcium and thereby, a vasomotor response. Use of microvessels isolated from the diabetic retina has led to new insights concerning retinal vascular pathophysiology. For example, soon after the onset of diabetes, the efficacy of voltage transmission through the endothelium is diminished; arteriolar VDCCs is inhibited, and there is increased

  18. Pathophysiology of Manganese-Associated Neurotoxicity

    Science.gov (United States)

    Racette, Brad A.; Aschner, Michael; Guilarte, Tomas R.; Dydak, Ulrike; Criswell, Susan R.; Zheng, Wei

    2012-01-01

    Conference Summary Manganese (Mn) is a well established neurotoxin associated with specific damage to the basal ganglia in humans. The phenotype associated with Mn neurotoxicity was first described in two workers with occupational exposure to Mn oxide.(Couper, 1837) Although the description did not use modern clinical terminology, a parkinsonian illness characterized by slowness of movement (bradykinesia), masked facies, and gait impairment (postural instability) appears to have predominated. Nearly 100 years later an outbreak of an atypical parkinsonian illness in a Chilean Mn mine provided a phenotypic description of a fulminant neurologic disorder with parkinsonism, dystonia, and neuropsychiatric symptoms.(Rodier J, 1955) Exposures associated with this syndrome were massive and an order of magnitude greater than modern exposures.(Rodier J, 1955; Hobson et al., 2011) The clinical syndrome associated with Mn neurotoxicity has been called manganism. Modern exposures to Mn occur primarily through occupations in the steel industry and welding. These exposures are often chronic and varied, occurring over decades in the healthy workforce. Although the severe neurologic disorder described by Rodier and Couper are no longer seen, several reports have suggested a possible increased risk of neurotoxicity in these workers.(Racette et al., 2005b; Bowler et al., 2007; Harris et al., 2011) Based upon limited prior imaging and pathologic investigations into the pathophysiology of neurotoxicity in Mn exposed workers,(Huang et al., 2003) many investigators have concluded that the syndrome spares the dopamine system distinguishing manganism from Parkinson disease (PD), the most common cause of parkinsonism in the general population, and a disease with characteristic degenerative changes in the dopaminergic system.(Jankovic, 2005) The purpose of this symposium was to highlight recent advances in the understanding of the pathophysiology of Mn associated neurotoxicity from C. elegans

  19. The role of nitric oxide in the physiology and pathophysiology of the exocrine pancreas.

    Science.gov (United States)

    Hegyi, Péter; Rakonczay, Zoltán

    2011-11-15

    Nitric oxide (NO), a ubiquitous gaseous signaling molecule, contributes to both pancreatic physiology and pathophysiology. The present review provides a general overview of NO synthesis, signaling, and function. Further, it specifically discusses NO metabolism and its effects in the exocrine pancreas and focuses on the role of NO in the pathogenesis of acute pancreatitis and pancreatic ischemia/reperfusion injury. Unfortunately, the role of NO in pancreatic physiology and pathophysiology remains controversial in numerous areas. Many questions regarding the messenger molecule still remain unanswered. Probably the least is known about the downstream targets of NO, which need to be identified, especially at the molecular level.

  20. Role of negative affects in pathophysiology and clinical expression of irritable bowel syndrome.

    Science.gov (United States)

    Muscatello, Maria Rosaria A; Bruno, Antonio; Scimeca, Giuseppe; Pandolfo, Gianluca; Zoccali, Rocco A

    2014-06-28

    Irritable bowel syndrome (IBS) is regarded as a multifactorial disease in which alterations in the brain-gut axis signaling play a major role. The biopsychosocial model applied to the understanding of IBS pathophysiology assumes that psychosocial factors, interacting with peripheral/central neuroendocrine and immune changes, may induce symptoms of IBS, modulate symptom severity, influence illness experience and quality of life, and affect outcome. The present review focuses on the role of negative affects, including depression, anxiety, and anger, on pathogenesis and clinical expression of IBS. The potential role of the autonomic nervous system, stress-hormone system, and immune system in the pathophysiology of both negative affects and IBS are taken into account. Psychiatric comorbidity and subclinical variations in levels of depression, anxiety, and anger are further discussed in relation to the main pathophysiological and symptomatic correlates of IBS, such as sensorimotor functions, gut microbiota, inflammation/immunity, and symptom reporting.

  1. The pathophysiology of migraine: implications for clinical management.

    Science.gov (United States)

    Charles, Andrew

    2018-02-01

    The understanding of migraine pathophysiology is advancing rapidly. Improved characterisation and diagnosis of its clinical features have led to the view of migraine as a complex, variable disorder of nervous system function rather than simply a vascular headache. Recent studies have provided important new insights into its genetic causes, anatomical and physiological features, and pharmacological mechanisms. The identification of new migraine-associated genes, the visualisation of brain regions that are activated at the earliest stages of a migraine attack, a greater appreciation of the potential role of the cervical nerves, and the recognition of the crucial role for neuropeptides are among the advances that have led to novel targets for migraine therapy. Future management of migraine will have the capacity to tailor treatments based on the distinct mechanisms of migraine that affect individual patients. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Pathophysiology, Evaluation, and Management of Chronic Watery Diarrhea

    Science.gov (United States)

    Camilleri, Michael; Sellin, Joseph H.; Barrett, Kim E.

    2016-01-01

    Chronic watery diarrhea poses a diagnostic and therapeutic challenge and is often a disabling condition for patients. Although acute diarrhea is likely to be caused by infection, the causes of chronic diarrhea (more than 4 weeks in duration) are more elusive. We review on the pathophysiology, diagnosis, and treatment of chronic diarrhea. Drawing on recent insights into the molecular mechanisms of intestinal epithelial transport and barrier function, we discuss how diarrhea can result from a decrease in luminal solute absorption, an increase in secretion, or both, as well as derangements in barrier properties. We also describe the various extra-epithelial factors that activate diarrheal mechanisms. Finally, clinical evaluation and tests used in assessment of patients presenting with chronic diarrhea are reviewed, and an algorithm guiding therapeutic decisions and pharmacotherapy is presented. PMID:27773805

  3. Pathophysiology of Degenerative Mitral Regurgitation: New 3-Dimensional Imaging Insights.

    Science.gov (United States)

    Antoine, Clemence; Mantovani, Francesca; Benfari, Giovanni; Mankad, Sunil V; Maalouf, Joseph F; Michelena, Hector I; Enriquez-Sarano, Maurice

    2018-01-01

    Despite its high prevalence, little is known about mechanisms of mitral regurgitation in degenerative mitral valve disease apart from the leaflet prolapse itself. Mitral valve is a complex structure, including mitral annulus, mitral leaflets, papillary muscles, chords, and left ventricular walls. All these structures are involved in physiological and pathological functioning of this valvuloventricular complex but up to now were difficult to analyze because of inherent limitations of 2-dimensional imaging. The advent of 3-dimensional echocardiography, computed tomography, and cardiac magnetic resonance imaging overcoming these limitations provides new insights into mechanistic analysis of degenerative mitral regurgitation. This review will detail the contribution of quantitative and qualitative dynamic analysis of mitral annulus and mitral leaflets by new imaging methods in the understanding of degenerative mitral regurgitation pathophysiology. © 2018 American Heart Association, Inc.

  4. Effects of biological sex on the pathophysiology of the heart.

    Science.gov (United States)

    Fazal, Loubina; Azibani, Feriel; Vodovar, Nicolas; Cohen Solal, Alain; Delcayre, Claude; Samuel, Jane-Lise

    2014-02-01

    Cardiovascular diseases are the leading causes of death in men and women in industrialized countries. While the effects of biological sex on cardiovascular pathophysiology have long been known, the sex-specific mechanisms mediating these processes have been further elucidated over recent years. This review aims at analysing the sex-based differences in cardiac structure and function in adult mammals, and the sex-based differences in the main molecular mechanisms involved in the response of the heart to pathological situations. It emerged from this review that the sex-based difference is a variable that should be dealt with, not only in basic science or clinical research, but also with regards to therapeutic approaches. © 2013 The British Pharmacological Society.

  5. The Postural Tachycardia Syndrome (POTS: Pathophysiology, Diagnosis & Management

    Directory of Open Access Journals (Sweden)

    Satish R Raj

    2006-04-01

    Full Text Available Postural tachycardia syndrome (POTS, characterized by orthostatic tachycardia in the absence of orthostatic hypotension, has been the focus of increasing clinical interest over the last 15 years 1. Patients with POTS complain of symptoms of tachycardia, exercise intolerance, lightheadedness, extreme fatigue, headache and mental clouding. Patients with POTS demonstrate a heart rate increase of ≥30 bpm with prolonged standing (5-30 minutes, often have high levels of upright plasma norepinephrine (reflecting sympathetic nervous system activation, and many patients have a low blood volume. POTS can be associated with a high degree of functional disability. Therapies aimed at correcting the hypovolemia and the autonomic imbalance may help relieve the severity of the symptoms. This review outlines the present understanding of the pathophysiology, diagnosis, and management of POTS.

  6. [Pathophysiology and treatment of orofacial pain.

    Science.gov (United States)

    Shinoda, Masamichi; Noma, Noboru

    "Pain" is one of body defense mechanisms and crucial for the life support. However, orofacial pain such as myofascial pain syndrome, burning mouth syndrome and trigeminal neuralgia plays no part in body defense mechanisms and requires therapeutic intervention. Recent studies have indicated that plastic changes in the activities of trigeminal neurons, satellite glial cells in trigeminal ganglion, secondary neurons, microglia and astrocytes in trigeminal spinal subnucleus following orofacial inflammation and trigeminal nerve injury are responsible for orofacial pain mechanisms. Clinically, it is well known that the etiologic differential diagnosis which consists of careful history-taking and physical examination is essential for therapeutic decision in patients with orofacial pain. This report outlines the current knowledge on the pathophysiology, diagnosis, treatment of orofacial pain.

  7. Pathophysiology, Clinical, and Therapeutic Aspects of Narcolepsy

    Directory of Open Access Journals (Sweden)

    Pinar Guzel Ozdemir

    2014-09-01

    Full Text Available Narcolepsy is a lifelong sleep disorder characterized by excessive daytime sleepiness, cataplexy, hypnagogic hallucination, and sleep paralysis. The exact cause remains unknown, but there is significant evidence that hypocretin deficiency plays an integral role. There have been advances in the understanding of the pathogenesis of narcolepsy. It has a negative effect on the quality of life and can restrict the patients from certain careers and activities. Diagnosis relies on patient history and objective data gathered from polysomnography and multiple sleep latency testing. Treatment focuses on symptom relief through medication, education, and behavioral modification. Both classic pharmacological treatments as well as newer options have significant problems, especially because of side effects and abuse potential. Some novel modalities are being examined to expand options for treatment. In this review, the pathophysiological, clinical, and pharmacotherapeutic aspects of narcolepsy are discussed. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2014; 6(3.000: 271-283

  8. Role of leukotrienes in asthma pathophysiology

    DEFF Research Database (Denmark)

    Bisgaard, H

    2000-01-01

    Inflammation is an essential component of asthma pathophysiology. While beta(2)-agonists are often used for short-term relief of acute bronchospasm, anti-inflammatory agents are required for the long-term management of chronic inflammation in this disease. Corticosteroids have emerged as the first......-line anti-inflammatory therapy for asthma management. However, in some patients, especially children, the high doses of corticosteroids that may be required to control features of hyperresponsiveness, including exercise-induced asthma, raise safety concerns. Thus, there is a need for complementary anti......-inflammatory, steroid-sparing agents in asthma therapy. Several inflammatory mediators have been targeted in an attempt to thwart this inflammatory process, but so far with little success. The cysteinyl leukotrienes (CysLT), LTC(4), LTD(4), and LTE(4), have been shown to be essential mediators in asthma, making them...

  9. The role of ADAMs in disease pathophysiology.

    LENUS (Irish Health Repository)

    Duffy, Michael J

    2012-02-01

    The ADAMs are a family of multidomain transmembrane and secreted proteins involved in both proteolysis and cell adhesion. Altered expression of specific ADAMs is implicated in the pathophysiology of several diseases including rheumatoid arthritis, Alzheimer\\'s disease, cardiac hypertrophy, asthma and cancer. Of these different diseases, it is in cancer where most research has been carried out. Multiple ADAMs, including ADAM-9, ADAM-10, ADAM-12, ADAM-15 and ADAM-17, have been shown to play a role in either cancer formation or progression. Consistent with these findings, increased expression of specific ADAMs in several cancer types was found to correlate with features of aggressive disease and poor prognosis. Currently, selective ADAM inhibitors against ADAM-10 and ADAM-17 are undergoing clinical trials for the treatment of cancer. Further work is required in order to establish a causative role for ADAMs in rheumatoid arthritis, Alzheimer\\'s disease, cardiac hypertrophy and asthma.

  10. Capillary leak syndrome: etiologies, pathophysiology, and management.

    Science.gov (United States)

    Siddall, Eric; Khatri, Minesh; Radhakrishnan, Jai

    2017-07-01

    In various human diseases, an increase in capillary permeability to proteins leads to the loss of protein-rich fluid from the intravascular to the interstitial space. Although sepsis is the disease most commonly associated with this phenomenon, many other diseases can lead to a "sepsis-like" syndrome with manifestations of diffuse pitting edema, exudative serous cavity effusions, noncardiogenic pulmonary edema, hypotension, and, in some cases, hypovolemic shock with multiple-organ failure. The term capillary leak syndrome has been used to describe this constellation of disease manifestations associated with an increased capillary permeability to proteins. Diseases other than sepsis that can result in capillary leak syndrome include the idiopathic systemic capillary leak syndrome or Clarkson's disease, engraftment syndrome, differentiation syndrome, the ovarian hyperstimulation syndrome, hemophagocytic lymphohistiocytosis, viral hemorrhagic fevers, autoimmune diseases, snakebite envenomation, and ricin poisoning. Drugs including some interleukins, some monoclonal antibodies, and gemcitabine can also cause capillary leak syndrome. Acute kidney injury is commonly seen in all of these diseases. In addition to hypotension, cytokines are likely to be important in the pathophysiology of acute kidney injury in capillary leak syndrome. Fluid management is a critical part of the treatment of capillary leak syndrome; hypovolemia and hypotension can cause organ injury, whereas capillary leakage of administered fluid can worsen organ edema leading to progressive organ injury. The purpose of this article is to discuss the diseases other than sepsis that produce capillary leak and review their collective pathophysiology and treatment. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  11. Study of pathophysiology of pulmonary circulation in polycythemia using scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Tadashige; Tanaka, Masao; Takeda, Tadashi; Kawashima, Akira; Kubo, Keiji; Kobayashi, Toshio; Handa, Kenjiro; Yoshimura, Kazuhiko (Shinshu Univ., Matsumoto, Nagano (Japan). Faculty of Medicine)

    1993-09-01

    In order to evaluate the pathophysiology of pulmonary circulation in polycythemia, Tl-201 myocardial scintigraphy and perfusion lung scintigraphy with 99m-Tc-MAA were performed in 19 cases of polycythemia including polycythemia rubra vera and in 11 cases of secondary polycythemia due to pulmonary diseases. Tl-201 lung uptake, right ventricular visualization and pulmonary perfusion impairment were studied. In the 19 cases, Tl-201 lung uptake was observed in all cases and 54.5% of them showed moderate lung uptake. The grade of right ventricular visualization was moderate in one case and slight in 16 cases; right ventricular hypertrophy was shown in 89.5% of all cases by Tl-201 scintigraphy, only one of which showed right ventricular hypertrophy on electrocardiography. Abnormalities of lung perfusion consisted of scattered small areas of hypoperfusion in 36.8%, peripheral hypoperfusion in 78.9% and uneven distribution of pulmonary perfusion in 94.7%. The degree of hypoperfusion was slightly related to decrease in FEV 1.0%, V25 and PaO[sub 2] and increase in circulating blood volume and peripheral red blood cell counts. Abnormalities of pulmonary function consisted of increased RV/TLC in 50.0%, increased CV/VC in 35.7% and decreased V25 in 36.8%. Arterial blood gases showed hypoxemia in 57.1%, the degree of which was slightly related to increase in RV/TLC and CV/VC and decrease in V25. Cases of secondary polycythemia due to pulmonary diseases showed more marked right ventricular visualization, pulmonary perfusion impairment and abnormalities of various kinds of pulmonary function than polycythemia rubra vera cases. It seems to be important to evaluate the pathophysiology of pulmonary circulation in polycythemia rubra vera as well as secondary polycythemia due to cardio-pulmonary diseases, because pulmonary perfusion impairment and moderate right ventricular visualization are observed frequently in polycythemia rubra vera. (author).

  12. Study of pathophysiology of pulmonary circulation in polycythemia using scintigraphy

    International Nuclear Information System (INIS)

    Fujii, Tadashige; Tanaka, Masao; Takeda, Tadashi; Kawashima, Akira; Kubo, Keiji; Kobayashi, Toshio; Handa, Kenjiro; Yoshimura, Kazuhiko

    1993-01-01

    In order to evaluate the pathophysiology of pulmonary circulation in polycythemia, Tl-201 myocardial scintigraphy and perfusion lung scintigraphy with 99m-Tc-MAA were performed in 19 cases of polycythemia including polycythemia rubra vera and in 11 cases of secondary polycythemia due to pulmonary diseases. Tl-201 lung uptake, right ventricular visualization and pulmonary perfusion impairment were studied. In the 19 cases, Tl-201 lung uptake was observed in all cases and 54.5% of them showed moderate lung uptake. The grade of right ventricular visualization was moderate in one case and slight in 16 cases; right ventricular hypertrophy was shown in 89.5% of all cases by Tl-201 scintigraphy, only one of which showed right ventricular hypertrophy on electrocardiography. Abnormalities of lung perfusion consisted of scattered small areas of hypoperfusion in 36.8%, peripheral hypoperfusion in 78.9% and uneven distribution of pulmonary perfusion in 94.7%. The degree of hypoperfusion was slightly related to decrease in FEV 1.0%, V25 and PaO 2 and increase in circulating blood volume and peripheral red blood cell counts. Abnormalities of pulmonary function consisted of increased RV/TLC in 50.0%, increased CV/VC in 35.7% and decreased V25 in 36.8%. Arterial blood gases showed hypoxemia in 57.1%, the degree of which was slightly related to increase in RV/TLC and CV/VC and decrease in V25. Cases of secondary polycythemia due to pulmonary diseases showed more marked right ventricular visualization, pulmonary perfusion impairment and abnormalities of various kinds of pulmonary function than polycythemia rubra vera cases. It seems to be important to evaluate the pathophysiology of pulmonary circulation in polycythemia rubra vera as well as secondary polycythemia due to cardio-pulmonary diseases, because pulmonary perfusion impairment and moderate right ventricular visualization are observed frequently in polycythemia rubra vera. (author)

  13. Physiology and pathophysiology of ClC-K/barttin channels.

    Science.gov (United States)

    Fahlke, Christoph; Fischer, Martin

    2010-01-01

    ClC-K channels form a subgroup of anion channels within the ClC family of anion transport proteins. They are expressed predominantly in the kidney and in the inner ear, and are necessary for NaCl resorption in the loop of Henle and for K+ secretion by the stria vascularis. Subcellular distribution as well as the function of these channels are tightly regulated by an accessory subunit, barttin. Barttin improves the stability of ClC-K channel protein, stimulates the exit from the endoplasmic reticulum and insertion into the plasma membrane and changes its function by modifying voltage-dependent gating processes. The importance of ClC-K/barttin channels is highlighted by several genetic diseases. Dysfunctions of ClC-K channels result in Bartter syndrome, an inherited human condition characterized by impaired urinary concentration. Mutations in the gene encoding barttin, BSND, affect the urinary concentration as well as the sensory function of the inner ear. Surprisingly, there is one BSND mutation that causes deafness without affecting renal function, indicating that kidney function tolerates a reduction of anion channel activity that is not sufficient to support normal signal transduction in inner hair cells. This review summarizes recent work on molecular mechanisms, physiology, and pathophysiology of ClC-K/barttin channels.

  14. Physiology and pathophysiology of ClC-K/barttin channels

    Directory of Open Access Journals (Sweden)

    Christoph eFahlke

    2010-11-01

    Full Text Available ClC-K channels form a subgroup of anion channels within the ClC family of anion transport proteins. They are expressed predominantly in the kidney and in the inner ear, and are necessary for NaCl resorption in the loop of Henle and for K+ secretion by the stria vascularis. Subcellular distribution as well as the function of these channels are tightly regulated by an accessory subunit, barttin. Barttin improves the stability of ClC-K channel protein, stimulates the exit from the endoplasmic reticulum and insertion into the plasma membrane and changes its function by modifying voltage-dependent gating processes. The importance of ClC-K/barttin channels is highlighted by several genetic diseases. Dysfunctions of ClC-K channels result in Bartter syndrome, an inherited human condition characterized by impaired urinary concentration. Mutations in the gene encoding barttin, BSND, affect the urinary concentration as well as the sensory function of the inner ear. Surprisingly, there is one BSND mutation that causes deafness without affecting renal function, indicating that kidney function tolerates a reduction of anion channel activity that is not sufficient to support normal signal transduction in inner hair cells. This review summarizes recent work on molecular mechanisms, physiology and pathophysiology of ClC-K/barttin channels.

  15. Transforming pathophysiology instruction through narrative pedagogy and Socratic questioning.

    Science.gov (United States)

    Rogge, M M

    2001-01-01

    Pathophysiology, heavily content driven, has typically been taught through the use of traditional behavioral pedagogy and a reliance on the formal lecture. The author describes the limitations of this approach to teaching pathophysiology and describes the use of narrative pedagogy and Socratic questioning as alternative methods of instruction to augment lecture methods. Specific strategies for transforming traditional classroom teaching by using Socratic questions in a pathophysiology course for nurse practitioners are described. Student and faculty reactions to the initial efforts to transform pathophysiology instruction are also described.

  16. Peptic ulcer pathophysiology: acid, bicarbonate, and mucosal function

    DEFF Research Database (Denmark)

    Højgaard, L; Mertz Nielsen, A; Rune, S J

    1996-01-01

    The previously accepted role of gastric acid hypersecretion in peptic ulcer disease has been modified by studies showing no correlation between acid output and clinical outcome of ulcer disease, or between ulcer recurrence rate after vagotomy and preoperative acid secretion. At the same time......, studies have been unable to demonstrate increased acidity in the duodenal bulb in patients with duodenal ulcer, and consequently more emphasis has been given to the mucosal protecting mechanisms. The existence of an active gastric and duodenal mucosal bicarbonate secretion creates a pH gradient from...... cell removal and repair regulated by epidermal growth factor. Sufficient mucosal blood flow, including a normal acid/base balance, is important for subepithelial protection. In today's model of ulcer pathogenesis, gastric acid and H. pylori work in concert as aggressive factors, with the open question...

  17. Mitochondrial function and malfunction in the pathophysiology of pancreatitis.

    Science.gov (United States)

    Gerasimenko, Oleg V; Gerasimenko, Julia V

    2012-07-01

    As a primary energy producer, mitochondria play a fundamental role in pancreatic exocrine physiology and pathology. The most frequent aetiology of acute pancreatitis is either gallstones or heavy alcohol consumption. Repeated episodes of acute pancreatitis can result in the development of chronic pancreatitis and increase the lifetime risk of pancreatic cancer 100-fold. Pancreatic cancer is one of the most common causes of cancer mortality with only about 3-4 % of patients surviving beyond 5 years. It has been shown that acute pancreatitis involves Ca²⁺ overload and overproduction of reactive oxygen species in pancreatic acinar cells. Both factors significantly affect mitochondria and lead to cell death. The pathogenesis of inflammation in acute and chronic pancreatitis is tightly linked to the induction of necrosis and apoptosis. There is currently no specific therapy for pancreatitis, but recent findings of an endogenous protective mechanism against Ca²⁺ overload--and particularly the potential to boost this protection--bring hope of new therapeutic approaches.

  18. Pathophysiology of primary burning mouth syndrome with special focus on taste dysfunction: a review.

    Science.gov (United States)

    Kolkka-Palomaa, M; Jääskeläinen, S K; Laine, M A; Teerijoki-Oksa, T; Sandell, M; Forssell, H

    2015-11-01

    Primary burning mouth syndrome (BMS) is a chronic oral condition characterized by burning pain often accompanied with taste dysfunction and xerostomia. The most compelling evidence concerning BMS pathophysiology comes from studies on the somatosensory system using neurophysiologic or psychophysical methods such as blink reflex, thermal quantitative sensory testing, as well as functional brain imaging. They have provided convincing evidence for neuropathic involvement at several levels of the somatosensory system in BMS pain pathophysiology. The number of taste function studies trying to substantiate the subjective taste disturbances or studies on salivary factors in BMS is much more limited, and most of them suffer from definitional and methodological problems. This review aims to critically evaluate the existing literature on the pathophysiology of BMS, paying special attention to the correctness of case selection and the methodology used in published studies, and to summarize the current state of knowledge. Based on the recognition of several gaps in the current understanding of the pathophysiology of BMS especially as regards taste and pain system interactions, the review ends with future scenarios for research in this area. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Pathophysiology and Biomarkers in Acute Ischemic Stroke – A Review

    African Journals Online (AJOL)

    The pathophysiology of ischemic stroke is complex, and majorly involves excitotoxicity, oxidative stress, inflammation, blood-brain barrier dysfunction, apoptosis, etc. Several of the biomarkers are related to these pathophysiologic mechanisms and they may have applications in stroke prediction, diagnosis, assessment, ...

  20. Tinnitus: Network pathophysiology-network pharmacology

    Directory of Open Access Journals (Sweden)

    Ana Belen eElgoyhen

    2012-01-01

    Full Text Available Tinnitus, the phantom perception of sound, is a prevalent disorder. One in 10 adults has clinically significant subjective tinnitus, and for 1 in 100, tinnitus severely affects their quality of life. Despite the significant unmet clinical need for a safe and effective drug targeting tinnitus relief, there is currently not a single FDA-approved drug on the market. The search for drugs that target tinnitus is hampered by the lack of a deep knowledge of the underlying neural substrates of this pathology. Recent studies are increasingly demonstrating that, as described for other central nervous system disorders, tinnitus is a pathology of brain networks. The application of graph theoretical analysis to brain networks has recently provided new information concerning their topology, their robustness and their vulnerability to attacks. Moreover, the philosophy behind drug design and pharmacotherapy in central nervous system pathologies is changing from that of magic bullets that target individual chemoreceptors or disease-causing genes into that of magic shotguns, promiscuous or dirty drugs that target disease-causing networks, also known as network pharmacology. In the present work we provide some insight into how this knowledge could be applied to tinnitus pathophysiology and pharmacotherapy.

  1. Tinnitus: network pathophysiology-network pharmacology.

    Science.gov (United States)

    Elgoyhen, Ana B; Langguth, Berthold; Vanneste, Sven; De Ridder, Dirk

    2012-01-01

    Tinnitus, the phantom perception of sound, is a prevalent disorder. One in 10 adults has clinically significant subjective tinnitus, and for one in 100, tinnitus severely affects their quality of life. Despite the significant unmet clinical need for a safe and effective drug targeting tinnitus relief, there is currently not a single Food and Drug Administration (FDA)-approved drug on the market. The search for drugs that target tinnitus is hampered by the lack of a deep knowledge of the underlying neural substrates of this pathology. Recent studies are increasingly demonstrating that, as described for other central nervous system (CNS) disorders, tinnitus is a pathology of brain networks. The application of graph theoretical analysis to brain networks has recently provided new information concerning their topology, their robustness and their vulnerability to attacks. Moreover, the philosophy behind drug design and pharmacotherapy in CNS pathologies is changing from that of "magic bullets" that target individual chemoreceptors or "disease-causing genes" into that of "magic shotguns," "promiscuous" or "dirty drugs" that target "disease-causing networks," also known as network pharmacology. In the present work we provide some insight into how this knowledge could be applied to tinnitus pathophysiology and pharmacotherapy.

  2. Metabolic syndrome pathophysiology and clinical presentation.

    Science.gov (United States)

    Handelsman, Yehuda

    2009-01-01

    Metabolic syndrome is a relatively new definition, designed to help the health care practitioner to easily identify people at risk for the development of cardiovascular disease and diabetes. With the obesity epidemic, we are witnessing an epidemic of multiple-risk patients. Insulin resistance is the perceived pathophysiology of metabolic syndrome and defines its clinical presentation. Hypertension, dyslipedemia, polycystic ovarian syndrome, fatty liver disease, pre-diabetes, sleep and breathing disorder, certain cancers, and cognitive impairment are many of the presentations of the syndrome; patients with any of these conditions are at a high risk of developing cardiovascular disease and diabetes. The metabolic syndrome helps identify people at risk to allow early intervention for prevention. Lifestyle modification is the most important part of the management of people with the syndrome. Lately medications--though none approved by the U.S. Food and Drug Administration (FDA)--have been recommended by major medical societies when lifestyle modification is not enough or when it fails.

  3. Hemorrhoids: From basic pathophysiology to clinical management

    Science.gov (United States)

    Lohsiriwat, Varut

    2012-01-01

    This review discusses the pathophysiology, epidemiology, risk factors, classification, clinical evaluation, and current non-operative and operative treatment of hemorrhoids. Hemorrhoids are defined as the symptomatic enlargement and distal displacement of the normal anal cushions. The most common symptom of hemorrhoids is rectal bleeding associated with bowel movement. The abnormal dilatation and distortion of the vascular channel, together with destructive changes in the supporting connective tissue within the anal cushion, is a paramount finding of hemorrhoids. It appears that the dysregulation of the vascular tone and vascular hyperplasia might play an important role in hemorrhoidal development, and could be a potential target for medical treatment. In most instances, hemorrhoids are treated conservatively, using many methods such as lifestyle modification, fiber supplement, suppository-delivered anti-inflammatory drugs, and administration of venotonic drugs. Non-operative approaches include sclerotherapy and, preferably, rubber band ligation. An operation is indicated when non-operative approaches have failed or complications have occurred. Several surgical approaches for treating hemorrhoids have been introduced including hemorrhoidectomy and stapled hemorrhoidopexy, but postoperative pain is invariable. Some of the surgical treatments potentially cause appreciable morbidity such as anal stricture and incontinence. The applications and outcomes of each treatment are thoroughly discussed. PMID:22563187

  4. The pathophysiology of amenorrhea in the adolescent.

    Science.gov (United States)

    Golden, Neville H; Carlson, Jennifer L

    2008-01-01

    Menstrual irregularity is a common occurrence during adolescence, especially within the first 2-3 years after menarche. Prolonged amenorrhea, however, is not normal and can be associated with significant medical morbidity, which differs depending on whether the adolescent is estrogen-deficient or estrogen-replete. Estrogen-deficient amenorrhea is associated with reduced bone mineral density and increased fracture risk, while estrogen-replete amenorrhea can lead to dysfunctional uterine bleeding in the short term and predispose to endometrial carcinoma in the long term. In both situations, appropriate intervention can reduce morbidity. Old paradigms of whom to evaluate for amenorrhea have been challenged by recent research that provides a better understanding of the normal menstrual cycle and its variability. Hypothalamic amenorrhea is the most prevalent cause of amenorrhea in the adolescent age group, followed by polycystic ovary syndrome. In anorexia nervosa, exercise-induced amenorrhea, and amenorrhea associated with chronic illness, an energy deficit results in suppression of hypothalamic secretion of GnRH, mediated in part by leptin. Administration of recombinant leptin to women with hypothalamic amenorrhea has been shown to restore LH pulsatility and ovulatory menstrual cycles. The use of recombinant leptin may improve our understanding of the pathophysiology of hypothalamic amenorrhea in adolescents and may also have therapeutic possibilities.

  5. Pathophysiology of AAA: heredity vs environment.

    Science.gov (United States)

    Björck, Martin; Wanhainen, Anders

    2013-01-01

    Abdominal aortic aneurysm (AAA) has a complex pathophysiology, in which both environmental and genetic factors play important roles, the most important being smoking. The recently reported falling prevalence rates of AAA in northern Europe and Australia/New Zeeland are largely explained by healthier smoking habits. Dietary factors and obesity, in particular abdominal obesity, are also of importance. A family history of AAA among first-degree relatives is present in approximately 13% of incident cases. The probability that a monozygotic twin of a person with an AAA has the disease is 24%, 71 times higher than that for a monozygotic twin of a person without AAA. Approximately 1000 SNPs in 100 candidate genes have been studied, and three genome-wide association studies were published, identifying different diverse weak associations. An example of interaction between environmental and genetic factors is the effect of cholesterol, where genetic and dietary factors affect levels of both HDL and LDL. True epigenetic studies have not yet been published. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Clinical manifestations and pathophysiology of lissencephaly

    International Nuclear Information System (INIS)

    Oi, Shizuo; Sasaki, Koji; Yamada, Hiroshi; Ando, Shoko; Tamura, Yasunori; Fukuda, Kuniaki; Furukawa, Seikyo; Matsumoto, Satoshi.

    1985-01-01

    Four cases of lissencephaly were analyzed in light of clinical manifestations, CT findings and the state of hydrocephalus. Lissencephaly had been diagnosed mainly by autopsy until CT scan was introduced in the early 1970's. Since then, diagnosis of lissencephaly early in life is possible. Presently the major interest in this congenital CNS anomaly, which is caused by a neuronal migration disorder in the relatively late stages of fetal development, is to learn the dynamic pathophysiological state and management. The purpose of this paper is to analyze those points of lissencephaly in diagnosis during life and possible treatment in the hydrocephalic state. The common findings in CT in all four cases are as follows: No. 1. smooth cortical surface (agyria--pachygyria), No. 2. wide sylvian fissure (complete or incomplete lack of opercularization, No. 3. ventricular dilatation (remarkable bilateral enlargement of lateral ventricle and third ventricle--colpocephaly), No. 4. wide subdural or subarachnoid space in supratentorial region, No. 5. periventricular low density, No. 6. midline cavum, No. 7. normal CT findings in posterior fossa structure. Three out of four patients demonstrated full or bulged and tense anterior fontanella. Because of this suggestion of increased intracranial pressure and enlarged ventricles with periventricular lucency in CT findings, one patient underwent CT cisternography for dynamic analysis of the CSF circulation and continuous ICP monitoring for dynamic evaluation of the ICP pattern. The results revealed very much delayed CSF circulation and intermittently increased. ICP, with pressure waves appearing in 35.7 % of all recordings. (J.P.N.)

  7. Pathophysiology and Immune Dysfunction in Endometriosis

    Science.gov (United States)

    Ahn, Soo Hyun; Monsanto, Stephany P.; Miller, Caragh; Singh, Sukhbir S.; Thomas, Richard; Tayade, Chandrakant

    2015-01-01

    Endometriosis is an estrogen-dependent, chronic, proinflammatory disease prevalent in 10% of women of reproductive age worldwide. Characterized by the growth of endometrium-like tissue in aberrant locations outside of the uterus, it is responsible for symptoms including chronic pelvic pain, dysmenorrhea, and subfertility that degrade quality of life of women significantly. In Canada, direct and indirect economic cost of endometriosis amounts to 1.8 billion dollars, and this is elevated to 20 billion dollars in the United States. Despite decades of research, the etiology and pathophysiology of endometriosis still remain to be elucidated. This review aims to bring together the current understanding regarding the pathogenesis of endometriosis with specific focus on mechanisms behind vascularization of the lesions and the contribution of immune factors in facilitating lesion establishment and development. The role of hormones, immune cells, and cytokine signaling is highlighted, in addition to discussing the current pharmaceutical options available for management of pain symptoms in women with endometriosis. PMID:26247027

  8. Pathophysiology and Immune Dysfunction in Endometriosis

    Directory of Open Access Journals (Sweden)

    Soo Hyun Ahn

    2015-01-01

    Full Text Available Endometriosis is an estrogen-dependent, chronic, proinflammatory disease prevalent in 10% of women of reproductive age worldwide. Characterized by the growth of endometrium-like tissue in aberrant locations outside of the uterus, it is responsible for symptoms including chronic pelvic pain, dysmenorrhea, and subfertility that degrade quality of life of women significantly. In Canada, direct and indirect economic cost of endometriosis amounts to 1.8 billion dollars, and this is elevated to 20 billion dollars in the United States. Despite decades of research, the etiology and pathophysiology of endometriosis still remain to be elucidated. This review aims to bring together the current understanding regarding the pathogenesis of endometriosis with specific focus on mechanisms behind vascularization of the lesions and the contribution of immune factors in facilitating lesion establishment and development. The role of hormones, immune cells, and cytokine signaling is highlighted, in addition to discussing the current pharmaceutical options available for management of pain symptoms in women with endometriosis.

  9. Ankle sprain: pathophysiology, predisposing factors, and management strategies

    Directory of Open Access Journals (Sweden)

    Tricia J Hubbard

    2010-07-01

    Full Text Available Tricia J Hubbard, Erik A WikstromUNC Charlotte, Department of Kinesiology, CharlotteAbstract: With the high percentage (up to 75% of initial lateral ankle sprains (LAS leading to repetitive sprains and chronic symptoms, it is imperative to better understand how best to treat and rehabilitate LAS events. The purpose of this paper is to review LAS pathophysiology, predisposing factors, and the current evidence regarding therapeutic modalities and exercises used in the treatment of LAS. Functional rehabilitation, early mobilization with support, is the current standard of care for LAS. However, the high percentage of reinjury occurrence and development of chronic symptoms (up to 75% after a LAS, suggests the current standard of care may not be effective. Recent evidence has shown the need for more stringent immobilization to facilitate ligament healing and restoration of joint stability and function after a LAS. Additionally, the importance of adding adjunctive therapies, specifically joint mobilizations and balance training have been shown to improve function and decrease the incidence of reinjury after a LAS. Modifying current rehabilitation protocols to include protecting the ankle joint with stringent immobilization, and including joint mobilizations and balance training may be the first step to decreasing the incidence of short and long term ankle joint dysfunction.Keywords: rehabilitation, recurrent sprains, chronic ankle instability (CAI

  10. Intestinal microbiota in pathophysiology and management of irritable bowel syndrome

    Science.gov (United States)

    Lee, Kang Nyeong; Lee, Oh Young

    2014-01-01

    Irritable bowel syndrome (IBS) is a functional bowel disorder without any structural or metabolic abnormalities that sufficiently explain the symptoms, which include abdominal pain and discomfort, and bowel habit changes such as diarrhea and constipation. Its pathogenesis is multifactorial: visceral hypersensitivity, dysmotility, psychosocial factors, genetic or environmental factors, dysregulation of the brain-gut axis, and altered intestinal microbiota have all been proposed as possible causes. The human intestinal microbiota are composed of more than 1000 different bacterial species and 1014 cells, and are essential for the development, function, and homeostasis of the intestine, and for individual health. The putative mechanisms that explain the role of microbiota in the development of IBS include altered composition or metabolic activity of the microbiota, mucosal immune activation and inflammation, increased intestinal permeability and impaired mucosal barrier function, sensory-motor disturbances provoked by the microbiota, and a disturbed gut-microbiota-brain axis. Therefore, modulation of the intestinal microbiota through dietary changes, and use of antibiotics, probiotics, and anti-inflammatory agents has been suggested as strategies for managing IBS symptoms. This review summarizes and discusses the accumulating evidence that intestinal microbiota play a role in the pathophysiology and management of IBS. PMID:25083061

  11. Intestinal microbiota in pathophysiology and management of irritable bowel syndrome.

    Science.gov (United States)

    Lee, Kang Nyeong; Lee, Oh Young

    2014-07-21

    Irritable bowel syndrome (IBS) is a functional bowel disorder without any structural or metabolic abnormalities that sufficiently explain the symptoms, which include abdominal pain and discomfort, and bowel habit changes such as diarrhea and constipation. Its pathogenesis is multifactorial: visceral hypersensitivity, dysmotility, psychosocial factors, genetic or environmental factors, dysregulation of the brain-gut axis, and altered intestinal microbiota have all been proposed as possible causes. The human intestinal microbiota are composed of more than 1000 different bacterial species and 10(14) cells, and are essential for the development, function, and homeostasis of the intestine, and for individual health. The putative mechanisms that explain the role of microbiota in the development of IBS include altered composition or metabolic activity of the microbiota, mucosal immune activation and inflammation, increased intestinal permeability and impaired mucosal barrier function, sensory-motor disturbances provoked by the microbiota, and a disturbed gut-microbiota-brain axis. Therefore, modulation of the intestinal microbiota through dietary changes, and use of antibiotics, probiotics, and anti-inflammatory agents has been suggested as strategies for managing IBS symptoms. This review summarizes and discusses the accumulating evidence that intestinal microbiota play a role in the pathophysiology and management of IBS.

  12. Chagas disease. A new pathophysiological assessment

    International Nuclear Information System (INIS)

    Redruello, M.; Masoli, O.; Hasson, I.; Cragnolino, D.; Traverso, S.; Perez Balino, N.; Sarmiento, R.; Lazzari, J.; Luluaga, E.

    2002-01-01

    Background: There is scarce information on myocardial perfusion abnormalities and on the coronary vasomotor condition in Chagas disease patients. Aims: To assess regional perfusion abnormalities and the coronary vasomotor response of patients in the chronic phase of Chagas disease. Methods: With the use of 99mTc-sestamibi SPECT imaging and cold pressor test and intracoronary acetylcoline (ACH) perfusion, we studied 9 patients aged 42,6±12 years, 4 males, in the chronic stage of Chagas disease (5 with the indeterminate form and 4 with heart lesion) with normal coronary arteries. Vasomotor responses to intracoronary increasing doses of ACH and to a single dose of nitroglycerine (NTG) were assessed with digital quantitative angiography. Regional myocardial perfusion was evaluated at rest and after cold pressor test by a semi quantitative score analysis in an 18-segment model with 99mTc-sestamibi SPECT images. Results were expressed as mean ± 2SD. Differences between continuous variables were measured by two tails Student's t test for paired variables and the significance level was set at 5 %. Results: All patients had regional perfusion defects and abnormal vasomotor response. The diameter of the left anterior descending artery decreased 34% from a basal diameter of 3.66∫0.95 mm down to 2.42±0.74 mm after maximal response to ACH (p<0.002). NTG infusion augmented its diameter to 3.86±0.77 mm (p<0.0002) that is a 60% increase from post ACH diameter. Myocardial perfusion score was 1∫2.66 at rest and 6.22±3.6 after cold pressor test (p<0.0001). Conclusions: This group of patients in the chronic phase of Chagas disease showed an abnormal vasoconstrictive response to intracoronary ACH and cold-induced perfusion defects suggesting that endothelial dysfunction plays a role in the pathophysiology of chronic Chagas heart disease

  13. Epilepsy in autism: A pathophysiological consideration.

    Science.gov (United States)

    Nomura, Yoshiko; Nagao, Yuri; Kimura, Kazue; Hachimori, Kei; Segawa, Masaya

    2010-11-01

    Eighty cases of idiopathic autism with epilepsy and 97 cases without epilepsy were studied to evaluate the pathophysiology of epilepsy in autism. The initial visit to this clinic ranged 8months-30years 3months of age, and the current ages are 5years 8months-42years 3months, 60% reaching to over 30years of age. The average follow up duration is 22.2years±9.4years. The ages of onset of epilepsy were from 7months to 30years of age, with the two peaks at 3.2years and 16.7years. EEG central focus appeared earlier than frontal focus. Abnormality of locomotion and atonic NREM were observed more frequently in epileptic group. These suggest the neuronal system related to abnormality of locomotion and atonic NREM, which are the hypofunction of the brainstem monoaminergic system, is the pathomechanism underling the epilepsy in autism. By showing the abnormal sleep-wake rhythm and locomotion being the very initial symptoms in autism, we had shown the hypofunction of the brainstem monoaminergic system is the initial pathomechanism of autism. Thus, epilepsy in autism is not the secondary manifestation, but one of the pathognomonic symptoms of autism. The brainstem monoaminergic system project to the wider cortical area, and the initial monoaminergic hypofunction may lead to the central focus which appears earlier. The failure of the monoaminergic (serotonergic) system causes dysfunction of the pedunculo-pontine nucleus (PPN) and induces dysfunction of the dopamine (DA) system, and with development of the DA receptor supersensitivity consequently disinhibits the thalamo-frontal pathway, which after maturation of this pathway in teens cause the epileptogenesis in the frontal cortex. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Faecal soiling: pathophysiology of postdefaecatory incontinence.

    Science.gov (United States)

    Pucciani, F

    2013-08-01

    Passive postdefaecatory incontinence is poorly understood and yet is an important clinical problem. The aim of this study was to characterize the pathophysiology of postdefaecatory incontinence in patients affected by faecal soiling. Seventy-two patients (30 women, age range 49-79 years; 42 men, age range, 53-75 years) affected by faecal passive incontinence with faecal soiling were included in the study. Two patient groups were identified: Group 1 comprised 42 patients with postdefaecatory incontinence and Group 2 had 30 patients without incontinence after bowel movements. After a preliminary clinical evaluation, including the Faecal Incontinence Severity Index (FISI) score and the obstructed defaecation syndrome (ODS) score, all patients of Groups 1 and 2 were studied by means of endoanal ultrasound and anorectal manometry. The results were compared with those from 20 healthy control subjects. A significantly higher ODS score was found in Group 1 (P IAS) in Group 2 (P IAS atrophy and the FISI score (ρs 0.78; P < 0.03). Anal resting pressure (Pmax and Pm ) was significantly lower in Group 2 (P < 0.04). The straining test was considered positive in 30 (71.4%) patients in Group 1, significantly greater than in Group 2 (P < 0.01). A significantly higher conscious rectal sensitivity threshold (CRST) was found in Group 1 patients (P < 0.01). The ODS score, a positive straining test and high CRST values suggest that postdefaecatory incontinence is secondary to impaired defaecation. Colorectal Disease © 2013 The Association of Coloproctology of Great Britain and Ireland.

  15. Caveolins and caveolae in ocular physiology and pathophysiology.

    Science.gov (United States)

    Gu, Xiaowu; Reagan, Alaina M; McClellan, Mark E; Elliott, Michael H

    2017-01-01

    Caveolae are specialized, invaginated plasma membrane domains that are defined morphologically and by the expression of signature proteins called, caveolins. Caveolae and caveolins are abundant in a variety of cell types including vascular endothelium, glia, and fibroblasts where they play critical roles in transcellular transport, endocytosis, mechanotransduction, cell proliferation, membrane lipid homeostasis, and signal transduction. Given these critical cellular functions, it is surprising that ablation of the caveolae organelle does not result in lethality suggesting instead that caveolae and caveolins play modulatory roles in cellular homeostasis. Caveolar components are also expressed in ocular cell types including retinal vascular cells, Müller glia, retinal pigment epithelium (RPE), conventional aqueous humor outflow cells, the corneal epithelium and endothelium, and the lens epithelium. In the eye, studies of caveolae and other membrane microdomains (i.e., "lipid rafts") have lagged behind what is a substantial body of literature outside vision science. However, interest in caveolae and their molecular components has increased with accumulating evidence of important roles in vision-related functions such as blood-retinal barrier homeostasis, ocular inflammatory signaling, pathogen entry at the ocular surface, and aqueous humor drainage. The recent association of CAV1/2 gene loci with primary open angle glaucoma and intraocular pressure has further enhanced the need to better understand caveolar functions in the context of ocular physiology and disease. Herein, we provide the first comprehensive review of literature on caveolae, caveolins, and other membrane domains in the context of visual system function. This review highlights the importance of caveolae domains and their components in ocular physiology and pathophysiology and emphasizes the need to better understand these important modulators of cellular function. Copyright © 2016 Elsevier Ltd. All

  16. Molecular Pathophysiology of Epithelial Barrier Dysfunction in Inflammatory Bowel Diseases

    Directory of Open Access Journals (Sweden)

    Jessica Y. Lee

    2018-03-01

    Full Text Available Over the years, the scientific community has explored myriads of theories in search of the etiology and a cure for inflammatory bowel disease (IBD. The cumulative evidence has pointed to the key role of the intestinal barrier and the breakdown of these mechanisms in IBD. More and more scientists and clinicians are embracing the concept of the impaired intestinal epithelial barrier and its role in the pathogenesis and natural history of IBD. However, we are missing a key tool that bridges these scientific insights to clinical practice. Our goal is to overcome the limitations in understanding the molecular physiology of intestinal barrier function and develop a clinical tool to assess and quantify it. This review article explores the proteins in the intestinal tissue that are pivotal in regulating intestinal permeability. Understanding the molecular pathophysiology of impaired intestinal barrier function in IBD may lead to the development of a biochemical method of assessing intestinal tissue integrity which will have a significant impact on the development of novel therapies targeting the intestinal mucosa.

  17. Neurobehavioral aspects, pathophysiology, and management of Tourette syndrome.

    Science.gov (United States)

    Shprecher, David R; Schrock, Lauren; Himle, Michael

    2014-08-01

    This update summarizes progress in understanding Tourette syndrome clinical characteristics, etiology, and treatment over the past year. Premonitory sensory phenomena were found to have important impacts on Tourette syndrome quality of life. A rare genetic form of Tourette syndrome due to L-histidine-decarboxylase mutation, with similar features in human and rodent, has inspired new research on functional anatomy of Tourette syndrome. In response to new data, treatment guidelines have been revised to include behavioral therapy as first-line treatment. Novel dopamine receptor antagonists aripiprazole and ecopipam have shown potential efficacy - as well as tolerability concerns. Recent work has suggested efficacy and tolerability of topiramate and fluphenazine, but more rigorous studies are needed to further understand their role in Tourette syndrome management. Recent consensus guidelines explain when deep brain stimulation can be considered for severe refractory cases under a multidisciplinary team. More research is needed to identify better tolerated treatments for, to understand pathophysiology or functional anatomy of, and to predict or influence longitudinal outcome of Tourette syndrome.

  18. Depressive Disorder, Anxiety Disorder and Chronic Pain: Multiple Manifestations of a Common Clinical and Pathophysiological Core.

    Science.gov (United States)

    Arango-Dávila, Cesar A; Rincón-Hoyos, Hernán G

    A high proportion of depressive disorders are accompanied by anxious manifestations, just as depression and anxiety often present with many painful manifestations, or conversely, painful manifestations cause or worsen depressive and anxious expressions. There is increasingly more evidence of the pathophysiological, and neurophysiological and technical imaging similarity of pain and depression. Narrative review of the pathophysiological and clinical aspects of depression and chronic pain comorbidity. Research articles are included that emphasise the most relevant elements related to understanding the pathophysiology of both manifestations. The pathological origin, physiology and clinical approach to these disorders have been more clearly established with the latest advances in biochemical and cellular techniques, as well as the advent of imaging technologies. This information is systematised with comprehensive images and clinical pictures. The recognition that the polymorphism of inflammation-related genes generates susceptibility to depressive manifestations and may modify the response to antidepressant treatments establishes that the inflammatory response is not only an aetiopathogenic component of pain, but also of stress and depression. Likewise, the similarity in approach with images corroborates not only the structural, but the functional and pathophysiological analogy between depression and chronic pain. Knowledge of depression-anxiety-chronic pain comorbidity is essential in the search for effective therapeutic interventions. Copyright © 2016 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  19. Pathophysiology of Pulmonary Hypertension in Chronic Parenchymal Lung Disease.

    Science.gov (United States)

    Singh, Inderjit; Ma, Kevin Cong; Berlin, David Adam

    2016-04-01

    Pulmonary hypertension commonly complicates chronic obstructive pulmonary disease and interstitial lung disease. The association of chronic lung disease and pulmonary hypertension portends a worse prognosis. The pathophysiology of pulmonary hypertension differs in the presence or absence of lung disease. We describe the physiological determinants of the normal pulmonary circulation to better understand the pathophysiological factors implicated in chronic parenchymal lung disease-associated pulmonary hypertension. This review will focus on the pathophysiology of 3 forms of chronic lung disease-associated pulmonary hypertension: idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, and sarcoidosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Pathophysiology of shunt dysfunction in shunt treated hydrocephalus

    DEFF Research Database (Denmark)

    Blegvad, C.; Skjolding, A D; Broholm, H

    2013-01-01

    We hypothesized that shunt dysfunction in the ventricular catheter and the shunt valve is caused by different cellular responses. We also hypothesized that the cellular responses depend on different pathophysiological mechanisms....

  1. MALDI imaging mass spectrometry: Discrimination of pathophysiological regions in traumatized skeletal muscle by characteristic peptide signatures

    OpenAIRE

    Klein, O.; Strohschein, K.; Nebrich, G.; Oetjen, J.; Trede, D.; Thiele, H.; Alexandrov, T.; Giavalisco, P.; Duda, G.N.; Roth, P. von; Geissler, S.; Klose, J.; Winkler, T.

    2014-01-01

    Due to formation of fibrosis and the loss of contractile muscle tissue, severe muscle injuries often result in insufficient healing marked by a significant reduction of muscle force and motor activity. Our previous studies demonstrated that the local transplantation of mesenchymal stromal cells into an injured skeletal muscle of the rat improves the functional outcome of the healing process. Since, due to the lack of sufficient markers, the accurate discrimination of pathophysiological region...

  2. Pathophysiology of acute small bowel disease with CT correlation

    International Nuclear Information System (INIS)

    Sarwani, N.; Tappouni, R.; Tice, J.

    2011-01-01

    The objective of this article is to review the pathophysiology of acute small bowel diseases, and to correlate the mechanisms of disease with computed tomography (CT) findings. Disease entities will be classified into the following: immune mediated and infectious causes, vascular causes, mechanical causes, trauma, and others. Having an understanding of acute small bowel pathophysiology is a useful teaching tool, and can lead to imaging clues to the most likely diagnosis of acute small bowel disorders.

  3. Targeting autophagy in obesity: from pathophysiology to management.

    Science.gov (United States)

    Zhang, Yingmei; Sowers, James R; Ren, Jun

    2018-04-23

    Obesity poses a severe threat to human health, including the increased prevalence of hypertension, insulin resistance, diabetes mellitus, cancer, inflammation, sleep apnoea and other chronic diseases. Current therapies focus mainly on suppressing caloric intake, but the efficacy of this approach remains poor. A better understanding of the pathophysiology of obesity will be essential for the management of obesity and its complications. Knowledge gained over the past three decades regarding the aetiological mechanisms underpinning obesity has provided a framework that emphasizes energy imbalance and neurohormonal dysregulation, which are tightly regulated by autophagy. Accordingly, there is an emerging interest in the role of autophagy, a conserved homeostatic process for cellular quality control through the disposal and recycling of cellular components, in the maintenance of cellular homeostasis and organ function by selectively ridding cells of potentially toxic proteins, lipids and organelles. Indeed, defects in autophagy homeostasis are implicated in metabolic disorders, including obesity, insulin resistance, diabetes mellitus and atherosclerosis. In this Review, the alterations in autophagy that occur in response to nutrient stress, and how these changes alter the course of obesogenesis and obesity-related complications, are discussed. The potential of pharmacological modulation of autophagy for the management of obesity is also addressed.

  4. [Dysphagia in Parkinson's Disease: Pathophysiology, Diagnosis and Therapy].

    Science.gov (United States)

    Suttrup, I; Warnecke, T

    2016-07-01

    Oropharyngeal and esophageal dysphagia are a frequent, but seldom diagnosed symptom of Parkinson's disease (PD). More than 80 % of patients with PD develop dysphagia during the course of their disease leading to a reduced quality of life, complicated medication intake, malnutrition and aspiration pneumonia, which is a major cause of death in PD. The underlying pathophysiology is poorly understood. Impaired dopaminergic and non-dopaminergic mechanisms of the cortical swallowing network as well as peripheral neuromuscular involvement have been suggested to contribute to its multifactorial genesis. Diagnostic screening methods include PD-specific questionnaires and a modified water test. Fiber optic endoscopic evaluation of swallowing (FEES) and videofluoroscopic swallowing study (VFSS), which complement each other, are the gold standard for evaluation of PD-related dysphagia. For evaluation of esophageal dysphagia, the high-resolution manometry (HRM) may be a helpful tool. In addition to dysphagia-specific treatment by speech and language therapists (SLTs), optimized dopaminergic medication is a meaningful therapeutic option. A promising novel method is intensive training of expiratory muscle strength (EMST). Deep brain stimulation does not seem to have a clinically relevant effect on swallowing function in PD. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Epileptic Seizures Versus Syncope: Pathophysiology and Clinical Approach

    Directory of Open Access Journals (Sweden)

    Marios Charalambous

    2017-02-01

    Full Text Available Generalised epileptic seizures and syncope are two syndromes with similar clinical manifestation and their differentiation can be quite challenging. The aim of this review is to use an evidence-based approach in differentiating these two syndromes through the comprehension of the pathophysiological mechanisms involved and their clinical signs. Both syndromes affect regions of the forebrain and consciousness level, although, different mechanisms are involved. Syncope is a paroxysmal event secondary to a short-term decrease in cerebral perfusion, oxygenation or essential nutrients delivery. Generalised epileptic seizure activity is defined as the clinical manifestation of transient paroxysmal disturbances in brain function secondary to an imbalance between excitatory and inhibitory neurotransmitters. Clinical criteria, including precipitating events, clinical signs preceding, during and following the episodes and event duration, can be used to differentiate the two syndromes. Although these criteria might be useful for the practitioner, definite conclusions should be precluded due to the lack of original research articles and weak evidence on this specific field.Application: The review might be a useful tool for the general practitioner and clinical scientist as it will aid towards the differentiation of two syndromes, i.e. generalised epileptic seizures and syncope, with similar clinical presentation.

  6. Nondopaminergic neurotransmission in the pathophysiology of Tourette syndrome.

    Science.gov (United States)

    Udvardi, Patrick T; Nespoli, Ester; Rizzo, Francesca; Hengerer, Bastian; Ludolph, Andrea G

    2013-01-01

    A major pathophysiological role for the dopaminergic system in Tourette's syndrome (TS) has been presumed ever since the discovery that dopamine-receptor antagonists can alleviate tics. Especially recent molecular genetic studies, functional imaging studies, and some rare postmortem studies have given more and more hints that other neurotransmitter systems are involved as well. Dysfunction in the dopamine metabolism-in particular during early development-might lead to counter-regulations in the other systems or vice versa. This chapter will give an overview of the studies that prove the involvement of other neurotransmitter systems such as the major monoaminergic neurotransmitters norepinephrine, serotonin, and histamine; the most important excitatory neurotransmitter, the amino acid glutamate; the major inhibitory neurotransmitter y-aminobutyric acid, as well as acetylcholine, endocannabinoid, corticoid; and others. These studies will hopefully lead to fundamental advances in the psychopharmacological treatment of TS. While tic disorders have been previously treated mainly with dopamine antagonists, some authors already favor alpha-agonists. Clinical trials with glutamate agonists and antagonists and compounds influencing the histaminergic system are currently being conducted. Since the different neurotransmitter systems consist of several receptor subtypes which might mediate different effects on locomotor activity, patients with TS may respond differentially to selective agonists or antagonists. Effects of agonistic or antagonistic compounds on tic symptoms might also be dose dependent. Further studies will lead to a broader spectrum of psychopharmacological treatment options in TS. © 2013 Elsevier Inc. All rights reserved.

  7. Astroglial role in the pathophysiology of status epilepticus: an overview.

    Science.gov (United States)

    Vargas-Sánchez, Karina; Mogilevskaya, Maria; Rodríguez-Pérez, John; Rubiano, María G; Javela, José J; González-Reyes, Rodrigo E

    2018-06-01

    Status epilepticus is a medical emergency with elevated morbidity and mortality rates, and represents a leading cause of epilepsy-related deaths. Though status epilepticus can occur at any age, it manifests more likely in children and elderly people. Despite the common prevalence of epileptic disorders, a complete explanation for the mechanisms leading to development of self-limited or long lasting seizures (as in status epilepticus) are still lacking. Apart from neurons, research evidence suggests the involvement of immune and glial cells in epileptogenesis. Among glial cells, astrocytes represent an ideal target for the study of the pathophysiology of status epilepticus, due to their key role in homeostatic balance of the central nervous system. During status epilepticus, astroglial cells are activated by the presence of cytokines, damage associated molecular patterns and reactive oxygen species. The persistent activation of astrocytes leads to a decrease in glutamate clearance with a corresponding accumulation in the synaptic extracellular space, increasing the chance of neuronal excitotoxicity. Moreover, major alterations in astrocytic gap junction coupling, inflammation and receptor expression, facilitate the generation of seizures. Astrocytes are also involved in dysregulation of inhibitory transmission in the central nervous system and directly participate in ionic homeostatic alterations during status epilepticus. In the present review, we focus on the functional and structural changes in astrocytic activity that participate in the development and maintenance of status epilepticus, with special attention on concurrent inflammatory alterations. We also include potential astrocytic treatment targets for status epilepticus.

  8. Autonomous functioning of the goitre

    International Nuclear Information System (INIS)

    Emrich, D.

    1994-01-01

    The article summarizes the status of knowledge on functional autonomy of the thyroid gland from the standpoint of definition, pathogenesis, pathophysiology, epidemiology, diagnostics and treatment. (orig.) [de

  9. Nuclear medicine to image applied pathophysiology: Evaluation of reserves by emission computerized tomography

    International Nuclear Information System (INIS)

    Buell, U.; Schicha, H.

    1990-01-01

    Nuclear procedures have long been successful in displaying parameters related to physiological and/or pathophysiological mechanisms inherent in organs or systems. Since a major advantage of PET is its ability to measure actual concentration, we now expect to gain such data in absolute terms. The use of stimuli, however, makes it possible to determine parameters in the form of ratios (stimulus-to-rest). Moreover, these ratios are correlated closely with the capacity of reserve mechanisms experienced from applied pathophysiology, in addition to which some are accessible by means of SPET. The clinical validity of findings related to coronary and cerebrovascular perfusion reserves have already been confirmed by SPET and/or PET. These results, if complemented by parameters of metabolic reserve, would constitute a most powerful tool in functional clinical diagnostics, allowing determination of differences between actual values and critical thresholds. This is one of the most promising approaches exclusively available from PET. (orig.)

  10. Pulmonary Arterial Stiffness: Toward a New Paradigm in Pulmonary Arterial Hypertension Pathophysiology and Assessment.

    Science.gov (United States)

    Schäfer, Michal; Myers, Cynthia; Brown, R Dale; Frid, Maria G; Tan, Wei; Hunter, Kendall; Stenmark, Kurt R

    2016-01-01

    Stiffening of the pulmonary arterial bed with the subsequent increased load on the right ventricle is a paramount feature of pulmonary hypertension (PH). The pathophysiology of vascular stiffening is a complex and self-reinforcing function of extracellular matrix remodeling, driven by recruitment of circulating inflammatory cells and their interactions with resident vascular cells, and mechanotransduction of altered hemodynamic forces throughout the ventricular-vascular axis. New approaches to understanding the cell and molecular determinants of the pathophysiology combine novel biopolymer substrates, controlled flow conditions, and defined cell types to recapitulate the biomechanical environment in vitro. Simultaneously, advances are occurring to assess novel parameters of stiffness in vivo. In this comprehensive state-of-art review, we describe clinical hemodynamic markers, together with the newest translational echocardiographic and cardiac magnetic resonance imaging methods, to assess vascular stiffness and ventricular-vascular coupling. Finally, fluid-tissue interactions appear to offer a novel route of investigating the mechanotransduction processes and disease progression.

  11. Unraveling childhood constipation: Pathophysiology, diagnostics and treatment

    NARCIS (Netherlands)

    Mugie, S.M.

    2014-01-01

    Constipation represents a common worldwide problem in children. In > 90% of children presenting with constipation, no obvious organic cause is found and a diagnosis of functional constipation (FC) is made. Most common symptoms of FC include infrequent bowel movements, painful and hard stools, fecal

  12. Bioactive lipids in kidney physiology and pathophysiology

    Directory of Open Access Journals (Sweden)

    Daria Sałata

    2014-01-01

    Full Text Available Lipids not only have structural functions, but also play an important role as signaling and regulatory molecules and participate in many cellular processes such as proliferation, differentiation, migration, and apoptosis. Bioactive lipids act both as extracellular mediators, which are associated with receptors on the surface of cells, and intracellular mediators triggering different signal pathways. They are present and active in physiological conditions, and are also involved in the pathogenesis of inflammation, asthma, cancer, diabetes, and hypertension. Bioactive lipids such as derivatives of arachidonic acid and sphingolipids have an important role in renal development, physiology and in many renal diseases. Some of them are potential indicators of kidney damage degree and/or function of the transplanted kidneys.

  13. Pathophysiology of alcoholic pancreatitis: An overview

    Institute of Scientific and Technical Information of China (English)

    Parimal Chowdhury; Priya Gupta

    2006-01-01

    Use of alcohol is a worldwide habit regardless of socioeconomic background. Heavy alcohol consumption is a potential risk factor for induction of pancreatitis. The current review cites the updated literature on the alcohol metabolism, its effects on gastrointestinal and pancreatic function and in causing pancreatic injury, genetic predisposition of alcohol induced pancreatitis. Reports describing prospective mechanisms of action of alcohol activating the signal transduction pathways, induction of oxidative stress parameters through the development of animal models are being presented.

  14. Pathophysiology of preterm labor with intact membranes.

    Science.gov (United States)

    Talati, Asha N; Hackney, David N; Mesiano, Sam

    2017-11-01

    Preterm labor with intact membranes is a major cause of spontaneous preterm birth (sPTB). To prevent sPTB a clear understanding is needed of the hormonal interactions that initiate labor. The steroid hormone progesterone acting via its nuclear progesterone receptors (PRs) in uterine cells is essential for the establishment and maintenance of pregnancy and disruption of PR signaling (i.e., functional progesterone/PR withdrawal) is key trigger for labor. The process of parturition is also associated with inflammation within the uterine tissues and it is now generally accepted that inflammatory stimuli from multiple extrinsic and intrinsic sources induce labor. Recent studies suggest inflammatory stimuli induce labor by affecting PR transcriptional activity in uterine cells to cause functional progesterone/PR withdrawal. Advances in understanding the functional interaction of inflammatory load on the pregnancy uterus and progesterone/PR signaling is opening novel areas of research and may lead to rational therapeutic strategies to effectively prevent sPTB. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Physiology and pathophysiology of cell organelles

    Directory of Open Access Journals (Sweden)

    J. J. Theron

    1998-07-01

    Full Text Available Mitochondria are found in all eucaryotic cells except mature red blood cells. The structural components of these organelles are briefly described. The primary function of mitochondria, i.e. transduction of energy with formation of ATP through a process of oxidative phosphorylation (OXPHOS occurs in six protein complexes arranged in sequence on the mitochondrial cristae formed by infoldings of the internal membrane. Mitochondrial DNA and ribosomes are found in mitochondria and protein synthesis can therefore occur in these organelles. However, most mitochondrial proteins and practically all lipids are imported from the cytoplasm.

  16. Oxygen Deficit: The Bio-energetic Pathophysiology

    Directory of Open Access Journals (Sweden)

    ABHAY KUMAR PANDEY

    2014-09-01

    Full Text Available Scarcity of oxygen in humans arises via three modes. The environment may have low oxygen to breath. There can be disease in respiratory system causing hindrance to uptake of oxygen from environment and the circulatory system may be sluggish to supply to body parts that starve for oxygen. Thirdly the chemico-cellular components of blood which carry oxygen may be lowered or defective. In reference to body cells several limiting sites and mechanisms affect the amount of oxygen delivered to them, and these are under regulatory control of several functional and metabolic systems.

  17. The role of skeletal muscle in the pathophysiology and management of knee osteoarthritis.

    Science.gov (United States)

    Krishnasamy, Priathashini; Hall, Michelle; Robbins, Sarah R

    2018-05-01

    The role of skeletal muscle in the pathophysiology of knee OA is poorly understood. To date, the majority of literature has focused on the association of muscle strength with OA symptoms, disease onset and progression. However, deficits or improvements in skeletal muscle strength do not fully explain the mechanisms behind outcome measures in knee OA, such as pain, function and structural disease. This review aims to summarize components of skeletal muscle, providing a holistic view of skeletal muscle mechanisms that includes muscle function, quality and composition and their interactions. Similarly, the role of skeletal muscle in the management of knee OA will be discussed.

  18. A Unified Pathophysiological Construct of Diabetes and its Complications.

    Science.gov (United States)

    Schwartz, Stanley S; Epstein, Solomon; Corkey, Barbara E; Grant, Struan F A; Gavin Iii, James R; Aguilar, Richard B; Herman, Mary E

    2017-09-01

    Advances in understanding diabetes mellitus (DM) through basic and clinical research have helped clarify and reunify a disease state fragmented into numerous etiologies and subtypes. It is now understood that a common pathophysiology drives the diabetic state throughout its natural history and across its varied clinical presentations, a pathophysiology involving metabolic insults, oxidative damage, and vicious cycles that aggravate and intensify organ dysfunction and damage. This new understanding of the disease requires that we revisit existing diagnostics and treatment approaches, which were built upon outmoded assumptions. 'The Common Pathophysiologic Origins of Diabetes Mellitus and its Complications Construct' is presented as a more accurate, foundational, and translatable construct of DM that helps make sense of the hitherto ambiguous findings of long-term outcome studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Cell volume regulation: physiology and pathophysiology

    DEFF Research Database (Denmark)

    Lambert, I H; Hoffmann, E K; Pedersen, Stine Helene Falsig

    2008-01-01

    are sensed are still far from clear, significant progress has been made with respect to the nature of the sensors, transducers and effectors that convert a change in cell volume into a physiological response. In the present review, we summarize recent major developments in the field, and emphasize......Cell volume perturbation initiates a wide array of intracellular signalling cascades, leading to protective and adaptive events and, in most cases, activation of volume-regulatory osmolyte transport, water loss, and hence restoration of cell volume and cellular function. Cell volume is challenged....../hypernatremia. On the other hand, it has recently become clear that an increase or reduction in cell volume can also serve as a specific signal in the regulation of physiological processes such as transepithelial transport, cell migration, proliferation and death. Although the mechanisms by which cell volume perturbations...

  20. The KATP channel in migraine pathophysiology

    DEFF Research Database (Denmark)

    Al-Karagholi, Mohammad Al-Mahdi; Hansen, Jakob Møller; Severinsen, Johanne

    2017-01-01

    BACKGROUND: To review the distribution and function of KATP channels, describe the use of KATP channels openers in clinical trials and make the case that these channels may play a role in headache and migraine. DISCUSSION: KATP channels are widely present in the trigeminovascular system and play...... an important role in the regulation of tone in cerebral and meningeal arteries. Clinical trials using synthetic KATP channel openers report headache as a prevalent-side effect in non-migraine sufferers, indicating that KATP channel opening may cause headache, possibly due to vascular mechanisms. Whether KATP...... channel openers can provoke migraine in migraine sufferers is not known. CONCLUSION: We suggest that KATP channels may play an important role in migraine pathogenesis and could be a potential novel therapeutic anti-migraine target....

  1. Pathophysiological implications of the chemical messengers

    International Nuclear Information System (INIS)

    Blazquez Fernandez, E.

    2009-01-01

    To maintain a physical organization and a different composition of its surroundings environment, living beings use a great part of the energy that they produce. Vital processes require an elevated number of reactions which are regulated and integrated by chemical messengers. They use autocrine, paracrine, endocrine and synaptic signals through receptors of cell surface, nuclear or associated with ionic channels, enzymes, trim eric G proteins and to intracellular kinases. Through these mechanisms pheromones play an important role in the relationships between different individuals, and hormones are able to regulate the integrative functions of our organism. In the nervous system, neurotransmitters, neuromodulators, sensors and receptors between other messengers, play functions of great relevance, while growth factors stimulate cell proliferation and cytokines have many effects but the most important is the ones related with the control of the immflamatory process. Alterations of these messengers permit us a better understanding of the diseases and possibly of its treatments in a near future. Modifications of the expression of genes from the nuclear and mitochondrial genomes are responsible of monogenic, polygenic and mitochondrial diseases, while alterations in the activities of dopamine and serotonin neurotransmitters are related with schizophrenia, Parkinson disease and depression, respectively. Other example is the hyperthyroidism of the Graves-Bassedow disease due to the competitive interference of the LATS immunoglobulin with TSH at the level of the follicular cells producing thyroid hormones Twenty five years ago in the reviews on the mechanisms of insulin action, there was presentations in which the insulin receptor was located in the plasma membrane of the target cells while in the cytoplasm only a big interrogative was observed, that at present is replaced by chemical mediators cascades responsible of the multiple effects of insulin. This finding is similar

  2. Practical study on the integrated course of general pathology and pathophysiology

    Institute of Scientific and Technical Information of China (English)

    Qian ZHAO; Guo-hui FU; Ying HUANG; Wei LIU

    2015-01-01

    This paper aims at summarizing the experience of offering the integrated course of general pathology and pathophysiology for eight-year clinical medicine program, providing references for further improving the teaching quality,and laying a foundation for expanding the course to five-year clinical medicine program. Teaching contents of the integrated course of general pathology and pathophysiology focus on the crossing and integration of relevant discipline knowledge and properly integrating the traditional pathological knowledge,which emphasizes morphological changes of human body,with the pathophysiological knowledge,which emphasizes functional and metabolic changes of human body. It is helpful for breaking the boundaries of disciplines and enabling students to understand the laws of occurrence and development of diseases as a whole.The teaching model has been improved by introducing new teaching methods such as PBL,so as to avoid the shortcomings of traditional teaching method. The innovation consciousness,spirit of active learning,and critical thinking of students are trained via discussions of clinical cases,so as to lay a solid foundation for the learning of subsequent clinical courses and academic research in the future. In summary,integrated course benefits the overall optimization of the structure of medical courses,promotes the improvement of teaching quality,and can be expanded to five-year clinical medicine program in the future.

  3. The Contributions of Human Mini-Intestines to the Study of Intestinal Physiology and Pathophysiology.

    Science.gov (United States)

    Yu, Huimin; Hasan, Nesrin M; In, Julie G; Estes, Mary K; Kovbasnjuk, Olga; Zachos, Nicholas C; Donowitz, Mark

    2017-02-10

    The lack of accessibility to normal and diseased human intestine and the inability to separate the different functional compartments of the intestine even when tissue could be obtained have held back the understanding of human intestinal physiology. Clevers and his associates identified intestinal stem cells and established conditions to grow "mini-intestines" ex vivo in differentiated and undifferentiated conditions. This pioneering work has made a new model of the human intestine available and has begun making contributions to the understanding of human intestinal transport in normal physiologic conditions and the pathophysiology of intestinal diseases. However, this model is reductionist and lacks many of the complexities of normal intestine. Consequently, it is not yet possible to predict how great the advances using this model will be for understanding human physiology and pathophysiology, nor how the model will be modified to include multiple other intestinal cell types and physical forces necessary to more closely approximate normal intestine. This review describes recent studies using mini-intestines, which have readdressed previously established models of normal intestinal transport physiology and newly examined intestinal pathophysiology. The emphasis is on studies with human enteroids grown either as three-dimensional spheroids or two-dimensional monolayers. In addition, comments are provided on mouse studies in cases when human studies have not yet been described.

  4. MALDI imaging mass spectrometry: discrimination of pathophysiological regions in traumatized skeletal muscle by characteristic peptide signatures.

    Science.gov (United States)

    Klein, Oliver; Strohschein, Kristin; Nebrich, Grit; Oetjen, Janina; Trede, Dennis; Thiele, Herbert; Alexandrov, Theodore; Giavalisco, Patrick; Duda, Georg N; von Roth, Philipp; Geissler, Sven; Klose, Joachim; Winkler, Tobias

    2014-10-01

    Due to formation of fibrosis and the loss of contractile muscle tissue, severe muscle injuries often result in insufficient healing marked by a significant reduction of muscle force and motor activity. Our previous studies demonstrated that the local transplantation of mesenchymal stromal cells into an injured skeletal muscle of the rat improves the functional outcome of the healing process. Since, due to the lack of sufficient markers, the accurate discrimination of pathophysiological regions in injured skeletal muscle is inadequate, underlying mechanisms of the beneficial effects of mesenchymal stromal cell transplantation on primary trauma and trauma adjacent muscle area remain elusive. For discrimination of these pathophysiological regions, formalin-fixed injured skeletal muscle tissue was analyzed by MALDI imaging MS. By using two computational evaluation strategies, a supervised approach (ClinProTools) and unsupervised segmentation (SCiLS Lab), characteristic m/z species could be assigned to primary trauma and trauma adjacent muscle regions. Using "bottom-up" MS for protein identification and validation of results by immunohistochemistry, we could identify two proteins, skeletal muscle alpha actin and carbonic anhydrase III, which discriminate between the secondary damage on adjacent tissue and the primary traumatized muscle area. Our results underscore the high potential of MALDI imaging MS to describe the spatial characteristics of pathophysiological changes in muscle. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Histidine Decarboxylase Knockout Mice as a Model of the Pathophysiology of Tourette Syndrome and Related Conditions.

    Science.gov (United States)

    Pittenger, Christopher

    2017-01-01

    While the normal functions of histamine (HA) in the central nervous system have gradually come into focus over the past 30 years, the relationship of abnormalities in neurotransmitter HA to human disease has been slower to emerge. New insight came with the 2010 description of a rare nonsense mutation in the biosynthetic enzyme histidine decarboxylase (Hdc) that was associated with Tourette syndrome (TS) and related conditions in a single family pedigree. Subsequent genetic work has provided further support for abnormalities of HA signaling in sporadic TS. As a result of this genetic work, Hdc knockout mice, which were generated more than 15 years ago, have been reexamined as a model of the pathophysiology of TS and related conditions. Parallel work in these KO mice and in human carriers of the Hdc mutation has revealed abnormalities in the basal ganglia system and its modulation by dopamine (DA) and has confirmed the etiologic, face, and predictive validity of the model. The Hdc-KO model thus serves as a unique platform to probe the pathophysiology of TS and related conditions, and to generate specific hypotheses for subsequent testing in humans. This chapter summarizes the development and validation of this model and recent and ongoing work using it to further investigate pathophysiological changes that may contribute to these disorders.

  6. A theoretical framework informing research about the role of stress in the pathophysiology of bipolar disorder.

    Science.gov (United States)

    Brietzke, Elisa; Mansur, Rodrigo Barbachan; Soczynska, Joanna; Powell, Alissa M; McIntyre, Roger S

    2012-10-01

    The staggering illness burden associated with Bipolar Disorder (BD) invites the need for primary prevention strategies. Before preventative strategies can be considered in individuals during a pre-symptomatic period (i.e., at risk), unraveling the mechanistic steps wherein external stress is transduced and interacts with genetic vulnerability in the early stages of BD will be a critical conceptual necessity. Herein we comprehensively review extant studies reporting on stress and bipolar disorder. The overarching aim is to propose a conceptual framework to inform research about the role of stress in the pathophysiology of BD. Computerized databases i.e. PubMed, PsychInfo, Cochrane Library and Scielo were searched using the following terms: "bipolar disorder" cross-referenced with "stress", "general reaction to stress", "resilience", "resistance", "recovery" "stress-diathesis", "allostasis", and "hormesis". Data from literature indicate the existence of some theoretical models to understand the influence of stress in the pathophysiology of BD, including classical stress-diathesis model and new models such as allostasis and hormesis. In addition, molecular mechanisms involved in stress adaptation (resistance, resilience and recovery) can also be translated in research strategies to investigate the impact of stress in the pathophysiology of BD. Most studies are retrospective and/or cross sectional, do not consider the period of development, assess brain function with only one or few methodologies, and use animal models which are not always similar to human phenotypes. The interaction between stress and brain development is dynamic and complex. In this article we proposed a theoretical model for investigation about the role of stress in the pathophysiology of BD, based on the different kinds of stress adaptation response and their putative neurobiological underpinnings. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Pathophysiology and treatment of psychosis in Parkinson's disease: a review.

    Science.gov (United States)

    Zahodne, Laura B; Fernandez, Hubert H

    2008-01-01

    Psychotic symptoms in Parkinson's disease (PD) are relatively common and, in addition to creating a disturbance in patients' daily lives, have consistently been shown to be associated with poor outcome. Our understanding of the pathophysiology of psychosis in PD has expanded dramatically over the past 15 years, from an initial interpretation of symptoms as dopaminergic drug adverse effects to the current view of a complex interplay of extrinsic and disease-related factors.PD psychosis has unique clinical features, namely that it arises within a context of a clear sensorium and retained insight, there is relative prominence of visual hallucinations and progression occurs over time. PD psychosis tends to emerge later in the disease course, and disease duration represents one risk factor for its development. The use of anti-PD medications (particularly dopamine receptor agonists) has been the most widely identified risk factor for PD psychosis. Other risk factors discussed in the literature include older age, disease severity, sleep disturbance, cognitive impairment, dementia and/or depression.Recent efforts have aimed to explore the complex pathophysiology of PD psychosis, which is now known to involve an interaction between extrinsic, drug-related and intrinsic, disease-related components. The most important extrinsic factor is use of dopaminergic medication, which plays a prominent role in PD psychosis. Intrinsic factors include visual processing deficits (e.g. lower visual acuity, colour and contrast recognition deficits, ocular pathology and functional brain abnormalities identified amongst hallucinating PD patients); sleep dysregulation (e.g. sleep fragmentation and altered dream phenomena); neurochemical (dopamine, serotonin, acetylcholine, etc.) and structural abnormalities involving site-specific Lewy body deposition; and genetics (e.g. apolipoprotein E epsilon4 allele and tau H1H1 genotype). Preliminary reports have also shown a potential relationship

  8. The pathophysiology of chronic thromboembolic pulmonary hypertension

    Directory of Open Access Journals (Sweden)

    Gérald Simonneau

    2017-03-01

    Full Text Available Chronic thromboembolic pulmonary hypertension (CTEPH is a rare, progressive pulmonary vascular disease that is usually a consequence of prior acute pulmonary embolism. CTEPH usually begins with persistent obstruction of large and/or middle-sized pulmonary arteries by organised thrombi. Failure of thrombi to resolve may be related to abnormal fibrinolysis or underlying haematological or autoimmune disorders. It is now known that small-vessel abnormalities also contribute to haemodynamic compromise, functional impairment and disease progression in CTEPH. Small-vessel disease can occur in obstructed areas, possibly triggered by unresolved thrombotic material, and downstream from occlusions, possibly because of excessive collateral blood supply from high-pressure bronchial and systemic arteries. The molecular processes underlying small-vessel disease are not completely understood and further research is needed in this area. The degree of small-vessel disease has a substantial impact on the severity of CTEPH and postsurgical outcomes. Interventional and medical treatment of CTEPH should aim to restore normal flow distribution within the pulmonary vasculature, unload the right ventricle and prevent or treat small-vessel disease. It requires early, reliable identification of patients with CTEPH and use of optimal treatment modalities in expert centres.

  9. Pathophysiology of somatosensory abnormalities in Parkinson disease.

    Science.gov (United States)

    Conte, Antonella; Khan, Nashaba; Defazio, Giovanni; Rothwell, John C; Berardelli, Alfredo

    2013-12-01

    Changes in sensory function that have been described in patients with Parkinson disease (PD) can be either 'pure' disorders of conscious perception such as elevations in sensory threshold, or disorders of sensorimotor integration, in which the interaction between sensory input and motor output is altered. In this article, we review the extensive evidence for disrupted tactile, nociceptive, thermal and proprioceptive sensations in PD, as well as the influences exerted on these sensations by dopaminergic therapy and deep brain stimulation. We argue that abnormal spatial and temporal processing of sensory information produces incorrect signals for the preparation and execution of voluntary movement. Sensory deficits are likely to be a consequence of the dopaminergic denervation of the basal ganglia that is the hallmark of PD. A possible mechanism to account for somatosensory deficits is one in which disease-related dopaminergic denervation leads to a loss of response specificity, resulting in transmission of noisier and less-differentiated information to cortical regions. Changes in pain perception might have a different explanation, possibly involving disease-related effects outside the basal ganglia, including involvement of peripheral pain receptors, as well as structures such as the periaqueductal grey matter and non-dopaminergic neurotransmitter systems.

  10. [Gut microbiota: Description, role and pathophysiologic implications].

    Science.gov (United States)

    Landman, C; Quévrain, E

    2016-06-01

    The human gut contains 10(14) bacteria and many other micro-organisms such as Archaea, viruses and fungi. Studying the gut microbiota showed how this entity participates to gut physiology and beyond this to human health, as a real "hidden organ". In this review, we aimed to bring information about gut microbiota, its structure, its roles and its implication in human pathology. After bacterial colonization in infant, intestinal microbial composition is unique for each individual although more than 95% can be assigned to four major phyla. The use of culture independent methods and more recently the development of high throughput sequencing allowed to depict precisely gut microbiota structure and diversity as well as its alteration in diseases. Gut microbiota is implicated in the maturation of the host immune system and in many fundamental metabolic pathways including sugars and proteins fermentation and metabolism of bile acids and xenobiotics. Imbalance of gut microbial populations or dysbiosis has important functional consequences and is implicated in many digestive diseases (inflammatory bowel diseases, colorectal cancer, etc.) but also in obesity and autism. These observations have led to a surge of studies exploring therapeutics which aims to restore gut microbiota equilibrium such as probiotics or fecal microbiota transplantation. But recent research also investigates biological activity of microbial products which could lead to interesting therapeutics leads. Copyright © 2015 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  11. Portal hypertension in schistosomiasis: pathophysiology and treatment

    Directory of Open Access Journals (Sweden)

    Luiz Caetano da Silva

    1992-01-01

    Full Text Available In heavily infected young patients, there is a "non-congestive" phase of the disease with splenomegaly which can improve after chemoterapy. A strong correlation between hepatosplenic form and worm burden in young patients has been repeatedly shown. The pattern of vascular intrhepatic lesions seems to depend on two mechanisms: (a egg embolization, with a partial blocking of the portal vasculature; (b the appearance of small portal collaterals along the intrahepatic portal sistem. The role played by hepatitis B virus (HBV and C virus infections in the pathogenesis of liver lesions is variably considered. Selective arteriography shows a reduced diameter of hepatic artery with thin and arched branches outlining vascular gaps. A rich arterial network , as described in autopsy cases, is usually not seen in vivo, except after splenectomy or shunt surgery. An augmented hepatic arterial flow was demonstrated in infected animals. These facts suggest that the poor intrahepatic arterial vascularization demonstrated by selective arteriography in humans is due to a "functional deviation"of arterial blood to the splenic territory. The best results obtained in treatment of portal hypertension were: esophagogastric desvascularization and splenectomy (EGDS, although risk of rebleeding persists; classical (proximal splenorenal shunt (SRS should be abandoned; distal splenorenal shunt may complicate with hepatic encephalopaty, although later and in a lower percentage than in SRS. Propranolol is currently under investigation. In our Department, schistosomotic patients with esophageal varices bleeding are treated by EGDS and, if rebleeding occurs, by sclerosis of the varices.

  12. Poststroke aphasia : epidemiology, pathophysiology and treatment.

    Science.gov (United States)

    Berthier, Marcelo L

    2005-01-01

    Aphasia, the loss or impairment of language caused by brain damage, is one of the most devastating cognitive impairments of stroke. Aphasia is present in 21-38% of acute stroke patients and is associated with high short- and long-term morbidity, mortality and expenditure. Recovery from aphasia is possible even in severe cases. While speech-language therapy remains the mainstay treatment of aphasia, the effectiveness of conventional therapies has not been conclusively proved. This has motivated attempts to integrate knowledge from several domains in an effort to plan more rational therapies and to introduce other therapeutic strategies, including the use of intensive language therapy and pharmacological agents. Several placebo-controlled trials suggest that piracetam is effective in recovery from aphasia when started soon after the stroke, but its efficacy vanishes in patients with chronic aphasia. Drugs acting on catecholamine systems (bromocriptine, dexamfetamine) have shown varying degrees of efficacy in case series, open-label studies and placebo-controlled trials. Bromocriptine is useful in acute and chronic aphasias, but its beneficial action appears restricted to nonfluent aphasias with reduced initiation of spontaneous verbal messages. Dexamfetamine improves language function in subacute aphasia and the beneficial effect is maintained in the long term, but its use is restricted to highly selected samples. Pharmacological agents operating on the cholinergic system (e.g. donepezil) have shown promise. Data from single-case studies, case series and an open-label study suggest that donepezil may have beneficial effects on chronic poststroke aphasia. Preliminary evidence suggests that donepezil is well tolerated and its efficacy is maintained in the long term. Randomised controlled trials of donepezil and other cholinergic agents in poststroke aphasia are warranted.

  13. Mitochondria and Energetic Depression in Cell Pathophysiology

    Directory of Open Access Journals (Sweden)

    Stephan Zierz

    2009-05-01

    Full Text Available Mitochondrial dysfunction is a hallmark of almost all diseases. Acquired or inherited mutations of the mitochondrial genome DNA may give rise to mitochondrial diseases. Another class of disorders, in which mitochondrial impairments are initiated by extramitochondrial factors, includes neurodegenerative diseases and syndromes resulting from typical pathological processes, such as hypoxia/ischemia, inflammation, intoxications, and carcinogenesis. Both classes of diseases lead to cellular energetic depression (CED, which is characterized by decreased cytosolic phosphorylation potential that suppresses the cell’s ability to do work and control the intracellular Ca2+ homeostasis and its redox state. If progressing, CED leads to cell death, whose type is linked to the functional status of the mitochondria. In the case of limited deterioration, when some amounts of ATP can still be generated due to oxidative phosphorylation (OXPHOS, mitochondria launch the apoptotic cell death program by release of cytochrome c. Following pronounced CED, cytoplasmic ATP levels fall below the thresholds required for processing the ATP-dependent apoptotic cascade and the cell dies from necrosis. Both types of death can be grouped together as a mitochondrial cell death (MCD. However, there exist multiple adaptive reactions aimed at protecting cells against CED. In this context, a metabolic shift characterized by suppression of OXPHOS combined with activation of aerobic glycolysis as the main pathway for ATP synthesis (Warburg effect is of central importance. Whereas this type of adaptation is sufficiently effective to avoid CED and to control the cellular redox state, thereby ensuring the cell survival, it also favors the avoidance of apoptotic cell death. This scenario may underlie uncontrolled cellular proliferation and growth, eventually resulting in carcinogenesis.

  14. [The pathophysiology and diagnosis of anxiety disorder].

    Science.gov (United States)

    Akiyoshi, Jotaro

    2012-01-01

    In addition to genetic factors, the role of epigenetic and other environmental factors in the promotion of anxiety disorder has attracted much attention in psychiatric research. When stress is encountered in the environment, the hypothalamus-pituitary adrenal system (HPA system) is activated and cortisol is secreted. CRHR gene function is closely related to this response. As a result of haplotype analysis of CRHR genes in depression and panic disorder patients, it was found that genetic polymorphism of CRHR1 and CRHR2 was related to both disorders. It is reported that abused children are more susceptible to developing depression and anxiety disorder upon reaching adulthood, but there also exist genetic polymorphisms that may moderate this relationship. Direct methylation of DNA (typically repressing gene expression) and modification of chromatin structure (complexes of histone proteins and DNA) via acetylation (typically facilitating gene expression) represent epigenetic modifications that are thought to influence behavioral phenotypes. For example, it is rare that schizophrenia develops in identical twins brought up together in the same environment, and thus phenotypic differences cannot be explained simply by genetic polymorphism. We also evaluated salivary cortisol and amylase reactivity (indices of the HPA system and sympathoadrenal medullary system, respectfully) after electrical stimulation stress and Trier Social Stress Test (TSST) administration. Here we found differences in the cortisol stress response between electrical stimulation and TSST stressors, in contrast to the theory of Selye. In addition, we found alterations in activity patterns and difficulties integrating sensorimotor information in panic disorder patients, suggesting links between sensorimotor integration and stress in panic disorder. Moreover, state and trait anxiety may be associated with stabilograph factors.

  15. On vesical pathophysiology in context of chemoradiotherapy

    International Nuclear Information System (INIS)

    Michailov, M.; Welscher, U.; Neu, E.; Hohlbrugger, G.; Staehler, G.

    2003-01-01

    Functional disturbances of urinary bladder are described (incl. methods) after combined oncotherapy of the urogenital system: Radiocystitis (bladder hypertone, incontinence), etc. Earlier and recent results are given. Human detrusor (surgical tissue: 10-30 Gy/min) is over 10-times more radiosensitive than this of animal (rat, guinea pig = GP) and reacted with a dose-dependent tonic contraction (% init. prep. length): After 1 Gy: 4.3±9%; 2.5: 7.8±1.7; 5: 15.9±14.7; 10: 38.2±22.6; 30: 47.4±12.8 (p<0.01 or <0.05 for total n=45). The spontaneous phasic contr. (SPS) disappeared after irradiation in human, but not in GP detrusor preparations. Cytostatics such as cis-platinum (10 ng-1 μg/ml) and endoxan (0.1 ng-100 μg/ml) had inhibitory effects on SPS and contr. after neurogenic electrostimulation of GP (more than 50%), but adriblastin (0.1-10 μg/ml) and colchicine (1-100 μg/ml) - augmentory ones. Electrophysiological data demonstrated the presence of stretch dependent ion channels in GP vesical myocytes: The usual spike activity was transformed into a burst-plateau one: rate of rise and of fall of action potentials increased after stretch (3 to 80 mN: 0.4±0.2 to 3.3±0.7 V/cm resp. 0.4±0.3 to 2.3±0.6, n=33). A probable pathogenetic relation of cytostatic and radiation (acute and late) effects to the described stretch channels and electrical patterns, fast detrusor (1-5/min) and slow trigonal contr. (0.1-0.5/ min) as well as decrease of membrane potential of urothel at radiocystitis is of high scientific interest and has to be investigated: This could open a new possibility for vesical prophylaxis and pharmacotherapy

  16. Idiopathic Intracranial Hypertension – Pathophysiology Based on Case Series

    Directory of Open Access Journals (Sweden)

    Ljubisavljević Srdjan

    2016-09-01

    Full Text Available According to the definition, idiopathic intracranial hypertension (IIH is a pathological state characterized by an increase in intracranial pressure; however, there are no obvious intracranial pathological processes. The pathophysiology of this disorder is not clear, although there are many reports related to it.

  17. Pathophysiology of diurnal drooling in Parkinson’s disease

    NARCIS (Netherlands)

    Lenie van den Engel-Hoek; Johanna Kalf; Bastiaan Bloem; George Borm; Machiel Zwarts; Bert de Swart; Marten Munneke

    2011-01-01

    Drooling is an incapacitating feature of Parkinson's disease. Better pathophysiological insights are needed to improve treatment. In this study, we tested the hypothesis that the cause of drooling is multifactorial. We examined 15 patients with Parkinson's disease with distinct diurnal saliva loss

  18. New insights into the pathophysiology of postoperative cognitive dysfunction

    DEFF Research Database (Denmark)

    Krenk, Lene; Rasmussen, Lars Simon; Kehlet, H

    2010-01-01

    There is evidence that postoperative cognitive dysfunction (POCD) is a significant problem after major surgery, but the pathophysiology has not been fully elucidated. The interpretation of available studies is difficult due to differences in neuropsychological test batteries as well as the lack...

  19. Parkinson's disease : The syndrome, the pathogenesis and pathophysiology

    NARCIS (Netherlands)

    Bartels, Anna L.; Leenders, Klaus L.

    Parkinson's disease (PD) is characterised by a slowly expanding degeneration of neurons particularly in the mesencephalon. The causes are unknown although risk factors in the genetic and toxic domain are being discovered. An important pathophysiological feature in PD is the loss of part of the

  20. Pathophysiology and Contributing Factors in Postprostatectomy Incontinence: A Review

    NARCIS (Netherlands)

    Heesakkers, J.P.F.A.; Farag, F.; Bauer, R.M.M.J.; Sandhu, J.; Ridder, D. de; Stenzl, A.

    2017-01-01

    CONTEXT: The incidence and awareness of postprostatectomy incontinence (PPI) has increased during the past few years, probably because of an increase in prostate cancer surgery. Many theories have been postulated to explain the pathophysiology of PPI. OBJECTIVE: The current review scrutinizes

  1. Pathophysiology of acute mountain sickness and high altitude pulmonary oedema

    DEFF Research Database (Denmark)

    Sutton, J R; Lassen, N

    1979-01-01

    We review the evidence that acute mountain sickness (AMS) and high altitude pulmonary oedema (HAPO) occur together more often than is realized. We hypothesize that AMS and HAPO have a common pathophysiological basis: both are due to increased pressure and flow in the microcirculation, causing...

  2. Elucidation of pathophysiology and treatment of neuropathic pain

    NARCIS (Netherlands)

    Vranken, Jan H.

    2012-01-01

    Neuropathic pain, pain arising as a direct consequence of a lesion or disease affecting the somatosensory system, is relatively common, occurring in about 1% of the population. Studies in animal models describe a number of peripheral and central pathophysiological processes after nerve injury that

  3. Pathophysiological and pharmacotherapeutic aspects of serotonin and serotonergic drugs

    NARCIS (Netherlands)

    van Zwieten, P. A.; Blauw, G. J.; van Brummelen, P.

    1990-01-01

    A survey shall be given on the physiological, pathophysiological and pharmacotherapeutic backgrounds of the biogenic amine 5-hydroxytryptamine (serotonin; 5HT), to be preceded by a few historical remarks. 5HT is biosynthesized from L-tryptophan via hydroxylation and subsequent decarboxylation. 5HT

  4. Unravelling narcolepsy : from pathophysiology to measuring treatment effects

    NARCIS (Netherlands)

    Heide, van der A.

    2017-01-01

    Narcolepsy is a disorder of the regulation of sleep and wakefulness, with as its major features excessive daytime sleepiness (EDS), cataplexy, hypnagogic hallucinations, sleep paralysis and disturbed nocturnal sleep. The first part of this thesis concernes an overview of the pathophysiology,

  5. Effects of Triphasic Exercise on Blood Rheology and Pathophysiology

    African Journals Online (AJOL)

    The aim of this work is to study the relevance of physiology and pathophysiology in blood rheology as effects of triphasic exercise. Regular exercise which has been established as life prolonging has led to decrease in both peripheral vascular and coronary morbidity that has been associated with certain improvements in ...

  6. [Pathophysiology, prophylaxis and treatment of reperfusion syndrome in the surgery of abdominal aorta aneurysm].

    Science.gov (United States)

    Sukharev, I I; Guch, A A; Medvedskyĭ, E B; Kostylev, M V; Kornitskaia, A I; Gindich, L A; Dominiak, A B; Vlaĭkov, G G

    1999-01-01

    The peroxidal oxidation of the lipids state was studied up, as well as of the whole blood neutrophils functional activity, hemodynamics and microcirculation of lower extremities in surgical treatment of the abdominal aorta aneurysm. The main significance in the reperfusional syndrome pathophysiology, caused by temporary overcompression of aorta, has the neutrophils activation, their interrelationship with the endothelium cells and the activity lowering of the tissue antioxidant system, manifestated by vascular spasm, which is mostly expressed in the patients with stenotic affection of the lower extremities arteries. Positive effect was noted in application of preparation corvitin, which has antioxidant action.

  7. The rumination syndrome in adults: A review of the pathophysiology, diagnosis and treatment

    Directory of Open Access Journals (Sweden)

    Papadopoulos V

    2007-01-01

    Full Text Available Rumination in adults is considered to be the effortless regurgitation of recently ingested food into the mouth, followed by either rechewing and reswallowing or expulsion of the regurgitate. On the basis of the definition of rumination as a unique category of functional gastroduodenal disorders, according to the newly established Rome III classification, a review of the pathophysiology, diagnosis and treatment of the rumination syndrome in adults is presented after systematic and critical approach of all articles that could be retrieved through PubMed using the term "rumination".

  8. The Role of Hippocampus in the Pathophysiology of Depression

    Directory of Open Access Journals (Sweden)

    Özlem Donat Eker

    2009-06-01

    Full Text Available Hippocampus, as a part of the limbic cortex, has a variety of functions ranging from mating behavior to memory besides its role in the regulation of emotions. The hippocampus has reciprocal interactions of with other brain regions which act in the pathophysiology of major depressive disorder (MDD. Moreover, since the hippocampus is a scene for the neurogenesis, which can be seen as a response to antidepressant treatment, the hippocampus became a focus of attention in neuroimaging studies of MDD. It has been shown that brain derived neurotrophic factor (BDNF, that is responsible from the neurogenesis, is associated with the response to the antidepressants and antidepressant drugs are ineffective if neurogenesis is hindered.Hippocampal atrophy is expected with the decrease of neurogenesis as a result of the lower BDNF levels with the deleterious effects of glucocorticoids in depression. Recurrent and severe depression seems to cause such a volume reduction though first episode MDD subjects do not differ from healthy individuals in respect to their hippocampal volumes (HCVs measured by magnetic resonance imaging methods. One may argue regarding these findings that the atrophy in the hippocampus may be observed in the long term and the decrease in BDNF levels may predispose the volume reduction. Although it has been postulated that smaller HCV as a result of genetic and environmental factors and prior to the illness, may cause a vulnerability to MDD, sufficient evidence has not been accumulated yet and the view that HCV loss develops as depression progresses is widely accepted. Findings that serum BDNF (sBDNF is lower in MDD patients though HCVs of patients do not differ from healthy individuals and the positive correlation of sBDNF with HCV seen only in the patient group support this view. It can be assumed that depressed patients have sensitivity for the fluctuations in BDNF levels. Follow-up studies which consider effects of hipotalamo

  9. Digestive system-related pathophysiological symptoms of Sasang typology: Systematic review.

    Science.gov (United States)

    Lee, Mi Suk; Sohn, Kyungwoo; Kim, Yun Hee; Hwang, Min-Woo; Kwon, Young Kyu; Bae, Na Young; Chae, Han

    2013-06-01

    The purpose of this study was to review clinical studies on digestive system-related pathophysiological symptoms of each Sasang type to obtain the generalizable typespecific clinical features, which are important for the diagnosis of the Sasang type and subsequent disease treatment. Sasang typology and digestive system symptom-related keywords were used to search through eight domestic and foreign databases up to March 2012. The results were organized and analyzed based on four categories [digestive function, appetite, eating pattern, and body mass index (BMI)] to elucidate type-specific symptoms. Sasang type-specific digestive system-related symptoms were identified by reviewing 30 related articles that were gathered by searching through the databases. The Tae-Eum (TE) type had the highest digestive functions and the So-Eum (SE) type had the lowest. The TE type appeared to have larger volume with fast eating speed compared with the SE type and individuals in the TE category preferred fatty or salty food, which is responsible for the high occurrence rates of organic digestive diseases such as gastritis. Moreover, BMI was higher in the TE type and lower in the SE type. We systematically reviewed previously published clinical reports on digestive functions, which can be used to meet the objective of Sasang-type differentiation and pathophysiological pattern identification.

  10. Digestive system-related pathophysiological symptoms of Sasang typology: Systematic review

    Directory of Open Access Journals (Sweden)

    Mi Suk Lee

    2013-06-01

    Full Text Available The purpose of this study was to review clinical studies on digestive system-related pathophysiological symptoms of each Sasang type to obtain the generalizable typespecific clinical features, which are important for the diagnosis of the Sasang type and subsequent disease treatment. Sasang typology and digestive system symptom-related keywords were used to search through eight domestic and foreign databases up to March 2012. The results were organized and analyzed based on four categories [digestive function, appetite, eating pattern, and body mass index (BMI] to elucidate type-specific symptoms. Sasang type-specific digestive system-related symptoms were identified by reviewing 30 related articles that were gathered by searching through the databases. The Tae-Eum (TE type had the highest digestive functions and the So-Eum (SE type had the lowest. The TE type appeared to have larger volume with fast eating speed compared with the SE type and individuals in the TE category preferred fatty or salty food, which is responsible for the high occurrence rates of organic digestive diseases such as gastritis. Moreover, BMI was higher in the TE type and lower in the SE type. We systematically reviewed previously published clinical reports on digestive functions, which can be used to meet the objective of Sasang-type differentiation and pathophysiological pattern identification.

  11. Delirium pathophysiology: An updated hypothesis of the etiology of acute brain failure.

    Science.gov (United States)

    Maldonado, José R

    2017-12-26

    Delirium is the most common neuropsychiatric syndrome encountered by clinicians dealing with older adults and the medically ill and is best characterized by 5 core domains: cognitive deficits, attentional deficits, circadian rhythm dysregulation, emotional dysregulation, and alteration in psychomotor functioning. An extensive literature review and consolidation of published data into a novel interpretation of known pathophysiological causes of delirium. Available data suggest that numerous pathological factors may serve as precipitants for delirium, each having differential effects depending on patient-specific patient physiological characteristics (substrate). On the basis of an extensive literature search, a newly proposed theory, the systems integration failure hypothesis, was developed to bring together the most salient previously described theories, by describing the various contributions from each into a complex web of pathways-highlighting areas of intersection and commonalities and explaining how the variable contribution of these may lead to the development of various cognitive and behavioral dysfunctions characteristic of delirium. The specific cognitive and behavioral manifestations of the specific delirium picture result from a combination of neurotransmitter function and availability, variability in integration and processing of sensory information, motor responses to both external and internal cues, and the degree of breakdown in neuronal network connectivity, hence the term acute brain failure. The systems integration failure hypothesis attempts to explain how the various proposed delirium pathophysiologic theories interact with each other, causing various clinically observed delirium phenotypes. A better understanding of the underlying pathophysiology of delirium may eventually assist in designing better prevention and management approaches. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Modern iron replacement therapy: clinical and pathophysiological insights.

    Science.gov (United States)

    Girelli, Domenico; Ugolini, Sara; Busti, Fabiana; Marchi, Giacomo; Castagna, Annalisa

    2018-01-01

    Iron deficiency, with or without anemia, is extremely frequent worldwide, representing a major public health problem. Iron replacement therapy dates back to the seventeenth century, and has progressed relatively slowly until recently. Both oral and intravenous traditional iron formulations are known to be far from ideal, mainly because of tolerability and safety issues, respectively. At the beginning of this century, the discovery of hepcidin/ferroportin axis has represented a turning point in the knowledge of the pathophysiology of iron metabolism disorders, ushering a new era. In the meantime, advances in the pharmaceutical technologies are producing newer iron formulations aimed at minimizing the problems inherent with traditional approaches. The pharmacokinetic of oral and parenteral iron is substantially different, and diversities have become even clearer in light of the hepcidin master role in regulating systemic iron homeostasis. Here we review how iron therapy is changing because of such important advances in both pathophysiology and pharmacology.

  13. Different Pathophysiological Phenotypes among Newly Diagnosed Type 2 Diabetes Patients

    DEFF Research Database (Denmark)

    Stidsen, Jacob

    2013-01-01

    Type 2 diabetes (T2D) can be considered a syndrome with several different pathophysiological mechanisms leading to hyperglycemia. Nonetheless, T2D is treated according to algorithms as if it was one disease entity. Methods: We investigated the prevalence of different pathophysiological phenotypes...... or secondary diabetes), classic obesity-associated insulin resistant diabetes ( f-P-C-peptide >= 568 pmol/l) and a normoinsulinopenic group (333 age of our new T2D patients was 61 years (range 21-95 years), 57% were men. We found that 3.0% newly diagnosed T2D patients...... suffered from LADA, 3.9% from secondary diabetes, 6.0% from steroid induced diabetes 5.9% had insulinopenic diabetes, whereas 56.7% presented the classic obesity-associated insulin-resistant phenotype. 24.6% was classified as normoinsulinopenic patients. Conclusion: We conclude that newly diagnosed T2D...

  14. Pathophysiological analyses of leptomeningeal heterotopia using gyrencephalic mammals.

    Science.gov (United States)

    Matsumoto, Naoyuki; Kobayashi, Naoki; Uda, Natsu; Hirota, Miwako; Kawasaki, Hiroshi

    2018-03-15

    Leptomeningeal glioneuronal heterotopia (LGH) is a focal malformation of the cerebral cortex and frequently found in patients with thanatophoric dysplasia (TD). The pathophysiological mechanisms underlying LGH formation are still largely unclear because of difficulties in obtaining brain samples from human TD patients. Recently, we established a new animal model for analysing cortical malformations of human TD by utilizing our genetic manipulation technique for gyrencephalic carnivore ferrets. Here we investigated the pathophysiological mechanisms underlying the formation of LGH using our TD ferrets. We found that LGH was formed during corticogenesis in TD ferrets. Interestingly, we rarely found Ki-67-positive and phospho-histone H3-positive cells in LGH, suggesting that LGH formation does not involve cell proliferation. We uncovered that vimentin-positive radial glial fibers and doublecortin-positive migrating neurons were accumulated in LGH. This result may indicate that preferential cell migration into LGH underlies LGH formation. Our findings provide novel mechanistic insights into the pathogenesis of LGH in TD.

  15. The pathophysiology of arterial vasodilatation and hyperdynamic circulation in cirrhosis

    DEFF Research Database (Denmark)

    Møller, Søren; Bendtsen, Flemming

    2018-01-01

    transplantation and point to the pathophysiological significance of portal hypertension. In this paper we aimed to review current knowledge on the pathophysiology of arterial vasodilatation and the hyperdynamic circulation in cirrhosis. This article is protected by copyright. All rights reserved.......Patients with cirrhosis and portal hypertension often develop complications from a variety of organ systems leading to a multiple organ failure. The combination of liver failure and portal hypertension result in a hyperdynamic circulatory state partly owing to simultaneous splanchnic and peripheral...... arterial vasodilatation. Increases in circulatory vasodilators are believed to be due to portosystemic shunting and bacterial translocation leading to redistribution of the blood volume with central hypovolemia. Portal hypertension per se and increased splanchnic blood flow are mainly responsible...

  16. Hypertension in women--pathophysiological and clinical aspects.

    Science.gov (United States)

    Erdine, Serap; Arslan, Eren; Olszanecka, Agnieszka

    2012-01-01

    Hypertension is the most important risk factor, responsible for cardiovascular morbidity and mortality worldwide, both in men and women. Cardiovascular disorders in women are still underestimated, due to lower absolute risk calculations and the underdetection of classical risk factors. In recent years the differences in pathophysiology and the clinical presentation and treatment of cardiac diseases in women have become fields of interest and research. Several studies have examined gender-related differences in the pathophysiology of hypertension, its prevalence and control. The influence of menopause, obesity and salt-sensitivity on the pathogenesis of hypertension in women has been widely investigated. This article presents current data on differences in prevalence, control and mechanisms of hypertension in women.

  17. Gender Differences in Epidemiology, Pathophysiology, and Treatment of Hypertension.

    Science.gov (United States)

    Di Giosia, Paolo; Giorgini, Paolo; Stamerra, Cosimo Andrea; Petrarca, Marco; Ferri, Claudio; Sahebkar, Amirhossein

    2018-02-14

    This review aims to examine gender differences in both the epidemiology and pathophysiology of hypertension and to explore gender peculiarities on the effects of antihypertensive agents in decreasing BP and CV events. Men and women differ in prevalence, awareness, and control rate of hypertension in an age-dependent manner. Studies suggest that sex hormones changes play a pivotal role in the pathophysiology of hypertension in postmenopausal women. Estrogens influence the vascular system inducing vasodilatation, inhibiting vascular remodeling processes, and modulating the renin-angiotensin aldosterone system and the sympathetic system. This leads to a protective effect on arterial stiffness during reproductive age that is dramatically reversed after menopause. Data on the efficacy of antihypertensive therapy between genders are conflicting, and the underrepresentation of aged women in large clinical trials could influence the results. Therefore, further clinical research is needed to uncover potential gender differences in hypertension to promote the development of a gender-oriented approach to antihypertensive treatment.

  18. Pathophysiology of obstructive sleep apnea-hypopnea syndrome (OSAHS

    Directory of Open Access Journals (Sweden)

    Marco Venegas-Mariño

    2017-08-01

    Full Text Available Obstructive sleep apnea-hypopnea syndrome (OSAHS is a disease characterized by recurrent upper airway obstruction (UAO, with decreased airflow, intermittent hypoxemia, and awakening during sleep. Two essential factors are related to the pathophysiology of OSAHS: anatomical alterations and reduction or absence of neural control. While studying OSAHS, the site or sites of obstruction of the UA should be identified; they may extend from the nasal wings to the hypopharynx. Another important factor in this syndrome is the nervous influence on muscle tone of the hypopharynx, as well as the changes in blood pH, which are secondary to micro-arousals. Body position and sleep stage determine the severity. The pathophysiology of OSAHS should be understood to properly study a patient and provide the best treatment option.

  19. Migraine aura pathophysiology: the role of blood vessels and microembolisation

    OpenAIRE

    Dalkara, Turgay; Nozari, Ala; Moskowitz, Michael A

    2010-01-01

    Migraine attacks with auras are sometimes associated with underlying hereditary or acquired cerebrovascular disorders. A unifying pathophysiological explanation linking migraine to these conditions has been diffcult to identify. On the basis of genetic and epidemiological evidence, we suggest that changes in blood vessels, hypoperfusion disorders, and microembolisation can cause neurovascular dysfunction and evoke cortical spreading depression, an event that is widely thought to underlie aura...

  20. Pathophysiology of pelvic organ prolapse and stress urinary incontinence

    Directory of Open Access Journals (Sweden)

    Payal D Patel

    2006-01-01

    Full Text Available Although they may present with significant morbidity, pelvic organ prolapse and stress urinary incontinence are mainly afflicitions that affect quality of life. To appropiately treat these entities, comprehension of the various theories of pathophysiology is paramount. Utilizing a Medline search, this article reviews recent data concerning intrinsic (i.e., genetics, postmenopausal status and extrinsic factors (i.e., previous hysterectomy, childbirth leading to organ prolapse or stress incontinence

  1. Pathophysiology of Headaches with a Prominent Vascular Component

    Directory of Open Access Journals (Sweden)

    Juan A Pareja

    1996-01-01

    Full Text Available Vascular changes, whether preliminary or secondary, seem to accompany most headaches. The literature concerning pathophysiological mechanisms in headaches where vascular phenomena are a major, integral part, ie, migraine and cluster headache syndrome, is reviewed and the most common forms of headache associated with cerebrovascular disease are discussed. Emphasis is placed on the vascular phenomena and on the abundant hypotheses and theories regarding headache mechanisms. This review also presents alternative explanatory models, and compares the available anatomical, physiological and biochemical results.

  2. Blended Learning Versus Traditional Lecture in Introductory Nursing Pathophysiology Courses.

    Science.gov (United States)

    Blissitt, Andrea Marie

    2016-04-01

    Currently, many undergraduate nursing courses use blended-learning course formats with success; however, little evidence exists that supports the use of blended formats in introductory pathophysiology courses. The purpose of this study was to compare the scores on pre- and posttests and course satisfaction between traditional and blended course formats in an introductory nursing pathophysiology course. This study used a quantitative, quasi-experimental, nonrandomized control group, pretest-posttest design. Analysis of covariance compared pre- and posttest scores, and a t test for independent samples compared students' reported course satisfaction of the traditional and blended course formats. Results indicated that the differences in posttest scores were not statistically significant between groups. Students in the traditional group reported statistically significantly higher satisfaction ratings than students in the blended group. The results of this study support the need for further research of using blended learning in introductory pathophysiology courses in undergraduate baccalaureate nursing programs. Further investigation into how satisfaction is affected by course formats is needed. Copyright 2016, SLACK Incorporated.

  3. Pathophysiological analyses of periventricular nodular heterotopia using gyrencephalic mammals.

    Science.gov (United States)

    Matsumoto, Naoyuki; Hoshiba, Yoshio; Morita, Kazuya; Uda, Natsu; Hirota, Miwako; Minamikawa, Maki; Ebisu, Haruka; Shinmyo, Yohei; Kawasaki, Hiroshi

    2017-03-15

    Although periventricular nodular heterotopia (PNH) is often found in the cerebral cortex of people with thanatophoric dysplasia (TD), the pathophysiology of PNH in TD is largely unknown. This is mainly because of difficulties in obtaining brain samples of TD patients and a lack of appropriate animal models for analyzing the pathophysiology of PNH in TD. Here we investigate the pathophysiological mechanisms of PNH in the cerebral cortex of TD by utilizing a ferret TD model which we recently developed. To make TD ferrets, we electroporated fibroblast growth factor 8 (FGF8) into the cerebral cortex of ferrets. Our immunohistochemical analyses showed that PNH nodules in the cerebral cortex of TD ferrets were mostly composed of cortical neurons, including upper layer neurons and GABAergic neurons. We also found disorganizations of radial glial fibers and of the ventricular lining in the TD ferret cortex, indicating that PNH may result from defects in radial migration of cortical neurons along radial glial fibers during development. Our findings provide novel mechanistic insights into the pathogenesis of PNH in TD. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Spasmodic Dysphonia: A Review. Part 2: Characterization of Pathophysiology.

    Science.gov (United States)

    Hintze, Justin M; Ludlow, Christy L; Bansberg, Stephen F; Adler, Charles H; Lott, David G

    2017-10-01

    Objective The purpose of this review is to describe the recent advances in characterizing spasmodic dysphonia. Spasmodic dysphonia is a task-specific focal laryngeal dystonia characterized by irregular and uncontrolled voice breaks. The pathophysiology is poorly understood, and there are diagnostic difficulties. Data Sources PubMed, Google Scholar, and Cochrane Library. Review Methods The data sources were searched using the following search terms: ( spasmodic dysphonia or laryngeal dystonia) and ( etiology, aetiology, diagnosis, pathogenesis, or pathophysiology). Conclusion The diagnosis of spasmodic dysphonia can be difficult due to the lack of a scientific consensus on diagnostic criteria and the fact that other voice disorders may present similarly. Confusion can arise between spasmodic dysphonia and muscle tension dysphonia. Spasmodic dysphonia symptoms are tied to particular speech sounds, whereas muscle tension dysphonia is not. With the advent of more widespread use of high-speed laryngoscopy and videokymography, measures of the disruptions in phonation and delays in the onset of vocal fold vibration after vocal fold closure can be quantified. Recent technological developments have expanded our understanding of the pathophysiology of spasmodic dysphonia. Implications for Practice A 3-tiered approach, involving a questionnaire, followed by speech assessment and nasolaryngoscopy is the most widely accepted method for making the diagnosis in most cases. More experimental and invasive techniques such as electromyography and neuroimaging have been explored to further characterize spasmodic dysphonia and aid in diagnosing difficult cases.

  5. Central voice production and pathophysiology of spasmodic dysphonia.

    Science.gov (United States)

    Mor, Niv; Simonyan, Kristina; Blitzer, Andrew

    2018-01-01

    Our ability to speak is complex, and the role of the central nervous system in controlling speech production is often overlooked in the field of otolaryngology. In this brief review, we present an integrated overview of speech production with a focus on the role of central nervous system. The role of central control of voice production is then further discussed in relation to the potential pathophysiology of spasmodic dysphonia (SD). Peer-review articles on central laryngeal control and SD were identified from PUBMED search. Selected articles were augmented with designated relevant publications. Publications that discussed central and peripheral nervous system control of voice production and the central pathophysiology of laryngeal dystonia were chosen. Our ability to speak is regulated by specialized complex mechanisms coordinated by high-level cortical signaling, brainstem reflexes, peripheral nerves, muscles, and mucosal actions. Recent studies suggest that SD results from a primary central disturbance associated with dysfunction at our highest levels of central voice control. The efficacy of botulinum toxin in treating SD may not be limited solely to its local effect on laryngeal muscles and also may modulate the disorder at the level of the central nervous system. Future therapeutic options that target the central nervous system may help modulate the underlying disorder in SD and allow clinicians to better understand the principal pathophysiology. NA.Laryngoscope, 128:177-183, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  6. Acute Kidney Injury: Definition, Pathophysiology and Clinical Phenotypes.

    Science.gov (United States)

    Makris, Konstantinos; Spanou, Loukia

    2016-05-01

    Acute kidney injury (AKI) is a clinical syndrome that complicates the course and worsens the outcome in a significant number of hospitalised patients. Recent advances in clinical and basic research will help with a more accurate definition of this syndrome and in the elucidation of its pathogenesis. With this knowledge we will be able to conduct more accurate epidemiologic studies in an effort to gain a better understanding of the impact of this syndrome. AKI is a syndrome that rarely has a sole and distinct pathophysiology. Recent evidence, in both basic science and clinical research, is beginning to change our view for AKI from a single organ failure syndrome to a syndrome where the kidney plays an active role in the progress of multi-organ dysfunction. Accurate and prompt recognition of AKI and better understanding of the pathophysiologic mechanisms underlying the various clinical phenotypes are of great importance to research for effective therapeutic interventions. In this review we provide the most recent updates in the definition, epidemiology and pathophysiology of AKI.

  7. Restless Legs Syndrome: From Pathophysiology to Clinical Diagnosis and Management

    Directory of Open Access Journals (Sweden)

    Shiyi Guo

    2017-06-01

    Full Text Available Restless legs syndrome (RLS, a common neurological sensorimotor disorder in western countries, has gained more and more attention in Asian countries. The prevalence of RLS is higher in older people and females. RLS is most commonly related to iron deficiency, pregnancy and uremia. The RLS symptoms show a significant circadian rhythm and a close relationship to periodic limb movements (PLMs in clinical observations, while the pathophysiological pathways are still unknown. The diagnostic criteria have been revised in 2012 to improve the validity of RLS diagnosis. Recent studies have suggested an important role of iron decrease of brain in RLS pathophysiology. Dopaminergic (DA system dysfunction in A11 cell groups has been recognized long ago from clinical treatment and autopsy. Nowadays, it is believed that iron dysfunction can affect DA system from different pathways and opioids have a protective effect on DA system. Several susceptible single nucleotide polymorphisms such as BTBD9 and MEIS1, which are thought to be involved in embryonic neuronal development, have been reported to be associated with RLS. Several pharmacological and non-pharmacological treatment are discussed in this review. First-line treatments of RLS include DA agents and α2δ agonists. Augmentation is very common in long-term treatment of RLS which makes prevention and management of augmentation very important for RLS patients. A combination of different types of medication is effective in preventing and treating augmentation. The knowledge on RLS is still limited, the pathophysiology and better management of RLS remain to be discovered.

  8. Pathophysiology of GPCR Homo- and Heterodimerization: Special Emphasis on Somatostatin Receptors

    Directory of Open Access Journals (Sweden)

    Rishi K. Somvanshi

    2012-04-01

    Full Text Available G-protein coupled receptors (GPCRs are cell surface proteins responsible for translating >80% of extracellular reception to intracellular signals. The extracellular information in the form of neurotransmitters, peptides, ions, odorants etc is converted to intracellular signals via a wide variety of effector molecules activating distinct downstream signaling pathways. All GPCRs share common structural features including an extracellular N-terminal, seven-transmembrane domains (TMs linked by extracellular/intracellular loops and the C-terminal tail. Recent studies have shown that most GPCRs function as dimers (homo- and/or heterodimers or even higher order of oligomers. Protein-protein interaction among GPCRs and other receptor proteins play a critical role in the modulation of receptor pharmacology and functions. Although ~50% of the current drugs available in the market target GPCRs, still many GPCRs remain unexplored as potential therapeutic targets, opening immense possibility to discover the role of GPCRs in pathophysiological conditions. This review explores the existing information and future possibilities of GPCRs as tools in clinical pharmacology and is specifically focused for the role of somatostatin receptors (SSTRs in pathophysiology of diseases and as the potential candidate for drug discovery.

  9. DMPD: Pathophysiological roles of interleukin-18 in inflammatory liver diseases. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10807517 Pathophysiological roles of interleukin-18 in inflammatory liver diseases....l) Show Pathophysiological roles of interleukin-18 in inflammatory liver diseases. PubmedID 10807517 Title P...athophysiological roles of interleukin-18 in inflammatory liver diseases. Authors

  10. Pathophysiological understanding of HFpEF: microRNAs as part of the puzzle.

    Science.gov (United States)

    Rech, Monika; Barandiarán Aizpurua, Arantxa; van Empel, Vanessa; van Bilsen, Marc; Schroen, Blanche

    2018-05-01

    Half of all heart failure patients have preserved ejection fraction (HFpEF). Comorbidities associated with and contributing to HFpEF include obesity, diabetes and hypertension. Still, the underlying pathophysiological mechanisms of HFpEF are unknown. A preliminary consensus proposes that the multi-morbidity triggers a state of systemic, chronic low-grade inflammation, and microvascular dysfunction, causing reduced nitric oxide bioavailability to adjacent cardiomyocytes. As a result, the cardiomyocyte remodels its contractile elements and fails to relax properly, causing diastolic dysfunction, and eventually HFpEF. HFpEF is a complex syndrome for which currently no efficient therapies exist. This is notably due to the current one-size-fits-all therapy approach that ignores individual patient differences. MicroRNAs have been studied in relation to pathophysiological mechanisms and comorbidities underlying and contributing to HFpEF. As regulators of gene expression, microRNAs may contribute to the pathophysiology of HFpEF. In addition, secreted circulating microRNAs are potential biomarkers and as such, they could help stratify the HFpEF population and open new ways for individualized therapies. In this review, we provide an overview of the ever-expanding world of non-coding RNAs and their contribution to the molecular mechanisms underlying HFpEF. We propose prospects for microRNAs in stratifying the HFpEF population. MicroRNAs add a new level of complexity to the regulatory network controlling cardiac function and hence the understanding of gene regulation becomes a fundamental piece in solving the HFpEF puzzle.

  11. Physiology and Pathophysiology in Ultra-Marathon Running

    Directory of Open Access Journals (Sweden)

    Beat Knechtle

    2018-06-01

    Full Text Available In this overview, we summarize the findings of the literature with regards to physiology and pathophysiology of ultra-marathon running. The number of ultra-marathon races and the number of official finishers considerably increased in the last decades especially due to the increased number of female and age-group runners. A typical ultra-marathoner is male, married, well-educated, and ~45 years old. Female ultra-marathoners account for ~20% of the total number of finishers. Ultra-marathoners are older and have a larger weekly training volume, but run more slowly during training compared to marathoners. Previous experience (e.g., number of finishes in ultra-marathon races and personal best marathon time is the most important predictor variable for a successful ultra-marathon performance followed by specific anthropometric (e.g., low body mass index, BMI, and low body fat and training (e.g., high volume and running speed during training characteristics. Women are slower than men, but the sex difference in performance decreased in recent years to ~10–20% depending upon the length of the ultra-marathon. The fastest ultra-marathon race times are generally achieved at the age of 35–45 years or older for both women and men, and the age of peak performance increases with increasing race distance or duration. An ultra-marathon leads to an energy deficit resulting in a reduction of both body fat and skeletal muscle mass. An ultra-marathon in combination with other risk factors, such as extreme weather conditions (either heat or cold or the country where the race is held, can lead to exercise-associated hyponatremia. An ultra-marathon can also lead to changes in biomarkers indicating a pathological process in specific organs or organ systems such as skeletal muscles, heart, liver, kidney, immune and endocrine system. These changes are usually temporary, depending on intensity and duration of the performance, and usually normalize after the race. In

  12. The control of independent students’ work effectiveness during pathophysiology study

    Directory of Open Access Journals (Sweden)

    О. V. Melnikova

    2013-06-01

    Full Text Available The course of Pathophysiology study includes both auditoria hours (lectures and practical classes and independent work of students. The latter makes up 38% of total hours given for Pathophysiology study. Independent work of students includes the following items: preparation for practical classes, writing reviews on different topics, preparation for current and final computer testing, study of the topics which are not discussed during lectures and practical classes. In order to assimilate the course of Pathophysiology completely students should effectively use their hours given for independent work. Unfortunately, the level of students’ independent individual work is low; it includes only learning of single facts, that is not enough for higher medical education. THE AIM OF STUDY: To propose the method of control of the effectiveness of students’ independent work. The most important part of student’s individual work is preparation for study in auditoria, because it determines the qualitative level of study during practical classes. The student should enter the class not only with the knowledge of basic sciences (Anatomy, Histology, Biochemistry, Normal Physiology etc. but also with the understanding of key items of the topic of the practical class. The problem consists in the following: the teacher can’t check the level of basic knowledge in each student – there is not enough time during practical class for this procedure. In order to increase the effectiveness of individual students’ work a special workbook for the practical classes was developed at the Pathophysiology department. While preparing for practical classes students write down basic items of the topic, refresh some questions from Normal Physiology, Biochemistry and other subjects. In the beginning of the practical class the teacher controls the level of student’s preparation to the topic by checking the fulfillment of tasks in the workbook. It takes a little time, but it

  13. Bone pain induced by metastatic cancer: pathophysiology and treatment

    International Nuclear Information System (INIS)

    Salas-Herrera, Isaias; Huertas-Gabert, Luis Carlos

    2004-01-01

    Cancer patients who develop bone metastases are an estimated 60 to 84% . Of these 79% experienced pain syndromes are difficult to manage, of which 50% die without adequate pain relief and with a poor quality of life. Therefore, it is necessary to have accessible and effective medications for the management of this condition. The pathophysiology of pain in bone is reviewed and the drugs used most frequently in the management of this type of cancer pain are described. Furthermore an algorithm of 6 steps is presented and can guide the physician when making a therapeutic decision. (author) [es

  14. Pathophysiology of Portal Hypertension and Its Clinical Links

    Science.gov (United States)

    Seo, Yeon Seok; Shah, Vijay H

    2011-01-01

    Portal hypertension is a major cause of morbidity and mortality in patients with liver cirrhosis. Intrahepatic vascular resistance due to architectural distortion and intrahepatic vasoconstriction, increased portal blood flow due to splanchnic vasodilatation, and development of collateral circulation have been considered as major factors for the development of portal hypertension. Recently, sinusoidal remodeling and angiogenesis have been focused as potential etiologic factors and various researchers have tried to improve portal hypertension by modulating these new targets. This article reviews potential new treatments in the context of portal hypertension pathophysiology concepts. PMID:25755320

  15. The pathophysiology of the nodular and micronodular small bowel fold

    International Nuclear Information System (INIS)

    Olmsted, W.W.; Ros, P.R.; Moser, R.P.; Shekita, K.M.; Lichtenstein, J.E.

    1986-01-01

    The normal small bowel fold is easily seen on conventional studies of the small intestine, but visualization of the small bowel villus is at the limit of resolution of current roentgenographic technique. When the villi are enlarged, they appear radiographically as an irregularity or micronodularity of the small bowel fold. The anatomy of the fold and the pathophysiology of diseases producing fold nodularity (tumor,inflammatory disease, NLH, mastocytosis) and micronodularity (lymphangiectasia, Waldenstrom macroglobulinemia, Whipple disease) are presented, with an emphasis on radiologic-pathologic correlation. The radiologist should suggest certain diseases or conditions based on the roentgenographic characteristics of the closely analyzed small bowel fold

  16. Pathophysiology of the nodular and micronodular small bowel fold

    International Nuclear Information System (INIS)

    Olmstead, W.W.; Ros, P.R.; Moser, R.P.; Shekitka, K.M.; Lichtenstein, J.E.; Buck, J.L.

    1987-01-01

    The normal small bowel fold is easily seen on conventional studies of the small intestine, but visualization of the small bowel villus is just at the resolution of current roentgenographic technique. When the villi are enlarged, they can be seen radiographically as an irregularity or micronodularity of the small bowel fold. The anatomy of the fold and the pathophysiology of diseases producing fold nodularity (tumor, inflammatory disease, NLH, mastocytosis) and micronodularity (lymphangiectasia, Waldenstrom macroglobulinemia, Whipple disease) are presented, with an emphasis on radiologic-pathologic correlation. The radiologist should suggest certain diseases or conditions based on the roentgenographic characteristics of the closely analyzed small bowel fold

  17. Obesity and Pulmonary Hypertension: A Review of Pathophysiologic Mechanisms

    Directory of Open Access Journals (Sweden)

    Scott E. Friedman

    2012-01-01

    Full Text Available Pulmonary hypertension (PH is a potentially life-threatening condition arising from a wide variety of pathophysiologic mechanisms. Effective treatment requires a systematic diagnostic approach to identify all reversible mechanisms. Many of these mechanisms are relevant to those afflicted with obesity. The unique mechanisms of PH in the obese include obstructive sleep apnea, obesity hypoventilation syndrome, anorexigen use, cardiomyopathy of obesity, and pulmonary thromboembolic disease. Novel mechanisms of PH in the obese include endothelial dysfunction and hyperuricemia. A wide range of effective therapies exist to mitigate the disability of PH in the obese.

  18. The Sphenopalatine Ganglion: Anatomy, Pathophysiology, and Therapeutic Targeting in Headache.

    Science.gov (United States)

    Robbins, Matthew S; Robertson, Carrie E; Kaplan, Eugene; Ailani, Jessica; Charleston, Larry; Kuruvilla, Deena; Blumenfeld, Andrew; Berliner, Randall; Rosen, Noah L; Duarte, Robert; Vidwan, Jaskiran; Halker, Rashmi B; Gill, Nicole; Ashkenazi, Avi

    2016-02-01

    The sphenopalatine ganglion (SPG) has attracted the interest of practitioners treating head and face pain for over a century because of its anatomical connections and role in the trigemino-autonomic reflex. In this review, we discuss the anatomy of the SPG, as well as what is known about its role in the pathophysiology of headache disorders, including cluster headache and migraine. We then address various therapies that target the SPG, including intranasal medication delivery, new SPG blocking catheter devices, neurostimulation, chemical neurolysis, and ablation procedures. © 2015 American Headache Society.

  19. Pathophysiological aspects of ureterorenoscopic management of upper urinary tract calculi

    DEFF Research Database (Denmark)

    Osther, Palle J S; Pedersen, Katja V; Lildal, Søren K

    2016-01-01

    PURPOSE OF REVIEW: Indications for ureterorenoscopy are expanding without hard scientific evidence to support its efficacy. Therefore, it is extremely important to focus on potential harmful effects of the procedure itself. This review explores how physiology of the upper urinary tract reacts...... of the β-receptor agonist isoproterenol in the irrigation fluid has shown a potential for reducing both intrarenal pressure and ureteral tone during ureterorenoscopy. SUMMARY: Upper urinary tract physiology has unique features that may be pushed into pathophysiological processes by the unique elements...

  20. Oral submucous fibrosis: An update on pathophysiology of malignant transformation.

    Science.gov (United States)

    Arakeri, Gururaj; Patil, Shekar Gowda; Aljabab, Abdulsalam S; Lin, Kuan-Chou; Merkx, M A W; Gao, Shan; Brennan, Peter A

    2017-07-01

    Oral submucous fibrosis (OSMF) is a potentially malignant condition associated with areca nut chewing. Formerly confined to the Indian subcontinent, it is now often seen in Asian populations of the United Kingdom, USA and other developed countries, and is therefore a serious problem for global health. What makes it more sinister is the malignant transformation rate, which has been reported to be around 7.6% over a 17-year period. In this concise article, we review the current trends in the pathophysiology of malignant transformation of OSMF. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. The pathophysiology of the trigeminal autonomic cephalalgias, with clinical implications

    DEFF Research Database (Denmark)

    Barloese, Mads C J

    2018-01-01

    , it is obvious that this brainstem reflex is regulated by higher centers that seemingly play a pivotal role in the attacks and the wide range of other symptoms indicating a homeostatic disturbance. These symptoms, as well as a number of well-validated findings, implicate the hypothalamus in the pathophysiology....... over the course of the past 2-3 decades, novel therapies and technological advances have helped increase our knowledge of these clinical syndromes, and will likely continue to do so in the coming years as we witness the arrival of new drugs and neurostimulation options. In this review, the clinical...

  2. Old and new aspects in the pathophysiology of pre-eclampsia

    Directory of Open Access Journals (Sweden)

    Federico Prefumo

    2007-12-01

    Full Text Available Pre-eclampsia is a condition affecting the feto-placental unit and the mother. Three to five percent of pregnancies are complicated by pre-eclampsia, a multisystem disorder characterized by hypertension and proteinuria that occurs after 20 weeks of pregnancy. Pre-eclampsia is associated with substantial risks. For the fetus, these include intrauterine growth restriction, death, and prematurity with attendant complications, whereas the mother is at risk for complications of widespread alterations in endothelial function such as seizures (eclampsia, renal failure, pulmonary edema, stroke, and death. The establishment of pathological uterine perfusion raises the problem of stage two. The problem at stage three describes pre-eclampsia as a syndrome with the global maternal endothelial damage as the central pathophysiological feature.\tIt has been suggested that the pathophysiology of pre-eclampsia can be thought of as a ‘three-stage problem’, where each stage generates one, so far unsolved problem. An impaired trophoblast invasion is thought to be the central factor (first step regarding the etiology of pre-eclampsia. An increased uterine artery Doppler findings (PI, RI, lower maternal serum PAPP-A and free ßhCG levels, ischaemia modified albumin (IMA may be associated with pre-eclampsia.

  3. Reevaluation of the Thyroid Scan for the Assessment of Pathophysiologic Status of Thyroid Disease

    International Nuclear Information System (INIS)

    Woo, In Sook; Nah, Jung Il; Kim, Deog Yoon

    1991-01-01

    To diagnosis and understand the pathophysiologic status of thyroid disease, not only hormonal measurements but also thyroid scan is believed to have a unique role. Especially in the cases of the change of the thyroid function by thyroiditis, it is emphasized that thyroid scan can be helpful in differential diagnosis, Discordant results of thyroid hormone levels and thyroid scan are found in transient hyperthyroidism, or in transient hypothyroidism. We analysed and reevaluated thyroid scan to look at the importance of thyroid scan. The results are summarised as follows: 1) 80%. of hyperthyroid patients had hyperthyroidism increased RAIU with even density, they are compatible with Graves' disease. 2) 2.1% of hyperthyroid patients had normal or decreased RAIU, which are classified as high iodine turn over genuine hyperthyroidism. 3) 8.5% of hyperthyroid patients had markedly decreased RAIU at both 2 hour and 24 hour, whose pathologic processes are suggested to be heterogenous namely subacute thyroiditis, postpartum thyroiditis, Hashimoto's thyroiditis, and pamless thyroiditis. 4) 45% of hypothyroid patients had increased 24 hr RAIU, 30% of hypothyroid patients were normal, 25%, decreased. In conclusion, thyroid scan should be reevaluated its useful role to asses the pathophysiologic status of thyroid disease. Especially in cases of transient thyrotoxicosis, thyroid scan is essential to diagnose and follow up the disease process.

  4. Reevaluation of the Thyroid Scan for the Assessment of Pathophysiologic Status of Thyroid Disease

    Energy Technology Data Exchange (ETDEWEB)

    Woo, In Sook; Nah, Jung Il; Kim, Deog Yoon [Kyunghee University College of Medicine, Seoul (Korea, Republic of)

    1991-03-15

    To diagnosis and understand the pathophysiologic status of thyroid disease, not only hormonal measurements but also thyroid scan is believed to have a unique role. Especially in the cases of the change of the thyroid function by thyroiditis, it is emphasized that thyroid scan can be helpful in differential diagnosis, Discordant results of thyroid hormone levels and thyroid scan are found in transient hyperthyroidism, or in transient hypothyroidism. We analysed and reevaluated thyroid scan to look at the importance of thyroid scan. The results are summarised as follows: 1) 80%. of hyperthyroid patients had hyperthyroidism increased RAIU with even density, they are compatible with Graves' disease. 2) 2.1% of hyperthyroid patients had normal or decreased RAIU, which are classified as high iodine turn over genuine hyperthyroidism. 3) 8.5% of hyperthyroid patients had markedly decreased RAIU at both 2 hour and 24 hour, whose pathologic processes are suggested to be heterogenous namely subacute thyroiditis, postpartum thyroiditis, Hashimoto's thyroiditis, and pamless thyroiditis. 4) 45% of hypothyroid patients had increased 24 hr RAIU, 30% of hypothyroid patients were normal, 25%, decreased. In conclusion, thyroid scan should be reevaluated its useful role to asses the pathophysiologic status of thyroid disease. Especially in cases of transient thyrotoxicosis, thyroid scan is essential to diagnose and follow up the disease process.

  5. Systematic review of type-specific pathophysiological symptoms of Sasang typology

    Directory of Open Access Journals (Sweden)

    Yoo Ri Han

    2016-06-01

    Full Text Available Previous studies on the Sasang typology have focused on the differential diagnosis of each Sasang type with type-specific pathophysiological symptoms (TSPS. The purpose of this study was to elucidate the latent physiological mechanism related to these clinical indicators. We searched six electronic databases for articles published from 1990 to 2015 using the Sasang typology-related keywords, and found and analyzed 35 such articles. The results were summarized into six TSPS categories: perspiration, temperature preference, sleep, defecation, urination, and susceptibility to stress. The Tae-Eum and So-Eum types showed contrasting features with TSPS, and the So-Yang type was in the middle. The Tae-Eum type has good digestive function, regular bowel movement and defecation, high sleep quality, and low susceptibility to stress and cold. The Tae-Eum type has relatively large volumes of sweat and feels fresh after sweating; however, the urine is highly concentrated. These clinical features might be related to the biopsychological traits of the Tae-Eum type, including a low trait anxiety level and high ponderal and body mass indices. This study used the autonomic reactivity hypothesis for explaining the pathophysiological predispositions in the Sasang typology. The Tae-Eum and So-Eum Sasang types have a low threshold in parasympathetic and sympathetic activation, respectively. This study provides a foundation for integrating traditional Korean personalized medicine and Western biomedicine.

  6. Epidemiology, genetics, pathophysiology, and prognostic classifications of cerebral arteriovenous malformations.

    Science.gov (United States)

    Ozpinar, Alp; Mendez, Gustavo; Abla, Adib A

    2017-01-01

    Arteriovenous malformations (AVMs) are vascular deformities involving fistula formation of arterial to venous structures without an intervening capillary bed. Such anomalies can prove fatal as the high arterial flow can disrupt the integrity of venous walls, thus leading to dangerous sequelae such as hemorrhage. Diagnosis of these lesions in the central nervous system can often prove challenging as intracranial AVMs represent a heterogeneous vascular pathology with various presentations and symptomatology. The literature suggests that most brain AVMs (bAVMs) are identified following evaluation of the etiology of acute cerebral hemorrhage, or incidentally on imaging associated with seizure or headache workup. Given the low incidence of this disease, most of the data accrued on this pathology comes from single-center experiences. This chapter aims to distill the most important information from these studies as well as examine meta-analyses on bAVMs in order to provide a comprehensive introduction into the natural history, classification, genetic underpinnings of disease, and proposed pathophysiology. While there is yet much to be elucidated about AVMs of the central nervous system, we aim to provide an overview of bAVM etiology, classification, genetics, and pathophysiology inherent to the disease process. © 2017 Elsevier B.V. All rights reserved.

  7. Glutamate abnormalities in obsessive compulsive disorder: neurobiology, pathophysiology, and treatment.

    Science.gov (United States)

    Pittenger, Christopher; Bloch, Michael H; Williams, Kyle

    2011-12-01

    Obsessive compulsive disorder is prevalent, disabling, incompletely understood, and often resistant to current therapies. Established treatments consist of specialized cognitive-behavioral psychotherapy and pharmacotherapy with medications targeting serotonergic and dopaminergic neurotransmission. However, remission is rare, and more than a quarter of OCD sufferers receive little or no benefit from these approaches, even when they are optimally delivered. New insights into the disorder, and new treatment strategies, are urgently needed. Recent evidence suggests that the ubiquitous excitatory neurotransmitter glutamate is dysregulated in OCD, and that this dysregulation may contribute to the pathophysiology of the disorder. Here we review the current state of this evidence, including neuroimaging studies, genetics, neurochemical investigations, and insights from animal models. Finally, we review recent findings from small clinical trials of glutamate-modulating medications in treatment-refractory OCD. The precise role of glutamate dysregulation in OCD remains unclear, and we lack blinded, well-controlled studies demonstrating therapeutic benefit from glutamate-modulating agents. Nevertheless, the evidence supporting some important perturbation of glutamate in the disorder is increasingly strong. This new perspective on the pathophysiology of OCD, which complements the older focus on monoaminergic neurotransmission, constitutes an important focus of current research and a promising area for the ongoing development of new therapeutics. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Jaundice associated pruritis: a review of pathophysiology and treatment.

    Science.gov (United States)

    Bassari, Ramez; Koea, Jonathan B

    2015-02-07

    To review the underlying pathophysiology and currently available treatments for pruritis associated with jaundice. English language literature was reviewed using MEDLINE, PubMed, EMBASE and clinicaltrials.gov for papers and trails addressing the pathophysiology and potential treatments for pruritis associated with jaundice. Recent advances in the understanding of the peripheral anatomy of itch transmission have defined a histamine stimulated pathway and a cowhage stimulated pathway with sensation conveyed centrally via the contralateral spinothalamic tract. Centrally, cowhage and histamine stimulated neurons terminate widely within the thalamus and sensorimotor cortex. The causative factors for itch in jaundice have not been clarified although endogenous opioids, serotonin, steroid and lysophosphatidic acid all play a role. Current guidelines for the treatment of itching in jaundice recommend initial management with biliary drainage where possible and medical management with ursodeoxycholic acid, followed by cholestyramine, rifampicin, naltrexone and sertraline. Other than biliary drainage no single treatment has proved universally effective. Pruritis associated with jaundice is a common but poorly understood condition for which biliary drainage is the most effective therapy. Pharmacological therapy has advanced but remains variably effective.

  9. Pathophysiology, diagnosis, and treatment of canine hip dysplasia

    International Nuclear Information System (INIS)

    Cook, J.L.; Tomlinson, J.L.; Constantinescu, G.M.

    1996-01-01

    Dogs with hip dysplasia are commonly presented to veterinarians for evaluation. Although many causes of the condition have been proposed, a definitive cause has not been established. The multifactorial nature of canine hip dysplasia can confuse client education and management ofthe disease. The basic concept involved is the biomechanical imbalance between the forces on the coxofemoral joint and the associated muscle mass; the result is joint laxity in young, growing dogs. This laxity leads to incongruity; the eventual result is degenerative joint disease. Canine hip dysplasia can affect any breed but is most often reported in large and giant breeds. Understanding the pathophysiology and biomechanics involved with this developmental disease is important in providing clients with diagnostic, therapeutic, and prognostic information. The selection of treatment is influenced by the following factors:the age, health, and intended use of the patient; clinical signs; diagnostic findings; the availability of treatment; and the financial constraints of the owner. This article discusses the current concepts concerning the pathophysiology and biomechanics of canine hip dysplasia and outlines diagnostic and therapeutic options. The objective of the article is to provide practitioners with a reference for decision making and client education

  10. Genetic Variants Associated with Hyperandrogenemia in PCOS Pathophysiology

    Science.gov (United States)

    2018-01-01

    Polycystic ovary syndrome is a multifactorial endocrine disorder whose pathophysiology baffles many researchers till today. This syndrome is typically characterized by anovulatory cycles and infertility, altered gonadotropin levels, obesity, and bulky multifollicular ovaries on ultrasound. Hyperandrogenism and insulin resistance are hallmark features of its complex pathophysiology. Hyperandrogenemia is a salient feature of PCOS and a major contributor to cosmetic anomalies including hirsutism, acne, and male pattern alopecia in affected women. Increased androgen levels may be intrinsic or aggravated by preexisting insulin resistance in women with PCOS. Studies have reported augmented ovarian steroidogenesis patterns attributed mainly to theca cell hypertrophy and altered expression of key enzymes in the steroidogenic pathway. Candidate gene studies have been performed in order to delineate the association of polymorphisms in genes, which encode enzymes in the intricate cascade of steroidogenesis or modulate the levels and action of circulating androgens, with risk of PCOS development and its related traits. However, inconsistent findings have impacted the emergence of a unanimously accepted genetic marker for PCOS susceptibility. In the current review, we have summarized the influence of polymorphisms in important androgen related genes in governing genetic predisposition to PCOS and its related metabolic and reproductive traits. PMID:29670770

  11. Extra-osseous uterine pathophysiology demonstrated on skeletal scintigraphy

    International Nuclear Information System (INIS)

    Mansberg, R.; Lewis, G.

    1999-01-01

    Full text: Skeletal scintigraphy is a sensitive procedure for evaluating disease and trauma involving the skeleton. Extra-skeletal pathophysiology is also often demonstrated. This may include uptake by tumours, soft tissue calcification and infection as well as renal pathology. Skeletal scintigraphy is often performed to evaluate hip and back pain and extra-osseous uterine pathophysiology can be demonstrated in both the early and late phases of the study as in the following cases. Three women underwent skeletal scintigraphy for the investigation of low back pain in two patients and post-partum hip pain in one. A large vascular uterus with deviation of the bladder was demonstrated in the post-partum patient. Increased pelvic vascularity and bladder deviation in the second patient was shown by ultrasound to correspond to a left-sided fibroid with associated adenomyosis. In the third case, right-sided pelvic vascularity and left bladder deviation were shown on ultrasound to be due to an anteverted, anteflexed uterus tilted to the right. These cases illustrate the importance of documenting extra-osseous findings on skeletal scintigraphy and the benefits of correlation with anatomical imaging

  12. Studies on the Pathophysiology and Genetic Basis of Migraine

    Science.gov (United States)

    Gasparini, Claudia F; Sutherland, Heidi G.; Griffiths, Lyn R

    2013-01-01

    Migraine is a neurological disorder that affects the central nervous system causing painful attacks of headache. A genetic vulnerability and exposure to environmental triggers can influence the migraine phenotype. Migraine interferes in many facets of people’s daily life including employment commitments and their ability to look after their families resulting in a reduced quality of life. Identification of the biological processes that underlie this relatively common affliction has been difficult because migraine does not have any clearly identifiable pathology or structural lesion detectable by current medical technology. Theories to explain the symptoms of migraine have focused on the physiological mechanisms involved in the various phases of headache and include the vascular and neurogenic theories. In relation to migraine pathophysiology the trigeminovascular system and cortical spreading depression have also been implicated with supporting evidence from imaging studies and animal models. The objective of current research is to better understand the pathways and mechanisms involved in causing pain and headache to be able to target interventions. The genetic component of migraine has been teased apart using linkage studies and both candidate gene and genome-wide association studies, in family and case-control cohorts. Genomic regions that increase individual risk to migraine have been identified in neurological, vascular and hormonal pathways. This review discusses knowledge of the pathophysiology and genetic basis of migraine with the latest scientific evidence from genetic studies. PMID:24403849

  13. Air leak after lung resection: pathophysiology and patients' implications.

    Science.gov (United States)

    Pompili, Cecilia; Miserocchi, Giuseppe

    2016-02-01

    Protocols for the management of air leaks are critical aspects in the postoperative course of patients following lung resections. Many investigations in the last decade are focusing on the chest tube modalities or preventative measures, however, little is known about the pathophysiology of air leak and the patient perception of this common complication. This review concentrates on understanding the reasons why a pulmonary parenchyma may start to leak or an air leak may be longer than others. Experimental works support the notion that lung overdistension may favor air leak. These studies may represent the basis of future investigations. Furthermore, the standardization of nomenclature in the field of pleural space management and the creation of novel air leak scoring systems have contributed to improve the knowledge among thoracic surgeons and facilitate the organization of trials on this matter. We tried to summarize available evidences about the patient perception of a prolonged air leak and about what would be useful for them in order to prevent worsening of their quality of life. Future investigations are warranted to better understand the pathophysiologic mechanisms responsible of prolonged air leak in order to define tailored treatments and protocols. Improving the care at home with web-based telemonitoring or real time connected chest drainage may in a future improve the quality of life of the patients experience this complication and also enhance hospital finances.

  14. Does vasoactive intestinal polypeptide mediate the pathophysiology of bowel obstruction?

    Science.gov (United States)

    Basson, M D; Fielding, L P; Bilchik, A J; Zucker, K A; Ballantyne, G H; Sussman, J; Adrian, T E; Modlin, I M

    1989-01-01

    We hypothesized that bioactive peptides might be released into the portal circulation and mediate pathophysiologic alterations accompanying small bowel obstruction. We studied this question in a subacute canine small bowel obstruction model using 50 percent diameter occlusion. Control animals underwent sham laparotomy. Vasoactive intestinal peptide (VIP), peptide YY, and gastrin were measured in portal and systemic plasma by specific radioimmunoassays at 24-hour intervals as the obstruction progressed to completion over 5 days. All peptides in both groups demonstrated portal and peripheral gradients. In control dogs, peptide concentrations did not change postoperatively but VIP increased markedly in obstructed dogs, demonstrating a median portal level of 95 pmol/liter at 96 hours compared with 31.5 pmol/liter in control animals. These portal VIP levels are known to cause hypersecretion and splanchnic vasodilation in experimental models. The release of vasoactive compounds such as VIP may mediate local pathophysiology in human small bowel obstruction. A similar explanation of the systemic effects is consistent with the known cardiopulmonary bioactivity of VIP.

  15. Recent developments in the pathophysiology of irritable bowel syndrome.

    Science.gov (United States)

    El-Salhy, Magdy

    2015-07-07

    Irritable bowel syndrome (IBS) is a common gastrointestinal disorder, the pathophysiology of which is not completely known, although it has been shown that genetic/social learning factors, diet, intestinal microbiota, intestinal low-grade inflammation, and abnormal gastrointestinal endocrine cells play a major role. Studies of familial aggregation and on twins have confirmed the heritability of IBS. However, the proposed IBS risk genes are thus far nonvalidated hits rather than true predisposing factors. There is no convincing evidence that IBS patients suffer from food allergy/intolerance, with the effect exerted by diet seemingly caused by intake of poorly absorbed carbohydrates and fiber. Obesity is a possible comorbidity of IBS. Differences in the microbiota between IBS patients and healthy controls have been reported, but the association between IBS symptoms and specific bacterial species is uncertain. Low-grade inflammation appears to play a role in the pathophysiology of a major subset of IBS, namely postinfectious IBS. The density of intestinal endocrine cells is reduced in patients with IBS, possibly as a result of genetic factors, diet, intestinal microbiota, and low-grade inflammation interfering with the regulatory signals controlling the intestinal stem-cell clonogenic and differentiation activities. Furthermore, there is speculation that this decreased number of endocrine cells is responsible for the visceral hypersensitivity, disturbed gastrointestinal motility, and abnormal gut secretion seen in IBS patients.

  16. Genetic Variants Associated with Hyperandrogenemia in PCOS Pathophysiology

    Directory of Open Access Journals (Sweden)

    Roshan Dadachanji

    2018-01-01

    Full Text Available Polycystic ovary syndrome is a multifactorial endocrine disorder whose pathophysiology baffles many researchers till today. This syndrome is typically characterized by anovulatory cycles and infertility, altered gonadotropin levels, obesity, and bulky multifollicular ovaries on ultrasound. Hyperandrogenism and insulin resistance are hallmark features of its complex pathophysiology. Hyperandrogenemia is a salient feature of PCOS and a major contributor to cosmetic anomalies including hirsutism, acne, and male pattern alopecia in affected women. Increased androgen levels may be intrinsic or aggravated by preexisting insulin resistance in women with PCOS. Studies have reported augmented ovarian steroidogenesis patterns attributed mainly to theca cell hypertrophy and altered expression of key enzymes in the steroidogenic pathway. Candidate gene studies have been performed in order to delineate the association of polymorphisms in genes, which encode enzymes in the intricate cascade of steroidogenesis or modulate the levels and action of circulating androgens, with risk of PCOS development and its related traits. However, inconsistent findings have impacted the emergence of a unanimously accepted genetic marker for PCOS susceptibility. In the current review, we have summarized the influence of polymorphisms in important androgen related genes in governing genetic predisposition to PCOS and its related metabolic and reproductive traits.

  17. New advances in cell physiology and pathophysiology of the exocrine pancreas.

    Science.gov (United States)

    Mössner, Joachim

    2010-01-01

    This review provides some aspects on the physiology of stimulation and inhibition of pancreatic digestive enzyme secretion and the pathophysiology of pancreatic acinar cell function leading to pancreatitis. Cholecystokinin (CCK) stimulates both directly via CCK-A receptors on acinar cells and indirectly via CCK-B receptors on nerves, followed by acetylcholine release, pancreatic enzyme secretion. It is still not known whether CCK-A receptors exist in human acinar cells, in contrast to acinar cells of rodents where CCK-A receptors have been well described. CCK has numerous actions both in the periphery and in the central nervous systems. CCK inhibits gastric motility and regulates satiety. Another major function of CCK is stimulation of gallbladder contraction. This function enables that bile acids act simultaneously with pancreatic lipolytic enzymes. Secretin is a major stimulator of bicarbonate secretion. Trypsinogen is activated by the gut mucosal enzyme enterokinase. The other pancreatic proenzymes are activated by trypsin. Termination of enzyme secretion may be regulated by negative feedback mechanisms via destruction of CCK-releasing peptides by trypsin. Furthermore, the ileum may act as a brake by release of inhibitory hormones such as PYY and somatostatin. In the pathophysiology of acute pancreatitis, fusion of zymogen granules with lysosomes leading to intracellular activation of trypsinogen is regarded as an initiation step. This activation of trypsinogen may be caused by the lysosomal enzyme cathepsin B. However, autoactivation of trypsinogen itself may be a possibility in pathogenesis. Autoactivation is enhanced in certain mutations of trypsinogen. Furthermore, an imbalance of protease inhibitors and active proteases may be involved. The role of pancreatic lipolytic enzymes, the role of bicarbonate secretion, and toxic Ca(2+) signals by excessive liberation from the endoplasmic reticulum have to be discussed in the pathogenesis of acute pancreatitis

  18. The Physiological/Pathophysiological Significance of Vitamin D in Cancer, Cardiovascular Disorders and Beyond.

    Science.gov (United States)

    AlMatar, Manaf; AlMandeal, Husam; Makky, Essam A; Kayar, Begum; Yarar, Emel; Var, Isıl; Koksal, Fatih

    2017-01-01

    Vitamin D, a molecular precursor of the potent steroid hormone calcitriol, has crucial functions and roles in physiology and pathophysiology. Tellingly, calcitriol has been shown to regulate various cellular signalling networks and cascades that have crucial role in cancer biology and diagnostics. Mounting lines of evidences from previous clinical and preclinical investigations indicate that the deficiency of vitamin D may contribute to the carcinogenesis risk. Concomitantly, recent reports suggested that significant reduction in the cancer occurrence and progression is more likely to appear after vitamin D supplementation. Furthermore, a pivotal role functioned by vitamin D in cardiovascular physiology indicates that the deficiency of vitamin D is significantly correlated with enhanced prevalence of stroke, hypertension and myocardial infarction. Notably, vitamin D status is more likely to be used as a lifestyle biomarker, since poor and unhealthy lifestyles are correlated with the deficiency of vitamin D, a feature which may result in cardiovascular complications. Moreover, recent reports revealed that the effect of vitamin D is to cover not only cardiovascular system but also skeletal system. Herein, we are highlighting the recent knowledge of vitamin D roles and functions with respect to pathophysiological disorders such as cancer, cardiovascular diseases, rheumatoid arthritis (RA) and debate the potential avails of vitamin D on slowing cancer, cardiovascular disease and RA progression. The findings of this review confirm that the importance of vitamin D metabolites or analogues which can provide a helpful platform to target some kinds of cancer, particularly when used in combination with existing therapies. Moreover, the correlation between vitamin D deficiencies with cardiovascular diseases and rheumatoid arthritis (RA) progression might suggest a pivotal role of vitamin D in either initiation or progression of these diseases. Copyright© Bentham Science

  19. Neonatal posthemorrhagic hydrocephalus from prematurity: pathophysiology and current treatment concepts

    Science.gov (United States)

    Robinson, Shenandoah

    2013-01-01

    Object Preterm infants are at risk for perinatal complications, including germinal matrix–intraventricular hemorrhage (IVH) and subsequent posthemorrhagic hydrocephalus (PHH). This review summarizes the current understanding of the epidemiology, pathophysiology, management, and outcomes of IVH and PHH in preterm infants. Methods The MEDLINE database was systematically searched using terms related to IVH, PHH, and relevant neurosurgical procedures to identify publications in the English medical literature. To complement information from the systematic search, pertinent articles were selected from the references of articles identifed in the initial search. Results This review summarizes the current knowledge regarding the epidemiology and pathophysiology of IVH and PHH, primarily using evidence-based studies. Advances in obstetrics and neonatology over the past few decades have contributed to a marked improvement in the survival of preterm infants, and neurological morbidity is also starting to decrease. The incidence of IVH is declining, and the incidence of PHH will likely follow. Currently, approximately 15% of preterm infants who suffer severe IVH will require permanent CSF diversion. The clinical presentation and surgical management of symptomatic PHH with temporary ventricular reservoirs (ventricular access devices) and ventriculosubgaleal shunts and permanent ventriculoperitoneal shunts are discussed. Preterm infants who develop PHH that requires surgical treatment remain at high risk for other related neurological problems, including cerebral palsy, epilepsy, and cognitive and behavioral delay. This review highlights numerous opportunities for further study to improve the care of these children. Conclusions A better grasp of the pathophysiology of IVH is beginning to impact the incidence of IVH and PHH. Neonatologists conduct rigorous Class I and II studies to advance the outcomes of preterm infants. The need for well-designed multicenter trials is

  20. Metabolism of very long-chain Fatty acids: genes and pathophysiology.

    Science.gov (United States)

    Sassa, Takayuki; Kihara, Akio

    2014-02-01

    Fatty acids (FAs) are highly diverse in terms of carbon (C) chain-length and number of double bonds. FAs with C>20 are called very long-chain fatty acids (VLCFAs). VLCFAs are found not only as constituents of cellular lipids such as sphingolipids and glycerophospholipids but also as precursors of lipid mediators. Our understanding on the function of VLCFAs is growing in parallel with the identification of enzymes involved in VLCFA synthesis or degradation. A variety of inherited diseases, such as ichthyosis, macular degeneration, myopathy, mental retardation, and demyelination, are caused by mutations in the genes encoding VLCFA metabolizing enzymes. In this review, we describe mammalian VLCFAs by highlighting their tissue distribution and metabolic pathways, and we discuss responsible genes and enzymes with reference to their roles in pathophysiology.

  1. Past, present and future of the pathophysiological model of the basal ganglia

    Directory of Open Access Journals (Sweden)

    Jose A Obeso

    2011-07-01

    Full Text Available The current model of basal ganglia was introduced two decades ago and has settled most of our current understanding of basal ganglia function and dysfunction. Extensive research efforts have been carried out in recent years leading to further refinement and understanding of the normal and diseased basal ganglia. Several questions, however, are yet to be resolved. This short review provides a synopsis of the evolution of thought regarding the pathophysiological model of the BG and summarizes the main recent findings and additions to this field of research. We have also tried to identify major challenges that need to be addressed and resolved in the near future. Detailed accounts and state-of-the-art developments concerning research on the basal ganglia are provided in the articles that make up this Special Issue.

  2. Auricular tachycardia: therapeutic and pathophysiologic news concepts: literature review and casuistic Service presentation

    International Nuclear Information System (INIS)

    Horta, J. de; Reyes, W.; Calleriza, F.; Pouso, J.; Besada, E.

    1998-01-01

    The auricular tachycardia are the supraventricular tachycardias whose origin mechanism and maintenance is located at level exclusively auricular. It show diagnostic and therapeutics difficulties.The inadequate handling can cause commitment of the ventricular function and to commit the predict vital.The pharmacological treatment, is more used is few effective.The ablation for catheter with radiofrequency is a new weapon transcendent therapy for the resolution of a significant group of these patients. A review of the concept of auricular tachycardias, it upgrades its classification and the mechanisms pathophysiologic.It describes the techniques of ablation for catheter in these arrhythmias and their results are revised in the literature. In the end it presents the casuistry of the Service in the treatment of the auricular tachycardias focal s,incision ales and atrial flutter by means of ablation for catheter with radiofrequency [es

  3. Scientific Statement on the Diagnostic Criteria, Epidemiology, Pathophysiology, and Molecular Genetics of Polycystic Ovary Syndrome

    Science.gov (United States)

    Dumesic, Daniel A.; Oberfield, Sharon E.; Stener-Victorin, Elisabet; Marshall, John C.; Laven, Joop S.

    2015-01-01

    Polycystic ovary syndrome (PCOS) is a heterogeneous and complex disorder that has both adverse reproductive and metabolic implications for affected women. However, there is generally poor understanding of its etiology. Varying expert-based diagnostic criteria utilize some combination of oligo-ovulation, hyperandrogenism, and the presence of polycystic ovaries. Criteria that require hyperandrogenism tend to identify a more severe reproductive and metabolic phenotype. The phenotype can vary by race and ethnicity, is difficult to define in the perimenarchal and perimenopausal period, and is exacerbated by obesity. The pathophysiology involves abnormal gonadotropin secretion from a reduced hypothalamic feedback response to circulating sex steroids, altered ovarian morphology and functional changes, and disordered insulin action in a variety of target tissues. PCOS clusters in families and both female and male relatives can show stigmata of the syndrome, including metabolic abnormalities. Genome-wide association studies have identified a number of candidate regions, although their role in contributing to PCOS is still largely unknown. PMID:26426951

  4. Hyperferritinemia and iron metabolism in Gaucher disease: Potential pathophysiological implications.

    Science.gov (United States)

    Regenboog, Martine; van Kuilenburg, André B P; Verheij, Joanne; Swinkels, Dorine W; Hollak, Carla E M

    2016-11-01

    Gaucher disease (GD) is characterized by large amounts of lipid-storing macrophages and is associated with accumulation of iron. High levels of ferritin are a hallmark of the disease. The precise mechanism underlying the changes in iron metabolism has not been elucidated. A systematic search was conducted to summarize available evidence from the literature on iron metabolism in GD and its potential pathophysiological implications. We conclude that in GD, a chronic low grade inflammation state can lead to high ferritin levels and increased hepcidin transcription with subsequent trapping of ferritin in macrophages. Extensive GD manifestations with severe anemia or extreme splenomegaly can lead to a situation of iron-overload resembling hemochromatosis. We hypothesize that specifically this latter situation carries a risk for the occurrence of associated conditions such as the increased cancer risk, metabolic syndrome and neurodegeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Gaucher Disease: The Metabolic Defect, Pathophysiology, Phenotypes And Natural History

    Science.gov (United States)

    Baris, Hagit N.; Cohen, Ian J.; Mistry, Pramod K.

    2015-01-01

    Gaucher disease (GD), a prototype lysosomal storage disorder, results from inherited deficiency of lysosomal glucocerebrosidase due to biallelic mutations in GBA. The result is widespread accumulation of macrophages engorged with predominantly lysosomal glucocerebroside. A complex multisystem phenotype arises involving the liver, spleen, bone marrow and occasionally the lungs in type 1 Gaucher disease; in neuronopathic fulminant type 2 and chronic type 3 disease there is in addition progressive neurodegenerative disease. Manifestations of Gaucher disease type 1 (GD1) include hepatosplenomegaly, cytopenia, a complex pattern of bone involvement with avascular osteonecrosis (AVN), osteoporosis, fractures and lytic lesions. Enzyme replacement therapy became the standard of care in 1991, and this has transformed the natural history of GD1. This article reviews the clinical phenotypes of GD, diagnosis, pathophysiology and its natural history. A subsequent chapter discusses the treatment options. PMID:25345088

  6. Sexual and gonadal dysfunction in chronic kidney disease: Pathophysiology

    Directory of Open Access Journals (Sweden)

    Manish Rathi

    2012-01-01

    Full Text Available Sexual and gonadal dysfunction/infertility are quite common in patients with chronic kidney disease. Forty percent of male and 55% of female dialysis patients do not achieve orgasm. The pathophysiology of gonadal dysfunction is multifactorial. It is usually a combination of psychological, physiological, and other comorbid factors. Erectile dysfunction in males is mainly due to arterial factors, venous leakage, psychological factors, neurogenic factors, endocrine factors, and drugs. Sexual dysfunction in females is mainly due to hormonal factors and manifests mainly as menstrual irregularities, amenorrhea, lack of vaginal lubrication, and failure to conceive. Treatment of gonadal dysfunction in chronic kidney disease is multipronged and an exact understanding of underlying pathology is essential in proper management of these patients.

  7. Etiology, pathophysiology and classifications of the diabetic Charcot foot

    Science.gov (United States)

    Papanas, Nikolaos; Maltezos, Efstratios

    2013-01-01

    In people with diabetes mellitus, the Charcot foot is a specific manifestation of peripheral neuropathy that may involve autonomic neuropathy with high blood flow to the foot, leading to increased bone resorption. It may also involve peripheral somatic polyneuropathy with loss of protective sensation and high risk of unrecognized acute or chronic minor trauma. In both cases, there is excess local inflammatory response to foot injury, resulting in local osteoporosis. In the Charcot foot, the acute and chronic phases have been described. The former is characterized by local erythema, edema, and marked temperature elevation, while pain is not a prominent symptom. In the latter, signs of inflammation gradually recede and deformities may develop, increasing the risk of foot ulceration. The most common anatomical classification describes five patterns, according to the localization of bone and joint pathology. This review article aims to provide a brief overview of the diabetic Charcot foot in terms of etiology, pathophysiology, and classification. PMID:23705058

  8. Female Pattern Hair Loss: a clinical and pathophysiological review.

    Science.gov (United States)

    Ramos, Paulo Müller; Miot, Hélio Amante

    2015-01-01

    Female Pattern Hair Loss or female androgenetic alopecia is the main cause of hair loss in adult women and has a major impact on patients' quality of life. It evolves from the progressive miniaturization of follicles that lead to a subsequent decrease of the hair density, leading to a non-scarring diffuse alopecia, with characteristic clinical, dermoscopic and histological patterns. In spite of the high frequency of the disease and the relevance of its psychological impact, its pathogenesis is not yet fully understood, being influenced by genetic, hormonal and environmental factors. In addition, response to treatment is variable. In this article, authors discuss the main clinical, epidemiological and pathophysiological aspects of female pattern hair loss.

  9. Negative pressure pulmonary edema revisited: Pathophysiology and review of management

    Directory of Open Access Journals (Sweden)

    Balu Bhaskar

    2011-01-01

    Full Text Available Negative pressure pulmonary edema (NPPE is a dangerous and potentially fatal condition with a multifactorial pathogenesis. Frequently, NPPE is a manifestation of upper airway obstruction, the large negative intrathoracic pressure generated by forced inspiration against an obstructed airway is thought to be the principal mechanism involved. This negative pressure leads to an increase in pulmonary vascular volume and pulmonary capillary transmural pressure, creating a risk of disruption of the alveolar-capillary membrane. The early detection of the signs of this syndrome is vital to the treatment and to patient outcome. The purpose of this review is to highlight the available literature on NPPE, while probing the pathophysiological mechanisms relevant in both the development of this condition and that involved in its resolution.

  10. [Refeeding syndrome : Pathophysiology, risk factors, prevention, and treatment].

    Science.gov (United States)

    Wirth, R; Diekmann, R; Janssen, G; Fleiter, O; Fricke, L; Kreilkamp, A; Modreker, M K; Marburger, C; Nels, S; Pourhassan, M; Schaefer, R; Willschrei, H-P; Volkert, D

    2018-04-01

    Refeeding syndrome is a life-threatening complication that may occur after initiation of nutritional therapy in malnourished patients, as well as after periods of fasting and hunger. Refeeding syndrome can be effectively prevented and treated if its risk factors and pathophysiology are known. The initial measurement of thiamine level and serum electrolytes, including phosphate and magnesium, their supplementation if necessary, and a slow increase in nutritional intake along with close monitoring of serum electrolytes play an important role. Since refeeding syndrome is not well known and the symptoms can be extremely heterogeneous, this complication is poorly recognized, especially against the background of severe disease and multimorbidity. This overview aims to summarize the current knowledge and increase awareness about refeeding syndrome.

  11. Pathology and pathophysiology of pulmonary manifestations in leptospirosis

    Directory of Open Access Journals (Sweden)

    Marisa Dolhnikoff

    Full Text Available Leptospirosis is a re-emerging zoonosis occurring as large outbreaks throughout the world caused by Leptospira interrogans. The incidence of pulmonary involvement in leptospirosis has been reported to be increasing in the last years, affecting up to 70% of the patients. Alveolar hemorrhage presented as dyspnea and hemoptysis is the main pulmonary manifestation. The emergence of massive hemoptysis and acute respiratory distress syndrome has characterized the recent changes reported in the clinical patterns of leptospirosis. The pulmonary involvement has been emerged as a serious life threat, becoming the main cause of death due to leptospirosis in some countries. In this review we present the main clinical and pathological manifestations of pulmonary involvement in leptospirosis, with special focus on recent data concerning the pathophysiological mechanisms underlying lung injury.

  12. Dysmotility in Esophageal Atresia: Pathophysiology, Characterization, and Treatment

    Science.gov (United States)

    Faure, Christophe; Righini Grunder, Franziska

    2017-01-01

    Esophageal dysmotility is almost universal after esophageal atresia (EA) repair and is mainly related to the developmental anomaly of the esophagus. Esophageal dysmotility is involved in the pathophysiology of numerous symptoms and comorbidities associated with EA such as gastroesophageal reflux disease, aspiration and respiratory complications, and symptoms of dysphagia and feeding disorders. High-resolution esophageal manometry (HREM) has facilitated the characterization of the dysmotility, but there is an incomplete correlation between symptoms and manometrical patterns. Impedance coupled to HREM should help to predict the clinical outcome and therefore personalize patient management. Nowadays, the management of esophageal dysmotility in patients with EA is essentially based on treatment of associated inflammation related to peptic or eosinophilic esophagitis. PMID:28620599

  13. Geographical, environmental and pathophysiological influences on the human blood transcriptome.

    Science.gov (United States)

    Tabassum, Rubina; Nath, Artika; Preininger, Marcela; Gibson, Greg

    2013-12-01

    Gene expression variation provides a read-out of both genetic and environmental influences on gene activity. Geographical, genomic and sociogenomic studies have highlighted how life circumstances of an individual modify the expression of hundreds and in some cases thousands of genes in a co-ordinated manner. This review places such results in the context of a conserved set of 90 transcripts known as Blood Informative Transcripts (BIT) that capture the major conserved components of variation in the peripheral blood transcriptome. Pathophysiological states are also shown to associate with the perturbation of transcript abundance along the major axes. Discussion of false negative rates leads us to argue that simple significance thresholds provide a biased perspective on assessment of differential expression that may cloud the interpretation of studies with small sample sizes.

  14. Acetazolamide in cerebral diagnosis: Physiological and pathophysiological aspects

    International Nuclear Information System (INIS)

    Lerch, H.; Franke, W.G.; Templin, A.

    1990-01-01

    The sensitivity in the diagnosis of cerebrovascular diseases using radiotracers can be enhanced by the use of the acetazolamide test. In this paper we present and discuss some physiological and pathophysiological aspects of its mechanism. The physiological action of the carboanhydrase inhibitor is like the action of enhanced pCO 2 in the tissue, thus acting at the site of metabolic regulation. The reaction of the vascular bed is influenced in part by subcortical structures. Pathologically the reaction can be disturbed at first by an altered regulation with the vessels being mechanically intact, e.g. in hypoxia or transient ischemia. Secondly, the mechanics of the vessels may be not intact e.g., in atherosclerosis or surrounding edema. Lastly, the vessels have already dilated, e.g. poststenotically. All these facts have to be taken into consideration interpreting an acetazolamid test. (orig.) [de

  15. Pathophysiology of Resistant Hypertension: The Role of Sympathetic Nervous System

    Directory of Open Access Journals (Sweden)

    Costas Tsioufis

    2011-01-01

    Full Text Available Resistant hypertension (RH is a powerful risk factor for cardiovascular morbidity and mortality. Among the characteristics of patients with RH, obesity, obstructive sleep apnea, and aldosterone excess are covering a great area of the mosaic of RH phenotype. Increased sympathetic nervous system (SNS activity is present in all these underlying conditions, supporting its crucial role in the pathophysiology of antihypertensive treatment resistance. Current clinical and experimental knowledge points towards an impact of several factors on SNS activation, namely, insulin resistance, adipokines, endothelial dysfunction, cyclic intermittent hypoxaemia, aldosterone effects on central nervous system, chemoreceptors, and baroreceptors dysregulation. The further investigation and understanding of the mechanisms leading to SNS activation could reveal novel therapeutic targets and expand our treatment options in the challenging management of RH.

  16. Update on Mastocytosis (Part 1): Pathophysiology, Clinical Features, and Diagnosis.

    Science.gov (United States)

    Azaña, J M; Torrelo, A; Matito, A

    2016-01-01

    Mastocytosis is a term used to describe a heterogeneous group of disorders characterized by clonal proliferation of mast cells in various organs. The organ most often affected is the skin. Mastocytosis is a relatively rare disorder that affects both sexes equally. It can occur at any age, although it tends to appear in the first decade of life, or later, between the second and fifth decades. Our understanding of the pathophysiology of mastocytosis has improved greatly in recent years, with the discovery that somatic c-kit mutations and aberrant immunophenotypic features have an important role. The clinical manifestations of mastocytosis are diverse, and skin lesions are the key to diagnosis in most patients. Copyright © 2015 Elsevier España, S.L.U. and AEDV. All rights reserved.

  17. Epidural haematoma: pathophysiological significance of extravasation and arteriovenous shunting

    International Nuclear Information System (INIS)

    Habash, A.H.; Sortland, O.; Zwetnow, N.N.

    1982-01-01

    35 patients with epidural bleeding operated on at Rikshospitalet, Oslo, during the period 1965 - 1980 had preoperative angiography with visualization of the external carotid artery. Twenty-one patients had extravasation of contrast medium from meningeal arteries. Seventeen of the 21 had also shunting of contrast medium from meningeal arteries to meningeal or diploic veins, while 20 of the 21 also had bled from a ruptured meningeal artery at operation. It was further found that of 20 patients who deteriorated after trauma 18 had an epidural arteriovenous shunt or extravasation. Conversely, of 15 patients who improved after trauma 12 had no evidence of a shunt. The strong correlation between the clinical course and the occurrence of extravasation supports previous experimental and clinical data, indicating the epidural arteriovenous shunt to be a major factor in the pathophysiology and the outcome of epidural bleeding. (author)

  18. Renal Denervation for Chronic Heart Failure: Background and Pathophysiological Rationale.

    Science.gov (United States)

    Böhm, Michael; Ewen, Sebastian; Mahfoud, Felix

    2017-01-01

    The activation of the sympathetic nervous system is associated with cardiovascular hospitalizations and death in heart failure. Renal denervation has been shown to effectively reduce sympathetic overdrive in certain patients with uncontrolled hypertension. Pilot trials investigating renal denervation as a potential treatment approach for heart failure were initiated. Heart failure comorbidities like obstructive sleep apnea, metabolic syndrome and arrhythmias could also be targets for renal denervation, because these occurrences are also mediated by the activation of the sympathetic nervous system. Therefore, renal denervation in heart failure is worthy of further investigation, although its effectiveness still has to be proven. Herein, we describe the pathophysiological rationale and the effect of renal denervation on surrogates of the heart failure syndrome.

  19. Renal Denervation for Chronic Heart Failure: Background and Pathophysiological Rationale

    Science.gov (United States)

    Ewen, Sebastian; Mahfoud, Felix

    2017-01-01

    The activation of the sympathetic nervous system is associated with cardiovascular hospitalizations and death in heart failure. Renal denervation has been shown to effectively reduce sympathetic overdrive in certain patients with uncontrolled hypertension. Pilot trials investigating renal denervation as a potential treatment approach for heart failure were initiated. Heart failure comorbidities like obstructive sleep apnea, metabolic syndrome and arrhythmias could also be targets for renal denervation, because these occurrences are also mediated by the activation of the sympathetic nervous system. Therefore, renal denervation in heart failure is worthy of further investigation, although its effectiveness still has to be proven. Herein, we describe the pathophysiological rationale and the effect of renal denervation on surrogates of the heart failure syndrome. PMID:28154583

  20. Missing cells: pathophysiology, diagnosis and management of (pancytopenia in childhood

    Directory of Open Access Journals (Sweden)

    Miriam eErlacher

    2015-07-01

    Full Text Available Peripheral blood cytopenia in children can be due to a variety of acquired or inherited diseases. Genetic disorders affecting a single hematopoietic lineage are frequently characterized by typical bone marrow findings such as lack of progenitors or maturation arrest in congenital neutropenia or a lack of megakaryocytes in congenital amegakaryocytic thrombocytopenia whereas antibody mediated diseases such as autoimmune neutropenia are associated with a rather unremarkable bone marrow morphology. In contrast, pancytopenia is frequently associated with a hypocellular bone marrow and the differential diagnosis includes acquired aplastic anemia, myelodysplastic syndrome, inherited bone marrow failure syndromes such as Fanconi anemia and dyskeratosis congenita and a variety of immunological disorders including hemophagocytic lymphohistiocytosis. Thorough bone marrow analysis is of special importance for the diagnostic work-up of most patients. Cellularity, cellular composition and dysplastic signs are the cornerstones of the differential diagnosis. Pancytopenia in the presence of a normo- or hypercellular marrow with dysplastic changes may indicate myelodysplastic syndrome. More challenging for the hematologist is the evaluation of the hypocellular bone marrow. Although aplastic anemia and hypocellular refractory cytopenia of childhood (RCC can reliably be differentiated on a morphological level the overlapping pathophysiology remains a significant challenge for the choice of the therapeutic strategy. Furthermore, inherited bone marrow failure syndromes are usually associated with the morphological picture of RCC and the recognition of these entities is essential as they often present a multisystem disease requiring different diagnostic and therapeutic approaches. This paper gives an overview over the different disease entities presenting with (pancytopenia, their pathophysiology, characteristic bone marrow findings and therapeutic approaches.

  1. Insights into Pathophysiology from Medication-induced Tremor

    Directory of Open Access Journals (Sweden)

    John C. Morgan

    2017-10-01

    Full Text Available Background: Medication-induced tremor (MIT is common in clinical practice and there are many medications/drugs that can cause or exacerbate tremors. MIT typically occurs by enhancement of physiological tremor (EPT, but not all drugs cause tremor in this way. In this manuscript, we review how some common examples of MIT have informed us about the pathophysiology of tremor.Methods: We performed a PubMed literature search for published articles dealing with MIT and attempted to identify articles that especially dealt with the medication’s mechanism of inducing tremor.Results: There is a paucity of literature that deals with the mechanisms of MIT, with most manuscripts only describing the frequency and clinical settings where MIT is observed. That being said, MIT emanates from multiple mechanisms depending on the drug and it often takes an individualized approach to manage MIT in a given patient.Discussion: MIT has provided some insight into the mechanisms of tremors we see in clinical practice. The exact mechanism of MIT is unknown for most medications that cause tremor, but it is assumed that in most cases physiological tremor is influenced by these medications. Some medications (epinephrine that cause EPT likely lead to tremor by peripheral mechanisms in the muscle (β-adrenergic agonists, but others may influence the central component (amitriptyline. Other drugs can cause tremor, presumably by blockade of dopamine receptors in the basal ganglia (dopamine-blocking agents, by secondary effects such as causing hyperthyroidism (amiodarone, or by other mechanisms. We will attempt to discuss what is known and unknown about the pathophysiology of the most common MITs.

  2. Impaired emotion processing in functional (psychogenic tremor: A functional magnetic resonance imaging study

    Directory of Open Access Journals (Sweden)

    Alberto J. Espay

    2018-01-01

    Conclusions: In response to emotional stimuli, functional tremor is associated with alterations in activation and functional connectivity in networks involved in emotion processing and theory of mind. These findings may be relevant to the pathophysiology of functional movement disorders.

  3. Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications

    Directory of Open Access Journals (Sweden)

    Hyunjoo Park

    2013-03-01

    Full Text Available A cellular-level study of the pathophysiology is crucial for understanding the mechanisms behind human diseases. Recent advances in quantitative phase imaging (QPI techniques show promises for the cellular-level understanding of the pathophysiology of diseases. To provide important insight on how the QPI techniques potentially improve the study of cell pathophysiology, here we present the principles of QPI and highlight some of the recent applications of QPI ranging from cell homeostasis to infectious diseases and cancer.

  4. Current challenges and problems in teaching pathophysiology in Ukraine - another reaction to Churilov's paper.

    Science.gov (United States)

    Ataman, Oleksandr V

    2017-12-01

    Pathophysiology in Ukraine has rich traditions and achievements in the scientific areas, as well as in teaching academic discipline. Its history, the main Ukrainian scientific schools and their famous representatives are briefly described. The content of existing study program, the main approaches to teaching, and some methodological and organizational problems needed to be solved are characterized. The necessity and usefulness of developing and implementing the three separate courses of discipline (Essential, Clinical and Advanced Pathophysiology) are substantiated. The place of Pathophysiology in the training of physicians with different kinds of their future activity is discussed. Relation of teaching Pathophysiology to Translational and Personalized Medicine is tried to be shown.

  5. MicroRNAs take part in pathophysiology and pathogenesis of Male Pattern Baldness.

    Science.gov (United States)

    Goodarzi, Hamed R; Abbasi, Ali; Saffari, Mojtaba; Tabei, Mohammad B; Noori Daloii, Mohammad R

    2010-07-01

    Male Pattern Baldness (MPB) or androgenetic alopecia is a common form of hair loss with androgens and genetics having etiological significance. Androgens are thought to pathophysiologically power on cascades of chronically dramatic alterations in genetically susceptible scalp dermal papillas, specialized cells in hair follicles in which androgens react, and finally resulting in a patterned alopecia. However, the exact mechanisms through which androgens, positive regulators of growth and anabolism in most body sites, paradoxically exert their effects on balding hair follicles, are not yet known. The role of microRNAs, a recently discovered class of non-coding RNAs, with a wide range of regulatory functions, has been documented in hair follicle formation and their deregulation in cancer of prostate, a target organ of androgens has also been delineated. Yet, there is a lack of knowledge in agreement with microRNAs' contribution in pathophysiology of MPB. To investigate the role of microRNAs in pathogenesis of MPB, we selected seven microRNAs, predicted bioinformatically on a reverse engineering basis, from previously published microarray gene expression data and analyzed their expression in balding relative to non-balding dermal papillas. We found for the first time upregulation of four microRNAs (miR-221, miR-125b, miR-106b and miR-410) that could participate in pathogenesis of MPB. Regarding microRNAs' therapeutic potential and accessibility of hair follicles for gene therapy, these microRNAs can be considered as good candidates for a new revolutionized generation of treatments.

  6. Adrenal Disorders and the Paediatric Brain: Pathophysiological Considerations and Clinical Implications

    Directory of Open Access Journals (Sweden)

    Vincenzo Salpietro

    2014-01-01

    Full Text Available Various neurological and psychiatric manifestations have been recorded in children with adrenal disorders. Based on literature review and on personal case-studies and case-series we focused on the pathophysiological and clinical implications of glucocorticoid-related, mineralcorticoid-related, and catecholamine-related paediatric nervous system involvement. Childhood Cushing syndrome can be associated with long-lasting cognitive deficits and abnormal behaviour, even after resolution of the hypercortisolism. Exposure to excessive replacement of exogenous glucocorticoids in the paediatric age group (e.g., during treatments for adrenal insufficiency has been reported with neurological and magnetic resonance imaging (MRI abnormalities (e.g., delayed myelination and brain atrophy due to potential corticosteroid-related myelin damage in the developing brain and the possible impairment of limbic system ontogenesis. Idiopathic intracranial hypertension (IIH, a disorder of unclear pathophysiology characterised by increased cerebrospinal fluid (CSF pressure, has been described in children with hypercortisolism, adrenal insufficiency, and hyperaldosteronism, reflecting the potential underlying involvement of the adrenal-brain axis in the regulation of CSF pressure homeostasis. Arterial hypertension caused by paediatric adenomas or tumours of the adrenal cortex or medulla has been associated with various hypertension-related neurological manifestations. The development and maturation of the central nervous system (CNS through childhood is tightly regulated by intrinsic, paracrine, endocrine, and external modulators, and perturbations in any of these factors, including those related to adrenal hormone imbalance, could result in consequences that affect the structure and function of the paediatric brain. Animal experiments and clinical studies demonstrated that the developing (i.e., paediatric CNS seems to be particularly vulnerable to alterations induced by

  7. Cardiometabolic Risk and Female Sexuality-Part I. Risk Factors and Potential Pathophysiological Underpinnings for Female Vasculogenic Sexual Dysfunction Syndromes.

    Science.gov (United States)

    Maseroli, Elisa; Scavello, Irene; Vignozzi, Linda

    2018-05-02

    Erectile dysfunction is recognized as an opportunity for preventing cardiovascular (CV) events, and assessing the impairment of penile vascular flow by Doppler ultrasound is an important tool to ascertain CV risk. Conversely, the role of genital vascular impairment in the pathophysiology of female sexual dysfunction (FSD) remains contentious. To focus on the current scientific support for an association between CV risk factors and female sexual health in the 1st part of a 2-part review. A thorough literature search of peer-reviewed publications on the associations between CV risk factors and FSD and their underlying mechanisms was performed using the PubMed database. We present a summary of the evidence from clinical studies and discuss the possible mechanisms providing the pathophysiologic bases of vasculogenic FSD syndromes. The peripheral sexual response in women is a vascular-dependent event, and evidence suggests that cardiometabolic-related perturbations in endothelial function can determine vascular insufficiency in female genital tissues. Although epidemiologic and observational studies demonstrate that the prevalence of FSD is higher in women with diabetes mellitus, a cause-effect relation between these clinical conditions cannot be assumed. Evidence on the effect of obesity, metabolic syndrome, and polycystic ovary syndrome on sexual function in women is controversial. Data on the associations of dyslipidemia and hypertension with FSD are limited. Common cardiometabolic alterations could affect vascular function in the female genital tract. Based on limited data, there is an association between CV risk factors and female sexual health in women; however, this association appears milder than in men. Maseroli E, Scavello I, Vignozzi L. Cardiometabolic Risk and Female Sexuality-Part I. Risk Factors and Potential Pathophysiological Underpinnings for Female Vasculogenic Sexual Dysfunction Syndromes. Sex Med Rev 2018;X:XXX-XXX. Copyright © 2018 International

  8. CHRONIC OBSTRUCTIVE PULMONARY DISEASE: DEFINITION, EPIDEMIOLOGY, PATHOPHYSIOLOGY, CLINICAL PICTURE AND TREATMENT (GOLD 2013

    Directory of Open Access Journals (Sweden)

    M. T. Vatutin

    2015-01-01

    Full Text Available Chronic obstructive pulmonary disease: definition, epidemiology, pathophysiology, clinical picture (GOLD 2013. Vatutin M.T., Smyrnova G.S., Taradin G.G. The represented translation of the new international guidelines (GOLD 2013 reflected the epidemiology, pathophysiology, clinical picture and treatment of chronic obstructive pulmonary disease.

  9. The Pathophysiological Effects of Acrylamide in Albino Wister Rats

    Directory of Open Access Journals (Sweden)

    Shler Akram Faqe Mahmood

    2016-07-01

    Full Text Available Studies of the pathophysiological effects of suspected compounds are conducted in rodent species, especially rats and mice, to determine the potential toxic effects of a particular compound. In the assessment of acrylamide (ACR which is available as a dietary compound in daily food stuffs, the potential toxicity was determined following the method described earlier. In this study, Albino Wister rats were used and were observed for clinical abnormalities, changes in food consumption, a n d s y m p t o m s o f toxicity over a period of two months following the oral administration of ACR. Among the parameters used to assess the effect of ACR were include ovarian histopathology, blood sugar, haemogram and lipid profile. The most notable clinical abnormalities observed in a few rats were a rough coat and decreased activity. None of the rats died or howedbehavioural change resulting from treatment with ACR. The concentration of serum biochemical parameters and haemogram showed significant differences between normal and treated rats. Histological examination of the ovaries of the treated rats showed great abnormalities as well. In fact, oral ACR doses are practically toxic with regard to rats after exposure for two months at a dose rate of 30 mg/kg, suggesting the compound is quite non-innocuous.

  10. Cluster Headache: Epidemiology, Pathophysiology, Clinical Features, and Diagnosis.

    Science.gov (United States)

    Wei, Diana Yi-Ting; Yuan Ong, Jonathan Jia; Goadsby, Peter James

    2018-04-01

    Cluster headache is a primary headache disorder affecting up to 0.1% of the population. Patients suffer from cluster headache attacks lasting from 15 to 180 min up to 8 times a day. The attacks are characterized by the severe unilateral pain mainly in the first division of the trigeminal nerve, with associated prominent unilateral cranial autonomic symptoms and a sense of agitation and restlessness during the attacks. The male-to-female ratio is approximately 2.5:1. Experimental, clinical, and neuroimaging studies have advanced our understanding of the pathogenesis of cluster headache. The pathophysiology involves activation of the trigeminovascular complex and the trigeminal-autonomic reflex and accounts for the unilateral severe headache, the prominent ipsilateral cranial autonomic symptoms. In addition, the circadian and circannual rhythmicity unique to this condition is postulated to involve the hypothalamus and suprachiasmatic nucleus. Although the clinical features are distinct, it may be misdiagnosed, with patients often presenting to the otolaryngologist or dentist with symptoms. The prognosis of cluster headache remains difficult to predict. Patients with episodic cluster headache can shift to chronic cluster headache and vice versa. Longitudinally, cluster headache tends to remit with age with less frequent bouts and more prolonged periods of remission in between bouts.

  11. [Bacterial Translocation from Intestine: Microbiological, Immunological and Pathophysiological Aspects].

    Science.gov (United States)

    Podoprigora, G I; Kafarskaya, L I; Bainov, N A; Shkoporov, A N

    2015-01-01

    Bacterial translocation (BT) is both pathology and physiology phenomenon. In healthy newborns it accompanies the process of establishing the autochthonous intestinal microbiota and the host microbiome. In immunodeficiency it can be an aethio-pathogenetic link and a manifestation of infection or septic complications. The host colonization resistance to exogenous microbic colonizers is provided by gastrointestinal microbiota in concert with complex constitutional and adaptive defense mechanisms. BT may be result of barrier dysfunction and self-purification mechanisms involving the host myeloid cell phagocytic system and opsonins. Dynamic cell humoral response to microbial molecular patterns that occurs on the mucous membranes initiates receptorsignalingpathways and cascade ofreactions. Their vector and results are largely determined by cross-reactivity between microbiome and the host genome. Enterocyte barriers interacting with microbiota play leading role in providing adaptive, homeostatic and stress host reactivity. Microcirculatory ischemic tissue alterations and inflammatory reactions increase the intestinal barrier permeability and BT These processes a well as mechanisms for apoptotic cells and bacteria clearance are justified to be of prospective research interest. The inflammatory and related diseases caused by alteration and dysfunction of the intestinal barrier are reasonably considered as diseases of single origin. Maternal microbiota affects theformation of the innate immune system and the microbiota of the newborn, including intestinal commensal translocation during lactation. Deeper understanding of intestinal barrier mechanisms needs complex microbiological, immunological, pathophysiological, etc. investigations using adequate biomodels, including gnotobiotic animals.

  12. Nonmotor fluctuations: phenotypes, pathophysiology, management, and open issues.

    Science.gov (United States)

    Classen, Joseph; Koschel, Jiri; Oehlwein, Christian; Seppi, Klaus; Urban, Peter; Winkler, Christian; Wüllner, Ullrich; Storch, Alexander

    2017-08-01

    Parkinson's disease (PD) is a neurodegenerative multisystem disorder characterized by progressive motor symptoms such as bradykinesia, tremor and muscle rigidity. Over the course of the disease, numerous non-motor symptoms, sometimes preceding the onset of motor symptoms, significantly impair patients' quality of life. The significance of non-motor symptoms may outweigh the burden through progressive motor incapacity, especially in later stages of the disease. The advanced stage of the disease is characterized by motor complications such as fluctuations and dyskinesias induced by the long-term application of levodopa therapy. In recent years, it became evident that various non-motor symptoms such as psychiatric symptoms, fatigue and pain also show fluctuations after chronic levodopa therapy (named non-motor fluctuations or NMFs). Although NMFs have moved into the focus of interest, current national guidelines on the treatment of PD may refer to non-motor symptoms and their management, but do not mention NMF, and do not contain recommendations on their management. The present article summarizes major issues related to NMF including clinical phenomenology and pathophysiology, and outlines a number of open issues and topics for future research.

  13. Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications

    Directory of Open Access Journals (Sweden)

    Susana Rovira-Llopis

    2017-04-01

    Full Text Available Mitochondria play a key role in maintaining cellular metabolic homeostasis. These organelles have a high plasticity and are involved in dynamic processes such as mitochondrial fusion and fission, mitophagy and mitochondrial biogenesis. Type 2 diabetes is characterised by mitochondrial dysfunction, high production of reactive oxygen species (ROS and low levels of ATP. Mitochondrial fusion is modulated by different proteins, including mitofusin-1 (MFN1, mitofusin-2 (MFN2 and optic atrophy (OPA-1, while fission is controlled by mitochondrial fission 1 (FIS1, dynamin-related protein 1 (DRP1 and mitochondrial fission factor (MFF. PARKIN and (PTEN-induced putative kinase 1 (PINK1 participate in the process of mitophagy, for which mitochondrial fission is necessary. In this review, we discuss the molecular pathways of mitochondrial dynamics, their impairment under type 2 diabetes, and pharmaceutical approaches for targeting mitochondrial dynamics, such as mitochondrial division inhibitor-1 (mdivi-1, dynasore, P110 and 15-oxospiramilactone. Furthermore, we discuss the pathophysiological implications of impaired mitochondrial dynamics, especially in type 2 diabetes.

  14. Pathophysiology, Evaluation, and Management of Edema in Childhood Nephrotic Syndrome

    Science.gov (United States)

    Ellis, Demetrius

    2016-01-01

    Generalized edema is a major presenting clinical feature of children with nephrotic syndrome (NS) exemplified by such primary conditions as minimal change disease (MCD). In these children with classical NS and marked proteinuria and hypoalbuminemia, the ensuing tendency to hypovolemia triggers compensatory physiological mechanisms, which enhance renal sodium (Na+) and water retention; this is known as the “underfill hypothesis.” Edema can also occur in secondary forms of NS and several other glomerulonephritides, in which the degree of proteinuria and hypoalbuminemia, are variable. In contrast to MCD, in these latter conditions, the predominant mechanism of edema formation is “primary” or “pathophysiological,” Na+ and water retention; this is known as the “overfill hypothesis.” A major clinical challenge in children with these disorders is to distinguish the predominant mechanism of edema formation, identify other potential contributing factors, and prevent the deleterious effects of diuretic regimens in those with unsuspected reduced effective circulatory volume (i.e., underfill). This article reviews the Starling forces that become altered in NS so as to tip the balance of fluid movement in favor of edema formation. An understanding of these pathomechanisms then serves to formulate a more rational approach to prevention, evaluation, and management of such edema. PMID:26793696

  15. Physiological and pathophysiological bone turnover - role of the immune system.

    Science.gov (United States)

    Weitzmann, M Neale; Ofotokun, Ighovwerha

    2016-09-01

    Osteoporosis develops when the rate of osteoclastic bone breakdown (resorption) exceeds that of osteoblastic bone formation, which leads to loss of BMD and deterioration of bone structure and strength. Osteoporosis increases the risk of fragility fractures, a cause of substantial morbidity and mortality, especially in elderly patients. This imbalance between bone formation and bone resorption is brought about by natural ageing processes, but is frequently exacerbated by a number of pathological conditions. Of importance to the aetiology of osteoporosis are findings over the past two decades attesting to a deep integration of the skeletal system with the immune system (the immuno-skeletal interface (ISI)). Although protective of the skeleton under physiological conditions, the ISI might contribute to bone destruction in a growing number of pathophysiological states. Although numerous research groups have investigated how the immune system affects basal and pathological osteoclastic bone resorption, recent findings suggest that the reach of the adaptive immune response extends to the regulation of osteoblastic bone formation. This Review examines the evolution of the field of osteoimmunology and how advances in our understanding of the ISI might lead to novel approaches to prevent and treat bone loss, and avert fractures.

  16. Genetics of liver disease: From pathophysiology to clinical practice.

    Science.gov (United States)

    Karlsen, Tom H; Lammert, Frank; Thompson, Richard J

    2015-04-01

    Paralleling the first 30 years of the Journal of Hepatology we have witnessed huge advances in our understanding of liver disease and physiology. Genetic advances have played no small part in that. Initial studies in the 1970s and 1980s identified the strong major histocompatibility complex associations in autoimmune liver diseases. During the 1990 s, developments in genomic technologies drove the identification of genes responsible for Mendelian liver diseases. Over the last decade, genome-wide association studies have allowed for the dissection of the genetic susceptibility to complex liver disorders, in which also environmental co-factors play important roles. Findings have allowed the identification and elaboration of pathophysiological processes, have indicated the need for reclassification of liver diseases and have already pointed to new disease treatments. In the immediate future genetics will allow further stratification of liver diseases and contribute to personalized medicine. Challenges exist with regard to clinical implementation of rapidly developing technologies and interpretation of the wealth of accumulating genetic data. The historical perspective of genetics in liver diseases illustrates the opportunities for future research and clinical care of our patients. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  17. Insights into pathophysiology of punding reveal possible treatment strategies.

    Science.gov (United States)

    Fasano, A; Petrovic, I

    2010-06-01

    Punding is a stereotyped behavior characterized by an intense fascination with a complex, excessive, nongoal oriented, repetitive activity. Men tend to repetitively tinker with technical equipment such as radio sets, clocks, watches and car engines, the parts of which may be analyzed, arranged, sorted and cataloged but rarely put back together. Women, in contrast, incessantly sort through their handbags, tidy continuously, brush their hair or polish their nails. Punders are normally aware of the inapposite and obtuse nature of the behavior; however, despite the consequent self-injury, they do not stop such behavior. The most common causes of punding are dopaminergic replacement therapy in patients affected by Parkinson's disease (PD) and cocaine and amphetamine use in addicts. The vast majority of information about punding comes from PD cases. A critical review of these cases shows that almost all afflicted patients (90%) were on treatment with drugs acting mainly on dopamine receptors D1 and D2, whereas only three cases were reported in association with selective D2 and D3 agonists. Epidemiological considerations and available data from animal models suggest that punding, drug-induced stereotypies, addiction and dyskinesias all share a common pathophysiological process. Punding may be related to plastic changes in the ventral and dorsal striatal structures, including the nucleus accumbens, and linked to psychomotor stimulation and reward mechanisms. Possible management guidelines are proposed.

  18. Horror Autoinflammaticus: The Molecular Pathophysiology of Autoinflammatory Disease*

    Science.gov (United States)

    Masters, Seth L.; Simon, Anna; Aksentijevich, Ivona; Kastner, Daniel L.

    2010-01-01

    The autoinflammatory diseases are characterized by seemingly unprovoked episodes of inflammation, without high-titer autoantibodies or antigen-specific T cells. The concept was proposed ten years ago with the identification of the genes underlying hereditary periodic fever syndromes. This nosology has taken root because of the dramatic advances in our knowledge of the genetic basis of both mendelian and complex autoinflammatory diseases, and with the recognition that these illnesses derive from genetic variants of the innate immune system. Herein we propose an updated classification scheme based on the molecular insights garnered over the past decade, supplanting a clinical classification that has served well but is opaque to the genetic, immunologic, and therapeutic interrelationships now before us. We define six categories of autoinflammatory disease: IL-1β activation disorders (inflammasomopathies), NF-κB activation syndromes, protein misfolding disorders, complement regulatory diseases, disturbances in cytokine signaling, and macrophage activation syndromes. A system based on molecular pathophysiology will bring greater clarity to our discourse while catalyzing new hypotheses both at the bench and at the bedside. PMID:19302049

  19. Pathophysiology and pathological findings of heatstroke in dogs

    Directory of Open Access Journals (Sweden)

    Romanucci M

    2013-01-01

    Full Text Available Mariarita Romanucci, Leonardo Della SaldaDepartment of Comparative Biomedical Sciences, Faculty of Veterinary Medicine, University of Teramo, Teramo, ItalyAbstract: Canine heatstroke is a life-threatening condition resulting from an imbalance between heat dissipation and production, and characterized by a nonpyrogenic elevation in core body temperature above 41°C (105.8°F. Several exogenous and endogenous factors may predispose dogs to the development of heatstroke; on the other hand, adaptive mechanisms also exists which allow organisms to combat the deleterious effects of heat stress, which are represented by the cellular heat-shock response and heat acclimatization. The pathophysiology and consequences of heatstroke share many similarities to those observable in sepsis and are related to the interaction between the direct cytotoxicity of heat, the acute physiological alterations associated with hyperthermia, such as increased metabolic demand, hypoxia, and circulatory failure, and the inflammatory and coagulation responses of the host to the widespread endothelial and tissue injuries, which may culminate in disseminated intravascular coagulation, systemic inflammatory response syndrome, and multiple organ dysfunction.Keywords: thermoregulation, acclimatization, heat shock proteins, hyperthermia, systemic inflammatory response, multiple organ dysfunction

  20. Retinal Cyclic Nucleotide-Gated Channels: From Pathophysiology to Therapy

    Directory of Open Access Journals (Sweden)

    Stylianos Michalakis

    2018-03-01

    Full Text Available The first step in vision is the absorption of photons by the photopigments in cone and rod photoreceptors. After initial amplification within the phototransduction cascade the signal is translated into an electrical signal by the action of cyclic nucleotide-gated (CNG channels. CNG channels are ligand-gated ion channels that are activated by the binding of cyclic guanosine monophosphate (cGMP or cyclic adenosine monophosphate (cAMP. Retinal CNG channels transduce changes in intracellular concentrations of cGMP into changes of the membrane potential and the Ca2+ concentration. Structurally, the CNG channels belong to the superfamily of pore-loop cation channels and share a common gross structure with hyperpolarization-activated cyclic nucleotide-gated (HCN channels and voltage-gated potassium channels (KCN. In this review, we provide an overview on the molecular properties of CNG channels and describe their physiological role in the phototransduction pathways. We also discuss insights into the pathophysiological role of CNG channel proteins that have emerged from the analysis of CNG channel-deficient animal models and human CNG channelopathies. Finally, we summarize recent gene therapy activities and provide an outlook for future clinical application.

  1. Estrogens and Androgens in Skeletal Physiology and Pathophysiology.

    Science.gov (United States)

    Almeida, Maria; Laurent, Michaël R; Dubois, Vanessa; Claessens, Frank; O'Brien, Charles A; Bouillon, Roger; Vanderschueren, Dirk; Manolagas, Stavros C

    2017-01-01

    Estrogens and androgens influence the growth and maintenance of the mammalian skeleton and are responsible for its sexual dimorphism. Estrogen deficiency at menopause or loss of both estrogens and androgens in elderly men contribute to the development of osteoporosis, one of the most common and impactful metabolic diseases of old age. In the last 20 years, basic and clinical research advances, genetic insights from humans and rodents, and newer imaging technologies have changed considerably the landscape of our understanding of bone biology as well as the relationship between sex steroids and the physiology and pathophysiology of bone metabolism. Together with the appreciation of the side effects of estrogen-related therapies on breast cancer and cardiovascular diseases, these advances have also drastically altered the treatment of osteoporosis. In this article, we provide a comprehensive review of the molecular and cellular mechanisms of action of estrogens and androgens on bone, their influences on skeletal homeostasis during growth and adulthood, the pathogenetic mechanisms of the adverse effects of their deficiency on the female and male skeleton, as well as the role of natural and synthetic estrogenic or androgenic compounds in the pharmacotherapy of osteoporosis. We highlight latest advances on the crosstalk between hormonal and mechanical signals, the relevance of the antioxidant properties of estrogens and androgens, the difference of their cellular targets in different bone envelopes, the role of estrogen deficiency in male osteoporosis, and the contribution of estrogen or androgen deficiency to the monomorphic effects of aging on skeletal involution. Copyright © 2017 the American Physiological Society.

  2. Left main coronary artery disease: pathophysiology, diagnosis, and treatment.

    Science.gov (United States)

    Collet, Carlos; Capodanno, Davide; Onuma, Yoshinobu; Banning, Adrian; Stone, Gregg W; Taggart, David P; Sabik, Joseph; Serruys, Patrick W

    2018-06-01

    The advent of coronary angiography in the 1960s allowed for the risk stratification of patients with stable angina. Patients with unprotected left main coronary artery disease have an increased risk of death related to the large amount of myocardium supplied by this vessel. Although coronary angiography remains the preferred imaging modality for the evaluation of left main coronary artery stenosis, this technique has important limitations. Angiograms of the left main coronary artery segment can be difficult to interpret, and almost one-third of patients can be misclassified when fractional flow reserve is used as the reference. In patients with clinically significant unprotected left main coronary artery disease, surgical revascularization was shown to improve survival compared with medical therapy and has been regarded as the treatment of choice for unprotected left main coronary artery disease. Two large-scale clinical trials published in 2016 support the usefulness of catheter-based revascularization in selected patients with unprotected left main coronary artery disease. In this Review, we describe the pathophysiology of unprotected left main coronary artery disease, discuss diagnostic approaches in light of new noninvasive and invasive imaging techniques, and detail risk stratification models to aid the Heart Team in the decision-making process for determining the best revascularization strategy for these patients.

  3. Tics and Tourette: a clinical, pathophysiological and etiological review.

    Science.gov (United States)

    Dale, Russell C

    2017-12-01

    Describe developments in the etiological understanding of Tourette syndrome. Tourette syndrome is a complex heterogenous clinical syndrome, which is not a unitary entity. Pathophysiological models describe gamma-aminobutyric acid-ergic-associated disinhibition of cortico-basal ganglia motor, sensory and limbic loops. MRI studies support basal ganglia volume loss, with additional white matter and cerebellar changes. Tourette syndrome cause likely involves multiple vulnerability genes and environmental factors. Only recently have some vulnerability gene findings been replicated, including histidine decarboxylase and neurexin 1, yet these rare variants only explain a small proportion of patients. Planned large genetic studies will improve genetic understanding. The role of inflammation as a contributor to disease expression is now supported by large epidemiological studies showing an association with maternal autoimmunity and childhood infection. Investigation of blood cytokines, blood mRNA and brain mRNA expression support the role of a persistent immune activation, and there are similarities with the immune literature of autistic spectrum disorder. Current treatment is symptomatic, although there is a better appreciation of factors that influence treatment response. At present, therapeutics is focused on symptom-based treatments, yet with improved etiological understanding, we will move toward disease-modifying therapies in the future.

  4. Mucopolysaccharidosis type I: current knowledge on its pathophysiological mechanisms.

    Science.gov (United States)

    Campos, Derbis; Monaga, Madelyn

    2012-06-01

    Mucopolysaccharidosis type I is one of the most frequent lysosomal storage diseases. It has a high morbidity and mortality, causing in many cases severe neurological and somatic damage in the first years of life. Although the clinical phenotypes have been described for decades, and the enzymatic deficiency and many of the mutations that cause this disease are well known, the underlying pathophysiological mechanisms that lead to its development are not completely understood. In this review we describe and discuss the different pathogenic mechanisms currently proposed for this disease regarding its neurological damage. Deficiency in the lysosomal degradation of heparan sulfate and dermatan sulfate, as well as its primary accumulation, may disrupt a variety of physiological and biochemical processes: the intracellular and extracellular homeostasis of these macromolecules, the pathways related to gangliosides metabolism, mechanisms related to the activation of inflammation, receptor-mediated signaling, oxidative stress and permeability of the lysosomal membrane, as well as alterations in intracellular ionic homeostasis and the endosomal pathway. Many of the pathogenic mechanisms proposed for mucopolysaccharidosis type I are also present in other lysosomal storage diseases with neurological implications. Results from the use of methods that allow the analysis of multiple genes and proteins, in both patients and animal models, will shed light on the role of each of these mechanisms and their combination in the development of different phenotypes due to the same deficiency.

  5. Vitiligo: An Update on Pathophysiology and Treatment Options.

    Science.gov (United States)

    Speeckaert, Reinhart; van Geel, Nanja

    2017-12-01

    The pathophysiology of vitiligo is becoming increasingly clarified. In non-segmental vitiligo, early factors include activation of innate immunity, inflammasome activation, oxidative stress, and loss of melanocyte adhesion. Nonetheless, the main mechanism leading to non-segmental vitiligo involves an immune-mediated destruction of melanocytes. Anti-melanocyte-specific cytotoxic T cells exert a central role in the final effector stage. Genetic research revealed a multi-genetic inheritance displaying an overlap with other autoimmune disorders. However, some melanocyte-specific genes were also affected. Segmental vitiligo carries a different pathogenesis with most evidence indicating a mosaic skin disorder. Current management includes topical corticosteroids and immunomodulators. Narrow-band ultraviolet B can be used in patients not responding to topical treatment or in patients with extensive disease. Pigment cell transplantation offers an alternative for the treatment of segmental vitiligo or stable non-segmental lesions. Recent findings have revealed new targets for treatment that could lead to more efficient therapies. Targeted immunotherapy may halt the active immune pathways, although combination therapy may still be required to induce satisfying repigmentation. A recently established core set of outcome measures, new measurement instruments, and biomarker research pave the way for future standardized clinical trials.

  6. Psychiatric manifestations of Graves' hyperthyroidism: pathophysiology and treatment options.

    Science.gov (United States)

    Bunevicius, Robertas; Prange, Arthur J

    2006-01-01

    Graves' disease is an autoimmune disorder that is the most common cause of hyperthyroidism. Other symptoms associated with the disease are goitre, ophthalmopathy, and psychiatric manifestations such as mood and anxiety disorders and, sometimes, cognitive dysfunction. Graves' hyperthyroidism may result in these latter manifestations via the induction of hyperactivity of the adrenergic nervous system. This review addresses the psychiatric presentations, and their pathophysiology and treatment, in patients with hyperthyroidism, based on literature identified by a PubMed/MEDLINE database search. Although the focus is on mental symptoms associated with Graves' disease, it is not always clear from the literature whether patients had Graves' disease: in some studies, the patients were thought to have Graves' disease based on clinical findings such as diffuse goitre or ophthalmopathy or on measurements of thyroid antibodies in serum; however, in other studies, no distinction was made between Graves' hyperthyroidism and hyperthyroidism from other causes. Antithyroid drugs combined with beta-adrenoceptor antagonists are the treatments of choice for hyperthyroidism, as well as for the psychiatric disorders and mental symptoms caused by hyperthyroidism. A substantial proportion of patients have an altered mental state even after successful treatment of hyperthyroidism, suggesting that mechanisms other than hyperthyroidism, including the Graves' autoimmune process per se and ophthalmopathy, may also be involved. When psychiatric disorders remain after restoration of euthyroidism and after treatment with beta-adrenoceptor antagonists, specific treatment for the psychiatric symptoms, especially psychotropic drugs, may be needed.

  7. Pathophysiology of septic shock: From bench to bedside.

    Science.gov (United States)

    McConnell, Kevin W; Coopersmith, Craig M

    2016-04-01

    Our understanding of sepsis and its resultant outcomes remains a paradox. On the one hand, we know more about the pathophysiology of sepsis than ever before. However, this knowledge has not been successfully translated to the bedside, as the vast majority of clinical trials for sepsis have been negative. Yet even in the general absence of positive clinical trials, mortality from sepsis has fallen to its lowest point in history, in large part due to educational campaigns that stress timely antibiotics and hemodynamic support. While additional improvements in outcome will assuredly result from further compliance with evidence based practices, a deeper understanding of the science that underlies the host response in sepsis is critical to the development of novel therapeutics. In this review, we outline immunopathologic abnormalities in sepsis, and then look at potential approaches to therapeutically modulate them. Ultimately, an understanding of the science underlying sepsis should allow the critical care community to utilize precision medicine to combat this devastating disease on an individual basis leading to improved outcomes. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Pathophysiology, Evaluation, and Management of Edema in Childhood Nephrotic Syndrome.

    Science.gov (United States)

    Ellis, Demetrius

    2015-01-01

    Generalized edema is a major presenting clinical feature of children with nephrotic syndrome (NS) exemplified by such primary conditions as minimal change disease (MCD). In these children with classical NS and marked proteinuria and hypoalbuminemia, the ensuing tendency to hypovolemia triggers compensatory physiological mechanisms, which enhance renal sodium (Na(+)) and water retention; this is known as the "underfill hypothesis." Edema can also occur in secondary forms of NS and several other glomerulonephritides, in which the degree of proteinuria and hypoalbuminemia, are variable. In contrast to MCD, in these latter conditions, the predominant mechanism of edema formation is "primary" or "pathophysiological," Na(+) and water retention; this is known as the "overfill hypothesis." A major clinical challenge in children with these disorders is to distinguish the predominant mechanism of edema formation, identify other potential contributing factors, and prevent the deleterious effects of diuretic regimens in those with unsuspected reduced effective circulatory volume (i.e., underfill). This article reviews the Starling forces that become altered in NS so as to tip the balance of fluid movement in favor of edema formation. An understanding of these pathomechanisms then serves to formulate a more rational approach to prevention, evaluation, and management of such edema.

  9. POTENTIAL PATHOPHYSIOLOGICAL MECHANISMS OF ULTRAFINE PARTICLE TOXIC EFFECTS IN HUMANS

    Directory of Open Access Journals (Sweden)

    JASMINA JOVIĆ-STOŠIĆ

    2008-03-01

    Full Text Available Epidemiological and clinical studies suggested the association of the particulate matter ambient air pollution and the increased morbidity and mortality, mainly from respiratory and cardiovascular diseases. The size of particles has great influence on their toxicity, because it determines the site in the respiratory tract where they deposit. The most well established theory explaining the mechanisms behind the increased toxicity of ultrafine particles (UFP, < 0.1 µm is that it has to do with the increased surface area and/or the combination with the increased number of particles. Biological effects of UFP are also determined by their shape and chemical composition, so it is not possible to estimate their toxicity in a general way. General hypothesis suggested that exposure to inhaled particles induces pulmonary alveolar inflammation as a basic pathophysiological event, triggering release of various proinflammatory cytokines. Chronic inflammation is a very important underlying mechanism in the genesis of atherosclerosis and cardiovascular diseases. UFP can freely move through the circulation, but their effects on the secondary organs are not known yet, so more studies on recognizing toxicological endpoints of UFP are needed. Determination of UFP toxicity and the estimation of their internal and biologically active dose are necessary for the evidence based conclusions connecting air pollution by UFP and human diseases.

  10. [Irritable bowel syndrome: New pathophysiological hypotheses and practical issues].

    Science.gov (United States)

    Duboc, H; Dior, M; Coffin, B

    2016-08-01

    In 2015, besides the fact that it still fills the gastroenterologists' offices and impairs patient's quality of life, the irritable bowel syndrome has considerably evolved on several points. The pathophysiology is now organized around a consensual hypothesis called the "brain-gut axis", which gather all the influences of peripheral factors as gut microbiota or local serotonin secretion, on the central pain perception, contributing to visceral hypersensitivity and transit modifications. About the diagnosis, the key message is "avoid over-prescription" of additional tests, and reminds that a positive clinical diagnosis based on Rome III criteria is possible after the elimination of simple clinical warning signs. Finally, the food component, a neglected and historical claim of patients, finally finds a strong scientific rational, with a diet low in fermentable sugar and polyols, that gives positive and reproducible results. Copyright © 2016 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  11. Improvised explosive devices: pathophysiology, injury profiles and current medical management.

    Science.gov (United States)

    Ramasamy, A; Hill, A M; Clasper, J C

    2009-12-01

    The improvised explosive device (IED), in all its forms, has become the most significant threat to troops operating in Afghanistan and Iraq. These devices range from rudimentary home made explosives to sophisticated weapon systems containing high-grade explosives. Within this broad definition they may be classified as roadside explosives and blast mines, explosive formed pojectile (EFP) devices and suicide bombings. Each of these groups causeinjury through a number of different mechanisms and can result in vastly different injury profiles. The "Global War on Terror" has meant that incidents which were previously exclusively seen in conflict areas, can occur anywhere, and clinicians who are involved in emergency trauma care may be required to manage casualties from similar terrorist attacks. An understanding of the types of devices and their pathophysiological effects is necessary to allow proper planning of mass casualty events and to allow appropriate management of the complex poly-trauma casualties they invariably cause. The aim of this review article is to firstly describe the physics and injury profile from these different devices and secondly to present the current clinical evidence that underpins their medical management.

  12. PATHOPHYSIOLOGY STROKE NON-HEMORRHAGIC ET CAUSA THROMBUS

    Directory of Open Access Journals (Sweden)

    Aji Kristianto Wijaya

    2013-10-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE Stroke is one of the most common cause of death worldwide and the third leading cause of death in the United States. Stroke composed 90,000 deaths of women and 60,000 men each year. In Indonesia, 8 of 1000 people suffered a stroke. Stroke is divided into two, non-hemorrhagic stroke and hemorrhagic stroke. Most of them (80% is non-hemorrhagic stroke. Non-hemorrhagic stroke can be caused by thrombi or emboli. Understanding the pathophysiology of non-hemorrhagic stroke caused by a thrombus is very important in regard with providing appropriate patient management. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

  13. The redox biology network in cancer pathophysiology and therapeutics

    Directory of Open Access Journals (Sweden)

    Gina Manda

    2015-08-01

    Full Text Available The review pinpoints operational concepts related to the redox biology network applied to the pathophysiology and therapeutics of solid tumors. A sophisticated network of intrinsic and extrinsic cues, integrated in the tumor niche, drives tumorigenesis and tumor progression. Critical mutations and distorted redox signaling pathways orchestrate pathologic events inside cancer cells, resulting in resistance to stress and death signals, aberrant proliferation and efficient repair mechanisms. Additionally, the complex inter-cellular crosstalk within the tumor niche, mediated by cytokines, redox-sensitive danger signals (HMGB1 and exosomes, under the pressure of multiple stresses (oxidative, inflammatory, metabolic, greatly contributes to the malignant phenotype. The tumor-associated inflammatory stress and its suppressive action on the anti-tumor immune response are highlighted. We further emphasize that ROS may act either as supporter or enemy of cancer cells, depending on the context. Oxidative stress-based therapies, such as radiotherapy and photodynamic therapy, take advantage of the cytotoxic face of ROS for killing tumor cells by a non-physiologically sudden, localized and intense oxidative burst. The type of tumor cell death elicited by these therapies is discussed. Therapy outcome depends on the differential sensitivity to oxidative stress of particular tumor cells, such as cancer stem cells, and therefore co-therapies that transiently down-regulate their intrinsic antioxidant system hold great promise. We draw attention on the consequences of the damage signals delivered by oxidative stress-injured cells to neighboring and distant cells, and emphasize the benefits of therapeutically triggered immunologic cell death in metastatic cancer. An integrative approach should be applied when designing therapeutic strategies in cancer, taking into consideration the mutational, metabolic, inflammatory and oxidative status of tumor cells, cellular

  14. Gait post-stroke: Pathophysiology and rehabilitation strategies.

    Science.gov (United States)

    Beyaert, C; Vasa, R; Frykberg, G E

    2015-11-01

    We reviewed neural control and biomechanical description of gait in both non-disabled and post-stroke subjects. In addition, we reviewed most of the gait rehabilitation strategies currently in use or in development and observed their principles in relation to recent pathophysiology of post-stroke gait. In both non-disabled and post-stroke subjects, motor control is organized on a task-oriented basis using a common set of a few muscle modules to simultaneously achieve body support, balance control, and forward progression during gait. Hemiparesis following stroke is due to disruption of descending neural pathways, usually with no direct lesion of the brainstem and cerebellar structures involved in motor automatic processes. Post-stroke, improvements of motor activities including standing and locomotion are variable but are typically characterized by a common postural behaviour which involves the unaffected side more for body support and balance control, likely in response to initial muscle weakness of the affected side. Various rehabilitation strategies are regularly used or in development, targeting muscle activity, postural and gait tasks, using more or less high-technology equipment. Reduced walking speed often improves with time and with various rehabilitation strategies, but asymmetric postural behaviour during standing and walking is often reinforced, maintained, or only transitorily decreased. This asymmetric compensatory postural behaviour appears to be robust, driven by support and balance tasks maintaining the predominant use of the unaffected side over the initially impaired affected side. Based on these elements, stroke rehabilitation including affected muscle strengthening and often stretching would first need to correct the postural asymmetric pattern by exploiting postural automatic processes in various particular motor tasks secondarily beneficial to gait. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. Pathophysiological mechanisms of severe anaemia in Malawian children.

    Directory of Open Access Journals (Sweden)

    Michaël Boele van Hensbroek

    2010-09-01

    Full Text Available Severe anaemia is a major cause of morbidity and mortality in African children. The aetiology is multi-factorial, but interventions have often targeted only one or a few causal factors, with limited success.We assessed the contribution of different pathophysiological mechanisms (red cell production failure [RCPF], haemolysis and blood loss to severe anaemia in Malawian children in whom etiological factors have been described previously. More complex associations between etiological factors and the mechanisms were explored using structural equation modelling. In 235 children with severe anaemia (haemoglobin<3.2 mMol/L [5.0 g/dl] studied, RCPF, haemolysis and blood loss were found in 48.1%, 21.7% and 6.9%, respectively. The RCPF figure increased to 86% when a less stringent definition of RCPF was applied. RCPF was the most common mechanism in each of the major etiological subgroups (39.7-59.7%. Multiple aetiologies were common in children with severe anaemia. In the final model, nutritional and infectious factors, including malaria, were directly or indirectly associated with RCPF, but not with haemolysis.RCPF was the most common pathway leading to severe anaemia, from a variety of etiological factors, often found in combination. Unlike haemolysis or blood loss, RCPF is a defect that is likely to persist to a significant degree unless all of its contributing aetiologies are corrected. This provides a further explanation for the limited success of the single factor interventions that have commonly been applied to the prevention or treatment of severe anaemia. Our findings underline the need for a package of measures directed against all of the local aetiologies of this often fatal paediatric syndrome.

  16. Pathophysiological study of experimental hydrocephalus with computed tomography (CT) scan

    International Nuclear Information System (INIS)

    Murata, Takaho

    1980-01-01

    In order to investigate the pathophysiological changes during a development of hydrocephalus, the observations employing computed tomography (CT) scans and monitorings of intracranial epidural pressure (EDP) were performed in a series of kaolin-induced canine hydrocephalus. According to ''volume index'' of ventricles which was calculated from printed-out CT numbers, great individual variations were recognized in the degree of a ventricular enlargement as well as the rate of EDP. They are thought to be due to the difference in types of hydrocephalus, which have been induced by a discrepancy in the site and degree of an obstruction caused by kaolin. Periventricular lucency (PVL) of various degrees were also detected on CT scans of experimental hydrocephalus. It was always marked in the superolateral angle of frontal horn of the lateral ventricles, and differed in degree from severe to mild. PVLs were distinct in the acute stage with high EDP, and gradually became indistinct and had a tendency to disappear thereafter along with decreased EDP. They immediately disappeared after shunting operation. The pathogenesis of PVL was investigated with histological examinations, as well as by using contrast enhancement, Metrizamide ventriculography, the analysis of linear density profiles, and the measurement of regional cerebral blood flow (rCBF). Consequently, PVLs in hydrocephalus are considered to represent an acute edema or a chronic CSF retention in the periventricular white matter caused by increase of water content. In other words, they are regarded as a sign of present or preceding intraventricular hypertension on CT scan, and may become a clinical indication for shunting operation. (author)

  17. Metabolic syndrome, its pathophysiology and the role of melatonin.

    Science.gov (United States)

    Srinivasan, Venkataramanujam; Ohta, Yoshiji; Espino, Javier; Pariente, Jose A; Rodriguez, Ana B; Mohamed, Mahaneem; Zakaria, Rahimah

    2013-01-01

    Metabolic syndrome (MetS) is characterised by symptoms of obesity, insulin resistance, hypertension, dyslipidemia and diabetes mellitus. The pathophysiological mechanisms involved in MetS are complex and involved dysregulation of many biochemical and physiological regulatory mechanisms of the body. Elevated levels of low density lipoproteins like VLDL, and LDL with reduction of HDL seen in patients with MetS contribute to atherogenic dyslipedemia. Melatonin has been suggested to be effective in improving MetS through its anti-hyperlipidemic action. Melatonin reduced both adiposity, and body weight in experimental animal studies and also attenuated weight gain and obesityinduced metabolic alterations and this effect of melatonin is attributed to its anti-oxidative effects. Melatonin administration has been shown to inhibit insulin release by acting through both MT1 and MT2 melatonin receptors present in pancreatic β-cells. Melatonin also increased insulin sensitivity and glucose tolerance in animals fed with either high fat or high sucrose diet. Melatonin exerts most of its beneficial actions by acting through MT1 and MT2 melatonin receptors present in various tissues of the body and some of the metabolic actions of melatonin have been blocked by melatonin antagonist like luzindole. Ramelteon, the newly available melatonin agonist will also have more promising role in the control of MetS. The numbers of patents are available with regard to treatment of MetS. Drug related to antidepressant fluoxetine is used for treatment of MetS (US Patent No. 2008001400450). Anti-oxidants like S-adenosyl-methionine, Vitamin E, and Vitamin C have been found beneficial in treating MetS (US Patent No. 8063024). Melatonin being a powerful Antioxidant will have a promising role in treating patients with metabolic syndrome.

  18. Involvement of the kynurenine pathway in human glioma pathophysiology.

    Directory of Open Access Journals (Sweden)

    Seray Adams

    Full Text Available The kynurenine pathway (KP is the principal route of L-tryptophan (TRP catabolism leading to the production of kynurenine (KYN, the neuroprotectants, kynurenic acid (KYNA and picolinic acid (PIC, the excitotoxin, quinolinic acid (QUIN and the essential pyridine nucleotide, nicotinamide adenine dinucleotide (NAD(+. The enzymes indoleamine 2,3-dioxygenase-1 (IDO-1, indoleamine 2,3-dioxygenase-2 (IDO-2 and tryptophan 2,3-dioxygenase (TDO-2 initiate the first step of the KP. IDO-1 and TDO-2 induction in tumors are crucial mechanisms implicated to play pivotal roles in suppressing anti-tumor immunity. Here, we report the first comprehensive characterisation of the KP in 1 cultured human glioma cells and 2 plasma from patients with glioblastoma (GBM. Our data revealed that interferon-gamma (IFN-γ stimulation significantly potentiated the expression of the KP enzymes, IDO-1 IDO-2, kynureninase (KYNU, kynurenine hydroxylase (KMO and significantly down-regulated 2-amino-3-carboxymuconate semialdehyde decarboxylase (ACMSD and kynurenine aminotransferase-I (KAT-I expression in cultured human glioma cells. This significantly increased KP activity but significantly lowered the KYNA/KYN neuroprotective ratio in human cultured glioma cells. KP activation (KYN/TRP was significantly higher, whereas the concentrations of the neuroreactive KP metabolites TRP, KYNA, QUIN and PIC and the KYNA/KYN ratio were significantly lower in GBM patient plasma (n = 18 compared to controls. These results provide further evidence for the involvement of the KP in glioma pathophysiology and highlight a potential role of KP products as novel and highly attractive therapeutic targets to evaluate for the treatment of brain tumors, aimed at restoring anti-tumor immunity and reducing the capacity for malignant cells to produce NAD(+, which is necessary for energy production and DNA repair.

  19. Pathophysiological consequences of hemolysis. Role of cell-free hemoglobin

    Directory of Open Access Journals (Sweden)

    Tomasz Misztal

    2011-09-01

    Full Text Available Abundant hemolysis is associated with a number of inherent and acquired diseases including sickle-cell disease (SCD, polycythemia, paroxysmal nocturnal hemoglobinuria (PNH and drug-induced hemolytic anemia. Despite different etiopathology of hemolytic diseases, many concomitant symptoms are comparable and include e.g. hypertension, hemoglobinuria and hypercoagulation state. Studies in the last years have shown a growing list of mechanisms lying at the basis of those symptoms, in particular irreversible reaction between cell-free hemoglobin (Hb and nitric oxide (NO – endogenous vasorelaxant and anti-thrombotic agent. Saturation of protective physiological cell-free Hb-scavenging mechanisms results in accumulation of Hb in plasma and hemoglobinemia. Extensive hemoglobinemia subsequently leads to hemoglobinuria, which may cause kidney damage and development of Fanconi syndrome. A severe problem in patients with SCD and PNH is pulmonary and systemic hypertension. It may lead to circulation failure, including stroke, and it is related to abolition of NO bioavailability for vascular smooth muscle cells. Thrombotic events are the major cause of death in SCD and PNH. It ensues from lack of platelet inhibition evoked by Hb-mediated NO scavenging. A serious complication that affects patients with excessive hemolysis is erectile dysfunction. Also direct cytotoxic, prooxidant and proinflammatory effects of cell-free hemoglobin and heme compose the clinical picture of hemolytic diseases. The pathophysiological role of plasma Hb, mechanisms of its elimination, and direct and indirect (via NO scavenging deleterious effects of cell-free Hb are presented in detail in this review. Understanding the critical role of hemolysis and cell-free Hb is important in the perspective of treating patients with hemolytic diseases and to design new effective therapies in future.

  20. Pompe disease: from pathophysiology to therapy and back again

    Directory of Open Access Journals (Sweden)

    Jeong-A eLim

    2014-07-01

    Full Text Available Pompe disease is a lysosomal storage disorder in which acid alpha-glucosidase is deficient or absent. Deficiency of this lysosomal enzyme results in progressive expansion of glycogen-filled lysosomes in multiple tissues, with cardiac and skeletal muscle being the most severely affected. The clinical spectrum ranges from fatal hypertrophic cardiomyopathy and skeletal muscle myopathy in infants to relatively attenuated forms, which manifest as a progressive myopathy without cardiac involvement. The currently available enzyme replacement therapy proved to be successful in reversing cardiac but not skeletal muscle abnormalities. Although the overall understanding of the disease has progressed, the pathophysiology of muscle damage remains poorly understood. Lysosomal enlargement/rupture has long been considered a mechanism of relentless muscle damage in Pompe disease. In past years, it became clear that this simple view of the pathology is inadequate; the pathological cascade involves dysfunctional autophagy, a major lysosome-dependent intracellular degradative pathway. The autophagic process in Pompe skeletal muscle is affected at the termination stage - impaired autophagosomal-lysosomal fusion. Yet another abnormality in the diseased muscle is the accelerated production of large, unrelated to ageing, lipofuscin deposits - a marker of cellular oxidative damage and a sign of mitochondrial dysfunction. The massive autophagic buildup and lipofuscin inclusions appear to cause a greater effect on muscle architecture than the enlarged lysosomes outside the autophagic regions. Furthermore, the dysfunctional autophagy affects the trafficking of the replacement enzyme and interferes with its delivery to the lysosomes. Several new therapeutic approaches have been tested in Pompe mouse models: substrate reduction therapy, lysosomal exocytosis following the overexpression of transcription factor EB and a closely related but distinct factor E3, and genetic

  1. [Mirror neurons: from anatomy to pathophysiological and therapeutic implications].

    Science.gov (United States)

    Mathon, B

    2013-04-01

    Mirror neurons are a special class of neurons discovered in the 1990s. They respond when we perform an action and also when we see someone else perform that action. They play a role in the pathophysiology of some neuropsychiatric diseases. Mirror neurons have been identified in humans: in Broca's area and the inferior parietal cortex. Their responses are qualitative and selective depending on the observed action. Emotions (including disgust) and empathy seem to operate according to a mirror mechanism. Indeed, the mirror system allows us to encode the sensory experience and to simulate the emotional state of others. This results in our improved identification of the emotions in others. Additionally, mirror neurons can encode an observed action in motor stimuli and allow its reproduction; thus, they are involved in imitation and learning. Current studies are assessing the role of mirror neurons in the pathopysiology of social-behavior disorders, including autism and schizophrenia. Understanding this mirror system will allow us to develop psychotherapy practices based on empathic resonance between the patient and the therapist. Also, some authors report that a passive rehabilitation technique, based on stimulation of the mirror-neuron system, has a beneficial effect in the treatment of patients with post-stroke motor deficits. Mirror neurons are an anatomical entity that enables improved understanding of behavior and emotions, and serves as a base for developing new cognitive therapies. Additional studies are needed to clarify the exact role of this neuronal system in social cognition and its role in the development of some neuropsychiatric diseases. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  2. A better understanding of urogenital tuberculosis pathophysiology based on radiological findings

    International Nuclear Information System (INIS)

    Figueiredo, Andre A.; Lucon, Antonio M.; Arvellos, Andre N.; Ramos, Claudio O.P.; Toledo, Antonio C.T.; Falci, Renato; Gomes, Cristiano M.; Recaverren, Fernando E.Q.; Netto, Jose Murillo B.; Srougi, Miguel

    2010-01-01

    Purpose: To assess the radiological findings of urogenital tuberculosis (UGT) in patients at different disease stages, for a better understanding of its pathophysiology. Patients and methods: We retrospectively reviewed the radiological exams of 20 men (median age 41 years; range: 28-65) with urogenital tuberculosis diagnosis. The patients were classified in the following groups: (1) bilateral renal tuberculosis with predominantly parenchymatous involvement; (2) unilateral renal tuberculosis; (3) unilateral renal tuberculosis with bladder tuberculosis and (4) bilateral renal tuberculosis with bladder tuberculosis. Results: One AIDS patient had multiple bilateral renal tuberculosis abscesses (group 1). Six patients had unilateral renal tuberculosis with hydronephrosis due to stenosis and thickening of the collecting system, without involvement of the bladder or contralateral kidney (group 2). Six patients had bladder tuberculosis with diffuse thickening of the bladder wall, with one very low or no function kidney while the other kidney was normal (group 3). Seven patients had bladder tuberculosis associated to a very low or no function kidney with the other kidney with high-grade vesicoureteral reflux-associated ureterohydronephrosis (group 4). In two patients, sequential exams showed evolution of tuberculosis from a unilateral renal and ureteral lesion to contracted bladder and dilatation of the contralateral kidney secondary to high-grade reflux. Conclusions: UGT may have variable radiological presentations. However, in two of our cases we have seen that tuberculosis involvement of the urinary tract may be sequential. Further evidences are necessary to confirm this hypothesis.

  3. A better understanding of urogenital tuberculosis pathophysiology based on radiological findings

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, Andre A., E-mail: andreavaresef@gmail.com [Department of Morphology and Division of Urology, Federal University of Juiz de Fora, Minas Gerais (Brazil); Division of Urology, Medical School, University of Sao Paulo, Sao Paulo (Brazil); Lucon, Antonio M. [Division of Urology, Medical School, University of Sao Paulo, Sao Paulo (Brazil); Arvellos, Andre N.; Ramos, Claudio O.P.; Toledo, Antonio C.T. [Department of Morphology and Division of Urology, Federal University of Juiz de Fora, Minas Gerais (Brazil); Falci, Renato; Gomes, Cristiano M. [Division of Urology, Medical School, University of Sao Paulo, Sao Paulo (Brazil); Recaverren, Fernando E.Q.; Netto, Jose Murillo B. [Department of Morphology and Division of Urology, Federal University of Juiz de Fora, Minas Gerais (Brazil); Srougi, Miguel [Division of Urology, Medical School, University of Sao Paulo, Sao Paulo (Brazil)

    2010-11-15

    Purpose: To assess the radiological findings of urogenital tuberculosis (UGT) in patients at different disease stages, for a better understanding of its pathophysiology. Patients and methods: We retrospectively reviewed the radiological exams of 20 men (median age 41 years; range: 28-65) with urogenital tuberculosis diagnosis. The patients were classified in the following groups: (1) bilateral renal tuberculosis with predominantly parenchymatous involvement; (2) unilateral renal tuberculosis; (3) unilateral renal tuberculosis with bladder tuberculosis and (4) bilateral renal tuberculosis with bladder tuberculosis. Results: One AIDS patient had multiple bilateral renal tuberculosis abscesses (group 1). Six patients had unilateral renal tuberculosis with hydronephrosis due to stenosis and thickening of the collecting system, without involvement of the bladder or contralateral kidney (group 2). Six patients had bladder tuberculosis with diffuse thickening of the bladder wall, with one very low or no function kidney while the other kidney was normal (group 3). Seven patients had bladder tuberculosis associated to a very low or no function kidney with the other kidney with high-grade vesicoureteral reflux-associated ureterohydronephrosis (group 4). In two patients, sequential exams showed evolution of tuberculosis from a unilateral renal and ureteral lesion to contracted bladder and dilatation of the contralateral kidney secondary to high-grade reflux. Conclusions: UGT may have variable radiological presentations. However, in two of our cases we have seen that tuberculosis involvement of the urinary tract may be sequential. Further evidences are necessary to confirm this hypothesis.

  4. Panel 2: Anatomy (Eustachian Tube, Middle Ear, and Mastoid-Anatomy, Physiology, Pathophysiology, and Pathogenesis).

    Science.gov (United States)

    Alper, Cuneyt M; Luntz, Michal; Takahashi, Haruo; Ghadiali, Samir N; Swarts, J Douglas; Teixeira, Miriam S; Csákányi, Zsuzsanna; Yehudai, Noam; Kania, Romain; Poe, Dennis S

    2017-04-01

    Objective In this report, we review the recent literature (ie, past 4 years) to identify advances in our understanding of the middle ear-mastoid-eustachian tube system. We use this review to determine whether the short-term goals elaborated in the last report were achieved, and we propose updated goals to guide future otitis media research. Data Sources PubMed, Web of Science, Medline. Review Methods The panel topic was subdivided, and each contributor performed a literature search within the given time frame. The keywords searched included middle ear, eustachian tube, and mastoid for their intersection with anatomy, physiology, pathophysiology, and pathology. Preliminary reports from each panel member were consolidated and discussed when the panel met on June 11, 2015. At that meeting, the progress was evaluated and new short-term goals proposed. Conclusions Progress was made on 13 of the 20 short-term goals proposed in 2011. Significant advances were made in the characterization of middle ear gas exchange pathways, modeling eustachian tube function, and preliminary testing of treatments for eustachian tube dysfunction. Implications for Practice In the future, imaging technologies should be developed to noninvasively assess middle ear/eustachian tube structure and physiology with respect to their role in otitis media pathogenesis. The new data derived from these structure/function experiments should be integrated into computational models that can then be used to develop specific hypotheses concerning otitis media pathogenesis and persistence. Finally, rigorous studies on medical or surgical treatments for eustachian tube dysfunction should be undertaken.

  5. Pathophysiological hypoxia affects the redox state and IL-2 signalling of human CD4+ T cells and concomitantly impairs survival and proliferation.

    Science.gov (United States)

    Gaber, Timo; Tran, Cam Loan; Schellmann, Saskia; Hahne, Martin; Strehl, Cindy; Hoff, Paula; Radbruch, Andreas; Burmester, Gerd-Rüdiger; Buttgereit, Frank

    2013-06-01

    Inflamed areas are characterized by infiltration of immune cells, local hypoxia and alterations of cellular redox states. We investigated the impact of hypoxia on survival, proliferation, cytokine secretion, intracellular energy and redox state of human CD4(+) T cells. We found that pathophysiological hypoxia (<2% O2 ) significantly decreased CD4(+) T-cell survival after mitogenic stimulation. This effect was not due to an increased caspase-3/7-mediated apoptosis or adenosine-5'-triphosphate (ATP) consumption/depletion. However, the ability of stimulated T cells to proliferate was reduced under hypoxic conditions, despite increased expression of CD25. Pathophysiological hypoxia was also found to modify intracellular ROS (iROS) levels in stimulated T cells over time as compared with levels found in normoxia. Physiological hypoxia (5% O2 ) did not decrease CD4(+) T-cell survival and proliferation or modify iROS levels as compared with normoxia. We conclude that pathophysiological hypoxia affects T-cell proliferation and viability via disturbed IL-2R signalling downstream of STAT5a phosphorylation, but not as a result of impaired cellular energy homeostasis. We suggest iROS links early events in T-cell stimulation to the inhibition of the lymphoproliferative response under pathophysiological hypoxic conditions. The level of iROS may therefore act as a mediator of immune functions leading to down-regulation of long-term T-cell activity in inflamed tissues. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Pathophysiology of esophageal impairment due to button battery ingestion.

    Science.gov (United States)

    Völker, Johannes; Völker, Christine; Schendzielorz, Philipp; Schraven, Sebastian P; Radeloff, Andreas; Mlynski, Robert; Hagen, Rudolf; Rak, Kristen

    2017-09-01

    The increased use of button batteries with high energy densities in devices of daily life presents a high risk of injury, especially for toddlers and young children. If an accidental ingestion of a button battery occurs, this foreign body can become caught in the constrictions of the esophagus and cause serious damage to the adjacent tissue layers. The consequences can be ulcerations, perforations with fistula formation and damage to the surrounding anatomical structures. In order to gain a better understanding of the pathophysiology after ingestion, we carried out systematic studies on fresh preparations of porcine esophagi. The lithium button battery type CR2032, used most frequently in daily life, was exposed in preparations of porcine esophagi and incubated under the addition of artificial saliva at 37 °C. A total of eight esophagi were analysed by different methods. Measurements of the pH value around the battery electrodes and histological studies of the tissue damage were carried out after 0.5-24 h exposure time. In addition, macroscopic time-lapse images were recorded. Measurements of the battery voltage and the course of the electric current supplemented the experiments. The investigations showed that the batteries caused an electrolysis reaction in the moist environment. The positive electrode formed an acidic and the negative electrode a basic medium. Consequently, a coagulation necrosis at the positive pole, and a deep colliquation necrosis at the minus pole occurred. After an exposure time of 12 h, tissue damage caused by the lye corrosion was observed on the side of the negative electrode up to the lamina muscularis. The corrosion progressed up to the final exposure time of 24 h, but the batteries still had sufficient residual voltage, such that further advancing damage would be expected. Button battery ingestion in humans poses an acute life-threatening danger and immediate endoscopic removal of the foreign body is essential. After only 2

  7. Melatonin plays a protective role in postburn rodent gut pathophysiology.

    Science.gov (United States)

    Al-Ghoul, Walid M; Abu-Shaqra, Steven; Park, Byeong Gyu; Fazal, Nadeem

    2010-05-17

    Melatonin is a possible protective agent in postburn gut pathophysiological dynamics. We investigated the role of endogenously-produced versus exogenously-administered melatonin in a major thermal injury rat model with well-characterized gut inflammatory complications. Our rationale is that understanding in vivo melatonin mechanisms in control and inflamed tissues will improve our understanding of its potential as a safe anti-inflammatory/antioxidant therapeutic alternative. Towards this end, we tested the hypothesis that the gut is both a source and a target for melatonin and that mesenteric melatonin plays an anti-inflammatory role following major thermal injury in rats with 3rd degree hot water scald over 30% TBSA. Our methods for assessing the gut as a source of melatonin included plasma melatonin ELISA measurements in systemic and mesenteric circulation as well as rtPCR measurement of jejunum and terminal ileum expression of the melatonin synthesizing enzymes arylalkylamine N-acetyltransferase (AA-NAT) and 5-hydroxyindole-O-methyltransferase (HIOMT) in sham versus day-3 postburn rats. Our melatonin ELISA results revealed that mesenteric circulation has much higher melatonin than systemic circulation and that both mesenteric and systemic melatonin levels are increased three days following major thermal injury. Our rtPCR results complemented the ELISA data in showing that the melatonin synthesizing enzymes AA-NAT and HIOMT are expressed in the ileum and jejunum and that this expression is increased three days following major thermal injury. Interestingly, the rtPCR data also revealed negative feedback by melatonin as exogenous melatonin supplementation at a dose of 7.43 mg (32 micromole/kg), but not 1.86 mg/kg (8 micromole/kg) drastically suppressed AA-NAT mRNA expression. Our methods also included an assessment of the gut as a target for melatonin utilizing computerized immunohistochemical measurements to quantify the effects of exogenous melatonin

  8. Evidence-Based Revised View of the Pathophysiology of Preeclampsia.

    Science.gov (United States)

    Ahmed, Asif; Rezai, Homira; Broadway-Stringer, Sophie

    2017-01-01

    Preeclampsia is a life-threatening vascular disorder of pregnancy due to a failing stressed placenta. Millions of women risk death to give birth each year and globally each year, almost 300,000 lose their life in this process and over 500,000 babies die as a consequence of preeclampsia. Despite decades of research, we lack pharmacological agents to treat it. Maternal endothelial oxidative stress is a central phenomenon responsible for the preeclampsia phenotype of high maternal blood pressure and proteinuria. In 1997, it was proposed that preeclampsia arises due to the loss of VEGF activity, possibly due to elevation in anti-angiogenic factor, soluble Flt-1 (sFlt-1). Researchers showed that high sFlt-1 and soluble endoglin (sEng) elicit the severe preeclampsia phenotype in pregnant rodents. We demonstrated that heme oxygenase-1 (HO-1)/carbon monoxide (CO) pathway prevents placental stress and suppresses sFlt-1 and sEng release. Likewise, hydrogen sulphide (H 2 S)/cystathionine-γ-lyase (Cth) systems limit sFlt-1 and sEng and protect against the preeclampsia phenotype in mice. Importantly, H 2 S restores placental vasculature, and in doing so improves lagging fetal growth. These molecules act as the inhibitor systems in pregnancy and when they fail, preeclampsia is triggered. In this review, we discuss what are the hypotheses and models for the pathophysiology of preeclampsia on the basis of Bradford Hill causation criteria for disease causation and how further in vivo experimentation is needed to establish 'proof of principle'. Hypotheses that fail to meet the Bradford Hill causation criteria include abnormal spiral artery remodelling and inflammation and should be considered associated or consequential to the disorder. In contrast, the protection against cellular stress hypothesis that states that the protective pathways mitigate cellular stress by limiting elevation of anti-angiogenic factors or oxidative stress and the subsequent clinical signs of preeclampsia

  9. Congenital and childhood atrioventricular blocks: pathophysiology and contemporary management.

    Science.gov (United States)

    Baruteau, Alban-Elouen; Pass, Robert H; Thambo, Jean-Benoit; Behaghel, Albin; Le Pennec, Solène; Perdreau, Elodie; Combes, Nicolas; Liberman, Leonardo; McLeod, Christopher J

    2016-09-01

    Atrioventricular block is classified as congenital if diagnosed in utero, at birth, or within the first month of life. The pathophysiological process is believed to be due to immune-mediated injury of the conduction system, which occurs as a result of transplacental passage of maternal anti-SSA/Ro-SSB/La antibodies. Childhood atrioventricular block is therefore diagnosed between the first month and the 18th year of life. Genetic variants in multiple genes have been described to date in the pathogenesis of inherited progressive cardiac conduction disorders. Indications and techniques of cardiac pacing have also evolved to allow safe permanent cardiac pacing in almost all patients, including those with structural heart abnormalities. Early diagnosis and appropriate management are critical in many cases in order to prevent sudden death, and this review critically assesses our current understanding of the pathogenetic mechanisms, clinical course, and optimal management of congenital and childhood AV block. • Prevalence of congenital heart block of 1 per 15,000 to 20,000 live births. AV block is defined as congenital if diagnosed in utero, at birth, or within the first month of life, whereas childhood AV block is diagnosed between the first month and the 18th year of life. As a result of several different etiologies, congenital and childhood atrioventricular block may occur in an entirely structurally normal heart or in association with concomitant congenital heart disease. Cardiac pacing is indicated in symptomatic patients and has several prophylactic indications in asymptomatic patients to prevent sudden death. • Autoimmune, congenital AV block is associated with a high neonatal mortality rate and development of dilated cardiomyopathy in 5 to 30 % cases. What is New: • Several genes including SCN5A have been implicated in autosomal dominant forms of familial progressive cardiac conduction disorders. • Leadless pacemaker technology and gene therapy for

  10. Physiological and pathophysiological insights of Nav1.4 and Nav1.5 comparison

    Directory of Open Access Journals (Sweden)

    Gildas eLoussouarn

    2016-01-01

    Full Text Available Mutations in Nav1.4 and Nav1.5 α-subunits have been associated with muscular and cardiac channelopathies, respectively. Despite intense research on the structure and function of these channels, a lot of information is still missing to delineate the various physiological and pathophysiological processes underlying their activity at the molecular level. Nav1.4 and Nav1.5 sequences are similar, suggesting structural and functional homologies between the two orthologous channels. This also suggests that any characteristics described for one channel subunit may shed light on the properties of the counterpart channel subunit. In this review article, after a brief clinical description of the muscular and cardiac channelopathies related to Nav1.4 and Nav1.5 mutations, respectively, we compare the knowledge accumulated in different aspects of the expression and function of Nav1.4 and Nav1.5 α-subunits: the regulation of the two encoding genes (SCN4A and SCN5A, the associated/regulatory proteins and at last, the functional effect of the same missense mutations detected in Nav1.4 and Nav1.5. First, it appears that more is known on Nav1.5 expression and accessory proteins. Because of the high homologies of Nav1.5 binding sites and equivalent Nav1.4 sites, Nav1.5-related results may guide future investigations on Nav1.4. Second, the analysis of the same missense mutations in Nav1.4 and Nav1.5 revealed intriguing similarities regarding their effects on membrane excitability and alteration in channel biophysics. We believe that such comparison may bring new cues to the physiopathology of cardiac and muscular diseases.

  11. Pathophysiology and multifactorial etiology of acquired vasospastic disease (Raynaud syndrome) in vibration-exposed workers.

    Science.gov (United States)

    Gemne, G

    1982-12-01

    The article reviews available pathophysiological evidence for a multifactorial etiology of the Raynaud type of peripheral circulation disorder in persons exposed to vibration from handheld tools and discusses the consequences this viewpoint may have for diagnostics, preventive work, and research.

  12. Symptoms in Inflammatory Bowel Disease: pathophysiologic aspects and their relation with disease activity

    NARCIS (Netherlands)

    Minderhoud, I.M.

    2007-01-01

    Symptoms in Inflammatory Bowel Disease: pathophysiologic aspects and their relation with disease activity Inflammatory bowel disease (IBD) comprises ulcerative colitis (UC) and Crohn's disease (CD). IBD patients frequently complain of fatigue, and a substantial proportion of the patients have

  13. The rise of pathophysiologic research in the United States: the role of two Harvard hospitals.

    Science.gov (United States)

    Tishler, Peter V

    2013-01-01

    Pathophysiologic research, the major approach to understanding and treating disease, was created in the 20th century, and two Harvard-affiliated hospitals, the Peter Bent Brigham Hospital and Boston City Hospital, played a key role in its development. After the Flexner Report of 1910, medical students were assigned clinical clerkships in teaching hospitals. Rockefeller-trained Francis Weld Peabody, who was committed to investigative, pathophysiologic research, was a critical leader in these efforts. At the Brigham, Harvard medical students observed patients closely and asked provocative questions about their diseases. Additionally, physicians returned from World War I with questions concerning the pathophysiology of wartime injuries. At the Boston City Hospital's new Thorndike Memorial Laboratory, Peabody fostered investigative question-based research by physicians. These physicians expanded pathophysiologic investigation from the 1920s. Post-war, Watson and Crick's formulation of the structure of DNA led shortly to modern molecular biology and new research approaches that are being furthered at the Boston Hospitals.

  14. Encapsulating Peritoneal Sclerosis: A study on pathophysiology, clinical aspects and management

    NARCIS (Netherlands)

    S.M. Habib (Meelad)

    2014-01-01

    markdownabstract__Abstract__ This thesis describes the results of studies focusing on the pathophysiology, clinical aspects, and management of encapsulating peritoneal sclerosis (EPS). We have reported on the presence of inflammation in EPS, described several clinical aspects, and focused on

  15. The possible role of gastrointestinal endocrine cells in the pathophysiology of irritable bowel syndrome.

    Science.gov (United States)

    El-Salhy, Magdy; Hausken, Trygve; Gilja, Odd Helge; Hatlebakk, Jan Gunnar

    2017-02-01

    The etiology of irritable bowel syndrome (IBS) is unknown, but several factors appear to play a role in its pathophysiology, including abnormalities of the gastrointestinal endocrine cells. The present review illuminates the possible role of gastrointestinal hormones in the pathophysiology of IBS and the possibility of utilizing the current knowledge in treating the disease. Areas covered: Research into the intestinal endocrine cells and their possible role in the pathophysiology of IBS is discussed. Furthermore, the mechanisms underlying the abnormalities in the gastrointestinal endocrine cells in IBS patients are revealed. Expert commentary: The abnormalities observed in the gastrointestinal endocrine cells in IBS patients explains their visceral hypersensitivity, gastrointestinal dysmotility, and abnormal intestinal secretion, as well as the interchangeability of symptoms over time. Clarifying the role of the intestinal stem cells in the pathophysiology of IBS may lead to new treatment methods for IBS.

  16. Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes

    OpenAIRE

    Strawbridge, Rona; Dupuis, Josée; Prokopenko, Inga; Barker, Adam; Ahlqvist, Emma; Rybin, Denis; Petrie, John; Bouatia-Naji, Nabila; Dimas, Antigone; Wheeler, Eleanor; Chen, Han; Voight, Benjamin; Taneera, Jalal; Kanoni, Stavroula; Peden, John

    2011-01-01

    textabstractOBJECTIVE - Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired b-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS - We have conducted a meta-analysis of genome-wide association tests of ;2.5 million genotyped or imputed single nucleotide polymorphisms...

  17. Atrial Fibrillation in Lusaka – Pathoaetiology, Pathophysiology and ...

    African Journals Online (AJOL)

    RICHY

    functional A-V blocks (see Fuster V et al ). Haemodynamic ... valve disease and left ventricular dysfunction, causes atrial ... to guide management that could reduce or eliminate the occurrence of ..... electromechanical function in AF leads to blood stasis. This, in ..... Initiation After Cardioversion Circulation.;104:802-. 809. 24.

  18. Elucidating the Role of Neurotensin in the Pathophysiology and Management of Major Mental Disorders

    Directory of Open Access Journals (Sweden)

    Mona M Boules

    2014-06-01

    Full Text Available Neurotensin (NT is a neuropeptide that is closely associated with, and is thought to modulate, dopaminergic and other neurotransmitter systems involved in the pathophysiology of various mental disorders. This review outlines data implicating NT in the pathophysiology and management of major mental disorders such as schizophrenia, drug addiction, and autism. The data suggest that NT receptor analogs have the potential to be used as novel therapeutic agents acting through modulation of neurotransmitter systems dys-regulated in these disorders.

  19. Urinary collagen fragments are significantly altered in diabetes: a link to pathophysiology.

    Directory of Open Access Journals (Sweden)

    David M Maahs

    2010-09-01

    Full Text Available The pathogenesis of diabetes mellitus (DM is variable, comprising different inflammatory and immune responses. Proteome analysis holds the promise of delivering insight into the pathophysiological changes associated with diabetes. Recently, we identified and validated urinary proteomics biomarkers for diabetes. Based on these initial findings, we aimed to further validate urinary proteomics biomarkers specific for diabetes in general, and particularity associated with either type 1 (T1D or type 2 diabetes (T2D.Therefore, the low-molecular-weight urinary proteome of 902 subjects from 10 different centers, 315 controls and 587 patients with T1D (n = 299 or T2D (n = 288, was analyzed using capillary-electrophoresis mass-spectrometry. The 261 urinary biomarkers (100 were sequenced previously discovered in 205 subjects were validated in an additional 697 subjects to distinguish DM subjects (n = 382 from control subjects (n = 315 with 94% (95% CI: 92-95 accuracy in this study. To identify biomarkers that differentiate T1D from T2D, a subset of normoalbuminuric patients with T1D (n = 68 and T2D (n = 42 was employed, enabling identification of 131 biomarker candidates (40 were sequenced differentially regulated between T1D and T2D. These biomarkers distinguished T1D from T2D in an independent validation set of normoalbuminuric patients (n = 108 with 88% (95% CI: 81-94% accuracy, and in patients with impaired renal function (n = 369 with 85% (95% CI: 81-88% accuracy. Specific collagen fragments were associated with diabetes and type of diabetes indicating changes in collagen turnover and extracellular matrix as one hallmark of the molecular pathophysiology of diabetes. Additional biomarkers including inflammatory processes and pro-thrombotic alterations were observed.These findings, based on the largest proteomic study performed to date on subjects with DM, validate the previously described biomarkers for DM, and pinpoint differences in the urinary

  20. Reclassification of clinical sleep disorders using traditional models of syndromic, neuroanatomic, pathophysiological and etiological diagnosis.

    Science.gov (United States)

    Spitzer, A Robert

    2014-09-01

    Existing classifications of central nervous system sleep disorders do not often provide tools to diagnose the majority of patients complaining of sleep-related symptoms, nor always guide effective treatment. I present a novel classification system that completely separates clinical syndromes from anatomical localization, pathophysiology, and etiology. The clinical syndrome I present can describe the majority of patients, but can be fractionated into individual subgroups for further study. By then separating the anatomy and physiology from the symptoms, an avenue of research becomes available to study the different possible structures that regulate sleep, that may be damaged and cause syndromes of sleep dysfunction. Some of these may produce symptoms that overlap with narcolepsy and some may be distinct. Because the clinical syndrome should be distinguished from anatomy or physiology, I have proposed the term narcoleptiform syndrome for the clinical syndrome. The model also clearly separates etiology from anatomy in a classical neurological manner. This allows etiology, localization and symptoms to be studied separately. It is likely that different etiologies may produce damage in areas that produce similar syndromes. For example, in this model, different causes of damage to the orexin nucleus would result in the same clinical syndrome. This reinforces the concept of studying anatomy, symptoms and etiology separately. By studying the relationship of syndromes or symptoms to anatomic localization and pathophysiology, it should be possible to test novel approaches to treatment based on different underlying structure or function. For example, patients with lesions in the ventrolateral preoptic nucleus or the thalamic intralaminar nuclei may both present with insomnia symptoms but need different treatment; or they might present with symptoms overlapping narcolepsy (a narcoleptiform syndrome) yet need different treatment. In some cases, a single treatment may cross over

  1. Molecular Targets of Antihypertensive Peptides: Understanding the Mechanisms of Action Based on the Pathophysiology of Hypertension

    Directory of Open Access Journals (Sweden)

    Kaustav Majumder

    2014-12-01

    Full Text Available There is growing interest in using functional foods or nutraceuticals for the prevention and treatment of hypertension or high blood pressure. Although numerous preventive and therapeutic pharmacological interventions are available on the market, unfortunately, many patients still suffer from poorly controlled hypertension. Furthermore, most pharmacological drugs, such as inhibitors of angiotensin-I converting enzyme (ACE, are often associated with significant adverse effects. Many bioactive food compounds have been characterized over the past decades that may contribute to the management of hypertension; for example, bioactive peptides derived from various food proteins with antihypertensive properties have gained a great deal of attention. Some of these peptides have exhibited potent in vivo antihypertensive activity in both animal models and human clinical trials. This review provides an overview about the complex pathophysiology of hypertension and demonstrates the potential roles of food derived bioactive peptides as viable interventions targeting specific pathways involved in this disease process. This review offers a comprehensive guide for understanding and utilizing the molecular mechanisms of antihypertensive actions of food protein derived peptides.

  2. Implications of Schwann Cells Biomechanics and Mechanosensitivity for Peripheral Nervous System Physiology and Pathophysiology

    Directory of Open Access Journals (Sweden)

    Gonzalo Rosso

    2017-10-01

    Full Text Available The presence of bones around the central nervous system (CNS provides it with highly effective physiologically crucial mechanical protection. The peripheral nervous system (PNS, in contrast, lacks this barrier. Consequently, the long held belief is that the PNS is mechanically vulnerable. On the other hand, the PNS is exposed to a variety of physiological mechanical stresses during regular daily activities. This fact prompts us to question the dogma of PNS mechanical vulnerability. As a matter of fact, impaired mechanics of PNS nerves is associated with neuropathies with the liability to mechanical stresses paralleled by significant impairment of PNS physiological functions. Our recent biomechanical integrity investigations on nerve fibers from wild-type and neuropathic mice lend strong support in favor of natural mechanical protection of the PNS and demonstrate a key role of Schwann cells (SCs therein. Moreover, recent works point out that SCs can sense mechanical properties of their microenvironment and the evidence is growing that SCs mechanosensitivity is important for PNS development and myelination. Hence, SCs exhibit mechanical strength necessary for PNS mechanoprotection as well as mechanosensitivity necessary for PNS development and myelination. This mini review reflects on the intriguing dual ability of SCs and implications for PNS physiology and pathophysiology.

  3. Convergence of neuro-endocrine-immune pathways in the pathophysiology of irritable bowel syndrome.

    Science.gov (United States)

    Buckley, Maria M; O'Mahony, Siobhain M; O'Malley, Dervla

    2014-07-21

    Disordered signalling between the brain and the gut are generally accepted to underlie the functional bowel disorder, irritable bowel syndrome (IBS). However, partly due to the lack of disease-defining biomarkers, understanding the aetiology of this complex and multifactorial disease remains elusive. This common gastrointestinal disorder is characterised by alterations in bowel habit such as diarrhoea and/or constipation, bloating and abdominal pain, and symptom exacerbation has been linked with periods of stress, both psychosocial and infection-related. Indeed, a high level of comorbidity exists between IBS and stress-related mood disorders such as anxiety and depression. Moreover, studies have observed alterations in autonomic output and neuro-endocrine signalling in IBS patients. Accumulating evidence indicates that a maladaptive stress response, probably mediated by the stress hormone, corticotropin-releasing factor contributes to the initiation, persistence and severity of symptom flares. Other risk factors for developing IBS include a positive family history, childhood trauma, dietary factors and prior gastrointestinal infection. An emerging role has been attributed to the importance of immune factors in the pathophysiology of IBS with evidence of altered cytokine profiles and increased levels of mucosal immune cells. These factors have also been shown to have direct effects on neural signalling. This review discusses how pathological changes in neural, immune and endocrine pathways, and communication between these systems, contribute to symptom flares in IBS.

  4. Impact of Dietary Cholesterol on the Pathophysiology of Infectious and Autoimmune Disease

    Directory of Open Access Journals (Sweden)

    Catherine J. Andersen

    2018-06-01

    Full Text Available Cellular cholesterol metabolism, lipid raft formation, and lipoprotein interactions contribute to the regulation of immune-mediated inflammation and response to pathogens. Lipid pathways have been implicated in the pathogenesis of bacterial and viral infections, whereas altered lipid metabolism may contribute to immune dysfunction in autoimmune diseases, such as systemic lupus erythematosus, multiple sclerosis, and rheumatoid arthritis. Interestingly, dietary cholesterol may exert protective or detrimental effects on risk, progression, and treatment of different infectious and autoimmune diseases, although current findings suggest that these effects are variable across populations and different diseases. Research evaluating the effects of dietary cholesterol, often provided by eggs or as a component of Western-style diets, demonstrates that cholesterol-rich dietary patterns affect markers of immune inflammation and cellular cholesterol metabolism, while additionally modulating lipoprotein profiles and functional properties of HDL. Further, cholesterol-rich diets appear to differentially impact immunomodulatory lipid pathways across human populations of variable metabolic status, suggesting that these complex mechanisms may underlie the relationship between dietary cholesterol and immunity. Given the Dietary Guidelines for Americans 2015–2020 revision to no longer include limitations on dietary cholesterol, evaluation of dietary cholesterol recommendations beyond the context of cardiovascular disease risk is particularly timely. This review provides a comprehensive and comparative analysis of significant and controversial studies on the role of dietary cholesterol and lipid metabolism in the pathophysiology of infectious disease and autoimmune disorders, highlighting the need for further investigation in this developing area of research.

  5. Regulation of Nox enzymes expression in vascular pathophysiology: Focusing on transcription factors and epigenetic mechanisms

    Directory of Open Access Journals (Sweden)

    Simona-Adriana Manea

    2015-08-01

    Full Text Available NADPH oxidases (Nox represent a family of hetero-oligomeric enzymes whose exclusive biological function is the generation of reactive oxygen species (ROS. Nox-derived ROS are essential modulators of signal transduction pathways that control key physiological activities such as cell growth, proliferation, migration, differentiation, and apoptosis, immune responses, and biochemical pathways. Enhanced formation of Nox-derived ROS, which is generally associated with the up-regulation of different Nox subtypes, has been established in various pathologies, namely cardiovascular diseases, diabetes, obesity, cancer, and neurodegeneration. The detrimental effects of Nox-derived ROS are related to alterations in cell signalling and/or direct irreversible oxidative damage of nucleic acids, proteins, carbohydrates, and lipids. Thus, understanding of transcriptional regulation mechanisms of Nox enzymes have been extensively investigated in an attempt to find ways to counteract the excessive formation of Nox-derived ROS in various pathological states. Despite the numerous existing data, the molecular pathways responsible for Nox up-regulation are not completely understood. This review article summarizes some of the recent advances and concepts related to the regulation of Nox expression in the vascular pathophysiology. It highlights the role of transcription factors and epigenetic mechanisms in this process. Identification of the signalling molecules involved in Nox up-regulation, which is associated with the onset and development of cardiovascular dysfunction may contribute to the development of novel strategies for the treatment of cardiovascular diseases.

  6. The dark side of the QT interval. The Short QT Syndrome: pathophysiology, clinical presentation and management

    Directory of Open Access Journals (Sweden)

    I. Comelli

    2012-12-01

    Full Text Available A large number of studies has been carried out to investigate the pathophysiology and the clinical implications of QT interval prolongation in the ECG over recent years (1, 2, 3, 4, 5, 6. It was only in the last decade, however, that the scientists have focused on the specular aspects of the long QT syndrome (LQTS, and it is now well established that the abnormal shortening of the QT interval is associated with meaningful clinical consequences and adverse outcomes. The aim of the present article is to summarize knowledge and existing evidence about the Short QT Syndrome (SQTS. SQTS is a rare, albeit largely underdiagnosed, genetically determined disease, which is characterized by a high tendency to develop life-threatening arrhythmias. The two clinical landmarks of SQTS are the presence of a short QT interval (i.e., less than 320 ms in a structurally normal heart. The disease is now classified as a “channellopathy”, and is principally caused by a defective functioning of both potassium and calcium ion channels. The underlying genetic anomalies cause an abnormal ripolarization and a reduced refractoriness of myocardiocites. Pharmacologic treatments are mainly tailored to slow the conduction and to prolong the refractory period of myocardiocites. The implantable cardioverter and defibrillator (ICD is currently considered the therapeutic gold standard (7.

  7. Psychomotor Retardation in Depression: A Systematic Review of Diagnostic, Pathophysiologic, and Therapeutic Implications

    Directory of Open Access Journals (Sweden)

    Djamila Bennabi

    2013-01-01

    Full Text Available Psychomotor retardation is a central feature of depression which includes motor and cognitive impairments. Effective management may be useful to improve the classification of depressive subtypes and treatment selection, as well as prediction of outcome in patients with depression. The aim of this paper was to review the current status of knowledge regarding psychomotor retardation in depression, in order to clarify its role in the diagnostic management of mood disorders. Retardation modifies all the actions of the individual, including motility, mental activity, and speech. Objective assessments can highlight the diagnostic importance of psychomotor retardation, especially in melancholic and bipolar depression. Psychomotor retardation is also related to depression severity and therapeutic change and could be considered a good criterion for the prediction of therapeutic effect. The neurobiological process underlying the inhibition of activity includes functional deficits in the prefrontal cortex and abnormalities in dopamine neurotransmission. Future investigations of psychomotor retardation should help improve the understanding of the pathophysiological mechanisms underlying mood disorders and contribute to improving their therapeutic management.

  8. Polycystic Ovary Syndrome, Insulin Resistance, and Obesity: Navigating the Pathophysiologic Labyrinth

    Science.gov (United States)

    Rojas, Joselyn; Chávez, Mervin; Olivar, Luis; Rojas, Milagros; Morillo, Jessenia; Mejías, José; Calvo, María; Bermúdez, Valmore

    2014-01-01

    Polycystic ovary syndrome (PCOS) is a highly prevalent endocrine-metabolic disorder that implies various severe consequences to female health, including alarming rates of infertility. Although its exact etiology remains elusive, it is known to feature several hormonal disturbances, including hyperandrogenemia, insulin resistance (IR), and hyperinsulinemia. Insulin appears to disrupt all components of the hypothalamus-hypophysis-ovary axis, and ovarian tissue insulin resistance results in impaired metabolic signaling but intact mitogenic and steroidogenic activity, favoring hyperandrogenemia, which appears to be the main culprit of the clinical picture in PCOS. In turn, androgens may lead back to IR by increasing levels of free fatty acids and modifying muscle tissue composition and functionality, perpetuating this IR-hyperinsulinemia-hyperandrogenemia cycle. Nonobese women with PCOS showcase several differential features, with unique biochemical and hormonal profiles. Nevertheless, lean and obese patients have chronic inflammation mediating the long term cardiometabolic complications and comorbidities observed in women with PCOS, including dyslipidemia, metabolic syndrome, type 2 diabetes mellitus, and cardiovascular disease. Given these severe implications, it is important to thoroughly understand the pathophysiologic interconnections underlying PCOS, in order to provide superior therapeutic strategies and warrant improved quality of life to women with this syndrome. PMID:25763405

  9. Oropharyngeal and laryngeal sensory innervation in the pathophysiology of swallowing disorders and sensory stimulation treatments.

    Science.gov (United States)

    Alvarez-Berdugo, Daniel; Rofes, Laia; Casamitjana, J Francesc; Padrón, Andreína; Quer, Miquel; Clavé, Pere

    2016-09-01

    Oropharyngeal dysphagia (OD) affects older and neurological patients, causing malnutrition and dehydration and increasing the risk for aspiration pneumonia. There is evidence that sensory deficits in those populations are closely related to swallowing disorders, and several research groups are developing new therapies based on sensory stimulation of this area. More information on the sensory innervation participating in the swallow response is needed to better understand the pathophysiology of OD and to develop new treatments. This review focuses on the sensory innervation of the human oropharynx and larynx in healthy people compared with patients with swallowing disorders in order to unravel the abnormalities that may lead to the loss of sensitivity in patients with OD. We also hypothesize the pathway through which active sensory-enhancement treatments may elicit their therapeutic effect on patients with swallowing dysfunctions. As far as we know, this is the first time a review covers the anatomy, histology, ultrastructure, and molecular biology of the sensory innervation of the swallowing function. © 2016 New York Academy of Sciences.

  10. Signature and Pathophysiology of Non-canonical Pores in Voltage-Dependent Cation Channels.

    Science.gov (United States)

    Held, Katharina; Voets, Thomas; Vriens, Joris

    2016-01-01

    Opening and closing of voltage-gated cation channels allows the regulated flow of cations such as Na(+), K(+), and Ca(2+) across cell membranes, which steers essential physiological processes including shaping of action potentials and triggering Ca(2+)-dependent processes. Classical textbooks describe the voltage-gated cation channels as membrane proteins with a single, central aqueous pore. In recent years, however, evidence has accumulated for the existence of additional ion permeation pathways in this group of cation channels, distinct from the central pore, which here we collectively name non-canonical pores. Whereas the first non-canonical pores were unveiled only after making specific point mutations in the voltage-sensor region of voltage-gated Na(+) and K(+) channels, recent evidence indicates that they may also be functional in non-mutated channels. Moreover, several channelopathies have been linked to mutations that cause the appearance of a non-canonical ion permeation pathway as a new pathological mechanism. This review provides an integrated overview of the biophysical properties of non-canonical pores described in voltage-dependent cation channels (KV, NaV, Cav, Hv1, and TRPM3) and of the (patho)physiological impact of opening of such pores.

  11. An update on the pathophysiology and management of polycystic liver disease.

    Science.gov (United States)

    Wong, May Yw; McCaughan, Geoffrey W; Strasser, Simone I

    2017-06-01

    Polycystic liver disease (PLD) is characterized by the presence of multiple cholangiocyte-derived hepatic cysts that progressively replace liver tissue. They are classified as an inherited ciliopathy /cholangiopathy as pathology exists at the level of the primary cilia of cholangiocytes. Aberrant expression of the proteins in primary cilia can impair their structures and functions, thereby promoting cystogenesis. Areas covered: This review begins by looking at the epidemiology of PLD and its natural history. It then describes the pathophysiology and corresponding potential treatment strategies for PLD. Expert commentary: Traditionally, therapies for symptomatic PLD have been limited to symptomatic management and surgical interventions. Such techniques are not completely effective, do not alter the natural history of the disease, and are linked with high rate of re-accumulation of cysts. As a result, there has been a push for drugs targeted at abnormal cellular signaling cascades to address deregulated proliferation, cell dedifferentiation, apoptosis and fluid secretion. Currently, the only available drug treatments that halt disease progression and improve quality of life in PLD patients are somatostatin analogues. Numerous preclinical studies suggest that targeting components of the signaling pathways that influence cyst development can ameliorate growth of hepatic cysts.

  12. B-cell activating factor in the pathophysiology of multiple myeloma: a target for therapy?

    International Nuclear Information System (INIS)

    Hengeveld, P J; Kersten, M J

    2015-01-01

    Multiple myeloma (MM) is a currently incurable malignancy of plasma cells. Malignant myeloma cells (MMCs) are heavily dependent upon the bone marrow (BM) microenvironment for their survival. One component of this tumor microenvironment, B-Cell Activating Factor (BAFF), has been implicated as a key player in this interaction. This review discusses the role of BAFF in the pathophysiology of MM, and the potential of BAFF-inhibitory therapy for the treatment of MM. Multiple studies have shown that BAFF functions as a survival factor for MMCs. Furthermore, MMCs express several BAFF-binding receptors. Of these, only Transmembrane Activator and CAML Interactor (TACI) correlates with the MMC's capability to ligate BAFF. Additionally, the level of expression of TACI correlates with the level of the MMC's BM dependency. Ligation of BAFF receptors on MMCs causes activation of the Nuclear Factor of κ-B (NF-κB) pathway, a crucial pathway for the pathogenesis of many B-cell malignancies. Serum BAFF levels are significantly elevated in MM patients when compared to healthy controls, and correlate inversely with overall survival. BAFF signaling is thus an interesting target for the treatment of MM. Several BAFF-inhibitory drugs are currently under evaluation for the treatment of MM. These include BAFF-monoclonal antibodies (tabalumab) and antibody-drug conjugates (GSK2857916)

  13. Anemia of Chronic Disease and Iron Deficiency Anemia in Inflammatory Bowel Diseases: Pathophysiology, Diagnosis, and Treatment.

    Science.gov (United States)

    Murawska, Natalia; Fabisiak, Adam; Fichna, Jakub

    2016-05-01

    Anemia coexists with inflammatory bowel disease (IBD) in up to two-thirds of patients, significantly impairing quality of life. The most common types of anemia in patients with IBD are iron deficiency anemia and anemia of chronic disease, which often overlap. In most cases, available laboratory tests allow successful diagnosis of iron deficiency, where difficulties appear, recently established indices such as soluble transferrin-ferritin ratio or percentage of hypochromic red cells are used. In this review, we discuss the management of the most common types of anemia in respect of the latest available data. Thus, we provide the mechanisms underlying pathophysiology of these entities; furthermore, we discuss the role of hepcidin in developing anemia in IBD. Next, we present the treatment options for each type of anemia and highlight the importance of individual choice of action. We also focus on newly developed intravenous iron preparations and novel, promising drug candidates targeting hepcidin. Concurrently, we talk about difficulties in differentiating between the true and functional iron deficiency, and discuss tools facilitating the process. Finally, we emphasize the importance of proper diagnosis and treatment of anemia in IBD. We conclude that management of anemia in patients with IBD is tricky, and appropriate screening of patients regarding anemia is substantial.

  14. Polycystic Ovary Syndrome, Insulin Resistance, and Obesity: Navigating the Pathophysiologic Labyrinth

    Directory of Open Access Journals (Sweden)

    Joselyn Rojas

    2014-01-01

    Full Text Available Polycystic ovary syndrome (PCOS is a highly prevalent endocrine-metabolic disorder that implies various severe consequences to female health, including alarming rates of infertility. Although its exact etiology remains elusive, it is known to feature several hormonal disturbances, including hyperandrogenemia, insulin resistance (IR, and hyperinsulinemia. Insulin appears to disrupt all components of the hypothalamus-hypophysis-ovary axis, and ovarian tissue insulin resistance results in impaired metabolic signaling but intact mitogenic and steroidogenic activity, favoring hyperandrogenemia, which appears to be the main culprit of the clinical picture in PCOS. In turn, androgens may lead back to IR by increasing levels of free fatty acids and modifying muscle tissue composition and functionality, perpetuating this IR-hyperinsulinemia-hyperandrogenemia cycle. Nonobese women with PCOS showcase several differential features, with unique biochemical and hormonal profiles. Nevertheless, lean and obese patients have chronic inflammation mediating the long term cardiometabolic complications and comorbidities observed in women with PCOS, including dyslipidemia, metabolic syndrome, type 2 diabetes mellitus, and cardiovascular disease. Given these severe implications, it is important to thoroughly understand the pathophysiologic interconnections underlying PCOS, in order to provide superior therapeutic strategies and warrant improved quality of life to women with this syndrome.

  15. Polycystic ovary syndrome, insulin resistance, and obesity: navigating the pathophysiologic labyrinth.

    Science.gov (United States)

    Rojas, Joselyn; Chávez, Mervin; Olivar, Luis; Rojas, Milagros; Morillo, Jessenia; Mejías, José; Calvo, María; Bermúdez, Valmore

    2014-01-01

    Polycystic ovary syndrome (PCOS) is a highly prevalent endocrine-metabolic disorder that implies various severe consequences to female health, including alarming rates of infertility. Although its exact etiology remains elusive, it is known to feature several hormonal disturbances, including hyperandrogenemia, insulin resistance (IR), and hyperinsulinemia. Insulin appears to disrupt all components of the hypothalamus-hypophysis-ovary axis, and ovarian tissue insulin resistance results in impaired metabolic signaling but intact mitogenic and steroidogenic activity, favoring hyperandrogenemia, which appears to be the main culprit of the clinical picture in PCOS. In turn, androgens may lead back to IR by increasing levels of free fatty acids and modifying muscle tissue composition and functionality, perpetuating this IR-hyperinsulinemia-hyperandrogenemia cycle. Nonobese women with PCOS showcase several differential features, with unique biochemical and hormonal profiles. Nevertheless, lean and obese patients have chronic inflammation mediating the long term cardiometabolic complications and comorbidities observed in women with PCOS, including dyslipidemia, metabolic syndrome, type 2 diabetes mellitus, and cardiovascular disease. Given these severe implications, it is important to thoroughly understand the pathophysiologic interconnections underlying PCOS, in order to provide superior therapeutic strategies and warrant improved quality of life to women with this syndrome.

  16. Voltage-Gated Sodium Channel β1/β1B Subunits Regulate Cardiac Physiology and Pathophysiology

    Directory of Open Access Journals (Sweden)

    Nnamdi Edokobi

    2018-04-01

    Full Text Available Cardiac myocyte contraction is initiated by a set of intricately orchestrated electrical impulses, collectively known as action potentials (APs. Voltage-gated sodium channels (NaVs are responsible for the upstroke and propagation of APs in excitable cells, including cardiomyocytes. NaVs consist of a single, pore-forming α subunit and two different β subunits. The β subunits are multifunctional cell adhesion molecules and channel modulators that have cell type and subcellular domain specific functional effects. Variants in SCN1B, the gene encoding the Nav-β1 and -β1B subunits, are linked to atrial and ventricular arrhythmias, e.g., Brugada syndrome, as well as to the early infantile epileptic encephalopathy Dravet syndrome, all of which put patients at risk for sudden death. Evidence over the past two decades has demonstrated that Nav-β1/β1B subunits play critical roles in cardiac myocyte physiology, in which they regulate tetrodotoxin-resistant and -sensitive sodium currents, potassium currents, and calcium handling, and that Nav-β1/β1B subunit dysfunction generates substrates for arrhythmias. This review will highlight the role of Nav-β1/β1B subunits in cardiac physiology and pathophysiology.

  17. Control of Adipocyte Differentiation in Different Fat Depots; Implications for Pathophysiology or Therapy

    Directory of Open Access Journals (Sweden)

    Xiuquan eMa

    2015-01-01

    Full Text Available Adipocyte differentiation and its impact on restriction or expansion of particular adipose tissue depots has physiological and pathophysiological significance in view of the different functions of these depots. Brown or beige fat [BAT] expansion can enhance thermogenesis, lipid oxidation, insulin sensitivity and glucose tolerance; conversely expanded visceral fat [VAT] is associated with insulin resistance, low grade inflammation, dyslipidaemia and cardiometabolic risk. The largest depot, subcutaneous white fat [WAT], has important beneficial characteristics including storage of lipid out of harms way and secretion of adipokines, especially leptin and adiponectin, with positive metabolic effects including lipid oxidation, energy utilisation, enhanced insulin action and an anti-inflammatory role. The absence of these functions in lipodystrophies leads to major metabolic disturbances. An ability to expand WAT adipocyte differentiation would seem an important defence mechanism against the detrimental effects of energy excess and limit harmful accumulation of lipid in ectopic sites, such as liver and muscle.Adipocyte differentiation involves a transcriptional cascade with PPARg being most important in WAT but less so in VAT, with increased angiogenesis also critical. The transcription factor, Islet1, is fairly specific to VAT and in vitro inhibits adipocyte differentiation. The physiological importance of Islet1 requires further study. Basic control of differentiation is similar in BAT but important differences include the effect of PGC-1a on mitochondrial biosynthesis and upregulation of UCP1; also PRDM16 plays a pivotal role in expression of the BAT phenotype.Modulation of the capacity or function of these different adipose tissue depots, by altering adipocyte differentiation or other means, holds promise for interventions that can be helpful in human disease, particularly cardiometabolic disorders associated with the world wide explosion of

  18. Pathophysiology of cerebral circulatory disorders in idiopathic normal pressure hydrocephalus

    International Nuclear Information System (INIS)

    Takeuchi, Totaro; Goto, Hiromi; Izaki, Kenji

    2007-01-01

    -score images, revealed a reduction or disappearance of the hypoperfusion site in 19 of 31 (61.3%) cases, either no-change or a shift of the hypoperfusion site in 12 of 31 (38.7%) cases, and a correlation between the pattern of cortical blood flow reduction on ARG method and the pattern of cerebral cortex hypoperfusion on 3D-SSP Z-score images after surgery. Cerebral circulatory disorders in iNPH manifest as either of two pathophysiological conditions: the ''circulatory disorder of the cerebral cortical region'' and the ''circulatory disorder of the thalamus-basal ganglia region.'' Various patterns develop according to the disease stage. (author)

  19. Retinopathy of Prematurity: Therapeutic Strategies Based on Pathophysiology.

    Science.gov (United States)

    Cayabyab, Rowena; Ramanathan, Rangasamy

    2016-01-01

    Retinopathy of prematurity (ROP) continues to be a major preventable cause of blindness and visual handicaps globally. With improved perinatal care, improved survival of moderately preterm infants, and limited resources for oxygen delivery and monitoring, more mature preterm infants are developing severe ROP in developing countries. The pathophysiology of ROP is characterized by two phases. Phase I ROP is due to vaso-obliteration beginning immediately after birth secondary to a marked decrease in vascular endothelial growth factor (VEGF) and insulin-like growth factor-1 (IGF-1). Phase II begins around 33 weeks' postmenstrual age (PMA). During this phase, VEGF levels increase, especially if there is retinal hypoxia with increasing retinal metabolism and demand for oxygen leading to abnormal vasoproliferation. Since the original description of ROP in 1942 by Terry et al. [Am J Ophthalmol 1942;25:203-204], four epidemics of ROP have been observed. Prevention or early treatment of ROP involves careful titration of oxygen saturation by pulse oximeter (SpO2). Optimal SpO2 target remains elusive. Most of the large trials have focused on either a low SpO2 (85-89%) or a high SpO2 (91-95%) from the first day of birth to 36 weeks' PMA. Although the incidence of severe ROP and bronchopulmonary dysplasia decreased significantly, predischarge mortality was higher in these studies. Use of graded SpO2 during the 2 different phases of ROP (early, low SpO2 during phase I vs. late, high SpO2 during phase II) may be the best approach to prevent this disabling condition. Further trials should focus on this strategy. Other biological agents that are currently being studied include IGF-1 with IGF-binding protein-3 (rhIGF-1 + rhIGFBP-3) and propranolol. For advanced stages of ROP, laser ablation of avascular retina, early treatment of ROP (ETROP) protocol, intravitreal injection of anti-VEGF antibodies (e.g. bevacizumab) and vitrectomy are used to protect central vision and prevent

  20. The neuroimmune-endocrine axis: pathophysiological implications for the central nervous system cytokines and hypothalamus-pituitary-adrenal hormone dynamics

    Directory of Open Access Journals (Sweden)

    J. Licinio

    2000-10-01

    Full Text Available Cytokines are molecules that were initially discovered in the immune system as mediators of communication between various types of immune cells. However, it soon became evident that cytokines exert profound effects on key functions of the central nervous system, such as food intake, fever, neuroendocrine regulation, long-term potentiation, and behavior. In the 80's and 90's our group and others discovered that the genes encoding various cytokines and their receptors are expressed in vascular, glial, and neuronal structures of the adult brain. Most cytokines act through cell surface receptors that have one transmembrane domain and which transduce a signal through the JAK/STAT pathway. Of particular physiological and pathophysiological relevance is the fact that cytokines are potent regulators of hypothalamic neuropeptidergic systems that maintain neuroendocrine homeostasis and which regulate the body's response to stress. The mechanisms by which cytokine signaling affects the function of stress-related neuroendocrine systems are reviewed in this article.

  1. Repaired tetralogy of Fallot: the roles of cardiovascular magnetic resonance in evaluating pathophysiology and for pulmonary valve replacement decision support

    Science.gov (United States)

    2011-01-01

    Surgical management of tetralogy of Fallot (TOF) results in anatomic and functional abnormalities in the majority of patients. Although right ventricular volume load due to severe pulmonary regurgitation can be tolerated for many years, there is now evidence that the compensatory mechanisms of the right ventricular myocardium ultimately fail and that if the volume load is not eliminated or reduced by pulmonary valve replacement the dysfunction might be irreversible. Cardiovascular magnetic resonance (CMR) has evolved during the last 2 decades as the reference standard imaging modality to assess the anatomic and functional sequelae in patients with repaired TOF. This article reviews the pathophysiology of chronic right ventricular volume load after TOF repair and the risks and benefits of pulmonary valve replacement. The CMR techniques used to comprehensively evaluate the patient with repaired TOF are reviewed and the role of CMR in supporting clinical decisions regarding pulmonary valve replacement is discussed. PMID:21251297

  2. Comorbidity between Type 2 Diabetes and Depression in the Adult Population: Directions of the Association and Its Possible Pathophysiological Mechanisms

    Directory of Open Access Journals (Sweden)

    Line Iden Berge

    2015-01-01

    Full Text Available Type 2 diabetes and depression are regarded as comorbid conditions, and three possible directions of the association between the diseases can underlie this observation of comorbidity. First, common etiology can increase a person’s risk of both diseases; second, persons with type 2 diabetes have increased prevalence or risk of future development of depression; or third, persons with depression have increased prevalence or risk of development of type 2 diabetes. This review gives an overview over possible pathophysiological mechanisms for each of the directions of the association between type 2 diabetes and depression and further discusses epigenetics as an additional, direction independent approach. We argue that unspecific pathophysiological mechanisms involved in the stress response might, at least to some extent, explain each of the directions of the association between type 2 diabetes and depression, while changes in brain structure and function among persons with diabetes and possible increased risk of development of type 2 diabetes after use of antidepressant agents could represent more disease specific mechanisms underlying the comorbidity.

  3. Cellular and functional actions of tofacitinib related to the pathophysiology of hibernoma development.

    Science.gov (United States)

    Radi, Zaher A; Vogel, W Mark; Bartholomew, Phillip M; Koza-Taylor, Petra; Papanikolaou, Alexandros; Wisialowski, Todd; Nambiar, Prashant; Ball, Douglas J

    2017-12-01

    Tofacitinib is an oral JAK inhibitor for the treatment of rheumatoid arthritis. In the 2-year carcinogenicity study with tofacitinib, increased incidence of hibernoma (a neoplasm of brown adipose tissue [BAT]) was noted in female rats at ≥30 mg/kg/day (≥41x human exposure multiples). Thus, signaling pathways within BAT were investigated by measuring BAT: weight, cell proliferation biomarkers, content of basal and prolactin-induced phosphorylated Signal Transducer and Activator of Transcription (STAT), and uncoupling protein 1 (UCP-1). The relationship between cardiovascular hemodynamics and plasma norepinephrine (NE) levels was also investigated. Tofacitinib administered to female rats at doses of 10, 30, or 75 mg/kg/day for 14 days increased BAT weight at 75 mg/kg/day and cell proliferation at ≥30 mg/kg/day. JAK inhibition, observed as lower pSTAT3 and pSTAT5 in BAT, was noted at ≥10 mg/kg/day, while lower activity of BAT was observed as lower UCP-1 protein at ≥30 mg/kg/day. In cultured brown adipocytes, prolactin-induced increase in pSTAT5 and pSTAT3 were inhibited by tofacitinib in a concentration-dependent manner. Tofacitinib lowered blood pressure, increased heart rate, and resulted in dose-dependent increases in circulating NE. Thus, JAK/STAT inhibition in BAT and sympathetic stimulation are two factors which might contribute to the genesis of hibernomas by tofacitinib in rats. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Pathophysiology and Natural History of Anorectal Sequelae Following Radiation Therapy for Carcinoma of the Prostate

    International Nuclear Information System (INIS)

    Yeoh, Eric K.; Holloway, Richard H.; Fraser, Robert J.; Botten, Rochelle J.; Di Matteo, Addolorata C.; Butters, Julie

    2012-01-01

    Purpose: To characterize the prevalence, pathophysiology, and natural history of chronic radiation proctitis 5 years following radiation therapy (RT) for localized carcinoma of the prostate. Methods and Materials: Studies were performed in 34 patients (median age 68 years; range 54-79) previously randomly assigned to either 64 Gy in 32 fractions over 6.4 weeks or 55 Gy in 20 fractions over 4 weeks RT schedule using 2- and later 3-dimensional treatment technique for localized prostate carcinoma. Each patient underwent evaluations of (1) gastrointestinal (GI) symptoms (Modified Late Effects in Normal Tissues Subjective, Objective, Management and Analytic scales including effect on activities of daily living [ADLs]); (2) anorectal motor and sensory function (manometry and graded balloon distension); and (3) anal sphincteric morphology (endoanal ultrasound) before RT, at 1 month, and annually for 5 years after its completion. Results: Total GI symptom scores increased after RT and remained above baseline levels at 5 years and were associated with reductions in (1) basal anal pressures, (2) responses to squeeze and increased intra-abdominal pressure, (3) rectal compliance and (4) rectal volumes of sensory perception. Anal sphincter morphology was unchanged. At 5 years, 44% and 21% of patients reported urgency of defecation and rectal bleeding, respectively, and 48% impairment of ADLs. GI symptom scores and parameters of anorectal function and anal sphincter morphology did not differ between the 2 RT schedules or treatment techniques. Conclusions: Five years after RT for prostate carcinoma, anorectal symptoms continue to have a significant impact on ADLs of almost 50% of patients. These symptoms are associated with anorectal dysfunction independent of the RT schedules or treatment techniques reported here.

  5. Pathophysiology and Natural History of Anorectal Sequelae Following Radiation Therapy for Carcinoma of the Prostate

    Energy Technology Data Exchange (ETDEWEB)

    Yeoh, Eric K., E-mail: eric.yeoh@health.sa.gov.au [Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide (Australia); Discipline of Medicine, University of Adelaide, Adelaide (Australia); Holloway, Richard H. [Discipline of Medicine, University of Adelaide, Adelaide (Australia); Department of Gastroenterology, Royal Adelaide Hospital, Adelaide (Australia); Fraser, Robert J. [Discipline of Medicine, University of Adelaide, Adelaide (Australia); Gastrointestinal Investigation Unit, Repatriation General Hospital, Adelaide (Australia); Botten, Rochelle J.; Di Matteo, Addolorata C.; Butters, Julie [Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide (Australia)

    2012-12-01

    Purpose: To characterize the prevalence, pathophysiology, and natural history of chronic radiation proctitis 5 years following radiation therapy (RT) for localized carcinoma of the prostate. Methods and Materials: Studies were performed in 34 patients (median age 68 years; range 54-79) previously randomly assigned to either 64 Gy in 32 fractions over 6.4 weeks or 55 Gy in 20 fractions over 4 weeks RT schedule using 2- and later 3-dimensional treatment technique for localized prostate carcinoma. Each patient underwent evaluations of (1) gastrointestinal (GI) symptoms (Modified Late Effects in Normal Tissues Subjective, Objective, Management and Analytic scales including effect on activities of daily living [ADLs]); (2) anorectal motor and sensory function (manometry and graded balloon distension); and (3) anal sphincteric morphology (endoanal ultrasound) before RT, at 1 month, and annually for 5 years after its completion. Results: Total GI symptom scores increased after RT and remained above baseline levels at 5 years and were associated with reductions in (1) basal anal pressures, (2) responses to squeeze and increased intra-abdominal pressure, (3) rectal compliance and (4) rectal volumes of sensory perception. Anal sphincter morphology was unchanged. At 5 years, 44% and 21% of patients reported urgency of defecation and rectal bleeding, respectively, and 48% impairment of ADLs. GI symptom scores and parameters of anorectal function and anal sphincter morphology did not differ between the 2 RT schedules or treatment techniques. Conclusions: Five years after RT for prostate carcinoma, anorectal symptoms continue to have a significant impact on ADLs of almost 50% of patients. These symptoms are associated with anorectal dysfunction independent of the RT schedules or treatment techniques reported here.

  6. Pathophysiology of nocturnal lower urinary tract symptoms in older patients with urinary incontinence.

    Science.gov (United States)

    Denys, Marie-Astrid; Decalf, Veerle; Kumps, Candy; Petrovic, Mirko; Goessaert, An-Sofie; Everaert, Karel

    2017-11-01

    To explore the mismatch between functional bladder capacity and nocturnal urine production, and to study the pathophysiology of an increased nocturnal urine production in older patients with urinary incontinence. The present prospective observational study included adults aged ≥65 years with urinary incontinence. Participants completed questionnaires, frequency volume charts and renal function profiles. The nocturnal lower urinary tract symptom index was defined as nocturnal urine output/maximum voided volume; the nocturnal polyuria index as nocturnal/24 h urine output. The median age (n = 95) was 74 years (69-79), 87% were women and 73% had nocturnal lower urinary tract symptoms (nocturnal urinary incontinence or nocturia ≥2). Participants with nocturnal lower urinary tract symptoms had a significantly higher nocturnal urine output (809 mL vs 650 mL; P = 0.001) and no significant difference in maximum voided volume (350 mL vs 437 mL; P = 0.079) compared with participants without nocturnal lower urinary tract symptoms. Participants (nocturnal polyuria index >33% [n = 56], nocturnal polyuria index >40% [n = 42], nocturnal lower urinary tract symptom index >1.87 [n = 51]) showed higher night-time diuresis rates, free water and sodium clearance compared with during the daytime. Controls (nocturnal polyuria index ≤33% [n = 26], nocturnal polyuria index ≤40% [n = 40], nocturnal lower urinary tract symptom index ≤1.87 [n = 44]) had no circadian rhythm in their diuresis rate or sodium clearance, but more nocturnal free water clearance compared with during the daytime. The majority of older adults with urinary incontinence present nocturnal lower urinary tract symptoms. An increased nocturnal sodium diuresis seems to be the only mechanism differentiating patients with nocturnal lower urinary tract symptoms from controls. © 2017 The Japanese Urological Association.

  7. Mathematical modeling of renal hemodynamics in physiology and pathophysiology.

    Science.gov (United States)

    Sgouralis, Ioannis; Layton, Anita T

    2015-06-01

    In addition to the excretion of metabolic waste and toxin, the kidney plays an indispensable role in regulating the balance of water, electrolyte, acid-base, and blood pressure. For the kidney to maintain proper functions, hemodynamic control is crucial. In this review, we describe representative mathematical models that have been developed to better understand the kidney's autoregulatory processes. We consider mathematical models that simulate glomerular filtration, and renal blood flow regulation by means of the myogenic response and tubuloglomerular feedback. We discuss the extent to which these modeling efforts have expanded the understanding of renal functions in health and disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Hepatorenal Syndrome In Nigeria: A Review of Pathophysiology ...

    African Journals Online (AJOL)

    Hepatorenal syndrome (HRS), a functional renal failure in patients with advanced chronic liver disease (CLD), cirrhosis or fulminant hepatic failure, in the absence of clinical or laboratory evidence of intrinsic renal disease is a common cause of admission into the intensive care unit. Despite the preponderance of CLD in our ...

  9. Neuropeptides in Alzheimer's Disease : From Pathophysiological Mechanisms to Therapeutic Opportunities

    NARCIS (Netherlands)

    Van Dam, Debby; Van Dijck, Annemie; Janssen, Leen; De Deyn, Peter Paul

    Neuropeptides are found throughout the entire nervous system where they can act as neurotransmitter, neuromodulator or neurohormone. In those functions, they play important roles in the regulation of cognition and behavior. In brain disorders like Alzheimer's disease (AD), where abnormal cognition

  10. Dopamine D2 receptors in the pathophysiology of insulin resistance

    NARCIS (Netherlands)

    Leeuw van Weenen, Judith Elisabeth de

    2011-01-01

    Extensive literature links the dopamine receptor D2 to insulin resistance and diabetes mellitus type 2. However, many aspects of the functional relationship remain unclear. In this thesis we focused on unraveling the characteristics of the interplay between dopamine D2 receptors and glucose

  11. Postoperative respiratory muscle dysfunction: pathophysiology and preventive strategies.

    Science.gov (United States)

    Sasaki, Nobuo; Meyer, Matthew J; Eikermann, Matthias

    2013-04-01

    Postoperative pulmonary complications are responsible for significant increases in hospital cost as well as patient morbidity and mortality; respiratory muscle dysfunction represents a contributing factor. Upper airway dilator muscles functionally resist the upper airway collapsing forces created by the respiratory pump muscles. Standard perioperative medications (anesthetics, sedatives, opioids, and neuromuscular blocking agents), interventions (patient positioning, mechanical ventilation, and surgical trauma), and diseases (lung hyperinflation, obesity, and obstructive sleep apnea) have differential effects on the respiratory muscle subgroups. These effects on the upper airway dilators and respiratory pump muscles impair their coordination and function and can result in respiratory failure. Perioperative management strategies can help decrease the incidence of postoperative respiratory muscle dysfunction. Such strategies include minimally invasive procedures rather than open surgery, early and optimal mobilizing of respiratory muscles while on mechanical ventilation, judicious use of respiratory depressant anesthetics and neuromuscular blocking agents, and noninvasive ventilation when possible.

  12. Fibromyalgia Syndrome: An Overview of Pathophysiology, Diagnosis and Management

    Directory of Open Access Journals (Sweden)

    Firdous Jahan

    2012-05-01

    Full Text Available Fibromyalgia Syndrome (FMS is a chronic condition causing pain, stiffness, and tenderness of the muscles, tendons, and joints. It is also characterized by restless sleep, tiredness, fatigue, anxiety, depression, and disturbances in bowel functions. The etiology of fibromyalgia remains unknown, but recent advances and discoveries have helped to unravel some of the mysteries of this disease. Research highlights some of the biochemical, metabolic, and immunoregulatory abnormalities associated with fibromyalgia. Management of FMS at the present time is very difficult as it has multiple etiological factors and psychological predispositions; however, a patient centered approach is essential to handle this problem.

  13. Redox Dysregulation in the Pathophysiology of Schizophrenia and Bipolar Disorder

    DEFF Research Database (Denmark)

    Kulak, Anita; Steullet, Pascal; Cabungcal, Jan-Harry

    2013-01-01

    Abstract Significance: Schizophrenia (SZ) and bipolar disorder (BD) are classified as two distinct diseases. However, accumulating evidence shows that both disorders share genetic, pathological, and epidemiological characteristics. Based on genetic and functional findings, redox dysregulation due...... abnormal prefrontal levels of glutathione (GSH), the major cellular redox regulator and antioxidant. Here we review experimental data from rodent models demonstrating that permanent as well as transient GSH deficit results in behavioral, morphological, electrophysiological, and neurochemical alterations...... hypofunction, elevated glutamate levels, impairment of parvalbumin GABA interneurons, abnormal neuronal synchronization, altered dopamine neurotransmission, and deficient myelination. Critical Issues: Treatment with the GSH precursor and antioxidant N-acetylcysteine normalizes some of those deficits in mice...

  14. Acute Brain Failure: Pathophysiology, Diagnosis, Management, and Sequelae of Delirium.

    Science.gov (United States)

    Maldonado, José R

    2017-07-01

    Delirium is the most common psychiatric syndrome found in the general hospital setting, with an incidence as high as 87% in the acute care setting. Delirium is a neurobehavioral syndrome caused by the transient disruption of normal neuronal activity secondary to systemic disturbances. The development of delirium is associated with increased morbidity, mortality, cost of care, hospital-acquired complications, placement in specialized intermediate and long-term care facilities, slower rate of recovery, poor functional and cognitive recovery, decreased quality of life, and prolonged hospital stays. This article discusses the epidemiology, known etiological factors, presentation and characteristics, prevention, management, and impact of delirium. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Physiology and pathophysiology of apoptosis in epithelial cells of the liver, pancreas, and intestine.

    Science.gov (United States)

    Jones, B A; Gores, G J

    1997-12-01

    Cell death of gastrointestinal epithelial cells occurs by a process referred to as apoptosis. In this review, we succinctly define apoptosis and summarize the role of apoptosis in the physiology and pathophysiology of epithelial cells in the liver, pancreas, and small and large intestine. The physiological mediators regulating apoptosis in gastrointestinal epithelial cells, when known, are discussed. Selected pathophysiological consequences of excessive apoptosis and inhibition of apoptosis are used to illustrate the significance of apoptosis in disease processes. These examples demonstrate that excessive apoptosis may result in epithelial cell atrophy, injury, and dysfunction, whereas inhibition of apoptosis results in hyperplasia and promotes malignant transformation. The specific cellular mechanisms responsible for dysregulation of epithelial cell apoptosis during pathophysiological disturbances are emphasized. Potential future areas of physiological research regarding apoptosis in gastrointestinal epithelia are highlighted when appropriate.

  16. Pathophysiological and behavioral deficits in developing mice following rotational acceleration-deceleration traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Guoxiang Wang

    2018-01-01

    Full Text Available Abusive head trauma (AHT is the leading cause of death from trauma in infants and young children. An AHT animal model was developed on 12-day-old mice subjected to 90° head extension-flexion sagittal shaking repeated 30, 60, 80 and 100 times. The mortality and time until return of consciousness were dependent on the number of repeats and severity of the injury. Following 60 episodes of repeated head shakings, the pups demonstrated apnea and/or bradycardia immediately after injury. Acute oxygen desaturation was observed by pulse oximetry during respiratory and cardiac suppression. The cerebral blood perfusion was assessed by laser speckle contrast analysis (LASCA using a PeriCam PSI system. There was a severe reduction in cerebral blood perfusion immediately after the trauma that did not significantly improve within 24 h. The injured mice began to experience reversible sensorimotor function at 9 days postinjury (dpi, which had completely recovered at 28 dpi. However, cognitive deficits and anxiety-like behavior remained. Subdural/subarachnoid hemorrhage, damage to the brain-blood barrier and parenchymal edema were found in all pups subjected to 60 insults. Proinflammatory response and reactive gliosis were upregulated at 3 dpi. Degenerated neurons were found in the cerebral cortex and olfactory tubercles at 30 dpi. This mouse model of repetitive brain injury by rotational head acceleration-deceleration partially mimics the major pathophysiological and behavioral events that occur in children with AHT. The resultant hypoxia/ischemia suggests a potential mechanism underlying the secondary rotational acceleration-deceleration-induced brain injury in developing mice.

  17. Sex and Gender Differences in Risk, Pathophysiology and Complications of Type 2 Diabetes Mellitus

    Science.gov (United States)

    Harreiter, Jürgen; Pacini, Giovanni

    2016-01-01

    The steep rise of type 2 diabetes mellitus (T2DM) and associated complications go along with mounting evidence of clinically important sex and gender differences. T2DM is more frequently diagnosed at lower age and body mass index in men; however, the most prominent risk factor, which is obesity, is more common in women. Generally, large sex-ratio differences across countries are observed. Diversities in biology, culture, lifestyle, environment, and socioeconomic status impact differences between males and females in predisposition, development, and clinical presentation. Genetic effects and epigenetic mechanisms, nutritional factors and sedentary lifestyle affect risk and complications differently in both sexes. Furthermore, sex hormones have a great impact on energy metabolism, body composition, vascular function, and inflammatory responses. Thus, endocrine imbalances relate to unfavorable cardiometabolic traits, observable in women with androgen excess or men with hypogonadism. Both biological and psychosocial factors are responsible for sex and gender differences in diabetes risk and outcome. Overall, psychosocial stress appears to have greater impact on women rather than on men. In addition, women have greater increases of cardiovascular risk, myocardial infarction, and stroke mortality than men, compared with nondiabetic subjects. However, when dialysis therapy is initiated, mortality is comparable in both males and females. Diabetes appears to attenuate the protective effect of the female sex in the development of cardiac diseases and nephropathy. Endocrine and behavioral factors are involved in gender inequalities and affect the outcome. More research regarding sex-dimorphic pathophysiological mechanisms of T2DM and its complications could contribute to more personalized diabetes care in the future and would thus promote more awareness in terms of sex- and gender-specific risk factors. PMID:27159875

  18. Calciphylaxis and Martorell Hypertensive Ischemic Leg Ulcer: Same Pattern - One Pathophysiology.

    Science.gov (United States)

    Hafner, Jürg

    2016-01-01

    This review presents a closer look at four diseases which are probably closely related to one another pathophysiologically: (a) calciphylaxis (distal pattern); (b) calciphylaxis (proximal pattern); (c) Martorell hypertensive ischemic leg ulcer; (d) calciphylaxis with normal renal and parathyroid function (synonym: eutrophication). The four diseases have largely the same risk factors: (1) arterial hypertension, (2) diabetes mellitus (types 1 and 2), (3) secondary or tertiary hyperparathyroidism (in end-stage kidney disease) and (4) oral anticoagulation with vitamin K antagonists. They share the same clinical patterns: necrotizing livedo, skin infarctions at typical locations and acral gangrene in calciphylaxis. They also share the same histopathology: ischemic subcutaneous arteriolosclerosis and small-artery disease and 'miniaturizing' Mönckeberg medial calcinosis. The treatment concept for the acute phase of the diseases is also broadly similar. In addition to an optimized control of the cardiovascular risk factors, a proactive wound approach (necrosectomy, negative pressure wound treatment with vacuum dressings, and early skin grafts supported by systemic antibiotic therapy) leads most rapidly and effectively to a reduction of the initially severe wound pain, and finally to complete healing of the wound. Oral anticoagulation with vitamin K antagonists should be stopped. In extensive cases, the use of intravenous sodium thiosulfate is recommended. All four diagnoses are little known in the medical schools of most countries. The need to improve familiarity with these four closely related disorders is therefore great. In particular, the risk of confusion with pyoderma gangrenosum is a major diagnostic problem which can lead to false and even damaging treatment. © 2016 S. Karger AG, Basel.

  19. Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiology of human obesity.

    Science.gov (United States)

    Pigeyre, Marie; Yazdi, Fereshteh T; Kaur, Yuvreet; Meyre, David

    2016-06-01

    In high-, middle- and low-income countries, the rising prevalence of obesity is the underlying cause of numerous health complications and increased mortality. Being a complex and heritable disorder, obesity results from the interplay between genetic susceptibility, epigenetics, metagenomics and the environment. Attempts at understanding the genetic basis of obesity have identified numerous genes associated with syndromic monogenic, non-syndromic monogenic, oligogenic and polygenic obesity. The genetics of leanness are also considered relevant as it mirrors some of obesity's aetiologies. In this report, we summarize ten genetically elucidated obesity syndromes, some of which are involved in ciliary functioning. We comprehensively review 11 monogenic obesity genes identified to date and their role in energy maintenance as part of the leptin-melanocortin pathway. With the emergence of genome-wide association studies over the last decade, 227 genetic variants involved in different biological pathways (central nervous system, food sensing and digestion, adipocyte differentiation, insulin signalling, lipid metabolism, muscle and liver biology, gut microbiota) have been associated with polygenic obesity. Advances in obligatory and facilitated epigenetic variation, and gene-environment interaction studies have partly accounted for the missing heritability of obesity and provided additional insight into its aetiology. The role of gut microbiota in obesity pathophysiology, as well as the 12 genes associated with lipodystrophies is discussed. Furthermore, in an attempt to improve future studies and merge the gap between research and clinical practice, we provide suggestions on how high-throughput '-omic' data can be integrated in order to get closer to the new age of personalized medicine. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  20. Stress urinary incontinence in pregnant women: a review of prevalence, pathophysiology, and treatment.

    Science.gov (United States)

    Sangsawang, Bussara; Sangsawang, Nucharee

    2013-06-01

    Stress urinary incontinence (SUI) is the most common type of urinary incontinence (UI) in pregnant women and is known to have detrimental effects on the quality of life in approximately 54.3 %. Pregnancy is the main risk factor for the development of SUI. This review provides details of the pathophysiology leading to SUI in pregnant women and SUI prevalence and treatment during pregnancy. We conducted a PubMed search for English-language and human-study articles registered from January 1990 to September 2012. This search was performed for articles dealing with prevalence and treatment of SUI during pregnancy. In the intervention studies, we included studies that used a randomized controlled trial (RCT) design or studies comparing a treatment intervention to no treatment. A total of 534 articles were identified; 174 full-text articles were reviewed, and 28 of them met eligibility criteria and are reported on here. The mean prevalence of SUI during pregnancy was 41 % (18.6-60 %) and increased with gestational age. The increasing pressure of the growing uterus and fetal weight on pelvic-floor muscles (PFM) throughout pregnancy, together with pregnancy-related hormonal changes, may lead to reduced PFM strength as well as their supportive and sphincteric function. These cause mobility of the bladder neck and urethra, leading to urethral sphincter incompetence. Pelvic floor muscle exercise (PFME) is a safe and effective treatment for SUI during pregnancy, without significant adverse effects. Understanding these issues can be useful for health-care professionals when informing and counseling pregnant women to help prevent SUI during pregnancy and the postpartum period.

  1. Pathophysiology, diagnosis, and management of glaucoma associated with Sturge-Weber syndrome.

    Science.gov (United States)

    Javaid, Usman; Ali, Muhammad Hassaan; Jamal, Samreen; Butt, Nadeem Hafeez

    2018-02-01

    Sturge-Weber syndrome (SWS), also known as encephalotrigeminal angiomatosis, is a condition which includes leptomeningeal hemangioma, facial angiomatosis or nevus flammeus, and ocular changes. SWS can lead to severe complications of anterior segment involving conjunctiva and eyelids, whereas posterior segment of the eye may also be affected by diffuse choroidal hemorrhages. This article was written with the objectives to determine the pathophysiology, diagnosis, and treatment of glaucoma associated with this rare and challenging disorder. A detailed literature search was conducted on PubMed, EMBASE, Cochrane Library, and Google Scholar using the key words. Forty-five articles matched our inclusion criteria that were included in this systematic review. Glaucoma is the one of the commonest ocular manifestations of SWS. It is caused by anterior chamber malformations, increased pressure in the episcleral veins, and changes in ocular hemodynamics. Glaucoma associated with SWS is usually congenital but can develop adults as well. The treatment of glaucoma associated with SWS is quite challenging because of early-onset, severe visual field impairment at the time of diagnosis, and unresponsiveness to standard medical treatment. Several surgical procedures have been devised but the long-term control of the intraocular pressure and visual function remain unsatisfactory. Modifications in the filtration surgery techniques and use of newer anti-fibrotic agents have produced good control of intraocular pressure. Management of glaucoma associated with SWS is multi-dimensional and needs both medical and surgical interventions for better control. The treatment should be devised on case to case basis depending upon the intraocular pressure, stage of the disease, and type of glaucoma.

  2. A pathophysiological role of TRPV1 in ischemic injury after transient focal cerebral ischemia in mice

    Energy Technology Data Exchange (ETDEWEB)

    Miyanohara, Jun [Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University (Japan); Shirakawa, Hisashi, E-mail: shirakaw@pharm.kyoto-u.ac.jp [Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University (Japan); Sanpei, Kazuaki [Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University (Japan); Nakagawa, Takayuki [Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University (Japan); Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital (Japan); Kaneko, Shuji [Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University (Japan)

    2015-11-20

    Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel with high Ca{sup 2+} permeability, which functions as a polymodal nociceptor activated by heat, protons and several vanilloids, including capsaicin and anandamide. Although TRPV1 channels are widely distributed in the mammalian brain, their pathophysiological roles in the brain remain to be elucidated. In this study, we investigated whether TRPV1 is involved in cerebral ischemic injury using a middle cerebral artery (MCA) occlusion model in wild-type (WT) and TRPV1-knockout (KO) mice. For transient ischemia, the left MCA of C57BL/6 mice was occluded for 60 min and reperfused at 1 and 2 days after ischemia. We found that neurological and motor deficits, and infarct volumes in TRPV1-KO mice were lower than those of WT mice. Consistent with these results, intracerebroventricular injection of a TRPV1 antagonist, capsazepine (20 nmol), 30 min before the onset of ischemia attenuated neurological and motor deficits and improved infarct size without influencing cerebral blood flow in the occluded MCA territory. The protective effect of capsazepine on ischemic brain damage was not observed in TRPV1-KO mice. WT and TRPV1-KO mice did not show any differences with respect to the increased number of Iba1-positive microglia/macrophages, GFAP-positive astrocytes, and Gr1-positive neutrophils at 1 and 2 days after cerebral ischemia. Taken together, we conclude that brain TRPV1 channels are activated by ischemic stroke and cause neurological and motor deficits and infarction after brain ischemia. - Highlights: • We investigated whether TRPV1 is involved in transient ischemic brain damage in mice. • Neurological deficits and infarct volumes were lower in TRPV1-KO mice than in WT mice. • Injection of a TRPV1 antagonist, capsazepine, attenuated neurological deficits and improved infarct size. • No differences in astrocytic or microglial activation were observed between WT and TRPV1-KO mice.

  3. Sleep disturbances in women with polycystic ovary syndrome: prevalence, pathophysiology, impact and management strategies

    Science.gov (United States)

    Moore, Vivienne M; Van Ryswyk, Emer M; Varcoe, Tamara J; Rodgers, Raymond J; March, Wendy A; Moran, Lisa J; Avery, Jodie C; McEvoy, R Doug; Davies, Michael J

    2018-01-01

    Polycystic ovary syndrome (PCOS) is a complex endocrine disorder affecting the reproductive, metabolic and psychological health of women. Clinic-based studies indicate that sleep disturbances and disorders including obstructive sleep apnea and excessive daytime sleepiness occur more frequently among women with PCOS compared to comparison groups without the syndrome. Evidence from the few available population-based studies is supportive. Women with PCOS tend to be overweight/obese, but this only partly accounts for their sleep problems as associations are generally upheld after adjustment for body mass index; sleep problems also occur in women with PCOS of normal weight. There are several, possibly bidirectional, pathways through which PCOS is associated with sleep disturbances. The pathophysiology of PCOS involves hyperandrogenemia, a form of insulin resistance unique to affected women, and possible changes in cortisol and melatonin secretion, arguably reflecting altered hypothalamic–pituitary–adrenal function. Psychological and behavioral pathways are also likely to play a role, as anxiety and depression, smoking, alcohol use and lack of physical activity are also common among women with PCOS, partly in response to the distressing symptoms they experience. The specific impact of sleep disturbances on the health of women with PCOS is not yet clear; however, both PCOS and sleep disturbances are associated with deterioration in cardiometabolic health in the longer term and increased risk of type 2 diabetes. Both immediate quality of life and longer-term health of women with PCOS are likely to benefit from diagnosis and management of sleep disorders as part of interdisciplinary health care. PMID:29440941

  4. Sex and Gender Differences in Risk, Pathophysiology and Complications of Type 2 Diabetes Mellitus.

    Science.gov (United States)

    Kautzky-Willer, Alexandra; Harreiter, Jürgen; Pacini, Giovanni

    2016-06-01

    The steep rise of type 2 diabetes mellitus (T2DM) and associated complications go along with mounting evidence of clinically important sex and gender differences. T2DM is more frequently diagnosed at lower age and body mass index in men; however, the most prominent risk factor, which is obesity, is more common in women. Generally, large sex-ratio differences across countries are observed. Diversities in biology, culture, lifestyle, environment, and socioeconomic status impact differences between males and females in predisposition, development, and clinical presentation. Genetic effects and epigenetic mechanisms, nutritional factors and sedentary lifestyle affect risk and complications differently in both sexes. Furthermore, sex hormones have a great impact on energy metabolism, body composition, vascular function, and inflammatory responses. Thus, endocrine imbalances relate to unfavorable cardiometabolic traits, observable in women with androgen excess or men with hypogonadism. Both biological and psychosocial factors are responsible for sex and gender differences in diabetes risk and outcome. Overall, psychosocial stress appears to have greater impact on women rather than on men. In addition, women have greater increases of cardiovascular risk, myocardial infarction, and stroke mortality than men, compared with nondiabetic subjects. However, when dialysis therapy is initiated, mortality is comparable in both males and females. Diabetes appears to attenuate the protective effect of the female sex in the development of cardiac diseases and nephropathy. Endocrine and behavioral factors are involved in gender inequalities and affect the outcome. More research regarding sex-dimorphic pathophysiological mechanisms of T2DM and its complications could contribute to more personalized diabetes care in the future and would thus promote more awareness in terms of sex- and gender-specific risk factors.

  5. A pathophysiological role of TRPV1 in ischemic injury after transient focal cerebral ischemia in mice

    International Nuclear Information System (INIS)

    Miyanohara, Jun; Shirakawa, Hisashi; Sanpei, Kazuaki; Nakagawa, Takayuki; Kaneko, Shuji

    2015-01-01

    Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel with high Ca"2"+ permeability, which functions as a polymodal nociceptor activated by heat, protons and several vanilloids, including capsaicin and anandamide. Although TRPV1 channels are widely distributed in the mammalian brain, their pathophysiological roles in the brain remain to be elucidated. In this study, we investigated whether TRPV1 is involved in cerebral ischemic injury using a middle cerebral artery (MCA) occlusion model in wild-type (WT) and TRPV1-knockout (KO) mice. For transient ischemia, the left MCA of C57BL/6 mice was occluded for 60 min and reperfused at 1 and 2 days after ischemia. We found that neurological and motor deficits, and infarct volumes in TRPV1-KO mice were lower than those of WT mice. Consistent with these results, intracerebroventricular injection of a TRPV1 antagonist, capsazepine (20 nmol), 30 min before the onset of ischemia attenuated neurological and motor deficits and improved infarct size without influencing cerebral blood flow in the occluded MCA territory. The protective effect of capsazepine on ischemic brain damage was not observed in TRPV1-KO mice. WT and TRPV1-KO mice did not show any differences with respect to the increased number of Iba1-positive microglia/macrophages, GFAP-positive astrocytes, and Gr1-positive neutrophils at 1 and 2 days after cerebral ischemia. Taken together, we conclude that brain TRPV1 channels are activated by ischemic stroke and cause neurological and motor deficits and infarction after brain ischemia. - Highlights: • We investigated whether TRPV1 is involved in transient ischemic brain damage in mice. • Neurological deficits and infarct volumes were lower in TRPV1-KO mice than in WT mice. • Injection of a TRPV1 antagonist, capsazepine, attenuated neurological deficits and improved infarct size. • No differences in astrocytic or microglial activation were observed between WT and TRPV1-KO mice.

  6. Hydroxychloroquine-induced cardiomyopathy: case report, pathophysiology, diagnosis, and treatment.

    Science.gov (United States)

    Yogasundaram, Haran; Putko, Brendan N; Tien, Julia; Paterson, D Ian; Cujec, Bibiana; Ringrose, Jennifer; Oudit, Gavin Y

    2014-12-01

    Drug-induced heart and vascular disease remains an important health burden. Hydroxychloroquine and its predecessor chloroquine are medications commonly used in the treatment of systemic lupus erythematosus, rheumatoid arthritis, and other connective tissue disorders. Hydroxychloroquine interferes with malarial metabolites, confers immunomodulatory effects, and also affects lysosomal function. Clinical monitoring and early recognition of toxicity is an important management strategy in patients who undergo long-term treatment with hydroxychloroquine. Retinal toxicity, neuromyopathy, and cardiac disease are recognized adverse effects of hydroxychloroquine. Immediate withdrawal of hydroxychloroquine is essential if toxicity is suspected because of the early reversibility of cardiomyopathy. In addition to recommended ophthalmological screening, regular screening with 12-lead electrocardiogram and transthoracic echocardiography to detect conduction system disease and/or biventricular morphological or functional changes should be considered in hydroxychloroquine-treated patients. Cardiac magnetic resonance imaging and endomyocardial biopsy are valuable tools to provide prognostic insights and confirm the diagnosis of hydroxychloroquine-induced cardiomyopathy. In conclusion, chronic use of hydroxychloroquine can result in an acquired lysosomal storage disorder, leading to a drug-induced cardiomyopathy characterized by concentric hypertrophy and conduction abnormalities associated with increased adverse clinical outcomes and mortality. Copyright © 2014 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  7. Cognitive dysfunction in depression - pathophysiology and novel targets.

    Science.gov (United States)

    Carvalho, Andre F; Miskowiak, Kamilla K; Hyphantis, Thomas N; Kohler, Cristiano A; Alves, Gilberto S; Bortolato, Beatrice; G Sales, Paulo Marcelo; Machado-Vieira, Rodrigo; Berk, Michael; McIntyre, Roger S

    2014-01-01

    Major depressive disorder (MDD) is associated with cognitive dysfunction encompassing several domains, including memory, executive function, processing speed and attention. Cognitive deficits persist in a significant proportion of patients even in remission, compromising psychosocial functioning and workforce performance. While monoaminergic antidepressants may improve cognitive performance in MDD, most antidepressants have limited clinical efficacy. The overarching aims of this review were: (1) to synthesize extant literature on putative biological pathways related to cognitive dysfunction in MDD and (2) to review novel neurotherapeutic targets for cognitive enhancement in MDD. We found that reciprocal and overlapping biological pathways may contribute to cognitive dysfunction in MDD, including an hyperactive hypothalamic-pituitary-adrenal axis, an increase in oxidative and nitrosative stress, inflammation (e.g., enhanced production of pro-inflammatory cytokines), mitochondrial dysfunction, increased apoptosis as well as a diminished neurotrophic support. Several promising neurotherapeutic targets were identified such as minocycline, statins, anti-inflammatory compounds, N-acetylcysteine, omega-3 poliunsaturated fatty acids, erythropoietin, thiazolidinediones, glucagon-like peptide-1 analogues, S-adenosyl-l-methionine (SAMe), cocoa flavonols, creatine monohydrate and lithium. Erythropoietin and SAMe had pro-cognitive effects in randomized controlled trials (RCT) involving MDD patients. Despite having preclinical and/or preliminary evidences from trials suggesting possible efficacy as novel cognitive enhancing agents for MDD, no RCT to date was performed for most of the other therapeutic targets reviewed herein. In conclusion, multiple biological pathways are involved in cognitive dysfunction in MDD. RCTs testing genuinely novel pro-cognitive compounds for MDD are warranted.

  8. Intracellular renin disrupts chemical communication between heart cells. Pathophysiological implications

    Directory of Open Access Journals (Sweden)

    Walmor eDe Mello

    2015-01-01

    Full Text Available The influence of intracellular renin on the process of chemical communication between cardiac cells was investigated in cell pairs isolated from the left ventricle of adult Wistar Kyoto rats. The enzyme together with Lucifer yellow CH was dialyzed into one cell of the pair using the whole cell clamp technique. The diffusion of the dye in the dialyzed and in non-dialyzed cell was followed by measuring the intensity of fluorescence in both cells as a function of time. The results indicated that; 1 under normal conditions, Lucifer Yellow flows from cell-to-cell through gap junctions; 2 the intracellular dialysis of renin (100nM disrupts chemical communication-an effect enhanced by simultaneous administration of angiotensinogen (100nM; 3 enalaprilat (10-9M administered to the cytosol together with renin reduced drastically the uncoupling action of the enzyme; 4 aliskiren (10-8M inhibited the effect of renin on chemical communication;5 the possible role of intracellular renin independently of angiotensin II (Ang II was evaluated including the increase of the inward calcium current elicited by the enzyme and the possible role of oxidative stress on the disruption of cell communication; 6 the possible harmful versus the beneficial effect of intracellular renin during myocardial infarction was discussed;7 the present results indicate that intracellular renin due to internalization or in situ synthesis, causes a severe impairment of chemical communication in the heart resulting in derangement of metabolic cooperation with serious consequences for heart function.

  9. Traumatic brain injury alters methionine metabolism: implications for pathophysiology

    Directory of Open Access Journals (Sweden)

    Pramod K Dash

    2016-04-01

    Full Text Available Methionine is an essential proteinogenic amino acid that is obtained from the diet. In addition to its requirement for protein biosynthesis, methionine is metabolized to generate metabolites that play key roles in a number of cellular functions. Metabolism of methionine via the transmethylation pathway generates S-adenosylmethionine (SAM that serves as the principal methyl (-CH3 donor for DNA and histone methyltransferases to regulate epigenetic changes in gene expression. SAM is also required for methylation of other cellular proteins that serve various functions and phosphatidylcholine synthesis that participate in cellular signaling.. Under conditions of oxidative stress, homocysteine (which is derived from SAM enters the transsulfuration pathway to generate glutathione, an important cytoprotective molecule against oxidative damage. As both experimental and clinical studies have shown that traumatic brain injury (TBI alters DNA and histone methylation and causes oxidative stress, we examined if TBI alters the plasma levels of methionine and its metabolites in human patients. Blood samples were collected from healthy volunteers (n = 20 and patients with mild TBI (GCS > 12; n = 20 or severe TBI (GCS < 8; n = 20 within the first 24 hours of injury. The levels of methionine and its metabolites in the plasma samples were analyzed by either liquid chromatography-mass spectrometry or gas chromatography-mass spectrometry (LC-MS or GC-MS. Severe TBI decreased the levels of methionine, SAM, betaine and 2-methylglycine as compared to healthy volunteers, indicating a decrease in metabolism through the transmethylation cycle. In addition, precursors for the generation of glutathione, cysteine and glycine were also found to be decreased as were intermediate metabolites of the gamma-glutamyl cycle (gamma-glutamyl amino acids and 5-oxoproline. Mild TBI also decreased the levels of methionine, α-ketobutyrate, 2 hydroxybutyrate and glycine, albeit to lesser

  10. Chronic perineal pain: current pathophysiological aspects, diagnostic approaches and treatment.

    Science.gov (United States)

    Andromanakos, Nikolaos P; Kouraklis, Grigorios; Alkiviadis, Kostakis

    2011-01-01

    Chronic perineal pain is the anorectal and perineal pain without underlying organic disease, anorectal or endopelvic, which has been excluded by careful physical examination, radiological and endoscopic investigations. A variety of neuromuscular disorders of the pelvic floor lead to the different pathological conditions such as anorectal incontinence, urinary incontinence and constipation of obstructed defecation, sexual dysfunction and pain syndromes. The most common functional disorders of the pelvic floor muscles, accompanied by perineal pain are levator ani syndrome, proctalgia fugax, myofascial syndrome and coccygodynia. In the diagnosis of these syndromes, contributing to a thorough history, physical examination, selected specialized investigations and the exclusion of organic disease with proctalgia is carried out. Accurate diagnosis of the syndromes helps in choosing an appropriate treatment and in avoiding unnecessary and ineffective surgical procedures, which often are performed in an attempt to alleviate the patient's symptoms.

  11. Type 2 diabetes mellitus in the pathophysiology of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Aparecida Marcelino de Nazareth

    Full Text Available ABSTRACT Both Alzheimer's disease (AD and type 2 diabetes mellitus (DM are two common forms of disease worldwide and many studies indicate that people with diabetes, especially DM, are at higher risk of developing AD. AD is characterized by progressive cognitive decline and accumulation of β-amyloid (Aβ forming senile plaques. DM is a metabolic disorder characterized by hyperglycemia in the context of insulin resistance and relative lack of insulin. Both diseases also share common characteristics such as loss of cognitive function and inflammation. Inflammation resulting from Aβ further induces production of Aβ1-42 peptides. Inflammation due to overnutrition induces insulin resistance and consequently DM. Memory deficit and a decrease in GLUT4 and hippocampal insulin signaling have been observed in animal models of insulin resistance. The objective of this review was to show the shared characteristics of AD and DM.

  12. The Donders model of the circulation in normo- and pathophysiology

    DEFF Research Database (Denmark)

    Noordergraaf, Gerrit J.; Ottesen, Johnny T.; Kortsmit, Wil J.P.M.

    2006-01-01

    the continuum of physiological conditions to cardiopulmonary resuscitation effects within the circulation.   Within the model, Harvey's view of the circulation has been broadened to include impedance-defined flow as a unifying concept. The cardiac function curve, the relation between ventricular filling...... and output, changes during exercise. First, it rotates counterclockwise and stretches along the output axis, second, it shifts along the filling axis. The first is induced by sympathetic control, the second by respiratory control. The model shows that depth of respiration, sympathetic stimulation of cardiac......A model of the closed human cardiovascular loop is developed. This model, using one set of 88 equations, allows variations from normal resting conditions to exercise, as well as to the extreme condition of a circulation following cardiac arrest. The principal purpose of the model is to evaluate...

  13. Rat parotid gland pathophysiology following 137Cs irradiation

    International Nuclear Information System (INIS)

    Rice, J.C.; Izutsu, K.T.; Truelove, E.L.; Menard, T.W.; Anderson, M.C.; Morton, T.H.; Siegel, I.A.

    1982-01-01

    Changes in rat parotid gland function were measured between 3 and 30 days following exposure to 1800 R of 137 Cs irradiation to the head. Glandular fluid secretion capability as indicated by volume of secretion, maximum rate of secretion, and duration of secretion following pilocarpine stimulation decreased concomitantly with gland weight following irradiation. Thus gland weight is probably indicative of residual glandular-potential for fluid secretion following irradiation. The relation between salivary sodium concentration and flow rate was assumed to be indicative of glandular electrolyte transport capability. Salivary sodium concentrations were not elevated over control values at any flow rate. Therefore, there is no evidence for an irradiation-induced defect in the ductal sodium resorption mechanism. Rather, the observed salivary sodium changes are consistent with a decrease in the relative glandular proportion of acini to ducts

  14. Pathophysiological Role of Neuroinflammation in Neurodegenerative Diseases and Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Heeok Hong

    2016-05-01

    Full Text Available Brain diseases and disorders such as Alzheimer disease, Parkinson disease, depression, schizophrenia, autism, and addiction lead to reduced quality of daily life through abnormal thoughts, perceptions, emotional states, and behavior. While the underlying mechanisms remain poorly understood, human and animal studies have supported a role of neuroinflammation in the etiology of these diseases. In the central nervous system, an increased inflammatory response is capable of activating microglial cells, leading to the release of pro-inflammatory cytokines including interleukin (IL-1β, IL-6, and tumor necrosis factor-α. In turn, the pro-inflammatory cytokines aggravate and propagate neuroinflammation, degenerating healthy neurons and impairing brain functions. Therefore, activated microglia may play a key role in neuroinflammatory processes contributing to the pathogenesis of psychiatric disorders and neurodegeneration.

  15. Melatonin and diabetes: from pathophysiology to the treatment perspectives

    Directory of Open Access Journals (Sweden)

    Vladimir Iosifovich Konenkov

    2013-06-01

    Full Text Available Pineal hormone melatonin synchronizes insulin secretion and glucose homeostasis with solar periods. Misalliance between melatonin-mediated circadian rhythms and insulin secretion characterizes diabetes mellitus type 1 (T1DM and type 2 (T2DM. Insulin deficiency in T1DM is accompanied by increased melatonin production. Conversely, T2DM is characterized by diminished melatonin secretion. In genome-wide association studies the variants of melatonin receptor MT2 gene (rs1387153 and rs10830963 were associated with fasting glucose, beta-cell function and T2DM. In experimental models of diabetes melatonin enhanced beta-cell proliferation and neogenesis, improved insulin resistance and alleviated oxidative stress in retina and kidneys. However, further investigation is required to assess the therapeutic value of melatonin in diabetic patients.

  16. Contribution to the pathophysiology of the postirradiation thrombocytopathy

    Energy Technology Data Exchange (ETDEWEB)

    Dienstbier, L; Pospisil, J; Zitko, M; Sadilkova, M; Polivkova, J [Karlova Univ., Prague (Czechoslovakia)

    1983-01-01

    Postirradiation damage of the thrombogenesis is one of the causes in developing a postirradiation hemorrhagic syndrome. In rats was demonstrated, that dependent on the dose of a total irradiation, a disturbance of the DNA replication on the level of developing megakaryocytes in the bone marrow, a derangement of the maturation process of the megakaryocytes and a delayed release of blood platelets into the peripheral blood were noted. The damage of the thrombopoiesis is not only the cause of numerical changes in peripheral thrombocyte counts, but also of their impaired function. In rabbits, after a total body irradiation with 5.0 Gy, a decrease of active thromboplastin independent on the decrease of blood platelets, was shown. The phospholipid metabolism of rabbit platelets an increased in vitro incorporation of /sup 32/P in phospholipids revealed after 4.0 Gy total body irradiation /sup 35/S in vitro incorporation demonstrated, that blood platelets released into the peripheral circulation on the 11th day after irradiation, are found in the moment of irradiation in the stage of promegakaryocytes. After total body irradiation, in thrombocyte functional tests a diminished retraction of the blood coagulum and a decreased production of malonylaldehyde were noted, but no significant changes in the adhesion and aggregation of thrombocytes after ADP and in PF/sub 3/-A and PF/sub 3/-F tests could be registered. Activity changes in thrombocytic lysosomal enzymes were observed in 8.0 Gy total body irradiated rats. During the period, when thrombocytes released from radiation damaged bone marrow were present in the peripheral blood, an activity increase of acid phosphatase and ..beta..-glucuronidase was demonstrated.

  17. Selenoproteins in human body: focus on thyroid pathophysiology.

    Science.gov (United States)

    Valea, Ana; Georgescu, Carmen Emanuela

    2018-06-05

    Selenium (Se) has a multilevel, complex and dynamic effect on the human body as a major component of selenocysteine, incorporated into selenoproteins, which include the selenocysteine-containing enzymes iodothyronine deiodinases. At the thyroid level, these proteins play an essential role in antioxidant protection and hormone metabolism. This is a narrative review based on PubMed/Medline database research regarding thyroid physiology and conditions with Se and Se-protein interferences. In humans, Se-dependent enzyme functions are best expressed through optimal Se intake, although there is gap in our knowledge concerning the precise mechanisms underlying the interrelation. There is a good level of evidence linking low serum Se to autoimmune thyroid diseases and, to a lesser extent, differentiated thyroid cancer. However, when it comes to routine supplementation, the results are heterogeneous, except in the case of mild Graves' orbitopathy. Autoimmune hypothyroidism is associated with a state of higher oxidative stress, but not all studies found an improvement of thyroid function after Se was introduced as antioxidant support. Meanwhile, no routine supplementation is recommended. Low Se intake is correlated with an increased risk of developing antithyroid antibodies, its supplementation decreasing their titres; there is also a potential reduction in levothyroxine replacement dose required for hypothyroidism and/or the possibility that it prevents progression of subclinical hypothyroidism, although not all studies agree. In thyroid-associated orbitopathy, euthyroidism is more rapidly achieved if the micronutrient is added to traditional drugs, while controls appear to benefit from the microelement only if they are deficient; thus, a basal assay of Se appears advisable to better select patients who need substitution. Clearly, further Se status biomarkers are required. Future introduction of individual supplementation algorithms based on baseline micronutrient levels

  18. Role of Liver X Receptor in AD Pathophysiology.

    Directory of Open Access Journals (Sweden)

    Adrián G Sandoval-Hernández

    Full Text Available Alzheimer's disease (AD is the major cause of dementia worldwide. The pharmacological activation of nuclear receptors (Liver X receptors: LXRs or Retinoid X receptors: RXR has been shown to induce overexpression of the ATP-Binding Cassette A1 (ABCA1 and Apolipoprotein E (ApoE, changes that are associated with improvement in cognition and reduction of amyloid beta pathology in amyloidogenic AD mouse models (i.e. APP, PS1: 2tg-AD. Here we investigated whether treatment with a specific LXR agonist has a measurable impact on the cognitive impairment in an amyloid and Tau AD mouse model (3xTg-AD: 12-months-old; three months treatment. The data suggests that the LXR agonist GW3965 is associated with increased expression of ApoE and ABCA1 in the hippocampus and cerebral cortex without a detectable reduction of the amyloid load. We also report that most cells overexpressing ApoE (86±12% are neurons localized in the granular cell layer of the hippocampus and entorhinal cortex. In the GW3965 treated 3xTg-AD mice we also observed reduction in astrogliosis and increased number of stem and proliferating cells in the subgranular zone of the dentate gyrus. Additionally, we show that GW3965 rescued hippocampus long term synaptic plasticity, which had been disrupted by oligomeric amyloid beta peptides. The effect of GW3965 on synaptic function was protein synthesis dependent. Our findings identify alternative functional/molecular mechanisms by which LXR agonists may exert their potential benefits as a therapeutic strategy against AD.

  19. Pathophysiologic Changes in Extracellular pH Modulate Parathyroid Calcium-Sensing Receptor Activity and Secretion via a Histidine-Independent Mechanism.

    Science.gov (United States)

    Campion, Katherine L; McCormick, Wanda D; Warwicker, Jim; Khayat, Mohd Ezuan Bin; Atkinson-Dell, Rebecca; Steward, Martin C; Delbridge, Leigh W; Mun, Hee-Chang; Conigrave, Arthur D; Ward, Donald T

    2015-09-01

    The calcium-sensing receptor (CaR) modulates renal calcium reabsorption and parathyroid hormone (PTH) secretion and is involved in the etiology of secondary hyperparathyroidism in CKD. Supraphysiologic changes in extracellular pH (pHo) modulate CaR responsiveness in HEK-293 (CaR-HEK) cells. Therefore, because acidosis and alkalosis are associated with altered PTH secretion in vivo, we examined whether pathophysiologic changes in pHo can significantly alter CaR responsiveness in both heterologous and endogenous expression systems and whether this affects PTH secretion. In both CaR-HEK and isolated bovine parathyroid cells, decreasing pHo from 7.4 to 7.2 rapidly inhibited CaR-induced intracellular calcium (Ca(2+)i) mobilization, whereas raising pHo to 7.6 potentiated responsiveness to extracellular calcium (Ca(2+)o). Similar pHo effects were observed for Ca(2+)o-induced extracellular signal-regulated kinase phosphorylation and actin polymerization and for L-Phe-induced Ca(2+)i mobilization. Intracellular pH was unaffected by acute 0.4-unit pHo changes, and the presence of physiologic albumin concentrations failed to attenuate the pHo-mediated effects. None of the individual point mutations created at histidine or cysteine residues in the extracellular domain of CaR attenuated pHo sensitivity. Finally, pathophysiologic pHo elevation reversibly suppressed PTH secretion from perifused human parathyroid cells, and acidosis transiently increased PTH secretion. Therefore, pathophysiologic pHo changes can modulate CaR responsiveness in HEK-293 and parathyroid cells independently of extracellular histidine residues. Specifically, pathophysiologic acidification inhibits CaR activity, thus permitting PTH secretion, whereas alkalinization potentiates CaR activity to suppress PTH secretion. These findings suggest that acid-base disturbances may affect the CaR-mediated control of parathyroid function and calcium metabolism in vivo. Copyright © 2015 by the American Society of

  20. Newer concepts in the pathophysiology of ischemic heart disease.

    Science.gov (United States)

    Kirk, E S; Factor, S; Sonnenblick, E H

    1984-11-01

    Thus the thrust of these studies suggests that blood flow is the overwhelming factor in determining the consequences of the imbalance of oxygen supply and demand. Moreover, the factors that determine the requirements for tissue survival in the presence of deep ischemia are not the same as those shown for the normal myocardium in figure 1. In deep ischemia, contraction ceases, and metabolism shifts from aerobic to anaerobic pathways. Survival rather than contractile function then becomes the agenda. Not only does supply tend to overshadow demand in determining extent of transmural necrosis, but the anatomical pattern of supply precisely delineates the region at risk following a coronary occlusion as well as the ultimate extent of infarction. These views are summarized in the model presented in figures 12 and 13. The anatomic distribution of the ligated artery determines the lateral limits of the ischemic region (Fig. 12) and thus the lateral extension of necrosis (Fig. 13). The extension of the necrosis across the heart wall depends largely on the status of perfusion within the ischemic region. Extension of an infarct, should it occur, has to be explained by other mechanisms. These might include: (i) vascular obstruction in adjacent vascular systems that were not involved in the first occlusion, (ii) relative ischemia in the normal tissue surrounding the ischemic tissue due to an increased wall stress at the demarcation between contracting and noncontracting tissue, or (9) interruption of vessels supplying large interdigitations of normal tissue within the originally ischemic tissue due to changes associated with the process of infarction of ischemia. Alternatively, much that is called extension of infarction may involve more of the wall transmurally without lateral extension. Additional features of the development of myocardial infarction in figures 12 and 13 include: (i) the development of collateral vessel function resulting in an increased capacity to supply the

  1. Pathophysiology of anorexia in the cancer cachexia syndrome

    Science.gov (United States)

    Ezeoke, Chukwuemeka Charles; Morley, John E

    2015-01-01

    Anorexia is commonly present in persons with cancer and a major component of cancer cachexia. There are multiple causes of anorexia in cancer. Peripherally, these can be due to (i) substances released from or by the tumour, e.g. pro-inflammatory cytokines, lactate, and parathormone-related peptide; (ii) tumours causing dysphagia or altering gut function; (iii) tumours altering nutrients, e.g. zinc deficiency; (iv) tumours causing hypoxia; (v) increased peripheral tryptophan leading to increased central serotonin; or (vi) alterations of release of peripheral hormones that alter feeding, e.g. peptide tyrosine tyrosine and ghrelin. Central effects include depression and pain, decreasing the desire to eat. Within the central nervous system, tumours create multiple alterations in neurotransmitters, neuropeptides, and prostaglandins that modulate feeding. Many of these neurotransmitters appear to produce their anorectic effects through the adenosine monophosphate kinase/methylmalonyl coenzyme A/fatty acid system in the hypothalamus. Dynamin is a guanosine triphosphatase that is responsible for internalization of melanocortin 4 receptors and prostaglandin receptors. Dynamin is up-regulated in a mouse model of cancer anorexia. A number of drugs, e.g. megestrol acetate, cannabinoids, and ghrelin agonists, have been shown to have some ability to be orexigenic in cancer patients. PMID:26675762

  2. The Pathophysiology of Thyroid Eye Disease (TED): Implications for Immunotherapy

    Science.gov (United States)

    Gupta, Shivani; Douglas, Raymond

    2012-01-01

    Purpose of Review Thyroid eye disease (TED) is a poorly understood autoimmune manifestation most commonly associated with Graves’ disease. Current nonspecific treatment paradigms offer symptomatic improvement but fail to target the underlying pathogenic mechanisms and thus, do not significantly alter the long-term disease outcome. The purpose of this review is to provide an update of the current understanding of the immunopathogenesis of TED and explore these implications for targeted immunotherapy. Recent Findings Orbital fibroblasts are integral to the pathogenesis of TED and may modulate immune responses by production of cytokines and hyaluronan in response to activation of shared autoantigens including thyrotropin receptor (TSHR) and insulin-like growth factor-1 receptor (IGF-R1). Fibrocytes share many of these phenotypic and functional features, suggesting a link between systemic and site-specific disease. Use of targeted immunotherapies in TED is limited, though data from the use Rituximab (RTX), a B cell depleting agent, are encouraging. Sustained clinical response has been seen with RTX in several reports, despite return of peripheral B cell levels to pretreatment levels. Additionally, this response appears to be independent to cytokine and antibody production, suggesting possible modulation of antigen presentation as a mechanism of its effect. Summary Progressive advances in the understanding of the immunopathogenesis of TED continue to spur clinical trials utilizing targeted immune therapies. Continued understanding of the molecular mechanisms of disease will expand potential treatments for TED patients and obviate the need for reconstructive surgical therapies. PMID:21730841

  3. Pathophysiology of anorexia in the cancer cachexia syndrome.

    Science.gov (United States)

    Ezeoke, Chukwuemeka Charles; Morley, John E

    2015-12-01

    Anorexia is commonly present in persons with cancer and a major component of cancer cachexia. There are multiple causes of anorexia in cancer. Peripherally, these can be due to (i) substances released from or by the tumour, e.g. pro-inflammatory cytokines, lactate, and parathormone-related peptide; (ii) tumours causing dysphagia or altering gut function; (iii) tumours altering nutrients, e.g. zinc deficiency; (iv) tumours causing hypoxia; (v) increased peripheral tryptophan leading to increased central serotonin; or (vi) alterations of release of peripheral hormones that alter feeding, e.g. peptide tyrosine tyrosine and ghrelin. Central effects include depression and pain, decreasing the desire to eat. Within the central nervous system, tumours create multiple alterations in neurotransmitters, neuropeptides, and prostaglandins that modulate feeding. Many of these neurotransmitters appear to produce their anorectic effects through the adenosine monophosphate kinase/methylmalonyl coenzyme A/fatty acid system in the hypothalamus. Dynamin is a guanosine triphosphatase that is responsible for internalization of melanocortin 4 receptors and prostaglandin receptors. Dynamin is up-regulated in a mouse model of cancer anorexia. A number of drugs, e.g. megestrol acetate, cannabinoids, and ghrelin agonists, have been shown to have some ability to be orexigenic in cancer patients.

  4. [Age-related changes in swallowing. Physiology and pathophysiology].

    Science.gov (United States)

    Muhle, P; Wirth, R; Glahn, J; Dziewas, R

    2015-04-01

    The term presbyphagia refers to all changes of swallowing physiology that are manifested with increasing age. Alterations in the pattern of deglutition that are part of healthy aging are called primary presbyphagia. Primary presbyphagia is not an illness in itself but contributes to a more pervasive naturally diminished functional reserve, making older adults more susceptible to dysphagia. If disorders in swallowing occur in the elderly as a comorbidity of a specific disease, for example stroke or neurodegenerative disorders, this is called secondary presbyphagia. Increasing age has an impact on each stage of deglutition. In the oral preparatory phase a diminished input for smell and taste as well as a usually multifactorial cause of dry mouth are the most important influencing factors. Sarcopenia, the degenerative loss of skeletal muscle mass, strength and quality associated with aging, interferes in particular with the oropharyngeal phase. A decreased sensory feedback from the oropharyngeal mucosa leads to a delayed triggering of the swallowing reflex. Finally, a reduction in connective tissue elasticity and changes of the axial skeleton lead to various modifications of the swallowing pattern with advanced age.

  5. A Review of Metallothionein Isoforms and their Role in Pathophysiology

    Directory of Open Access Journals (Sweden)

    Senthil kumar M

    2011-05-01

    Full Text Available Abstract The Metallothionein (MT is a protein which has several interesting biological effects and has been demonstrated increase focus on the role of MT in various biological systems in the past three decades. The studies on the role of MT were limited with few areas like apoptosis and antioxidants in selected organs even fifty years after its discovery. Now acknowledge the exploration of various isoforms of MT such as MT-I, MT-II, MT-III and MT-IV and other isoforms in various biological systems. Strong evidence exists that MT modulates complex diseases and the immune system in the body but the primary function of MT still remains unknown. This review's main objective is to explore the capability to specifically manipulate MT levels in cells and in animals to provide answers regarding how MT could impact those complex disease scenarios. The experimental result mentioned in this review related among MT, zinc, cadmium, diabetic, heart disease, bone retardation, neuro toxicity, kidney dysfunction, cancer, and brain suggest novel method for exploration and contribute significantly to the growing scientist to research further in this field.

  6. [Vitamin D: pathophysiology and clinical applicability in paediatrics].

    Science.gov (United States)

    Masvidal Aliberch, R M; Ortigosa Gómez, S; Baraza Mendoza, M C; Garcia-Algar, O

    2012-10-01

    Vitamin D has always been associated with calcium -phosphate metabolism, but vitamin D receptors or its metabolites have been found in different body cells, indicating a possible involvement in other physiological mechanisms. Vitamin D deficiency has been associated with an increased risk of infections, autoimmune diseases, diabetes, metabolic syndrome, obesity, asthma and certain neurological diseases such as schizophrenia. Currently there are different techniques for measuring 25 (OH) cholecalciferol in blood, but the results are variable and controversial. It is important to achieve standardization of these techniques to be able to compare the results obtained in different studies. Normal physiological vitamin D levels have not yet been established, but they must be higher than 20 ng/ml (50 nmol/l) in order to perform it physiological function. It is still under discussion on how to achieve these minimum levels. Since the main source of vitamin D is sunlight, we should look for strategies that do not contradict the messages of prevention of skin cancer. In recent years, recommendations for vitamin D intake have changed, involving prophylactic activities carried out in Primary Care. This manuscript reviews the physiology, actions, laboratory determination, desirable levels, and vitamin D intake recommendations, and it highlights many questions raised by new research. Copyright © 2012 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  7. [Understanding the pathophysiology of malnutrition for better treatment].

    Science.gov (United States)

    De Bandt, J-P

    2015-09-01

    Malnutrition results from an imbalance between intake and protein-energy requirements resulting in tissue losses with adverse functional consequences. However, it would be better to speak of "states of malnutrition" rather than "malnutrition". Indeed, the mechanisms involved associate, with varying degrees, intake deficiency and increased needs with different clinical consequences. Adaptation to nutrient deficiency aims at establishing lasting saving conditions by promoting optimization of energy reserve utilization while preserving protein pool. This is achieved by reducing basal metabolism (low T3), by decreasing the secretion of anabolic factors and moderately increasing catabolic hormones. Unlike the previous process, the metabolic response to injury or stress, which will sometime induce major increase in requirements, will have as immediate purpose the defense of the organism. The body will draw sometime substantially in its protein pool to produce the glucose required for example by the immune cells. Stress response stems from both an endocrine response, and an immuno-inflammatory one with the important role of pro-inflammatory cytokines released in response to pathogens and more recently alarmins in response to endogenous stress in the inflammatory phenomena of the stress response and in the resulting malnutrition state. Treatment of these malnutrition conditions will thus differ: promoting anabolism in one case and fighting resistance to anabolism and hypercatabolism in the other. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. Melatonin: An Underappreciated Player in Retinal Physiology and Pathophysiology

    Science.gov (United States)

    Tosini, Gianluca; Baba, Kenkichi; Hwang, Christopher K.; Iuvone, P. Michael

    2012-01-01

    In the vertebrate retina, melatonin is synthesized by the photoreceptors with high levels of melatonin at night and lower levels during the day. Melatonin exerts its influence by interacting with a family of G-protein-coupled receptors that are negatively coupled with adenylyl cyclase. Melatonin receptors belonging to the subtypes MT1 and MT2 have been identified in the mammalian retina. MT1 and MT2 receptors are found in all layers of the neural retina and in the retinal pigmented epithelium. Melatonin in the eye is believed to be involved in the modulation of many important retinal functions; it can modulate the electroretinogram (ERG), and administration of exogenous melatonin increases light-induced photoreceptor degeneration. Melatonin may also have protective effects on retinal pigment epithelial cells, photoreceptors and ganglion cells. A series of studies have implicated melatonin in the pathogenesis of age-related macular degeneration, and melatonin administration may represent a useful approach to prevent and treat glaucoma. Melatonin is used by millions of people around the world to retard aging, improve sleep performance, mitigate jet lag symptoms, and treat depression. Administration of exogenous melatonin at night may also be beneficial for ocular health, but additional investigation is needed to establish its potential. PMID:22960156

  9. Pathophysiological role of host microbiota in the development of obesity.

    Science.gov (United States)

    Kobyliak, Nazarii; Virchenko, Oleksandr; Falalyeyeva, Tetyana

    2016-04-23

    Overweight and obesity increase the risk for a number of diseases, namely, cardiovascular diseases, type 2 diabetes, dyslipidemia, premature death, non-alcoholic fatty liver disease as well as different types of cancer. Approximately 1.7 billion people in the world suffer from being overweight, most notably in developed countries. Current research efforts have focused on host and environmental factors that may affect energy balance. It was hypothesized that a microbiota profile specific to an obese host with increased energy-yielding behavior may exist. Consequently, the gut microbiota is becoming of significant research interest in relation to obesity in an attempt to better understand the aetiology of obesity and to develop new methods of its prevention and treatment. Alteration of microbiota composition may stimulate development of obesity and other metabolic diseases via several mechanisms: increasing gut permeability with subsequent metabolic inflammation; increasing energy harvest from the diet; impairing short-chain fatty acids synthesis; and altering bile acids metabolism and FXR/TGR5 signaling. Prebiotics and probiotics have physiologic functions that contribute to the health of gut microbiota, maintenance of a healthy body weight and control of factors associated with obesity through their effects on mechanisms that control food intake, body weight, gut microbiota and inflammatory processes.

  10. Calcific Uremic Arteriolopathy: Pathophysiology, Reactive Oxygen Species and Therapeutic Approaches

    Directory of Open Access Journals (Sweden)

    Kurt M. Sowers

    2010-01-01

    Full Text Available Calcific uremic arteriolopathy (CUA/calciphylaxis is an important cause of morbidity and mortality in patients with chronic kidney disease requiring renal replacement. Once thought to be rare, it is being increasingly recognized and reported on a global scale. The uremic milieu predisposes to multiple metabolic toxicities including increased levels of reactive oxygen species and inflammation. Increased oxidative stress and inflammation promote this arteriolopathy by adversely affecting endothelial function resulting in a prothrombotic milieu and significant remodeling effects on vascular smooth muscle cells. These arteriolar pathological effects include intimal hyperplasia, inflammation, endovascular fibrosis and vascular smooth muscle cell apoptosis and differentiation into bone forming osteoblast-like cells resulting in medial calcification. Systemic factors promoting this vascular condition include elevated calcium, parathyroid hormone and hyperphosphatemia with consequent increases in the calcium × phosphate product. The uremic milieu contributes to a marked increased in upstream reactive oxygen species—oxidative stress and subsequent downstream increased inflammation, in part, via activation of the nuclear transcription factor NFκB and associated downstream cytokine pathways. Consitutive anti-calcification proteins such as Fetuin-A and matrix GLA proteins and their signaling pathways may be decreased, which further contributes to medial vascular calcification. The resulting clinical entity is painful, debilitating and contributes to the excess morbidity and mortality associated with chronic kidney disease and end stage renal disease. These same histopathologic conditions also occur in patients without uremia and therefore, the term calcific obliterative arteriolopathy could be utilized in these conditions.

  11. [Clinical characteristics and pathophysiology of pelvic pain in women].

    Science.gov (United States)

    Wesselmann, U

    2002-12-01

    Chronic pelvic pain is a common and debilitating problem that can significantly impair the quality of life of a woman. Patients with chronic pelvic pain are usually evaluated and treated by gynecologists, gastroenterologists, urologists, and internists. Although these patients seek medical care because they are looking for help to alleviate their pelvic discomfort and pain, in many cases the only focus is on finding and possibly treating the underlying pelvic disease.However, often the examination and work-up remain unrevealing and no specific cause of the pain can be identified. At this point patients are frequently told, that no etiology for their chronic pain syndrome can be found and that nothing can be done. In these cases it is important to recognize that pain is not only a symptom of pelvic disease, but that the patient is suffering from a chronic pelvic pain syndrome. Knowledge of the clinical characteristics of visceral pain will guide the health care provider in making a diagnosis of chronic pelvic pain and in sorting it out from the lump diagnosis of idiopathic pain. Once the diagnosis of chronic pelvic pain is made, treatment should be directed towards symptomatic pain management.This conceptualization of chronic pelvic pain is very important, because chronic pelvic pain is a treatable condition! Effective treatment modalities are available to lessen the impact of pain and offer reasonable expectations of an improved functional status.

  12. Mitochondria and Reactive Oxygen Species: Physiology and Pathophysiology

    Directory of Open Access Journals (Sweden)

    Subhashini Bolisetty

    2013-03-01

    Full Text Available The air that we breathe contains nearly 21% oxygen, most of which is utilized by mitochondria during respiration. While we cannot live without it, it was perceived as a bane to aerobic organisms due to the generation of reactive oxygen and nitrogen metabolites by mitochondria and other cellular compartments. However, this dogma was challenged when these species were demonstrated to modulate cellular responses through altering signaling pathways. In fact, since this discovery of a dichotomous role of reactive species in immune function and signal transduction, research in this field grew at an exponential pace and the pursuit for mechanisms involved began. Due to a significant number of review articles present on the reactive species mediated cell death, we have focused on emerging novel pathways such as autophagy, signaling and maintenance of the mitochondrial network. Despite its role in several processes, increased reactive species generation has been associated with the origin and pathogenesis of a plethora of diseases. While it is tempting to speculate that anti-oxidant therapy would protect against these disorders, growing evidence suggests that this may not be true. This further supports our belief that these reactive species play a fundamental role in maintenance of cellular and tissue homeostasis.

  13. Osteoarthritis: detection, pathophysiology, and current/future treatment strategies.

    Science.gov (United States)

    Sovani, Sujata; Grogan, Shawn P

    2013-01-01

    Osteoarthritis (OA) is a disease of the joint, and age is the major risk factor for its development. Clinical manifestation of OA includes joint pain, stiffness, and loss of mobility. Currently, no pharmacological treatments are available to treat this specific joint disease; only symptom-modifying drugs are available. Improvement in imaging technology, identification of biomarkers, and increased understanding of the molecular basis of OA will aid in detecting the early stages of disease. Yet the development of interventional strategies remains elusive and will be critical for effective prevention of OA-associated joint destruction. The potential of cell-based therapies may be applicable in improving joint function in mild to more advanced cases of OA. Ongoing studies to understand the basis of this disease will eventually lead to prevention and treatment strategies and will also be a key in reducing the social and economic burden of this disease. Nurses are advised to provide an integrative approach of disease assessment and management in OA patients' care with a focus on education and implementation. Knowledge and understanding of OA and how this affects the individual patient form the basis for such an integrative approach to all-round patient care and disease management.

  14. PR interval prolongation in coronary patients or risk equivalent: excess risk of ischemic stroke and vascular pathophysiological insights.

    Science.gov (United States)

    Chan, Yap-Hang; Hai, Jo Jo; Lau, Kui-Kai; Li, Sheung-Wai; Lau, Chu-Pak; Siu, Chung-Wah; Yiu, Kai-Hang; Tse, Hung-Fat

    2017-08-24

    Whether PR prolongation independently predicts new-onset ischemic events of myocardial infarction and stroke was unclear. Underlying pathophysiological mechanisms of PR prolongation leading to adverse cardiovascular events were poorly understood. We investigated the role of PR prolongation in pathophysiologically-related adverse cardiovascular events and underlying mechanisms. We prospectively investigated 597 high-risk cardiovascular outpatients (mean age 66 ± 11 yrs.; male 67%; coronary disease 55%, stroke 22%, diabetes 52%) for new-onset ischemic stroke, myocardial infarction (MI), congestive heart failure (CHF), and cardiovascular death. Vascular phenotype was determined by carotid intima-media thickness (IMT). PR prolongation >200 ms was present in 79 patients (13%) at baseline. PR prolongation >200 ms was associated with significantly higher mean carotid IMT (1.05 ± 0.37 mm vs 0.94 ± 0.28 mm, P = 0.010). After mean study period of 63 ± 11 months, increased PR interval significantly predicted new-onset ischemic stroke (P = 0.006), CHF (P = 0.040), cardiovascular death (P 200 ms. Using multivariable Cox regression, PR prolongation >200 ms independently predicted new-onset ischemic stroke (HR 8.6, 95% CI: 1.9-37.8, P = 0.005), cardiovascular death (HR 14.1, 95% CI: 3.8-51.4, P PR interval predicts new-onset MI at the exploratory cut-off >162 ms (C-statistic 0.70, P = 0.001; HR: 8.0, 95% CI: 1.65-38.85, P = 0.010). PR prolongation strongly predicts new-onset ischemic stroke, MI, cardiovascular death, and combined cardiovascular endpoint including CHF in coronary patients or risk equivalent. Adverse vascular function may implicate an intermediate pathophysiological phenotype or mediating mechanism.

  15. Pathophysiology of hypophosphatasia and the potential role of asfotase alfa.

    Science.gov (United States)

    Orimo, Hideo

    2016-01-01

    Hypophosphatasia (HPP) is an inherited systemic bone disease that is characterized by bone hypomineralization. HPP is classified into six forms according to the age of onset and severity as perinatal (lethal), perinatal benign, infantile, childhood, adult, and odontohypophosphatasia. The causative gene of the disease is the ALPL gene that encodes tissue-nonspecific alkaline phosphatase (TNAP). TNAP is expressed ubiquitously, and its physiological role is apparent in bone mineralization. A defect in bone mineralization can manifest in several ways, including rickets or osteomalacia in HPP patients. Patients with severe forms suffer from respiratory failure because of hypoplastic chest, which is the main cause of death. They sometimes present with seizures due to a defect in vitamin B6 metabolism resulting from the lack of alkaline phosphatase activity in neuronal cells, which is also lethal. Patients with a mild form of the disease exhibit rickets or osteomalacia and a functional defect of exercise. Odontohypophosphatasia shows only dental manifestations. To date, 302 mutations in the ALPL gene have been reported, mainly single-nucleotide substitutions, and the relationships between phenotype and genotype have been partially elucidated. An established treatment for HPP was not available until the recent development of enzyme replacement therapy. The first successful enzyme replacement therapy in model mice using a modified human TNAP protein (asfotase alfa) was reported in 2008, and subsequently success in patients with severe form of the disease was reported in 2012. In 2015, asfotase alfa was approved in Japan in July, followed by in the EU and Canada in August, and then by the US Food and Drug Administration in the USA in October. It is expected that therapy with asfotase alfa will drastically change treatments and prognosis of HPP.

  16. Pathophysiology of hypophosphatasia and the potential role of asfotase alfa

    Directory of Open Access Journals (Sweden)

    Orimo H

    2016-05-01

    Full Text Available Hideo Orimo Division of Metabolism and Nutrition, Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan Abstract: Hypophosphatasia (HPP is an inherited systemic bone disease that is characterized by bone hypomineralization. HPP is classified into six forms according to the age of onset and severity as perinatal (lethal, perinatal benign, infantile, childhood, adult, and odontohypophosphatasia. The causative gene of the disease is the ALPL gene that encodes tissue-nonspecific alkaline phosphatase (TNAP. TNAP is expressed ubiquitously, and its physiological role is apparent in bone mineralization. A defect in bone mineralization can manifest in several ways, including rickets or osteomalacia in HPP patients. Patients with severe forms suffer from respiratory failure because of hypoplastic chest, which is the main cause of death. They sometimes present with seizures due to a defect in vitamin B6 metabolism resulting from the lack of alkaline phosphatase activity in neuronal cells, which is also lethal. Patients with a mild form of the disease exhibit rickets or osteomalacia and a functional defect of exercise. Odontohypophosphatasia shows only dental manifestations. To date, 302 mutations in the ALPL gene have been reported, mainly single-nucleotide substitutions, and the relationships between phenotype and genotype have been partially elucidated. An established treatment for HPP was not available until the recent development of enzyme replacement therapy. The first successful enzyme replacement therapy in model mice using a modified human TNAP protein (asfotase alfa was reported in 2008, and subsequently success in patients with severe form of the disease was reported in 2012. In 2015, asfotase alfa was approved in Japan in July, followed by in the EU and Canada in August, and then by the US Food and Drug Administration in the USA in October. It is expected that therapy with asfotase alfa will drastically change

  17. Current pathophysiological views on vibration-induced Raynaud's phenomenon.

    Science.gov (United States)

    Stoyneva, Z; Lyapina, M; Tzvetkov, D; Vodenicharov, E

    2003-03-01

    This review attempts to summarize and discuss contemporary pathogenetic views on vibration-induced Raynaud's phenomenon assuming its multifactorial etiology. An increase in central and peripheral sympathetic nervous activity is discussed based on different physiological indicators of autonomic dysfunction and sympathetic hyperactivity. Local acral vasodysregulation is considered. Receptor and nerve endings dysfunction presented with predominance of alpha(2)-receptor function in the digital arteries and neuronal loss in those digital cutaneous perivascular nerves containing calcitonin gene-related peptide result in deficiency of endogenous release of this powerful vasodilator. Endothelial damage and dysregulation induced by vibration and increased shear stresses are demonstrated by the elevated plasma level of thrombomodulin and of von Willebrand factor and reduced endothelium-dependent vasodilator responses. The concentrations of endothelin-1 are high, the highest being in most advanced stages. Decreased plasma thiol level, indicating increased production and activity of free radicals, contribute to vasospastic paroxysms in vibration white finger patients. Dysbalance of local vasoactive factors with opposing effects on vascular smooth muscle like endothelin and nitric oxide, endothelin and calcitonin gene-related peptide, nitric oxide and superoxide anion are discussed. Disturbed smooth muscle response is supposed. Changes in hemostasis, fibrinolysis and hemorrheology, activation of blood cells with erythrocyte hyperaggregation and red cell hypodeformability, platelet aggregation with increased release of vasoconstricting thromboxane A(2) and serotonin as well as leukocyte activation, entrapment within capillaries and post-capillary venules and increased reactive oxygen species and lysosomal lytic enzymes release might also contribute to digital vasospasms and tissue damage. Elevated soluble intercellular adhesion molecule-1 levels involved in the adherence of

  18. Pathophysiological aspect of metabolic acid-base disorders

    Directory of Open Access Journals (Sweden)

    Nešović-Ostojić Jelena

    2016-01-01

    Full Text Available Maintaing the arterial pH values (in normal range of 7,35-7,45 is one of the main principles of homeostasis. Regulatory responses, including chemical buffering (extracellular, intracellular, sceletal, the regulation of pCO2 by the respiratory system, and the regulation of [HCO3-] by the kidneys, act in concert to maintain normal arterial pH value. The main extracellular chemical buffer is bicarbonate-carbonic acid buffer system. The kidneys contribute to the regulation of hydrogen (and bicarbonate in body fluids in two ways. Proximal tubules are important in bicarbonate reabsorption and distal tubules excrete hydrogen ion (as ammonium ion or titratable acid. There are four simple acid-base disorders: metabolic acidosis and metabolic alkalosis; respiratory acidosis and respiratory alkalosis. Metabolic acidosis can occur because of an increase in endogenous acid production (such as lactate and ketoacids, loss of bicarbonate (as in diarrhea, or accumulation of endogenous acids (as in renal failure. Metabolic acidosis can also be with high and normal (hyperchloremic metabolic acidosis anion gap. Renal tubular acidosis (RTA is a form of hyperchloremic metabolic acidosis which occurs when the renal damage primarily affects tubular function. The main problem in distal RTA is reduced H+ excretion in distal tubule. Type 2 RTA is also called proximal RTA because the main problem is greatly impaired reabsorption of bicarbonate in proximal tubule. Impaired cation exchange in distal tubule is the main problem in RTA type 4. Metabolic alkalosis occurs as a result of net gain of [HCO3-] or loss of nonvolatile acid from extracellular fluids. Metabolic alkalosis can be associated with reduced or increased extracellular volume.

  19. The pathophysiology of mitochondrial disease as modeled in the mouse.

    Science.gov (United States)

    Wallace, Douglas C; Fan, Weiwei

    2009-08-01

    It is now clear that mitochondrial defects are associated with a plethora of clinical phenotypes in man and mouse. This is the result of the mitochondria's central role in energy production, reactive oxygen species (ROS) biology, and apoptosis, and because the mitochondrial genome consists of roughly 1500 genes distributed across the maternal mitochondrial DNA (mtDNA) and the Mendelian nuclear DNA (nDNA). While numerous pathogenic mutations in both mtDNA and nDNA mitochondrial genes have been identified in the past 21 years, the causal role of mitochondrial dysfunction in the common metabolic and degenerative diseases, cancer, and aging is still debated. However, the development of mice harboring mitochondrial gene mutations is permitting demonstration of the direct cause-and-effect relationship between mitochondrial dysfunction and disease. Mutations in nDNA-encoded mitochondrial genes involved in energy metabolism, antioxidant defenses, apoptosis via the mitochondrial permeability transition pore (mtPTP), mitochondrial fusion, and mtDNA biogenesis have already demonstrated the phenotypic importance of mitochondrial defects. These studies are being expanded by the recent development of procedures for introducing mtDNA mutations into the mouse. These studies are providing direct proof that mtDNA mutations are sufficient by themselves to generate major clinical phenotypes. As more different mtDNA types and mtDNA gene mutations are introduced into various mouse nDNA backgrounds, the potential functional role of mtDNA variation in permitting humans and mammals to adapt to different environments and in determining their predisposition to a wide array of diseases should be definitively demonstrated.

  20. The Role of Cytokines in the Pathophysiology of Suicidal Behavior

    Science.gov (United States)

    Ganança, Licínia; Oquendo, Maria A.; Tyrka, Audrey R.; Cisneros-Trujillo, Sebastian; Mann, J. John; Sublette, M. Elizabeth

    2016-01-01

    Objective Immune dysregulation has been implicated in depression and other psychiatric disorders. What is less clear is how immune dysregulation can affect risk of suicidal behavior. We reviewed the scientific literature concerning cytokines related to suicidal ideation, suicidal behavior and suicide, and surveyed clinical and neurobiological factors associated with cytokine levels that may modulate effects of inflammation on suicide risk. Methods We searched PubMed, Embase, Scopus and PsycINFO for relevant studies published from 1980 through February, 2015. Papers were included if they were written in English and focused on cytokine measurements in patients with suicidal behaviors. Results The literature search yielded 22 studies concerning cytokines and suicidal ideation, suicide attempts or suicide completion. The most consistent finding was elevated interleukin (IL)-6, found in 8 out of 14 studies, in CSF, blood, and postmortem brain. In one study, IL-6 in CSF was also found to be higher in violent than nonviolent attempters and to correlate with future suicide completion. Low plasma IL-2 was observed in 2 studies of suicide attempters, while divergent results were seen for tumor necrosis factor (TNF)-α, interferon (IFN)-γ, transforming growth factor (TGF)-β, IL-4, and soluble Il-2 receptors. Conclusions Given the complexity suggested by the heterogenous cytokine findings, putative mediators and moderators of inflammation on suicidal behavior merit further study. Elevated IL-6 was the most robust cytokine finding, associated with suicidal ideation and both nonfatal suicide attempts and suicides. Future studies should evaluate the predictive value of high IL-6, consider how this may alter brain function to impact suicidal behavior, and explore the potential beneficial effects of reducing IL-6 on suicide risk. PMID:26546783

  1. Examining the effects of hyperglycemia on pancreatic endocrine function in humans

    DEFF Research Database (Denmark)

    Solomon, Thomas P J; Knudsen, Sine H; Karstoft, Kristian

    2012-01-01

    Investigating the impact of hyperglycemia on pancreatic endocrine function promotes our understanding of the pathophysiology of hyperglycemia-related disease.......Investigating the impact of hyperglycemia on pancreatic endocrine function promotes our understanding of the pathophysiology of hyperglycemia-related disease....

  2. Pathophysiology and Nonsurgical Treatment of Chronic Subdural Hematoma: From Past to Present to Future.

    Science.gov (United States)

    Holl, Dana C; Volovici, Victor; Dirven, Clemens M F; Peul, Wilco C; van Kooten, Fop; Jellema, Korné; van der Gaag, Niels A; Miah, Ishita P; Kho, Kuan H; den Hertog, Heleen M; Lingsma, Hester F; Dammers, Ruben

    2018-05-14

    Chronic subdural hematoma (CSDH) is one of the more frequent pathologic entities in daily neurosurgical practice. Historically, CSDH was considered progressive recurrent bleeding with a traumatic cause. However, recent evidence has suggested a complex intertwined pathway of inflammation, angiogenesis, local coagulopathy, recurrent microbleeds, and exudates. The aim of the present review is to collect existing data on pathophysiology of CSDH to direct further research questions aiming to optimize treatment for the individual patient. We performed a thorough literature search in PubMed, Ovid, EMBASE, CINAHL, and Google scholar, focusing on any aspect of the pathophysiology and nonsurgical treatment of CSDH. After a (minor) traumatic event, the dural border cell layer tears, which leads to the extravasation of cerebrospinal fluid and blood in the subdural space. A cascade of inflammation, impaired coagulation, fibrinolysis, and angiogenesis is set in motion. The most commonly used treatment is surgical drainage. However, because of the pathophysiologic mechanisms, the mortality and high morbidity associated with surgical drainage, drug therapy (dexamethasone, atorvastatin, tranexamic acid, or angiotensin-converting enzyme inhibitors) might be a beneficial alternative in many patients with CSDH. Based on pathophysiologic mechanisms, animal experiments, and small patient studies, medical treatment may play a role in the treatment of CSDH. There is a lack of level I evidence in the nonsurgical treatment of CSDH. Therefore, randomized controlled trials, currently lacking, are needed to assess which treatment is most effective in each individual patient. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Pathophysiology of brain ischemia as it relates to the therapy of acute ischemic stroke

    DEFF Research Database (Denmark)

    Lassen, N A

    1990-01-01

    Current knowledge of the pathophysiology of cerebral ischemia, summarized in the present study, predicts that neurological deficits caused by moderate ischemia (flows in the penumbral range between 23 and 10 ml/100 g/min) are reversible provided flow is restored within 3-4 h of onset. It also...

  4. A Comprehensive Pathophysiology of Dandruff and Seborrheic Dermatitis - Towards a More Precise Definition of Scalp Health

    DEFF Research Database (Denmark)

    Schwartz, James R; Messenger, Andrew G; Tosti, Antonella

    2012-01-01

    Despite an increasing knowledge of dandruff and seborrheic dermatitis (D/SD), the pathophysiological understanding is still incomplete but suggests a role of Malassezia yeasts in triggering inflammatory and hyper-proliferative epidermal responses. The objective of this report is to review publish...

  5. [Circadian blood pressure variation under several pathophysiological conditions including secondary hypertension].

    Science.gov (United States)

    Imai, Yutaka; Hosaka, Miki; Satoh, Michihiro

    2014-08-01

    Abnormality of circadian blood pressure (BP) variation, i.e. non-dipper, riser, nocturnal hypertension etc, is brought by several pathophysiological conditions especially by secondary hypertension. These pathophysiological conditions are classified into several categories, i.e. disturbance of autonomic nervous system, metabolic disorder, endocrine disorder, disorder of Na and water excretion (e.g. sodium sensitivity), severe target organ damage and ischemia, cardiovascular complications and drug induced hypertension. Each pathophysiological condition which brings disturbance of circadian BP variation is included in several categories, e.g. diabetes mellitus is included in metabolic disorder, autonomic imbalance, sodium sensitivity and endocrine disorder. However, it seems that unified principle of the genesis of disturbance of circadian BP variation in many pathophysiological conditions is autonomic imbalance. Thus, it is concluded that disturbance of circadian BP variation is not purposive biological behavior but the result of autonomic imbalance which looks as if compensatory reaction such as exaggerated Na-water excretion during night in patient with Na-water retention who reveals disturbed circadian BP variation.

  6. Alzheimer's disease: pathophysiology and applications of magnetic nanoparticles as MRI theranostic agents.

    NARCIS (Netherlands)

    Amiri, H.; Saeidi, K.; Borhani, P.; Manafirad, A.; Ghavami, M.; Zerbi, V.

    2013-01-01

    Alzheimer's disease (AD) is the most common form of dementia. During the recent decade, nanotechnology has been widely considered, as a promising tool, for theranosis (diagnosis and therapy) of AD. Here we first discuss pathophysiology and characteristics of AD with a focus on the amyloid cascade

  7. Recent progress in migraine pathophysiology: role of cortical spreading depression and magnetic resonance imaging

    NARCIS (Netherlands)

    Bhaskar, S.; Saeidi, K.; Borhani, P.; Amiri, H.

    2013-01-01

    Migraine is characterised by debilitating pain, which affects the quality of life in affected patients in both the western and the eastern worlds. The purpose of this article is to give a detailed outline of the pathophysiology of migraine pain, which is one of the most confounding pathologies among

  8. Perioperative management of liver surgery-review on pathophysiology of liver disease and liver failure.

    Science.gov (United States)

    Gasteiger, Lukas; Eschertzhuber, Stephan; Tiefenthaler, Werner

    2018-01-01

    An increasing number of patients present for liver surgery. Given the complex pathophysiological changes in chronic liver disease (CLD), it is pivotal to understand the fundamentals of chronic and acute liver failure. This review will give an overview on related organ dysfunction as well as recommendations for perioperative management and treatment of liver failure-related symptoms.

  9. Anthracycline-induced cardiotoxicity, a pathophysiology based approach for early detection and protective strategies

    NARCIS (Netherlands)

    Broeyer, Frederik Jan Ferdinand

    2012-01-01

    In this thesis the development of a pathophysiology-based method for the early evaluation of anthracycline-induced cardiotoxicity was described. We evaluated a comprehensive array of biomarkers, representing several aspects of anthracycline-induced cardiotoxicity, including cardiac injury and

  10. Type 2 diabetes across generations: from pathophysiology to prevention and management

    DEFF Research Database (Denmark)

    Nolan, Christopher J; Damm, Peter; Prentki, Marc

    2011-01-01

    Type 2 diabetes is now a pandemic and shows no signs of abatement. In this Seminar we review the pathophysiology of this disorder, with particular attention to epidemiology, genetics, epigenetics, and molecular cell biology. Evidence is emerging that a substantial part of diabetes susceptibility ...

  11. From cell to bedside: some pathophysiologic considerations about the cardiac stimulation

    International Nuclear Information System (INIS)

    Gutierrez, O.

    2013-01-01

    Myocardial cell pathophysiology is presented as related to possible modification by electrical stimulation of the myocardium. The objective is a diagnostic and therapeutic clinical application such as is seen with bradyarrhythmias and tachyarrhythmias. In addition, the E C is an essential tool during catheter ablation procedures

  12. Pathophysiological Concepts in Mild Traumatic Brain Injury : Diffusion Tensor Imaging Related to Acute Perfusion CT Imaging

    NARCIS (Netherlands)

    Metting, Zwany; Cerliani, Leonardo; Rodiger, Lars A.; van der Naalt, Joukje

    2013-01-01

    Background: A subgroup of patients with mild traumatic brain injury (TBI) experiences residual symptoms interfering with their return to work. The pathophysiological substrate of the suboptimal outcome in these patients is a source of debate. Objective: To provide greater insight into the

  13. Experience with an Independent Study Program in Pathophysiology for Doctor of Pharmacy Students.

    Science.gov (United States)

    Nahata, Milap C.

    1986-01-01

    A pharmacy doctoral program's independent-study component in pathophysiology, supported by computer-assisted instruction and self-evaluation, has the advantages of self-pacing, reduced faculty time commitment, and increased ability to work effectively with physicians. Disadvantages include student feeling of isolation, imbalanced content, and…

  14. A systematic review of the pathophysiology of 5-fluorouracil-induced cardiotoxicity

    DEFF Research Database (Denmark)

    Polk, Anne; Vistisen, Kirsten; Vaage-Nilsen, Merete

    2014-01-01

    BACKGROUND: Cardiotoxicity is a serious side effect to treatment with 5-fluorouracil (5-FU), but the underlying mechanisms are not fully understood. The objective of this systematic review was to evaluate the pathophysiology of 5-FU- induced cardiotoxicity. METHODS: We systematically searched Pub...

  15. PATHO-PHYSIOLOGICAL MECHANISMS OF TOBACCO SMOKING EFFECT ON THE CARDIOVASCULAR SYSTEM

    Directory of Open Access Journals (Sweden)

    V.F. Kirichuk

    2007-09-01

    Full Text Available Modern patho-physiological mechanisms with the help of which tobacco smoking contributes to the development of cardiovascular pathology are represented in the review. The most significant of them are endothelial dysfunction, progressing of atherosclerotic processes, alteration of rheologic properties of blood, increase of carboxyhemoglobin levels, activation of sympathetic nervous system of the heart.

  16. Modulation, plasticity and pathophysiology of the parallel fiber-Purkinje cell synapse

    Directory of Open Access Journals (Sweden)

    Eriola Hoxha

    2016-11-01

    spectrum disorder, with a selective deletion of Pten in Purkinje cells. However, the full range of methodological approaches, that allowed the discovery of the physiological principles of PF-PC synapse function, has not yet been completely exploited to investigate the pathophysiological mechanisms of diseases involving the cerebellum. We, therefore, propose to extend the spectrum of experimental investigations to tackle this problem.

  17. A new glucocerebrosidase-deficient neuronal cell model provides a tool to probe pathophysiology and therapeutics for Gaucher disease.

    Science.gov (United States)

    Westbroek, Wendy; Nguyen, Matthew; Siebert, Marina; Lindstrom, Taylor; Burnett, Robert A; Aflaki, Elma; Jung, Olive; Tamargo, Rafael; Rodriguez-Gil, Jorge L; Acosta, Walter; Hendrix, An; Behre, Bahafta; Tayebi, Nahid; Fujiwara, Hideji; Sidhu, Rohini; Renvoise, Benoit; Ginns, Edward I; Dutra, Amalia; Pak, Evgenia; Cramer, Carole; Ory, Daniel S; Pavan, William J; Sidransky, Ellen

    2016-07-01

    Glucocerebrosidase is a lysosomal hydrolase involved in the breakdown of glucosylceramide. Gaucher disease, a recessive lysosomal storage disorder, is caused by mutations in the gene GBA1 Dysfunctional glucocerebrosidase leads to accumulation of glucosylceramide and glycosylsphingosine in various cell types and organs. Mutations in GBA1 are also a common genetic risk factor for Parkinson disease and related synucleinopathies. In recent years, research on the pathophysiology of Gaucher disease, the molecular link between Gaucher and Parkinson disease, and novel therapeutics, have accelerated the need for relevant cell models with GBA1 mutations. Although induced pluripotent stem cells, primary rodent neurons, and transfected neuroblastoma cell lines have been used to study the effect of glucocerebrosidase deficiency on neuronal function, these models have limitations because of challenges in culturing and propagating the cells, low yield, and the introduction of exogenous mutant GBA1 To address some of these difficulties, we established a high yield, easy-to-culture mouse neuronal cell model with nearly complete glucocerebrosidase deficiency representative of Gaucher disease. We successfully immortalized cortical neurons from embryonic null allele gba(-/-) mice and the control littermate (gba(+/+)) by infecting differentiated primary cortical neurons in culture with an EF1α-SV40T lentivirus. Immortalized gba(-/-) neurons lack glucocerebrosidase protein and enzyme activity, and exhibit a dramatic increase in glucosylceramide and glucosylsphingosine accumulation, enlarged lysosomes, and an impaired ATP-dependent calcium-influx response; these phenotypical characteristics were absent in gba(+/+) neurons. This null allele gba(-/-) mouse neuronal model provides a much-needed tool to study the pathophysiology of Gaucher disease and to evaluate new therapies. © 2016. Published by The Company of Biologists Ltd.

  18. A new glucocerebrosidase-deficient neuronal cell model provides a tool to probe pathophysiology and therapeutics for Gaucher disease

    Directory of Open Access Journals (Sweden)

    Wendy Westbroek

    2016-07-01

    Full Text Available Glucocerebrosidase is a lysosomal hydrolase involved in the breakdown of glucosylceramide. Gaucher disease, a recessive lysosomal storage disorder, is caused by mutations in the gene GBA1. Dysfunctional glucocerebrosidase leads to accumulation of glucosylceramide and glycosylsphingosine in various cell types and organs. Mutations in GBA1 are also a common genetic risk factor for Parkinson disease and related synucleinopathies. In recent years, research on the pathophysiology of Gaucher disease, the molecular link between Gaucher and Parkinson disease, and novel therapeutics, have accelerated the need for relevant cell models with GBA1 mutations. Although induced pluripotent stem cells, primary rodent neurons, and transfected neuroblastoma cell lines have been used to study the effect of glucocerebrosidase deficiency on neuronal function, these models have limitations because of challenges in culturing and propagating the cells, low yield, and the introduction of exogenous mutant GBA1. To address some of these difficulties, we established a high yield, easy-to-culture mouse neuronal cell model with nearly complete glucocerebrosidase deficiency representative of Gaucher disease. We successfully immortalized cortical neurons from embryonic null allele gba−/− mice and the control littermate (gba+/+ by infecting differentiated primary cortical neurons in culture with an EF1α-SV40T lentivirus. Immortalized gba−/− neurons lack glucocerebrosidase protein and enzyme activity, and exhibit a dramatic increase in glucosylceramide and glucosylsphingosine accumulation, enlarged lysosomes, and an impaired ATP-dependent calcium-influx response; these phenotypical characteristics were absent in gba+/+ neurons. This null allele gba−/− mouse neuronal model provides a much-needed tool to study the pathophysiology of Gaucher disease and to evaluate new therapies.

  19. Pathophysiology of mitochondrial lipid oxidation: Role of 4-hydroxynonenal (4-HNE) and other bioactive lipids in mitochondria.

    Science.gov (United States)

    Xiao, Mengqing; Zhong, Huiqin; Xia, Lin; Tao, Yongzhen; Yin, Huiyong

    2017-10-01

    Mitochondrial lipids are essential for maintaining the integrity of mitochondrial membranes and the proper functions of mitochondria. As the "powerhouse" of a cell, mitochondria are also the major cellular source of reactive oxygen species (ROS). Oxidative stress occurs when the antioxidant system is overwhelmed by overproduction of ROS. Polyunsaturated fatty acids in mitochondrial membranes are primary targets for ROS attack, which may lead to lipid peroxidation (LPO) and generation of reactive lipids, such as 4-hydroxynonenal. When mitochondrial lipids are oxidized, the integrity and function of mitochondria may be compromised and this may eventually lead to mitochondrial dysfunction, which has been associated with many human diseases including cancer, cardiovascular diseases, diabetes, and neurodegenerative diseases. How mitochondrial lipids are oxidized and the underlying molecular mechanisms and pathophysiological consequences associated with mitochondrial LPO remain poorly defined. Oxidation of the mitochondria-specific phospholipid cardiolipin and generation of bioactive lipids through mitochondrial LPO has been increasingly recognized as an important event orchestrating apoptosis, metabolic reprogramming of energy production, mitophagy, and immune responses. In this review, we focus on the current understanding of how mitochondrial LPO and generation of bioactive lipid mediators in mitochondria are involved in the modulation of mitochondrial functions in the context of relevant human diseases associated with oxidative stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Postnatal Phencyclidine (PCP) as a Neurodevelopmental Animal Model of Schizophrenia Pathophysiology and Symptomatology: A Review.

    Science.gov (United States)

    Grayson, B; Barnes, S A; Markou, A; Piercy, C; Podda, G; Neill, J C

    Cognitive dysfunction and negative symptoms of schizophrenia remain an unmet clinical need. Therefore, it is essential that new treatments and approaches are developed to recover the cognitive and social impairments that are seen in patients with schizophrenia. These may only be discovered through the use of carefully validated, aetiologically relevant and translational animal models. With recent renewed interest in the neurodevelopmental hypothesis of schizophrenia, postnatal administration of N-methyl-D-aspartate receptor (NMDAR) antagonists such as phencyclidine (PCP) has been proposed as a model that can mimic aspects of schizophrenia pathophysiology. The purpose of the current review is to examine the validity of this model and compare it with the adult subchronic PCP model. We review the ability of postnatal PCP administration to produce behaviours (specifically cognitive deficits) and neuropathology of relevance to schizophrenia and their subsequent reversal by pharmacological treatments. We review studies investigating effects of postnatal PCP on cognitive domains in schizophrenia in rats. Morris water maze and delayed spontaneous alternation tasks have been used for working memory, attentional set-shifting for executive function, social novelty discrimination for selective attention and prepulse inhibition of acoustic startle for sensorimotor gating. In addition, we review studies on locomotor activity and neuropathology. We also include two studies using dual hit models incorporating postnatal PCP and two studies on social behaviour deficits following postnatal PCP. Overall, the evidence we provide supports the use of postnatal PCP to model cognitive and neuropathological disturbances of relevance to schizophrenia. To date, there is a lack of evidence to support a significant advantage of postnatal PCP over the adult subchronic PCP model and full advantage has not been taken of its neurodevelopmental component. When thoroughly characterised, it is likely

  1. Sleep disturbances in women with polycystic ovary syndrome: prevalence, pathophysiology, impact and management strategies

    Directory of Open Access Journals (Sweden)

    Fernandez RC

    2018-02-01

    Full Text Available Renae C Fernandez,1–3 Vivienne M Moore,1,3,4 Emer M Van Ryswyk,5 Tamara J Varcoe,1,2 Raymond J Rodgers,1,2 Wendy A March,1,3 Lisa J Moran,1,6 Jodie C Avery,1,2 R Doug McEvoy,5,7 Michael J Davies1,2 1The University of Adelaide, Robinson Research Institute, Adelaide, SA, Australia; 2The University of Adelaide, Adelaide Medical School, Adelaide, SA, Australia; 3The University of Adelaide, School of Public Health, Adelaide, SA, Australia; 4The University of Adelaide, Fay Gale Centre for Research on Gender, Adelaide, SA, Australia; 5Adelaide Institute for Sleep Health, Flinders Centre for Research Excellence, Flinders University of South Australia, Bedford Park, SA, Australia; 6Monash Centre for Health Research Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Vic, Australia; 7Adelaide Sleep Health, Southern Adelaide Local Health Network, Repatriation General Hospital, Daw Park, SA, Australia Abstract: Polycystic ovary syndrome (PCOS is a complex endocrine disorder affecting the reproductive, metabolic and psychological health of women. Clinic-based studies indicate that sleep disturbances and disorders including obstructive sleep apnea and excessive daytime sleepiness occur more frequently among women with PCOS compared to comparison groups without the syndrome. Evidence from the few available population-based studies is supportive. Women with PCOS tend to be overweight/obese, but this only partly accounts for their sleep problems as associations are generally upheld after adjustment for body mass index; sleep problems also occur in women with PCOS of normal weight. There are several, possibly bidirectional, pathways through which PCOS is associated with sleep disturbances. The pathophysiology of PCOS involves hyperandrogenemia, a form of insulin resistance unique to affected women, and possible changes in cortisol and melatonin secretion, arguably reflecting altered hypothalamic

  2. Perspectives on aetiology, pathophysiology and management of shock in African children

    Directory of Open Access Journals (Sweden)

    Julius Nteziyaremye

    Full Text Available Paediatric shock is still a common emergency of public health importance with an estimated 400,000–500,000 reported cases annually. Mortality due to paediatric shock has varied over the years. Data in 1980s show that mortality rates due to septic shock in children were over 50%; but by the end of the year 2000 data indicated that though a marked decline in mortality rates had been achieved, it had stagnated at about 20%. Descriptions of paediatric shock reveal the lack of a common definition and there are important gaps in evidence-based management in different settings. In well-resourced healthcare systems with well-functioning intensive care facilities, the widespread implementation of shock management guidelines based on the Paediatric Advanced Life Support and European Paediatric Advanced Life Support courses have reduced mortality. In resource limited settings with diverse infectious causative agents, the Emergency Triage Assessment and Treatment (ETAT approach is more pragmatic, but its impact remains circumscribed to centres where ETAT has been implemented and sustained. Advocacy for common management pathways irrespective of underlying cause have been suggested. However, in sub Saharan Africa, the diversity of underlying causative organisms and patient phenotypes may limit a single approach to shock management.Data from a large fluid trial (the FEAST trial in East Africa have provided vital insight to shock management. In this trial febrile children with clinical features of impaired perfusion were studied. Rapid infusion of fluid boluses, irrespective of whether the fluid was colloid or crystalloid, when compared to maintenance fluids alone had an increased risk of mortality at 48 h. All study participants were promptly managed for underlying conditions and comorbidity such as malaria, bacteraemia, severe anaemia, meningitis, pneumonia, convulsions, hypoglycaemia and others. The overall low mortality in the trial suggests the

  3. Pathophysiological mechanisms of sino-atrial dysfunction and ventricular conduction disease associated with SCN5A deficiency: insights from mouse models

    Directory of Open Access Journals (Sweden)

    Christopher L-H Huang

    2012-07-01

    Full Text Available Genetically modified mice provide a number of models for studying cardiac channelopathies related to cardiac Na+ channel (SCN5A abnormalities. We review key pathophysiological features in these murine models that may underlie clinical features observed in sinus node dysfunction and progressive cardiac conduction disease, thereby providing insights into their pathophysiological mechanisms. We describe loss of Na+ channel function and fibrotic changes associated with both loss and gain-of-function Na+ channel mutations. Recent reports further relate the progressive fibrotic changes to upregulation of TGF-β1 production and the transcription factors, Atf3, a stress-inducible gene, and Egr1, to the presence of heterozygous Scn5a inactivation. Both changes are thus directly implicated in the clinically observed disruptions in sino-atrial node pacemaker function, and sino-atrial and ventricular conduction, and their progression with age. Murine systems with genetic modifications in Scn5a thus prove a useful tool to address questions concerning roles of genetic and environmental modifiers on human SCN5A disease phenotypes.

  4. MicroRNA-orchestrated pathophysiologic control in gut homeostasis and inflammation.

    Science.gov (United States)

    Lee, Juneyoung; Park, Eun Jeong; Kiyono, Hiroshi

    2016-05-01

    The intestine represents the largest and most elaborate immune system organ, in which dynamic and reciprocal interplay among numerous immune and epithelial cells, commensal microbiota, and external antigens contributes to establishing both homeostatic and pathologic conditions. The mechanisms that sustain gut homeostasis are pivotal in maintaining gut health in the harsh environment of the gut lumen. Intestinal epithelial cells are critical players in creating the mucosal platform for interplay between host immune cells and luminal stress inducers. Thus, knowledge of the epithelial interface between immune cells and the luminal environment is a prerequisite for a better understanding of gut homeostasis and pathophysiologies such as inflammation. In this review, we explore the importance of the epithelium in limiting or promoting gut inflammation (e.g., inflammatory bowel disease). We also introduce recent findings on how small RNAs such as microRNAs orchestrate pathophysiologic gene regulation. [BMB Reports 2016; 49(5): 263-269].

  5. Cardiovascular metabolic syndrome: mediators involved in the pathophysiology from obesity to coronary heart disease.

    Science.gov (United States)

    Roos, Cornelis J; Quax, Paul H A; Jukema, J Wouter

    2012-02-01

    Patients with obesity and diabetes mellitus are at increased risk for cardiovascular events and have a higher cardiovascular morbidity and mortality. This worse prognosis is partly explained by the late recognition of coronary heart disease in these patients, due to the absence of symptoms. Early identification of coronary heart disease is vital, to initiate preventive medical therapy and improve prognosis. At present, with the use of cardiovascular risk models, the identification of coronary heart disease in these patients remains inadequate. To this end, biomarkers should improve the early identification of patients at increased cardiovascular risk. The first part of this review describes the pathophysiologic pathway from obesity to coronary heart disease. The second part evaluates several mediators from this pathophysiologic pathway for their applicability as biomarkers for the identification of coronary heart disease.

  6. Migraine and epilepsy: a focus on overlapping clinical, pathophysiological, molecular, and therapeutic aspects.

    Science.gov (United States)

    Bianchin, Marino Muxfeldt; Londero, Renata Gomes; Lima, José Eduardo; Bigal, Marcelo Eduardo

    2010-08-01

    The association of epilepsy and migraine has been long recognized. Migraine and epilepsy are both chronic disorders with episodic attacks. Furthermore, headache may be a premonitory or postdromic symptom of seizures, and migraine headaches may cause seizures per se (migralepsy). Migraine and epilepsy are comorbid, sharing pathophysiological mechanisms and common clinical features. Several recent studies identified common genetic and molecular substrates for migraine and epilepsy, including phenotypic-genotypic correlations with mutations in the CACNA1A, ATP1A2, and SCN1A genes, as well as in syndromes due to mutations in the SLC1A3, POLG, and C10orF2 genes. Herein, we review the relationship between migraine and epilepsy, focusing on clinical aspects and some recent pathophysiological and molecular studies.

  7. Gerbode defect: A comprehensive review of its history, anatomy, embryology, pathophysiology, diagnosis, and treatment

    Directory of Open Access Journals (Sweden)

    Erfanul Saker

    2017-10-01

    Full Text Available The purpose of this paper is to survey the literature on Gerbode defect and provide an overview of its history, anatomy, development, pathophysiology, diagnosis, and treatment options. The available literature on this topic, including case reports, was thoroughly reviewed. Gerbode defect is defined as abnormal shunting between the left ventricle and right atrium resulting from either a congenital defect or prior cardiac insults. The pathophysiology underlying the development of Gerbode defect is a disease process that injures the atrioventricular septum and leads to the abnormal shunting of blood. Although the most prevalent cause of Gerbode defect has historically been congenital, an increasing trend towards acquired cases has recently been reported owing to improved diagnostic capabilities and a greater number of invasive cardiac procedures. In conclusion, Gerbode defect is an increasingly recognized condition that warrants further study.

  8. The Emerging Role of Chronic Low-Grade Inflammation in the Pathophysiology of Polycystic Ovary Syndrome.

    Science.gov (United States)

    Shorakae, Soulmaz; Teede, Helena; de Courten, Barbora; Lambert, Gavin; Boyle, Jacqueline; Moran, Lisa J

    2015-07-01

    Polycystic ovary syndrome (PCOS) has become increasingly common over recent years and is associated with reproductive features as well as cardiometabolic risk factors, including visceral obesity, dyslipidemia and impaired glucose homeostasis, and potentially cardiovascular disease. Emerging evidence suggests that these long-term metabolic effects are linked to a low-grade chronic inflammatory state with the triad of hyperinsulinemia, hyperandrogenism, and low-grade inflammation acting together in a vicious cycle in the pathophysiology of PCOS. Dysregulation of the sympathetic nervous system may also act as an important component, potentially creating a tetrad in the pathophysiology of PCOS. The aim of this review is to examine the role of chronic inflammation and the sympathetic nervous system in the development of obesity and PCOS and review potential therapeutic options to alleviate low-grade inflammation in this setting. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  9. Pathophysiology and clinical characteristics of pain in most common locations in cancer patients.

    Science.gov (United States)

    Leppert, W; Zajaczkowska, R; Wordliczek, J; Dobrogowski, J; Woron, J; Krzakowski, M

    2016-12-01

    Pain is one of the most common symptoms in cancer patients, especially in advanced disease. However, pain also accompanies a significant percentage of patients during diagnostic and therapeutic procedures. In some patients pain may be the first symptom of the disease. The causes of pain in cancer patients are often multifactorial including direct and indirect cancer effects, anticancer therapy and co-morbidities. Moreover, pain in cancer patients often has mixed pathophysiology including both nociceptive and neuropathic components, especially in patients with bone metastases. In this article, basic knowledge regarding epidemiology, pathophysiology and clinical features of pain in cancer patients with a primary tumour localised in lung, gastrointestinal tract (stomach, colon and pancreas), breast in women and prostate in men are presented. Pain is a common symptom in cancer patients and its appropriate assessment and treatment may significantly improve in patients' and families' quality of life.

  10. New insights into the pathophysiology of dyslipidemia in type 2 diabetes.

    Science.gov (United States)

    Taskinen, Marja-Riitta; Borén, Jan

    2015-04-01

    Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality for patients with type 2 diabetes, despite recent significant advances in management strategies to lessen CVD risk factors. A major cause is the atherogenic dyslipidemia, which consists of elevated plasma concentrations of both fasting and postprandial triglyceride-rich lipoproteins (TRLs), small dense low-density lipoprotein (LDL) and low high-density lipoprotein (HDL) cholesterol. The different components of diabetic dyslipidemia are not isolated abnormalities but closely linked to each other metabolically. The underlying disturbances are hepatic overproduction and delayed clearance of TRLs. Recent results have unequivocally shown that triglyceride-rich lipoproteins and their remnants are atherogenic. To develop novel strategies for the prevention and treatment of dyslipidaemia, it is essential to understand the pathophysiology of dyslipoproteinaemia in humans. Here, we review recent advances in our understanding of the pathophysiology of diabetic dyslipidemia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Hypertension and obesity after pediatric kidney transplantation: management based on pathophysiology: A mini review

    Directory of Open Access Journals (Sweden)

    Eunice G John

    2014-01-01

    Full Text Available Hypertension after pediatric renal transplant is a common and important risk factor for graft loss and patient survival. The mechanism of post kidney transplant hypertension is complex and multifactorial. Control of blood pressure in renal transplant patients is important but often times blood pressures remain uncontrolled. The management of hypertension and obesity in pediatric kidney transplant patients is based on the pathophysiology. Compared to the general pediatric hypertensive population, special attention needs to be focused on the additional impact of immunosuppressive medications side effects and interactions, recurrent disease, and donor and recipient comorbidities such as obesity on blood pressure control with thoughtful consideration of the risk of graft failure. In general, there is a need for prospective studies in pediatric kidney transplant patients to understand the pathophysiology of hypertension and obesity and the appropriate approach to achieve a balance between the primary need to avoid rejection and the need to lower blood pressure and prevent obesity.

  12. Acid-Base Disorders in Patients with Chronic Obstructive Pulmonary Disease: A Pathophysiological Review

    Directory of Open Access Journals (Sweden)

    Cosimo Marcello Bruno

    2012-01-01

    Full Text Available The authors describe the pathophysiological mechanisms leading to development of acidosis in patients with chronic obstructive pulmonary disease and its deleterious effects on outcome and mortality rate. Renal compensatory adjustments consequent to acidosis are also described in detail with emphasis on differences between acute and chronic respiratory acidosis. Mixed acid-base disturbances due to comorbidity and side effects of some drugs in these patients are also examined, and practical considerations for a correct diagnosis are provided.

  13. Recent Developments in the Classification, Evaluation, Pathophysiology, and Management of Scleroderma Renal Crisis.

    Science.gov (United States)

    Ghossein, Cybele; Varga, John; Fenves, Andrew Z

    2016-01-01

    Scleroderma renal crisis (SRC) is an uncommon complication of systemic sclerosis. Despite the advent of angiotensin-converting inhibitor therapy, SRC remains a life-threatening complication. Recent studies have contributed to a better understanding of SRC, but much remains unknown regarding its pathophysiology, risk factors, and optimal management. Genetic studies provide evidence that immune dysregulation might be a contributing factor, providing hope that further research in this direction might illuminate pathogenesis and provide novel predictors for this complication.

  14. Role of the Hemostatic System on SCD Pathophysiology and Potential Therapeutics

    OpenAIRE

    Pakbaz, Zahra; Wun, Ted

    2014-01-01

    Recent studies suggest that sickle cell disease is a hypercoagulable state contributing to the vaso-occlusive events in microcirculation resulting in acute and chronic sickle cell related organ damage. In this article, we will review the existing evidence for contribution of hemostatic system perturbation to sickle cell disease pathophysiology. We will also review the data showing increased risk of thromboembolic events, particularly newer information on the incidence of VTE. Finally, the pot...

  15. Pathogenesis and treatment of psoriasis: exploiting pathophysiological pathways for precision medicine.

    Science.gov (United States)

    Alwan, Wisam; Nestle, Frank O

    2015-01-01

    Psoriasis is a common, chronic inflammatory skin disease associated with multi-system manifestations including arthritis and obesity. Our knowledge of the aetiology of the condition, including the key genomic, immune and environmental factors, has led to the development of targeted, precision therapies that alleviate patient morbidity. This article reviews the key pathophysiological pathways and therapeutic targets and highlights future areas of interest in psoriasis research.

  16. Current Understanding of the Pathophysiology of Myocardial Fibrosis and Its Quantitative Assessment in Heart Failure

    Directory of Open Access Journals (Sweden)

    Tong Liu

    2017-04-01

    Full Text Available Myocardial fibrosis is an important part of cardiac remodeling that leads to heart failure and death. Myocardial fibrosis results from increased myofibroblast activity and excessive extracellular matrix deposition. Various cells and molecules are involved in this process, providing targets for potential drug therapies. Currently, the main detection methods of myocardial fibrosis rely on serum markers, cardiac magnetic resonance imaging, and endomyocardial biopsy. This review summarizes our current knowledge regarding the pathophysiology, quantitative assessment, and novel therapeutic strategies of myocardial fibrosis.

  17. Effects of ADMA upon gene expression: an insight into the pathophysiological significance of raised plasma ADMA.

    Directory of Open Access Journals (Sweden)

    Caroline L Smith

    2005-10-01

    Full Text Available Asymmetric dimethylarginine (ADMA is a naturally occurring inhibitor of nitric oxide synthesis that accumulates in a wide range of diseases associated with endothelial dysfunction and enhanced atherosclerosis. Clinical studies implicate plasma ADMA as a major novel cardiovascular risk factor, but the mechanisms by which low concentrations of ADMA produce adverse effects on the cardiovascular system are unclear.We treated human coronary artery endothelial cells with pathophysiological concentrations of ADMA and assessed the effects on gene expression using U133A GeneChips (Affymetrix. Changes in several genes, including bone morphogenetic protein 2 inducible kinase (BMP2K, SMA-related protein 5 (Smad5, bone morphogenetic protein receptor 1A, and protein arginine methyltransferase 3 (PRMT3; also known as HRMT1L3, were confirmed by Northern blotting, quantitative PCR, and in some instances Western blotting analysis to detect changes in protein expression. To determine whether these changes also occurred in vivo, tissue from gene deletion mice with raised ADMA levels was examined. More than 50 genes were significantly altered in endothelial cells after treatment with pathophysiological concentrations of ADMA (2 microM. We detected specific patterns of changes that identify pathways involved in processes relevant to cardiovascular risk and pulmonary hypertension. Changes in BMP2K and PRMT3 were confirmed at mRNA and protein levels, in vitro and in vivo.Pathophysiological concentrations of ADMA are sufficient to elicit significant changes in coronary artery endothelial cell gene expression. Changes in bone morphogenetic protein signalling, and in enzymes involved in arginine methylation, may be particularly relevant to understanding the pathophysiological significance of raised ADMA levels. This study identifies the mechanisms by which increased ADMA may contribute to common cardiovascular diseases and thereby indicates possible targets for therapies.

  18. Deep Brain Stimulation in Huntington’s Disease—Preliminary Evidence on Pathophysiology, Efficacy and Safety

    Directory of Open Access Journals (Sweden)

    Lars Wojtecki

    2016-08-01

    Full Text Available Huntington’s disease (HD is one of the most disabling degenerative movement disorders, as it not only affects the motor system but also leads to cognitive disabilities and psychiatric symptoms. Deep brain stimulation (DBS of the pallidum is a promising symptomatic treatment targeting the core motor symptom: chorea. This article gives an overview of preliminary evidence on pathophysiology, safety and efficacy of DBS in HD.

  19. Rethinking mercury: the role of selenium in the pathophysiology of mercury toxicity.

    Science.gov (United States)

    Spiller, Henry A

    2018-05-01

    There is increasing evidence that the pathophysiological target of mercury is in fact selenium, rather than the covalent binding of mercury to sulfur in the body's ubiquitous sulfhydryl groups. The role of selenium in mercury poisoning is multifaceted, bidirectional, and central to understanding the target organ toxicity of mercury. An initial search was performed using Medline/PubMed, Toxline, Google Scholar, and Google for published work on mercury and selenium. These searches yielded 2018 citations. Publications that did not evaluate selenium status or evaluated environmental status (e.g., lake or ocean sediment) were excluded, leaving approximately 500 citations. This initial selection was scrutinized carefully and 117 of the most relevant and representative references were selected for use in this review. Binding of mercury to thiol/sulfhydryl groups: Mercury has a lower affinity for thiol groups and higher affinity for selenium containing groups by several orders of magnitude, allowing for binding in a multifaceted way. The established binding of mercury to thiol moieties appears to primarily involve the transport across membranes, tissue distribution, and enhanced excretion, but does not explain the oxidative stress, calcium dyshomeostasis, or specific organ injury seen with mercury. Effects of mercury on selenium and the role this plays in the pathophysiology of mercury toxicity: Mercury impairs control of intracellular redox homeostasis with subsequent increased intracellular oxidative stress. Recent work has provided convincing evidence that the primary cellular targets are the selenoproteins of the thioredoxin system (thioredoxin reductase 1 and thioredoxin reductase 2) and the glutathione-glutaredoxin system (glutathione peroxidase). Mercury binds to the selenium site on these proteins and permanently inhibits their function, disrupting the intracellular redox environment. A number of other important possible target selenoproteins have been identified

  20. A review of the pathophysiology, etiology, and treatment of attention-deficit hyperactivity disorder (ADHD).

    Science.gov (United States)

    Sharma, Alok; Couture, Justin

    2014-02-01

    To review the pathophysiology, etiology, and treatment of attention-deficit hyperactivity disorder (ADHD). A literature search was conducted in PubMed and EMBASE using the terms attention deficit hyperactive disorder, ADHD, pathophysiology, etiology, and neurobiology. Limits applied were the following: published in the past 10 years (January 2003 to August 2013), humans, review, meta-analysis, and English language. These yielded 63 articles in PubMed and 74 in EMBASE. After removing duplicate/irrelevant articles, 86 articles and their relevant reference citations were reviewed. ADHD is a neurological disorder that affects children, but symptoms may persist into adulthood. Individuals suffering from this disorder exhibit hyperactivity, inattention, impulsivity, and problems in social interaction and academic performance. Medications used to treat ADHD such as methylphenidate, amphetamine, and atomoxetine indicate a dopamine/norepinephrine deficit as the neurochemical basis of ADHD, but the etiology is more complex. Moreover, these agents have poor adverse effect profiles and a multitude of drug interactions. Because these drugs are also dispensed to adults who may have concomitant conditions or medications, a pharmacist needs to be aware of these adverse events and drug interactions. This review, therefore, focuses on the pathophysiology, etiology, and treatment of ADHD and details the adverse effects and drug interaction profiles of the drugs used to treat it. Published research shows the benefit of drug therapy for ADHD in children, but given the poor adverse effect and drug interaction profiles, these must be dispensed with caution.

  1. IDO chronic immune activation and tryptophan metabolic pathway: A potential pathophysiological link between depression and obesity.

    Science.gov (United States)

    Chaves Filho, Adriano José Maia; Lima, Camila Nayane Carvalho; Vasconcelos, Silvânia Maria Mendes; de Lucena, David Freitas; Maes, Michael; Macedo, Danielle

    2018-01-03

    Obesity and depression are among the most pressing health problems in the contemporary world. Obesity and depression share a bidirectional relationship, whereby each condition increases the risk of the other. By inference, shared pathways may underpin the comorbidity between obesity and depression. Activation of cell-mediated immunity (CMI) is a key factor in the pathophysiology of depression. CMI cytokines, including IFN-γ, TNFα and IL-1β, induce the catabolism of tryptophan (TRY) by stimulating indoleamine 2,3-dioxygenase (IDO) resulting in the synthesis of kynurenine (KYN) and other tryptophan catabolites (TRYCATs). In the CNS, TRYCATs have been related to oxidative damage, inflammation, mitochondrial dysfunction, cytotoxicity, excitotoxicity, neurotoxicity and lowered neuroplasticity. The pathophysiology of obesity is also associated with a state of aberrant inflammation that activates aryl hydrocarbon receptor (AHR), a pathway involved in the detection of intracellular or environmental changes as well as with increases in the production of TRYCATs, being KYN an agonists of AHR. Both AHR and TRYCATS are involved in obesity and related metabolic disorders. These changes in the TRYCAT pathway may contribute to the onset of neuropsychiatric symptoms in obesity. This paper reviews the role of immune activation, IDO stimulation and increased TRYCAT production in the pathophysiology of depression and obesity. Here we suggest that increased synthesis of detrimental TRYCATs is implicated in comorbid obesity and depression and is a new drug target to treat both diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The importance of obstructive sleep apnoea and hypopnea pathophysiology for customized therapy.

    Science.gov (United States)

    Bosi, Marcello; De Vito, Andrea; Gobbi, Riccardo; Poletti, Venerino; Vicini, Claudio

    2017-03-01

    The objective of this study is to highlight the importance of anatomical and not-anatomical factors' identification for customized therapy in OSAHS patients. The data sources are: MEDLINE, The Cochrane Library and EMBASE. A systematic review was performed to identify studies that analyze the role of multiple interacting factors involved in the OSAHS pathophysiology. 85 out of 1242 abstracts were selected for full-text review. A variable combinations pathophysiological factors contribute to realize differentiated OSAHS phenotypes: a small pharyngeal airway with a low resistance to collapse (increased critical closing pressure), an inadequate responses of pharyngeal dilator muscles (wakefulness drive to breathe), an unstable ventilator responsiveness to hypercapnia (high loop gain), and an increased propensity to wake related to upper airway obstruction (low arousal threshold). Identifying if the anatomical or not-anatomical factors are predominant in each OSAHS patient represents the current challenge in clinical practice, moreover for the treatment decision-making. In the future, if a reliable and accurate pathophysiological pattern for each OSAHS patient can be identified, a customized therapy will be feasible, with a significant improvement of surgical success in sleep surgery and a better understanding of surgical failure.

  3. A review on Alzheimer's disease pathophysiology and its management: an update.

    Science.gov (United States)

    Kumar, Anil; Singh, Arti; Ekavali

    2015-04-01

    Alzheimer's disease acknowledged as progressive multifarious neurodegenerative disorder, is the leading cause of dementia in late adult life. Pathologically it is characterized by intracellular neurofibrillary tangles and extracellular amyloidal protein deposits contributing to senile plaques. Over the last two decades, advances in the field of pathogenesis have inspired the researchers for the investigation of novel pharmacological therapeutics centered more towards the pathophysiological events of the disease. Currently available treatments i.e. acetylcholinesterase inhibitors (rivastigmine, galantamine, donepezil) and N-methyl d-aspartate receptor antagonist (memantine) contribute minimal impact on the disease and target late aspects of the disease. These drugs decelerate the progression of the disease, provide symptomatic relief but fail to achieve a definite cure. While the neuropathological features of Alzheimer's disease are recognized but the intricacies of the mechanism have not been clearly defined. This lack of understanding regarding the pathogenic process may be the likely reason for the non-availability of effective treatment which can prevent onset and progression of the disease. Owing to the important progress in the field of pathophysiology in the last couple of years, new therapeutic targets are available that should render the underlying disease process to be tackled directly. In this review, authors will discusses the different aspects of pathophysiological mechanisms behind Alzheimer's disease and its management through conventional drug therapy, including modern investigational therapeutic strategies, recently completed and ongoing. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  4. A Web-based e-learning course: integration of pathophysiology into pharmacology.

    Science.gov (United States)

    Tse, Mimi M Y; Lo, Lisa W L

    2008-11-01

    The Internet is becoming the preferred place to find information. Millions of people go online in search of health and medical information. Likewise, the demand for Web-based courses is growing. This paper presents the development, utilization, and evaluation of a Web-based e-learning course for nursing students, entitled Integration of Pathophysiology into Pharmacology. The pathophysiology component included cardiovascular, respiratory, central nervous and immune system diseases, while the pharmacology component was developed based on 150 commonly used drugs. One hundred and nineteen Year 1 nursing students took part in the course. The Web-based e-learning course materials were uploaded to a WebCT for students' self-directed learning and attempts to pass two scheduled online quizzes. At the end of the semester, students were given a questionnaire to measure the e-learning experience. Their experience in the e-learning course was a positive one. Students stated that they were able to understand rather than memorize the subject content, and develop their problem solving and critical thinking abilities. Online quizzes yielded satisfactory results. In the focus group interview, students indicated that they appreciated the time flexibility and convenience associated with Web-based learning, and also made good suggestions for enhancing Web-based learning. The Web-based approach is promising for teaching and learning pathophysiology and pharmacology for nurses and other healthcare professionals.

  5. Short overview on metabolomics approach to study pathophysiology of oxidative stress in cancer

    Directory of Open Access Journals (Sweden)

    Luka Andrisic

    2018-04-01

    Full Text Available Association of oxidative stress with carcinogenesis is well known, but not understood well, as is pathophysiology of oxidative stress generated during different types of anti-cancer treatments. Moreover, recent findings indicate that cancer associated lipid peroxidation might eventually help defending adjacent nonmalignant cells from cancer invasion. Therefore, untargeted metabolomics studies designed for advanced translational and clinical studies are needed to understand the existing paradoxes in oncology, including those related to controversial usage of antioxidants aiming to prevent or treat cancer. In this short review we have tried to put emphasis on the importance of pathophysiology of oxidative stress and lipid peroxidation in cancer development in relation to metabolic adaptation of particular types of cancer allowing us to conclude that adaptation to oxidative stress is one of the main driving forces of cancer pathophysiology. With the help of metabolomics many novel findings are being achieved thus encouraging further scientific breakthroughs. Combined with targeted qualitative and quantitative methods, especially immunochemistry, further research might reveal bio-signatures of individual patients and respective malignant diseases, leading to individualized treatment approach, according to the concepts of modern integrative medicine. Keywords: Carcinogenesis, Cancer, Oxidative stress, Lipid peroxidation, 4-hydroxynonenal, Glutathione, Metabolomics, Immunochemistry, Biomarkers, Omics science

  6. Multi-disciplinary management of athletes with post-concussion syndrome: an evolving pathophysiological approach

    Directory of Open Access Journals (Sweden)

    Michael John Ellis

    2016-08-01

    Full Text Available Historically, patients with sports-related concussion (SRC have been managed in a uniform fashion consisting mostly of prescribed physical and cognitive rest with the expectation that all symptoms will spontaneously resolve with time. Although this approach will result in successful return to school and sports activities in the majority of athletes, an important proportion will develop persistent concussion symptoms characteristic of post-concussion syndrome (PCS. Recent advances in exercise science, neuroimaging, and clinical research suggest that the clinical manifestations of PCS are mediated by unique pathophysiological processes that can be identified by features of the clinical history and physical examination as well as the use of graded aerobic treadmill testing. Athletes who develop PCS represent a unique population whose care must be individualized and must incorporate a rehabilitative strategy that promotes enhanced recovery of concussion-related symptoms while preventing physical deconditioning. In this review we present our evolving evidence-based approach to evaluation and management of athletes with PCS that aims to identify the pathophysiological mechanisms mediating persistent concussion symptoms and guides the initiation of individually-tailored rehabilitation programs that target these processes. In addition, we outline the important qualified roles that multi-disciplinary healthcare professionals can play in the management of this patient population, and discuss where future research efforts must be focused to further validate this evolving pathophysiological approach.

  7. Multi-Disciplinary Management of Athletes with Post-Concussion Syndrome: An Evolving Pathophysiological Approach.

    Science.gov (United States)

    Ellis, Michael J; Leddy, John; Willer, Barry

    2016-01-01

    Historically, patients with sports-related concussion (SRC) have been managed in a uniform fashion consisting mostly of prescribed physical and cognitive rest with the expectation that all symptoms will spontaneously resolve with time. Although this approach will result in successful return to school and sports activities in the majority of athletes, an important proportion will develop persistent concussion symptoms characteristic of post-concussion syndrome (PCS). Recent advances in exercise science, neuroimaging, and clinical research suggest that the clinical manifestations of PCS are mediated by unique pathophysiological processes that can be identified by features of the clinical history and physical examination as well as the use of graded aerobic treadmill testing. Athletes who develop PCS represent a unique population whose care must be individualized and must incorporate a rehabilitative strategy that promotes enhanced recovery of concussion-related symptoms while preventing physical deconditioning. In this review, we present our evolving evidence-based approach to evaluation and management of athletes with PCS that aims to identify the pathophysiological mechanisms mediating persistent concussion symptoms and guides the initiation of individually tailored rehabilitation programs that target these processes. In addition, we outline the important qualified roles that multi-disciplinary healthcare professionals can play in the management of this patient population, and discuss where future research efforts must be focused to further evaluate this evolving pathophysiological approach.

  8. Pathophysiology and clinical characteristics of hypothalamic obesity in children and adolescents

    Directory of Open Access Journals (Sweden)

    Ja Hye Kim

    2013-12-01

    Full Text Available The hypothalamus plays a key role in the regulation of body weight by balancing the intake of food, energy expenditure, and body fat stores, as evidenced by the fact that most monogenic syndromes of morbid obesity result from mutations in genes expressed in the hypothalamus. Hypothalamic obesity is a result of impairment in the hypothalamic regulatory centers of body weight and energy expenditure, and is caused by structural damage to the hypothalamus, radiotherapy, Prader-Willi syndrome, and mutations in the LEP, LEPR, POMC, MC4R and CART genes. The pathophysiology includes loss of sensitivity to afferent peripheral humoral signals, such as leptin, dysregulated insulin secretion, and impaired activity of the sympathetic nervous system. Dysregulation of 11β-hydroxysteroid dehydrogenase 1 activity and melatonin may also have a role in the development of hypothalamic obesity. Intervention of this complex entity requires simultaneous targeting of several mechanisms that are deranged in patients with hypothalamic obesity. Despite a great deal of theoretical understanding, effective treatment for hypothalamic obesity has not yet been developed. Therefore, understanding the mechanisms that control food intake and energy homeostasis and pathophysiology of hypothalamic obesity can be the cornerstone of the development of new treatments options. Early identification of patients at-risk can relieve the severity of weight gain by the provision of dietary and behavioral modification, and antiobesity medication. This review summarizes recent advances of the pathophysiology, endocrine characteristics, and treatment strategies of hypothalamic obesity.

  9. Executive functions in anorexia nervosa

    OpenAIRE

    Jauregui-Lobera, Ignacio

    2014-01-01

    Introduction: The pathophysiologic mechanisms that account for the development and persistence of anorexia nervosa (AN) remain unclear. With respect to the neuropsychological functioning, the executive functions have been reported to be altered, especially cognitive flexibility and decision-making processes. Objectives: The aim of this study was to review the current state of the neuropsychological studies focused on anorexia nervosa, especially those highlighting the executive functions. Met...

  10. Pathophysiology of major depressive disorder: mechanisms involved in etiology are not associated with clinical progression.

    Science.gov (United States)

    Verduijn, J; Milaneschi, Y; Schoevers, R A; van Hemert, A M; Beekman, A T F; Penninx, B W J H

    2015-09-29

    Meta-analyses support the involvement of different pathophysiological mechanisms (inflammation, hypothalamic-pituitary (HPA)-axis, neurotrophic growth and vitamin D) in major depressive disorder (MDD). However, it remains unknown whether dysregulations in these mechanisms are more pronounced when MDD progresses toward multiple episodes and/or chronicity. We hypothesized that four central pathophysiological mechanisms of MDD are not only involved in etiology, but also associated with clinical disease progression. Therefore, we expected to find increasingly more dysregulation across consecutive stages of MDD progression. The sample from the Netherlands Study of Depression and Anxiety (18-65 years) consisted of 230 controls and 2333 participants assigned to a clinical staging model categorizing MDD in eight stages (0, 1A, 1B, 2, 3A, 3B, 3C and 4), from familial risk at MDD (stage 0) to chronic MDD (stage 4). Analyses of covariance examined whether pathophysiological mechanism markers (interleukin (IL)-6, C-reactive protein (CRP), cortisol, brain-derived neurotrophic factor and vitamin D) showed a linear trend across controls, those at risk for MDD (stages 0, 1A and 1B), and those with full-threshold MDD (stages 2, 3A, 3B, 3C and 4). Subsequently, pathophysiological differences across separate stages within those at risk and with full-threshold MDD were examined. A linear increase of inflammatory markers (CRP P=0.026; IL-6 P=0.090), cortisol (P=0.025) and decrease of vitamin D (P<0.001) was found across the entire sample (for example, from controls to those at risk and those with full-threshold MDD). Significant trends of dysregulations across stages were present in analyses focusing on at-risk individuals (IL-6 P=0.050; cortisol P=0.008; vitamin D P<0.001); however, no linear trends were found in dysregulations for any of the mechanisms across more progressive stages of full-threshold MDD. Our results support that the examined pathophysiological mechanisms are

  11. Proposed Pathophysiologic Framework to Explain Some Excess Cardiovascular Death Associated with Ambient Air Particle Pollution: Insights for Public Health Translation

    Science.gov (United States)

    The paper proposes a pathophysiologic framework to explain the well-established epidemiological association between exposure to ambient air particle pollution and premature cardiovascular mortality, and offers insights into public health solutions that extend beyond regularory en...

  12. Assessment of pathophysiology based on the left ventricular shape in five patients with midventricular obstructive hypertrophic cardiomyopathy

    International Nuclear Information System (INIS)

    Aoki, Mayumi; Uekita, Kazumi; Obata, Hiromi; Makiguchi, Noriko; Mitsuoka, Takao; Kikuchi, Kenjiro

    2007-01-01

    The pathophysiology of midventricular obstructive hypertrophic cardiomyopathy (MVO) is unknown. Patients with MVO and MVO-like cardiomyopathy were classified into three groups based on the cardioimaging morphological characteristics of the left ventricle to investigate their complications and treatment. Four patients with MVO and one patient with disease-like MVO were admitted in our hospital from 1999 to 2005. Group A consisted of one patient with indications of pressure gradient at mid-ventricle without apical aneurysm, Group B consisted of three patients with indications of pressure gradient and apical aneurysm, and Group C consisted of one patient with hour-glass appearance with apical aneurysm and decreased left ventricular systolic function without pressure gradient. The diagnosis was established during examination for sustained ventricular tachycardia (SVT, three patients), paroxysmal atrial fibrillation (one patient), and coronary artery disease (one patient). Cardiogenic embolization was observed in all cases which originated from atrial fibrillation (one case) and apical aneurysm (two cases). No embolic event occurred in any patient after warfarin therapy. SVT occurred in patients in Groups B and C. SVT refractory to beta-blocker and mexiletine was treated by amiodarone. Apical aneurysmectomy and cryoablation could prevent recurrent SVT with drug resistance. Four of the five patients with MVO had arrhythmia (atrial fibrillation, SVT) and three had cardiogenic embolization. MVO could be classified into three groups depending on the morphological characteristics and complications. Treatment of MVO should be based on these characteristics. (author)

  13. Physiological and pathophysiological reactive oxygen species as probed by EPR spectroscopy: the underutilized research window on muscle ageing.

    Science.gov (United States)

    A Abdel-Rahman, Engy; Mahmoud, Ali M; Khalifa, Abdulrahman M; Ali, Sameh S

    2016-08-15

    Reactive oxygen and nitrogen species (ROS and RNS) play crucial roles in triggering, mediating and regulating physiological and pathophysiological signal transduction pathways within the cell. Within the cell, ROS efflux is firmly controlled both spatially and temporally, making the study of ROS dynamics a challenging task. Different approaches have been developed for ROS assessment; however, many of these assays are not capable of direct identification or determination of subcellular localization of different ROS. Here we highlight electron paramagnetic resonance (EPR) spectroscopy as a powerful technique that is uniquely capable of addressing questions on ROS dynamics in different biological specimens and cellular compartments. Due to their critical importance in muscle functions and dysfunction, we discuss in some detail spin trapping of various ROS and focus on EPR detection of nitric oxide before highlighting how EPR can be utilized to probe biophysical characteristics of the environment surrounding a given stable radical. Despite the demonstrated ability of EPR spectroscopy to provide unique information on the identity, quantity, dynamics and environment of radical species, its applications in the field of muscle physiology, fatiguing and ageing are disproportionately infrequent. While reviewing the limited examples of successful EPR applications in muscle biology we conclude that the field would greatly benefit from more studies exploring ROS sources and kinetics by spin trapping, protein dynamics by site-directed spin labelling, and membrane dynamics and global redox changes by spin probing EPR approaches. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  14. [Calcium and bone metabolism across women's life stages. Pathophysiology, adiagnosis and treatment of post-pregnancy osteoporosis.

    Science.gov (United States)

    Kurabayashi, Takumi

    Post-pregnancy osteoporosis is a rare condition with little known pathophysiology. Most cases are diagnosed in the late stage of pregnancy or in the post-partum while breastfeeding, particularly in first pregnancy. Vertebral fractures are most commonly observed and characterized by prolonged severe pain and functional limitations. Measurements of bone mineral density(BMD)of the lumbar spine and proximal femur with dual energy X-ray absorptiometry(DXA)are the clinical methods most commonly used for no fracture women. Conventional radiography will confirm the fracture in most cases, and magnetic resonance(MR), which can be safely used during pregnancy, is effective in detecting vertebral fractures and bone marrow edema. Although the bone resorption increased at the end of pregnancy and lactation, the bone formation increases and the bone structure is almost recovered after cessation of lactating in postpartum. There is much uncertainty about whether pharmacological treatments should be used for osteoporosis that presents during pregnancy and lactation. This is partly because of the lack of a firm evidence base for treatment and also because there is a spontaneous recovery of bone mass and strength after pregnancy or weaning.

  15. Chronic inflammation in the pancreas and salivary glands--lessons from similarities and differences in pathophysiology and treatment modalities.

    Science.gov (United States)

    Rakonczay, Zoltán; Vág, János; Földes, Anna; Nagy, Krisztina; Nagy, Ákos; Hegyi, Péter; Varga, Gábor

    2014-01-01

    The pancreas and salivary glands have similar anatomical structures and physiological functions producing bicarbonate-rich fluid containing digestive enzymes and other components to be delivered into the gut. Despite these similarities, the two organs are also different in numerous respects, especially regarding the inflammatory diseases affecting them. This article will summarize the pathophysiology and current and potential pharmacological treatments of chronic inflammatory diseases such as chronic pancreatitis, autoimmune pancreatitis, Sjögren's syndrome and irradiation-induced salivary gland atrophy. Despite the differences, in both organs the inflammatory process is accompanied by epithelial tissue destruction and fibrosis. Both in pancreatic and in salivary research, an important task is to stop or even reverse this process. The utilization of stem/progenitor cell populations previously identified in these organs and the application of mesenchymal stem cells are very promising for such regenerative purposes. In addition, gene therapy and tissue engineering research progressively advance and have already yielded clinically beneficial preliminary results for salivary gland diseases. For the hard-to-access, hard-to-regenerate pancreas these developments may also offer new solutions, especially since salivary and pancreatic progenitors are very similar in characteristics and may be mutually useful to regenerate the respective other organ as well. These novel developments could be of great significance and may bring new hope for patients since currently used therapeutic protocols in salivary and in pancreatic chronic inflammatory diseases offer primarily symptomatic treatments and limited beneficial outcome.

  16. HbE/β-Thalassemia and Oxidative Stress: The Key to Pathophysiological Mechanisms and Novel Therapeutics.

    Science.gov (United States)

    Hirsch, Rhoda Elison; Sibmooh, Nathawut; Fucharoen, Suthat; Friedman, Joel M

    2017-05-10

    Oxidative stress and generation of free radicals are fundamental in initiating pathophysiological mechanisms leading to an inflammatory cascade resulting in high rates of morbidity and death from many inherited point mutation-derived hemoglobinopathies. Hemoglobin (Hb)E is the most common point mutation worldwide. The β E -globin gene is found in greatest frequency in Southeast Asia, including Thailand, Malaysia, Indonesia, Vietnam, Cambodia, and Laos. With the wave of worldwide migration, it is entering the gene pool of diverse populations with greater consequences than expected. While HbE by itself presents as a mild anemia and a single gene for β-thalassemia is not serious, it remains unexplained why HbE/β-thalassemia (HbE/β-thal) is a grave disease with high morbidity and mortality. Patients often exhibit defective physical development, severe chronic anemia, and often die of cardiovascular disease and severe infections. Recent Advances: This article presents an overview of HbE/β-thal disease with an emphasis on new findings pointing to pathophysiological mechanisms derived from and initiated by the dysfunctional property of HbE as a reduced nitrite reductase concomitant with excess α-chains exacerbating unstable HbE, leading to a combination of nitric oxide imbalance, oxidative stress, and proinflammatory events. Additionally, we present new therapeutic strategies that are based on the emerging molecular-level understanding of the pathophysiology of this and other hemoglobinopathies. These strategies are designed to short-circuit the inflammatory cascade leading to devastating chronic morbidity and fatal consequences. Antioxid. Redox Signal. 26, 794-813.

  17. HbE/β-Thalassemia and Oxidative Stress: The Key to Pathophysiological Mechanisms and Novel Therapeutics

    Science.gov (United States)

    Sibmooh, Nathawut; Fucharoen, Suthat

    2017-01-01

    Abstract Significance: Oxidative stress and generation of free radicals are fundamental in initiating pathophysiological mechanisms leading to an inflammatory cascade resulting in high rates of morbidity and death from many inherited point mutation-derived hemoglobinopathies. Hemoglobin (Hb)E is the most common point mutation worldwide. The βE-globin gene is found in greatest frequency in Southeast Asia, including Thailand, Malaysia, Indonesia, Vietnam, Cambodia, and Laos. With the wave of worldwide migration, it is entering the gene pool of diverse populations with greater consequences than expected. Critical Issues: While HbE by itself presents as a mild anemia and a single gene for β-thalassemia is not serious, it remains unexplained why HbE/β-thalassemia (HbE/β-thal) is a grave disease with high morbidity and mortality. Patients often exhibit defective physical development, severe chronic anemia, and often die of cardiovascular disease and severe infections. Recent Advances: This article presents an overview of HbE/β-thal disease with an emphasis on new findings pointing to pathophysiological mechanisms derived from and initiated by the dysfunctional property of HbE as a reduced nitrite reductase concomitant with excess α-chains exacerbating unstable HbE, leading to a combination of nitric oxide imbalance, oxidative stress, and proinflammatory events. Future Directions: Additionally, we present new therapeutic strategies that are based on the emerging molecular-level understanding of the pathophysiology of this and other hemoglobinopathies. These strategies are designed to short-circuit the inflammatory cascade leading to devastating chronic morbidity and fatal consequences. Antioxid. Redox Signal. 26, 794–813. PMID:27650096

  18. Review article: the pathophysiology, differential diagnosis and management of rumination syndrome.

    Science.gov (United States)

    Tack, J; Blondeau, K; Boecxstaens, V; Rommel, N

    2011-04-01

    Rumination syndrome, characterised by the effortless, often repetitive, regurgitation of recently ingested food into the mouth, was originally described in children and in the developmentally disabled. It is now well-recognised that rumination syndrome occurs in patients of all ages and cognitive abilities. To review a scholarly review on our current understanding of the rumination syndrome. The review was conducted on the basis of a medline search to identify relevant publications pertaining to the pathophysiology, clinical diagnosis and management of rumination syndrome. The Rome III consensus established diagnostic criteria for rumination syndrome in adults, children and infants. A typical history can be highly suggestive but oesophageal (high resolution) manometry/impedance with ingestion of a meal may help to distinguish rumination syndrome from other belching/regurgitation disorders. The pathophysiology is incompletely understood, but involves a rise in intra-gastric pressure, generated by a voluntary, but often unintentional, contraction of the abdominal wall musculature, at a time of low pressure in the lower oesophageal sphincter, causing retrograde movement of gastric contents into the oesophagus. To date, controlled trials in the treatment rumination syndrome are lacking. The mainstay of treatment for rumination syndrome is explanation and behavioural treatment which consists of habit reversal techniques that compete with the urge to regurgitate. Chewing gum, prokinetics, baclofen and even antireflux surgery have been proposed as adjunctive therapies, but high quality studies are generally lacking. Rumination is an under-recognised condition with incompletely understood pathophysiology. Behavioural therapy seems effective, but controlled treatment trials are lacking. © 2011 Blackwell Publishing Ltd.

  19. Advanced MR imaging in Lhermitte-Duclos disease: moving closer to pathology and pathophysiology

    International Nuclear Information System (INIS)

    Thomas, B.; Krishnamoorthy, T.; Kesavadas, C.; Radhakrishnan, V.V.

    2007-01-01

    Lhermitte-Duclos disease (LDD, dysplastic gangliocytoma) is an extremely rare cerebellar lesion of uncertain etiology. The debate as to whether it constitutes a neoplastic, malformative, or hamartomatous lesion is still continuing. In this report we explore the usefulness of susceptibility-weighted imaging (SWI), diffusion weighted imaging (DWI), perfusion imaging, and chemical shift imaging (CSI) in demonstrating the pathology and pathophysiology in two patients with LDD. MR imaging of the brain and the cervicodorsal spine was performed on a 1.5-T scanner in a 47-year-old woman presenting with numbness and paresthesia of both upper and lower limbs, and in a 17-year-old male with right frontal headache associated with neck pain. Routine imaging in the first patient showed a left-side cerebellar mass with characteristic 'tiger-striped' thick folia associated with Chiari I malformation, tonsillar herniation and cervicodorsal syringomyelia and in the second patient a right cerebellar mass with similar findings. The SWI demonstrated the characteristic deep running veins between the folia, which is thought to be the cause for vascular contrast enhancement. Diffusion showed a T2 shine-through effect with mild increased diffusivity, and perfusion showed increase in relative cerebral blood volume, relative cerebral blood flow, and mean transit time in the lesion. MR spectroscopy demonstrated reduction in metabolites and a prominent lactate peak in both the patients. The pathological and pathophysiological significance of these findings is discussed. MRI with the newer imaging capabilities can demonstrate the pathology and pathophysiology in Lhermitte-Duclos disease better. SWI helps in detecting the veins around the thickened folia. (orig.)

  20. Advanced MR imaging in Lhermitte-Duclos disease: moving closer to pathology and pathophysiology

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, B.; Krishnamoorthy, T.; Kesavadas, C. [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Department of Imaging Sciences and Interventional Radiology, Kerala (India); Radhakrishnan, V.V. [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Department of Pathology, Kerala (India)

    2007-09-15

    Lhermitte-Duclos disease (LDD, dysplastic gangliocytoma) is an extremely rare cerebellar lesion of uncertain etiology. The debate as to whether it constitutes a neoplastic, malformative, or hamartomatous lesion is still continuing. In this report we explore the usefulness of susceptibility-weighted imaging (SWI), diffusion weighted imaging (DWI), perfusion imaging, and chemical shift imaging (CSI) in demonstrating the pathology and pathophysiology in two patients with LDD. MR imaging of the brain and the cervicodorsal spine was performed on a 1.5-T scanner in a 47-year-old woman presenting with numbness and paresthesia of both upper and lower limbs, and in a 17-year-old male with right frontal headache associated with neck pain. Routine imaging in the first patient showed a left-side cerebellar mass with characteristic 'tiger-striped' thick folia associated with Chiari I malformation, tonsillar herniation and cervicodorsal syringomyelia and in the second patient a right cerebellar mass with similar findings. The SWI demonstrated the characteristic deep running veins between the folia, which is thought to be the cause for vascular contrast enhancement. Diffusion showed a T2 shine-through effect with mild increased diffusivity, and perfusion showed increase in relative cerebral blood volume, relative cerebral blood flow, and mean transit time in the lesion. MR spectroscopy demonstrated reduction in metabolites and a prominent lactate peak in both the patients. The pathological and pathophysiological significance of these findings is discussed. MRI with the newer imaging capabilities can demonstrate the pathology and pathophysiology in Lhermitte-Duclos disease better. SWI helps in detecting the veins around the thickened folia. (orig.)