WorldWideScience

Sample records for hgf receptor c-met

  1. The HGF Receptor c-Met Is Overexpressed in Esophageal Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Luis J. Herrera

    2005-01-01

    Full Text Available The hepatocyte growth factor (HGF receptor, Met, has established oncogenic properties; however, its expression and function in esophageal adenocarcinoma (EA remain poorly understood. We aimed to determine the expression and potential alterations in Met expression in EA. Met expression was investigated in surgical specimens of EA, Barrett's esophagus (BE, and normal esophagus (NE using immunohistochemistry (IHC and quantitative reverse transcriptase polymerase chain reaction. Met expression, phosphorylation, and the effect of COX-2 inhibition on expression were examined in EA cell lines. IHC demonstrated intense Met immunoreactivity in all (100% EA and dysplastic BE specimens. In contrast, minimal immunostaining was observed in BE without dysplasia or NE specimens. Met mRNA and protein levels were increased in three EA cell lines, and Met protein was phosphorylated in the absence of serum. Sequence analysis found the kinase domain of c-met to be wild type in all three EA cell lines. HGF mRNA expression was identified in two EA cell lines. In COX-2-overexpressing cells, COX-2 inhibition decreased Met expression. Met is consistently overexpressed in EA surgical specimens and in three EA cell lines. Met dysregulation occurs early in Barrett's dysplasia to adenocarcinoma sequence. Future study of Met inhibition as a potential biologic therapy for EA is warranted.

  2. Regulation of HGF and c-MET Interaction in Normal Ovary and Ovarian Cancer.

    Science.gov (United States)

    Kwon, Youngjoo; Godwin, Andrew K

    2017-04-01

    Binding of hepatocyte growth factor (HGF) to the c-MET receptor has mitogenic, motogenic, and morphogenic effects on cells. The versatile biological effects of HGF and c-MET interactions make them important contributors to the development of malignant tumors. We and others have demonstrated a therapeutic value in targeting the interaction of c-MET and HGF in epithelial ovarian cancer (EOC). However, both HGF and c-MET are expressed in the normal ovary as well. Therefore, it is important to understand the differences in mechanisms that control HGF signaling activation and its functional role in the normal ovary and EOC. In the normal ovary, HGF signaling may be under hormonal regulation. During ovulation, HGF-converting proteases are secreted and the subsequent activation of HGF signaling enhances the proliferation of ovarian surface epithelium in order to replenish the area damaged due to expulsion of the ovum. In contrast, EOC cells that exhibit epithelial characteristics constitutively express both c-MET and HGF-converting proteases such as urokinase-type plasminogen activator. In EOC, mechanisms to control the activation of HGF signaling are absent since HGF is provided locally from the tissue microenvironment as well as remotely throughout the body. Potential incessant HGF signaling in EOC may lead to an increase in proliferation, invasion through the stroma, and migration to other tissues of cancer cells. Therefore, targeting the interaction of c-MET and HGF would be beneficial in treating EOC.

  3. Activated HGF-c-Met Axis in Head and Neck Cancer

    Directory of Open Access Journals (Sweden)

    Levi Arnold

    2017-12-01

    Full Text Available Head and neck squamous cell carcinoma (HNSCC is a highly morbid disease. Recent developments including Food and Drug Administration (FDA approved molecular targeted agent’s pembrolizumab and cetuximab show promise but did not improve the five-year survival which is currently less than 40%. The hepatocyte growth factor receptor; also known as mesenchymal–epithelial transition factor (c-Met and its ligand hepatocyte growth factor (HGF are overexpressed in head and neck squamous cell carcinoma (HNSCC; and regulates tumor progression and response to therapy. The c-Met pathway has been shown to regulate many cellular processes such as cell proliferation, invasion, and angiogenesis. The c-Met pathway is involved in cross-talk, activation, and perpetuation of other signaling pathways, curbing the cogency of a blockade molecule on a single pathway. The receptor and its ligand act on several downstream effectors including phospholipase C gamma (PLCγ, cellular Src kinase (c-Src, phosphotidylinsitol-3-OH kinase (PI3K alpha serine/threonine-protein kinase (Akt, mitogen activate protein kinase (MAPK, and wingless-related integration site (Wnt pathways. They are also known to cross-talk with other receptors; namely epidermal growth factor receptor (EGFR and vascular endothelial growth factor receptor (VEGFR and specifically contribute to treatment resistance. Clinical trials targeting the c-Met axis in HNSCC have been undertaken because of significant preclinical work demonstrating a relationship between HGF/c-Met signaling and cancer cell survival. Here we focus on HGF/c-Met impact on cellular signaling in HNSCC to potentiate tumor growth and disrupt therapeutic efficacy. Herein we summarize the current understanding of HGF/c-Met signaling and its effects on HNSCC. The intertwining of c-Met signaling with other signaling pathways provides opportunities for more robust and specific therapies, leading to better clinical outcomes.

  4. HGF and c-Met Interaction Promotes Migration in Human Chondrosarcoma Cells

    Science.gov (United States)

    Tsou, Hsi-Kai; Chen, Hsien-Te; Hung, Ya-Huey; Chang, Chia-Hao; Li, Te-Mao; Fong, Yi-Chin; Tang, Chih-Hsin

    2013-01-01

    Chondrosarcoma is a type of highly malignant tumor with a potent capacity for local invasion and causing distant metastasis. Chondrosarcoma shows a predilection for metastasis to the lungs. Hepatocyte growth factor (HGF) has been demonstrated to stimulate cancer proliferation, migration, and metastasis. However, the effect of HGF on migration activity of human chondrosarcoma cells is not well known. Here, we found that human chondrosarcoma tissues demonstrated significant expression of HGF, which was higher than that in normal cartilage. We also found that HGF increased the migration and expression of matrix metalloproteinase (MMP)-2 in human chondrosarcoma cells. c-Met inhibitor and siRNA reduced HGF-increased cell migration and MMP-2 expression. HGF treatment resulted in activation of the phosphatidylinositol 3′-kinase (PI3K)/Akt/PKCδ/NF-κB pathway, and HGF-induced expression of MMP-2 and cell migration was inhibited by specific inhibitors or siRNA-knockdown of PI3K, Akt, PKCδ, and NF-κB cascades. Taken together, our results indicated that HGF enhances migration of chondrosarcoma cells by increasing MMP-2 expression through the c-Met receptor/PI3K/Akt/PKCδ/NF-κB signal transduction pathway. PMID:23320110

  5. HGF and c-Met interaction promotes migration in human chondrosarcoma cells.

    Directory of Open Access Journals (Sweden)

    Hsi-Kai Tsou

    Full Text Available Chondrosarcoma is a type of highly malignant tumor with a potent capacity for local invasion and causing distant metastasis. Chondrosarcoma shows a predilection for metastasis to the lungs. Hepatocyte growth factor (HGF has been demonstrated to stimulate cancer proliferation, migration, and metastasis. However, the effect of HGF on migration activity of human chondrosarcoma cells is not well known. Here, we found that human chondrosarcoma tissues demonstrated significant expression of HGF, which was higher than that in normal cartilage. We also found that HGF increased the migration and expression of matrix metalloproteinase (MMP-2 in human chondrosarcoma cells. c-Met inhibitor and siRNA reduced HGF-increased cell migration and MMP-2 expression. HGF treatment resulted in activation of the phosphatidylinositol 3'-kinase (PI3K/Akt/PKCδ/NF-κB pathway, and HGF-induced expression of MMP-2 and cell migration was inhibited by specific inhibitors or siRNA-knockdown of PI3K, Akt, PKCδ, and NF-κB cascades. Taken together, our results indicated that HGF enhances migration of chondrosarcoma cells by increasing MMP-2 expression through the c-Met receptor/PI3K/Akt/PKCδ/NF-κB signal transduction pathway.

  6. Cooperative interaction of MUC1 with the HGF/c-Met pathway during hepatocarcinogenesis.

    Science.gov (United States)

    Bozkaya, Giray; Korhan, Peyda; Cokaklı, Murat; Erdal, Esra; Sağol, Ozgül; Karademir, Sedat; Korch, Christopher; Atabey, Neşe

    2012-09-11

    Hepatocyte growth factor (HGF) induced c-Met activation is known as the main stimulus for hepatocyte proliferation and is essential for liver development and regeneration. Activation of HGF/c-Met signaling has been correlated with aggressive phenotype and poor prognosis in hepatocellular carcinoma (HCC). MUC1 is a transmembrane mucin, whose over-expression is reported in most cancers. Many of the oncogenic effects of MUC1 are believed to occur through the interaction of MUC1 with signaling molecules. To clarify the role of MUC1 in HGF/c-Met signaling, we determined whether MUC1 and c-Met interact cooperatively and what their role(s) is in hepatocarcinogenesis. MUC1 and c-Met over-expression levels were determined in highly motile and invasive, mesenchymal-like HCC cell lines, and in serial sections of cirrhotic and HCC tissues, and these levels were compared to those in normal liver tissues. Co-expression of both c-Met and MUC1 was found to be associated with the differentiation status of HCC. We further demonstrated an interaction between c-Met and MUC1 in HCC cells. HGF-induced c-Met phosphorylation decreased this interaction, and down-regulated MUC1 expression. Inhibition of c-Met activation restored HGF-mediated MUC1 down-regulation, and decreased the migratory and invasive abilities of HCC cells via inhibition of β-catenin activation and c-Myc expression. In contrast, siRNA silencing of MUC1 increased HGF-induced c-Met activation and HGF-induced cell motility and invasion. These findings indicate that the crosstalk between MUC1 and c-Met in HCC could provide an advantage for invasion to HCC cells through the β-catenin/c-Myc pathway. Thus, MUC1 and c-Met could serve as potential therapeutic targets in HCC.

  7. Cooperative interaction of MUC1 with the HGF/c-Met pathway during hepatocarcinogenesis

    Directory of Open Access Journals (Sweden)

    Bozkaya Giray

    2012-09-01

    Full Text Available Abstract Background Hepatocyte growth factor (HGF induced c-Met activation is known as the main stimulus for hepatocyte proliferation and is essential for liver development and regeneration. Activation of HGF/c-Met signaling has been correlated with aggressive phenotype and poor prognosis in hepatocellular carcinoma (HCC. MUC1 is a transmembrane mucin, whose over-expression is reported in most cancers. Many of the oncogenic effects of MUC1 are believed to occur through the interaction of MUC1 with signaling molecules. To clarify the role of MUC1 in HGF/c-Met signaling, we determined whether MUC1 and c-Met interact cooperatively and what their role(s is in hepatocarcinogenesis. Results MUC1 and c-Met over-expression levels were determined in highly motile and invasive, mesenchymal-like HCC cell lines, and in serial sections of cirrhotic and HCC tissues, and these levels were compared to those in normal liver tissues. Co-expression of both c-Met and MUC1 was found to be associated with the differentiation status of HCC. We further demonstrated an interaction between c-Met and MUC1 in HCC cells. HGF-induced c-Met phosphorylation decreased this interaction, and down-regulated MUC1 expression. Inhibition of c-Met activation restored HGF-mediated MUC1 down-regulation, and decreased the migratory and invasive abilities of HCC cells via inhibition of β-catenin activation and c-Myc expression. In contrast, siRNA silencing of MUC1 increased HGF-induced c-Met activation and HGF-induced cell motility and invasion. Conclusions These findings indicate that the crosstalk between MUC1 and c-Met in HCC could provide an advantage for invasion to HCC cells through the β-catenin/c-Myc pathway. Thus, MUC1 and c-Met could serve as potential therapeutic targets in HCC.

  8. Clinical and prognostic value of the C-Met/HGF signaling pathway in cervical cancer.

    Science.gov (United States)

    Boromand, Nadia; Hasanzadeh, Malihe; ShahidSales, Soodabeh; Farazestanian, Marjaneh; Gharib, Masoumeh; Fiuji, Hamid; Behboodi, Negin; Ghobadi, Niloofar; Hassanian, Seyed Mahdi; Ferns, Gordon A; Avan, Amir

    2018-06-01

    Aberrant activation of the HGF/c-Met signalling pathway is reported to be associated with cell proliferation, progression, and metastasis features of several tumor types, including cervical cancer, suggesting that it may be of potential value as a novel therapeutic target. Furthermore, HPV-positive patients had a higher serum level of HGF or c-Met protein, compared with HPV-negative patients. c-Met or HGF overexpression in lesions of cervical cancer is reported to be related to a poorer prognosis, and hence this may be of value as a prognostic and predictive biomarker. Several approaches have been developed for targeting HGF and/or c-Met. One of these is crizotinib (a dual c-Met/ALK inhibitor). This has been approved by FDA for the treatment of lung-cancer. Further investigations are required to evaluate and optimize the use of c-Met inhibitors in cervical cancer or parallel targeting signalling pathway associated/activated via MET/HGF pathway. The main aim of current review was to give an overview of the potential of the c-Met/HGF pathway as a prognostic, or predictive biomarker in cervical cancer. © 2017 Wiley Periodicals, Inc.

  9. c-MET receptor tyrosine kinase as a molecular target in advanced hepatocellular carcinoma.

    Science.gov (United States)

    Granito, Alessandro; Guidetti, Elena; Gramantieri, Laura

    2015-01-01

    c-MET is the membrane receptor for hepatocyte growth factor (HGF), also known as scatter factor or tumor cytotoxic factor, a mitogenic growth factor for hepatocytes. HGF is mainly produced by cells of mesenchymal origin and it mainly acts on neighboring epidermal and endothelial cells, regulating epithelial growth and morphogenesis. HGF/MET signaling has been identified among the drivers of tumorigenesis in human cancers. As such, c-MET is a recognized druggable target, and against it, targeted agents are currently under clinical investigation. c-MET overexpression is a common event in a wide range of human malignancies, including gastric, lung, breast, ovary, colon, kidney, thyroid, and liver carcinomas. Despite c-MET overexpression being reported by a large majority of studies, no evidence for a c-MET oncogenic addiction exists in hepatocellular carcinoma (HCC). In particular, c-MET amplification is a rare event, accounting for 4%-5% of cases while no mutation has been identified in c-MET oncogene in HCC. Thus, the selection of patient subgroups more likely to benefit from c-MET inhibition is challenging. Notwithstanding, c-MET overexpression was reported to be associated with increased metastatic potential and poor prognosis in patients with HCC, providing a rationale for its therapeutic inhibition. Here we summarize the role of activated HGF/MET signaling in HCC, its prognostic relevance, and the implications for therapeutic approaches in HCC.

  10. Signal transduction and downregulation of C-MET in HGF stimulated low and highly metastatic human osteosarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Husmann, Knut, E-mail: khusmann@research.balgrist.ch [Laboratory for Orthopedic Research, Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich (Switzerland); Ducommun, Pascal [Laboratory for Orthopedic Research, Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich (Switzerland); Division of Plastic Surgery and Hand Surgery, Department of Surgery, University Hospital Zurich, Zurich (Switzerland); Sabile, Adam A.; Pedersen, Else-Marie; Born, Walter; Fuchs, Bruno [Laboratory for Orthopedic Research, Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich (Switzerland)

    2015-09-04

    The poor outcome of osteosarcoma (OS), particularly in patients with metastatic disease and a five-year survival rate of only 20%, asks for more effective therapeutic strategies targeting malignancy-promoting mechanisms. Dysregulation of C-MET, its ligand hepatocyte growth factor (HGF) and the fusion oncogene product TPR-MET, first identified in human MNNG-HOS OS cells, have been described as cancer-causing factors in human cancers. Here, the expression of these molecules at the mRNA and the protein level and of HGF-stimulated signaling and downregulation of C-MET was compared in the parental low metastatic HOS and MG63 cell lines and the respective highly metastatic MNNG-HOS and 143B and the MG63-M6 and MG63-M8 sublines. Interestingly, expression of TPR-MET was only observed in MNNG-HOS cells. HGF stimulated the phosphorylation of Akt and Erk1/2 in all cell lines investigated, but phospho-Stat3 remained at basal levels. Downregulation of HGF-stimulated Akt and Erk1/2 phosphorylation was much faster in the HGF expressing MG63-M8 cells than in HOS cells. Degradation of HGF-activated C-MET occurred predominantly through the proteasomal and to a lesser extent the lysosomal pathway in the cell lines investigated. Thus, HGF-stimulated Akt and Erk1/2 signaling as well as proteasomal degradation of HGF activated C-MET are potential therapeutic targets in OS. - Highlights: • Expression of TPR-MET was only observed in MNNG-HOS cells. • HGF stimulated the phosphorylation of Akt and Erk1/2 but not of Stat3 in osteosarcoma cell lines. • Degradation of HGF-activated C-MET occurred predominantly through the proteasomal pathway.

  11. Expression of p53/HGF/c-met/STAT3 signal in fetuses with neural tube defects.

    Science.gov (United States)

    Trovato, Maria; D'Armiento, Maria; Lavra, Luca; Ulivieri, Alessandra; Dominici, Roberto; Vitarelli, Enrica; Grosso, Maddalena; Vecchione, Raffaella; Barresi, Gaetano; Sciacchitano, Salvatore

    2007-02-01

    Neural tube defects (NTD) are morphogenetic alterations due to a defective closure of neural tube. Hepatocyte growth factor (HGF)/c-met system plays a role in morphogenesis of nervous system, lung, and kidney. HGF/c-met morphogenetic effects are mediated by signal transducers and activators of transcription (STAT)3 and both HGF and c-met genes are regulated from p53. The aim of our study was to analyze mRNA and protein expressions of p53, HGF, c-met, and STAT3 in fetuses with NTD. By reverse transcriptase-polymerase chain reaction and immunohistochemistry, we analyzed neural tissues from four NTD fetuses and the corresponding non-malformed lungs, kidneys and placentas. We found a reduced mRNA expression of HGF/c-met/STAT3 pathway, in the malformed nervous systems and placentas. The reduced expression of this pathway correlated with the absence of p53 in all these samples. On the contrary, detectable expression levels of p53, HGF, c-met, and STAT3 were observed in non-malformed lungs and kidneys obtained from the same fetuses. Comparable results were obtained by immunohistochemistry, with the exception of p53, which was undetected in all fetal tissues. In conclusion, in NTD fetuses, both the defective neural tube tissue and the placenta have a reduction in all components of the p53/HGF/c-met/STAT3 cascade. This raises the possibility of using the suppression of these genes for early diagnosis of NTD especially on chorionic villus sampling.

  12. c-MET receptor tyrosine kinase as a molecular target in advanced hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Granito A

    2015-04-01

    Full Text Available Alessandro Granito,1 Elena Guidetti,1 Laura Gramantieri2,3 1Dipartimento di Scienze Mediche e Chirurgiche Università di Bologna, Bologna, Italy; 2Dipartimento dell'Apparato Digerente, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; 3Centro di Ricerca Biomedica Applicata (CRBA, Azienda Ospedaliero-Universitaria Policlinico S Orsola-Malpighi e Università di Bologna, Bologna, Italy Abstract: c-MET is the membrane receptor for hepatocyte growth factor (HGF, also known as scatter factor or tumor cytotoxic factor, a mitogenic growth factor for hepatocytes. HGF is mainly produced by cells of mesenchymal origin and it mainly acts on neighboring epidermal and endothelial cells, regulating epithelial growth and morphogenesis. HGF/MET signaling has been identified among the drivers of tumorigenesis in human cancers. As such, c-MET is a recognized druggable target, and against it, targeted agents are currently under clinical investigation. c-MET overexpression is a common event in a wide range of human malignancies, including gastric, lung, breast, ovary, colon, kidney, thyroid, and liver carcinomas. Despite c-MET overexpression being reported by a large majority of studies, no evidence for a c-MET oncogenic addiction exists in hepatocellular carcinoma (HCC. In particular, c-MET amplification is a rare event, accounting for 4%–5% of cases while no mutation has been identified in c-MET oncogene in HCC. Thus, the selection of patient subgroups more likely to benefit from c-MET inhibition is challenging. Notwithstanding, c-MET overexpression was reported to be associated with increased metastatic potential and poor prognosis in patients with HCC, providing a rationale for its therapeutic inhibition. Here we summarize the role of activated HGF/MET signaling in HCC, its prognostic relevance, and the implications for therapeutic approaches in HCC. Keywords: hepatocellular carcinoma, c-MET, clinical trials

  13. Expression of hepatocyte growth factor and the proto-oncogenic receptor c-Met in canine osteosarcoma

    NARCIS (Netherlands)

    Fieten, H; Spee, B; Ijzer, J; Kik, M J; Penning, L C; Kirpensteijn, J

    Hepatocyte growth factor (HGF) and the proto-oncogenic receptor c-Met are implicated in growth, invasion, and metastasis in human cancer. Little information is available on the expression and role of both gene products in canine osteosarcoma. We hypothesized that the expression of c-Met is

  14. Blood vessel endothelium-directed tumor cell streaming in breast tumors requires the HGF/C-Met signaling pathway.

    Science.gov (United States)

    Leung, E; Xue, A; Wang, Y; Rougerie, P; Sharma, V P; Eddy, R; Cox, D; Condeelis, J

    2017-05-11

    During metastasis to distant sites, tumor cells migrate to blood vessels. In vivo, breast tumor cells utilize a specialized mode of migration known as streaming, where a linear assembly of tumor cells migrate directionally towards blood vessels on fibronectin-collagen I-containing extracellular matrix (ECM) fibers in response to chemotactic signals. We have successfully reconstructed tumor cell streaming in vitro by co-plating tumors cells, macrophages and endothelial cells on 2.5 μm thick ECM-coated micro-patterned substrates. We found that tumor cells and macrophages, when plated together on the micro-patterned substrates, do not demonstrate sustained directional migration in only one direction (sustained directionality) but show random bi-directional walking. Sustained directionality of tumor cells as seen in vivo was established in vitro when beads coated with human umbilical vein endothelial cells were placed at one end of the micro-patterned 'ECM fibers' within the assay. We demonstrated that these endothelial cells supply the hepatocyte growth factor (HGF) required for the chemotactic gradient responsible for sustained directionality. Using this in vitro reconstituted streaming system, we found that directional streaming is dependent on, and most effectively blocked, by inhibiting the HGF/C-Met signaling pathway between endothelial cells and tumor cells. Key observations made with the in vitro reconstituted system implicating C-Met signaling were confirmed in vivo in mammary tumors using the in vivo invasion assay and intravital multiphoton imaging of tumor cell streaming. These results establish HGF/C-Met as a central organizing signal in blood vessel-directed tumor cell migration in vivo and highlight a promising role for C-Met inhibitors in blocking tumor cell streaming and metastasis in vivo, and for use in human trials.

  15. Curcumin inhibited HGF-induced EMT and angiogenesis through regulating c-Met dependent PI3K/Akt/mTOR signaling pathways in lung cancer

    Directory of Open Access Journals (Sweden)

    Demin Jiao

    2016-01-01

    Full Text Available The epithelial-mesenchymal transition (EMT and angiogenesis have emerged as two pivotal events in cancer progression. Curcumin has been extensively studied in preclinical models and clinical trials of cancer prevention due to its favorable toxicity profile. However, the possible involvement of curcumin in the EMT and angiogenesis in lung cancer remains unclear. This study found that curcumin inhibited hepatocyte growth factor (HGF-induced migration and EMT-related morphological changes in A549 and PC-9 cells. Moreover, pretreatment with curcumin blocked HGF-induced c-Met phosphorylation and downstream activation of Akt, mTOR, and S6. These effects mimicked that of c-Met inhibitor SU11274 or PI3 kinase inhibitor LY294002 or mTOR inhibitor rapamycin treatment. c-Met gene overexpression analysis further demonstrated that curcumin suppressed lung cancer cell EMT by inhibiting c-Met/Akt/mTOR signaling pathways. In human umbilical vein endothelial cells (HUVECs, we found that curcumin also significantly inhibited PI3K/Akt/mTOR signaling and induced apoptosis and reduced migration and tube formation of HGF-treated HUVEC. Finally, in the experimental mouse model, we showed that curcumin inhibited HGF-stimulated tumor growth and induced an increase in E-cadherin expression and a decrease in vimentin, CD34, and vascular endothelial growth factor (VEGF expression. Collectively, these findings indicated that curcumin could inhibit HGF-promoted EMT and angiogenesis by targeting c-Met and blocking PI3K/Akt/mTOR pathways.

  16. Negative control of the HGF/c-MET pathway by TGF-β: a new look at the regulation of stemness in glioblastoma.

    Science.gov (United States)

    Papa, Eleanna; Weller, Michael; Weiss, Tobias; Ventura, Elisa; Burghardt, Isabel; Szabó, Emese

    2017-12-13

    Multiple target inhibition has gained considerable interest in combating drug resistance in glioblastoma, however, understanding the molecular mechanisms of crosstalk between signaling pathways and predicting responses of cancer cells to targeted interventions has remained challenging. Despite the significant role attributed to transforming growth factor (TGF)-β family and hepatocyte growth factor (HGF)/c-MET signaling in glioblastoma pathogenesis, their functional interactions have not been well characterized. Using genetic and pharmacological approaches to stimulate or antagonize the TGF-β pathway in human glioma-initiating cells (GIC), we observed that TGF-β exerts an inhibitory effect on c-MET phosphorylation. Inhibition of either mitogen-activated protein kinase (MAPK)/ extracellular signal-regulated kinase (ERK) or phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT) signaling pathway attenuated this effect. A comparison of c-MET-driven and c-MET independent GIC models revealed that TGF-β inhibits stemness in GIC at least in part via its negative regulation of c-MET activity, suggesting that stem cell (SC) maintenance may be controlled by the balance between these two oncogenic pathways. Importantly, immunohistochemical analyses of human glioblastoma and ex vivo single-cell gene expression profiling of TGF-β and HGF confirm the negative interaction between both pathways. These novel insights into the crosstalk of two major pathogenic pathways in glioblastoma may explain some of the disappointing results when targeting either pathway alone in human glioblastoma patients and inform on potential future designs on targeted pharmacological or genetic intervention.

  17. Hepatic Stellate Cell Coculture Enables Sorafenib Resistance in Huh7 Cells through HGF/c-Met/Akt and Jak2/Stat3 Pathways

    Directory of Open Access Journals (Sweden)

    Weibo Chen

    2014-01-01

    Full Text Available Purpose. Tumor microenvironment confers drug resistance to kinase inhibitors by increasing RKT ligand levels that result in the activation of cell-survival signaling including PI3K and MAPK signals. We assessed whether HSC-LX2 coculture conferred sorafenib resistance in Huh7 and revealed the mechanism underlying the drug resistance. Experimental Design. The effect of LX2 on sorafenib resistance was determined by coculture system with Huh7 cells. The rescue function of LX2 supernatants was assessed by MTT assay and fluorescence microscopy. The underlying mechanism was tested by administration of pathway inhibitors and manifested by Western blotting. Results. LX2 coculture significantly induced sorafenib resistance in Huh7 by activating p-Akt that led to reactivation of p-ERK. LX2 secreted HGF into the culture medium that triggered drug resistance, and exogenous HGF could also induce sorafenib resistance. The inhibition of p-Akt blocked sorafenib resistance caused by LX2 coculture. Increased phosphorylation of Jak2 and Stat3 was also detected in LX2 cocultured Huh7 cells. The Jak inhibitor tofacitinib reversed sorafenib resistance by blocking Jak2 and Stat3 activation. The combined administration of sorafenib and p-Stat3 inhibitor S3I-201 augmented induced apoptosis even in the presence of sorafenib resistance. Conclusions. HSC-LX2 coculture induced sorafenib resistance in Huh7 through multiple pathways: HGF/c-Met/Akt pathway and Jak2/Stat3 pathway. A combined administration of sorafenib and S3I-201 was able to augment sorafenib-induced apoptosis even in the presence of LX2 coculture.

  18. {sup 89}Zr-Onartuzumab PET imaging of c-MET receptor dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Pool, Martin; Kol, Arjan; Giesen, Danique; Vries, Elisabeth G.E. de [University of Groningen, Department of Medical Oncology, University Medical Center Groningen, Groningen (Netherlands); Terwisscha van Scheltinga, Anton G.T. [University of Groningen, Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen (Netherlands); Lub-de Hooge, Marjolijn N. [University of Groningen, Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen (Netherlands); University of Groningen, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen (Netherlands)

    2017-08-15

    c-MET and its ligand hepatocyte growth factor are often dysregulated in human cancers. Dynamic changes in c-MET expression occur and might predict drug efficacy or emergence of resistance. Noninvasive visualization of c-MET dynamics could therefore potentially guide c-MET-directed therapies. We investigated the feasibility of {sup 89}Zr-labelled one-armed c-MET antibody onartuzumab PET for detecting relevant changes in c-MET levels induced by c-MET-mediated epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor erlotinib resistance or heat shock protein-90 (HSP90) inhibitor NVP-AUY-922 treatment in human non-small-cell lung cancer (NSCLC) xenografts. In vitro membrane c-MET levels were determined by flow cytometry. HCC827ErlRes, an erlotinib-resistant clone with c-MET upregulation, was generated from the exon-19 EGFR-mutant human NSCLC cell line HCC827. Mice bearing HCC827 and HCC827ErlRes tumours in opposite flanks underwent {sup 89}Zr-onartuzumab PET scans. The HCC827-xenografted mice underwent {sup 89}Zr-onartuzumab PET scans before treatment and while receiving biweekly intraperitoneal injections of 100 mg/kg NVP-AUY-922 or vehicle. Ex vivo, tumour c-MET immunohistochemistry was correlated with the imaging results. In vitro, membrane c-MET was upregulated in HCC827ErlRes tumours by 213 ± 44% in relation to the level in HCC827 tumours, while c-MET was downregulated by 69 ± 9% in HCC827 tumours following treatment with NVP-AUY-922. In vivo, {sup 89}Zr-onartuzumab uptake was 26% higher (P < 0.05) in erlotinib-resistant HCC827ErlRes than in HCC827 xenografts, while HCC827 tumour uptake was 33% lower (P < 0.001) following NVP-AUY-922 treatment. The results show that {sup 89}Zr-onartuzumab PET effectively discriminates relevant changes in c-MET levels and could potentially be used clinically to monitor c-MET status. (orig.)

  19. Anti-c-MET Nanobody - a new potential drug in multiple myeloma treatment.

    Science.gov (United States)

    Slørdahl, Tobias Schmidt; Denayer, Tinneke; Moen, Siv Helen; Standal, Therese; Børset, Magne; Ververken, Cedric; Rø, Torstein Baade

    2013-11-01

    c-MET is the tyrosine kinase receptor of the hepatocyte growth factor (HGF). HGF-c-MET signaling is involved in many human malignancies, including multiple myeloma (MM). Recently, multiple agents have been developed directed to interfere at different levels in HGF-c-MET signaling pathway. Nanobodies are therapeutic proteins based on the smallest functional fragments of heavy-chain-only antibodies. In this study, we wanted to determine the anticancer effect of a novel anti-c-MET Nanobody in MM. We examined the effects of an anti-c-MET Nanobody on thymidine incorporation, migration, adhesion of MM cells, and osteoblastogenesis in vitro. Furthermore, we investigated the effects of the Nanobody on HGF-dependent c-MET signaling by Western blotting. We show that the anti-c-MET Nanobody effectively inhibited thymidine incorporation of ANBL-6 MM cells via inhibition of an HGF autocrine growth loop and thymidine incorporation in INA-6 MM cells induced by exogenous HGF. HGF-induced migration and adhesion of INA-6 were completely and specifically blocked by the Nanobody. Furthermore, the Nanobody abolished the inhibiting effect of HGF on bone morphogenetic protein-2-induced alkaline phosphatase activity and the mineralization of human mesenchymal stem cells. Finally, we show that the Nanobody reduced phosphorylation of tyrosine residues in c-MET, MAPK, and Akt. We also compared the Nanobody with anti-c-MET monoclonal antibodies and revealed the similar or better effect. The anti-c-MET Nanobody inhibited MM cell migration, thymidine incorporation, and adhesion, and blocked the HGF-mediated inhibition of osteoblastogenesis. The anti-c-MET Nanobody might represent a novel therapeutic agent in the treatment of MM and other cancers driven by HGF-c-MET signaling. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Aptamers Binding to c-Met Inhibiting Tumor Cell Migration.

    Directory of Open Access Journals (Sweden)

    Birgit Piater

    Full Text Available The human receptor tyrosine kinase c-Met plays an important role in the control of critical cellular processes. Since c-Met is frequently over expressed or deregulated in human malignancies, blocking its activation is of special interest for therapy. In normal conditions, the c-Met receptor is activated by its bivalent ligand hepatocyte growth factor (HGF. Also bivalent antibodies can activate the receptor by cross linking, limiting therapeutic applications. We report the generation of the RNA aptamer CLN64 containing 2'-fluoro pyrimidine modifications by systematic evolution of ligands by exponential enrichment (SELEX. CLN64 and a previously described single-stranded DNA (ssDNA aptamer CLN3 exhibited high specificities and affinities to recombinant and cellular expressed c-Met. Both aptamers effectively inhibited HGF-dependent c-Met activation, signaling and cell migration. We showed that these aptamers did not induce c-Met activation, revealing an advantage over bivalent therapeutic molecules. Both aptamers were shown to bind overlapping epitopes but only CLN3 competed with HGF binding to cMet. In addition to their therapeutic and diagnostic potential, CLN3 and CLN64 aptamers exhibit valuable tools to further understand the structural and functional basis for c-Met activation or inhibition by synthetic ligands and their interplay with HGF binding.

  1. PHA665752, a small-molecule inhibitor of c-Met, inhibits hepatocyte growth factor-stimulated migration and proliferation of c-Met-positive neuroblastoma cells

    International Nuclear Information System (INIS)

    Crosswell, Hal E; Dasgupta, Anindya; Alvarado, Carlos S; Watt, Tanya; Christensen, James G; De, Pradip; Durden, Donald L; Findley, Harry W

    2009-01-01

    c-Met is a tyrosine kinase receptor for hepatocyte growth factor/scatter factor (HGF/SF), and both c-Met and its ligand are expressed in a variety of tissues. C-Met/HGF/SF signaling is essential for normal embryogenesis, organogenesis, and tissue regeneration. Abnormal c-Met/HGF/SF signaling has been demonstrated in different tumors and linked to aggressive and metastatic tumor phenotypes. In vitro and in vivo studies have demonstrated inhibition of c-Met/HGF/SF signaling by the small-molecule inhibitor PHA665752. This study investigated c-Met and HGF expression in two neuroblastoma (NBL) cell lines and tumor tissue from patients with NBL, as well as the effects of PHA665752 on growth and motility of NBL cell lines. The effect of the tumor suppressor protein PTEN on migration and proliferation of tumor cells treated with PHA665752 was also evaluated. Expression of c-Met and HGF in NBL cell lines SH-EP and SH-SY5Y and primary tumor tissue was assessed by immunohistochemistry and quantitative RT-PCR. The effect of PHA665752 on c-Met/HGF signaling involved in NBL cell proliferation and migration was evaluated in c-Met-positive cells and c-Met-transfected cells. The transwell chemotaxis assay and the MTT assay were used to measure migration and proliferation/cell-survival of tumor cells, respectively. The PPAR-γ agonist rosiglitazone was used to assess the effect of PTEN on PHA665752-induced inhibition of NBL cell proliferation/cell-survival and migration High c-Met expression was detected in SH-EP cells and primary tumors from patients with advanced-stage disease. C-Met/HGF signaling induced both migration and proliferation of SH-EP cells. Migration and proliferation/cell-survival were inhibited by PHA665752 in a dose-dependent manner. We also found that induced overexpression of PTEN following treatment with rosiglitazone significantly enhanced the inhibitory effect of PHA665752 on NBL-cell migration and proliferation. c-Met is highly expressed in most tumors from

  2. Recent advances in the discovery of small molecule c-Met Kinase inhibitors.

    Science.gov (United States)

    Parikh, Palak K; Ghate, Manjunath D

    2018-01-01

    c-Met is a prototype member of a subfamily of heterodimeric receptor tyrosine kinases (RTKs) and is the receptor for hepatocyte growth factor (HGF). Binding of HGF to its receptor c-Met, initiates a wide range of cellular signalling, including those involved in proliferation, motility, migration and invasion. Importantly, dysregulated HGF/c-Met signalling is a driving factor for numerous malignancies and promotes tumour growth, invasion, dissemination and/or angiogenesis. Dysregulated HGF/c-Met signalling has also been associated with poor clinical outcomes and resistance acquisition to some approved targeted therapies. Thus, c-Met kinase has emerged as a promising target for cancer drug development. Different therapeutic approaches targeting the HGF/c-Met signalling pathway are under development for targeted cancer therapy, among which small molecule inhibitors of c-Met kinase constitute the largest effort within the pharmaceutical industry. The review is an effort to summarize recent advancements in medicinal chemistry development of small molecule c-Met kinase inhibitors as potential anti-cancer agents which would certainly help future researchers to bring further developments in the discovery of small molecule c-Met kinase inhibitors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. The HGF/c-MET Axis as a Critical Driver of Resistance to Androgen Suppression in Metastatic Castrate-Resistant Prostate Cancer

    Science.gov (United States)

    2016-10-01

    signaling inhibition in AR-positive CRPC models increased MET expression and resulted in susceptibility to ligand (HGF) activation. Likewise, our work...positive CRPC models , as detailed in the initial proposal, we found that combined MET inhibition and enzalutamide (AR antagonist) treatment was more...wide analyses, we will be able to better test the study hypothesis with increased patient accrual. Figure: Waterfall plots showing association

  4. The regulatory role of heparin on c-Met signaling in hepatocellular carcinoma cells.

    Science.gov (United States)

    İşcan, Evin; Güneş, Aysim; Korhan, Peyda; Yılmaz, Yeliz; Erdal, Esra; Atabey, Neşe

    2017-06-01

    The role of heparin as an anticoagulant is well defined; however, its role in tumorigenesis and tumor progression is not clear yet. Some studies have shown that anticoagulant treatment in cancer patients improve overall survival, however, recent clinical trials have not shown a survival benefit in cancer patients receiving heparin treatment. In our previous studies we have shown the inhibitory effects of heparin on Hepatocyte Growth Factor (HGF)-induced invasion and migration in hepatocellular carcinoma (HCC) cells. In this study, we showed the differential effects of heparin on the behaviors of HCC cells based on the presence or absence of HGF. In the absence of HGF, heparin activated HGF/c-Met signaling and promoted motility and invasion in HCC cells. Heparin treatment led to c-Met receptor dimerization and activated c-Met signaling in an HGF independent manner. Heparin-induced c-Met activation increased migration and invasion through ERK1/2, early growth response factor 1 (EGR1) and Matrix Metalloproteinases (MMP) axis. Interestingly, heparin modestly decreased the proliferation of HCC cells by inhibiting activatory phosphorylation of Akt. The inhibition of c-Met signaling reversed heparin-induced increase in motility and invasion and, proliferation inhibition. Our study provides a new perspective into the role of heparin on c-Met signaling in HCC.

  5. Reciprocal activating crosstalk between c-Met and caveolin 1 promotes invasive phenotype in hepatocellular carcinoma.

    Science.gov (United States)

    Korhan, Peyda; Erdal, Esra; Kandemiş, Emine; Cokaklı, Murat; Nart, Deniz; Yılmaz, Funda; Can, Alp; Atabey, Neşe

    2014-01-01

    c-Met, the receptor for Hepatocyte Growth Factor (HGF), overexpressed and deregulated in Hepatocellular Carcinoma (HCC). Caveolin 1 (CAV1), a plasma membrane protein that modulates signal transduction molecules, is also overexpressed in HCC. The aim of this study was to investigate biological and clinical significance of co-expression and activation of c-Met and CAV1 in HCC. We showed that c-Met and CAV1 were co-localized in HCC cells and HGF treatment increased this association. HGF-triggered c-Met activation caused a concurrent rise in both phosphorylation and expression of CAV1. Ectopic expression of CAV1 accelerated c-Met signaling, resulted in enhanced migration, invasion, and branching-morphogenesis. Silencing of CAV1 downregulated c-Met signaling, and decreased migratory/invasive capability of cells and attenuated branching morphogenesis. In addition, activation and co-localization of c-Met and CAV1 were elevated during hepatocarcinogenesis. In conclusion reciprocal activating crosstalk between c-Met and CAV1 promoted oncogenic signaling of c-Met contributed to the initiation and progression of HCC.

  6. Reciprocal activating crosstalk between c-Met and caveolin 1 promotes invasive phenotype in hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Peyda Korhan

    Full Text Available c-Met, the receptor for Hepatocyte Growth Factor (HGF, overexpressed and deregulated in Hepatocellular Carcinoma (HCC. Caveolin 1 (CAV1, a plasma membrane protein that modulates signal transduction molecules, is also overexpressed in HCC. The aim of this study was to investigate biological and clinical significance of co-expression and activation of c-Met and CAV1 in HCC. We showed that c-Met and CAV1 were co-localized in HCC cells and HGF treatment increased this association. HGF-triggered c-Met activation caused a concurrent rise in both phosphorylation and expression of CAV1. Ectopic expression of CAV1 accelerated c-Met signaling, resulted in enhanced migration, invasion, and branching-morphogenesis. Silencing of CAV1 downregulated c-Met signaling, and decreased migratory/invasive capability of cells and attenuated branching morphogenesis. In addition, activation and co-localization of c-Met and CAV1 were elevated during hepatocarcinogenesis. In conclusion reciprocal activating crosstalk between c-Met and CAV1 promoted oncogenic signaling of c-Met contributed to the initiation and progression of HCC.

  7. The EGFR/ErbB3 Pathway Acts as a Compensatory Survival Mechanism upon c-Met Inhibition in Human c-Met+ Hepatocellular Carcinoma.

    Directory of Open Access Journals (Sweden)

    Steven N Steinway

    Full Text Available c-Met, a high-affinity receptor for Hepatocyte Growth Factor (HGF, plays a critical role in tumor growth, invasion, and metastasis. Hepatocellular carcinoma (HCC patients with activated HGF/c-Met signaling have a significantly worse prognosis. Targeted therapies using c-Met tyrosine kinase inhibitors are currently in clinical trials for HCC, although receptor tyrosine kinase inhibition in other cancers has demonstrated early success. Unfortunately, therapeutic effect is frequently not durable due to acquired resistance.We utilized the human MHCC97-H c-Met positive (c-Met+ HCC cell line to explore the compensatory survival mechanisms that are acquired after c-Met inhibition. MHCC97-H cells with stable c-Met knockdown (MHCC97-H c-Met KD cells were generated using a c-Met shRNA vector with puromycin selection and stably transfected scrambled shRNA as a control. Gene expression profiling was conducted, and protein expression was analyzed to characterize MHCC97-H cells after blockade of the c-Met oncogene. A high-throughput siRNA screen was performed to find putative compensatory survival proteins, which could drive HCC growth in the absence of c-Met. Findings from this screen were validated through subsequent analyses.We have previously demonstrated that treatment of MHCC97-H cells with a c-Met inhibitor, PHA665752, results in stasis of tumor growth in vivo. MHCC97-H c-Met KD cells demonstrate slower growth kinetics, similar to c-Met inhibitor treated tumors. Using gene expression profiling and siRNA screening against 873 kinases and phosphatases, we identified ErbB3 and TGF-α as compensatory survival factors that are upregulated after c-Met inhibition. Suppressing these factors in c-Met KD MHCC97-H cells suppresses tumor growth in vitro. In addition, we found that the PI3K/Akt signaling pathway serves as a negative feedback signal responsible for the ErbB3 upregulation after c-Met inhibition. Furthermore, in vitro studies demonstrate that

  8. Efficacy of c-Met inhibitor for advanced prostate cancer

    International Nuclear Information System (INIS)

    Tu, William H; Zhu, Chunfang; Clark, Curtis; Christensen, James G; Sun, Zijie

    2010-01-01

    Aberrant expression of HGF/SF and its receptor, c-Met, often correlates with advanced prostate cancer. Our previous study showed that expression of c-Met in prostate cancer cells was increased after attenuation of androgen receptor (AR) signalling. This suggested that current androgen ablation therapy for prostate cancer activates c-Met expression and may contribute to development of more aggressive, castration resistant prostate cancer (CRPC). Therefore, we directly assessed the efficacy of c-Met inhibition during androgen ablation on the growth and progression of prostate cancer. We tested two c-Met small molecule inhibitors, PHA-665752 and PF-2341066, for anti-proliferative activity by MTS assay and cell proliferation assay on human prostate cancer cell lines with different levels of androgen sensitivity. We also used renal subcapsular and castrated orthotopic xenograft mouse models to assess the effect of the inhibitors on prostate tumor formation and progression. We demonstrated a dose-dependent inhibitory effect of PHA-665752 and PF-2341066 on the proliferation of human prostate cancer cells and the phosphorylation of c-Met. The effect on cell proliferation was stronger in androgen insensitive cells. The c-Met inhibitor, PF-2341066, significantly reduced growth of prostate tumor cells in the renal subcapsular mouse model and the castrated orthotopic mouse model. The effect on cell proliferation was greater following castration. The c-Met inhibitors demonstrated anti-proliferative efficacy when combined with androgen ablation therapy for advanced prostate cancer

  9. Synthesis of Tc-99m labeled 1,2,3-triazole-4-yl c-met binding peptide as a potential c-met receptor kinase positive tumor imaging agent.

    Science.gov (United States)

    Kim, Eun-Mi; Joung, Min-Hee; Lee, Chang-Moon; Jeong, Hwan-Jeong; Lim, Seok Tae; Sohn, Myung-Hee; Kim, Dong Wook

    2010-07-15

    The mesenchymal-epithelial transition factor (c-Met), which is related to tumor cell growth, angiogenesis and metastases, is known to be overexpressed in several tumor types. In this study, we synthesized technetium-99m labeled 1,2,3-triazole-4-yl c-Met binding peptide (cMBP) derivatives, prepared by solid phase peptide synthesis and the 'click-to-chelate' protocol for the introduction of tricarbonyl technetium-99m, as a potential c-Met receptor kinase positive tumor imaging agent, and evaluated their in vitro c-Met binding affinity, cellular uptake, and stability. The (99m)Tc labeled cMBP derivatives ([(99m)Tc(CO)(3)]12, [(99m)Tc(CO)(3)]13, and [(99m)Tc(CO)(3)]14) were prepared in 85-90% radiochemical yields. The cold surrogate cMBP derivatives, [Re(CO)(3)]12, [Re(CO)(3)]13, and [Re(CO)(3)]14, were shown to have high binding affinities (0.13 microM, 0.06 microM, and 0.16 microM, respectively) to a purified cMet/Fc chimeric recombinant protein. In addition, the in vitro cellular uptake and inhibition studies demonstrated the high specific binding of these (99m)Tc labeled cMBP derivatives ([(99m)Tc(CO)(3)]12-14) to c-Met receptor positive U87MG cells. 2010 Elsevier Ltd. All rights reserved.

  10. The c-Met Inhibitor MSC2156119J Effectively Inhibits Tumor Growth in Liver Cancer Models

    Energy Technology Data Exchange (ETDEWEB)

    Bladt, Friedhelm, E-mail: Friedhelm.Bladt@merckgroup.com; Friese-Hamim, Manja; Ihling, Christian; Wilm, Claudia; Blaukat, Andree [EMD Serono, and Merck Serono Research and Development, Merck KGaA, Darmstadt 64293 (Germany)

    2014-08-19

    The mesenchymal-epithelial transition factor (c-Met) is a receptor tyrosine kinase with hepatocyte growth factor (HGF) as its only high-affinity ligand. Aberrant activation of c-Met is associated with many human malignancies, including hepatocellular carcinoma (HCC). We investigated the in vivo antitumor and antimetastatic efficacy of the c-Met inhibitor MSC2156119J (EMD 1214063) in patient-derived tumor explants. BALB/c nude mice were inoculated with MHCC97H cells or with tumor fragments of 10 patient-derived primary liver cancer explants selected according to c-Met/HGF expression levels. MSC2156119J (10, 30, and 100 mg/kg) and sorafenib (50 mg/kg) were administered orally as single-agent treatment or in combination, with vehicle as control. Tumor response, metastases formation, and alpha fetoprotein (AFP) levels were measured. MSC2156119J inhibited tumor growth and induced complete regression in mice bearing subcutaneous and orthotopic MHCC97H tumors. AFP levels were undetectable after 5 weeks of MSC2156119J treatment, and the number of metastatic lung foci was reduced. Primary liver explant models with strong c-Met/HGF activation showed increased responsiveness to MSC2156119J, with MSC2156119J showing similar or superior activity to sorafenib. Tumors characterized by low c-Met expression were less sensitive to MSC2156119J. MSC2156119J was better tolerated than sorafenib, and combination therapy did not improve efficacy. These findings indicate that selective c-Met/HGF inhibition with MSC2156119J is associated with marked regression of c-Met high-expressing tumors, supporting its clinical development as an antitumor treatment for HCC patients with active c-Met signaling.

  11. Sema4D, the ligand for Plexin B1, suppresses c-Met activation and migration and promotes melanocyte survival and growth.

    Science.gov (United States)

    Soong, Joanne; Chen, Yulin; Shustef, Elina M; Scott, Glynis A

    2012-04-01

    Semaphorins are secreted and membrane-bound proteins involved in neural pathfinding, organogenesis, and tumor progression, through Plexin and neuropilin receptors. We recently reported that Plexin B1, the Semaphorin 4D (Sema4D) receptor, is a tumor-suppressor protein for melanoma, which functions, in part, through inhibition of the oncogenic c-Met tyrosine kinase receptor. In this report, we show that Sema4D is a protective paracrine factor for normal human melanocyte survival in response to UV irradiation, and that it stimulates proliferation and regulates the activity of the c-Met receptor. c-Met receptor signaling stimulates melanocyte migration, partly through downregulation of the cell adhesion molecule E-cadherin. Sema4D suppressed activation of c-Met in response to its ligand, hepatocyte growth factor (HGF), and partially blocked the suppressive effects of HGF on E-cadherin expression in melanocytes and HGF-dependent migration. These data demonstrate a role for Plexin B1 in maintenance of melanocyte survival and proliferation in the skin, and suggest that Sema4D and Plexin B1 act cooperatively with HGF and c-Met to regulate c-Met-dependent effects in human melanocytes. Because our data show that Plexin B1 is profoundly downregulated by UVB in melanocytes, loss of Plexin B1 may accentuate HGF-dependent effects on melanocytes, including melanocyte migration.

  12. Anomalous inhibition of c-Met by the kinesin inhibitor aurintricarboxylic acid.

    Science.gov (United States)

    Milanovic, Mina; Radtke, Simone; Peel, Nick; Howell, Michael; Carrière, Virginie; Joffre, Carine; Kermorgant, Stéphanie; Parker, Peter J

    2012-03-01

    c-Met [the hepatocyte growth factor (HGF) receptor] is a receptor tyrosine kinase playing a role in various biological events. Overexpression of the receptor has been observed in a number of cancers, correlating with increased metastatic tendency and poor prognosis. Additionally, activating mutations in c-Met kinase domain have been reported in a subset of familial cancers causing resistance to treatment. Receptor trafficking, relying on the integrity of the microtubule network, plays an important role in activation of downstream targets and initiation of signalling events. Aurintricarboxylic acid (ATA) is a triphenylmethane derivative that has been reported to inhibit microtubule motor proteins kinesins. Additional reported properties of this inhibitor include inhibition of protein tyrosine phosphatases, nucleases and members of the Jak family. Here we demonstrate that ATA prevents HGF-induced c-Met phosphorylation, internalisation, subsequent receptor trafficking and degradation. In addition, ATA prevented HGF-induced downstream signalling which also affected cellular function, as assayed by collective cell migration of A549 cells. Surprisingly, the inhibitory effect of ATA on HGF-induced phosphorylation and signalling in vivo was associated with an increase in basal c-Met kinase activity in vitro. It is concluded that the inhibitory effects of ATA on c-Met in vivo is an allosteric effect mediated through the kinase domain of the receptor. As the currently tested adenosine triphosphate competitive tyrosine kinase inhibitors (TKIs) may lead to tumor resistance (McDermott U, et al., Cancer Res 2010;70:1625-34), our findings suggest that novel anti-c-Met therapies could be developed in the future for cancer treatment. Copyright © 2011 UICC.

  13. In vivo detection of c-Met expression in a rat C6 glioma model.

    Science.gov (United States)

    Towner, R A; Smith, N; Doblas, S; Tesiram, Y; Garteiser, P; Saunders, D; Cranford, R; Silasi-Mansat, R; Herlea, O; Ivanciu, L; Wu, D; Lupu, F

    2008-01-01

    The tyrosine kinase receptor, c-Met, and its substrate, the hepatocyte growth factor (HGF), are implicated in the malignant progression of glioblastomas. In vivo detection of c-Met expression may be helpful in the diagnosis of malignant tumours. The C6 rat glioma model is a widely used intracranial brain tumour model used to study gliomas experimentally. We used a magnetic resonance imaging (MRI) molecular targeting agent to specifically tag the cell surface receptor, c-Met, with an anti-c-Met antibody (Ab) linked to biotinylated Gd (gadolinium)-DTPA (diethylene triamine penta acetic acid)-albumin in rat gliomas to detect overexpression of this antigen in vivo. The anti-c-Met probe (anti-c-Met-Gd-DTPA-albumin) was administered intravenously, and as determined by an increase in MRI signal intensity and a corresponding decrease in regional T(1) relaxation values, this probe was found to detect increased expression of c-Met protein levels in C6 gliomas. In addition, specificity for the binding of the anti-c-Met contrast agent was determined by using fluorescence microscopic imaging of the biotinylated portion of the targeting agent within neoplastic and 'normal'brain tissues following in vivo administration of the anti-c-Met probe. Controls with no Ab or with a normal rat IgG attached to the contrast agent component indicated no non-specific binding to glioma tissue. This is the first successful visualization of in vivo overexpression of c-Met in gliomas.

  14. Hepatocyte growth factor/c-MET axis-mediated tropism of cord blood-derived unrestricted somatic stem cells for neuronal injury.

    Science.gov (United States)

    Trapp, Thorsten; Kögler, Gesine; El-Khattouti, Abdelouahid; Sorg, Rüdiger V; Besselmann, Michael; Föcking, Melanie; Bührle, Christian P; Trompeter, Ingo; Fischer, Johannes C; Wernet, Peter

    2008-11-21

    An under-agarose chemotaxis assay was used to investigate whether unrestricted somatic stem cells (USSC) that were recently characterized in human cord blood are attracted by neuronal injury in vitro. USSC migrated toward extracts of post-ischemic brain tissue of mice in which stroke had been induced. Moreover, apoptotic neurons secrete factors that strongly attracted USSC, whereas necrotic and healthy neurons did not. Investigating the expression of growth factors and chemokines in lesioned brain tissue and neurons and of their respective receptors in USSC revealed expression of hepatocyte growth factor (HGF) in post-ischemic brain and in apoptotic but not in necrotic neurons and of the HGF receptor c-MET in USSC. Neuronal lesion-triggered migration was observed in vitro and in vivo only when c-MET was expressed at a high level in USSC. Neutralization of the bioactivity of HGF with an antibody inhibited migration of USSC toward neuronal injury. This, together with the finding that human recombinant HGF attracts USSC, document that HGF signaling is necessary for the tropism of USSC for neuronal injury. Our data demonstrate that USSC have the capacity to migrate toward apoptotic neurons and injured brain. Together with their neural differentiation potential, this suggests a neuroregenerative potential of USSC. Moreover, we provide evidence for a hitherto unrecognized pivotal role of the HGF/c-MET axis in guiding stem cells toward brain injury, which may partly account for the capability of HGF to improve function in the diseased central nervous system.

  15. Activation of c-MET induces a stem-like phenotype in human prostate cancer.

    Directory of Open Access Journals (Sweden)

    Geert J L H van Leenders

    Full Text Available Prostate cancer consists of secretory cells and a population of immature cells. The function of immature cells and their mutual relation with secretory cells are still poorly understood. Immature cells either have a hierarchical relation to secretory cells (stem cell model or represent an inducible population emerging upon appropriate stimulation of differentiated cells. Hepatocyte Growth Factor (HGF receptor c-MET is specifically expressed in immature prostate cells. Our objective is to determine the role of immature cells in prostate cancer by analysis of the HGF/c-MET pathway.Gene-expression profiling of DU145 prostate cancer cells stimulated with HGF revealed induction of a molecular signature associated with stem cells, characterized by up-regulation of CD49b, CD49f, CD44 and SOX9, and down-regulation of CD24 ('stem-like signature'. We confirmed the acquisition of a stem-like phenotype by quantitative PCR, FACS analysis and Western blotting. Further, HGF led to activation of the stem cell related Notch pathway by up-regulation of its ligands Jagged-1 and Delta-like 4. Small molecules SU11274 and PHA665752 targeting c-MET activity were both able to block the molecular and biologic effects of HGF. Knock-down of c-MET by shRNA infection resulted in significant reduction and delay of orthotopic tumour-formation in male NMRI mice. Immunohistochemical analysis in prostatectomies revealed significant enrichment of c-MET positive cells at the invasive front, and demonstrated co-expression of c-MET with stem-like markers CD49b and CD49f.In conclusion, activation of c-MET in prostate cancer cells induced a stem-like phenotype, indicating a dynamic relation between differentiated and stem-like cells in this malignancy. Its mediation of efficient tumour-formation in vivo and predominant receptor expression at the invasive front implicate that c-MET regulates tumour infiltration in surrounding tissues putatively by acquisition of a stem-like phenotype.

  16. Crystal structure of the tyrosine kinase domain of the hepatocyte growth factor receptor c-Met and its complex with the microbial alkaloid K-252a

    OpenAIRE

    Schiering, Nikolaus; Knapp, Stefan; Marconi, Marina; Flocco, Maria M.; Cui, Jean; Perego, Rita; Rusconi, Luisa; Cristiani, Cinzia

    2003-01-01

    The protooncogene c-met codes for the hepatocyte growth factor receptor tyrosine kinase. Binding of its ligand, hepatocyte growth factor/scatter factor, stimulates receptor autophosphorylation, which leads to pleiotropic downstream signaling events in epithelial cells, including cell growth, motility, and invasion. These events are mediated by interaction of cytoplasmic effectors, generally through Src homology 2 (SH2) domains, with two phosphotyrosine-containing sequence motifs in the unique...

  17. MiR-181a-5p is downregulated in hepatocellular carcinoma and suppresses motility, invasion and branching-morphogenesis by directly targeting c-Met.

    Science.gov (United States)

    Korhan, Peyda; Erdal, Esra; Atabey, Neşe

    2014-08-08

    c-Met receptor tyrosine kinase has been regarded as a promising therapeutic target for hepatocellular carcinoma (HCC). Recently, microRNAs (miRNAs) have been shown as a novel mechanism to control c-Met expression in cancer. In this study, we investigate the potential contribution of miR-181a-5p dysregulation to the biology of c-Met overexpression in HCC. Herein, we found an inverse expression pattern between miR-181a-5p and c-Met expression in normal, cirrhotic and HCC liver tissues. Luciferase assay confirmed that miR-181a-5p binding to the 3'-UTR of c-Met downregulated the expression of c-Met in HCC cells. Overexpression of miR-181a-5p suppressed both HGF-independent and -dependent activation of c-Met and consequently diminished branching-morphogenesis and invasion. Combined treatment with miR-181a-5p and c-Met inhibitor led to a further inhibition of c-Met-driven cellular activities. Knockdown of miR-181a-5p promoted HGF-independent/-dependent signaling of c-Met and accelerated migration, invasion and branching-morphogenesis. In conclusion, our results demonstrated for the first time that c-Met is a functional target gene of miR-181a-5p and the loss of miR-181a-5p expression led to the activation of c-Met-mediated oncogenic signaling in hepatocarcinogenesis. These findings display a novel molecular mechanism of c-Met regulation in HCC and strategies to increase miR-181a5p level might be an alternative approach for the enhancement of the inhibitory effects of c-Met inhibitors. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Physiological Signaling and Structure of the HGF Receptor MET

    Directory of Open Access Journals (Sweden)

    Gianluca Baldanzi

    2014-12-01

    Full Text Available The “hepatocyte growth factor” also known as “scatter factor”, is a multifunctional cytokine with the peculiar ability of simultaneously triggering epithelial cell proliferation, movement and survival. The combination of those proprieties results in the induction of an epithelial to mesenchymal transition in target cells, fundamental for embryogenesis but also exploited by tumor cells during metastatization. The hepatocyte growth factor receptor, MET, is a proto-oncogene and a prototypical transmembrane tyrosine kinase receptor. Inhere we discuss the MET molecular structure and the hepatocyte growth factor driven physiological signaling which coordinates epithelial proliferation, motility and morphogenesis.

  19. Crystal structure of the tyrosine kinase domain of the hepatocyte growth factor receptor c-Met and its complex with the microbial alkaloid K-252a.

    Science.gov (United States)

    Schiering, Nikolaus; Knapp, Stefan; Marconi, Marina; Flocco, Maria M; Cui, Jean; Perego, Rita; Rusconi, Luisa; Cristiani, Cinzia

    2003-10-28

    The protooncogene c-met codes for the hepatocyte growth factor receptor tyrosine kinase. Binding of its ligand, hepatocyte growth factor/scatter factor, stimulates receptor autophosphorylation, which leads to pleiotropic downstream signaling events in epithelial cells, including cell growth, motility, and invasion. These events are mediated by interaction of cytoplasmic effectors, generally through Src homology 2 (SH2) domains, with two phosphotyrosine-containing sequence motifs in the unique C-terminal tail of c-Met (supersite). There is a strong link between aberrant c-Met activity and oncogenesis, which makes this kinase an important cancer drug target. The furanosylated indolocarbazole K-252a belongs to a family of microbial alkaloids that also includes staurosporine. It was recently shown to be a potent inhibitor of c-Met. Here we report the crystal structures of an unphosphorylated c-Met kinase domain harboring a human cancer mutation and its complex with K-252a at 1.8-A resolution. The structure follows the well established architecture of protein kinases. It adopts a unique, inhibitory conformation of the activation loop, a catalytically noncompetent orientation of helix alphaC, and reveals the complete C-terminal docking site. The first SH2-binding motif (1349YVHV) adopts an extended conformation, whereas the second motif (1356YVNV), a binding site for Grb2-SH2, folds as a type II Beta-turn. The intermediate portion of the supersite (1353NATY) assumes a type I Beta-turn conformation as in an Shc-phosphotyrosine binding domain peptide complex. K-252a is bound in the adenosine pocket with an analogous binding mode to those observed in previously reported structures of protein kinases in complex with staurosporine.

  20. Isolation and characterization of anti c-met single chain fragment variable (scFv) antibodies.

    Science.gov (United States)

    Qamsari, Elmira Safaie; Sharifzadeh, Zahra; Bagheri, Salman; Riazi-Rad, Farhad; Younesi, Vahid; Abolhassani, Mohsen; Ghaderi, Sepideh Safaei; Baradaran, Behzad; Somi, Mohammad Hossein; Yousefi, Mehdi

    2017-12-01

    The receptor tyrosine kinase (RTK) Met is the cell surface receptor for hepatocyte growth factor (HGF) involved in invasive growth programs during embryogenesis and tumorgenesis. There is compelling evidence suggesting important roles for c-Met in colorectal cancer proliferation, migration, invasion, angiogenesis, and survival. Hence, a molecular inhibitor of an extracellular domain of c-Met receptor that blocks c-Met-cell surface interactions could be of great thera-peutic importance. In an attempt to develop molecular inhibitors of c-Met, single chain variable fragment (scFv) phage display libraries Tomlinson I + J against a specific synthetic oligopeptide from the extracellular domain of c-Met receptor were screened; selected scFv were then characterized using various immune techniques. Three c-Met specific scFv (ES1, ES2, and ES3) were selected following five rounds of panning procedures. The scFv showed specific binding to c-Met receptor, and significantly inhibited proliferation responses of a human colorectal carcinoma cell line (HCT-116). Moreover, anti- apoptotic effects of selected scFv antibodies on the HCT-116 cell line were also evaluated using Annexin V/PI assays. The results demonstrated rates of apoptotic cell death of 46.0, 25.5, and 37.8% among these cells were induced by use of ES1, ES2, and ES3, respectively. The results demonstrated ability to successfully isolate/char-acterize specific c-Met scFv that could ultimately have a great therapeutic potential in immuno-therapies against (colorectal) cancers.

  1. cMET in NSCLC: Can We Cut off the Head of the Hydra? From the Pathway to the Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Van Der Steen, Nele [Center for Oncological Research Antwerp, University of Antwerp, Universiteitsplein 1, Wilrijk 2610 (Belgium); Pauwels, Patrick [Center for Oncological Research Antwerp, University of Antwerp, Universiteitsplein 1, Wilrijk 2610 (Belgium); Molecular Pathology Unit, Pathology Department, Antwerp University Hospital, Wilrijkstraat 10, Edegem 2650 (Belgium); Gil-Bazo, Ignacio [Department of Oncology, Clínica Universidad de Navarra, Pamplona 31008 (Spain); Castañon, Eduardo [Department of Oncology, Clínica Universidad de Navarra, Pamplona 31008 (Spain); Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital, Wilrijkstraat 10, Edegem 2650 (Belgium); Raez, Luis [Thoracic Oncology Program, Memorial Cancer Institute, Memorial Health Care System, Pembroke Pines, FL 33024 (United States); Cappuzzo, Federico [4Thoracic Oncology Program, Memorial Cancer Institute, Memorial Health Care System, Pembroke Pines, FL 33024 (United States); Rolfo, Christian, E-mail: Christian.Rolfo@uza.be [Center for Oncological Research Antwerp, University of Antwerp, Universiteitsplein 1, Wilrijk 2610 (Belgium); Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital, Wilrijkstraat 10, Edegem 2650 (Belgium)

    2015-03-25

    In the last decade, the tyrosine kinase receptor cMET, together with its ligand hepatocyte growth factor (HGF), has become a target in non-small cell lung cancer (NSCLC). Signalization via cMET stimulates several oncological processes amongst which are cell motility, invasion and metastasis. It also confers resistance against several currently used targeted therapies, e.g., epidermal growth factor receptor (EGFR) inhibitors. In this review, we will discuss the basic structure of cMET and the most important signaling pathways. We will also look into aberrations in the signaling and the effects thereof in cancer growth, with the focus on NSCLC. Finally, we will discuss the role of cMET as resistance mechanism.

  2. Hepatocyte Growth Factor-c-MET Signaling Mediates the Development of Nonsensory Structures of the Mammalian Cochlea and Hearing.

    Science.gov (United States)

    Shibata, Shumei; Miwa, Toru; Wu, Hsiao-Huei; Levitt, Pat; Ohyama, Takahiro

    2016-08-03

    The stria vascularis is a nonsensory structure that is essential for auditory hair cell function by maintaining potassium concentration of the scala media. During mouse embryonic development, a subpopulation of neural crest cell-derived melanocytes migrates and incorporates into a subregion of the cochlear epithelium, forming the intermediate cell layer of the stria vascularis. The relation of this developmental process to stria vascularis function is currently unknown. In characterizing the molecular differentiation of developing peripheral auditory structures, we discovered that hepatocyte growth factor (Hgf) is expressed in the future stria vascularis of the cochlear epithelium. Its receptor tyrosine kinase, c-Met, is expressed in the cochlear epithelium and melanocyte-derived intermediate cells in the stria vascularis. Genetic dissection of HGF signaling via c-MET reveals that the incorporation of the melanocytes into the future stria vascularis of the cochlear duct requires c-MET signaling. In addition, inactivation of either the ligand or receptor developmentally resulted in a profound hearing loss at young adult stages. These results suggest a novel connection between HGF signaling and deafness via melanocyte deficiencies. We found the roles of hepatocyte growth factor (HGF) signaling in stria vascularis development for the first time and that lack of HGF signaling in the inner ear leads to profound hearing loss in the mouse. Our findings reveal a novel mechanism that may underlie human deafness DFNB39 and DFNB97. Our findings reveal an additional example of context-dependent c-MET signaling diversity, required here for proper cellular invasion developmentally that is essential for specific aspects of auditory-related organogenesis. Copyright © 2016 the authors 0270-6474/16/368200-10$15.00/0.

  3. Hepatocyte Growth Factor–c-MET Signaling Mediates the Development of Nonsensory Structures of the Mammalian Cochlea and Hearing

    Science.gov (United States)

    Shibata, Shumei; Miwa, Toru; Wu, Hsiao-Huei; Levitt, Pat

    2016-01-01

    The stria vascularis is a nonsensory structure that is essential for auditory hair cell function by maintaining potassium concentration of the scala media. During mouse embryonic development, a subpopulation of neural crest cell-derived melanocytes migrates and incorporates into a subregion of the cochlear epithelium, forming the intermediate cell layer of the stria vascularis. The relation of this developmental process to stria vascularis function is currently unknown. In characterizing the molecular differentiation of developing peripheral auditory structures, we discovered that hepatocyte growth factor (Hgf) is expressed in the future stria vascularis of the cochlear epithelium. Its receptor tyrosine kinase, c-Met, is expressed in the cochlear epithelium and melanocyte-derived intermediate cells in the stria vascularis. Genetic dissection of HGF signaling via c-MET reveals that the incorporation of the melanocytes into the future stria vascularis of the cochlear duct requires c-MET signaling. In addition, inactivation of either the ligand or receptor developmentally resulted in a profound hearing loss at young adult stages. These results suggest a novel connection between HGF signaling and deafness via melanocyte deficiencies. SIGNIFICANCE STATEMENT We found the roles of hepatocyte growth factor (HGF) signaling in stria vascularis development for the first time and that lack of HGF signaling in the inner ear leads to profound hearing loss in the mouse. Our findings reveal a novel mechanism that may underlie human deafness DFNB39 and DFNB97. Our findings reveal an additional example of context-dependent c-MET signaling diversity, required here for proper cellular invasion developmentally that is essential for specific aspects of auditory-related organogenesis. PMID:27488639

  4. c-Met in esophageal squamous cell carcinoma: an independent prognostic factor and potential therapeutic target.

    Science.gov (United States)

    Ozawa, Yohei; Nakamura, Yasuhiro; Fujishima, Fumiyoshi; Felizola, Saulo J A; Takeda, Kenichiro; Okamoto, Hiroshi; Ito, Ken; Ishida, Hirotaka; Konno, Takuro; Kamei, Takashi; Miyata, Go; Ohuchi, Noriaki; Sasano, Hironobu

    2015-06-03

    c-Met is widely known as a poor prognostic factor in various human malignancies. Previous studies have suggested the involvement of c-Met and/or its ligand, hepatocyte growth factor (HGF), in esophageal squamous cell carcinoma (ESCC), but the correlation between c-Met status and clinical outcome remains unclear. Furthermore, the identification of a novel molecular therapeutic target might potentially help improve the clinical outcome of ESCC patients. The expression of c-Met and HGF was immunohistochemically assessed in 104 surgically obtained tissue specimens. The correlation between c-Met/HGF expression and patients' clinicopathological features, including survival, was evaluated. We also investigated changes in cell functions and protein expression of c-Met and its downstream signaling pathway components under treatments with HGF and/or c-Met inhibitor in ESCC cell lines. Elevated expression of c-Met was significantly correlated with tumor depth and pathological stage. Patients with high c-Met expression had significantly worse survival. In addition, multivariate analysis identified the high expression of c-Met as an independent prognostic factor. Treatment with c-Met inhibitor under HGF stimulation significantly inhibited the invasive capacity of an ESCC cell line with elevated c-Met mRNA expression. Moreover, c-Met and its downstream signaling inactivation was also detected after treatment with c-Met inhibitor. The results of our study identified c-Met expression as an independent prognostic factor in ESCC patients and demonstrated that c-Met could be a potential molecular therapeutic target for the treatment of ESCC with elevated c-Met expression.

  5. c-Met in esophageal squamous cell carcinoma: an independent prognostic factor and potential therapeutic target

    International Nuclear Information System (INIS)

    Ozawa, Yohei; Nakamura, Yasuhiro; Fujishima, Fumiyoshi; Felizola, Saulo JA; Takeda, Kenichiro; Okamoto, Hiroshi; Ito, Ken; Ishida, Hirotaka; Konno, Takuro; Kamei, Takashi; Miyata, Go; Ohuchi, Noriaki; Sasano, Hironobu

    2015-01-01

    c-Met is widely known as a poor prognostic factor in various human malignancies. Previous studies have suggested the involvement of c-Met and/or its ligand, hepatocyte growth factor (HGF), in esophageal squamous cell carcinoma (ESCC), but the correlation between c-Met status and clinical outcome remains unclear. Furthermore, the identification of a novel molecular therapeutic target might potentially help improve the clinical outcome of ESCC patients. The expression of c-Met and HGF was immunohistochemically assessed in 104 surgically obtained tissue specimens. The correlation between c-Met/HGF expression and patients’ clinicopathological features, including survival, was evaluated. We also investigated changes in cell functions and protein expression of c-Met and its downstream signaling pathway components under treatments with HGF and/or c-Met inhibitor in ESCC cell lines. Elevated expression of c-Met was significantly correlated with tumor depth and pathological stage. Patients with high c-Met expression had significantly worse survival. In addition, multivariate analysis identified the high expression of c-Met as an independent prognostic factor. Treatment with c-Met inhibitor under HGF stimulation significantly inhibited the invasive capacity of an ESCC cell line with elevated c-Met mRNA expression. Moreover, c-Met and its downstream signaling inactivation was also detected after treatment with c-Met inhibitor. The results of our study identified c-Met expression as an independent prognostic factor in ESCC patients and demonstrated that c-Met could be a potential molecular therapeutic target for the treatment of ESCC with elevated c-Met expression. The online version of this article (doi:10.1186/s12885-015-1450-3) contains supplementary material, which is available to authorized users

  6. Phosphorylated hepatocyte growth factor receptor/c-Met is associated with tumor growth and prognosis in patients with bladder cancer: correlation with matrix metalloproteinase-2 and -7 and E-cadherin.

    Science.gov (United States)

    Miyata, Yasuyoshi; Sagara, Yuji; Kanda, Shigeru; Hayashi, Tomayoshi; Kanetake, Hiroshi

    2009-04-01

    Hepatocyte growth factor receptor/c-Met is associated with malignant aggressiveness and survival in various cancers including bladder cancer. Although phosphorylation of hepatocyte growth factor receptor/c-Met is essential for its function, the pathologic significance of phosphorylated hepatocyte growth factor receptor/c-Met in bladder cancer remains elusive. We investigated the clinical significance of its expression, and its correlation with cancer cell progression-related molecules. The expression levels of 2 tyrosine residues of hepatocyte growth factor receptor/c-Met (pY1234/1235 and pY1349) were examined immunohistochemically in 133 specimens with nonmetastatic bladder cancer. We also investigated their correlation with matrix metalloproteinase-1, -2, -7, and -14; urokinase-type plasminogen activator; E-cadherin; CD44 standard, variant 3, and variant 6; and vascular endothelial growth factor. Expression of phosphorylated hepatocyte growth factor receptor/c-Met was detected in cancer cells, but was rare in normal urothelial cells. Although hepatocyte growth factor receptor/c-Met, pY1234/1235 hepatocyte growth factor receptor/c-Met, and pY1349 hepatocyte growth factor receptor/c-Met were associated with pT stage, multivariate analysis identified pY1349 hepatocyte growth factor receptor/c-met expression only as a significant factor for high pT stage. Expression of pY1349 hepatocyte growth factor receptor/c-Met was a marker of metastasis and (P = .001) and cause-specific survival (P = .003). Expressions of matrix metalloproteinase-2, matrix metalloproteinase-7, and E-cadherin correlated with pY1349 hepatocyte growth factor receptor/c-Met expression. Our results demonstrated that pY1349 hepatocyte growth factor receptor/c-Met plays an important role in tumor development, and its expression is a significant predictor of metastasis and survival of patients with bladder cancer. The results suggest that these activities are mediated, at least in part, by matrix

  7. HGF potentiates extracellular matrix-driven migration of human myoblasts: involvement of matrix metalloproteinases and MAPK/ERK pathway.

    Science.gov (United States)

    González, Mariela Natacha; de Mello, Wallace; Butler-Browne, Gillian S; Silva-Barbosa, Suse Dayse; Mouly, Vincent; Savino, Wilson; Riederer, Ingo

    2017-10-10

    The hepatocyte growth factor (HGF) is required for the activation of muscle progenitor cells called satellite cells (SC), plays a role in the migration of proliferating SC (myoblasts), and is present as a soluble factor during muscle regeneration, along with extracellular matrix (ECM) molecules. In this study, we aimed at determining whether HGF is able to interact with ECM proteins, particularly laminin 111 and fibronectin, and to modulate human myoblast migration. We evaluated the expression of the HGF-receptor c-Met, laminin, and fibronectin receptors by immunoblotting, flow cytometry, or immunofluorescence and used Transwell assays to analyze myoblast migration on laminin 111 and fibronectin in the absence or presence of HGF. Zymography was used to check whether HGF could modulate the production of matrix metalloproteinases by human myoblasts, and the activation of MAPK/ERK pathways was evaluated by immunoblotting. We demonstrated that human myoblasts express c-Met, together with laminin and fibronectin receptors. We observed that human laminin 111 and fibronectin have a chemotactic effect on myoblast migration, and this was synergistically increased when low doses of HGF were added. We detected an increase in MMP-2 activity in myoblasts treated with HGF. Conversely, MMP-2 inhibition decreased the HGF-associated stimulation of cell migration triggered by laminin or fibronectin. HGF treatment also induced in human myoblasts activation of MAPK/ERK pathways, whose specific inhibition decreased the HGF-associated stimulus of cell migration triggered by laminin 111 or fibronectin. We demonstrate that HGF induces ERK phosphorylation and MMP production, thus stimulating human myoblast migration on ECM molecules. Conceptually, these data state that the mechanisms involved in the migration of human myoblasts comprise both soluble and insoluble moieties. This should be taken into account to optimize the design of therapeutic cell transplantation strategies by improving

  8. HGF/c-MET Pathway in AIDS-Related Lymphoma

    Science.gov (United States)

    2016-09-01

    of Pediatrics, East Hospital, Tongji University School of Medicine, Shanghai, China 5 William Carey University College of Osteopathic Medicine...12845. 32. Gottwein E, Mukherjee N, Sachse C, Frenzel C, Majoros WH, Chi JT, Braich R, Manoharan M, Soutschek J, Ohler U and Cullen BR. A viral microRNA...relevance to the accumulation of versican. Prostate. 2005; 63:269–275. 17. Ricciardelli C, Frewin KM, Tan Ide A, Williams ED, Opeskin K, Pritchard MA

  9. Adipocytes enhance murine pancreatic cancer growth via a hepatocyte growth factor (HGF)-mediated mechanism.

    Science.gov (United States)

    Ziegler, Kathryn M; Considine, Robert V; True, Eben; Swartz-Basile, Deborah A; Pitt, Henry A; Zyromski, Nicholas J

    2016-04-01

    Obesity accelerates the development and progression of pancreatic cancer, though the mechanisms underlying this association are unclear. Adipocytes are biologically active, producing factors such as hepatocyte growth factor (HGF) that may influence tumor progression. We therefore sought to test the hypothesis that adipocyte-secreted factors including HGF accelerate pancreatic cancer cell proliferation. Murine pancreatic cancer cells (Pan02 and TGP-47) were grown in a) conditioned medium (CM) from murine F442A preadipocytes, b) HGF-knockdown preadipocyte CM, c) recombinant murine HGF at increasing doses, and d) CM plus HGF-receptor (c-met) inhibitor. Cell proliferation was measured using the MTT assay. ANOVA and t-test were applied; p TGP-47 cell proliferation relative to control (59 ± 12% and 34 ± 12%, p TGP-47 cells remained unchanged. Recombinant HGF dose-dependently increased Pan02, but not TGP-47, proliferation (p TGP-47 cells. These experiments demonstrate that adipocyte-derived factors accelerate murine pancreatic cancer proliferation. In the case of Pan02 cells, HGF is responsible, in part, for this proliferation. Copyright © 2016 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  10. Olive phenolics as c-Met inhibitors: (--Oleocanthal attenuates cell proliferation, invasiveness, and tumor growth in breast cancer models.

    Directory of Open Access Journals (Sweden)

    Mohamed R Akl

    Full Text Available Dysregulation of the Hepatocyte growth factor (HGF/c-Met signaling axis upregulates diverse tumor cell functions, including cell proliferation, survival, scattering and motility, epithelial-to-mesenchymal transition (EMT, angiogenesis, invasion, and metastasis. (--Oleocanthal is a naturally occurring secoiridoid from extra-virgin olive oil, which showed antiproliferative and antimigratory activity against different cancer cell lines. The aim of this study was to characterize the intracellular mechanisms involved in mediating the anticancer effects of (--oleocanthal treatment and the potential involvement of c-Met receptor signaling components in breast cancer. Results showed that (--oleocanthal inhibits the growth of human breast cancer cell lines MDA-MB-231, MCF-7 and BT-474 while similar treatment doses were found to have no effect on normal human MCF10A cell growth. In addition, (--oleocanthal treatment caused a dose-dependent inhibition of HGF-induced cell migration, invasion and G1/S cell cycle progression in breast cancer cell lines. Moreover, (--oleocanthal treatment effects were found to be mediated via inhibition of HGF-induced c-Met activation and its downstream mitogenic signaling pathways. This growth inhibitory effect is associated with blockade of EMT and reduction in cellular motility. Further results from in vivo studies showed that (--oleocanthal treatment suppressed tumor cell growth in an orthotopic model of breast cancer in athymic nude mice. Collectively, the findings of this study suggest that (--oleocanthal is a promising dietary supplement lead with potential for therapeutic use to control malignancies with aberrant c-Met activity.

  11. Interaction of integrin β4 with S1P receptors in S1P- and HGF-induced endothelial barrier enhancement.

    Science.gov (United States)

    Ni, Xiuqin; Epshtein, Yulia; Chen, Weiguo; Zhou, Tingting; Xie, Lishi; Garcia, Joe G N; Jacobson, Jeffrey R

    2014-06-01

    We previously reported sphingosine 1-phosphate (S1P) and hepatocyte growth factor (HGF) augment endothelial cell (EC) barrier function and attenuate murine acute lung inury (ALI). While the mechanisms underlying these effects are not fully understood, S1P and HGF both transactivate the S1P receptor, S1PR1 and integrin β4 (ITGB4) at membrane caveolin-enriched microdomains (CEMs). In the current study, we investigated the roles of S1PR2 and S1PR3 in S1P/HGF-mediated EC signaling and their associations with ITGB4. Our studies confirmed ITGB4 and S1PR2/3 are recruited to CEMs in human lung EC in response to either S1P (1 µM, 5 min) or HGF (25 ng/ml, 5 min). Co-immunoprecipitation experiments identified an S1P/HGF-mediated interaction of ITGB4 with both S1PR2 and S1PR3. We then employed an in situ proximity ligation assay (PLA) to confirm a direct ITGB4-S1PR3 association induced by S1P/HGF although a direct association was not detectable between S1PR2 and ITGB4. S1PR1 knockdown (siRNA), however, abrogated S1P/HGF-induced ITGB4-S1PR2 associations while there was no effect on ITGB4-S1PR3 associations. Moreover, PLA confirmed a direct association between S1PR1 and S1PR2 induced by S1P and HGF. Finally, silencing of S1PR2 significantly attenuated S1P/HGF-induced EC barrier enhancement as measured by transendothelial resistance while silencing of S1PR3 significantly augmented S1P/HGF-induced barrier enhancement. These results confirm an important role for S1PR2 and S1PR3 in S1P/HGF-mediated EC barrier responses that are associated with their complex formation with ITGB4. Our findings elucidate novel mechanisms of EC barrier regulation that may ultimately lead to new therapeutic targets for disorders characterized by increased vascular permeability including ALI. © 2013 Wiley Periodicals, Inc.

  12. Role of Sphingosine Kinase 1 and S1P Transporter Spns2 in HGF-mediated Lamellipodia Formation in Lung Endothelium.

    Science.gov (United States)

    Fu, Panfeng; Ebenezer, David L; Berdyshev, Evgeny V; Bronova, Irina A; Shaaya, Mark; Harijith, Anantha; Natarajan, Viswanathan

    2016-12-30

    Hepatocyte growth factor (HGF) signaling via c-Met is known to promote endothelial cell motility and angiogenesis. We have previously reported that HGF stimulates lamellipodia formation and motility of human lung microvascular endothelial cells (HLMVECs) via PI3K/Akt signal transduction and reactive oxygen species generation. Here, we report a role for HGF-induced intracellular sphingosine-1-phosphate (S1P) generation catalyzed by sphingosine kinase 1 (SphK1), S1P transporter, spinster homolog 2 (Spns2), and S1P receptor, S1P 1 , in lamellipodia formation and perhaps motility of HLMVECs. HGF stimulated SphK1 phosphorylation and enhanced intracellular S1P levels in HLMVECs, which was blocked by inhibition of SphK1. HGF enhanced co-localization of SphK1/p-SphK1 with actin/cortactin in lamellipodia and down-regulation or inhibition of SphK1 attenuated HGF-induced lamellipodia formation in HLMVECs. In addition, down-regulation of Spns2 also suppressed HGF-induced lamellipodia formation, suggesting a key role for inside-out S1P signaling. The HGF-mediated phosphorylation of SphK1 and its localization in lamellipodia was dependent on c-Met and ERK1/2 signaling, but not the PI3K/Akt pathway; however, blocking PI3K/Akt signaling attenuated HGF-mediated phosphorylation of Spns2. Down-regulation of S1P 1 , but not S1P 2 or S1P 3 , with specific siRNA attenuated HGF-induced lamellipodia formation. Further, HGF enhanced association of Spns2 with S1P 1 that was blocked by inhibiting SphK1 activity with PF-543. Moreover, HGF-induced migration of HLMVECs was attenuated by down-regulation of Spns2 . Taken together, these results suggest that HGF/c-Met-mediated lamellipodia formation, and perhaps motility is dependent on intracellular generation of S1P via activation and localization of SphK1 to cell periphery and Spns2-mediated extracellular transportation of S1P and its inside-out signaling via S1P 1 . © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Integration of an In Situ MALDI-Based High-Throughput Screening Process: A Case Study with Receptor Tyrosine Kinase c-MET.

    Science.gov (United States)

    Beeman, Katrin; Baumgärtner, Jens; Laubenheimer, Manuel; Hergesell, Karlheinz; Hoffmann, Martin; Pehl, Ulrich; Fischer, Frank; Pieck, Jan-Carsten

    2017-12-01

    Mass spectrometry (MS) is known for its label-free detection of substrates and products from a variety of enzyme reactions. Recent hardware improvements have increased interest in the use of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS for high-throughput drug discovery. Despite interest in this technology, several challenges remain and must be overcome before MALDI-MS can be integrated as an automated "in-line reader" for high-throughput drug discovery. Two such hurdles include in situ sample processing and deposition, as well as integration of MALDI-MS for enzymatic screening assays that usually contain high levels of MS-incompatible components. Here we adapt our c-MET kinase assay to optimize for MALDI-MS compatibility and test its feasibility for compound screening. The pros and cons of the Echo (Labcyte) as a transfer system for in situ MALDI-MS sample preparation are discussed. We demonstrate that this method generates robust data in a 1536-grid format. We use the MALDI-MS to directly measure the ratio of c-MET substrate and phosphorylated product to acquire IC50 curves and demonstrate that the pharmacology is unaffected. The resulting IC50 values correlate well between the common label-based capillary electrophoresis and the label-free MALDI-MS detection method. We predict that label-free MALDI-MS-based high-throughput screening will become increasingly important and more widely used for drug discovery.

  14. The TAM-family receptor Mer mediates production of HGF through the RhoA-dependent pathway in response to apoptotic cells.

    Science.gov (United States)

    Park, Hyun-Jung; Baen, Ji-Yeon; Lee, Ye-Ji; Choi, Youn-Hee; Kang, Jihee Lee

    2012-08-01

    The TAM receptor protein tyrosine kinases Tyro3, Axl, and Mer play important roles in macrophage function. We investigated the roles of the TAM receptors in mediating the induction of hepatocyte growth factor (HGF) during the interaction of macrophages with apoptotic cells. Mer-specific neutralizing antibody, small interfering RNA (siRNA), and a recombinant Mer protein (Mer/Fc) inhibited HGF mRNA and protein expression, as well as activation of RhoA, Akt, and specific mitogen-activated protein (MAP) kinases in response to apoptotic cells. Inhibition of Axl or Tyro3 with specific antibodies, siRNA, or Fc-fusion proteins did not prevent apoptotic cell-induced HGF mRNA and protein expression and did not inhibit activation of the postreceptor signaling molecules RhoA and certain MAP kinases, including extracellular signal-regulated protein kinase and c-Jun NH(2)-terminal kinase. However, Axl- and Tyro3-specific blockers did inhibit the activation of Akt and p38 MAP kinase in response to apoptotic cells. In addition, none of the TAM receptors mediated the effects of apoptotic cells on transforming growth factor-β or epidermal growth factor mRNA expression. However, they were involved in the induction of vascular endothelial growth factor mRNA expression. Our data provide evidence that when macrophages interact with apoptotic cells, only Mer of the TAM-family receptors is responsible for mediating transcriptional HGF production through a RhoA-dependent pathway.

  15. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases.

    Science.gov (United States)

    Son, Bo-Ra; Marquez-Curtis, Leah A; Kucia, Magda; Wysoczynski, Marcin; Turner, A Robert; Ratajczak, Janina; Ratajczak, Mariusz Z; Janowska-Wieczorek, Anna

    2006-05-01

    Human mesenchymal stem cells (MSCs) are increasingly being considered in cell-based therapeutic strategies for regeneration of various organs/tissues. However, the signals required for their homing and recruitment to injured sites are not yet fully understood. Because stromal-derived factor (SDF)-1 and hepatocyte growth factor (HGF) become up-regulated during tissue/organ damage, in this study we examined whether these factors chemoattract ex vivo-expanded MSCs derived from bone marrow (BM) and umbilical cord blood (CB). Specifically, we investigated the expression by MSCs of CXCR4 and c-met, the cognate receptors of SDF-1 and HGF, and their functionality after early and late passages of MSCs. We also determined whether MSCs express matrix metalloproteinases (MMPs), including membrane type 1 (MT1)-MMP, matrix-degrading enzymes that facilitate the trafficking of hematopoietic stem cells. We maintained expanded BM- or CB-derived MSCs for up to 15-18 passages with monitoring of the expression of 1) various tissue markers (cardiac and skeletal muscle, neural, liver, and endothelial cells), 2) functional CXCR4 and c-met, and 3) MMPs. We found that for up to 15-18 passages, both BM- and CB-derived MSCs 1) express mRNA for cardiac, muscle, neural, and liver markers, as well as the vascular endothelial (VE) marker VE-cadherin; 2) express CXCR4 and c-met receptors and are strongly attracted by SDF-1 and HGF gradients; 3) express MMP-2 and MT1-MMP transcripts and proteins; and 4) are chemo-invasive across the reconstituted basement membrane Matrigel. These in vitro results suggest that the SDF-1-CXCR4 and HGF-c-met axes, along with MMPs, may be involved in recruitment of expanded MSCs to damaged tissues.

  16. Hepatic Radiofrequency Ablation–induced Stimulation of Distant Tumor Growth Is Suppressed by c-Met Inhibition

    Science.gov (United States)

    Kumar, Gaurav; Moussa, Marwan; Wang, Yuanguo; Rozenblum, Nir; Galun, Eithan; Goldberg, S. Nahum

    2016-01-01

    Purpose To elucidate how hepatic radiofrequency (RF) ablation affects distant extrahepatic tumor growth by means of two key molecular pathways. Materials and Methods Rats were used in this institutional animal care and use committee–approved study. First, the effect of hepatic RF ablation on distant subcutaneous in situ R3230 and MATBIII breast tumors was evaluated. Animals were randomly assigned to standardized RF ablation, sham procedure, or no treatment. Tumor growth rate was measured for 3½ to 7 days. Then, tissue was harvested for Ki-67 proliferative indexes and CD34 microvascular density. Second, hepatic RF ablation was performed for hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), and c-Met receptor expression measurement in periablational rim, serum, and distant tumor 24 hours to 7 days after ablation. Third, hepatic RF ablation was combined with either a c-Met inhibitor (PHA-665752) or VEGF receptor inhibitor (semaxanib) and compared with sham or drug alone arms to assess distant tumor growth and growth factor levels. Finally, hepatic RF ablation was performed in rats with c-Met–negative R3230 tumors for comparison with the native c-Met–positive line. Tumor size and immunohistochemical quantification at day 0 and at sacrifice were compared with analysis of variance and the two-tailed Student t test. Tumor growth curves before and after treatment were analyzed with linear regression analysis to determine mean slopes of pre- and posttreatment growth curves on a per-tumor basis and were compared with analysis of variance and paired two-tailed t tests. Results After RF ablation of normal liver, distant R3230 tumors were substantially larger at 7 days compared with tumors treated with the sham procedure and untreated tumors, with higher growth rates and tumor cell proliferation. Similar findings were observed in MATBIII tumors. Hepatic RF ablation predominantly increased periablational and serum HGF and downstream distant tumor

  17. Hepatocyte growth factor enhances death receptor-induced apoptosis by up-regulating DR5

    International Nuclear Information System (INIS)

    Li, Yang; Fan, Xing; Goodwin, C Rory; Laterra, John; Xia, Shuli

    2008-01-01

    Hepatocyte growth factor (HGF) and its receptor c-MET are commonly expressed in malignant gliomas and embryonic neuroectodermal tumors including medulloblastoma and appear to play an important role in the growth and dissemination of these malignancies. Dependent on cell context and the involvement of specific downstream effectors, both pro- and anti-apoptotic effects of HGF have been reported. Human medulloblastoma cells were treated with HGF for 24–72 hours followed by death receptor ligand TRAIL (Tumor necrosis factor-related apoptosis-inducing ligand) for 24 hours. Cell death was measured by MTT and Annexin-V/PI flow cytometric analysis. Changes in expression levels of targets of interest were measured by Northern blot analysis, quantitative reverse transcription-PCR, Western blot analysis as well as immunoprecipitation. In this study, we show that HGF promotes medulloblastoma cell death induced by TRAIL. TRAIL alone triggered apoptosis in DAOY cells and death was enhanced by pre-treating the cells with HGF for 24–72 h prior to the addition of TRAIL. HGF (100 ng/ml) enhanced TRAIL (10 ng/ml) induced cell death by 36% (P < 0.001). No cell death was associated with HGF alone. Treating cells with PHA-665752, a specific c-Met receptor tyrosine kinase inhibitor, significantly abrogated the enhancement of TRAIL-induced cell death by HGF, indicating that its death promoting effect requires activation of its canonical receptor tyrosine kinase. Cell death induced by TRAIL+HGF was predominately apoptotic involving both extrinsic and intrinsic pathways as evidenced by the increased activation of caspase-3, 8, 9. Promotion of apoptosis by HGF occurred via the increased expression of the death receptor DR5 and enhanced formation of death-inducing signal complexes (DISC). Taken together, these and previous findings indicate that HGF:c-Met pathway either promotes or inhibits medulloblastoma cell death via pathway and context specific mechanisms

  18. Identification of Phytochemicals Targeting c-Met Kinase Domain using Consensus Docking and Molecular Dynamics Simulation Studies.

    Science.gov (United States)

    Aliebrahimi, Shima; Montasser Kouhsari, Shideh; Ostad, Seyed Nasser; Arab, Seyed Shahriar; Karami, Leila

    2018-06-01

    c-Met receptor tyrosine kinase is a proto-oncogene whose aberrant activation is attributed to a lower rate of survival in most cancers. Natural product-derived inhibitors known as "fourth generation inhibitors" constitute more than 60% of anticancer drugs. Furthermore, consensus docking approach has recently been introduced to augment docking accuracy and reduce false positives during a virtual screening. In order to obtain novel small-molecule Met inhibitors, consensus docking approach was performed using Autodock Vina and Autodock 4.2 to virtual screen Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database against active and inactive conformation of c-Met kinase domain structure. Two hit molecules that were in line with drug-likeness criteria, desired docking score, and binding pose were subjected to molecular dynamics simulations to elucidate intermolecular contacts in protein-ligand complexes. Analysis of molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area studies showed that ZINC08234189 is a plausible inhibitor for the active state of c-Met, whereas ZINC03871891 may be more effective toward active c-Met kinase domain compared to the inactive form due to higher binding energy. Our analysis showed that both the hit molecules formed hydrogen bonds with key residues of the hinge region (P1158, M1160) in the active form, which is a hallmark of kinase domain inhibitors. Considering the pivotal role of HGF/c-Met signaling in carcinogenesis, our results propose ZINC08234189 and ZINC03871891 as the therapeutic options to surmount Met-dependent cancers.

  19. Increased Epidermal Growth Factor Receptor (EGFR Associated with Hepatocyte Growth Factor (HGF and Symptom Severity in Children with Autism Spectrum Disorders (ASDs

    Directory of Open Access Journals (Sweden)

    Anthony J. Russo

    2014-01-01

    Full Text Available Background One in 88 children in the US is thought to have one of the autism spectrum disorders (ASDs. ASDs are characterized by social impairments and communication problems. Growth factors and their receptors may play a role in the etiology of ASDs. Research has shown that epidermal growth factor receptor (EGFR activation is associated with nerve cell development and repair. This study was designed to measure plasma levels of EGFR in autistic children and correlate these levels with its ligand, epidermal growth factor, other related putative biomarkers such as hepatocyte growth factor (HGF, the ligand for MET (MNNG HOS transforming gene receptor, as well as the symptom severity of 19 different behavioral symptoms. Subjects and Methods Plasma EGFR concentration was measured in 33 autistic children and 34 age- and gender-similar neurotypical controls, using an enzyme-linked immunosorbent assay. Plasma EGFR levels were compared to putative biomarkers known to be associated with EGFR and MET and severity levels of 19 autism-related symptoms. Results We found plasma EGFR levels significantly higher in autistic children, when compared to neurotypical controls. EGFR levels correlated with HGF and high-mobility group protein B1 (HMGB1 levels, but not other tested putative biomarkers, and EGFR levels correlated significantly with severity of expressive language, conversational language, focus/attention, hyperactivity, eye contact, and sound sensitivity deficiencies. Conclusions These results suggest a relationship between increased plasma EGFR levels and designated symptom severity in autistic children. A strong correlation between plasma EGFR and HGF and HMGB1 suggests that increased EGFR levels may be associated with the HGF/Met signaling pathway, as well as inflammation.

  20. Enhanced Prediction of Src Homology 2 (SH2) Domain Binding Potentials Using a Fluorescence Polarization-derived c-Met, c-Kit, ErbB, and Androgen Receptor Interactome*

    Science.gov (United States)

    Leung, Kin K.; Hause, Ronald J.; Barkinge, John L.; Ciaccio, Mark F.; Chuu, Chih-Pin; Jones, Richard B.

    2014-01-01

    Many human diseases are associated with aberrant regulation of phosphoprotein signaling networks. Src homology 2 (SH2) domains represent the major class of protein domains in metazoans that interact with proteins phosphorylated on the amino acid residue tyrosine. Although current SH2 domain prediction algorithms perform well at predicting the sequences of phosphorylated peptides that are likely to result in the highest possible interaction affinity in the context of random peptide library screens, these algorithms do poorly at predicting the interaction potential of SH2 domains with physiologically derived protein sequences. We employed a high throughput interaction assay system to empirically determine the affinity between 93 human SH2 domains and phosphopeptides abstracted from several receptor tyrosine kinases and signaling proteins. The resulting interaction experiments revealed over 1000 novel peptide-protein interactions and provided a glimpse into the common and specific interaction potentials of c-Met, c-Kit, GAB1, and the human androgen receptor. We used these data to build a permutation-based logistic regression classifier that performed considerably better than existing algorithms for predicting the interaction potential of several SH2 domains. PMID:24728074

  1. ADAM10/17-Dependent Release of Soluble c-Met Correlates with Hepatocellular Damage

    Czech Academy of Sciences Publication Activity Database

    Chalupský, Karel; Kanchev, Ivan; Žbodáková, Olga; Buryová, Halka; Jiroušková, Markéta; Kořínek, Vladimír; Gregor, Martin; Sedláček, Radislav

    2013-01-01

    Roč. 59, č. 2 (2013), s. 76-78 ISSN 0015-5500 R&D Projects: GA ČR GAP305/10/2143; GA ČR GAP303/10/2044; GA AV ČR IAA500520812 Institutional support: RVO:68378050 Keywords : c-Met * HGF * shedding * ADAM metalloproteinase * liver Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.778, year: 2013

  2. Semi-synthesis of a HGF/SF kringle one (K1) domain scaffold generates a potent in vivo MET receptor agonist.

    Science.gov (United States)

    Simonneau, Claire; Bérénice Leclercq; Mougel, Alexandra; Adriaenssens, Eric; Paquet, Charlotte; Raibaut, Laurent; Ollivier, Nathalie; Drobecq, Hervé; Marcoux, Julien; Cianférani, Sarah; Tulasne, David; de Jonge, Hugo; Melnyk, Oleg; Vicogne, Jérôme

    2015-03-01

    The development of MET receptor agonists is an important goal in regenerative medicine, but is limited by the complexity and incomplete understanding of its interaction with HGF/SF (Hepatocyte Growth Factor/Scatter Factor). NK1 is a natural occurring agonist comprising the N-terminal (N) and the first kringle (K1) domains of HGF/SF. In the presence of heparin, NK1 can self-associate into a "head to tail" dimer which is considered as the minimal structural module able to trigger MET dimerization and activation whereas isolated K1 and N domains showed a weak or a complete lack of agonistic activity respectively. Starting from these structural and biological observations, we investigated whether it was possible to recapitulate the biological properties of NK1 using a new molecular architecture of isolated N or K1 domains. Therefore, we engineered multivalent N or K1 scaffolds by combining synthetic and homogeneous site-specifically biotinylated N and K1 domains (NB and K1B) and streptavidin (S). NB alone or in complex failed to activate MET signaling and to trigger cellular phenotypes. Importantly and to the contrary of K1B alone, the semi-synthetic K1B/S complex mimicked NK1 MET agonist activity in cell scattering, morphogenesis and survival phenotypic assays. Impressively, K1B/S complex stimulated in vivo angiogenesis and, when injected in mice, protected the liver against fulminant hepatitis in a MET dependent manner whereas NK1 and HGF were substantially less potent. These data reveal that without N domain, proper multimerization of K1 domain is a promising strategy for the rational design of powerful MET agonists.

  3. The motogenic and mitogenic responses to HGF are amplified by the Shc adaptor protein

    DEFF Research Database (Denmark)

    Pelicci, G; Giordano, S; Zhen, Z

    1995-01-01

    The receptor of Hepatocyte Growth Factor-Scatter Factor (HGF) is a tyrosine kinase which regulates cell motility and growth. After ligand-induced tyrosine phosphorylation, the HGF receptor associates with the Shc adaptor, via the SH2 domain. Site-directed mutagenesis of the HGF receptor indicates...

  4. Higher Levels of c-Met Expression and Phosphorylation Identify Cell Lines With Increased Sensitivity to AMG-458, a Novel Selective c-Met Inhibitor With Radiosensitizing Effects

    International Nuclear Information System (INIS)

    Li Bo; Torossian, Artour; Sun, Yunguang; Du, Ruihong; Dicker, Adam P.; Lu Bo

    2012-01-01

    Purpose: c-Met is overexpressed in some non-small cell lung cancer (NSCLC) cell lines and tissues. Cell lines with higher levels of c-Met expression and phosphorylation depend on this receptor for survival. We studied the effects of AMG-458 on 2 NSCLC cell lines. Methods and Materials: 3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl) -2H-tetrazolium assays assessed the sensitivities of the cells to AMG-458. Clonogenic survival assays illustrated the radiosensitizing effects of AMG-458. Western blot for cleaved caspase 3 measured apoptosis. Immunoblotting for c-Met, phospho-Met (p-Met), Akt/p-Akt, and Erk/p-Erk was performed to observe downstream signaling. Results: AMG-458 enhanced radiosensitivity in H441 but not in A549. H441 showed constitutive phosphorylation of c-Met. A549 expressed low levels of c-Met, which were phosphorylated only in the presence of exogenous hepatocyte growth factor. The combination of radiation therapy and AMG-458 treatment was found to synergistically increase apoptosis in the H441 cell line but not in A549. Radiation therapy, AMG-458, and combination treatment were found to reduce p-Akt and p-Erk levels in H441 but not in A549. H441 became less sensitive to AMG-458 after small interfering RNA knockdown of c-Met; there was no change in A549. After overexpression of c-Met, A549 became more sensitive, while H441 became less sensitive to AMG-458. Conclusions: AMG-458 was more effective in cells that expressed higher levels of c-Met/p-Met, suggesting that higher levels of c-Met and p-Met in NSCLC tissue may classify a subset of tumors that are more sensitive to molecular therapies against this receptor.

  5. Lung fibroblasts accelerate wound closure in human alveolar epithelial cells through hepatocyte growth factor/c-Met signaling.

    Science.gov (United States)

    Ito, Yoko; Correll, Kelly; Schiel, John A; Finigan, Jay H; Prekeris, Rytis; Mason, Robert J

    2014-07-01

    There are 190,600 cases of acute lung injury/acute respiratory distress syndrome (ALI/ARDS) each year in the United States, and the incidence and mortality of ALI/ARDS increase dramatically with age. Patients with ALI/ARDS have alveolar epithelial injury, which may be worsened by high-pressure mechanical ventilation. Alveolar type II (ATII) cells are the progenitor cells for the alveolar epithelium and are required to reestablish the alveolar epithelium during the recovery process from ALI/ARDS. Lung fibroblasts (FBs) migrate and proliferate early after lung injury and likely are an important source of growth factors for epithelial repair. However, how lung FBs affect epithelial wound healing in the human adult lung has not been investigated in detail. Hepatocyte growth factor (HGF) is known to be released mainly from FBs and to stimulate both migration and proliferation of primary rat ATII cells. HGF is also increased in lung tissue, bronchoalveolar lavage fluid, and serum in patients with ALI/ARDS. Therefore, we hypothesized that HGF secreted by FBs would enhance wound closure in alveolar epithelial cells (AECs). Wound closure was measured using a scratch wound-healing assay in primary human AEC monolayers and in a coculture system with FBs. We found that wound closure was accelerated by FBs mainly through HGF/c-Met signaling. HGF also restored impaired wound healing in AECs from the elderly subjects and after exposure to cyclic stretch. We conclude that HGF is the critical factor released from FBs to close wounds in human AEC monolayers and suggest that HGF is a potential strategy for hastening alveolar repair in patients with ALI/ARDS. Copyright © 2014 the American Physiological Society.

  6. Role of cMET in the Development and Progression of Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Ilaria Bossi

    2013-09-01

    Full Text Available Mesenchymal-epithelial transition (MET is a member of a distinct subfamily of heterodimeric receptor tyrosine kinase receptors that specifically binds the hepatocyte growth factor (HGF. Binding to HGF leads to receptor dimerization/multimerization and phosphorylation, resulting in its catalytic activation. MET activation drives the malignant progression of several tumor types, including colorectal cancer (CRC, by promoting signaling cascades that mainly result in alterations of cell motility, survival, and proliferation. MET is aberrantly activated in many human cancers through various mechanisms, including point mutations, gene amplification, transcriptional up-regulation, or ligand autocrine loops. MET promotes cell scattering, invasion, and protection from apoptosis, thereby acting as an adjuvant pro-metastatic gene for many tumor types. In CRC, MET expression confers more aggressiveness and worse clinical prognosis. With all of this rationale, inhibitors that target the HGF/MET axis with different types of response have been developed. HGF and MET are new promising targets to understand the pathogenesis of CRC and for the development of new, targeted therapies.

  7. The HGF strategy project

    International Nuclear Information System (INIS)

    Knebel, J.U.; Fellmoser, F.; Lefhalm, C.; Mack, K.; Pettan, C.; Piecha, H.; Konys, J.; Adelhelm, C.; Glasbrenner, H.; Muscher, H.; Novotny, J.; Voss, Z.; Wedemeyer, O.; Mueller, G.; Heinzel, A.; Schumacher, G.; Huber, R.; Zimmermann, F.; Groetzbach, G.; Dorr, B.; Carteciano, L.N.

    2000-01-01

    Within the Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF) an HGF-Strategy Fund Project entitled 'Innovative Technologies to Reduce Radiotoxicity' is funded since October 1999. The objectives of this HGF-Strategy Fund Project is the development of new methods and technologies to design and manufacture thin-walled and highly thermally-loaded surfaces which are cooled by a corrosive heavy liquid metal (lead-bismuth eutectic). The result of this project will be the basic scientific-technical tool which allows the conception and the design of a European Demonstrator of an ADS system (cf. 32.23.05). The work performed at Forschungszentrum Karlsruhe is embedded in a broad European research and development programme on ADS systems. The project is divided in three sub-projects: Sub-Project 1: Thermalhydraulic Investigations, Sub-Project 2: Material Specific Investigations, Sub-Project 3: Oxygen Control System. This progress report gives a general description of the project and its envisaged objectives. As a selection of the results achieved, first, FLUTAN calculations for the COULI beam window design and, second, the oxygen control system for the KArlsruhe Lead LAboratory KALLA are described in detail. Finally, the design and status of KALLA is given. (orig.)

  8. Structural Basis for Selective Small Molecule Kinase Inhibition of Activated c-Met

    Energy Technology Data Exchange (ETDEWEB)

    Rickert, Keith W.; Patel, Sangita B.; Allison, Timothy J.; Byrne, Noel J.; Darke, Paul L.; Ford, Rachael E.; Guerin, David J.; Hall, Dawn L.; Kornienko, Maria; Lu, Jun; Munshi, Sanjeev K.; Reid, John C.; Shipman, Jennifer M.; Stanton, Elizabeth F.; Wilson, Kevin J.; Young, Jonathon R.; Soisson, Stephen M.; Lumb, Kevin J. (Merck)

    2012-03-15

    The receptor tyrosine kinase c-Met is implicated in oncogenesis and is the target for several small molecule and biologic agents in clinical trials for the treatment of cancer. Binding of the hepatocyte growth factor to the cell surface receptor of c-Met induces activation via autophosphorylation of the kinase domain. Here we describe the structural basis of c-Met activation upon autophosphorylation and the selective small molecule inhibiton of autophosphorylated c-Met. MK-2461 is a potent c-Met inhibitor that is selective for the phosphorylated state of the enzyme. Compound 1 is an MK-2461 analog with a 20-fold enthalpy-driven preference for the autophosphorylated over unphosphorylated c-Met kinase domain. The crystal structure of the unbound kinase domain phosphorylated at Tyr-1234 and Tyr-1235 shows that activation loop phosphorylation leads to the ejection and disorder of the activation loop and rearrangement of helix {alpha}C and the G loop to generate a viable active site. Helix {alpha}C adopts a orientation different from that seen in activation loop mutants. The crystal structure of the complex formed by the autophosphorylated c-Met kinase domain and compound 1 reveals a significant induced fit conformational change of the G loop and ordering of the activation loop, explaining the selectivity of compound 1 for the autophosphorylated state. The results highlight the role of structural plasticity within the kinase domain in imparting the specificity of ligand binding and provide the framework for structure-guided design of activated c-Met inhibitors.

  9. Discovery of imidazopyridine derivatives as novel c-Met kinase inhibitors: Synthesis, SAR study, and biological activity.

    Science.gov (United States)

    Yang, Yifei; Zhang, Yuan; Yang, LingYun; Zhao, Leilei; Si, Lianghui; Zhang, Huibin; Liu, Qingsong; Zhou, Jinpei

    2017-02-01

    Receptor tyrosine kinase c-Met acts as an alternative angiogenic pathway in the process and contents of cancers. A series of imidazopyridine derivatives were designed and synthesized according to the established docking studies as possible c-Met inhibitors. Most of these imidazopyridine derivatives displayed nanomolar potency against c-Met in both biochemical enzymatic screens and cellular pharmacology studies. Especially, compound 7g exhibited the most inhibitory activity against c-Met with IC 50 of 53.4nM and 253nM in enzymatic and cellular level, respectively. Following that, the compound 7g was docked into the protein of c-Met and the structure-activity relationship was analyzed in detail. These findings indicated that the novel imidazopyridine derivative compound 7g was a potential c-Met inhibitor deserving further investigation for cancer treatment. Copyright © 2016. Published by Elsevier Inc.

  10. Research progress in c-Met and hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    WANG Changqing

    2015-06-01

    Full Text Available c-Met plays a pivotal role in the development and progression of hepatocellular carcinoma (HCC, which can lead to proliferation, survival, cytoskeleton reorganization, separation and diffusion, and angiogenesis of tumor cells. Moreover, c-Met is an important prognostic factor for HCC. In HCC, c-Met acts as an activator of a series of signaling pathways, including PI3K/AKT/mTOR, ERK/MAPK, and Rac-Pak. In recent years, it has been reported that small-molecule kinase inhibitors can abolish phosphorylation at the intracellular carboxyl terminal of c-Met, and then inhibit the recruitment of signal convertors and downstream signaling pathways, which finally achieve anti-tumor activities. Based on the carcinogenic activity of c-Met in HCC, this paper points out that selective inhibitors of c-Met hold promise for targeted therapies for HCC.

  11. C-MET overexpression and amplification in gliomas.

    Science.gov (United States)

    Kwak, Yoonjin; Kim, Seong-Ik; Park, Chul-Kee; Paek, Sun Ha; Lee, Soon-Tae; Park, Sung-Hye

    2015-01-01

    We investigated c-Met overexpression and MET gene amplification in gliomas to determine their incidence and prognostic significance. c-Met immunohistochemistry and MET gene fluorescence in situ hybridization were carried out on tissue microarrays from 250 patients with gliomas (137 grade IV GBMs and 113 grade II and III diffuse gliomas). Clinicopathological features of these cases were reviewed. c-Met overexpression and MET gene amplification were detected in 13.1% and 5.1% of the GBMs, respectively. All the MET-amplified cases showed c-Met overexpression, but MET amplification was not always concordant with c-Met overexpression. None of grade II and III gliomas demonstrated c-Met overexpression or MET gene amplification. Mean survival of the GBM patients with MET amplification was not significantly different from patients without MET amplification (P=0.155). However, GBM patients with c-Met overexpression survived longer than patients without c-Met overexpression (P=0.035). Although MET amplification was not related to poor GBM prognosis, it is partially associated with the aggressiveness of gliomas, as MET amplification was found only in grade IV, not in grade II and III gliomas. We suggest that MET inhibitor therapy may be beneficial in about 5% GBMs, which was the incidence of MET gene amplification found in the patients included in this study.

  12. Cancer-Associated Fibroblasts Regulate Tumor-Initiating Cell Plasticity in Hepatocellular Carcinoma through c-Met/FRA1/HEY1 Signaling

    Directory of Open Access Journals (Sweden)

    Eunice Yuen Ting Lau

    2016-05-01

    Full Text Available Like normal stem cells, tumor-initiating cells (T-ICs are regulated extrinsically within the tumor microenvironment. Because HCC develops primarily in the context of cirrhosis, in which there is an enrichment of activated fibroblasts, we hypothesized that cancer-associated fibroblasts (CAFs would regulate liver T-ICs. We found that the presence of α-SMA(+ CAFs correlates with poor clinical outcome. CAF-derived HGF regulates liver T-ICs via activation of FRA1 in an Erk1,2-dependent manner. Further functional analysis identifies HEY1 as a direct downstream effector of FRA1. Using the STAM NASH-HCC mouse model, we find that HGF-induced FRA1 activation is associated with the fibrosis-dependent development of HCC. Thus, targeting the CAF-derived, HGF-mediated c-Met/FRA1/HEY1 cascade may be a therapeutic strategy for the treatment of HCC.

  13. In vivo detection of c-MET expression in a rat hepatocarcinogenesis model using molecularly targeted magnetic resonance imaging.

    Science.gov (United States)

    Towner, Rheal A; Smith, Nataliya; Tesiram, Yasvir A; Abbott, Andrew; Saunders, Debbie; Blindauer, Rebecca; Herlea, Oana; Silasi-Mansat, Robert; Lupu, Florea

    2007-01-01

    The multifunctional growth factor scatter factor/hepatocyte growth factor and its tyrosine kinase receptor, c-MET, have been implicated in the genesis and malignant progression of numerous human malignancies, including hepatocellular carcinomas. The incidence of hepatocellular carcinomas in the United States has increased noticeably over the past two decades and is listed as the fifth major cancer in men worldwide. In this study, we used a choline-deficient l-amino acid (CDAA)-defined rat hepatocarcinogenesis model to visualize increased in vivo expression of the c-MET antigen in neoplastic lesion formation with the use of a super paramagnetic iron oxide (SPIO)-anti-c-MET molecularly targeted magnetic resonance imaging (MRI) contrast agent. SPIO-anti-c-MET was used for the first time to detect overexpression of c-MET in neoplastic nodules and tumors within the livers of CDAA-treated rats, as determined by a decrease in MRI signal intensity and a decrease in regional T(2) values. Specificity for the binding of the molecularly targeted anti-c-MET contrast agent was determined using rat hepatoma (H4-II-E-C3) cell cultures and immunofluorescence microscopic imaging of the targeting agents within neoplastic liver tissue 1 to 2 hours following intravenous administration of SPIO-anti-c-MET and MRI investigation. This method has the ability to visualize in vivo the overexpression of c-MET at early developmental stages of tumor formation.

  14. In Vivo Detection of c-MET Expression in a Rat Hepatocarcinogenesis Model Using Molecularly Targeted Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Rheal A. Towner

    2007-01-01

    Full Text Available The multifunctional growth factor scatter factor/hepatocyte growth factor and its tyrosine kinase receptor, c-MET, have been implicated in the genesis and malignant progression of numerous human malignancies, including hepatocellular carcinomas. The incidence of hepatocellular carcinomas in the United States has increased noticeably over the past two decades and is listed as the fifth major cancer in men worldwide. In this study, we used a choline-deficient l-amino acid (CDAA-defined rat hepatocarcinogenesis model to visualize increased in vivo expression of the c-MET antigen in neoplastic lesion formation with the use of a super paramagnetic iron oxide (SPIO–anti-c-MET molecularly targeted magnetic resonance imaging (MRI contrast agent. SPIO–anti-c-MET was used for the first time to detect overexpression of c-MET in neoplastic nodules and tumors within the livers of CDAA-treated rats, as determined by a decrease in MRI signal intensity and a decrease in regional T2 values. Specificity for the binding of the molecularly targeted anti-c-MET contrast agent was determined using rat hepatoma (H4-II-E-C3 cell cultures and immunofluorescence microscopic imaging of the targeting agents within neoplastic liver tissue 1 to 2 hours following intravenous administration of SPIO–anti-c-MET and MRI investigation. This method has the ability to visualize in vivo the overexpression of c-MET at early developmental stages of tumor formation.

  15. Gain of chromosome 7 by chromogenic in situ hybridization (CISH) in chordomas is correlated to c-MET expression.

    Science.gov (United States)

    Walter, Beatriz A; Begnami, Maria; Valera, Vladimir A; Santi, Mariarita; Rushing, Elisabeth J; Quezado, Martha

    2011-01-01

    Chordomas are low to intermediate grade malignancies that arise from remnants of embryonic notochord. They often recur after surgery and are highly resistant to conventional adjuvant therapies. Recently, the development of effective targeted molecular therapy has been investigated in chordomas that show receptors for tyrosine kinase (RTKs) activation. Expression of specific RTKs such as Epidermal Growth Factor Receptor (EGFR) and Mesenchymal-epithelial transition factor (c-MET) in chordomas may offer valuable therapeutic options. We investigated changes in copy number of chromosome 7 and correlated it with EGFR gene status and EGFR and c-MET protein expression in 22 chordoma samples. Chromosome 7 copy number was evaluated by chromogenic in situ hybridization (CISH) and protein expression of EGFR and c-MET by immunohistochemistry. Tumors mostly showed conventional histopathologic features and were found mainly in sacral (41%) and cranial sites (54.5%). Aneusomy of chromosome 7 was seen in 73% of the samples, 62% of primary tumors and in all recurrent chordomas. EGFR and c-MET were both expressed, but only c-MET protein expression was significantly correlated with chromosome 7 aneusomy (P ≤ 0.001). c-MET overexpression may represent an early chromosome 7 alteration that could play an important role during chordoma pathogenesis. c-MET overexpression shows promise as a molecular marker of response to targeted molecular therapy in the treatment of chordomas.

  16. Development of antibody-based c-Met inhibitors for targeted cancer therapy

    Directory of Open Access Journals (Sweden)

    Lee D

    2015-02-01

    Full Text Available Dongheon Lee, Eun-Sil Sung, Jin-Hyung Ahn, Sungwon An, Jiwon Huh, Weon-Kyoo You Hanwha Chemical R&D Center, Biologics Business Unit, Daejeon, Republic of Korea Abstract: Signaling pathways mediated by receptor tyrosine kinases (RTKs and their ligands play important roles in the development and progression of human cancers, which makes RTK-mediated signaling pathways promising therapeutic targets in the treatment of cancer. Compared with small-molecule compounds, antibody-based therapeutics can more specifically recognize and bind to ligands and RTKs. Several antibody inhibitors of RTK-mediated signaling pathways, such as human epidermal growth factor receptor 2, vascular endothelial growth factor, epidermal growth factor receptor or vascular endothelial growth factor receptor 2, have been developed and are widely used to treat cancer patients. However, since the therapeutic options are still limited in terms of therapeutic efficacy and types of cancers that can be treated, efforts are being made to identify and evaluate novel RTK-mediated signaling pathways as targets for more efficacious cancer treatment. The hepatocyte growth factor/c-Met signaling pathway has come into the spotlight as a promising target for development of potent cancer therapeutic agents. Multiple antibody-based therapeutics targeting hepatocyte growth factor or c-Met are currently in preclinical or clinical development. This review focuses on the development of inhibitors of the hepatocyte growth factor/c-Met signaling pathway for cancer treatment, including critical issues in clinical development and future perspectives for antibody-based therapeutics. Keywords: hepatocyte growth factor, ligands, receptor tyrosine kinase, signaling pathway, therapeutic agent

  17. c-Met Overexpression Contributes to the Acquired Apoptotic Resistance of Nonadherent Ovarian Cancer Cells through a Cross Talk Mediated by Phosphatidylinositol 3-Kinase and Extracellular Signal-Regulated Kinase 1/2

    Directory of Open Access Journals (Sweden)

    Maggie K.S. Tang

    2010-02-01

    Full Text Available Ovarian cancer is the most lethal gynecologic cancer mainly because of widespread peritoneal dissemination and malignant ascites. Key to this is the capacity of tumor cells to escape suspension-induced apoptosis (anoikis, which also underlies their resistance to chemotherapy. Here, we used a nonadherent cell culture model to investigate the molecular mechanisms of apoptotic resistance of ovarian cancer cells that may mimic the chemoresistance found in solid tumors. We found that ovarian cancer cells acquired a remarkable resistance to anoikis and apoptosis induced by exposure to clinically relevant doses of two front-line chemotherapeutic drugs cisplatin and paclitaxel when grown in three-dimensional than monolayer cultures. Inhibition of the hepatocyte growth factor (HGF receptor c-Met, which is frequently overexpressed in ovarian cancer, by a specific inhibitor or small interfering RNA blocked the acquired anoikis resistance and restored chemosensitivity in three-dimensional not in two-dimensional cultures. These effects were found to be dependent on both phosphatidylinositol 3-kinase (PI3K/Akt and extracellular signal-regulated kinase (ERK 1/2 signaling pathways. Inhibitors of PI3K/Akt abrogated ERK1/2 activation and its associated anoikis resistance in response to HGF, suggesting a signaling relay between these two pathways. Furthermore, we identified a central role of Ras as a mechanism of this cross talk. Interestingly, Ras did not lie upstream of PI3K/Akt, whereas PI3K/Akt signaling to ERK1/2 involved Ras. These findings shed new light on the apoptotic resistance mechanism of nonadherent ovarian cancer ascites cells and may have important clinical implications.

  18. The potential roles of hepatocyte growth factor (HGF-MET pathway inhibitors in cancer treatment

    Directory of Open Access Journals (Sweden)

    Parikh RA

    2014-06-01

    Full Text Available Rahul A Parikh,1 Peng Wang,2 Jan H Beumer,3 Edward Chu,1 Leonard J Appleman11Division of Hematology-Oncology, University of Pittsburgh School of Medicine, Cancer Therapeutics Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA; 2Division of Medical Oncology, University of Kentucky College of Medicine, Markey Cancer Center, Lexington, KY, USA; 3University of Pittsburgh School of Pharmacy, Cancer Therapeutics Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USAAbstract: MET is located on chromosome 7q31 and is a proto-oncogene that encodes for hepatocyte growth factor (HGF receptor, a member of the receptor tyrosine kinase (RTK family. HGF, also known as scatter factor (SF, is the only known ligand for MET. MET is a master regulator of cell growth and division (mitogenesis, mobility (motogenesis, and differentiation (morphogenesis; it plays an important role in normal development and tissue regeneration. The HGF-MET axis is frequently dysregulated in cancer by MET gene amplification, translocation, and mutation, or by MET or HGF protein overexpression. MET dysregulation is associated with an increased propensity for metastatic disease and poor overall prognosis across multiple tumor types. Targeting the dysregulated HGF-MET pathway is an area of active research; a number of monoclonal antibodies to HGF and MET, as well as small molecule inhibitors of MET, are under development. This review summarizes the key biological features of the HGF-MET axis, its dysregulation in cancer, and the therapeutic agents targeting the HGF-MET axis, which are in development.Keywords: MET inhibitor, HGF inhibitor, cancer

  19. Development of a Novel SPECT Tracer to Image c-Met Expression in Non-Small Cell Lung Cancer in a Human Tumor Xenograft.

    Science.gov (United States)

    Han, Zhaoguo; Xiao, Yadi; Wang, Kai; Yan, Ji; Xiao, Zunyu; Fang, Fang; Jin, Zhongnan; Liu, Yang; Sun, Xilin; Shen, Baozhong

    2018-05-18

    Rationale: Elevated expression of the c-Met receptor plays a crucial role in cancers. In non-small cell lung cancer (NSCLC), aberrant activation of c-Met signaling pathway contributes to tumorigenesis and cancer progression, and may mediate acquired resistance to epidermal growth factor receptor-targeted therapy. c-Met is therefore emerging as a promising therapeutic target for treating NSCLC, and the methods for noninvasive in vivo assessment of c-Met expression will improve NSCLC treatment and diagnosis. Methods: A new peptide-based (cMBP) radiotracer targeting c-Met, 99m Tc-hydrazine nicotinamide (HYNIC)-cMBP, was developed for single photon emission computed tomography (SPECT) imaging. Cell uptake assays were performed on two NSCLC cell lines with different c-Met expression: H1993 (high expression) and H1299 (no expression). In vivo tumor specificity was assessed by SPECT imaging in tumor-bearing mice at 0.5, 1, 2 and 4 h after injection of the probe. Blocking assays, biodistribution and autoradiography were also conducted to determine probe specificity. Results: 99m Tc-HYNIC-cMBP was prepared with high efficiency and showed higher uptake in H1993 cells than H1299 cells. Biodistribution and autoradiography also showed significantly higher accumulation of 99m Tc-HYNIC-cMBP in H1993 tumors than H1299 (H1993: 4.74±1.43 %ID/g and H1299: 1.00±0.37 %ID/g at 0.5h, pc-Met was demonstrated by competitive block with excess un-radiolabeled peptide. Conclusion: We developed a novel SPECT tracer, 99m Tc-HYNIC-cMBP, for c-Met-targeted imaging in NSCLC that specifically bound to c-Met with favorable pharmacokinetics in vitro and in vivo. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  20. Transcriptional activation of the Axl and PDGFR-α by c-Met through a ras- and Src-independent mechanism in human bladder cancer

    International Nuclear Information System (INIS)

    Yeh, Chen-Yun; Tseng, Vincent S; Lee, Yuan-Chii G; Shen, Cheng-Huang; Chow, Nan-Haw; Liu, Hsiao-Sheng; Shin, Shin-Mei; Yeh, Hsuan-Heng; Wu, Tsung-Jung; Shin, Jyh-Wei; Chang, Tsuey-Yu; Raghavaraju, Giri; Lee, Chung-Ta; Chiang, Jung-Hsien

    2011-01-01

    A cross-talk between different receptor tyrosine kinases (RTKs) plays an important role in the pathogenesis of human cancers. Both NIH-Met5 and T24-Met3 cell lines harboring an inducible human c-Met gene were established. C-Met-related RTKs were screened by RTK microarray analysis. The cross-talk of RTKs was demonstrated by Western blotting and confirmed by small interfering RNA (siRNA) silencing, followed by elucidation of the underlying mechanism. The impact of this cross-talk on biological function was demonstrated by Trans-well migration assay. Finally, the potential clinical importance was examined in a cohort of 65 cases of locally advanced and metastatic bladder cancer patients. A positive association of Axl or platelet-derived growth factor receptor-alpha (PDGFR-α) with c-Met expression was demonstrated at translational level, and confirmed by specific siRNA knock-down. The transactivation of c-Met on Axl or PDGFR-α in vitro was through a ras- and Src-independent activation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK/ERK) pathway. In human bladder cancer, co-expression of these RTKs was associated with poor patient survival (p < 0.05), and overexpression of c-Met/Axl/PDGFR-α or c-Met alone showed the most significant correlation with poor survival (p < 0.01). In addition to c-Met, the cross-talk with Axl and/or PDGFR-α also contributes to the progression of human bladder cancer. Evaluation of Axl and PDGFR-α expression status may identify a subset of c-Met-positive bladder cancer patients who may require co-targeting therapy

  1. Loss of c-Met signaling sensitizes hepatocytes to lipotoxicity and induces cholestatic liver damage by aggravating oxidative stress

    International Nuclear Information System (INIS)

    Gomez-Quiroz, Luis E.; Seo, Daekwan; Lee, Yun-Han; Kitade, Mitsuteru; Gaiser, Timo; Gillen, Matthew; Lee, Seung-Bum; Gutierrez-Ruiz, Ma Concepcion; Conner, Elizabeth A.; Factor, Valentina M; Thorgeirsson, Snorri S.; Marquardt, Jens U.

    2016-01-01

    Recent studies confirmed a critical importance of c-Met signaling for liver regeneration by modulating redox balance. Here we used liver-specific conditional knockout mice (MetKO) and a nutritional model of hepatic steatosis to address the role of c-Met in cholesterol-mediated liver toxicity. Liver injury was assessed by histopathology and plasma enzymes levels. Global transcriptomic changes were examined by gene expression microarray, and key molecules involved in liver damage and lipid homeostasis were evaluated by Western blotting. Loss of c-Met signaling amplified the extent of liver injury in MetKO mice fed with high-cholesterol diet for 30 days as evidenced by upregulation of liver enzymes and increased synthesis of total bile acids, aggravated inflammatory response and enhanced intrahepatic lipid deposition. Global transcriptomic changes confirmed the enrichment of networks involved in steatosis and cholestasis. In addition, signaling pathways related to glutathione and lipid metabolism, oxidative stress and mitochondria dysfunction were significantly affected by the loss of c-Met function. Mechanistically, exacerbation of oxidative stress in MetKO livers was corroborated by increased lipid and protein oxidation. Western blot analysis further revealed suppression of Erk, NF-kB and Nrf2 survival pathways and downstream target genes (e.g. cyclin D1, SOD1, gamma-GCS), as well as up-regulation of proapoptotic signaling (e.g. p53, caspase 3). Consistent with the observed steatotic and cholestatic phenotype, nuclear receptors RAR, RXR showed increased activation while expression levels of CAR, FXR and PPAR-alpha were decreased in MetKO. Collectively, our data provide evidence for the critical involvement of c-Met signaling in cholesterol and bile acids toxicity.

  2. Genetic Nrf2 Overactivation Inhibits the Deleterious Effects Induced by Hepatocyte-Specific c-met Deletion during the Progression of NASH

    Directory of Open Access Journals (Sweden)

    Pierluigi Ramadori

    2017-01-01

    Full Text Available We have recently shown that hepatocyte-specific c-met deficiency accelerates the progression of nonalcoholic steatohepatitis in experimental murine models resulting in augmented production of reactive oxygen species and accelerated development of fibrosis. The aim of this study focuses on the elucidation of the underlying cellular mechanisms driven by Nrf2 overactivation in hepatocytes lacking c-met receptor characterized by a severe unbalance between pro-oxidant and antioxidant functions. Control mice (c-metfx/fx, single c-met knockouts (c-metΔhepa, and double c-met/Keap1 knockouts (met/Keap1Δhepa were then fed a chow or a methionine-choline-deficient (MCD diet, respectively, for 4 weeks to reproduce the features of nonalcoholic steatohepatitis. Upon MCD feeding, met/Keap1Δhepa mice displayed increased liver mass albeit decreased triglyceride accumulation. The marked increase of oxidative stress observed in c-metΔhepa was restored in the double mutants as assessed by 4-HNE immunostaining and by the expression of genes responsible for the generation of free radicals. Moreover, double knockout mice presented a reduced amount of liver-infiltrating cells and the exacerbation of fibrosis progression observed in c-metΔhepa livers was significantly inhibited in met/Keap1Δhepa. Therefore, genetic activation of the antioxidant transcription factor Nrf2 improves liver damage and repair in hepatocyte-specific c-met-deficient mice mainly through restoring a balance in the cellular redox homeostasis.

  3. The Hepatocyte Growth Factor (HGF/Met Axis: A Neglected Target in the Treatment of Chronic Myeloproliferative Neoplasms?

    Directory of Open Access Journals (Sweden)

    Marjorie Boissinot

    2014-08-01

    Full Text Available Met is the receptor of hepatocyte growth factor (HGF, a cytoprotective cytokine. Disturbing the equilibrium between Met and its ligand may lead to inappropriate cell survival, accumulation of genetic abnormalities and eventually, malignancy. Abnormal activation of the HGF/Met axis is established in solid tumours and in chronic haematological malignancies, including myeloma, acute myeloid leukaemia, chronic myelogenous leukaemia (CML, and myeloproliferative neoplasms (MPNs. The molecular mechanisms potentially responsible for the abnormal activation of HGF/Met pathways are described and discussed. Importantly, inCML and in MPNs, the production of HGF is independent of Bcr-Abl and JAK2V617F, the main molecular markers of these diseases. In vitro studies showed that blocking HGF/Met function with neutralizing antibodies or Met inhibitors significantly impairs the growth of JAK2V617F-mutated cells. With personalised medicine and curative treatment in view, blocking activation of HGF/Met could be a useful addition in the treatment of CML and MPNs for those patients with high HGF/MET expression not controlled by current treatments (Bcr-Abl inhibitors in CML; phlebotomy, hydroxurea, JAK inhibitors in MPNs.

  4. Decreased Hepatocyte Growth Factor (HGF) and Gamma Aminobutyric Acid (GABA) in Individuals with Obsessive-Compulsive Disorder (OCD).

    Science.gov (United States)

    Russo, Anthony J; Pietsch, Stefanie C

    2013-01-01

    There is support for the role of gamma aminobutyric acid (GABA) in the etiology of mood disorders. Recent research has shown that hepatocyte growth factor (HGF) modulates GABAergic inhibition and seizure susceptibility. This study was designed to determine and correlate plasma levels of HGF and GABA as well as symptom severity in individuals with obsessive-compulsive disorder (OCD). Plasma from 15 individuals with OCD (9 males, 6 females;, mean age 38.7 years) and 17 neurotypical controls (10 males, 7 females; mean age 35.2 years) was assessed for HGF, GABA, urokinase plasminogen activator (uPA), and urokinase plasminogen activator receptor (uPAR) concentration using enzyme-linked immunosorbest assays ELISAs. Symptom severity was assessed in these OCD individuals and compared with HGF and GABA concentrations. In this preliminary study, individuals with OCD had significantly decreased HGF levels, decreased plasma levels of GABA and decreased uPA. We found that both uPA and uPAR levels correlate with HGF. Both low uPA and low uPAR levels correlate with high symptom severity in individuals with OCD. Low GABA levels in OCD individuals also correlate with high symptom severity. These results demonstrate a preliminary association between HGF, GABA, uPA levels, and OCD and suggest that plasma GABA and uPA levels are related to symptom severity in individuals with OCD.

  5. The Hepatocyte Growth Factor (HGF)/Met Axis: A Neglected Target in the Treatment of Chronic Myeloproliferative Neoplasms?

    Energy Technology Data Exchange (ETDEWEB)

    Boissinot, Marjorie [Translational Neuro-Oncology Group, Leeds Institute of Cancer and Pathology, University of Leeds, Level 5 Wellcome Trust Brenner Building, St James’s Hospital, Leeds LS9 7TF (United Kingdom); Vilaine, Mathias [Institute of Research on Cancer and Aging (IRCAN), CNRS-Inserm-UNS UMR 7284, U 1081, Centre A. Lacassagne, 33 Avenue Valombrose, Nice 06189 (France); Hermouet, Sylvie, E-mail: sylvie.hermouet@univ-nantes.fr [Centre Hospitalier Universitaire (CHU), Place Alexis Ricordeau, Nantes 44093 (France); Inserm UMR892, Centre de Recherche en Cancérologie Nantes-Angers, Institut de Recherche en Santé, Université de Nantes, 8 quai Moncousu, Nantes cedex 44007 (France)

    2014-08-12

    Met is the receptor of hepatocyte growth factor (HGF), a cytoprotective cytokine. Disturbing the equilibrium between Met and its ligand may lead to inappropriate cell survival, accumulation of genetic abnormalities and eventually, malignancy. Abnormal activation of the HGF/Met axis is established in solid tumours and in chronic haematological malignancies, including myeloma, acute myeloid leukaemia, chronic myelogenous leukaemia (CML), and myeloproliferative neoplasms (MPNs). The molecular mechanisms potentially responsible for the abnormal activation of HGF/Met pathways are described and discussed. Importantly, inCML and in MPNs, the production of HGF is independent of Bcr-Abl and JAK2V617F, the main molecular markers of these diseases. In vitro studies showed that blocking HGF/Met function with neutralizing antibodies or Met inhibitors significantly impairs the growth of JAK2V617F-mutated cells. With personalised medicine and curative treatment in view, blocking activation of HGF/Met could be a useful addition in the treatment of CML and MPNs for those patients with high HGF/MET expression not controlled by current treatments (Bcr-Abl inhibitors in CML; phlebotomy, hydroxurea, JAK inhibitors in MPNs)

  6. c-MET Overexpression in Colorectal Cancer: A Poor Prognostic Factor for Survival.

    Science.gov (United States)

    Lee, Su Jin; Lee, Jeeyun; Park, Se Hoon; Park, Joon Oh; Lim, Ho Yeong; Kang, Won Ki; Park, Young Suk; Kim, Seung Tae

    2018-03-02

    Increased mesenchymal-epithelial transition factor gene (c-MET) expression in several human malignancies is related to increased tumor progression and is a new potential drug target for several types of cancers. In the present study, we investigated the incidence of c-MET overexpression and its prognostic significance in patients with colorectal cancer (CRC). We retrospectively reviewed the data from 255 stage IV CRC patients who had results from a c-MET immunohistochemical test at Samsung Medical Center. We explored the relationships between c-MET overexpression and clinicopathological features and survival. Primary tumor sites were 67 right-sided colon, 98 left-sided colon, and 90 rectum. Forty-two patients (16.7%) had poorly differentiated or mucinous carcinoma. Among the 255 patients, 39 (15.3%) exhibited c-MET overexpression. There was no significant difference in the prevalence of c-MET overexpression according to primary site, histologic differentiation, molecular markers, or metastatic sites. In a comparison of the tumor response to first-line chemotherapy according to the level of c-MET expression, we found no significant difference in either partial response or disease control rate. In the survival analysis, patients with c-MET overexpression had significantly shorter overall survival (39 vs. 27 months; P = .018) and progression-free survival (PFS) during bevacizumab treatment (10 vs. 7 months; P = .024). c-MET overexpression, which was detected in 39 CRC patients (15.3%) irrespective of primary sites or molecular markers, indicated a poor survival prognosis and predicted shorter PFS during bevacizumab treatment in patients with CRC. Further studies are warranted to elucidate the value of c-MET-targeted therapy in CRC patients. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Design and synthesis of 3,3'-biscoumarin-based c-Met inhibitors.

    Science.gov (United States)

    Xu, Jimin; Ai, Jing; Liu, Sheng; Peng, Xia; Yu, Linqian; Geng, Meiyu; Nan, Fajun

    2014-06-14

    A library of biscoumarin-based c-Met inhibitors was synthesized, based on optimization of 3,3'-biscoumarin hit 3, which was identified as a non-ATP competitive inhibitor of c-Met from a diverse library of coumarin derivatives. Among these compounds, 38 and 40 not only showed potent enzyme activities with IC50 values of 107 nM and 30 nM, respectively, but also inhibited c-Met phosphorylation in BaF3/TPR-Met and EBC-1 cells.

  8. Transcriptional activation of the Axl and PDGFR-α by c-Met through a ras- and Src-independent mechanism in human bladder cancer

    Directory of Open Access Journals (Sweden)

    Tseng Vincent S

    2011-04-01

    Full Text Available Abstract Background A cross-talk between different receptor tyrosine kinases (RTKs plays an important role in the pathogenesis of human cancers. Methods Both NIH-Met5 and T24-Met3 cell lines harboring an inducible human c-Met gene were established. C-Met-related RTKs were screened by RTK microarray analysis. The cross-talk of RTKs was demonstrated by Western blotting and confirmed by small interfering RNA (siRNA silencing, followed by elucidation of the underlying mechanism. The impact of this cross-talk on biological function was demonstrated by Trans-well migration assay. Finally, the potential clinical importance was examined in a cohort of 65 cases of locally advanced and metastatic bladder cancer patients. Results A positive association of Axl or platelet-derived growth factor receptor-alpha (PDGFR-α with c-Met expression was demonstrated at translational level, and confirmed by specific siRNA knock-down. The transactivation of c-Met on Axl or PDGFR-α in vitro was through a ras- and Src-independent activation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK/ERK pathway. In human bladder cancer, co-expression of these RTKs was associated with poor patient survival (p p Conclusions In addition to c-Met, the cross-talk with Axl and/or PDGFR-α also contributes to the progression of human bladder cancer. Evaluation of Axl and PDGFR-α expression status may identify a subset of c-Met-positive bladder cancer patients who may require co-targeting therapy.

  9. Exogenous HGF Bypasses the Effects of ErbB Inhibition on Tumor Cell Viability in Medulloblastoma Cell Lines.

    Directory of Open Access Journals (Sweden)

    Walderik W Zomerman

    Full Text Available Recent clinical trials investigating receptor tyrosine kinase (RTK inhibitors showed a limited clinical response in medulloblastoma. The present study investigated the role of micro-environmental growth factors expressed in the brain, such as HGF and EGF, in relation to the effects of hepatocyte growth factor receptor (MET and epidermal growth factor receptor family (ErbB1-4 inhibition in medulloblastoma cell lines. Medulloblastoma cell lines were treated with tyrosine kinase inhibitors crizotinib or canertinib, targeting MET and ErbB1-4, respectively. Upon treatment, cells were stimulated with VEGF-A, PDGF-AB, HGF, FGF-2 or EGF. Subsequently, we measured cell viability and expression levels of growth factors and downstream signaling proteins. Addition of HGF or EGF phosphorylated MET or EGFR, respectively, and demonstrated phosphorylation of Akt and ERK1/2 as well as increased tumor cell viability. Crizotinib and canertinib both inhibited cell viability and phosphorylation of Akt and ERK1/2. Specifically targeting MET using shRNA's resulted in decreased cell viability. Interestingly, addition of HGF to canertinib significantly enhanced cell viability as well as phosphorylation of Akt and ERK1/2. The HGF-induced bypass of canertinib was reversed by addition of crizotinib. HGF protein was hardly released by medulloblastoma cells itself. Addition of canertinib did not affect RTK cell surface or growth factor expression levels. This manuscript points to the bypassing capacity of exogenous HGF in medulloblastoma cell lines. It might be of great interest to anticipate on these results in developing novel clinical trials with a combination of MET and EGFR inhibitors in medulloblastoma.

  10. 11C-MET PET/MRI for detection of recurrent glioma.

    Science.gov (United States)

    Deuschl, C; Kirchner, J; Poeppel, T D; Schaarschmidt, B; Kebir, S; El Hindy, N; Hense, J; Quick, H H; Glas, M; Herrmann, K; Umutlu, L; Moenninghoff, C; Radbruch, A; Forsting, M; Schlamann, M

    2018-04-01

    Radiological assessment of brain tumors is widely based on the Radiology Assessment of Neuro-Oncology (RANO) criteria that consider non-specific T1 and T2 weighted images. Limitation of the RANO criteria is that they do not include metabolic imaging techniques that have been reported to be helpful to differentiate treatment related changes from true tumor progression. In the current study, we assessed if the combined use of MRI and PET with hybrid 11 C-MET PET/MRI can improve diagnostic accuracy and diagnostic confidence of the readers to differentiate treatment related changes from true progression in recurrent glioma. Fifty consecutive patients with histopathologically proven glioma were prospectively enrolled for a hybrid 11 C-MET PET/MRI to differentiate recurrent glioma from treatment induced changes. Sole MRI data were analyzed based on RANO. Sole PET data and in a third evaluation hybrid 11 C-MET-PET/MRI data were assessed for metabolic respectively metabolic and morphologic glioma recurrence. Diagnostic performance and diagnostic confidence of the reader were calculated for the different modalities, and the McNemar test and Mann-Whitney U Test were applied for statistical analysis. Hybrid 11 C-MET PET/MRI was successfully performed in all 50 patients. Glioma recurrence was diagnosed in 35 of the 50 patients (70%). Sensitivity and specificity were calculated for MRI (86.11% and 71.43%), for 11 C-MET PET (96.77% and 73.68%), and for hybrid 11 C-MET-PET/MRI (97.14% and 93.33%). For diagnostic accuracy hybrid 11 C-MET-PET/MRI (96%) showed significantly higher values than MRI alone (82%), whereas no significant difference was found for 11C-MET PET (88%). Furthermore, by rating on a five-point Likert scale significantly higher scores were found for diagnostic confidence when comparing 11 C-MET PET/MRI (4.26 ± 0,777) to either PET alone (3.44 ± 0.705) or MRI alone (3.56 ± 0.733). This feasibility study showed that hybrid PET/MRI might strengthen

  11. {sup 11}C-MET PET/MRI for detection of recurrent glioma

    Energy Technology Data Exchange (ETDEWEB)

    Deuschl, C. [University Hospital Essen, Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); University of Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); Kirchner, J.; Schaarschmidt, B. [University Duesseldorf, Department of Diagnostic and Interventional Radiology, Medical Faculty, Duesseldorf (Germany); Poeppel, T.D.; Herrmann, K. [University Hospital Essen, Clinic for Nuclear Medicine, Essen (Germany); Kebir, S.; Glas, M. [University Hospital Essen, Division of Clinical Neurooncology, Department of Neurology, Essen (Germany); El Hindy, N. [University Hospital Essen, Department of Neurosurgery, Essen (Germany); Hense, J. [University Hospital Essen, Department of Medical Oncology, West German Cancer Center, Essen (Germany); Quick, H.H. [University of Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); University Hospital Essen, High Field and Hybrid MR Imaging, Essen (Germany); Umutlu, L.; Moenninghoff, C.; Radbruch, A.; Forsting, M. [University Hospital Essen, Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Schlamann, M. [University Hospital Essen, Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Cologne (Germany)

    2018-04-15

    Radiological assessment of brain tumors is widely based on the Radiology Assessment of Neuro-Oncology (RANO) criteria that consider non-specific T1 and T2 weighted images. Limitation of the RANO criteria is that they do not include metabolic imaging techniques that have been reported to be helpful to differentiate treatment related changes from true tumor progression. In the current study, we assessed if the combined use of MRI and PET with hybrid {sup 11}C-MET PET/MRI can improve diagnostic accuracy and diagnostic confidence of the readers to differentiate treatment related changes from true progression in recurrent glioma. Fifty consecutive patients with histopathologically proven glioma were prospectively enrolled for a hybrid {sup 11}C-MET PET/MRI to differentiate recurrent glioma from treatment induced changes. Sole MRI data were analyzed based on RANO. Sole PET data and in a third evaluation hybrid {sup 11}C-MET-PET/MRI data were assessed for metabolic respectively metabolic and morphologic glioma recurrence. Diagnostic performance and diagnostic confidence of the reader were calculated for the different modalities, and the McNemar test and Mann-Whitney U Test were applied for statistical analysis. Hybrid {sup 11}C-MET PET/MRI was successfully performed in all 50 patients. Glioma recurrence was diagnosed in 35 of the 50 patients (70%). Sensitivity and specificity were calculated for MRI (86.11% and 71.43%), for {sup 11}C-MET PET (96.77% and 73.68%), and for hybrid {sup 11}C-MET-PET/MRI (97.14% and 93.33%). For diagnostic accuracy hybrid {sup 11}C-MET-PET/MRI (96%) showed significantly higher values than MRI alone (82%), whereas no significant difference was found for 11C-MET PET (88%). Furthermore, by rating on a five-point Likert scale significantly higher scores were found for diagnostic confidence when comparing {sup 11}C-MET PET/MRI (4.26 ± 0,777) to either PET alone (3.44 ± 0.705) or MRI alone (3.56 ± 0.733). This feasibility study showed that hybrid

  12. UniProt search blastx result: AK288287 [KOME

    Lifescience Database Archive (English)

    Full Text Available C 2.7.10.1) (HGF receptor) (Scatter factor receptor) (SF receptor) (HGF/SF receptor) (Met proto-oncogene tyrosine kinase) (c-Met) - Neofelis nebulosa (Clouded leopard) 3.00E-18 ...

  13. UniProt search blastx result: AK289170 [KOME

    Lifescience Database Archive (English)

    Full Text Available C 2.7.10.1) (HGF receptor) (Scatter factor receptor) (SF receptor) (HGF/SF receptor) (Met proto-oncogene tyrosine kinase) (c-Met) - Neofelis nebulosa (Clouded leopard) 1.00E-18 ...

  14. UniProt search blastx result: AK287484 [KOME

    Lifescience Database Archive (English)

    Full Text Available C 2.7.10.1) (HGF receptor) (Scatter factor receptor) (SF receptor) (HGF/SF receptor) (Met proto-oncogene tyrosine kinase) (c-Met) - Neofelis nebulosa (Clouded leopard) 3.00E-16 ...

  15. UniProt search blastx result: AK288291 [KOME

    Lifescience Database Archive (English)

    Full Text Available C 2.7.10.1) (HGF receptor) (Scatter factor receptor) (SF receptor) (HGF/SF receptor) (Met proto-oncogene tyrosine kinase) (c-Met) - Neofelis nebulosa (Clouded leopard) 6.00E-14 ...

  16. UniProt search blastx result: AK288206 [KOME

    Lifescience Database Archive (English)

    Full Text Available C 2.7.10.1) (HGF receptor) (Scatter factor receptor) (SF receptor) (HGF/SF receptor) (Met proto-oncogene tyrosine kinase) (c-Met) - Neofelis nebulosa (Clouded leopard) 4.00E-21 ...

  17. UniProt search blastx result: AK287970 [KOME

    Lifescience Database Archive (English)

    Full Text Available C 2.7.10.1) (HGF receptor) (Scatter factor receptor) (SF receptor) (HGF/SF receptor) (Met proto-oncogene tyrosine kinase) (c-Met) - Neofelis nebulosa (Clouded leopard) 3.00E-20 ...

  18. Targeting c-Met in Cancer by MicroRNAs: Potential Therapeutic Applications in Hepatocellular Carcinoma.

    Science.gov (United States)

    Karagonlar, Zeynep F; Korhan, Peyda; Atabey, Neşe

    2015-11-01

    Preclinical Research Cancer is one of the world's deadliest diseases, with very low survival rates and increased occurrence in the future. Successfully developed target-based therapies have significantly changed cancer treatment. However, primary and/or acquired resistance in the tumor is a major challenge in current therapies and novel combinational therapies are required. RNA interference-mediated gene inactivation, alone or in combination with other current therapies, provides novel promising therapeutics that can improve cure rate and overcome resistance mechanisms to conventional therapeutics. Hepatocyte Growth Factor/c-Met signaling is one of the most frequently dysregulated pathways in human cancers and abnormal c-Met activation is correlated with poor clinical outcomes and drug resistance in hepatocellular carcinoma (HCC). In recent years, a growing number of studies have identified several inhibitors and microRNAs (miRNAs), specifically targeting c-Met in various cancers, including HCC. In this review, we discuss current knowledge regarding miRNAs, focusing on their involvement in cancer and their potential as research tools and therapeutics. Then, we focus on the potential use of c-Met targeting miRNAs for suppressing aberrant c-Met signaling in HCC treatment. © 2015 Wiley Periodicals, Inc.

  19. The applications of 11C-MET PET in brain tumor

    International Nuclear Information System (INIS)

    Hua Fengchun

    2002-01-01

    11 C-methionine (MET), an amino acid, is the most widely used radio pharmaceutics which can reflect transport metabolism of amino acid in vivo, and synthesis of protein in tumor. 11 C-MET PET can be used for evaluation of brain tumor: detection of tumor, differential diagnosis between recurrence and radiation necrosis and early evaluation of response to treatment. Especially, for the definition of tumor margin and detection of low-grade tumors, PET with 11 C-MET is better than PET with 18 F-FDG or other modalities such as CT and MRI

  20. De interactie van SiC met Fe, Ni en hun legeringen

    NARCIS (Netherlands)

    Schiepers, R.C.J.

    1991-01-01

    De interactie tussen SiC en metalen gebaseerd op Fe en Ni is bestudeerd in het temperatuurtraject 700-1035°C door middel van vaste-stof-diffusiekoppels. In de koppels van SiC met Fe, Ni en hun legeringen treden hevige reakties op, die de vorming van een goede verbinding verhinderen. Door het grate

  1. Exogenous HGF Bypasses the Effects of ErbB Inhibition on Tumor Cell Viability in Medulloblastoma Cell Lines

    NARCIS (Netherlands)

    Zomerman, Waldrik W; Plasschaert, Sabine L. A.; Diks, Sander H.; Lourens, Harm-Jan; Meeuwsen-de Boer, Tiny; Hoving, Eelco W.; den Dunnen, Wilfred F. A.; de Bont, Eveline S. J. M.

    2015-01-01

    Recent clinical trials investigating receptor tyrosine kinase (RTK) inhibitors showed a limited clinical response in medulloblastoma. The present study investigated the role of micro-environmental growth factors expressed in the brain, such as HGF and EGF, in relation to the effects of hepatocyte

  2. Expression of the c-Met oncogene by tumor cells predicts a favorable outcome in classical Hodgkin's lymphoma.

    Science.gov (United States)

    Xu, Chuanhui; Plattel, Wouter; van den Berg, Anke; Rüther, Nele; Huang, Xin; Wang, Miao; de Jong, Debora; Vos, Hans; van Imhoff, Gustaaf; Viardot, Andreas; Möller, Peter; Poppema, Sibrand; Diepstra, Arjan; Visser, Lydia

    2012-04-01

    The c-Met signaling pathway regulates a variety of biological processes, including proliferation, survival and migration. Deregulated c-Met activation has been implicated in the pathogenesis and prognosis of many human malignancies. We studied the function and prognostic significance of c-Met and hepatocyte growth factor protein expression in patients with classical Hodgkin's lymphoma. Expression of c-Met and its ligand, hepatocyte growth factor, were determined by immunohistochemistry. Prognostic values were defined in cohorts of German and Dutch patients with classical Hodgkin's lymphoma. Functional studies were performed on Hodgkin's lymphoma cell lines. Expression of c-Met was detected in the tumor cells of 52% (80/153) of the patients and expression of its ligand, hepatocyte growth factor, in 8% (10/121) of the patients. c-Met expression correlated with a 5-year freedom from tumor progression of 94%, whereas lack of expression correlated with a 5-year freedom from tumor progression of 73% (Pfreedom from tumor progression. In functional studies activation with hepatocyte growth factor did not affect cell growth, while the c-Met inhibitor SU11274 suppressed cell growth by inducing G2/M cell cycle arrest. Although functional studies showed an oncogenic role of the hepatocyte growth factor/c-Met signaling pathway in cell cycle progression, expression of c-Met in tumor cells from patients with classical Hodgkin's lymphoma strongly correlated with a favorable prognosis in two independent cohorts.

  3. Correlation among genetic variations of c-MET in Chinese patients with non-small cell lung cancer.

    Science.gov (United States)

    Duan, Jianchun; Yang, Xiaodan; Zhao, Jun; Zhuo, Minglei; Wang, Zhijie; An, Tongtong; Bai, Hua; Wang, Jie

    2018-01-05

    The purpose of our research was to determine the correlation of amplification, protein expression and somatic mutation of c-MET in IIIb-IV stage NSCLC (Non-small cell lung cancer). We also explored correlation of c-MET variation with clinical outcome. c-MET expression was observed in 28.6% (56/196) cases, and among those 13.8% (27/196) were shown to be FISH positive. Only 2.67% patients in this study carried the c-MET mutation. Cases with c-MET FISH positive were all IHC positive ,but in IHC positive cases, only half were FISH positive. Among patients with IHC 2+ staining, 35.5% was FISH positive, while cases with IHC 3+ staining,64% was FISH positive. Both protein expression and copy number of c-MET did not significantly correlate with clinical prognosis in these patients treated with EGFR-TKIs. IHC could be used as a preliminary screening method for c-MET copy number amplification and should be confirmed by FISH only in IHC positive case which facilitate selection of ALK or MET inhibitor therapy. c-MET gene copy number, protein expression and somatic mutation for exon 14 were detected by fluorescent- In-Situ -Hybridization (FISH), Immunohistochemistry (IHC), and Denaturing-High-Performance-Liquid-Chromatography (DHPLC), respectively, in 196 NSCLC patients. The relationship between c-MET abnormalities and clinical outcome of targeted therapy was analyzed by McNemar's test.

  4. Apigenin inhibits HGF-promoted invasive growth and metastasis involving blocking PI3K/Akt pathway and β4 integrin function in MDA-MB-231 breast cancer cells

    International Nuclear Information System (INIS)

    Lee, W.-J.; Chen, W.-K.; Wang, C.-J.; Lin, W.-L.; Tseng, T.-H.

    2008-01-01

    Hepatocyte growth factor (HGF) and its receptor, Met, known to control invasive growth program have recently been shown to play crucial roles in the survival of breast cancer patients. The diet-derived flavonoids have been reported to possess anti-invasion properties; however, knowledge on the pharmacological and molecular mechanisms in suppressing HGF/Met-mediated tumor invasion and metastasis is poorly understood. In our preliminary study, we use HGF as an invasive inducer to investigate the effect of flavonoids including apigenin, naringenin, genistein and kaempferol on HGF-dependent invasive growth of MDA-MB-231 human breast cancer cells. Results show that apigenin presents the most potent anti-migration and anti-invasion properties by Boyden chamber assay. Furthermore, apigenin represses the HGF-induced cell motility and scattering and inhibits the HGF-promoted cell migration and invasion in a dose-dependent manner. The effect of apigenin on HGF-induced signaling activation involving invasive growth was evaluated by immunoblotting analysis, it shows that apigenin blocks the HGF-induced Akt phosphorylation but not Met, ERK, and JNK phosphorylation. In addition to MDA-MB-231 cells, apigenin exhibits inhibitory effect on HGF-induced Akt phosphorylation in hepatoma SK-Hep1 cells and lung carcinoma A549 cells. By indirect immunofluorescence microscopy assay, apigenin inhibits the HGF-induced clustering of β4 integrin at actin-rich adhesive site and lamellipodia through PI3K-dependent manner. Treatment of apigenin inhibited HGF-stimulated integrin β4 function including cell-matrix adhesion and cell-endothelial cells adhesion in MDA-MB-231 cells. By Akt-siRNA transfection analysis, it confirmed that apigenin inhibited HGF-promoted invasive growth involving blocking PI3K/Akt pathway. Finally, we evaluated the effect of apigenin on HGF-promoted metastasis by lung colonization of tumor cells in nude mice and organ metastasis of tumor cells in chick embryo. By

  5. The value of gated myocardial perfusion imaging for the evaluation of early treatment effectiveness of ischemic heart disease using Ad-HGF myocardial injection

    International Nuclear Information System (INIS)

    Feng Jianlin; Cheng Xu; Li Jianhua; Xu Zhaoqiang; Li Dianfu; Yuan Biao; Zhang Yourong; Cao Kejiang; Huang Jun

    2008-01-01

    Objective: Hepatocyte growth factor (HGF) has multipotent actions mediated by c- Mesenchymal epithelial transition factor (Met) receptor. Preclinical studies in animal models of myocardial ischemia demonstrated that treatment with HGF could benefit myocardial perfusion, cardiac remodeling, angiogenesis and myocardial function. This study used gated 99 Tc m -methoxyisobutylisonitrile (MIBI) myocardial perfusion imaging (G-MPI) to assess the early treatment effectiveness of adenovirus HGF (Ad-HGF) directly administered in ischemic heart disease (IHD) patients. Methods: Eighteen patients with IHD were divided into 3 groups receiving low dose [5 x 10 8 plaque forming unit (PFU)/site], medium (1.5 x 10 9 PFU/site) and high dose (5 x l0 9 PFU/site) of Ad-HGF. And the Ad-HGF was injected at 10 sites in each patient. Rest G-MPI was performed before and after treatment for myocardial perfusion and left ventricular function measurement. Stata 7.0 was used to analyse the data. Results: (1) After Ad-HGF, myocardial perfusion was improved in 3/6, 5/6 and 6/6 patients in low, medium and high dosage groups. The dosage of AD-HGF was closely correlated with the improvement of myocardial perfusion (χ 2 =4.34, P<0.05). (2) Left ventricular ejection fraction (LVEF) was significantly increased [(50.1 ± 6.4)% vs (58.7 ± 5.6)%, t=6.1, P<0.01], end-diastolic volume [EDV, (137.7 ± 33.2) ml vs (123.7 ± 32.7) ml] and end-systolic volume [ESV, (70.2 ± 22.4) ml vs (51.9 ± 14.9) ml] were significantly reduced. (3) The LVEFs were increased in all groups, and the LVEF improvement in the high dosage group [(8.6 ± 5.9)%] was significantly greater than the other two groups [(4.3 ± l.2)%, (6.8 ± 5.7)%]. The difference of post-treatment improvement on LVEF between the low and medium dosage groups was not significant. The dosage of Ad-HGF was closely correlated with the improvement of LVEF (r=0.67, P< 0.01). Conclusion: G-MPI is a reliable method for evaluating the early effectiveness of

  6. The clinicopathologic association of c-MET overexpression in Iranian gastric carcinomas; an immunohistochemical study of tissue microarrays.

    Science.gov (United States)

    Sotoudeh, Kambiz; Hashemi, Forough; Madjd, Zahra; Sadeghipour, Alireza; Molanaei, Saadat; Kalantary, Elham

    2012-05-28

    c-MET is an oncogene protein that plays important role in gastric carcinogenesis and has been introduced as a prognostic marker and potential therapeutic target. The aim of this study was to evaluate the frequency of c-MET overexpression and its relationship with clinicopathological variables in gastric cancer of Iranian population using tissue microarray. In a cross sectional study, representative paraffin blocks of 130 patients with gastric carcinoma treated by curative gastrectomy during a 2 years period of 2008-2009 in two university hospitals in Tehran-Iran were collected in tissue microarray and c-MET expression was studied by immunohistochemical staining. Finally 124 cases were evaluated, constituted of 99 male and 25 female with the average age of 61.5 years. In 71% (88/124) of tumors, c-MET high expression was found. c-MET high expression was more associated with intestinal than diffuse tumor type (P = 0.04), deeper tumor invasion, pT3 and pT4 versus pT1 and pT2 (P = 0.014), neural invasion (P = 0.002) and advanced TNM staging, stage 3 and 4 versus stage 1 and2 (P = 0.044). The c-MET high expression was not associated with age, sex, tumor location, differentiation grade and distant metastasis, but relative associations with lymph node metastasis (P = 0.065) and vascular invasion (P = 0.078) were observed. c-MET oncogene protein was frequently overexpressed in Iranian gastric carcinomas and it was related to clinicopathological characteristics such as tumor type, depth of invasion, neural invasion and TNM staging. It can also support the idea that c-MET is a potential marker for target therapy in Iranian gastric cancer. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/9744598757151429.

  7. HGF is released from buccal fibroblasts after smokeless tobacco stimulation

    DEFF Research Database (Denmark)

    Dabelsteen, S; Christensen, S; Gron, B

    2005-01-01

    on exposure time and on concentration of the tobacco extract. High concentration increased production of HGF 4-fold. KGF production was doubled when high concentration of tobacco was used, low concentration did not stimulate cells. GM-CSF production was low in both stimulated and non-stimulated cells......To investigate the effect of smokeless tobacco (ST) on (1) HGF, KGF and GM-CSF expression by buccal fibroblasts and (2) on keratinocyte and fibroblast proliferation. Buccal fibroblasts were stimulated with different concentrations of ST extracts in a double dilution from 0.50% w/v to 0.03% w....... Keratinocytes and fibroblasts showed no increase in proliferation after stimulation with increased concentrations of ST. The results suggest that HGF and KGF may play an important role as a paracrine growth factor in epithelial hyperplasia in ST lesions....

  8. Convergent RANK- and c-Met-mediated signaling components predict survival of patients with prostate cancer: an interracial comparative study.

    Science.gov (United States)

    Hu, Peizhen; Chung, Leland W K; Berel, Dror; Frierson, Henry F; Yang, Hua; Liu, Chunyan; Wang, Ruoxiang; Li, Qinlong; Rogatko, Andre; Zhau, Haiyen E

    2013-01-01

    We reported (PLoS One 6 (12):e28670, 2011) that the activation of c-Met signaling in RANKL-overexpressing bone metastatic LNCaP cell and xenograft models increased expression of RANK, RANKL, c-Met, and phosphorylated c-Met, and mediated downstream signaling. We confirmed the significance of the RANK-mediated signaling network in castration resistant clinical human prostate cancer (PC) tissues. In this report, we used a multispectral quantum dot labeling technique to label six RANK and c-Met convergent signaling pathway mediators simultaneously in formalin fixed paraffin embedded (FFPE) tissue specimens, quantify the intensity of each expression at the sub-cellular level, and investigated their potential utility as predictors of patient survival in Caucasian-American, African-American and Chinese men. We found that RANKL and neuropilin-1 (NRP-1) expression predicts survival of Caucasian-Americans with PC. A Gleason score ≥ 8 combined with nuclear p-c-Met expression predicts survival in African-American PC patients. Neuropilin-1, p-NF-κB p65 and VEGF are predictors for the overall survival of Chinese men with PC. These results collectively support interracial differences in cell signaling networks that can predict the survival of PC patients.

  9. Convergent RANK- and c-Met-mediated signaling components predict survival of patients with prostate cancer: an interracial comparative study.

    Directory of Open Access Journals (Sweden)

    Peizhen Hu

    Full Text Available We reported (PLoS One 6 (12:e28670, 2011 that the activation of c-Met signaling in RANKL-overexpressing bone metastatic LNCaP cell and xenograft models increased expression of RANK, RANKL, c-Met, and phosphorylated c-Met, and mediated downstream signaling. We confirmed the significance of the RANK-mediated signaling network in castration resistant clinical human prostate cancer (PC tissues. In this report, we used a multispectral quantum dot labeling technique to label six RANK and c-Met convergent signaling pathway mediators simultaneously in formalin fixed paraffin embedded (FFPE tissue specimens, quantify the intensity of each expression at the sub-cellular level, and investigated their potential utility as predictors of patient survival in Caucasian-American, African-American and Chinese men. We found that RANKL and neuropilin-1 (NRP-1 expression predicts survival of Caucasian-Americans with PC. A Gleason score ≥ 8 combined with nuclear p-c-Met expression predicts survival in African-American PC patients. Neuropilin-1, p-NF-κB p65 and VEGF are predictors for the overall survival of Chinese men with PC. These results collectively support interracial differences in cell signaling networks that can predict the survival of PC patients.

  10. Expression and migratory analysis of 5 human uveal melanoma cell lines for CXCL12, CXCL8, CXCL1, and HGF

    Directory of Open Access Journals (Sweden)

    Di Cesare Sebastian

    2007-01-01

    Full Text Available Abstract Background The aim of this study was to characterize the presence and roles of CXCL12, CXCL8, CXCL1, and HGF in five human uveal melanoma cell lines, using different methods, in order to ascertain their significance in this disease. Methods Five human uveal melanoma cell lines (92.1, SP6.5, MKT-BR, OCM-1, and UW-1 of known proliferative, invasive, and metastatic potential were used in this experiment. A migration assay was used in order to assess the responsiveness of each cell line towards the four chosen chemotactic factors. Immunohistochemistry was then performed for all five cell lines (cytospins using antibodies directed toward CXCL1, CXCL8 and their receptors CXCR2 and CXCR1 respectively. Quantitative real-time PCR was then performed on all five cell lines in order to establish the presence of these four chemotactic factors. Results All five human uveal melanoma cell lines migrated towards the four chosen chemotactic factors at a level greater than that of the negative control. Chemokines CXCL1 and CXCL8 resulted in the greatest number of migrating cells in all five of our cell lines. Immunohistochemistry confirmed the expression of CXCL1, CXCL8, and their receptors CXCR2 and CXCR1 in all five of the cell lines. Quantitative real-time PCR results established expression of CXCL8, CXCL1, and HGF in all 5 cell lines tested. CXCL1 and CXCL8 are highly expressed in SP6.5 and UW-1. None of the five cell lines expressed any detectable levels of CXCL12. Conclusion The migratory ability of the 5 human uveal melanoma cell lines was positively influenced by the four chemotactic factors tested, namely CXCL12, CXCL8, CXCL1, and HGF. Self-expression of chemotactic factors CXCL8, CXCL1, and HGF may indicate an autocrine system, which perhaps contributes to the cells' metastatic ability in vivo.

  11. Synergistic role of Sprouty2 inactivation and c-Met up-regulation in mouse and human hepatocarcinogenesis.

    Science.gov (United States)

    Lee, Susie A; Ladu, Sara; Evert, Matthias; Dombrowski, Frank; De Murtas, Valentina; Chen, Xin; Calvisi, Diego F

    2010-08-01

    Sprouty2 (Spry2), a negative feedback regulator of the Ras/mitogen-activated protein kinase (MAPK) pathway, is frequently down-regulated in human hepatocellular carcinoma (HCC). We tested the hypothesis that loss of Spry2 cooperates with unconstrained activation of the c-Met protooncogene to induce hepatocarcinogenesis via in vitro and in vivo approaches. We found coordinated down-regulation of Spry2 protein expression and activation of c-Met as well as its downstream effectors extracellular signal-regulated kinase (ERK) and v-akt murine thymoma viral oncogene homolog (AKT) in a subset of human HCC samples with poor outcome. Mechanistic studies revealed that Spry2 function is disrupted in human HCC via multiple mechanisms at both transcriptional and post-transcriptional level, including promoter hypermethylation, loss of heterozygosity, and proteosomal degradation by neural precursor cell expressed, developmentally down-regulated 4 (NEDD4). In HCC cell lines, Spry2 overexpression inhibits c-Met-induced cell proliferation as well as ERK and AKT activation, whereas loss of Spry2 potentiates c-Met signaling. Most importantly, we show that blocking Spry2 activity via a dominant negative form of Spry2 cooperates with c-Met to promote hepatocarcinogenesis in the mouse liver by sustaining proliferation and angiogenesis. The tumors exhibited high levels of activated ERK and AKT, recapitulating the subgroup of human HCC with a clinically aggressive phenotype. The occurrence of frequent genetic, epigenetic, and biochemical events leading to Spry2 inactivation provides solid evidence that Spry2 functions as a tumor suppressor gene in liver cancer. Coordinated deregulation of Spry2 and c-Met signaling may be a pivotal oncogenic mechanism responsible for unrestrained activation of ERK and AKT pathways in human hepatocarcinogenesis.

  12. The clinicopathologic association of c-MET overexpression in Iranian gastric carcinomas; an immunohistochemical study of tissue microarrays

    Directory of Open Access Journals (Sweden)

    Sotoudeh Kambiz

    2012-05-01

    Full Text Available Abstract Background c-MET is an oncogene protein that plays important role in gastric carcinogenesis and has been introduced as a prognostic marker and potential therapeutic target. The aim of this study was to evaluate the frequency of c-MET overexpression and its relationship with clinicopathological variables in gastric cancer of Iranian population using tissue microarray. Methods In a cross sectional study, representative paraffin blocks of 130 patients with gastric carcinoma treated by curative gastrectomy during a 2 years period of 2008–2009 in two university hospitals in Tehran-Iran were collected in tissue microarray and c-MET expression was studied by immunohistochemical staining. Results Finally 124 cases were evaluated, constituted of 99 male and 25 female with the average age of 61.5 years. In 71% (88/124 of tumors, c-MET high expression was found. c-MET high expression was more associated with intestinal than diffuse tumor type (P = 0.04, deeper tumor invasion, pT3 and pT4 versus pT1 and pT2 (P = 0.014, neural invasion (P = 0.002 and advanced TNM staging, stage 3 and 4 versus stage 1 and2 (P = 0.044. The c-MET high expression was not associated with age, sex, tumor location, differentiation grade and distant metastasis, but relative associations with lymph node metastasis (P = 0.065 and vascular invasion (P = 0.078 were observed. Conclusions c-MET oncogene protein was frequently overexpressed in Iranian gastric carcinomas and it was related to clinicopathological characteristics such as tumor type, depth of invasion, neural invasion and TNM staging. It can also support the idea that c-MET is a potential marker for target therapy in Iranian gastric cancer. Virtual slides The virtual slide(s for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/9744598757151429

  13. Comparative evaluation of 11C-MET PET-CT and MRI for GTV delineation in precision radiotherapy for gliomas

    International Nuclear Information System (INIS)

    Wang Ru; Qian Liting; Wang Shicun; Liu Wei; Luo Wenguang; Zhang Hongbo; Li Guanghu; Hu Zhigang; Liu Lei

    2014-01-01

    Objective: To evaluate the difference between MRI and 11 C-MET PET-CT for gross tumor volume (GTV) delineation in the precision radiotherapy for gliomas. Methods: Six patients with a pathologically confirmed diagnosis of gliomas were selected for target delineation. Five physicians in our department were called to delineate the GTV based on the preoperative MRI and 11 C-MET PET-CT images of these patients. The GTVs based on the two methods were compared. Results: There was no significant difference between the GTVs based on MRI and 11 C-MET PET-CT (P=0.917), and their coefficients of variation were also similar (P=0.600). The coincidences of GTVs were different among the patients, with a maximum value of 73.0% and a minimum value of 51.8%. GTV showed no significant difference when defined by different physicians on MRI and PET-CT (P=0.709); the biggest difference was 27.66 cm 3 on PET-CT and 40.37 cm 3 on MRI. Conclusions: The boundaries of gliomas defined on MRI and PET-CT are different. The GTVs delineated by different physicians on MRI and PET-CT are similar, and the biggest difference on PET-CT is smaller than that on MRI, which suggests that 11 C-MET PET-CT is a more direct way for displaying GTV. (authors)

  14. Mechanism of c-Met and EGFR tyrosine kinase inhibitor resistance through epithelial mesenchymal transition in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, Ichwaku; Rajanna, Supriya; Webb, Andrew; Chhabra, Gagan; Foster, Brad [Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Illinois (United States); Webb, Brian [Thermo Fisher Scientific, Rockford, Illinois (United States); Puri, Neelu, E-mail: neelupur@uic.edu [Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Illinois (United States)

    2016-09-02

    According to currently available estimates from Cancer Research UK, 14.1 million new lung cancer cases were diagnosed and a staggering 8.2 million people worldwide died from lung cancer in 2012. EGFR and c-Met are two tyrosine kinase receptors most commonly overexpressed or mutated in Non-small Cell Lung Cancer (NSCLC) resulting in increased proliferation and survival of lung cancer cells. Tyrosine kinase inhibitors (TKIs), such as erlotinib, approved by the FDA as first/second line therapy for NSCLC patients have limited clinical efficacy due to acquired resistance. In this manuscript, we investigate and discuss the role of epithelial mesenchymal transition (EMT) in the development of resistance against EGFR and c-Met TKIs in NSCLC. Our findings show that Zeb-1, a transcriptional repressor of E-Cadherin, is upregulated in TKI-resistant cells causing EMT. We observed that TKI-resistant cells have increased gene and protein expression of EMT related proteins such as Vimentin, N-Cadherin, β-Catenin and Zeb-1, while expression of E-Cadherin, an important cell adhesion molecule, was suppressed. We also confirmed that TKI-resistant cells display mesenchymal cell type morphology, and have upregulation of β-Catenin which may regulate expression of Zeb-1, a transcriptional repressor of E-Cadherin in TKI-resistant NSCLC cells. Finally, we show that down-regulating Zeb-1 by inducing miR-200a or β-Catenin siRNA can increase drug sensitivity of TKI-resistant cells. - Highlights: • Resistance to TKIs in NSCLC cells is mediated via modulation in EMT related proteins. • EMT may induce c-Met mediated TKI resistance, similar to EGFR TKI resistance. • Role of β-catenin and cadherins in TKI resistance was validated by FACS and qPCR. • Knockdown of β-catenin or Zeb-1 can increase TKI sensitivity in TKI-resistant cells. • Targeting key EMT related proteins may overcome TKI resistance in NSCLC.

  15. Differential expression of c-Met between primary and metastatic sites in clear-cell renal cell carcinoma and its association with PD-L1 expression.

    Science.gov (United States)

    Lalani, Aly-Khan A; Gray, Kathryn P; Albiges, Laurence; Callea, Marcella; Pignon, Jean-Christophe; Pal, Soumitro; Gupta, Mamta; Bhatt, Rupal S; McDermott, David F; Atkins, Michael B; Woude, G F Vande; Harshman, Lauren C; Choueiri, Toni K; Signoretti, Sabina

    2017-11-28

    In preclinical models, c-Met promotes survival of renal cancer cells through the regulation of programmed death-ligand 1 (PD-L1). However, this relationship in human clear cell renal cell carcinoma (ccRCC) is not well characterized. We evaluated c-Met expression in ccRCC patients using paired primary and metastatic samples and assessed the association with PD-L1 expression and other clinical features. Areas with predominant and highest Fuhrman nuclear grade (FNG) were selected. c-Met expression was evaluated by IHC using an anti-Met monoclonal antibody (MET4 Ab) and calculated by a combined score (CS, 0-300): intensity of c-Met staining (0-3) x % of positive cells (0-100). PD-L1 expression in tumor cells was previously assessed by IHC and PD-L1+ was defined as PD-L1 > 0% positive cells. Our cohort consisted of 45 pairs of primary and metastatic ccRCC samples. Overall, c-Met expression was higher in metastatic sites compared to primary sites (average c-Met CS: 55 vs. 28, p = 0.0003). Higher c-Met expression was associated with higher FNG (4 vs. 3) in primary tumors (average c-Met CS: 52 vs. 20, p = 0.04). c-Met expression was numerically greater in PD-L1+ vs. PD-L1- tumors. Higher c-Met expression in metastatic sites compared to primary tumors suggests that testing for biomarkers of response to c-Met inhibitors should be conducted in metastases. While higher c-Met expression in PD-L1+ tumors requires further investigation, it supports exploring these targets in combination clinical trials.

  16. Increased NQO1 but Not c-MET and Survivin Expression in Non-Small Cell Lung Carcinoma with KRAS Mutations

    Directory of Open Access Journals (Sweden)

    Ahmet Yilmaz

    2014-09-01

    Full Text Available Cigarette smoking is one of the most significant public health issues and the most common environmental cause of preventable cancer deaths worldwide. EGFR (Epidermal Growth Factor Receptor-targeted therapy has been used in the treatment of LC (lung cancer, mainly caused by the carcinogens in cigarette smoke, with variable success. Presence of mutations in the KRAS (Kirsten rat sarcoma viral oncogene homolog driver oncogene may confer worse prognosis and resistance to treatment for reasons not fully understood. NQO1 (NAD(PH:quinone oxidoreductase, also known as DT-diaphorase, is a major regulator of oxidative stress and activator of mitomycins, compounds that have been targeted in over 600 pre-clinical trials for treatment of LC. We sequenced KRAS and investigated expression of NQO1 and five clinically relevant proteins (DNMT1, DNMT3a, ERK1/2, c-MET, and survivin in 108 patients with non-small cell lung carcinoma (NSCLC. NQO1, ERK1/2, DNMT1, and DNMT3a but not c-MET and survivin expression was significantly more frequent in patients with KRAS mutations than those without, suggesting the following: (1 oxidative stress may play an important role in the pathogenesis, worse prognosis, and resistance to treatment reported in NSCLC patients with KRAS mutations, (2 selecting patients based on their KRAS mutational status for future clinical trials may increase success rate, and (3 since oxidation of nucleotides also specifically induces transversion mutations, the high rate of KRAS transversions in lung cancer patients may partly be due to the increased oxidative stress in addition to the known carcinogens in cigarette smoke.

  17. Response assessment of bevacizumab therapy in GBM with integrated 11C-MET-PET/MRI: a feasibility study.

    Science.gov (United States)

    Deuschl, Cornelius; Moenninghoff, Christoph; Goericke, Sophia; Kirchner, Julian; Köppen, Susanne; Binse, Ina; Poeppel, Thorsten D; Quick, Harald H; Forsting, Michael; Umutlu, Lale; Herrmann, Ken; Hense, Joerg; Schlamann, Marc

    2017-08-01

    The objective of this study was to evaluate the potential of integrated 11C-MET PET/MR for response assessment of relapsed glioblastoma (GBM) receiving bevacizumab treatment. Eleven consecutive patients with relapsed GBM were enrolled for an integrated 11C-MET PET/MRI at baseline and at follow-up. Treatment response for MRI was evaluated according to Response Assessment in Neuro-oncology (RANO) criteria and integrated 11C-MET PET was assessed by the T/N ratio. MRI showed no patient with complete response (CR), six of 11 patients with PR, four of 11 patients with SD, and one of 11 patients with progressive disease (PD). PET revealed metabolic response in five of the six patients with partial response (PR) and in two of the four patients with stable disease (SD), whereas metabolic non-response was detected in one of the six patients with PR, in two of the four patients with SD, and in the one patient with PD. Morphological imaging was predictive for PFS and OS when response was defined as CR, PR, SD, and non-response as PD. Metabolic imaging was predictive when using T/N ratio reduction of >25 as discriminator. Based on the morphologic and metabolic findings of this study a proposal for applying integrated PET/MRI for treatment response in relapsed GBM was developed, which was significantly predictive for PFS and OS (P = 0.010 respectively 0,029, log). This study demonstrates the potential of integrated 11C-MET-PET/MRI for response assessment of GBM and the utility of combined assessment of morphologic and metabolic information with the proposal for assessing relapsed GBM.

  18. Response assessment of bevacizumab therapy in GBM with integrated 11C-MET-PET/MRI: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Deuschl, Cornelius [University Hospital Essen, Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); University of Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Duisburg (Germany); Moenninghoff, Christoph; Goericke, Sophia; Forsting, Michael; Umutlu, Lale [University Hospital Essen, Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Kirchner, Julian [University Hospital Duesseldorf, Institute of Diagnostic and Interventional Radiology, Duesseldorf (Germany); Koeppen, Susanne [University Hospital Essen, Department of Neurology, Essen (Germany); Binse, Ina; Poeppel, Thorsten D.; Herrmann, Ken [University Hospital Essen, Department of Nuclear Medicine, Essen (Germany); Quick, Harald H. [University of Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Duisburg (Germany); University Hospital Essen, High Field and Hybrid MR Imaging, Essen (Germany); Hense, Joerg [University Hospital Essen, Department of Medical Oncology, West German Cancer Center, Essen (Germany); Schlamann, Marc [University Hospital Essen, Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); University Hospital Giessen, Department of Neuroradiology, Essen (Germany)

    2017-08-15

    The objective of this study was to evaluate the potential of integrated 11C-MET PET/MR for response assessment of relapsed glioblastoma (GBM) receiving bevacizumab treatment. Eleven consecutive patients with relapsed GBM were enrolled for an integrated 11C-MET PET/MRI at baseline and at follow-up. Treatment response for MRI was evaluated according to Response Assessment in Neuro-oncology (RANO) criteria and integrated 11C-MET PET was assessed by the T/N ratio. MRI showed no patient with complete response (CR), six of 11 patients with PR, four of 11 patients with SD, and one of 11 patients with progressive disease (PD). PET revealed metabolic response in five of the six patients with partial response (PR) and in two of the four patients with stable disease (SD), whereas metabolic non-response was detected in one of the six patients with PR, in two of the four patients with SD, and in the one patient with PD. Morphological imaging was predictive for PFS and OS when response was defined as CR, PR, SD, and non-response as PD. Metabolic imaging was predictive when using T/N ratio reduction of >25 as discriminator. Based on the morphologic and metabolic findings of this study a proposal for applying integrated PET/MRI for treatment response in relapsed GBM was developed, which was significantly predictive for PFS and OS (P = 0.010 respectively 0,029, log). This study demonstrates the potential of integrated 11C-MET-PET/MRI for response assessment of GBM and the utility of combined assessment of morphologic and metabolic information with the proposal for assessing relapsed GBM. (orig.)

  19. Synthesis and biological evaluation of 4-(2-fluorophenoxy)-3,3'-bipyridine derivatives as potential c-met inhibitors.

    Science.gov (United States)

    Zhao, Sijia; Zhang, Yu; Zhou, Hongyang; Xi, Shuancheng; Zou, Bin; Bao, Guanglong; Wang, Limei; Wang, Jiao; Zeng, Tianfang; Gong, Ping; Zhai, Xin

    2016-09-14

    Six series of novel 4-(2-fluorophenoxy)-3,3'-bipyridine derivatives conjugated with aza-aryl formamide/amine scaffords were designed and synthesized through a structure-based molecular hybridization approach. The target compounds were evaluated for c-Met kinase inhibitory activities and cytotoxicity against four cancer cell lines (HT-29, A549, MKN-45 and MDA-MB-231) in vitro. Most compounds exhibited moderate to excellent potency, and the most promising candidate 26c (c-Met kinase IC50 = 8.2 nM) showed a 4.7-fold increase in cytotoxicity against c-Met-addicted MKN-45 cell line in vitro (IC50 = 3 nM), superior to that of Foretinib (IC50 = 23 nM). The preliminary structure-activity relationship indicated that a 1H-benzo [e] [1,3,4]thiadiazine-3-carboxamide-4,4-dioxide moiety as linker contributed to the antitumor potency. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. HGF Mediates the Anti-inflammatory Effects of PRP on Injured Tendons

    Science.gov (United States)

    Zhang, Jianying; Middleton, Kellie K.; Fu, Freddie H.; Im, Hee-Jeong; Wang, James H-C.

    2013-01-01

    Platelet-rich plasma (PRP) containing hepatocyte growth factor (HGF) and other growth factors are widely used in orthopaedic/sports medicine to repair injured tendons. While PRP treatment is reported to decrease pain in patients with tendon injury, the mechanism of this effect is not clear. Tendon pain is often associated with tendon inflammation, and HGF is known to protect tissues from inflammatory damages. Therefore, we hypothesized that HGF in PRP causes the anti-inflammatory effects. To test this hypothesis, we performed in vitro experiments on rabbit tendon cells and in vivo experiments on a mouse Achilles tendon injury model. We found that addition of PRP or HGF decreased gene expression of COX-1, COX-2, and mPGES-1, induced by the treatment of tendon cells in vitro with IL-1β. Further, the treatment of tendon cell cultures with HGF antibodies reduced the suppressive effects of PRP or HGF on IL-1β-induced COX-1, COX-2, and mPGES-1 gene expressions. Treatment with PRP or HGF almost completely blocked the cellular production of PGE2 and the expression of COX proteins. Finally, injection of PRP or HGF into wounded mouse Achilles tendons in vivo decreased PGE2 production in the tendinous tissues. Injection of platelet-poor plasma (PPP) however, did not reduce PGE2 levels in the wounded tendons, but the injection of HGF antibody inhibited the effects of PRP and HGF. Further, injection of PRP or HGF also decreased COX-1 and COX-2 proteins. These results indicate that PRP exerts anti-inflammatory effects on injured tendons through HGF. This study provides basic scientific evidence to support the use of PRP to treat injured tendons because PRP can reduce inflammation and thereby reduce the associated pain caused by high levels of PGE2. PMID:23840657

  1. HGF mediates the anti-inflammatory effects of PRP on injured tendons.

    Directory of Open Access Journals (Sweden)

    Jianying Zhang

    Full Text Available Platelet-rich plasma (PRP containing hepatocyte growth factor (HGF and other growth factors are widely used in orthopaedic/sports medicine to repair injured tendons. While PRP treatment is reported to decrease pain in patients with tendon injury, the mechanism of this effect is not clear. Tendon pain is often associated with tendon inflammation, and HGF is known to protect tissues from inflammatory damages. Therefore, we hypothesized that HGF in PRP causes the anti-inflammatory effects. To test this hypothesis, we performed in vitro experiments on rabbit tendon cells and in vivo experiments on a mouse Achilles tendon injury model. We found that addition of PRP or HGF decreased gene expression of COX-1, COX-2, and mPGES-1, induced by the treatment of tendon cells in vitro with IL-1β. Further, the treatment of tendon cell cultures with HGF antibodies reduced the suppressive effects of PRP or HGF on IL-1β-induced COX-1, COX-2, and mPGES-1 gene expressions. Treatment with PRP or HGF almost completely blocked the cellular production of PGE2 and the expression of COX proteins. Finally, injection of PRP or HGF into wounded mouse Achilles tendons in vivo decreased PGE2 production in the tendinous tissues. Injection of platelet-poor plasma (PPP however, did not reduce PGE2 levels in the wounded tendons, but the injection of HGF antibody inhibited the effects of PRP and HGF. Further, injection of PRP or HGF also decreased COX-1 and COX-2 proteins. These results indicate that PRP exerts anti-inflammatory effects on injured tendons through HGF. This study provides basic scientific evidence to support the use of PRP to treat injured tendons because PRP can reduce inflammation and thereby reduce the associated pain caused by high levels of PGE2.

  2. Characterization of HGF/Met Signaling in Cell Lines Derived From Urothelial Carcinoma of the Bladder

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young H. [Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Apolo, Andrea B. [Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Agarwal, Piyush K.; Bottaro, Donald P., E-mail: dbottaro@helix.nih.gov [Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)

    2014-11-25

    There is mounting evidence of oncogenic hepatocyte growth factor (HGF)/Met signaling in urothelial carcinoma (UC) of the bladder. The effects of three kinase inhibitors, cabozantinib, crizotinib and EMD1214063, on HGF-driven signaling and cell growth, invasion and tumorigenicity were analyzed in cultured UC cell lines. SW780 xenograft growth in SCID and human HGF knock-in SCID (hHGF/SCID) mice treated with cabozantinib or vehicle, as well as tumor levels of Met and pMet, were also determined. Met content was robust in most UC-derived cell lines. Basal pMet content and effector activation state in quiescent cells were low, but significantly enhanced by added HGF, as were cell invasion, proliferation and anchorage independent growth. These HGF-driven effects were reversed by Met inhibitor treatment. Tumor xenograft growth was significantly higher in hHGF/SCID mice vs. SCID mice and significantly inhibited by cabozantinib, as was tumor phospho-Met content. These studies indicate the prevalence and functionality of the HGF/Met signaling pathway in UC cells, suggest that paracrine HGF may contribute to UC tumor growth and progression, and that support further preclinical investigation of Met inhibitors for the treatment of UC is warranted.

  3. Overexpression of c-Met in bone marrow mesenchymal stem cells improves their effectiveness in homing and repair of acute liver failure.

    Science.gov (United States)

    Wang, Kun; Li, Yuwen; Zhu, Tiantian; Zhang, Yongting; Li, Wenting; Lin, Wenyu; Li, Jun; Zhu, Chuanlong

    2017-07-05

    Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) has emerged as a novel therapy for acute liver failure (ALF). However, the homing efficiency of BMSCs to the injured liver sites appears to be poor. In this study, we aimed to determine if overexpression of c-Met in BMSCs could promote the homing ability of BMSCs to rat livers affected by ALF. Overexpression of c-Met in BMSCs (c-Met-BMSCs) was attained by transfection of naive BMSCs with the lenti-c-Met-GFP. The impact of transplanted c-Met-BMSCs on both homing and repair of ALF was evaluated and compared with lenti-GFP empty vector transfected BMSCs (control BMSCs). After cells were transfected with the lenti-c-Met-GFP vector, the BMSCs displayed very high expression of c-Met protein as demonstrated by Western blot. In addition, in vitro transwell migration assays showed that the migration ability of c-Met-BMSCs was significantly increased in comparison with that of control BMSCs (P liver; this was accompanied by elevated survival rates and liver function in the ALF rats. Parallel pathological examination further confirmed that transplantation of c-Met-BMSCs ameliorated liver injury with reduced hepatic activity index (HAI) scores, and that the effects of c-Met-BMSCs were more profound than those of control BMSCs. Overexpression of c-Met promotes the homing of BMSCs to injured hepatic sites in a rat model of ALF, thereby improving the efficacy of BMSC therapy for ALF repair.

  4. Krüppel-like factor 4 promotes c-Met amplification-mediated gefitinib resistance in non-small-cell lung cancer.

    Science.gov (United States)

    Feng, Wei; Xie, Qianyi; Liu, Suo; Ji, Ying; Li, Chunyun; Wang, Chunle; Jin, Longyu

    2018-06-01

    Gefitinib has been widely used in the first-line treatment of advanced EGFR-mutated non-small-cell lung cancer (NSCLC). However, many NSCLC patients will acquire resistance to gefitinib after 9-14 months of treatment. This study revealed that Krüppel-like factor 4 (KLF4) contributes to the formation of gefitinib resistance in c-Met-overexpressing NSCLC cells. We observed that KLF4 was overexpressed in c-Met-overexpressing NSCLC cells and tissues. Knockdown of KLF4 increased tumorigenic properties in gefitinib-resistant NSCLC cell lines without c-Met overexpression, but it reduced tumorigenic properties and increased gefitinib sensitivity in gefitinib-resistant NSCLC cells with c-Met overexpression, whereas overexpression of KLF4 reduced gefitinib sensitivity in gefitinib-sensitive NSCLC cells. Furthermore, Western blot analysis revealed that KLF4 contributed to the formation of gefitinib resistance in c-Met-overexpressing NSCLC cells by inhibiting the expression of apoptosis-related proteins under gefitinib treatment and activating the c-Met/Akt signaling pathway by decreasing the inhibition of β-catenin on phosphorylation of c-Met to prevent blockade by gefitinib. In summary, this study's results suggest that KLF4 is a promising candidate molecular target for both prevention and therapy of NSCLC with c-Met overexpression. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  5. hHGF overexpression in myoblast sheets enhances their angiogenic potential in rat chronic heart failure.

    Directory of Open Access Journals (Sweden)

    Antti Siltanen

    2011-04-01

    Full Text Available After severe myocardial infarction (MI, heart failure results from ischemia, fibrosis, and remodeling. A promising therapy to enhance cardiac function and induce therapeutic angiogenesis via a paracrine mechanism in MI is myoblast sheet transplantation. We hypothesized that in a rat model of MI-induced chronic heart failure, this therapy could be further improved by overexpression of the antiapoptotic, antifibrotic, and proangiogenic hepatocyte growth factor (HGF in the myoblast sheets. We studied the ability of wild type (L6-WT and human HGF-expressing (L6-HGF L6 myoblast sheet-derived paracrine factors to stimulate cardiomyocyte, endothelial cell, or smooth muscle cell migration in culture. Further, we studied the autocrine effect of hHGF-expression on myoblast gene expression profiles by use of microarray analysis. We induced MI in Wistar rats by left anterior descending coronary artery (LAD ligation and allowed heart failure to develop for 4 weeks. Thereafter, we administered L6-WT (n = 15 or L6-HGF (n = 16 myoblast sheet therapy. Control rats (n = 13 underwent LAD ligation and rethoracotomy without therapy, and five rats underwent a sham operation in both surgeries. We evaluated cardiac function with echocardiography at 2 and 4 weeks after therapy, and analyzed cardiac angiogenesis and left ventricular architecture from histological sections at 4 weeks. Paracrine mediators from L6-HGF myoblast sheets effectively induced migration of cardiac endothelial and smooth muscle cells but not cardiomyocytes. Microarray data revealed that hHGF-expression modulated myoblast gene expression. In vivo, L6-HGF sheet therapy effectively stimulated angiogenesis in the infarcted and non-infarcted areas. Both L6-WT and L6-HGF therapies enhanced cardiac function and inhibited remodeling in a similar fashion. In conclusion, L6-HGF therapy effectively induced angiogenesis in the chronically failing heart. Cardiac function, however, was not further

  6. Phase I dose-escalation study of the c-Met tyrosine kinase inhibitor SAR125844 in Asian patients with advanced solid tumors, including patients with MET-amplified gastric cancer

    OpenAIRE

    Shitara, Kohei; Kim, Tae Min; Yokota, Tomoya; Goto, Masahiro; Satoh, Taroh; Ahn, Jin-Hee; Kim, Hyo Song; Assadourian, Sylvie; Gomez, Corinne; Harnois, Marzia; Hamauchi, Satoshi; Kudo, Toshihiro; Doi, Toshihido; Bang, Yung-Jue

    2017-01-01

    SAR125844 is a potent and selective inhibitor of the c-Met kinase receptor. This was an open-label, phase I, multicenter, dose-escalation, and dose-expansion trial of SAR125844 in Asian patients with solid tumors, a subgroup of whom had gastric cancer and MET amplification (NCT01657214). SAR125844 was administered by intravenous infusion (260–570 mg/m2) on days 1, 8, 15, and 22 of each 28-day cycle. Objectives were to determine the maximum tolerated dose (MTD) and to evaluate SAR125844 safety...

  7. YKL-40/c-Met expression in rectal cancer biopsies predicts tumor regression following neoadjuvant chemoradiotherapy: a multi-institutional study.

    Science.gov (United States)

    Senetta, Rebecca; Duregon, Eleonora; Sonetto, Cristina; Spadi, Rossella; Mistrangelo, Massimiliano; Racca, Patrizia; Chiusa, Luigi; Munoz, Fernando H; Ricardi, Umberto; Arezzo, Alberto; Cassenti, Adele; Castellano, Isabella; Papotti, Mauro; Morino, Mario; Risio, Mauro; Cassoni, Paola

    2015-01-01

    Neoadjuvant chemo-radiotherapy (CRT) followed by surgical resection is the standard treatment for locally advanced rectal cancer, although complete tumor pathological regression is achieved in only up to 30% of cases. A clinicopathological and molecular predictive stratification of patients with advanced rectal cancer is still lacking. Here, c-Met and YKL-40 have been studied as putative predictors of CRT response in rectal cancer, due to their reported involvement in chemoradioresistance in various solid tumors. A multicentric study was designed to assess the role of c-Met and YKL-40 expression in predicting chemoradioresistance and to correlate clinical and pathological features with CRT response. Immunohistochemistry and fluorescent in situ hybridization for c-Met were performed on 81 rectal cancer biopsies from patients with locally advanced rectal adenocarcinoma. All patients underwent standard (50.4 gy in 28 fractions + concurrent capecitabine 825 mg/m2) neoadjuvant CRT or the XELOXART protocol. CRT response was documented on surgical resection specimens and recorded as tumor regression grade (TRG) according to the Mandard criteria. A significant correlation between c-Met and YKL-40 expression was observed (R = 0.43). The expressions of c-Met and YKL-40 were both significantly associated with a lack of complete response (86% and 87% of c-Met and YKL-40 positive cases, prectal cancer. Targeted therapy protocols could take advantage of prior evaluations of c-MET and YKL-40 expression levels to increase therapeutic efficacy.

  8. A Study Of Oral PF-02341066, A C-Met/Hepatocyte Growth Factor Tyrosine Kinase Inhibitor, In Patients With Advanced Cancer

    Science.gov (United States)

    2018-01-29

    Non-Small Cell Lung Cancer ALK-positive; Non-Small Cell Lung Cancer c-Met Dependent; Non-Small Cell Lung Cancer ROS Marker Positive; Systemic Anaplastic Large-Cell Lymphoma; Advanced Malignancies Except Leukemia

  9. Salvianolic acid A reverses cisplatin resistance in lung cancer A549 cells by targeting c-met and attenuating Akt/mTOR pathway.

    Science.gov (United States)

    Tang, Xia-Li; Yan, Li; Zhu, Ling; Jiao, De-Min; Chen, Jun; Chen, Qing-Yong

    2017-09-01

    Drug resistance is one of the leading causes of chemotherapy failure in non-small cell lung cancer (NSCLC) treatment. The purpose of this study was to investigate the role of c-met in human lung cancer cisplatin resistance cell line (A549/DDP) and the reversal mechanism of salvianolic acid A (SAA), a phenolic active compound extracted from Salvia miltiorrhiza. In this study, we found that A549/DDP cells exert up-regulation of c-met by activating the Akt/mTOR signaling pathway. We also show that SAA could increase the chemotherapeutic efficacy of cisplatin, suggesting a synergistic effect of SAA and cisplatin. Moreover, we revealed that SAA enhanced sensitivity to cisplatin in A549/DDP cells mainly through suppression of the c-met/AKT/mTOR signaling pathway. Knockdown of c-met revealed similar effects as that of SAA in A549/DDP cells. In addition, SAA effectively prevented multidrug resistance associated protein1 (MDR1) up-regulation in A549/DDP cells. Taken together, our results indicated that SAA suppressed c-met expression and enhanced the sensitivity of lung adenocarcinoma A549 cells to cisplatin through AKT/mTOR signaling pathway. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  10. Salvianolic acid A reverses cisplatin resistance in lung cancer A549 cells by targeting c-met and attenuating Akt/mTOR pathway

    Directory of Open Access Journals (Sweden)

    Xia-li Tang

    2017-09-01

    Full Text Available Drug resistance is one of the leading causes of chemotherapy failure in non-small cell lung cancer (NSCLC treatment. The purpose of this study was to investigate the role of c-met in human lung cancer cisplatin resistance cell line (A549/DDP and the reversal mechanism of salvianolic acid A (SAA, a phenolic active compound extracted from Salvia miltiorrhiza. In this study, we found that A549/DDP cells exert up-regulation of c-met by activating the Akt/mTOR signaling pathway. We also show that SAA could increase the chemotherapeutic efficacy of cisplatin, suggesting a synergistic effect of SAA and cisplatin. Moreover, we revealed that SAA enhanced sensitivity to cisplatin in A549/DDP cells mainly through suppression of the c-met/AKT/mTOR signaling pathway. Knockdown of c-met revealed similar effects as that of SAA in A549/DDP cells. In addition, SAA effectively prevented multidrug resistance associated protein1 (MDR1 up-regulation in A549/DDP cells. Taken together, our results indicated that SAA suppressed c-met expression and enhanced the sensitivity of lung adenocarcinoma A549 cells to cisplatin through AKT/mTOR signaling pathway.

  11. A novel rabbit anti-hepatocyte growth factor monoclonal neutralizing antibody inhibits tumor growth in prostate cancer cells and mouse xenografts

    International Nuclear Information System (INIS)

    Yu, Yanlan; Chen, Yicheng; Ding, Guoqing; Wang, Mingchao; Wu, Haiyang; Xu, Liwei; Rui, Xuefang; Zhang, Zhigen

    2015-01-01

    The hepatocyte growth factor and its receptor c-Met are correlated with castration-resistance in prostate cancer. Although HGF has been considered as an attractive target for therapeutic antibodies, the lack of cross-reactivity of monoclonal antibodies with human/mouse HGFs is a major obstacle in preclinical developments. We generated a panel of anti-HGF RabMAbs either blocking HGF/c-Met interaction or inhibiting c-Met phosphorylation. We selected one RabMAb with mouse cross-reactivity and demonstrated that it blocked HGF-stimulated downstream activation in PC-3 and DU145 cells. Anti-HGF RabMAb inhibited not only the growth of PC-3 cells but also HGF-dependent proliferation in HUVECs. We further demonstrated the efficacy and potency of the anti-HGF RabMAb in tumor xenograft mice models. Through these in vitro and in vivo experiments, we explored a novel therapeutic antibody for advanced prostate cancer. - Highlights: • HGF is an attractive target for castration-refractory prostate cancer. • We generated and characterized a panel of anti-HGF rabbit monoclonal antibodies. • More than half of these anti-HGF RabMAbs was cross-reactive with mouse HGF. • Anti-HGF RabMAb blocks HGF-stimulated phosphorylation and cell growth in vitro. • Anti-HGF RabMAb inhibits tumor growth and angiogenesis in xenograft mice

  12. A novel rabbit anti-hepatocyte growth factor monoclonal neutralizing antibody inhibits tumor growth in prostate cancer cells and mouse xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yanlan; Chen, Yicheng; Ding, Guoqing; Wang, Mingchao; Wu, Haiyang; Xu, Liwei; Rui, Xuefang; Zhang, Zhigen, E-mail: srrshurology@163.com

    2015-08-14

    The hepatocyte growth factor and its receptor c-Met are correlated with castration-resistance in prostate cancer. Although HGF has been considered as an attractive target for therapeutic antibodies, the lack of cross-reactivity of monoclonal antibodies with human/mouse HGFs is a major obstacle in preclinical developments. We generated a panel of anti-HGF RabMAbs either blocking HGF/c-Met interaction or inhibiting c-Met phosphorylation. We selected one RabMAb with mouse cross-reactivity and demonstrated that it blocked HGF-stimulated downstream activation in PC-3 and DU145 cells. Anti-HGF RabMAb inhibited not only the growth of PC-3 cells but also HGF-dependent proliferation in HUVECs. We further demonstrated the efficacy and potency of the anti-HGF RabMAb in tumor xenograft mice models. Through these in vitro and in vivo experiments, we explored a novel therapeutic antibody for advanced prostate cancer. - Highlights: • HGF is an attractive target for castration-refractory prostate cancer. • We generated and characterized a panel of anti-HGF rabbit monoclonal antibodies. • More than half of these anti-HGF RabMAbs was cross-reactive with mouse HGF. • Anti-HGF RabMAb blocks HGF-stimulated phosphorylation and cell growth in vitro. • Anti-HGF RabMAb inhibits tumor growth and angiogenesis in xenograft mice.

  13. Design and optimization of a series of 1-sulfonylpyrazolo[4,3-b]pyridines as selective c-Met inhibitors.

    Science.gov (United States)

    Ma, Yuchi; Sun, Guangqiang; Chen, Danqi; Peng, Xia; Chen, Yue-Lei; Su, Yi; Ji, Yinchun; Liang, Jin; Wang, Xin; Chen, Lin; Ding, Jian; Xiong, Bing; Ai, Jing; Geng, Meiyu; Shen, Jingkang

    2015-03-12

    c-Met has emerged as an attractive target for targeted cancer therapy because of its abnormal activation in many cancer cells. To identify high potent and selective c-Met inhibitors, we started with profiling the potency and in vitro metabolic stability of a reported hit 7. By rational design, a novel sulfonylpyrazolo[4,3-b]pyridine 9 with improved DMPK properties was discovered. Further elaboration of π-π stacking interactions and solvent accessible polar moieties led to a series of highly potent and selective type I c-Met inhibitors. On the basis of in vitro and in vivo pharmacological and pharmacokinetics studies, compound 46 was selected as a preclinical candidate for further anticancer drug development.

  14. Study of expression of genes cIAP and cMET, in liver tissue with and without neoplasia of Rattus norvegicus

    International Nuclear Information System (INIS)

    Coto Valverde, Daniel Esteban

    2010-01-01

    The expression levels of cIAP genes and cMET were determined in liver tissues with and without neoplasm of the organism Rattus norvegicus, for prevention, diagnosis and treatment of hepatocellular carcinoma. The technique of reaction Polymerase Chain in real time (qPCR), is used to obtain the expression, of both genes cIAP and cMET, and this has decreased in neoplastic samples compared to samples not affected. The expression of these genes has been analyzed in samples with neoplastic formations, but treated with an anti-tumor agent. The expression has presented an increase of the cMET gene, unlike the cIAP gene, which has decreased its expression. Perform statistical analysis has been impossible because the number of samples used has been reduced. The results obtained differ with those expected theoretically. (author) [es

  15. Fibulin-3 negatively regulates ALDH1 via c-MET suppression and increases γ-radiation-induced sensitivity in some pancreatic cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In-Gyu, E-mail: igkim@kaeri.re.kr [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology (UST), 989-111 Daedeok-daero, Yusong-gu, Daejeon 305-353 (Korea, Republic of); Lee, Jae-Ha [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology (UST), 989-111 Daedeok-daero, Yusong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Seo-Yoen; Kim, Jeong-Yul [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Cho, Eun-Wie [Epigenomics Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of)

    2014-11-21

    Highlights: • FBLN-3 gene was poorly expressed in some pancreatic cancer lines. • FBLN-3 promoter region was highly methylated in some pancreatic cancer cell lines. • FBLN-3 inhibited c-MET activation and expression and reduced cellular level of ALDH1. • FBLN-3/c-Met/ALDH1 axis modulates stemness and EMT in pancreatic cancer cells. - Abstract: Fibulin-3 (FBLN-3) has been postulated to be either a tumor suppressor or promoter depending on the cell type, and hypermethylation of the FBLN-3 promoter is often associated with human disease, especially cancer. We report that the promoter region of the FBLN-3 was significantly methylated (>95%) in some pancreatic cancer cell lines and thus FBLN-3 was poorly expressed in pancreatic cancer cell lines such as AsPC-1 and MiaPaCa-2. FBLN-3 overexpression significantly down-regulated the cellular level of c-MET and inhibited hepatocyte growth factor-induced c-MET activation, which were closely associated with γ-radiation resistance of cancer cells. Moreover, we also showed that c-MET suppression or inactivation decreased the cellular level of ALDH1 isozymes (ALDH1A1 or ALDH1A3), which serve as cancer stem cell markers, and subsequently induced inhibition of cell growth in pancreatic cancer cells. Therefore, forced overexpression of FBLN-3 sensitized cells to cytotoxic agents such as γ-radiation and strongly inhibited the stemness and epithelial to mesenchymal transition (EMT) property of pancreatic cancer cells. On the other hand, if FBLN3 was suppressed in FBLN-3-expressing BxPC3 cells, the results were opposite. This study provides the first demonstration that the FBLN-3/c-MET/ALDH1 axis in pancreatic cancer cells partially modulates stemness and EMT as well as sensitization of cells to the detrimental effects of γ-radiation.

  16. Fibulin-3 negatively regulates ALDH1 via c-MET suppression and increases γ-radiation-induced sensitivity in some pancreatic cancer cell lines

    International Nuclear Information System (INIS)

    Kim, In-Gyu; Lee, Jae-Ha; Kim, Seo-Yoen; Kim, Jeong-Yul; Cho, Eun-Wie

    2014-01-01

    Highlights: • FBLN-3 gene was poorly expressed in some pancreatic cancer lines. • FBLN-3 promoter region was highly methylated in some pancreatic cancer cell lines. • FBLN-3 inhibited c-MET activation and expression and reduced cellular level of ALDH1. • FBLN-3/c-Met/ALDH1 axis modulates stemness and EMT in pancreatic cancer cells. - Abstract: Fibulin-3 (FBLN-3) has been postulated to be either a tumor suppressor or promoter depending on the cell type, and hypermethylation of the FBLN-3 promoter is often associated with human disease, especially cancer. We report that the promoter region of the FBLN-3 was significantly methylated (>95%) in some pancreatic cancer cell lines and thus FBLN-3 was poorly expressed in pancreatic cancer cell lines such as AsPC-1 and MiaPaCa-2. FBLN-3 overexpression significantly down-regulated the cellular level of c-MET and inhibited hepatocyte growth factor-induced c-MET activation, which were closely associated with γ-radiation resistance of cancer cells. Moreover, we also showed that c-MET suppression or inactivation decreased the cellular level of ALDH1 isozymes (ALDH1A1 or ALDH1A3), which serve as cancer stem cell markers, and subsequently induced inhibition of cell growth in pancreatic cancer cells. Therefore, forced overexpression of FBLN-3 sensitized cells to cytotoxic agents such as γ-radiation and strongly inhibited the stemness and epithelial to mesenchymal transition (EMT) property of pancreatic cancer cells. On the other hand, if FBLN3 was suppressed in FBLN-3-expressing BxPC3 cells, the results were opposite. This study provides the first demonstration that the FBLN-3/c-MET/ALDH1 axis in pancreatic cancer cells partially modulates stemness and EMT as well as sensitization of cells to the detrimental effects of γ-radiation

  17. Integrin-linked kinase (ILK) modulates wound healing through regulation of hepatocyte growth factor (HGF)

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, Isabel; Diez-Marques, Maria L.; Rodriguez-Puyol, Manuel [Department of Physiology, University of Alcala, Alcala de Henares, Madrid (Spain); Red de Investigacion Renal Cooperativa (RedinRen) (Spain); Instituto Reina Sofia de Investigacion Nefrologica (Spain); Herrero-Fresneda, Inmaculada [Nephrology Unit, IDIBELL, Hospital de Bellvitge, Barcelona (Spain); Red de Investigacion Renal Cooperativa (RedinRen) (Spain); Garcia del Moral, Raimundo [Department of Pathology, University of Granada (Spain); Red de Investigacion Renal Cooperativa (RedinRen) (Spain); Dedhar, Shoukat [Department of Integrative Oncology, BC Cancer Research Center, Vancouver, BC (Canada); Ruiz-Torres, Maria P., E-mail: mpiedad.ruiz@uah.es [Department of Physiology, University of Alcala, Alcala de Henares, Madrid (Spain); Red de Investigacion Renal Cooperativa (RedinRen) (Spain); Instituto Reina Sofia de Investigacion Nefrologica (Spain); Rodriguez-Puyol, Diego [Nephrology Unit, Hospital Universitario Principe de Asturias, Alcala de Henares, Madrid (Spain); Red de Investigacion Renal Cooperativa (RedinRen) (Spain); Instituto Reina Sofia de Investigacion Nefrologica (Spain)

    2012-11-15

    Integrin-linked kinase (ILK) is an intracellular effector of cell-matrix interactions and regulates many cellular processes, including growth, proliferation, survival, differentiation, migration, invasion and angiogenesis. The present work analyzes the role of ILK in wound healing in adult animals using a conditional knock-out of the ILK gene generated with the tamoxifen-inducible Cre-lox system (CRE-LOX mice). Results show that ILK deficiency leads to retarded wound closure in skin. Intracellular mechanisms involved in this process were analyzed in cultured mouse embryonic fibroblast (MEF) isolated from CRE-LOX mice and revealed that wounding promotes rapid activation of phosphatidylinositol 3-kinase (PI3K) and ILK. Knockdown of ILK resulted in a retarded wound closure due to a decrease in cellular proliferation and loss of HGF protein expression during the healing process, in vitro and in vivo. Alterations in cell proliferation and wound closure in ILK-deficient MEF or mice could be rescued by exogenous administration of human HGF. These data demonstrate, for the first time, that the activation of PI3K and ILK after skin wounding are critical for HGF-dependent tissue repair and wound healing. -- Highlights: Black-Right-Pointing-Pointer ILK deletion results in decreased HGF expression and delayed scratch wound repair. Black-Right-Pointing-Pointer PI3K/ILK/AKT pathway signals through HGF to regulate wound healing. Black-Right-Pointing-Pointer An ILK-dependent increase in HGF expression is responsible for wound healing in vivo. Black-Right-Pointing-Pointer ILK-KO mice are used to confirm the requirement for ILK function in wound healing. Black-Right-Pointing-Pointer Human HGF treatment restores delayed wound closure in vitro and in vivo.

  18. Pyridine-pyrimidine amides that prevent HGF-induced epithelial scattering by two distinct mechanisms.

    Science.gov (United States)

    Siddiqui-Jain, Adam; Hoj, Jacob P; Hargiss, J Blade; Hoj, Taylor H; Payne, Carter J; Ritchie, Collin A; Herron, Steven R; Quinn, Colette; Schuler, Jeffrey T; Hansen, Marc D H

    2017-09-01

    Stimulation of cultured epithelial cells with scatter factor/hepatocyte growth factor (HGF) results in individual cells detaching and assuming a migratory and invasive phenotype. Epithelial scattering recapitulates cancer progression and studies have implicated HGF signaling as a driver of cancer metastasis. Inhibitors of HGF signaling have been proposed to act as anti-cancer agents. We previously screened a small molecule library for compounds that block HGF-induced epithelial scattering. Most hits identified in this screen exhibit anti-mitotic properties. Here we assess the biological mechanism of a compound that blocks HGF-induced scattering with limited anti-mitotic activity. Analogs of this compound have one of two distinct activities: inhibiting either cell migration or cell proliferation with cell cycle arrest in G2/M. Each activity bears unique structure-activity relationships. The mechanism of action of anti-mitotic compounds is by inhibition of microtubule polymerization; these compounds entropically and enthalpically bind tubulin in the colchicine binding site, generating a conformational change in the tubulin dimer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Discovery of potent 1H-imidazo[4,5-b]pyridine-based c-Met kinase inhibitors via mechanism-directed structural optimization.

    Science.gov (United States)

    An, Xiao-De; Liu, Hongyan; Xu, Zhong-Liang; Jin, Yi; Peng, Xia; Yao, Ying-Ming; Geng, Meiyu; Long, Ya-Qiu

    2015-02-01

    Starting from our previously identified novel c-Met kinase inhibitors bearing 1H-imidazo[4,5-h][1,6]naphthyridin-2(3H)-one scaffold, a global structural exploration was conducted to furnish an optimal binding motif for further development, directed by the enzyme inhibitory mechanism. First round SAR study picked two imidazonaphthyridinone frameworks with 1,8- and 3,5-disubstitution pattern as class I and class II c-Met kinase inhibitors, respectively. Further structural optimization on type II inhibitors by truncation of the imidazonaphthyridinone core and incorporation of an N-phenyl cyclopropane-1,1-dicarboxamide pharmacophore led to the discovery of novel imidazopyridine-based c-Met kinase inhibitors, displaying nanomolar enzyme inhibitory activity and improved Met kinase selectivity. More significantly, the new chemotype c-Met kinase inhibitors effectively inhibited Met phosphorylation and its downstream signaling as well as the proliferation of Met-dependent EBC-1 human lung cancer cells at submicromolar concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Involvement of c-Met- and phosphatidylinositol 3-kinase dependent pathways in arsenite-induced downregulation of catalase in hepatoma cells.

    Science.gov (United States)

    Kim, Soohee; Lee, Seung Heon; Kang, Sukmo; Lee, Lyon; Park, Jung-Duck; Ryu, Doug-Young

    2011-01-01

    Catalase protects cells from reactive oxygen species-induced damage by catalyzing the breakdown of hydrogen peroxide to oxygen and water. Arsenite decreases catalase activity; it activates phosphatidylinositol 3-kinase (PI3K) and its key downstream effector Akt in a variety of cells. The PI3K pathway is known to inhibit catalase expression. c-Met, an upstream regulator of PI3K and Akt, is also involved in the regulation of catalase expression. To examine the involvement of c-Met and PI3K pathways in the arsenite-induced downregulation of catalase, catalase mRNA and protein expression were analyzed in the human hepatoma cell line HepG2 treated with arsenite and either an inhibitor of c-Met (PHA665752 (PHA)) or of PI3K (LY294002 (LY)). Arsenite treatment markedly activated Akt and decreased the levels of both catalase mRNA and protein. Both PHA and LY attenuated arsenite-induced activation of Akt. PHA and LY treatment also prevented the inhibitory effect of arsenite on catalase protein expression but did not affect the level of catalase mRNA. These findings suggest that arsenite-induced inhibition of catalase expression is regulated at the mRNA and post-transcriptional levels in HepG2 cells, and that the post-transcriptional regulation is mediated via c-Met- and PI3K-dependent mechanisms.

  1. Decreased Serum Hepatocyte Growth Factor (HGF in Individuals with Bipolar Disorder Normalizes after Zinc and Anti-oxidant Therapy

    Directory of Open Access Journals (Sweden)

    A.J. Russo

    2010-01-01

    Full Text Available Aim To assess serum HGF concentration in individuals with bipolar disorder and investigate the efficacy of zinc therapy on these levels. Subjects and Methods Serum from 35 individuals diagnosed with bipolar disorder and 19 age and gender similar controls were tested for HGF concentration using ELISAs, and copper and zinc plasma levels using inductively-coupled plasma-mass spectrometry. Results HGF serum levels of individuals with bipolar disorder were significantly lower than age and gender similar controls ( P = 0.0021. HGF serum concentration was significantly lower in Bipolar patients pre-therapy ( P = 0.0009 and HGF levels normalized post-therapy. Zinc levels in these same individuals also normalized ( P = 0.0046 and patient's perceived severity of Bipolar symptoms significantly decreased after therapy ( P = 0.0003. We also found a significant direct correlation between Zinc and HGF serum concentration in the bipolar patients ( P = 0.04. Discussion These results suggest an association between low HGF levels and bipolar disorder and also demonstrate that zinc therapy may be associated with the normalization of HGF levels and decrease in severity of disease.

  2. Predictive role of the overexpression for CXCR4, C-Met, and VEGF-C among breast cancer patients: A meta-analysis.

    Science.gov (United States)

    Wang, Fang; Li, Shanshan; Zhao, Yueguang; Yang, Kunxian; Chen, Minju; Niu, Heng; Yang, Jingyu; Luo, Ying; Tang, Wenru; Sheng, Miaomiao

    2016-08-01

    The overexpression of CXCR4, C-Met and VEGF-C present widely in breast tumors, they may be markers of resistance to treatment. However, the studies are still controversial. Thus, this meta-analysis aims to research the relationship between the overexpression of CXCR4, C-Met, VEGF-C and clinical prognosis among breast cancer patients. PubMed and EMBASE databases were searched for eligible literature. The outcomes of interest were progression-free survival (PFS), relapse-free survival (RFS) and overall survival (OS). All tests of statistical significance were two sided. A total of 7830 patients from 28 eligible studies were assessed. The overexpression of the CXCR4 and C-Met both implied significantly worse PFS compared with normal expression [HR = 2.56, 95% CI = 1.34-4.91, P = 0.005; and HR = 1.63 95% CI = 1.20-2.22, P = 0.002]. Meanwhile, if patients had high expression of CXCR4, they would have worse OS [HR = 2.56 95% CI = 1.52-4.31, P = 0.000]. However, the overexpression of C-Met did not relate to OS for breast cancer patients [HR = 1.16, 95% CI = 0.69-1.95, P = 0.570]. Meanwhile, no statistically significant different was observed with respect to PFS and OS between VEGF-C overexpression and normal expression [HR = 0.99, 95% CI = 0.64-1.52, P = 0.968; and HR = 0.76, 95% CI = 0.43-1.33, P = 0.333]. Our meta-analysis showed that CXCR4 and C-Met were efficient prognostic factors for breast cancer. Nevertheless, highly expressing VEGF-C was not related to progression-free survival and overall survival. Due to the small samples and insufficient date, further studies should be conducted to clarify the association between the overexpression of CXCR4 or C-Met or VEGF-C and the prognosis about breast cancer patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Oral fibroblasts produce more HGF and KGF than skin fibroblasts in response to co-culture with keratinocytes

    DEFF Research Database (Denmark)

    Grøn, Birgitte; Stoltze, Kaj; Andersson, Anders

    2002-01-01

    The production of hepatocyte growth factor (HGF) and keratinocyte growth factor (KGF) in subepithelial fibroblasts from buccal mucosa, periodontal ligament, and skin was determined after co-culture with keratinocytes. The purpose was to detect differences between the fibroblast subpopulations...... days by ELISA. When cultured on polystyrene, the constitutive level of KGF and HGF in periodontal fibroblasts was higher than the level in buccal and skin fibroblasts. In the presence of keratinocytes, all three types of fibroblasts in general increased their HGF and KGF production 2-3 times. When...... cells were maintained in collagen, the level of HGF and KGF was decreased mainly in skin cultures. However, in oral fibroblasts, induction after stimulation was at a similar level in collagen compared to on polystyrene. Skin fibroblasts maintained in collagen produced almost no HGF whether...

  4. HGF/SF increases number of skin melanocytes but does not alter quality or quantity of follicular melanogenesis.

    Directory of Open Access Journals (Sweden)

    Agnieszka Wolnicka-Glubisz

    Full Text Available Melanins are an important factor determining the vulnerability of mammalian skin to UV radiation and thus to UV-induced skin cancers. Transgenic mice overexpressing hepatocyte growth factor/scatter factor (HGF/SF have extra-follicular dermal melanocytes, notably in the papillary upper dermis, and are susceptible to UV-induced melanoma. Pigmented HGF/SF neonatal mice are more susceptible than albino HGF/SF animals to UVA -induced melanoma, indicating an involvement of melanin in melanoma formation. This raises the question of the effect of transgenic HGF/SF on melanization. We developed a methodology to accurately quantitate both the production of melanin and the efficiency of melanogenesis in normal, and HGF/SF transgenic mice in vivo. Skin and hair shafts of 5 day old and adult (3 week old C57BL/6-HGF/SF and corresponding C57BL/6 wild type mice were investigated by electron paramagnetic resonance spectroscopy (EPR to quantitate melanin, by transmission electron microscopy (TEM for the presence of melanosomes, and by standard histology and by Western blotting and zymography to determine the expression and activity of melanogenesis-related proteins. Eumelanin but no phaeomelanin was detected in transgenic C57BL/6-HGF and C57BL/6 wild type mice. Transgenic HGF/SF overexpression did not change the type of melanin produced in the skin or hair, did not affect the terminal content of melanin production in standard samples of hair and did not influence hair cycle/morphogenesis-related changes in skin thickness. No melanocytes were found in the epidermis and no melanosomes were found in epidermal keratinocytes. HGF/SF transgenic mice thus lack the epidermal melanin UV-protection found in constitutively dark human skin. We conclude that melanocytes in the HGF/SF transgenic mouse, particularly in the papillary dermis, are vulnerable to UVA which interacts with eumelanin but not phaeomelanin to induce melanoma.

  5. Quantitative analysis of HGF and EGF-dependent phosphotyrosine signaling networks

    DEFF Research Database (Denmark)

    Hammond, Dean E; Hyde, Russell; Kratchmarova, Irina

    2010-01-01

    549 lung adenocarcinoma cells with EGF or HGF. In total, we obtained quantitative information for 274 proteins, which respond to either or both stimuli by >1.5 fold changes in enrichment, following immuno-precipitation with antiphosphotyrosine antibodies. The data reveal a high degree of overlap...

  6. Evaluation of clinial usefulness of 11C-methionine positron emission tomography (11C-MET-PET) as a tool for liver functional imaging

    International Nuclear Information System (INIS)

    Enomoto, Kazuo; Matsui, Yoshifumi; Okazumi, Shinichi

    1994-01-01

    We studied 11 C-MET-PET in 17 clinical cases, 10 patients with obstructive jaundice and 7 normal volunteers, and analyzed its efficacy for the evaluation of hepatic functional reserve in major hepatectomy candidates. Differential absorption ratio (DAR) of 11 C was compared to the hepatic protein synthesis rate (HPS), which is measured as the incorporation rate of 3 H-labeled leucine in protein fraction, using needle biopsied liver specimen obtained from each hepatic segment. In the cases of normal liver function, DAR was well correlated with HPS. Also in jaundice cases with two exceptions, low HPS segment was demonstrated as low DAR segment. Consequently, MET-PET images could clearly provide functional liver imaging. After injection of 11 C-MET, the increase in rate of radioactivity of 11 C in plasma protein fraction was higher in jaundice cases than in normal volunteers, which is in accord with the results of our former study that cholestatic liver has accelerated protein synthesis rate. In summary, since 11 C-MET-PET could demonstrate liver functional imaging, it might be a possible tool for liver function assessment in major hepatectomy candidates. (author)

  7. Combination Therapy with c-Met and Src Inhibitors Induces Caspase-Dependent Apoptosis of Merlin-Deficient Schwann Cells and Suppresses Growth of Schwannoma Cells.

    Science.gov (United States)

    Fuse, Marisa A; Plati, Stephani Klingeman; Burns, Sarah S; Dinh, Christine T; Bracho, Olena; Yan, Denise; Mittal, Rahul; Shen, Rulong; Soulakova, Julia N; Copik, Alicja J; Liu, Xue Zhong; Telischi, Fred F; Chang, Long-Sheng; Franco, Maria Clara; Fernandez-Valle, Cristina

    2017-11-01

    Neurofibromatosis type 2 (NF2) is a nervous system tumor disorder caused by inactivation of the merlin tumor suppressor encoded by the NF2 gene. Bilateral vestibular schwannomas are a diagnostic hallmark of NF2. Mainstream treatment options for NF2-associated tumors have been limited to surgery and radiotherapy; however, off-label uses of targeted molecular therapies are becoming increasingly common. Here, we investigated drugs targeting two kinases activated in NF2-associated schwannomas, c-Met and Src. We demonstrated that merlin-deficient mouse Schwann cells (MD-MSC) treated with the c-Met inhibitor, cabozantinib, or the Src kinase inhibitors, dasatinib and saracatinib, underwent a G 1 cell-cycle arrest. However, when MD-MSCs were treated with a combination of cabozantinib and saracatinib, they exhibited caspase-dependent apoptosis. The combination therapy also significantly reduced growth of MD-MSCs in an orthotopic allograft mouse model by greater than 80% of vehicle. Moreover, human vestibular schwannoma cells with NF2 mutations had a 40% decrease in cell viability when treated with cabozantinib and saracatinib together compared with the vehicle control. This study demonstrates that simultaneous inhibition of c-Met and Src signaling in MD-MSCs triggers apoptosis and reveals vulnerable pathways that could be exploited to develop NF2 therapies. Mol Cancer Ther; 16(11); 2387-98. ©2017 AACR . ©2017 American Association for Cancer Research.

  8. In Vivo Real-Time Imaging of Exogenous HGF-Triggered Cell Migration in Rat Intact Soleus Muscles

    International Nuclear Information System (INIS)

    Ishido, Minenori; Kasuga, Norikatsu

    2012-01-01

    The transplantation of myogenic cells is a potentially effective therapy for muscular dystrophy. However, this therapy has achieved little success because the diffusion of transplanted myogenic cells is limited. Hepatocyte growth factor (HGF) is one of the primary triggers to induce myogenic cell migration in vitro. However, to our knowledge, whether exogenous HGF can trigger the migration of myogenic cells (i.e. satellite cells) in intact skeletal muscles in vivo has not been reported. We previously reported a novel in vivo real-time imaging method in rat skeletal muscles. Therefore, the present study examined the relationship between exogenous HGF treatment and cell migration in rat intact soleus muscles using this imaging method. As a result, it was indicated that the cell migration velocity was enhanced in response to increasing exogenous HGF concentration in skeletal muscles. Furthermore, the expression of MyoD was induced in satellite cells in response to HGF treatment. We first demonstrated in vivo real-time imaging of cell migration triggered by exogenous HGF in intact soleus muscles. The experimental method used in the present study will be a useful tool to understand further the regulatory mechanism of HGF-induced satellite cell migration in skeletal muscles in vivo

  9. Alternative signaling pathways as potential therapeutic targets for overcoming EGFR and c-Met inhibitor resistance in non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Jason T Fong

    Full Text Available The use of tyrosine kinase inhibitors (TKIs against EGFR/c-Met in non-small cell lung cancer (NSCLC has been shown to be effective in increasing patient progression free survival (PFS, but their efficacy is limited due to the development of resistance and tumor recurrence. Therefore, understanding the molecular mechanisms underlying development of drug resistance in NSCLC is necessary for developing novel and effective therapeutic approaches to improve patient outcome. This study aims to understand the mechanism of EGFR/c-Met tyrosine kinase inhibitor (TKI resistance in NSCLC. H2170 and H358 cell lines were made resistant to SU11274, a c-Met inhibitor, and erlotinib, an EGFR inhibitor, through step-wise increases in TKI exposure. The IC50 concentrations of resistant lines exhibited a 4-5 and 11-22-fold increase for SU11274 and erlotinib, respectively, when compared to parental lines. Furthermore, mTOR and Wnt signaling was studied in both cell lines to determine their roles in mediating TKI resistance. We observed a 2-4-fold upregulation of mTOR signaling proteins and a 2- to 8-fold upregulation of Wnt signaling proteins in H2170 erlotinib and SU11274 resistant cells. H2170 and H358 cells were further treated with the mTOR inhibitor everolimus and the Wnt inhibitor XAV939. H358 resistant cells were inhibited by 95% by a triple combination of everolimus, erlotinib and SU11274 in comparison to 34% by a double combination of these drugs. Parental H2170 cells displayed no sensitivity to XAV939, while resistant cells were significantly inhibited (39% by XAV939 as a single agent, as well as in combination with SU11274 and erlotinib. Similar results were obtained with H358 resistant cells. This study suggests a novel molecular mechanism of drug resistance in lung cancer.

  10. Microfluidic wound-healing assay to assess the regenerative effect of HGF on wounded alveolar epithelium.

    Science.gov (United States)

    Felder, Marcel; Sallin, Pauline; Barbe, Laurent; Haenni, Beat; Gazdhar, Amiq; Geiser, Thomas; Guenat, Olivier

    2012-02-07

    We present a microfluidic epithelial wound-healing assay that allows characterization of the effect of hepatocyte growth factor (HGF) on the regeneration of alveolar epithelium using a flow-focusing technique to create a regular wound in the epithelial monolayer. The phenotype of the epithelial cell was characterized using immunostaining for tight junction (TJ) proteins and transmission electron micrographs (TEMs) of cells cultured in the microfluidic system, a technique that is reported here for the first time. We demonstrate that alveolar epithelial cells cultured in a microfluidic environment preserve their phenotype before and after wounding. In addition, we report a wound-healing benefit induced by addition of HGF to the cell culture medium (19.2 vs. 13.5 μm h(-1) healing rate).

  11. Microfluidic wound-healing assay to assess the regenerative effect of HGF on wounded alveolar epithelium.

    OpenAIRE

    Felder Marcel; Sallin Pauline; Barbe Laurent; Haenni Beat; Gazdhar Amiq; Geiser Thomas; Guenat Olivier

    2012-01-01

    We present a microfluidic epithelial wound healing assay that allows characterization of the effect of hepatocyte growth factor (HGF) on the regeneration of alveolar epithelium using a flow focusing technique to create a regular wound in the epithelial monolayer. The phenotype of the epithelial cell was characterized using immunostaining for tight junction (TJ) proteins and transmission electron micrographs (TEMs) of cells cultured in the microfluidic system a technique that is reported here ...

  12. Regulation of HGF and SDF-1 expression by oral fibroblasts--implications for invasion of oral cancer.

    Science.gov (United States)

    Daly, Aisling J; McIlreavey, Leanne; Irwin, Chris R

    2008-07-01

    Invasion and metastasis of oral squamous cell carcinoma (OSCC) is dependent on signals received from stromal fibroblasts present in the surrounding connective tissue. The aim of this study was to investigate the regulation of expression of two important signaling molecules--HGF and SDF-1--by both stromal fibroblasts and their 'activated' form, myofibroblasts, and to determine the role of these two factors in stimulating OSCC cell invasion in vitro. Fibroblasts and myofibroblasts produced similar levels of HGF and SDF-1. IL-1alpha and OSCC cell conditioned medium both stimulated HGF and SDF-1 expression, while TGF-beta(1) inhibited production of each factor. Myofibroblast-derived conditioned medium stimulated OSCC cell invasion through matrigel. Blocking antibodies to both HGF and SDF-1 reduced the level of invasion. In fibroblast-free organotypic raft cultures, addition of HGF and SDF-1 stimulated OSCC cell invasion into the underlying collagen gel, although the pattern of invasion differed from that induced by fibroblasts. Fibroblast-derived HGF and SDF-1 appear to play central roles in the reciprocal interactions between OSCC cells and underlying stromal fibroblasts leading to the local invasion of oral cancer.

  13. Synthesis of Pyridine and Spiropyridine Derivatives Derived from 2-aminoprop- 1-ene-1,1,3-tricarbonitrile Together with their c-Met Kinase and Antiproliferative Evaluations.

    Science.gov (United States)

    Mohareb, Rafat M; Abouzied, Amr S; Abbas, Nermeen S

    2018-02-07

    Among a wide range of pyridines, 3-cyanopyridines acquired a special attention due to their wide range of pharmacological activities especially the therapeutic activities. Many pharmacological drugs containing the pyridine nucleus were known in the market. The aim of this work was to synthesize target molecules not only possess anti-tumor activities but also kinase inhibitors. To achieve this goal, our strategy was to synthesize a series of 3-cyanopyridine derivatives using 2-aminoprop-1-ene-1,1,3-tricarbonitrile (1) as the key starting material for many heterocyclization reactions. Muticoponent reactions were adopted using compound 1 to get different pyridine derivatives that were capable for different heterocyclization reactions. Antiproliferative evaluations and c-Met kinase, Pim-1 kinse inhibitions were perform where some compounds gave high activities. Compounds that showed high antiprolifeative activity were tested gor c-Met-independent and the results showed that compounds 5c, 5e, 5f, 7c, 7f and 16d were more active than foretinib. The Pim-1 kinase inhibition activity of some selected compounds showed that compounds 5e and 16c were high potent to inhibit Pim-1 activity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Comparative evaluation of 11C-MET PET-CT and MRI for GTV delineation in precision radiotherapy for gliomas%基于11C-MET PET-CT与MRI对脑胶质瘤精确放疗GTV勾画的比较研究

    Institute of Scientific and Technical Information of China (English)

    王如; 钱立庭; 汪世存; 刘伟; 罗文广; 张洪波; 李广虎; 胡智刚; 刘磊

    2014-01-01

    目的 探讨11C-MET PET-CT和MRI图像对脑胶质瘤GTV确定的差异.方法 选取6例经病理证实为胶质瘤患者的术前MRI及11C-MET PET-CT图像,分别由我科5位医师在两种图像资料上勾画GTV,比较两者差异.结果 在MRI11C-MET PET-CT上勾画的GTV体积相似(P=0.917),GTV变异系数也相似(P =0.600).勾画的GTV重合度最大为73.0%、最小为51.8%.方差分析显示不同勾画者之间在两种图像资料上勾画的GTV相似(P =0.709),但PET-CT组GTV最大差值为27.66 cm3,而MRI组的为40.37 cm3.结论 MRI与PET-CT显示的肿瘤边界存在差异,不同勾画者勾画的GTV相似,PET-CT组的GTV最大差值较MRI组的小,11C-MET PET-CT显示GTV较为直观.%Objective To evaluate the difference between MRI and 11C-MET PET-CT for gross tumor volume (GTV) delineation in the precision radiotherapy for gliomas.Methods Six patients with a pathologically confirmed diagnosis of gliomas were selected for target delineation.Five physicians in our department were called to delineate the GTV based on the preoperative MRI and 11C-MET PET-CT images of these patients.The GTVs based on the two methods were compared.Results There was no significant difference between the GTVs based on MRI and 11C-MET PET-CT (P =0.917),and their coefficients of variation were also similar (P =0.600).The coincidences of GTVs were different among the patients,with a maximum value of 73.0% and a minimum value of 51.8%.GTV showed no significant difference when defined by different physicians on MRI and PET-CT (P =0.709) ; the biggest difference was 27.66 cm3 on PET-CT and 40.37 cm3 on MRI.Conclusions The boundaries of gliomas defined on MRI and PET-CT are different.The GTVs delineated by different physicians on MRI and PET-CT are similar,and the biggest difference on PET-CT is smaller than that on MRI,which suggests that 11C-MET PET-CT is a more direct way for displaying GTV.

  15. Effects of HGF gene polymorphisms and protein expression on transhepatic arterial chemotherapeutic embolism efficacy and prognosis in patients with primary liver cancer

    Directory of Open Access Journals (Sweden)

    Chen HY

    2017-02-01

    Full Text Available Hai-Yong Chen,1,2 Yao-Min Chen,3 Jian Wu,1,2 Fu-Chun Yang,1,2 Zhen Lv,1,2 Yi-Gang Qian,1,2 Shu-Sen Zheng1,2 1Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University, 2Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 3Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China Objective: To investigate the correlations of two hepatocyte growth factor (HGF gene polymorphisms (rs5745652 and rs2074725 and their protein expression levels with the efficacy of transhepatic arterial chemotherapeutic embolism (TACE and prognosis in patients with primary liver cancer (PLC. Methods: From March 2011 to June 2012, 109 PLC patients (the case group who chose TACE as primary treatment and 80 healthy people (the control group who had undergone physical examination in The First Affiliated Hospital, Zhejiang University were selected during the same period. Gene polymorphisms of HGF rs5745652 and HGF rs2074725 were detected. Serum HGF level, treating efficacy, survival quality, and 3-year survival rate for PLC patients who received TACE were observed. Results: There were significant differences in genotype and allele frequencies of HGF rs5745652 and HGF rs2074725, between the case and control groups (all P<0.05. Compared with CT+TT genotype of HGF rs5745652, patients carrying CC genotype had lower serum HGF levels, higher efficacy, better survival quality, and prolonged 3-year survival rate (all P<0.05. In rs2074725, patients carrying CA+AA genotype had lower serum HGF levels, higher efficacy, better survival quality, and prolonged 3-year survival rate compared with patients carrying rs2074725 CC genotype (all P<0.05. Gene polymorphisms of HGF rs5745652 and HGF rs2074725, tumor size, and Barcelona Clinic Liver Cancer stage were independent prognostic factors for PLC (P<0.05. Conclusion: Our

  16. Multiple regulatory mechanisms of hepatocyte growth factor expression in malignant cells with a short poly(dA) sequence in the HGF gene promoter.

    Science.gov (United States)

    Sakai, Kazuko; Takeda, Masayuki; Okamoto, Isamu; Nakagawa, Kazuhiko; Nishio, Kazuto

    2015-01-01

    Hepatocyte growth factor (HGF) expression is a poor prognostic factor in various types of cancer. Expression levels of HGF have been reported to be regulated by shorter poly(dA) sequences in the promoter region. In the present study, the poly(dA) mononucleotide tract in various types of human cancer cell lines was examined and compared with the HGF expression levels in those cells. Short deoxyadenosine repeat sequences were detected in five of the 55 cell lines used in the present study. The H69, IM95, CCK-81, Sui73 and H28 cells exhibited a truncated poly(dA) sequence in which the number of poly(dA) repeats was reduced by ≥5 bp. Two of the cell lines exhibited high HGF expression, determined by reverse transcription quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. The CCK-81, Sui73 and H28 cells with shorter poly(dA) sequences exhibited low HGF expression. The cause of the suppression of HGF expression in the CCK-81, Sui73 and H28 cells was clarified by two approaches, suppression by methylation and single nucleotide polymorphisms in the HGF gene. Exposure to 5-Aza-dC, an inhibitor of DNA methyltransferase 1, induced an increased expression of HGF in the CCK-81 cells, but not in the other cells. Single-nucleotide polymorphism (SNP) rs72525097 in intron 1 was detected in the Sui73 and H28 cells. Taken together, it was found that the defect of poly(dA) in the HGF promoter was present in various types of cancer, including lung, stomach, colorectal, pancreas and mesothelioma. The present study proposes the negative regulation mechanisms by methylation and SNP in intron 1 of HGF for HGF expression in cancer cells with short poly(dA).

  17. Myocardial perfusion imaging, coronary angiography and histological examination in experimental treatment of Ad-HGF for myocardial infarction

    International Nuclear Information System (INIS)

    Li Jianhua; Feng Jianlin; Cheng Xu; Li Dianfu; Zhang Youfu

    2007-01-01

    Objective: Gene therapy has drawn a great attention. A swine model of adenovirus hepatocyte growth factor(Ad-HGF) treated myocardial infarction(MI) was utilized, with the effect being assessed by rest myocardial perfusion imaging, coronary angiography and histological examination. Methods: Three groups of MI swine treated with Ad-HGF at low dose [n=5, Ad-HGF 10 8 plague forming unit (PFU)/ site], medium dose(n=5, 4 x 10 8 PFU/site), and high dose (n=5, 5 x 10 9 PFU/site), a control group treated with normal saline(NS, n=5) and a blank control group (n=5) underwent rest myocardial perfusion imaging and coronary angiography before and after treatment. The imaging results were analyzed along with histological findings in each group. Results: The state of myocardial perfusion and Rentrop scores remained unchanged in the blank control and NS groups after treatment. Whereas there was a significant improvement in the two variables in all three groups treated with Ad-HGF. The scores of left circumflex coronary artery (LCX) before and after treated were 7.8 ± 1.3 and 16.4 ± 1.1 (low-dose), 8.2 ± 1.6 and 17.6 ± 0.9 (medium-dose), 8.4 ± 1.5 and 19.0 ± 0.7 (high-dose), respectively. No significant differences were noted among the 3 groups. The number of vessels of NS group was markedly less than that of other groups. Conclusion: Myocardial perfusion imaging seems to be more accurate than coronary angiography and histological examination in evaluating the effects of Ad-HGF on myocardial infarction. (authors)

  18. Enhanced antioxidant capacity of dental pulp-derived iPSC-differentiated hepatocytes and liver regeneration by injectable HGF-releasing hydrogel in fulminant hepatic failure.

    Science.gov (United States)

    Chiang, Chih-Hung; Wu, Wai-Wah; Li, Hsin-Yang; Chien, Yueh; Sun, Cho-Chin; Peng, Chi-Hsien; Lin, Alex Tong-Long; Huang, Chi-Shuan; Lai, Ying-Hsiu; Chiou, Shih-Hwa; Hung, Shuen-Iu; Chang, Yuh-Lih; Lan, Yuan-Tzu; Liu, Dean-Mo; Chien, Chian-Shiu; Huo, Teh-Ia; Lee, Shou-Dong; Wang, Chien-Ying

    2015-01-01

    Acute hepatic failure (AHF) is a severe liver injury leading to sustained damage and complications. Induced pluripotent stem cells (iPSCs) may be an alternative option for the treatment of AHF. In this study, we reprogrammed human dental pulp-derived fibroblasts into iPSCs, which exhibited pluripotency and the capacity to differentiate into tridermal lineages, including hepatocyte-like cells (iPSC-Heps). These iPSC-Heps resembled human embryonic stem cell-derived hepatocyte-like cells in gene signature and hepatic markers/functions. To improve iPSC-Heps engraftment, we next developed an injectable carboxymethyl-hexanoyl chitosan hydrogel (CHC) with sustained hepatocyte growth factor (HGF) release (HGF-CHC) and investigated the hepatoprotective activity of HGF-CHC-delivered iPSC-Heps in vitro and in an immunocompromised AHF mouse model induced by thioacetamide (TAA). Intrahepatic delivery of HGF-CHC-iPSC-Heps reduced the TAA-induced hepatic necrotic area and rescued liver function and recipient viability. Compared with PBS-delivered iPSC-Heps, the HGF-CHC-delivered iPSC-Heps exhibited higher antioxidant and antiapoptotic activities that reduced hepatic necrotic area. Importantly, these HGF-CHC-mediated responses could be abolished by administering anti-HGF neutralizing antibodies. In conclusion, our findings demonstrated that HGF mediated the enhancement of iPSC-Hep antioxidant/antiapoptotic capacities and hepatoprotection and that HGF-CHC is as an excellent vehicle for iPSC-Hep engraftment in iPSC-based therapy against AHF.

  19. Clinical significance of estimation of changes in serum SF, VEGF and HGF levels and after transfusion of red blood cells in patients with chronic nephritis

    International Nuclear Information System (INIS)

    Mu Peidong; He Haoming

    2011-01-01

    Objective: To observe the changes of serum SF, VEGF and HGF levels and after transfusion of red blood cells (RBC) in patients with chronic nephritis. Methods: Serum SF (with RIA) and serum VEGF, HGF (with ELISA) levels were measured in 30 patients with chronic nephritis both before and after a course of transfusion of RBC and 35 controls. Results: Before transfusion the serum SF levels in the patients were significantly lower than those in controls (P 0.05). Conclusion: Determination of serum SF, VEGF and HGF levels were clinically useful for the progress, prognosis and judgement of chronic nephritis. (authors)

  20. Phase I dose-escalation study of the c-Met tyrosine kinase inhibitor SAR125844 in Asian patients with advanced solid tumors, including patients with MET-amplified gastric cancer.

    Science.gov (United States)

    Shitara, Kohei; Kim, Tae Min; Yokota, Tomoya; Goto, Masahiro; Satoh, Taroh; Ahn, Jin-Hee; Kim, Hyo Song; Assadourian, Sylvie; Gomez, Corinne; Harnois, Marzia; Hamauchi, Satoshi; Kudo, Toshihiro; Doi, Toshihido; Bang, Yung-Jue

    2017-10-03

    SAR125844 is a potent and selective inhibitor of the c-Met kinase receptor. This was an open-label, phase I, multicenter, dose-escalation, and dose-expansion trial of SAR125844 in Asian patients with solid tumors, a subgroup of whom had gastric cancer and MET amplification (NCT01657214). SAR125844 was administered by intravenous infusion (260-570 mg/m 2 ) on days 1, 8, 15, and 22 of each 28-day cycle. Objectives were to determine the maximum tolerated dose (MTD) and to evaluate SAR125844 safety and pharmacokinetic profile. Antitumor activity was also assessed. Of 38 patients enrolled (median age 64.0 years), 22 had gastric cancer, including 14 with MET amplification. In the dose-escalation cohort ( N = 19; unselected population, including three patients with MET -amplification [two with gastric cancer and one with lung cancer]), the MTD was not reached, and the recommended dose was established at 570 mg/m 2 . Most frequent treatment-emergent adverse events (AEs) were nausea (36.8%), vomiting (34.2%), decreased appetite (28.9%), and fatigue or asthenia, constipation, and abdominal pains (each 21.1%); none appeared to be dose-dependent. Grade ≥ 3 AEs were observed in 39.5% of patients and considered drug-related in 7.9%. SAR125844 exposure increased slightly more than expected by dose proportionality; dose had no significant effect on clearance. No objective responses were observed in the dose-escalation cohort, with seven patients (three gastric cancer, two colorectal cancer, one breast cancer, and one with cancer of unknown primary origin) having stable disease. Modest antitumor activity was observed at 570 mg/m 2 in the dose-expansion cohort, comprising patients with MET -amplified tumors ( N = 19). Two gastric cancer patients had partial responses, seven patients had stable disease (six gastric cancer and one kidney cancer), and 10 patients had progressive disease. Single-agent SAR125844 administered up to 570 mg/m 2 has acceptable tolerability and modest

  1. Hepatocyte growth factor in renal failure: promise and reality.

    Science.gov (United States)

    Vargas, G A; Hoeflich, A; Jehle, P M

    2000-04-01

    Can science discover some secrets of Greek mythology? In the case of Prometheus, we can now suppose that his amazing hepatic regeneration was caused by a peptide growth factor called hepatocyte growth factor (HGF). Increasing evidence indicates that HGF acts as a multifunctional cytokine on different cell types. This review addresses the molecular mechanisms that are responsible for the pleiotropic effects of HGF. HGF binds with high affinity to its specific tyrosine kinase receptor c-met, thereby stimulating not only cell proliferation and differentiation, but also cell migration and tumorigenesis. The three fundamental principles of medicine-prevention, diagnosis, and therapy-may be benefited by the rational use of HGF. In renal tubular cells, HGF induces mitogenic and morphogenetic responses. In animal models of toxic or ischemic acute renal failure, HGF acts in a renotropic and nephroprotective manner. HGF expression is rapidly up-regulated in the remnant kidney of nephrectomized rats, inducing compensatory growth. In a mouse model of chronic renal disease, HGF inhibits the progression of tubulointerstitial fibrosis and kidney dysfunction. Increased HGF mRNA transcripts were detected in mesenchymal and tubular epithelial cells of rejecting kidney. In transplanted patients, elevated HGF levels may indicate renal rejection. When HGF is considered as a therapeutic agent in human medicine, for example, to stimulate kidney regeneration after acute injury, strategies need to be developed to stimulate cell regeneration and differentiation without an induction of tumorigenesis.

  2. SNP analyses of growth factor genes EGF, TGF{beta}-1, and HGF reveal haplotypic association of EGF with autism

    Energy Technology Data Exchange (ETDEWEB)

    Toyoda, Takao; Thanseem, Ismail; Kawai, Masayoshi; Sekine, Yoshimoto [Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu 431-3192 (Japan); Nakamura, Kazuhiko; Anitha, Ayyappan; Suda, Shiro [Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu 431-3192 (Japan); Yamada, Kazuo [Laboratory of Molecular Psychiatry, RIKEN Brain Science Institute, Saitama (Japan); Tsujii, Masatsugu [Faculty of Sociology, Chukyo University, Toyota, Aichi (Japan); [The Osaka-Hamamatsu Joint Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu (Japan); Iwayama, Yoshimi; Hattori, Eiji; Toyota, Tomoko; Yoshikawa, Takeo [Laboratory of Molecular Psychiatry, RIKEN Brain Science Institute, Saitama (Japan); Miyachi, Taishi; Tsuchiya, Kenji; Sugihara, Gen-ichi; Matsuzaki, Hideo [The Osaka-Hamamatsu Joint Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu (Japan); Iwata, Yasuhide; Suzuki, Katsuaki [Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu 431-3192 (Japan); Mori, Norio [Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu 431-3192 (Japan); [The Osaka-Hamamatsu Joint Research Center for Child Mental Development, Graduate School of Medicine, Osaka University (Japan); Ouchi, Yasuomi [The Osaka-Hamamatsu Joint Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu (Japan); [The Positron Medical Center, Hamamatsu Medical Center, Hamamatsu (Japan); Sugiyama, Toshiro [Aichi Children' s Health and Medical Center, Obu, Aichi (Japan); Takei, Nori [The Osaka-Hamamatsu Joint Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu (Japan)

    2007-09-07

    Autism is a pervasive neurodevelopmental disorder diagnosed in early childhood. Growth factors have been found to play a key role in the cellular differentiation and proliferation of the central and peripheral nervous systems. Epidermal growth factor (EGF) is detected in several regions of the developing and adult brain, where, it enhances the differentiation, maturation, and survival of a variety of neurons. Transforming growth factor-{beta} (TGF{beta}) isoforms play an important role in neuronal survival, and the hepatocyte growth factor (HGF) has been shown to exhibit neurotrophic activity. We examined the association of EGF, TGF{beta}1, and HGF genes with autism, in a trio association study, using DNA samples from families recruited to the Autism Genetic Resource Exchange; 252 trios with a male offspring scored for autism were selected for the study. Transmission disequilibrium test revealed significant haplotypic association of EGF with autism. No significant SNP or haplotypic associations were observed for TGF{beta}1 or HGF. Given the role of EGF in brain and neuronal development, we suggest a possible role of EGF in the pathogenesis of autism.

  3. SNP analyses of growth factor genes EGF, TGFβ-1, and HGF reveal haplotypic association of EGF with autism

    International Nuclear Information System (INIS)

    Toyoda, Takao; Nakamura, Kazuhiko; Yamada, Kazuo; Thanseem, Ismail; Anitha, Ayyappan; Suda, Shiro; Tsujii, Masatsugu; Iwayama, Yoshimi; Hattori, Eiji; Toyota, Tomoko; Miyachi, Taishi; Iwata, Yasuhide; Suzuki, Katsuaki; Matsuzaki, Hideo; Kawai, Masayoshi; Sekine, Yoshimoto; Tsuchiya, Kenji; Sugihara, Gen-ichi; Ouchi, Yasuomi; Sugiyama, Toshiro; Takei, Nori; Yoshikawa, Takeo; Mori, Norio

    2007-01-01

    Autism is a pervasive neurodevelopmental disorder diagnosed in early childhood. Growth factors have been found to play a key role in the cellular differentiation and proliferation of the central and peripheral nervous systems. Epidermal growth factor (EGF) is detected in several regions of the developing and adult brain, where, it enhances the differentiation, maturation, and survival of a variety of neurons. Transforming growth factor-β (TGFβ) isoforms play an important role in neuronal survival, and the hepatocyte growth factor (HGF) has been shown to exhibit neurotrophic activity. We examined the association of EGF, TGFβ1, and HGF genes with autism, in a trio association study, using DNA samples from families recruited to the Autism Genetic Resource Exchange; 252 trios with a male offspring scored for autism were selected for the study. Transmission disequilibrium test revealed significant haplotypic association of EGF with autism. No significant SNP or haplotypic associations were observed for TGFβ1 or HGF. Given the role of EGF in brain and neuronal development, we suggest a possible role of EGF in the pathogenesis of autism

  4. Gram-scale production of plasmid pUDK-HGF with current good manufacturing practices for gene therapy of critical limb ischemia.

    Science.gov (United States)

    Hu, ChunSheng; Cheng, XiaoChen; Lu, YuXin; Wu, ZuZe; Zhang, QingLin

    2016-11-16

    The demand of a plasmid encoding human hepatocyte growth factor gene (pUDK-HGF) in large quantities at high purity and concentration has increased for gene therapy of critical limb ischemia (CLI) in clinical trials. In this article, we produced pUDK-HGF in compliance with current good manufacturing practices at gram scale. The process included a 50-L batch fermentation, continuous alkaline lysis, and integrated three-step chromatography on Sepharose 6 Fast Flow, PlasmidSelect Xtra, and Source 15Q. The production process has been scaled up to yield 4.24 ± 0.41 g of pharmaceutical pUDK-HGF from 1.0 kg bacterial cell paste and the overall yield reached range from 58.37 to 66.70%. The final pUDK-HGF product exhibited high purity with supercoiled percentage of > 95.8% and undetectable residual RNA, contaminated protein, and bacterial endotoxin. The phase I clinical study indicates that intramuscular injection of pUDK-HGF is safe, well tolerated, and may provide symptomatic relief to CLI patients. These results show that our manufacturing process of pUDK-HGF is efficient in producing pharmaceutical-grade plasmid DNA and is safe for clinical applications.

  5. ARF1 and ARF6 regulate recycling of GRASP/Tamalin and the Rac1-GEF Dock180 during HGF-induced Rac1 activation.

    Science.gov (United States)

    Koubek, Emily J; Santy, Lorraine C

    2018-05-04

    Hepatocyte growth factor (HGF) is a potent signaling factor that acts on epithelial cells, causing them to dissociate and scatter. This migration is coordinated by a number of small GTPases, such as ARF6 and Rac1. Active ARF6 is required for HGF-stimulated migration and intracellular levels of ARF6-GTP and Rac1-GTP increase following HGF treatment. During migration, cross talk between ARF6 and Rac1 occurs through formation of a multi-protein complex containing the ARF-GEF cytohesin-2, the scaffolding protein GRASP/Tamalin, and the Rac1-GEF Dock180. Previously, the role of ARF6 in this process was unclear. We have now found that ARF6 and ARF1 regulate trafficking of GRASP and Dock180 to the plasma membrane following HGF treatment. Trafficking of GRASP and Dock180 is impaired by blocking ARF6-mediated recycling pathways and is required for HGF-stimulated Rac1 activation. Finally, HGF treatment stimulates association of GRASP and Dock180. Inhibition of ARF6 trafficking pathways traps GRASP and Dock180 as a complex in the cell.

  6. Targeting the MET oncogene by concomitant inhibition of receptor and ligand via an antibody-"decoy" strategy.

    Science.gov (United States)

    Basilico, Cristina; Modica, Chiara; Maione, Federica; Vigna, Elisa; Comoglio, Paolo M

    2018-04-25

    MET, a master gene sustaining "invasive growth," is a relevant target for cancer precision therapy. In the vast majority of tumors, wild-type MET behaves as a "stress-response" gene and relies on the ligand (HGF) to sustain cell "scattering," invasive growth and apoptosis protection (oncogene "expedience"). In this context, concomitant targeting of MET and HGF could be crucial to reach effective inhibition. To test this hypothesis, we combined an anti-MET antibody (MvDN30) inducing "shedding" (i.e., removal of MET from the cell surface), with a "decoy" (i.e., the soluble extracellular domain of the MET receptor) endowed with HGF-sequestering ability. To avoid antibody/decoy interaction-and subsequent neutralization-we identified a single aminoacid in the extracellular domain of MET-lysine 842-that is critical for MvDN30 binding and engineered the corresponding recombinant decoyMET (K842E). DecoyMET K842E retains the ability to bind HGF with high affinity and inhibits HGF-induced MET phosphorylation. In HGF-dependent cellular models, MvDN30 antibody and decoyMET K842E used in combination cooperate in restraining invasive growth, and synergize in blocking cancer cell "scattering." The antibody and the decoy unbridle apoptosis of colon cancer stem cells grown in vitro as spheroids. In a preclinical model, built by orthotopic transplantation of a human pancreatic carcinoma in SCID mice engineered to express human HGF, concomitant treatment with antibody and decoy significantly reduces metastatic spread. The data reported indicate that vertical targeting of the MET/HGF axis results in powerful inhibition of ligand-dependent MET activation, providing proof of concept in favor of combined target therapy of MET "expedience." © 2018 UICC.

  7. Disentangling the Complexity of HGF Signaling by Combining Qualitative and Quantitative Modeling.

    Directory of Open Access Journals (Sweden)

    Lorenza A D'Alessandro

    2015-04-01

    Full Text Available Signaling pathways are characterized by crosstalk, feedback and feedforward mechanisms giving rise to highly complex and cell-context specific signaling networks. Dissecting the underlying relations is crucial to predict the impact of targeted perturbations. However, a major challenge in identifying cell-context specific signaling networks is the enormous number of potentially possible interactions. Here, we report a novel hybrid mathematical modeling strategy to systematically unravel hepatocyte growth factor (HGF stimulated phosphoinositide-3-kinase (PI3K and mitogen activated protein kinase (MAPK signaling, which critically contribute to liver regeneration. By combining time-resolved quantitative experimental data generated in primary mouse hepatocytes with interaction graph and ordinary differential equation modeling, we identify and experimentally validate a network structure that represents the experimental data best and indicates specific crosstalk mechanisms. Whereas the identified network is robust against single perturbations, combinatorial inhibition strategies are predicted that result in strong reduction of Akt and ERK activation. Thus, by capitalizing on the advantages of the two modeling approaches, we reduce the high combinatorial complexity and identify cell-context specific signaling networks.

  8. Combined administration of mesenchymal stem cells overexpressing IGF-1 and HGF enhances neovascularization but moderately improves cardiac regeneration in a porcine model.

    Science.gov (United States)

    Gómez-Mauricio, Guadalupe; Moscoso, Isabel; Martín-Cancho, María-Fernanda; Crisóstomo, Verónica; Prat-Vidal, Cristina; Báez-Díaz, Claudia; Sánchez-Margallo, Francisco M; Bernad, Antonio

    2016-07-16

    Insulin-like growth factor 1 (IGF-1) and hepatocyte growth factor (HGF) are among the most promising growth factors for promoting cardiorepair. Here, we evaluated the combination of cell- and gene-based therapy using mesenchymal stem cells (MSC) genetically modified to overexpress IGF-1 or HGF to treat acute myocardial infarction (AMI) in a porcine model. Pig MSC from adipose tissue (paMSC) were genetically modified for evaluation of different therapeutic strategies to improve AMI treatment. Three groups of infarcted Large White pigs were compared (I, control, non-transplanted; II, transplanted with paMSC-GFP (green fluorescent protein); III, transplanted with paMSC-IGF-1/HGF). Cardiac function was evaluated non-invasively using magnetic resonance imaging (MRI) for 1 month. After euthanasia and sampling of the animal, infarcted areas were studied by histology and immunohistochemistry. Intramyocardial transplant in a porcine infarct model demonstrated the safety of paMSC in short-term treatments. Treatment with paMSC-IGF-1/HGF (1:1) compared with the other groups showed a clear reduction in inflammation in some sections analyzed and promoted angiogenic processes in ischemic tissue. Although cardiac function parameters were not significantly improved, cell retention and IGF-1 overexpression was confirmed within the myocardium. The simultaneous administration of IGF-1- and HGF-overexpressing paMSC appears not to promote a synergistic effect or effective repair. The combined enhancement of neovascularization and fibrosis in paMSC-IGF-1/HGF-treated animals nonetheless suggests that sustained exposure to high IGF-1 + HGF levels promotes beneficial as well as deleterious effects that do not improve overall cardiac regeneration.

  9. Umbilical Cord-derived Mesenchymal Stem Cells Instruct Monocytes Towards an IL10-producing Phenotype by Secreting IL6 and HGF

    Science.gov (United States)

    Deng, Yinan; Zhang, Yingcai; Ye, Linsen; Zhang, Tong; Cheng, Jintao; Chen, Guihua; Zhang, Qi; Yang, Yang

    2016-01-01

    Human UC-MSCs are regarded as an attractive alternative to BM-MSCs for clinical applications due to their easy preparation, higher proliferation and lower immunogenicity. However, the mechanisms underlying immune suppression by UC-MSCs are still unclear. We studied the mechanism of inhibition by UC-MSCs during the differentiation of monocytes into DCs and focused on the specific source and the role of the involved cytokines. We found that UC-MSCs suppressed monocyte differentiation into DCs and instructed monocytes towards other cell types, with clear decreases in the expression of co-stimulatory molecules, in the secretion of inflammatory factors and in allostimulatory capacity. IL6, HGF and IL10 might be involved in this process because they were detected at higher levels in a coculture system. UC-MSCs produce IL-6 and HGF, and neutralization of IL-6 and HGF reversed the suppressive effect of UC-MSCs. IL10 was not produced by UC-MSCs but was exclusively produced by monocytes after exposure to UC-MSCs, IL-6 or HGF. In summary, we found that the UC-MSC-mediated inhibitory effect was dependent on IL6 and HGF secreted by UC-MSCs and that this effect induced monocyte-derived cells to produce IL10, which might indirectly strengthen the suppressive effect of UC-MSCs. PMID:27917866

  10. Umbilical Cord-derived Mesenchymal Stem Cells Instruct Monocytes Towards an IL10-producing Phenotype by Secreting IL6 and HGF.

    Science.gov (United States)

    Deng, Yinan; Zhang, Yingcai; Ye, Linsen; Zhang, Tong; Cheng, Jintao; Chen, Guihua; Zhang, Qi; Yang, Yang

    2016-12-05

    Human UC-MSCs are regarded as an attractive alternative to BM-MSCs for clinical applications due to their easy preparation, higher proliferation and lower immunogenicity. However, the mechanisms underlying immune suppression by UC-MSCs are still unclear. We studied the mechanism of inhibition by UC-MSCs during the differentiation of monocytes into DCs and focused on the specific source and the role of the involved cytokines. We found that UC-MSCs suppressed monocyte differentiation into DCs and instructed monocytes towards other cell types, with clear decreases in the expression of co-stimulatory molecules, in the secretion of inflammatory factors and in allostimulatory capacity. IL6, HGF and IL10 might be involved in this process because they were detected at higher levels in a coculture system. UC-MSCs produce IL-6 and HGF, and neutralization of IL-6 and HGF reversed the suppressive effect of UC-MSCs. IL10 was not produced by UC-MSCs but was exclusively produced by monocytes after exposure to UC-MSCs, IL-6 or HGF. In summary, we found that the UC-MSC-mediated inhibitory effect was dependent on IL6 and HGF secreted by UC-MSCs and that this effect induced monocyte-derived cells to produce IL10, which might indirectly strengthen the suppressive effect of UC-MSCs.

  11. receptores

    Directory of Open Access Journals (Sweden)

    Salete Regina Daronco Benetti

    2006-01-01

    Full Text Available Se trata de un estudio etnográfico, que tuvo lo objetivo de interpretar el sistema de conocimiento y del significado atribuidos a la sangre referente a la transfusión sanguínea por los donadores y receptores de un banco de sangre. Para la colecta de las informaciones se observaron los participantes y la entrevista etnográfica se realizó el análisis de dominio, taxonómicos y temáticos. Los dominios culturales fueron: la sangre es vida: fuente de vida y alimento valioso; creencias religiosas: fuentes simbólicas de apoyos; donación sanguínea: un gesto colaborador que exige cuidarse, gratifica y trae felicidad; donación sanguínea: fuente simbólica de inseguridad; estar enfermo es una condición para realizar transfusión sanguínea; transfusión sanguínea: esperanza de vida; Creencias populares: transfusión sanguínea como riesgo para la salud; donadores de sangre: personas benditas; donar y recibir sangre: como significado de felicidad. Temática: “líquido precioso que origina, sostiene, modifica la vida, provoca miedo e inseguridad”.

  12. IL-6 modulates hepatocyte proliferation via induction of HGF/p21cip1: Regulation by SOCS3

    International Nuclear Information System (INIS)

    Sun Rui; Jaruga, Barbara; Kulkarni, Shailin; Sun Haoyu; Gao Bin

    2005-01-01

    The precise role of IL-6 in liver regeneration and hepatocyte proliferation is controversial and the role of SOCS3 in liver regeneration remains unknown. Here we show that in vitro treatment with IL-6 inhibited primary mouse hepatocyte proliferation. IL-6 induced p21 cip1 protein expression in primary mouse hepatocytes. Disruption of the p21 cip1 gene abolished the inhibitory effect of IL-6 on cell proliferation. Co-culture with nonparenchymal liver cells diminished IL-6 inhibition of hepatocyte proliferation, which was likely due to IL-6 stimulation of nonparenchymal cells to produce HGF. Finally, IL-6 induced higher levels of p21 cip1 protein expression and a slightly stronger inhibition of cell proliferation in SOCS3 +/- mouse hepatocytes compared to wild-type hepatocytes, while liver regeneration was enhanced and prolonged in SOCS3 +/- mice. Our findings suggest that IL-6 directly inhibits hepatocyte proliferation via a p21 cip1 -dependent mechanism and indirectly enhances hepatocyte proliferation via stimulating nonparenchymal cells to produce HGF. SOCS3 negatively regulates liver regeneration

  13. Sublethal irradiation promotes invasiveness of neuroblastoma cells

    International Nuclear Information System (INIS)

    Schweigerer, Lothar; Rave-Fraenk, Margret; Schmidberger, Heinz; Hecht, Monica

    2005-01-01

    Neuroblastoma is the most frequent extracranial solid tumour of childhood. Despite multiple clinical efforts, clinical outcome has remained poor. Neuroblastoma is considered to be radiosensitive, but some clinical studies including the German trial NB90 failed to show a clinical benefit of radiation therapy. The mechanisms underlying this apparent discrepancy are still unclear. We have therefore investigated the effects of radiation on neuroblastoma cell behaviour in vitro. We show that sublethal doses of irradiation up-regulated the expression of the hepatocyte growth factor (HGF) and its receptor c-Met in some neuroblastoma cell lines. The increase in HGF/c-Met expression was correlated with enhanced invasiveness and activation of proteases degrading the extracellular matrix. Thus, irradiation at sublethal doses may promote the metastatic dissemination of neuroblastoma cells through activating the HGF/c-Met pathway and triggering matrix degradation

  14. Inhibition of long non-coding RNA TUG1 on gastric cancer cell transference and invasion through regulating and controlling the expression of miR-144/c-Met axis.

    Science.gov (United States)

    Ji, Ting-Ting; Huang, Xuan; Jin, Jie; Pan, Sheng-Hua; Zhuge, Xiao-Ju

    2016-05-01

    To discuss the expression of long noncoding RNA TUG1 (lncRNA-TUG1) in gastric carcinoma (GC) and its effects on the transferring and invading capacity of gastric carcinoma cells. Forty cases of carcinoma tissue and para-carcinoma tissue were selected from GC patients who underwent surgical removal in Zhejiang Provincial Hospital of Chinese Traditional Medicine and Wenzhou Central Hospital from January, 2013 to December, 2014; the expressing level of lncRNA-TUG1 in GC and para-C tissues was detected by applying the qRT-PCR technique. The correlation between lncRNA-TUG1 expression and patients' clinical data was classified and analyzed. SGC-7901 cells were transfected using lncRNA-TUG1 specific siRNA. Changes of the transferring and invading capacity of siRNA-transfected SGC-7901 cells were scratch-tested and transwell-detected. qRT-PCR was applied to detect the expression level of microRNA-144 after lncRNA-TUG1 was silenced. Changes of c-Met mRNA and protein expressions was detected by qRT-PCR and western-blot test. The expression level of lncRNA-TUG1 in GC tissue was significant higher than that in para-C tissue (P TUG1 in GC tissue was significantly correlated with tumor lymph nodes metastasis and advance TNM phasing (P TUG1 specific siRNA (P TUG1 was silenced (P TUG1 shows an up-regulated expression in GC tissue and that bears a correlation with clinicopathological features of malignant tumor. lncRNA-TUG1 can promote the transferring and invading capacity of GC by inhibiting the pathway of microRNA-144/c-Met. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  15. The (PrS/HGF-pDNA) multilayer films for gene-eluting stent coating: Gene-protecting, anticoagulation, antibacterial properties, and in vivo antirestenosis evaluation.

    Science.gov (United States)

    Chang, Hao; Ren, Ke-feng; Zhang, He; Wang, Jin-lei; Wang, Bai-liang; Ji, Jian

    2015-02-01

    Vascular gene-eluting stents (GES) is a promising strategy for treatment of cardiovascular disease. Very recently, we have proved that the (protamine sulfate/plasmid DNA encoding hepatocyte growth factor) (PrS/HGF-pDNA) multilayer can serve as a powerful tool for enhancing competitiveness of endothelial cell over smooth muscle cell, which opens perspectives for the regulation of intercellular competitiveness in the field of interventional therapy. However, before the gene multilayer films could be used in vascular stents for real clinical application, the preservation of gene bioactivity during the industrial sterilization and the hemocompatibility of film should be taken into account. Actually, both are long been ignored issues in the field of gene coating for GES. In this study, we demonstrate that the (PrS/HGF-pDNA) multilayer film exhibits the good gene-protecting abilities, which is confirmed by using the industrial sterilizations (gamma irradiation and ethylene oxide) and a routine storage condition (dry state at 4°C for 30 days). Furthermore, hemocompatible measurements (such as platelet adhesion and whole blood coagulation) and antibacterial assays (bacteria adhesion and growth inhibition) indicate the good anticoagulation and antibacterial properties of the (PrS/HGF-pDNA) multilayer film. The in vivo preliminary data of angiography and histological analysis suggest that the (PrS/HGF-pDNA) multilayer coated stent can reduce the in-stent restenosis. This work reveals that the (PrS/HGF-pDNA) multilayer film could be a promising candidate as coating for GES, which is of great potential in future clinic application. © 2014 Wiley Periodicals, Inc.

  16. Safety and Efficacy of Intratumoral Injections of Chimeric Antigen Receptor (CAR) T Cells in Metastatic Breast Cancer.

    Science.gov (United States)

    Tchou, Julia; Zhao, Yangbing; Levine, Bruce L; Zhang, Paul J; Davis, Megan M; Melenhorst, Jan Joseph; Kulikovskaya, Irina; Brennan, Andrea L; Liu, Xiaojun; Lacey, Simon F; Posey, Avery D; Williams, Austin D; So, Alycia; Conejo-Garcia, Jose R; Plesa, Gabriela; Young, Regina M; McGettigan, Shannon; Campbell, Jean; Pierce, Robert H; Matro, Jennifer M; DeMichele, Angela M; Clark, Amy S; Cooper, Laurence J; Schuchter, Lynn M; Vonderheide, Robert H; June, Carl H

    2017-12-01

    Chimeric antigen receptors (CAR) are synthetic molecules that provide new specificities to T cells. Although successful in treatment of hematologic malignancies, CAR T cells are ineffective for solid tumors to date. We found that the cell-surface molecule c-Met was expressed in ∼50% of breast tumors, prompting the construction of a CAR T cell specific for c-Met, which halted tumor growth in immune-incompetent mice with tumor xenografts. We then evaluated the safety and feasibility of treating metastatic breast cancer with intratumoral administration of mRNA-transfected c-Met-CAR T cells in a phase 0 clinical trial (NCT01837602). Introducing the CAR construct via mRNA ensured safety by limiting the nontumor cell effects (on-target/off-tumor) of targeting c-Met. Patients with metastatic breast cancer with accessible cutaneous or lymph node metastases received a single intratumoral injection of 3 × 10 7 or 3 × 10 8 cells. CAR T mRNA was detectable in peripheral blood and in the injected tumor tissues after intratumoral injection in 2 and 4 patients, respectively. mRNA c-Met-CAR T cell injections were well tolerated, as none of the patients had study drug-related adverse effects greater than grade 1. Tumors treated with intratumoral injected mRNA c-Met-CAR T cells were excised and analyzed by immunohistochemistry, revealing extensive tumor necrosis at the injection site, cellular debris, loss of c-Met immunoreactivity, all surrounded by macrophages at the leading edges and within necrotic zones. We conclude that intratumoral injections of mRNA c-Met-CAR T cells are well tolerated and evoke an inflammatory response within tumors. Cancer Immunol Res; 5(12); 1152-61. ©2017 AACR . ©2017 American Association for Cancer Research.

  17. Hepatocyte growth factor profile with breast cancer

    Directory of Open Access Journals (Sweden)

    Hoda A EL-Attar

    2011-01-01

    Full Text Available Background: The multifunctional hepatocyte growth factor (HGF is the ligand of c-Met receptor; it plays important role in mammary differentiation. HGF-Met signaling is a critical downstream function of c-Src-Stat3 pathway in mammalian tumorigenesis. Aim: Evaluation of tissue c-Met receptor hepatocyte growth factor receptor (HGFR and serum level of HGF in female breast ductal carcinoma. Materials and Methods: Sixty-eight premenopausal females were divided as 30 control females subdivided into: [Group 1] 15 healthy volunteer females and [Group 2] five with fibrocystic disease and 10 having fibroadenoma of the breast and patients group [Group 3] consisted of 38 female patients with breast ductal carcinoma. Thorough clinical examination, preoperative fine needle aspiration cytology, estimation of fasting serum glucose, urea, creatinine, and uric acid levels, alanine aminotransferase activities, C-reactive protein, HGF level, before surgery and histopathological examination of the breast masses, and immunohistochemical detection of HGFR were done. Results and Conclusions: Significant increase in serum HGF levels were found in patients with breast cancer as compared with controls. Significant increase was also seen in patients with breast cancer with and without lymph node metastasis when each subgroup was compared with controls. Serum level of HGF is an independent prognostic indicator of breast cancer. Fibrocystic disease of the breast showed weak HGFR expression, while in normal tissue, HGFR was scanty; meanwhile, breast invasive ductal carcinoma showed homogenous strong reaction to HGFR. HGF is only one of a number of key factors involved in breast cancer and preoperative high serum HGF levels and malignancy occur usually together.

  18. LPA, HGF, and EGF utilize distinct combinations of signaling pathways to promote migration and invasion of MDA-MB-231 breast carcinoma cells

    International Nuclear Information System (INIS)

    Harrison, Susan MW; Knifley, Teresa; Chen, Min; O’Connor, Kathleen L

    2013-01-01

    Various pathways impinge on the actin-myosin pathway to facilitate cell migration and invasion including members of the Rho family of small GTPases and MAPK. However, the signaling components that are considered important for these processes vary substantially within the literature with certain pathways being favored. These distinctions in signaling pathways utilized are often attributed to differences in cell type or physiological conditions; however, these attributes have not been systematically assessed. To address this question, we analyzed the migration and invasion of MDA-MB-231 breast carcinoma cell line in response to various stimuli including lysophosphatidic acid (LPA), hepatocyte growth factor (HGF) and epidermal growth factor (EGF) and determined the involvement of select signaling pathways that impact myosin light chain phosphorylation. LPA, a potent stimulator of the Rho-ROCK pathway, surprisingly did not require the Rho-ROCK pathway to stimulate migration but instead utilized Rac and MAPK. In contrast, LPA-stimulated invasion required Rho, Rac, and MAPK. Of these three major pathways, EGF-stimulated MDA-MB-231 migration and invasion required Rho; however, Rac was essential only for invasion and MAPK was dispensable for migration. HGF signaling, interestingly, utilized the same pathways for migration and invasion, requiring Rho but not Rac signaling. Notably, the dependency of HGF-stimulated migration and invasion as well as EGF-stimulated invasion on MAPK was subject to the inhibitors used. As expected, myosin light chain kinase (MLCK), a convergence point for MAPK and Rho family GTPase signaling, was required for all six conditions. These observations suggest that, while multiple signaling pathways contribute to cancer cell motility, not all pathways operate under all conditions. Thus, our study highlights the plasticity of cancer cells to adapt to multiple migratory cues

  19. HGF and BFGF Secretion by Human Adipose-Derived Stem Cells Improves Ovarian Function During Natural Aging via Activation of the SIRT1/FOXO1 Signaling Pathway.

    Science.gov (United States)

    Ding, Chenyue; Zou, Qinyan; Wang, Fuxin; Wu, Huihua; Wang, Wei; Li, Hong; Huang, Boxian

    2018-01-01

    Human adipose-derived stem cells (hADSCs) are a potential therapeutic option for clinical applications because of their ability to produce cytokines and their capacity for trilineage differentiation. To date, few researchers have investigated the effects of hADSCs on natural ovarian aging (NOA). An NOA mouse model and human ovarian granule cells (hGCs) collected from individuals with NOA were prepared to assess the therapeutic effects and illuminate the mechanism of hADSCs in curing NOA. Enzyme-linked immunosorbent assay was used to detect the serum levels of sex hormones and antioxidative enzymes. The proliferation rate and marker expression level of hGCs were measured by flow cytometry (FACS). Cytokines were measured by a protein antibody array methodology. Western blot assays were used to determine the protein expression levels of SIRT1 and FOXO1. Our results showed that hADSCs displayed therapeutic activity against ovarian function in an NOA mouse model, increasing the proliferation rate and marker expression level of hGCs. Furthermore, the yields of hADSC-secreted HGF and bFGF were higher than those of other growth factors. FACS showed that combination treatment with the growth factors HGF and bFGF more strongly promoted proliferation and inhibited apoptosis in hGCs than HGF or bFGF treatment alone. FACS and ELISA revealed that the combination treatment with both growth factors inhibited oxidative stress more forcefully than treatments with only one of these growth factors. In addition, protein assays demonstrated that combination treatment with both growth factors suppressed oxidative stress by up-regulating the expression of SIRT1 and FOXO1. These findings demonstrate for the first time the molecular cascade and related cell biology events involved in the mechanism by which HGF and bFGF derived from hADSCs improved ovarian function during natural aging via reduction of oxidative stress by activating the SIRT1/FOXO1 signaling pathway. © 2018 The Author

  20. HGF-transgenic MSCs can improve the effects of tissue self-repair in a rabbit model of traumatic osteonecrosis of the femoral head.

    Directory of Open Access Journals (Sweden)

    Qian Wen

    Full Text Available BACKGROUND: Osteonecrosis of the femoral head (ONFH is generally characterized as an irreversible disease and tends to cause permanent disability. Therefore, understanding the pathogenesis and molecular mechanisms of ONFH and developing effective therapeutic methods is critical for slowing the progress of the disease. METHODOLOGY/PRINCIPAL FINDINGS: In this study, an experimental rabbit model of early stage traumatic ONFH was established, validated, and used for an evaluation of therapy. Computed tomography (CT and magnetic resonance (MR imaging confirmed that this model represents clinical Association Research Circulation Osseous (ARCO phase I or II ONFH, which was also confirmed by the presence of significant tissue damage in osseous tissue and vasculature. Pathological examination detected obvious self-repair of bone tissue up to 2 weeks after trauma, as indicated by revascularization (marked by CD105 and expression of collagen type I (Col I, osteocalcin, and proliferating cell nuclear antigen. Transplantation of hepatocyte growth factor (HGF-transgenic mesenchymal stem cells (MSCs 1 week after trauma promoted recovery from ONFH, as evidenced by a reversed pattern of Col I expression compared with animals receiving no therapeutic treatment, as well as increased expression of vascular endothelial growth factor. CONCLUSIONS/SIGNIFICANCE: These results indicate that the transplantation of HGF-transgenic MSCs is a promising method for the treatment for ONFH and suggest that appropriate interference therapy during the tissue self-repair stage contributes to the positive outcomes. This study also provides a model for the further study of the ONFH etiology and therapeutic interventions.

  1. Hepatocyte Growth Factor from a Clinical Perspective: A Pancreatic Cancer Challenge

    International Nuclear Information System (INIS)

    Rizwani, Wasia; Allen, Amanda E.; Trevino, Jose G.

    2015-01-01

    Pancreatic cancer is the fourth leading cause of cancer-related deaths in the United States and incidence rates are rising. Both detection and treatment options for pancreatic cancer are limited, providing a less than 5% five-year survival advantage. The need for new biomarkers for early detection and treatment of pancreatic cancer demands the efficient translation of bench knowledge to provide clinical benefit. One source of therapeutic resistance is the pancreatic tumor microenvironment, which is characterized by desmoplasia and hypoxia making it less conducive to current therapies. A major factor regulating desmoplasia and subsequently promoting chemoresistance in pancreatic cancer is hepatocyte growth factor (HGF), the sole ligand for c-MET (mesenchymal-epithelial transition), an epithelial tyrosine kinase receptor. Binding of HGF to c-MET leads to receptor dimerization and autophosphorylation resulting in the activation of multiple cellular processes that support cancer progression. Inhibiting activation of c-MET in cancer cells, in combination with other approaches for reducing desmoplasia in the tumor microenvironment, might significantly improve the success of chemotherapy. Therefore, HGF makes a potent novel target for developing therapeutic strategies in combination with existing drugs for treating pancreatic adenocarcinoma. This review provides a comprehensive analysis of HGF and its promising potential as a chemotherapeutic target for pancreatic cancer

  2. Hepatocyte Growth Factor from a Clinical Perspective: A Pancreatic Cancer Challenge

    Energy Technology Data Exchange (ETDEWEB)

    Rizwani, Wasia [Department of Biochemistry, Osmania University, Hyderabad, Telangana 500007 (India); Allen, Amanda E.; Trevino, Jose G., E-mail: Jose.Trevino@surgery.ufl.edu [Department of Surgery, University of Florida, 1600 SW Archer Rd, Rm 6175, P.O. Box 100109, Gainesville, FL 32610 (United States)

    2015-09-03

    Pancreatic cancer is the fourth leading cause of cancer-related deaths in the United States and incidence rates are rising. Both detection and treatment options for pancreatic cancer are limited, providing a less than 5% five-year survival advantage. The need for new biomarkers for early detection and treatment of pancreatic cancer demands the efficient translation of bench knowledge to provide clinical benefit. One source of therapeutic resistance is the pancreatic tumor microenvironment, which is characterized by desmoplasia and hypoxia making it less conducive to current therapies. A major factor regulating desmoplasia and subsequently promoting chemoresistance in pancreatic cancer is hepatocyte growth factor (HGF), the sole ligand for c-MET (mesenchymal-epithelial transition), an epithelial tyrosine kinase receptor. Binding of HGF to c-MET leads to receptor dimerization and autophosphorylation resulting in the activation of multiple cellular processes that support cancer progression. Inhibiting activation of c-MET in cancer cells, in combination with other approaches for reducing desmoplasia in the tumor microenvironment, might significantly improve the success of chemotherapy. Therefore, HGF makes a potent novel target for developing therapeutic strategies in combination with existing drugs for treating pancreatic adenocarcinoma. This review provides a comprehensive analysis of HGF and its promising potential as a chemotherapeutic target for pancreatic cancer.

  3. Hepatocyte Growth Factor from a Clinical Perspective: A Pancreatic Cancer Challenge

    Directory of Open Access Journals (Sweden)

    Wasia Rizwani

    2015-09-01

    Full Text Available Pancreatic cancer is the fourth leading cause of cancer-related deaths in the United States and incidence rates are rising. Both detection and treatment options for pancreatic cancer are limited, providing a less than 5% five-year survival advantage. The need for new biomarkers for early detection and treatment of pancreatic cancer demands the efficient translation of bench knowledge to provide clinical benefit. One source of therapeutic resistance is the pancreatic tumor microenvironment, which is characterized by desmoplasia and hypoxia making it less conducive to current therapies. A major factor regulating desmoplasia and subsequently promoting chemoresistance in pancreatic cancer is hepatocyte growth factor (HGF, the sole ligand for c-MET (mesenchymal-epithelial transition, an epithelial tyrosine kinase receptor. Binding of HGF to c-MET leads to receptor dimerization and autophosphorylation resulting in the activation of multiple cellular processes that support cancer progression. Inhibiting activation of c-MET in cancer cells, in combination with other approaches for reducing desmoplasia in the tumor microenvironment, might significantly improve the success of chemotherapy. Therefore, HGF makes a potent novel target for developing therapeutic strategies in combination with existing drugs for treating pancreatic adenocarcinoma. This review provides a comprehensive analysis of HGF and its promising potential as a chemotherapeutic target for pancreatic cancer.

  4. Receptor ligand-triggered resistance to alectinib and its circumvention by Hsp90 inhibition in EML4-ALK lung cancer cells.

    Science.gov (United States)

    Tanimoto, Azusa; Yamada, Tadaaki; Nanjo, Shigeki; Takeuchi, Shinji; Ebi, Hiromichi; Kita, Kenji; Matsumoto, Kunio; Yano, Seiji

    2014-07-15

    Alectinib is a new generation ALK inhibitor with activity against the gatekeeper L1196M mutation that showed remarkable activity in a phase I/II study with echinoderm microtubule associated protein-like 4 (EML4)--anaplastic lymphoma kinase (ALK) non-small cell lung cancer (NSCLC) patients. However, alectinib resistance may eventually develop. Here, we found that EGFR ligands and HGF, a ligand of the MET receptor, activate EGFR and MET, respectively, as alternative pathways, and thereby induce resistance to alectinib. Additionally, the heat shock protein 90 (Hsp90) inhibitor suppressed protein expression of ALK, MET, EGFR, and AKT, and thereby induced apoptosis in EML4-ALK NSCLC cells, even in the presence of EGFR ligands or HGF. These results suggest that Hsp90 inhibitors may overcome ligand-triggered resistance to new generation ALK inhibitors and may result in more successful treatment of NSCLC patients with EML4-ALK.

  5. Insulin receptors

    International Nuclear Information System (INIS)

    Kahn, C.R.; Harrison, L.C.

    1988-01-01

    This book contains the proceedings on insulin receptors. Part A: Methods for the study of structure and function. Topics covered include: Method for purification and labeling of insulin receptors, the insulin receptor kinase, and insulin receptors on special tissues

  6. Hepatocyte and keratinocyte growth factors and their receptors in human lung emphysema

    Directory of Open Access Journals (Sweden)

    Marchal Joëlle

    2005-10-01

    Full Text Available Abstract Background Hepatocyte and keratinocyte growth factors are key growth factors in the process of alveolar repair. We hypothesized that excessive alveolar destruction observed in lung emphysema involves impaired expression of hepatocyte and keratinocyte growth factors or their respective receptors, c-met and keratinocyte growth factor receptor. The aim of our study was to compare the expression of hepatocyte and keratinocyte growth factors and their receptors in lung samples from 3 groups of patients: emphysema; smokers without emphysema and non-smokers without emphysema. Methods Hepatocyte and keratinocyte growth factor proteins were analysed by immunoassay and western blot; mRNA expression was measured by real time quantitative polymerase chain reaction. Results Hepatocyte and keratinocyte growth factors, c-met and keratinocyte growth factor receptor mRNA levels were similar in emphysema and non-emphysema patients. Hepatocyte growth factor mRNA correlated negatively with FEV1 and the FEV1/FVC ratio both in emphysema patients and in smokers with or without emphysema. Hepatocyte and keratinocyte growth factor protein concentrations were similar in all patients' groups. Conclusion The expression of hepatocyte and keratinocyte growth factors and their receptors is preserved in patients with lung emphysema as compared to patients without emphysema. Hepatocyte growth factor mRNA correlates with the severity of airflow obstruction in smokers.

  7. First Ph.D. Student Workshop of the Hermann von Helmholtz Association of National Research Centers (HGF) on ''Nuclear Safety Research''

    International Nuclear Information System (INIS)

    Knebel, J.U.; Sanchez Espinoza, V.H.

    2006-03-01

    The First Ph.D. Student Workshop ''Nuclear Safety Research'' of the Helmholtz Association of National Research Centers (HGF)'' was jointly organized by the Research Center Karlsruhe GmbH and the Energie Baden-Wuerttemberg AG (EnBW) from Wednesday 9th to Friday 11th March 2005. The workshop was opened with welcome greetings by Dr. Peter Fritz, Forschungszentrum Karlsruhe. Subsequently Dr. Joachim U. Knebel explained the main goals and the content of the workshop. The young scientists reported in 28 high-level presentations about their research work which covered a wide spectrum from reactor safety, partitions and transmutation, and innovative reactor systems, to safety research for nuclear waste disposal. The junior researchs showed excellent professional competence and demonstrated presentation qualities at the highest level. The successful funding of two Virtual Institutes, namely: the ''Competence in Nuclear Technologies'' and ''Functional Characteristics of Aquatic Interfaces both co-ordinated by Forschungszentrum Karlsruhe'', by the President of the Helmholtz Association Prof. Walter Kroell was the motivation for the organization of this first Ph.D. Student Workshop. Thanks to these two Virtual Institutes, the Reseach Center Karlsruhe and Juelich together with several univer-sities i.e. RWTH Aachen, Heidelberg, Karlsruhe, Muenster, and Stuttgart, have successfully financed eight Ph.D. and two post-doctoral students. Moreover, young scientists of the European Institute for Transuranium Elements (ITU) and additional seven Ph.D. Students, who are sponsored by the German nuclear industry (Framatome ANP, RWE Power, EnBW) in the frame of the Alliance Competence in on Nuclear Technology, and who are trained at Forschungszentrum Karlsruhe, actively contributed to this workshop. The EnBW-Award was handed over by Dr. Hans-Josef Zimmer, member of the board of directors of the EnBW-Kraftwerksgesellschaft, to Mrs. Ayelet Walter from the University of Stuttgart for the best

  8. Somatostatin receptors

    DEFF Research Database (Denmark)

    Møller, Lars Neisig; Stidsen, Carsten Enggaard; Hartmann, Bolette

    2003-01-01

    functional units, receptors co-operate. The total receptor apparatus of individual cell types is composed of different-ligand receptors (e.g. SRIF and non-SRIF receptors) and co-expressed receptor subtypes (e.g. sst(2) and sst(5) receptors) in characteristic proportions. In other words, levels of individual......-peptides, receptor agonists and antagonists. Relatively long half lives, as compared to those of the endogenous ligands, have been paramount from the outset. Motivated by theoretical puzzles or the shortcomings of present-day diagnostics and therapy, investigators have also aimed to produce subtype...

  9. Receptor assay

    Energy Technology Data Exchange (ETDEWEB)

    Kato, K; Ibayashi, H [Kyushu Univ., Fukuoka (Japan). Faculty of Medicine

    1975-05-01

    This paper summarized present status and problems of analysis of hormone receptor and a few considerations on clinical significance of receptor abnormalities. It was pointed that in future clinical field quantitative and qualitative analysis of receptor did not remain only in the etiological discussion, but that it was an epoch-making field of investigation which contained the possiblity of artificial change of sensitivity of living body on drugs and the development connected directly with treatment of various diseases.

  10. Personalized Radiation Oncology: Epidermal Growth Factor Receptor and Other Receptor Tyrosine Kinase Inhibitors.

    Science.gov (United States)

    Higgins, Geoff S; Krause, Mechthild; McKenna, W Gillies; Baumann, Michael

    Molecular biomarkers are currently evaluated in preclinical and clinical studies in order to establish predictors for treatment decisions in radiation oncology. The receptor tyrosine kinases (RTK) are described in the following text. Among them, the most data are available for the epidermal growth factor receptor (EGFR) that plays a major role for prognosis of patients after radiotherapy, but seems also to be involved in mechanisms of radioresistance, specifically in repopulation of tumour cells between radiotherapy fractions. Monoclonal antibodies against the EGFR improve locoregional tumour control and survival when applied during radiotherapy, however, the effects are heterogeneous and biomarkers for patient selection are warranted. Also other RTK´s such as c-Met and IGF-1R seem to play important roles in tumour radioresistance. Beside the potential to select patients for molecular targeting approaches combined with radiotherapy, studies are also needed to evluate radiotherapy adaptation approaches for selected patients, i.e. adaptation of radiation dose, or, more sophisticated, of target volumes.

  11. Combined therapeutic potential of nuclear receptors with receptor tyrosine kinase inhibitors in lung cancer

    International Nuclear Information System (INIS)

    Wairagu, Peninah M.; Park, Kwang Hwa; Kim, Jihye; Choi, Jong-Whan; Kim, Hyun-Won; Yeh, Byung-Il; Jung, Soon-Hee; Yong, Suk-Joong; Jeong, Yangsik

    2014-01-01

    Highlights: • The 48 NR genes and 48 biological anti-cancer targets are profiled in paired-cells. • Growth inhibition by NR ligands or TKIs is target receptor level-dependent. • T0901317 with gefitinib/PHA665752 shows additive growth inhibition in lung cells. - Abstract: Cancer heterogeneity is a big hurdle in achieving complete cancer treatment, which has led to the emergence of combinational therapy. In this study, we investigated the potential use of nuclear receptor (NR) ligands for combinational therapy with other anti-cancer drugs. We first profiled all 48 NRs and 48 biological anti-cancer targets in four pairs of lung cell lines, where each pair was obtained from the same patient. Two sets of cell lines were normal and the corresponding tumor cell lines while the other two sets consisted of primary versus metastatic tumor cell lines. Analysis of the expression profile revealed 11 NRs and 15 cancer targets from the two pairs of normal versus tumor cell lines, and 9 NRs and 9 cancer targets from the primary versus metastatic tumor cell lines had distinct expression patterns in each category. Finally, the evaluation of nuclear receptor ligand T0901317 for liver X receptor (LXR) demonstrated its combined therapeutic potential with tyrosine kinase inhibitors. The combined treatment of cMET inhibitor PHA665752 or EGFR inhibitor gefitinib with T0901317 showed additive growth inhibition in both H2073 and H1993 cells. Mechanistically, the combined treatment suppressed cell cycle progression by inhibiting cyclinD1 and cyclinB expression. Taken together, this study provides insight into the potential use of NR ligands in combined therapeutics with other biological anti-cancer drugs

  12. Signal transduction of Helicobacter pylori during interaction with host cell protein receptors of epithelial and immune cells

    Science.gov (United States)

    Pachathundikandi, Suneesh Kumar; Tegtmeyer, Nicole; Backert, Steffen

    2013-01-01

    Helicobacter pylori infections can induce pathologies ranging from chronic gastritis, peptic ulceration to gastric cancer. Bacterial isolates harbor numerous well-known adhesins, vacuolating cytotoxin VacA, protease HtrA, urease, peptidoglycan, and type IV secretion systems (T4SS). It appears that H. pylori targets more than 40 known host protein receptors on epithelial or immune cells. A series of T4SS components such as CagL, CagI, CagY, and CagA can bind to the integrin α5β1 receptor. Other targeted membrane-based receptors include the integrins αvβ3, αvβ5, and β2 (CD18), RPTP-α/β, GP130, E-cadherin, fibronectin, laminin, CD46, CD74, ICAM1/LFA1, T-cell receptor, Toll-like receptors, and receptor tyrosine kinases EGFR, ErbB2, ErbB3, and c-Met. In addition, H. pylori is able to activate the intracellular receptors NOD1, NOD2, and NLRP3 with important roles in innate immunity. Here we review the interplay of various bacterial factors with host protein receptors. The contribution of these interactions to signal transduction and pathogenesis is discussed. PMID:24280762

  13. Dynamic gene and protein expression patterns of the autism-associated met receptor tyrosine kinase in the developing mouse forebrain.

    Science.gov (United States)

    Judson, Matthew C; Bergman, Mica Y; Campbell, Daniel B; Eagleson, Kathie L; Levitt, Pat

    2009-04-10

    The establishment of appropriate neural circuitry depends on the coordination of multiple developmental events across space and time. These events include proliferation, migration, differentiation, and survival-all of which can be mediated by hepatocyte growth factor (HGF) signaling through the Met receptor tyrosine kinase. We previously found a functional promoter variant of the MET gene to be associated with autism spectrum disorder, suggesting that forebrain circuits governing social and emotional function may be especially vulnerable to developmental disruptions in HGF/Met signaling. However, little is known about the spatiotemporal distribution of Met expression in the forebrain during the development of such circuits. To advance our understanding of the neurodevelopmental influences of Met activation, we employed complementary Western blotting, in situ hybridization, and immunohistochemistry to comprehensively map Met transcript and protein expression throughout perinatal and postnatal development of the mouse forebrain. Our studies reveal complex and dynamic spatiotemporal patterns of expression during this period. Spatially, Met transcript is localized primarily to specific populations of projection neurons within the neocortex and in structures of the limbic system, including the amygdala, hippocampus, and septum. Met protein appears to be principally located in axon tracts. Temporally, peak expression of transcript and protein occurs during the second postnatal week. This period is characterized by extensive neurite outgrowth and synaptogenesis, supporting a role for the receptor in these processes. Collectively, these data suggest that Met signaling may be necessary for the appropriate wiring of forebrain circuits, with particular relevance to the social and emotional dimensions of behavior. (c) 2009 Wiley-Liss, Inc.

  14. Thromboxane A{sub 2} receptor signaling promotes liver tissue repair after toxic injury through the enhancement of macrophage recruitment

    Energy Technology Data Exchange (ETDEWEB)

    Minamino, Tsutomu [Departments of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Departments of Gastroenterology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Ito, Yoshiya [Departments of Surgery, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Ohkubo, Hirotoki [Departments of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Departments of Surgery, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Hosono, Kanako; Suzuki, Tatsunori [Departments of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Sato, Takehito [Departments of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Departments of Gastroenterology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Ae, Takako; Shibuya, Akitaka [Departments of Gastroenterology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Sakagami, Hiroyuki [Departments of Anatomy, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Narumiya, Shuh [Department of Pharmacology, Kyoto University School of Medicine, Kyoto, 606-8315 (Japan); Koizumi, Wasaburo [Departments of Gastroenterology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Majima, Masataka, E-mail: mmajima@med.kitasato-u.ac.jp [Departments of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan)

    2012-02-15

    It is thought that thromboxane A{sub 2} (TxA{sub 2}) contributes to the progression of inflammation during acute hepatic injury; however, it is still unknown whether TxA{sub 2} is involved in liver repair. The objective of the present study was to examine the role of TxA{sub 2} receptor (TP) signaling in liver injury and repair in response to toxic injury. Carbon tetrachloride (CCl{sub 4}) was used to induce liver injury in TP knockout (TP{sup −/−}) mice and wild-type (WT) mice. In WT mice, serum levels of alanine aminotransferase (ALT) and the size of the necrotic area peaked at 24 and 48 h, respectively, and then declined. In TP{sup −/−} mice, the changes in ALT levels were similar to WT mice, but liver regeneration was impaired as evidenced by remained elevated levels of hepatic necrosis and by delayed hepatocyte proliferation, which was associated with the reduced expression of growth factors including interleukin-6 (IL-6), tumor necrosis factor alpha (TNFα), and hepatocyte growth factor (HGF). In TP{sup −/−} mice, the accumulation of hepatic CD11b{sup +}/F4/80{sup +} macrophages in injured livers was attenuated, and the hepatic expression of monocyte chemoattractant protein-1 (MCP-1/CCL2) and its receptor, the C―C chemokine receptor (CCR2), was reduced compared to WT. Additionally, the application of the TP receptor agonist, U-46619, enhanced the expression of MCP-1/CCL2 and CCR2 in peritoneal macrophages, which was associated with increased levels of IL-6, TNFα and HGF. These results suggested that TP receptor signaling facilitates liver recovery following CCl{sub 4}-induced hepatotoxicity by affecting the expression of hepatotrophic growth factors, and through the recruitment of macrophages mediated by MCP-1/CCL2-CCR2 expression. -- Highlights: ► TP enhances liver regeneration by CCl{sub 4}. ► TP accumulates macrophages. ► TP up-regulates MCP-1.

  15. Nuclear safety research in HGF 2012

    International Nuclear Information System (INIS)

    Anon.

    2013-01-01

    After the events at the Japanese nuclear power plant of Fukushima Daiichi, the German Federal government decided that Germany will give up electricity generation from nuclear power within a decade. The last reactor will be disconnected from the power grid in 2022. Helping to make this opt-out safe is one of the duties of the Helmholtz Association with its Nuclear Safety Research Program within the Energy Research Area. Also the demolition of nuclear power plants and the repository problem will keep society, and thus also research, busy for a number of decades to come. Giving up electricity production from nuclear power thus must not mean giving up the required nuclear technology competences. In the fields of reactor safety, demolition, final storage, radiation protection, and crisis management, in critical support of international developments, and for competent evaluation of nuclear facilities around Germany, these competences will be in demand far beyond the German opt-out. This is the reason why the final report by the Ethics Committee on 'Safe Energy Supply' emphasizes the importance of nuclear technology research. Close cooperation on national, European and international levels is indispensable in this effort. Also nuclear safety research in the Helmholtz Association is aligned with the challenges posed by the opt-out of the use of nuclear power. It is important that the high competences in the areas of plant safety and demolition, handling of radioactive waste, and safe final storage as well as radiation protection be preserved. The Nuclear Safety Research Program within the Energy Research Area of the Helmholtz Association therefore will continue studying scientific and technical aspects of the safety of nuclear reactors and the safety of nuclear waste management. These research activities are provident research conducted for society and must be preserved for a long period of time. The work is closely harmonized with the activities of the partners in the Nuclear Competence Association. The Forschungszentrum Juelich GmbH, HZDR Helmholtz-Zentrum Dresden-Rossendorf and the KIT Karlsruhe Institute of Technology are involved in the Nuclear Safety Research Program within the Helmholtz Association. The work and results in 2012 are presented. (orig.)

  16. Nuclear safety research in HGF 2011

    International Nuclear Information System (INIS)

    Tromm, Walter

    2012-01-01

    After the events at the Japanese nuclear power plant of Fukushima Daiichi, the German federal government decided that Germany will give up electricity generation from nuclear power within a decade. The last reactor will be disconnected from the power grid in 2022. Helping to make this opt-out as safe as possible is one of the duties of the Helmholtz Association with its Nuclear Safety Research Program within the Energy Research Area. Also the demolition of nuclear power plants and the repository problem will keep society, and thus also research, busy for a number of decades to come. Giving up electricity production from nuclear power thus must not mean giving up the required nuclear technology competences. In the fields of reactor safety, demolition, final storage, radiation protection, and crisis management, in critical support of international developments, and for competent evaluation of nuclear facilities around Germany, these competences will be in demand far beyond the German opt-out. This is the reason why the final report by the Ethics Committee on 'Safe Energy Supply' emphasizes the importance of nuclear technology research. Close cooperation on national, European and international levels is indispensable in this effort. Also nuclear safety research in the Helmholtz Association is aligned with the challenges posed by the opt-out of the use of nuclear power. It is important that the high competences in the areas of plant safety and demolition, handling of radioactive waste, and safe final storage as well as radiation protection be preserved. The Nuclear Safety Research Program within the Energy Research Area of the Helmholtz Association therefore will continue studying scientific and technical aspects of the safety of nuclear reactors and the safety of nuclear waste management. These research activities are provident research conducted for society and must be preserved for a long period of time. The work is closely harmonized with the activities of the partners in the Nuclear Competence Association. As of January 2011, the Dresden-Rossendorf Helmholtz Center (HZDR), with its 2 Institutes of Safety Research and for Radiochemistry, is an integral part of the Nuclear Safety Research Program within the Energy Research Area. Both institutes work on topics of safety research for nuclear reactors and safety research for nuclear waste management. In this way, the 2 institutes represent very welcome added value as well as a supplement to the Nuclear Safety Research Program. (orig.)

  17. Distinct projection targets define subpopulations of mouse brainstem vagal neurons that express the autism-associated MET receptor tyrosine kinase.

    Science.gov (United States)

    Kamitakahara, Anna; Wu, Hsiao-Huei; Levitt, Pat

    2017-12-15

    Detailed anatomical tracing and mapping of the viscerotopic organization of the vagal motor nuclei has provided insight into autonomic function in health and disease. To further define specific cellular identities, we paired information based on visceral connectivity with a cell-type specific marker of a subpopulation of neurons in the dorsal motor nucleus of the vagus (DMV) and nucleus ambiguus (nAmb) that express the autism-associated MET receptor tyrosine kinase. As gastrointestinal disturbances are common in children with autism spectrum disorder (ASD), we sought to define the relationship between MET-expressing (MET+) neurons in the DMV and nAmb, and the gastrointestinal tract. Using wholemount tissue staining and clearing, or retrograde tracing in a MET EGFP transgenic mouse, we identify three novel subpopulations of EGFP+ vagal brainstem neurons: (a) EGFP+ neurons in the nAmb projecting to the esophagus or laryngeal muscles, (b) EGFP+ neurons in the medial DMV projecting to the stomach, and (b) EGFP+ neurons in the lateral DMV projecting to the cecum and/or proximal colon. Expression of the MET ligand, hepatocyte growth factor (HGF), by tissues innervated by vagal motor neurons during fetal development reveal potential sites of HGF-MET interaction. Furthermore, similar cellular expression patterns of MET in the brainstem of both the mouse and nonhuman primate suggests that MET expression at these sites is evolutionarily conserved. Together, the data suggest that MET+ neurons in the brainstem vagal motor nuclei are anatomically positioned to regulate distinct portions of the gastrointestinal tract, with implications for the pathophysiology of gastrointestinal comorbidities of ASD. © 2017 Wiley Periodicals, Inc.

  18. Matriptase is required for the active form of hepatocyte growth factor induced Met, focal adhesion kinase and protein kinase B activation on neural stem/progenitor cell motility.

    Science.gov (United States)

    Fang, Jung-Da; Lee, Sheau-Ling

    2014-07-01

    Hepatocyte growth factor (HGF) is a chemoattractant and inducer for neural stem/progenitor (NS/P) cell migration. Although the type II transmembrane serine protease, matriptase (MTP) is an activator of the latent HGF, MTP is indispensable on NS/P cell motility induced by the active form of HGF. This suggests that MTP's action on NS/P cell motility involves mechanisms other than proteolytic activation of HGF. In the present study, we investigate the role of MTP in HGF-stimulated signaling events. Using specific inhibitors of phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt) or focal adhesion kinase (FAK), we demonstrated that in NS/P cells HGF-activated c-Met induces PI3k-Akt signaling which then leads to FAK activation. This signaling pathway ultimately induces MMP2 expression and NS/P cell motility. Knocking down of MTP in NS/P cells with specific siRNA impaired HGF-stimulation of c-Met, Akt and FAK activation, blocked HGF-induced production of MMP2 and inhibited HGF-stimulated NS/P cell motility. MTP-knockdown NS/P cells cultured in the presence of recombinant protein of MTP protease domain or transfected with the full-length wild-type but not the protease-defected MTP restored HGF-responsive events in NS/P cells. In addition to functioning as HGF activator, our data revealed novel function of MTP on HGF-stimulated c-Met signaling activation. Copyright © 2014. Published by Elsevier B.V.

  19. The LDL receptor.

    Science.gov (United States)

    Goldstein, Joseph L; Brown, Michael S

    2009-04-01

    In this article, the history of the LDL receptor is recounted by its codiscoverers. Their early work on the LDL receptor explained a genetic cause of heart attacks and led to new ways of thinking about cholesterol metabolism. The LDL receptor discovery also introduced three general concepts to cell biology: receptor-mediated endocytosis, receptor recycling, and feedback regulation of receptors. The latter concept provides the mechanism by which statins selectively lower plasma LDL, reducing heart attacks and prolonging life.

  20. Anti-metastatic effects of viral and non-viral mediated Nk4 delivery to tumours.

    Science.gov (United States)

    Buhles, Alexandra; Collins, Sara A; van Pijkeren, Jan P; Rajendran, Simon; Miles, Michelle; O'Sullivan, Gerald C; O'Hanlon, Deirdre M; Tangney, Mark

    2009-03-09

    The most common cause of death of cancer sufferers is through the occurrence of metastases. The metastatic behaviour of tumour cells is regulated by extracellular growth factors such as hepatocyte growth factor (HGF), a ligand for the c-Met receptor tyrosine kinase, and aberrant expression/activation of the c-Met receptor is closely associated with metastatic progression. Nk4 (also known as Interleukin (IL)32b) is a competitive antagonist of the HGF c-Met system and inhibits c-Met signalling and tumour metastasis. Nk4 has an additional anti-angiogenic activity independent of its HGF-antagonist function. Angiogenesis-inhibitory as well as cancer-specific apoptosis inducing effects make the Nk4 sequence an attractive candidate for gene therapy of cancer. This study investigates the inhibition of tumour metastasis by gene therapy mediated production of Nk4 by the primary tumour. Optimal delivery of anti-cancer genes is vital in order to achieve the highest therapeutic responses. Non-viral plasmid delivery methods have the advantage of safety and ease of production, providing immediate transgene expression, albeit short-lived in most tumours. Sustained presence of anti-angiogenic molecules is preferable with anti-angiogenic therapies, and the long-term expression mediated by Adeno-associated Virus (AAV) might represent a more appropriate delivery in this respect. However, the incubation time required by AAV vectors to reach appropriate gene expression levels hampers efficacy in many fast-growing murine tumour models. Here, we describe murine trials assessing the effects of Nk4 on the spontaneously metastatic Lewis Lung Carcinoma (LLC) model when delivered to primary tumour via plasmid lipofection or AAV2 vector. Intratumoural AAV-Nk4 administration produced the highest therapeutic response with significant reduction in both primary tumour growth and incidence of lung metastases. Plasmid-mediated therapy also significantly reduced metastatic growth, but with moderate

  1. Fatty Acid Synthase Activity as a Target for c-Met Driven Prostate Cancer

    Science.gov (United States)

    2013-07-01

    cancer potentially due to increased fecal fat excretion. In addition, several families of plant-derived flavonoid compounds including...Apoptosis by Flavonoids Is Associated with Their Ability to Inhibit Fatty Acid Synthase Activity. J. Biol. Chem., 2005. 280(7): p. 5636-5645. 156... flavonoids , represent a source of relatively nontoxic, orally available and affordable compounds that are known to affect a number of different

  2. Receptor-receptor interactions within receptor mosaics. Impact on neuropsychopharmacology.

    Science.gov (United States)

    Fuxe, K; Marcellino, D; Rivera, A; Diaz-Cabiale, Z; Filip, M; Gago, B; Roberts, D C S; Langel, U; Genedani, S; Ferraro, L; de la Calle, A; Narvaez, J; Tanganelli, S; Woods, A; Agnati, L F

    2008-08-01

    Future therapies for diseases associated with altered dopaminergic signaling, including Parkinson's disease, schizophrenia and drug addiction or drug dependence may substantially build on the existence of intramembrane receptor-receptor interactions within dopamine receptor containing receptor mosaics (RM; dimeric or high-order receptor oligomers) where it is believed that the dopamine D(2) receptor may operate as the 'hub receptor' within these complexes. The constitutive adenosine A(2A)/dopamine D(2) RM, located in the dorsal striato-pallidal GABA neurons, are of particular interest in view of the demonstrated antagonistic A(2A)/D(2) interaction within these heteromers; an interaction that led to the suggestion and later demonstration that A(2A) antagonists could be used as novel anti-Parkinsonian drugs. Based on the likely existence of A(2A)/D(2)/mGluR5 RM located both extrasynaptically on striato-pallidal GABA neurons and on cortico-striatal glutamate terminals, multiple receptor-receptor interactions within this RM involving synergism between A(2A)/mGluR5 to counteract D(2) signaling, has led to the proposal of using combined mGluR5 and A(2A) antagonists as a future anti-Parkinsonian treatment. Based on the same RM in the ventral striato-pallidal GABA pathways, novel strategies for the treatment of schizophrenia, building on the idea that A(2A) agonists and/or mGluR5 agonists will help reduce the increased dopaminergic signaling associated with this disease, have been suggested. Such treatment may ensure the proper glutamatergic drive from the mediodorsal thalamic nucleus to the prefrontal cortex, one which is believed to be reduced in schizophrenia due to a dominance of D(2)-like signaling in the ventral striatum. Recently, A(2A) receptors also have been shown to counteract the locomotor and sensitizing actions of cocaine and increases in A(2A) receptors have also been observed in the nucleus accumbens after extended cocaine self-administration, probably

  3. Signaling through three chemokine receptors triggers the migration of transplanted neural precursor cells in a model of multiple sclerosis.

    Science.gov (United States)

    Cohen, Mikhal E; Fainstein, Nina; Lavon, Iris; Ben-Hur, Tamir

    2014-09-01

    Multiple sclerosis (MS) is a multifocal disease, and precursor cells need to migrate into the multiple lesions in order to exert their therapeutic effects. Therefore, cell migration is a crucial element in regenerative processes in MS, dictating the route of delivery, when cell transplantation is considered. We have previously shown that inflammation triggers migration of multi-potential neural precursor cells (NPCs) into the white matter of experimental autoimmune encephalomyelitis (EAE) rodents, a widely used model of MS. Here we investigated the molecular basis of this attraction. NPCs were grown from E13 embryonic mouse brains and transplanted into the lateral cerebral ventricles of EAE mice. Transplanted NPC migration was directed by three tissue-derived chemokines. Stromal cell-derived factor-1α, monocyte chemo-attractant protein-1 and hepatocyte growth factor were expressed in the EAE brain and specifically in microglia and astrocytes. Their cognate receptors, CXCR4, CCR2 or c-Met were constitutively expressed on NPCs. Selective blockage of CXCR4, CCR2 or c-Met partially inhibited NPC migration in EAE brains. Blocking all three receptors had an additive effect and resulted in profound inhibition of NPC migration, as compared to extensive migration of control NPCs. The inflammation-triggered NPC migration into white matter tracts was dependent on a motile NPC phenotype. Specifically, depriving NPCs from epidermal growth factor (EGF) prevented the induction of glial commitment and a motile phenotype (as indicated by an in vitro motility assay), hampering their response to neuroinflammation. In conclusion, signaling via three chemokine systems accounts for most of the inflammation-induced, tissue-derived attraction of transplanted NPCs into white matter tracts during EAE. Copyright © 2014. Published by Elsevier B.V.

  4. Ran GTPase promotes cancer progression via Met receptor-mediated downstream signaling

    Science.gov (United States)

    Yuen, Hiu-Fung; Chan, Ka-Kui; Platt-Higgins, Angela; Dakir, El-Habib; Matchett, Kyle B.; Haggag, Yusuf Ahmed; Jithesh, Puthen V.; Habib, Tanwir; Faheem, Ahmed; Dean, Fennell A.; Morgan, Richard; Rudland, Philip S.; El-Tanani, Mohamed

    2016-01-01

    It has been shown previously that cancer cells with an activated oncogenic pathway, including Met activation, require Ran for growth and survival. Here, we show that knockdown of Ran leads to a reduction of Met receptor expression in several breast and lung cancer cell lines. This, in turn suppressed HGF expression and the Met-mediated activation of the Akt pathway, as well as cell adhesion, migration, and invasion. In a cell line model where Met amplification has previously been shown to contribute to gefitinib resistance, Ran knockdown sensitized cells to gefitinib-mediated inhibition of Akt and ERK1/2 phosphorylation and consequently reduced cell proliferation. We further demonstrate that Met reduction-mediated by knockdown of Ran, occurs at the post-transcriptional level, probably via a matrix metalloproteinase. Moreover, the level of immunoreactive Ran and Met are positively associated in human breast cancer specimens, suggesting that a high level of Ran may be a pre-requisite for Met overexpression. Interestingly, a high level of immunoreactive Ran dictates the prognostic significance of Met, indicating that the co-overexpression of Met and Ran may be associated with cancer progression and could be used in combination as a prognostic indicator. PMID:27716616

  5. Acetylcholine receptor antibody

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003576.htm Acetylcholine receptor antibody To use the sharing features on this page, please enable JavaScript. Acetylcholine receptor antibody is a protein found in the blood of ...

  6. Cooperative ethylene receptor signaling

    OpenAIRE

    Liu, Qian; Wen, Chi-Kuang

    2012-01-01

    The gaseous plant hormone ethylene is perceived by a family of five ethylene receptor members in the dicotyledonous model plant Arabidopsis. Genetic and biochemical studies suggest that the ethylene response is suppressed by ethylene receptor complexes, but the biochemical nature of the receptor signal is unknown. Without appropriate biochemical measures to trace the ethylene receptor signal and quantify the signal strength, the biological significance of the modulation of ethylene responses ...

  7. GABA receptor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Doo [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    GABA is primary an inhibitory neurotransmitter that is localized in inhibitory interneurons. GABA is released from presynaptic terminals and functions by binding to GABA receptors. There are two types of GABA receptors, GABA{sub A}-receptor that allows chloride to pass through a ligand gated ion channel and GABA{sub B}-receptor that uses G-proteins for signaling. The GABA{sub A}-receptor has a GABA binding site as well as a benzodiazepine binding sites, which modulate GABA{sub A}-receptor function. Benzodiazepine GABAA receptor imaging can be accomplished by radiolabeling derivates that activates benzodiazepine binding sites. There has been much research on flumazenil (FMZ) labeled with {sup 11}C-FMZ, a benzodiazepine derivate that is a selective, reversible antagonist to GABAA receptors. Recently, {sup 18}F-fluoroflumazenil (FFMZ) has been developed to overcome {sup 11}C's short half-life. {sup 18}F-FFMZ shows high selective affinity and good pharmacodynamics, and is a promising PET agent with better central benzodiazepine receptor imaging capabilities. In an epileptic focus, because the GABA/benzodiazepine receptor amount is decreased, using '1{sup 1}C-FMZ PET instead of {sup 18}F-FDG, PET, restrict the foci better and may also help find lesions better than high resolution MR. GABA{sub A} receptors are widely distributed in the cerebral cortex, and can be used as an viable neuronal marker. Therefore it can be used as a neuronal cell viability marker in cerebral ischemia. Also, GABA-receptors decrease in areas where neuronal plasticity develops, therefore, GABA imaging can be used to evaluate plasticity. Besides these usages, GABA receptors are related with psychological diseases, especially depression and schizophrenia as well as cerebral palsy, a motor-related disorder, so further in-depth studies are needed for these areas.

  8. GABA receptor imaging

    International Nuclear Information System (INIS)

    Lee, Jong Doo

    2007-01-01

    GABA is primary an inhibitory neurotransmitter that is localized in inhibitory interneurons. GABA is released from presynaptic terminals and functions by binding to GABA receptors. There are two types of GABA receptors, GABA A -receptor that allows chloride to pass through a ligand gated ion channel and GABA B -receptor that uses G-proteins for signaling. The GABA A -receptor has a GABA binding site as well as a benzodiazepine binding sites, which modulate GABA A -receptor function. Benzodiazepine GABAA receptor imaging can be accomplished by radiolabeling derivates that activates benzodiazepine binding sites. There has been much research on flumazenil (FMZ) labeled with 11 C-FMZ, a benzodiazepine derivate that is a selective, reversible antagonist to GABAA receptors. Recently, 18 F-fluoroflumazenil (FFMZ) has been developed to overcome 11 C's short half-life. 18 F-FFMZ shows high selective affinity and good pharmacodynamics, and is a promising PET agent with better central benzodiazepine receptor imaging capabilities. In an epileptic focus, because the GABA/benzodiazepine receptor amount is decreased, using '1 1 C-FMZ PET instead of 18 F-FDG, PET, restrict the foci better and may also help find lesions better than high resolution MR. GABA A receptors are widely distributed in the cerebral cortex, and can be used as an viable neuronal marker. Therefore it can be used as a neuronal cell viability marker in cerebral ischemia. Also, GABA-receptors decrease in areas where neuronal plasticity develops, therefore, GABA imaging can be used to evaluate plasticity. Besides these usages, GABA receptors are related with psychological diseases, especially depression and schizophrenia as well as cerebral palsy, a motor-related disorder, so further in-depth studies are needed for these areas

  9. Glucocorticoid receptor modulators.

    Science.gov (United States)

    Meijer, Onno C; Koorneef, Lisa L; Kroon, Jan

    2018-06-01

    The glucocorticoid hormone cortisol acts throughout the body to support circadian processes and adaptation to stress. The glucocorticoid receptor is the target of cortisol and of synthetic glucocorticoids, which are used widely in the clinic. Both agonism and antagonism of the glucocorticoid receptor may be beneficial in disease, but given the wide expression of the receptor and involvement in various processes, beneficial effects are often accompanied by unwanted side effects. Selective glucocorticoid receptor modulators are ligands that induce a receptor conformation that allows activation of only a subset of downstream signaling pathways. Such molecules thereby combine agonistic and antagonistic properties. Here we discuss the mechanisms underlying selective receptor modulation and their promise in treating diseases in several organ systems where cortisol signaling plays a role. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  10. Dengue virus receptor

    OpenAIRE

    Hidari, Kazuya I.P.J.; Suzuki, Takashi

    2011-01-01

    Dengue virus is an arthropod-borne virus transmitted by Aedes mosquitoes. Dengue virus causes fever and hemorrhagic disorders in humans and non-human primates. Direct interaction of the virus introduced by a mosquito bite with host receptor molecule(s) is crucial for virus propagation and the pathological progression of dengue diseases. Therefore, elucidation of the molecular mechanisms underlying the interaction between dengue virus and its receptor(s) in both humans and mosquitoes is essent...

  11. Associations of mRNA:microRNA for the shared downstream molecules of EGFR and alternative tyrosine kinase receptors in Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Fengfeng Wang

    2016-10-01

    Full Text Available Lung cancer is the top cancer killer worldwide with high mortality rate. Majority belong to non-small cell lung cancers (NSCLCs. The epidermal growth factor receptor (EGFR has been broadly explored as a drug target for therapy. However, the drug responses are not durable due to the acquired resistance. MicroRNAs (miRNAs are small noncoding and endogenous molecules that can inhibit mRNA translation initiation and degrade mRNAs. We wonder if some downstream molecules shared by EGFR and the other tyrosine kinase receptors (TKRs further transduce the signals alternatively, and some miRNAs play the key roles in affecting the expression of these downstream molecules. In this study, we investigated the mRNA:miRNA associations for the direct EGFR downstream molecules in the EGFR signaling pathway shared with the other TKRs, including c-MET (hepatocyte growth factor receptor, Ron (a protein tyrosine kinase related to c-MET, PDGFR (platelet-derived growth factor receptor, and IGF-1R (insulin-like growth factor receptor-1. The multiple linear regression and support vector regression (SVR models were used to discover the statistically significant and the best weighted miRNAs regulating the mRNAs of these downstream molecules. These two models revealed the similar mRNA:miRNA associations. It was found that the miRNAs significantly affecting the mRNA expressions in the multiple regression model were also those with the largest weights in the SVR model. To conclude, we effectively identified a list of meaningful mRNA:miRNA associations: phospholipase C, gamma 1 (PLCG1 with miR-34a, phosphoinositide-3-kinase, regulatory subunit 2 (PIK3R2 with miR-30a-5p, growth factor receptor-bound protein 2 (GRB2 with miR-27a, and Janus kinase 1 (JAK1 with miR-302b and miR-520e. These associations could make great contributions to explore new mechanism in NSCLCs. These candidate miRNAs may be regarded as the potential drug targets for treating NSCLCs with acquired drug

  12. Hepatocyte growth factor promotes long-term survival and axonal regeneration of retinal ganglion cells after optic nerve injury: comparison with CNTF and BDNF.

    Science.gov (United States)

    Wong, Wai-Kai; Cheung, Anny Wan-Suen; Yu, Sau-Wai; Sha, Ou; Cho, Eric Yu Pang

    2014-10-01

    Different trophic factors are known to promote retinal ganglion cell survival and regeneration, but each had their own limitations. We report that hepatocyte growth factor (HGF) confers distinct advantages in supporting ganglion cell survival and axonal regeneration, when compared to two well-established trophic factors ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF). Ganglion cells in adult hamster were injured by cutting the optic nerve. HGF, CNTF, or BDNF was injected at different dosages intravitreally after injury. Ganglion cell survival was quantified at 7, 14, or 28 days postinjury. Peripheral nerve (PN) grafting to the cut optic nerve of the growth factor-injected eye was performed either immediately after injury or delayed until 7 days post-injury. Expression of heat-shock protein 27 and changes in microglia numbers were quantified in different growth factor groups. The cellular distribution of c-Met in the retina was examined by anti-c-Met immunostaining. Hepatocyte Growth Factor (HGF) was equally potent as BDNF in promoting short-term survival (up to 14 days post-injury) and also supported survival at 28 days post-injury when ganglion cells treated by CNTF or BDNF failed to be sustained. When grafting was performed without delay, HGF stimulated twice the number of axons to regenerate compared with control but was less potent than CNTF. However, in PN grafting delayed for 7 days after optic nerve injury, HGF maintained a better propensity of ganglion cells to regenerate than CNTF. Unlike CNTF, HGF application did not increase HSP27 expression in ganglion cells. Microglia proliferation was prolonged in HGF-treated retinas compared with CNTF or BDNF. C-Met was localized to both ganglion cells and Muller cells, suggesting HGF could be neuroprotective via interacting with both neurons and glia. Compared with CNTF or BDNF, HGF is advantageous in sustaining long-term ganglion cell survival and their propensity to respond to

  13. Angiotensin type 2 receptors

    DEFF Research Database (Denmark)

    Sumners, Colin; de Kloet, Annette D; Krause, Eric G

    2015-01-01

    In most situations, the angiotensin AT2-receptor (AT2R) mediates physiological actions opposing those mediated by the AT1-receptor (AT1R), including a vasorelaxant effect. Nevertheless, experimental evidence vastly supports that systemic application of AT2R-agonists is blood pressure neutral...

  14. Glutamate receptor agonists

    DEFF Research Database (Denmark)

    Vogensen, Stine Byskov; Greenwood, Jeremy R; Bunch, Lennart

    2011-01-01

    The neurotransmitter (S)-glutamate [(S)-Glu] is responsible for most of the excitatory neurotransmission in the central nervous system. The effect of (S)-Glu is mediated by both ionotropic and metabotropic receptors. Glutamate receptor agonists are generally a-amino acids with one or more...... stereogenic centers due to strict requirements in the agonist binding pocket of the activated state of the receptor. By contrast, there are many examples of achiral competitive antagonists. The present review addresses how stereochemistry affects the activity of glutamate receptor ligands. The review focuses...... mainly on agonists and discusses stereochemical and conformational considerations as well as biostructural knowledge of the agonist binding pockets, which is useful in the design of glutamate receptor agonists. Examples are chosen to demonstrate how stereochemistry not only determines how the agonist...

  15. AMPA receptor ligands

    DEFF Research Database (Denmark)

    Strømgaard, Kristian; Mellor, Ian

    2004-01-01

    Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPAR), subtype of the ionotropic glutamate receptors (IGRs), mediate fast synaptic transmission in the central nervous system (CNS), and are involved in many neurological disorders, as well as being a key player in the f......Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPAR), subtype of the ionotropic glutamate receptors (IGRs), mediate fast synaptic transmission in the central nervous system (CNS), and are involved in many neurological disorders, as well as being a key player...... in the formation of memory. Hence, ligands affecting AMPARs are highly important for the study of the structure and function of this receptor, and in this regard polyamine-based ligands, particularly polyamine toxins, are unique as they selectively block Ca2+ -permeable AMPARs. Indeed, endogenous intracellular...

  16. Lipophorin Receptor: The Insect Lipoprotein Receptor

    Indian Academy of Sciences (India)

    IAS Admin

    Director of ... function of the Lp is to deliver lipids throughout the insect body for metabolism ... Lipid is used as a major energy source for development as well as other metabolic .... LpR4 receptor variant was expressed exclusively in the brain and.

  17. Serotonin Receptors in Hippocampus

    Science.gov (United States)

    Berumen, Laura Cristina; Rodríguez, Angelina; Miledi, Ricardo; García-Alcocer, Guadalupe

    2012-01-01

    Serotonin is an ancient molecular signal and a recognized neurotransmitter brainwide distributed with particular presence in hippocampus. Almost all serotonin receptor subtypes are expressed in hippocampus, which implicates an intricate modulating system, considering that they can be localized as autosynaptic, presynaptic, and postsynaptic receptors, even colocalized within the same cell and being target of homo- and heterodimerization. Neurons and glia, including immune cells, integrate a functional network that uses several serotonin receptors to regulate their roles in this particular part of the limbic system. PMID:22629209

  18. Activated human neutrophils release hepatocyte growth factor/scatter factor.

    LENUS (Irish Health Repository)

    McCourt, M

    2012-02-03

    BACKGROUND: Hepatocyte growth factor or scatter factor (HGF\\/SF) is a pleiotropic cytokine that has potent angiogenic properties. We have previously demonstrated that neutrophils (PMN) are directly angiogenic by releasing vascular endothelial growth factor (VEGF). We hypothesized that the acute inflammatory response can stimulate PMN to release HGF. AIMS: To examine the effects of inflammatory mediators on PMN HGF release and the effect of recombinant human HGF (rhHGF) on PMN adhesion receptor expression and PMN VEGF release. METHODS: In the first experiment, PMN were isolated from healthy volunteers and stimulated with tumour necrosis factor-alpha (TNF-alpha), lipopolysaccharide (LPS), interleukin-8 (IL-8), and formyl methionyl-leucyl-phenylalanine (fMLP). Culture supernatants were assayed for HGF using ELISA. In the second experiment, PMN were lysed to measure total HGF release and HGF expression in the PMN was detected by Western immunoblotting. Finally, PMN were stimulated with rhHGF. PMN CD 11a, CD 11b, and CD 18 receptor expression and VEGF release was measured using flow cytometry and ELISA respectively. RESULTS: TNF-alpha, LPS and fMLP stimulation resulted in significantly increased release of PMN HGF (755+\\/-216, 484+\\/-221 and 565+\\/-278 pg\\/ml, respectively) compared to controls (118+\\/-42 pg\\/ml). IL-8 had no effect. Total HGF release following cell lysis and Western blot suggests that HGF is released from intracellular stores. Recombinant human HGF did not alter PMN adhesion receptor expression and had no effect on PMN VEGF release. CONCLUSIONS: This study demonstrates that pro-inflammatory mediators can stimulate HGF release from a PMN intracellular store and that activated PMN in addition to secreting VEGF have further angiogenic potential by releasing HGF.

  19. PTP1B-dependent regulation of receptor tyrosine kinase signaling by the actin-binding protein Mena.

    Science.gov (United States)

    Hughes, Shannon K; Oudin, Madeleine J; Tadros, Jenny; Neil, Jason; Del Rosario, Amanda; Joughin, Brian A; Ritsma, Laila; Wyckoff, Jeff; Vasile, Eliza; Eddy, Robert; Philippar, Ulrike; Lussiez, Alisha; Condeelis, John S; van Rheenen, Jacco; White, Forest; Lauffenburger, Douglas A; Gertler, Frank B

    2015-11-01

    During breast cancer progression, alternative mRNA splicing produces functionally distinct isoforms of Mena, an actin regulator with roles in cell migration and metastasis. Aggressive tumor cell subpopulations express Mena(INV), which promotes tumor cell invasion by potentiating EGF responses. However, the mechanism by which this occurs is unknown. Here we report that Mena associates constitutively with the tyrosine phosphatase PTP1B and mediates a novel negative feedback mechanism that attenuates receptor tyrosine kinase signaling. On EGF stimulation, complexes containing Mena and PTP1B are recruited to the EGFR, causing receptor dephosphorylation and leading to decreased motility responses. Mena also interacts with the 5' inositol phosphatase SHIP2, which is important for the recruitment of the Mena-PTP1B complex to the EGFR. When Mena(INV) is expressed, PTP1B recruitment to the EGFR is impaired, providing a mechanism for growth factor sensitization to EGF, as well as HGF and IGF, and increased resistance to EGFR and Met inhibitors in signaling and motility assays. In sum, we demonstrate that Mena plays an important role in regulating growth factor-induced signaling. Disruption of this attenuation by Mena(INV) sensitizes tumor cells to low-growth factor concentrations, thereby increasing the migration and invasion responses that contribute to aggressive, malignant cell phenotypes. © 2015 Hughes, Oudin, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  20. Ionotropic crustacean olfactory receptors.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Corey

    Full Text Available The nature of the olfactory receptor in crustaceans, a major group of arthropods, has remained elusive. We report that spiny lobsters, Panulirus argus, express ionotropic receptors (IRs, the insect chemosensory variants of ionotropic glutamate receptors. Unlike insects IRs, which are expressed in a specific subset of olfactory cells, two lobster IR subunits are expressed in most, if not all, lobster olfactory receptor neurons (ORNs, as confirmed by antibody labeling and in situ hybridization. Ligand-specific ORN responses visualized by calcium imaging are consistent with a restricted expression pattern found for other potential subunits, suggesting that cell-specific expression of uncommon IR subunits determines the ligand sensitivity of individual cells. IRs are the only type of olfactory receptor that we have detected in spiny lobster olfactory tissue, suggesting that they likely mediate olfactory signaling. Given long-standing evidence for G protein-mediated signaling in activation of lobster ORNs, this finding raises the interesting specter that IRs act in concert with second messenger-mediated signaling.

  1. Assays for calcitonin receptors

    International Nuclear Information System (INIS)

    Teitelbaum, A.P.; Nissenson, R.A.; Arnaud, C.D.

    1985-01-01

    The assays for calcitonin receptors described focus on their use in the study of the well-established target organs for calcitonin, bone and kidney. The radioligand used in virtually all calcitonin binding studies is 125 I-labelled salmon calcitonin. The lack of methionine residues in this peptide permits the use of chloramine-T for the iodination reaction. Binding assays are described for intact bone, skeletal plasma membranes, renal plasma membranes, and primary kidney cell cultures of rats. Studies on calcitonin metabolism in laboratory animals and regulation of calcitonin receptors are reviewed

  2. Acquired resistance mechanisms to tyrosine kinase inhibitors in lung cancer with activating epidermal growth factor receptor mutation--diversity, ductility, and destiny.

    Science.gov (United States)

    Suda, Kenichi; Mizuuchi, Hiroshi; Maehara, Yoshihiko; Mitsudomi, Tetsuya

    2012-12-01

    Lung cancers that harbor somatic activating mutations in the gene for the epidermal growth factor receptor (EGFR) depend on mutant EGFR for their proliferation and survival; therefore, lung cancer patients with EGFR mutations often dramatically respond to orally available EGFR tyrosine kinase inhibitors (TKIs). However, emergence of acquired resistance is virtually inevitable, thus limiting improvement in patient outcomes. To elucidate and overcome this acquired resistance, multidisciplinary basic and clinical investigational approaches have been applied, using in vitro cell line models or samples obtained from lung cancer patients treated with EGFR-TKIs. These efforts have revealed several acquired resistance mechanisms and candidates, including EGFR secondary mutations (T790M and other rare mutations), MET amplification, PTEN downregulation, CRKL amplification, high-level HGF expression, FAS-NFκB pathway activation, epithelial-mesenchymal transition, and conversion to small cell lung cancer. Interestingly, cancer cells harbor potential destiny and ductility together in acquiring resistance to EGFR-TKIs, as shown in in vitro acquired resistance models. Molecular mechanisms of "reversible EGFR-TKI tolerance" that occur in early phase EGFR-TKI exposure have been identified in cell line models. Furthermore, others have reported molecular markers that can predict response to EGFR-TKIs in clinical settings. Deeper understanding of acquired resistance mechanisms to EGFR-TKIs, followed by the development of molecular target drugs that can overcome the resistance, might turn this fatal disease into a chronic disorder.

  3. Andrographolide enhanced 5-fluorouracil-induced antitumor effect in colorectal cancer via inhibition of c-MET pathway

    Directory of Open Access Journals (Sweden)

    Su M

    2017-11-01

    Full Text Available Meng Su,1 Baoli Qin,1 Fang Liu,2 Yuze Chen,2 Rui Zhang2 1Department of Internal Medicine, 2Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning, China Abstract: Colorectal cancer (CRC is the third most common malignant neoplasm worldwide. 5-Fluorouracil (5-Fu is the most important chemotherapeutic drug used for the treatment of CRC. However, resistance to 5-Fu therapies is a growing concern in CRC clinical practice recently. Andrographolide (Andro is a main bioactive constituent of the herb Andrographis paniculata, which has various biological effects including anti-inflammation and antitumor activities. In the present study, we investigated the effects of combined Andro with 5-Fu against CRC HCT-116 cells. In vitro studies showed that Andro synergistically enhanced the anti-proliferation effect of 5-Fu on HCT-116 cells due to increased apoptotic cells. Meanwhile, results of the enzyme linked immunosorbent assay indicated that the level of phosphorylated cellular-mesenchymal to epithelial transition factor (p-MET was decreased by the combination treatment. Further study suggested that Andro promoted the antitumor effect of 5-Fu by downregulating the level of p-MET. In conclusion, these results confirmed the synergistic antitumor activity of Andro on CRC and provide evidence for possible clinical application of Andro for enhancing the antitumor effect of 5-Fu in CRC treatment. Keywords: Andro, 5-Fu, HCT-116 cells, apoptosis, p-MET

  4. Angiotensin type 2 receptor (AT2R) and receptor Mas

    DEFF Research Database (Denmark)

    Villela, Daniel; Leonhardt, Julia; Patel, Neal

    2015-01-01

    The angiotensin type 2 receptor (AT2R) and the receptor Mas are components of the protective arms of the renin-angiotensin system (RAS), i.e. they both mediate tissue protective and regenerative actions. The spectrum of actions of these two receptors and their signalling mechanisms display striki...

  5. TLX: An elusive receptor.

    Science.gov (United States)

    Benod, Cindy; Villagomez, Rosa; Webb, Paul

    2016-03-01

    TLX (tailless receptor) is a member of the nuclear receptor superfamily and belongs to a class of nuclear receptors for which no endogenous or synthetic ligands have yet been identified. TLX is a promising therapeutic target in neurological disorders and brain tumors. Thus, regulatory ligands for TLX need to be identified to complete the validation of TLX as a useful target and would serve as chemical probes to pursue the study of this receptor in disease models. It has recently been proved that TLX is druggable. However, to identify potent and specific TLX ligands with desirable biological activity, a deeper understanding of where ligands bind, how they alter TLX conformation and of the mechanism by which TLX mediates the transcription of its target genes is needed. While TLX is in the process of escaping from orphanhood, future ligand design needs to progress in parallel with improved understanding of (i) the binding cavity or surfaces to target with small molecules on the TLX ligand binding domain and (ii) the nature of the TLX coregulators in particular cell and disease contexts. Both of these topics are discussed in this review. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Glutamate receptor ligands

    DEFF Research Database (Denmark)

    Guldbrandt, Mette; Johansen, Tommy N; Frydenvang, Karla Andrea

    2002-01-01

    Homologation and substitution on the carbon backbone of (S)-glutamic acid [(S)-Glu, 1], as well as absolute stereochemistry, are structural parameters of key importance for the pharmacological profile of (S)-Glu receptor ligands. We describe a series of methyl-substituted 2-aminoadipic acid (AA...

  7. Ginkgolides and glycine receptors

    DEFF Research Database (Denmark)

    Jaracz, Stanislav; Nakanishi, Koji; Jensen, Anders A.

    2004-01-01

    Ginkgolides from the Ginkgo biloba tree are diterpenes with a cage structure consisting of six five-membered rings and a unique tBu group. They exert a variety of biological properties. In addition to being antagonists of the platelet activating factor receptor (PAFR), it has recently been shown ...

  8. adrenergic receptor with preeclampsia

    African Journals Online (AJOL)

    User

    2011-05-09

    May 9, 2011 ... due to a post- receptor defect (Karadas et al., 2007). Several polymorphisms have ... the detection of the Arg16Gly polymorphism, overnight digestion at. 37°C with 10 U ..... DW, Wood AJ, Stein CM (2004). Beta2-adrenoceptor ...

  9. Metformin and insulin receptors

    International Nuclear Information System (INIS)

    Vigneri, R.; Gullo, D.; Pezzino, V.

    1984-01-01

    The authors evaluated the effect of metformin (N,N-dimethylbiguanide), a biguanide known to be less toxic than phenformin, on insulin binding to its receptors, both in vitro and in vivo. Specific 125 I-insulin binding to cultured IM-9 human lymphocytes and MCF-7 human breast cancer cells was determined after preincubation with metformin. Specific 125 I-insulin binding to circulating monocytes was also evaluated in six controls, eight obese subjects, and six obese type II diabetic patients before and after a short-term treatment with metformin. Plasma insulin levels and blood glucose were also measured on both occasions. Metformin significantly increased insulin binding in vitro to both IM-9 lymphocytes and MCF-7 cells; the maximum increment was 47.1% and 38.0%, respectively. Metformin treatment significantly increased insulin binding in vivo to monocytes of obese subjects and diabetic patients. Scatchard analysis indicated that the increased binding was mainly due to an increase in receptor capacity. Insulin binding to monocytes of normal controls was unchanged after metformin as were insulin levels in all groups; blood glucose was significantly reduced after metformin only in diabetic patients. These data indicate that metformin increases insulin binding to its receptors in vitro and in vivo. The effect in vivo is observed in obese subjects and in obese type II diabetic patients, paralleling the clinical effectiveness of this antidiabetic agent, and is not due to receptor regulation by circulating insulin, since no variation in insulin levels was recorded

  10. Olfactory Receptor Database: a sensory chemoreceptor resource

    OpenAIRE

    Skoufos, Emmanouil; Marenco, Luis; Nadkarni, Prakash M.; Miller, Perry L.; Shepherd, Gordon M.

    2000-01-01

    The Olfactory Receptor Database (ORDB) is a WWW-accessible database that has been expanded from an olfactory receptor resource to a chemoreceptor resource. It stores data on six classes of G-protein-coupled sensory chemoreceptors: (i) olfactory receptor-like proteins, (ii) vomeronasal receptors, (iii) insect olfactory receptors, (iv) worm chemoreceptors, (v) taste papilla receptors and (vi) fungal pheromone receptors. A complementary database of the ligands of these receptors (OdorDB) has bee...

  11. Prostaglandin Receptor Signaling in Disease

    Directory of Open Access Journals (Sweden)

    Toshiyuki Matsuoka

    2007-01-01

    Full Text Available Prostanoids, consisting of the prostaglandins (PGs and the thromboxanes (TXs, are a group of lipid mediators formed in response to various stimuli. They include PGD2, PGE2, PGF2α, PGI2, and TXA2. They are released outside of the cells immediately after synthesis, and exert their actions by binding to a G-protein coupled rhodopsin-type receptor on the surface of target cells. There are eight types of the prostanoid receptors conserved in mammals from mouse to human. They are the PGD receptor (DP, four subtypes of the PGE receptor (EP1, EP2, EP3, and EP4, the PGF receptor (FP, PGI receptor (IP, and TXA receptor (TP. Recently, mice deficient in each of these prostanoid receptors were generated and subjected to various experimental models of disease. These studies have revealed the roles of PG receptor signaling in various pathological conditions, and suggest that selective manipulation of the prostanoid receptors may be beneficial in treatment of the pathological conditions. Here we review these recent findings of roles of prostanoid receptor signaling and their therapeutic implications.

  12. The interleukin-4 receptor: signal transduction by a hematopoietin receptor.

    Science.gov (United States)

    Keegan, A D; Pierce, J H

    1994-02-01

    Over the last several years, the receptors for numerous cytokines have been molecularly characterized. Analysis of their amino acid sequences shows that some of these receptors bear certain motifs in their extracellular domains that define a family of receptors called the Hematopoietin receptor superfamily. Significant advances in characterizing the structure, function, and mechanisms of signal transduction have been made for several members of this family. The purpose of this review is to discuss the recent advances made for one of the family members, the interleukin (IL) 4 receptor. Other receptor systems have recently been reviewed elsewhere. The IL-4 receptor consists of, at the minimum, the cloned 140 kDa IL-4-binding chain with the potential for associating with other chains. The IL-4 receptor transduces its signal by activating a tyrosine kinase that phosphorylates cellular substrates, including the receptor itself, and the 170 kDa substrate called 4PS. Phosphorylated 4PS interacts with the SH2 domain of the enzyme PI-3'-kinase and increases its enzymatic activity. These early events in the IL-4 receptor initiated signaling pathway may trigger a series of signals that will ultimately lead to an IL-4 specific biologic outcome.

  13. Meeting report: nuclear receptors

    DEFF Research Database (Denmark)

    Tuckermann, Jan; Bourguet, William; Mandrup, Susanne

    2010-01-01

    The biannual European Molecular Biology Organization (EMBO) conference on nuclear receptors was organized by Beatrice Desvergne and Laszlo Nagy and took place in Cavtat near Dubrovnik on the Adriatic coast of Croatia September 25-29, 2009. The meeting brought together researchers from all over...... the world covering a wide spectrum from fundamental mechanistic studies to metabolism, clinical studies, and drug development. In this report, we summarize the recent and exciting findings presented by the speakers at the meeting....

  14. Neurotransmitter receptor imaging

    International Nuclear Information System (INIS)

    Cordes, M.; Hierholzer, J.; Nikolai-Beyer, K.

    1993-01-01

    The importance of neuroreceptor imaging in vivo using single photon emission tomography (SPECT) and positron emission tomography (PET) has increased enormously. The principal neurotransmitters, such as dopamine, GABA/benzodiazepine, acetylcholine, and serotonin, are presented with reference to anatomical, biochemical, and physiological features. The main radioligands for SPECT and PET are introduced, and methodological characteristics of both PET and SPECT presented. Finally, the results of neurotransmitter receptor imaging obtained so far will be discussed. (orig.) [de

  15. Thyroid Stimulating Hormone Receptor

    Directory of Open Access Journals (Sweden)

    Murat Tuncel

    2017-02-01

    Full Text Available Thyroid stimulating hormone receptor (TSHR plays a pivotal role in thyroid hormone metabolism. It is a major controller of thyroid cell function and growth. Mutations in TSHR may lead to several thyroid diseases, most commonly hyperthyroidism. Although its genetic and epigenetic alterations do not directly lead to carcinogenesis, it has a crucial role in tumor growth, which is initiated by several oncogenes. This article will provide a brief review of TSHR and related diseases.

  16. Melatonin Receptor Genes in Vertebrates

    Directory of Open Access Journals (Sweden)

    Hua Dong Yin

    2013-05-01

    Full Text Available Melatonin receptors are members of the G protein-coupled receptor (GPCR family. Three genes for melatonin receptors have been cloned. The MT1 (or Mel1a or MTNR1A and MT2 (or Mel1b or MTNR1B receptor subtypes are present in humans and other mammals, while an additional melatonin receptor subtype, Mel1c (or MTNR1C, has been identified in fish, amphibians and birds. Another melatonin related orphan receptor, GPR50, which does not bind melatonin, is found exclusively in mammals. The hormone melatonin is secreted primarily by the pineal gland, with highest levels occurring during the dark period of a circadian cycle. This hormone acts systemically in numerous organs. In the brain, it is involved in the regulation of various neural and endocrine processes, and it readjusts the circadian pacemaker, the suprachiasmatic nucleus. This article reviews recent studies of gene organization, expression, evolution and mutations of melatonin receptor genes of vertebrates. Gene polymorphisms reveal that numerous mutations are associated with diseases and disorders. The phylogenetic analysis of receptor genes indicates that GPR50 is an outgroup to all other melatonin receptor sequences. GPR50 may have separated from a melatonin receptor ancestor before the split between MTNR1C and the MTNR1A/B ancestor.

  17. Flavivirus Entry Receptors: An Update

    Directory of Open Access Journals (Sweden)

    Manuel Perera-Lecoin

    2013-12-01

    Full Text Available Flaviviruses enter host cells by endocytosis initiated when the virus particles interact with cell surface receptors. The current model suggests that flaviviruses use at least two different sets of molecules for infectious entry: attachment factors that concentrate and/or recruit viruses on the cell surface and primary receptor(s that bind to virions and direct them to the endocytic pathway. Here, we present the currently available knowledge regarding the flavivirus receptors described so far with specific attention to C-type lectin receptors and the phosphatidylserine receptors, T-cell immunoglobulin and mucin domain (TIM and TYRO3, AXL and MER (TAM. Their role in flavivirus attachment and entry as well as their implication in the virus biology will be discussed in depth.

  18. Adenosine Receptors and Wound Healing

    Directory of Open Access Journals (Sweden)

    Bruce N. Cronstein

    2004-01-01

    Full Text Available Recent studies have demonstrated that application of topical adenosine A2A receptor agonists promotes more rapid wound closure and clinical studies are currently underway to determine the utility of topical A2A adenosine receptor agonists in the therapy of diabetic foot ulcers. The effects of adenosine A2A receptors on the cells and tissues of healing wounds have only recently been explored. We review here the known effects of adenosine A2A receptor occupancy on the cells involved in wound healing.

  19. Virally encoded 7TM receptors

    DEFF Research Database (Denmark)

    Rosenkilde, M M; Waldhoer, M; Lüttichau, H R

    2001-01-01

    expression of this single gene in certain lymphocyte cell lineages leads to the development of lesions which are remarkably similar to Kaposi's sarcoma, a human herpesvirus 8 associated disease. Thus, this and other virally encoded 7TM receptors appear to be attractive future drug targets.......A number of herpes- and poxviruses encode 7TM G-protein coupled receptors most of which clearly are derived from their host chemokine system as well as induce high expression of certain 7TM receptors in the infected cells. The receptors appear to be exploited by the virus for either immune evasion...

  20. Adenosine receptor desensitization and trafficking.

    Science.gov (United States)

    Mundell, Stuart; Kelly, Eamonn

    2011-05-01

    As with the majority of G-protein-coupled receptors, all four of the adenosine receptor subtypes are known to undergo agonist-induced regulation in the form of desensitization and trafficking. These processes can limit the ability of adenosine receptors to couple to intracellular signalling pathways and thus reduce the ability of adenosine receptor agonists as well as endogenous adenosine to produce cellular responses. In addition, since adenosine receptors couple to multiple signalling pathways, these pathways may desensitize differentially, while the desensitization of one pathway could even trigger signalling via another. Thus, the overall picture of adenosine receptor regulation can be complex. For all adenosine receptor subtypes, there is evidence to implicate arrestins in agonist-induced desensitization and trafficking, but there is also evidence for other possible forms of regulation, including second messenger-dependent kinase regulation, heterologous effects involving G proteins, and the involvement of non-clathrin trafficking pathways such as caveolae. In this review, the evidence implicating these mechanisms is summarized for each adenosine receptor subtype, and we also discuss those issues of adenosine receptor regulation that remain to be resolved as well as likely directions for future research in this field. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Marked stimulation of growth and motility of human keratinocytes by hepatocyte growth factor

    International Nuclear Information System (INIS)

    Matsumoto, K.; Hashimoto, K.; Yoshikawa, K.; Nakamura, T.

    1991-01-01

    Effect of hepatocyte growth factor (HGF) on normal human epidermal keratinocytes cultured under conditions of low Ca2+ (0.1 mM, growth-promoting condition) and physiological Ca2+ (1.8 mM, differentiation-promoting condition) was investigated. In low Ca2+, HGF markedly enhanced the migration of keratinocytes while it suppressed cell growth and DNA synthesis in a dose-dependent manner. In contrast, HGF enhanced the migration, cell growth, and DNA synthesis of keratinocytes cultured under conditions of physiological Ca2+. The maximal stimulation of DNA synthesis (2.4-fold stimulation) in physiological Ca2+ was seen at 2.5-5 ng/ml HGF and the stimulatory effect of HGF was suppressed by transforming growth factor-beta 1. Analysis of the HGF receptor using 125I-HGF as a ligand showed that human keratinocytes expressed a single class of specific, saturable receptor for HGF in both low and physiological Ca2+ conditions, exhibiting a Kd = 17.3 pM and approximately 690 binding sites/cell under physiological Ca2+. Thus, HGF is a potent factor which enhances growth and migration of normal human keratinocytes under conditions of physiological Ca2+. HGF may play an important role in epidermal tissue repair as it enhances both the migration and growth of keratinocytes

  2. Axonal GABAA receptors.

    Science.gov (United States)

    Trigo, Federico F; Marty, Alain; Stell, Brandon M

    2008-09-01

    Type A GABA receptors (GABA(A)Rs) are well established as the main inhibitory receptors in the mature mammalian forebrain. In recent years, evidence has accumulated showing that GABA(A)Rs are prevalent not only in the somatodendritic compartment of CNS neurons, but also in their axonal compartment. Evidence for axonal GABA(A)Rs includes new immunohistochemical and immunogold data: direct recording from single axonal terminals; and effects of local applications of GABA(A)R modulators on action potential generation, on axonal calcium signalling, and on neurotransmitter release. Strikingly, whereas presynaptic GABA(A)Rs have long been considered inhibitory, the new studies in the mammalian brain mostly indicate an excitatory action. Depending on the neuron that is under study, axonal GABA(A)Rs can be activated by ambient GABA, by GABA spillover, or by an autocrine action, to increase either action potential firing and/or transmitter release. In certain neurons, the excitatory effects of axonal GABA(A)Rs persist into adulthood. Altogether, axonal GABA(A)Rs appear as potent neuronal modulators of the mammalian CNS.

  3. Possible Relevance of Receptor-Receptor Interactions between Viral- and Host-Coded Receptors for Viral-Induced Disease

    Directory of Open Access Journals (Sweden)

    Luigi F. Agnati

    2007-01-01

    Full Text Available It has been demonstrated that some viruses, such as the cytomegalovirus, code for G-protein coupled receptors not only to elude the immune system, but also to redirect cellular signaling in the receptor networks of the host cells. In view of the existence of receptor-receptor interactions, the hypothesis is introduced that these viral-coded receptors not only operate as constitutively active monomers, but also can affect other receptor function by interacting with receptors of the host cell. Furthermore, it is suggested that viruses could also insert not single receptors (monomers, but clusters of receptors (receptor mosaics, altering the cell metabolism in a profound way. The prevention of viral receptor-induced changes in host receptor networks may give rise to novel antiviral drugs that counteract viral-induced disease.

  4. Receptor studies in biological psychiatry

    International Nuclear Information System (INIS)

    Fujiwara, Yutaka

    1992-01-01

    Recent advances in the pharmacological treatment of endogenous psychosis have led to the development of biological studies in psychiatry. Studies on neurotransmitter receptors were reviewed in order to apply positron-emission tomograph (PET) for biological psychiatry. The dopamine (DA) hypothesis for schizophrenia was advanced on the basis of the observed effects of neuroleptics and methamphetamine, and DA(D 2 ) receptor supersensitivity measured by PET and receptor binding in the schizophrenic brain. The clinical potencies of neuroleptics for schizophrenia were correlated with their abilities to inhibit the D 2 receptor, and not other receptors. The σ receptor was expected to be a site of antipsychotic action. However, the potency of drugs action on it was not correlated with clinical efficacy. Haloperidol binds with high affinity to the σ receptor, which may mediate acute dystonia, an extrapyramidal side effect of neuroleptics. Behavioral and neurochemical changes induced by methamphetamine treatment were studied as an animal model of schizophrenia, and both a decrease of D 2 receptor density and an increase of DA release were detected. The monoamine hypothesis for manic-depressive psychosis was advanced on the basis of the effect of reserpine, monoamine oxidase inhibitor and antidepressants. 3 H-clonidine binding sites were increased in platelet membranes of depressive patients, 3 H-imipramine binding sites were decreased. The GABA A receptor is the target site for the action of anxiolytics and antiepileptics such as benzodiazepines and barbiturates. Recent developments in molecular biology techniques have revealed the structure of receptor proteins, which are classified into two receptor families, the G-protein coupled type (D 2 ) and the ion-channel type (GABA A ). (J.P.N.)

  5. Hypoxia-inducible factor-1α mediates the toll-like receptor 4 signaling pathway leading to anti-tumor effects in human hepatocellular carcinoma cells under hypoxic conditions.

    Science.gov (United States)

    Zhang, Xiaoyu; Li, Shuchen; Li, Mingrong; Huang, Haiying; Li, Jingyuan; Zhou, Changwei

    2016-08-01

    Hypoxia-inducible factor-1α (HIF-1α) and toll-like receptor 4 (TLR4) are involved in numerous mechanisms of cancer biology, including cell proliferation and survival; however the interaction of the two factors under hypoxic conditions remains unclear. The present study investigated the in vitro mechanism that results in the suppression of tumor cell growth and cellular functions when HIF-1α is silenced. In the present study, the human hepatocellular carcinoma HepG2 cell line was transfected with short hairpin RNA (shRNA) against HIF-1α and cultured under hypoxic conditions (1% O 2 for 24 h). The expression of HIF-1α and various growth factors, including epidermal growth factor (EGF), hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2), were examined using quantitative polymerase chain reaction and immunoblotting. Tumor growth was measured using a Cell Counting Kit-8 assay and tumor activity was measured using tumor cell invasion and migration assays. Lipopolysaccharide and TAK-242 were used to activate and inhibit TLR4, respectively, to observe the role of TLR4 in the HIF-1α silenced tumor cells. The expression of TLR4 signaling pathway associates, including myeloid differentiation primary response gene 88 (MyD88), apoptosis signal-regulating kinase 1 (ASK1), p38 mitogen-activated protein kinases and HIF-1α, were analyzed by western blot assay. Under hypoxic conditions, silencing of HIF-1α expression suppressed tumor cell growth and regulated the expression of tumor growth-associated genes, including EGF, HGF, VEGF and FG2. Suppression of tumor cell invasion and migration was also observed in the HIF-1α silenced HepG2 cell line. In addition, TLR4 was identified to be involved in HIF-1α and MyD88 accumulation, and activation of ASK1 and p38 were demonstrated to be critical for TLR4-mediated HIF-1α pathway. In conclusion, silencing of HIF-1α expression may induce anti-tumor effects under hypoxic

  6. Quantitative analysis of receptor imaging

    International Nuclear Information System (INIS)

    Fu Zhanli; Wang Rongfu

    2004-01-01

    Model-based methods for quantitative analysis of receptor imaging, including kinetic, graphical and equilibrium methods, are introduced in detail. Some technical problem facing quantitative analysis of receptor imaging, such as the correction for in vivo metabolism of the tracer and the radioactivity contribution from blood volume within ROI, and the estimation of the nondisplaceable ligand concentration, is also reviewed briefly

  7. Coronavirus spike-receptor interactions

    NARCIS (Netherlands)

    Mou, H.

    2015-01-01

    Coronaviruses cause important diseases in humans and animals. Coronavirus infection starts with the virus binding with its spike proteins to molecules present on the surface of host cells that act as receptors. This spike-receptor interaction is highly specific and determines the virus’ cell, tissue

  8. Neurobeachin regulates neurotransmitter receptor trafficking to synapses

    NARCIS (Netherlands)

    Nair, R.; Lauks, J.; Jung, S; Cooke, N.E.; de Wit, H.; Brose, N.; Kilimann, M.W.; Verhage, M.; Rhee, J.

    2013-01-01

    The surface density of neurotransmitter receptors at synapses is a key determinant of synaptic efficacy. Synaptic receptor accumulation is regulated by the transport, postsynaptic anchoring, and turnover of receptors, involving multiple trafficking, sorting, motor, and scaffold proteins. We found

  9. A Novel Mechanism of Androgen Receptor Action

    National Research Council Canada - National Science Library

    Roberts, Jr, Charles T

    2006-01-01

    .... Specifically, the authors had determined that the androgen receptor controls the expression of the cell-surface receptor for the hormone IGF-1 at the level of translation of the IGF-1 receptor mRNA...

  10. Exosomes serve as nanoparticles to suppress tumor growth and angiogenesis in gastric cancer by delivering hepatocyte growth factor siRNA.

    Science.gov (United States)

    Zhang, Haiyang; Wang, Yi; Bai, Ming; Wang, Junyi; Zhu, Kegan; Liu, Rui; Ge, Shaohua; Li, JiaLu; Ning, Tao; Deng, Ting; Fan, Qian; Li, Hongli; Sun, Wu; Ying, Guoguang; Ba, Yi

    2018-03-01

    Exosomes derived from cells have been found to mediate signal transduction between cells and to act as efficient carriers to deliver drugs and small RNA. Hepatocyte growth factor (HGF) is known to promote the growth of both cancer cells and vascular cells, and the HGF-cMET pathway is a potential clinical target. Here, we characterized the inhibitory effect of HGF siRNA on tumor growth and angiogenesis in gastric cancer. In addition, we showed that HGF siRNA packed in exosomes can be transported into cancer cells, where it dramatically downregulates HGF expression. A cell co-culture model was used to show that exosomes loaded with HGF siRNA suppress proliferation and migration of both cancer cells and vascular cells. Moreover, exosomes were able to transfer HGF siRNA in vivo, decreasing the growth rates of tumors and blood vessels. The results of our study demonstrate that exosomes have potential for use in targeted cancer therapy by delivering siRNA. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  11. Quantitative densitometry of neurotransmitter receptors

    International Nuclear Information System (INIS)

    Rainbow, T.C.; Bleisch, W.V.; Biegon, A.; McEwen, B.S.

    1982-01-01

    An autoradiographic procedure is described that allows the quantitative measurement of neurotransmitter receptors by optical density readings. Frozen brain sections are labeled in vitro with [ 3 H]ligands under conditions that maximize specific binding to neurotransmitter receptors. The labeled sections are then placed against the 3 H-sensitive LKB Ultrofilm to produce the autoradiograms. These autoradiograms resemble those produced by [ 14 C]deoxyglucose autoradiography and are suitable for quantitative analysis with a densitometer. Muscarinic cholinergic receptors in rat and zebra finch brain and 5-HT receptors in rat brain were visualized by this method. When the proper combination of ligand concentration and exposure time are used, the method provides quantitative information about the amount and affinity of neurotransmitter receptors in brain sections. This was established by comparisons of densitometric readings with parallel measurements made by scintillation counting of sections. (Auth.)

  12. Dopamine Receptors and Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Shin Hisahara

    2011-01-01

    Full Text Available Parkinson's disease (PD is a progressive extrapyramidal motor disorder. Pathologically, this disease is characterized by the selective dopaminergic (DAergic neuronal degeneration in the substantia nigra. Correcting the DA deficiency in PD with levodopa (L-dopa significantly attenuates the motor symptoms; however, its effectiveness often declines, and L-dopa-related adverse effects emerge after long-term treatment. Nowadays, DA receptor agonists are useful medication even regarded as first choice to delay the starting of L-dopa therapy. In advanced stage of PD, they are also used as adjunct therapy together with L-dopa. DA receptor agonists act by stimulation of presynaptic and postsynaptic DA receptors. Despite the usefulness, they could be causative drugs for valvulopathy and nonmotor complication such as DA dysregulation syndrome (DDS. In this paper, physiological characteristics of DA receptor familyare discussed. We also discuss the validity, benefits, and specific adverse effects of pharmaceutical DA receptor agonist.

  13. Molecular characterization of opioid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Howard, A.D.

    1986-01-01

    The aim of this research was to purify and characterize active opioid receptors and elucidate molecular aspects of opioid receptor heterogeneity. Purification to apparent homogeneity of an opioid binding protein from bovine caudate was achieved by solubilization in the non-ionic detergent, digitonin, followed by sequential chromatography on the opiate affinity matrix, ..beta..-naltrexylethylenediamine-CH-Sepharose 4B, and on the lectine affinity matrix, wheat germ agglutinin-agarose. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS-PAGE) followed by autoradiography revealed that radioiodinated purified receptor gave a single band. Purified receptor preparations showed a specific activity of 12,000-15,000 fmol of opiate bound per mg of protein. Radioiodinated human beta-endorphin (/sup 125/I-beta-end/sub H/) was used as a probe to investigate the ligand binding subunits of mu and delta opioid receptors. /sup 125/I-beta-end/sub H/ was shown to bind to a variety of opioid receptor-containing tissues with high affinity and specificity with preference for mu and delta sites, and with little, if any, binding to kappa sites. Affinity crosslinking techniques were employed to covalently link /sup 125/I-beta-end/sub H/ to opioid receptors, utilizing derivatives of bis-succinimidyl esters that are bifunctional crosslinkers with specificities for amino and sulfhydryl groups. This, and competition experiments with high type-selective ligands, permitted the assignment of two labeled peptides to their receptor types, namely a peptide of M/sub r/ = 65,000 for mu receptors and one of M/sub r/ = 53,000 for delta receptors.

  14. Hepatocyte growth factor is constitutively produced by donor-derived bone marrow cells and promotes regeneration of pancreatic β-cells

    International Nuclear Information System (INIS)

    Izumida, Yoshihiko; Aoki, Takeshi; Yasuda, Daisuke; Koizumi, Tomotake; Suganuma, Chisaki; Saito, Koji; Murai, Noriyuki; Shimizu, Yoshinori; Hayashi, Ken; Odaira, Masanori; Kusano, Tomokazu; Kushima, Miki; Kusano, Mitsuo

    2005-01-01

    Recent studies have demonstrated that the transplantation of bone marrow cells following diabetes induced by streptozotocin can support the recovery of pancreatic β-cell mass and a partial reversal of hyperglycemia. To address this issue, we examined whether the c-Met/hepatocyte growth factor (HGF) signaling pathway was involved in the recovery of β-cell injury after bone marrow transplantation (BMT). In this model, donor-derived bone marrow cells were positive for HGF immunoreactivity in the recipient spleen, liver, lung, and pancreas as well as in the host hepatocytes. Indeed, plasma HGF levels were maintained at a high value. The frequency of c-Met expression and its proliferative activity and differentiative response in the pancreatic ductal cells in the BMT group were greater than those in the PBS-treated group, resulting in an elevated number of endogenous insulin-producing cells. The induction of the c-Met/HGF signaling pathway following BMT promotes pancreatic regeneration in diabetic rats

  15. Stargazin Modulation of AMPA Receptors

    Directory of Open Access Journals (Sweden)

    Sana A. Shaikh

    2016-10-01

    Full Text Available Fast excitatory synaptic signaling in the mammalian brain is mediated by AMPA-type ionotropic glutamate receptors. In neurons, AMPA receptors co-assemble with auxiliary proteins, such as stargazin, which can markedly alter receptor trafficking and gating. Here, we used luminescence resonance energy transfer measurements to map distances between the full-length, functional AMPA receptor and stargazin expressed in HEK293 cells and to determine the ensemble structural changes in the receptor due to stargazin. In addition, we used single-molecule fluorescence resonance energy transfer to study the structural and conformational distribution of the receptor and how this distribution is affected by stargazin. Our nanopositioning data place stargazin below the AMPA receptor ligand-binding domain, where it is well poised to act as a scaffold to facilitate the long-range conformational selection observations seen in single-molecule experiments. These data support a model of stargazin acting to stabilize or select conformational states that favor activation.

  16. Radioiodinated ligands for dopamine receptors

    International Nuclear Information System (INIS)

    Kung, H.F.

    1994-01-01

    The dopamine receptor system is important for normal brain function; it is also the apparent action site for various neuroleptic drugs for the treatment of schizophrenia and other metal disorders. In the past few years radioiodinated ligands for single photon emission tomography (SPECT) have been successfully developed and tested in humans: [ 123 I]TISCH for D1 dopamine receptors; [ 123 I]IBZM, epidepride, IBF and FIDA2, four iodobenzamide derivatives, for D2/D3 dopamine receptors. In addition, [ 123 I]β-CIT (RTI-55) and IPT, cocaine derivatives, for the dopamine reuptake site are potentially useful for diagnosis of loss of dopamine neurons. The first iodinated ligand, (R)trans-7-OH-PIPAT, for D3 dopamine receptors, was synthesized and characterized with cloned cell lines (Spodoptera frugiperda, Sf9) expressing the D2 and D3 dopamine receptors and with rat basal forebrain membrane preparations. Most of the known iodobenzamides displayed similar potency in binding to both D2 and D3 dopamine receptors expressed in the cell lines. Initial studies appear to suggest that by fine tuning the structures it may be possible to develop agents specific for D2 and D3 dopamine receptors. It is important to investigate D2/D3 selectivity for this series of potent ligands

  17. Labeled receptor ligands for spect

    International Nuclear Information System (INIS)

    Kung, H.F.

    1989-01-01

    Receptor specific imaging agents for single photon emission computed tomography (SPECT) can potentially be useful in the understanding of basic biochemistry and pharmacology of receptors. SPECT images may also provide tools for evaluation of density and binding kinetics of a specific receptor, information important for diagnosis and patient management. Basic requirements for receptor imaging agents are: (a) they are labeled with short-lived isotopes, (b) they show high selectivity and specific uptake, (c) they exhibit high target/background ratio, and (d) they can be modeled to obtain quantitative information. Several good examples of CNS receptor specific ligands labeled with I-123 have been developed, including iodoQNB, iodoestrogen iodobenzadiazepine, iodobenazepine, iodobenzamides for muscarinic, estrogen benzadiazepine, D-1 and D-2 dopamine receptors. With the advent of newer and faster SPECT imaging devices, it may be feasible to quantitate the receptor density by in vivo imaging techniques. These new brain imaging agents can provide unique diagnostic information, which may not be available through other imaging modalities, such as CT and MRI

  18. XMRV: usage of receptors and potential co-receptors

    Directory of Open Access Journals (Sweden)

    Gaddam Durga

    2011-09-01

    Full Text Available Abstract Background XMRV is a gammaretrovirus first identified in prostate tissues of Prostate Cancer (PC patients and later in the blood cells of patients with Chronic Fatigue Syndrome (CFS. Although XMRV is thought to use XPR1 for cell entry, it infects A549 cells that do not express XPR1, suggesting usage of other receptors or co-receptors. Methods To study the usage of different receptors and co- receptors that could play a role in XMRV infection of lymphoid cells and GHOST (GFP- Human osteosarcoma cells expressing CD4 along with different chemokine receptors including CCR1, CCR2, etc., were infected with XMRV. Culture supernatants and cells were tested for XMRV replication using real time quantitative PCR. Results Infection and replication of XMRV was seen in a variety of GHOST cells, LNCaP, DU145, A549 and Caski cell lines. The levels of XMRV replication varied in different cell lines showing differential replication in different cell lines. However, replication in A549 which lacks XPR1 expression was relatively higher than DU145 but lower than, LNCaP. XMRV replication varied in GHOST cell lines expressing CD4 and each of the co- receptors CCR1-CCR8 and bob. There was significant replication of XMRV in CCR3 and Bonzo although it is much lower when compared to DU145, A549 and LNCaP. Conclusion XMRV replication was observed in GHOST cells that express CD4 and each of the chemokine receptors ranging from CCR1- CCR8 and BOB suggesting that infectivity in hematopoietic cells could be mediated by use of these receptors.

  19. Hepatocyte growth factor, a determinant of airspace homeostasis in the murine lung.

    Directory of Open Access Journals (Sweden)

    Carla Calvi

    Full Text Available The alveolar compartment, the fundamental gas exchange unit in the lung, is critical for tissue oxygenation and viability. We explored hepatocyte growth factor (HGF, a pleiotrophic cytokine that promotes epithelial proliferation, morphogenesis, migration, and resistance to apoptosis, as a candidate mediator of alveolar formation and regeneration. Mice deficient in the expression of the HGF receptor Met in lung epithelial cells demonstrated impaired airspace formation marked by a reduction in alveolar epithelial cell abundance and survival, truncation of the pulmonary vascular bed, and enhanced oxidative stress. Administration of recombinant HGF to tight-skin mice, an established genetic emphysema model, attenuated airspace enlargement and reduced oxidative stress. Repair in the TSK/+ mouse was punctuated by enhanced akt and stat3 activation. HGF treatment of an alveolar epithelial cell line not only induced proliferation and scattering of the cells but also conferred protection against staurosporine-induced apoptosis, properties critical for alveolar septation. HGF promoted cell survival was attenuated by akt inhibition. Primary alveolar epithelial cells treated with HGF showed improved survival and enhanced antioxidant production. In conclusion, using both loss-of-function and gain-of-function maneuvers, we show that HGF signaling is necessary for alveolar homeostasis in the developing lung and that augmentation of HGF signaling can improve airspace morphology in murine emphysema. Our studies converge on prosurvival signaling and antioxidant protection as critical pathways in HGF-mediated airspace maintenance or repair. These findings support the exploration of HGF signaling enhancement for diseases of the airspace.

  20. Quantitative receptor radioautography in the study of receptor-receptor interactions in the nucleus tractus solitarii

    Directory of Open Access Journals (Sweden)

    Fior-Chadi D.R.

    1998-01-01

    Full Text Available The nucleus tractus solitarii (NTS in the dorsomedial medulla comprises a wide range of neuropeptides and biogenic amines. Several of them are related to mechanisms of central blood pressure control. Angiotensin II (Ang II, neuropeptide Y (NPY and noradrenaline (NA are found in the NTS cells, as well as their receptors. Based on this observation we have evaluated the modulatory effect of these peptide receptors on a2-adrenoceptors in the NTS. Using quantitative receptor radioautography, we observed that NPY and Ang II receptors decreased the affinity of a2-adrenoceptors for their agonists in the NTS of the rat. Cardiovascular experiments agreed with the in vitro data. Coinjection of a threshold dose of Ang II or of the NPY agonists together with an ED50 dose of adrenergic agonists such as NA, adrenaline and clonidine counteracted the depressor effect produced by the a2-agonist in the NTS. The results provide evidence for the existence of an antagonistic interaction between Ang II at1 receptors and NPY receptor subtypes with the a2-adrenoceptors in the NTS. This receptor interaction may reduce the transduction over the a2-adrenoceptors which can be important in central cardiovascular regulation and in the development of hypertension

  1. Peripheral adrenergic receptors in hypertension

    NARCIS (Netherlands)

    Michel, M. C.; Brodde, O. E.; Insel, P. A.

    1990-01-01

    Increased sympathoadrenal activity appears to play an important role in the development or maintenance of elevated blood pressure in hypertensive patients and various animal models of hypertension. Alterations of adrenergic receptor number or responsiveness might contribute to this increased

  2. Are olfactory receptors really olfactive?

    DEFF Research Database (Denmark)

    Giorgi, Franco; Maggio, Roberto; Bruni, Luis Emilio

    2011-01-01

    environmental conditions. By adopting this standpoint, the functional attribution as olfactory or chemotactic sensors to these receptors should not be seen neither as a cause conditioning receptor gene expression, nor as a final effect resulting from genetically predetermined programs, but as a direct...... and odor-decoding processes. However, this type of explanation does not entirely justify the role olfactory receptors have played during evolution, since they are also expressed ectopically in different organs and/or tissues. Homologous olfactory genes have in fact been found in such diverse cells and....../or organs as spermatozoa, testis and kidney where they are assumed to act as chemotactic sensors or renin modulators. To justify their functional diversity, homologous olfactory receptors are assumed to share the same basic role: that of conferring a self-identity to cells or tissues under varying...

  3. Nuclear Receptor Signaling Atlas (NURSA)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Nuclear Receptor Signaling Atlas (NURSA) is designed to foster the development of a comprehensive understanding of the structure, function, and role in disease...

  4. L-glutamate Receptor In Paramecium

    Science.gov (United States)

    Bernal-Martínez, Juan; Ortega-Soto, Arturo

    2004-09-01

    Behavioral, electrophysiological and biochemical experiments were performed in order to establish the presence of a glutamate receptor in the ciliate Paramecium. It was found that an AMPA/KA receptor is functionally expressed in Paramecium and that this receptor is immunologically and fillogenetically related to the AMPA/KA receptor present in vertebrates.

  5. Receptor-targeted metalloradiopharmaceuticals. Final technical report

    International Nuclear Information System (INIS)

    Green, Mark A.

    2000-01-01

    Copper (II) and platinum (II) coordination complexes were prepared and characterized. These complexes were designed to afford structural homology with steroidal and non-steroidal estrogens for possible use as receptor-targeted radiopharmaceuticals. While weak affinity for the estrogen receptor was detectable, none would appear to have sufficient receptor-affinity for estrogen-receptor-targeted imaging or therapy

  6. [The receptor theory of atherosclerosis].

    Science.gov (United States)

    Likhoded, V G; Bondarenko, V M; Gintsburg, A L

    2010-01-01

    Lipopolysaccharides of Gram-negative bacteria can interact with Toll-like receptor 4 (TLR4) and induce atheroma formation. The risk of atherosclerosis is decreased in case of TLR4 mutation. Other bacterial ligands and endogenous ligands of TLRs can also be involved in induction of atherogenesis. The general concept of atherosclerosis pathogentsis is presented. According to this concept atherogenesis can be initiated by some reactions resulting from interaction of exogenous and endogenous microbial ligands with Toll-like receptors.

  7. Xenobiotics and the Glucocorticoid Receptor

    International Nuclear Information System (INIS)

    Gulliver, Linda S M

    2017-01-01

    Glucocorticoid Receptor (GR) is present in virtually every human cell type. Representing a nuclear receptor superfamily, GR has several different isoforms essentially acting as ligand-dependent transcription factors, regulating glucocorticoid-responsive gene expression in both a positive and a negative manner. Although the natural ligand of the Glucocorticoid Receptor, glucocorticoids (GC) represent only some of the multiple ligands for GR. Xenobiotics, ubiquitous in the environment, bind to GR and are also capable of activating or repressing GR gene expression, thereby modulating GR cell and tissue-specific downstream effects in a multitude of ways that include responses to inflammatory, allergic, metabolic, neoplastic and autoimmune processes. Many xenobiotics, if inadequately metabolized by xenobiotic metabolizing enzymes and not wholly eliminated, could have deleterious toxic effects with potentially lethal consequences. This review examines GR, the genomic and non-genomic actions of natural and synthetic GC and the body's handling of xenobiotic compounds, before reviewing what is presently known about GR's interactions with many of the more commonly encountered and some of the less well known GR-associated xenobiotics. GR promiscuity and crosstalk with other signaling pathways is discussed, alongside novel roles for GR that include mood disorder and addiction. A knowledge of GR interactions with xenobiotics is increasingly relevant when considering aging populations and the related prevalence of neoplastic disease, together with growing concerns around human exposure to mixtures of chemicals in the environment. Furthermore, escalating rates of obesity, Type 2 diabetes; autoimmune, allergy, addiction and mood disorder-related pathologies, require novel targeted interventions and GR appears a promising pharmacological candidate. - Highlights: • Biological impact of xenobiotics acting through Glucocorticoid Receptor. • Promiscuity of Glucocorticoid

  8. Xenobiotics and the Glucocorticoid Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Gulliver, Linda S M, E-mail: linda.gulliver@otago.ac.nz

    2017-03-15

    Glucocorticoid Receptor (GR) is present in virtually every human cell type. Representing a nuclear receptor superfamily, GR has several different isoforms essentially acting as ligand-dependent transcription factors, regulating glucocorticoid-responsive gene expression in both a positive and a negative manner. Although the natural ligand of the Glucocorticoid Receptor, glucocorticoids (GC) represent only some of the multiple ligands for GR. Xenobiotics, ubiquitous in the environment, bind to GR and are also capable of activating or repressing GR gene expression, thereby modulating GR cell and tissue-specific downstream effects in a multitude of ways that include responses to inflammatory, allergic, metabolic, neoplastic and autoimmune processes. Many xenobiotics, if inadequately metabolized by xenobiotic metabolizing enzymes and not wholly eliminated, could have deleterious toxic effects with potentially lethal consequences. This review examines GR, the genomic and non-genomic actions of natural and synthetic GC and the body's handling of xenobiotic compounds, before reviewing what is presently known about GR's interactions with many of the more commonly encountered and some of the less well known GR-associated xenobiotics. GR promiscuity and crosstalk with other signaling pathways is discussed, alongside novel roles for GR that include mood disorder and addiction. A knowledge of GR interactions with xenobiotics is increasingly relevant when considering aging populations and the related prevalence of neoplastic disease, together with growing concerns around human exposure to mixtures of chemicals in the environment. Furthermore, escalating rates of obesity, Type 2 diabetes; autoimmune, allergy, addiction and mood disorder-related pathologies, require novel targeted interventions and GR appears a promising pharmacological candidate. - Highlights: • Biological impact of xenobiotics acting through Glucocorticoid Receptor. • Promiscuity of Glucocorticoid

  9. Nuclear Receptors, RXR, and the Big Bang.

    Science.gov (United States)

    Evans, Ronald M; Mangelsdorf, David J

    2014-03-27

    Isolation of genes encoding the receptors for steroids, retinoids, vitamin D, and thyroid hormone and their structural and functional analysis revealed an evolutionarily conserved template for nuclear hormone receptors. This discovery sparked identification of numerous genes encoding related proteins, termed orphan receptors. Characterization of these orphan receptors and, in particular, of the retinoid X receptor (RXR) positioned nuclear receptors at the epicenter of the "Big Bang" of molecular endocrinology. This Review provides a personal perspective on nuclear receptors and explores their integrated and coordinated signaling networks that are essential for multicellular life, highlighting the RXR heterodimer and its associated ligands and transcriptional mechanism. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Fibroblast growth factor receptors in breast cancer.

    Science.gov (United States)

    Wang, Shuwei; Ding, Zhongyang

    2017-05-01

    Fibroblast growth factor receptors are growth factor receptor tyrosine kinases, exerting their roles in embryogenesis, tissue homeostasis, and development of breast cancer. Recent genetic studies have identified some subtypes of fibroblast growth factor receptors as strong genetic loci associated with breast cancer. In this article, we review the recent epidemiological findings and experiment results of fibroblast growth factor receptors in breast cancer. First, we summarized the structure and physiological function of fibroblast growth factor receptors in humans. Then, we discussed the common genetic variations in fibroblast growth factor receptors that affect breast cancer risk. In addition, we also introduced the potential roles of each fibroblast growth factor receptors isoform in breast cancer. Finally, we explored the potential therapeutics targeting fibroblast growth factor receptors for breast cancer. Based on the biological mechanisms of fibroblast growth factor receptors leading to the pathogenesis in breast cancer, targeting fibroblast growth factor receptors may provide new opportunities for breast cancer therapeutic strategies.

  11. Prognostic Value of Estrogen Receptor alpha and Progesterone Receptor Conversion in Distant Breast Cancer Metastases

    NARCIS (Netherlands)

    Hoefnagel, Laurien D. C.; Moelans, Cathy B.; Meijer, S. L.; van Slooten, Henk-Jan; Wesseling, Pieter; Wesseling, Jelle; Westenend, Pieter J.; Bart, Joost; Seldenrijk, Cornelis A.; Nagtegaal, Iris D.; Oudejans, Joost; van der Valk, Paul; van Gils, Carla H.; van der Wall, Elsken; van Diest, Paul J.

    2012-01-01

    BACKGROUND: Changes in the receptor profile of primary breast cancers to their metastases (receptor conversion) have been described for the estrogen receptor alpha (ER alpha) and progesterone receptor (PR). The purpose of this study was to evaluate the impact of receptor conversion for ER alpha and

  12. Evaluation of the human relevance of the constitutive androstane receptor-mediated mode of action for rat hepatocellular tumor formation by the synthetic pyrethroid momfluorothrin.

    Science.gov (United States)

    Okuda, Yu; Kushida, Masahiko; Kikumoto, Hiroko; Nakamura, Yoshimasa; Higuchi, Hashihiro; Kawamura, Satoshi; Cohen, Samuel M; Lake, Brian G; Yamada, Tomoya

    2017-01-01

    High dietary levels of the non-genotoxic synthetic pyrethroid momfluorothrin increased the incidence of hepatocellular tumors in male and female Wistar rats. Mechanistic studies have demonstrated that the mode of action (MOA) for momfluorothrin-induced hepatocellular tumors is constitutive androstane receptor (CAR)-mediated. In the present study, to evaluate the potential human carcinogenic risk of momfluorothrin, the effects of momfluorothrin (1-1,000 µM) and a major metabolite Z-CMCA (5-1,000 µM) on hepatocyte replicative DNA synthesis and CYP2B mRNA expression were examined in cultured rat and human hepatocyte preparations. The effect of sodium phenobarbital (NaPB), a prototypic rodent hepatocarcinogen with a CAR-mediated MOA, was also investigated. Human hepatocyte growth factor (hHGF) produced a concentration-dependent increase in replicative DNA synthesis in rat and human hepatocytes. However, while NaPB and momfluorothrin increased replicative DNA synthesis in rat hepatocytes, NaPB, momfluorothrin and Z-CMCA did not increase replicative DNA synthesis in human hepatocytes. NaPB, momfluorothrin and Z-CMCA increased CYP2B1/2 mRNA levels in rat hepatocytes. NaPB and momfluorothrin also increased CYP2B6 mRNA levels in human hepatocytes. Overall, while momfluorothrin and NaPB activated CAR in cultured human hepatocytes, neither chemical increased replicative DNA synthesis. Furthermore, to confirm whether the findings observed in vitro were also observed in vivo, a humanized chimeric mouse study was conducted. Replicative DNA synthesis was not increased in human hepatocytes of chimeric mice treated with momfluorothrin or its close structural analogue metofluthrin. As human hepatocytes are refractory to the mitogenic effects of momfluorothrin, in contrast to rat hepatocytes, the data support the hypothesis that the MOA for momfluorothrin-induced rat liver tumor formation is not relevant for humans.

  13. Expression of GABAergic receptors in mouse taste receptor cells.

    Directory of Open Access Journals (Sweden)

    Margaret R Starostik

    Full Text Available BACKGROUND: Multiple excitatory neurotransmitters have been identified in the mammalian taste transduction, with few studies focused on inhibitory neurotransmitters. Since the synthetic enzyme glutamate decarboxylase (GAD for gamma-aminobutyric acid (GABA is expressed in a subset of mouse taste cells, we hypothesized that other components of the GABA signaling pathway are likely expressed in this system. GABA signaling is initiated by the activation of either ionotropic receptors (GABA(A and GABA(C or metabotropic receptors (GABA(B while it is terminated by the re-uptake of GABA through transporters (GATs. METHODOLOGY/PRINCIPAL FINDINGS: Using reverse transcriptase-PCR (RT-PCR analysis, we investigated the expression of different GABA signaling molecules in the mouse taste system. Taste receptor cells (TRCs in the circumvallate papillae express multiple subunits of the GABA(A and GABA(B receptors as well as multiple GATs. Immunocytochemical analyses examined the distribution of the GABA machinery in the circumvallate papillae. Both GABA(A-and GABA(B- immunoreactivity were detected in the peripheral taste receptor cells. We also used transgenic mice that express green fluorescent protein (GFP in either the Type II taste cells, which can respond to bitter, sweet or umami taste stimuli, or in the Type III GAD67 expressing taste cells. Thus, we were able to identify that GABAergic receptors are expressed in some Type II and Type III taste cells. Mouse GAT4 labeling was concentrated in the cells surrounding the taste buds with a few positively labeled TRCs at the margins of the taste buds. CONCLUSIONS/SIGNIFICANCE: The presence of GABAergic receptors localized on Type II and Type III taste cells suggests that GABA is likely modulating evoked taste responses in the mouse taste bud.

  14. Significant blockade of multiple receptor tyrosine kinases by MGCD516 (Sitravatinib), a novel small molecule inhibitor, shows potent anti-tumor activity in preclinical models of sarcoma.

    Science.gov (United States)

    Patwardhan, Parag P; Ivy, Kathryn S; Musi, Elgilda; de Stanchina, Elisa; Schwartz, Gary K

    2016-01-26

    Sarcomas are rare but highly aggressive mesenchymal tumors with a median survival of 10-18 months for metastatic disease. Mutation and/or overexpression of many receptor tyrosine kinases (RTKs) including c-Met, PDGFR, c-Kit and IGF1-R drive defective signaling pathways in sarcomas. MGCD516 (Sitravatinib) is a novel small molecule inhibitor targeting multiple RTKs involved in driving sarcoma cell growth. In the present study, we evaluated the efficacy of MGCD516 both in vitro and in mouse xenograft models in vivo. MGCD516 treatment resulted in significant blockade of phosphorylation of potential driver RTKs and induced potent anti-proliferative effects in vitro. Furthermore, MGCD516 treatment of tumor xenografts in vivo resulted in significant suppression of tumor growth. Efficacy of MGCD516 was superior to imatinib and crizotinib, two other well-studied multi-kinase inhibitors with overlapping target specificities, both in vitro and in vivo. This is the first report describing MGCD516 as a potent multi-kinase inhibitor in different models of sarcoma, superior to imatinib and crizotinib. Results from this study showing blockade of multiple driver signaling pathways provides a rationale for further clinical development of MGCD516 for the treatment of patients with soft-tissue sarcoma.

  15. Toll-like receptors in neonatal sepsis.

    LENUS (Irish Health Repository)

    O'Hare, Fiona M

    2013-06-01

    Toll-like receptors are vital transmembrane receptors that initiate the innate immune response to many micro-organisms. The discovery of these receptors has improved our understanding of host-pathogen interactions, and these receptors play an important role in the pathogenesis of multiple neonatal conditions such as sepsis and brain injury. Toll-like receptors, especially TLRs 2 and 4, are associated with necrotizing enterocolitis, periventricular leukomalacia and sepsis.

  16. Prognostic implication of serum hepatocyte growth factor in stage II/III breast cancer patients who received neoadjuvant chemotherapy.

    Science.gov (United States)

    Kim, Hyori; Youk, Jeonghwan; Yang, Yaewon; Kim, Tae-Yong; Min, Ahrum; Ham, Hye-Seon; Cho, Seongcheol; Lee, Kyung-Hun; Keam, Bhumsuk; Han, Sae-Won; Oh, Do-Youn; Ryu, Han Suk; Han, Wonshik; Park, In Ae; Kim, Tae-You; Noh, Dong-Young; Im, Seock-Ah

    2016-03-01

    In stage II/III breast cancer, neoadjuvant chemotherapy (NAC) is a standard treatment. Although several biomarkers are used to predict prognosis in breast cancer, there is no reliable predictive biomarker for NAC success. Recently, the hepatocyte growth factor (HGF) and cMet signaling pathway demonstrated to be involved in breast cancer tumor progression, and its potential as a biomarker is under active investigation. In this study, we assessed the potential of serum HGF as a prognostic biomarker for NAC efficacy. Venous blood samples were drawn from patients diagnosed with stage II/III breast cancer and treated with NAC in Seoul National University Hospital from August 2004 to November 2009. Serum HGF level was determined using an ELISA system. We reviewed the medical records of the patients and investigated the association of HGF level with patients' clinicopathologic characteristics. A total of 121 female patients (median age = 45 years old) were included. Median level of HGF was 934 pg/ml (lower quartile: 772, upper quartile: 1145 pg/ml). Patients with higher HGF level than median value were significantly more likely to have clinically detectable regional node metastasis (p = 0.017, Fisher's exact test). Patients with complete and partial response according to the American Joint Committee on Cancer 7th Edition criteria tended to have higher HGF level (p = 0.105 by t test). Patients with an HGF level higher than the upper quartile value had longer relapse-free survival than the other patients (106 vs. 85 months, p = 0.008). High serum HGF levels in breast cancer patients are associated with clinically detectable regional node metastasis and, paradoxically, with longer relapse-free survival in stage II/III breast cancer.

  17. The Mechanism of Gefitinib Resistance Induced by Hepatocyte Growth Factor 
in Sensitive Non-small Cell Lung Cancer Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Xianglan XUAN

    2013-01-01

    Full Text Available Background and objective Previous studies have reported that Met might be related to gefitinib resistance in non-small cell lung cancer (NSCLC. The present study aims to explore the mechanism of hepatocyte growth factor (HGF-induced gefitinib resistance in different gene types of sensitive NSCLC in vitro. Methods The PC-9 and H292 cell lines were chosen and induced by HGF. The cell survival was measured using MTT assay, the cell cycle distribution was measured using PI assay, and cell apoptosis with an Annexin V-PE assay, respectively. The c-Met and p-Met protein expression was determined via Western blot analysis. Results Gefitinib inhibited the growth of PC-9 and H292 cells in a dose-dependent manner. The concentration-survival curves of both cell lines shifted to the right when induced with HGF. HGF did not affect PC-9 and H292 cell proliferation. The cell also had a higher cell survival rate when treated with HGF and gefitinib compared with that under gefitinib alone (P<0.05. The apoptotic rate and cell cycle progression showed no significant difference between the HG and G group (P>0.05. HGF stimulated Met phosphorylation in the PC-9 and H292 cells. Gefitinib inhibited the HGF-induced Met phosphorylation in PC-9 cells, but not in H292 cells. Conclusion HGF induces gefitinib resistance in PC-9 and H292 cells. HGF-induced Met phosphorylation may be an important mechanism of gefitinib resistance in sensitive NSCLC.

  18. Studies on insulin receptor, 2

    International Nuclear Information System (INIS)

    Sakai, Yukio

    1979-01-01

    The present study is to investigate an influence of starvation and high fat diet on insulin receptor of the plasma membrane by means of radioreceptor assay using 125 I-labelled insulin. Male guinea pigs of Hartley strain were employed for the starvation study, and 125 I-insulin binding capacity on the plasma membrane of the liver and kidney was determined at 24, 48 and 72 hours of the fast after the last meal. Male rats of Wistar strain were employed for the high fat study where the diet containing 35% of butter was fed ad libitum for 38 or 68 days. The animals were killed at the fast of 12 hours, and 125 I-insulin binding capacity on the plasma membrane of the liver was determined. The results obtained are summarized as follows: 1) An increase in 125 I-insulin binding capacity on the plasma membrane of the liver and kidney was observed by the starvation for 24 to 72 hours. 2) The mechanism of the increase by starvation was considered to be different by the organs; it was due to an increase in number of insulin receptor in the liver, and due to an increase in affinity of insulin receptor in the kidney. 3) In non-obese rats fed with high fat diet, the number of insulin receptor on the liver plasma membrane showed a decrease, and this observation clearly indicated that the decrease in number of the receptor did not depend on the obesity. 4) Obese rats also fed with high fat diet presented a decrease in number of insulin receptor without an elevation of insulin levels in the circulating blood. This indicated that at least in the obese rats fed with high fat diet, the decrease in number of the receptor was not due to hyperinsulinemia. (author)

  19. Purinergic Receptors in Ocular Inflammation

    Directory of Open Access Journals (Sweden)

    Ana Guzman-Aranguez

    2014-01-01

    Full Text Available Inflammation is a complex process that implies the interaction between cells and molecular mediators, which, when not properly “tuned,” can lead to disease. When inflammation affects the eye, it can produce severe disorders affecting the superficial and internal parts of the visual organ. The nucleoside adenosine and nucleotides including adenine mononucleotides like ADP and ATP and dinucleotides such as P1,P4-diadenosine tetraphosphate (Ap4A, and P1,P5-diadenosine pentaphosphate (Ap5A are present in different ocular locations and therefore they may contribute/modulate inflammatory processes. Adenosine receptors, in particular A2A adenosine receptors, present anti-inflammatory action in acute and chronic retinal inflammation. Regarding the A3 receptor, selective agonists like N6-(3-iodobenzyl-5′-N-methylcarboxamidoadenosine (CF101 have been used for the treatment of inflammatory ophthalmic diseases such as dry eye and uveoretinitis. Sideways, diverse stimuli (sensory stimulation, large intraocular pressure increases can produce a release of ATP from ocular sensory innervation or after injury to ocular tissues. Then, ATP will activate purinergic P2 receptors present in sensory nerve endings, the iris, the ciliary body, or other tissues surrounding the anterior chamber of the eye to produce uveitis/endophthalmitis. In summary, adenosine and nucleotides can activate receptors in ocular structures susceptible to suffer from inflammatory processes. This involvement suggests the possible use of purinergic agonists and antagonists as therapeutic targets for ocular inflammation.

  20. Scavenger receptors in homeostasis and immunity.

    Science.gov (United States)

    Canton, Johnathan; Neculai, Dante; Grinstein, Sergio

    2013-09-01

    Scavenger receptors were originally identified by their ability to recognize and to remove modified lipoproteins; however, it is now appreciated that they carry out a striking range of functions, including pathogen clearance, lipid transport, the transport of cargo within the cell and even functioning as taste receptors. The large repertoire of ligands recognized by scavenger receptors and their broad range of functions are not only due to the wide range of receptors that constitute this family but also to their ability to partner with various co-receptors. The ability of individual scavenger receptors to associate with different co-receptors makes their responsiveness extremely versatile. This Review highlights recent insights into the structural features that determine the function of scavenger receptors and the emerging role that these receptors have in immune responses, notably in macrophage polarization and in the pathogenesis of diseases such as atherosclerosis and Alzheimer's disease.

  1. Photo-antagonism of the GABAA receptor.

    Science.gov (United States)

    Mortensen, Martin; Iqbal, Favaad; Pandurangan, Arun P; Hannan, Saad; Huckvale, Rosemary; Topf, Maya; Baker, James R; Smart, Trevor G

    2014-07-29

    Neurotransmitter receptor trafficking is fundamentally important for synaptic transmission and neural network activity. GABAA receptors and inhibitory synapses are vital components of brain function, yet much of our knowledge regarding receptor mobility and function at inhibitory synapses is derived indirectly from using recombinant receptors, antibody-tagged native receptors and pharmacological treatments. Here we describe the use of a set of research tools that can irreversibly bind to and affect the function of recombinant and neuronal GABAA receptors following ultraviolet photoactivation. These compounds are based on the competitive antagonist gabazine and incorporate a variety of photoactive groups. By using site-directed mutagenesis and ligand-docking studies, they reveal new areas of the GABA binding site at the interface between receptor β and α subunits. These compounds enable the selected inactivation of native GABAA receptor populations providing new insight into the function of inhibitory synapses and extrasynaptic receptors in controlling neuronal excitation.

  2. TAM receptor signaling in development.

    Science.gov (United States)

    Burstyn-Cohen, Tal

    2017-01-01

    TYRO3, AXL and MERTK comprise the TAM family of receptor protein tyrosine kinases. Activated by their ligands, protein S (PROS1) and growth-arrest-specific 6 (GAS6), they mediate numerous cellular functions throughout development and adulthood. Expressed by a myriad of cell types and tissues, they have been implicated in homeostatic regulation of the immune, nervous, vascular, bone and reproductive systems. The loss-of-function of TAM signaling in adult tissues culminates in the destruction of tissue homeostasis and diseased states, while TAM gain-of-function in various tumors promotes cancer phenotypes. Combinatorial ligand-receptor interactions may elicit different molecular and cellular responses. Many of the TAM regulatory functions are essentially developmental, taking place both during embryogenesis and postnatally. This review highlights current knowledge on the role of TAM receptors and their ligands during these developmental processes in the immune, nervous, vascular and reproductive systems.

  3. How calcium makes endocytic receptors attractive

    DEFF Research Database (Denmark)

    Andersen, Christian B F; Moestrup, Søren K

    2014-01-01

    of the receptor. Endosomal acidification and calcium efflux lead to the essential ligand-receptor affinity switch and separation. Recent data, including crystal structures of receptor-ligand complexes, now reveal how calcium, in different types of domain scaffolds, functions in a common way as a removable...... 'lynchpin' that stabilizes favorable positioning of ligand-attractive receptor residues. In addition to explaining how calcium depletion can cause ligand-receptor dissociation, the new data add further insight into how acidification contributes to dissociation through structural changes that affect...... the receptor calcium sites....

  4. Lessons from crystal structures of kainate receptors

    DEFF Research Database (Denmark)

    Møllerud, Stine; Frydenvang, Karla Andrea; Pickering, Darryl S

    2017-01-01

    Kainate receptors belong to the family of ionotropic glutamate receptors. These receptors assemble from five subunits (GluK1-5) into tetrameric ion channels. Kainate receptors are located at both pre- and postsynaptic membranes in the central nervous system where they contribute to excitatory...... synaptic transmission and modulate network excitability by regulating neurotransmitter release. Dysfunction of kainate receptors has been implicated in several neurological disorders such as epilepsy, schizophrenia and depression. Here we provide a review on the current understanding of kainate receptor...

  5. The lactate receptor, G-protein-coupled receptor 81/hydroxycarboxylic acid receptor 1

    DEFF Research Database (Denmark)

    Morland, Cecilie; Lauritzen, Knut Huso; Puchades, Maja

    2015-01-01

    We have proposed that lactate is a “volume transmitter” in the brain and underpinned this by showing that the lactate receptor, G-protein-coupled receptor 81 (GPR81, also known as HCA1 or HCAR1), which promotes lipid storage in adipocytes, is also active in the mammalian brain. This includes......, energy metabolism, and energy substrate availability, including a glucose- and glycogen-saving response. HCAR1 may contribute to optimizing the cAMP concentration. For instance, in the prefrontal cortex, excessively high cAMP levels are implicated in impaired cognition in old age, fatigue, stress...

  6. Met-Independent Hepatocyte Growth Factor-mediated regulation of cell adhesion in human prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Davis Rodney

    2006-07-01

    Full Text Available Abstract Background Prostate cancer cells communicate reciprocally with the stromal cells surrounding them, inside the prostate, and after metastasis, within the bone. Each tissue secretes factors for interpretation by the other. One stromally-derived factor, Hepatocyte Growth Factor (HGF, was found twenty years ago to regulate invasion and growth of carcinoma cells. Working with the LNCaP prostate cancer progression model, we found that these cells could respond to HGF stimulation, even in the absence of Met, the only known HGF receptor. The new HGF binding partner we find on the cell surface may help to clarify conflicts in the past literature about Met expression and HGF response in cancer cells. Methods We searched for Met or any HGF binding partner on the cells of the PC3 and LNCaP prostate cancer cell models, using HGF immobilized on agarose beads. By using mass spectrometry analyses and sequencing we have identified nucleolin protein as a novel HGF binding partner. Antibodies against nucleolin (or HGF were able to ameliorate the stimulatory effects of HGF on met-negative prostate cancer cells. Western blots, RT-PCR, and immunohistochemistry were used to assess nucleolin levels during prostate cancer progression in both LNCaP and PC3 models. Results We have identified HGF as a major signaling component of prostate stromal-conditioned media (SCM and have implicated the protein nucleolin in HGF signal reception by the LNCaP model prostate cancer cells. Antibodies that silence either HGF (in SCM or nucleolin (on the cell surfaces eliminate the adhesion-stimulatory effects of the SCM. Likewise, addition of purified HGF to control media mimics the action of SCM. C4-2, an LNCaP lineage-derived, androgen-independent human prostate cancer cell line, responds to HGF in a concentration-dependent manner by increasing its adhesion and reducing its migration on laminin substratum. These HGF effects are not due to shifts in the expression levels of

  7. Met-Independent Hepatocyte Growth Factor-mediated regulation of cell adhesion in human prostate cancer cells

    International Nuclear Information System (INIS)

    Tate, Amanda; Isotani, Shuji; Bradley, Michael J; Sikes, Robert A; Davis, Rodney; Chung, Leland WK; Edlund, Magnus

    2006-01-01

    Prostate cancer cells communicate reciprocally with the stromal cells surrounding them, inside the prostate, and after metastasis, within the bone. Each tissue secretes factors for interpretation by the other. One stromally-derived factor, Hepatocyte Growth Factor (HGF), was found twenty years ago to regulate invasion and growth of carcinoma cells. Working with the LNCaP prostate cancer progression model, we found that these cells could respond to HGF stimulation, even in the absence of Met, the only known HGF receptor. The new HGF binding partner we find on the cell surface may help to clarify conflicts in the past literature about Met expression and HGF response in cancer cells. We searched for Met or any HGF binding partner on the cells of the PC3 and LNCaP prostate cancer cell models, using HGF immobilized on agarose beads. By using mass spectrometry analyses and sequencing we have identified nucleolin protein as a novel HGF binding partner. Antibodies against nucleolin (or HGF) were able to ameliorate the stimulatory effects of HGF on met-negative prostate cancer cells. Western blots, RT-PCR, and immunohistochemistry were used to assess nucleolin levels during prostate cancer progression in both LNCaP and PC3 models. We have identified HGF as a major signaling component of prostate stromal-conditioned media (SCM) and have implicated the protein nucleolin in HGF signal reception by the LNCaP model prostate cancer cells. Antibodies that silence either HGF (in SCM) or nucleolin (on the cell surfaces) eliminate the adhesion-stimulatory effects of the SCM. Likewise, addition of purified HGF to control media mimics the action of SCM. C4-2, an LNCaP lineage-derived, androgen-independent human prostate cancer cell line, responds to HGF in a concentration-dependent manner by increasing its adhesion and reducing its migration on laminin substratum. These HGF effects are not due to shifts in the expression levels of laminin-binding integrins, nor can they be linked to

  8. Stability of solubilized benzodiazepine receptors

    NARCIS (Netherlands)

    Janssen, M.J; Ensing, K; de Zeeuw, R.A

    1997-01-01

    According to the observations of other researchers, benzodiazepine receptors solubilized with sodium deoxycholate are unstable, but stability can be improved by exchanging deoxycholate for Triton X-100. In our experiments we conclude that the choice of detergent is not the restrictive factor for the

  9. Serum transferrin receptor in polycythemia.

    Science.gov (United States)

    Manteiga, R; Remacha, A F; Sardà, M P; Ubeda, J

    1998-10-01

    We measured serum transferrin receptor (sTfR) levels in 22 patients with polycythemia vera and in 26 cases of secondary polycythemia. In our study, raised sTfR levels in both polycythemia groups were related to iron deficiency.

  10. FMRFamide receptors of Helix aspersa

    International Nuclear Information System (INIS)

    Payza, K.

    1988-01-01

    A receptor binding assay and an isolated heart bioassay were used to identify and characterize the FMRFamide receptors in Helix. In the heart bioassay, FMRFamide increased myocardial contraction force. A potent FMRFamide analog, desaminoTyr-Phe-norLeu-arg-Phe-amide (daYFnLRFamide), was used as a radioiodinated receptor ligand. The high affinity binding of 125 I-daYFnLRFamide at 0 degree C to Helix brain membranes was reversible, saturable, pH-dependent and specific, with a K D of 13-14 nM. A lower affinity (245 nM) site was also observed. Radioligand binding sites were also identified in the heart, male reproductive organs and digestive organs. The structure-activity relations (SAR) of cardiostimulation correlated with the specificity of 125 I-daYFnLRFamide binding to brain and heart receptors. The SAR were similar to those of other molluscan FMRFamide bioassays, except that they showed a marked preference for some analogs with blocked amino-terminals

  11. Pharmacological approach of the receptors

    International Nuclear Information System (INIS)

    Puech, A.J.

    1989-01-01

    This paper explains the three main goals for clinical positron emission tomography (PET) studies: detection of receptor abnormalities in groups of patients to propose therapeutic indication of new ligands; validation of current hypothesis of drug effect; rational clinical drug development specially for dose-finding studies. (H.W.)

  12. Uncompetitive antagonism of AMPA receptors

    DEFF Research Database (Denmark)

    Andersen, Trine F; Tikhonov, Denis B; Bølcho, Ulrik

    2006-01-01

    Philanthotoxins are uncompetitive antagonists of Ca2+-permeable AMPA receptors presumed to bind to the pore-forming region, but a detailed molecular mechanism for this interaction is missing. Here a small library of novel philanthotoxins was designed and synthesized using a solid-phase strategy. ...

  13. NMDA receptors and memory encoding.

    Science.gov (United States)

    Morris, Richard G M

    2013-11-01

    It is humbling to think that 30 years have passed since the paper by Collingridge, Kehl and McLennan showing that one of Jeff Watkins most interesting compounds, R-2-amino-5-phosphonopentanoate (d-AP5), blocked the induction of long-term potentiation in vitro at synapses from area CA3 of the hippocampus to CA1 without apparent effect on baseline synaptic transmission (Collingridge et al., 1983). This dissociation was one of the key triggers for an explosion of interest in glutamate receptors, and much has been discovered since that collectively contributes to our contemporary understanding of glutamatergic synapses - their biophysics and subunit composition, of the agonists and antagonists acting on them, and their diverse functions in different networks of the brain and spinal cord. It can be fairly said that Collingridge et al.'s (1983) observation was the stimulus that has led, on the one hand, to structural biological work at the atomic scale describing the key features of NMDA receptors that enables their coincidence function to happen; and, on the other, to work with whole animals investigating the contributions that calcium signalling via this receptor can have on rhythmical activities controlled by spinal circuits, memory encoding in the hippocampus (the topic of this article), visual cortical plasticity, sensitization in pain, and other functions. In this article, I lay out how my then interest in long-term potentiation (LTP) as a model of memory enabled me to recognise the importance of Collingridge et al.'s discovery - and how I and my colleagues endeavoured to take things forward in the area of learning and memory. This is in some respects a personal story, and I tell it as such. The idea that NMDA receptor activation is essential for memory encoding, though not for storage, took time to develop and to be accepted. Along the way, there have been confusions, challenges, and surprises surrounding the idea that activation of NMDA receptors can

  14. Ror receptor tyrosine kinases: orphans no more

    OpenAIRE

    Green, Jennifer L.; Kuntz, Steven G.; Sternberg, Paul W.

    2008-01-01

    Receptor tyrosine kinase-like orphan receptor (Ror) proteins are a conserved family of tyrosine kinase receptors that function in developmental processes including skeletal and neuronal development, cell movement and cell polarity. Although Ror proteins were originally named because the associated ligand and signaling pathway were unknown, recent studies in multiple species have now established that Ror proteins are Wnt receptors. Depending on the cellular context, Ror proteins can either act...

  15. Benzodiazepine receptor antagonists for hepatic encephalopathy

    DEFF Research Database (Denmark)

    Als-Nielsen, B; Gluud, L L; Gluud, C

    2004-01-01

    Hepatic encephalopathy may be associated with accumulation of substances that bind to a receptor-complex in the brain resulting in neural inhibition. Benzodiazepine receptor antagonists may have a beneficial effect on patients with hepatic encephalopathy.......Hepatic encephalopathy may be associated with accumulation of substances that bind to a receptor-complex in the brain resulting in neural inhibition. Benzodiazepine receptor antagonists may have a beneficial effect on patients with hepatic encephalopathy....

  16. Synaptic Bistability Due to Nucleation and Evaporation of Receptor Clusters

    KAUST Repository

    Burlakov, V. M.; Emptage, N.; Goriely, A.; Bressloff, P. C.

    2012-01-01

    interacting receptors and is stabilized against clustering by a high nucleation barrier. The other state contains a receptor gas in equilibrium with a large cluster of immobile receptors, which is stabilized by the turnover rate of receptors into and out

  17. Repeated blockade of mineralocorticoid receptors, but not of glucocorticoid receptors impairs food rewarded spatial learning

    NARCIS (Netherlands)

    Douma, B. R.; Korte, S. M.; Buwalda, B.; La Fleur, S. E.; Bohus, B.; Luiten, P. G.

    1998-01-01

    Corticosteroids from the adrenal cortex influence a variety of behaviours including cognition, learning and memory. These hormones act via two intracellular receptors, the mineralo-corticoid receptor (MR) and the glucocorticoid receptor (GR). These two receptor types display a high concentration and

  18. Repeated blockade of mineralocorticoid receptors, but not of glucocorticoid receptors impairs food rewarded spatial learning

    NARCIS (Netherlands)

    Douma, BRK; Korte, SM; Buwalda, B; la Fleur, SE; Bohus, B; Luiten, PGM

    Corticosteroids from the adrenal cortex influence a variety of behaviours including cognition, learning and memory. These hormones act via two intracellular receptors, the mineralo-corticoid receptor (MR) and the glucocorticoid receptor (GR). These two receptor types display a high concentration and

  19. Receptores de progesterona en meningioma.

    Directory of Open Access Journals (Sweden)

    Herminio Ojeda Di Ninno

    1995-04-01

    Full Text Available Objetivo: Determinar la presencia de los receptores de progesterona en meningiomas y su frecuencia mediante la inmunohistoquímica. Material y Métodos: Se analizaron 24 muestras provenientes de pacientes intervenidos quirúrgicamente en el Instituto Nacional de Enfermedades Neoplásicas entre los años 1990 y 1992 con diagnóstico anatomopatológico de meningioma. La determinación de los receptores se hizo mediante una técnica de inmunohistoquímica rápida que permite el estudio de tejidos fijados previamente en parafina. Resultados: De los 24 casos estudiados, nueve resultaron ser positivos en la determinación de receptores de progesterona (37%. Se pudo observar un marcado predominio dentro del grupo femenino quienes constituyeron 8/9 casos positivos. Conclusiones: El empleo de esta reciente técnica de inmunohistoquímica aplicada a tejido de fijado en parafina, nos ha permitido confirmar la presencia de receptores de progesterona en meningiomas con una frecuencia elevada que creemos amerita un estudio más amplio de manera sistemática que incluya la intervención terapéutica mediante el uso de antiprogestágenos, como el Mifepristone o RU 486. De este estudio podrían beneficiarse no sólo pacientes operados recientemente sino aquellos que, intervenidos en el pasado sean detectados como portadores de receptores de progesterona mediante la aplicación de esta novedosa técnica (Rev Med Hered 1995; 6: 121-130.

  20. A new family of insect tyramine receptors

    DEFF Research Database (Denmark)

    Cazzamali, Giuseppe; Klærke, Dan Arne; Grimmelikhuijzen, Cornelis J P

    2005-01-01

    in the genomic databases from the malaria mosquito Anopheles gambiae and the honeybee Apis mellifera. These four tyramine or tyramine-like receptors constitute a new receptor family that is phylogenetically distinct from the previously identified insect octopamine/tyramine receptors. The Drosophila tyramine...

  1. Imaging of receptors in clinical neurosciences

    NARCIS (Netherlands)

    Korf, J

    This article deals with the question why should one determine receptors in the brain with positron and single photon emission tomography (PET and SPECT, respectively). Radiopharmaceuticals for a wide variety of receptors are available now. Receptors studies with PET and SPECT have thus far focused

  2. Receptor conversion in distant breast cancer metastases

    NARCIS (Netherlands)

    Hoefnagel, L.D.C.

    2013-01-01

    The routine pathological work-up of breast cancer includes the evaluation of the estrogen receptor (ERα), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) which reveals biological information about the tumour as well as provides predictive biomarkers regarding hormonal

  3. Molecular pharmacology of human NMDA receptors

    DEFF Research Database (Denmark)

    Hedegaard, Maiken; Hansen, Kasper Bø; Andersen, Karen Toftegaard

    2012-01-01

    N-methyl-d-aspartate (NMDA) receptors are ionotropic glutamate receptors that mediate excitatory neurotransmission. NMDA receptors are also important drug targets that are implicated in a number of pathophysiological conditions. To facilitate the transition from lead compounds in pre-clinical ani...

  4. Some theoretical aspects of hormone receptor determination

    International Nuclear Information System (INIS)

    Sluiter, W.J.

    1981-01-01

    Suitable antisera for determination of hormone receptors are not available for the majority of hormone receptors. Therefore, the determination of hormone receptors is mostly performed in terms of binding capacity for the appropriate hormone, using radioactive hormone labels. Some theoretical aspects of such a receptor determination are discussed including the length of incubation (total or unoccupied receptor concentration), single point or multiple point (Scatchard) analysis (regarding the influence of other specific binders), the correction procedure for non-specific binding and the influence of the circulating hormone level. (Auth.)

  5. Met receptor inhibitor SU11274 localizes in the endoplasmic reticulum.

    Science.gov (United States)

    Wiest, Edwin J; Smith, Heather Jensen; Hollingsworth, Michael A

    2018-07-02

    We discovered that SU11274, a class I c-Met inhibitor, fluoresces when excited by 488 nm laser light and showed rapid specific accumulation in distinct subcellular compartments. Given that SU11274 reduces cancer cell viability, we exploited these newly identified spectral properties to determine SU11274 intracellular distribution and accumulation in human pancreatic cancer cells. The aim of the studies reported here was to identify organelle(s) to which SU11274 is trafficked. We conclude that SU11274 rapidly and predominantly accumulates in the endoplasmic reticulum. Copyright © 2018. Published by Elsevier Inc.

  6. [Ceruloplasmin receptor on human erythrocytes].

    Science.gov (United States)

    Saenko, E L; Basevich, V V; Iaropolov, A I

    1988-08-01

    The structural fragments of the human ceruloplasmin (CP) molecule and of erythrocyte receptors which provide for the specific interaction of CP with erythrocytes were identified, and their properties were investigated. The interaction of CP with erythrocytes, both intact and treated with neuroaminidase and proteolytic enzymes (trypsin, chymotrypsin, papaine, pronase E) is described. Experiments with CP reception were performed at 4 degrees C, using [125I]CP and [125I]asialo-CP. The parameters of binding were determined in Scatchard plots. It was demonstrated that the specific binding of CP to erythrocyte receptors is determined by its interaction with two structural sites of the carbohydrate moiety of the CP molecule, i.e., the terminal residues of sialic acids and a site, (formula; see text) located at a large distance from the chain terminus.

  7. Establishment of a novel clear cell sarcoma cell line (Hewga-CCS), and investigation of the antitumor effects of pazopanib on Hewga-CCS.

    Science.gov (United States)

    Outani, Hidetatsu; Tanaka, Takaaki; Wakamatsu, Toru; Imura, Yoshinori; Hamada, Kenichiro; Araki, Nobuhito; Itoh, Kazuyuki; Yoshikawa, Hideki; Naka, Norifumi

    2014-06-19

    Clear cell sarcoma (CCS) is a therapeutically unresolved, aggressive, soft tissue sarcoma (STS) that predominantly affects young adults. This sarcoma is defined by t(12;22)(q13;q12) translocation, which leads to the fusion of Ewing sarcoma gene (EWS) to activating transcription factor 1 (ATF1) gene, producing a chimeric EWS-ATF1 fusion gene. We established a novel CCS cell line called Hewga-CCS and developed an orthotopic tumor xenograft model to enable comprehensive bench-side investigation for intensive basic and preclinical research in CCS with a paucity of experimental cell lines. Hewga-CCS was derived from skin metastatic lesions of a CCS developed in a 34-year-old female. The karyotype and chimeric transcript were analyzed. Xenografts were established and characterized by morphology and immunohistochemical reactivity. Subsequently, the antitumor effects of pazopanib, a recently approved, novel, multitargeted, tyrosine kinase inhibitor (TKI) used for the treatment of advanced soft tissue sarcoma, on Hewga-CCS were assessed in vitro and in vivo. Hewga-CCS harbored the type 2 EWS-ATF1 transcript. Xenografts morphologically mimicked the primary tumor and expressed S-100 protein and antigens associated with melanin synthesis (Melan-A, HMB45). Pazopanib suppressed the growth of Hewga-CCS both in vivo and in vitro. A phospho-receptor tyrosine kinase array revealed phosphorylation of c-MET, but not of VEGFR, in Hewga-CCS. Subsequent experiments showed that pazopanib exerted antitumor effects through the inhibition of HGF/c-MET signaling. CCS is a rare, devastating disease, and our established CCS cell line and xenograft model may be a useful tool for further in-depth investigation and understanding of the drug-sensitivity mechanism.

  8. Establishment of an indirect ELISA for detection of the novel antifibrotic peptide M10.

    Directory of Open Access Journals (Sweden)

    Tanjina Akter

    Full Text Available M10 is a ten amino acid peptide generated from the intracellular cytoplasmic tail of the hepatocyte growth factor (HGF receptor c-Met following cleavage by caspase-3. Recently we reported that M10 interacts with Smad2 and demonstrates antifibrotic properties in vitro and in vivo and can be advanced into a novel antifibrotic remedy. The current study was undertaken to develop an immunoassay to measure M10 concentration in biological specimens.An Indirect Enzyme-Linked Immunosorbent Assay (ELISA for detection of M10 in biological fluids was developed using pharmaceutical grade synthetic M10 as a calibrator and commercially available anti-c-Met C12 antibody.M10 ELISA specifically detected in plasma M10, but not a scrambled peptide, following a single intraperitoneal administration of M10 (1mg/kg to mice. The detection limit was 9.6 ng/ml, and the measuring limit was between 15 ng/ml and 200 ng/ml. The recovery limits of M10 were between 80% and 120%; intra-assay coefficient of variation was between 5.3% and 6.3%; inter-assay coefficient of variation was between 5.0% and 8.0% over the buffer concentration tested in the range from 15 ng /ml to 250 ng /ml. The peak of M10 concentration following a single intraperitoneal injection (1mg/kg was achieved within 6 hours and declined to minimal levels by 48 hours. The experimentally obtained half-life for M10 was comparable to the theoretically predicted half-life for M10.We have established a highly sensitive ELISA to detect the antifibrotic peptide M10 in plasma samples, which should prove to be a novel tool to study the pharmacokinetics and efficacy of M10 in the treatment of fibroproliferative disorders.

  9. NGA/Insulin receptor scanning

    International Nuclear Information System (INIS)

    Kurtaran, A.; Virgolini, I.

    1994-01-01

    Tc-99m-galactosyl-neoglycoalbumin (NGA) is one of the first receptor-based radiopharmaceuticals which specifically recognizes the hepatic binding protein (HBP) located on the surface of the hepatocytes. The exclusive interactin of NGA with HBP provided the basis for a kinetic model for the evaluation hepatocellular function. During the last years we have used NGA in more than 300 patients with various liver diseases including liver cirrhosis (Stages Child A to Child C), viral hepatitis, and carcinomas. In these studies, the calculated HBP densities, after i.v.-injection of Tc-99m-NGA, significantly correlated with the clinical course of the diseases. Furthermore, similar to conventional Tc-colloid, NGA provided excellent demonstration of 'cold spots' for hepatic masses. In a further approach we used another hepatocyte receptor-seeking radioligand, I-123-Tyr-A14- insulin, and found, that its in vitro-binding to hepatocellular carcinomas is greatly enhanced over normal hepatic tissue. On this basis, we developed a double-tracer method using NGA and insulin in a single study. Thus, areas of 'cold spots' identifying hepatic masses on NGA scans, take up I-123-Tyr-A14-insulin immediately after i.v.-injection. This was true for hepatocellular hepatomas, but not for adenocarcinomas. In conclusion, NGA/insulin receptor scanning could be a novel and save method for the demonstration of hepatocellular hepatomas. (author)

  10. PAF receptor structure: a hypothesis.

    Science.gov (United States)

    Godfroid, J J; Dive, G; Lamotte-Brasseur, J; Batt, J P; Heymans, F

    1991-12-01

    Different hypotheses of the structure of platelet-activating factor (PAF) receptor based on structure-activity relationships of agonists and antagonists are reviewed. For an agonistic effect, strong hydrophobic interactions and an ether function are required in position-1 of the glycerol backbone; chain length limitations and steric hindrance demand a small group in position-2. The unusual structural properties of non-PAF-like antagonists required 3-D electrostatic potential calculations. This method applied to seven potent antagonists suggests a strong "Cache-orielles" (ear-muff) effect, i.e., two strong electronegative wells (isocontour at -10 Kcal/mole) are located at 180 degrees to each other and at a relatively constant distance. Initial consideration of the "Cache-oreilles" effect implied the structure of a bipolarized cylinder of 10-12 A diameter for the receptor. However, very recent results on studies with agonists and antagonists structurally similar to PAF suggest that the receptor may in fact be a multi-polarized cylinder.

  11. NGA/Insulin receptor scanning

    Energy Technology Data Exchange (ETDEWEB)

    Kurtaran, A; Virgolini, I [Vienna Univ. (Austria). Abt. fuer Nuklearmedizin; Angelberger, P [Ludwig Boltzmann-Institut fuer Nuklearmedizin, Vienna (Austria)

    1994-10-01

    Tc-99m-galactosyl-neoglycoalbumin (NGA) is one of the first receptor-based radiopharmaceuticals which specifically recognizes the hepatic binding protein (HBP) located on the surface of the hepatocytes. The exclusive interactin of NGA with HBP provided the basis for a kinetic model for the evaluation hepatocellular function. During the last years we have used NGA in more than 300 patients with various liver diseases including liver cirrhosis (Stages Child A to Child C), viral hepatitis, and carcinomas. In these studies, the calculated HBP densities, after i.v.-injection of Tc-99m-NGA, significantly correlated with the clinical course of the diseases. Furthermore, similar to conventional Tc-colloid, NGA provided excellent demonstration of `cold spots` for hepatic masses. In a further approach we used another hepatocyte receptor-seeking radioligand, I-123-Tyr-A14- insulin, and found, that its in vitro-binding to hepatocellular carcinomas is greatly enhanced over normal hepatic tissue. On this basis, we developed a double-tracer method using NGA and insulin in a single study. Thus, areas of `cold spots` identifying hepatic masses on NGA scans, take up I-123-Tyr-A14-insulin immediately after i.v.-injection. This was true for hepatocellular hepatomas, but not for adenocarcinomas. In conclusion, NGA/insulin receptor scanning could be a novel and save method for the demonstration of hepatocellular hepatomas. (author).

  12. Lymphocyte receptors for pertussis toxin

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C.G.; Armstrong, G.D. (Univ. of Alberta, Edmonton (Canada))

    1990-12-01

    We have investigated human T-lymphocyte receptors for pertussis toxin by affinity isolation and photoaffinity labeling procedures. T lymphocytes were obtained from peripheral human blood, surface iodinated, and solubilized in Triton X-100. The iodinated mixture was then passed through pertussis toxin-agarose, and the fractions were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Autoradiography of the fixed, dried gels revealed several bands in the pertussis toxin-bound fraction that were not observed in fractions obtained from histone or fetuin-agarose. Further investigations employed a photoaffinity labeling reagent, sulfosuccinimidyl 2-(p-azido-salicylamido)-1,3'-dithiopropionate, to identify pertussis toxin receptors in freshly isolated peripheral blood monocytic cells, T lymphocytes, and Jurkat cells. In all three cell systems, the pertussis toxin affinity probe specifically labeled a single protein species with an apparent molecular weight of 70,000 that was not observed when the procedure was performed in the presence of excess unmodified pertussis toxin. A protein comparable in molecular weight to the one detected by the photoaffinity labeling technique was also observed among the species that bound to pertussis toxin-agarose. The results suggest that pertussis toxin may bind to a 70,000-Da receptor in human T lymphocytes.

  13. The two-state dimer receptor model: a general model for receptor dimers.

    Science.gov (United States)

    Franco, Rafael; Casadó, Vicent; Mallol, Josefa; Ferrada, Carla; Ferré, Sergi; Fuxe, Kjell; Cortés, Antoni; Ciruela, Francisco; Lluis, Carmen; Canela, Enric I

    2006-06-01

    Nonlinear Scatchard plots are often found for agonist binding to G-protein-coupled receptors. Because there is clear evidence of receptor dimerization, these nonlinear Scatchard plots can reflect cooperativity on agonist binding to the two binding sites in the dimer. According to this, the "two-state dimer receptor model" has been recently derived. In this article, the performance of the model has been analyzed in fitting data of agonist binding to A(1) adenosine receptors, which are an example of receptor displaying concave downward Scatchard plots. Analysis of agonist/antagonist competition data for dopamine D(1) receptors using the two-state dimer receptor model has also been performed. Although fitting to the two-state dimer receptor model was similar to the fitting to the "two-independent-site receptor model", the former is simpler, and a discrimination test selects the two-state dimer receptor model as the best. This model was also very robust in fitting data of estrogen binding to the estrogen receptor, for which Scatchard plots are concave upward. On the one hand, the model would predict the already demonstrated existence of estrogen receptor dimers. On the other hand, the model would predict that concave upward Scatchard plots reflect positive cooperativity, which can be neither predicted nor explained by assuming the existence of two different affinity states. In summary, the two-state dimer receptor model is good for fitting data of binding to dimeric receptors displaying either linear, concave upward, or concave downward Scatchard plots.

  14. Localization of mineralocorticoid receptors at mammalian synapses.

    Directory of Open Access Journals (Sweden)

    Eric M Prager

    Full Text Available In the brain, membrane associated nongenomic steroid receptors can induce fast-acting responses to ion conductance and second messenger systems of neurons. Emerging data suggest that membrane associated glucocorticoid and mineralocorticoid receptors may directly regulate synaptic excitability during times of stress when adrenal hormones are elevated. As the key neuron signaling interface, the synapse is involved in learning and memory, including traumatic memories during times of stress. The lateral amygdala is a key site for synaptic plasticity underlying conditioned fear, which can both trigger and be coincident with the stress response. A large body of electrophysiological data shows rapid regulation of neuronal excitability by steroid hormone receptors. Despite the importance of these receptors, to date, only the glucocorticoid receptor has been anatomically localized to the membrane. We investigated the subcellular sites of mineralocorticoid receptors in the lateral amygdala of the Sprague-Dawley rat. Immunoblot analysis revealed the presence of mineralocorticoid receptors in the amygdala. Using electron microscopy, we found mineralocorticoid receptors expressed at both nuclear including: glutamatergic and GABAergic neurons and extra nuclear sites including: presynaptic terminals, neuronal dendrites, and dendritic spines. Importantly we also observed mineralocorticoid receptors at postsynaptic membrane densities of excitatory synapses. These data provide direct anatomical evidence supporting the concept that, at some synapses, synaptic transmission is regulated by mineralocorticoid receptors. Thus part of the stress signaling response in the brain is a direct modulation of the synapse itself by adrenal steroids.

  15. Protein Connectivity in Chemotaxis Receptor Complexes.

    Directory of Open Access Journals (Sweden)

    Stephan Eismann

    2015-12-01

    Full Text Available The chemotaxis sensory system allows bacteria such as Escherichia coli to swim towards nutrients and away from repellents. The underlying pathway is remarkably sensitive in detecting chemical gradients over a wide range of ambient concentrations. Interactions among receptors, which are predominantly clustered at the cell poles, are crucial to this sensitivity. Although it has been suggested that the kinase CheA and the adapter protein CheW are integral for receptor connectivity, the exact coupling mechanism remains unclear. Here, we present a statistical-mechanics approach to model the receptor linkage mechanism itself, building on nanodisc and electron cryotomography experiments. Specifically, we investigate how the sensing behavior of mixed receptor clusters is affected by variations in the expression levels of CheA and CheW at a constant receptor density in the membrane. Our model compares favorably with dose-response curves from in vivo Förster resonance energy transfer (FRET measurements, demonstrating that the receptor-methylation level has only minor effects on receptor cooperativity. Importantly, our model provides an explanation for the non-intuitive conclusion that the receptor cooperativity decreases with increasing levels of CheA, a core signaling protein associated with the receptors, whereas the receptor cooperativity increases with increasing levels of CheW, a key adapter protein. Finally, we propose an evolutionary advantage as explanation for the recently suggested CheW-only linker structures.

  16. Characterization of astrocytic and neuronal benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Bender, A.S.

    1988-01-01

    Primary cultures of astrocytes and neurons express benzodiazepine receptors. Neuronal benzodiazepine receptors were of high-affinity, K{sub D} values were 7.5-43 nM and the densities of receptors (B{sub max}) were 924-4131 fmol/mg protein. Astrocytes posses a high-affinity benzodiazepine receptor, K{sub D} values were 6.6-13 nM. The B{sub max} values were 6,033-12,000 fmol/mg protein. The pharmacological profile of the neuronal benzodiazepine receptor was that of the central-type benzodiazepine receptor, where clonazepam has a high-affinity and Ro 5-4864 (4{prime}-chlorodiazepam) has a low-affinity. Whereas astrocytic benzoidazepine receptor was characteristic of the so called peripheral-type benzodiazepine receptors, which shows a high-affinity towards Ro 5-4863, and a low-affinity towards clonazepam. The astrocytic benzodiazepine receptors was functionally correlated with voltage dependent calcium channels, since dihydropyridines and benzodiazepines interacted with ({sup 3}H) diazepam and ({sup 3}H) nitrendipine receptors with the same rank order of potency, showing a statistically significant correlation. No such correlation was observed in neurons.

  17. Cdc42 and phosphoinositide 3-kinase drive Rac-mediated actin polymerization downstream of c-Met in distinct and common pathways

    DEFF Research Database (Denmark)

    Bosse, Tanja; Ehinger, Julia; Czuchra, Aleksandra

    2007-01-01

    -WASP. Instead, actin polymerization was driven by Arp2/3 complex activation through the WAVE complex downstream of Rac. Together, our data establish an intricate signaling network comprising as key molecules Cdc42 and PI3-kinase, which converge on Rac-mediated actin reorganization essential for Listeria...

  18. Receptor Tyrosine Kinases in Drosophila Development

    Science.gov (United States)

    Sopko, Richelle; Perrimon, Norbert

    2013-01-01

    Tyrosine phosphorylation plays a significant role in a wide range of cellular processes. The Drosophila genome encodes more than 20 receptor tyrosine kinases and extensive studies in the past 20 years have illustrated their diverse roles and complex signaling mechanisms. Although some receptor tyrosine kinases have highly specific functions, others strikingly are used in rather ubiquitous manners. Receptor tyrosine kinases regulate a broad expanse of processes, ranging from cell survival and proliferation to differentiation and patterning. Remarkably, different receptor tyrosine kinases share many of the same effectors and their hierarchical organization is retained in disparate biological contexts. In this comprehensive review, we summarize what is known regarding each receptor tyrosine kinase during Drosophila development. Astonishingly, very little is known for approximately half of all Drosophila receptor tyrosine kinases. PMID:23732470

  19. Receptor binding studies of the living heart

    International Nuclear Information System (INIS)

    Syrota, A.

    1988-01-01

    Receptors form a class of intrinsic membrane proteins (or glycoproteins) defined by the high affinity and specificity with which they bind ligands. Many receptors are associated directly or indirectly with membrane ion channels that open or close after a conformational change of the receptor induced by the binding of the neurotransmitter. Changes in number and/or affinity of cardiac neurotransmitter receptors have been associated with myocardial ischemia and infarction, congestive heart failure, and cardiomyopathy as well as diabetes or thyroid-induced heart muscle disease. These alterations of cardiac receptors have been demonstrated in vitro on membrane homogenates from samples collected mainly during surgery or postmortem. The disadvantage of these in vitro binding techniques is that receptors lose their natural environment and their relationships with the other components of the tissue

  20. Subtype selective kainic acid receptor agonists

    DEFF Research Database (Denmark)

    Bunch, Lennart; Krogsgaard-Larsen, Povl

    2009-01-01

    (S)-Glutamic acid (Glu) is the major excitatory neurotransmitter in the mammalian central nervous system, activating the plethora of glutamate receptors (GluRs). In broad lines, the GluRs are divided into two major classes: the ionotropic Glu receptors (iGluRs) and the metabotropic Glu receptors (m......GluRs). Within the iGluRs, five subtypes (KA1, KA2, iGluR5-7) show high affinity and express full agonist activity upon binding of the naturally occurring amino acid kainic acid (KA). Thus these receptors have been named the KA receptors. This review describes all-to our knowledge-published KA receptor agonists...

  1. Characteristic molecular vibrations of adenosine receptor ligands.

    Science.gov (United States)

    Chee, Hyun Keun; Yang, Jin-San; Joung, Je-Gun; Zhang, Byoung-Tak; Oh, S June

    2015-02-13

    Although the regulation of membrane receptor activation is known to be crucial for molecular signal transduction, the molecular mechanism underlying receptor activation is not fully elucidated. Here we study the physicochemical nature of membrane receptor behavior by investigating the characteristic molecular vibrations of receptor ligands using computational chemistry and informatics methods. By using information gain, t-tests, and support vector machines, we have identified highly informative features of adenosine receptor (AdoR) ligand and corresponding functional amino acid residues such as Asn (6.55) of AdoR that has informative significance and is indispensable for ligand recognition of AdoRs. These findings may provide new perspectives and insights into the fundamental mechanism of class A G protein-coupled receptor activation. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. Acetylcholine receptors in the human retina

    International Nuclear Information System (INIS)

    Hutchins, J.B.; Hollyfield, J.G.

    1985-01-01

    Evidence for a population of acetylcholine (ACh) receptors in the human retina is presented. The authors have used the irreversible ligand 3 H-propylbenzilylcholine mustard ( 3 H-PrBCM) to label muscarinic receptors. 3 H- or 125 I-alpha-bungarotoxin (alpha-BTx) was used to label putative nicotinic receptors. Muscarinic receptors are apparently present in the inner plexiform layer of the retina. Autoradiographic grain densities are reduced in the presence of saturating concentrations of atropine, quinuclidinyl benzilate or scopolamine; this indicates that 3 H-PrBCM binding is specific for a population of muscarinic receptors in the human retina. Binding sites for radiolabeled alpha-BTx are found predominantly in the inner plexiform layer of the retina. Grain densities are reduced in the presence of d-tubocurarine, indicating that alpha-BTx may bind to a pharmacologically relevant nicotinic ACh receptor. This study provides evidence for cholinergic neurotransmission in the human retina

  3. Studies on insulin receptor, 1

    International Nuclear Information System (INIS)

    Sakai, Yukio

    1979-01-01

    The present study was designed for the purpose of establishing a method of insulin radioreceptor assay using plasma membranes of guinea pigs as receptor sites. The results obtained are as follows: 1) Insulin receptor in the renal plasma membranes of guinea pigs showed a significantly high affinity to porcine insulin compared with that in the plasma membranes of guinea pig liver or rat kidney and liver. 2) In the insulin radioreceptor assay, an optimum condition was observed by the incubation at 4 0 C for 24 - 48 hours with 100 μg membrane protein of guinea pig kidney and 0.08 ng of 125 I-insulin. This assay method was specific for insulin and showed an accurate biological activity of insulin. 3) The recovery rate of insulin radioreceptor assay was 98.4% and dilution check up to 16 times did not influence on the result. An average of coefficient variation was 3.92% within assay. All of these results indicated the method to be satisfactory. 4) Glucose induced insulin release by perfusion method in isolated Langerhans islets of rats showed an identical pattern of reaction curves between radioreceptor assay and radioimmunoassay, although the values of radioreceptor assay was slightly low. 5) Insulin free serum produced by ultra filtration method was added to the standard assay medium. By this procedure, direct measurement of human serum by radioreceptor assay became possible. 6) The value of human serum insulin receptor binding activity by the radioreceptor assay showed a high correlation with that of insulin radioimmunoassay in sera of normal, borderline or diabetic type defined by glucose tolerance test. (author)

  4. Seventh Symposium on Subtypes of Musccarinic Receptors.

    Science.gov (United States)

    1997-01-01

    nociceptive pain, are less than ideal. For mild to moderate pain, the first line of therapy includes aspirin, acetaminophen/ paracetamol , and nonsteroidal...due to receptor degradation triggered by prolonged carbachol occupancy. This down-regulation was accompanied by uncoupling of the M2-receptors after 24...be under control by the m3 mAChR, suggesting a complex receptor regulation of phosphoinositide metabolism, including degradation and synthesis. Future

  5. Molecular identification of the first SIFamide receptor

    DEFF Research Database (Denmark)

    Jørgensen, Lars M; Hauser, Frank; Cazzamali, Giuseppe

    2006-01-01

    , an impressive sequence conservation (67-77% amino acid sequence identities between the seven-transmembrane areas; 82-87% sequence similarities). The identification of well-conserved SIFamide receptor orthologues in all other insects with a sequenced genome, suggests that the SIFamide/receptor couple must have...... an essential function in arthropods. This paper is the first report on the identification of a SIFamide receptor....

  6. Progesterone receptor modulators in breast cancer

    OpenAIRE

    WIEHLE, Ronald D.

    2015-01-01

    Breast cancer has been treated successfully with selective estrogen receptor antagonists (SERMs) such as tamoxifen, receptor-depleting agents such as fulvestrant, and aromatase inhibitors such as anastrozole. Selective progesterone receptor modulators (SPRMs or PRMs) have not been studied as much and are currently under investigation for inhibition of mammary carcinogenesis in animal models and breast cancer prevention trials in women. They might follow tamoxifen and aromatase inhibitors in t...

  7. Androgen Receptor Signaling in Bladder Cancer

    OpenAIRE

    Li, Peng; Chen, Jinbo; Miyamoto, Hiroshi

    2017-01-01

    Emerging preclinical findings have indicated that steroid hormone receptor signaling plays an important role in bladder cancer outgrowth. In particular, androgen-mediated androgen receptor signals have been shown to correlate with the promotion of tumor development and progression, which may clearly explain some sex-specific differences in bladder cancer. This review summarizes and discusses the available data, suggesting the involvement of androgens and/or the androgen receptor pathways in u...

  8. Muscarinic Receptor Agonists and Antagonists

    Directory of Open Access Journals (Sweden)

    David R. Kelly

    2001-02-01

    Full Text Available A comprehensive review of pharmacological and medical aspects of the muscarinic class of acetylcholine agonists and antagonists is presented. The therapeutic benefits of achieving receptor subtype selectivity are outlined and applications in the treatment of Alzheimer’s disease are discussed. A selection of chemical routes are described, which illustrate contemporary methodology for the synthesis of chiral medicinal compounds (asymmetric synthesis, chiral pool, enzymes. Routes to bicyclic intrannular amines and intramolecular Diels-Alder reactions are highlighted.

  9. Hemoglobin and heme scavenger receptors

    DEFF Research Database (Denmark)

    Nielsen, Marianne Jensby; Møller, Holger Jon; Moestrup, Søren Kragh

    2010-01-01

    Heme, the functional group of hemoglobin, myoglobin, and other hemoproteins, is a highly toxic substance when it appears in the extracellular milieu. To circumvent potential harmful effects of heme from hemoproteins released during physiological or pathological cell damage (such as hemolysis...... and rhabdomyolysis), specific high capacity scavenging systems have evolved in the mammalian organism. Two major systems, which essentially function in a similar way by means of a circulating latent plasma carrier protein that upon ligand binding is recognized by a receptor, are represented by a) the hemoglobin...

  10. CERAPP: Collaborative Estrogen Receptor Activity Prediction Project

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data from a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project) demonstrating using predictive computational...

  11. Identification and mechanism of ABA receptor antagonism

    KAUST Repository

    Melcher, Karsten; Xu, Yong; Ng, Ley-Moy; Zhou, X. Edward; Soon, Fen-Fen; Chinnusamy, Viswanathan; Suino-Powell, Kelly M.; Kovach, Amanda; Tham, Fook S.; Cutler, Sean R.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Xu, H. Eric

    2010-01-01

    The phytohormone abscisic acid (ABA) functions through a family of fourteen PYR/PYL receptors, which were identified by resistance to pyrabactin, a synthetic inhibitor of seed germination. ABA activates these receptors to inhibit type 2C protein phosphatases, such as ABI1, yet it remains unclear whether these receptors can be antagonized. Here we demonstrate that pyrabactin is an agonist of PYR1 and PYL1 but is unexpectedly an antagonist of PYL2. Crystal structures of the PYL2-pyrabactin and PYL1-pyrabactin-ABI1 complexes reveal the mechanism responsible for receptor-selective activation and inhibition, which enables us to design mutations that convert PYL1 to a pyrabactin-inhibited receptor and PYL2 to a pyrabactin-activated receptor and to identify new pyrabactin-based ABA receptor agonists. Together, our results establish a new concept of ABA receptor antagonism, illustrate its underlying mechanisms and provide a rational framework for discovering novel ABA receptor ligands. © 2010 Nature America, Inc. All rights reserved.

  12. Dehydroepiandrosterone: an ancestral ligand of neurotrophin receptors.

    Science.gov (United States)

    Pediaditakis, Iosif; Iliopoulos, Ioannis; Theologidis, Ioannis; Delivanoglou, Nickoleta; Margioris, Andrew N; Charalampopoulos, Ioannis; Gravanis, Achille

    2015-01-01

    Dehydroepiandosterone (DHEA), the most abundant steroid in humans, affects multiple cellular functions of the endocrine, immune, and nervous systems. However, up to quite recently, no receptor has been described specifically for it, whereas most of its physiological actions have been attributed to its conversion to either androgens or estrogens. DHEA interacts and modulate a variety of membrane and intracellular neurotransmitter and steroid receptors. We have recently reported that DHEA protects neuronal cells against apoptosis, interacting with TrkA, the high-affinity prosurvival receptor of the neurotrophin, nerve growth factor. Intrigued by its pleiotropic effects in the nervous system of a variety of species, we have investigated the ability of DHEA to interact with the other two mammalian neurotrophin receptors, ie, the TrkB and TrkC, as well as their invertebrate counterparts (orthologs) in mollusks Lymnaea and Aplysia and in cephalochordate fish Amphioxus. Amazingly, DHEA binds to all Trk receptors, although with lower affinity by 2 orders of magnitude compared with that of the polypeptidic neurotrophins. DHEA effectively induced the first step of the TrkA and TrkC receptors activation (phosphorylation at tyrosine residues), including the vertebrate neurotrophin nonresponding invertebrate Lymnaea and Aplysia receptors. Based on our data, we hypothesize that early in evolution, DHEA may have acted as a nonspecific neurotrophic factor promoting neuronal survival. The interaction of DHEA with all types of neurotrophin receptors offers new insights into the largely unidentified mechanisms of its actions on multiple tissues and organs known to express neurotrophin receptors.

  13. Characterization of the chicken muscle insulin receptor

    International Nuclear Information System (INIS)

    Adamo, M.; Simon, J.; Rosebrough, R.W.; McMurtry, J.P.; Steele, N.C.; LeRoith, D.

    1987-01-01

    Insulin receptors are present in chicken skeletal muscle. Crude membrane preparations demonstrated specific 125 I-insulin binding. The nonspecific binding was high (36-55% of total binding) and slightly lower affinity receptors were found than are typically observed for crude membrane insulin binding in other chicken tissues. Affinity crosslinking of 125 I-insulin to crude membranes revealed insulin receptor alpha-subunits of Mr 128K, intermediate between those of liver (134K) and brain (124K). When solubilized and partially purified on wheat germ agglutinin (WGA) affinity columns, chicken muscle insulin receptors exhibited typical high affinity binding, with approximately 10(-10) M unlabeled insulin producing 50% inhibition of the specific 125 I-insulin binding. WGA purified chicken muscle insulin receptors also exhibited insulin-stimulated autophosphorylation of the beta-subunit, which appeared as phosphorylated bands of 92- and 81K. Both bands were immunoprecipitated by anti-receptor antiserum (B10). WGA purified membranes also demonstrated dose-dependent insulin-stimulated phosphorylation of the exogenous substrate poly(Glu,Tyr)4:1. However, unlike chicken liver, chicken muscle insulin receptor number and tyrosine kinase activity were unaltered by 48 hr of fasting or 48 hr of fasting and 24 hr of refeeding. Thus, despite the presence of insulin receptors in chicken muscle showing normal coupling to receptor tyrosine kinase activity, nutritional alterations modulate these parameters in a tissue-specific manner in chickens

  14. Human dopamine receptor and its uses

    Energy Technology Data Exchange (ETDEWEB)

    Civelli, Olivier (Portland, OR); Van Tol, Hubert Henri-Marie (Toronto, CA)

    1999-01-01

    The present invention is directed toward the isolation, characterization and pharmacological use of the human D4 dopamine receptor. The nucleotide sequence of the gene corresponding to this receptor and alleleic variant thereof are provided by the invention. The invention also includes recombinant eukaryotic expression constructs capable of expressing the human D4 dopamine receptor in cultures of transformed eukaryotic cells. The invention provides cultures of transformed eukaryotic cells which synthesize the human D4 dopamine receptor, and methods for characterizing novel psychotropic compounds using such cultures.

  15. Chapter 8. Activation mechanisms of chemokine receptors

    DEFF Research Database (Denmark)

    Jensen, Pia C; Rosenkilde, Mette M

    2009-01-01

    binding. Attempts to unravel the activation mechanism of 7TM receptors have led to the conclusion that activation involves movements of the transmembrane segments VI and VII in particular, as recently gathered in the Global Toggle Switch Model. However, to understand the activation mechanism completely......, more research has to be done in this field. Chemokine receptors are interesting tools in this matter. First, the chemokine system has a high degree of promiscuity that allows several chemokines to target one receptor in different ways, as well as a single chemokine ligand to target several receptors...

  16. Identification and mechanism of ABA receptor antagonism

    KAUST Repository

    Melcher, Karsten

    2010-08-22

    The phytohormone abscisic acid (ABA) functions through a family of fourteen PYR/PYL receptors, which were identified by resistance to pyrabactin, a synthetic inhibitor of seed germination. ABA activates these receptors to inhibit type 2C protein phosphatases, such as ABI1, yet it remains unclear whether these receptors can be antagonized. Here we demonstrate that pyrabactin is an agonist of PYR1 and PYL1 but is unexpectedly an antagonist of PYL2. Crystal structures of the PYL2-pyrabactin and PYL1-pyrabactin-ABI1 complexes reveal the mechanism responsible for receptor-selective activation and inhibition, which enables us to design mutations that convert PYL1 to a pyrabactin-inhibited receptor and PYL2 to a pyrabactin-activated receptor and to identify new pyrabactin-based ABA receptor agonists. Together, our results establish a new concept of ABA receptor antagonism, illustrate its underlying mechanisms and provide a rational framework for discovering novel ABA receptor ligands. © 2010 Nature America, Inc. All rights reserved.

  17. Knock-In Mice with NOP-eGFP Receptors Identify Receptor Cellular and Regional Localization.

    Science.gov (United States)

    Ozawa, Akihiko; Brunori, Gloria; Mercatelli, Daniela; Wu, Jinhua; Cippitelli, Andrea; Zou, Bende; Xie, Xinmin Simon; Williams, Melissa; Zaveri, Nurulain T; Low, Sarah; Scherrer, Grégory; Kieffer, Brigitte L; Toll, Lawrence

    2015-08-19

    The nociceptin/orphanin FQ (NOP) receptor, the fourth member of the opioid receptor family, is involved in many processes common to the opioid receptors including pain and drug abuse. To better characterize receptor location and trafficking, knock-in mice were created by inserting the gene encoding enhanced green fluorescent protein (eGFP) into the NOP receptor gene (Oprl1) and producing mice expressing a functional NOP-eGFP C-terminal fusion in place of the native NOP receptor. The NOP-eGFP receptor was present in brain of homozygous knock-in animals in concentrations somewhat higher than in wild-type mice and was functional when tested for stimulation of [(35)S]GTPγS binding in vitro and in patch-clamp electrophysiology in dorsal root ganglia (DRG) neurons and hippocampal slices. Inhibition of morphine analgesia was equivalent when tested in knock-in and wild-type mice. Imaging revealed detailed neuroanatomy in brain, spinal cord, and DRG and was generally consistent with in vitro autoradiographic imaging of receptor location. Multicolor immunohistochemistry identified cells coexpressing various spinal cord and DRG cellular markers, as well as coexpression with μ-opioid receptors in DRG and brain regions. Both in tissue slices and primary cultures, the NOP-eGFP receptors appear throughout the cell body and in processes. These knock-in mice have NOP receptors that function both in vitro and in vivo and appear to be an exceptional tool to study receptor neuroanatomy and correlate with NOP receptor function. The NOP receptor, the fourth member of the opioid receptor family, is involved in pain, drug abuse, and a number of other CNS processes. The regional and cellular distribution has been difficult to determine due to lack of validated antibodies for immunohistochemical analysis. To provide a new tool for the investigation of receptor localization, we have produced knock-in mice with a fluorescent-tagged NOP receptor in place of the native NOP receptor. These

  18. G-protein-coupled receptors for free fatty acids

    DEFF Research Database (Denmark)

    Milligan, Graeme; Ulven, Trond; Murdoch, Hannah

    2014-01-01

    of these receptors. However, ongoing clinical trials of agonists of free fatty acid receptor 1 suggest that this receptor and other receptors for free fatty acids may provide a successful strategy for controlling hyperglycaemia and providing novel approaches to treat diabetes. Receptors responsive to free fatty acid...

  19. Evidence for Heterodimerization and Functional Interaction of the Angiotensin Type 2 Receptor and the Receptor MAS

    DEFF Research Database (Denmark)

    Leonhardt, Julia; Villela, Daniel C.; Teichmann, Anke

    2017-01-01

    The angiotensin type 2 receptor (AT2R) and the receptor MAS are receptors of the protective arm of the renin-angiotensin system. They mediate strikingly similar actions. Moreover, in various studies, AT2R antagonists blocked the effects of MAS agonists and vice versa. Such cross-inhibition may in...

  20. Interaction of epidermal growth factor receptors with the cytoskeleton is related to receptor clustering

    NARCIS (Netherlands)

    van Belzen, N.; Spaargaren, M.; Verkleij, A. J.; Boonstra, J.

    1990-01-01

    Recently it has been established that cytoskeleton-associated epidermal growth factor (EGF) receptors are predominantly of the high-affinity class and that EGF induces a recruitment of low-affinity receptors to the cytoskeleton. The nature of this EGF-induced receptor-cytoskeleton interaction,

  1. Receptor saturation in roentgen films

    Energy Technology Data Exchange (ETDEWEB)

    Strid, K G; Reichmann, S [Sahlgrenska Sjukhuset, Goeteborg (Sweden)

    1980-01-01

    Roentgen-film recording of small object details of low attenuation differences (e.g. pulmonary vessels) is regularly seen to be impaired when the film is exposed to yield high values of optical density (D). This high-density failure is due to receptor saturation, which implies that at high exposure values most silver halide grains of the film are made developable, leaving few grains available to receive additional informative photons. The receptor saturation is analysed by means of a mathematical model of a non-screen film yielding Dsub(max) = 2.0. Optimum recording, defined by maximum signal-to-noise ratio in the image, is found at D approximately 0.64, corresponding to, on an average, 1.6 photons absorbed per grain. On the other hand, maximum contrast occurs at D approximately 1.4, where, on the average, 3.6 photons are absorbed per grain. The detective quantum efficiency of the film, i.e. the fraction of the photons actually contributing to the information content of the image, drops from 41 per cent at maximum signal-to-noise ratio to a mere 10 per cent at maximum contrast.

  2. Androgen receptor drives cellular senescence.

    Directory of Open Access Journals (Sweden)

    Yelena Mirochnik

    Full Text Available The accepted androgen receptor (AR role is to promote proliferation and survival of prostate epithelium and thus prostate cancer progression. While growth-inhibitory, tumor-suppressive AR effects have also been documented, the underlying mechanisms are poorly understood. Here, we for the first time link AR anti-cancer action with cell senescence in vitro and in vivo. First, AR-driven senescence was p53-independent. Instead, AR induced p21, which subsequently reduced ΔN isoform of p63. Second, AR activation increased reactive oxygen species (ROS and thereby suppressed Rb phosphorylation. Both pathways were critical for senescence as was proven by p21 and Rb knock-down and by quenching ROS with N-Acetyl cysteine and p63 silencing also mimicked AR-induced senescence. The two pathways engaged in a cross-talk, likely via PML tumor suppressor, whose localization to senescence-associated chromatin foci was increased by AR activation. All these pathways contributed to growth arrest, which resolved in senescence due to concomitant lack of p53 and high mTOR activity. This is the first demonstration of senescence response caused by a nuclear hormone receptor.

  3. Excitatory amino acid receptor antagonists

    DEFF Research Database (Denmark)

    Johansen, T N; Frydenvang, Karla Andrea; Ebert, B

    1997-01-01

    We have previously shown that (RS)-2-amino-2-(5-tert-butyl-3-hydroxyisoxazol-4-yl)acetic acid (ATAA) is an antagonist at N-methyl-D-aspartic acid (NMDA) and (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors. We have now resolved ATAA via diastereomeric salt formation......)-phenylethylamine salt of N-BOC-(R)-ATAA. Like ATAA, neither (R)- nor (S)-ATAA significantly affected (IC50 > 100 microM) the receptor binding of tritiated AMPA, kainic acid, or (RS)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid, the latter being a competitive NMDA antagonist. Electrophysiological experiments......, using the rat cortical wedge preparation, showed the NMDA antagonist effect as well as the AMPA antagonist effect of ATAA to reside exclusively in the (R)-enantiomer (Ki = 75 +/- 5 microM and 57 +/- 1 microM, respectively). Neither (R)- nor (S)-ATAA significantly reduced kainic acid-induced excitation...

  4. Posttransplant chimeric antigen receptor therapy.

    Science.gov (United States)

    Smith, Melody; Zakrzewski, Johannes; James, Scott; Sadelain, Michel

    2018-03-08

    Therapeutic T-cell engineering is emerging as a powerful approach to treat refractory hematological malignancies. Its most successful embodiment to date is based on the use of second-generation chimeric antigen receptors (CARs) targeting CD19, a cell surface molecule found in most B-cell leukemias and lymphomas. Remarkable complete remissions have been obtained with autologous T cells expressing CD19 CARs in patients with relapsed, chemo-refractory B-cell acute lymphoblastic leukemia, chronic lymphocytic leukemia, and non-Hodgkin lymphoma. Allogeneic CAR T cells may also be harnessed to treat relapse after allogeneic hematopoietic stem cell transplantation. However, the use of donor T cells poses unique challenges owing to potential alloreactivity. We review different approaches to mitigate the risk of causing or aggravating graft-versus-host disease (GVHD), including CAR therapies based on donor leukocyte infusion, virus-specific T cells, T-cell receptor-deficient T cells, lymphoid progenitor cells, and regulatory T cells. Advances in CAR design, T-cell selection and gene editing are poised to enable the safe use of allogeneic CAR T cells without incurring GVHD. © 2018 by The American Society of Hematology.

  5. Microarray-Based Determination of Estrogen Receptor, Progesterone Receptor, and HER2 Receptor Status in Breast Cancer

    NARCIS (Netherlands)

    Roepman, Paul; Horlings, Hugo M.; Krijgsman, Oscar; Kok, Marleen; Bueno-de-Mesquita, Jolien M.; Bender, Richard; Linn, Sabine C.; Glas, Annuska M.; van de Vijver, Marc J.

    2009-01-01

    Purpose: The level of estrogen receptor (ER), progesterone receptor (PR), and HER2 aids in the determination of prognosis and treatment of breast cancer. Immunohistochemistry is currently the predominant method for assessment, but differences in methods and interpretation can substantially affect

  6. Identifying the receptor subtype selectivity of retinoid X and retinoic acid receptors via quantum mechanics.

    Science.gov (United States)

    Tsuji, Motonori; Shudo, Koichi; Kagechika, Hiroyuki

    2017-03-01

    Understanding and identifying the receptor subtype selectivity of a ligand is an important issue in the field of drug discovery. Using a combination of classical molecular mechanics and quantum mechanical calculations, this report assesses the receptor subtype selectivity for the human retinoid X receptor (hRXR) and retinoic acid receptor (hRAR) ligand-binding domains (LBDs) complexed with retinoid ligands. The calculated energies show good correlation with the experimentally reported binding affinities. The technique proposed here is a promising method as it reveals the origin of the receptor subtype selectivity of selective ligands.

  7. Excitatory amino acid receptors and disease.

    Science.gov (United States)

    Meldrum, B S

    1992-08-01

    Recent advances in the molecular biology of excitatory amino acid receptors are reviewed. Evidence that drugs blocking the excitatory action of glutamate at the N-methyl-D-aspartate (NMDA) and non-NMDA receptors may be of clinical use in epilepsy, Parkinson's disease, cerebral ischaemia and trauma, acquired immune deficiency syndrome (AIDS) encephalopathy and neuropathic pain is summarized.

  8. Docking to flexible nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Sander, Tommy; Bruun, Anne T; Balle, Thomas

    2010-01-01

    Computational docking to nicotinic acetylcholine receptors (nAChRs) and other members of the Cys-loop receptor family is complicated by the flexibility of the so-called C-loop. As observed in the large number of published crystal structures of the acetylcholine binding protein (AChBP), a structural...

  9. Structural Studies of Nicotinic Acetylcholine Receptors

    DEFF Research Database (Denmark)

    Shahsavar, Azadeh; Gajhede, Michael; Kastrup, Jette

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) are members of the pentameric ligand-gated ion channel superfamily that play important roles in control of neurotransmitter release in the central and peripheral nervous system. These receptors are important therapeutic targets for development of drugs...

  10. In vivo studies of opiate receptors

    International Nuclear Information System (INIS)

    Frost, J.J.; Dannals, R.F.; Duelfer, T.; Burns, H.D.; Ravert, H.T.; Langstroem, B.; Balasubramanian, V.; Wagner, H.N. Jr.

    1984-01-01

    To study opiate receptors noninvasively in vivo using positron emission tomography, techniques for preferentially labeling opiate receptors in vivo can be used. The rate at which receptor-bound ligand clears from the brain in vivo can be predicted by measuring the equilibrium dissociation constant (KD) at 37 degrees C in the presence of 100 mM sodium chloride and 100 microM guanyl-5'-imidodiphosphate, the drug distribution coefficient, and the molecular weight. A suitable ligand for labeling opiate receptors in vivo is diprenorphine, which binds to mu, delta, and kappa receptors with approximately equal affinity in vitro. However, in vivo diprenorphine may bind predominantly to one opiate receptor subtype, possibly the mu receptor. To predict the affinity for binding to the opiate receptor, a Hansch correlation was determined between the 50% inhibitory concentration for a series of halogen-substituted fentanyl analogs and electronic, lipophilic, and steric parameters. Radiochemical methods for the synthesis of carbon-11-labeled diprenorphine and lofentanil are presented

  11. In vivo studies of opiate receptors

    Energy Technology Data Exchange (ETDEWEB)

    Frost, J.J.; Dannals, R.F.; Duelfer, T.; Burns, H.D.; Ravert, H.T.; Langstroem, B.; Balasubramanian, V.; Wagner, H.N. Jr.

    1984-01-01

    To study opiate receptors noninvasively in vivo using positron emission tomography, techniques for preferentially labeling opiate receptors in vivo can be used. The rate at which receptor-bound ligand clears from the brain in vivo can be predicted by measuring the equilibrium dissociation constant (KD) at 37 degrees C in the presence of 100 mM sodium chloride and 100 microM guanyl-5'-imidodiphosphate, the drug distribution coefficient, and the molecular weight. A suitable ligand for labeling opiate receptors in vivo is diprenorphine, which binds to mu, delta, and kappa receptors with approximately equal affinity in vitro. However, in vivo diprenorphine may bind predominantly to one opiate receptor subtype, possibly the mu receptor. To predict the affinity for binding to the opiate receptor, a Hansch correlation was determined between the 50% inhibitory concentration for a series of halogen-substituted fentanyl analogs and electronic, lipophilic, and steric parameters. Radiochemical methods for the synthesis of carbon-11-labeled diprenorphine and lofentanil are presented.

  12. Receptor study of psychiatric disorders using PET

    International Nuclear Information System (INIS)

    Suhara, Tetsuya

    1992-01-01

    Recent receptor studies of psychiatric disorders using PET have been focused on the change in the number of D 2 dopamine receptors in the striatum of drug-naive schizophrenic patients. One study confirmed an increase in D 2 receptors, while another study denied it. Although there were some differences in the approaches of the two groups, the reason for the discrepancy is not clear yet. Looking to psychiatric disorders other than schizophrenia, our recent study revealed a possible role of dopamine D 1 receptors in bipolar mood disorders. However, some problems must be resolved for further receptor studies with PET. For example, our recent study shows that desipamine decreases the in vivo binding of dopramine D 1 and D 2 receptors whereas these is no effect on dopamine D 1 and D 2 receptors in vitro. Additionally significant methodological problems lie in the method of evaluation of the non-specific binding and the effect of endogenous neurotransmitters. Moreover, difficulties in the diagnosis of psychiatric disorders and ethical problems in psychiatric research are critical factors in receptor studies with PET in psychiatric disorders. (author)

  13. P2X receptors in epithelia

    DEFF Research Database (Denmark)

    Leipziger, Jens Georg

    2015-01-01

    P2X receptors are ubiquitously expressed in all epithelial tissues but their functional roles are less well studied. Here we review the current state of knowledge by focusing on functional effects of P2X receptor in secretory and in absorptive tissues. In glandular tissue like the parotid gland...

  14. Structural Mapping of Adenosine Receptor Mutations

    DEFF Research Database (Denmark)

    Jespers, Willem; Schiedel, Anke C; Heitman, Laura H

    2018-01-01

    The four adenosine receptors (ARs), A1, A2A, A2B, and A3, constitute a subfamily of G protein-coupled receptors (GPCRs) with exceptional foundations for structure-based ligand design. The vast amount of mutagenesis data, accumulated in the literature since the 1990s, has been recently supplemente...

  15. Emerging functions for neuropeptide Y5 receptors

    NARCIS (Netherlands)

    Bischoff, A.; Michel, M. C.

    1999-01-01

    The Y5 subtype of neuropeptide Y (NPY) receptors has raised considerable interest as a mediator of NPY-stimulated food intake, but with the advent of recent data, this hypothesis has come into question. Moreover, Y5 receptor-selective drugs might not be specific for food intake because additional

  16. Immunohistochemical assessment of oestrogen and progesterone receptors

    DEFF Research Database (Denmark)

    Grabau, D A; Thorpe, S M; Knoop, A

    2000-01-01

    Two different methods to determine steroid receptors were analysed with respect to their ability to estimate prognosis in primary breast cancer patients. The immunohistochemical assay (IHA) was compared with the dextran-coated charcoal (DCC) method of receptor determination. A random sample of 28...... distinction between benign and malignant tissue is possible using the IHAmethod. Thus, IHAresults appear to be more clinically relevant....

  17. Lipoprotein receptors in cultured bovine endothelial cells

    International Nuclear Information System (INIS)

    Struempfer, A.E.M.

    1983-07-01

    In this study, receptors that may be involved in the uptake of low density lipoproteins (LDL) and low density lipoproteins which have been modified by acetylation (AcLDL), were characterized. Aortic epithelial cells were used and a cell culture system which closely resembled the in vivo monolayer was established. Endothelial cell and lipoprotein interactions were examined by incubating the cells with 125 l-labelled lipoproteins under various conditions. The receptor affinity of bovine aortic endothelial cells was higher for AcLDL than that for LDL. Competition studies demonstrated that there were two distinct receptors for LDL and AcLDL on the endothelial cells. AcLDL did not compete with LDL for the LDL receptor, and conversely LDL did not compete with AcLDL for the AcLDL receptor. The receptor activities for LDL and AcLDL were examined as a function of culture age. Whereas the LDL receptor could be regulated, the AcLDL receptor was not as susceptible to regulation. Upon exposing endothelial cells for 72 h to either LDL or AcLDL, it was found that the total amount of cellular cholesterol increased by about 50%. However, the increase of total cholesterol was largely in the form of free cholesterol. This is in contrast to macrophages, where the increase in total cholesterol upon exposure to AcLDL is largely in the form cholesteryl esters

  18. Thermogenic characterization of ghrelin receptor null mice

    Science.gov (United States)

    Ghrelin is the only known circulating orexigenic hormone that increases food intake and promotes adiposity, and these physiological functions of ghrelin are mediated through its receptor growth hormone secretagogue receptor (GHS-R). Ghrelin/GHS-R signaling plays a crucial role in energy homeostasis....

  19. Complex Pharmacology of Free Fatty Acid Receptors

    DEFF Research Database (Denmark)

    Milligan, Graeme; Shimpukade, Bharat; Ulven, Trond

    2017-01-01

    pharmacology have shaped understanding of the complex pharmacology of receptors that recognize and are activated by nonesterified or "free" fatty acids (FFAs). The FFA family of receptors is a recently deorphanized set of GPCRs, the members of which are now receiving substantial interest as novel targets...

  20. Neutral anion receptors: design and application

    NARCIS (Netherlands)

    Antonisse, M.M.G.; Reinhoudt, David

    1998-01-01

    After the development of synthetic cation receptors in the late 1960s, only in the past decade has work started on the development of synthetic neutral anion receptors. Combination and preorganization of different anion binding groups, like amides, urea moieties, or Lewis acidic metal centers lead

  1. NRSAS: Nuclear Receptor Structure Analysis Servers.

    NARCIS (Netherlands)

    Bettler, E.J.M.; Krause, R.; Horn, F.; Vriend, G.

    2003-01-01

    We present a coherent series of servers that can perform a large number of structure analyses on nuclear hormone receptors. These servers are part of the NucleaRDB project, which provides a powerful information system for nuclear hormone receptors. The computations performed by the servers include

  2. Transient receptor potential channels in essential hypertension

    DEFF Research Database (Denmark)

    Liu, Daoyan; Scholze, Alexandra; Zhu, Zhiming

    2006-01-01

    The role of nonselective cation channels of the transient receptor potential channel (TRPC) family in essential hypertension has not yet been investigated.......The role of nonselective cation channels of the transient receptor potential channel (TRPC) family in essential hypertension has not yet been investigated....

  3. Receptor tyrosine kinase signaling: a view from quantitative proteomics

    DEFF Research Database (Denmark)

    Dengjel, Joern; Kratchmarova, Irina; Blagoev, Blagoy

    2009-01-01

    Growth factor receptor signaling via receptor tyrosine kinases (RTKs) is one of the basic cellular communication principals found in all metazoans. Extracellular signals are transferred via membrane spanning receptors into the cytoplasm, reversible tyrosine phosphorylation being the hallmark of all...

  4. Steroid Hormone Receptor Signals as Prognosticators for Urothelial Tumor

    Directory of Open Access Journals (Sweden)

    Hiroki Ide

    2015-01-01

    Full Text Available There is a substantial amount of preclinical or clinical evidence suggesting that steroid hormone receptor-mediated signals play a critical role in urothelial tumorigenesis and tumor progression. These receptors include androgen receptor, estrogen receptors, glucocorticoid receptor, progesterone receptor, vitamin D receptor, retinoid receptors, peroxisome proliferator-activated receptors, and others including orphan receptors. In particular, studies using urothelial cancer tissue specimens have demonstrated that elevated or reduced expression of these receptors as well as alterations of their upstream or downstream pathways correlates with patient outcomes. This review summarizes and discusses available data suggesting that steroid hormone receptors and related signals serve as biomarkers for urothelial carcinoma and are able to predict tumor recurrence or progression.

  5. Real-Time G-Protein-Coupled Receptor Imaging to Understand and Quantify Receptor Dynamics

    Directory of Open Access Journals (Sweden)

    María S. Aymerich

    2011-01-01

    Full Text Available Understanding the trafficking of G-protein-coupled receptors (GPCRs and their regulation by agonists and antagonists is fundamental to develop more effective drugs. Optical methods using fluorescent-tagged receptors and spinning disk confocal microscopy are useful tools to investigate membrane receptor dynamics in living cells. The aim of this study was to develop a method to characterize receptor dynamics using this system which offers the advantage of very fast image acquisition with minimal cell perturbation. However, in short-term assays photobleaching was still a problem. Thus, we developed a procedure to perform a photobleaching-corrected image analysis. A study of short-term dynamics of the long isoform of the dopamine type 2 receptor revealed an agonist-induced increase in the mobile fraction of receptors with a rate of movement of 0.08 μm/s For long-term assays, the ratio between the relative fluorescence intensity at the cell surface versus that in the intracellular compartment indicated that receptor internalization only occurred in cells co-expressing G protein-coupled receptor kinase 2. These results indicate that the lateral movement of receptors and receptor internalization are not directly coupled. Thus, we believe that live imaging of GPCRs using spinning disk confocal image analysis constitutes a powerful tool to study of receptor dynamics.

  6. β-Adrenergic receptor-mediated suppression of interleukin 2 receptors in human lymphocytes

    International Nuclear Information System (INIS)

    Feldman, R.D.; Hunninghake, G.W.; McArdle, W.L.

    1987-01-01

    Adrenergic receptor agonists are know to attenuate the proliferative response of human lymphocytes after activation; however, their mechanism of action is unknown. Since expression of interleukin 2 (IL-2) receptors is a prerequisite for proliferation, the effect of β-adrenergic receptor agonists on lymphocyte IL-2 receptors was studied on both mitogen-stimulated lymphocytes and IL-2-dependent T lymphocyte cell lines. In both cell types the β-adrenergic receptor agonist isoproterenol blocked the expression of IL-2 receptors, as determined with the IL-2 receptor anti-TAC antibody. To determine the effect of β-adrenergic agonists on expression of the high affinity IL-2 receptors, [ 125 I]IL-2 binding studies were performed at concentrations selective for high affinity sites. No significant effect of β-adrenergic agonists on high affinity IL-2 receptor sites could be detected. The data demonstrate that β-adrenergic receptor agonists down-regulate IL-2 receptors primarily affecting low affinity sites

  7. Gβ promotes pheromone receptor polarization and yeast chemotropism by inhibiting receptor phosphorylation.

    Science.gov (United States)

    Ismael, Amber; Tian, Wei; Waszczak, Nicholas; Wang, Xin; Cao, Youfang; Suchkov, Dmitry; Bar, Eli; Metodiev, Metodi V; Liang, Jie; Arkowitz, Robert A; Stone, David E

    2016-04-12

    Gradient-directed cell migration (chemotaxis) and growth (chemotropism) are processes that are essential to the development and life cycles of all species. Cells use surface receptors to sense the shallow chemical gradients that elicit chemotaxis and chemotropism. Slight asymmetries in receptor activation are amplified by downstream signaling systems, which ultimately induce dynamic reorganization of the cytoskeleton. During the mating response of budding yeast, a model chemotropic system, the pheromone receptors on the plasma membrane polarize to the side of the cell closest to the stimulus. Although receptor polarization occurs before and independently of actin cable-dependent delivery of vesicles to the plasma membrane (directed secretion), it requires receptor internalization. Phosphorylation of pheromone receptors by yeast casein kinase 1 or 2 (Yck1/2) stimulates their internalization. We showed that the pheromone-responsive Gβγ dimer promotes the polarization of the pheromone receptor by interacting with Yck1/2 and locally inhibiting receptor phosphorylation. We also found that receptor phosphorylation is essential for chemotropism, independently of its role in inducing receptor internalization. A mathematical model supports the idea that the interaction between Gβγ and Yck1/2 results in differential phosphorylation and internalization of the pheromone receptor and accounts for its polarization before the initiation of directed secretion. Copyright © 2016, American Association for the Advancement of Science.

  8. The ABA receptors -- we report you decide.

    Science.gov (United States)

    McCourt, Peter; Creelman, Robert

    2008-10-01

    The plant hormone abscisic acid (ABA) has been implicated in a variety of physiological responses ranging from seed dormancy to stomatal conductance. Recently, three groups have reported the molecular identification of three disparate ABA receptors. Unlike the identification of other hormone receptors, in these three cases high affinity binding to ABA rather than the isolation of ABA insensitive mutants led to these receptor genes. Interestingly, two of the receptors encode genes involved in floral timing and chlorophyll biosynthesis, which are not considered traditional ABA responses. And the third receptor has been clouded in issues of its molecular identity. To clearly determine the roles of these genes in ABA perception it will require placing of these ABA-binding proteins into the rich ABA physiological context that has built up over the years.

  9. Sigma-2 receptor ligands QSAR model dataset

    Directory of Open Access Journals (Sweden)

    Antonio Rescifina

    2017-08-01

    Full Text Available The data have been obtained from the Sigma-2 Receptor Selective Ligands Database (S2RSLDB and refined according to the QSAR requirements. These data provide information about a set of 548 Sigma-2 (σ2 receptor ligands selective over Sigma-1 (σ1 receptor. The development of the QSAR model has been undertaken with the use of CORAL software using SMILES, molecular graphs and hybrid descriptors (SMILES and graph together. Data here reported include the regression for σ2 receptor pKi QSAR models. The QSAR model was also employed to predict the σ2 receptor pKi values of the FDA approved drugs that are herewith included.

  10. Computer modeling of Cannabinoid receptor type 1

    Directory of Open Access Journals (Sweden)

    Sapundzhi Fatima

    2018-01-01

    Full Text Available Cannabinoid receptors are important class of receptors as they are involved in various physiological processes such as appetite, pain-sensation, mood, and memory. It is important to design receptor-selective ligands in order to treat a particular disorder. The aim of the present study is to model the structure of cannabinoid receptor CB1 and to perform docking between obtained models and known ligands. Two models of CBR1 were prepared with two different methods (Modeller of Chimera and MOE. They were used for docking with GOLD 5.2. It was established a high correlation between inhibitory constant Ki of CB1 cannabinoid ligands and the ChemScore scoring function of GOLD, which concerns both models. This suggests that the models of the CB1 receptors obtained could be used for docking studies and in further investigation and design of new potential, selective and active cannabinoids with the desired effects.

  11. The AT2 Receptor and Inflammation

    DEFF Research Database (Denmark)

    Esquitino, Veronica Valero; Danyel, Leon Alexander; Steckelings, Ulrike M.

    2015-01-01

    This chapter summarizes current knowledge about the role of the angiotensin type 2 (AT2) receptor in inflammation. The first section provides an overview about molecular mechanisms underlying the anti-inflammatory action of the AT2 receptor. This section is followed...... by a review of the existing literature addressing the role of the AT2 receptor in a wide range of disorders, in which acute or chronic inflammation is an essential contributor to the pathology. These disorders comprise cardiovascular, cerebrovascular, renal, and autoimmune diseases.Taken as a whole......, the vast majority of data support an anti-inflammatory and immunomodulatory role of the AT2 receptor. In light of the current development of AT2 receptor agonists as future drugs for clinical use, diseases with a marked inflammatory component may become a major area of therapeutic use...

  12. Ror receptor tyrosine kinases: orphans no more.

    Science.gov (United States)

    Green, Jennifer L; Kuntz, Steven G; Sternberg, Paul W

    2008-11-01

    Receptor tyrosine kinase-like orphan receptor (Ror) proteins are a conserved family of tyrosine kinase receptors that function in developmental processes including skeletal and neuronal development, cell movement and cell polarity. Although Ror proteins were originally named because the associated ligand and signaling pathway were unknown, recent studies in multiple species have now established that Ror proteins are Wnt receptors. Depending on the cellular context, Ror proteins can either activate or repress transcription of Wnt target genes and can modulate Wnt signaling by sequestering Wnt ligands. New evidence implicates Ror proteins in planar cell polarity, an alternative Wnt pathway. Here, we review the progress made in understanding these mysterious proteins and, in particular, we focus on their function as Wnt receptors.

  13. Role of retinoic receptors in lung carcinogenesis

    Directory of Open Access Journals (Sweden)

    Renyi-Vamos Ferenc

    2008-07-01

    Full Text Available Abstract Several in vitro and in vivo studies have examined the positive and negative effects of retinoids (vitamin A analogs in premalignant and malignant lesions. Retinoids have been used as chemopreventive and anticancer agents because of their pleiotropic regulator function in cell differentiation, growth, proliferation and apoptosis through interaction with two types of nuclear receptors: retinoic acid receptors and retinoid X receptors. Recent investigations have gradually elucidated the function of retinoids and their signaling pathways and may explain the failure of earlier chemopreventive studies. In this review we have compiled basic and recent knowledge regarding the role of retinoid receptors in lung carcinogenesis. Sensitive and appropriate biological tools are necessary for screening the risk population and monitoring the efficacy of chemoprevention. Investigation of retinoid receptors is important and may contribute to the establishment of new strategies in chemoprevention for high-risk patients and in the treatment of lung cancer.

  14. Androgen insensitivity syndrome: gonadal androgen receptor activity

    International Nuclear Information System (INIS)

    Coulam, C.B.; Graham, M.L.; Spelsberg, T.C.

    1984-01-01

    To determine whether abnormalities of the androgen receptor previously observed in skin fibroblasts from patients with androgen insensitivity syndrome also occur in the gonads of affected individuals, androgen receptor activity in the gonads of a patient with testicular feminization syndrome was investigated. Using conditions for optimal recovery of androgen receptor from human testes established by previous studies, we detected the presence of a high-affinity (dissociation constant . 3.2 X 10(-10) mol/L), low-capacity (4.2 X 10(-12) mol/mg DNA), androgen-binding protein when tritium-labeled R1881 was incubated at 4 degrees C with nuclear extracts from the gonads of control patients or from a patient with testicular feminization syndrome but not when incubated at 37 degrees C. Thus this patient has an androgen receptor with a temperature lability similar to that of receptors from normal persons

  15. Functionally biased signalling properties of 7TM receptors - opportunities for drug development for the ghrelin receptor

    DEFF Research Database (Denmark)

    Sivertsen, B; Holliday, N; Madsen, A N

    2013-01-01

    UNLABELLED: The ghrelin receptor is a 7 transmembrane (7TM) receptor involved in a variety of physiological functions including growth hormone secretion, increased food intake and fat accumulation as well as modulation of reward and cognitive functions. Because of its important role in metabolism...... and energy expenditure, the ghrelin receptor has become an important therapeutic target for drug design and the development of anti-obesity compounds. However, none of the compounds developed so far have been approved for commercial use. Interestingly, the ghrelin receptor is able to signal through several...... review, we have described how ligands and mutations in the 7TM receptor may bias the receptors to favour either one G-protein over another or to promote G-protein independent signalling pathways rather than G-protein-dependent pathways. For the ghrelin receptor, both agonist and inverse agonists have...

  16. Activation of glucocorticoid receptors increases 5-HT2A receptor levels

    DEFF Research Database (Denmark)

    Trajkovska, Viktorija; Kirkegaard, Lisbeth; Krey, Gesa

    2009-01-01

    an effect of GR activation on 5-HT2A levels, mature organotypic hippocampal cultures were exposed to corticosterone with or without GR antagonist mifepristone and mineralocorticoid receptor (MR) antagonist spironolactone. In GR under-expressing mice, hippocampal 5-HT2A receptor protein levels were decreased......Major depression is associated with both dysregulation of the hypothalamic pituitary adrenal axis and serotonergic deficiency, not the least of the 5-HT2A receptor. However, how these phenomena are linked to each other, and whether a low 5-HT2A receptor level is a state or a trait marker...... of depression is unknown. In mice with altered glucocorticoid receptor (GR) expression we investigated 5-HT2A receptor levels by Western blot and 3H-MDL100907 receptor binding. Serotonin fibre density was analyzed by stereological quantification of serotonin transporter immunopositive fibers. To establish...

  17. Receptor oligomerization in family B1 of G-protein-coupled receptors

    DEFF Research Database (Denmark)

    Roed, Sarah Norklit; Ørgaard, Anne; Jørgensen, Rasmus

    2012-01-01

    , the glucagon receptor, and the receptors for parathyroid hormone (PTHR1 and PTHR2). The dysregulation of several family B1 receptors is involved in diseases, such as diabetes, chronic inflammation, and osteoporosis which underlines the pathophysiological importance of this GPCR subfamily. In spite of this......, investigation of family B1 receptor oligomerization and especially its pharmacological importance is still at an early stage. Even though GPCR oligomerization is a well-established phenomenon, there is a need for more investigations providing a direct link between these interactions and receptor functionality......The superfamily of the seven transmembrane G-protein-coupled receptors (7TM/GPCRs) is the largest family of membrane-associated receptors. GPCRs are involved in the pathophysiology of numerous human diseases, and they constitute an estimated 30-40% of all drug targets. During the last two decades...

  18. Cocaine Inhibits Dopamine D2 Receptor Signaling via Sigma-1-D2 Receptor Heteromers

    Science.gov (United States)

    Navarro, Gemma; Moreno, Estefania; Bonaventura, Jordi; Brugarolas, Marc; Farré, Daniel; Aguinaga, David; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Lluís, Carmen; Ferre, Sergi

    2013-01-01

    Under normal conditions the brain maintains a delicate balance between inputs of reward seeking controlled by neurons containing the D1-like family of dopamine receptors and inputs of aversion coming from neurons containing the D2-like family of dopamine receptors. Cocaine is able to subvert these balanced inputs by altering the cell signaling of these two pathways such that D1 reward seeking pathway dominates. Here, we provide an explanation at the cellular and biochemical level how cocaine may achieve this. Exploring the effect of cocaine on dopamine D2 receptors function, we present evidence of σ1 receptor molecular and functional interaction with dopamine D2 receptors. Using biophysical, biochemical, and cell biology approaches, we discovered that D2 receptors (the long isoform of the D2 receptor) can complex with σ1 receptors, a result that is specific to D2 receptors, as D3 and D4 receptors did not form heteromers. We demonstrate that the σ1-D2 receptor heteromers consist of higher order oligomers, are found in mouse striatum and that cocaine, by binding to σ1 -D2 receptor heteromers, inhibits downstream signaling in both cultured cells and in mouse striatum. In contrast, in striatum from σ1 knockout animals these complexes are not found and this inhibition is not seen. Taken together, these data illuminate the mechanism by which the initial exposure to cocaine can inhibit signaling via D2 receptor containing neurons, destabilizing the delicate signaling balance influencing drug seeking that emanates from the D1 and D2 receptor containing neurons in the brain. PMID:23637801

  19. Role of PAX8 in the regulation of MET and RON receptor tyrosine kinases in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Kanteti, Rajani; El-Hashani, Essam; Dhanasingh, Immanuel; Tretiakova, Maria; Husain, Aliya N; Sharma, Sherven; Sharma, Jay; Vokes, Everett E; Salgia, Ravi

    2014-01-01

    Non-small cell lung cancers (NSCLC) are highly heterogeneous at the molecular level and comprise 75% of all lung tumors. We have previously shown that the receptor tyrosine kinase (RTK) MET frequently suffers gain-of-function mutations that significantly promote lung tumorigenesis. Subsequent studies from our lab also revealed that PAX5 transcription factor is preferentially expressed in small cell lung cancer (SCLC) and promotes MET transcription. PAX8, however, is also expressed in NSCLC cell lines. We therefore investigated the role of PAX8 in NSCLC. Using IHC analysis, PAX8 protein expression was determined in archival NSCLC tumor tissues (n = 254). In order to study the effects of PAX8 knockdown on NSCLC cellular functions such as apoptosis and motility, siRNA against PAX8 was used. Confocal fluorescence microscopy was used to monitor the localization of MET, RON and PAX8. The combinatorial effect of PAX8 knockdown and MET inhibition using SU11274 was investigated in NSCLC cell viability assay. Relative levels of PAX8 protein were elevated (≥ + 2 on a scale of 0–3) in adenocarcinoma (58/94), large cell carcinoma (50/85), squamous cell carcinoma (28/47), and metastatic NSCLC (17/28; lymph node). Utilizing early progenitors isolated from NSCLC cell lines and fresh tumor tissues, we observed robust overexpression of PAX8, MET, and RON. PAX8 knockdown A549 cells revealed abrogated PAX8 expression with a concomitant loss in MET and the related RON kinase expression. A dramatic colocalization between the active form of MET (also RON) and PAX8 upon challenging A549 cells with HGF was visualized. A similar colocalization of MET and EGL5 (PAX8 ortholog) proteins was found in embryos of C. elegans. Most importantly, knockdown of PAX8 in A549 cells resulted in enhanced apoptosis (~6 fold) and decreased cell motility (~45%), thereby making PAX8 a potential therapeutic target. However, the combinatorial approach of PAX8 knockdown and treatment with MET inhibitor, SU

  20. The repertoire of trace amine G-protein-coupled receptors

    DEFF Research Database (Denmark)

    Gloriam, David E.; Bjarnadóttir, Thóra K; Yan, Yi-Lin

    2005-01-01

    eukaryotic species for receptors similar to the mammalian trace amine (TA) receptor subfamily. We identified 18 new receptors in rodents that are orthologous to the previously known TA-receptors. Remarkably, we found 57 receptors (and 40 pseudogenes) of this type in the zebrafish (Danio rerio), while fugu...... (Takifugu rubripes) had only eight receptors (and seven pseudogenes). We mapped 47 of the zebrafish TA-receptors on chromosomes using radiation hybrid panels and meiotic mapping. The results, together with the degree of conservation and phylogenetic relationships displayed among the zebrafish receptors...

  1. Action mechanisms of Liver X Receptors

    Energy Technology Data Exchange (ETDEWEB)

    Gabbi, Chiara; Warner, Margaret [Center for Nuclear Receptors and Cell Signaling, University of Houston, 3056 Cullen Blv, 77204 Houston, Texas (United States); Gustafsson, Jan-Åke, E-mail: jgustafs@central.uh.edu [Center for Nuclear Receptors and Cell Signaling, University of Houston, 3056 Cullen Blv, 77204 Houston, Texas (United States); Department of Biosciences and Nutrition, Karolinska Institutet, Novum S-141 86 (Sweden)

    2014-04-11

    Highlights: • LXRα and LXRβ are ligand-activated nuclear receptors. • They share oxysterol ligands and the same heterodimerization partner, RXR. • LXRs regulate lipid and glucose metabolism, CNS and immune functions, and water transport. - Abstract: The two Liver X Receptors, LXRα and LXRβ, are nuclear receptors belonging to the superfamily of ligand-activated transcription factors. They share more than 78% homology in amino acid sequence, a common profile of oxysterol ligands and the same heterodimerization partner, Retinoid X Receptor. LXRs play crucial roles in several metabolic pathways: lipid metabolism, in particular in preventing cellular cholesterol accumulation; glucose homeostasis; inflammation; central nervous system functions and water transport. As with all nuclear receptors, the transcriptional activity of LXR is the result of an orchestration of numerous cellular factors including ligand bioavailability, presence of corepressors and coactivators and cellular context i.e., what other pathways are activated in the cell at the time the receptor recognizes its ligand. In this mini-review we summarize the factors regulating the transcriptional activity and the mechanisms of action of these two receptors.

  2. Action mechanisms of Liver X Receptors

    International Nuclear Information System (INIS)

    Gabbi, Chiara; Warner, Margaret; Gustafsson, Jan-Åke

    2014-01-01

    Highlights: • LXRα and LXRβ are ligand-activated nuclear receptors. • They share oxysterol ligands and the same heterodimerization partner, RXR. • LXRs regulate lipid and glucose metabolism, CNS and immune functions, and water transport. - Abstract: The two Liver X Receptors, LXRα and LXRβ, are nuclear receptors belonging to the superfamily of ligand-activated transcription factors. They share more than 78% homology in amino acid sequence, a common profile of oxysterol ligands and the same heterodimerization partner, Retinoid X Receptor. LXRs play crucial roles in several metabolic pathways: lipid metabolism, in particular in preventing cellular cholesterol accumulation; glucose homeostasis; inflammation; central nervous system functions and water transport. As with all nuclear receptors, the transcriptional activity of LXR is the result of an orchestration of numerous cellular factors including ligand bioavailability, presence of corepressors and coactivators and cellular context i.e., what other pathways are activated in the cell at the time the receptor recognizes its ligand. In this mini-review we summarize the factors regulating the transcriptional activity and the mechanisms of action of these two receptors

  3. The cellular receptors of exogenous RNA

    Directory of Open Access Journals (Sweden)

    Patryk Reniewicz

    2016-04-01

    Full Text Available One of the key determinants of survival for organisms is proper recognition of exogenous and endogenous nucleic acids. Therefore, high eukaryotes developed a number of receptors that allow for discrimination between friend or foe DNA and RNA. Appearance of exogenous RNA in cytoplasm provides a signal of danger and triggers cellular responses that facilitate eradication of a pathogen. Recognition of exogenous RNA is additionally complicated by fact that large amount of endogenous RNA is present in cytoplasm Thus, number of different receptors, found in eukaryotic cells, is able to recognize that nucleic acid. First group of those receptors consist endosomal Toll like receptors, namely TLR3, TLR7, TLR8 and TLR13. Those receptors recognize RNA released from pathogens that enter the cell by endocytosis. The second group includes cytoplasmic sensors like PKR and the family of RLRs comprised of RIG-I, MDA5 and LGP2. Cytoplasmic receptors recognize RNA from pathogens invading the cell by non-endocytic pathway. In both cases binding of RNA by its receptors results in activation of the signalling cascades that lead to the production of interferon and other cytokines.

  4. Receptor mapping in psychiatric patients with SPECT

    International Nuclear Information System (INIS)

    Schlegel, S.

    1997-01-01

    This paper summarizes some data of our studies with the single-photon-emission-computerized tomography (SPECT), focussing on the dopamine-D2- and the benzodiazepine receptor mapping. Benzodiazepine receptors: Central benzodiazepine receptors (BZr) can be visualized with iomazenil which is an analogue of the benzodiazepine antagonist flumazenil, labeled with 123-iodine. Since the involvement of the BZr system is discussed in the pathogenesis of anxiety and depression, patients with these disorders were investigated. A third study investigated the BZr-occupancy during benzodiazepine treatment (lorazepam). Results: (a) Patients with panic disorders had lower iomazenil uptake values compared to epileptic patients. (b) Depressed patients showed a positive correlation between severity of illness and frontal uptake. (c) BZr occupancy during lorazepam treatment was measurable, but not associated with lorazepam plasma levels. Dopamine-D2-receptors: With 123-I-iodobenzamide (IBZM), and iodine-labeled dopamine receptor ligand, the D2 receptor density can be measured by a semiquantitative approach (striatum/frontal cortex=ST/FC). Therefore, we investigated the D2-receptor occupancy during treatment with typical and atypical neuroleptics in relationship to dosages (normalized with different formulas of chlorpromazine equivalents), side effects, and prolactin plasma levels. Results: Dependent on the selected formula for chlorpromazine equivalents, the ST/FC ratio was correlated with dosages. Side effects and prolactin plasma levels showed a negative association with lower ST/FC ratios. (orig.) [de

  5. Muscarinic Receptor Signaling in Colon Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Rosenvinge, Erik C. von, E-mail: evonrose@medicine.umaryland.edu; Raufman, Jean-Pierre [University of Maryland School of Medicine, Division of Gastroenterology & Hepatology, 22 S. Greene Street, N3W62, Baltimore, MD 21201 (United States); Department of Veterans Affairs, VA Maryland Health Care System, 10 North Greene Street, Baltimore, MD 21201 (United States)

    2011-03-02

    According to the adenoma-carcinoma sequence, colon cancer results from accumulating somatic gene mutations; environmental growth factors accelerate and augment this process. For example, diets rich in meat and fat increase fecal bile acids and colon cancer risk. In rodent cancer models, increased fecal bile acids promote colon dysplasia. Conversely, in rodents and in persons with inflammatory bowel disease, low-dose ursodeoxycholic acid treatment alters fecal bile acid composition and attenuates colon neoplasia. In the course of elucidating the mechanism underlying these actions, we discovered that bile acids interact functionally with intestinal muscarinic receptors. The present communication reviews muscarinic receptor expression in normal and neoplastic colon epithelium, the role of autocrine signaling following synthesis and release of acetylcholine from colon cancer cells, post-muscarinic receptor signaling including the role of transactivation of epidermal growth factor receptors and activation of the ERK and PI3K/AKT signaling pathways, the structural biology and metabolism of bile acids and evidence for functional interaction of bile acids with muscarinic receptors on human colon cancer cells. In murine colon cancer models, deficiency of subtype 3 muscarinic receptors attenuates intestinal neoplasia; a proof-of-concept supporting muscarinic receptor signaling as a therapeutic target for colon cancer.

  6. Muscarinic Receptor Signaling in Colon Cancer

    International Nuclear Information System (INIS)

    Rosenvinge, Erik C. von; Raufman, Jean-Pierre

    2011-01-01

    According to the adenoma-carcinoma sequence, colon cancer results from accumulating somatic gene mutations; environmental growth factors accelerate and augment this process. For example, diets rich in meat and fat increase fecal bile acids and colon cancer risk. In rodent cancer models, increased fecal bile acids promote colon dysplasia. Conversely, in rodents and in persons with inflammatory bowel disease, low-dose ursodeoxycholic acid treatment alters fecal bile acid composition and attenuates colon neoplasia. In the course of elucidating the mechanism underlying these actions, we discovered that bile acids interact functionally with intestinal muscarinic receptors. The present communication reviews muscarinic receptor expression in normal and neoplastic colon epithelium, the role of autocrine signaling following synthesis and release of acetylcholine from colon cancer cells, post-muscarinic receptor signaling including the role of transactivation of epidermal growth factor receptors and activation of the ERK and PI3K/AKT signaling pathways, the structural biology and metabolism of bile acids and evidence for functional interaction of bile acids with muscarinic receptors on human colon cancer cells. In murine colon cancer models, deficiency of subtype 3 muscarinic receptors attenuates intestinal neoplasia; a proof-of-concept supporting muscarinic receptor signaling as a therapeutic target for colon cancer

  7. Muscarinic Receptor Signaling in Colon Cancer

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Raufman

    2011-03-01

    Full Text Available According to the adenoma-carcinoma sequence, colon cancer results from accumulating somatic gene mutations; environmental growth factors accelerate and augment this process. For example, diets rich in meat and fat increase fecal bile acids and colon cancer risk. In rodent cancer models, increased fecal bile acids promote colon dysplasia. Conversely, in rodents and in persons with inflammatory bowel disease, low-dose ursodeoxycholic acid treatment alters fecal bile acid composition and attenuates colon neoplasia. In the course of elucidating the mechanism underlying these actions, we discovered that bile acids interact functionally with intestinal muscarinic receptors. The present communication reviews muscarinic receptor expression in normal and neoplastic colon epithelium, the role of autocrine signaling following synthesis and release of acetylcholine from colon cancer cells, post-muscarinic receptor signaling including the role of transactivation of epidermal growth factor receptors and activation of the ERK and PI3K/AKT signaling pathways, the structural biology and metabolism of bile acids and evidence for functional interaction of bile acids with muscarinic receptors on human colon cancer cells. In murine colon cancer models, deficiency of subtype 3 muscarinic receptors attenuates intestinal neoplasia; a proof-of-concept supporting muscarinic receptor signaling as a therapeutic target for colon cancer.

  8. Psychopharmacology of 5-HT1A receptors

    International Nuclear Information System (INIS)

    Cowen, Philip J.

    2000-01-01

    Serotonin 1A (5-HT 1A ) receptors are located on both 5-HT cell bodies where they act as inhibitory autoreceptors and at postsynaptic sites where they mediate the effects of 5-HT released from nerve terminals. The sensitivity of 5-HT 1A receptors in humans can be measured using the technique of pharmacological challenge. For example, acute administration of a selective 5-HT 1A receptor agonist, such as ipsapirone, decreases body temperature and increases plasma cortisol through activation of pre- and postsynaptic 5-HT 1A receptors, respectively. Use of this technique has demonstrated that unmedicated patients with major depression have decreased sensitivity of both pre- and postsynaptic 5-HT 1A receptors. Treatment with selective serotonin reuptake inhibitors further down-regulates 5-HT 1A receptor activity. Due to the hypotheses linking decreased sensitivity of 5-HT 1A autoreceptors with the onset of antidepressant activity, there is current interest in the therapeutic efficacy of combined treatment with selective serotonin reuptake inhibitors and 5-HT 1A receptor antagonists

  9. Tachykinin receptors in the equine pelvic flexure

    International Nuclear Information System (INIS)

    Sonea, I.M.; Wilson, D.V.; Bowker, R.M.; Robinson, N.E.

    1997-01-01

    Tachykinins, of which substance P (SP) is the prototype, are neuropeptides which are widely distributed in the nervous systems. In the equine gut, SP is present in enteric nerves and is a powerful constrictor of enteric muscle; in other species, SP is also known to have potent vasodilatory and pro-inflammatory effects. The specific effects of SP are determined by the subtype of receptor present in the target tissue. There are 3 known subtypes of tachykinin receptors, distinguished by their relative affinities for SP and other tachykinins. The distribution of SP binding sites in the equine pelvic flexure was determined using 125I-Bolton Hunter SP (I-BHSP) autoradiography. Most I-BHSP binding sites were determined to be saturable and specific, therefore presumably representing tachykinin receptors. The greatest degree of I-BHSP binding occurred over very small vessels, and over the muscularis mucosae; I-BHSP binding was also intense over the circular muscle of the muscularis externa and mucosa, and present, although less intense, over the longitudinal muscle of the muscularis externa. Competition of I-BHSP with specific receptor agonists for binding sites in the equine pelvic flexure were used to determine the subtypes of tachykinin receptors present. The neurokinin-1 receptor subtype predominated in the equine pelvic flexure, followed by the neurokinin-3 receptor subtype

  10. Pharmacological analysis of calcium antagonist receptors

    International Nuclear Information System (INIS)

    Reynolds, I.J.

    1987-01-01

    This work focuses on two aspects of the action of calcium antagonist drugs, namely, the interaction of drugs with receptors for verapamil-like calcium antagonists, and the interactions of drugs with voltage-sensitive calcium fluxes in rat brain synaptosomes. From binding studies I have found that the ligand of choice for labeling the verapamil receptor is (-)[ 3 H]desmethoxy-verapamil. This drug labels potently, reversibly and stereoselectively two receptors in membranes prepared from rat brain and rabbit skeletal muscle tissues. In equilibrium studies dihydropyridine calcium antagonists interact in a non-competitive fashion, while many non-DHPs are apparently competitive. In-depth kinetic studies in skeletal muscle membranes indicate that the two receptors are linked in a negative heterotropic fashion, and that low-affinity binding of (-) [ 3 H]desmethoxy-verapamil may be to the diltiazem receptor. However, these studies were not able to distinguish between the hypothesis that diltiazem binds to spatially separate, allosterically coupled receptors, and the hypothesis that diltiazem binds to a subsite of the verapamil receptor

  11. Andrographolide regulates epidermal growth factor receptor and transferrin receptor trafficking in epidermoid carcinoma (A-431) cells

    Science.gov (United States)

    Tan, Y; Chiow, KH; Huang, D; Wong, SH

    2010-01-01

    Background and purpose: Andrographolide is the active component of Andrographis paniculata, a plant used in both Indian and Chinese traditional medicine, and it has been demonstrated to induce apoptosis in different cancer cell lines. However, not much is known about how it may affect the key receptors implicated in cancer. Knowledge of how andrographolide affects receptor trafficking will allow us to better understand new mechanisms by which andrographolide may cause death in cancer cells. Experimental approach: We utilized the well-characterized epidermal growth factor receptor (EGFR) and transferrin receptor (TfR) expressed in epidermoid carcinoma (A-431) cells as a model to study the effect of andrographolide on receptor trafficking. Receptor distribution, the total number of receptors and surface receptors were analysed by immunofluorescence, Western blot as well as flow-cytometry respectively. Key results: Andrographolide treatment inhibited cell growth, down-regulated EGFRs on the cell surface and affected the degradation of EGFRs and TfRs. The EGFR was internalized into the cell at an increased rate, and accumulated in a compartment that co-localizes with the lysosomal-associated membrane protein in the late endosomes. Conclusion and implications: This study sheds light on how andrographolide may affect receptor trafficking by inhibiting receptor movement from the late endosomes to lysosomes. The down-regulation of EGFR from the cell surface also indicates a new mechanism by which andrographolide may induce cancer cell death. PMID:20233216

  12. Serotonin 5-HT4 receptors and forebrain cholinergic system: receptor expression in identified cell populations.

    Science.gov (United States)

    Peñas-Cazorla, Raúl; Vilaró, M Teresa

    2015-11-01

    Activation of serotonin 5-HT4 receptors has pro-cognitive effects on memory performance. The proposed underlying neurochemical mechanism is the enhancement of acetylcholine release in frontal cortex and hippocampus elicited by 5-HT4 agonists. Although 5-HT4 receptors are present in brain areas related to cognition, e.g., hippocampus and cortex, the cellular localization of the receptors that might modulate acetylcholine release is unknown at present. We have analyzed, using dual label in situ hybridization, the cellular localization of 5-HT4 receptor mRNA in identified neuronal populations of the rat basal forebrain, which is the source of the cholinergic innervation to cortex and hippocampus. 5-HT4 receptor mRNA was visualized with isotopically labeled oligonucleotide probes, whereas cholinergic, glutamatergic, GABAergic and parvalbumin-synthesizing neurons were identified with digoxigenin-labeled oligonucleotide probes. 5-HT4 receptor mRNA was not detected in the basal forebrain cholinergic cell population. In contrast, basal forebrain GABAergic, parvalbumin synthesizing, and glutamatergic cells contained 5-HT4 receptor mRNA. Hippocampal and cortical glutamatergic neurons also express this receptor. These results indicate that 5-HT4 receptors are not synthesized by cholinergic cells, and thus would be absent from cholinergic terminals. In contrast, several non-cholinergic cell populations within the basal forebrain and its target hippocampal and cortical areas express these receptors and are thus likely to mediate the enhancement of acetylcholine release elicited by 5-HT4 agonists.

  13. Calcitonin and calcitonin receptor-like receptors: common themes with family B GPCRs?

    Science.gov (United States)

    Barwell, James; Gingell, Joseph J; Watkins, Harriet A; Archbold, Julia K; Poyner, David R; Hay, Debbie L

    2012-05-01

    The calcitonin receptor (CTR) and calcitonin receptor-like receptor (CLR) are two of the 15 human family B (or Secretin-like) GPCRs. CTR and CLR are of considerable biological interest as their pharmacology is moulded by interactions with receptor activity-modifying proteins. They also have therapeutic relevance for many conditions, such as osteoporosis, diabetes, obesity, lymphatic insufficiency, migraine and cardiovascular disease. In light of recent advances in understanding ligand docking and receptor activation in both the family as a whole and in CLR and CTR specifically, this review reflects how applicable general family B GPCR themes are to these two idiosyncratic receptors. We review the main functional domains of the receptors; the N-terminal extracellular domain, the juxtamembrane domain and ligand interface, the transmembrane domain and the intracellular C-terminal domain. Structural and functional findings from the CLR and CTR along with other family B GPCRs are critically appraised to gain insight into how these domains may function. The ability for CTR and CLR to interact with receptor activity-modifying proteins adds another level of sophistication to these receptor systems but means careful consideration is needed when trying to apply generic GPCR principles. This review encapsulates current thinking in the realm of family B GPCR research by highlighting both conflicting and recurring themes and how such findings relate to two unusual but important receptors, CTR and CLR. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  14. N-glycosylation of the β2 adrenergic receptor regulates receptor function by modulating dimerization.

    Science.gov (United States)

    Li, Xiaona; Zhou, Mang; Huang, Wei; Yang, Huaiyu

    2017-07-01

    N-glycosylation is a common post-translational modification of G-protein-coupled receptors (GPCRs). However, it remains unknown how N-glycosylation affects GPCR signaling. β 2 adrenergic receptor (β 2 AR) has three N-glycosylation sites: Asn6, Asn15 at the N-terminus, and Asn187 at the second extracellular loop (ECL2). Here, we show that deletion of the N-glycan did not affect receptor expression and ligand binding. Deletion of the N-glycan at the N-terminus rather than Asn187 showed decreased effects on isoproterenol-promoted G-protein-dependent signaling, β-arrestin2 recruitment, and receptor internalization. Both N6Q and N15Q showed decreased receptor dimerization, while N187Q did not influence receptor dimerization. As decreased β 2 AR homodimer accompanied with reduced efficiency for receptor function, we proposed that the N-glycosylation of β 2 AR regulated receptor function by influencing receptor dimerization. To verify this hypothesis, we further paid attention to the residues at the dimerization interface. Studies of Lys60 and Glu338, two residues at the receptor dimerization interface, exhibited that the K60A/E338A showed decreased β 2 AR dimerization and its effects on receptor signaling were similar to N6Q and N15Q, which further supported the importance of receptor dimerization for receptor function. This work provides new insights into the relationship among glycosylation, dimerization, and function of GPCRs. Peptide-N-glycosidase F (PNGase F, EC 3.2.2.11); endo-β-N-acetylglucosaminidase A (Endo-A, EC 3.2.1.96). © 2017 Federation of European Biochemical Societies.

  15. Evolution of endothelin receptors in vertebrates.

    Science.gov (United States)

    Braasch, Ingo; Schartl, Manfred

    2014-12-01

    Endothelin receptors are G protein coupled receptors (GPCRs) of the β-group of rhodopsin receptors that bind to endothelin ligands, which are 21 amino acid long peptides derived from longer prepro-endothelin precursors. The most basal Ednr-like GPCR is found outside vertebrates in the cephalochordate amphioxus, but endothelin ligands are only present among vertebrates, including the lineages of jawless vertebrates (lampreys and hagfishes), cartilaginous vertebrates (sharks, rays, and chimaeras), and bony vertebrates (ray-finned fishes and lobe-finned vertebrates including tetrapods). A bona fide endothelin system is thus a vertebrate-specific innovation with important roles for regulating the cardiovascular system, renal and pulmonary processes, as well as for the development of the vertebrate-specific neural crest cell population and its derivatives. Expectedly, dysregulation of endothelin receptors and the endothelin system leads to a multitude of human diseases. Despite the importance of different types of endothelin receptors for vertebrate development and physiology, current knowledge on endothelin ligand-receptor interactions, on the expression of endothelin receptors and their ligands, and on the functional roles of the endothelin system for embryonic development and in adult vertebrates is very much biased towards amniote vertebrates. Recent analyses from a variety of vertebrate lineages, however, have shown that the endothelin system in lineages such as teleost fish and lampreys is more diverse and is divergent from the mammalian endothelin system. This diversity is mainly based on differential evolution of numerous endothelin system components among vertebrate lineages generated by two rounds of whole genome duplication (three in teleosts) during vertebrate evolution. Here we review current understanding of the evolutionary history of the endothelin receptor family in vertebrates supplemented with surveys on the endothelin receptor gene complement of

  16. Role of adenosine receptors in caffeine tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Holtzman, S.G.; Mante, S.; Minneman, K.P. (Emory Univ. School of Medicine, Atlanta, GA (USA))

    1991-01-01

    Caffeine is a competitive antagonist at adenosine receptors. Receptor up-regulation during chronic drug treatment has been proposed to be the mechanism of tolerance to the behavioral stimulant effects of caffeine. This study reassessed the role of adenosine receptors in caffeine tolerance. Separate groups of rats were given scheduled access to drinking bottles containing plain tap water or a 0.1% solution of caffeine. Daily drug intake averaged 60-75 mg/kg and resulted in complete tolerance to caffeine-induced stimulation of locomotor activity, which could not be surmounted by increasing the dose of caffeine. 5'-N-ethylcarboxamidoadenosine (0.001-1.0 mg/kg) dose dependently decreased the locomotor activity of caffeine-tolerant rats and their water-treated controls but was 8-fold more potent in the latter group. Caffeine (1.0-10 mg/kg) injected concurrently with 5-N-ethylcarboxamidoadenosine antagonized the decreases in locomotor activity comparably in both groups. Apparent pA2 values for tolerant and control rats also were comparable: 5.05 and 5.11. Thus, the adenosine-antagonist activity of caffeine was undiminished in tolerant rats. The effects of chronic caffeine administration on parameters of adenosine receptor binding and function were measured in cerebral cortex. There were no differences between brain tissue from control and caffeine-treated rats in number and affinity of adenosine binding sites or in receptor-mediated increases (A2 adenosine receptor) and decreases (A1 adenosine receptor) in cAMP accumulation. These results are consistent with theoretical arguments that changes in receptor density should not affect the potency of a competitive antagonist. Experimental evidence and theoretical considerations indicate that up-regulation of adenosine receptors is not the mechanism of tolerance to caffeine-induced stimulation of locomotor activity.

  17. Role of adenosine receptors in caffeine tolerance

    International Nuclear Information System (INIS)

    Holtzman, S.G.; Mante, S.; Minneman, K.P.

    1991-01-01

    Caffeine is a competitive antagonist at adenosine receptors. Receptor up-regulation during chronic drug treatment has been proposed to be the mechanism of tolerance to the behavioral stimulant effects of caffeine. This study reassessed the role of adenosine receptors in caffeine tolerance. Separate groups of rats were given scheduled access to drinking bottles containing plain tap water or a 0.1% solution of caffeine. Daily drug intake averaged 60-75 mg/kg and resulted in complete tolerance to caffeine-induced stimulation of locomotor activity, which could not be surmounted by increasing the dose of caffeine. 5'-N-ethylcarboxamidoadenosine (0.001-1.0 mg/kg) dose dependently decreased the locomotor activity of caffeine-tolerant rats and their water-treated controls but was 8-fold more potent in the latter group. Caffeine (1.0-10 mg/kg) injected concurrently with 5-N-ethylcarboxamidoadenosine antagonized the decreases in locomotor activity comparably in both groups. Apparent pA2 values for tolerant and control rats also were comparable: 5.05 and 5.11. Thus, the adenosine-antagonist activity of caffeine was undiminished in tolerant rats. The effects of chronic caffeine administration on parameters of adenosine receptor binding and function were measured in cerebral cortex. There were no differences between brain tissue from control and caffeine-treated rats in number and affinity of adenosine binding sites or in receptor-mediated increases (A2 adenosine receptor) and decreases (A1 adenosine receptor) in cAMP accumulation. These results are consistent with theoretical arguments that changes in receptor density should not affect the potency of a competitive antagonist. Experimental evidence and theoretical considerations indicate that up-regulation of adenosine receptors is not the mechanism of tolerance to caffeine-induced stimulation of locomotor activity

  18. Lactate Transport and Receptor Actions in Retina

    DEFF Research Database (Denmark)

    Kolko, Miriam; Vosborg, Fia; Henriksen, Jens Ulrik Lütken

    2016-01-01

    known as HCAR1, may contribute importantly to the control of retinal cell functions in health and disease. GPR81, a G-protein coupled receptor, is known to downregulate cAMP both in adipose and nervous tissue. The receptor also acts through other down-stream mechanisms to control functions......In retina, like in brain, lactate equilibrates across cell membranes via monocarboxylate transporters and in the extracellular space by diffusion, forming a basis for the action of lactate as a transmitter of metabolic signals. In the present paper, we argue that the lactate receptor GPR81, also...

  19. Transcriptional targets shared by estrogen receptor- related receptors (ERRs) and estrogen receptor (ER) alpha, but not by ERbeta.

    Science.gov (United States)

    Vanacker, J M; Pettersson, K; Gustafsson, J A; Laudet, V

    1999-01-01

    The physiological activities of estrogens are thought to be mediated by specific nuclear receptors, ERalpha and ERbeta. However, certain tissues, such as the bone, that are highly responsive to estrogens only express a low level of these receptors. Starting from this apparent contradiction, we have evaluated the potentials of two related receptors ERRalpha and ERRbeta to intervene in estrogen signaling. ERalpha, ERRalpha and ERRbeta bind to and activate transcription through both the classical estrogen response element (ERE) and the SF-1 response element (SFRE). In contrast, ERbeta DNA-binding and transcriptional activity is restricted to the ERE. Accordingly, the osteopontin gene promoter is stimulated through SFRE sequences, by ERRalpha as well as by ERalpha, but not by ERbeta. Analysis of the cross-talk within the ER/ERR subgroup of nuclear receptors thus revealed common targets but also functional differences between the two ERs. PMID:10428965

  20. Molecular modeling of ligand-receptor interactions in the OR5 olfactory receptor.

    Science.gov (United States)

    Singer, M S; Shepherd, G M

    1994-06-02

    Olfactory receptors belong to the superfamily of seven transmembrane domain, G protein-coupled receptors. In order to begin analysis of mechanisms of receptor activation, a computer model of the OR5 olfactory receptor has been constructed and compared with other members of this superfamily. We have tested docking of the odor molecule lyral, which is known to activate the OR5 receptor. The results point to specific ligand-binding residues on helices III through VII that form a binding pocket in the receptor. Some of these residues occupy sequence positions identical to ligand-binding residues conserved among other superfamily members. The results provide new insights into possible molecular mechanisms of odor recognition and suggest hypotheses to guide future experimental studies using site-directed mutagenesis.

  1. Dynamics of the actin cytoskeleton mediates receptor cross talk: An emerging concept in tuning receptor signaling

    Science.gov (United States)

    Mattila, Pieta K.; Batista, Facundo D.

    2016-01-01

    Recent evidence implicates the actin cytoskeleton in the control of receptor signaling. This may be of particular importance in the context of immune receptors, such as the B cell receptor, where dysregulated signaling can result in autoimmunity and malignancy. Here, we discuss the role of the actin cytoskeleton in controlling receptor compartmentalization, dynamics, and clustering as a means to regulate receptor signaling through controlling the interactions with protein partners. We propose that the actin cytoskeleton is a point of integration for receptor cross talk through modulation of protein dynamics and clustering. We discuss the implication of this cross talk via the cytoskeleton for both ligand-induced and low-level constitutive (tonic) signaling necessary for immune cell survival. PMID:26833785

  2. Receptor binding radiotracers for the angiotensin II receptor: radioiodinated [Sar1, Ile8]angiotensin II

    International Nuclear Information System (INIS)

    Gibson, R.E.; Beauchamp, H.T.; Fioravanti, C.; Brenner, N.; Burns, H.D.

    1994-01-01

    The potential for imaging the angiotensin II receptor was evaluated using the radioiodinated peptide antagonist [ 125 I][Sar 1 , Ile 8 ]angiotensin II. The radioligand provides a receptor-mediated signal in several tissues in rat (kidneys, adrenal and liver). The receptor-mediated signal of 3% ID/g kidney cortex should be sufficient to permit imaging, at least via SPECT. The radiotracer is sensitive to reductions in receptor concentration and can be used to define in vivo dose-occupancy curves of angiotensin II receptor ligands. Receptor-mediated images of [ 123 I][Sar 1 , Ile 8 ]angiotensin II were obtained in the rat kidney and Rhesus monkey liver. (author)

  3. Selective thyroid hormone receptor modulators

    Directory of Open Access Journals (Sweden)

    Girish Raparti

    2013-01-01

    Full Text Available Thyroid hormone (TH is known to have many beneficial effects on vital organs, but its extrapolation to be used therapeutically has been restricted by the fact that it does have concurrent adverse effects. Recent finding of various thyroid hormone receptors (TR isoforms and their differential pattern of tissue distribution has regained interest in possible use of TH analogues in therapeutics. These findings were followed by search of compounds with isoform-specific or tissue-specific action on TR. Studying the structure-activity relationship of TR led to the development of compounds like GC1 and KB141, which preferentially act on the β1 isoform of TR. More recently, eprotirome was developed and has been studied in humans. It has shown to be effective in dyslipidemia by the lipid-lowering action of TH in the liver and also in obesity. Another compound, 3,5-diiodothyropropionic acid (DITPA, binds to both α- and β-type TRs with relatively low affinity and has been shown to be effective in heart failure (HF. In postinfarction models of HF and in a pilot clinical study, DITPA increased cardiac performance without affecting the heart rate. TR antagonists like NH3 can be used in thyrotoxicosis and cardiac arrhythmias. However, further larger clinical trials on some of these promising compounds and development of newer compounds with increased selectivity is required to achieve higher precision of action and avoid adverse effects seen with TH.

  4. Endogenous Receptor Agonists: Resolving Inflammation

    Directory of Open Access Journals (Sweden)

    Gerhard Bannenberg

    2007-01-01

    Full Text Available Controlled resolution or the physiologic resolution of a well-orchestrated inflammatory response at the tissue level is essential to return to homeostasis. A comprehensive understanding of the cellular and molecular events that control the termination of acute inflammation is needed in molecular terms given the widely held view that aberrant inflammation underlies many common diseases. This review focuses on recent advances in the understanding of the role of arachidonic acid and ω-3 polyunsaturated fatty acids (PUFA–derived lipid mediators in regulating the resolution of inflammation. Using a functional lipidomic approach employing LC-MS-MS–based informatics, recent studies, reviewed herein, uncovered new families of local-acting chemical mediators actively biosynthesized during the resolution phase from the essential fatty acids eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA. These new families of local chemical mediators are generated endogenously in exudates collected during the resolution phase, and were coined resolvins and protectins because specific members of these novel chemical families control both the duration and magnitude of inflammation in animal models of complex diseases. Recent advances on the biosynthesis, receptors, and actions of these novel anti-inflammatory and proresolving lipid mediators are reviewed with the aim to bring to attention the important role of specific lipid mediators as endogenous agonists in inflammation resolution.

  5. Teleost Chemokines and Their Receptors

    Directory of Open Access Journals (Sweden)

    Steve Bird

    2015-11-01

    Full Text Available Chemokines are a superfamily of cytokines that appeared about 650 million years ago, at the emergence of vertebrates, and are responsible for regulating cell migration under both inflammatory and physiological conditions. The first teleost chemokine gene was reported in rainbow trout in 1998. Since then, numerous chemokine genes have been identified in diverse fish species evidencing the great differences that exist among fish and mammalian chemokines, and within the different fish species, as a consequence of extensive intrachromosomal gene duplications and different infectious experiences. Subsequently, it has only been possible to establish clear homologies with mammalian chemokines in the case of some chemokines with well-conserved homeostatic roles, whereas the functionality of other chemokine genes will have to be independently addressed in each species. Despite this, functional studies have only been undertaken for a few of these chemokine genes. In this review, we describe the current state of knowledge of chemokine biology in teleost fish. We have mainly focused on those species for which more research efforts have been made in this subject, specially zebrafish (Danio rerio, rainbow trout (Oncorhynchus mykiss and catfish (Ictalurus punctatus, outlining which genes have been identified thus far, highlighting the most important aspects of their expression regulation and addressing any known aspects of their biological role in immunity. Finally, we summarise what is known about the chemokine receptors in teleosts and provide some analysis using recently available data to help characterise them more clearly.

  6. Modulating Estrogen Receptor-related Receptor-α Activity Inhibits Cell Proliferation*

    OpenAIRE

    Bianco, Stéphanie; Lanvin, Olivia; Tribollet, Violaine; Macari, Claire; North, Sophie; Vanacker, Jean-Marc

    2009-01-01

    High expression of the estrogen receptor-related receptor (ERR)-α in human tumors is correlated to a poor prognosis, suggesting an involvement of the receptor in cell proliferation. In this study, we show that a synthetic compound (XCT790) that modulates the activity of ERRα reduces the proliferation of various cell lines and blocks the G1/S transition of the cell cycle in an ERR...

  7. Acetylcholine Receptor: Complex of Homologous Subunits

    Science.gov (United States)

    Raftery, Michael A.; Hunkapiller, Michael W.; Strader, Catherine D.; Hood, Leroy E.

    1980-06-01

    The acetylcholine receptor from the electric ray Torpedo californica is composed of five subunits; two are identical and the other three are structurally related to them. Microsequence analysis of the four polypeptides demonstrates amino acid homology among the subunits. Further sequence analysis of both membrane-bound and Triton-solubilized, chromatographically purified receptor gave the stoichiometry of the four subunits (40,000:50,000:60,000:65,000 daltons) as 2:1:1:1, indicating that this protein is a pentameric complex with a molecular weight of 255,000 daltons. Genealogical analysis suggests that divergence from a common ancestral gene occurred early in the evolution of the receptor. This shared ancestry argues that each of the four subunits plays a functional role in the receptor's physiological action.

  8. C-Type Lectin Receptors in Asthma

    Directory of Open Access Journals (Sweden)

    Sabelo Hadebe

    2018-04-01

    Full Text Available Asthma is a heterogeneous disease that affects approximately 300 million people worldwide, largely in developed countries. The etiology of the disease is poorly understood, but is likely to involve specific innate and adaptive responses to inhaled microbial components that are found in allergens. Fungal-derived allergens represent a major contributing factor in the initiation, persistence, exacerbation, and severity of allergic asthma. C-type lectin like receptors, such as dectin-1, dectin-2, DC-specific intercellular adhesion molecule 3-grabbing nonintegrin, and mannose receptor, recognize many fungal-derived allergens and other structurally similar allergens derived from house dust mites (HDM. In some cases, the fungal derived allergens have been structurally and functionally identified alongside their respective receptors in both humans and mice. In this review, we discuss recent understanding on how selected fungal and HDM derived allergens as well as their known or unknown receptors shape allergic airway diseases.

  9. Brain nuclear receptors and body weight regulation

    Science.gov (United States)

    Neural pathways, especially those in the hypothalamus, integrate multiple nutritional, hormonal, and neural signals, resulting in the coordinated control of body weight balance and glucose homeostasis. Nuclear receptors (NRs) sense changing levels of nutrients and hormones, and therefore play essent...

  10. Probing Biased Signaling in Chemokine Receptors

    DEFF Research Database (Denmark)

    Amarandi, Roxana Maria; Hjortø, Gertrud Malene; Rosenkilde, Mette Marie

    2016-01-01

    The chemokine system mediates leukocyte migration during homeostatic and inflammatory processes. Traditionally, it is described as redundant and promiscuous, with a single chemokine ligand binding to different receptors and a single receptor having several ligands. Signaling of chemokine receptors...... of others has been termed signaling bias and can accordingly be grouped into ligand bias, receptor bias, and tissue bias. Bias has so far been broadly overlooked in the process of drug development. The low number of currently approved drugs targeting the chemokine system, as well as the broad range...... of failed clinical trials, reflects the need for a better understanding of the chemokine system. Thus, understanding the character, direction, and consequence of biased signaling in the chemokine system may aid the development of new therapeutics. This review describes experiments to assess G protein...

  11. Tripodal receptors for cation and anion sensors

    NARCIS (Netherlands)

    Kuswandi, Bambang; Nuriman, [Unknown; Verboom, Willem; Reinhoudt, David

    2006-01-01

    This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing

  12. Fluctuation correlation models for receptor immobilization

    Science.gov (United States)

    Fourcade, B.

    2017-12-01

    Nanoscale dynamics with cycles of receptor diffusion and immobilization by cell-external-or-internal factors is a key process in living cell adhesion phenomena at the origin of a plethora of signal transduction pathways. Motivated by modern correlation microscopy approaches, the receptor correlation functions in physical models based on diffusion-influenced reaction is studied. Using analytical and stochastic modeling, this paper focuses on the hybrid regime where diffusion and reaction are not truly separable. The time receptor autocorrelation functions are shown to be indexed by different time scales and their asymptotic expansions are given. Stochastic simulations show that this analysis can be extended to situations with a small number of molecules. It is also demonstrated that this analysis applies when receptor immobilization is coupled to environmental noise.

  13. Mediator-dependent Nuclear Receptor Functions

    Science.gov (United States)

    Chen, Wei; Roeder, Robert

    2011-01-01

    As gene-specific transcription factors, nuclear hormone receptors are broadly involved in many important biological processes. Their function on target genes requires the stepwise assembly of different coactivator complexes that facilitate chromatin remodeling and subsequent preinitiation complex (PIC) formation and function. Mediator has proved to be a crucial, and general, nuclear receptor-interacting coactivator, with demonstrated functions in transcription steps ranging from chromatin remodeling to subsequent PIC formation and function. Here we discuss (i) our current understanding of pathways that nuclear receptors and other interacting cofactors employ to recruit Mediator to target gene enhancers and promoters, including conditional requirements for the strong NR-Mediator interactions mediated by the NR AF2 domain and the MED1 LXXLLL motifs and (ii) mechanisms by which Mediator acts to transmit signals from enhancer-bound nuclear receptors to the general transcription machinery at core promoters to effect PIC formation and function. PMID:21854863

  14. Recurrent LDL-receptor mutation causes familial ...

    African Journals Online (AJOL)

    1995-05-05

    May 5, 1995 ... 3. eaudet . New. Recurrent LDL-receptor mutation causes familial hypercholesterolaemia in ... amplification refractory mutation system (ARMS)" and single- strand conformation .... Location. Afrikaner. Mixed race. ApaLl.

  15. Androgen Receptor Signaling in Bladder Cancer

    Science.gov (United States)

    Li, Peng; Chen, Jinbo; Miyamoto, Hiroshi

    2017-01-01

    Emerging preclinical findings have indicated that steroid hormone receptor signaling plays an important role in bladder cancer outgrowth. In particular, androgen-mediated androgen receptor signals have been shown to correlate with the promotion of tumor development and progression, which may clearly explain some sex-specific differences in bladder cancer. This review summarizes and discusses the available data, suggesting the involvement of androgens and/or the androgen receptor pathways in urothelial carcinogenesis as well as tumor growth. While the precise mechanisms of the functions of the androgen receptor in urothelial cells remain far from being fully understood, current evidence may offer chemopreventive or therapeutic options, using androgen deprivation therapy, in patients with bladder cancer. PMID:28241422

  16. Androgen Receptor Signaling in Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Peng Li

    2017-02-01

    Full Text Available Emerging preclinical findings have indicated that steroid hormone receptor signaling plays an important role in bladder cancer outgrowth. In particular, androgen-mediated androgen receptor signals have been shown to correlate with the promotion of tumor development and progression, which may clearly explain some sex-specific differences in bladder cancer. This review summarizes and discusses the available data, suggesting the involvement of androgens and/or the androgen receptor pathways in urothelial carcinogenesis as well as tumor growth. While the precise mechanisms of the functions of the androgen receptor in urothelial cells remain far from being fully understood, current evidence may offer chemopreventive or therapeutic options, using androgen deprivation therapy, in patients with bladder cancer.

  17. Molecular Mechanisms of Dopamine Receptor Mediated Neuroprotection

    National Research Council Canada - National Science Library

    Sealfon, Stuart

    2000-01-01

    ... of the cellular changes characteristic of this process. Evidence from our laboratory and others suggest that activation of dopamine receptors can oppose the induction of apoptosis in dopamine neurons...

  18. Agonism and antagonism at the insulin receptor

    DEFF Research Database (Denmark)

    Knudsen, Louise; Hansen, Bo Falck; Jensen, Pia

    2012-01-01

    Insulin can trigger metabolic as well as mitogenic effects, the latter being pharmaceutically undesirable. An understanding of the structure/function relationships between insulin receptor (IR) binding and mitogenic/metabolic signalling would greatly facilitate the preclinical development of new...... insulin analogues. The occurrence of ligand agonism and antagonism is well described for G protein-coupled receptors (GPCRs) and other receptors but in general, with the exception of antibodies, not for receptor tyrosine kinases (RTKs). In the case of the IR, no natural ligand or insulin analogue has been...... shown to exhibit antagonistic properties, with the exception of a crosslinked insulin dimer (B29-B'29). However, synthetic monomeric or dimeric peptides targeting sites 1 or 2 of the IR were shown to be either agonists or antagonists. We found here that the S961 peptide, previously described to be an IR...

  19. Ecdysteroid receptors in Drosophila melanogaster adult females

    Science.gov (United States)

    Ecdysteroid receptors were identified and partially characterized from total cell extracts of whole animals and dissected tissues from Drosophila melanogaster adult females. Binding studies indicated the presence of two ecdysteroid binding components having high affinity and specificity consistent w...

  20. Dopamine receptors - physiological understanding to therapeutic intervention potential

    NARCIS (Netherlands)

    Emilien, G; Maloteaux, JM; Hoogenberg, K; Cragg, S

    1999-01-01

    There are two families of dopamine (DA) receptors, called D(1) and D(2), respectively. The D(1) family consists of D(1)- and D(5)-receptor subtypes and the D(2) family consists of D(2)-, D(3)-, and D(4)-receptor subtypes. The amino acid sequences of these receptors show that they all belong to a

  1. Dopamine receptors - physiological understanding to therapeutic intervention potential

    NARCIS (Netherlands)

    Emilien, G; Maloteaux, JM; Hoogenberg, K; Cragg, S

    There are two families of dopamine (DA) receptors, called D(1) and D(2), respectively. The D(1) family consists of D(1)- and D(5)-receptor subtypes and the D(2) family consists of D(2)-, D(3)-, and D(4)-receptor subtypes. The amino acid sequences of these receptors show that they all belong to a

  2. NK-1 receptor antagonists as anti-cancer drugs

    Indian Academy of Sciences (India)

    The substance P (SP)/neurokinin (NK)-1 receptor system plays an important role in cancer. SP promotes the proliferation of tumour cells, angiogenesis and the migration of tumour cells. We review the involvement of SP, the NK-1 receptor and NK-1 receptor antagonists in cancer. Tumour cells overexpress NK-1 receptors, ...

  3. The MC4 receptor and control of appetite

    NARCIS (Netherlands)

    Adan, R. A. H.; Tiesjema, B.; Hillebrand, J. J. G.; La Fleur, S. E.; Kas, M. J. H.; de Krom, M.

    2006-01-01

    Mutations in the human melanocortin (MC)4 receptor have been associated with obesity, which underscores the relevance of this receptor as a drug target to treat obesity. Infusion of MC4R agonists decreases food intake, whereas inhibition of MC receptor activity by infusion of an MC receptor

  4. Clinical and Genomic Crosstalk between Glucocorticoid Receptor and Estrogen Receptor α In Endometrial Cancer

    Directory of Open Access Journals (Sweden)

    Jeffery M. Vahrenkamp

    2018-03-01

    Full Text Available Summary: Steroid hormone receptors are simultaneously active in many tissues and are capable of altering each other’s function. Estrogen receptor α (ER and glucocorticoid receptor (GR are expressed in the uterus, and their ligands have opposing effects on uterine growth. In endometrial tumors with high ER expression, we surprisingly found that expression of GR is associated with poor prognosis. Dexamethasone reduced normal uterine growth in vivo; however, this growth inhibition was abolished in estrogen-induced endometrial hyperplasia. We observed low genomic-binding site overlap when ER and GR are induced with their respective ligands; however, upon simultaneous induction they co-occupy more sites. GR binding is altered significantly by estradiol with GR recruited to ER-bound loci that become more accessible upon estradiol induction. Gene expression responses to co-treatment were more similar to estradiol but with additional regulated genes. Our results suggest phenotypic and molecular interplay between ER and GR in endometrial cancer. : Estrogen receptor α (ER and glucocorticoid receptor (GR are expressed in the uterus and have differential effects on growth. Vahrenkamp et al. find that expression of both receptors is associated with poor outcome in endometrial cancer and that simultaneous induction of ER and GR leads to molecular interplay between the receptors. Keywords: estrogen receptor, glucocorticoid receptor, endometrial cancer

  5. Targeting Discoidin Domain Receptors in Prostate Cancer

    Science.gov (United States)

    2017-08-01

    AWARD NUMBER: W81XWH-15-1-0226 TITLE: Targeting Discoidin Domain Receptors in Prostate Cancer PRINCIPAL INVESTIGATOR: Dr. Rafael Fridman...AND SUBTITLE 5a. CONTRACT NUMBER Targeting Discoidin Domain Receptors in Prostate Cancer 5b. GRANT NUMBER W81XWH-15-1-0226 5c. PROGRAM ELEMENT...response to collagen in prostate cancer. The project’s goal is to define the expression and therapeutic potential of DDRs in prostate cancer. During

  6. Agonist discrimination between AMPA receptor subtypes

    DEFF Research Database (Denmark)

    Coquelle, T; Christensen, J K; Banke, T G

    2000-01-01

    The lack of subtype-selective compounds for AMPA receptors (AMPA-R) led us to search for compounds with such selectivity. Homoibotenic acid analogues were investigated at recombinant GluR1o, GluR2o(R), GluR3o and GluR1o + 3o receptors expressed in Sf9 insect cells and affinities determined in [3H...

  7. Selectivity of Odorant Receptors in Insects

    Science.gov (United States)

    2012-07-13

    Luetje, C. W., and Robertson, H. M. (2007). A honey bee odorant receptor for the queen substance 9-oxo-2-decenoic acid. Proc. Natl. Acad. Sci. U.S.A...since they might be exposed to a greater number of pharmacolog- ically active compounds than other conventional ligand-gated ion channels and G- protein ...2008). Drosophila odorant receptors are novel seven transmembrane domain proteins that can signal independently of heterotrimeric G proteins

  8. Moth sex pheromone receptors and deceitful parapheromones.

    Directory of Open Access Journals (Sweden)

    Pingxi Xu

    Full Text Available The insect's olfactory system is so selective that male moths, for example, can discriminate female-produced sex pheromones from compounds with minimal structural modifications. Yet, there is an exception for this "lock-and-key" tight selectivity. Formate analogs can be used as replacement for less chemically stable, long-chain aldehyde pheromones, because male moths respond physiologically and behaviorally to these parapheromones. However, it remained hitherto unknown how formate analogs interact with aldehyde-sensitive odorant receptors (ORs. Neuronal responses to semiochemicals were investigated with single sensillum recordings. Odorant receptors (ORs were cloned using degenerate primers, and tested with the Xenopus oocyte expression system. Quality, relative quantity, and purity of samples were evaluated by gas chromatography and gas chromatography-mass spectrometry. We identified olfactory receptor neurons (ORNs housed in trichoid sensilla on the antennae of male navel orangeworm that responded equally to the main constituent of the sex pheromone, (11Z,13Z-hexadecadienal (Z11Z13-16Ald, and its formate analog, (9Z,11Z-tetradecen-1-yl formate (Z9Z11-14OFor. We cloned an odorant receptor co-receptor (Orco and aldehyde-sensitive ORs from the navel orangeworm, one of which (AtraOR1 was expressed specifically in male antennae. AtraOR1•AtraOrco-expressing oocytes responded mainly to Z11Z13-16Ald, with moderate sensitivity to another component of the sex pheromone, (11Z,13Z-hexadecadien-1-ol. Surprisingly, this receptor was more sensitive to the related formate than to the natural sex pheromone. A pheromone receptor from Heliothis virescens, HR13 ( = HvirOR13 showed a similar profile, with stronger responses elicited by a formate analog than to the natural sex pheromone, (11Z-hexadecenal thus suggesting this might be a common feature of moth pheromone receptors.

  9. Methodological aspects on drug receptor binding analysis

    International Nuclear Information System (INIS)

    Wahlstroem, A.

    1978-01-01

    Although drug receptors occur in relatively low concentrations, they can be visualized by the use of appropriate radioindicators. In most cases the procedure is rapid and can reach a high degree of accuracy. Specificity of the interaction is studied by competition analysis. The necessity of using several radioindicators to define a receptor population is emphasized. It may be possible to define isoreceptors and drugs with selectivity for one isoreceptor. (Author)

  10. Neurokinin-1 receptor activation in globus pallidus

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2009-10-01

    Full Text Available The undecapeptide substance P has been demonstrated to modulate neuronal activity in a number of brain regions by acting on neurokinin-1 receptors. Anatomical studies revealed a moderate level of neurokinin-1 receptor in rat globus pallidus. To determine the electrophysiological effects of neurokinin-1 receptor activation in globus pallidus, whole-cell patch-clamp recordings were performed in the present study. Under current-clamp recordings, neurokinin-1 receptor agonist, [Sar9, Met(O211] substance P (SM-SP at 1 μM, depolarized globus pallidus neurons and increased their firing rate. Consistently, SM-SP induced an inward current under voltage-clamp recording. The depolarization evoked by SM-SP persisted in the presence of tetrodotoxin, glutamate and GABA receptor antagonists, indicating its direct postsynaptic effects. The neurokinin-1 receptor antagonist, SR140333B, could block SM-SP-induced depolarization. Further experiments showed that suppression of potassium conductance was the predominant ionic mechanism of SM-SP-induced depolarization. To determine if neurokinin-1 receptor activation exerts any effects on GABAergic and glutamatergic neurotransmission, the action of SM-SP on synaptic currents was studied. SM-SP significantly increased the frequency of spontaneous inhibitory postsynaptic currents, but only induced a transient increase in the frequency of miniature inhibitory postsynaptic currents. No change was observed in both spontaneous and miniature excitatory postsynaptic currents. Based on the direct excitatory effects of SM-SP on pallidal neurons, we hypothesize that neurokinin-1 receptor activation in globus pallidus may be involved in the beneficial effect of substance P in Parkinson’s disease.

  11. Expression of Plant Receptor Kinases in Tobacco BY-2 Cells.

    Science.gov (United States)

    Shinohara, Hidefumi; Matsubayashi, Yoshikatsu

    2017-01-01

    Although more than 600 single-transmembrane receptor kinase genes have been found in the Arabidopsis genome, only a few of them have known physiological functions, and even fewer plant receptor kinases have known specific ligands. Ligand-binding analysis must be operated using the functionally expressed receptor form. However, the relative abundance of native receptor kinase molecules in the plasma membrane is often quite low. Here, we present a method for stable and functional expression of plant receptor kinases in tobacco BY-2 cells that allows preparation of microsomal fractions containing the receptor. This procedure provides a sufficient amount of receptor proteins while maintaining its ligand-binding activities.

  12. Opioid receptor desensitization: mechanisms and its link to tolerance

    Directory of Open Access Journals (Sweden)

    Stéphane eAllouche

    2014-12-01

    Full Text Available Opioid receptors are part of the class A of G-protein coupled receptors and the target of the opiates, the most powerful analgesic molecules used in clinic. During a protracted use, a tolerance to analgesic effect develops resulting in a reduction of the effectiveness. So understanding mechanisms of tolerance is a great challenge and may help to find new strategies to tackle this side effect. This review will summarize receptor-related mechanisms that could underlie tolerance especially receptor desensitization. We will focus on the latest data obtained on molecular mechanisms involved in opioid receptor desensitization: phosphorylation, receptor uncoupling, internalization and post-endocytic fate of the receptor.

  13. Beta adrenergic receptors in human cavernous tissue

    Energy Technology Data Exchange (ETDEWEB)

    Dhabuwala, C.B.; Ramakrishna, C.V.; Anderson, G.F.

    1985-04-01

    Beta adrenergic receptor binding was performed with /sup 125/I iodocyanopindolol on human cavernous tissue membrane fractions from normal tissue and transsexual procedures obtained postoperatively, as well as from postmortem sources. Isotherm binding studies on normal fresh tissues indicated that the receptor density was 9.1 fmoles/mg. with a KD of 23 pM. Tissue stored at room temperature for 4 to 6 hours, then at 4C in saline solution for 19 to 20 hours before freezing showed no significant changes in receptor density or affinity, and provided evidence for the stability of postmortem tissue obtained within the same time period. Beta receptor density of 2 cavernous preparations from transsexual procedures was not significantly different from normal control tissues, and showed that high concentrations of estrogen received by these patients had no effect on beta adrenergic receptor density. Displacement of /sup 125/iodocyanopindolol by 5 beta adrenergic agents demonstrated that 1-propranolol had the greatest affinity followed by ICI 118,551, zinterol, metoprolol and practolol. When the results of these displacement studies were subjected to Scatfit, non- linear regression line analysis, a single binding site was described. Based on the relative potency of the selective beta adrenergic agents it appears that these receptors were of the beta 2 subtype.

  14. Targeting the TAM Receptors in Leukemia.

    Science.gov (United States)

    Huey, Madeline G; Minson, Katherine A; Earp, H Shelton; DeRyckere, Deborah; Graham, Douglas K

    2016-11-08

    Targeted inhibition of members of the TAM (TYRO-3, AXL, MERTK) family of receptor tyrosine kinases has recently been investigated as a novel strategy for treatment of hematologic malignancies. The physiologic functions of the TAM receptors in innate immune control, natural killer (NK) cell differentiation, efferocytosis, clearance of apoptotic debris, and hemostasis have previously been described and more recent data implicate TAM kinases as important regulators of erythropoiesis and megakaryopoiesis. The TAM receptors are aberrantly or ectopically expressed in many hematologic malignancies including acute myeloid leukemia, B- and T-cell acute lymphoblastic leukemia, chronic lymphocytic leukemia, and multiple myeloma. TAM receptors contribute to leukemic phenotypes through activation of pro-survival signaling pathways and interplay with other oncogenic proteins such as FLT3, LYN, and FGFR3. The TAM receptors also contribute to resistance to both cytotoxic chemotherapeutics and targeted agents, making them attractive therapeutic targets. A number of translational strategies for TAM inhibition are in development, including small molecule inhibitors, ligand traps, and monoclonal antibodies. Emerging areas of research include modulation of TAM receptors to enhance anti-tumor immunity, potential roles for TYRO-3 in leukemogenesis, and the function of the bone marrow microenvironment in mediating resistance to TAM inhibition.

  15. Corticosteroid receptors adopt distinct cyclical transcriptional signatures.

    Science.gov (United States)

    Le Billan, Florian; Amazit, Larbi; Bleakley, Kevin; Xue, Qiong-Yao; Pussard, Eric; Lhadj, Christophe; Kolkhof, Peter; Viengchareun, Say; Fagart, Jérôme; Lombès, Marc

    2018-05-07

    Mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) are two closely related hormone-activated transcription factors that regulate major pathophysiologic functions. High homology between these receptors accounts for the crossbinding of their corresponding ligands, MR being activated by both aldosterone and cortisol and GR essentially activated by cortisol. Their coexpression and ability to bind similar DNA motifs highlight the need to investigate their respective contributions to overall corticosteroid signaling. Here, we decipher the transcriptional regulatory mechanisms that underlie selective effects of MRs and GRs on shared genomic targets in a human renal cellular model. Kinetic, serial, and sequential chromatin immunoprecipitation approaches were performed on the period circadian protein 1 ( PER1) target gene, providing evidence that both receptors dynamically and cyclically interact at the same target promoter in a specific and distinct transcriptional signature. During this process, both receptors regulate PER1 gene by binding as homo- or heterodimers to the same promoter region. Our results suggest a novel level of MR-GR target gene regulation, which should be considered for a better and integrated understanding of corticosteroid-related pathophysiology.-Le Billan, F., Amazit, L., Bleakley, K., Xue, Q.-Y., Pussard, E., Lhadj, C., Kolkhof, P., Viengchareun, S., Fagart, J., Lombès, M. Corticosteroid receptors adopt distinct cyclical transcriptional signatures.

  16. Functional reconstitution of the glycine receptor

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Calvo, M.; Ruiz-Gomez, A.; Vazquez, J.; Morato, E.; Valdivieso, F.; Mayor, F. Jr. (Universidad Autonoma de Madrid (Spain))

    1989-07-25

    The functional reconstitution of the chloride channel coupled glycine receptor is described. Glycine receptors were purified from the cholate extract of rat spinal cord membranes by affinity chromatography and incorporated into phospholipid vesicles by the addition of phosphatidylcholine and removal of detergent by gel filtration. The reconstituted vesicles showed the same polypeptide composition as the purified receptor. The pharmacological characteristics of the glycine receptor were also preserved in the proteoliposomes, as demonstrated by the displacement of ({sup 3}H)strychnine binding by several glycinergic ligands and by photoaffinity labeling experiments. In order to observe functional responses (i.e., specific agonist-induced anion translocation), the authors have developed an assay based on the fluorescence quenching of an anion-sensitive entrapped probe, SPQ (6-methoxy-N-(3-sulfopropyl)quinolinium). Reconstituted vesicles were loaded with the fluorescent probe during a freeze-thaw-sonication cycle in the presence of added liposomes containing cholesterol. In such a reconstituted system, glycine receptor agonists are able to increase the rate of anion influx into the vesicles. The action of agonists is blocked by the simultaneous presence of strychnine or other glycine antagonists. The results show that the purified 48,000- and 58,000-dalton polypeptides reconstituted into phospholipid vesicles can bind ligands and promote specific ion translocation in a way similar to the glycine receptor in its native environment.

  17. Purification of a putative brain somatostatin receptor

    International Nuclear Information System (INIS)

    He, Haitao; Johnson, K.; Thermos, K.; Reisine, T.

    1989-01-01

    The brain somatostatin receptor was purified by affinity chromatographic techniques. A protein of 60 kDa could be purified from rat brain. The protein was eluted from a [D-Trp 8 ]SRIF affinity column with either sodium acetate (pH 5.5) or free [D-Trp 8 ]SRIF. The binding of the protein to the affinity column was prevented by free [D-Trp 8 ]SRIF or the stable SRIF analogue SMS 201-996 but not by the inactive somatostatin 28-(1-14). The purified receptor could be covalently labeled by the 125 I-labeled SRIF analogue CGP 23996. Excess [D-Trp 8 ]SRIF blocked the binding of 125 I-labeled CGP 23996 to the purified receptor, but somatostatin 28-(1-14) did not affect the binding. A 60-kDa protein was also purified from the anterior pituitary cell line AtT-20, which has a high expression of SRIF receptors. In contrast, no 60-kDa protein could be purified from CHO cells, which have no detectable SRIF receptors. These findings present evidence for the purification of the SRIF receptor

  18. Targeting the TAM Receptors in Leukemia

    Directory of Open Access Journals (Sweden)

    Madeline G. Huey

    2016-11-01

    Full Text Available Targeted inhibition of members of the TAM (TYRO-3, AXL, MERTK family of receptor tyrosine kinases has recently been investigated as a novel strategy for treatment of hematologic malignancies. The physiologic functions of the TAM receptors in innate immune control, natural killer (NK cell differentiation, efferocytosis, clearance of apoptotic debris, and hemostasis have previously been described and more recent data implicate TAM kinases as important regulators of erythropoiesis and megakaryopoiesis. The TAM receptors are aberrantly or ectopically expressed in many hematologic malignancies including acute myeloid leukemia, B- and T-cell acute lymphoblastic leukemia, chronic lymphocytic leukemia, and multiple myeloma. TAM receptors contribute to leukemic phenotypes through activation of pro-survival signaling pathways and interplay with other oncogenic proteins such as FLT3, LYN, and FGFR3. The TAM receptors also contribute to resistance to both cytotoxic chemotherapeutics and targeted agents, making them attractive therapeutic targets. A number of translational strategies for TAM inhibition are in development, including small molecule inhibitors, ligand traps, and monoclonal antibodies. Emerging areas of research include modulation of TAM receptors to enhance anti-tumor immunity, potential roles for TYRO-3 in leukemogenesis, and the function of the bone marrow microenvironment in mediating resistance to TAM inhibition.

  19. Cloning the interleukin 1 receptor from human T cells

    International Nuclear Information System (INIS)

    Sims, J.E.; Acres, R.B.; Grubin, C.E.; McMahan, C.J.; Wignall, J.M.; March, C.J.; Dower, S.K.

    1989-01-01

    cDNA clones of the interleukin 1 (IL-1) receptor expressed in a human T-cell clone have been isolated by using a murine IL-1 receptor cDNA as a probe. The human and mouse receptors show a high degree of sequence conservation. Both are integral membrane proteins possessing a single membrane-spanning segment. Similar to the mouse receptor, the human IL-1 receptor contains a large cytoplasmic region and an extracellular, IL-1 binding portion composed of three immunoglobulin-like domains. When transfected into COS cells, the human IL-1 receptor cDNA clone leads to expression of two different affinity classes of receptors, with K a values indistinguishable from those determined for IL-1 receptors in the original T-cell clone. An IL-1 receptor expressed in human dermal fibroblasts has also been cloned and sequenced and found to be identical to the IL-1 receptor expressed in T cells

  20. Characterization of melanocortin receptor ligands on cloned brain melanocortin receptors and on grooming behavior in the rat

    NARCIS (Netherlands)

    Gispen, W.H.; Adan, R.A.H.; Szklarczyk, A.W.; Oosterom, J.; Brakkee, J.H.; Nijenhuis, W.A.; Schaaper, W.M.; Meloen, R.H.

    1999-01-01

    Since the melanocortin MC3 and melanocortin MC4 receptors are the main melanocortin receptor subtypes expressed in rat brain, we characterized the activity and affinity of nine melanocortin receptor ligands using these receptors in vitro, as well as their activity in a well-defined

  1. Receptor autoradiography in the hippocampus of man and rat

    International Nuclear Information System (INIS)

    Zilles, K.

    1988-01-01

    This chapter deals with the following questions: regional distribution of binding sites for 5-HT, glutamate, and acetylcholine in Ammon's horn and the dentate gyrus of rat and human brain; comparison of receptor distribution and neuronal pathways with identified transmitters; correlation of region-specific densities between different receptors and receptor subtypes (colocalization of different receptors on the level of hippocampal layers) and comparison of receptor distribution in human and rat hippocampus

  2. Determination of HIV-1 co-receptor usage.

    Science.gov (United States)

    Cavarelli, Mariangela; Scarlatti, Gabriella

    2014-01-01

    Human immunodeficiency virus type I (HIV-1) infects target cells through interaction with the CD4 molecule and chemokine receptors, mainly the β-chemokine receptor 5 (CCR5) and the α-chemokine receptor 4 (CXCR4). Viral isolates can be phenotypically classified based on the co-receptor they utilize to infect target cells. In this chapter, methods to determine the co-receptor usage of HIV-1 variants are described.

  3. Central alpha2 adrenergic receptors in the rat cerebral cortex: repopulation kinetics and receptor reserve

    International Nuclear Information System (INIS)

    Adler, C.H.

    1986-01-01

    The alpha 2 adrenergic receptor subtype is thought to play a role in the mechanism of action of antidepressant and antihypertensive drugs. This thesis has attempted to shed light on the regulation of central alpha 2 adrenergic receptors in the rat cerebral cortex. Repopulation kinetics analysis allows for the determination of the rate of receptor production, rate constant of degradation, and half-life of the receptor. This analysis was carried out using both radioligand binding and functional receptor assays at various times following the irreversible inactivation of central alpha 2 adrenergic receptors by in vivo administration of N-ethoxycarbonyl-2-ethyoxy-1,2-dihydroquinoline (EEDQ). Both alpha 2 agonist and antagonist ligand binding sites recovered with a t/sub 1/2/ equal to approximately 4 days. The function of alpha 2 adrenergic autoreceptors, which inhibit stimulation-evoked release of 3 H-norepinephrine ( 3 H-NE) and alpha 2 adrenergic heteroreceptors which inhibit stimulation-evoked release of 3 H-serotonin ( 3 H-5-HT) were assayed. The t/sub 1/2/ for recovery of maximal autoreceptor and heteroreceptor function was 2.4 days and 4.6 days, respectively. The demonstration of a receptor reserve is critical to the interpretation of past and future studies of the alpha 2 adrenergic receptor since it demonstrates that: (1) alterations in the number of alpha 2 adrenergic receptor binding sites cannot be extrapolated to the actual function of the alpha 2 adrenergic receptor; and (2) alterations in the number of alpha 2 receptors is not necessarily accompanied by a change in the maximum function being studied, but may only result in shifting of the dose-response curve

  4. Receptor downregulation and desensitization enhance the information processing ability of signalling receptors

    Directory of Open Access Journals (Sweden)

    Resat Haluk

    2007-11-01

    Full Text Available Abstract Background In addition to initiating signaling events, the activation of cell surface receptors also triggers regulatory processes that restrict the duration of signaling. Acute attenuation of signaling can be accomplished either via ligand-induced internalization of receptors (endocytic downregulation or via ligand-induced receptor desensitization. These phenomena have traditionally been viewed in the context of adaptation wherein the receptor system enters a refractory state in the presence of sustained ligand stimuli and thereby prevents the cell from over-responding to the ligand. Here we use the epidermal growth factor receptor (EGFR and G-protein coupled receptors (GPCR as model systems to respectively examine the effects of downregulation and desensitization on the ability of signaling receptors to decode time-varying ligand stimuli. Results Using a mathematical model, we show that downregulation and desensitization mechanisms can lead to tight and efficient input-output coupling thereby ensuring synchronous processing of ligand inputs. Frequency response analysis indicates that upstream elements of the EGFR and GPCR networks behave like low-pass filters with the system being able to faithfully transduce inputs below a critical frequency. Receptor downregulation and desensitization increase the filter bandwidth thereby enabling the receptor systems to decode inputs in a wider frequency range. Further, system-theoretic analysis reveals that the receptor systems are analogous to classical mechanical over-damped systems. This analogy enables us to metaphorically describe downregulation and desensitization as phenomena that make the systems more resilient in responding to ligand perturbations thereby improving the stability of the system resting state. Conclusion Our findings suggest that in addition to serving as mechanisms for adaptation, receptor downregulation and desensitization can play a critical role in temporal information

  5. The Cannabinoid Receptor CB1 Modulates the Signaling Properties of the Lysophosphatidylinositol Receptor GPR55*

    Science.gov (United States)

    Kargl, Julia; Balenga, Nariman; Parzmair, Gerald P.; Brown, Andrew J.; Heinemann, Akos; Waldhoer, Maria

    2012-01-01

    The G protein-coupled receptor (GPCR) 55 (GPR55) and the cannabinoid receptor 1 (CB1R) are co-expressed in many tissues, predominantly in the central nervous system. Seven transmembrane spanning (7TM) receptors/GPCRs can form homo- and heteromers and initiate distinct signaling pathways. Recently, several synthetic CB1 receptor inverse agonists/antagonists, such as SR141716A, AM251, and AM281, were reported to activate GPR55. Of these, SR141716A was marketed as a promising anti-obesity drug, but was withdrawn from the market because of severe side effects. Here, we tested whether GPR55 and CB1 receptors are capable of (i) forming heteromers and (ii) whether such heteromers could exhibit novel signaling patterns. We show that GPR55 and CB1 receptors alter each others signaling properties in human embryonic kidney (HEK293) cells. We demonstrate that the co-expression of FLAG-CB1 receptors in cells stably expressing HA-GPR55 specifically inhibits GPR55-mediated transcription factor activation, such as nuclear factor of activated T-cells and serum response element, as well as extracellular signal-regulated kinases (ERK1/2) activation. GPR55 and CB1 receptors can form heteromers, but the internalization of both receptors is not affected. In addition, we observe that the presence of GPR55 enhances CB1R-mediated ERK1/2 and nuclear factor of activated T-cell activation. Our data provide the first evidence that GPR55 can form heteromers with another 7TM/GPCR and that this interaction with the CB1 receptor has functional consequences in vitro. The GPR55-CB1R heteromer may play an important physiological and/or pathophysiological role in tissues endogenously co-expressing both receptors. PMID:23161546

  6. Pathophysiological consequences of receptor mistraffic: Tales from the platelet P2Y12 receptor.

    Science.gov (United States)

    Cunningham, Margaret R; Aungraheeta, Riyaad; Mundell, Stuart J

    2017-07-05

    Genetic variations in G protein-coupled receptor (GPCR) genes can disrupt receptor function in a wide variety of human genetic diseases, including platelet bleeding disorders. Platelets are critical for haemostasis with inappropriate platelet activation leading to the development of arterial thrombosis, which can result in heart attack and stroke whilst decreased platelet activity is associated with an increased risk of bleeding. GPCRs expressed on the surface of platelets play key roles in regulating platelet activity and therefore function. Receptors include purinergic receptors (P2Y 1 and P2Y 12 ), proteinase-activated receptor (PAR1 and PAR4) and thromboxane receptors (TPα), among others. Pharmacological blockade of these receptors forms a powerful therapeutic tool in the treatment and prevention of arterial thrombosis. With the advance of genomic technologies, there has been a substantial increase in the identification of naturally occurring rare and common GPCR variants. These variants include single-nucleotide polymorphisms (SNPs) and insertion or deletions that have the potential to alter GPCR expression or function. A number of defects in platelet GPCRs that disrupt receptor function have now been characterized in patients with mild bleeding disorders. This review will focus on rare, function-disrupting variants of platelet GPCRs with particular emphasis upon mutations in the P2Y 12 receptor gene that affect receptor traffic to modulate platelet function. Further this review will outline how the identification and characterization of function-disrupting GPCR mutations provides an essential link in translating our detailed understanding of receptor traffic and function in cell line studies into relevant human biological systems. Copyright © 2017. Published by Elsevier B.V.

  7. Atypical chemokine receptors in cancer: friends or foes?

    Science.gov (United States)

    Massara, Matteo; Bonavita, Ornella; Mantovani, Alberto; Locati, Massimo; Bonecchi, Raffaella

    2016-06-01

    The chemokine system is a fundamental component of cancer-related inflammation involved in all stages of cancer development. It controls not only leukocyte infiltration in primary tumors but also angiogenesis, cancer cell proliferation, and migration to metastatic sites. Atypical chemokine receptors are a new, emerging class of regulators of the chemokine system. They control chemokine bioavailability by scavenging, transporting, or storing chemokines. They can also regulate the activity of canonical chemokine receptors with which they share the ligands by forming heterodimers or by modulating their expression levels or signaling activity. Here, we summarize recent results about the role of these receptors (atypical chemokine receptor 1/Duffy antigen receptor for chemokine, atypical chemokine receptor 2/D6, atypical chemokine receptor 3/CXC-chemokine receptor 7, and atypical chemokine receptor 4/CC-chemokine receptor-like 1) on the tumorigenesis process, indicating that their effects are strictly dependent on the cell type on which they are expressed and on their coexpression with other chemokine receptors. Indeed, atypical chemokine receptors inhibit tumor growth and progression through their activity as negative regulators of chemokine bioavailability, whereas, on the contrary, they can promote tumorigenesis when they regulate the signaling of other chemokine receptors, such as CXC-chemokine receptor 4. Thus, atypical chemokine receptors are key components of the regulatory network of inflammation and immunity in cancer and may have a major effect on anti-inflammatory and immunotherapeutic strategies. © Society for Leukocyte Biology.

  8. Pharmacology and function of melatonin receptors

    International Nuclear Information System (INIS)

    Dubocovich, M.L.

    1988-01-01

    The hormone melatonin is secreted primarily from the pineal gland, with highest levels occurring during the dark period of a circadian cycle. This hormone, through an action in the brain, appears to be involved in the regulation of various neural and endocrine processes that are cued by the daily change in photoperiod. This article reviews the pharmacological characteristics and function of melatonin receptors in the central nervous system, and the role of melatonin in mediating physiological functions in mammals. Melatonin and melatonin agonists, at picomolar concentrations, inhibit the release of dopamine from retina through activation of a site that is pharmacologically different from a serotonin receptor. These inhibitory effects are antagonized by the novel melatonin receptor antagonist luzindole (N-0774), which suggests that melatonin activates a presynaptic melatonin receptor. In chicken and rabbit retina, the pharmacological characteristics of the presynaptic melatonin receptor and the site labeled by 2-[125I]iodomelatonin are identical. It is proposed that 2-[125I]iodomelatonin binding sites (e.g., chicken brain) that possess the pharmacological characteristics of the retinal melatonin receptor site (order of affinities: 2-iodomelatonin greater than 6-chloromelatonin greater than or equal to melatonin greater than or equal to 6,7-di-chloro-2-methylmelatonin greater than 6-hydroxymelatonin greater than or equal to 6-methoxymelatonin greater than N-acetyltryptamine greater than or equal to luzindole greater than N-acetyl-5-hydroxytryptamine greater than 5-methoxytryptamine much greater than 5-hydroxytryptamine) be classified as ML-1 (melatonin 1). The 2-[125I]iodomelatonin binding site of hamster brain membranes possesses different binding and pharmacological characteristics from the retinal melatonin receptor site and should be classified as ML-2. 64 references

  9. Constitutive dimerization of the G-protein coupled receptor, neurotensin receptor 1, reconstituted into phospholipid bilayers.

    Science.gov (United States)

    Harding, Peter J; Attrill, Helen; Boehringer, Jonas; Ross, Simon; Wadhams, George H; Smith, Eleanor; Armitage, Judith P; Watts, Anthony

    2009-02-01

    Neurotensin receptor 1 (NTS1), a Family A G-protein coupled receptor (GPCR), was expressed in Escherichia coli as a fusion with the fluorescent proteins eCFP or eYFP. A fluorophore-tagged receptor was used to study the multimerization of NTS1 in detergent solution and in brain polar lipid bilayers, using fluorescence resonance energy transfer (FRET). A detergent-solubilized receptor was unable to form FRET-competent complexes at concentrations of up to 200 nM, suggesting that the receptor is monomeric in this environment. When reconstituted into a model membrane system at low receptor density, the observed FRET was independent of agonist binding, suggesting constitutive multimer formation. In competition studies, decreased FRET in the presence of untagged NTS1 excludes the possibility of fluorescent protein-induced interactions. A simulation of the experimental data indicates that NTS1 exists predominantly as a homodimer, rather than as higher-order multimers. These observations suggest that, in common with several other Family A GPCRs, NTS1 forms a constitutive dimer in lipid bilayers, stabilized through receptor-receptor interactions in the absence of other cellular signaling components. Therefore, this work demonstrates that well-characterized model membrane systems are useful tools for the study of GPCR multimerization, allowing fine control over system composition and complexity, provided that rigorous control experiments are performed.

  10. The Orphan Nuclear Receptor TR4 Is a Vitamin A-activated Nuclear Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X. Edward; Suino-Powell, Kelly M.; Xu, Yong; Chan, Cee-Wah; Tanabe, Osamu; Kruse, Schoen W.; Reynolds, Ross; Engel, James Douglas; Xu, H. Eric (Michigan-Med); (Van Andel)

    2015-11-30

    Testicular receptors 2 and 4 (TR2/4) constitute a subgroup of orphan nuclear receptors that play important roles in spermatogenesis, lipid and lipoprotein regulation, and the development of the central nervous system. Currently, little is known about the structural features and the ligand regulation of these receptors. Here we report the crystal structure of the ligand-free TR4 ligand binding domain, which reveals an autorepressed conformation. The ligand binding pocket of TR4 is filled by the C-terminal half of helix 10, and the cofactor binding site is occupied by the AF-2 helix, thus preventing ligand-independent activation of the receptor. However, TR4 exhibits constitutive transcriptional activity on multiple promoters, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, or ligand binding substantially reduce the transcriptional activity of this receptor. Importantly, both retinol and retinoic acid are able to promote TR4 to recruit coactivators and to activate a TR4-regulated reporter. These findings demonstrate that TR4 is a ligand-regulated nuclear receptor and suggest that retinoids might have a much wider regulatory role via activation of orphan receptors such as TR4.

  11. Soman- or kainic acid-induced convulsions decrease muscarinic receptors but not benzodiazepine receptors

    International Nuclear Information System (INIS)

    Churchill, L.; Pazdernik, T.L.; Cross, R.S.; Nelson, S.R.; Samson, F.E.

    1990-01-01

    [3H]Quinuclidinyl benzilate (QNB) binding to muscarinic receptors decreased in the rat forebrain after convulsions induced by a single dose of either soman, a potent inhibitor of acetylcholinesterase, or kainic acid, an excitotoxin. A Rosenthal plot revealed that the receptors decreased in number rather than affinity. When the soman-induced convulsions were blocked, the decrease in muscarinic receptors at 3 days was less extensive than when convulsions occurred and at 10 days they approached control levels in most of the brain areas. The most prominent decrements in QNB binding were in the piriform cortex where the decline in QNB binding is probably related to the extensive convulsion-associated neuropathology. The decrements in QNB binding after convulsions suggest that the convulsive state leads to a down-regulation of muscarinic receptors in some brain areas. In contrast to the decrease in QNB binding after convulsions, [3H]flunitrazepam binding to benzodiazepine receptors did not change even in the piriform cortex where the loss in muscarinic receptors was most prominent. Thus, it appears that those neuronal processes that bear muscarinic receptors are more vulnerable to convulsion-induced change than those with benzodiazepine receptors

  12. Ligand-independent recruitment of steroid receptor coactivators to estrogen receptor by cyclin D1

    NARCIS (Netherlands)

    Zwijsen, R.M.L.; Buckle, R.S.; Hijmans, E.M.; Loomans, C.J.M.; Bernards, R.A.

    1998-01-01

    The estrogen receptor (ER) is an important regulator of growth and differentiation of breast epithelium. Transactivation by ER depends on a leucine-rich motif, which constitutes a ligand-regulated binding site for steroid receptor coactivators (SRCs). Cyclin D1 is frequently amplified in breast

  13. The WSXWS motif in cytokine receptors is a molecular switch involved in receptor activation

    DEFF Research Database (Denmark)

    Dagil, Robert; Knudsen, Maiken J.; Olsen, Johan Gotthardt

    2012-01-01

    The prolactin receptor (PRLR) is activated by binding of prolactin in a 2:1 complex, but the activation mechanism is poorly understood. PRLR has a conserved WSXWS motif generic to cytokine class I receptors. We have determined the nuclear magnetic resonance solution structure of the membrane...

  14. Lipid raft integrity affects GABAA receptor, but not NMDA receptor modulation by psychopharmacological compounds.

    Science.gov (United States)

    Nothdurfter, Caroline; Tanasic, Sascha; Di Benedetto, Barbara; Uhr, Manfred; Wagner, Eva-Maria; Gilling, Kate E; Parsons, Chris G; Rein, Theo; Holsboer, Florian; Rupprecht, Rainer; Rammes, Gerhard

    2013-07-01

    Lipid rafts have been shown to play an important role for G-protein mediated signal transduction and the function of ligand-gated ion channels including their modulation by psychopharmacological compounds. In this study, we investigated the functional significance of the membrane distribution of NMDA and GABAA receptor subunits in relation to the accumulation of the tricyclic antidepressant desipramine (DMI) and the benzodiazepine diazepam (Diaz). In the presence of Triton X-100, which allowed proper separation of the lipid raft marker proteins caveolin-1 and flotillin-1 from the transferrin receptor, all receptor subunits were shifted to the non-raft fractions. In contrast, under detergent-free conditions, NMDA and GABAA receptor subunits were detected both in raft and non-raft fractions. Diaz was enriched in non-raft fractions without Triton X-100 in contrast to DMI, which preferentially accumulated in lipid rafts. Impairment of lipid raft integrity by methyl-β-cyclodextrine (MβCD)-induced cholesterol depletion did not change the inhibitory effect of DMI at the NMDA receptor, whereas it enhanced the potentiating effect of Diaz at the GABAA receptor at non-saturating concentrations of GABA. These results support the hypothesis that the interaction of benzodiazepines with the GABAA receptor likely occurs outside of lipid rafts while the antidepressant DMI acts on ionotropic receptors both within and outside these membrane microdomains.

  15. Homologous histamine H1 receptor desensitization results in reduction of H1 receptor agonist efficacy

    NARCIS (Netherlands)

    Leurs, R; Smit, M J; Bast, A; Timmerman, H

    1991-01-01

    Prolonged exposure of the guinea-pig intestinal longitudinal smooth muscle to histamine caused homologous desensitization of the H1 receptor, which led to reduced H1 receptor-mediated production of [3H]inositol phosphates as well as to reduced H1 agonist-induced contractions. [3H]Mepyramine binding

  16. Hormonal control of spermatogenesis: expression of FSJH receptor and androgen receptor genes

    NARCIS (Netherlands)

    L.J. Blok (Leen)

    1992-01-01

    textabstractFSH and testosterone are the main hormonal regulators of spermatogenesis. The actions of androgens and FSH are mediated by their respective receptors. Receptor gene expression (mRNA and protein). is an important determinant of hormone action. Biochemical aspects of the regulation of

  17. Arrestin scaffolds NHERF1 to the P2Y12 receptor to regulate receptor internalization.

    Science.gov (United States)

    Nisar, Shaista P; Cunningham, Margaret; Saxena, Kunal; Pope, Robert J; Kelly, Eamonn; Mundell, Stuart J

    2012-07-13

    We have recently shown in a patient with mild bleeding that the PDZ-binding motif of the platelet G protein-coupled P2Y(12) receptor (P2Y(12)R) is required for effective receptor traffic in human platelets. In this study we show for the first time that the PDZ motif-binding protein NHERF1 exerts a major role in potentiating G protein-coupled receptor (GPCR) internalization. NHERF1 interacts with the C-tail of the P2Y(12)R and unlike many other GPCRs, NHERF1 interaction is required for effective P2Y(12)R internalization. In vitro and prior to agonist stimulation P2Y(12)R/NHERF1 interaction requires the intact PDZ binding motif of this receptor. Interestingly on receptor stimulation NHERF1 no longer interacts directly with the receptor but instead binds to the receptor via the endocytic scaffolding protein arrestin. These findings suggest a novel model by which arrestin can serve as an adaptor to promote NHERF1 interaction with a GPCR to facilitate effective NHERF1-dependent receptor internalization.

  18. Multiple kisspeptin receptors in early Osteichthyans provide new insights into the evolution of this receptor family

    DEFF Research Database (Denmark)

    Pasquier, J.; Lafont, A._G.; Jeng, S.-R.

    2012-01-01

    Deorphanization of GPR54 receptor a decade ago led to the characterization of the kisspeptin receptor (Kissr) in mammals and the discovery of its major role in the brain control of reproduction. While a single gene encodes for Kissr in eutherian mammals including human, other vertebrates present ...

  19. Intracellular insulin-receptor dissociation and segregation in a rat fibroblast cell line transfected with a human insulin receptor gene

    International Nuclear Information System (INIS)

    Levy, J.R.; Olefsky, J.M.

    1988-01-01

    The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblasts insulin receptors. These cells bind and internalize insulin normally. Biochemically assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 4 0 C, and internalization of insulin-receptor complexes was initiated by warming the cells to 37 0 C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation

  20. Interaction of chemokines with their receptors--from initial chemokine binding to receptor activating steps

    DEFF Research Database (Denmark)

    Thiele, Stefanie; Rosenkilde, Mette Marie

    2014-01-01

    and surveillance. Chemokines are a group of 8-12 kDa large peptides with a secondary structure consisting of a flexible N-terminus and a core-domain usually stabilized by two conserved disulfide bridges. They mainly interact with the extracellular domains of their cognate 7TM receptors. Affinityand activity......-contributing interactions are attributed to different domains and known to occur in two steps. Here, knowledge on chemokine and receptor domains involved in the first binding-step and the second activation-step is reviewed. A mechanism comprising at least two steps seems consistent; however, several intermediate...... interactions possibly occur, resulting in a multi-step process, as recently proposed for other 7TM receptors. Overall, the N-terminus of chemokine receptors is pivotal for binding of all chemokines. During receptor activation, differences between the two major chemokine subgroups occur, as CC-chemokines mainly...

  1. Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors

    International Nuclear Information System (INIS)

    Pazos, A.; Cortes, R.; Palacios, J.M.

    1985-01-01

    The distribution of serotonin-2 (5-HT 2 ) receptors in the rat brain was studied by light microscopic quantitative autoradiography. Receptors were labeled with four ligands: [ 3 H]ketanserin, [ 3 H]mesulergine, [ 3 H]LSD and [ 3 H]spiperone, which are reported to show high affinity for 5-HT 2 receptors. Very high concentrations were localized in the claustrum, olfactory tubercle and layer IV of the neocortex. The anterior olfactory nucleus, piriform cortex and layer I of neocortex were also rich in 5-HT 2 receptors. The specificity of the different ligands used is discussed in terms of the other populations of sites recognized by them. The distribution of 5-HT 2 receptors here reported is discussed in correlation with (a) the known distribution of serotoninergic terminals, (b) the specific anatomical systems and (c) the central effects reported to be mediated by 5-HT 2 -selective drugs. (Auth.)

  2. Novel GABA receptor pesticide targets.

    Science.gov (United States)

    Casida, John E; Durkin, Kathleen A

    2015-06-01

    The γ-aminobutyric acid (GABA) receptor has four distinct but overlapping and coupled targets of pesticide action importantly associated with little or no cross-resistance. The target sites are differentiated by binding assays with specific radioligands, resistant strains, site-directed mutagenesis and molecular modeling. Three of the targets are for non-competitive antagonists (NCAs) or channel blockers of widely varied chemotypes. The target of the first generation (20th century) NCAs differs between the larger or elongated compounds (NCA-IA) including many important insecticides of the past (cyclodienes and polychlorocycloalkanes) or present (fiproles) and the smaller or compact compounds (NCA-IB) highly toxic to mammals and known as cage convulsants, rodenticides or chemical threat agents. The target of greatest current interest is designated NCA-II for the second generation (21st century) of NCAs consisting for now of isoxazolines and meta-diamides. This new and uniquely different NCA-II site apparently differs enough between insects and mammals to confer selective toxicity. The fourth target is the avermectin site (AVE) for allosteric modulators of the chloride channel. NCA pesticides vary in molecular surface area and solvent accessible volume relative to avermectin with NCA-IBs at 20-22%, NCA-IAs at 40-45% and NCA-IIs at 57-60%. The same type of relationship relative to ligand-docked length is 27-43% for NCA-IBs, 63-71% for NCA-IAs and 85-105% for NCA-IIs. The four targets are compared by molecular modeling for the Drosophila melanogaster GABA-R. The principal sites of interaction are proposed to be: pore V1' and A2' for NCA-IB compounds; pore A2', L6' and T9' for NCA-IA compounds; pore T9' to S15' in proximity to M1/M3 subunit interface (or alternatively an interstitial site) for NCA-II compounds; and M1/M3, M2 interfaces for AVE. Understanding the relationships of these four binding sites is important in resistance management and in the discovery and use

  3. G-protein coupling of cannabinoid receptors

    International Nuclear Information System (INIS)

    Glass, M.

    2001-01-01

    Full text: Since the cloning of the cannabinoid CB1 and CB2 receptors in the early 1990's extensive research has focused on understanding their signal transduction pathways. While it has been known for sometime that both receptors can couple to intracellular signalling via pertussis toxin sensitive G-proteins (Gi/Go), the specificity and kinetics of these interactions have only recently been elucidated. We have developed an in situ reconstitution approach to investigating receptor-G-protein interactions. This approach involves chaotropic extraction of receptor containing membranes in order to inactivate or remove endogenous G-proteins. Recombinant or isolated brain G-proteins can then be added back to the receptors, and their activation monitored through the binding of [ 35 S]-GTPγS. This technique has been utilised for an extensive study of cannabinoid receptor mediated activation of G-proteins. In these studies we have established that CB1 couples with high affinity to both Gi and Go type G-proteins. In contrast, CB2 couples strongly to Gi, but has a very low affinity for Go. This finding correlated well with the previous findings that while CB1 and CB2 both couple to the inhibition of adenylate cyclase, CB1 but not CB2 could also inhibit calcium channels. We then examined the ability of a range of cannabinoid agonists to activate the Gi and Go via CB1. Conventional receptor theory suggests that a receptor is either active or inactive with regard to a G-protein and that the active receptor activates all relevant G-proteins equally. However, in this study we found that agonists could produce different degrees of activation, depending on which G-protein was present. Further studies have compared the ability of the two endocannabinoids to drive the activation of Gi or Go. These studies show that agonists can induce multiple forms of activated receptor that differ in their ability to catalyse the activation of Gi or Go. The ability of an agonist to drive a receptor

  4. Modulation of hepatocyte growth factor gene expression by estrogen in mouse ovary.

    Science.gov (United States)

    Liu, Y; Lin, L; Zarnegar, R

    1994-09-01

    Hepatocyte growth factor (HGF) is expressed in a variety of tissues and cell types under normal conditions and in response to various stimuli such as tissue injury. In the present study, we demonstrate that the transcription of the HGF gene is stimulated by estrogen in mouse ovary. A single injection of 17 beta-estradiol results in a dramatic and transient elevation of the levels of mouse HGF mRNA. Sequence analysis has found that two putative estrogen responsive elements (ERE) reside at -872 in the 5'-flanking region and at +511 in the first intron, respectively, of the mouse HGF gene. To test whether these ERE elements are responsible for estrogen induction of HGF gene expression, chimeric plasmids containing variable regions of the 5'-flanking sequence of HGF gene and the coding region for chloramphenicol acetyltransferase (CAT) gene were transiently transfected into both human endometrial carcinoma RL 95-2 cells and mouse fibroblast NIH 3T3 cells to assess hormone responsiveness. Transfection results indicate that the ERE elements of the mouse HGF gene can confer estrogen action to either homologous or heterologous promoters. Nuclear protein extracts either from RL95-2 cells transfected with the estrogen receptor expression vector or from mouse liver bound in vitro to ERE elements specifically, as shown by band shift assay. Therefore, our results demonstrate that the HGF gene is transcriptionally regulated by estrogen in mouse ovary; and such regulation is mediated via a direct interaction of the estrogen receptor complex with cis-acting ERE elements identified in the mouse HGF gene.

  5. Radiolabelled GLP-1 receptor antagonist binds to GLP-1 receptor-expressing human tissues

    Energy Technology Data Exchange (ETDEWEB)

    Waser, Beatrice; Reubi, Jean Claude [University of Berne, Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, PO Box 62, Berne (Switzerland)

    2014-06-15

    Radiolabelled glucagon-like peptide 1 (GLP-1) receptor agonists have recently been shown to successfully image benign insulinomas in patients. For the somatostatin receptor targeting of tumours, however, it was recently reported that antagonist tracers were superior to agonist tracers. The present study therefore evaluated various forms of the {sup 125}iodinated-Bolton-Hunter (BH)-exendin(9-39) antagonist tracer for the in vitro visualization of GLP-1 receptor-expressing tissues in rats and humans and compared it with the agonist tracer {sup 125}I-GLP-1(7-36)amide. Receptor autoradiography studies with {sup 125}I-GLP-1(7-36)amide agonist or {sup 125}I-BH-exendin(9-39) antagonist radioligands were performed in human and rat tissues. The antagonist {sup 125}I-BH-exendin(9-39) labelled at lysine 19 identifies all human and rat GLP-1 target tissues and GLP-1 receptor-expressing tumours. Binding is of high affinity and is comparable in all tested tissues in its binding properties with the agonist tracer {sup 125}I-GLP-1(7-36)amide. For comparison, {sup 125}I-BH-exendin(9-39) with the BH labelled at lysine 4 did identify the GLP-1 receptor in rat tissues but not in human tissues. The GLP-1 receptor antagonist exendin(9-39) labelled with {sup 125}I-BH at lysine 19 is an excellent GLP-1 radioligand that identifies human and rat GLP-1 receptors in normal and tumoural tissues. It may therefore be the molecular basis to develop suitable GLP-1 receptor antagonist radioligands for in vivo imaging of GLP-1 receptor-expressing tissues in patients. (orig.)

  6. Radiolabelled GLP-1 receptor antagonist binds to GLP-1 receptor-expressing human tissues

    International Nuclear Information System (INIS)

    Waser, Beatrice; Reubi, Jean Claude

    2014-01-01

    Radiolabelled glucagon-like peptide 1 (GLP-1) receptor agonists have recently been shown to successfully image benign insulinomas in patients. For the somatostatin receptor targeting of tumours, however, it was recently reported that antagonist tracers were superior to agonist tracers. The present study therefore evaluated various forms of the 125 iodinated-Bolton-Hunter (BH)-exendin(9-39) antagonist tracer for the in vitro visualization of GLP-1 receptor-expressing tissues in rats and humans and compared it with the agonist tracer 125 I-GLP-1(7-36)amide. Receptor autoradiography studies with 125 I-GLP-1(7-36)amide agonist or 125 I-BH-exendin(9-39) antagonist radioligands were performed in human and rat tissues. The antagonist 125 I-BH-exendin(9-39) labelled at lysine 19 identifies all human and rat GLP-1 target tissues and GLP-1 receptor-expressing tumours. Binding is of high affinity and is comparable in all tested tissues in its binding properties with the agonist tracer 125 I-GLP-1(7-36)amide. For comparison, 125 I-BH-exendin(9-39) with the BH labelled at lysine 4 did identify the GLP-1 receptor in rat tissues but not in human tissues. The GLP-1 receptor antagonist exendin(9-39) labelled with 125 I-BH at lysine 19 is an excellent GLP-1 radioligand that identifies human and rat GLP-1 receptors in normal and tumoural tissues. It may therefore be the molecular basis to develop suitable GLP-1 receptor antagonist radioligands for in vivo imaging of GLP-1 receptor-expressing tissues in patients. (orig.)

  7. Cocaine Disrupts Histamine H3 Receptor Modulation of Dopamine D1 Receptor Signaling: σ1-D1-H3 Receptor Complexes as Key Targets for Reducing Cocaine's Effects

    Science.gov (United States)

    Moreno, Estefanía; Moreno-Delgado, David; Navarro, Gemma; Hoffmann, Hanne M.; Fuentes, Silvia; Rosell-Vilar, Santi; Gasperini, Paola; Rodríguez-Ruiz, Mar; Medrano, Mireia; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Lluís, Carme; Ferré, Sergi; Ortiz, Jordi; Canela, Enric

    2014-01-01

    The general effects of cocaine are not well understood at the molecular level. What is known is that the dopamine D1 receptor plays an important role. Here we show that a key mechanism may be cocaine's blockade of the histamine H3 receptor-mediated inhibition of D1 receptor function. This blockade requires the σ1 receptor and occurs upon cocaine binding to σ1-D1-H3 receptor complexes. The cocaine-mediated disruption leaves an uninhibited D1 receptor that activates Gs, freely recruits β-arrestin, increases p-ERK 1/2 levels, and induces cell death when over activated. Using in vitro assays with transfected cells and in ex vivo experiments using both rats acutely treated or self-administered with cocaine along with mice depleted of σ1 receptor, we show that blockade of σ1 receptor by an antagonist restores the protective H3 receptor-mediated brake on D1 receptor signaling and prevents the cell death from elevated D1 receptor signaling. These findings suggest that a combination therapy of σ1R antagonists with H3 receptor agonists could serve to reduce some effects of cocaine. PMID:24599455

  8. Multiple autophosphorylation sites of the epidermal growth factor receptor are essential for receptor kinase activity and internalization. Contrasting significance of tyrosine 992 in the native and truncated receptors

    DEFF Research Database (Denmark)

    Sorkin, A; Helin, K; Waters, C M

    1992-01-01

    The role of epidermal growth factor (EGF) receptor autophosphorylation sites in the regulation of receptor functions has been studied using cells transfected with mutant EGF receptors. Simultaneous point mutation of 4 tyrosines (Y1068, Y1086, Y1148, Y1173) to phenylalanine, as well as removal of ...

  9. Sex Hormone Receptor Repertoire in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Gerald M. Higa

    2013-01-01

    Full Text Available Classification of breast cancer as endocrine sensitive, hormone dependent, or estrogen receptor (ER positive refers singularly to ERα. One of the oldest recognized tumor targets, disruption of ERα-mediated signaling, is believed to be the mechanistic mode of action for all hormonal interventions used in treating this disease. Whereas ERα is widely accepted as the single most important predictive factor (for response to endocrine therapy, the presence of the receptor in tumor cells is also of prognostic value. Even though the clinical relevance of the two other sex hormone receptors, namely, ERβ and the androgen receptor remains unclear, two discordant phenomena observed in hormone-dependent breast cancers could be causally related to ERβ-mediated effects and androgenic actions. Nonetheless, our understanding of regulatory molecules and resistance mechanisms remains incomplete, further compromising our ability to develop novel therapeutic strategies that could improve disease outcomes. This review focuses on the receptor-mediated actions of the sex hormones in breast cancer.

  10. Small molecule antagonists of integrin receptors.

    Science.gov (United States)

    Perdih, A; Dolenc, M Sollner

    2010-01-01

    The complex and widespread family of integrin receptors is involved in numerous physiological processes, such as tissue remodeling, angiogenesis, development of the immune response and homeostasis. In addition, their key role has been elucidated in important pathological disorders such as cancer, cardiovascular diseases, osteoporosis, autoimmune and inflammatory diseases and in the pathogenesis of infectious diseases, making them highly important targets for modern drug design campaigns. In this review we seek to present a concise overview of the small molecule antagonists of this diverse and highly complex receptor family. Integrin antagonists are classified according to the targeted integrin receptor and are discussed in four sections. First we present the fibrinogen alpha(IIb)beta3 and the vitronectin alpha (V)beta(3) receptor antagonists. The remaining selective integrin antagonists are examined in the third section. The final section is dedicated to molecules with dual or multiple integrin activity. In addition, the use of antibodies and peptidomimetic approaches to modulate the integrin receptors are discussed, as well providing the reader with an overall appreciation of the field.

  11. Medicinal Chemistry of Competitive Kainate Receptor Antagonists

    Science.gov (United States)

    2010-01-01

    Kainic acid (KA) receptors belong to the group of ionotropic glutamate receptors and are expressed throughout in the central nervous system (CNS). The KA receptors have been shown to be involved in neurophysiological functions such as mossy fiber long-term potentiation (LTP) and synaptic plasticity and are thus potential therapeutic targets in CNS diseases such as schizophrenia, major depression, neuropathic pain and epilepsy. Extensive effort has been made to develop subtype-selective KA receptor antagonists in order to elucidate the physiological function of each of the five subunits known (GluK1−5). However, to date only selective antagonists for the GluK1 subunit have been discovered, which underlines the strong need for continued research in this area. The present review describes the structure−activity relationship and pharmacological profile for 10 chemically distinct classes of KA receptor antagonists comprising, in all, 45 compounds. To the medicinal chemist this information will serve as reference guidance as well as an inspiration for future effort in this field. PMID:22778857

  12. Different endothelin receptor affinities in dog tissues

    International Nuclear Information System (INIS)

    Loeffler, B.M.L.; Loehrer, W.

    1991-01-01

    Endothelin (ET) is a long-lasting potent vasoconstrictor-peptide. Here the authors report different binding affinities of endothelin-1 (ET-1) to ET-receptors of various dog tissues. Crude microsomal fractions were prepared after homogenisation of dog tissues in 50 mM Tris/HCl, 20 mM MnCl2, 1 mM EDTA, pH 7.4 by differential centrifugation. Aliquots of microsomal fractions (70 micrograms of protein) were incubated at 25 degrees C for 180 min in the presence of 20 pM 125I-ET-1 and various concentrations of cold ET-1. Four different ET-1 receptor binding affinities were found: adrenals, cerebrum, liver, heart, skeletal muscle and stomach microsomal membranes contained high affinity binding sites (Kd 50 - 80 pM, Bmax 60 - 250 fmol/mg). In cerebellum and spleen medium affinity ET-1 receptors (Kd 350 pM, Bmax 880 and 1200 fmol/mg respectively) were present. In comparison lung and kidney microsomes contained a low affinity ET-1 receptor (Kd 800 and 880 pM, Bmax 1600 and 350 fmol/mg). Receptors of even lower affinity were present in heart, intestine and liver microsomes with Kd values of 3 - 6 nM

  13. Erythropoietin Receptor Signaling Is Membrane Raft Dependent

    Science.gov (United States)

    McGraw, Kathy L.; Fuhler, Gwenny M.; Johnson, Joseph O.; Clark, Justine A.; Caceres, Gisela C.; Sokol, Lubomir; List, Alan F.

    2012-01-01

    Upon erythropoietin (Epo) engagement, Epo-receptor (R) homodimerizes to activate JAK2 and Lyn, which phosphorylate STAT5. Although recent investigations have identified key negative regulators of Epo-R signaling, little is known about the role of membrane localization in controlling receptor signal fidelity. Here we show a critical role for membrane raft (MR) microdomains in creation of discrete signaling platforms essential for Epo-R signaling. Treatment of UT7 cells with Epo induced MR assembly and coalescence. Confocal microscopy showed that raft aggregates significantly increased after Epo stimulation (mean, 4.3±1.4(SE) vs. 25.6±3.2 aggregates/cell; p≤0.001), accompanied by a >3-fold increase in cluster size (p≤0.001). Raft fraction immunoblotting showed Epo-R translocation to MR after Epo stimulation and was confirmed by fluorescence microscopy in Epo stimulated UT7 cells and primary erythroid bursts. Receptor recruitment into MR was accompanied by incorporation of JAK2, Lyn, and STAT5 and their activated forms. Raft disruption by cholesterol depletion extinguished Epo induced Jak2, STAT5, Akt and MAPK phosphorylation in UT7 cells and erythroid progenitors. Furthermore, inhibition of the Rho GTPases Rac1 or RhoA blocked receptor recruitment into raft fractions, indicating a role for these GTPases in receptor trafficking. These data establish a critical role for MR in recruitment and assembly of Epo-R and signal intermediates into discrete membrane signaling units. PMID:22509308

  14. NMDA Receptors in Glial Cells: Pending Questions.

    Science.gov (United States)

    Dzamba, David; Honsa, Pavel; Anderova, Miroslava

    2013-05-01

    Glutamate receptors of the N-methyl-D-aspartate (NMDA) type are involved in many cognitive processes, including behavior, learning and synaptic plasticity. For a long time NMDA receptors were thought to be the privileged domain of neurons; however, discoveries of the last 25 years have demonstrated their active role in glial cells as well. Despite the large number of studies in the field, there are many unresolved questions connected with NMDA receptors in glia that are still a matter of debate. The main objective of this review is to shed light on these controversies by summarizing results from all relevant works concerning astrocytes, oligodendrocytes and polydendrocytes (also known as NG2 glial cells) in experimental animals, further extended by studies performed on human glia. The results are divided according to the study approach to enable a better comparison of how findings obtained at the mRNA level correspond with protein expression or functionality. Furthermore, special attention is focused on the NMDA receptor subunits present in the particular glial cell types, which give them special characteristics different from those of neurons - for example, the absence of Mg(2+) block and decreased Ca(2+) permeability. Since glial cells are implicated in important physiological and pathophysiological roles in the central nervous system (CNS), the last part of this review provides an overview of glial NMDA receptors with respect to ischemic brain injury.

  15. Responses to microbial challenges by SLAMF receptors

    Directory of Open Access Journals (Sweden)

    Boaz Job Van Driel

    2016-01-01

    Full Text Available The SLAMF Family (SLAMF of cell surface glycoproteins is comprised of nine glycoproteins and whilst SLAMF1, 3, 5, 6, 7, 8, 9 are self-ligand receptors, SLAMF2 and SLAMF4 interact with each other. Their interactions induce signal transduction networks in trans, thereby shaping immune cell-cell communications. Collectively, these receptors modulate a wide range of functions, such as myeloid cell and lymphocyte development and, T and B cell responses to microbes and parasites. In addition, several SLAMF receptors serve as microbial sensors, which either positively or negatively modulate the function of macrophages, dendritic cells, neutrophils and NK cells in response to microbial challenges. The SLAMF receptor-microbe interactions contribute both to intracellular microbicidal activity as well as to migration of phagocytes to the site of inflammation. In this review, we describe the current knowledge on how the SLAMF receptors and their specific adapters SAP and EAT-2 regulate innate and adaptive immune responses to microbes.

  16. Phenobarbital Meets Phosphorylation of Nuclear Receptors.

    Science.gov (United States)

    Negishi, Masahiko

    2017-05-01

    Phenobarbital was the first therapeutic drug to be characterized for its induction of hepatic drug metabolism. Essentially at the same time, cytochrome P450, an enzyme that metabolizes drugs, was discovered. After nearly 50 years of investigation, the molecular target of phenobarbital induction has now been delineated to phosphorylation at threonine 38 of the constitutive androstane receptor (NR1I3), a member of the nuclear receptor superfamily. Determining this mechanism has provided us with the molecular basis to understand drug induction of drug metabolism and disposition. Threonine 38 is conserved as a phosphorylation motif in the majority of both mouse and human nuclear receptors, providing us with an opportunity to integrate diverse functions of nuclear receptors. Here, I review the works and accomplishments of my laboratory at the National Institutes of Health National Institute of Environmental Health Sciences and the future research directions of where our study of the constitutive androstane receptor might take us. U.S. Government work not protected by U.S. copyright.

  17. T3 receptors in human pituitary tumors.

    Science.gov (United States)

    Machiavelli, Gloria A; Pauni, Micaela; Heredia Sereno, Gastón M; Szijan, Irene; Basso, Armando; Burdman, José A

    2009-11-01

    The purpose of this work was to investigate the synthesis of T3 receptors in human tumors of the anterior pituitary gland, its relationship with the hormone synthesized and/or secreted by the tumor and the post-surgical evolution of the patient. Patients were evaluated clinically and by magnetic nuclear resonance to classify the adenoma according to their size. Hormonal concentrations in sera were determined by radioimmunoassay. Immunohistochemistry of the pituitary hormones was performed in the tumors. Tumors were obtained at surgery and immediately frozen in ice, transported to the laboratory and stored at -70 degrees C. Reverse transcription was performed with purified RNA from the tumors. Out of 33 pituitary tumors, 29 had RNA for T3 receptors synthesis (88%). They were present in different histological specimens, the tumors were grades 1-4 according to their size, and there was no relationship between the size of the tumor and the presence of T3 receptor RNAs. The post-surgical evolution of the patient was mostly dependent on the size and not on the presence of T3 receptors. The presence of thyroid hormone receptors in pituitary tumors is in line with two important characteristics of these tumors: they are histologically benign and well differentiated.

  18. Neuroactive Steroids: Receptor Interactions and Responses

    Directory of Open Access Journals (Sweden)

    Kald Beshir Tuem

    2017-08-01

    Full Text Available Neuroactive steroids (NASs are naturally occurring steroids, which are synthesized centrally as de novo from cholesterol and are classified as pregnane, androstane, and sulfated neurosteroids (NSs. NASs modulate many processes via interacting with gamma-aminobutyric acid (GABA, N-methyl-d-aspartate, serotonin, voltage-gated calcium channels, voltage-dependent anion channels, α-adrenoreceptors, X-receptors of the liver, transient receptor potential channels, microtubule-associated protein 2, neurotrophin nerve growth factor, and σ1 receptors. Among these, NSs (especially allopregnanolone have high potency and extensive GABA-A receptors and hence demonstrate anticonvulsant, anesthetic, central cytoprotectant, and baroreflex inhibitory effects. NSs are also involved in mood and learning via serotonin and anti-nociceptive activity via T-type voltage-gated Ca2+ channels. Moreover, they are modulators of mitochondrial function, synaptic plasticity, or regulators of apoptosis, which have a role in neuroprotective via voltage-dependent anion channels receptors. For proper functioning, NASs need to be in their normal level, whereas excess and deficiency may lead to abnormalities. When they are below the normal, NSs could have a part in development of depression, neuro-inflammation, multiple sclerosis, experimental autoimmune encephalitis, epilepsy, and schizophrenia. On the other hand, stress and attention deficit disorder could occur during excessive level. Overall, NASs are very important molecules with major neuropsychiatric activity.

  19. Cellular receptors for human enterovirus species A

    Directory of Open Access Journals (Sweden)

    Yorihiro eNishimura

    2012-03-01

    Full Text Available Human enterovirus species A (HEV-A is one of the four species of HEV in the genus Enterovirus in the family Picornaviridae. Among HEV-A, coxsackievirus A16 (CVA16 and enterovirus 71 (EV71 are the major causative agents of hand, foot, and mouth disease (HFMD. Some other types of HEV-A are commonly associated with herpangina. Although HFMD and herpangina due to HEV-A are common febrile diseases among infants and children, EV71 can cause various neurological diseases, such as aseptic meningitis and fatal encephalitis.Recently, two human transmembrane proteins, P-selectin glycoprotein ligand-1 (PSGL-1 and scavenger receptor class B, member 2 (SCARB2, were identified as functional receptors for EV71 and CVA16. In in vitro infection experiments using the prototype HEV-A strains, PSGL-1 and SCARB2 could be responsible for the specific receptors for EV71 and CVA16. However, the involvement of both receptors in the in vitro and in vivo infections of clinical isolates of HEV-A has not been clarified yet. To elucidate a diverse array of the clinical outcome of HEV-A-associated diseases, the identification and characterization of HEV-A receptors may provide useful information in understanding the HEV-A pathogenesis at a molecular level.

  20. Dynamic mobility of functional GABAA receptors at inhibitory synapses.

    Science.gov (United States)

    Thomas, Philip; Mortensen, Martin; Hosie, Alastair M; Smart, Trevor G

    2005-07-01

    Importing functional GABAA receptors into synapses is fundamental for establishing and maintaining inhibitory transmission and for controlling neuronal excitability. By introducing a binding site for an irreversible inhibitor into the GABAA receptor alpha1 subunit channel lining region that can be accessed only when the receptor is activated, we have determined the dynamics of receptor mobility between synaptic and extrasynaptic locations in hippocampal pyramidal neurons. We demonstrate that the cell surface GABAA receptor population shows no fast recovery after irreversible inhibition. In contrast, after selective inhibition, the synaptic receptor population rapidly recovers by the import of new functional entities within minutes. The trafficking pathways that promote rapid importation of synaptic receptors do not involve insertion from intracellular pools, but reflect receptor diffusion within the plane of the membrane. This process offers the synapse a rapid mechanism to replenish functional GABAA receptors at inhibitory synapses and a means to control synaptic efficacy.

  1. Molecular analysis of the nerve growth factor receptor

    International Nuclear Information System (INIS)

    Hempstead, B.; Patil, N.; Olson, K.; Chao, M.

    1988-01-01

    An essential molecule in the translocation of information by nerve growth factor (NGF) to responsive cells is the cell-surface receptor for NGF. This paper presents information on the genomic structure of the NGF receptor gene, NGF receptor models, and transfection of NGF receptors. Equilibrium binding of [ 125 I]NGF to cells reveals two distinct affinity states for the NGF receptor. The human NGF receptor gene is a single-copy gene, consisting of six exons that span 23 kb. The receptor gene is capable of being transferred to fibroblast cells from human genomic DNA and expressed at high levels. The constitutive nature of the receptor promoter sequence is a partial explanation of why this tissue-specific gene is expressed efficiently in a variety of nonneuronal cells after genomic gene transfer. The two kinetic forms of the NGF receptor appear to be encoded by the same protein, which is the product of a single gene

  2. Structural and Molecular Modeling Features of P2X Receptors

    Directory of Open Access Journals (Sweden)

    Luiz Anastacio Alves

    2014-03-01

    Full Text Available Currently, adenosine 5'-triphosphate (ATP is recognized as the extracellular messenger that acts through P2 receptors. P2 receptors are divided into two subtypes: P2Y metabotropic receptors and P2X ionotropic receptors, both of which are found in virtually all mammalian cell types studied. Due to the difficulty in studying membrane protein structures by X-ray crystallography or NMR techniques, there is little information about these structures available in the literature. Two structures of the P2X4 receptor in truncated form have been solved by crystallography. Molecular modeling has proven to be an excellent tool for studying ionotropic receptors. Recently, modeling studies carried out on P2X receptors have advanced our knowledge of the P2X receptor structure-function relationships. This review presents a brief history of ion channel structural studies and shows how modeling approaches can be used to address relevant questions about P2X receptors.

  3. DMPD: Toll-like receptor 3: a link between toll-like receptor, interferon and viruses. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15031527 Toll-like receptor 3: a link between toll-like receptor, interferon and virus... (.csml) Show Toll-like receptor 3: a link between toll-like receptor, interferon and viruses. PubmedID 1503...1527 Title Toll-like receptor 3: a link between toll-like receptor, interferon and virus

  4. Rapid resensitization of purinergic receptor function in human platelets.

    Science.gov (United States)

    Mundell, S J; Barton, J F; Mayo-Martin, M B; Hardy, A R; Poole, A W

    2008-08-01

    Adenosine diphosphate (ADP) is a critical regulator of platelet activation, mediating its actions through two G protein-coupled receptors (GPCRs), the P2Y(1) and P2Y(12) purinergic receptors. Recently, we demonstrated that both receptors desensitize and internalize in human platelets by differential kinase-dependent mechanisms. To demonstrate whether responses to P2Y(1) and P2Y(12) purinergic receptors resensitize in human platelets and determine the role of receptor traffic in this process. These studies were undertaken either in human platelets or in cells stably expressing epitope-tagged P2Y(1) and P2Y(12) purinergic receptor constructs. In this study we show for the first time that responses to both of these receptors can rapidly resensitize following agonist-dependent desensitization in human platelets. Further, we show that in human platelets or in 1321N1 cells stably expressing receptor constructs, the disruption of receptor internalization, dephosphorylation or subsequent receptor recycling is sufficient to block resensitization of purinergic receptor responses. We also show that, in platelets, internalization of both these receptors is dependent upon dynamin, and that this process is required for resensitization of responses. This study is therefore the first to show that both P2Y(1) and P2Y(12) receptor activities are rapidly and reversibly modulated in human platelets, and it reveals that the underlying mechanism requires receptor trafficking as an essential part of this process.

  5. A search for presynaptic inhibitory histamine receptors in guinea-pig tissues: Further H3 receptors but no evidence for H4 receptors.

    Science.gov (United States)

    Petri, Doris; Schlicker, Eberhard

    2016-07-01

    The histamine H4 receptor is coupled to Gi/o proteins and expressed on inflammatory cells and lymphoid tissues; it was suggested that this receptor also occurs in the brain or on peripheral neurones. Since many Gi/o protein-coupled receptors, including the H3 receptor, serve as presynaptic inhibitory receptors, we studied whether the sympathetic neurones supplying four peripheral tissues and the cholinergic neurones in the hippocampus from the guinea-pig are equipped with release-modulating H4 and H3 receptors. For this purpose, we preincubated tissue pieces from the aorta, atrium, renal cortex and vas deferens with (3)H-noradrenaline and hippocampal slices with (3)H-choline and determined the electrically evoked tritium overflow. The stimulation-evoked overflow in the five superfused tissues was inhibited by the muscarinic receptor agonist oxotremorine, which served as a positive control, but not affected by the H4 receptor agonist 4-methylhistamine. The H3 receptor agonist R-α-methylhistamine inhibited noradrenaline release in the peripheral tissues without affecting acetylcholine release in the hippocampal slices. Thioperamide shifted the concentration-response curve of histamine in the aorta and the renal cortex to the right, yielding apparent pA2 values of 8.0 and 8.1, respectively, which are close to its affinity at other H3 receptors but higher by one log unit than its pKi at the H4 receptor of the guinea-pig. In conclusion, histamine H4 receptors could not be identified in five experimental models of the guinea-pig that are suited for the detection of presynaptic inhibitory receptors whereas H3 receptors could be shown in the peripheral tissues but not in the hippocampus. This article is part of the Special Issue entitled 'Histamine Receptors'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Estrogen, Estrogen Receptor and Lung Cancer

    Directory of Open Access Journals (Sweden)

    Li-Han Hsu

    2017-08-01

    Full Text Available Estrogen has been postulated as a contributor for lung cancer development and progression. We reviewed the current knowledge about the expression and prognostic implications of the estrogen receptors (ER in lung cancer, the effect and signaling pathway of estrogen on lung cancer, the hormone replacement therapy and lung cancer risk and survival, the mechanistic relationship between the ER and the epidermal growth factor receptor (EGFR, and the relevant clinical trials combining the ER antagonist and the EGFR antagonist, to investigate the role of estrogen in lung cancer. Estrogen and its receptor have the potential to become a prognosticator and a therapeutic target in lung cancer. On the other hand, tobacco smoking aggravates the effect of estrogen and endocrine disruptive chemicals from the environment targeting ER may well contribute to the lung carcinogenesis. They have gradually become important issues in the course of preventive medicine.

  7. Chemokines and Chemokine Receptors in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Wenjing Cheng

    2014-01-01

    Full Text Available Multiple sclerosis is an autoimmune disease with classical traits of demyelination, axonal damage, and neurodegeneration. The migration of autoimmune T cells and macrophages from blood to central nervous system as well as the destruction of blood brain barrier are thought to be the major processes in the development of this disease. Chemokines, which are small peptide mediators, can attract pathogenic cells to the sites of inflammation. Each helper T cell subset expresses different chemokine receptors so as to exert their different functions in the pathogenesis of MS. Recently published results have shown that the levels of some chemokines and chemokine receptors are increased in blood and cerebrospinal fluid of MS patients. This review describes the advanced researches on the role of chemokines and chemokine receptors in the development of MS and discusses the potential therapy of this disease targeting the chemokine network.

  8. Alcohol's actions on neuronal nicotinic acetylcholine receptors.

    Science.gov (United States)

    Davis, Tiffany J; de Fiebre, Christopher M

    2006-01-01

    Although it has been known for many years that alcoholism and tobacco addiction often co-occur, relatively little information is available on the biological factors that regulate the co-use and abuse of nicotine and alcohol. In the brain, nicotine acts at several different types of receptors collectively known as nicotinic acetylcholine receptors (nAChRs). Alcohol also acts on at least some of these receptors, enhancing the function of some nAChR subtypes and inhibiting the activity of others. Chronic alcohol and nicotine administration also lead to changes in the numbers of nAChRs. Natural variations (i.e., polymorphisms) in the genes encoding different nAChR subunits may be associated with individual differences in the sensitivity to some of alcohol's and nicotine's effects. Finally, at least one subtype of nAChR may help protect cells against alcohol-induced neurotoxicity.

  9. The Integrin Receptor in Biologically Relevant Bilayers

    DEFF Research Database (Denmark)

    Kalli, Antreas C.; Róg, Tomasz; Vattulainen, Ilpo

    2017-01-01

    /talin complex was inserted in biologically relevant bilayers that resemble the cell plasma membrane containing zwitterionic and charged phospholipids, cholesterol and sphingolipids to study the dynamics of the integrin receptor and its effect on bilayer structure and dynamics. The results of this study...... demonstrate the dynamic nature of the integrin receptor and suggest that the presence of the integrin receptor alters the lipid organization between the two leaflets of the bilayer. In particular, our results suggest elevated density of cholesterol and of phosphatidylserine lipids around the integrin....../talin complex and a slowing down of lipids in an annulus of ~30 Å around the protein due to interactions between the lipids and the integrin/talin F2–F3 complex. This may in part regulate the interactions of integrins with other related proteins or integrin clustering thus facilitating signal transduction...

  10. AT2 Receptor and Tissue Injury

    DEFF Research Database (Denmark)

    Namsolleck, Pawel; Recarti, Chiara; Foulquier, Sébastien

    2014-01-01

    The renin-angiotensin system (RAS) plays an important role in the initiation and progression of tissue injuries in the cardiovascular and nervous systems. The detrimental actions of the AT1 receptor (AT1R) in hypertension and vascular injury, myocardial infarction and brain ischemia are well...... established. In the past twenty years, protective actions of the RAS, not only in the cardiovascular, but also in the nervous system, have been demonstrated. The so-called protective arm of the RAS includes AT2-receptors and Mas receptors (AT2R and MasR) and is characterized by effects different from...... and often opposing those of the AT1R. These include anti-inflammation, anti-fibrosis, anti-apoptosis and neuroregeneration that can counterbalance pathological processes and enable recovery from disease. The recent development of novel, small-molecule AT2R agonists offers a therapeutic potential in humans...

  11. Transitional cell carcinoma express vitamin D receptors

    DEFF Research Database (Denmark)

    Hermann, G G; Andersen, C B

    1997-01-01

    Recently, vitamin D analogues have shown antineoplastic effect in several diseases. Vitamin D analogues exert its effect by interacting with the vitamin D receptor (VDR). Studies of VDR in transitional cell carcinoma (TCC) have not been reported. The purpose of the present study was therefore.......05). Similarly, also tumor grade appeared to be related to the number of cells expressing the receptor. Normal urothlium also expressed VDR but only with low intensity. Our study shows that TCC cells possess the VDR receptor which may make them capable to respond to stimulation with vitamin D, but functional...... studies of vitamin D's effect on TCC cells in vitro are necessary before the efficacy of treatment with vitamin D analogues in TCC can be evaluated in patients....